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ABSTRACT

The pursuit of estimating probability distributions of complex data is an ongoing
challenge. Existing traditional methods impose a ceiling to the true resemblance
of the targeted data distribution, due to their assumptions on the shape of the
targeted data distribution. Recently, generative models have garnered substantial
attention for its ability to replicate high-resolution images, thereby learning the
distribution of high-complexity data. Inspired by this paradigmatic approach
to learn a distribution without relying on an assumption about the shape of the
target data distribution, this project explores the bridging of Deep Learning and
Statistics within the area of distribution generation methods.

This paper provides the overall context of the research problem in Chap-
ter 1, elaborates on existing literature and related works in Chapter 2, discusses
the methodology and execution plan of this project in Chapter 3, mentions the
results from what was executed in Chapter 4 and lastly concludes in Chapter 5.



5

TABLE OF CONTENTS

DECLARATION 1

APPROVAL FOR SUBMISSION 2

ABSTRACT 4

TABLE OF CONTENTS 5

LIST OF TABLES 7

LIST OF FIGURES 8

LIST OF SYMBOLS / ABBREVIATIONS 10

LIST OF APPENDICES 11

CHAPTER

1 INTRODUCTION 12

1.1 General Introduction 12

1.2 Importance of Study 12

1.3 Problem Statement 13

1.4 Aim and Objectives 14

1.5 Scope and Limitation of Study 14

2 LITERATURE REVIEW 16

2.1 Probability Distribution Estimation 16

2.2 Deep Generative Models 17

2.2.1 Variational Autoencoders (VAE) 17

2.2.2 Generative Adversarial Network (GAN) 20

2.2.3 Wasserstein Generative Adversarial Net-

work (WGAN) 22

2.3 Applications of Deep Generative Models for Non-

Image Data 28

2.4 Summary 31

3 METHODOLOGY AND WORK PLAN 34

3.1 Introduction 34



6

3.2 Overview of Procedure 34

3.3 Software Library and Integrated Development Envi-

ronment 34

3.4 Data and Training Progression 35

3.5 WGAN-GP Architecture and Algorithm 35

3.6 Experimental Implementation 37

4 RESULTS AND DISCUSSION 41

4.1 Introduction 41

4.2 Training Dataset 41

4.3 Model Setup 41

4.4 Training Results 42

4.4.1 Sinusoidal Data 43

4.4.2 Linear Data 48

4.4.3 Sigmoidal Data 50

4.4.4 Annular Data 51

4.5 Summary 52

4.6 Discussion 53

5 CONCLUSION 55

5.1 Conclusion 55

5.2 Recommendation for Future Improvements 55

APPENDICES 60



7

LIST OF TABLES

Table 2.1: Comparison between generative models 32

Table 3.1: Types of Dataset 35

Table 3.2: Initial WGAN-GP Hyperparameters 36

Table 4.1: List of Training Dataset 41

Table 4.2: Initial WGAN-GP Hyperparameters 42



8

LIST OF FIGURES

Figure 2.1: Illustration of autoencoder architechture. 17

Figure 2.2: Illustration of variational autoencoder structure. 18

Figure 2.3: Three Distributions with Varying Distances 24

Figure 2.4: Illustration of heatmap of critic values (Phillips et al., 2022). 31

Figure 3.1: Flow chart of proposed coding structure of WGAN-GP. 38

Figure 4.1: General WGAN-GP Generator Structure. 42

Figure 4.2: General WGAN-GP Critic Structure. 42

Figure 4.3: 500 Epochs of SGR01 Ordered from Left-to-right, Top-to-

bottom 43

Figure 4.4: SGR01 Loss 44

Figure 4.5: SGR02 Loss and Results at 300 Epochs 45

Figure 4.6: SGR03 Loss and Results at 500 Epochs 45

Figure 4.7: SGR03 Loss and Results Beyond 500 Epochs 46

Figure 4.8: Comparison Between Varying Learning Rates and Gradient

Penalty Values at 500 Epochs 47

Figure 4.9: SGR03 Loss and Results with λ = 9 and batch size = 200 at

800 Epochs 48

Figure 4.10: L01 Loss and Results with λ = 9 and batch size = 200 at 100

Epochs 49

Figure 4.11: L01 Loss and Results with λ = 9 and batch size = 200 at

300, 350 and 400 Epochs 50

Figure 4.12: Sigmoid Loss and Results with λ = 9 and batch size = 200

at 300, 700 and 1100 Epochs 51

Figure 4.13: Annular Data WGAN-GP Loss and Results with λ = 9 and

batch size = 200 at 400, 900 and 1300 Epochs from Left to

Right 52

Figure 4.14: Summary between Best Outputs of Different Datatypes 53

Figure 5.1: Code Part 1 60



9

Figure 5.2: Code Part 2 61

Figure 5.3: Code Part 3 61

Figure 5.4: Code Part 4 61

Figure 5.5: Code Part 5 62

Figure 5.6: Code Part 6 62

Figure 5.7: Code Part 7 63

Figure 5.8: Code Part 8 63

Figure 5.9: Code Part 9 63

Figure 5.10: Code Part 10 64

Figure 5.11: Code Part 11 64

Figure 5.12: Code Part 12 65

Figure 5.13: Code Part 13 65

Figure 5.14: Code Part 14 66

Figure 5.15: Code Part 15 66



10

LIST OF SYMBOLS / ABBREVIATIONS

p(z) probability of generating latent code

ϕ(xi|z) probabilistic decoder

qθ(z|xi) probabilistic encoder

D(x) discriminator’s probability that x is a real data sample

G(x) generated data sample

γ transport plan

pr = p0 distribution of real/train data

pg = pθ distribution of generated data

fw(x) critic function with parameter w

x̃ generated sample

x real sample

x̂ linear interpolation between real and generated samples

f(x) critic function of sample type x

λ gradient penalty coefficient

∇ gradient

β1, β2 hyperparameter for optimiser

F1,n, F1,n empirical distribution functions



11

LIST OF APPENDICES

APPENDIX A: Code Screenshots 48



12

CHAPTER 1

INTRODUCTION

1.1 General Introduction

A probability distribution is a mathematical function that defines all the po-

tential values and its respective likelihood of occurrence for a random variable

within a specified range (Di Paola et al., 2018). From a Bayesian perspective,

this relates closely to the evaluation of uncertainty, as every uncertain event

can be expressed in a probabilistic manner. To learn a probability distribution

is to learn the probability density, and in doing so, it provides for statistical

inference, aids in decision making, and future-oriented planning. A common

method to achieve the above is through estimating the parameters that give the

best fit to the observed data, otherwise known as Maximum Likelihood Esti-

mation (MLE). However, this approach presupposes that the observed data is

independent and identically distributed. Unfortunately, this goes against char-

acteristics of most real-world data. It also assumes the underlying distribution

of the observed data, besides the fact that in some cases, this underlying dis-

tribution may not exist (Arjovsky and Bottou, 2017). It is worth noting that

in a continuous case, if data samples which possess comparable characteristics

to the observed data could be generated, this would be asymptotic to having

the ability to find the observed data’s density function and hence its probability

distribution. A particular product of Deep Learning called generative models

has exhibited the potential to realize that exact aim, among other impressive

abilities. More precisely, generative models Generative Adversarial Networks

(GANs), and Variational Autoencoders (VAE). This research explores the struc-

ture, training techniques, and applications of the GANs and propose its use to

construct probability distributions.

