
TITLE PAGE

SMART FINANCIAL TRACKING MOBILE APPLICATION

By

CHANG KOK SHEN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

FEB 2025

ii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Chang Kok Shen. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project report

represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

iii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Tan

Joi San who has been guiding me and advising me throughout the development of my

final year project. She is a wonderful mentor that has provided a lot of valuable and

constructive feedback to me throughout these few semesters. I am particularly grateful

for her trust and confidence in my abilities during moments of self-doubt. For me she

will always serve a special place in my heart as the best FYP supervisor in UTAR.

Additionally, I want to extend my gratitude to my moderator Mr Tan Chiang Kang @

Thang Chiang Kang, for moderating and evaluating my work. He is the current lead

lecturer for the course UCCD3223 Mobile Applications Development, his teachings

provided me with fundamental mobile application knowledge which I have built upon

and applied to develop the more advanced features in my Final Year Project. Not to

mention, both supervisor and moderator play an important role in providing feedback

to improve the existing weaknesses of my mobile application.

I would also like to thank all my family members for their continuous support

throughout the journey of my Bachelor of Computer Science (Honours) degree.

Lastly, I would like to thank all my close friends and teammates who have supported

me throughout my time studying in UTAR. Without their mental support each semester,

I could not have made it this far. I am sincerely grateful for that unsung friend /

assignment teammate, Lim Chia Yoong, who has supported me throughout these three

years. The countless all-nighters and late-night meetings to discuss assignments with

her will always stick to me as a core memory. I sincerely wish her all the best in her

future endeavours after graduation.

iv
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

In this project, a Smart Financial Tracking Mobile Application is proposed to

cater to all individuals who care about being out of debt, spending, budgeting, and

financial tracking in Malaysia. Financial tracking, also known as expense tracking, is a

common approach whereby an individual manages their expenses by recording their

daily, monthly, and yearly expenditure through digital software such as Microsoft

Excel, cross-platform budget tracking applications like the popular You Need A Budget

(YNAB) or through traditional financial entries on notebooks. Most financial tracking

systems have limitations, such as a lack of Asian Bank Integration, insufficient financial

data insight, and mundane financial entry. The proposed system solves the common

mobility issue for users who want to track their finances on the go and aims to solve

the problems mentioned earlier. Moreover, it also leverages state-of-the-art AI

technology, such as a seamless Integration with Google’s newest Machine Learning Kit

models for near real-time receipt extraction and various connections with third-party

APIs such as LangChain API, to improve data extraction accuracy. The core features

of the mobile application include receipt scanning with OCR, scraping email financial

data, chatting with financial data leveraging Large Language Models (LLM) like

OpenAI’s ChatGPT, Malaysian bank app integration (Maybank, CIMB, Public Bank)

and voice data recognition entry. Furthermore, the main Software Development Life

Cycle (SDLC) model used in this project is Rapid Application Development (RAD).

This approach enables quick creation of multiple prototype versions that can be refined

based on user feedback. Lastly, the main tools used for development are IDE, such as

Android Studio and Visual Studio Code, Firebase as the backend as a service, a mobile

phone, and a laptop.

Area of Study: Mobile Application Development, Artificial Intelligence

Keywords: Financial Technology integration, Optical Character Recognition, Voice

Recognition, Expense Tracking, Generative AI, Workflow Automation

v
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE I

COPYRIGHT STATEMENT II

ACKNOWLEDGEMENTS III

ABSTRACT IV

TABLE OF CONTENTS V

LIST OF FIGURES VIII

LIST OF TABLES XIII

LIST OF ABBREVIATIONS XIV

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Statement and Motivation 2

1.3 Project Objectives 3

1.4 Project Scope 5

1.5 Contributions 8

1.6 Report Organisation 9

1.7 Summary 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Previous Works on Finance related apps 10
2.1.1 Touch ‘n Go 10
2.1.2 You Need a Budget (YNAB) 17
2.1.3 Meow Money Manager 23
2.1.4 Easy Expense 27
2.1.5 n8n 32

2.2 Summary and table of comparison 35

CHAPTER 3 PROPOSED METHOD/APPROACH 38

vi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1 Use Case Diagram 38

3.2 Use Case Description 39

3.3 Mobile App Development 63
3.3.1 Mobile Emulator Configuration 63
3.3.2 Main Development Framework 65
3.3.3 Signup and Login Function Development 66
3.3.4 Scan Receipt Function Development 70
3.3.5 Manual Expense Entry Development 73
3.3.6 Voice Recognition Entry Development 75
3.3.7 Add Financial Account Development 77
3.3.8 Receipt Sharing Development 79
3.3.9 Financial Analytics Development 81
3.3.10 Expense Report Generation 85

3.4 n8n Workflow 87
3.4.1 Scrape Email Transactions Workflow 88
3.4.2 Flutter Frontend Setup 90

3.5 RAG Based PDF Chatbot 92
3.5.1 FastAPI Setup 92
3.5.2 Flutter Frontend Setup 96

3.6 Backend Hosting 98
3.6.1 Railway 98
3.6.2 FastAPI 99
3.6.3 Modal 100

3.7 Database Storage Options 101
3.7.1 Firebase Realtime Firebase 101
3.7.2 Set up Firebase in Flutter (CLI) 102

3.8 Summary 104

CHAPTER 4 METHODOLOGY AND TOOLS 105

4.1 System Development Methodology 105
4.1.1 Requirements Planning 105
4.1.2 User Design 106
4.1.3 Construction 107
4.1.4 Cutover 108

4.2 System Requirement 109
4.2.1 Hardware Specification 109
4.2.2 Software Specification 110

4.3 Implementation Issues and Challenges 112
4.3.1 Retrieval of demo financial accounts 112
4.3.2 Finding libraries and packages 112

vii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Timeline 113

4.5 Summary 115

CHAPTER 5 IMPLEMENTATION AND TESTING 116

5.1 Signup and Login 116

5.2 Scan Receipt 117

5.3 Select Receipt Transactions & Share Receipt 120

5.4 Edit Receipt Transactions & Add Receipt Transactions 123

5.5 Manual Expense 126

5.6 Voice Recognition Expense 127

5.7 Add Financial Accounts 128

5.8 View Recent Transactions and Total Expenses 131

5.9 Transaction Dashboard 132

5.10 Transaction Analytics 134

5.11 PDF RAG Chatbot 137

5.12 Scrape Email Transactions 139

5.13 Summary 142

CHAPTER 6 CONCLUSION AND FUTURE WORK 143

6.1 Conclusion 143

6.2 Future work and recommendations 144

REFERENCES 145

APPENDIX A 146

A.1 POSTER A-1

viii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Scan and Pay feature 11

Figure 2.1.1.2 View transaction history 11

Figure 2.1.1.3 Gofinance dashboard 11

Figure 2.1.1.4 Scan feature 12

Figure 2.1.1.5 Pay feature 12

Figure 2.1.1.6 Scanning merchant's qr code 13

Figure 2.1.1.7 Paying with qr code 13

Figure 2.1.1.8 Loyalty tiers 14

Figure 2.1.1.9 Gofinance functionality overview 15

Figure 2.1.1.10 Convert to non-transferable balance 16

Figure 2.1.1.11 Upper right corner icon 17

Figure 2.1.1.12 Too many cluttered and repeated icons 17

Figure 2.1.2.1 Donut graph spending breakdown 18

Figure 2.1.2.2 Link bank account 19

Figure 2.1.2.3 Unlinked account 19

Figure 2.1.2.4 Custom amount set for unlinked account 20

Figure 2.1.2.5 Adding transaction 21

Figure 2.1.2.6 Split into more than one category 21

Figure 2.1.2.7 European bank availability dominating 22

Figure 2.1.2.8 Lack of Asian banks integration 22

Figure 2.1.2.9 A 34-day trial period 22

Figure 2.1.3.1 Main interface of meow money manager 23

Figure 2.1.3.2 Bill export functionality 24

Figure 2.1.3.3 Exported csv with expenses 24

Figure 2.1.3.4 Recurring expenses for different categories 25

Figure 2.1.3.5 Set recurring transactions on monthly basis 25

Figure 2.1.3.6 Managing different assets 26

Figure 2.1.3.7 Donut graph of assets and liabilities 26

Figure 2.1.3.8 Switching languages 27

Figure 2.1.3.9 Only a single option is changed 27

ix
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4.1 Easy Expense’s webpage motto 28

Figure 2.1.4.2 Example of scanning a receipt from Popular bookstore 29

Figure 2.1.4.3 Main homepage interface 29

Figure 2.1.4.4 Blurry receipt still yields accurate result 29

Figure 2.1.4.5 Able to add payment method and do refund 29

Figure 2.1.4.6 Scanning digital receipts from Gmail 30

Figure 2.1.4.7 Google Play receipt found in Gmail 30

Figure 2.1.4.8 PDF expense report generated 31

Figure 2.1.5.1 Example n8n low code workflow 32

Figure 2.1.5.2 Integrate AI-native workflow 32

Figure 2.1.5.3 An example of finance workflow 33

Figure 2.1.5.4 More than 20+ financial tools available 33

Figure 2.1.5.5 Pricing tier of cloud version of n8n 34

Figure 3.1.1 Use case diagram for Smart Financial Tracking

Mobile Application

38

Figure 3.3.1.1 Installing Android 14.0 SDK 63

Figure 3.3.1.2 Choosing mobile emulator 64

Figure 3.3.1.3 Configuring AVD name 64

Figure 3.3.2.1 Flutter logo 65

Figure 3.3.3.1 user_model.dart 66

Figure 3.3.3.2 sign_up_form.dart 67

Figure 3.3.3.3 signup_screen.dart 67

Figure 3.3.3.4 login_form.dart 68

Figure 3.3.3.5 login_screen.dart 69

Figure 3.3.4.1 Added important dependencies 70

Figure 3.3.4.2 document_scanner_service.dart - 1 71

Figure 3.3.4.3 document_scanner_service.dart - 2 71

Figure 3.3.4.4 Block diagram of receipt scanning algorithm 72

Figure 3.3.5.1 expenses_screen.dart - 1 73

Figure 3.3.5.2 expenses_screen.dart 74

Figure 3.3.6.1 voice_recognition.dart 75

Figure 3.3.6.2 text_processing.dart 76

Figure 3.3.7.1 api_constants.dart 77

x
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.7.2 finverse_service.dart 77

Figure 3.3.7.3 High level sequence diagram between Client and

Finverse API

78

Figure 3.3.8.1 Screenshot widget wrapping entire container fields 79

Figure 3.3.8.2 _buildActionButton code snippet 79

Figure 3.3.8.3 _shareReceipt method code snippet 80

Figure 3.3.9.1 Financial analytics tab navigation code snippet 81

Figure 3.3.9.2 Data processing calculation code snippet - 1 82

Figure 3.3.9.3 Data processing calculation code snippet - 2 83

Figure 3.3.9.4 Data processing calculation code snippet - 3 83

Figure 3.3.9.5 Data processing calculation code snippet - 4 84

Figure 3.3.10.1 _buildExportButton widget code snippet 85

Figure 3.3.10.2 ReportGenerator class code snippet 86

Figure 3.4 n8n Supports code and visual building 87

Figure 3.4.1.1 Scraping Email Transactions Workflow using n8n 88

Figure 3.4.2.1 Different Uri for different deployment options 90

Figure 3.4.2.2 Access token acquisition process 91

Figure 3.4.2.3 Initiating entire email scraping process 91

Figure 3.5.1.1 Initial Setup for FastAPI endpoint 92

Figure 3.5.1.2 Websocket endpoints - 1 93

Figure 3.5.1.3 Websocket endpoints – 1 94

Figure 3.5.1.4 Retriever configuration 95

Figure 3.5.1.5 Text Chunking configuration 95

Figure 3.5.1.6 Embedding generation 95

Figure 3.5.1.7 Vector search Implementation 95

Figure 3.5.2.1 uploadPDF functionality 96

Figure 3.5.2.2 Chat with PDF interface 97

Figure 3.6.1.1 Railway dashboard 98

Figure 3.6.1.2 n8n workers 98

Figure 3.6.2.1 Official FastAPI documentation 99

Figure 3.6.3.1 Modal dashboard 100

Figure 3.6.3.2 Modal’s publicly accessible URL endpoint 100

Figure 3.7.1.1 Cloud firestore collections and subcollections 101

xi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7.1.2 Firebase authentication 101

Figure 3.7.2.1 Preparing workspace 102

Figure 3.7.2.2 Install and run FlutterFire CLI 103

Figure 3.7.2.3 Initialise Firebase and add plugins 103

Figure 4.1 Four phases in Rapid Application Development 105

Figure 4.1.2.1 User interface design with a single camera icon 107

Figure 4.1.2.2 An example of refined user interface design with

receipt scanning

107

Figure 4.4.1 Gantt chart for FYP 1 and FYP 2 114

Figure 5.1.1 Signup screen 116

Figure 5.1.2 Login screen 116

Figure 5.1.3 Firebase Authentication 117

Figure 5.1.4 Firebase Cloud Firestore 117

Figure 5.2.1 Empty state - no receipts added 118

Figure 5.2.2 Scanned and saved receipts 118

Figure 5.2.3 Options - gallery, manual and auto capture 119

Figure 5.2.4 Edit processed receipt 119

Figure 5.2.5 Receipt details - 1 119

Figure 5.2.6 Receipt details - 2 119

Figure 5.3.1 Original receipt details before edit 121

Figure 5.3.2 Selecting transactions 121

Figure 5.3.3 Share newly updated receipt details 122

Figure 5.3.4 Share receipt image to available apps 122

Figure 5.3.5 Share receipt image to WhatsApp contact 122

Figure 5.4.1 Select transaction to edit 123

Figure 5.4.2 Select transaction to edit - 2 123

Figure 5.4.3 Edited transaction reflects in new selected total 124

Figure 5.4.4 User adds new item 125

Figure 5.4.5 User adds new item - 2 125

Figure 5.5.1 Empty state - no expenses added 126

Figure 5.5.2 Adding expense according to category 126

Figure 5.6.1 Voice input - 1 127

Figure 5.6.2 Voice input - 2 127

xii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6.3 Voice recognition result 128

Figure 5.7.1 Add bank account - 1 129

Figure 5.7.2 Add bank account - 2 129

Figure 5.7.3 Select financial institution 129

Figure 5.7.4 Connecting with Finverse API 129

Figure 5.7.5 Test bank account data retrieved shown in cards 130

Figure 5.7.6 Retrieval of real bank data - Public Bank 130

Figure 5.8.1 Total aggregated expenses 131

Figure 5.8.2 Top Recent Transactions 131

Figure 5.9.1 Home Screen – analytics button 132

Figure 5.9.2 Home Screen – analytics button 133

Figure 5.9.3 Home Screen – analytics button 133

Figure 5.10.1 Analytics tab - 1 134

Figure 5.10.2 Analytics tab - 2 134

Figure 5.10.3 Financial Report April Page 1 135

Figure 5.10.4 Financial Report April Page 2 136

Figure 5.11.1 Upload generated Financial Report PDF 137

Figure 5.11.2 Streaming chat response 138

Figure 5.11.3 Chatbot returned answer 138

Figure 5.12.1 User is prompted to Connect & Fetch Transactions 139

Figure 5.12.2 User retrieves scraped email transactions from 1st –

30th April

140

Figure 5.12.3 Apple Invoice email 141

Figure 5.12.4 Digit Payment email 141

xiii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.2.1 Comparison between systems 37

Table 3.2.1 Sign Up Use Case Description 40

Table 3.2.2 Login use case description 41

Table 3.2.3 Add Scan Receipt use case description 42

Table 3.2.4 Add Manual Expense Entry use case description 43

Table 3.2.5 Add Voice Data Entry use case description 44

Table 3.2.6 Add Financial Account use case description 45

Table 3.2.7 View Recent Transactions use case description 46

Table 3.2.8 View Total Expenses use case description 47

Table 3.2.9 View History Transactions use case description 48

Table 3.2.10 View Receipt Transactions use case description 49

Table 3.2.11 Edit Profile use case descriptions 50

Table 3.2.12 Scrape Email Transactions use case descriptions 52

Table 3.2.13 View Financial Dashboard use case descriptions 54

Table 3.2.14 View Financial Analytics use case descriptions 56

Table 3.2.15 Chat with Financial Data 58

Table 3.2.16 Share Receipt use case descriptions 59

Table 3.2.17 Select Receipt Transactions use case descriptions 61

Table 3.2.18 Edit Profile use case descriptions 62

Table 4.2.1.1 Specifications of laptop 109

Table 4.2.1.2 Specifications of phone 109

Table 4.2.2.1 Software requirements 111

xiv
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

YNAB You Need A Budget

SDLC Software Development Lifecycle

PDF Portable Document Format

RAD Rapid Application Development

AI Artificial Intelligence

OCR Optical Character Recognition

RAG Retrieval Augmented Generation

API Application Programming Interface

JSON JavaScript Object Notation

LLM Large Language Model

HNSW Hierarchical Navigable Small World

CHAPTER 1 INTRODUCTION

1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 Introduction

1.1 Overview

In the recent advancement of technology, Artificial Intelligence (AI) has been

dominating every industry including finance, education, marketing, e-commerce and so

much more. AI’s capabilities are vast and varied especially in the fintech sector, usually

AI will aid fintech companies in cost-saving, improved customer experience, and better

analytics [1]. However, most end users would not have the chance to experience these

innovative AI driven financial technologies. To bridge this gap, smaller-scale solutions

such as mobile and web applications are developed, to make these innovations more

accessible to a broader audience.

