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ABSTRACT

Traffic sign detection from video plays a vital role in enhancing the safety and decision-
making capabilities of autonomous vehicles and Advanced Driver Assistance Systems
(ADAS). This project focuses on the development of a robust deep learning-based
detection system utilizing the latest YOLO11 model to identify and classify traffic signs
from recorded video feeds. The system was trained using a carefully prepared dataset
consisting of 21,688 images across 18 traffic sign classes, collected under various real-

world conditions such as illumination changes and occlusions.

The YOLO11 model was fine-tuned through data augmentation and hyperparameter
optimization to maximize detection accuracy and model generalization. The final model
demonstrated strong performance, achieving a precision of 96.8%, recall of 97.3%,

mAP@50 of 98.7%, and mAP@50-95 of 90.8%.

The project concludes with the successful implementation of an efficient and scalable
traffic sign detection framework that supports high reliability. The findings contribute
to the field of computer vision and intelligent transportation by demonstrating the
effectiveness of the YOLOI11 model in detecting traffic signs under challenging
conditions. This work serves as a foundation for further enhancements in autonomous

navigation and real-world deployment of intelligent perception systems.

Area of Study: Computer Vision

Keywords: Deep Learning, YOLO11, Traffic Sign Detection, ADAS, Object Detection
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CHAPTER 1 -INTRODUCTION
1.1 Background Information

Traffic signs are essential visual indicators that communicate regulatory, warning, and
guidance information to road users, forming a critical part of traffic control systems
worldwide. They are designed with standardized shapes, colours, and symbols to ensure
immediate recognition and interpretation by drivers under varying conditions. In the
context of autonomous vehicles and Advanced Driver Assistance Systems (ADAS), the
reliable detection and classification of traffic signs is a prerequisite for safe and
intelligent navigation. The ability to perceive and interpret these signs correctly enables
the vehicle to make context-aware decisions, such as adjusting speed, yielding at

intersections, or avoiding prohibited turns.

Traditional approaches to traffic sign detection have relied heavily on colour-based
segmentation and shape-based filtering techniques. While these methods are
computationally lightweight and intuitive, they are often sensitive to environmental
variables such as changes in illumination, weather conditions, and partial occlusions.
These limitations restrict their applicability in real-world scenarios, especially in

dynamic and unstructured environments.

Recent advancements in deep learning have transformed object detection
methodologies, offering powerful alternatives through convolutional neural networks
(CNN5s) capable of learning spatial hierarchies of features directly from raw input data.
Among these, the "You Only Look Once" (YOLO) family of models has emerged as a
leading solution for real-time object detection, combining speed and accuracy in a
single-stage architecture. YOLOI11, the latest iteration in this series, introduces
architectural optimizations that enhance detection performance while reducing
computational complexity. It processes images holistically, allowing it to retain global
context and achieve high mean average precision (mAP) even in dense or complex

Scencs.

In this project, the YOLO11 model is leveraged to build a video-based traffic sign
detection system. The model is trained on a large, labelled dataset of traffic sign images
encompassing 18 classes, and then applied to analyse individual frames from video

feeds. This approach ensures not only accurate sign recognition under challenging

A-1
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conditions but also paves the way for future integration into intelligent transportation

systems, supporting the broader vision of fully autonomous driving.

1.2 Problem Statement and Motivation

With the rapid increase in the number of vehicles on the road, the risk of accidents due
to human error has also grown. Manually driving cars poses several challenges, as
drivers may overlook critical traffic signs due to factors like fatigue, distractions, or
environmental conditions. These oversights can lead to dangerous situations, including
speeding or missing stop signs, resulting in accidents that can cause serious injuries or

fatalities.

In response to these challenges, the development of Advanced Driver Assistance
Systems (ADAS), which includes features like traffic sign detection, has become
essential. However, many existing traffic sign detection systems often fail under
varying environmental conditions such as low visibility, poor lighting, or worn-out
signs. These failures can lead to incorrect decisions by both human drivers and
autonomous systems, further increasing the risk of accidents. Therefore, there is an
urgent need for a reliable traffic sign detection system that can operate effectively across
a wide range of conditions to ensure the safety of all road users and support the

development of autonomous driving technologies.

This project aims to address these challenges by developing a robust traffic sign
detection system that improves detection accuracy under adverse conditions, thereby

reducing the rate of traffic-related accidents and enhancing the functionality of ADAS.

1.3 Project Objectives

The primary objective of this project is to develop a robust and efficient traffic sign
detection system using the YOLOI11 deep learning model, optimized for processing
video feeds in the context of autonomous vehicle environments. The system is designed
to accurately identify and localize a wide range of traffic signs—such as regulatory,
warning, and advisory types—within video frames, ensuring high detection accuracy

and resilience under diverse real-world conditions.

To achieve this overarching goal, several specific objectives have been defined:
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e To curate and preprocess a high-quality image dataset comprising 18 traffic sign
classes under varied environmental conditions, including different lighting,
occlusions, and backgrounds.

e To train and fine-tune the YOLOI11 model using the prepared dataset, optimizing
for detection performance through data augmentation, hyperparameter tuning, and
iterative model validation.

e To evaluate the trained model using industry-standard performance metrics,
including precision, recall, mean average precision (mAP), Fl-score, and
Intersection over Union (IoU), ensuring the system’s reliability and robustness
across different sign categories.

e To apply the trained model to frame-by-frame detection tasks on recorded video
feeds, analysing system behaviour in realistic driving scenarios and assessing

generalization capability in dynamic visual environments.