1.2 Importance of Study

The potential to construct probability distributions without relying on a pre-

sumed distribution highlights the significance of researching and enhancing prob-
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ability distribution construction using generative models like GANs, breaking

away from traditional approaches. For many applications, such as speech and

image recognition, natural language processing, and anomaly detection, accu-

rate data distribution estimate is crucial. Poor distribution estimation has shown

in multiple instances to cause terrible calamities. The financial crisis in 2008

resulted from inaccurate assumptions made from the housing market distribu-

tion (Kang and Liu, 2014). In a separate case, the Space Shuttle Challenger

tragedy that took place in 1986, where the space shuttle orbiter exploded due to

the falsely estimated probability distribution of the likelihood of O-ring failure

(Dalal et al., 1989). Accurate probability distribution estimation is a fundamen-

tal topic in statistics and machine learning. By adding to the body of work in the

area of statistics and machine learning, this study can help advance the field and

lead to new insights and techniques for alternative data modeling and analysis.

Additionally, by providing another use-case of GANs beyond image-based data,

of which GANs have exhibited excellent performance in, this study serves as a

means to provide a notion to the future development and utilization of GANs.

1.3 Problem Statement

Maximum Likelihood Estimation (MLE) may not be an optimal method for es-

timating complex data probability distributions, especially when these data are

non-regular and violate the standard assumption of MLE that observed data is

independent and identically distributed (Rao, 1957). Complex data often display

temporal correlation among its observations. Coupled with its dependency on

various external factors, multiple assumptions about this data must be made for

the nice properties of MLE, such as consistency, efficiency, and asymptotic nor-

mality to exist. Various modifications to MLE have been proposed to address

these issues, such as mixed-effects models, maximum a posteriori estimation,

and generalized linear mixed models, which include additional information and

assumptions to improve accuracy and robustness of parameter estimation. De-

spite these efforts, estimating probability distributions for complex data remains

a challenging task as MLE functions on the basis that the accuracy towards ob-

served data is limited by its assumptions. Besides, MLE has the tendency to
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produce biased estimations, especially when the volume of the dataset is small.

In some cases, maximum likelihood functions can be too complex to

evaluate or not exist in a closed form. Thus, simulation-based estimation meth-

ods have brought rise to the use of machine learning in for estimation in a sta-

tistical context. A paper by Lewis and Syrgkanis elaborates efforts to select

moment conditions using an adversarial approach. Wei and Jiang, 2021, used

neural networks to direct mapping from data to parameter estimates and statisti-

cal accuracy of these estimates (Wei and Jiang, 2022). The direction of previous

efforts of machine learning were scattered within statistics, used in nuanced and

non-nuanced parameter model estimation, such as boosted trees, lasso regres-

sion and random forest parameters (Chernozhukov et al., 2018). There has been

success in utilising artificial neural networks and boosted decisions to generate

probability distribution functions (Sadeh et al., 2016).

However, only few papers made use of generative models specifically

for probability distribution generation. The lack of a universal method for es-

timating complex data distributions highlights the need for further research to

develop more effective and efficient methods for estimating complex data dis-

tributions. Thus, this study contributes to the expanding body of research that

combines machine learning with statistics.

1.4 Aim and Objectives

The aim of this project is to make use of the ability of GANs to create a gener-

ative model with the ability to generate standard probability distributions. The

key objectives of this project are as follows:

1. Provide a thorough review on GAN

2. Create a generative model capable of generating probability distributions

3. Evaluate the effectiveness of the generated distributions

1.5 Scope and Limitation of Study

For the purpose of this study, the scope of this project narrows down the category

of deep learning, focusing mainly on GANs as the primary approach in distri-
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bution generation. In evaluating the effectiveness of the generated distribution,

this study makes comparisons to MLE as its counterpart.

Training of the GAN model is highly reliant on the optimal combination

of hyperparameters and model architechture, as such, there are infinitely many

of such configurations, which is undoubtably impossible to go through during

the course of completing this study. Hardware limitations include the kind of

GPU and processor the training of the model is done on. Since the performance

of the GAN is directly proportional to the training time of the model, amongst

other factors, and that GANs are notorious for requiring extensive training time,

the model possesses a conservative level of performance. This is supplemented

by the software limitation of this research, which involve the use of a local in-

tegrated development environment, Spyder. While it is convenient and do not

rely on internet connection, unlike the paid version of Google Colab, for which

access is unavailable for this research, do not have the benefit of boosted GPUs,

which can allow for faster training times and the ability to work on larger-scale

projects. While the free version of Google Colab is available, this version re-

duces the available runtime and increases the cool down time for each subse-

quent use of the boosted GPU feature, on top of its disconnection feature upon

inactivity even though a code cell is running, which can be highly inconvenient

for the purpose of sufficient model training (Google Colaboratory: Frequently

Asked Questions, n.d.).
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CHAPTER 2

LITERATURE REVIEW

2.1 Probability Distribution Estimation

Maximum Likelihood Estimation (MLE) is a renown statistical approach to

probability distribution estimation (Fisher, 1992). It involves finding a like-

lihood function with respect to a set of parameter values, then evaluating the

estimated parameter values that create the most likely distribution of the tar-

get distribution. Since its inception in the 1900s, MLEs have been extensively

implemented across multiple fields, and are still relevant today due to its estab-

lished record of success, on top of its simplicity to implement and statistically

sound fundamentals. MLEs are often used to estimate parameters for different

models. For instance, Aït-Sahalia and Kimmel deployed MLE for stochastic

volatility model estimation (Aït-Sahalia and Kimmel, 2007). Zhang et al. pro-

posed a logistic regression prediction model for EHR phenotyping using MLE

as an improved phenotype prevalence estimation method in terms of efficiency

and accuracy (Zhang et al., 2019). However, MLE functions on a strong set

assumptions that are not always applicable in practice. MLE is known to work

poorly under small-sized data sample constraints (Jain and Wang, 2008), sub-

ject to a systematic error of assumption which produces biased and non-optimal

outcomes. Further, MLE assumes that the observed data follows a specific dis-

tribution, and that deviations from this assumption would yield a less accurate

model fit. In some cases, the likelihood function is not tractable due to com-

plex dependencies of some data. Thus, an approximation method such as Monte

Carlo methods and variational inference is adopted, where a prior distribution

is adjusted to mimic its posterior distribution. Although the technique is simple

to use and intuitive, the choice of the prior distribution can greatly affect the

posterior distribution (Park and Haran, 2020).
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2.2 Deep Generative Models

2.2.1 Variational Autoencoders (VAE)

Variational Autoencoders were introduced in 2013, by Kingma and Welling in

their paper "Auto-Encoding Variational Bayes", which marries the strength of

neural networks with the probabilistic framework of Variational Bayesian Infer-

ence. Variational Autoencoders are an extension of Autoencoders, which consist

of three parts, the encoder, bottleneck and decoder. Visually, Autoencoders can

be illustrated as below

Figure 2.1: Illustration of autoencoder architechture.
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The encoder maps its given input to a lower-dimension representation in

the bottleneck, where a single encoding of the input is created, The bottle neck

consists of the middle-most layers of the network, where the size of the bottle-

neck layers are proportionate to the amount of compression of vital information

that gets stored in the latent space. The decoder recreates the original input by

decoding its encoded variables. While there are benefits to reducing the dimen-

sionality of high-dimensional data, generating new data samples of the same

family as the input data would provide greater value than simply recreating the

input data. The problem with Autoencoders lie in that the decoder does not pos-

sess the ability to validate encoded inputs to be of the same nature of the target

data, in turn it produces random outputs that hold no value.

VAEs act as the solution to this problem by generating a range of pos-

sible encoded values for each latent variable from each input data in the form

of probability distributions. The decoder then decodes a random sample from

each probability distribution corresponding to each latent variable. The ability

to sample from a set of probability distributions introduces variability in samples

that may deviate from the input sample while holding the same types of unseen

characteristics. Successfully decoding such samples implies that the VAE has

the ability to generate new samples that are identical in distribution to the input

data.

