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ABSTRACT 

Traffic sign detection from video plays a vital role in enhancing the safety and decision-

making capabilities of autonomous vehicles and Advanced Driver Assistance Systems 

(ADAS). This project focuses on the development of a robust deep learning-based 

detection system utilizing the latest YOLO11 model to identify and classify traffic signs 

from recorded video feeds. The system was trained using a carefully prepared dataset 

consisting of 21,688 images across 18 traffic sign classes, collected under various real-

world conditions such as illumination changes and occlusions. 

The YOLO11 model was fine-tuned through data augmentation and hyperparameter 

optimization to maximize detection accuracy and model generalization. The final model 

demonstrated strong performance, achieving a precision of 96.8%, recall of 97.3%, 

mAP@50 of 98.7%, and mAP@50–95 of 90.8%. 

The project concludes with the successful implementation of an efficient and scalable 

traffic sign detection framework that supports high reliability. The findings contribute 

to the field of computer vision and intelligent transportation by demonstrating the 

effectiveness of the YOLO11 model in detecting traffic signs under challenging 

conditions. This work serves as a foundation for further enhancements in autonomous 

navigation and real-world deployment of intelligent perception systems. 

 

Area of Study: Computer Vision 

Keywords: Deep Learning, YOLO11, Traffic Sign Detection, ADAS, Object Detection 
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CHAPTER 1 – INTRODUCTION 

1.1  Background Information 

Traffic signs are essential visual indicators that communicate regulatory, warning, and 

guidance information to road users, forming a critical part of traffic control systems 

worldwide. They are designed with standardized shapes, colours, and symbols to ensure 

immediate recognition and interpretation by drivers under varying conditions. In the 

context of autonomous vehicles and Advanced Driver Assistance Systems (ADAS), the 

reliable detection and classification of traffic signs is a prerequisite for safe and 

intelligent navigation. The ability to perceive and interpret these signs correctly enables 

the vehicle to make context-aware decisions, such as adjusting speed, yielding at 

intersections, or avoiding prohibited turns. 

Traditional approaches to traffic sign detection have relied heavily on colour-based 

segmentation and shape-based filtering techniques. While these methods are 

computationally lightweight and intuitive, they are often sensitive to environmental 

variables such as changes in illumination, weather conditions, and partial occlusions. 

These limitations restrict their applicability in real-world scenarios, especially in 

dynamic and unstructured environments. 

Recent advancements in deep learning have transformed object detection 

methodologies, offering powerful alternatives through convolutional neural networks 

(CNNs) capable of learning spatial hierarchies of features directly from raw input data. 

Among these, the "You Only Look Once" (YOLO) family of models has emerged as a 

leading solution for real-time object detection, combining speed and accuracy in a 

single-stage architecture. YOLO11, the latest iteration in this series, introduces 

architectural optimizations that enhance detection performance while reducing 

computational complexity. It processes images holistically, allowing it to retain global 

context and achieve high mean average precision (mAP) even in dense or complex 

scenes. 

In this project, the YOLO11 model is leveraged to build a video-based traffic sign 

detection system. The model is trained on a large, labelled dataset of traffic sign images 

encompassing 18 classes, and then applied to analyse individual frames from video 

feeds. This approach ensures not only accurate sign recognition under challenging 
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conditions but also paves the way for future integration into intelligent transportation 

systems, supporting the broader vision of fully autonomous driving. 

1.2  Problem Statement and Motivation 

With the rapid increase in the number of vehicles on the road, the risk of accidents due 

to human error has also grown. Manually driving cars poses several challenges, as 

drivers may overlook critical traffic signs due to factors like fatigue, distractions, or 

environmental conditions. These oversights can lead to dangerous situations, including 

speeding or missing stop signs, resulting in accidents that can cause serious injuries or 

fatalities. 

In response to these challenges, the development of Advanced Driver Assistance 

Systems (ADAS), which includes features like traffic sign detection, has become 

essential. However, many existing traffic sign detection systems often fail under 

varying environmental conditions such as low visibility, poor lighting, or worn-out 

signs. These failures can lead to incorrect decisions by both human drivers and 

autonomous systems, further increasing the risk of accidents. Therefore, there is an 

urgent need for a reliable traffic sign detection system that can operate effectively across 

a wide range of conditions to ensure the safety of all road users and support the 

development of autonomous driving technologies. 

This project aims to address these challenges by developing a robust traffic sign 

detection system that improves detection accuracy under adverse conditions, thereby 

reducing the rate of traffic-related accidents and enhancing the functionality of ADAS. 

1.3  Project Objectives 

The primary objective of this project is to develop a robust and efficient traffic sign 

detection system using the YOLO11 deep learning model, optimized for processing 

video feeds in the context of autonomous vehicle environments. The system is designed 

to accurately identify and localize a wide range of traffic signs—such as regulatory, 

warning, and advisory types—within video frames, ensuring high detection accuracy 

and resilience under diverse real-world conditions. 

To achieve this overarching goal, several specific objectives have been defined: 
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• To curate and preprocess a high-quality image dataset comprising 18 traffic sign 

classes under varied environmental conditions, including different lighting, 

occlusions, and backgrounds. 

• To train and fine-tune the YOLO11 model using the prepared dataset, optimizing 

for detection performance through data augmentation, hyperparameter tuning, and 

iterative model validation. 

• To evaluate the trained model using industry-standard performance metrics, 

including precision, recall, mean average precision (mAP), F1-score, and 

Intersection over Union (IoU), ensuring the system’s reliability and robustness 

across different sign categories. 

• To apply the trained model to frame-by-frame detection tasks on recorded video 

feeds, analysing system behaviour in realistic driving scenarios and assessing 

generalization capability in dynamic visual environments. 

Through these objectives, the project aims to deliver a scalable, image-trained traffic 

sign detection system capable of supporting future research and practical deployment 

within intelligent transportation frameworks and ADAS modules. 

1.4  Project Scope 

This project is dedicated to the development of a robust, deep learning-based image 

processing system for detecting and recognizing traffic signs from video feeds, with a 

specific emphasis on applications in autonomous vehicles and intelligent driver 

assistance. The system is exclusively built upon the YOLO11 object detection 

framework, selected for its state-of-the-art performance, architectural efficiency, and 

proven scalability in complex environments. The central objective is to design and 

implement a complete detection pipeline that utilizes a YOLO11 model trained on 

annotated traffic sign images, which is then deployed to perform inference on individual 

frames extracted from recorded videos. 

The project encompasses the full system development lifecycle, including dataset 

acquisition and preparation, model training, hyperparameter tuning, validation, 

performance benchmarking, and final application to traffic sign detection in video 

streams. A real-world dataset containing 18 distinct traffic sign classes was curated for 

the training phase, featuring diverse environmental conditions such as variable lighting, 
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partial occlusions, and multiple sign orientations. The model was trained solely on static 

images, while its detection capabilities were validated on pre-recorded video clips 

through frame-by-frame analysis. 

The project scope excludes real-time implementation, deployment on embedded 

vehicular platforms, and the integration of system outputs with vehicular control 

modules. Furthermore, it does not aim for comprehensive global sign generalization but 

instead concentrates on widely encountered regulatory and warning signs within the 

dataset’s context. Assumptions include the availability of video and image data of 

sufficient resolution and quality, as well as the presence of traffic signs adhering to 

standard design conventions. These boundaries are designed to ensure technical focus 

while delivering a scalable and reliable foundation for future integration into Advanced 

Driver Assistance Systems (ADAS) and autonomous navigation technologies. 

1.5  Contribution 

The development of a reliable traffic sign detection system holds considerable 

significance in the evolution of autonomous vehicles and Advanced Driver Assistance 

Systems (ADAS), where safety, responsiveness, and environmental awareness are 

paramount. In this context, the project contributes to the field of intelligent 

transportation by presenting a complete deep learning-based solution capable of 

detecting traffic signs from video feeds with high accuracy and efficiency. 

The use of the YOLO11 model as the core of the system introduces substantial 

improvements over conventional detection methods, owing to its high detection 

precision, and adaptability across diverse environmental conditions. By training the 

model exclusively on a curated image dataset and applying it to analyse video frames, 

the project demonstrates a scalable and modular pipeline that bridges the gap between 

offline learning and real-world visual inference. 