Through these objectives, the project aims to deliver a scalable, image-trained traffic
sign detection system capable of supporting future research and practical deployment

within intelligent transportation frameworks and ADAS modules.

1.4 Project Scope

This project is dedicated to the development of a robust, deep learning-based image
processing system for detecting and recognizing traffic signs from video feeds, with a
specific emphasis on applications in autonomous vehicles and intelligent driver
assistance. The system is exclusively built upon the YOLOI11 object detection
framework, selected for its state-of-the-art performance, architectural efficiency, and
proven scalability in complex environments. The central objective is to design and
implement a complete detection pipeline that utilizes a YOLO11 model trained on
annotated traffic sign images, which is then deployed to perform inference on individual

frames extracted from recorded videos.

The project encompasses the full system development lifecycle, including dataset
acquisition and preparation, model training, hyperparameter tuning, validation,
performance benchmarking, and final application to traffic sign detection in video
streams. A real-world dataset containing 18 distinct traffic sign classes was curated for

the training phase, featuring diverse environmental conditions such as variable lighting,

3
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partial occlusions, and multiple sign orientations. The model was trained solely on static
images, while its detection capabilities were validated on pre-recorded video clips

through frame-by-frame analysis.

The project scope excludes real-time implementation, deployment on embedded
vehicular platforms, and the integration of system outputs with vehicular control
modules. Furthermore, it does not aim for comprehensive global sign generalization but
instead concentrates on widely encountered regulatory and warning signs within the
dataset’s context. Assumptions include the availability of video and image data of
sufficient resolution and quality, as well as the presence of traffic signs adhering to
standard design conventions. These boundaries are designed to ensure technical focus
while delivering a scalable and reliable foundation for future integration into Advanced

Driver Assistance Systems (ADAS) and autonomous navigation technologies.

1.5 Contribution

The development of a reliable traffic sign detection system holds considerable
significance in the evolution of autonomous vehicles and Advanced Driver Assistance
Systems (ADAS), where safety, responsiveness, and environmental awareness are
paramount. In this context, the project contributes to the field of intelligent
transportation by presenting a complete deep learning-based solution capable of

detecting traffic signs from video feeds with high accuracy and efficiency.

The use of the YOLOI11 model as the core of the system introduces substantial
improvements over conventional detection methods, owing to its high detection
precision, and adaptability across diverse environmental conditions. By training the
model exclusively on a curated image dataset and applying it to analyse video frames,
the project demonstrates a scalable and modular pipeline that bridges the gap between

offline learning and real-world visual inference.

The project’s significance also lies in its practical orientation—emphasizing real-world
deployment constraints, such as variable lighting, occlusions, and dynamic
backgrounds—while maintaining a focus on computational performance. Through
rigorous evaluation using standard detection metrics and qualitative analysis on
recorded video scenarios, the system sets a performance benchmark for future
enhancements in traffic sign detection.
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Key contributions include the creation of a well-labelled traffic sign dataset comprising
18 distinct classes, the successful fine-tuning and application of the YOLO11 model for
video-based detection, and the delivery of a fully tested pipeline that can be extended
or integrated into future ADAS frameworks. Ultimately, this work supports broader
goals in autonomous driving by providing a reliable visual perception module capable

of improving vehicle intelligence, operational safety, and traffic law compliance.

1.6 Report Organization

This report is structured into seven chapters. Chapter 1 introduces the research
background, objectives, and scope. Chapter 2 reviews existing traffic sign detection
methods and justifies the adopted approach. Chapter 3 outlines the system methodology
and model architecture. Chapter 4 presents the detailed system design, including dataset
preparation, model training, and video inference. Chapter 5 discusses implementation
setup, operational workflow, and encountered challenges. Chapter 6 evaluates system
performance using quantitative and qualitative metrics. Chapter 7 concludes the report

with a summary of findings and recommendations for future enhancements.
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CHAPTER 2 - LITERATURE REVIEW

2.1 Traffic Sign Detection and Recognition Based on Random Forests

2.1.1 Introduction to TSDR and ADAS

Traffic Sign Detection and Recognition (TSDR) is a key module in Advanced Driver
Assistance Systems. This greatly works toward ensuring road safety and allows the
vehicle to detect and recognize traffic signs on the go. It helps the driver to follow the
rules of the road and navigate through the roads efficiently. The paper named "Traffic
Sign Detection and Recognition Based on Random Forests" by Ellahyani et al. [§]
suggests a new approach to TSDR based on colour segmentation, shape classification
using invariant geometric moments, and a recognition process in which Histogram of
Oriented Gradients (HOG) combined with Local Self-Similarity (LSS) features are
used. With Random Forests as the main classifier, a strong and efficient framework can

be developed for traffic sign recognition.

