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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Group theory has been applied to make many discoveries in the field of mathe-

matics and physics since its early history. In the field of mathematics, a famous

unsolved geometry problem was refactored in terms of groups, and was later

solved using group theory. In physics, group theory has been applied in various

fields such as quantum mechanics and crystallography.

Group factorization is the decomposition of an abelian (commutative)

group into a sum of its subsets. Group factorization has many applications in

mathematics and other fields. In 1983, an unsolved well-known geometry prob-

lem proposed by H. Minkowski was reformulated by G.Hajós into an equivalent

problem in terms of group factorization. In 1941, Hajós was able to solve this

problem by applying group theory. This project will be focused on two special

cases of group factorization which are called exhaustion numbers of subsets of

finite groups and complete decompositions of finite groups.

One of the main reasons people are interested in exhaustion numbers of

subsets of finite groups is because of its applications in cryptography. Group

factorization also has applications in secret and public key cryptosystems. Ex-

haustion numbers and group factorization are important in cryptography to pro-

tect the privacy of internet users.

1.2 Objectives

The objectives of this project are:

1. Generalize results for the largest non-exhaustive subsets of

Gn =


a b

c d

 : a, b, c, d ∈ Zn


and list down the exhaustion numbers of all subsets of

(a) Gn for b = c = 0 (diagonal matrices) and n = 3, 5
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(b) Gn for c = 0 (upper triangular matrices) and n = 2, 3

2. Find the complete decompositions of G and list down all complete de-

compositions of G of order 3 for n = 2.

1.3 Problem Statement

Factorizations of abelian groups have had applications in areas of mathematics

such as completion of codes and the Rédei property of groups (Szabó, 2006).

Group factorization has also seen several applications in cryptography. Magliv-

eras (2002) introduced a public key cryptosystem in which group factorization

is applied. A secure encryption scheme was developed by Cong et al. (2019)

which uses a group factorization problem.

Let G be a finite group which has the operation of addition and H a

subset of G. If G = H +H + · · ·+H (n times), then H is called n-exhaustive

where the sum of two sets (called sumset) C+D = {c+d : c ∈ C, d ∈ D}. For

convenience, we write nH = H +H + · · ·+H (n times). If H is n-exhaustive,

then the exhaustion number of the set H , e(H), is the minimum integer n > 0.

If there doesn’t exist an integer n such that nH = G, then e(H) = ∞ and we

say H is not exhaustive. Let G be an abelian group and let A1, . . . , Ah(h ≥ 2)

be a partition of G. If A1 + · · ·+Ah = G, then A1, . . . , Ah is called a complete

decomposition of G of order h.

The group of interest in this project is the set of 2 × 2 matrices whose

entries are elements of Zn together with the sum operation:

G =


a b

c d

 : a, b ∈ Zn

 .

We will also attempt to develop programming techniques to assist in

finding the exhaustion numbers of subsets of finite groups and complete de-

compositions of finite groups. In order to find the results, we will need to go

through every case one by one. Doing the calculations manually is impractical

since there are too many cases to go through. Therefore, we will use a program-

ming language to assist in listing down the numerical data. The programming

language that will be used is Python because of its vast data science libraries.
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After listing down all the numerical data, we will look for patterns and try to

generalize the result for G where n is prime.

1.4 Work Plan

The flow of projects 1 and 2 will follow the gantt charts below:

Figure 1.1: Gantt Chart for Project 1

Figure 1.2: Gantt Chart for Project 2
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

One of the earliest contributions in the history of group theory was made by

Leonard Euler in 1760. Euler gave a generalization of one of Fermat’s theo-

rems: natural numbers which are coprime to k and are less than or equal to k

is equivalent to an abelian group together with multiplication modulo k (Miller,

1964). Group theory is important because it has many applications in chemistry,

theoretical physics and electrical engineering (Hamermesh, 1989).

In the field of crystallography, the symmetries of crystals are represented

by groups with symmetry operations. A symmetry operation of an object is a

motion that maps an object onto itself. It turns out that all symmetry operations

for a given object obeys the four axioms of a group, that is, the set of all sym-

metry operations of an object form a group. Therefore any theorems of groups

may be applied to the symmetries of objects (Prince, 1984).

An interesting research within the area of group theory is group factor-

ization. Group factorization is the decomposition of a commutative group into

a sum of its subsets. Let G be a finite abelian group and let D,C1, . . . , Cn be

subsets of G. If there are unique elements c1, . . . , cn of G for every d in D such

that

d = c1 + · · ·+ cn, c1 ∈ C1 . . . cn ∈ Cn,

then we say that D = C1 + · · · + Cn is a factorization of D (Szabo and Sands,

2009). Usually, the cases considered are when C1, . . . , Cn are cyclic subgroups

of G and D = G. A cyclic group G is a group that contains an element a such

that ∀b ∈ G, there exists an integer n such that b = an. Thus, a is known as the

generator of the group. Now we focus on subsets of a group which also form

groups. A subset S is called a subgroup of G if x, y ∈ S, then xy−1 ∈ S.

Let G be an abelian group. A subset S ⊆ G is called periodic if

∃k ∈ G, k ̸= 0 where S + k = S. If at least C or D is periodic in every

factorization G = C +D, we say that G has the Hajós property. Hajós (1949)

began classifying finite abelian groups having this property. This effort is com-
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pleted in 1962, and all groups which has the Hajós property was listed in (Sands,

1962).

Group factorization can be seen as a combination of an algebraic and a

combinatorial problem. The results have been applied to many fields including

error correcting codes, cryptography, graph theory and more (Szabo and Sands,

2009). One of the first results of group factorization is shown by Cauchy (1813),

then later by Davenport (1935). This resulted in the Cauchy-Davenport theorem

which states: If C,D are subsets of an abelian group, then

|C +D| ≥ |C|+ |D| − 1.

The well-known unsolved problem in geometry proposed by Minkowski

(1896) was rewritten as a group factorization problem by Hajós (1938). Af-

ter three years, Minkowski’s problem was solved by Hajós (1942). After this

breakthrough, more attention was given to group factorization.

In the field of cryptography, several applications of group factorization

can be found. As the internet continues to take over the world, research and

applications in the field of cryptography is becoming more important to protect

the privacy and security of its users. Chen and Sin (2021a) did a study on how

group coverings of subsets of finite groups can be applied in cryptography. Other

researchers who contributed in this field include Magliveras (2002), who used

group factorizations to construct public and secret key cryptosystems, and Baba

et al. (2011) introduced a cryptosystem based on a group factorization problem.

The concept of a group has been expanded and new studies have been

formed in this field. The study that we are interested in is called group fac-

torization. Szabo and Sands (2009) have shown the interesting properties and

applications of factoring groups into subsets. Zhou (2017) researched the mul-

tiple factorizations of cyclic groups. Zhou showed that for any cyclic group G,

there does not exist distinct subsets A,B,C ⊆ G such that G has the group

factorizations G = AB = AC = BC.

The topics that we are interested in are exhaustion numbers of subsets of

finite groups and complete decompositions of finite groups. In section 2.2, we

will discuss some previous results and research done on the exhaustion numbers
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of subsets of some finite groups. In section 2.3, we will discuss some previous

results and research done on the complete decompositions of some finite groups.

