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Abstract

The occurrence of floods has the potential to escalate the
transmission of infectious diseases. To enhance our comprehen-
sion of the health impacts of flooding and facilitate effective plan-
ning for mitigation strategies, it is necessary to explore the flood
risk management. The variability present in hydrological records
is an important and neglecting non-stationary patterns in flood
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data can lead to significant biases in estimating flood quantiles.
Consequently, adopting a non-stationary flood frequency analysis
appears to be a suitable approach to challenge the assumption of
independent and identically distributed observations in the sam-
ple. This research employed the generalized extreme value (GEV)
distribution to examine annual maximum flood series. To estimate
non-stationary models in the flood data, several statistical tests,
including the TL-moment method was utilized on the data from
ten stream-flow stations in Johor, Malaysia, which revealed that
two stations, namely Kahang and Lenggor, exhibited non-station-
ary behaviour in their annual maximum streamflow. Two non-sta-
tionary models efficiently described the data series from these two
specific stations, the control of which could reduce outbreak of
infectious diseases when used for controlling the development
measures of the hydraulic structures. Thus, the application of these
models may help prevent biased prediction of flood occurrences
leading to lower number of cases infected by disease.

Introduction

On a global scale, flooding stands as the foremost item of nat-
ural catastrophes therefore representing a significant environmen-
tal problem confronting numerous countries in the twenty-first
century (Abaya et al., 2019; Ochani et al., 2022). Overflow of
water bodies, such as rivers, streams, and main channels leads to
floods (El1-Mousawi ef al., 2023) making them a significant cause
of natural disasters with a substantial impact on fatalities world-
wide. This is particularly evident in the state of Johor, situated in
the southern part of Peninsula Malaysia, which experiences floods
twice a year during the monsoon seasons from late May to
September and from November to March. Notably, as of March
Sth, 2023, Johor had the highest number of flood victims (50,596)
accommodated in 268 temporary relief centres across its ten dis-
tricts. Other affected states included Pahang and Melaka, while
Selangor and Negeri Sembilan had already begun recovery at this
time (Malaymail, 2023).

Flooding in major agricultural producing regions can result in
significant damage to plants, fences, and livestock. Crop losses due
to adverse weather conditions, saturated soils, and delays in harvest-
ing are compounded by transportation disruptions caused by flood-
ed roads (Caldas-Alvarez et al., 2022; Mohr et al., 2023; Romali &
Yusop, 2021). These natural extremes contribute to a higher global
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death charge and have a substantial economic impact on infrastruc-
tures (Ludwig et al., 2023; Prasad & Francescutti, 2017; Pregnolato
et al.,2017). For health impacts, flooding brings to physical injuries,
respiratory infections, mental health, cases of poisoning, and infec-
tious diseases (French et al., 2019; Okaka & Odhiambo, 2019).

Infectious diseases occur during the flood events because
floods transport many different pieces of material that can include
harmful germs and numerous studies have explored the relation-
ship between flooding and spread of infectious diseases (Brown &
Murray, 2013; Okaka & Odhiambo, 2018; Shokri et al., 2020).
Throughout history, floods have been associated with the spread of
infectious diseases caused by waterborne pathogens. Brown and
Murray (2013) have compiled a list of infectious diseases resulting
from flood events in various countries worldwide between 1983
and 2011. This issue persists to the present day, with new diseases
continuing to emerge as a consequence of flooding. The primary
health concerns associated with floods are waterborne diseases
(Gleneagles, 2022; Ho et al., 2022; Shafii et al., 2023) and vector-
borne diseases (Barteit ez al., 2023; Gleneagles, 2022). Waterborne
diseases occur when floods contaminate drinking water sources
(Brown & Murray, 2013). This has shown an increasing trend from
1980-2006, which coincides with increasing number of flood
events globally (Adikari & Yoshitani, 2009). Furthermore, floods
also serve as breeding habitats for mosquitoes thereby increasing
the incidence of mosquito-borne diseases, including typhoid fever,
cholera, leptospirosis, dengue fever, malaria, and others (Okaka &
Odhiambo, 2018). According to a report from the World Health
Organization (WHO), Malaysia reported 52,977 cases of dengue
fever in the span of January to November 2022 alone (Gleneagles,
2022). In addition to these diseases, flood victims are also suscep-
tible to mental health illnesses such as post-traumatic stress disor-
der, depression, and anxiety (El-Mousawi et al., 2023).