(c) (d) (e)

Figure 2.1.1.1 Examples of Difficulties Facing Traffic Sign Recognition

2.1.2 Colour Segmentation and Shape Classification Techniques

Several methodologies have been proposed within the literature to tackle the challenges
presented by TSDR. In most approaches, colour segmentation has been a common place
to begin working from to isolate possible traffic signs from their environment. Many
early studies used the RGB colour space, but it is very sensitive to lighting changes and
therefore not so reliable when operating outdoors. To overcome this, more recent
approaches have shifted to using alternative colour spaces, such as YUV and HSI, that
are less affected by the changes in illumination. For example, Saadna and Behloul [9]
used specific relations between the RGB components for segmenting the traffic signs,
while Zaklouta and Stanciulescu [10] did an enhancement of colour channels in the
RGB space to detect signs effectively. The proposed method by Ellahyani et al. [8] goes

a step ahead and does segmentation in the HSI colour space, which is more robust to
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lighting variations, thus making the process of detection robust.
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Figure 2.1.2.1 Algorithm Scheme

Once the colour segmentation has detected ROIs, then only shape classification will
take place. The most general shape characteristics are circular, triangular, and
rectangular, using which the traffic signs can be distinguished and -classified.
Traditional methods for shape classification include corner detection and the Hough
transform, which are directly applied to scene images or post-segmentation. Ellahyani
et al. [8] introduce invariant geometric moments as a shape classification tool that
significantly reduces computational complexity and increases accuracy. This reduces
the computational complexity dramatically and is considered more accurate than
conventional machine learning classifiers such as Support Vector Machines (SVMs),

which require large and long learning processes.

Quite a few various approaches have also been developed for the recognition stage,
7
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finding the content of detected signs. The HOG features had been adopted by
researchers due to their strength in describing local gradients and being less sensitive
to variations in lighting and scale. To do that, the paper under review suggests extending
HOG features to the HSI colour space, therefore producing the HSI-HOG descriptor.
Then, this descriptor was further combined with LSS features; it will give more holistic
methods in bringing colour and texture information for higher accuracy in recognition.
In this setup, Random Forests as the classifier are especially well-suited because it is

robust to overfitting and good at working in noisy data.

Input image

HSIimage

Split HSI image
into 3 channels

!

Compute gradients

A 4

Compute HOG descriptors

M

Concatenate HOG descriptors
to form HSI-HOG descriptor ﬂllﬂ
Figure 2.1.2.2 Example of HSI-HOG Feature Computation
2.1.3 Strengths and Limitations of the Proposed Method

Despite several strengths of the proposed method, there still lie a few limitations. The
main challenges are the system's sensitivity to environmental conditions, which entails
heavy shadows or a faded sign colour that leads to a failure in detection and one of the
sources of false positives. Some of these problems could be reduced by the HSI colour
space, but extreme conditions still pose to be too challenging. Besides, the combined
feature extraction of HSI-HOG with LSS proves to be a boost in effective results, which
in turn increases the computational complexity of the process of recognition to an extent

8
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that may hamper real-time performances on platforms under constraints in resources. It
also heavily relies on empirically derived thresholds for colour segmentation and shape
classification, which are not really generalized among different datasets and varied

environmental conditions.

To address these limitations, several improvements could be implemented. Increasing
further the robustness of colour segmentation and shape classification could be done
with the use of adaptive thresholding techniques, when dealing with varying lighting
conditions. Another way to enhance the performance is that signs detected over the
frames can further be tracked using temporal data from video sequences to reduce false
positives and increase detection rates for more challenging scenarios. On the other hand,
feature selection techniques can be implemented in selecting an optimal size of
descriptors with respect to which the computational load will be reduced while keeping
recognition accuracy high. This optimization can be combined with other classifiers
like Convolutional Neural Networks, which show extremely higher efficiency in a

TSDR task besides being computationally expensive.

2.1.4 Conclusion

In conclusion, the literature on traffic sign detection and recognition is quite diverse
and consists of many ways of tackling this problem. This offers a good solution
following the work of Ellahyani et al. [8], who used the HSI colour space for
segmentation, invariant geometric moments for shape classification, and a good
combination of HSI-HOG and LSS features for recognition. However, there are still
several avenues open for improvements, regarding how to render the system more
robust in face of environmental variations and computationally efficient for real-time
applications. Such an advancement would ensure that TSDR systems would perform in
a reliable manner under a broad spectrum of conditions, hence ensuring overall safety

and efficacy in the process of driving.
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Precision-Recall Graph AUC= 94.2161%
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Figure 2.1.4.1 Precision-Recall Curves of the Proposed Detection and Recognition Method

2.2 A novel traffic sign detection method via colour segmentation and

robust shape matching

2.2.1 Existing Technigques

During the past few decades, researchers have proposed many methods to improve the
robustness and accuracy of traffic sign detection under different real-world conditions,
such as variations due to weather, shadows, and occlusions. Traditional techniques for
detecting traffic signs rely mostly on colour and shape features because traffic signs
typically have distinct and regular visual characteristics, such as high-contrast colours
like red, yellow, and blue, and regular shapes like circles, triangles, and diamonds. For
example, Ganesan et al.[11] modelled colour pixels with a Gaussian model in CIE Lab
space to mitigate the effects of varying illumination. Shape-based methods like the
Hough transform have been applied to detect specific shapes, such as circular speed
limit signs. However, these methods often struggle with computational complexity and

are sensitive to environmental factors like lighting and background clutter.