In section 2.4, we discuss the programming language used to find the numerical

data for the project.

2.2 Exhaustion Numbers of Subsets of Finite Groups

Chin (1999) has found the exhaustion numbers of certain subsets of some cyclic

groups. It was found that the exhaustion number of a set H which is in arithmetic

sequence and the common difference k is coprime to n, such that H ⊆ Z/n, n ≥

2 with | H |= h > 1, then e(H) =
⌈
n−1
h−1

⌉
.

Furthermore, if H is in arithmetic sequence but the common difference k is not

coprime to n, then e(H) = ∞. Chin (2003) has determined the exhaustion

numbers of various subsets of finite abelian groups. Chen et al. (2012) has

shown the exhaustion numbers of 2-subsets of dihedral groups. It was shown

that if S is a 2-subset of D2n for an even integer n where n ≥ 6, then e(S) = ∞.

A study was done on subsets of finite groups which were exhaustive

and non-exhaustive (Chen and Chin, 2017). Wong et al. (2018) did a study on

exhaustion 2-subsets in dihedral groups of order 2p, where p is an odd prime.

The authors classified all possible exhaustion 2-subsets in D2p by considering a

2-subset A = {a1, a2} of D2p with either A ⊂ ⟨k⟩, A ⊂ ⟨k⟩s or a1 ∈ ⟨k⟩ and

a2 ∈ ⟨k⟩m.

2.3 Complete Decompositions of Finite Groups

Chin and Chen (2018) determined the integers a where there exists a complete

decomposition of order a for Zk(k ≥ 6). The main results are as follows. Let

j > 0 be the smallest integer such that 2j ≥ k where k ≥ 6. For each a ∈

[2, k − j], there exists a complete decomposition for Zk of order a.

Chen and Sin (2021b) conducted a study on complete decompositions

of dihedral groups. The paper shows constructions of the complete decompo-

sitions of D2n of order t, where 2 ≤ t ≤ n. The authors constructed com-

plete decompositions of order 2 for D2n, where C ∩ D = ∅, |C| ̸= |D| and

C ∪D ⊂ D2n. Let n ≥ 3 be an integer. Let C = {1, r, . . . , rn−3, rn−2s, rn−1s}

and Dj = {rn−2, rn−1, s, rs, . . . , rn−3s} \ {rs, r3s, . . . , rjs}, where C,Dj ⊆
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D2n, j ∈ {1, 3, . . . , n − 5}, |C| = 5 and |D| = n − j+1
2

. Then (C,Dj) is a

complete decomposition of order 2 for D2n.

2.4 Programming Language

To find the exhaustion numbers of a group subset, the brute force method will

be used. The brute force method is an algorithm to solve problems by going

through every possible combination until a solution is found. The programming

language used for this project will be Python. Python is a suitable language to be

used in this project because of its itertools package. The package contains

useful functions such as combinations which can find all subsets of a list of

elements. It also allows us to iterate through a list efficiently (Soklaski, 2021).
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CHAPTER 3

SOME PROPERTIES OF GROUPS AND SUBGROUPS

3.1 Some Results on Group Theory

The algebraic object known as a group serves as one of the foundations for

abstract algebra. A group G is a set and a binary operation for any two elements

in the set C,D, denoted as C ∗ D, which combines any two elements from the

set to produce a third element of the set. A group must satisfy these properties:

1. Closed C ∗D ∈ G,∀C,D ∈ G;

2. Associative law C ∗ (D ∗ E) = (C ∗D) ∗ E,∀C,D,E ∈ G;

3. Existence of an identity element ∃α ∈ G where C ∗ α = C, ∀C ∈ G;

4. Existence of inverses ∀C ∈ G,∃C−1 ∈ G where C ∗ C−1 = α.

A group G is called an abelian group if ∀C,D ∈ G,C ∗ D = D ∗ C.

An interesting property of a group G is the called the order of G. The order

of a group is the number of elements in its set. In this project, we focus on

groups with finite elements, which are called finite groups (Herstein, 1975). For

example, consider the group G consisting of Z = {· · · − 2,−1, 0, 1, 2 . . . }, the

set of all integers, together with the sum operation. It can be seen that:

1. C +D is an integer ∀C,D ∈ G (closed);

2. C + (D + E) = (C +D) + E ∀C,D,E ∈ G (associative law);

3. C + 0 = C ∀C ∈ G where 0 is the identity element (existence of identity

element);

4. There exists an element D for every element C such that C + D = 0

where D = −C ∀C,D ∈ G (existence of inverse element).

Next, consider the set S of all integers together with multiplication.

Since integers does not have a multiplicative inverse which is also an integer,

the set S and the multiplication operation do not form a group.

Theorem 3.1 A subgroup of G is a subset D of G together with the binary

operation of G. A nonempty subset D is a subgroup of G if and only if:
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1. for any two elements X, Y in D, X ∗ Y is in D;

2. for any element X in D, X−1 is in D.

proof (⇒) If D is a subgroup of G, then obviously (1) and (2) hold. (⇐)

Suppose that D is a subset of G such that (1) and (2) hold. To show that D is

a subgroup, we need to show that α is in D, and all the elements of D obeys

the associative law. Because the associative law holds for G, then it will clearly

hold for D, which is a subset of G. If X is in D, then by (2), X−1 is in D, and

by (1), XX−1 = α is in D. This completes the proof (Lal, 2017).

3.2 Some Results on Cyclic Groups

Let G be a group under addition. G is called a cyclic group if there exists an

element g ∈ G such that G = {ng : n ∈ Z}. Then g is called a generator of

G and G is a group generated by g, denoted by G = ⟨g⟩. The order of a group

is the number of elements in the group. The order of an element g ∈ G is the

smallest positive integer n such that ng = 0. If such n doesn’t exist, then the

element is said to be of infinite order.

Example 3.1. The groups Z and Zn are cyclic groups. Z is a group

generated by 1 and has infinite order. The group Zn is a cyclic group of order n.

For example, Z5 is generated by 1:

1 ≡ 1 (mod 5)

1 + 1 ≡ 2 (mod 5)

1 + 1 + 1 ≡ 3 (mod 5)

1 + 1 + 1 + 1 ≡ 4 (mod 5)

1 + 1 + 1 + 1 + 1 ≡ 0 (mod 5)

Theorem 3.2. Let (S, ∗) be an infinite cyclic group generated by a.

Then, < ak >=< al > if and only if k = ±l. Particularly, < ak >= G if and

only if k = ±1

Proof. It is obvious that < ak >=< a−k >. Suppose that < al >=< ak >.

Then there exist m,n ∈ Z such that ak = (al)m and al = (ak)n. Since a is
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of infinite order, k = lm and l = kn. This shows that mn = 1, and therefore

k = ±l

Theorem 3.3. For any divisor d of the order of a cyclic group, there

exists a unique subgroup of order d.

Proof. Let (G, ∗) be a cyclic group of order k generated by g. Let d|k. Then

< g
k
d > is the unique subgroup of order d.