Additionally, smaller scaled systems such as loan calculators, financial planners

and budget trackers can assist end user’s financial decisions. To note, the existence of

these specific mobile applications cannot replicate the final financial decision of the

user but guides their decision-making process. Financial tracking or also known as

expense tracking is another common use case. It involves the process of documenting

daily, monthly, and annual expenses. Likewise, the expense tracker can involve the

process of automated data entry from receipts, bank accounts, and credit cards [2].

Some individuals maintain detailed financial records to claim tax reductions at year-

end. Overtime, a well recorded financial planner will give us a clear picture of our cash

flow and might allow us to forecast/predict future expenditures [3].

 In the past, expenses were manually recorded in logbooks, and accountants

played a vital role in calculating large arithmetic figures by hand, often leading to

human error [4]. The introduction of Microsoft Excel in the 1980s revolutionised

financial tracking by partially automating manual data entry, a practice which is still

common today. Excel can organise data in rows and columns, but it introduces issues

like data duplication and redundancy.

 Moreover, recording financial transactions in Excel is often seen as a temporary

fix for a long-term problem. One major drawback of using Excel for expense tracking

is the lack of mobility, as users couldn't record transactions immediately after a

purchase. They had to wait until they were home to enter the data. The rise of mobile

applications in 2008 addressed this issue by providing lightweight, multifunctional

CHAPTER 1 INTRODUCTION

2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

systems on users' phones, allowing them to record expenses on the spot and enhancing

the utility of mobile devices beyond their original purpose.

 In this report, a mobile application is proposed to solve the issue of mobility

particularly when user seeks to record down their transactions. Not to mention, the

mobile application is intended to provide an interface to show transactions in an auto

categorised format and lastly focusing on the automation and seamless transition for

users to record down their transaction details.

1.2 Problem Statement and Motivation

Many individuals like students, working professionals and even working

entities struggle with maintaining a clear layout of their financial stance, which might

lead to overspending, insufficient savings and difficulty in achieving financial goals.

The development of a robust financial tracker is needed for them to maintain a healthy

financial status. However, the current existing financial tracking mobile applications

and methods pose a few potential issues. Firstly, not all financial trackers have built in

integration of banking details. Financial trackers and banking apps are usually

independent from one another which makes it difficult to keep track of expenses across

2 different apps. Secondly, manual financial tracking is often redundant and time

consuming. Thirdly, financial trackers do not provide detail data insights for the user.

Traditional financial trackers only show charts and graphs with statistics, they fail to

provide deeper context and provide more informed financial feedback to the user. In

short, this smart financial tracking based mobile application is intended to solve the

following issues:

i. Lack of integrated overview of banking institutions

Most financial tracking mobile applications lack an integrated support of banking

institutions. Often than not, it can be difficult for users to keep track of their banking

details in a single centralised platform. Therefore, users struggle with fragmented

financial data across multiple banking applications. For instance, an individual who has

just spent their expenses with a debit card would only be shown their transaction history

in the banking application. However, if the individual wants to document this

transaction. He / She would have to do it on a separate financial tracking application.

CHAPTER 1 INTRODUCTION

3
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii. Inefficiency of manual financial record tracking

Nowadays, almost everyone is showing increased awareness about financial planning.

However, there are still some individuals who continue to record down their expenses

manually either in a small notebook or even record down in spreadsheet software like

Excel. While the traditional manual expense tracking methods remain common, they

are inefficient and error prone. Hence, users should have access to a wide range of smart

tracking methods that suit different contexts or scenarios.

iii. Insufficient data insight on expenses tracking

In the past, when individuals wanted to generate insight from their monthly expenses

or transactions. They are overwhelmed by at least hundred lines of numbers and text.

Notwithstanding this, they had to do manual calculation to calculate statistics like

average spent, most spent category and remaining balance of that month. Even with

data visualisation tools created in Excel like bar charts or pie charts. Users did not really

feel involved with their financial data; it is likely that charts alone could not really

connect with the user. While these existing expense tracking solutions offered basic

visualisations, they failed to provide deeper, personalised financial insights that truly

engaged with the users.

1.3 Project Objectives

The project’s main objective is developing an intuitive financial tracking mobile

application to help individuals who struggle to save money, are in debt, students and

even personal finance enthusiasts. Individuals who use this mobile application can

benefit from the smart automation features, such as automated receipt scanning, email

scraping, expense report generation, personal fine-tuned financial insights and bank

integration. The project aims to solve the following:

1) Enhance financial data accessibility and comprehensiveness

An integration with banking institutions through the Finverse API, creating a robust

foundation for financial data integration. The implementation will demonstrate the

ability to retrieve key financial data such as account balances and transaction histories

from Malaysian banks including Maybank, Public Bank, and CIMB. This integration

represents a significant advancement over traditional financial trackers that operate in

isolation from banking applications, allowing users to access their financial information

CHAPTER 1 INTRODUCTION

4
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

within a single platform. The secure bank connectivity framework established in this

project enables a streamlined financial management experience that bridges the gap

between expense tracking and banking information.

2) Develop an automated data entry system for financial transactions

A smart automated financial tracker which solves the burden of tedious data entry and

adapts to different contexts and preferences. The financial tracker addresses the

common hassle of manually data input after physical transactions with an auto capture

functionality which can extract data from receipts by leveraging Optical Character

Recognition (OCR) powered by Google Machine Learning Kit. By leveraging an

external package like speech to text, the application further enhances user convenience

through voice recognition capabilities, enabling hands-free expense logging in dynamic

situations like grocery shopping. While the overall goal focuses on receipt scanning and

voice input, the app also allows users to perform email transaction scraping, enabling

the automatic parsing of digital invoices and other online purchases confirmations.

Overall, this reduces the time and effort required for user to log their financial

transactions manually and improves the overall user experience and convenience. Not

to mention, this feature helps minimises human error in data entry and improves the

accuracy of financial tracking for both physical and digital transactions.

3) Create an interactive and personalised financial management insight

The proposed system leverages a full-fledged personal financial analysis system to

analyse and recommend the best financial practices based on user’s data. At its core,

the system generates detailed monthly expense reports in PDF format, providing users

with a clear summary of their spending patterns and financial activity. These reports

then serve as the foundation for an intelligent conversational interface powered by

ChatGPT and Retrieval Augmented Generation (RAG) technology. By implementing

a LangChain framework powered by a FastAPI backend, the system enables natural

language interaction with financial data while maintaining factual accuracy. Also, the

RAG based financial advisory pipeline personalises insights based on user’s unique

interaction with the aggregated financial PDF. The architecture enables the chatbot to

extract relevant financial information directly from the user's own expense documents,

significantly reducing potential hallucinations that plague traditional LLM

implementations. This approach enables users to interact naturally with their financial

CHAPTER 1 INTRODUCTION

5
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

data through simple queries like "Where am I overspending?" or “Show me all

transactions on May 1, 2025.”, receiving contextually aware responses grounded in

their actual transaction history. The overall goal is to integrate a RAG financial advisory

PDF based chatbot and present them with financial insights based on their query.

1.4 Project Scope

The scope of this project is to enhance the overall financial tracking experience

for individuals who are trying to get out of debt, save money and budgeting. Therefore,

the proposed mobile application “Smart Financial Tracking Mobile Application”

allows these individuals to automate financial data entry such as receipts, scrape

financial transactions from email, chat / interact with inputted financial data, monthly

expense report generation, receipt sharing, financial chart analysis and lastly an

integration of Malaysian banks. All these suggested features are unlike traditional

budgeting or financial trackers, as this mobile application will leverage a lot of

integration with current third-party APIs, libraries like Google Machine Learning Kit,

Langchain API, n8n workflow integration and FastAPI. Below shows a brief overview

of the main modules.

i. Login In / Sign Up module

To access the mobile app's full range of features, users must first create an account.

Without completing the registration process, individuals will be unable to proceed to

the main interface where all functionalities are available. Then, after completing the

registration process, users can immediately access the application by logging in with

their credentials, which are securely authenticated through Firebase's robust

authentication system. This module is essential to keep track of different user’s

spending and expenditure upon using the app. Also, this also caters for the saved data

instance for each new user created. The Login In / Sign Up will utilise Firebase

(Backend as a service) for user authentication.

CHAPTER 1 INTRODUCTION

6
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii. Receipt Scanning OCR module

Optical Character Recognition (OCR) is the process of recognising characters from

images using computer vision. Also, receipts are the main source of financial data after

an individual has purchased something. This functionality leverages the capabilities of

Optical Character Recognition (OCR) for receipt scanning which can help automate the

process of manual entry as it can directly extract key information from receipts. The

high-level overview includes user first capturing an image of the receipt, then Google

Machine Learning Kit will detect the bounding boxes around possible texts and finally

extract the recognised text. In the context of financial tracking, the main region of

interest is the total amount that is spent for that transaction that will be later stored in a

database.

iii. Voice data entry module

Voice data recognition is another common way to automate tasks, it is common in voice

assistant technologies such as Siri and Google Assistant. In the context of financial data

entry, this approach allows convenience for recording expenses through natural

language. The system would leverage a speech to text technology to capture and process

verbal sentence structures. For example, user can simply say “Today, I spent RM 50 on

food”. Then the system will parse the recognised text and return corresponding bullet

point list showing the recorded expense, date and category. The functionality is

practical in situations where manual input is troublesome such as while walking or

when the user needs to input text quickly and hands-free.

iv. Scrape transactions from email module

With the advent of the internet, financial transactions are also recorded in digital

formats that will be sent to the user’s email. The financial transactions that are common

in an email is digital invoices, order confirmations, online subscriptions and shipping

receipts. This module mainly implements an automated workflow using n8n, an open-

source workflow automation platform as compared to traditional web scraping

methods. This approach enables the system to connect directly to email services,

identify relevant financial communications using intelligent filtering, and extract key

transaction details through structured data processing workflows. The process will

involve the automation of login into user’s email and scrape relevant emails based on

CHAPTER 1 INTRODUCTION

7
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

subject of email and date range. After scraping the relevant emails, the data is pre-

processed before being displayed back on the mobile application interface. Scraping

transactions directly from emails would also reduce the manual data entry for users.

v. Chat with financial data module

Users have the chance to interact with their financial data in PDF format, via a chatbot

like interface. But unlike traditional Large Language Models (LLM) chatbots who

solely rely on pre-trained knowledge, users are instead giving more context to the LLM

based on their financial entries such as a PDF which acts as an external data source to

the LLM. This implementation creates a personalised financial advisor that grounds all

responses in the user's actual transaction data through PDF-based RAG technology. The

interface retrieves relevant information directly from their monthly expense reports,

ensuring answers are factually accurate and contextually appropriate. Overall, the

chatbot significantly reduces the risk of hallucinations by anchoring all responses in

documented financial data. The module presents insights in conversational language,

making complex financial information accessible while delivering actionable

recommendations tailored to each user's unique financial behaviour and goals.

vi. Financial analytics module

This module delivers intuitive financial visualization through a comprehensive

dashboard interface. Users can access an overview of their spending patterns with

interactive charts displaying expense breakdowns across various categories. The system

offers flexible time-based filtering options, allowing users to analyse specific monthly

periods and view key performance indicators such as total expenditures, average

transaction, transaction counts, and spending categories. Lastly, for deeper financial

analysis and record-keeping, users can generate detailed PDF financial reports that

present category-based percentage breakdowns alongside a complete chronological

transaction history, providing both summary insights and granular transaction details in

a structured, easily accessible format.

vii. Bank app integration module

Many financial trackers and budgeting tools reviewed only accommodate to US or

European banks. However, in the context of Malaysian banks. Most financial trackers

cannot / unable to import and connect to existing Malaysian banks. In this proposed

CHAPTER 1 INTRODUCTION

8
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

mobile application, Finverse API is integrated into the financial tracker. As this is one

of the very few third-party APIs which can integrate with up to 3 local Malaysian banks

namely Maybank, Public bank and CIMB to extract end user’s financial data such as

currency, total amount of savings account, statement balance and other various financial

data.

1.5 Contributions

 The main contribution of the proposed application is to solve the issues stated

in the above problem statement. The proposed system acts as an enhancement on top

of many existing financial tracking mobile applications. Another core idea is to make

the application free of charge, as many financial trackers would charge users for using

extra features such as bank integration. Notably, users who cannot afford financial

management tools like Document360, Mint and Mvelopes can utilise this mobile

application instead.

A key technical innovation in this project is establishing the interfacing

connection between the mobile application and n8n's workflow automation platform

for email transaction processing. This novel integration addresses a significant gap in

the current mobile development landscape, where direct communication between

mobile apps and external automation tools like n8n has historically been challenging.

By creating and documenting this implementation approach, the project not only solves

a specific functional requirement but also provides the broader developer community

with a valuable reference architecture that can be adapted for similar integration

scenarios across other workflow solutions.

Beyond automated data entry using OCR, users benefit from comprehensive

financial insights powered by AI through the RAG-based chatbot system. The

application's approach of generating structured financial reports that serve as the

foundation for conversational analytics creates an interaction model that makes

financial data more accessible and actionable for everyday users without technical

expertise. This implementation demonstrates how emerging AI technologies can be

practically applied to solve real-world problems in personal finance management.

CHAPTER 1 INTRODUCTION

9
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.6 Report Organisation

 The whole FYP 2 report consists of six main chapters including Chapter 1 which

briefly introduces the problems of existing financial trackers and how AI could be used

to enhance the user’s financial tracking ability. In Chapter 2, a vigorous literature

review process is performed to evaluate the strengths and weaknesses of existing

systems. Next, in Chapter 3 showcases the proposed method / approaches when

developing the mobile application, backend hosting and database storages. In Chapter

4, the main system development methodology, system requirements, implementation

bottlenecks and timeline are discussed in detail. In Chapter 5, various functionalities of

the mobile application are demonstrated in detail. Lastly, Chapter 6 concludes the

overall findings of this project and future work.

1.7 Summary

 In chapter 1, a brief overview of the history of traditional financial tracking is

examined. Not everyone is entitled to use latest state of the art financial technologies

used in fintech companies. The innovation of mobile application financial trackers

helps tackle this issue. Next, problems were examined from the perspective of existing

financial mobile trackers such as lack of integration between banking institutions, hard

to keep track of financial expenses on the go and the insufficient data insight in expense

tracking. Therefore, a proposed cross platform android mobile application aims to solve

these issues and improve the overall user experience when using a financial tracker.

Users can view banking details in a centralised application, automate data entry with

OCR and understand their financial expenses more insightfully.

CHAPTER 2 LITERATURE REVIEW

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 Literature Review

This chapter showcases past works and similar projects for finance related apps.

A review of past work is essential when developing a new system that aims to solve

problems that are aligned with the problem statement. Also, similar systems are

reviewed to get an overview of the strengths and weaknesses of each respective

platform. Then after reviewing the strengths and weaknesses of each system, it is

summarised in a table for easy comparison.