Researchers have increasingly combined colour-based and shape-based methods to
improve detection accuracy. For instance, they used a corner detection algorithm after
segmenting red colour regions to identify triangular borders. Similarly, they employed
Gabor features and K-means clustering in CIE Lab space to distinguish traffic sign
shapes. While these combined features enhance the robustness of traffic sign detection

systems, challenges remain, particularly in cluttered environments and under adverse

10

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



weather conditions.

2.2.2 Strengths and Limitations

The main strength of these combined approaches is their ability to leverage the
complementary nature of colour and shape information, which generally leads to better
detection rates compared to methods that rely solely on one type of feature. However,
these approaches are not without limitations. Colour-based methods are particularly
susceptible to variations in illumination and weather conditions, leading to inaccurate
segmentation of signs. Similarly, shape-based methods, while more robust to colour
variations, often suffer from high computational costs and sensitivity to occlusions and

background noise.

2.2.3 Improvements Proposed

This paper proposes an innovative approach that integrates colour invariants-based
image segmentation with Pyramid Histogram of Oriented Gradients (PHOG) features
for shape matching. The method enhances the robustness of traffic sign detection
against varying environmental conditions by introducing chromatic-edge enhancement
to improve contour detection, thereby reducing the noise sensitivity associated with
traditional PHOG features. The combination of colour invariants and PHOG, along with
a support vector machine (SVM) for classification, offers a more discriminative and

computationally efficient solution for traffic sign detection.

Traffic sign ROIs atation Traffic sign Shape classification

Input Image PHOG descriptor extraction

Candidate
ROIs

’A : ; Col.or —
-' * m;nn:.:s 4\ . ﬂ u LAL 2 e nadli e

“' L‘bl & Jl!.m‘.!....&‘. [
o [\
K 494 hdm‘-u 1
i +

Clustering results

Shape SVM Output
classifiers .

’ 6 l o q " ‘
Triangle .

Figure 2.2.3.1 The outline of the proposed traffic sign detection system

The proposed method shows significant improvements in detection accuracy,
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particularly under challenging conditions such as shadows, occlusions, and complex
backgrounds. Chromatic-edge enhancement effectively addresses the weaknesses of
traditional PHOG features, making the system more robust to noise and clutter.
However, the method's reliance on predefined colour models and the need for extensive
training data for the SVM classifiers could be seen as limitations. The approach might
also face challenges in scenarios with severely degraded or non-standard traffic signs,

where colour and shape information alone might not be sufficient.

2.2.4 Conclusion

In conclusion, the integration of colour invariants and enhanced PHOG features
represents a promising direction for robust traffic sign detection. Future work could
focus on overcoming the limitations related to the reliance on predefined models and
exploring more adaptive techniques that can handle a wider range of real-world

variations in traffic sign appearance.

2.3 Incremental Framework for Video-Based Traffic Sign Detection,

Tracking, and Recognition

The paper by Yuan et al. [12]presents a new approach to traffic sign recognition with a
unified framework that incorporates detection, tracking, and recognition using video
data from a camera mounted on the vehicle. This approach addresses several limitations

of existing TSR systems.

2.3.1 Existing Practices and Strengths

Many of the conventional ways in the field of TSR are predominantly based on colour
segmentation and shape-based detection, which work suitably well under controlled
situations but fail with the variability observed in actual scenarios. Deep learning
methods, especially Convolutional Neural Network (CNNs), have made a significant
leap in accuracy by learning complex features from large data sets, getting results on
benchmarks like German Traffic Sign Recognition Benchmark (GTSRB) where
performance is close to human. Techniques such as tracking maintain the consistency
of detection across frames, thereby leading to a reduction in false positive rates and

improved localization accuracy.

2.3.2 Limitations of Current Solutions

More significantly, deep learning-based models are very computationally demanding
12
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and need high-end hardware; hence, the models are less applicable to real-time
embedded systems. Moreover, many TSR systems mainly focus on single-image
processing and neglect the temporal information during video processing, which causes
inconsistency in dynamic environments. Simplistic motion models applied for tracking

may not work with sudden changes in vehicle motion.

Figure 2.3.2.1 Shows the various scenarios in which traffic signs may appear

—~

lﬁ] ‘[ - , ’ ~,

Figure 2.3.2.2 Shows the appearance changes of traffic signs caused by occlusion and

1llumination

2.3.3 Contributions of the Paper

The proposed framework can address the limitations raised with the combination of
detection, tracking, and recognition in a single system. It is based on an incremental
learning approach that operates in real time and can adapt to the changes in the

environment online without any requirement for time-consuming retraining. For
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accuracy improvement of detections, spatial distribution priors based on typical traffic
sign locations are employed. For the increase of the localization accuracy and
improvement of robustness of the system in a non-stationary environment, Kalman

filtering together with online sample collection is used.
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Figure 2.3.3.1 Overview of the components of TSR framework

Although effective, it is consequently true that to catch indications from unusual
locations, like those presented during complex manoeuvres, flexibility is limited in
relying on spatial priors. The framework is also computationally intensive, albeit much
more efficient than deep learning models, thus it still needs optimization to work in

real-time with dense traffic scenarios.