Theorem 3.4. Let G be a finite cyclic group generated by g, where the

order of g is m. Then the powers {g0, g1, . . . , gn−1} are unique.

Proof. Since g has order m, g, g2, . . . , gn − 1 are not equal to 1. Assume that

gk = gl where 0 ≤ k < l < m. Then l − k < m and gl−k = 1, a contradiction.

∴ the powers {g0, g1, . . . , gn−1} are unique.

Theorem 3.5 Let G be a group, and let g ∈ G have order k. Then gl = 1

if and only if k divides l.

Proof. If k divides l, then l = kq for some q and gl = (gk)q = 1.

Conversely, suppose that gl = 1, by the division algorithm:

l = m = kq + r where 0 ≤ r < k.

Hence,

gl = gkq+r = (gk)qgr so gr = 1.

Since k is the smallest positive of power of g where gk = 1, and r < k,

this is only true if r = 0. Therefore, l = kq, which implies that k divides l.

3.3 The Groups of Interest

In this project, we are interested in certain groups of matrices. The first group,

Gd
n, is a group over addition of all 2 × 2 diagonal matrices over Zn, that is,

G = (S,+) where

S =


a 0

0 b

 : a, b ∈ Zn


For example, if n = 2, then
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S =


0 0

0 0

 ,

1 0

0 0

 ,

0 0

0 1

 ,

1 0

0 1


The second group is Gt

n, a group over addition of all 2 × 2 upper triangular

matrices over Zn, that is, G = (T,+) where

T =


a b

c 0

 : a, b, c ∈ Zn


Finally the third group is Gn, a group over addition of all 2 × 2 matrices over

Zn, that is, G = (U,+) where

U =


a b

c d

 : a, b, c, d ∈ Zn


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CHAPTER 4

EXHAUSTION NUMBERS OF SUBSETS OF FINITE GROUPS

4.1 Introduction

Definition 4.1 Let G be a finite group which has the operation of addition and H

a subset of G. If G = H+H+ · · ·+H (n times), then H is called n-exhaustive

where the sum of two sets (called sumset) C+D = {c+d : c ∈ C, d ∈ D}. For

convenience, we write nH = H +H + · · ·+H (n times). If H is n-exhaustive,

then the exhaustion number of the set H , e(H), is the minimum integer n > 0.

If there doesn’t exist an integer n such that nH = G, then e(H) = ∞ and we

say H is not exhaustive.

Example 4.1 Let

G =


a 0

0 b

 : a, b ∈ Z2


=


0 0

0 0

 ,

1 0

0 0

 ,

0 0

0 1

 ,

1 0

0 1


and

A =


1 0

0 0

 ,

0 0

0 1

 .

To find the exhaustion number of A, we start by finding the sumsets of A until

nA = G is found:

A =


1 0

0 0

 ,

0 0

0 1

 ;

A+ A =


0 0

0 0

 ,

1 0

0 1

 ;

A+ A+ A =


1 0

0 0

 ,

0 0

0 1

 = A.

We notice that A+A+A = A, if we keep adding up A, the sequence of sumsets
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will repeat itself. Therefore, the exhaustion number of A, e(A) = ∞. We can

easily use this argument to show that the exhaustion numbers of all 2-subsets of

G is ∞.

Next, consider the subset

B =


1 0

0 0

 ,

0 0

0 1

 ,

1 0

0 1

 .

Note that the sumsets of B,

B +B =


0 0

0 0

 ,

1 0

0 1

 ,

1 0

0 0

 ,

0 0

0 1

 = G.

Therefore e(B) = 2.

4.1.1 Algorithm For Finding the Exhaustion Numbers of Subsets of a Fi-

nite Group

To find the exhaustion numbers of a subset a, the brute force method is used. The

brute force method is an algorithm to solve problems by going through every

possible combination until a solution is found. The programming language used

for this project is Python. Python is a suitable language to be used in this project

because of its itertools package. The package contains useful functions

such as combinations which can find all subsets of a list of elements. It

also allows us to iterate through a list efficiently. The algorithm is summarized

below:
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Algorithm: Find the exhaustion number of a subset of a finite group.

1. Get all matrices for the underlying set S of the group of interest.

2. List down all 2-subsets and 3-subsets of the set.

3. Initialize an empty list of sumsets.

4. For each subset A, find the sumset A + A + · · · + A = nA where n =

1, 2, . . . .

5. If nA = S, the exhaustion number of A, e(A) = n, move to the next

subset.

6. Else if nA is already in the list of sumsets, then the exhaustion number of

A, e(A) = ∞.

7. Else, for each n, append nA to the list of sumsets.

4.2 Groups of 2× 2 Diagonal Matrices over Zn

We list down the exhaustion numbers of all subsets of Gd
2 where

Gd
2 =


a 0

0 b

 : a, b ∈ Z2


=


0 0

0 0

 ,

1 0

0 0

 ,

0 0

0 1

 ,

1 0

0 1


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Table 4.1: The exhaustion numbers of all 2-subsets of Gd
2

Subset, A e(A){(
0 0
0 1

)
,

(
1 0
0 0

)}
∞

{(
0 0
0 1

)
,

(
1 0
0 1

)}
∞

{(
0 0
0 1

)
,

(
0 0
0 0

)}
∞

{(
1 0
0 0

)
,

(
1 0
0 1

)}
∞

{(
1 0
0 0

)
,

(
0 0
0 0

)}
∞

{(
1 0
0 1

)
,

(
0 0
0 0

)}
∞

Table 4.2: The exhaustion numbers of all 3-subsets of Gd
2

Subset, A e(A){(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)}
2

{(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 0

)}
2

{(
0 0
0 1

)
,

(
1 0
0 1

)
,

(
0 0
0 0

)}
2

{(
1 0
0 0

)
,

(
1 0
0 1

)
,

(
0 0
0 0

)}
2
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We find that all six 2−subsets of Gd
2 has exhaustion number ∞ and all

four 3−subsets of Gd
2 has exhaustion number 2. We summarize the results in the

following table:

Table 4.3: List of exhaustion numbers of all subsets of G

Size of subset Exhaustion number Number of subsets

2 ∞ 6 (All)

3 2 4 (All)

We repeat this process using cyclic group over Z3 where

Gd
3 =


a 0

0 b

 : a, b ∈ Z3


=

{0 0

0 0

 ,

1 0

0 0

 ,

2 0

0 0

 ,

0 0

0 1

 ,

0 0

0 2

 ,

1 0

0 1

 ,

2 0

0 1

 ,

1 0

0 2

}
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Table 4.4: Exhaustion number for diagonal 2 × 2 matrices

over Z3, Gd
3

Size of subset Exhaustion number Number of subsets

2 ∞ 36 (All)

3
4 72

∞ 12

4
2 54

3 72

5 2 126 (All)

6 2 84 (All)

7 2 36 (All)

8 2 9 (All)

Notice that the largest subset where the exhaustion number is ∞ is the 3−subset.

The following is a list of the twelve 3−subsets which are not exhaustive:

1.


0 0

0 1

 ,

1 0

0 2

 ,

2 0

0 0


2.


0 0

0 1

 ,

2 0

0 1

 ,

1 0

0 1


3.