The project’s significance also lies in its practical orientation—emphasizing real-world 

deployment constraints, such as variable lighting, occlusions, and dynamic 

backgrounds—while maintaining a focus on computational performance. Through 

rigorous evaluation using standard detection metrics and qualitative analysis on 

recorded video scenarios, the system sets a performance benchmark for future 

enhancements in traffic sign detection. 
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Key contributions include the creation of a well-labelled traffic sign dataset comprising 

18 distinct classes, the successful fine-tuning and application of the YOLO11 model for 

video-based detection, and the delivery of a fully tested pipeline that can be extended 

or integrated into future ADAS frameworks. Ultimately, this work supports broader 

goals in autonomous driving by providing a reliable visual perception module capable 

of improving vehicle intelligence, operational safety, and traffic law compliance. 

1.6  Report Organization 

This report is structured into seven chapters. Chapter 1 introduces the research 

background, objectives, and scope. Chapter 2 reviews existing traffic sign detection 

methods and justifies the adopted approach. Chapter 3 outlines the system methodology 

and model architecture. Chapter 4 presents the detailed system design, including dataset 

preparation, model training, and video inference. Chapter 5 discusses implementation 

setup, operational workflow, and encountered challenges. Chapter 6 evaluates system 

performance using quantitative and qualitative metrics. Chapter 7 concludes the report 

with a summary of findings and recommendations for future enhancements.
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Traffic Sign Detection and Recognition Based on Random Forests 

2.1.1 Introduction to TSDR and ADAS 

Traffic Sign Detection and Recognition (TSDR) is a key module in Advanced Driver 

Assistance Systems. This greatly works toward ensuring road safety and allows the 

vehicle to detect and recognize traffic signs on the go. It helps the driver to follow the 

rules of the road and navigate through the roads efficiently. The paper named "Traffic 

Sign Detection and Recognition Based on Random Forests" by Ellahyani et al. [8] 

suggests a new approach to TSDR based on colour segmentation, shape classification 

using invariant geometric moments, and a recognition process in which Histogram of 

Oriented Gradients (HOG) combined with Local Self-Similarity (LSS) features are 

used. With Random Forests as the main classifier, a strong and efficient framework can 

be developed for traffic sign recognition. 

 

Figure 2.1.1.1 Examples of Difficulties Facing Traffic Sign Recognition 

2.1.2 Colour Segmentation and Shape Classification Techniques 

Several methodologies have been proposed within the literature to tackle the challenges 

presented by TSDR. In most approaches, colour segmentation has been a common place 

to begin working from to isolate possible traffic signs from their environment. Many 

early studies used the RGB colour space, but it is very sensitive to lighting changes and 

therefore not so reliable when operating outdoors. To overcome this, more recent 

approaches have shifted to using alternative colour spaces, such as YUV and HSI, that 

are less affected by the changes in illumination. For example, Saadna and Behloul [9] 

used specific relations between the RGB components for segmenting the traffic signs, 

while Zaklouta and Stanciulescu [10] did an enhancement of colour channels in the 

RGB space to detect signs effectively. The proposed method by Ellahyani et al. [8] goes 

a step ahead and does segmentation in the HSI colour space, which is more robust to 
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lighting variations, thus making the process of detection robust. 

 

Figure 2.1.2.1 Algorithm Scheme 

Once the colour segmentation has detected ROIs, then only shape classification will 

take place. The most general shape characteristics are circular, triangular, and 

rectangular, using which the traffic signs can be distinguished and classified. 

Traditional methods for shape classification include corner detection and the Hough 

transform, which are directly applied to scene images or post-segmentation. Ellahyani 

et al. [8] introduce invariant geometric moments as a shape classification tool that 

significantly reduces computational complexity and increases accuracy. This reduces 

the computational complexity dramatically and is considered more accurate than 

conventional machine learning classifiers such as Support Vector Machines (SVMs), 

which require large and long learning processes.  

Quite a few various approaches have also been developed for the recognition stage, 
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finding the content of detected signs. The HOG features had been adopted by 

researchers due to their strength in describing local gradients and being less sensitive 

to variations in lighting and scale. To do that, the paper under review suggests extending 

HOG features to the HSI colour space, therefore producing the HSI-HOG descriptor. 

Then, this descriptor was further combined with LSS features; it will give more holistic 

methods in bringing colour and texture information for higher accuracy in recognition. 

In this setup, Random Forests as the classifier are especially well-suited because it is 

robust to overfitting and good at working in noisy data. 

 

Figure 2.1.2.2 Example of HSI-HOG Feature Computation 

2.1.3 Strengths and Limitations of the Proposed Method 

Despite several strengths of the proposed method, there still lie a few limitations. The 

main challenges are the system's sensitivity to environmental conditions, which entails 

heavy shadows or a faded sign colour that leads to a failure in detection and one of the 

sources of false positives. Some of these problems could be reduced by the HSI colour 

space, but extreme conditions still pose to be too challenging. Besides, the combined 

feature extraction of HSI-HOG with LSS proves to be a boost in effective results, which 

in turn increases the computational complexity of the process of recognition to an extent 
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that may hamper real-time performances on platforms under constraints in resources. It 

also heavily relies on empirically derived thresholds for colour segmentation and shape 

classification, which are not really generalized among different datasets and varied 

environmental conditions. 

To address these limitations, several improvements could be implemented. Increasing 

further the robustness of colour segmentation and shape classification could be done 

with the use of adaptive thresholding techniques, when dealing with varying lighting 

conditions. Another way to enhance the performance is that signs detected over the 

frames can further be tracked using temporal data from video sequences to reduce false 

positives and increase detection rates for more challenging scenarios. On the other hand, 

feature selection techniques can be implemented in selecting an optimal size of 

descriptors with respect to which the computational load will be reduced while keeping 

recognition accuracy high. This optimization can be combined with other classifiers 

like Convolutional Neural Networks, which show extremely higher efficiency in a 

TSDR task besides being computationally expensive. 

2.1.4 Conclusion 

In conclusion, the literature on traffic sign detection and recognition is quite diverse 

and consists of many ways of tackling this problem. This offers a good solution 

following the work of Ellahyani et al. [8], who used the HSI colour space for 

segmentation, invariant geometric moments for shape classification, and a good 

combination of HSI-HOG and LSS features for recognition. However, there are still 

several avenues open for improvements, regarding how to render the system more 

robust in face of environmental variations and computationally efficient for real-time 

applications. Such an advancement would ensure that TSDR systems would perform in 

a reliable manner under a broad spectrum of conditions, hence ensuring overall safety 

and efficacy in the process of driving.  
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Figure 2.1.4.1 Precision-Recall Curves of the Proposed Detection and Recognition Method 

2.2 A novel traffic sign detection method via colour segmentation and 

robust shape matching 

2.2.1 Existing Techniques 

During the past few decades, researchers have proposed many methods to improve the 

robustness and accuracy of traffic sign detection under different real-world conditions, 

such as variations due to weather, shadows, and occlusions. Traditional techniques for 

detecting traffic signs rely mostly on colour and shape features because traffic signs 

typically have distinct and regular visual characteristics, such as high-contrast colours 

like red, yellow, and blue, and regular shapes like circles, triangles, and diamonds. For 

example, Ganesan et al.[11] modelled colour pixels with a Gaussian model in CIE Lab 

space to mitigate the effects of varying illumination. Shape-based methods like the 

Hough transform have been applied to detect specific shapes, such as circular speed 

limit signs. However, these methods often struggle with computational complexity and 

are sensitive to environmental factors like lighting and background clutter. 

Researchers have increasingly combined colour-based and shape-based methods to 

improve detection accuracy. For instance, they used a corner detection algorithm after 

segmenting red colour regions to identify triangular borders. Similarly, they employed 

Gabor features and K-means clustering in CIE Lab space to distinguish traffic sign 

shapes. While these combined features enhance the robustness of traffic sign detection 

systems, challenges remain, particularly in cluttered environments and under adverse 
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weather conditions. 

2.2.2 Strengths and Limitations 

The main strength of these combined approaches is their ability to leverage the 

complementary nature of colour and shape information, which generally leads to better 

detection rates compared to methods that rely solely on one type of feature. However, 

these approaches are not without limitations. Colour-based methods are particularly 

susceptible to variations in illumination and weather conditions, leading to inaccurate 

segmentation of signs. Similarly, shape-based methods, while more robust to colour 

variations, often suffer from high computational costs and sensitivity to occlusions and 

background noise. 