Figure 2.2: Illustration of variational autoencoder structure.
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In a VAE, a probabilistic encoder and probabilistic decoder exists in

place of an encoder and decoder. The goal of a VAE is to find a distribution

qϕ(z|x) that maps inputs to latent variables, that by sampling from z ∼ qϕ(z|x),

new samples x′ ∼ pθ(x|z) can be generated. The process of obtaining this

qϕ(z|x), written as P (z|x) = P (z|x)P (z)
P (x)

is intractable in practice since the inte-

gral required to compute P (x) is difficult to evaluate analytically. An alternative

method is a variational inference approach that involves assuming a prior distri-

bution (usually Gaussian) and minimizing the difference of the two distributions,

molding the prior distribution to approximate the form of the target distribution.

In doing so, a Kullback–Leibler (KL) divergence is utilized to calculate this

difference.

Li(θ, ϕ) = −Ez∼qθ(z|xi)[log pϕ(xi|z)] +KL(qθ(z|xi)||p(z)) (2.1)

where

p(z) - probability of generating latent code,

ϕ(xi|z) - probability of generating true data sample given the latent code

(probabilistic decoder),

qθ(z|xi) - estimated posterior probability (probabilistic encoder),

However, a major pitfall of using KL-divergence surfaces when the prior

distribution and the target distribution do not overlap, where in both the forward

and reverse KL-divergence, this results in an infinite value of divergence.

Furthermore, since VAEs undergo variational inference which is an ap-

proximation of the posterior, it suffers from posterior collapse, where the pos-

terior and prior distribution are equal, producing unmeaningful representations

(Dai et al., 2019). An approach to handling this issue is by adding a noise term

to the prior distribution so that the model can capture a greater measure of the

the input data’s complexity.

In contrast to VAE, a generative model introduced by Goodfellow et al.

in 2014 - Generative Adversarial Networks (GANs) offer more flexible choices
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in defining the objective function, such as Jensen-Shannon and f-divergences

(Nowozin et al., 2016).

2.2.2 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) is a type of generative model consist-

ing of two components with contrasting objectives, namely the generator and the

discriminator. Through meeting their objectives, the GAN achieves its aim to

learn the input data distribution in order to produce new samples that resemble

it. More specifically, the generator takes a random noise vector and maps it to

a point in the data space of the train dataset, producing outputs that resemble

the data from the train dataset. Conversely, the discriminator outputs a value for

the likelihood that the input sample comes from either the train (real) dataset or

generated (fake) dataset, at a cut-off point at 0.5.

In the process of training, the generator learns a distribution, Pg that

conforms to the train dataset distribution, Pr. The paper describes that the GAN

objective is achieved when the Jensen-Shannon (JS) divergence between Pr and

Pg is reduced to a minimum (Goodfellow et al., 2014).

Intuitively, the relationship between the generator and discriminator can

be thought of as two components in a two-player minimax game. Let D(x) be

the probability that x is a real data sample, and G(z) be the generator mapping

of noise variables, z, to a data space. Then the minimax game exists such that

the discriminator aims to maximimse the distance between real and generated

samples, establishing a stark difference between the two, while the generator

aims to close that distance, effectively confusing the discriminator into wrongly

classifying fake data, which is to minimize log(1 − D(G(z))). The equation

below is the minimax equation as described by Goodfellow (Goodfellow et al.,

2014).

min
G

max
D

Ex∼pr(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2.2)
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where

pz(z) - simple prior noise distribution,

pr(z) - train data distribution,

D(x) - discriminator output for the probability of x being real,

G(z) - generated data sample

The first term in this equation gives the probability of the discriminator

for correctly classifying real data, while the second term is the probability of

the discriminator for correctly classifying fake data. The discriminator aims to

maximise this value. In contrast, the generator aims to minimise the second

term, reducing the discriminator’s chances of correctly classifying fake data.

Goodfellow recommends against training the discriminator to optimality

due to its high computational cost, and potential to overfit. When this happens,

the discriminator becomes too advanced, and classifies fake data with high con-

fidence. The JS divergence between the distribution for the real and fake data

sample vanishes, leading to significantly slow generator learning, and training

instability. Instead, by alternating the training of the discriminator and generator,

the discriminator maintains a near optimal state, while the generator gradually

improves in data generation quality. To balance the learning rate of the discrim-

inator and generator, the algorithm suggested by Goodfellow is as follows

Algorithm 1: GAN Training Algorithm
1: for t number of epochs do
2: for k number of steps do
3: - sample a minibatch of m noise samples from a simple prior distri-

bution
4: - sample a minibatch m of generated samples from generator output
5: - update the discriminator weights by backpropagation
6: end for
7: - sample a minibatch of m samples from a simple prior distribution
8: - update the generator weights by backpropagation
9: end for

Conversely, when the generator is overtrained, and generates an output

that fools the discriminator the ’most’ (in the eye of the discriminator), the gen-

erator ignores the variability that comes from sampling from random noise, z,
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thus collapsing its mode to a single point. This means the generator falls into

the routine of generating the same data that the discriminator deems is true, ex-

ploiting the local minima of the discriminator. Therefore, maintaining a balance

in training the generator and discriminator is a terribly tricky task, a direct factor

to the difficulty for GANs to converge (Goodfellow et al., 2014).

While that is so, iterative inference calculation is not needed for GANs

to learn the target distribution. The reduction of computational cost due to this

fact is outweighed by the difficulty for convergence of GANs. However, the

positive approach of GANs in learning a target distribution without assuming a

prior distribution alone is worth exploring, so in an attempt to improve GANs,

an evolved flavour of GAN was introduced 3 years later. (Arjovsky et al., 2017)

2.2.3 Wasserstein Generative Adversarial Network (WGAN)

In 2017, an improvement to the original GAN was introduced by Arjovsky at

al., addressing the difficulty to maintain a balance between training of the sub-

neural networks. It was found that the root of the issue related to the method in

defining the closeness of the generator and target data distributions. In amending

the divergence measure, a significant improvement in the nature of convergence

was observed. Making this change effectively supposedly mitigated training

instability in GANs. This meant that maintaining a balance in training in this

enhanced GAN was no longer a prevalent issue. Training the discriminator,

or rather, the critic, in this new flavour of GAN to its optimum without worry

of training imbalance was now made possible, and was a more effective way

to train the GAN. As a by-product of the updated divergence measure, its loss

function was found to be highly correlated to the performance of the model,

and could be plotted as a means to monitor the training process. The following

section will go into more detail and technicality of this approach.

The paper by Arjovsky at al. make comparisons to Total Variation (TV)

Distance, Kullback-leiber (KL) Divergence, Jensen-Shannon (JS) Divergence

and the Earth-Mover (EM) or Wasserstein-1 Distance, which were distance mea-

sures for the distance between the distribution of target data and the learned

distribution of the generator-equivalent of the predecessors of GANs and the
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distance measure which later became that of WGANs.(Arjovsky et al., 2017).

TV distance calculates the distance between two probability distribu-

tions by summing the absolute difference between their density functions. The

metric denoted by TV distance produces a 0 if the two distributions are identical

and 1 if they are completely different Arjovsky et al. (2017). KL divergence is

an asymmetrical calculation of the difference between probability distributions.

It is also known as the relative entropy and measures the information lost when

estimating one distribution from another. JS divergence on the other hand is

the symmetrical version of the KL divergence. EM distance calculates the cost

to transform one distribution to the other and the corresponding difference be-

tween the two probability distributions based on this minimal cost, effectively

providing the amount of work required to apply the transformation.