2.3.4 Conclusion

This paper reports a significant advance in TSR as it discusses an embedded approach
for detection, tracking, and recognition in a single adaptive framework. Incremental
learning of the spatial priors is the developed innovation in the increase of real-time
performance. However, for much of this work, there is a need for increased spatial
flexibility and computational efficiency to further the applicability of frameworks such

as these.

2.4 Vision-Based Traffic Sign Detection and Recognition Systems

This paper [13] presents an in-depth survey of existing methodologies for vision-based
traffic sign detection and recognition systems, summarizing the strengths and
weaknesses of each.
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2.4.1 Existing Practices and Solutions

Colour-based methods are based on the inherent colours of traffic signs, like red, blue,
and white, to locate regions of interest in images. The key features of signboards are
their geometry: shape-based methods focus on geometric characteristics of the signs
through such techniques as Hough transformation and edge detection to identify a given
shape. These methods are robust to illumination variation but are computationally
intensive and do not work well under conditions where the signs are partially occluded
or deformed.

Hybrid methods combine colour and shape-based features that generally provide more
accuracy and reliability in the detection part. A hybrid approach is considered more
accurate due to the usage of colour in restricting the search space for the detection of

shapes in complicated environments.
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Figure 2.4.1 Block diagram of the traffic sign recognition system

2.4.2 Strengths and Weaknesses

Colour-based methods are efficient and fast and, therefore, suitable for real-time
detection but not reliable in varying lighting or when signs are damaged. Shape-based
methods are usually robust in challenging lighting; however, they are computationally
intensive and usually do not work very well if the signs are not perfect. Hybrid
methods may offer some improvement in accuracy but are more difficult to tune and

can still have significant difficulty when working in dynamic real-world conditions.

2.4.3 Addressing Limitations
It will be necessary for research in the future to focus on advanced machine learning

techniques to investigate deep learning to enhance the adaptability and accuracy of the
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TSDR system. In principle, a deep-learning technique should handle a larger variety of
appearances, even in the case when a sign is occluded or damaged. Introducing
contextual information, like the expected location of a sign, will probably reduce false
positives and increase reliability in detection.

In a nutshell, there is a requirement for more research to come up with a way of
overcoming some of the challenges in existence and enhancing the accuracy and

reliability of TSDR systems for safer driver assistance.
2.5 Machine Vision Based Traffic Sign Detection Methods

This paper [1] presents a fair review of the methodologies used in Traffic Sign Detection
(TSD) and Traffic Sign Recognition (TSR). The current review classifies existing
approaches into colour-based approaches, shape-based approaches, machine learning-
based approaches, and LIDAR-based approaches found to be effective in handling
challenges associated with TSD. These mainly include alterations in lighting conditions,

signs very small in size, and complicated driving environments.

2.5.1 Traffic Sign Detection Methods

Colour-based methods use only the different colour features of traffic signs, such as red,
blue, and yellow, to segment the regions containing the signs from their backgrounds.
These methods are widely popular owing to their simplicity and speed, making them
suitable for real-time applications. They are highly sensitive to lighting variations and,
in fact, require precise threshold adjustments that may be hurdles to generalization over
a wide number of settings. Another approach is the use of shape-based methods to detect
geometric shapes common in traffic signs, with techniques ranging from Hough
transforms to Fourier descriptors. These methods are relatively robust toward colour
variations but quite weak when it comes to small or partially occluded signs; moreover,
the strong dependence on edge detection makes them computationally expensive and

sensitive to noise.

Machine learning, and particularly deep learning, has revolutionized the state-of-the-
art development of TSD. Techniques, such as AdaBoost, Support Vector Machines
(SVM), and Convolutional Neural Networks (CNN), have been implemented to
improve the accuracy of the sign detection and classification system. Among these
techniques, CNNs exhibit better performance in learning complex features directly
from the data; however, they rely on large datasets for training and are computationally
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expensive, which may compromise real-time applications. In this sense, LIDAR-based
methods provide a strong solution for robustness against occlusions and variable
lighting conditions, based on the 3D structure of point cloud data and reflective
properties. However, such methods often call for accurate recognition, leading to
integration with camera data, and are currently limited by the scarcity of publicly

available LIDAR datasets.
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Figure 2.5.1.1 Different structures of traffic sign recognition systems

2.5.2 Strengths and Weaknesses

Each of these methods has its strengths and weaknesses. Most of the colour-based
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methods are quick and simple but poorly performing under a different variety of
conditions with respect to lightness. While this shape-based method works well in
detection of standard shapes, it becomes computationally intense and not so efficient
with small or unclear signs. Machine learning-based methods are accurate but costly in
resources, depending on large, annotated datasets. LIDAR-based methods offer
excellent point detection and are very good at noticing 3D space, although data
integration and standardization are challenging. Adaptive colour thresholding
techniques, hybrid methods for shape detection using some form of machine learning,
optimization of ML models for real-time use, and broadening the LIDAR dataset to
include more generalization and better benchmarking could be the focus of future

research to take care of these limitations.