2.2.3 Improvements Proposed 

This paper proposes an innovative approach that integrates colour invariants-based 

image segmentation with Pyramid Histogram of Oriented Gradients (PHOG) features 

for shape matching. The method enhances the robustness of traffic sign detection 

against varying environmental conditions by introducing chromatic-edge enhancement 

to improve contour detection, thereby reducing the noise sensitivity associated with 

traditional PHOG features. The combination of colour invariants and PHOG, along with 

a support vector machine (SVM) for classification, offers a more discriminative and 

computationally efficient solution for traffic sign detection. 

 

Figure 2.2.3.1 The outline of the proposed traffic sign detection system 

The proposed method shows significant improvements in detection accuracy, 
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particularly under challenging conditions such as shadows, occlusions, and complex 

backgrounds. Chromatic-edge enhancement effectively addresses the weaknesses of 

traditional PHOG features, making the system more robust to noise and clutter. 

However, the method's reliance on predefined colour models and the need for extensive 

training data for the SVM classifiers could be seen as limitations. The approach might 

also face challenges in scenarios with severely degraded or non-standard traffic signs, 

where colour and shape information alone might not be sufficient. 

2.2.4 Conclusion 

In conclusion, the integration of colour invariants and enhanced PHOG features 

represents a promising direction for robust traffic sign detection. Future work could 

focus on overcoming the limitations related to the reliance on predefined models and 

exploring more adaptive techniques that can handle a wider range of real-world 

variations in traffic sign appearance. 

2.3 Incremental Framework for Video-Based Traffic Sign Detection, 

Tracking, and Recognition 

The paper by Yuan et al. [12]presents a new approach to traffic sign recognition with a 

unified framework that incorporates detection, tracking, and recognition using video 

data from a camera mounted on the vehicle. This approach addresses several limitations 

of existing TSR systems. 

2.3.1 Existing Practices and Strengths 

Many of the conventional ways in the field of TSR are predominantly based on colour 

segmentation and shape-based detection, which work suitably well under controlled 

situations but fail with the variability observed in actual scenarios. Deep learning 

methods, especially Convolutional Neural Network (CNNs), have made a significant 

leap in accuracy by learning complex features from large data sets, getting results on 

benchmarks like German Traffic Sign Recognition Benchmark (GTSRB) where 

performance is close to human. Techniques such as tracking maintain the consistency 

of detection across frames, thereby leading to a reduction in false positive rates and 

improved localization accuracy. 

2.3.2 Limitations of Current Solutions  

More significantly, deep learning-based models are very computationally demanding 
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and need high-end hardware; hence, the models are less applicable to real-time 

embedded systems. Moreover, many TSR systems mainly focus on single-image 

processing and neglect the temporal information during video processing, which causes 

inconsistency in dynamic environments. Simplistic motion models applied for tracking 

may not work with sudden changes in vehicle motion. 

 

Figure 2.3.2.1 Shows the various scenarios in which traffic signs may appear 

 

Figure 2.3.2.2 Shows the appearance changes of traffic signs caused by occlusion and 

illumination 

2.3.3 Contributions of the Paper  

The proposed framework can address the limitations raised with the combination of 

detection, tracking, and recognition in a single system. It is based on an incremental 

learning approach that operates in real time and can adapt to the changes in the 

environment online without any requirement for time-consuming retraining. For 
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accuracy improvement of detections, spatial distribution priors based on typical traffic 

sign locations are employed. For the increase of the localization accuracy and 

improvement of robustness of the system in a non-stationary environment, Kalman 

filtering together with online sample collection is used. 

 

Figure 2.3.3.1 Overview of the components of TSR framework 

Although effective, it is consequently true that to catch indications from unusual 

locations, like those presented during complex manoeuvres, flexibility is limited in 

relying on spatial priors. The framework is also computationally intensive, albeit much 

more efficient than deep learning models, thus it still needs optimization to work in 

real-time with dense traffic scenarios. 

2.3.4 Conclusion 

This paper reports a significant advance in TSR as it discusses an embedded approach 

for detection, tracking, and recognition in a single adaptive framework. Incremental 

learning of the spatial priors is the developed innovation in the increase of real-time 

performance. However, for much of this work, there is a need for increased spatial 

flexibility and computational efficiency to further the applicability of frameworks such 

as these. 

2.4 Vision-Based Traffic Sign Detection and Recognition Systems 

This paper [13] presents an in-depth survey of existing methodologies for vision-based 

traffic sign detection and recognition systems, summarizing the strengths and 

weaknesses of each. 
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2.4.1 Existing Practices and Solutions 

Colour-based methods are based on the inherent colours of traffic signs, like red, blue, 

and white, to locate regions of interest in images. The key features of signboards are 

their geometry: shape-based methods focus on geometric characteristics of the signs 

through such techniques as Hough transformation and edge detection to identify a given 

shape. These methods are robust to illumination variation but are computationally 

intensive and do not work well under conditions where the signs are partially occluded 

or deformed. 

Hybrid methods combine colour and shape-based features that generally provide more 

accuracy and reliability in the detection part. A hybrid approach is considered more 

accurate due to the usage of colour in restricting the search space for the detection of 

shapes in complicated environments. 

 

Figure 2.4.1 Block diagram of the traffic sign recognition system 

2.4.2 Strengths and Weaknesses 

Colour-based methods are efficient and fast and, therefore, suitable for real-time 

detection but not reliable in varying lighting or when signs are damaged. Shape-based 

methods are usually robust in challenging lighting; however, they are computationally 

intensive and usually do not work very well if the signs are not perfect. Hybrid 

methods may offer some improvement in accuracy but are more difficult to tune and 

can still have significant difficulty when working in dynamic real-world conditions. 

2.4.3 Addressing Limitations 

It will be necessary for research in the future to focus on advanced machine learning 

techniques to investigate deep learning to enhance the adaptability and accuracy of the 
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TSDR system. In principle, a deep-learning technique should handle a larger variety of 

appearances, even in the case when a sign is occluded or damaged. Introducing 

contextual information, like the expected location of a sign, will probably reduce false 

positives and increase reliability in detection. 

In a nutshell, there is a requirement for more research to come up with a way of 

overcoming some of the challenges in existence and enhancing the accuracy and 

reliability of TSDR systems for safer driver assistance. 

2.5 Machine Vision Based Traffic Sign Detection Methods 

This paper [1] presents a fair review of the methodologies used in Traffic Sign Detection 

(TSD) and Traffic Sign Recognition (TSR). The current review classifies existing 

approaches into colour-based approaches, shape-based approaches, machine learning-

based approaches, and LIDAR-based approaches found to be effective in handling 

challenges associated with TSD. These mainly include alterations in lighting conditions, 

signs very small in size, and complicated driving environments. 

2.5.1 Traffic Sign Detection Methods 

Colour-based methods use only the different colour features of traffic signs, such as red, 

blue, and yellow, to segment the regions containing the signs from their backgrounds. 

These methods are widely popular owing to their simplicity and speed, making them 

suitable for real-time applications. They are highly sensitive to lighting variations and, 

in fact, require precise threshold adjustments that may be hurdles to generalization over 

a wide number of settings. Another approach is the use of shape-based methods to detect 

geometric shapes common in traffic signs, with techniques ranging from Hough 

transforms to Fourier descriptors. These methods are relatively robust toward colour 

variations but quite weak when it comes to small or partially occluded signs; moreover, 

the strong dependence on edge detection makes them computationally expensive and 

sensitive to noise. 

Machine learning, and particularly deep learning, has revolutionized the state-of-the-

art development of TSD. Techniques, such as AdaBoost, Support Vector Machines 

(SVM), and Convolutional Neural Networks (CNN), have been implemented to 

improve the accuracy of the sign detection and classification system. Among these 

techniques, CNNs exhibit better performance in learning complex features directly 

from the data; however, they rely on large datasets for training and are computationally 
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expensive, which may compromise real-time applications. In this sense, LIDAR-based 

methods provide a strong solution for robustness against occlusions and variable 

lighting conditions, based on the 3D structure of point cloud data and reflective 

properties. However, such methods often call for accurate recognition, leading to 

integration with camera data, and are currently limited by the scarcity of publicly 

available LIDAR datasets. 