It was found that EM distance was most suited distance among the 4, due

to its dynamic yet stable properties. This is because the TV distance is nothing

but a binary value for whether two probability distributions are identical or not,

producing values 0 and 1 for the respective scenarios. KL divergence on the

other hand is an asymmetrical calculation of the difference between probability

distributions, which blows up at parts of the distribution where the two do not

overlap. The third case is with JS divergence, which caps at log 2 when there

is no overlap in distributions (Arjovsky et al., 2017). This is an improvement

as compared to KL divergence. However, it is still not a true representation of

distance, as increased distance between two non-overlapping distributions are

represented by a constant rather than a variable that increases in proportion to

their distance. The EM distance is superior in this regard, as it is directly propor-

tional to the distance between probability distributions. Earth Mover’s distance

is explained as the cost of moving one pile of soil to another. By considering all

transport paths and their respective costs, the WGAN aims to find the minimum

cost to do so. This is possible for the EM distance is calculated horizontally,

unlike the 3 previous distances that were calculated vertically (Arjovsky et al.,

2017). The EM distance is the only continuous plot with usable gradients ev-

erywhere, which is key for gradient descent in the learning process (Arjovsky

et al., 2017).
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W (Pr, Pg) = inf
γ∈

∏
(Pr,pg)

E(x,y)∼γ [||x− y||] (2.3)

where∏
(pr, pg) = the set of all possible joint probability distributions between pr and

pg,

γ = one of the transport plans,

pr = distribution of the train data,

pg = generator distribution of train data

The following example provides an illustration for the convergence and

lack of as mentioned above.

Figure 2.3: Three Distributions with Varying Distances

KL(pA, pB) =
∑
x

pA(x) log
pA(x)

pB(x)
(2.4)

= P (x = 1) log
pA(x = 1)

pB(x = 1)
(2.5)

= 1 log
1

0
(2.6)

= ∞ (2.7)
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KL(pA, pC) =
∑
x

pA(x) log
pA(x)

pC(x)
(2.8)

= P (x = 1) log
pA(x = 1)

pC(x = 1)
(2.9)

= 1 log
1

0
(2.10)

= ∞ (2.11)

JS(pA, pB) =
1

2
(KL(pA, pM) +KL(pB, pM)) , pM =

pA + pB
2

(2.12)

=
1

2

(
pA(x = 1) log

pA(x = 1)
pA(x=1)pB(x=1)

2

+ pB(x = 2) log
pB(x = 2)

pA(x=2)pB(x=2)
2

)
(2.13)

=
1

2

(
1 log

1
1
2

+ 1 log
1
1
2

)
(2.14)

= log 2 (2.15)

JS(pA, pC) =
1

2
(KL(pA, pM) +KL(pC , pM)) , pM =

pA + pC
2

(2.16)

=
1

2

(
pA(x = 1) log

pA(x = 1)
pA(x=1)pC(x=1)

2

+ pC(x = 3) log
pC(x = 3)

pA(x=3)pC(x=3)
2

)
(2.17)

=
1

2

(
1 log

1
1
2

+ 1 log
1
1
2

)
(2.18)

= log 2 (2.19)

EM(pA, pB) = 1 (2.20)

(2.21)
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EM(pA, pC) = 2 (2.22)

(2.23)

Topologically, it was also found that KL divergence was strongest, fol-

lowed by JS divergence, TV divergence, and lastly EM divergence. The weak-

ness of EM divergence suggests that it would yield better properties as compared

to JS divergence, since according to Arjovsky et al. (2017), weaker distance

measures were shown to ease model convergence. Additionally, the differentia-

bility of EM divergence imply that it can be used to train the critic to optimality,

where the occurrence of vanishing gradients is mitigated. This phenomenon is

prevalent for JS divergence as it is locally saturated, causing the gradients to

converge to a true value of zero value as training continues. The experiment car-

ried out in the paper by Arjovsky et al. (2017) confirmed this, where JS loss that

is poorly correlated with the model performance, saturating at approximately

log2, its maximum value, leading to zero discriminator loss. Conversely, it is

not possible for the critic to saturate, for the constraint set on the weights limit

the potential growth of the function to a linear function at most.

The ability to train the critic to optimality also means that mode collapse

is no longer possible with increased training. There were no instance in any

of the experiments carried out as described in the WGAN paper where mode

collapse occurred for WGAN. All this pointed towards the fact that WGAN is

superior to GAN.

The infimum in the EM distance is however intractable, as finding all

possible joint distributions between p0 and pθ is too computationally costly. An

equivalent formula was proposed by Arjovsky et al. based on the Kantorovich-

Rubinstein duality, maximizing

W (pr, pg) =
1

K
sup

∥f∥L≤K

Ex∼pr [f(x)]− Ex∼pg [f(x)] (2.24)

where
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f(x) = the critic function,

pr = distribution of the train data,

pg = generator distribution of train data

where the optimal K-Lipschitz function f(x) is one that finds the maxi-

mum difference between the expected critic values of the two distributions, and

originates from a family of K-Lipschitz continuous functions (Arjovsky et al.,

2017). This difference provides a tractable distance measure between distribu-

tions.

The loss function of the "discriminator" no longer acts as a classifier as

with the original GAN, rather, it is trained by differentiation of this loss and

back-propagation to learn w, to obtain the K-Lipschitz continuous function that

is essential to computing the Wasserstein distance. The loss decreases as train-

ing occurs, which means the Wasserstein distance decreases as a result of the

improving generator output(Arjovsky et al., 2017).

L(pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pr(z)[fw(gθ(z))] (2.25)

where

gθ(z) = generated sample,

fw(x) = critic function with parameter w,

pr = distribution of the train data,

pg = generator distribution of train data

An essential condition for maintaining K-Lipschitz continuity involves

ensuring that the weights w lie within a bounded, compact space. To do this,

the weights were clamped to a fixed bound such as [-0.01, 0.01] after each gra-

dient update. This was found not to be a good idea even though it maintained

K-Lipschitz continuity, because a small clipping would lead to vanishing gra-

dients, and an overly large clipping would slow down training immensely. In

a paper published shortly after this, weight clipping was replaced by gradient

penalty (Gulrajani et al., 2017) , which penalises the gradient norm for created
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samples. This ensures that the objective function has a maximum norm value of

1 everywhere. The objective function for WGAN-GP is as follows

L(pr, pg) = Ex̃∼Pg [f(x̃)]− Ex∼Pr [f(x)] + λEx̂∼Px̃
[(||∇x̂f(x̂)||2 − 1)2] (2.26)

where

x̃ = generated sample,

x = real sample,

x̂ = linear interpolation between real and generated sample,

f(x) = critic function of sample type x,

λ = penalty coefficient,

||∇x̃f(x̃)||2 = gradient norm of the discriminator w.r.t. the generated sample

The first two terms being the original critic loss and the third term being

the additional term for the gradient penalty. The linear interpolation term x̃ is

used to enforce Lipschitz continuity by penalizing the norm of the gradient of

the critic function with respect to interpolated samples and is obtained from uni-

formly sampling along the lines connecting sample pairs between the two dis-

tributions. The inception of the gradient penalty mitigated training difficulties

previously faced, and aided in discriminator optimisation and thus, convergence.

2.3 Applications of Deep Generative Models for Non-Image Data

Generative Adversarial Nets have shown its competence in image-based data

(Kang et al., 2022) (Xiang et al., 2023) (Huang et al., 2018). However, few pa-

pers expound on the use of GANs on non-image data (Hu et al., 2021) (Phillips

et al., 2022), and even fewer on distributive modeling. One of the uses of GANs

that is similar to the use case of this research is that of utilizing GANs as a mul-

tiple output regression model, named Multiple Output Regression GAN (MOR-

GAN). The proposed model aims to learn the distribution of the underlying re-
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gression problem, as well as extending the trained GAN as a method to predict

outputs of specified independent variables.