2.5.3 Conclusion

The above summary reveals that, despite immense progress in the field of TSD, there
are still many challenges pertaining to performance optimization across diverse
environmental conditions and ensuring computational efficiency for real-time
applications. The future most likely will be the result of hybrid methods using the best
aspects from different approaches and the development of better comprehensive data

sets in support of the continued evolution of these technologies.

2.6 You Only Look Once: Unified, Real-Time Object Detection
YOLO (You Only Look Once) represents a groundbreaking approach to object

detection by reframing it as a regression problem that predicts bounding boxes and class
probabilities simultaneously. Unlike traditional systems such as Deformable Part
Models (DPM) and region-based frameworks like R-CNN, which rely on multi-stage
pipelines involving sliding windows or region proposals, YOLO unifies the entire
detection process into a single convolutional neural network. This innovation
significantly improves efficiency, enabling YOLO to achieve real-time performance of
up to 155 frames per second (FPS) while maintaining competitive accuracy[6].
Furthermore, YOLO’s ability to process entire images during training and testing
allows it to capture global contextual information, making it less prone to false positives

on background regions compared to methods like Fast R-CNN[6].
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1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.6.1 The YOLO Detection System

2.6.1 Strengths and Weaknesses

One of YOLO’s key strengths lies in its speed, which makes it ideal for applications
like autonomous driving where low latency is crucial. Its unified architecture
streamlines object detection, reducing the complexity of training and optimization seen
in multi-stage systems[6]. YOLO also excels in generalizing across domains,
performing well even on datasets that differ significantly from its training data, such as
artwork or abstract imagery[6]. However, despite these advantages, YOLO has notable
limitations. It struggles with precise localization, particularly for small objects, due to
its reliance on coarse feature maps and strong spatial constraints. Each grid cell in
YOLO’s framework predicts only two bounding boxes and one class, which limits its
ability to detect multiple objects in close proximity[6]. Additionally, its loss function,
which uses sum-squared error, does not adequately prioritize small bounding box

errors, reducing its effectiveness in detecting smaller objects[6].

..

S x S grid on input ' s Final detections

Class probability map

Figure 2.6.1.1 The Model
2.6.2Addressing Limitations
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To address these limitations, enhancements in feature extraction and model design are
necessary. Incorporating multi-scale feature maps, as seen in SSD (Single Shot
MultiBox Detector), could improve YOLO’s ability to detect small and overlapping
objects. Adjusting the loss function to weigh localization errors more effectively based
on object size would further enhance its performance. Additionally, redesigning the grid
cell structure to allow more flexible predictions could help in scenarios with dense
object arrangements. Hybrid models that combine YOLO’s speed and contextual
reasoning with the precise localization capabilities of methods like Fast R-CNN have
already shown promise, with experiments demonstrating significant performance

boosts in mean average precision (mAP)[6].

Fast R-CNN YOLO

Background: 13.6% Background: 4.75%

Other: 4.0%
Sim: 6.75%,

Figure 2.6.2.1 ErrorAnalysis: FastR-CNNvs. YOLO

Other: 1.9%
Sim: 4.3%

Figure 2.6.3.1 Qualitative Results

2.6.3 Conclusion
In conclusion, YOLO is a significant milestone in object detection, offering unmatched

real-time performance and simplicity. However, addressing its challenges related to
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small object detection, localization precision, and overlapping objects will make it even
more robust, especially for safety-critical applications like traffic detection in intelligent
transportation systems. These improvements could further solidify YOLO’s position as

a cornerstone in real-time object detection research and deployment[6].

2.7 Critical Remarks of Previous Works

In this section, the strengths and weaknesses of previous works reviewed in this chapter
against our proposed approach for traffic sign detection and segmentation were

examined critically.

Random Forest-Based TSDR (Section 2.1)

Strengths:
e Utilizes Random Forests with invariant geometric moments for shape
classification.
e Effective against lighting variations.
Weaknesses:
e Sensitive to extreme environmental conditions like heavy shadows or faded
signs.
e High computational complexity hinders real-time performance.
Comparison:
e The proposed solution integrates YOLOI1 with traditional methods for

improved robustness and efficiency.

Colour Segmentation + PHOG (Section2.2)

Strengths:
¢ Enhances detection accuracy under challenging conditions by combining colour
invariants with PHOG.
Weaknesses:
e Relies on predefined colour models and requires extensive SVM training.
e Limited effectiveness for non-standard traffic signs.
Comparison:
e YOLOII's advanced generalization capabilities address limitations in static

models.
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Incremental Framework for Video-Based TSR (Section 2.3)

Strengths:
e Integrates detection, tracking, and recognition into a real-time adaptable system.
e Incorporates robust spatial priors and Kalman filtering.
Weaknesses:
e Computationally intensive.
e Limited flexibility with unusual sign locations.
Comparison:
e The hybrid approach optimizes computational demands while ensuring

detection accuracy.

Vision-Based Detection (Section 2.4)

Strengths:
e Hybrid methods combining colour and shape features demonstrate high
accuracy in controlled environments.
Weaknesses:
e Struggles with occlusions and deformations.
e Hybrid methods are challenging to tune.
Comparison:
e Refined preprocessing and YOLOI1 integration improve adaptability and

accuracy.