 

Figure 2.5.1.1 Different structures of traffic sign recognition systems 

2.5.2 Strengths and Weaknesses 

Each of these methods has its strengths and weaknesses. Most of the colour-based 



 

18 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

methods are quick and simple but poorly performing under a different variety of 

conditions with respect to lightness. While this shape-based method works well in 

detection of standard shapes, it becomes computationally intense and not so efficient 

with small or unclear signs. Machine learning-based methods are accurate but costly in 

resources, depending on large, annotated datasets. LIDAR-based methods offer 

excellent point detection and are very good at noticing 3D space, although data 

integration and standardization are challenging. Adaptive colour thresholding 

techniques, hybrid methods for shape detection using some form of machine learning, 

optimization of ML models for real-time use, and broadening the LIDAR dataset to 

include more generalization and better benchmarking could be the focus of future 

research to take care of these limitations.  

2.5.3 Conclusion 

The above summary reveals that, despite immense progress in the field of TSD, there 

are still many challenges pertaining to performance optimization across diverse 

environmental conditions and ensuring computational efficiency for real-time 

applications. The future most likely will be the result of hybrid methods using the best 

aspects from different approaches and the development of better comprehensive data 

sets in support of the continued evolution of these technologies. 

2.6 You Only Look Once: Unified, Real-Time Object Detection 

YOLO (You Only Look Once) represents a groundbreaking approach to object 

detection by reframing it as a regression problem that predicts bounding boxes and class 

probabilities simultaneously. Unlike traditional systems such as Deformable Part 

Models (DPM) and region-based frameworks like R-CNN, which rely on multi-stage 

pipelines involving sliding windows or region proposals, YOLO unifies the entire 

detection process into a single convolutional neural network. This innovation 

significantly improves efficiency, enabling YOLO to achieve real-time performance of 

up to 155 frames per second (FPS) while maintaining competitive accuracy[6]. 

Furthermore, YOLO’s ability to process entire images during training and testing 

allows it to capture global contextual information, making it less prone to false positives 

on background regions compared to methods like Fast R-CNN[6]. 
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Figure 2.6.1 The YOLO Detection System 

2.6.1 Strengths and Weaknesses 

One of YOLO’s key strengths lies in its speed, which makes it ideal for applications 

like autonomous driving where low latency is crucial. Its unified architecture 

streamlines object detection, reducing the complexity of training and optimization seen 

in multi-stage systems[6]. YOLO also excels in generalizing across domains, 

performing well even on datasets that differ significantly from its training data, such as 

artwork or abstract imagery[6]. However, despite these advantages, YOLO has notable 

limitations. It struggles with precise localization, particularly for small objects, due to 

its reliance on coarse feature maps and strong spatial constraints. Each grid cell in 

YOLO’s framework predicts only two bounding boxes and one class, which limits its 

ability to detect multiple objects in close proximity[6]. Additionally, its loss function, 

which uses sum-squared error, does not adequately prioritize small bounding box 

errors, reducing its effectiveness in detecting smaller objects[6]. 

 

Figure 2.6.1.1 The Model 

2.6.2Addressing Limitations 
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To address these limitations, enhancements in feature extraction and model design are 

necessary. Incorporating multi-scale feature maps, as seen in SSD (Single Shot 

MultiBox Detector), could improve YOLO’s ability to detect small and overlapping 

objects. Adjusting the loss function to weigh localization errors more effectively based 

on object size would further enhance its performance. Additionally, redesigning the grid 

cell structure to allow more flexible predictions could help in scenarios with dense 

object arrangements. Hybrid models that combine YOLO’s speed and contextual 

reasoning with the precise localization capabilities of methods like Fast R-CNN have 

already shown promise, with experiments demonstrating significant performance 

boosts in mean average precision (mAP)[6]. 

 

Figure 2.6.2.1 ErrorAnalysis: FastR-CNNvs. YOLO 

 

Figure 2.6.3.1 Qualitative Results 

2.6.3 Conclusion 

In conclusion, YOLO is a significant milestone in object detection, offering unmatched 

real-time performance and simplicity. However, addressing its challenges related to 
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small object detection, localization precision, and overlapping objects will make it even 

more robust, especially for safety-critical applications like traffic detection in intelligent 

transportation systems. These improvements could further solidify YOLO’s position as 

a cornerstone in real-time object detection research and deployment[6]. 

2.7 Critical Remarks of Previous Works 

In this section, the strengths and weaknesses of previous works reviewed in this chapter 

against our proposed approach for traffic sign detection and segmentation were 

examined critically. 

Random Forest-Based TSDR (Section 2.1) 

Strengths: 

• Utilizes Random Forests with invariant geometric moments for shape 

classification. 

• Effective against lighting variations. 

Weaknesses: 

• Sensitive to extreme environmental conditions like heavy shadows or faded 

signs. 

• High computational complexity hinders real-time performance. 

Comparison: 

• The proposed solution integrates YOLO11 with traditional methods for 

improved robustness and efficiency. 

Colour Segmentation + PHOG (Section2.2) 

Strengths: 

• Enhances detection accuracy under challenging conditions by combining colour 

invariants with PHOG. 

Weaknesses: 

• Relies on predefined colour models and requires extensive SVM training. 

• Limited effectiveness for non-standard traffic signs. 

Comparison: 

• YOLO11's advanced generalization capabilities address limitations in static 

models. 
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Incremental Framework for Video-Based TSR (Section 2.3) 

Strengths: 

• Integrates detection, tracking, and recognition into a real-time adaptable system. 

• Incorporates robust spatial priors and Kalman filtering. 

Weaknesses: 

• Computationally intensive. 

• Limited flexibility with unusual sign locations. 

Comparison: 

• The hybrid approach optimizes computational demands while ensuring 

detection accuracy. 

Vision-Based Detection (Section 2.4) 

Strengths: 

• Hybrid methods combining colour and shape features demonstrate high 

accuracy in controlled environments. 

Weaknesses: 

• Struggles with occlusions and deformations. 

• Hybrid methods are challenging to tune. 

Comparison: 

• Refined preprocessing and YOLO11 integration improve adaptability and 

accuracy. 

Machine Vision-Based Methods (Section 2.5) 

Strengths: 

• Robust across varied conditions using diverse techniques like colour, shape, 

machine learning, and LIDAR. 

Weaknesses: 

• Colour methods are sensitive to lighting; shape methods are computationally 

expensive. 

• Machine learning methods rely heavily on large datasets. 

Comparison: 

• The proposed system mitigates lighting sensitivity and computational 

inefficiency with a hybrid approach. 
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YOLO (Section 2.6) 

Strengths: 

• Real-time performance with high speed and generalization across domains. 

Weaknesses: 

• Struggles with small or overlapping objects due to coarse feature maps. 

Comparison: 

• Incorporates preprocessing to address small object detection challenges. 

2.7.1 Conclusion 

A comprehensive review of prior works in traffic sign detection reveals a rich 

progression from classical image processing methods to modern deep learning-based 

frameworks. Traditional approaches, including colour thresholding, shape analysis, and 

handcrafted feature extraction, offered foundational insights into sign localization and 

classification, yet struggled under non-ideal conditions such as low illumination, 

occlusion, and background clutter. Furthermore, these methods typically lacked the 

scalability and real-time performance required for deployment in dynamic driving 

environments. 

With the emergence of deep learning architectures, particularly those in the YOLO (You 

Only Look Once) family, a paradigm shift occurred in how object detection is addressed. 

These models, especially the latest iterations such as YOLOv5 and beyond, 

demonstrated superior generalization, faster inference speeds, and robust spatial 

localization capabilities, enabling more accurate and reliable detection even in complex 

traffic scenes. Among these, YOLO11 has emerged as a highly efficient and scalable 

object detection model due to its streamlined backbone, enhanced attention modules, 

and optimized anchor-based prediction strategies. 

The insights gathered from earlier literature were instrumental in shaping the direction 

of this project, which fully embraced the YOLO-based methodology. The limitations of 

traditional approaches underscored the necessity of adopting a model capable of 

learning directly from data with minimal manual intervention, thus allowing for better 

adaptation to varying road conditions, sign deformations, and environmental 

inconsistencies. By leveraging a deep convolutional network trained on a curated and 

diverse dataset, the proposed system addresses the shortcomings observed in prior 
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works, particularly those related to detection robustness and computational overhead. 