Comparisons were made to equivalent outputs by a popular machine

learning technique for regression problems called Gaussian Process Regression,

based on Bayesian theory and statistical learning. A python library was even

created (Hack, n.d.) for the use of this technique, momentous towards its adop-

tion in dealing with computationally costly statistics problems.

First take to consideration a simple regression problem with input and

output x and y respectively. By nature of GAN, the generator outputs both x and

y, that seem to originate from the same distribution of real samples. To specify

the independent variable x, a prediction algorithm was introduced. Starting with

a trained WGAN, latent variables are first set to random numbers. The trained

WGAN generator produces an output from this random valued input, say (x, y).

If the intended independent variable is xp, then the latent variables are updated

via back-propagation so as to reduce the difference between x and xp. By doing

so, the expected outcome is assumed to be (xp, yp). Since the generator is a non-

linear function of latent variables, starting with different random states mean that

different yp values can be obtained from the same xp value. Thus, a distribution
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of yp values can be obtained from this process, which can reflect the uncertainty

or probability of the yp.

A matrix [01] is introduced and acts to isolate and project the generated

outputs in the form (x, y)T onto a space for constrained variables. Thus, the

WGAN in this paper can be used either with randomly generated independent

variables or constrained ones (specified x values). In the first case, there is

no control over the independent variables generated by the WGAN, however,

the distribution of the input data can be learned naturally by sampling from

generated outputs. Conversely, to find the distribution of output values, given a

specified input value, the algorithm as described above, using a trained WGAN,

would yield a set of constrained tuples, from which the distribution of yp values

can be obtained.

As a method of statistical evaluation in this paper, the Kolomogorov-

Smirnov (KS) test was applied, which is a goodness of fit test between two

distributions. The distributions are created based on x-values from both real

and generated datasets of a given range, and their corresponding y-values. On

the other hand, the Mann-Whitney U test is used to determine whether real and

generated samples are likely to be derived from the same population, or whether

one sample tends to have larger values than the other.

In the context of distribution generation, by constraining tuples, one x

input value can yield more than one y value, leading to the possibility of distri-

bution construction of types of data where two data points may share the same x

value but different y value, as with annulus data and other multi-modal datasets.

The author also makes use of the critic value to determine confidence in outputs

and locations in data where extra training is required. By normalizing the critic

values at each point on a grid of the distribution, and plotting a heatmap based

on those values, regions where critic value is lower represent points of lesser

generator confidence. Unrealistic solutions can also be removed to improve re-

sults. Alternatively, it can be an indicator of the location of training data that

should be added so that training in that area can be improved. The figure below

shows an example of this, where areas such as (0,0) has a lower critic value,

which indicates that more of such training data should be passed into the model
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for additional training.

Figure 2.4: Illustration of heatmap of critic values (Phillips et al., 2022).

The 3D distribution was created by first getting a 3D spiral dataset from

a given formulation for x,y and z, and parameters chosen randomly. The input of

the generator are the x and y values of the train dataset. The generated output is

also in the form of x’s and y’s, but since the spiral is stacked in 3D, after training

the WGAN, 10 of the x,y values are selected as starting points, however the next

10 x,y values are evaluated from the prediction algorithm by constraining the x

values to get the different y values of the given x values, as a result we are left

with a new y value for each x value, that is used to plot the next 10 points in the

dataset(Phillips et al., 2022).

2.4 Summary

In summary, generative models in Machine Learning are still, as of writing this

report, an actively studied field. New use cases of generative models, specifi-

cally, GANs are continually on the rise. Throughout this literature review, the

importance of the distance measure was highlighted, where the improvement of

distance measure brought about positive evolutions to the mentioned generative

models. Key differences and improvements of the different generative models

are illustrated below:
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Table 2.1: Comparison between generative models

Generative
Model

Contributions/Advantages Disadvantages

VAE
(2013) • An extention of Autoencoders

• Adds variation to latent vari-
ables, allowing for generation of
new data resembling train data

• Uses KL-divergence, goes to ∞
when distributions do not com-
pletely overlap

• KL divergence is asymmetrical

Vanilla
GAN

(2014)
• Learns target distribution

through simulation

• Able to handle complex and
scarce data

• JS-divergence used is symmetri-
cal

• Difficult to maintain training
balance (mode collapse, dimin-
ishing gradients)

• Difficult to converge

• Prone to training instability

WGAN
(2017) • Improves training instability of

GAN

• Uses EM distance that has con-
tinuous gradients everywhere

• EM distance as good indicator of
training performance

• Too much or too little weight
clipping cause negative impact
to model performance

• Slower training compared to
GAN

WGAN-GP
(2017) • Additional gradient penalty term

maintains Lipschitz continuity
without weight clipping

• More stable training compared
to WGAN

• Increased computational re-
source due to additional gradient
penalty term
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The evolution of GANs point to the direction that WGAN-GP should

be the model framework to deploy.

Further, the application of WGAN-GP as a regression model (MOR-

GANs) displays the possibility for continuous coordinate-like data of multi-

variate nature to be learned, however it is not explicitly used on standard proba-

bility distribution shapes. Thus, by proving that it is possible, this project serves

to contribute to the literature joining statistics and machine learning.
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The end product of of this project is a learned generative model of data of known

statistical distributions or shapes with added noise. This model aims to display

robustness towards uncertainty in data and capability in reproducing uni-variate

and multi-variate data, in this way, mirroring the stochasticity of real-world

data. This section discusses the theoretical reasoning for the intended gener-

ative model used, its proposed structure and algorithm.

3.2 Overview of Procedure

As an overview, due to the commendable generative ability of WGAN-GP, this

project aims to deploy a WGAN-GP model, testing the model starting with sim-

ple training data such as normally distributed data and uniformly distributed

data, and progressively increase the complexity of data distribution, with added

noise. The generated data samples and train data samples are collected and

sampled to form a plot on a Cartesian plane, indicated by distinctive colors. The

plots are converted to a distribution function by means of Universal Approxi-

mation Theorem, and the performance of the model is evaluated using the Earth

Movers’ distance measure and Kolmogorov-Smirnov test.

3.3 Software Library and Integrated Development Environment

The intended software library for deployment is TensorFlow. TensorFlow is an

open-source software library that is commonly used for the development, train-

ing and deployment of deep learning models for various applications (Abadi

et al., 2016). As such, it is a flexible and scalable platform for machine learning

algorithm implementation, and it supports multiple programming languages, in-

cluding Python, which is the intended programming language of use. Pytorch

was selected due to its homogeneity across updates, preventing cases where

newer functions are not compatible with older modules, as prone in Tensorflow,
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as well as its widely available learning resources. The Integrated Development

Environment (IDE) deployed is Spyder, an easy-to-use and popular platform

containing integrations with multiple Python libraries that are essential for ma-

chine learning tasks, making it suitable for deep learning model deployment

tasks such as this.

3.4 Data and Training Progression

Training data is randomly generated using existing mathematical libraries in

Python, following the list of known probability distributions

Table 3.1: Types of Dataset

Dataset Noise Type
Uniform distribution yes uni-modal
Normal distribution yes uni-modal

Sine distribution yes uni-modal
Annulus data yes multi-modal

3.5 WGAN-GP Architecture and Algorithm

The WGAN-GP model framework makes use of the Wasserstein distance, that

has proven to be a better representation of the dissimilarity between distribu-

tions, successfully side-stepping calculation limitations as with JS and KL di-

vergence, discussed above (Arjovsky et al., 2017). Since the loss function of

WGAN-GP is entirely continuous, in theory, this means that the calculation of

gradients for back-propagation in training is a smoother process, and one that

leads to quicker convergence and eliminates training instability. For these rea-

sons, the WGAN-GP architecture is deployed instead of the Original GAN.