2.1 Previous Works on Finance related apps

2.1.1 Touch ‘n Go

 TnG eWallet is an eWallet platform to conduct payments and transactions in

stores, tolls and even parking payments. The main initiative of TnG eWallet was to

encourage a cashless society. Obviously the 2 common use cases would be transferring

money and scanning for payment as shown in Figure 2.1.1.1. In a way or another, TnG

eWallet also exhibits the functionality of tracking transactions. Users can view their

transaction history of up to 90 days Figure 2.1.1.2. Not to mention, they can check the

transaction type, merchant and other specific payment details. Just recently, TnG

eWallet launched a new supplementary feature for financial tracking named Gofinance

which is an all-in-one financial hub for convenience and accessibility. Gofinance allows

eWallet users to seamlessly manage their expenses and budget their spending within

the eWallet. Thus, offering valuable financial insight into user’s financial habits as

shown in Figure 2.1.1.3.

CHAPTER 2 LITERATURE REVIEW

11
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1.1 Scan and Pay feature

Figure 2.1.1.2 View transaction history

Figure 2.1.1.3 Gofinance dashboard

CHAPTER 2 LITERATURE REVIEW

12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

i. Cashless payment

Touch ‘n Go is an E-wallet which streamlines transactions by eliminating the need for

physical cash or debit cards. This increases the convenience for busy individuals who

take time to withdraw money from ATM machines or banks. Users of Touch ‘n Go

have 2 ways the ability to make purchases at a Merchant’s outlet which are using the

scan feature and pay feature as shown in Figure 2.1.1.4 and Figure 2.1.1.5. The scan

feature is where the user scans the Merchant’s QR similar to Figure 2.1.1.6 code and

enters the amount whereas the pay feature is where the merchant/cashier scans the

user’s QR code just like Figure 2.1.1.7, and the amount is deducted from their balance.

Figure 2.1.1.4 Scan feature

Figure 2.1.1.5 Pay feature

CHAPTER 2 LITERATURE REVIEW

13
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1.6 Scanning merchant's qr code

Figure 2.1.1.7 Paying with qr code

ii. Loyalty program

Touch ‘n go also offers a loyalty program with different tiers which are Lite, Pro and

Premium respectively as shown in Figure 2.1.1.8. When a user first registers for an

account, they are automatically entitled to the Lite tier, after verification process, they

will be upgraded to the pro tier and finally if they wish to be on the premium tier. They

will have to onboard the premium page by paying a small fee. Each tier offers different

benefits including different monthly transaction limits, annual transaction limits and

additional features. For the basic lite tier, user is only able to make annual transaction

CHAPTER 2 LITERATURE REVIEW

14
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

of up to 24,000 MYR whereas the premium tier users can spend up to 360,000 MYR a

year. Some extra features for the premium tier include sending payments and premium

product benefits.

Figure 2.1.1.8 Loyalty tiers

iii. Gofinance (all in one financial hub)

Recently in June 2024, Touch ‘n Go officially launched a new feature called Gofinance

which acts as a financial hub which shows summary of aggregated statistics of different

expenses breakdown like services, transfer and food & drink as shown in Figure 2.1.1.9.

The new feature aims to empower users by providing financial insight through

interactive graphs. Also, the feature encourages users to take full control of their

financial goals. Consequently, Gofinance also provides a variety of financial services

like applying for cash loan, insurance and credit score management through a digital

and convenient process [5]. One key point of Gofinance is the low entry barrier which

makes these financial services available to everyone regardless of financial status.

CHAPTER 2 LITERATURE REVIEW

15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1.9 Gofinance functionality overview

Weakness

i. Non-transferable balance

In 2022, Touch n’ go introduced 2 main types of balance which were transferable and

non-transferable eWallet balance as shown in Figure 2.1.1.10. A transferable eWallet

balance can be used for all the normal payment use cases such as QR code payments,

DuitNow QR payments and peer-to-peer transfer. In contrast, a non-transferable

eWallet balance can cater to most payment cases similar to transferable amount except

for peer-to-peer transfer, GOpinjam loan repayment and ATM withdrawal through

Touch ‘n Go. To note, TNG eWallet reloads made via credit cards, reload pins,

government initiatives fall under non-transferable balance. Additionally for credit card

reloads, a monthly quota of RM1000 will be treated as transferable eWallet balance.

After exceeding RM1000, a 1% fee will be charged for each reload. The introduction

of non-transferable balance has caused inconvenience for multiple users. In a case

where an individual bought a TNG reload pin intending to transfer the credit to their

elderly parents would fail as reload pins are non-transferable amount.

CHAPTER 2 LITERATURE REVIEW

16
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1.10 Convert to non-transferable balance

ii. Counter intuitive User Interface

The user base of TNG is wide, there are more than 1 million active users daily that use

the eWallet. While the app is useful for making transactions to merchants seamlessly.

The appearance and access can be sometimes difficult to follow for non-technical users.

As shown in the Figure 2.1.1.12 below, on the homepage itself. There are too many

icons and too many unnecessary buttons on a single page (view) as shown in the red

borders. Furthermore, in the middle section and bottom navigation bar highlighted in

light blue are repeated elements for instance eShop and GOrewards. Touch ‘n Go is

trying to highlight these are 2 important features but in return, it leads to redundancy

and confusion for the user. Another thing to highlight is the bottom navigation bar

(prominent blue), in most cases many users would not even notice it at first glance due

to the attention drawn towards the red icon such as the profile section at top right corner

as shown in Figure 2.1.1.11.

CHAPTER 2 LITERATURE REVIEW

17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1.11 Upper right corner icon

Figure 2.1.1.12 Too many cluttered and

repeated icons

2.1.2 You Need a Budget (YNAB)

You Need A Budget (YNAB) is a popular budgeting platform that lets users

take charge of their finances. YNAB has taught millions of people how to set habits

and change their relationship with money for good. The main key features of YNAB

not only allow individuals to create a budget but also allow bank integration, goal

setting, spending & net worth reports and much more. YNAB follows 4 rules which are

given every dollar a job, embrace your real expenses, roll with the punches and age

your money. Despite all these features, strictly speaking YNAB is not a monthly

spending tracker. Instead, the app forces users to decide where the money should go

beforehand. Hence, users understand where their expenses are going into, and this

concept helps them save money. YNAB offers cross platform availability which

consists of both the website version and mobile app version.

CHAPTER 2 LITERATURE REVIEW

18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

i. Visual clarity of finances

Although YNAB’s main feature is setting budgets for different types of allowances.

Users are also given the chance to view a summary of their outflow cash through the

reflection feature. However, the reflection feature is only offered on the web app

version. The mobile app and web app versions are always in sync, which means that if

the user has added a new transaction known as utilities. The category and the amount

of the transaction will also be synced to the web version. Visual clarity of finances is

one of many strengths of YNAB. A clear, visual representation of spending breakdown

is shown to the user instead of going through endless spreadsheets of financial data.

The overall spending totals for a certain month can be represented as a donut graph as

shown in the Figure 2.1.2.1 below. Each section represents different categories such as

dining out, phone, utilities and bills.

Figure 2.1.2.1 Donut graph spending breakdown

CHAPTER 2 LITERATURE REVIEW

19
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii. Active engagement

YNAB is unlike other traditional budgeting apps, YNAB chooses a more active

approach. Before starting the budgeting process, the user must create an imaginary

account which denotes the amount that will be spent. Users are given the choice to

either import data from banking institutions or create a custom balance as indicated in

Figure 2.1.2.2 – Figure 2.1.2.3. As an example, if the user creates a custom budget

called balance_1 with an amount of RM5000 as shown in Figure 2.1.2.4. This means

that the user chooses which transactions or categories to spend this RM5000 on. This

approach is different than traditional budget trackers or financial trackers where the

user blindly documents down their expenditure without the consideration of

overspending. Hence, YNAB is fostering a deeper understanding of connecting with

one’s finances. User is not passively tracking what they spent, instead they are actively

deciding beforehand what to spend on.

Figure 2.1.2.2 Link bank account

Figure 2.1.2.3 Unlinked account

CHAPTER 2 LITERATURE REVIEW

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.2.4 Custom amount set for unlinked account

iii. Add transaction

Another prominent feature of YNAB, is the ability to add transactions either outflow

or inflow as shown in Figure 2.1.2.5. This feature allows user to keep track of

transactions that are going out and into their set balance. Furthermore, user can choose

payee, the category, type of account to add or deduct from and date. Another interesting

point about this feature is the split category section which allows a single transaction to

fall under different categories as shown in Figure 2.1.2.6.

CHAPTER 2 LITERATURE REVIEW

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.2.5 Adding transaction

Figure 2.1.2.6 Split into more than one category

Weakness

i. Lack of Malaysian bank integration

YNAB allows the import of banking data from supported banks. However, not all banks

are supported in the context of Malaysia banks such as Maybank, Public Bank and

CIMB. Most of the banks being supported are either United States or European banks

as shown from Figure 2.1.2.7 – 2.1.2.8.

CHAPTER 2 LITERATURE REVIEW

22
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.2.7 European bank

availability dominating

Figure 2.1.2.8 Lack of Asian banks integration

ii. Charges for app after trial

YNAB is not entirely free to use, the user is only given a 34-day trial to test run the app

and see if YNAB fits their money management methods as indicated in Figure 2.1.2.9.

Within the trial period, users are entitled full access to YNAB’s powerful software

features including the loan planner, reports, money plans, spending targets and auto

import. Nevertheless, after the trial has ended. User is immediately prompted to either

pay a monthly or annual subscription to continue using the features. It is arguable that

individuals who use budgeting apps want to save money instead of spending more

money. In this case, YNAB is instilling a new burden of RM444.99 per year or

RM66.99 per month for a tool that encourages users to get out of debt and reduce

expenditures on unnecessary subscriptions.

Figure 2.1.2.9 A 34-day trial period

CHAPTER 2 LITERATURE REVIEW

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Meow Money Manager

Meow Money Manager is also another expense/budget tracker but this time it

focuses on cute cat icons for personal asset management. Also, it acts as an expense

tracker to record financial expenditure and income activities. The app claims that it will

not save any information of users, thus protecting their digital piracy. Overall, the

Figure 2.1.3.1 below shows that Meow Money Manager focuses on a cute User

Interface design focusing on cat-based themes which makes the overall experience

budgeting experience more appealing and fun.

Figure 2.1.3.1 Main interface of meow money manager

Strengths

i. Bill export

The added expenditures can be exported as a csv file as shown from Figure 2.1.3.2 –

2.1.3.3. Also, user is also able to select categories, assets, ledgers and time to filter the

records to be exported. CSV files are compatible with almost all software applications

that work with data.

CHAPTER 2 LITERATURE REVIEW

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.3.2 Bill export functionality

Figure 2.1.3.3 Exported csv with expenses

CHAPTER 2 LITERATURE REVIEW

25
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii. Recurring transactions

As shown from Figure 2.1.3.4 – Figure 2.1.3.5, Meow Money Manager allows user to

set recurring transactions for different categories on daily, weekly, monthly and yearly

basis.

Figure 2.1.3.4 Recurring expenses for

different categories

Figure 2.1.3.5 Set recurring transactions on monthly

basis

iii. Assets management

In Meow Money Manager, users can create their own asset accounts such as bank card,

cash, deposit and side hustle as shown in Figure 2.1.3.6. All of these contribute to the

overall asset value. Also in this section, users can view their overall assets and liabilities.

Assets indicate the overall asset value on hand such as having a deposit of RM4819.10.

The negative (-) sign would indicate a liability which happens when the user spends

more than they have. As shown in Figure 2.1.3.7 below, bank card and cash are

liabilities because the user has overspent thus contributing to an overall liability of

RM316.90. Notably, donut graphs area also shown for both assets and liabilities for

easier visualization as demonstrated in Figure 2.1.3.7.

CHAPTER 2 LITERATURE REVIEW

26
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.3.6 Managing different assets

Figure 2.1.3.7 Donut graph of assets and

liabilities

Weakness

i. Incompatible language support

In the settings section of Meow Money Manager, there is an option for users to change

to a different language as shown in Figure 2.1.3.8. However, the app shows

compatibility issues with other supported languages such as Mandarin, Malay and

French. After selecting any other language besides English. The main text views of

other sections remained in English. The entire app was not changed at all, except for a

specific custom section which was choosing the first day of the week as shown in Figure

2.1.3.9 below.

CHAPTER 2 LITERATURE REVIEW

27
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.3.8 Switching languages

Figure 2.1.3.9 Only a single option is changed

2.1.4 Easy Expense

Easy Expense is an expense management mobile application that is catered for

both individual and teams. It eliminates the tedious task of manual receipt organization

into a streamlined, automated process. The core functionality of Easy Expense is receipt

tracking which focuses on individuals who want to claim tax reduction or

reimbursements. Users can keep their physical receipts in a digital format to prevent

the misplacement or losing of receipts as shown in 2.1.4.1. Consequently, it leverages

AI to automatically categorise labels for receipts such as tax category, vendor, total,

tax, date and payment method. Besides, the app helps users automatically import email

receipts by connecting to their Gmail account to auto scan for receipts. Consequently,

user can connect to their bank accounts and credit cards. Overall, the app claims to help

an average user save up to $2,192 (RM9470.55) per year on taxes.

CHAPTER 2 LITERATURE REVIEW

28
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4.1 Easy Expense’s webpage motto

Strengths

i. Scan receipts using OCR

Manually entering data from paper receipts can be troublesome. But Easy Expense has

this core functionality which allows users to swiftly scan receipts within a few seconds

as indicated from Figure 2.1.4.2. The app can detect, crop and extract pertinent data

such as tax, total and date of transaction. Notably, there is an auto sync capability which

saves the processed receipts into the cloud. As shown in the Figure 2.1.4.3 below, these

are the 2 physical receipts scanned using the application. In Figure 2.1.4.4, the scanned

receipts is blurry, but the application still managed to accurately determine the total

amount. In Figure 2.1.4.5, users are also able to select their payment method and request

a refund expense that will not be accounted in the expense tracking process.

CHAPTER 2 LITERATURE REVIEW

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4.2 Example of scanning a receipt

from Popular bookstore

Figure 2.1.4.3 Main homepage interface

Figure 2.1.4.4 Blurry receipt still yields

accurate result

Figure 2.1.4.5 Able to add payment method and

do refund

CHAPTER 2 LITERATURE REVIEW

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii. Import email receipts

In some cases, receipts are sent to the user’s email address. Easy expense uses third

party APIs to connect with user’s email address for instance Gmail. Once the

application connects to user’s email address, it will auto scan for receipts in the past 30

days for review as shown in Figure 2.1.4.6 – 2.1.4.7. Additionally, users can forward

receipts to their supported email address which is upload@easy-expense.com to

automatically add them to their account. Below Figure, shows one of the digital receipts

that was extracted from user’s personal email.

Figure 2.1.4.6 Scanning digital receipts from Gmail

Figure 2.1.4.7 Google Play receipt found in

Gmail

iii. Report generation

Besides having the option to share or download the expenses that are recorded. User is

also able to generate different reports based on all their spendings as shown in Figure

2.1.4.8 below. User is also presented with a summary of the type of category and

amount needed to pay. Also, they are presented with screenshots of each receipt for

personal reference. These reports can be downloaded and exported via the tap of a

button, also the summary reports in csv or pdf format can make filling taxes easier.

CHAPTER 2 LITERATURE REVIEW

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4.8 PDF expense report generated

Weakness

i. Lack of business document management

Besides, the basic document extraction like receipts. The application lacks in more

sophisticated document management such as contracts, invoices or company reports.

These additional documents are essential for more comprehensive financial

management.

CHAPTER 2 LITERATURE REVIEW

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.5 n8n

n8n is a popular open-source low code workflow automation tool as shown in

Figure 2.1.5.1 below. n8n helps simplifies and streamline task by allowing users to

connect to various application and services as shown in the Figure below. In the context

of financial applications, users can leverage this open-source tool and create their own

custom workflow for easier financial management and budgeting purposes. Also, it

leverages automation and AI for mundane tasks like Figure 2.1.5.2 below. Hence, it is

very suitable for repetitive financial tasks such as data entry, invoice processing and

expense tracking. Overall, reducing manual errors and saves time.

Figure 2.1.5.1 Example n8n low code workflow

Figure 2.1.5.2 Integrate AI-native workflow

CHAPTER 2 LITERATURE REVIEW

33
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strengths

i. Customisable workflow for financial management

The beauty of this workflow automation tool is that users can create their own custom

workflow based on their needs. For instance, if the user wanted to extract expenses

from emails and add to Google Sheets. They can create this workflow and even

schedule it daily as shown in Figure 2.1.5.3 below. For such a workflow, it primarily

involves the checking of the mailbox for new emails and checks if the Subject contains

expense or receipt. It will then send the attachment to the external 3rd party API provider

for processing. Finally updating the Google Sheet with corresponding values.