In conclusion, the transition toward deep learning-based object detection—epitomized 

by the YOLO11 model—marks a pivotal advancement in the field of traffic sign 

detection. This project aligns with and builds upon this evolution, offering a modernized 

solution capable of delivering high-performance detection in real-time, video-based 

scenarios. The review affirms the obsolescence of earlier methods in favour of more 

scalable, adaptable, and intelligent systems, establishing a strong foundation for future 

development within autonomous driving and intelligent transportation applications. 
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CHAPTER 3 – System Methodology/Approach 

3.1 System Design Overview 

 

Figure 3.1 System Overview 

The process commences with the Annotated Images Dataset Collection, where an 

extensive volume of traffic sign images is sourced and meticulously labelled using 

bounding box annotations compliant with YOLO-format specifications. These images, 

covering a wide array of environmental conditions—including varying illumination, 

occlusion patterns, and diverse road contexts—form the empirical substrate required to 

teach the deep learning model to generalize effectively beyond controlled conditions. 

Following dataset compilation, the system advances to the YOLO11 Model Training 

phase, wherein the annotated data is ingested by the YOLO11 architecture. During this 

stage, the model undergoes supervised learning to optimize its capacity to predict object 

classes and precise spatial locations. Once the training converges, the Trained YOLO11 

Weights are preserved as the learned intelligence that encapsulates the detection 

model’s representational knowledge. 

In the operational inference stage, the system accepts an Input Video, which is 
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segmented into individual image frames for further analysis. The Frame Detection 

module leverages the pretrained YOLO11 weights to execute detection on each frame 

independently. For every input frame, the YOLO11 model conducts inference, 

identifying traffic signs by drawing bounding boxes and assigning corresponding class 

labels and confidence scores. This single-stage detection paradigm ensures high 

throughput without compromising on precision, making it ideal for safety-critical 

autonomous driving applications. 

The final component in the workflow is the Output Annotated Frames, where the 

processed video frames—now embedded with visual detection results—are 

reassembled into a coherent annotated video stream. These outputs provide intuitive 

visualization for performance verification, post-processing analysis, and system 

debugging.  

Altogether, this system design leverages the expressive power of deep convolutional 

neural networks through YOLO11, structured into a logical progression from data-

driven model development to high-fidelity detection in video feeds. Its modular 

decomposition not only facilitates isolated optimization and troubleshooting of each 

subsystem but also lays a foundational framework for future enhancements, including 

real-time deployment, integration with ADAS modules, and multi-sensor fusion. 

3.2 Model Architecture 

The YOLO11 architecture is a state-of-the-art, single-stage object detection model 

designed specifically for real-time detection tasks critical to autonomous driving. By 

integrating advanced convolutional neural networks (CNN) and attention mechanisms, 

YOLO11 efficiently detects and localizes traffic signs from dynamic video streams 

captured by vehicle-mounted cameras. 

At its core, YOLO11 uses a deep CNN backbone enhanced with attention modules, 

which effectively amplify relevant spatial features and suppress irrelevant background 

details. This selective attention capability significantly improves the model’s accuracy 

in identifying small, distant, or partially obstructed traffic signs, which are common 

challenges encountered in realistic driving conditions. 

Figure 3.2.1 below illustrates the YOLO11 model architecture, emphasizing its 
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backbone structure, attention mechanisms, and multi-scale feature integration process: 

 

Figure 3.2.1: YOLO11 Architecture Diagram 

YOLO11 divides each input frame into a grid of cells, where each cell predicts multiple 

bounding boxes alongside confidence scores and class probabilities. These predictions 

rely on adaptively optimized anchor boxes, predefined templates determined through 

clustering methods tailored specifically to typical traffic sign dimensions. This strategic 

optimization enhances the precision of bounding box regression, resulting in accurate 

localization and classification of detected signs. 

To manage overlapping and redundant predictions, YOLO11 incorporates an enhanced 

Non-Maximum Suppression (NMS) algorithm. The improved NMS effectively retains 

the most accurate bounding boxes by considering the confidence scores and 

intersection-over-union (IoU) thresholds, generating clear and actionable detections 

suitable for real-time vehicle decision-making. 

A crucial advancement in YOLO11 is its implementation of a Bidirectional Feature 

Pyramid Network (BiFPN). This sophisticated network fuses detailed spatial 

information from early convolutional layers with high-level semantic information from 

deeper layers, thus effectively detecting signs across various sizes and environmental 

complexities. 

Practical results of YOLO11 detection performance in real traffic scenarios are 

presented in Figure 3.2.2, highlighting the model’s ability to robustly identify multiple 

classes of traffic signs under varying conditions, including different scales and partial 

occlusions: 
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Figure 3.2.2: Examples of YOLO Traffic Sign Detection Results 

In summary, the YOLO11 architecture provides advanced attention-driven feature 

extraction, optimized anchor-box prediction, enhanced NMS strategies, and 

sophisticated multi-scale feature integration. These combined innovations make 

YOLO11 particularly effective for accurate and rapid detection of traffic signs, directly 

contributing to improved safety and operational efficiency in autonomous vehicle 

navigation systems. 
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Chapter 4 - System Design 

4.1 System Module Specifications 

4.1.1 Annotated Images Dataset Collection 

 

Figure 4.1.1 Dataset Collection Module 

In this project, the dataset was sourced and curated through the Roboflow platform, 

employing an iterative refinement strategy that emphasizes data quality, 

representational diversity, and contextual relevance. Rather than relying on a 

monolithic source, the dataset was meticulously assembled by cloning only the most 

relevant and contextually valid images from multiple existing datasets, each of which 

contributes distinct scenarios, sign types, and environmental conditions. This selective 

cloning mechanism ensured the exclusion of noisy, redundant, or semantically 

ambiguous samples while preserving only those instances that meet stringent criteria 

for annotation completeness, label clarity, and visual interpretability. 
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Upon collection, the data pipeline progresses to the dataset analysis stage, where the 

curated images undergo visual inspection and statistical verification. Each image is 

annotated with precise bounding boxes and class labels according to YOLO 

specifications, forming the structured basis for supervised learning. Special attention is 

given to maintaining inter-class balance to mitigate the model's tendency toward bias 

and class imbalance—a common pitfall in object detection tasks involving traffic signs 

with inherently skewed occurrence rates. 

 

Figure 4.1.1.1 Splitting Dataset 

Following validation, the images are partitioned through a controlled dataset splitting 

process. As configured within Roboflow and verified in Figure 4.1.1.1, the dataset is 

divided into a training set comprising 6670 images (80%), a validation set of 1028 

images (12%), and a test set of 650 images (8%). This proportional division ensures 

that the model receives an ample volume of diverse training data while preserving 

enough unseen samples for reliable validation and performance benchmarking. The 

splitting algorithm used ensures stratified distribution, such that the frequency of each 

traffic sign class is proportionally maintained across all three subsets. 
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Figure 4.1.1.2 Dataset Preprocessing 

Subsequently, the dataset undergoes data preprocessing, which is designed to 

standardize input dimensions and image orientation, thereby facilitating stable model 

convergence during training. Each image is subjected to auto-orientation correction 

followed by resizing to a fixed resolution of 640×640 pixels, as shown in Figure 4.1.1.2. 

This resolution was chosen to align with the input requirements of the YOLO11 

architecture, striking an optimal balance between feature resolution and computational 

efficiency. 
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Figure 4.1.1.3 Dataset Augmentation 

To further enhance model generalization and resilience against real-world perturbations, 

data augmentation techniques are applied to the training set. As detailed in Figure 

4.1.1.3, the augmentation pipeline includes controlled cropping (0% minimum zoom, 

30% maximum zoom), rotation within the range of –10° to +10°, exposure adjustments 

from –15% to +15%, and a blur filter up to 2 pixels. These augmentations are 

algorithmically applied to synthetically diversify the training data, simulating a wide 

array of real-world conditions such as motion blur, lighting variation, and angular 

displacement. The intention is not merely to increase data volume, but to cultivate a 

model that is resilient, adaptable, and highly tolerant to noise and distortion, as typically 

encountered in in-the-wild driving environments. 
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Figure 4.1.1.4 Final Daset Size Calculation 

As a direct result of this augmentation pipeline, the total dataset size expanded 

substantially. Specifically, the original 6670 training images were transformed into 

three augmented variants per image, resulting in an effective training subset of 

approximately 20,010 samples. When combined with the untouched validation set 

(1028 images) and test set (650 images), the final post-augmentation dataset comprises 

up to 21,688 image instances. This enlarged dataset plays a critical role in regularizing 

the model, enriching its training exposure, and fostering high generalization accuracy 

across varying spatial, temporal, and lighting conditions. 