It is crucial to prevent infectious diseases due to flood events,
something which is not solely the responsibility of public health
managers but also hydrologists when related to flooding. In order
to limit and control the risks of future floods, control measures,
such as construction of dams, risk management, institutional mea-
sures as well as public education should be initiated alongside suit-
able operational guidelines since improved flood prediction could
help reducing the severity of disease outbreaks. This could be
gained from accurately estimating quantile magnitudes of flooding
since necessary upgrades and improvements would mitigate the
occurrence of increasingly frequent flood events. Most researchers
investigating flood risk assessment have employed flood frequen-
cy analysis (FFA) to estimate quantile magnitudes of flooding
(Badyalina et al., 2022; Mondal et al., 2023; Pan et al., 2022).

In FFA, the maximum flows that exceed specific thresholds at
each return time are crucial in designing hydraulic structures, such
as dams and weirs. This approach aids measuring the stationary
properties of river systems (Hirabayashi et al., 2013; Kuriqi &
Ardiglioglu, 2018 ; Zalnezhad et al., 2022). However, growing
concerns revolve around irregular climate change patterns leading
to increased risks of flooding and severe hydrological events
(Badyalina ef al., 2021; Ishak & Rahman, 2019; Ishak et al., 2013;
Yao & Soro, 2021). Weiskopf et al. (2020) and Diaz et al. (2019)
have projected that climate change, influenced by human activi-
ties, heightens vulnerability in ecosystems. The warmer air
induced by climate change can lead to potential extreme rainfall
and subsequent flooding events. The evolving climate pattern
necessitates adjustments in the frequency of data sampling with
reference to mean and variance (Chen et al., 2021; Khaliq et al.,
2006). As a result, the analysing of probability and parameter dis-
tributions under non-stationary conditions has evolved over time.
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Assuming stationarity for non-stationary sample records may no
longer be valid due to the potential impact of climate change on
flood events (Mat Jan et al., 2020; Salas & Obeysekera, 2014;
Vasiliades et al., 2015). Several studies have explored risk factors
associated with violations of the stationarity principle (Cunderlik
& Burn, 2003; Milly et al., 2008; Villarini et al., 2009), but alter-
native methods are necessary for estimating time-dependent distri-
bution parameters for non-stationary data.

This study explored the behaviour of the non-stationary flood
frequency analysis model in order to find the precise information
and reliable flood prediction estimates. The insights gained from
this research would contribute to a deeper understanding of the
connection and fundamental mechanisms behind the emergence of
infectious disease outbreaks in the aftermath of floods. This
knowledge is essential to shape informed policy decisions in
reducing the spreading of infectious disease (Brown & Murray,
2013). The significance of non-stationary assumptions of the gen-
eralized extreme value (GEV) distribution was applied in estimat-
ing extreme events through the application trimmed L-moments
(TL-moments), which are generalizations of L-moments that give
zero weight to extreme observations.

- press

Materials and Methods

Data description

Johor is known as one of Malaysia’s most precipitation-rich
states. Typically, the intensity of rainfall peaks towards the end of
the year, after the May through September period, a pattern known
as the Southwest Monsoon season. In 2006, Malaysia encountered
a substantial deluge, culminating in unforeseen floods in Johor.
This intensified flooding can largely be attributed to unprecedent-
ed rainfall caused by global climate change. Consequently, this
study systematically scrutinized a sequence of annual maximum
flow data from various stations in Johor to assess the viability of
employing non-stationary assumptions using FFA. The investiga-
tion leveraged secondary data gathered from ten stream-flow sta-
tions situated in Johor, Malaysia. To yield significant flood quan-
tile estimations, the stream-flow data must encompass a minimum
duration of 15 years or more. The pertinent particulars for each sta-
tion used in this research are succinctly summarized in Table 1. For
enhanced geographical comprehension of the station placements,
Figure 1 depicts the map illustrating the positioning of stream-flow
stations across Johor, Malaysia.