Figure 2.1.5.3 An example of finance workflow

ii. Many built in integration of financial tools

n8n supports more than 20 built in integration of financial tools as shown in the Figure

2.1.5.4 below. Besides, n8n also supports accounting software, payment gateways and

banking APIs. This helps ensure for seamless data synchronisation and comprehensive

financial tracking.

Figure 2.1.5.4 More than 20+ financial tools available

CHAPTER 2 LITERATURE REVIEW

34
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

iii. Self-hosting ability

There are main options for using n8n, this includes self-hosting and the cloud option.

Cloud options involve the workflows that are entirely hosted by n8n; however, a

monthly fee needs to be incurred which ranges from $20 up to $50 as shown in Figure

2.1.5.5 below. But n8n also allows users or small businesses entities the option to self-

host their n8n instances and workflows. This grants the users more superior data control.

Figure 2.1.5.5 Pricing tier of cloud version of n8n

Weakness

i. Lack of integration with native android mobile applications

n8n is more inclined towards a web-based workflow automation tool. Hence, there is

limited integration with the native mobile applications. The only way to integrate an

n8n workflow into a mobile application is by going through a separate service by

triggering specific n8n nodes. For instance, setting up a web hook in android which can

accept HTTP POST requests from an n8n workflow.

CHAPTER 2 LITERATURE REVIEW

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Summary and table of comparison

In this chapter, 5 systems related to financial tracking, budgeting and planning were evaluated which were Touch ‘n Go, You Need a

Budget (YNAB), Meow Money Manager, Easy Expense and n8n. The overall strengths and weakness of the systems were summarised in Table

2.2.1 as shown below.

System

Features
Touch ‘n Go

You Need a Budget

(YNAB)

Meow Money

Manager
Easy Expense n8n

Supported platforms Android, IOS Android, IOS, Web Android, IOS Android, IOS, Web Web based

Login/Signup Yes Yes Yes Yes Yes

Nature of app eWallet Budgeting
Expense tracking,

budgeting

Expense tracking

with focus on receipt

scanning

Workflow

automation tool for

financial

management

Cost / Pricing Model Free
Subscription-based

(has free trial)

Subscription-based

(has free trial)

Subscription-based

(has free trial)

Free or paid cloud

version

Connectivity

requirement

Requires internet

connection

Requires internet

connection for bank

Does not require

internet connection

Requires internet

connection for bank

synchronisation

Requires internet

connection

CHAPTER 2 LITERATURE REVIEW

36
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

and web app

synchronisation

Data Export / Import

Limited import and

export options (only

can export recent

transactions)

CSV export, import

and bank details
CSV export

CSV export, import

and bank details

CSV, JSON and

other formats

depending on

workflow

Security features

Two-factor

authentication

(2FA), biometric

login

Two-factor

authentication (2FA),

encryption

Pin protection,

biometric login

Syncs and secures

data to the cloud

Self-hosting which

offers full control

over data security

Customisable options
Limited

customisation

Customisable budgets

and categories

Customisable

categories and

themes

Customizable

expense categories

Customisable

workflows

Integration with

other services
Limited integration

Integration with bank

accounts

Integration with

Google Drive for

backup

Integration with

bank, email scanning

services

Extensive integration

of APIs

Overall user

interface and design

Complex design, not

suitable for novice

users. Too many

Cluttered design in

the budget section and

Appealing design but

has too many icons

Minimalist design

and easy to navigate.

Simple interface

design, but not so

CHAPTER 2 LITERATURE REVIEW

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

icons cause

confusion.

hard to follow for

beginners

which confuses the

user.

easy to navigate

when placing nodes.

Collaboration Individual
Individual or family

members
Individual

Individual or with

team

Individual or with

team

Learning curve

Moderate, requires

familiarity of

eWallets

High, not beginner

friendly
Low Low

High, requires

knowledge of setting

up workflows

Table 2.2.1 Comparison between systems

CHAPTER 3 PROPOSED METHOD / APPROACH

38
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 Proposed Method/Approach

3.1 Use Case Diagram

Figure 3.1.1 Use case diagram for Smart Financial Tracking Mobile Application

CHAPTER 3 PROPOSED METHOD / APPROACH

39
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Use Case Description

System Smart Financial Tracking Mobile Application

Use Case ID 1

Use Case Sign Up

Use Case

Description

This use case describes how user will register an account

for the first time before using the mobile application.

Actor User

Trigger User clicks on the Sign-Up button

Precondition User has not created an account

Scenario Name Step Action

Main Flow 1 User enters full name

2 User enters full email

3 User fills in password and confirm password

4 User clicks on Sign Up button

5 The system validates email, password fields entered.

6 User is redirected to Login screen

Sub Flow S-1a: Authenticate User Data in Firebase

1. The system securely saved user’s credentials such as

username, email and password

Alternate Flow –

Invalid email format

5a.1 User enters an invalid email without @ and .com

5a.2 System validates all other user fields

5a.3 System displays error message: “Please enter a valid

email”

Alternate Flow –

Passwords do not

match

5b.1 User enters password and confirm password do not

match

5b.2 System validates all other user fields

5b.3 System displays error message: "Passwords do not

match".

Alternate Flow –

Password is empty

5c.1 User did not enter password

5c.2 System validates other user fields

CHAPTER 3 PROPOSED METHOD / APPROACH

40
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5c.3 System displays error message: "Please enter your

password".

Alternate Flow –

Email is empty

5d.1

User did not enter email

5d.2 System validates all other user fields

5d.3 System displays error message: "Please enter your

email".

Alternate Flow –

Password is weak

5e.1 User enters password and confirm password

5e.2 System validates all other user fields

5e.3 System displays error message: "Password must be

at least 6 characters".

Table 3.2.1 Sign Up Use Case Description

CHAPTER 3 PROPOSED METHOD / APPROACH

41
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 2

Use Case Login

Use Case

Description

This use case describes how user will login an existing account

upon registration.

Actor User

Trigger User clicks on the Login button

Precondition User has created an account but has not logged in

Scenario Name Step Action

Main Flow 1 User enters email address

2 User enters password

3 System validates if account with inputted email

address and password exists

4 System redirects user to user to home screen

Sub Flow -

Alternate Flow –

Invalid email

address

3a.1 User enters an invalid email address

3a.2 System validates all other user fields

3a.3 System displays error message: “Enter a valid email

address”

Alternate Flow –

Invalid password

3b.1 User enters an invalid password

3b.2 System validates all other user fields

3b.3 System displays error message: "The password is

invalid. Please try again".

Alternate Flow –

Password is empty

3c.1 User did not enter password

3c.2 System validates other user fields

3c.3 System displays error message: "Please enter your

password".

Alternate Flow –

Email is empty

3d.1 User did not enter email

3d.2 System validates all other user fields

3d.3 System displays error message: "Please enter your

email".

Table 3.2.2 Login use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

42
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 3

Use Case Add Scan Receipt

Use Case

Description

This use case describes how user will scan and then add

receipts expense entry

Actor User

Trigger User clicks on the centred camera icon

Precondition User is logged in and on receipts screen

Relationship Extended by Share Receipt use case

Extended by Select Receipt Transactions use case

Scenario Name Step Action

Main Flow 1 User clicks on the centred camera icon

2 User captures the receipt with phone camera

3 System processes receipts and extract merchant name,

tax and date of transaction

4 Scanned receipt is stored in receipts section

Sub Flow S-1a: Student chooses manual camera capture

1. The user manually captures the receipt with the phone
camera

S-2a: Student chooses auto camera capture

1. The user automatically captures the receipt with the
phone camera

S-2a: Student chooses an image from gallery

1. The user chooses a receipt from gallery
Alternate Flow –

Cancel scan receipt

2a.1 User chooses to cancel the scan of receipt

2a.2 User exits the camera interface

2a.3 Receipt entry is not saved in receipts section

Table 3.2.3 Add Scan Receipt use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 4

Use Case Add Manual Expense Entry

Use Case

Description

This use case describes how user will manually add expense

entry according to different categories

Actor User

Trigger User clicks on the plus button

Precondition User is logged in and on history screen

Scenario Name Step Action

Main Flow 1 User clicks on the plus floating action button

2 User clicks on the font shaped icon

3 User selects a date for the expense

4 User enters the expense in Ringgit Malaysia

5 User selects from different categories

6 Scanned receipt is stored in receipts section

Sub Flow -

Alternate Flow –

Cancel manual

expense entry

2a.1 User chooses to cancel the adding of expense

2a.2 Manual expense is not recorded

2a.3 Manual expense entry is not saved in history section

Table 3.2.4 Add Manual Expense Entry use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 5

Use Case Add Voice Data Entry

Use Case

Description

This use case describes how user will use voice recognition to

add expenses

Actor User

Trigger User clicks on the plus button

Precondition User is logged in and on history screen

Scenario Name Step Action

Main Flow 1 User clicks on the plus floating action button

2 User clicks on the microphone shaped button

3 System displays dialog box and user proceeds to

record voice

4 System performs voice to text recognition and parses

the text into expense, category and date

5 Extracted text recognition result is displayed in

history section

Sub Flow -

Alternate Flow –

Cancel voice data

expense entry

2a.1 User chooses to cancel the voice recognition entry

2a.2 Voice data expense is not recorded

2a.3 Voice data expense entry is not saved in history

section

Table 3.2.5 Add Voice Data Entry use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

45
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 6

Use Case Add Financial Account

Use Case

Description

This use case describes how user will add their financial

accounts such as debit cards, credit cards and saving accounts

Actor User

Trigger User clicks on the plus button

Precondition User is logged in and on home screen

Scenario Name Step Action

Main Flow 1 User clicks on the plus button near the card’s header

2 System displays add new card pop up

3 User clicks on connect bank account button

4 System links user to embedded web UI of Finverse

API.

5 User chooses test bank for data retrieval

6 User enters test credentials provided by the API

7 Finverse API provider validates test credentials and

starts connecting user to test bank account

8 Financial Info such as demo debit card, credit card,

and statement savings are retrieved

Sub Flow -

Alternate Flow –

Connection failure

of Finverse API

7a.1 Finverse API service provider fails connection to the

banking backend server

7a.2 Finverse API service provider does not return any

financial data

7a.3 Bank account financial info is not saved in cards

section

Table 3.2.6 Add Financial Account use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 7

Use Case View Recent Transactions

Use Case

Description

This use case describes how user will view top 4 aggregated

transactions from history screen and receipt screen

Actor User

Trigger User must have at least 1 added expense

Precondition User is logged in and on home screen

Scenario Name Step Action

Main Flow 1 User must have added at least 1 expense either at

history screen or receipt screen

2 System validates if there are active expenses to be

displayed on recent transactions section

3 The recent transactions are sorted to most recent date

of the transaction

4 User can view the top available recent transactions at

the home screen

Sub Flow -

Alternate Flow –

Delete recent

transactions

2a.1 User deletes the most recent transaction from history

screen or receipt screen

2a.2 Expense will be deleted from recent transactions

section

Alternate Flow –

Recent

transactions

is empty

2b.1 User has not added any expenses at history screen and

receipt screen

2b.2 System displays empty state to user with message “No

Transactions Yet” and “Start tracking your expenses”

Table 3.2.7 View Recent Transactions use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

47
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 8

Use Case View Total Expenses

Use Case

Description

This use case describes how user will view total expenses spent

in Ringgit Malaysia

Actor User

Trigger User must have at least 1 added expense

Precondition User is logged in and on home screen

Scenario Name Step Action

Main Flow 1 User must have added at least 1 expense either at

history screen or receipt screen

2 System validates there exists increment of total

expenses from history screen and receipt screen

Sub Flow -

Alternate Flow –

Decrement

of total expenses

2a.1 User deletes the transaction from history screen or

receipt screen

2a.2 Expense will be deducted from total expenses

Alternate Flow –

Total expenses is

null

2b.1 User has not added any expenses at history screen and

receipt screen

2b.2 System displays RM 0.00 at total expenses section

Table 3.2.8 View Total Expenses use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 9

Use Case View History Transactions

Use Case

Description

This use case describes how user will view expenses from

manual data expenses and voice data recognition

Actor User

Trigger User must have at least 1 added expense from manual data

expenses or voice data recognition

Precondition User is logged in and on history screen

Scenario Name Step Action

Main Flow 1 User must have added at least 1 expense from manual

data expenses or voice data recognition

2 System validates if there exist at least 1 expense

added into history screen

3 User can view the expenses from manual data entry

and voice data recognition entry

Sub Flow -

Alternate Flow –

Delete expense

2a.1 User deletes the transaction from history screen or

receipt screen

2a.2 Expense will be deducted from total expenses

Alternate Flow –

History screen is

empty

2b.1 User has not added any expenses at history screen

2b.2 System displays empty state to user with message “No

Expenses Yet” and “Add your first expense by

tapping the + button”

Table 3.2.9 View History Transactions use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

49
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 10

Use Case View Receipt Transactions

Use Case

Description

This use case describes how user will view expenses from

scanned receipts

Actor User

Trigger User must have at least 1 added receipt

Precondition User is logged in and on receipt screen

Scenario Name Step Action

Main Flow 1 User must have added at least 1 receipt

2 System validates if there exists at least 1 receipt

scanned in the receipt screen

3 User can view receipt information such as merchant

name, data of transaction and total tax

Sub Flow -

Alternate Flow –

Delete receipt

expense

2a.1 User deletes the receipt from receipt screen

2a.2 Expense will be deducted from total expenses

Alternate Flow –

Receipts screen is

empty

2b.1 User has not added any receipts at receipts screen

2b.2 System displays empty state to user with message “No

Receipts Yet” and “Start by scanning your first

receipt”

Table 3.2.10 View Receipt Transactions use case description

CHAPTER 3 PROPOSED METHOD / APPROACH

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 11

Use Case Edit Profile

Use Case

Description

This use case describes how user will edit their profile such as

profile picture

Actor User

Trigger User must click on the profile icon

Precondition User is logged in and on profile screen

Scenario Name Step Action

Main Flow 1 User clicks on the profile icon

2 System checks permission with the user before

accessing the gallery

3 User chooses a picture from gallery and selects it as

profile picture

Sub Flow -

Alternate Flow –

Declines gallery

permission

2a.1 User declines gallery permission

2a.2 User is not able to access gallery and upload profile

picture

Table 3.2.11 Edit Profile use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

51
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 12

Use Case Scrape Email Transactions

Use Case

Description

This use case describes how user will connect to their Gmail

account and scrape financial transactions

Actor User

Trigger User must click on Connect & Fetch Transactions button

Precondition User is logged in and on Email Scrape screen

Scenario Name Step Action

Main Flow 1 User clicks on Connect & Fetch Transactions button

2 System presents Gmail account connection interface

3 User selects and authorises their Gmail account

4 System initiate HTTP POST request to webhook

5 External platform (n8n) processes the request and

executes email scraping logic

6 External platform extracts financial transaction data

from emails and returns as JSON

7 System receives and processes the JSON data

8 System displays the scraped email transactions to the

user

Sub Flow -

Alternate Flow –

Authentication

Error

3a.1 User declines to authorise Gmail access or

authentication fails

3a.2 System displays error message: “Authentication

error. Please sign in again”

3a.3 User remains back on Email Scrape Screen

Alternate Flow –

Network

Connection

Error

4a.1 System fails to connect to external webhook

4a.2 System displays error message: “Network error.