4.1.2 YOLO11 Model Training Module 

 

Figure 4.1.2 YOLO11 Model Training Module 
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Figure 4.1.2.1 Download Dataset from Roboflow 

The training phase initiates with the downloading of a combined traffic sign dataset 

hosted on the Roboflow platform. The dataset is programmatically accessed through 

the Roboflow API, specifying version control and compatibility with the YOLOv11 

format. This dataset, which has undergone extensive preprocessing, class balancing, 

and augmentation as detailed in Section 4.1.1, is used to train the model from a 

foundational checkpoint based on yolo11m.pt—a medium-sized variant of YOLO11 

pre-trained on a general-purpose object detection corpus. 

 

Figure 4.1.2.2 Training YOLO model 

Model training is conducted using the YOLO CLI interface with the following key 

hyperparameters: epochs=40, imgsz=640, batch=16, and the model="yolo11m.pt" 

flag to specify the initialization weights. The training command is executed in Colab 

using GPU acceleration, and the training results—including best-performing weights, 

loss curves, and evaluation metrics—are saved under the project directory 

/runs/detect/train. During training, the model iteratively optimizes its parameters 

using a default AdamW optimizer, minimizing a compound loss function comprising 

bounding box regression loss, object confidence loss, and classification loss. 

The YOLO11 model’s optimization routine is guided by backpropagation and 

stochastic gradient-based updates, iterating over mini-batches of size 16. Each batch 

feeds forward through the convolutional network, produces predictions for bounding 

boxes and class probabilities, computes error signals based on ground truth 

annotations, and backpropagates gradients to update network weights accordingly. 
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Over 40 epochs, the model converges to a local minimum where its performance on 

both training and validation sets is maximized. 

Throughout the training process, model checkpoints are periodically saved, and 

performance metrics are monitored on the validation set. Upon the completion of the 

training routine, the system identifies the optimal model state—corresponding to the 

lowest validation loss or highest mAP—and exports this configuration as best.pt. This 

file encapsulates the learned representations of traffic sign characteristics and serves as 

the final output of the training module. 

4.1.3 Video-Based Inference Module 

 

Figure 4.1.3 Video-Based Inference Module 
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The video-based inference module constitutes the operational deployment layer of the 

traffic sign detection system, wherein the trained YOLO11 model (best.pt) is utilized to 

perform object detection on traffic signs from video input. This module is designed to 

transform continuous video streams into frame-wise visual insights, enabling the model 

to interpret, localize, and annotate traffic signs encountered in dynamic environments. 

It is the culmination of the prior data preparation and model training stages and serves 

as the interface through which detection results are rendered for both analysis and 

demonstration. 

The inference process begins with the acquisition of a pre-recorded video stream that 

simulates a vehicular driving scenario. The video, once loaded into the system, is 

decomposed into a sequential set of static image frames. Each of these frames is treated 

as an individual inference unit, decoupling temporal continuity in favour of spatial 

object recognition. This design decision simplifies implementation while ensuring that 

each frame is independently processed, preserving inference stability even in the 

presence of motion blur or sudden scene transitions. 

 

Figure 4.1.3.1 Inference Process 

The core of the module is the YOLO11 detection engine, which accepts each video 

frame as input and performs bounding box regression, objectness estimation, and class 

probability assignment based on the parameters encoded in the trained weights. The 

detection model infers the presence and category of traffic signs in the frame, returning 

coordinates for each detected object along with a corresponding confidence score. To 

reduce visual noise and false positives, the outputs are filtered using non-maximum 

suppression (NMS), which retains only the most confident detection for overlapping 

bounding boxes. 
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Figure 4.1.3.2 Example of Annotated Frames 

Once processed, the inference results are visually overlaid onto the original frames. 

Each detected traffic sign is enclosed in a bounding box, labelled with its class name 

and confidence score. The annotated frames are then recompiled into a coherent video 

stream that mirrors the original input but is enriched with semantic interpretation. The 

final output video is encoded using standard codecs (e.g., H.264 via FFmpeg) and stored 

in a compressed format for evaluation, visualization, or downstream application in 

intelligent transportation systems. 

 

Figure 4.1.3.3 Code to Compressed Inference Video  



 

38 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

CHAPTER 5 – System Implementation 

5.1 Hardware Setup 

The hardware used for the project is a laptop with high-performance specifications 

suitable for intensive image processing tasks. The detailed specifications of the 

hardware used are listed below: 

Table 5.1 Laptop Specifications 

Brand Predator PHN16-71 

Operating System Microsoft Windows 11 Home Single Language (x64) 

Processor (CPU) 13th Gen Intel(R) Core (TM) i7-13700HX @ 2.10 GHz 

Graphics (GPU) NVIDIA GeForce RTX 4060 Laptop (AD107M/GN21-X4) 

Memory (RAM) 2x16GB DDR5 SDRAM 2400MHz 

Storage 2x1TB SSD WD PC SN810 SDCQNRY-1T00-1014 

5.2 Software Setup 

The software setup for this project is critical to ensure that the system can efficiently 

handle large datasets and accurately detect and segment traffic signs. The project is 

developed in a Python environment, leveraging open-source libraries specifically 

designed for computer vision tasks. The development was conducted using Google 

Colab, a cloud-based Jupyter Notebook environment, which provided an interactive 

environment ideal for iterative testing, visualization, and refinement of the algorithms 

with the access to GPU and TPU resources, making it ideal for machine learning and 

deep learning tasks. 

Below is a detailed table summarizing the software tools and libraries used in the 

system implementation: 

 

Table 5.2 Software Specifications 
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Category Description Version 

Operating 

System 

Microsoft Windows 11 Home Single Language 

(x64) 

22H2 (Build: 

22621.2134) 

Programming 

Language 
Python 3.10 3.10.12 

Development 

Environment 
Google Colab with Jupyter Notebook 

6.5.5 

(notebook 

version) 

Libraries 

- OpenCV: For image processing tasks 4.10.0 

- NumPy: For numerical computations and matrix 

operations 
1.26.4 

 

- Matplotlib: For visualizing images and bounding 

boxes 

 

3.8.0 

Libraries 

- ultralytics: For implementing with the YOLO 

model 
8.3.40 

Model 

Architecture 
YOLO11 YOLO11m 

Dataset fyp-combined-dataset (Managed via Roboflow) v2 

 

Libraries 

OpenCV (Open Source Computer Vision Library) is a powerful and popular open-

source library for computer vision and image processing tasks. It contains a 

comprehensive set of functions for image manipulation, filtering and more, making it 

the best choice for developing our project. Especially in colour space conversions, edge 

detection algorithms (like Canny), contour analysis, and bounding box generation will 

be utilised in our project. 

Development Environment 
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Google Colab is a free cloud-based platform that allows users to write and execute 

Python code in a Jupyter Notebook environment. It provides access to powerful 

hardware accelerators like GPUs and TPUs, which can significantly speed up 

computations, especially for deep learning tasks. Colab integrates seamlessly with 

Google Drive, making it easy to manage and share files. It also supports collaboration, 

allowing multiple users to work on the same notebook simultaneously. With pre-

installed libraries and an easy-to-use interface, Google Colab is an excellent tool for 

data scientists, researchers, and developers looking to leverage the power of cloud 

computing for their projects. 

Dataset Management 

Roboflow is a cloud-based computer vision platform designed to streamline the end-to-

end workflow of dataset management, model training, and deployment for object 

detection, classification, and segmentation tasks. In the context of this project, 

Roboflow plays a pivotal role in the curation, preprocessing, augmentation, and 

formatting of the annotated image dataset used to train the YOLO11 detection model. 

It provides an intuitive interface and API support for importing diverse image sources, 

applying consistent annotations, and automatically generating YOLO-compatible 

dataset structures. Through its built-in tools, the platform enables users to perform 

critical preprocessing operations such as image resizing and auto-orientation, as well as 

advanced augmentation techniques like rotation, cropping, exposure correction, and 

blur simulation. Moreover, Roboflow facilitates seamless dataset version control and 

automated splitting into training, validation, and test sets, ensuring class-balanced 

partitions essential for supervised learning. Overall, Roboflow serves as the data 

backbone of this project, enabling a scalable and reproducible pipeline for high-quality 

dataset preparation in support of deep learning-based traffic sign detection from video. 