Machine Vision-Based Methods (Section 2.5)

Strengths:
e Robust across varied conditions using diverse techniques like colour, shape,
machine learning, and LIDAR.
Weaknesses:
e Colour methods are sensitive to lighting; shape methods are computationally
expensive.
e Machine learning methods rely heavily on large datasets.
Comparison:
e The proposed system mitigates lighting sensitivity and computational
inefficiency with a hybrid approach.
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YOLO (Section 2.6)

Strengths:

e Real-time performance with high speed and generalization across domains.
Weaknesses:

e Struggles with small or overlapping objects due to coarse feature maps.
Comparison:

e Incorporates preprocessing to address small object detection challenges.

2.7.1 Conclusion

A comprehensive review of prior works in traffic sign detection reveals a rich
progression from classical image processing methods to modern deep learning-based
frameworks. Traditional approaches, including colour thresholding, shape analysis, and
handcrafted feature extraction, offered foundational insights into sign localization and
classification, yet struggled under non-ideal conditions such as low illumination,
occlusion, and background clutter. Furthermore, these methods typically lacked the
scalability and real-time performance required for deployment in dynamic driving

environments.

With the emergence of deep learning architectures, particularly those in the YOLO (You
Only Look Once) family, a paradigm shift occurred in how object detection is addressed.
These models, especially the Ilatest iterations such as YOLOvS5 and beyond,
demonstrated superior generalization, faster inference speeds, and robust spatial
localization capabilities, enabling more accurate and reliable detection even in complex
traffic scenes. Among these, YOLO11 has emerged as a highly efficient and scalable
object detection model due to its streamlined backbone, enhanced attention modules,

and optimized anchor-based prediction strategies.

The insights gathered from earlier literature were instrumental in shaping the direction
of this project, which fully embraced the YOLO-based methodology. The limitations of
traditional approaches underscored the necessity of adopting a model capable of
learning directly from data with minimal manual intervention, thus allowing for better
adaptation to varying road conditions, sign deformations, and environmental
inconsistencies. By leveraging a deep convolutional network trained on a curated and
diverse dataset, the proposed system addresses the shortcomings observed in prior
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works, particularly those related to detection robustness and computational overhead.

In conclusion, the transition toward deep learning-based object detection—epitomized
by the YOLOI1 model—marks a pivotal advancement in the field of traffic sign
detection. This project aligns with and builds upon this evolution, offering a modernized
solution capable of delivering high-performance detection in real-time, video-based
scenarios. The review affirms the obsolescence of earlier methods in favour of more
scalable, adaptable, and intelligent systems, establishing a strong foundation for future

development within autonomous driving and intelligent transportation applications.
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CHAPTER 3 — System Methodology/Approach

3.1 System Design Overview
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Figure 3.1 System Overview

The process commences with the Annotated Images Dataset Collection, where an
extensive volume of traffic sign images is sourced and meticulously labelled using
bounding box annotations compliant with YOLO-format specifications. These images,
covering a wide array of environmental conditions—including varying illumination,
occlusion patterns, and diverse road contexts—form the empirical substrate required to

teach the deep learning model to generalize effectively beyond controlled conditions.

Following dataset compilation, the system advances to the YOLO11 Model Training
phase, wherein the annotated data is ingested by the YOLO11 architecture. During this
stage, the model undergoes supervised learning to optimize its capacity to predict object
classes and precise spatial locations. Once the training converges, the Trained YOLO11
Weights are preserved as the learned intelligence that encapsulates the detection

model’s representational knowledge.

In the operational inference stage, the system accepts an Input Video, which is
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segmented into individual image frames for further analysis. The Frame Detection
module leverages the pretrained YOLO11 weights to execute detection on each frame
independently. For every input frame, the YOLOIl model conducts inference,
identifying traffic signs by drawing bounding boxes and assigning corresponding class
labels and confidence scores. This single-stage detection paradigm ensures high
throughput without compromising on precision, making it ideal for safety-critical

autonomous driving applications.

The final component in the workflow is the Output Annotated Frames, where the
processed video frames—now embedded with visual detection results—are
reassembled into a coherent annotated video stream. These outputs provide intuitive
visualization for performance verification, post-processing analysis, and system

debugging.

Altogether, this system design leverages the expressive power of deep convolutional
neural networks through YOLOI1, structured into a logical progression from data-
driven model development to high-fidelity detection in video feeds. Its modular
decomposition not only facilitates isolated optimization and troubleshooting of each
subsystem but also lays a foundational framework for future enhancements, including

real-time deployment, integration with ADAS modules, and multi-sensor fusion.

3.2 Model Architecture

The YOLOI1 architecture is a state-of-the-art, single-stage object detection model
designed specifically for real-time detection tasks critical to autonomous driving. By
integrating advanced convolutional neural networks (CNN) and attention mechanisms,
YOLOI1 efficiently detects and localizes traffic signs from dynamic video streams

captured by vehicle-mounted cameras.