Please check your connection”

4a.3 User remains back on Email Scrape Screen

Alternate Flow –

No Transactions

6a.1

External system processes emails but finds no

transaction data

CHAPTER 3 PROPOSED METHOD / APPROACH

52
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Found 6a.2 System presents empty state UI with option to try

again

6a.3 User may try to reconnect different Gmail account

Table 3.2.12 Scrape Email Transactions use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

53
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 13

Use Case View Financial Dashboard

Use Case

Description

This use case describes how user will view their aggregated

current month expenses, spending trend (last 6 months), all

time expenses breakdown, weekly breakdown and top

spending categories

Actor User

Trigger User must click on the analytics button

Precondition User is logged in and on home screen

Scenario Name Step Action

Main Flow 1 User clicks on the analytics button on home screen

2 System loads the analytics screen with three tabs:

Dashboard, Analytics, and Chat

3 User selects Dashboard tab

4 System loads user’s financial data from the database

5 System aggregates and calculates current month’s

total expenses

6 System processes spending trends for the last 6

months

7 System calculates expense breakdown by category for

all time

8 System generates weekly spending breakdown for the

current month

9 System identifies and sorts top spending categories

10 System displays all the aggregated financial data in

different sections

11 User views their financial information in charts and

graphs

Sub Flow -

Alternate Flow –

No Financial Data

Found

4a.1

System is unable to retrieve any financial data from

database

CHAPTER 3 PROPOSED METHOD / APPROACH

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4a.2 System displays an empty state with message “No

financial data available”

4a.3 System suggests adding expenses before viewing

analytics

Table 3.2.13 View Financial Dashboard use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 14

Use Case View Financial Analytics

Use Case

Description

This use case describes how user will view a summary analysis of

selected month, year spending distribution and category

breakdown.

Actor User

Trigger User must click on the analytics button

Precondition User is logged in and on home screen

Relationship

Type

Extended by Export Financial Report use case

Scenario Name Step Action

Main Flow 1 User clicks on the analytics button on home screen

2 System loads the analytics screen with three tabs:

Dashboard, Analytics, and Chat

3 User selects Analytics tab

4 System displays month and year filter dropdown

5 User selects desired month and year for analysis

6 System retrieves financial data for the selected month, year

7 System calculates and displays total spend amount,

displays average transaction amount, displays total

number of transactions

8 System identifies and displays highest spending category

9 System generates spending distribution visualisation and

category breakdown

10 System displays Export Financial Report button

Sub Flow S-5a: Filtering by Different Month

1. User taps on month dropdown

2. System displays list of months

3. User selects a different month

4. System refreshes analytics data for the selected month

5. System updates all metrics and visualisation

S-5b: Filtering by Different Year

CHAPTER 3 PROPOSED METHOD / APPROACH

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1. User taps on year dropdown

2. System displays list of years

3. User selects a different year

4. System refreshes analytics data for the selected year

5. System updates all metrics and visualisation

Alternate

Flow – Error

loading data

6a.1 System has an error while loading data

6a.2 System displays error message: “Unable to load analytics

data”

6a.3 User can try loading data by choosing a different month,

year

Alternate Flow

– No data for

selected

month, year

7a.1 System finds no financial data for the month, year

7a.2 System displays RM 0.00 for Total Spend

7a.3 System displays RM 0.00 for Average Transaction

7a.4 System displays 0 for number of Transactions

7a.5 System displays “None” for Highest Category

7a.6 System shows “No spending distribution to show”

message in distribution chart placement

7a.7 System shows “No category breakdown available”

message in category breakdown placement

7a.8 Export Financial Report button remains inactive

Alternate Flow

– Unable to

Export Report

with no data

10a.1 User taps on Export Financial Report button when no data

is available

10a.2 System validates that there is no financial data to export

10a.3 Export Financial Report button remains inactive

Table 3.2.14 View Financial Analytics use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 15

Use Case Chat with Financial Data

Use Case

Description

This use case describes how user will interact with the PDF

RAG based chatbot and query based on the generated PDF

Financial Report

Actor User

Trigger User must click on the analytics button

Precondition User is logged in and on home screen

Scenario Name Step Action

Main Flow 1 User clicks on the analytics button on home screen

2 System loads the analytics screen with three tabs:

Dashboard, Analytics, and Chat

3 User selects Chat tab

4 System displays PDF document upload interface and

chat query interface

5 User clicks Select PDF button

6 System opens default file browser for PDF document

selection

7 User selects the generated PDF Financial Report

8 System uploads the selected document and displays

the document name

9 User enters a question in chat field

10 The system sends the query and document reference

for processing at FastAPI backend

11 Backend processes PDF document

12 System displays the generated answer to the user

Sub Flow -

Alternate Flow –

No PDF

Selected

5a.1 User attempts to ask a question without uploading a

PDF document

5a.2 Chat interface is inactive upon press send button

5a.3 User must first select a PDF document to proceed

CHAPTER 3 PROPOSED METHOD / APPROACH

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Alternate Flow –

PDF Processing

Error

11a.1 Backend encounters an error while processing the

PDF document

11a.2 Backend returns error code response to the system

11a.3 System displays error message: “Unable to process

the document. Please try again”

11a.4 User can try reuploading same or different PDF

Financial Report

Table 3.2.15 Chat with Financial Data

CHAPTER 3 PROPOSED METHOD / APPROACH

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 16

Use Case Share Receipt

Use Case

Description

This use case describes how user will share the receipt to

different applications upon successful scanned receipt

Actor User

Trigger User clicks on scanned receipt from receipts screen

Precondition User is logged in and on receipts screen

Relationship

Type

Extends Add Scan Receipt use case

Scenario Name Step Action

Main Flow 1 User clicks on a scanned receipt from the receipts

screen

2 User taps on the Share button at the bottom of the

screen

3 System displays sharing options / applications

 4 User selects a sharing option (messaging app, email,

social media etc)

 5 System prepares the receipt image with default text

“Shared Receipt”

 6 Selected application receives the receipt image

 7 User completes the sharing process in the selected

application

Sub Flow -

Alternate Flow –

Sharing

Cancelled

4a.1 User decides not to share and cancels the sharing

dialog

4a.2 User returns to the original receipt dialog screen

Table 3.2.16 Share Receipt use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 17

Use Case Select Receipt Transactions

Use Case

Description

This use case describes how user will select the correct receipt

transactions before saving the receipt or sharing the receipt

Actor User

Trigger User clicks on scanned receipt from receipts screen

Precondition User is logged in and on receipts screen

Relationship

Type

Extends Add Scan Receipt use case

Scenario Name Step Action

Main Flow 1 User clicks on a scanned receipt from the receipts

screen

2 User taps on the Select button at the bottom of the

screen

3 System displays a list of detected transactions from

the receipt

4 User selects checkboxes for chosen transactions

5 System calculates and displays the selected total

amount

6 User taps the Update button to confirm selections

7 System updates the newest total amount

Sub Flow S-4a: Edit Transaction Details

1. User taps on the edit icon at the top of the transaction
list

2. System displays transaction items in editable format
3. User can modify description or amount
4. User taps update button to save changes

S-4a: Add New Transaction Item

1. User taps on Add Item button
2. System displays new empty transaction fields
3. User enters new description and price
4. System adds new item to transaction list

CHAPTER 3 PROPOSED METHOD / APPROACH

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Alternate Flow –

Remove

Transaction Item

4a.1

User taps the remove (minus) button next to a

transaction

4a.2 System removes the item from the selection list

4a.3 System recalculates the selected total amount

4a.4 User continues selecting other items to delete or

confirms with Update button

Alternate Flow –

Cancel

Transaction

Selection

6a.1 User decides not to proceed with transaction selection

6a.2 User taps the cancel button

6a.3 System closes the transaction selection dialog

6a.4 User returns to original receipt view screen

Table 3.2.17 Select Receipt Transactions use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

62
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

System Smart Financial Tracking Mobile Application

Use Case ID 18

Use Case Export Financial Report

Use Case

Description

This use case describes how user will export a financial report

in PDF format from the analytics tab

Actor User

Trigger User must click on the analytics tab

Precondition User is logged in and on dashboard screen

Relationship

Type

Extends View Financial Analytics use case

Scenario Name Step Action

Main Flow 1 User clicks on the analytics button on home screen

2 System loads the analytics screen with three tabs:

Dashboard, Analytics, and Chat

3 User selects Analytics tab

4 System displays month and year filter dropdown

5 User selects desired month and year for analysis

6 User clicks on Export Financial Report Button

Sub Flow -

Alternate Flow –

Cancel

PDF Export

6a.1 User decides not to proceed with PDF export

6a.2 User taps the back arrow

6a.3 User returns to original analytics tab

Table 3.2.18 Edit Profile use case descriptions

CHAPTER 3 PROPOSED METHOD / APPROACH

63
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Mobile App Development

3.3.1 Mobile Emulator Configuration

Before the mobile application is deployed and tested on a real physical device.

An Android Virtual Device (AVD) is created in Android Studio. To begin with,

Android 14.0 SDK is installed as shown in Figure 3.3.1.1. The higher sdk versions of

android provide access to latest android platform APIs. Then, as shown in Figure

3.3.1.2 select a device with suitable dimensions and install it will the corresponding

system image. Lastly, as shown in Figure 3.3.1.3 rename the Android Virtual Device

(AVD).

Figure 3.3.1.1 Installing Android 14.0 SDK

CHAPTER 3 PROPOSED METHOD / APPROACH

64
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.1.2 Choosing mobile emulator

Figure 3.3.1.3 Configuring AVD name

CHAPTER 3 PROPOSED METHOD / APPROACH

65
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.2 Main Development Framework

 In this project, the main development framework chosen was Flutter. Flutter is

a cross-platform open-source UI framework that was developed by Google. The beauty

of flutter is that developers can build apps using a single codebase for different

platforms including IOS, Android and Web. Additionally, Flutter is suitable for rapid

development, native OS performance and designing expressive user interface. To

compensate the UI framework, dart programming language is used for development.

Dart is a programming language which drives the Flutter framework, also it possesses

a syntax like other object-oriented languages like Java and C# [7]. To note, Flutter

combined with Dart can only fulfil the requirements of a frontend system. Instead of

building the entire backend from scratch, Backend-as-a-service (Baas) cloud service

tools such as Firebase Authentication and Cloud Firestore will support the basic

backend requirements such as new user creation, user credential validation and data

storage.

Figure 3.3.2.1 Flutter logo

CHAPTER 3 PROPOSED METHOD / APPROACH

66
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.3 Signup and Login Function Development

 Upon entering the smart financial tracker, the user is redirected to the SignUp

screen. To use the application, user must first enter their full name, email address,

password and confirm password fields within the provided form. Upon pressing the

SignUp button, the system validates the input fields to ensure all required information

is provided, with correct email format and password meets the minimum length, also

the confirmed password matches original password. The partial code snippets from

Figure 3.3.3.1 to Figure 3.3.3.3 illustrate the logic of a new user signing up.

 If the input is valid, the app will register the user with Firebase Authentication

using the provided email and password. Furthermore, the new user profile with the

provided name and email address is created with a new entry in Cloud Firestore based

on the UserModel created as shown in Figure 3.3.3.1 below. UserModel ensures that

the easy conversion of a suitable format for storage in Cloud Firestore. Finally. When

the registration of the user is successful, a toast message informs the user of their

success, and the user is redirected to the Login Screen.

Figure 3.3.3.1 user_model.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.3.2 sign_up_form.dart

Figure 3.3.3.3 signup_screen.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

68
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Next, for the login function development, the LoginForm is a reusable widget

designed to collect user credentials such as email and password. It uses a

TextFormField widget for input, with built-in validation to ensure the email format is

correct and the password field is not left empty as shown in Figure 3.3.3.4.

 As for the main login screen, it will facilitate the login process combined with

Firebase Authentication. When the screen loads, the app checks the user’s login status

by verifying both Firebase authentication and a locally stored flag in shared preferences

as shown in code snippet in Figure 3.3.3.5. If the user is already logged in, the app

navigates directly to the home screen without requiring manual input. Finally, when

user submits their credentials, the login method handles the authentication process. It

validates the form, authenticates the user with Firebase, and retrieves additional user

information from Cloud Firestore.

Figure 3.3.3.4 login_form.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.3.5 login_screen.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.4 Scan Receipt Function Development

 The scan receipt feature is only triggered upon the toggle of camera button. The

underlying algorithm combines 2 packages / libraries and requires the assistance of an

external API provider named Langchain. Figure 3.3.4.1 below shows the 3

dependencies added in pubspec.yaml for the libraries and API provider to work.

Figure 3.3.4.1 Added important dependencies

The main logic of the receipt scanning extraction comes from the document

scanner service dart file as shown in the Figure 3.3.4.2 below. The startScanning

method initializes the document scanner, captures the document image, and processes

the image to extract text. Then the processImage method processes the scanned image

to extract and structure text using the bounding box position of text lines as shown in

the Figure 3.3.4.3 below. The method transforms the imagePath to an InputImage

object, then proceeds to process the input image using a text recognizer to extract text

blocks, lines and bounding box information. Finally, the lines are grouped together if

their vertical positions are within 10 pixels of each other. This means that text lines

close together on the vertical axis belong to the same paragraph.

CHAPTER 3 PROPOSED METHOD / APPROACH

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.4.2 document_scanner_service.dart - 1

Figure 3.3.4.3 document_scanner_service.dart - 2

CHAPTER 3 PROPOSED METHOD / APPROACH

72
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 3.3.4.4 below shows the overall block diagram of how the scan receipt

functionality is implemented. User will toggle the camera button and is allowed to

choose an existing receipt from the gallery or capture the receipt on the spot. The receipt

will then be processed by Google Mlkit Document Scanner for enhanced preprocessing

such as auto cropping for accurate edge detection, perspective transform for different

angled receipts, apply filters, remove shadows or stains. Then the preprocessed receipt

jpeg is further fed into Google Mlkit Text recognition library for text extraction.

Consequently, all the extracted text from the receipt is sent to Langchain API for high

level processing. Langchain API will return structured receipt details such as merchant

name, tax, total and date of transaction. The overall workflow leverages Google’s

pretrained machine learning libraries and Langchain API to automate receipt tracking

effortlessly.

Figure 3.3.4.4 Block diagram of receipt scanning algorithm

CHAPTER 3 PROPOSED METHOD / APPROACH

73
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.5 Manual Expense Entry Development

 The manual expense entry feature is triggered upon user select plus pop-up

floating action button and then proceed to press the font size icon. The main screen

developed was a custom ExpensesPage which allowed users to input, edit and

categorise different expenses. Also, they can select their preferred date. Partial code

snippets of the manual expense entry development are shown from Figure 3.3.5.1 to

Figure 3.3.5.2.

Figure 3.3.5.1 expenses_screen.dart - 1

CHAPTER 3 PROPOSED METHOD / APPROACH

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.5.2 expenses_screen.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

75
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6 Voice Recognition Entry Development

 The voice data entry feature is triggered upon user select plus pop-up floating

action button and then proceed to press the microphone icon. The dart files developed

mainly handled the voice to text recognition of the user. Once the user’s voice is parsed

into text format as shown in Figure 3.3.6.1. The text will undergo additional text

processing such as regular expression filtering to identify common expenses, date and

category patterns as shown in Figure 3.3.6.2.

Figure 3.3.6.1 voice_recognition.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

76
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.2 text_processing.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

77
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.7 Add Financial Account Development

 The add financial account development feature allows users to simulate the

adding of demo / test financial accounts such as statement savings, checking accounts

and credit card balance. This feature requires 3rd party integration of an open banking

financial API called Finverse. The main dart files included the file to store API

credentials for testing purpose such as Figure 3.3.7.1, another dart file was created to

facilitate the process of data retrieval. Below Figure 3.3.7.2, illustrates an overview of

exchange of excess tokens and account data retrieval. Similarly, for the usage of a live

bank account identical workflow can be applied but strong encryption practices and a

robust backend must be implemented to secure user data retrieval.

Figure 3.3.7.1 api_constants.dart

Figure 3.3.7.2 finverse_service.dart

CHAPTER 3 PROPOSED METHOD / APPROACH

78
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Below Figure 3.3.7.3 shows an overall sequence diagram indicating the high-

level flow of the client and the Finverse API. The client app first authenticates with

Finverse API to obtain the Customer Access Token. Then, user logs in by linking the

test institution through the generated link. After user completes the linking process, the

client app exchanges the authorisation code for a Login Identity Access Token. Finally,

the client app uses the Login Identity Access Token to retrieve user financial data from

Finverse API. The data is further processed and displayed to the user.

Figure 3.3.7.3 High level sequence diagram between Client and Finverse API

CHAPTER 3 PROPOSED METHOD / APPROACH

79
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.8 Receipt Sharing Development

 The main logic of the Receipt Sharing is wrapping the receipt fields using a

Screenshot widget. As shown in the partial code snippet in Figure 3.3.8.1 below, the

application will essentially capture the whole page including the widget fields with the

newly updated details such as Tax, Total, and Date.

Figure 3.3.8.1 Screenshot widget wrapping entire container fields

 Then, after wrapping the whole container, upon the user press the Share button

it will trigger the (onPressed: _shareReceipt) method as shown in Figure 3.3.8.2 below.