0 0

0 1

 ,

0 0

0 0

 ,

0 0

0 2


4.


0 0

0 1

 ,

2 0

0 2

 ,

1 0

0 0


5.


1 0

0 2

 ,

2 0

0 1

 ,

0 0

0 0


6.


1 0

0 2

 ,

1 0

0 1

 ,

1 0

0 0


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7.


1 0

0 2

 ,

0 0

0 2

 ,

2 0

0 2


8.


2 0

0 1

 ,

2 0

0 0

 ,

2 0

0 2


9.


2 0

0 1

 ,

0 0

0 2

 ,

1 0

0 0


10.


0 0

0 0

 ,

1 0

0 1

 ,

2 0

0 2


11.


0 0

0 0

 ,

2 0

0 0

 ,

1 0

0 0


12.


1 0

0 1

 ,

2 0

0 0

 ,

0 0

0 2


We observe the sum of all elements from each of the subsets is the zero

matrix. For example, taking the first subset:

0 0

0 1

+

1 0

0 2

+

2 0

0 0

 =

3 0

0 3

 (mod 3)

=

0 0

0 0

 (mod 3)

This result is true for all of the twelve matrices above. Next, we list down all

exhaustion numbers for all subsets of Gd
5.

Table 4.5: Exhaustion number for diagonal 2 × 2 matrices

over Z5

Size of subset Exhaustion number Number of subsets

2 ∞ 300

3 8 2000

Continued on next page
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Table 4.5: Exhaustion number for diagonal 2 × 2 matrices

over Z5 (Continued)

3 ∞ 300

4

4 6500

6 6000

∞ 150

5

3 600

4 49500

6 3000

∞ 30

6

3 90500

4 86000

5 600

7
3 449500

4 31200

8

2 13875

3 1065000

4 2700

9

2 383875

3 1658500

4 600

10

2 1880700

3 1388000

4 60

11
2 3874800

3 582600

Continued on next page
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Table 4.5: Exhaustion number for diagonal 2 × 2 matrices

over Z5 (Continued)

12
2 5099100

3 101200

13 2 5200300

14 2 4457400

15 2 3268760

16 2 2042975

17 2 1081575

18 2 480700

19 2 177100

20 2 53130

21 2 12650

22 2 2300

23 2 300

24 2 25

The largest non-exhaustive subset for diagonal 2 × 2 matrices over Z5

is the 5−subset. When listing down and checking all 30 of the largest non-

exhaustive subsets, it is found that the previous result holds: all elements in

a subset sum up to the zero matrix. The list of all 30 largest non-exhaustive

subsets of Gd
5 is attached in Appendix A1.

4.3 Groups of 2× 2 Upper Triangular Matrices over Zn

We listed down the exhaustion numbers of all subsets of

Gt
2 =


a b

0 c

 : a, b, c ∈ Z2

 and Gt
3 =


a b

0 c

 : a, b, c ∈ Z3

. The

tables are attached in the Appendix A1. The tables below show some of the

largest non-exhaustive subsets of Gt
2 and Gt

3.
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Table 4.6: Some Largest Non-Exhaustive Subsets of Gt
2

Subset, A{(
1 0
0 1

)
,

(
1 1
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)}
{(

1 0
0 1

)
,

(
1 1
0 0

)
,

(
0 0
0 0

)
,

(
0 1
0 1

)}
{(

1 0
0 1

)
,

(
1 1
0 0

)
,

(
1 0
0 0

)
,

(
1 1
0 1

)}
{(

1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 1

)}
{(

1 0
0 1

)
,

(
0 1
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 1

)}

Table 4.7: Some Largest Non-Exhaustive Subsets of Gt
3

Subset, A{(
2 0
0 2

)
,

(
0 1
0 0

)
,

(
2 2
0 2

)
,

(
1 0
0 1

)
,

(
2 1
0 2

)
,

(
1 2
0 1

)
,

(
0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 1

)}
{(

2 0
0 2

)
,

(
0 1
0 0

)
,

(
2 1
0 0

)
,

(
0 2
0 1

)
,

(
1 1
0 0

)
,

(
2 2
0 1

)
,

(
1 2
0 1

)
,

(
0 0
0 2

)
,

(
1 0
0 2

)}
{(

2 0
0 2

)
,

(
0 1
0 0

)
,

(
1 2
0 2

)
,

(
2 0
0 1

)
,

(
0 1
0 2

)
,

(
1 2
0 1

)
,

(
2 0
0 0

)
,

(
0 1
0 1

)
,

(
1 2
0 0

)}
{(

2 0
0 2

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
1 2
0 1

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,

(
2 2
0 0

)
,

(
2 1
0 1

)
,

(
0 2
0 2

)}
{(

2 0
0 2

)
,

(
2 2
0 2

)
,

(
2 1
0 0

)
,

(
2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
2 0
0 0

)
,

(
2 2
0 0

)
,

(
2 1
0 1

)}

Observe that the sum of all elements in each of the subsets is the zero matrix.

The list of all largest non-exhaustive subsets of Gt
2 and Gt

3 is displayed in Ap-

pendix A2 and Appendix A3 respectively.
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4.4 Groups of General 2× 2 Matrices over Z2

We listed down all exhaustion numbers of subset of G2 =


a b

c d

 : a, b, c, d ∈ Z2

.

Below is a table of some of the largest non-exhaustive subsets of G2. The list of

all largest non-exhaustive subsets of G2 is displayed in Appendix A4.

Table 4.8: Some Largest Non-Exhaustive Subsets of G2

Subset, A{(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 1

)
,

(
0 1
1 1

)
,

(
0 1
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 0

)
,

(
0 0
1 1

)}
{(

0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
0 1
1 0

)
,

(
1 0
0 0

)
,

(
1 1
1 1

)}
{(

0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)}
{(

0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
0 1
0 0

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
0 0

)}
{(

0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
1 1

)
,

(
1 1
0 0

)
,

(
0 1
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
,

(
1 1
1 1

)}

A few patterns were observed when looking through the data:

Proposition 4.1 Let Gd
n =


a 0

0 b

 : a, b ∈ Zn

 for n ≥ 2. Let H =
a 0

0 0

 : a ∈ Zn

 ⊆ Gd
n. Then H is a non-exhaustive subset of Gd

n where

|H| = n.

Proof. Note that Zn = {0, 1, . . . , n− 1}, so

H =


0 0

0 0

 ,

1 0

0 0

 ,

2 0

0 0

 , . . . ,

n− 1 0

0 0

 ,

and we see that |H| = n. We observe that mH ̸= Gd
n ∀m ∈ N since

0 0

0 1

 ̸∈

mH ∀m ∈ N. So, H is a non-exhaustive subset of Gd
n.
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Proposition 4.2 Let Gt
n =


a b

0 c

 : a, b, c ∈ Zn

 for n ≥ 2. Let H =
a b

0 0

 : a, b ∈ Zn

 ⊂ Gt
n. Then H is a non-exhaustive subset of Gt

n where

|H| = n2.