A typical WGAN-GP consists of a neural network for a generator and a

critic, respectively. To implement these networks, a set of hyperparameters and

the layering structure of the neural net are required. Values for the required hy-

perparameters are either tuned from hyperparameter optimisation, or replicated

from learned literature. The prior set of hyperparameters are adapted from that

mentioned in the MOR-GAN paper by Phillips et al. (2022), and where the value



36

for gradient penalty critic iterations per generator iteration is taken as a scientific

consensus as those values have proven to be well functioning across a multitude

of architectures (Gulrajani et al., 2017). On the other hand, the number of layers

and nodes in those layers should be adjusted based on the complexity of input

data, although completely arbitrary. Prior work on similar datasets show that

three to four layers containing around 30-40 neural network nodes for generator

and critic networks provided sufficient learnable parameters for reliable results

(Phillips et al., 2022).

Table 3.2: Initial WGAN-GP Hyperparameters

Hyperparameters Value
Learning rate, al 10−3

Number of Critic iterations per Generator
iterations, ncritic

5

Batch Size, m 100
Latent Space Dimension, z 3
Adam optimiser hyperparameters, b1, b2 0.5, 0.9
Gradient penalty hyperparameter, λ 10

The training algorithm of the WGAN-GP model involves training the

critic for ncritic steps followed by 1 step of generator training per epoch. This al-

ternative training method of the generator and critic is supported in various liter-

ature (Goodfellow et al., 2014) (Arjovsky et al., 2017) and (Phillips et al., 2022)

with the intention of optimizing both the generator and critic at each epoch. The

gradient penalty tern in WGAN-GP encourages the critic to produce smooth gra-

dients throughout the input space, which prevents it from becoming too powerful

and dominating the training process.

A real and generated sample is collected and an interpolation of the two

samples are selected for the calculation of the critic’s loss, from which the gra-

dients are calculated and critic weights are updated. The training and weight up-

dating process is repeated for the generator. As training progresses, the Wasser-

stein distance decreases and in principle, the generator is able to produce coun-

terfeit output samples of high characteristic similarity.
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3.6 Experimental Implementation

The execution process of the proposed model require coding particulars which

can be imitated through past work by other authors. The skeletal flow of this

implementation is as follows:
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Figure 3.1: Flow chart of proposed coding structure of WGAN-GP.

First, the dependencies required for the code to function must be im-

ported, this generally includes libraries such as pytorch, matplotlib, numpy and



39

os. When generating the dataset for the different distributions, np.rand is used

as parameters for the different built-in distribution methods. The generator and

discriminator networks consist of multiple neural network layers, where the out-

put shape of the generator should coincide with the input shape of the critic.

This shape should also be the same as the real data samples. In this case, when

dealing with coordinates, this value should be that of two values for x and y-

coordinates. Batch normalisation should be used in the generator neural net

so as to normalise the activations of each layer to improve the training stabil-

ity and performance of the model. Leaky rectified linear activation functions

(LeakyReLU) should also be used to introduce non-linearities to the neural net-

works. A dropout should also be utilised in the critic neural net structure. The

paper by Phillips et al. (2022) changed batch normalisation with layer normal-

isation on the critic so as to maintain the functionality of the gradient penalty

term in the loss function. Next, the training algorithm is the process that occurs

for each training epoch. This is described in the above section, and it proposes

to use Adam optimizer (Kingma and Ba, 2017) as it is a reputable optimizer

commonly used for similar tasks.

Step 6 in the flowchart involves creating a callback, which in this case

could be used to store generator outputs and sampling them to create a plot

using the generated coordinates. Once all structures are in place, the model

can be trained over a set number of epochs. The number of epochs needed to

sufficiently train a model is highly dependent on the complexity of the data itself.

Training the model takes time but models can be partially trained and saved to

train upon the partially trained model.

The performance of the model can be viewd from the graphical plot of

the progression of the Wasserstein loss. The Wasserstein loss was found to be

very accurately representative of the performance of the model (Arjovsky et al.,

2017). The model can be saved in intervals or manually after reviewing the

performance of the model. Finally, the product of the well trained WGAN-GP

model is the generator that has learnt the characterstics of the train data, so much

as to replicate such data.

The proposed method to obtain distributions from generated data is to
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first obtain the cumulative plot of datapoints, train and generate data on this

cumulative set of datapoints, and then rearrange the generated datapoints in de-

scending order, deducting and storing each intermediate value of differnece as

the raw form of data. To test the model performance, the Earth Movers’ distance

is proposed as the evaluation medium. The data samples taken for testing can be

based on a specified range of x-values, and y-values from the generated samples

and the real samples.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

Following through with the steps mentioned in Chapter 3, this section aims to re-

lay the detailed actual procedure, results and discussion on the results obtained.

4.2 Training Dataset

In this study, a number of train datasets were used. The used datasets are one-

dimensional and followed standard known statistical distributions that were ob-

tained through the random generation of data samples using Python’s random

number generator libraries either in tensor or numpy form, depending on the sit-

uation. The purpose of using these datasets is to test the flexibility of the model

in learning distributions of data with varying properties.

Table 4.1: List of Training Dataset

Dataset Distribution Type Section
Sinusoidal unimodal 5.4.1
Linear Uniform unimodal 5.4.2
Sigmoid Normal unimodal 5.4.3
Annular multimodal 5.4.3

4.3 Model Setup

The generative model used follows a WGAN-GP framework. The generator

and critic were built separately with differing neural network architecture. The

generator utilised a leaky RELU activation function and batch normalisation,

which aids in reducing the chances of no learning in the neural network weights

as well as stabilisation of training respectively. A hyperbolic tangent activation

function, tanh() was used to output values in the range [-1,1] so as to obtain a

greater coverage over the dataspace Radford et al. (2016). The set of hyperpa-

rameters used for the model are listed below, of which the number of critic iter-
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ations per generator iteration and gradient penalty coefficient used for training

followed values that proved to be effective via empirical derivation from pre-

viously demonstrated successes by Arjovsky et al. (2017) and Gulrajani et al.

(2017).

Figure 4.1: General WGAN-GP Generator Structure.

Figure 4.2: General WGAN-GP Critic Structure.

Table 4.2: Initial WGAN-GP Hyperparameters

Hyperparameter Value
Learning Rate 0.001
z Dimension 3
Sample Size 1000
Batch Size 100
Epochs 1000
Adam Optimiser 0.5, 0.9
Critic iterations 5
Gradient Penalty 10

4.4 Training Results

The algorithm used follows that of Algorithm 3 in Chapter 3, with initial hy-

perparameters set according to Table 3.2. A significant amount of time and ef-

fort was placed in the trial and error of hyperparamter and model architechture

tweaking. From past experimentations, the number of epochs required to train a

GAN for imagerial data ranged from 200 to 100,000 (Goodfellow et al., 2014)

and (Gulrajani et al., 2017). This wide range implied that there was no baseline

to start with, since the type of data used in this study is far simpler compared
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to large image data, coupled with other factors like more complex neural net-

work structure and number of training samples. Thus, it was decided that initial

training started off with 100 epoch increments.