Operational framework

Figure 2 provides an overview of the research flow. The study
initiates by revisiting the development of the GEV model while
considering non-stationary scenarios. Subsequently, the TL-
moments method was employed to estimate the model’s parame-
ters. To analyse real data, an assessment of the data series trend
was conducted, aimed at comprehending potential changes in the
stream-flow series. Following this, the goodness of fit of the model
was assessed to determine the significance of specific stationary or
non-stationary model estimations. To evaluate the model’s station-
arity, statistical tests, including the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), were employed.
Additionally, graphical diagnostic tests are applied to the observed
data. As a result, the most suitable GEV distribution model was
selected for the non-stationary stream-flow station to estimate the

flood discharge of each station (Figure 2).
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The non-stationary GEV model Traditionally, the GEV parameter model is characterized by its
time-independent nature (constant) (Coles, 2001). When a trend is
detected within a data series, specific parameters of the non-sta-
tionary model transform into time-dependent variables. However,
the shape parameter remains constant due to the challenges associ-
ated with precise estimation (Coles, 2001). In this study, three non-
stationary models incorporating time (f) as time-dependent covari-
ate are presented and detailed in Table 2.

Earlier research efforts, as observed in studies by Gado and
Nguyen (2016a,b) and Mat Jan et al. (2020), employed an expo-
nential function in lieu of a linear function for the scale parameter
within the NSGEV2 model. However, for the sake of simplicity,
the present study adheres to the original parameterization involv-
ing a linear trend in time for the scale and location parameters. By
retaining the linear approach, this study aimed to mitigate com-
plexity while maintaining a manageable and interpretable frame-
work.

The GEV distribution is a commonly utilized tool for
analysing flood frequency in extreme events (Badyalina et al.,
2021; Badyalina et al., 2022; Guru & Jha, 2014), with the GEV
distribution’s three parameters derived from three distinct proba-
bility distribution functions: Frechet, Gumbel and Weibull as
describes by Coles (2001). The cumulative distribution function
(CDF) for the GEV distribution is expressed as follows:

F(.\']=exp{—(1~k({§] l k=0 (Eq. 1)

Fx) = cxp[_cxp( _ )] k=0

where x denotes the observed flood series, with & o, and & repre-
senting the location, scale and shape parameters, respectively.

x-&
17

Table 1. Characteristics of gauging sites for annual maximum flow series in Johor.

Sayong 1987-2020 33 624 01°48' 15" N 103°40' 10" E
Pengeli 1996-2020 24 143 01°49"15" N 103° 37" 15" E
Sembrong 1990-2020 30 186 01°56' 20" N 103°09' 40" E
Kahang 1988-2020 32 587 02°15' 05" N 103°35' 15" E
Muar 1976-2020 44 3130 02°33' 20" N 102°45' 50" E
Segamat 1976-2020 44 658 02°30' 25" N 102°49' 05" E
Parit Madirono 2004-2020 16 1840 01°41' 30" N 103° 16" 15" E
Johor 1975-2020 45 1130 01°46' 50" N 103°44' 45" E
Linggui 2005-2020 15 209 01°53' 45" N 103°41' 30" E
Lenggor 1971-2020 49 207 02°15' 30" N 103°44' 10"E
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s Prlab g ! 3 - 3
%5 En (1) Sg.Sayong
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Figure 1. The geographical placement of stream-flow stations in Johor, Malaysia.
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Application of the TL-moment approach for the GEV
distribution

According to Elamir and Seheult (Elamir & Seheult 2003), the
7™ trimmed TL-moment is expressed as follows:

r=1

1 -1
ﬂ.?"m) =; Z(_Dk (r k ) EXpity—krsty+t,) T =1, 2,

k=0

(Eq. 2)

where 4,%-%) refers to 7" trimmed TL-moment and £ (X,.,_ .,) 1S
expectation of order statistics. For each r, the conceptual sample
size increases from r to r+¢,+¢, and works only with the expecta-
tions of the 7 order statistics X, .1, /> ---» X144+, DY trimming the
t, smallest and ¢, largest from the conceptual sample (Elamir and
Seheult, 2003). Note that TL-moments can be reduced to L-
moments when ¢, = £, = 0. The expectation of order statistics can be
written as follows (Hosking & Wallis 1997):

E(Xyn) = x(F)FT*(1 —F)y»rdr  (Eq.3)

n! 4
(r—=D!(n —r)!J;

where F(x) denotes the CDF for x, x(F) the inverse CDF of x cal-
culated at the probability, with » and » non-negative integers. The
expectation of order statistics can also be defined in term of f,;
where B.= /! x(F)F'dF (Greenwood et al., 1979).

The non-stationary parameter in the GEV distribution both for
the L-moment and the TL-moment can be obtained based on the
relationships between the non-stationary condition of the series
and the moments of the sample time series (Gado & Nguyen,
2016a). The quantile functions for NSGEV1, NSGEV2, and
NSGEV3 models take the following form:

NSGEVI: x(F, ) = £(6) + £[1 = [ In(M)]¥]

NSGEV2: x(F, t) = £(t) + (1 = [= In(F)]*]

«® (Eq.4)
NSGEV3: x(F, t) = £(&) + %2 [1 — [~ In(F)]¥]

where x(F) and x(F£¢) are quantile estimations of the stationary and
non-stationary GEV model at 7-years return period; ' = 1-1/T.