5.3 Setting and Configuration 

The training process was conducted on the Google Colab Pro platform, leveraging a 

high-performance NVIDIA A100 GPU backend, which enabled efficient parallelized 

training using mixed-precision arithmetic. The YOLO11 model architecture was 

instantiated using the Ultralytics implementation and initialized with the pretrained 

weight file yolo11m.pt—a medium-complexity model offering a balance between 

speed and accuracy. The annotated image dataset, prepared and augmented via the 
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Roboflow platform, was downloaded in YOLOv11-compatible format and included 18 

distinct traffic sign classes, pre-stratified into training, validation, and testing subsets. 

The training hyperparameters were configured as follows:  

Table 5.3 Model training parameters 

Parameter Value 

imgsize 640x640 

Batch 16 

epochs 40 

lr0 0.01 

The default AdamW optimizer was employed, which utilizes adaptive learning rates in 

conjunction with decoupled weight decay regularization, ensuring stable and efficient 

convergence during backpropagation. The model was trained using YOLO’s CLI 

interface in task=detect mode, with full logging enabled for performance tracking. 

Inference was conducted on the same platform, using the best-trained model checkpoint 

(best.pt) derived from the training phase. During inference, video files were 

decomposed into frames and passed sequentially through the YOLO11 model using a 

confidence threshold of 0.25, with non-maximum suppression (NMS) activated to 

eliminate redundant bounding boxes. The system generated annotated video outputs 

with detected traffic signs clearly enclosed in labelled bounding boxes, preserving 

detection fidelity across frames. 

All system paths, including dataset directory references and export locations for 

weights and videos, were configured relative to the Colab working directory and 

integrated with Google Drive for persistent storage. This configuration not only ensured 

reproducibility across training sessions but also facilitated streamlined transfer of 

outputs between local and cloud-based environments. 

5.4 System Operation 

The operational execution of the traffic sign detection system is conducted in a 

structured sequence that transitions the trained YOLO11 model from a passive weight 

file (best.pt) into an active inference engine capable of processing and interpreting 
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visual input from video streams. This system operation was carried out within the 

Google Colab environment, taking advantage of its integrated GPU acceleration, 

seamless directory management, and support for media rendering. The following 

subsections delineate the procedural steps undertaken during system execution, 

supported by appropriate visual documentation. 

Figure 5.4.1 Colab execution cell running YOLOv11 prediction command 

Figure 5.4.2 Console output showing path to output video 

The process initiates with the mounting of Google Drive within the Colab workspace 

to access the trained model weights and the inference video files. After initializing the 

YOLO environment via the Ultralytics library, the system loads the best.pt checkpoint 

and configures the detection task. A pre-recorded video—representing a simulated 

driving scenario—is provided as input. The video is then segmented into individual 

frames, which are passed sequentially through the YOLO11 detection pipeline. Each 

frame is evaluated independently, allowing for spatially localized detections without 

temporal dependency. 
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Figure 5.4.3 Sample frame from the output video showing bounding boxes on 

detected traffic sign 

Once inference is complete for each frame, the system overlays the bounding boxes and 

class labels corresponding to the detected traffic signs. The predictions are visually 

encoded using color-coded annotations and confidence scores, thereby enabling rapid 

human interpretability of detection performance. After all frames are processed, the 

annotated outputs are recompiled into a video stream using FFmpeg and saved in .mp4 

format for efficient compression and playback. 

Figure 5.4.4 Compressed output video 

The output video is automatically stored in the specified Google Drive directory 

(/PredictedVideos/) to allow for persistence beyond session expiration. To improve 
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accessibility and reduce storage footprint, the final annotated video is transcoded using 

the H.264 codec and compressed without loss of detection fidelity. The result is a fully 

processed visual demonstration of traffic sign detection applied to real-world video 

input. 

5.5 Implementation Issues and Challenges  

Despite the structured methodology and the systematic deployment of modern deep 

learning tools, the implementation of the traffic sign detection system was not devoid 

of technical intricacies and unforeseen impediments. As is characteristic of data-driven 

systems operating at the intersection of real-world perception and artificial intelligence, 

the challenges encountered during this project spanned across multiple phases of the 

development lifecycle—ranging from data acquisition and model training to inference 

stability and output fidelity. 

A significant early-stage challenge arose during the dataset curation and annotation 

phase, particularly due to the diversity and inconsistency inherent in traffic sign datasets 

sourced from open repositories. While the Roboflow platform provided an invaluable 

interface for dataset assembly and augmentation, it was observed that many original 

datasets featured poorly annotated samples, ambiguous class definitions, or 

underrepresented categories. This necessitated a selective cloning and manual 

inspection process to ensure only semantically meaningful and structurally complete 

images were included. The problem of class imbalance further complicated the dataset 

design, as several rare traffic signs—though critical in real-world scenarios—were 

sparsely represented, thus threatening to introduce learning bias into the model. 

During the training phase, the model initially demonstrated instability in convergence 

behaviour. Fluctuating validation loss and inconsistent mAP scores were observed 

across early epochs, which suggested the presence of noisy labels and overly aggressive 

augmentations that distorted key sign features beyond interpretability. 

The inference module also presented non-trivial complexities, particularly in the 

context of frame-by-frame processing of high-resolution videos. Variations in frame 

lighting, occlusions, and motion blur frequently tested the robustness of the trained 

YOLO11 model, occasionally resulting in false negatives—especially for signs 

positioned at oblique angles or partially truncated. While the system performed 
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admirably under most conditions, these edge cases highlighted the need for future 

integration of temporal smoothing techniques or multi-frame consensus mechanisms to 

enhance detection reliability in video streams.   
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CHAPTER 6 – System Evaluation and Discussion 

6.1    System Testing and Performance Metrics 

To substantiate the efficacy and operational readiness of the developed traffic sign 

detection system, a rigorous system testing phase was conducted using the final trained 

YOLO11 model. The model was evaluated on a reserved validation set comprising 

unseen data, thereby offering an unbiased estimate of generalization capacity and 

detection fidelity under practical conditions. The evaluation relied on a suite of standard 

object detection metrics, including Precision, Recall, mean Average Precision at IoU 

threshold 0.50 (mAP@50), and mean Average Precision across IoU thresholds from 

0.50 to 0.95 (mAP@50–95). 

At the conclusion of training (Epoch 40), the system achieved a precision of 96.83%, a 

recall of 97.33%, and an exceptionally high mAP@50 of 98.67%, reflecting a strong 

ability to correctly localize and classify most traffic signs within the validation set. The 

more stringent mAP@50–95 score of 90.83% further affirmed the model’s robustness 

across various IoU thresholds, indicating a high level of consistency in detecting signs 

of varying scales and positional offsets. 

The loss components at the final epoch also converged effectively, with a bounding box 

loss of 0.4366, classification loss of 0.2236, and distribution focal loss (DFL) of 0.9504, 

suggesting that the model had reached an optimized state with no signs of overfitting. 

The performance progression over training epochs is illustrated in Figure 6.1.1, which 

shows the decreasing loss curves and upward trend in precision and mAP metrics across 

the 40-epoch timeline. 
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Figure6.1.1 YOLO11 training performance overview—loss convergence and mAP 

progression across epochs 

To further contextualize model behaviour, the confusion matrix presented in Figure 

6.1.2 offers insight into class-specific detection performance. It highlights strong 

diagonal dominance, indicating high precision across most classes, though minor 

confusion is noted between semantically and visually similar signs such as "No Entry" 

and "No U-Turn." 

 

Figure 6.1.2 Confusion matrix showing class-wise detection accuracy and inter-class 

misclassifications 
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The normalized confusion matrix, shown in Figure 6.1.3, aids in interpreting relative 

performance by visualizing the proportion of correct predictions per class. 

 

Figure 6.1.3 Normalized confusion matrix representing per-class detection 

proportions 

In addition, the precision-recall (PR) curve in Figure 6.1.4 further demonstrates the 

model’s discriminative capacity across traffic sign categories, with most classes 

achieving high area-under-curve (AUC) values, reinforcing the reliability of prediction 

confidence. 
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Figure 6.1.4 Precision–Recall (PR) curves across all detected classes 

Complementary to the PR curve, the F1 score curve in Figure 6.1.5 confirms the 

model’s balanced performance between precision and recall for each class, particularly 

emphasizing stable performance on critical regulatory signs. 