4.4.1 Sinusoidal Data

The first dataset used to train the model was using the sinusoidal dataset. Let

X ∼ U [−1, 1], ϕ ∼ Normal(0, 1) and Y = sin(4x) + 0.2ϕ. Using the initial

hyperparameters as in Table 3.2, the following is the results over 100 epoch

increments, naming this version SGR01 (short for Sinusiodal Generated Results

01) for ease of future reference:

Figure 4.3: 500 Epochs of SGR01 Ordered from Left-to-right, Top-to-bottom
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Figure 4.4: SGR01 Loss

From the results, it shows that there is a growing disparity in conver-

gence. That the generator loss climbs higher and higher with each iteration.

Interestingly, it was found that when the generator neural net is freed from the

constraint of producing values ranging from -1 to 1, that is, while it does not use

a hyperbolic tangent function, without changing any other parameter, it seemed

to produce more meaningful outputs and loss function, as can be seen in Figure

4.5. However, it is noticeable that the loss of both the generator and critic show

a repeating rise and fall pattern, which is presumably due to the learning rate

being too large, which causes the model to approach and overstep its minimum

point, restarting the path to its minimum. Multiple attempts were applied to find

the optimum learning rate, which can be viewed in the appendix. At the 500th

epoch of training the sine model 3 with learning rate 0.0002, critic and genera-

tor losses converged momentarily, where there was a shadow of the similar sine

graph, which can be viewed in Figure 4.6, before it degraded in output quality

upon further training.



45

Figure 4.5: SGR02 Loss and Results at 300 Epochs

Figure 4.6: SGR03 Loss and Results at 500 Epochs
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Figure 4.7: SGR03 Loss and Results Beyond 500 Epochs

It can also be observed that throughout the previous figures, the learning

rate of the critic would flatten out from the very start, which led to the query on

whether the gradient penalty value was too strong for this particular set up. Ac-

cording to the paper by Arjovsky et al, the gradient penalty coefficient functions

to penalise the critic for producing gradients that are high in magnitude. Thus,

reducing this value should subsequently prevent the excessive flattening of gra-

dients. The following figures show the results repeating the above with a smaller

gradient penalty value 9.5, 9.0, and 8.5, comparing outputs at 500 epochs.
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Figure 4.8: Comparison Between Varying Learning Rates and Gradient Penalty
Values at 500 Epochs

From this comparison, the non-existence in learning rate patterns can be

viewed clearly. While the individual effects of increasing and decreasing learn-

ing rates and gradient penalty values are known, this proving that optimality in

training the model is not solely achieved by maximizing or minimizing indi-

vidual parameters, but rather by determining the optimal configuration of these

parameters.

Nevertheless, upon visual inspection, the top two most ideal shapes pro-

duced by the 9 combinations above are SG01 with λ = 9 and SG03 with λ = 9.

Narrowing it down, in terms of range of generated data, SG03 trumps SG01 due

to the outliers in SG01 with y values beyond y = 2. This instability in loss

could arise from the lack of diverse samples in each batch Brock et al. (2019).

Therefore, tweaking from the SG03 configuration with λ = 9, attempted runs

were made with increased batch sizes from 100 to 200. At a batch size of 200,
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after 800 epochs, the generated plot produced resembled that of the real data,

which still has room for improvement, but it is significantly better than all past

tries. In terms of training speed, training was 15.16 seconds per 100 epochs,

summing to about 121.03 seconds for 800 epochs.

Figure 4.9: SGR03 Loss and Results with λ = 9 and batch size = 200 at 800
Epochs

4.4.2 Linear Data

With this same model architecture and hyperparameters, a linear dataset is used.

The purpose of maintaining the use of this model architecture is to portray the

dynamic ability and flexibility of a single model. For this section, real data is

created in the form (X = x, Y = y) with X ∼ U [−1, 1], ϕ ∼ Normal(0, 1)

and Y = X + 0.2ϕ

At the current training configuration, the results using a linear dataset

forms generated data with a shape closely resembling that of real data, The rel-

atively quick convergence implies that the linear dataset can be considered a

simple task for this configuration of WGAN. For ease of naming, this configu-
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ration for the linear dataset is named L01.

Figure 4.10: L01 Loss and Results with λ = 9 and batch size = 200 at 100
Epochs

With that established, it is also worth noting that overtraining the model

leads to inconsistent outputs, as overtraining causes the model to overstep the

minimum of the descent in training. Below are the following outputs at 300,

350, and 400 epochs. Training speed for Linear data took an average of 15.24

seconds per 100 epochs.
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Figure 4.11: L01 Loss and Results with λ = 9 and batch size = 200 at 300, 350
and 400 Epochs

4.4.3 Sigmoidal Data

The sigmoidal dataset is representative of a cumulative normally distributed

data, and is in the form (X = x, Y = y) with X ∼ U [−1, 1], ϕ ∼ Normal(0, 1)

and Y = expit(X) + 0.2ϕ, with expit() being a logistic sigmoid function from

the scipy library in Python. The difficulty in learning the distribution of this

dataset was evident in contrast to the linear dataset. Upon visual inspection,

the generator attempts to wrap the shape of the generated data points in two

directions, accommodating for the linear section of the sigmoidal curve and the

horizontal ends of the curve. At certain times, the shadow of the sigmoidal curve

makes an appearance but is nothing worth contending against real data. Training
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speed of sigmoidal data took an average of 18.01 seconds per 100 epochs.

Figure 4.12: Sigmoid Loss and Results with λ = 9 and batch size = 200 at 300,
700 and 1100 Epochs

4.4.4 Annular Data

Increasing the difficulty of the input data to one that is multi-modal in nature,

the previously sufficient framework lacks in dynamic ability for this scenario.

The annulus dataset is formed as (X = x, Y = y) with θ = 1000 values of

equal spacing between 0 and 2π, V ∼ U(0,1), X = sin θ + 0.75V , and Y =

cos θ + 0.75V , the model tries to produce annular data as per its train data but

fails to do so. In the following figure, it can be observed that the generated data

tries to morph its shape by being projected across different directions but do not

quite make it, even at 1300 Epochs. Training speed for annular data averages at
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15.10 seconds for 100 epochs.

Figure 4.13: Annular Data WGAN-GP Loss and Results with λ = 9 and batch
size = 200 at 400, 900 and 1300 Epochs from Left to Right

4.5 Summary

In short, the generated data from linear data produced the best result among

the four different datatypes. According to the comparison figure shown below,

the convergence value of annular data was the worst at 16.720, as compared

to linear data at 1.383 units, where convergence is taken as the norm of the

difference between generator and discriminator losses, since convergence occur

when both distributions overlap and converge with each other.
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Figure 4.14: Summary between Best Outputs of Different Datatypes

4.6 Discussion

Various inconsistencies in literature and practice was found throughout this

study regarding the WGAN-GP. A noticeable pattern throughout all trials pre-

vailed, where the generator loss had more drastic range of movement while the

critic loss hovered around 0. Interestingly, this was sufficient to cause an im-

provement in generated data over time, given the hyperparameters set were suit-

able. This arguably opposes that written by Arjovsky et al, that states that the

Earth Movers’ distance is a good measure for the distance between distributions,

better than that of JS divergence and KL divergence, where more is discussed in

Chapter 2.