Analysis of the stream-flow data series

According to some studies, the record for the hydrological data
are censored and non-normally distributed (Bouza-Deano et al.
2008; Sadri et al. 2016). The non-parametric Mann-Kendall (MK)
and Spearman’s Rho (SR) test have been widely used to identify the
existence of a trend in environmental data series (Pohlert 2020).

The Mann-Kendall (MK) test

The power of the monotonic relationship between two vari-
ables x and y is quantified through the fau, T measured in both tests

suggested by Kendall (1975). In order to estimate the fau, T in the

test, variable x was assigned as time and variable y as the annual max-
imum stream-flow for this study (Mann, 1945). This test is common-
ly known as the MK test. It is highly effective in identifying mono-
tonic patterns due to its simplicity, reliability, and ability to handle
missing values below a detection threshold (Ahmad et al. 2015; Ishak
et al. 2013; Ren et al. 2019). Given the hypothesis for MK test as /,
= without monotonic trend in the data series and H,= the data series
Jfollow a monotonic trend, the statistic for the MK test is given by:

[Geospatial Health 2023; 18:1236]
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Data series follow a monotonic trend

n-l1 »n» +1,x = 0
S = 2 sgn(x, —x,),sgn(x) =40,x =0
= ;Z] h -1L,x<0 (Eq. 5)

where x; and x; are the data points at times i and j (j>i), n the num-
ber of data points and estimated fau, T given by:

e 28

and the standardized test statistic Z given by:

{S -1/Var(s) .o
Z=40

=0
(S +1)/Var(s s o (Eq. 7)

The Spearman’s Rho (SR) test

Spearman’s Rho test is a rank-based test commonly used to
determine monotonic trend (Chen ef al. 2019; Mehmood et al.
2019; Tan & Gan 2015). Given the hypothesis as H,= A the sam-
ple data set /x, i = 1, 2, ..., n} is independent and identically dis-
tributed (IID) and H, = A positive or a negative trend exist in the

Table 2. The parameters for GEV non-stationary models

NSGEV1 constant &+ &t constant
NSGEV2  a(f) = oy + oyt S+ &t constant
NSGEV3 constant &+ Et+&F constant
NSGEV, generalized non-stationary extreme value.
Development of GEV Models:
MNon-stationary models
(NSGEV1, NSGEV2, and NSGEV3)
v
Parameter estimation of GEV models using TL-moments
method

v

Analysis of real data

v

Detecting non-stationary and time series trend

4

Select best model for non-stationary
stations.

Figure 2. Flowchart of the research undertaken.
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data series, the test statistic, Z for SR test is given by Sneyers
(1990):

Z=roin—1 (Eq~ 8)
where Spearman’s rank 7, is defined as follows:
= q - SEEA RO — 2] (Eq. 9)

L (n*—n)

where R(x;) is the rank of the i-th observation x; in the sample size 7.

The augmented Dickey-Fuller (ADF) test

The ADF test typically used to test the existence of unit roots
in the series (difference stationary), which was first suggested by
Dickey and Fuller (1979) and updated by Said and Dickey (1984).
This test is performed to check if mean values and variances of a
series vary with time, which is known as non-stationary time
series. The ADF test is an ‘augmented’ version of the Dickey Fuller
test that extends the test equation as follows:

Ve=c+fBt+ay,_, +®AY,_, +e (Eq. 10)

which becomes a model equation with high order regressive process:

Vi =+ Pt +ayey + 94V + ©aY o+ DAY, e (Eq. 11)
where y, , is lag 1 of time series and Dy, refers to difference of the
series at time (¢-1). The hypothesis of the ADF test is H,= the time
series data are not stationary, and H,= the time series data are sta-
tionary.