Figure 3.3.8.2 _buildActionButton code snippet

CHAPTER 3 PROPOSED METHOD / APPROACH

80
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Below Figure 3.3.8.3 shows the _shareReceipt method used to develop the logic

for sharing the receipt image to other applications on the user’s device. To note, this is

one of the methods for sharing content which is like accessing the native android API

such as Intents (Implicit Intent).

Figure 3.3.8.3 _shareReceipt method code snippet

CHAPTER 3 PROPOSED METHOD / APPROACH

81
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.9 Financial Analytics Development

 Below Figure 3.3.9.1 illustrates a partial code snippet of the implementation of

the custom tab navigation interface for the financial analytics dashboard. The structure

mainly utilises a row of interactive tab headers where each tab is built with an Expanded

widget containing a GestureDetector for handling user taps. When a tab is selected, the

setState function updates the _selectedTabIndex variable to reflect the current selection.

Figure 3.3.9.1 Financial analytics tab navigation code snippet

CHAPTER 3 PROPOSED METHOD / APPROACH

82
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 As shown from Figure 3.3.9.2 to Figure 3.3.9.5, the _processDataForAnalysis

method transforms raw expense data into structured analytics through a comprehensive

pipeline, starting with the initialization and total calculation in Figure 3.3.9.2, the

method creates a dynamic results container and calculates the overall spending using

fold operations, filtering current month expenses for separate analysis. Then, a

comparative analytics segment from Figure 3.3.9.2 calculates the month-over-month

changes with careful handling of edge cases, while simultaneously categorizing

expenses to identify top spending areas.

 Next, the weekly data aggregation as shown in Figure 3.3.9.4 divides the current

month into four weeks based on transaction dates, creating formatted data structures for

visualisation. Finally, the historical trend analysis in Figure 3.3.9.5 generates a six-

month spending history by iterating backwards through time periods, filtering expenses

by month, and calculating period totals. Overall, the comprehensive data processing

pipeline enables users to get immediate insights and historical context for their spending

patterns.

Figure 3.3.9.2 Data processing calculation code snippet - 1

CHAPTER 3 PROPOSED METHOD / APPROACH

83
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.9.3 Data processing calculation code snippet - 2

Figure 3.3.9.4 Data processing calculation code snippet - 3

CHAPTER 3 PROPOSED METHOD / APPROACH

84
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.9.5 Data processing calculation code snippet - 4

CHAPTER 3 PROPOSED METHOD / APPROACH

85
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.10 Expense Report Generation

 The main development logic of expense report generation is users can export

their selected month, year transaction into a PDF document. Below Figure 3.3.10.1

shows the partial code snippet for the development of custom button widget for user to

press before exporting the PDF. As for Figure 3.3.10.2, it represents the main

ReportGenerator class which is responsible for generating PDF expense reports in the

Flutter application. The required parameters which provide all necessary data for

generating a financial report include expenses, receipts, categorised Expenses, month

and year. At the beginning of the PDF document, it is also initialised with metadata

such as title, author, creator, subject, and relevant keywords for enhancing searchability

and organisation.

Figure 3.3.10.1 _buildExportButton widget code snippet

CHAPTER 3 PROPOSED METHOD / APPROACH

86
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.10.2 ReportGenerator class code snippet

CHAPTER 3 PROPOSED METHOD / APPROACH

87
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 n8n Workflow

 n8n is an open-source low code workflow automation tool which mainly uses

drag-n-drop nodes for customising personal / business uses cases. As the current trend

of AI is increasing, this workflow automation platform has also incorporated native AI

capabilities for creating Agentic workflows, allowing users to build multi-step AI

agents that can call custom tools and integrate with any Large Language Model (LLM).

The current platform currently supports self-hosting, cloud deployment and integration

with more than 400+ APIs. n8n gives users complete control over their data and

deployment options while providing technical teams the ability to switch between

visual building and custom code such as JavaScript or Python. With the convenience

of rapid development using n8n, n8n was used for implanting one of the core features

of the financial tracker – Email Transaction Scraping.

Figure 3.4 n8n Supports code and visual building

CHAPTER 3 PROPOSED METHOD / APPROACH

88
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4.1 Scrape Email Transactions Workflow

 One of the core features of this mobile app is that it allows users to scrape their monthly transactions present in their Gmail. The Figure

3.4.1.1 below shows a brief workflow of Scraping Gmail Transactions using n8n platform. For easier visualisation it is further separated into 3

segments which are:

1. Authentication and Initial Email Retrieval
2. Email Parsing
3. Final Parsing of JSON Output

Figure 3.4.1.1 Scraping Email Transactions Workflow using n8n

CHAPTER 3 PROPOSED METHOD / APPROACH

89
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 The first segment handles the authentication and retrieval of emails from Gmail.

In the frontend Flutter application, the OAuth Authentication process is initiated which

is then triggers the entire workflow once the user has chosen their respective Gmail

account. Once the user authorises the app, Flutter application receives the OAuth access

token, and the token is then sent to the webhook endpoint in n8n via secure HTTP Post

request. The webhook “Receive Token node” then accepts the OAuth Access Token

originating from the user. Once authenticated, the “Get Gmail Messages node”

performs a Gmail API request to fetch recent emails using specific search query such

as looking for emails after 1st April 2025 but before May 1st, 2025, with subjects

containing “Receipt”, “Invoice”, “Order”, “Subscription”, or “Transaction”, while

excluding promotional emails or subscriptions. The “Extract Message IDs node” then

processes the search results and extracts individual message IDs, which are passed to

the “Fetch Email Content node” to retrieve the full content of each email.

 In the second segment, the workflow processes the raw email content to make

it suitable for AI analysis. The “Parse Email HTML node” extracts key email metadata

(subject, sender, date) and the HTML content from the email body, converting it from

base64 format. Then, the “Prepare Email Data for AI Analysis node” cleans up the

HTML by removing redundant scripts, styles and html tags, leaving only essential

elements like tables and paragraphs. The cleaned-up HTML is then passed into the “AI

Agent node”, which uses Google Gemini to analyse the email and extract specific

transaction information such as (date, type, amount, description) in a structured JSON

format. The JSON undergoes 2 more steps of parsing in the “Extract and Validate

Transactions JSON” node parsing the AI’s output, extracting valid JSON and filtering

out incomplete entries. Finally, the “Format Transactions with Metadata” node

enhances the data with information such as (formatted currencies) and calculates

summary statistics of parsed transactions.

 In the last segment, the workflow processes the previously parsed transactions

for the purpose of deduplication, removing zero-value transactions, and calculates

subtotals grouped by different potentially different / same currencies. After the entire

workflow has ended, the initial webhook sends back the cleaned JSON to Flutter

frontend completing the entire workflow. At the frontend, JSON can be rendered using

widgets like transaction list.

CHAPTER 3 PROPOSED METHOD / APPROACH

90
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4.2 Flutter Frontend Setup

 For the frontend setup, n8n workflow is constantly waiting for a request via

webhook call. The below Flutter frontend code snippet as shown in figure 3.4.2.1 is

very crucial in ensuring for different deployments including live usage, local usage such

as testing on emulator and physical device. For live usage, code line 181 will be

uncommented. However, for the rest of local testing purposes code line 182 or 183 are

mainly used. For the Uri on line 181, this is the production Uri that would be used in

the final demonstration. It points to a live n8n instance hosted on Railway (cloud

platform service). The Uri is accessible from anywhere on the internet and is secured

with HTTPS protocol. On line 182, this Uri is used for testing with a physical device.

The IP address 192.168.0.8 represents a local development machine on the same Wi-Fi

network as the physical device, it will use port 5678 which is the port n8n server is

running on. As for line 183, this Uri is specifically for android emulator testing, the IP

address of 10.0.2.2 is how android emulators reference the host machine’s localhost.

Therefore, allowing the emulated app to connect to services running on the

development machine.

Figure 3.4.2.1 Different Uri for different deployment options

 Additionally, in Figure 3.4.2.2 shows the main token acquisition process for

webhook authentication. The method mainly handles the OAuth authentication flow for

Google Sign-In to obtain an access token for Gmail API access. As for Figure 3.4.2.3,

the connectAndFetch method mainly serves as the primary interface for initiating the

entire email scraping process in the frontend such as checking for user authentication,

managing state changes, token acquisition and webhook interaction.

CHAPTER 3 PROPOSED METHOD / APPROACH

91
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.2.2 Access token acquisition process

Figure 3.4.2.3 Initiating entire email scraping process

CHAPTER 3 PROPOSED METHOD / APPROACH

92
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5 RAG Based PDF Chatbot

 The RAG Based PDF Chatbot mainly works on idea of Retrieval Augmented

Generation which essentially helps to reduce the possibility of LLM hallucination. To

support the inferencing of the chatbot, the chatbot is created in python FastAPI and

deployed on Modal which is a serverless cloud for developers to deploy and run

generative AI models, large-scale batch workflows, and job queues.

3.5.1 FastAPI Setup

As shown in Figure 3.5.1.1, the first step in establishing the entire process is by

setting up a FastAPI endpoint for the Flutter frontend to access the URL endpoint. This

setup initialises a FastAPI application for Modal Live deployment, including security

countermeasures such as CORS configuration.

Figure 3.5.1.1 Initial Setup for FastAPI endpoint

CHAPTER 3 PROPOSED METHOD / APPROACH

93
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 From Figure 3.5.1.2 – Figure 3.5.1.3 shows the websocket configuration, in

Figure 3.5.1.2 the code demonstrates the websocket endpoints such as ‘/async_chat’

which enables real-time, bidirectional communication, allowing the application to

stream responses incrementally as they are generated. In the frontend Flutter, this

creates a more interactive user experience where answers appear word-by-word like

chat interfaces. Then, in ‘/chat’ HTTP POST endpoint It includes the answer and

supporting document chucks which is returned in a single JSON response after

processing finishes. In Figure 3.4.1.3, the ‘/upload_pdf’ endpoint handles the document

ingestion for RAG. The POST endpoint accepts multipart form data containing both

the PDF file and a document name identifier. After handling the upload file process.

The endpoint then calls the vector database for processing the PDF, and chunks it into

segments, creating vector embeddings, and stores them in the Qdrant vector database.

Figure 3.5.1.2 Websocket endpoints - 1

CHAPTER 3 PROPOSED METHOD / APPROACH

94
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.5.1.3 Websocket endpoints – 1

 As shown from Figure 3.5.1.4 – 3.5.1.7 below, it demonstrates the vector

retrieval pipeline that powers the RAG system. In Figure 3.5.1.4 shows the retriever

configuration which ensures the system fetches the top four document chunks with

similarity score only exceeding 0.80, focusing on only PDF and using enhanced HNSW

parameters for deeper recall in Qdrant. In Figure 3.5.1.5, depicts the text chunking

strategy implementing a RecursiveCharacterTextSplitter that segments documents into

1000-character chunks with 20-character overlaps to maintain integrity between

adjacent sections. Moreover, Figure 3.5.1.6 presents the embedding generation function,

which transforms text into numerical vector representations using OpenAI’s text

embedding-ada-002 model, for similarity comparisons. Finally, Figure 3.5.1.7

illustrates the vector search implementation, which converts user queries into the same

vector space for retrieval of the most semantically relevant document chunks from

Qdrant collection.

CHAPTER 3 PROPOSED METHOD / APPROACH

95
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.5.1.4 Retriever configuration

Figure 3.5.1.5 Text Chunking configuration

Figure 3.5.1.6 Embedding generation

Figure 3.5.1.7 Vector search Implementation

CHAPTER 3 PROPOSED METHOD / APPROACH

96
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5.2 Flutter Frontend Setup

 As shown in Figure 3.5.2.1, the uploadPDF function implements an upload

workflow, the function builds a multipart HTTP request targeting the backend endpoint,

packaging the PDF file with appropriate content type specifications and metadata. It

also implements validation by checking for both file selection and document name

before initiating the upload process. Then in Figure 3.5.2.2, shows the basic question

input interface that users interact with to query their uploaded documents. The UI

features styled text fields with appropriate visual feedback states, clear placeholder text,

and conditional enabling based on the application’s streaming or loading state.

Figure 3.5.2.1 uploadPDF functionality

CHAPTER 3 PROPOSED METHOD / APPROACH

97
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.5.2.2 Chat with PDF interface

CHAPTER 3 PROPOSED METHOD / APPROACH

98
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.6 Backend Hosting

 Since the development of the mobile application requires an extensive use of

APIs. A few backend options were used, this included Railway, Modal and FastAPI for

creating a web deployable API.

3.6.1 Railway

 Railway as shown in Figure 3.6.1.1 – 3.6.1.2 was mainly used for deploying the

n8n workflow instance, once Railway has deployed the n8n workflow instance. The

flutter frontend application can call the URL endpoint as an API. Railway provides a

scalable and reliable platform for hosting these workflows, offering automatic scaling

and robust logging capabilities that simplify monitoring and debugging.

Figure 3.6.1.1 Railway dashboard

Figure 3.6.1.2 n8n workers

CHAPTER 3 PROPOSED METHOD / APPROACH

99
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.6.2 FastAPI

 As shown in Figure 3.6.2.1, FastAPI is the main python framework for quickly

writing and creating an API endpoint for the RAG process before deploying it to the

cloud. Its high performance and automatic documentation generation significantly

accelerate development cycles, while the built-in data validation through Pydantic

models ensures robust request handling. FastAPI's asynchronous capabilities make it

particularly suitable for the RAG process.

Figure 3.6.2.1 Official FastAPI documentation

CHAPTER 3 PROPOSED METHOD / APPROACH

100
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.6.3 Modal

 As shown from Figure 3.6.3.1 – 3.6.3.2, Modal is primarily used for deploying

the RAG model on the cloud. Modal will help create a publicly accessible URL for the

Flutter application to send HTTP requests to. The platform's integrated GPU support is

especially valuable for the resource-intensive RAG model, providing the necessary

computational power without requiring specialised infrastructure management for the

end user’s device.

Figure 3.6.3.1 Modal dashboard

Figure 3.6.3.2 Modal’s publicly accessible URL endpoint

CHAPTER 3 PROPOSED METHOD / APPROACH

101
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.7 Database Storage Options

 The main data storage used throughout the mobile application is Firebase Real

Time Database. Firebase is the best option if we want to continuously sync real time

data. Below Figures will demonstrate the basic cloud firestore and authentication for

different users and the basic connection for firebase in Flutter through CLI is also

shown.

3.7.1 Firebase Realtime Firebase

 In Figure 3.7.1.1 shows the Firebase Firestore database interface with users

collection that contain multiple document IDS representing different users. For each

document ID, holds 2 subcollections such as cards collection and expenses collection.

In the users document IDs, it also holds fields such as email, FullName and

profilePictureUrl.

Figure 3.7.1.1 Cloud firestore collections and subcollections

 In Figure 3.7.1.2 displays the Firebase Authentication user management

interface showing the example of authenticated users in the system. The users will have

matching User UIDs that correspond to the document IDs in the Firestore database.

Figure 3.7.1.2 Firebase authentication

CHAPTER 3 PROPOSED METHOD / APPROACH

102
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.7.2 Set up Firebase in Flutter (CLI)

 Since the mobile application uses Firebase as the backend storage for all user

data. Figure 3.7.2.1 – 3.7.2.3 illustrates the clear steps on adding Firebase to the Flutter

app. As shown in Figure 3.7.2.1, the steps mainly involving installing the Firebase CLI

and SDK. Then, Figure 3.7.2.2 demonstrates how to initialise and run the Flutter Fire

CLI before it can register a firebase_options.dart file in the application. Finally, as

shown in Figure 3.7.2.3, import the required packages and then initialise Firebase by

modifying the firebase_options.dart file.

Figure 3.7.2.1 Preparing workspace

CHAPTER 3 PROPOSED METHOD / APPROACH

103
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7.2.2 Install and run FlutterFire CLI

Figure 3.7.2.3 Initialise Firebase and add plugins

CHAPTER 3 PROPOSED METHOD / APPROACH

104
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.8 Summary

 This chapter detailed the methodological approach for the Smart Financial

Tracking Mobile Application, beginning with a comprehensive use case diagram

illustrating the system's functionality from user registration to financial analytics.

Detailed use case descriptions were provided for all major features including sign-up,

login, receipt scanning, manual expense entry, voice recognition entry, financial

account integration, and analytics.