 

Figure 6.1.5 F1-score per class, reflecting the harmonic balance between precision 

and recall 

To qualitatively assess detection integrity, a series of validation predictions were 

visualized. As shown in Figure 6.1.6, the system demonstrates consistent localization 
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of traffic signs across diverse scene contexts. Each bounding box is rendered with its 

predicted class and confidence score, aligning accurately with ground truth annotations 

and affirming spatial alignment. 

 

Figure 6.1.6 Sample validation predictions (val_batch0_pred.jpg)—bounding boxes 

and class labels rendered on test frames 

Collectively, these results underscore the YOLO11 model’s high detection precision, 

spatial sensitivity, and classification reliability in video-derived traffic sign detection. 

The synergy between quantitative metrics and visual evidence confirms the system’s 

readiness for integration into intelligent perception modules within autonomous vehicle 

architectures, subject to future real-time testing and platform-specific optimization. 

6.2 Objectives Evaluation 

The first objective was to curate and preprocess a high-quality image dataset 

comprising 18 traffic sign classes under varied environmental conditions, including 

different lighting, occlusions, and backgrounds. This goal was systematically fulfilled 



 

51 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

through the integration of Roboflow as the dataset management and augmentation 

platform. Traffic sign images were selectively cloned from multiple publicly available 

sources and then meticulously labelled to ensure semantic consistency and bounding 

box precision. The dataset was further enriched through controlled augmentation 

strategies—such as exposure adjustment, rotation, blur simulation, and cropping—to 

simulate environmental variability without compromising structural integrity. This 

preprocessing effort produced a robust, class-balanced dataset with sufficient variance 

to train a generalizable model, thereby achieving the intended data quality and diversity. 

The second objective was to train and fine-tune the YOLO11 model using the prepared 

dataset, optimizing for detection performance through data augmentation, 

hyperparameter tuning, and iterative model validation. This was successfully realized 

through a well-calibrated training process conducted over 40 epochs using Google 

Colab’s A100 GPU backend. The model was initialized with pretrained yolo11m.pt 

weights and configured with a batch size of 16 and image resolution of 640×640. 

Augmented data was incorporated directly into the training loop to improve robustness, 

while training parameters such as learning rate and optimizer settings were selected to 

ensure efficient convergence. The final model exhibited low loss values and consistent 

learning trends, confirming that both the training and fine-tuning objectives were 

rigorously met. 

The third objective aimed to evaluate the trained model using industry-standard 

performance metrics, including precision, recall, mean average precision (mAP), F1-

score, and Intersection over Union (IoU), ensuring the system’s reliability and 

robustness across different sign categories. The model's performance was assessed 

using a dedicated validation set, yielding a precision of 96.83%, recall of 97.33%, 

mAP@50 of 98.67%, and mAP@50–95 of 90.83%, in addition to favourable class-

specific F1-scores. These results, supported by detailed confusion matrices and PR/F1 

curves, provided quantitative evidence of the model’s capability to detect, localize, and 

classify traffic signs across diverse categories with exceptional accuracy. Thus, the 

system’s evaluation phase fully satisfied the performance assessment criteria outlined 

in the objective. 

Finally, the fourth objective was to apply the trained model to frame-by-frame detection 
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tasks on recorded video feeds, analysing system behaviour in realistic driving scenarios 

and assessing generalization capability in dynamic visual environments. This was 

achieved through the implementation of a video-based inference module that 

decomposed recorded driving scenes into individual frames and processed each using 

the YOLO11 detection engine. The model consistently rendered accurate bounding 

boxes and class labels, even under challenging conditions involving motion blur, 

occlusions, and non-uniform lighting. Output videos demonstrated high detection 

fidelity, validating the system’s functionality in temporally disjointed, spatially 

dynamic contexts representative of real-world applications. 
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Chapter 7: Conclusion and Recommendation  

7.1 Conclusion  

This project commenced with the careful curation and refinement of a traffic sign 

dataset composed of 18 classes, derived from open-access sources and augmented using 

the Roboflow platform. The emphasis was placed on dataset fidelity, annotation 

precision, and visual variability, thus ensuring that the model would be trained under 

conditions reflective of actual road scenes. Preprocessing procedures including resizing, 

orientation correction, and normalization were coupled with augmentation techniques 

such as blur, exposure shifts, and rotational distortion to simulate realistic visual 

challenges while preserving the semantic core of each sign. 

The core of the detection framework centred around the YOLO11 architecture, 

initialized with pretrained weights and fine-tuned over a structured training regime 

spanning 40 epochs. The training phase yielded a model capable of high-performance 

detection, achieving a precision of 96.83%, a recall of 97.33%, and a mean Average 

Precision (mAP@50) of 98.67%, with a generalization score (mAP@50–95) of 90.83%. 

These results, validated on an unseen test set, substantiate the model’s ability to reliably 

detect and classify traffic signs even under visual variability and moderate occlusion. 

Furthermore, these metrics were complemented by a series of confusion matrices, PR 

and F1 curves, and bounding box overlays, all of which confirmed the operational 

integrity of the model. 

The video-based inference module further demonstrated the functional feasibility of 

deploying the trained model in a frame-by-frame processing pipeline. Video sequences 

simulating real-world vehicular navigation were successfully analysed, with the 

YOLO11 model reliably identifying and labelling traffic signs in each frame. Output 

videos were generated with bounding boxes and class labels rendered on-screen, 

confirming both the spatial alignment and the semantic correctness of the model’s 

predictions. These demonstrations serve as visual validation of the system’s 

applicability in intelligent transportation ecosystems. 

Throughout the implementation, several challenges were encountered—including 

limitations in dataset class balance, sensitivity to augmentation extremes, and 

constraints imposed by the cloud-based development environment. However, each of 
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these obstacles contributed to a deeper understanding of system parameters, guiding 

incremental refinements that ultimately led to a robust and scalable solution. The 

resulting system represents not only a successful technical artifact but also a blueprint 

for how deep learning techniques can be pragmatically applied to address one of the 

many perception problems in autonomous vehicle development. 

In sum, the project has fulfilled all its core objectives, delivering a fully functional, 

quantitatively validated, and qualitatively demonstrated system for traffic sign 

detection from video. It offers practical insights into the synthesis of data preparation, 

model training, and deployment strategies within a constrained yet realistic research 

and development context. As such, it serves as both a proof of concept and a 

springboard for further innovations in autonomous visual perception systems. 

7.2 Recommendation 

While the system developed herein has demonstrated commendable levels of accuracy 

and operational robustness, several avenues for enhancement remain open and merit 

further exploration. These recommendations are offered not as remedies for failure, but 

as prospective optimizations to push the boundaries of what the system may achieve 

under more demanding, real-world conditions. 

Firstly, the current system relies solely on frame-by-frame analysis, which, while 

effective, does not exploit temporal continuity—a key feature of video data. Future 

iterations could incorporate recurrent or transformer-based modules to enable temporal 

tracking, allowing the system to remember sign positions across multiple frames and 

enhance detection under occlusion or transient visual noise. This would be particularly 

beneficial for handling blurred or momentarily obstructed signs in fast-moving scenes. 

Secondly, while the model was trained on an image dataset constructed from diverse 

sources, the geographic and regulatory scope of traffic signs remains limited to a 

controlled subset. Expanding the dataset to include region-specific variants (e.g., 

European triangular warnings, Japanese pictorial signs) and non-standard signs would 

enhance the system’s generalizability and move it closer to real-world deployment 

readiness in global contexts. This expansion would also necessitate the integration of 

multilingual or symbol-sensitive classification layers capable of interpreting context-

rich signage. 



 

55 
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

 

Another critical recommendation involves real-time deployment on embedded systems. 

While Google Colab offers an ideal environment for rapid prototyping, operational 

deployment in autonomous vehicles demands hardware-optimized models running on 

edge devices such as NVIDIA Jetson or Raspberry Pi with Coral TPU. Converting the 

YOLO11 model to TensorRT or ONNX format and benchmarking it under latency and 

power constraints would provide meaningful insights into the system’s viability in real-

time ADAS architectures. 

In conclusion, while the project has reached a successful milestone, the broader journey 

of deploying robust, adaptive, and globally scalable traffic sign detection systems 

remains ongoing. The recommendations offered herein lay a roadmap for this continued 

advancement, reinforcing the role of computer vision as a cornerstone in the 

development of safer, smarter, and more autonomous vehicles.  
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