Selection of preferential model and diagnostic

In the context of non-stationary flood frequency analyses, a
significant challenge arises in selecting the most suitable model
when multiple competing models are developed for a single time
series of flood data. Consequently, the need for an effective
approach to model selection in non-stationary flood estimation
methods becomes paramount (Ouarda & El-Adlouni, 2011). In this
study, the AIC and the BIC were employed to facilitate the selec-
tion of the optimal non-stationary models. The former is defined as
a calculated value obtained by summing a constant and the relative

Table 3. The result of trend and non-stationary analysis.

difference between the unknown true likelihood function of the
data and the likelihood function of the fitted model. Consequently,
a lower AIC value signifies that the model is considered to be in
closer agreement with the underlying truth. The AIC for a model
(Akaike, 1974) is typically expressed in the following manner:

AIC=-2log(L)+2p (Eq. 12)

where L is the likelihood function and p is the number of parame-
ters in model. The BIC serves as an approximation of the validity
of a prediction based on the posterior probability. A lower BIC
value indicates a higher likelihood that a model represents the true
underlying structure and is expressed as follows (Schwarz, 1978):
BIC = -2 log(L) + log(n) p (Eq. 13)

where L is the likelihood function, p the number of parameters in
the model and » the sample size.

The primary goal of the diagnostic plot is to determine the
optimal model based on all plotted data points. The ideal model
should exhibit a strong fit with the data station, as this plot’s sen-
sitivity relies heavily on the accuracy of the fitted model (Coles,
2001). The accuracy of the non-stationary GEV model is assessed
through an investigation involving graphical tests, which include
probability plots and quantile plots to be applied to standardized
data with restricted fitted parameter values (Coles, 2001). The
probability and quantile plots involve a comparison between the
empirical distribution function and the predicted values are gener-
ated by the fitted distribution function model. In the event that the
fitted model aligns well with the observed data, the lines within the
probability plot should closely follow the unit diagonal line. This
diagonal line signifies a theoretical one-to-one relationship
(Serago & Vogel, 2018), with a large distance indicating model
failure (Coles, 2001).

Results

Trend and non-stationary detection test

The outcomes of the Mann-Kendall, Spearman’s Rho test, and
the Augmented Dickey-Fuller (ADF) test for each of the examined
streamflow stations are presented in Table 3, which displays the
outcomes derived from the MK, SR and ADF tests for the ten

Sayong -0.13%4 0.8891 -0.1750 0.8621 NS 0.4811
Pengeli -1.7611 0.0782 -1.7154 0.1008 S 0.0385
Sembrong 0.2855 0.7753 0.4549 0.6516 NS 0.8238
Kahang -2.0919 0.0364 -2.2918 0.0299 NS 0.4777
Muar 0.1517 0.8794 0.1937 0.8470 S 0.0168
Segamat -1.1025 0.2703 -1.1293 0.2642 S 0.0498
Parit Madirono -1.5323 0.1254 -1.6344 0.1244 NS 0.9871
Johor 0.0880 0.9298 0.1357 0.8927 S 0.0427
Linggui 1.0887 0.2763 0.9452 0.3618 NS 0.4435
Lenggor -2.1119 0.0347 -2.1964 0.0330 NS 0.4914

MK, Mann-Kendall test; SR, Spearman’s Rhotest; ADF, augmented Dickey-Fuller test; S, stationary outcome; NS, non-stationary outcome; bold test for p-value, statistical significance.
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stream-flow stations within Johor. Merely two out of the ten sta-
tions, namely Kahang and Lenggor, exhibited a noteworthy nega-
tive trend (p = 0.05) within their stream-flow data according to the
MK and SR tests. In the case of the ADF test, it became evident
that six out of the ten stations, namely Sayong, Sembrong, Kahang,
Parit Madirono, Linggui, and Lenggor, were deemed non-station-
ary. It is noteworthy that the stations identified with significant
trends also demonstrated non-stationary characteristics. The pres-
ence of a discernible trend direction within the data series points
towards non-stationary behaviour in the respective stream-flow
data stations (Lopez & Francés, 2013). Subsequent analyses (trend
and non-stationary detection tests) will exclusively focus on data
that exhibits trends and non-stationary behaviour underscoring the
significance of non-stationary models.

Model selection

The objective of non-stationary flood frequency analysis is to
enhance the precision of flood prediction. Consequently, the pro-
cess involves selecting the most appropriate candidate models. In
this study, model efficiency is gauged by comparing the AIC and
BIC test values among all non-stationary models. The outcomes of
the AIC and BIC tests for river stations displaying non-stationary
behaviour (i.e. the NSGEV1, NSGEV2, and NSGEV3 models) are
outlined in Table 4. The selection of the optimal model hinges on
the attainment of the lowest AIC and BIC values. To identify the
robust model for each station, the AIC and BIC test results for
every model were systematically compared. The model exhibiting
the smallest AIC and BIC values was considered the most efficient
as demonstrated in Table 4.