The development framework focused on Flutter for cross-platform

compatibility, with Firebase serving as the backend solution for authentication and data

storage. Several innovative technical implementations were described, including the

receipt scanning algorithm using Google MLKit, voice recognition for expense entry,

and integration with external APIs like Finverse for financial data retrieval.

Two specialised components were developed using external technologies such

as n8n workflow for email transaction scraping, and a RAG-based PDF chatbot

implemented with FastAPI and deployed on Modal. The backend infrastructure utilised

multiple cloud hosting options including Railway for the n8n workflow and Modal for

the RAG system, overall creating a robust financial tracking pipeline while maintaining

user experience.

CHAPTER 4 METHODOLOGY AND TOOLS

105
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 Methodology and Tools

 This chapter presents a comprehensive overview of the project's methodology

and implementation tools for the Smart Financial Tracking Mobile Application. The

discussion begins with examining the main system development methodology,

detailing the Rapid Application Development (RAD) framework chosen to facilitate

iterative prototype creation and refinement. Then in 4.2 outlines the system

requirements, tabulating both hardware and software specifications essential for the

system's development. The chapter proceeds to examine the key challenges and

implementation issues encountered during development. The chapter is concluded with

a Gantt chart depicting the project timeline spanning across both FYP 1 and FYP 2.

4.1 System Development Methodology

For this project, the most suitable methodology is Rapid Application

Development (RAD). RAD-based methodologies were an attempt to address both

weakness of structured design methodologies by adjusting the SDLC phases to get

some part of a system developed quickly and into the hands of users [6]. As shown in

Figure 4.1 below, RAD mainly consists of 4 phases namely requirements planning, user

design, construction and cutover.

Figure 4.1 Four phases in Rapid Application Development

4.1.1 Requirements Planning

 In the first phase of RAD which is requirements planning, a well-defined and

appropriate project topic is chosen and then the existing problems related to the chosen

topic is reviewed. The initial idea is to develop a financial tracker for individuals

including teens, adults or even students who seek to track their expenses in an effective

way. After having an overall of the project, literature review on related financial

tracking systems is reviewed to analyse the strengths and weaknesses. The existing

CHAPTER 4 METHODOLOGY AND TOOLS

106
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

systems are Touch ‘n Go, You Need a Budget (YNAB), Meow Money Manager, Easy

Expense and n8n. The overall project scope and objectives are outlined clearly.

 Then other requirements such as hardware specifications for the laptop and

mobile phone were also identified. Not to mention, the type of developing tools such

as the IDE. These additional requirements were essential for determining if the mobile

application could be developed without compatibility or dependency issues.

4.1.2 User Design

 In the subsequent phase, actual development commences. This stage involves

rapidly creating various throwaway prototypes with different features and functions.

These basic prototypes are then presented to users for feedback on design

appropriateness. For example, the initial prototype will primarily focus on fundamental

UI design elements, such as a basic button for user authentication in the login module,

or a camera icon for receipt capture, as illustrated in Figure 4.1.2.1. UI design is

streamlined due to Flutter's extensive library of pre-designed and customizable widgets,

which facilitate the creation of interactive and unique interfaces while minimising

development time. Prior to user presentation, each prototype undergoes iterative testing

to ensure it achieves the minimal features set for that version. The first prototype, for

instance, will incorporate at least two main functionalities, such as receipt scanning and

Malaysian Bank Integration as shown in Figure 4.1.2.2. This iterative testing is crucial

for validating whether the mobile application meets the minimal feature requirements

for each prototype developed. It also aids in identifying errors or bugs before user

presentation. During the testing phase, potential issues like logic errors may arise. An

example would be displaying a green (+) sign instead of a red (-) sign when a user

records a transaction. Based on these testing results, the prototype is refined, and such

logic errors are addressed.

CHAPTER 4 METHODOLOGY AND TOOLS

107
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.2.1 User interface design with a

single camera icon

Figure 4.1.2.2 An example of refined user

interface design with receipt scanning

4.1.3 Construction

 In the third phase of the methodology, the focus shifts from prototyping to

building a fully functional financial tracking mobile application. The refined prototypes

are transformed into more workable models. With a significant portion of issues

addressed during the iterative design phase, focus now shifts to constructing a final

working model (a fully functional system). At this stage, the process moves beyond

prototype creation, instead concentrating on integrating various refined prototype

versions into a single, cohesive functional system. Key activities include implementing

core modules such as receipt scanning functionality using optical character recognition

(OCR), developing the Malaysian bank integration module to securely connect with

various local banks' APIs, and creating a robust transaction categorisation system via

voice recognition, RAG based Chatbot and email transaction scraping. Likewise, the

user interface is finalised based on earlier feedback, with responsive layouts

implemented to ensure compatibility across various Android devices. This phase also

demands intensive coding efforts and employs more formal testing methods, including

unit, integration, and system testing to verify overall functionality and performance.

Overall, this phase involves coding using the Flutter framework and Dart programming

CHAPTER 4 METHODOLOGY AND TOOLS

108
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

language, with the goal of transforming the conceptual designs and prototypes into a

fully functional financial tracking mobile application that meets the project objectives

outlined in Chapter 1.

4.1.4 Cutover

 This represents the final phase of the methodology, where the fully functional

model is completed and prepared for release and deployment. At this stage, the mobile

application has achieved full operational capabilities, fulfilling all modules outlined in

Chapter 1. A comprehensive integrated system test will be conducted to ensure all

components work together seamlessly. Additionally, the project documentation,

including use case diagrams, and use case description along with the full report, will be

finalised. Upon completion, the project will be ready for deployment across various

mobile devices.

CHAPTER 4 METHODOLOGY AND TOOLS

109
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Requirement

4.2.1 Hardware Specification

The two tables below illustrate the technical hardware that will be used

throughout the project which mainly involves a laptop and an android mobile device.

Table 4.2.1.1 and Table 4.2.1.2 shows the specifications of the laptop and mobile phone

for this project. The laptop uses the latest windows operating system and is also

equipped with enough storage and RAM to run most resource intensive programs like

the android studio IDE. Also, an android mobile phone would be used to test and deploy

the proposed mobile application.

Components Specifications

Model Acer Nitro 5 (AN515-57-78PJ)

Processor Intel® CoreTM i7-11800H

Operating System Windows 11

Graphic NVIDIA® GeForce® RTX™ 3060 with 6GB of dedicated

GDDR6 VRAM

Memory 32GB DDR4 RAM

Storage 512GB SSD (NVMe) + 2 TB SSD

Table 4.2.1.1 Specifications of laptop

Components Specifications

Model OPPO A95 (CPH2365)

Processor Qualcomm SM6115 Snapdragon 662

Operating System Android 13, ColorOS 13.0

Graphic Adreno 610

Memory 8 GB + 6 GB RAM

Storage 128 GB internal storage

Display 6.43-inch AMOLED, 1080 x 2400 pixels

Battery 5000 mAh

Main Camera Triple Rear Camera (48 MP main, 2 MP macro, 2 MP depth)

Front Camera 16 MP

Connectivity 4G LTE

Table 4.2.1.2 Specifications of phone

CHAPTER 4 METHODOLOGY AND TOOLS

110
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.2 Software Specification

Table 4.2.2.1 shows the basic software requirements to develop the project. Two

IDE tools were mainly used such as Android Studio and Visual Studio Code. Android

Studio is the most well-known IDE tool for developing native android based mobile

applications in different programming languages such as Java, Dart, Kotlin and React

Native. Notably, Android Studio comes with pre-built android emulators that allow

developers to create app on different API levels and android versions.

 Developers can create dynamic screen sizes that can accommodate to all screen

sizes because they can test on emulators instead of testing on the physical device itself.

As for Visual Studio Code, it is mainly utilised to test the HTTP API connection with

the various third-party APIs such as Finverse API. Firebase (NoSQL database) is the

main backend as a service for most flutter applications, since FYP 1 and FYP 2 has a

strict time constraint, developing a complete and comprehensive backend using Java,

Golang or PHP from scratch is not ideal. Instead, the mobile app leveraged multiple

specialised backend services instead such as FastAPI for implementing the RAG model

deployment hosted on Modal’s serverless platform. For the n8n workflow automation

instance, it was hosted on Railway. This distributed approach allowed for rapid

development within the time constraints of FYP 1 and FYP 2 while still providing

robust backend functionality.

The project employed multiple programming languages for different

components: Flutter (Dart) for the cross-platform mobile application frontend, Python

for the RAG model implementation and FastAPI services, and JavaScript for n8n

workflow configurations.

Components Requirements

IDE Android Studio Hedgehog 2023.1.1 Patch 1, Visual

Studio Code 1.9.2

Android Studio Emulator Pixel 7 API 31

Software Environment Java JDK 11, Java (TM) SE Runtime Environment 18.9,

Node.js v20.9.0, Postman v11

Server-Side (Backend) Firebase (Authentication & Database), FastAPI (RAG

Model), Modal (Serverless Hosting), Railway (n8n

Workflow Hosting)

CHAPTER 4 METHODOLOGY AND TOOLS

111
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Client-Side (Frontend) Dart (Flutter)

Programming Languages Dart, Python, JavaScript

Table 4.2.2.1 Software requirements

CHAPTER 4 METHODOLOGY AND TOOLS

112
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Implementation Issues and Challenges

 Below shows the development challenges along the development of Smart

Financial Tracker Mobile Application.

4.3.1 Retrieval of demo financial accounts

 One of the core features of the mobile application is that it can allow users to

simulate the adding of dummy financial accounts through the 3rd party Finverse API.

However, documentation on this official website was scarce and not resourceful for

mobile application developers. An extensive amount of time was spent on figuring out

the correct workflow and sequence to extract the required access tokens before Finverse

returns the financial data.

 Additionally, a prerequisite knowledge of REST API basics is mandatory.

HTTP methods such as GET, POST, PUT and DELETE for testing the API before

integration. APIs involves fetching data over a network asynchronous programming

must be implemented in Dart using Future, sync and await keywords.

4.3.2 Finding libraries and packages

 Some of the core features of the mobile application require extensive support

from external libraries and packages. It was an initial challenge to determine the

appropriate packages needed for the application’s use cases such as text recognition

and voice to text recognition. After much research, Pub.dev was discovered for easy

installation and usage of libraries that were already maintained by other developers.

Pub.dev is a well organised package manager for the Dart programming language.

CHAPTER 4 METHODOLOGY AND TOOLS

113
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Timeline

 The overall project timeline is planned according to Rapid Application

Development methodology. The 3 phases are namely Requirements Planning Phase,

User Design and Construction Phase, Test and Implementation Phase. Figure 4.4.1

below shows the Gantt Chart for FYP 1 and FYP 2. The overall duration of the project

is estimated to be completed around 21 weeks.

 FYP 1 is conducted during a short trimester, which includes the Requirements

Planning, User Design and Construction Phase. In the first 3 weeks, the overall project

scope is defined. The functional requirements and non-functional requirements are

drafted accordingly which determine the overall functionality and performance of the

mobile application. Software development tools such like Visual Studio Code, android

emulator and Git are configured. A first initial dummy prototype was created and

received feedback from supervisor. After consideration of Supervisor feedback, a more

functional prototype is further developed. In week 5 and week 6, the FYP 1 report is

written and finalised. Finally, on week 7 a presentation and demo on the prototype was

presented to the moderator.

 FYP 2 is conducted during a long trimester, which is the continuation of User

Design and Construction Phase. The long trimester is 14 weeks long, in the first 10

weeks the remaining modules are implemented such as Financial Insight Module, Low

Code Email Scraping, Expense Report Generation, and RAG PDF Chatbot. As for the

remaining weeks from week 11 to week 13, the mobile application will be iteratively

tested, FYP 2 is finalised, and the final working application is presented during week

14.

CHAPTER 4 METHODOLOGY AND TOOLS

114
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.1 Gantt chart for FYP 1 and FYP 2

CHAPTER 4 METHODOLOGY AND TOOLS

115
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5 Summary

 The system development methodology chosen was Rapid Application

Development. It is a suitable methodology because, rapid changes can be made

throughout the lifecycle of the project. Prototypes can be created and abandoned at any

stage but would not affect the overall development progress. Consequently, the main

hardware needed for this project is a mobile phone and a laptop whereas the main

development framework is Flutter and uses Dart programming language for frontend

development. The backend leverages multiple specialised services including Firebase

for authentication and database, FastAPI for RAG model implementation, and n8n for

workflow automation, all hosted on cloud platforms like Modal and Railway. For the

system design, both use case diagrams and use case description are created to map the

functional and non-functional requirements of the system. Several implementation

challenges were encountered, particularly with third-party API integration (Finverse)

and finding appropriate Flutter packages for core functionality like OCR and voice

recognition. Lastly, the entire project timeline for FYP 1 and FYP 2 is shown with a

Gantt chart.

CHAPTER 5 IMPLEMENTATION AND TESTING

116
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 Implementation and Testing

 In this chapter, an overview of all the working modules implemented during

FYP 2 is demonstrated. Namely, signup and login module, scan receipt module, manual

expense module, voice recognition expense module, add financial accounts module,

financial transaction analytics, and PDF RAG based chatbot.

5.1 Signup and Login

The smart financial tracker will utilise Firebase Authentication and Cloud

Firestore for saving and validating new users upon registration and login. Below Figure

5.1.1, and Figure 5.1.2 shows the main interface of the signup screen and login screen.

In the signup screen, new users must enter their full name, email address, password and

confirmed password. As for the login screen, user must enter credentials created during

registration. Upon registration, new user is authenticated by Firebase Authentication as

shown in Figure 5.1.3. Consequently, basic user information such as full name and

email address is stored inside Cloud Firestore to keep track of different users as shown

in Figure 5.1.4.

Figure 5.1.1 Signup screen

Figure 5.1.2 Login screen

CHAPTER 5 IMPLEMENTATION AND TESTING

117
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.1.3 Firebase Authentication

Figure 5.1.4 Firebase Cloud Firestore

5.2 Scan Receipt

 The smart financial tracker offers the user the capability to automatically

capture and recognise key insights from physical receipts. But user must first click on

the middle camera icon to start the receipt scanning process. Figure 5.2.1 below shows

an empty in the Receipts screen before the scans and adds any new receipts whereas

Figure 5.2.2 below indicates the newly scanned receipts arranged in most recently

added receipt at the top.

 As for Figure 5.2.3 indicates 3 options whereby user can select an image from

gallery, manually capture the image or auto capture the image. Then in Figure 5.2.4

below show the different options for user to enhance the receipt image such as cropping

extra edges, applying filters for contrast improvement and eraser which allows users to

remove extra smudges on the receipt image.

 Next, the selected receipt image is selected and processed to extract key details

such as merchant name, tax, total amount and transaction date as shown from Figure

5.2.5 to Figure 5.2.6. Finally, users can choose to save the receipt or delete the extracted

receipt details.

CHAPTER 5 IMPLEMENTATION AND TESTING

118
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.1 Empty state - no receipts added

Figure 5.2.2 Scanned and saved receipts

CHAPTER 5 IMPLEMENTATION AND TESTING

119
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.3 Options - gallery, manual and auto

capture

Figure 5.2.4 Edit processed receipt

Figure 5.2.5 Receipt details - 1

Figure 5.2.6 Receipt details - 2

CHAPTER 5 IMPLEMENTATION AND TESTING

120
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Select Receipt Transactions & Share Receipt

The smart financial tracker offers the user the ability to select receipt transactions

and share the receipt to their friends, family members, colleagues etc. As shown in

Figure 5.3.1, it shows the scanned receipt details before editing the receipt transactions.

To note, editing receipt transactions is essential because within a receipt not all item

transactions belong to us. Consequently, in Figure 5.3.2 the user of the application can

select their own / their friend’s respective transactions. In the below example, we are

replicating the logic that we are selecting their food items on their behalf. Once we have

selected their food items. We will update the receipt details and then be able to share

the newly updated that reflects their transaction. As shown in Figure 5.3.3, the user

must tap on the share button which will bring up a native UI sharing dialog which

allows users to send this receipt image to their selected application as also demonstrated

in Figure 5.3.4. As illustrated in Figure 5.3.5, in this given example, the newly updated

receipt image was tested by sending out to a WhatsApp contact. Before confirming to

send the new receipt image, user can also edit the description from the original “Shared

Receipt” and expanding the description into their own favour such as “Shared Receipt

– Hiii, this is how much you need to pay”.