Proof. Since Zn = {0, 1, . . . , n− 1} then

H =

{ 0 0

0 0

 ,

1 0

0 0

 ,

2 0

0 0

 , . . .

n− 1 0

0 0

 ,0 1

0 0

 ,

1 1

0 0

 ,

2 1

0 0

 , . . .

n− 1 1

0 0

 ,

...
...0 n− 1

0 0

 ,

1 n− 1

0 0

 ,

2 n− 1

0 0

 , . . .

n− 1 n− 1

0 0

 }

and we see that |H| = n2. We observe that mH ̸= Gt
n ∀ m ∈ N since0 0

0 1

 ̸∈ mH ∀m ∈ N. Therefore, H is a non-exhaustive subset of Gt
n.

Proposition 4.3 Let Gn =


a b

c d

 : a, b, c, d ∈ Zn

 for n ≥ 2. Let H =
a b

c 0

 : a, b, c ∈ Zn

 ⊂ Gn. Then H is a non-exhaustive subset of Gt
n

where |H| = n3.

Proof. Since Zn = {0, 1, . . . , n − 1} then each entry in H can have n values,

so |H| = n3. Since the second row and second column entry of H can only be

0, then

0 0

0 1

 ̸∈ mH ∀ m ∈ N, so mH ̸= Gn ∀ m ∈ N. Therefore H is a

non-exhaustive subset of Gn.
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CHAPTER 5

COMPLETE DECOMPOSITIONS OF ORDER k OF FINITE GROUPS

5.1 Introduction

Definition 5.1 Let G be a nontrivial abelian group and let A1, . . . , Ah(h ≥ 2)

be a partition of G. (A1, . . . , Ah) is a complete decomposition of G of order h

if A1 + · · ·+ Ah = G.

Example 5.1 Consider the same group Gd
2 =


a 0

0 b

 : a, b ∈ Z2

 and its

partition:

C1 =


1 0

0 0

 ,

0 0

0 1


C2 =


1 0

0 1

 ,

0 0

0 0


Taking C1 + C2, we get:

C1 + C2 =


1 0

0 0

 ,

0 0

0 1

 ̸= G

Therefore, the partition C1, C2 is not a complete decomposition of G.

Next, consider the group Gd
3 =


a 0

0 b

 : a, b ∈ Z3

 and the partition of Gd
3:

D1 =


0 0

0 1

 ,

1 0

0 2

 ,

2 0

0 1


D2 =


0 0

0 0

 ,

1 0

0 1

 ,

2 0

0 0

 ,

0 0

0 2

 ,

2 0

0 2

 ,

1 0

0 0


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Taking D1 +D2, we get:

D1 +D2 =

{0 0

0 0

 ,

1 0

0 1

 ,

2 0

0 0

 ,

0 0

0 2

 ,

2 0

0 2

 ,

1 0

0 0

 ,

0 0

0 1

 ,

1 0

0 2

 ,

2 0

0 1

}

= G.

Therefore the partition (D1, D2) is a complete decomposition of order 2 of Gd
3.

Below is the algorithm used to find the complete decompositions of order k of a

group G.

Algorithm: Find the complete decompositions of order k of a finite group.

1. Initialize the group G.

2. Initialize the order k of the complete decomposition

3. For each k-partition (A1, A2, . . . Ak) of G:

(a) If A1 + A2 + · · · + Ak = G, then (A1, A2, . . . Ak) is a complete

decomposition of order k of G.

(b) Else, (A1, A2, . . . Ak) is not a complete decomposition of order k

of G.

5.2 Groups of 2× 2 matrices over Z2

5.2.1 Complete Decompositions of order 3, 4, 5 of Gd
2

In project 1, we have proved that complete decompositions of order 2 of Gd
2 do

not exist. Below is the proof:

Proposition 5.1. There are no complete decompositions of order 2 of G2.

Proof. Assume there exists a complete decomposition of order 2 of G2, (A,B).

Since (A,B) is a partition of a set, A and B are pairwise disjoint. Then there

exist matrices a ∈ A and b ∈ B such that a+ b = 0̄ ∈ G2. Since elements in G2

are matrices over Z2, then a+ b = 0̄ if and only if a = b. But this is impossible
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since A and B are pairwise disjoint. Therefore, there does not exist a complete

decomposition of order 2 of G2.

Following this rseult, we try to list down complete decompositions of

order > 2. To find the complete decompositions of order 3 of Gd
2, we list down

all partitions of the set and find the sum of all sets in the partition:

Table 5.1: All Partitions of Size 3 of Gd
2

B1 B2 B3 B1 + B2 + B3

{(
1 0
0 1

)
,

(
0 0
0 0

)} {(
0 0
0 1

)} {(
1 0
0 0

)} {(
1 0
0 1

)
,

(
0 0
0 0

)}

{(
1 0
0 0

)
,

(
1 0
0 1

)} {(
0 0
0 1

)} {(
0 0
0 0

)} {(
1 0
0 0

)
,

(
1 0
0 1

)}

{(
1 0
0 0

)
,

(
0 0
0 0

)} {(
0 0
0 1

)} {(
1 0
0 1

)} {(
1 0
0 0

)
,

(
0 0
0 0

)}

{(
0 0
0 1

)
,

(
1 0
0 0

)} {(
1 0
0 1

)} {(
0 0
0 0

)} {(
0 0
0 1

)
,

(
1 0
0 0

)}

{(
0 0
0 1

)
,

(
1 0
0 1

)} {(
1 0
0 0

)} {(
0 0
0 0

)} {(
0 0
0 1

)
,

(
1 0
0 1

)}

{(
0 0
0 1

)
,

(
0 0
0 0

)} {(
1 0
0 0

)} {(
1 0
0 1

)} {(
0 0
0 1

)
,

(
0 0
0 0

)}

We conclude that there are no complete decompositions of order 3 of Gd
2.

The same is true for order 4. Therefore, there are no complete decompositions

of order 4 of Gd
2.

5.2.2 Complete Decompositions of order 3, 4, 5 of Gt
2

Let Gt
2 =


a b

0 c

 : a, b, c ∈ Z2

. In this section, we display the numerical

data for the complete decompositions of order 3, 4, 5 of Gt
2. In Table 5.2, we

show some complete decompositions of order 3 of Gt
2. More examples are dis-

played in Appendix B1. The total number of complete decompositions of order

3 of Gt
2 is 448.
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Table 5.2: Some Complete Decompositions of Order 3 of Gt
2

B1 B2 B3

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 1

)
,(

0 1
0 1

)}
{(

1 0
0 1

)
,

(
1 1
0 0

)} {(
0 1
0 0

)
,

(
0 0
0 0

)}

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 1

)
,(

0 1
0 1

)}
{(

1 1
0 0

)
,

(
0 1
0 0

)} {(
1 0
0 1

)
,

(
0 0
0 0

)}

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 1

)
,(

0 1
0 1

)}
{(

1 0
0 1

)
,

(
0 1
0 0

)} {(
1 1
0 0

)
,

(
0 0
0 0

)}

{(
0 1
0 0

)
,

(
0 0
0 0

)
,

(
1 0
0 0

)} {(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)
,

(
1 1
0 0

)}

{(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 1

)
,(

0 1
0 1

)}
{(

1 0
0 1

)
,

(
1 1
0 0

)} {(
0 0
0 0

)
,

(
1 0
0 0

)}

In table 5.3, we list down some complete decompositions of order 4

of Gt
2. More examples are displayed in Appendix B2. The total number of

complete decompositions of order 4 of Gt
2 is 728
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Table 5.3: Some Complete Decompositions of Order 4 of Gt
2