The Sayong station, the NSGEV2 model stands out with the
lowest AIC and BIC values in comparison to other models.
Consequently, the NSGEV2 model emerges as the robust fitted
model based on the test outcomes. A similar assessment is conduct-
ed for other stations, leading to the identification of preferred mod-
els. It is pertinent to note that the smaller AIC and BIC test values

observed for all models at the Parit Madirono station can be
attributed to the relatively diminutive stream-flow data series. The
favoured model for each station is listed in Table 5 facilitating a
logical presentation of the results.

Table 5 shows that the most optimal fitting model for each of
the preceding stream-flow stations, selected through the criterion
of the lowest AIC and BIC values. Additionally, it is noteworthy
that both the Kahang and Lenggor stations exhibit robust trends,
substantiated by significant results in the trend test at the 1% sig-
nificance level. It is pertinent to acknowledge that these two sta-
tions manifest their trends with distinct models, specifically
NSGEV1 and NSGEV3, respectively. The findings show that the
trend in the model, characterized by the location parameter’s
dependency on time, elucidates a portion of the data’s variance.
Consequently, the deviations around these trend-based models are
diminished compared to those around the stationary model (Sraj et
al., 2016). The differences in the results are due to the tendency of
the BIC test in selecting the more complex models than the AIC
test (Panagoulia et al., 2014). However, four stationary stations,
i.e. Pengeli, Muar, Segamat and Johor, preferred the SGEV model
as their optimal model due to non-detected, non-stationary
behaviour in the observed data.

The estimated flood discharge can be predicted for each station
based on the selected model as presented in Table 6. This refers to
the flood magnitude for 7= 20, 50 and 100 years. From the table,
Sungai Parit Madirono exhibited the smallest, estimated river
flows for return periods of 20, 50 and 100 years, with values of
1.393, 2.003 and 2.545 m?/s, respectively. These flow estimates are
indicative of the river’s hydrological characteristics and its vulner-
ability to flooding. It is important to note that smaller catchment
areas naturally deliver less water into the river during rainfall
events, which can affect the river’s response to precipitation and
the potential for flooding and reduced risk of infectious disease
transmission. However, Sungai Segamat exhibits significantly
larger estimated flood discharges for the given return periods, with
values of 752.041, 1205.395 and 1511.016 m?/s, indicating a high-
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Table 4. Results for model likelihood tests for stream-flow stations in Johor.

Sayong 45 AIC 368.426 364.597 360.761 365.801
BIC 372.915 370.583 368.243 373.284
Pengeli 33 AIC 274.436 275.482 274.502 274.966
BIC 278.723 280.665 280.981 281.445
Sembrong 39 AIC 286.549 288.453 290.424 279.167
BIC 290.851 294.189 297.5%4 286.337
Kahang 49 AIC 423.353 420.315 421.100 419.367
BIC 427.750 426.178 428429 426.696
Muar 50 AIC 612.373 612.717 612.900 613.364
BIC 618.109 620.365 622.460 622.924
Segamat 50 AIC 647.071 648.819 649.959 650.726
BIC 652.807 656.467 659.519 660.287
Parit Madirono 16 AIC 27.127 27424 28.878 -25.464
BIC 29.445 30.515 32.741 -21.601
Johor 45 AIC 562.291 567.025 567.923 563.147
BIC 570.711 574.252 576.956 572.180
Linggui 15 AIC 149.552 144.995 72.949 120.579
BIC 151.676 147.827 76.490 124.119
Lenggor 49 AIC 579.166 572.270 573.892 570.025
BIC 584.841 579.837 583.351 579.484

Models with the lowest AIC and BIC values (in bold text) were considered the most efficient.
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er risk of flooding. While these values are associated with the
river’s hydrology, it’s essential to note that factors beyond catch-
ment area size, such as topography, land use and rainfall patterns
also play a significant role in determining the risk of flooding in
the area.

A graphical assessment is presented to validate the perfor-
mance of the fitted models for each station. This evaluation focus-
es on two stations that exhibited significant trends namely, i.e. the
Kahang and Lenggor stations as illustrated in Figures 3 and 4. The
intent was to observe how well the data aligns with the diagonal
line on the probability and quantile plots, indicative of a favourable
fit of the GEV model to the stream-flow station.