Furthermore, it is also possible to overtrain the GAN in this study, which

again contradicts what was discussed earlier regarding how WGAN-GP has mit-

igated the worry on overtraining the generator or discriminator, and how training
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the critic to completion is made possible. In the above experiments, it was found

that overtraining the model could lead to regressed performance of the generator,

as in Figure 4.12.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

To conclude, a WGAN can be deployed as a probability distribution construction

tool, with all toy distributions overcomed by the model under 1000 iterations,

using less than 25 minutes, aside from the annulus dataset. The search for the op-

timal hyperparameter combination together with the optimal neural network ar-

chitecture does not hold a maximal or minimal relationship, that is, the increase

in value of a hyperparameter does not imply a better model performance. Rather,

it is the combined influence of all hyperparameters that achieve the model’s

optimal performance, which is a challenging task. A paper by Google Brain

emphasises the inconsistency in performance of the different flavous of GANs

against the original GAN (Lucic et al., 2018). This challenges the integrity of

the GAN performance aross different datatypes. Proper hyperparameter setting

is critical, such that theory backing the improvements of later versions of GAN

is not valid when improper hyperparameters are used. The biggest difficulty lies

in finding the optimal hyperparameter and model architechture configuration, as

it is undoubtedly infeasible to test all combinations. Thus, further experimenta-

tion is required on this matter to provide more robust evidence for a more easily

attainable and fool-proof model.

In most cases, the convergence of the WGAN-GP model reflects the

quality of generated samples in their likeness to train data. The use of the earth

mover’s distance

5.2 Recommendation for Future Improvements

Upon completeing this study within the circumstances and limitations provided,

a set of improvements was found could be implemented in future research re-

garding this matter.

Firstly, the dynamics of GANs should be explored and studied for the

solid foundation and mathematical reasoning for the correlation between fluc-
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tuations of model loss and generated data, especially in the area of using 2-

dimensional data as train data. This will allow a mathematically backed logical

deduction which will aid in the sense of direction in hyperparameter tuning.

Second, a more systematic method of searching for the optimal hyper-

parameters should be used, which was lacking in this study. This is due to the

nature of GANs that is highly difficult to train, coupled with the many hyper-

parameter and model architecture configurations that need to be tuned in co-

dependence with each other.

In regards to the statistical bridging between this approach and what

could be done better, to reiterate, the transfer between generation of cumula-

tive data to raw data is a significant loophole. The use of a better method to do

so could be employed in future research, so that the dimensionality of the end

data can be reduced and compared with well known statistical methods such as

the Mann-Whitney U test and Kolmogorov Smirnov test for 1D data.



57

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-

berg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,

Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,

Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,

M., Yu, Y. and Zheng, X., 2016. ‘Tensorflow: Large-scale machine learning

on heterogeneous distributed systems’.

Arjovsky, M. and Bottou, L., 2017. ‘Towards principled methods for training

generative adversarial networks’.

Arjovsky, M., Chintala, S. and Bottou, L., 2017. ‘Wasserstein gan’.

Aït-Sahalia, Y. and Kimmel, R., 2007. ‘Maximum likelihood estimation of

stochastic volatility models’, Journal of Financial Economics 83(2), 413–

452.

Brock, A., Donahue, J. and Simonyan, K., 2019. ‘Large scale gan training for

high fidelity natural image synthesis’.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,

W. and Robins, J., 2018. ‘Double/debiased machine learning for treatment

and structural parameters’, The Econometrics Journal 21(1), C1–C68.

Dai, B., Wang, Z. and Wipf, D. P., 2019. ‘The usual suspects? reassessing blame

for VAE posterior collapse’, CoRR abs/1912.10702.

Dalal, S., Fowlkes, E. and Hoadley, B., 1989. ‘Risk analysis of the space shut-

tle: Pre-challenger prediction of failure’, Journal of The American Statistical

Association - J AMER STATIST ASSN 84, 945–957.

Di Paola, G., Bertani, A., De Monte, L. and Tuzzolino, F., 2018. ‘A brief intro-

duction to probability’, J. Thorac. Dis. 10(2), 1129–1132.



58

Fisher, R. A., 1992. On the mathematical foundations of theoretical statistics, in

‘Springer Series in Statistics’, Springer New York, pp. 11–44.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets, in ‘Ad-

vances in neural information processing systems’, pp. 2672–2680.

Google Colaboratory: Frequently Asked Questions, n.d.. https://

research.google.com/colaboratory/faq.html. Accessed:

2023-04-07.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. C., 2017.

‘Improved training of wasserstein gans’, CoRR abs/1704.00028.

Hack, J., n.d.. ‘Pybn documentation’, https://hackl.science/pybn/.

Accessed: 2023-04-07.

Hu, A., Xie, R., Lu, Z., Hu, A. and Xue, M., 2021. ‘Tablegan-mca: Evaluat-

ing membership collisions of gan-synthesized tabular data releasing’, CoRR

abs/2107.13190.

Huang, H., Yu, P. S. and Wang, C., 2018. ‘An introduction to image synthesis

with generative adversarial nets’.

Jain, R. B. and Wang, R. Y., 2008. ‘Limitations of maximum likelihood esti-

mation procedures when a majority of the observations are below the limit of

detection’, Analytical Chemistry 80(12), 4767–4772.

Kang, H.-H. and Liu, S.-B., 2014. ‘The impact of the 2008 financial crisis on

housing prices in china and taiwan: A quantile regression analysis’, Economic

Modelling 42, 356–362.

Kang, M., Shin, J. and Park, J., 2022. ‘Studiogan: A taxonomy and benchmark

of gans for image synthesis’.

Kingma, D. P. and Ba, J., 2017. ‘Adam: A method for stochastic optimization’.

Lucic, M., Kurach, K., Michalski, M., Gelly, S. and Bousquet, O., 2018. ‘Are

gans created equal? a large-scale study’.

https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://hackl.science/pybn/


59

Nowozin, S., Cseke, B. and Tomioka, R., 2016. ‘f-gan: Training generative

neural samplers using variational divergence minimization’.

Park, J. and Haran, M., 2020. ‘Reduced-dimensional monte carlo maximum

likelihood for latent gaussian random field models’, Journal of Computational

and Graphical Statistics 30(2), 269–283.

Phillips, T. R. F., Heaney, C. E., Benmoufok, E., Li, Q., Hua, L., Porter, A. E.,

Chung, K. F. and Pain, C. C., 2022. ‘Multi-output regression with generative

adversarial networks (MOR-GANs)’, Applied Sciences 12(18), 9209.

Radford, A., Metz, L. and Chintala, S., 2016. ‘Unsupervised representation

learning with deep convolutional generative adversarial networks’.

Rao, C. R., 1957. ‘Maximum likelihood estimation for the multinomial distri-

bution’, Sankhya: The Indian Journal of Statistics (1933-1960) 18(1/2), 139–

148.

Sadeh, I., Abdalla, F. B. and Lahav, O., 2016. ‘Annz2: Photometric redshift and

probability distribution function estimation using machine learning’, Publi-

cations of the Astronomical Society of the Pacific 128(968), 104502.

Wei, Y. and Jiang, Z., 2022. ‘Estimating parameters of structural models using

neural networks’, USC Marshall School of Business Research Paper .

Xiang, P., Xiang, S. and Zhao, Y., 2023. ‘Texturize a gan using a single image’.

Zhang, L., Ding, X., Ma, Y., Muthu, N., Ajmal, I., Moore, J. H., Herman, D. S.

and Chen, J., 2019. ‘A maximum likelihood approach to electronic health

record phenotyping using positive and unlabeled patients’, Journal of the

American Medical Informatics Association 27(1), 119–126.



60

APPENDICES

APPENDIX A: Prelimenary Analysis Code

Figure 5.1: Code Part 1
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Figure 5.2: Code Part 2

Figure 5.3: Code Part 3

Figure 5.4: Code Part 4
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Figure 5.5: Code Part 5

Figure 5.6: Code Part 6



63

Figure 5.7: Code Part 7

Figure 5.8: Code Part 8

Figure 5.9: Code Part 9
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Figure 5.10: Code Part 10

Figure 5.11: Code Part 11
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Figure 5.12: Code Part 12

Figure 5.13: Code Part 13
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Figure 5.14: Code Part 14

Figure 5.15: Code Part 15
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