B1 B2 B3 B4

{(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)
,

(
1 1
0 0

)} {(
0 0
0 0

)
,

(
1 0
0 0

)} {(
0 1
0 0

)}

{(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)
,

(
0 1
0 0

)} {(
0 0
0 0

)
,

(
1 0
0 0

)} {(
1 1
0 0

)}

{(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)
,

(
1 1
0 0

)} {(
0 1
0 0

)
,

(
0 0
0 0

)} {(
1 0
0 0

)}

{(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
0 1
0 0

)
,

(
0 0
0 0

)} {(
1 0
0 1

)
,

(
1 0
0 0

)} {(
1 1
0 0

)}

{(
0 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)
,

(
1 1
0 0

)} {(
0 1
0 0

)
,

(
1 0
0 0

)} {(
0 0
0 0

)}

In table 5.4, we list down some complete decompositions of order 5

of Gt
2. More examples are displayed in Appendix B3. The total number of

complete decompositions of order 4 of Gt
2 is 224.

Table 5.4: Some Complete Decompositions of Order 5 of Gt
2

B1 B2 B3 B4 B5

{(
0 1
0 0

)
,

(
0 0
0 0

)} {(
1 0
0 0

)
,

(
0 0
0 1

)} {(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)} {(
1 1
0 0

)}

{(
1 1
0 0

)
,

(
0 0
0 0

)} {(
1 0
0 0

)
,

(
0 0
0 1

)} {(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)} {(
0 1
0 0

)}

{(
1 0
0 1

)
,

(
1 1
0 0

)} {(
1 0
0 0

)
,

(
0 0
0 1

)} {(
1 1
0 1

)
,

(
0 1
0 1

)} {(
0 1
0 0

)} {(
0 0
0 0

)}

{(
1 0
0 1

)
,

(
0 1
0 0

)} {(
1 0
0 0

)
,

(
0 0
0 1

)} {(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 1
0 0

)} {(
0 0
0 0

)}

{(
0 1
0 0

)
,

(
1 0
0 0

)} {(
0 0
0 0

)
,

(
0 0
0 1

)} {(
1 1
0 1

)
,

(
0 1
0 1

)} {(
1 0
0 1

)} {(
1 1
0 0

)}

It was found that complete decompositions of order ≥ 6 of Gt
2 do not

exist.
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5.2.3 Complete Decompositions of order k of G2

As stated in section 5.2.1, in Project 1 we tried to list down all complete decom-

positions of order 2 of G2 =


a b

c d

 : a, b, c, d ∈ Z2

 and proved that no

such complete decompositions exist. Now we show the existence of complete

decompositions of order 3 of G2 by listing down some of them. More examples

are displayed in Appendix B4.

Table 5.5: Some Complete Decompositions of Order 3 of G2

B1 B2 B3

{(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
0 1
0 0

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
,(

0 0
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 0

)
,(

0 0
1 1

)
,

(
1 1
1 1

)}

{(
0 0
0 1

)
,

(
0 0
1 0

)} {(
0 1
0 1

)
,

(
0 1
1 1

)}

{(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
0 1
0 0

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
,(

0 0
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 0

)
,(

0 0
1 1

)
,

(
1 1
1 1

)}

{(
0 0
1 0

)
,

(
0 1
0 1

)} {(
0 0
0 1

)
,

(
0 1
1 1

)}

{(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
0 1
0 0

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
,(

0 0
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 0

)
,(

0 0
1 1

)
,

(
1 1
1 1

)}

{(
0 0
0 1

)
,

(
0 1
0 1

)} {(
0 0
1 0

)
,

(
0 1
1 1

)}

5.3 Groups of 2× 2 matrices over Z3

5.3.1 Complete Decompositions of order 2 of Gd
3

Let Gd
3 =


a 0

0 b

 : a, b ∈ Z3

. In this section, we list down some complete

decompositions of order 2 of groups of 2× 2 matrices over Z3. Table 5.6 shows

the complete decompositions of order 2 of Gd
3. More examples can be found in

Appendix B5.
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Table 5.6: Some Complete Decompositions of Order 2 of Gd
3

B1 B2

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
2 0
0 0

)
,(

0 0
0 2

)
,

(
2 0
0 2

)
,

(
1 0
0 0

)}
{(

0 0
0 1

)
,

(
1 0
0 2

)
,

(
2 0
0 1

)}

{(
1 0
0 1

)
,

(
2 0
0 0

)
,

(
0 0
0 2

)
,(

2 0
0 2

)
,

(
1 0
0 0

)}
{(

0 0
0 1

)
,

(
1 0
0 2

)
,

(
2 0
0 1

)
,(

0 0
0 0

)}

{(
1 0
0 2

)
,

(
1 0
0 1

)
,

(
2 0
0 0

)
,(

0 0
0 2

)
,

(
2 0
0 2

)
,

(
1 0
0 0

)}
{(

0 0
0 1

)
,

(
2 0
0 1

)
,

(
0 0
0 0

)}

{(
2 0
0 1

)
,

(
1 0
0 1

)
,

(
2 0
0 0

)
,(

0 0
0 2

)
,

(
2 0
0 2

)
,

(
1 0
0 0

)}
{(

0 0
0 1

)
,

(
1 0
0 2

)
,

(
0 0
0 0

)}

{(
0 0
0 1

)
,

(
2 0
0 0

)
,

(
0 0
0 2

)
,(

2 0
0 2

)
,

(
1 0
0 0

)}
{(

1 0
0 2

)
,

(
2 0
0 1

)
,

(
0 0
0 0

)
,(

1 0
0 1

)}

5.3.2 Complete Decompositions of order 2 of Gt
3

Let Gt
3 =


a b

0 c

 : a, b, c ∈ Z3

. Table 5.7 shows the complete decompo-

sitions of order 2 of Gt
3. More examples can be found in Appendix B6.
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Table 5.7: Some Complete Decompositions of Order 2 of Gt
3