In Figure 3a, representing the Kahang station with the SGEV
model, the data points spread along a linear line, albeit with some
deviations from the diagonal on the probability and quantile plots.
On the other hand, Figures 3b, d depict the points of the non-sta-
tionary models (NSGEV1, NSGEV2, and NSGEV3), demonstrat-
ing satisfactory scattering along the diagonal line. This provided
substantial confidence in the validity of the fitted models, particu-
larly the NSGEV model. Figure 4 corroborates these findings, dis-
playing data points that closely adhere to the linear line on both the
probability and quantile plots across all models. Hence, the accu-
racy of the GEV fitted model is well-established, particularly evi-
dent in the case of the NSGEV3 model as exemplified by the fitted
model of the Lenggor station.

Discussion

In Malaysia, heavy floods predominantly occur during the
monsoon season. In early 2023, the Drainage and Irrigation
Department (DID) reported that 15 rivers in Johor, three in Pahang,
two in Negeri Sembilan, and one each in Selangor, Melaka, and
Sarawak had exceeded danger levels (Haizan & Mamat, 2023).
These floods result in the release of garbage and other waste mate-
rials from surrounding areas, the dispersion of which poses a sig-
nificant risk of spreading various infectious diseases. Therefore,
accurately assessing flood magnitudes and prediction of flood
events, including the frequency of recurrences, have become of
paramount importance.

Table 5. Best model for stream-flow stations in Johor.

Streamflow modelling

The goal of the non-stationary FFA was to establish a fitting
model capable of comprehending the non-stationary behaviour
evident in the annual maximum flow data. The initial step involved
assessing the trend and non-stationary behaviours present within
the data series. To accomplish this, trend detection tests were
applied, specifically the MK and SR tests, both of which can iden-
tify monotonic trends within the data. These non-parametric trend
detection tests offer advantages such as calculation independence
from distribution assumptions and resilience against missing data
(Hipel & McLeod, 2005). In contrast, the non-stationarity test
serves to detect alterations in the mean values and variances of data

Sayong NS NSGEV2 NSGEV2
Pengeli S SGEV SGEV
Sembrong NS NSGEV3 NSGEV3
Kahang * NS NSGEV3 NSGEV1
Muar S SGEV SGEV
Segamat S SGEV SGEV
Parit Madirono NS NSGEV3 NSGEV3
Johor S SGEV SGEV
Linggui NS NSGEV2 NSGEV2
Lenggor * NS NSGEV3 NSGEV3
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Figure 3. Fit diagnostics for different models applied to the
Kahang station.
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series over time, and their use in time series analysis aids in vali-
dating certain models. For optimal model selection, the BIC test
tends to favour less complex models compared to the AIC test
(Panagoulia e al., 2014). As observed by Gado and Nguyen
(2016b), the model chosen by the BIC test is better suited for esti-
mating flood quantiles within the historical record. This is because
the primary objective of the BIC test is to identify the most fitting
model for the data series (Gado & Nguyen, 2016b).

In light of the above criteria, the appropriate non-stationary
GEV model was selected for each station based on the AIC and
BIC tests. Notably, the NSGEV2 model, featuring linear functions
of time for location and scale parameters while maintaining a con-
stant shape parameter, emerged as the most suitable model for
Sayong and Linggui stations. Conversely, the NSGEV1 model,
with a linear function of time for the location parameter and con-
stant scale and shape parameters, was deemed the best fit for the
Kahang station. The NSGEV3 model, characterized by a quadratic
function of time for the location parameter, was selected for the
Sembrong, Parit Madirono, and Sembrong stations.

The selection of the NSGEV1 and NSGEV3 models as the
optimal fits indicated that transfer functions represented in the
location parameter are more appropriate, considering the linear or
quadratic function of time indicated by the trend test. The selected
models for each non-stationary station were then employed to esti-
mate parameters and predict flood quantiles for specific return
periods. The results underscore the importance of accounting for
changes over time in flood frequency analysis, as assuming flood
quantiles as stationary data yields high uncertainties in estimation.
This case study sheds light on the necessity of considering non-sta-
tionarity in hydrology management planning, reducing human vul-
nerability and the risk of infectious diseases exposed to flood-relat-
ed hazards.

This evaluation, involving rigorous criteria concerning data,
distribution models and methods employed, showed a notable rela-
tionship between the MK and SR tests for the Kahang and Lenggor
rivers highlighting strong evidence of decreasing trends in stream-
flow for both stations as indicated by negative values. Notably, six
river stations — Sayong, Sembrong, Kahang, Parit Madirono,
Linggui and Lenggor — displayed signs of non-stationary
behaviour with regard to stream-flow. Non-stationary behaviour,
implying the breakdown of independence, emerges in hydro-mete-
orological data due to disturbances in river basins, often induced
by climate change (Milly et al., 2008; Vasiliades et al., 2015;
Xiong et al., 2015).