CHAPTER 5 IMPLEMENTATION AND TESTING

121
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.1 Original receipt details before edit

Figure 5.3.2 Selecting transactions

CHAPTER 5 IMPLEMENTATION AND TESTING

122
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.3 Share newly updated receipt details

Figure 5.3.4 Share receipt image to available

apps

Figure 5.3.5 Share receipt image to WhatsApp

contact

CHAPTER 5 IMPLEMENTATION AND TESTING

123
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Edit Receipt Transactions & Add Receipt Transactions

 The smart financial tracker also offers the user the flexibility to edit their receipt

transactions such as modifying the item price. As shown from the Figure 5.4.1 – Figure

5.4.2, user can select an item and modify the item price, once user has finished

modifying the numeric value. They must proceed to tap on green update button, as

depicted in Figure 5.4.3 they will be redirected to the previous select transactions dialog

whereby they can update their new selected total.

Figure 5.4.1 Select transaction to edit

Figure 5.4.2 Select transaction to edit - 2

CHAPTER 5 IMPLEMENTATION AND TESTING

124
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.3 Edited transaction reflects in new selected total

CHAPTER 5 IMPLEMENTATION AND TESTING

125
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

As shown from Figure 5.4.4 – 5.4.5 below, user can add new items into the

receipt transaction list. This is a fallback in case the scanning receipt functionality fails

to correctly parse all the correct transactions.

Figure 5.4.4 User adds new item

Figure 5.4.5 User adds new item - 2

CHAPTER 5 IMPLEMENTATION AND TESTING

126
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Manual Expense

 The smart financial tracker also allows users to manually add their expenses

according to different categories. Like the receipts screen, as shown in the Figure 5.5.1

below, manual expenses are all stored inside history screen and the user interface will

be triggered upon user press on text font like icon. As shown the Figure 5.5.2 below, in

the current interface implementation, there are 9 main categories for the user to choose

from. For any categories not mentioned, the user should select the miscellaneous

category. To note, the current expense tracker has only the option to record in Ringgit

Malaysia currency.

Figure 5.5.1 Empty state - no expenses added

Figure 5.5.2 Adding expense according to

category

CHAPTER 5 IMPLEMENTATION AND TESTING

127
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Voice Recognition Expense

 The smart financial tracker also allows users to add their expenses using voice

recognition. The voice recognition entry will be triggered upon pressing the mic button

after toggling the floating action button. As shown the Figure 5.6.1 below, user can

express how they spent their expenses in natural language upon pressing and continuous

holding the mic. Then, in Figure 5.6.2 user must keep holding the mic while they

articulate their sentence structure. Finally, in Figure 5.6.3 the complete sentence

structure of the user is shown along with the parsed output showing expense, category

and date.

Figure 5.6.1 Voice input - 1

Figure 5.6.2 Voice input - 2

CHAPTER 5 IMPLEMENTATION AND TESTING

128
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6.3 Voice recognition result

5.7 Add Financial Accounts

 The smart financial tracker also allows users to simulate the adding of test /

demo financial accounts provided by Finverse 3rd party API provider. In Figure 5.7.1,

user first tap on the plus icon and proceeds to connect bank account. Next, from Figure

5.7.2 to Figure 5.7.4 demonstrates the process of linking a test bank account through

Finverse API. Finally, the test banking financial info is displayed as shown in Figure

5.7.5. To note, Finverse API can be extended to retrieve real financial bank accounts,

in the context of Malaysia. 3 known banks have collaborated with Finverse namely

Public Bank, Maybank and CIMB. Due to security concerns and lack of a robust

backend to support the retrieval and sending of access tokens. In FYP 1 and 2, only the

demo bank account is retrieved to prove the possibility of retrieval real time financial

accounts. As shown in the last Figure 5.7.6, retrieval of real bank account statements

for Public Bank is achieved but will not be demonstrated in the current working mobile

application for security concerns.

CHAPTER 5 IMPLEMENTATION AND TESTING

129
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.7.1 Add bank account - 1

Figure 5.7.2 Add bank account - 2

Figure 5.7.3 Select financial institution

Figure 5.7.4 Connecting with Finverse API

CHAPTER 5 IMPLEMENTATION AND TESTING

130
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.7.5 Test bank account data retrieved shown in cards

Figure 5.7.6 Retrieval of real bank data - Public Bank

CHAPTER 5 IMPLEMENTATION AND TESTING

131
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.8 View Recent Transactions and Total Expenses

 Below Figure 5.8.1 shows the aggregated total expenses across manual data

entry, voice recognition data entry and receipts scanned, whereas in Figure 5.8.2 the

top 4 most recent transactions are showed from the recent transaction up to the oldest

transaction.

Figure 5.8.1 Total aggregated expenses

Figure 5.8.2 Top Recent Transactions

CHAPTER 5 IMPLEMENTATION AND TESTING

132
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.9 Transaction Dashboard

 Another important feature of the smart financial tracker is that it allows users to

understand their data by giving them visualisation through a dashboard divided into a

few main segments. But before this, user must first tap on the analytics button as shown

in Figure 5.9.1 in the home screen. Then, they are defaulted to the first tab which shows

different segments of analytical data as shown from Figure 5.9.2 – Figure 5.9.3

including the current spending of the month, the spending trend of the last 6 months,

all time expenses breakdown, weekly breakdown of the current month and the all-time

spending categories.

Figure 5.9.1 Home Screen – analytics button

CHAPTER 5 IMPLEMENTATION AND TESTING

133
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9.2 Home Screen – analytics button

Figure 5.9.3 Home Screen – analytics button

CHAPTER 5 IMPLEMENTATION AND TESTING

134
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.10 Transaction Analytics

 Besides, below Figure 5.10.1 and Figure 5.10.2 represent more specialised

analytics whereby user can filter the month, year to see their total expenses. At the end

of the page, they can export it as a financial report for RAG purpose. In the below

example, only scraped email transactions were considered. However, other expenses

such as receipts, manual expenses and voice data entry would also appear in the

centralised Financial PDF report. As shown in Figure 5.10.3 - Figure 5.10.4, important

metrics such as total spend, average transactions, number of total transactions for the

month, highest category are shown to the user. On the 2nd page of the Report, the total

transaction history is formatted into a structured table with headers such as No, Date,

Description, Category and Amount.

Figure 5.10.1 Analytics tab - 1

Figure 5.10.2 Analytics tab - 2

CHAPTER 5 IMPLEMENTATION AND TESTING

135
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10.3 Financial Report April Page 1

CHAPTER 5 IMPLEMENTATION AND TESTING

136
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10.4 Financial Report April Page 2

CHAPTER 5 IMPLEMENTATION AND TESTING

137
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.11 PDF RAG Chatbot

 The Chat tab of the expense analytics screen enables intelligent document

interaction through a streamlined process. As shown in Figure 5.11.1, users upload their

financial PDF reports which undergo RAG processing. Figure 5.11.2 demonstrates how

users can ask natural language questions about their financial data, such as spending

insights requests. Figure 5.11.3 displays the system's response, providing structured

financial analysis including total expenses (RM400.51), categorization (100% "Email"

expenses), transaction details (8 transactions averaging RM50.06), and actionable

recommendations for reducing email-related costs. The RAG pipeline supports its

answers by referencing specific pages from the source document, allowing users to

verify information directly while making financial analysis more accessible and

actionable.

Figure 5.11.1 Upload generated Financial Report PDF

CHAPTER 5 IMPLEMENTATION AND TESTING

138
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.11.2 Streaming chat response

Figure 5.11.3 Chatbot returned answer

CHAPTER 5 IMPLEMENTATION AND TESTING

139
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.12 Scrape Email Transactions

 The smart financial tracker also allows users to scrape their monthly email

transactions. In the example above, the email scraping logic will be involved scraping

transactions from April 1st to April 30th. As shown in Figure 5.12.1 below, upon tapping

of the Connect & Fetch Transactions button, user is allowed to choose their desired

Gmail Account for scraping. To note, the user’s Gmail account must contain at least 1

transaction related email or else the scraping workflow will terminate early without

retrieving any data. Then in Figure 5.12.2, the scraped email transactions are returned

to the user. Depending on the number of emails containing transactions, the process

could take between 1 minute to 1 minute 30 seconds. Lastly as shown in Figure 5.12.3

– Figure 5.12.4, the existence of 2 emails were verified from manually searching in

Gmail.

Figure 5.12.1 User is prompted to Connect & Fetch Transactions

CHAPTER 5 IMPLEMENTATION AND TESTING

140
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12.2 User retrieves scraped email transactions from 1st – 30th April

CHAPTER 5 IMPLEMENTATION AND TESTING

141
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12.3 Apple Invoice email

Figure 5.12.4 Digit Payment email

CHAPTER 5 IMPLEMENTATION AND TESTING

142
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.13 Summary

 In summary, the full working mobile application showcases all the main

modules developed in FYP 2. The main modules included login and sign up

authentication for different users, auto categorisation of receipts, manual expense entry,

voice recognition expense entry, simulation of adding financial accounts, receipt

sharing, financial analytics and scrape email transactions. Some additional

miscellaneous features not shown included modify profile settings function, edit and

delete existing expenses operation. All the modules developed serve to tackle all the

objective mentioned in Chapter 1.

CHAPTER 6 CONCLUSION AND FUTURE WORK

143
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 Conclusion and Future Work

6.1 Conclusion

Financial trackers aim to serve the purpose of tracking a user’s daily

expenditure, most financial trackers do not allow their user base to effortlessly and

intelligently track their expenses. With the evolvement of Artificial Intelligence,

programming frameworks, extensive open-source libraries, open banking APIs. More

intelligent financial trackers are developed to cater to different users’ needs. For

instance, scanning receipts or invoices and automatically extracting key insights

without manual intervention. Another example would be integrating financial bank

accounts into a centralised mobile application, which allows users to have a more

aggregated overview of info such as bank account savings, banking statements and total

balance.

 The ideation of a Smart Financial Tracker Mobile Application allows users

lessen the burden of traditional manual data entry for expenses with more fast and

intuitive features such as voice recognition data entry and automatic receipt data entry.

On top of that, users are still able resort to manual data expense entry according to

specific scenarios and preference. Besides, the mobile application also allows users to

connect to their personal banking account with the help of 3rd party open banking API

service provider Finverse. Not to mention, an innovative approach of scraping relevant

email transactions through n8n workflow platform was introduced. Then, after all the

user’s data is inputted, it is aggregated into a summarised monthly financial report.

More importantly, user can gain personalised financial insights by simply asking

questions about their spending patterns in everyday language.

 In summary, this Smart Financial Tracking Mobile Application represents a

significant advancement over traditional financial trackers by providing an integrated,

automated, and intelligent platform tailored to Malaysian users, meeting all stated

objectives and successfully addressing the limitations identified in existing systems.

CHAPTER 6 CONCLUSION AND FUTURE WORK

144
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Future work and recommendations

 The smart financial tracker has significant potential for expansion. In the future,

we can integrate real-time WhatsApp notifications to deliver personalised daily,

weekly, or monthly summaries of financial transactions directly to users. This

enhancement will provide timely insights without requiring users to open the

application.

Following the emerging trend of AI agentic workflows, Google's Agent

Development Kit (ADK) can be leveraged to create multi-agent applications and

seamlessly integrate them into the mobile platform. These intelligent agents could

proactively analyse spending patterns, suggest budget optimizations, and execute

routine financial tasks. Like the RAG-based financial pipeline mentioned, ADKs can

transform the current query-response model into an ecosystem of specialised financial

agents working in parallel. For example, one agent could focus on categorizing

ambiguous transactions from scraped emails, while another could analyse voice entries

for spending pattern anomalies, which extends the current analytics capabilities with

more financial guidance.

Lastly, the bank integration module established with Finverse API could be

enhanced through advanced communication standards such as Model Context Protocol

and Agent2Agent Protocol. These protocols would build upon the current Malaysian

bank connections to create a more robust and secure data exchange pipeline, addressing

the current limitations in displaying comprehensive financial information while

maintaining the strong user privacy standards established in the current

implementation.

REFERENCES

145
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] D. Efimova, “AI in Fintech 2024 | EPAM Startups & SMBs,” startups.epam.com,

Jul. 24, 2024. https://startups.epam.com/blog/ai-in-fintech

[2] Volopay, “Features to Look for in Business Expense Tracker,” Volopay, Nov. 04,

2022.https://www.volopay.com/expense-management/features-to-consider-in-

business-expense-tracker/

[3] D. Fuscaldo, “Financial Tracking 101: Best Practices,” business.com, Feb. 02, 2024.

https://www.business.com/articles/financial-tracking-101/

[4] M. Boyle, “Financial History: The Evolution of Accounting,” Investopedia, Apr.

24, 2020. https://www.investopedia.com/articles/08/accounting-history.asp

[5] H. Kamel, “TnG eWallet Gains New GOfinance Feature,” Lowyat.NET, Jul. 09,

2024. https://www.lowyat.net/2024/326118/tng-ewallet-gains-new-gofinance-feature/

[6] A. Dennis, Barbara Haley Wixom, David Paul Tegarden, and E. Seeman, System

analysis & design: an object-oriented approach with UML, 5th ed. Hoboken, Nj:

Wiley, 2015.

[7] K. Bhimani and N. Sorathiya, “Flutter vs Dart: Revolutionizing App Development,”

www.dhiwise.com, May 02, 2024. https://www.dhiwise.com/post/flutter-vs-dart-

insights-into-the-future-of-app-development

APPENDIX

A-1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

A.1 POSTER

	TITLE PAGE
	COPYRIGHT STATEMENT
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Problem Statement and Motivation
	1.3 Project Objectives
	1.4 Project Scope
	1.5 Contributions
	1.6 Report Organisation
	1.7 Summary

	CHAPTER 2 Literature Review
	2.1 Previous Works on Finance related apps
	2.1.1 Touch ‘n Go
	2.1.2 You Need a Budget (YNAB)
	2.1.3 Meow Money Manager
	2.1.4 Easy Expense
	2.1.5 n8n

	2.2 Summary and table of comparison

	CHAPTER 3 Proposed Method/Approach
	3.1 Use Case Diagram
	3.2 Use Case Description
	3.3 Mobile App Development
	3.3.1 Mobile Emulator Configuration
	3.3.2 Main Development Framework
	3.3.3 Signup and Login Function Development
	3.3.4 Scan Receipt Function Development
	3.3.5 Manual Expense Entry Development
	3.3.6 Voice Recognition Entry Development
	3.3.7 Add Financial Account Development
	3.3.8 Receipt Sharing Development
	3.3.9 Financial Analytics Development
	3.3.10 Expense Report Generation

	3.4 n8n Workflow
	3.4.1 Scrape Email Transactions Workflow
	3.4.2 Flutter Frontend Setup

	3.5 RAG Based PDF Chatbot
	3.5.1 FastAPI Setup
	3.5.2 Flutter Frontend Setup

	3.6 Backend Hosting
	3.6.1 Railway
	3.6.2 FastAPI
	3.6.3 Modal

	3.7 Database Storage Options
	3.7.1 Firebase Realtime Firebase
	3.7.2 Set up Firebase in Flutter (CLI)

	3.8 Summary

	CHAPTER 4 Methodology and Tools
	4.1 System Development Methodology
	4.1.1 Requirements Planning
	4.1.2 User Design
	4.1.3 Construction
	4.1.4 Cutover

	4.2 System Requirement
	4.2.1 Hardware Specification
	4.2.2 Software Specification

	4.3 Implementation Issues and Challenges
	4.3.1 Retrieval of demo financial accounts
	4.3.2 Finding libraries and packages

	4.4 Timeline
	4.5 Summary

	CHAPTER 5 Implementation and Testing
	5.1 Signup and Login
	5.2 Scan Receipt
	5.3 Select Receipt Transactions & Share Receipt
	5.4 Edit Receipt Transactions & Add Receipt Transactions
	5.5 Manual Expense
	5.6 Voice Recognition Expense
	5.7 Add Financial Accounts
	5.8 View Recent Transactions and Total Expenses
	5.9 Transaction Dashboard
	5.10 Transaction Analytics
	5.11 PDF RAG Chatbot
	5.12 Scrape Email Transactions
	5.13 Summary

	CHAPTER 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work and recommendations

	REFERENCES
	APPENDIX A
	A.1 POSTER