B1 B2

{(
2 1
0 0

)
,

(
1 2
0 2

)
,

(
0 0
0 1

)
,

(
0 2
0 1

)
,

(
1 0
0 1

)
,(

1 1
0 0

)
,

(
2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
0 1
0 2

)
,(

1 2
0 1

)
,

(
0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,(

2 0
0 0

)
,

(
2 2
0 0

)
,

(
0 1
0 1

)
,

(
2 1
0 1

)
,

(
1 2
0 0

)
,(

0 0
0 2

)
,

(
0 2
0 2

)
,

(
1 0
0 2

)
,

(
1 1
0 1

)}

{(
2 0
0 2

)
,

(
0 1
0 0

)
,

(
2 2
0 2

)}

{(
1 2
0 2

)
,

(
0 0
0 1

)
,

(
0 2
0 1

)
,

(
1 0
0 1

)
,

(
1 1
0 0

)
,(

2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
0 1
0 2

)
,

(
1 2
0 1

)
,(

0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,

(
2 0
0 0

)
,(

2 2
0 0

)
,

(
0 1
0 1

)
,

(
2 1
0 1

)
,

(
1 2
0 0

)
,

(
0 0
0 2

)
,(

0 2
0 2

)
,

(
1 0
0 2

)
,

(
1 1
0 1

)}

{(
2 0
0 2

)
,

(
0 1
0 0

)
,

(
2 2
0 2

)
,

(
2 1
0 0

)}

{(
2 0
0 2

)
,

(
1 2
0 2

)
,

(
0 0
0 1

)
,

(
0 2
0 1

)
,

(
1 0
0 1

)
,(

1 1
0 0

)
,

(
2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
0 1
0 2

)
,(

1 2
0 1

)
,

(
0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,(

2 0
0 0

)
,

(
2 2
0 0

)
,

(
0 1
0 1

)
,

(
2 1
0 1

)
,

(
1 2
0 0

)
,(

0 0
0 2

)
,

(
0 2
0 2

)
,

(
1 0
0 2

)
,

(
1 1
0 1

)}

{(
0 1
0 0

)
,

(
2 2
0 2

)
,

(
2 1
0 0

)}

{(
0 1
0 0

)
,

(
1 2
0 2

)
,

(
0 0
0 1

)
,

(
0 2
0 1

)
,

(
1 0
0 1

)
,(

1 1
0 0

)
,

(
2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
0 1
0 2

)
,(

1 2
0 1

)
,

(
0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,(

2 0
0 0

)
,

(
2 2
0 0

)
,

(
0 1
0 1

)
,

(
2 1
0 1

)
,

(
1 2
0 0

)
,(

0 0
0 2

)
,

(
0 2
0 2

)
,

(
1 0
0 2

)
,

(
1 1
0 1

)}

{(
2 0
0 2

)
,

(
2 2
0 2

)
,

(
2 1
0 0

)}

{(
2 2
0 2

)
,

(
1 2
0 2

)
,

(
0 0
0 1

)
,

(
0 2
0 1

)
,

(
1 0
0 1

)
,(

1 1
0 0

)
,

(
2 0
0 1

)
,

(
2 1
0 2

)
,

(
2 2
0 1

)
,

(
0 1
0 2

)
,(

1 2
0 1

)
,

(
0 2
0 0

)
,

(
0 0
0 0

)
,

(
1 1
0 2

)
,

(
1 0
0 0

)
,(

2 0
0 0

)
,

(
2 2
0 0

)
,

(
0 1
0 1

)
,

(
2 1
0 1

)
,

(
1 2
0 0

)
,(

0 0
0 2

)
,

(
0 2
0 2

)
,

(
1 0
0 2

)
,

(
1 1
0 1

)}

{(
2 0
0 2

)
,

(
0 1
0 0

)
,

(
2 1
0 0

)}
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5.3.3 Complete Decompositions of order 2 of G3

Let G3 =


a b

c d

 : a, b, c, d ∈ Z3

. Table 5.8 shows the complete decom-

positions of order 2 of G3. More examples can be found in Appendix B7.
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Table 5.8: Some Complete Decompositions of Order 2 of G3