Table 6. Quantile estimates of the best model for each station.
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Figure 4. Fit diagnostics for different models applied to the
Lenggor station.

Sayong 115 624 NSGEV2 197.285 380.112 553.341
Pengeli 24.0 143 SGEV 152.379 293.002 483.807
Sembrong 3.7 130 NSGEV3 66.003 75.831 81.439

Kahang 145 587 NSGEV1 510.944 712.602 865.329
Muar 9.1 3,130 SGEV 445.193 550.865 635.994
Segamat 72 658 SGEV 752.041 1205.395 1511.016
Parit Madirono 3.0 2 NSGEV3 1.393 2.003 2.545

Johor 9.8 1,130 SGEV 528.787 678.115 779.807
Linggui 24.0 209 NSGEV2 120.632 214.958 291.586
Lenggor 370 207 NSGEV3 222.054 365.741 497.644
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Risk of infectious diseases

Floods elevate the potential risk of post-flood epidemics (Ding
et al., 2019) as they lead to dispersal of waste, debris, and food,
which can contribute to the proliferation of rodent populations.
Animal displacement is a common occurrence during flood events.
Displaced domesticated animals, including rats, pigs, cattle and
reptiles, frequently contaminate floodwaters and flood victims res-
cued from flooding may come into direct or indirect contact with
contaminated water, which increases the risk of human infection.
Effective flood control plays a crucial role in addressing the trans-
mission of infectious diseases stemming from flood events. Health
authorities’ preparedness plans are imperative in mitigating flood-
related risks and bolstering infection prevention and control pre-
paredness plans (Apisarnthanarak er al., 2013). Okaka and
Odhiambo (2018) emphasize that the most effective way to address
health risks caused by flooding is through planned adaptation
strategies. These strategies involve constructing dams and related
infrastructure to prevent riverbanks from overflowing and safe-
guarding sanitation facilities, ultimately reducing the risk of infec-
tious disease outbreaks.

The issue of flooding and release of wastewater and effluents
from reservoirs has drawn significant scholarly attention with
respect to the substantial risk of spreading infectious diseases. The
disease risk during and after floods include various afflictions,
such as acute respiratory infections, conjunctivitis, leptospirosis,
diarrhoea, dysentery, hepatitis A, cholera, typhoid fever, food poi-
soning, dengue, skin infections, measles, and hand, foot, and
mouth disease (HFMD), as well as malaria and chickenpox (Flood
Management Guidelines, 2008). The WHO (2023) has recently
provided an update on the dengue situation in the Western Pacific,
stating that Malaysia had 2,248 dengue cases in epidemiological
week 33 of 2023, which was a decrease from the 2,487 cases
reported in the preceding week. The cumulative total of dengue
cases reported thus far stands at 75,928 cases, marking a substan-
tial 115% rise when contrasted with the 35,330 cases recorded dur-
ing the corresponding period in 2022. Additional analyses are
required to better understand the link between flood risk patterns
and the spread of infectious diseases in Malaysia, which will be the
goal of a follow-up study.

Conclusions

The application of the TL-moments method for non-stationary
modelling using the developed models is well-founded. The incor-
poration of non-stationary models in flood frequency analysis
holds potential for predicting flood events. Given the critical
nature of comprehensive responses to extreme climate events, this
work contributes to flood risk management in reducing the risk of
infectious diseases. Consequently, the implementation of effective
plans devised by health authorities can play a pivotal role in man-
aging and preventing the spread of infectious diseases during flood
disasters. However, this research solely examined a non-stationary
model with time as covariates. Further investigations are required
to identify the most suitable model, considering non-stationary
scenarios like incorporating climate indices or temperature as
covariates using various estimation methods.

While existing literature comprehensively explores the histor-
ical link between floods and infectious diseases, the multifaceted
nature of this issue necessitates future research directions. These
include studying climate changes influence on disease dynamics,
tracking long-term disease trends, evaluating the effectiveness of

OPEN 8 ACCESS

interventions, and investigating mental health implications among
flood victims. In conclusion, these proposed research directions
hold promise for advancing knowledge and improving strategies to
mitigate the health impact of flooding events.
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