B1 B2

{(
0 1
2 1

)
,

(
0 1
1 2

)
,

(
0 1
0 0

)
,

(
2 2
1 0

)
,

(
0 2
2 1

)
,(

2 2
0 1

)
,

(
1 0
2 2

)
,

(
0 2
0 1

)
,

(
2 0
0 1

)
,

(
1 0
1 0

)
,(

0 2
1 2

)
,

(
0 0
2 0

)
,

(
2 2
2 1

)
,

(
1 1
0 1

)
,

(
2 0
1 1

)
,(

2 0
2 0

)
,

(
0 0
2 2

)
,

(
1 1
2 0

)
,

(
1 2
1 0

)
,

(
2 0
2 2

)
,(

2 1
1 0

)
,

(
2 1
0 2

)
,

(
1 2
0 1

)
,

(
0 1
2 0

)
,

(
1 2
1 2

)
,(

1 2
2 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
0 0
0 0

)
,

(
2 1
1 2

)
,(

2 1
2 1

)
,

(
1 0
0 1

)
,

(
0 1
0 2

)
,

(
2 2
1 2

)
,

(
0 2
2 0

)
,(

1 0
2 1

)
,

(
2 0
0 0

)
,

(
0 2
1 1

)
,

(
1 1
1 2

)
,

(
0 0
0 2

)
,(

0 0
1 1

)
,

(
1 0
1 2

)
,

(
2 0
0 2

)
,

(
0 0
2 1

)
,

(
1 1
2 2

)
,(

2 1
0 1

)
,

(
1 2
0 0

)
,

(
0 1
2 2

)
,

(
1 2
2 0

)
,

(
0 1
1 0

)
,(

2 2
0 0

)
,

(
0 2
0 0

)
,

(
2 1
2 0

)
,

(
1 0
0 0

)
,

(
1 2
0 2

)
,(

0 1
0 1

)
,

(
2 2
1 1

)
,

(
2 2
2 0

)
,

(
1 1
0 0

)
,

(
1 0
2 0

)
,(

0 2
2 2

)
,

(
1 2
2 2

)
,

(
2 2
0 2

)
,

(
0 2
1 0

)
,

(
0 2
0 2

)
,(

1 1
1 1

)
,

(
0 0
0 1

)
,

(
2 0
1 0

)
,

(
0 0
1 0

)
,

(
2 1
2 2

)
,(

1 0
0 2

)
,

(
1 0
1 1

)
,

(
2 2
2 2

)
,

(
1 1
0 2

)
,

(
2 0
1 2

)
,(

2 0
2 1

)
,

(
0 0
1 2

)
,

(
1 1
2 1

)}

{(
1 2
1 1

)
,

(
2 1
0 0

)
,

(
2 1
1 1

)}

{(
0 1
1 2

)
,

(
0 1
0 0

)
,

(
2 2
1 0

)
,

(
0 2
2 1

)
,

(
2 2
0 1

)
,(

1 0
2 2

)
,

(
0 2
0 1

)
,

(
2 0
0 1

)
,

(
1 0
1 0

)
,

(
0 2
1 2

)
,(

0 0
2 0

)
,

(
2 2
2 1

)
,

(
1 1
0 1

)
,

(
2 0
1 1

)
,

(
2 0
2 0

)
,(

0 0
2 2

)
,

(
1 1
2 0

)
,

(
1 2
1 0

)
,

(
2 0
2 2

)
,

(
2 1
1 0

)
,(

2 1
0 2

)
,

(
1 2
0 1

)
,

(
0 1
2 0

)
,

(
1 2
1 2

)
,

(
1 2
2 1

)
,(

0 1
1 1

)
,

(
1 1
1 0

)
,

(
0 0
0 0

)
,

(
2 1
1 2

)
,

(
2 1
2 1

)
,(

1 0
0 1

)
,

(
0 1
0 2

)
,

(
2 2
1 2

)
,

(
0 2
2 0

)
,

(
1 0
2 1

)
,(

2 0
0 0

)
,

(
0 2
1 1

)
,

(
1 1
1 2

)
,

(
0 0
0 2

)
,

(
0 0
1 1

)
,(

1 0
1 2

)
,

(
2 0
0 2

)
,

(
0 0
2 1

)
,

(
1 1
2 2

)
,

(
2 1
0 1

)
,(

1 2
0 0

)
,

(
0 1
2 2

)
,

(
1 2
2 0

)
,

(
0 1
1 0

)
,

(
2 2
0 0

)
,(

0 2
0 0

)
,

(
2 1
2 0

)
,

(
1 0
0 0

)
,

(
1 2
0 2

)
,

(
0 1
0 1

)
,(

2 2
1 1

)
,

(
2 2
2 0

)
,

(
1 1
0 0

)
,

(
1 0
2 0

)
,

(
0 2
2 2

)
,(

1 2
2 2

)
,

(
2 2
0 2

)
,

(
0 2
1 0

)
,

(
0 2
0 2

)
,

(
1 1
1 1

)
,(

0 0
0 1

)
,

(
2 0
1 0

)
,

(
0 0
1 0

)
,

(
2 1
2 2

)
,

(
1 0
0 2

)
,(

1 0
1 1

)
,

(
2 2
2 2

)
,

(
1 1
0 2

)
,

(
2 0
1 2

)
,

(
2 0
2 1

)
,(

0 0
1 2

)
,

(
1 1
2 1

)}

{(
1 2
1 1

)
,

(
2 1
0 0

)
,

(
2 1
1 1

)
,

(
0 1
2 1

)}
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From the numerical data, we are able to show the existence of complete

decompositions of order 2 of Gd
3, but we can also prove the existence of complete

decompositions of order 2 of Gd
n for n ≥ 3.

Proposition 4.1 Let Gd
n =


a 0

0 b

 : a, b ∈ Zn

 for n ≥ 3. There exists a

complete decomposition (B1, B2) of Gd
n of order 2.

Proof. Let Gd
n =


a 0

0 b

 : a, b ∈ Zn

,

Gd
n =

{ 0 0

0 0

 ,

1 0

0 0

 ,

2 0

0 0

 , . . .

n− 1 0

0 0

 ,0 0

0 1

 ,

1 0

0 1

 ,

2 0

0 1

 , . . .

n− 1 0

0 1

 ,

...
...0 0

0 n− 1

 ,

1 0

0 n− 1

 ,

2 0

0 n− 1

 , . . .

n− 1 0

0 n− 1

 }

Let (B1, B2) be a partition of Gd
n where B1 =


0 0

0 0

 ,

1 0

0 0

 ,

2 0

0 1


and B2 = Gd

n \ B1. Let B = B1 + B2. Since

0 0

0 0

 ∈ B1, then B2 ⊂ B

because


0 0

0 0

 + B2 = B2. Now we need to show that the elements in

B1 are the sum of elements from B1 and B2:
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0 0

0 0

 =

2 0

0 1

+

n− 2 0

0 n− 1


∈ B1 ∈ B2

1 0

0 0

 =

2 0

0 1

+

n− 1 0

0 n− 1


∈ B1 ∈ B2

2 0

0 1

 =

2 0

0 1

+

1 0

0 1


∈ B1 ∈ B2

So B1 ⊂ B. Since B1 ⊂ B, B2 ⊂ B with B1∩B2 = ∅ and B1∪B2 = Gd
n, then

B = Gd
n. Therefore (B1, B2) is a complete decompositions of order 2 of Gd

n for

n ≥ 2.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Over the course of this project we have managed to achieve the objectives and

gathered extra numerical data as well. We listed down the exhaustion numbers

of all subsets of Gd
n for n = 3, 5 and Gt

n for n = 2, 3. We were also able to

generalize some non-exhaustive subsets of a group.

We listed down some complete decompositions of order 3 of Gn for

n = 2. We were also able to show that complete decompositions of order 2 of

Gn exists for n ≥ 3.

6.2 Recommendations

In Chapter 4, we obserevd that the sum of the elements in a largest non-exhaustive

subset is equal to zero, but we were unable to prove it. We recommend that re-

search is done on this problem.
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Appendix A1: List Of Exhaustion Numbers Of Subsets Of Finite Groups 

Exhaustion Numbers of Subsets of 𝐺2
𝑑 

Size of subset Exhaustion number Number of subsets 

2 ∞ 6 (All) 

3 2 4 (All) 

 

Exhaustion Numbers of Subsets of 𝐺3
𝑑 

Size of subset Exhaustion number Number of subsets 

2 ∞ 36 (All) 

3 
4 72 

∞ 12 

4 
2 54 

3 72 

5 2 126 (All) 

6 2 84 (All) 

7 2 36 (All) 

8 2 9 (All) 

 

Exhaustion Numbers of Subsets of 𝐺5
𝑑 

Size of 
subset 

Exhaustion 
number 

Number of subsets 

2 ∞ 300 

3 
8 2000 

∞ 300 

4 

4 6500 

6 6000 

∞ 150 

5 

3 600 

4 49500 

6 3000 

∞ 30 

6 

3 90500 

4 86000 

5 600 

7 
3 449500 

4 31200 

8 2 13875 



3 1065000 

4 2700 

9 

2 383875 

3 1658500 

4 600 

10 

2 1880700 

3 1388000 

4 60 

11 
2 3874800 

3 582600 

12 
2 5099100 

3 101200 

13 2 5200300 

14 2 4457400 

15 2 3268760 

16 2 2042975 

17 2 1081575 

18 2 480700 

19 2 177100 

20 2 53130 

21 2 12650 

22 2 2300 

23 2 300 

24 2 25 

Exhaustion Numbers of Subsets of 𝐺2
𝑡 

Size of subset Exhaustion number Number of subsets 

2 ∞ 28 (All) 

3 ∞ 56 (All) 

4 
3 56 

∞ 14 

5 2 56 (All) 

6 2 28 (All) 

7 2 8 (All) 

 

  



Exhaustion Numbers of Subsets of 𝐺3
𝑡 

Size of subset Exhaustion number Number of subsets 

2 ∞ 351 

3 ∞ 2925 

4 
6 12636 

∞ 4914 

5 

3 12636 

4 37908 

5 25272 

∞ 4914 

6 

3 174798 

4 117936 

∞ 3276 

7 

3 802386 

4 84240 

∞ 1404 

8 

2 44226 

3 2141802 

4 33696 

∞ 351 

9 

2 543348 

3 4136184 

4 7254 

∞ 39 

10 
2 3250611 

3 5185674 

 

  



Exhaustion Numbers of Subsets of G2 
Size of subset Exhaustion number Number of subsets 

2 ∞ 120 (All) 

3 ∞ 560 (All) 

4 ∞ 1820 (All) 

5 
4 2688 

∞ 1680 

6 

2 448 

3 6720 

∞ 840 

7 

2 4480 

3 6720 

∞ 240 

8 

2 10080 

3 2760 

∞ 30 

9 2 11440 (All) 

10 2 8008 (All) 

11 2 4368 (All) 

12 2 1820 (All) 

13 2 560 (All) 

14 2 120 (All) 

15 2 16 (All) 
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