At its core, YOLO11 uses a deep CNN backbone enhanced with attention modules,
which effectively amplify relevant spatial features and suppress irrelevant background
details. This selective attention capability significantly improves the model’s accuracy
in identifying small, distant, or partially obstructed traffic signs, which are common

challenges encountered in realistic driving conditions.

Figure 3.2.1 below illustrates the YOLOI11l model architecture, emphasizing its
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backbone structure, attention mechanisms, and multi-scale feature integration process:
YOLO
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Figure 3.2.1: YOLO11 Architecture Diagram

YOLOL1 divides each input frame into a grid of cells, where each cell predicts multiple
bounding boxes alongside confidence scores and class probabilities. These predictions
rely on adaptively optimized anchor boxes, predefined templates determined through
clustering methods tailored specifically to typical traffic sign dimensions. This strategic
optimization enhances the precision of bounding box regression, resulting in accurate

localization and classification of detected signs.

To manage overlapping and redundant predictions, YOLO11 incorporates an enhanced
Non-Maximum Suppression (NMS) algorithm. The improved NMS effectively retains
the most accurate bounding boxes by considering the confidence scores and
intersection-over-union (IoU) thresholds, generating clear and actionable detections

suitable for real-time vehicle decision-making.

A crucial advancement in YOLOI1 is its implementation of a Bidirectional Feature
Pyramid Network (BiFPN). This sophisticated network fuses detailed spatial
information from early convolutional layers with high-level semantic information from
deeper layers, thus effectively detecting signs across various sizes and environmental

complexities.

Practical results of YOLOI1 detection performance in real traffic scenarios are
presented in Figure 3.2.2, highlighting the model’s ability to robustly identify multiple
classes of traffic signs under varying conditions, including different scales and partial

occlusions:
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Figure 3.2.2: Examples of YOLO Traffic Sign Detection Results

In summary, the YOLOI11 architecture provides advanced attention-driven feature
extraction, optimized anchor-box prediction, enhanced NMS strategies, and
sophisticated multi-scale feature integration. These combined innovations make
YOLOI1 particularly effective for accurate and rapid detection of traffic signs, directly
contributing to improved safety and operational efficiency in autonomous vehicle

navigation systems.
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Chapter 4 - System Design
4.1 System Module Specifications

4.1.1 Annotated Images Dataset Collection

e N
Dataset
Annotated Collection
Images o J
Dataset \
Collection e ™
Dataset
Analysis
N\ J/
Y
4 N\
Split Dataset
N\ J
Y
Data
Preprocessing
Y
Data
Augumentation

Figure 4.1.1 Dataset Collection Module

In this project, the dataset was sourced and curated through the Roboflow platform,
employing an iterative refinement strategy that emphasizes data quality,
representational diversity, and contextual relevance. Rather than relying on a
monolithic source, the dataset was meticulously assembled by cloning only the most
relevant and contextually valid images from multiple existing datasets, each of which
contributes distinct scenarios, sign types, and environmental conditions. This selective
cloning mechanism ensured the exclusion of noisy, redundant, or semantically
ambiguous samples while preserving only those instances that meet stringent criteria

for annotation completeness, label clarity, and visual interpretability.
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Upon collection, the data pipeline progresses to the dataset analysis stage, where the
curated images undergo visual inspection and statistical verification. Each image is
annotated with precise bounding boxes and class labels according to YOLO
specifications, forming the structured basis for supervised learning. Special attention is
given to maintaining inter-class balance to mitigate the model's tendency toward bias
and class imbalance—a common pitfall in object detection tasks involving traftic signs

with inherently skewed occurrence rates.

@ Train/Test Split

Here is how you split your images when you added them to the dataset:
TRAIN SET C) VALID SET Q TEST SET D
6670 Images 1028 Images 650 Images

Figure 4.1.1.1 Splitting Dataset

Following validation, the images are partitioned through a controlled dataset splitting
process. As configured within Roboflow and verified in Figure 4.1.1.1, the dataset is
divided into a training set comprising 6670 images (80%), a validation set of 1028
images (12%), and a test set of 650 images (8%). This proportional division ensures
that the model receives an ample volume of diverse training data while preserving
enough unseen samples for reliable validation and performance benchmarking. The
splitting algorithm used ensures stratified distribution, such that the frequency of each

traffic sign class is proportionally maintained across all three subsets.
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@ Preprocessing

Decrease training time and increase performance by applying image
transformations to all images in this dataset.

Auto-Orient Edit X

Resize

Stretch to 640%x640 Edit X

° Add Preprocessing Step

Figure 4.1.1.2 Dataset Preprocessing

Subsequently, the dataset undergoes data preprocessing, which is designed to
standardize input dimensions and image orientation, thereby facilitating stable model
convergence during training. Each image is subjected to auto-orientation correction
followed by resizing to a fixed resolution of 640x640 pixels, as shown in Figure 4.1.1.2.
This resolution was chosen to align with the input requirements of the YOLOI11
architecture, striking an optimal balance between feature resolution and computational

efficiency.
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@ Augmentation

Create new training examples for your model to learn from by generating
augmented versions of each image in your training set.

Crop £
0% Minimum Zoom, 30% Maximum Zoom it %
Rotation .
Between -10° and +10° Edit %
Exposure ;
Between -15% and +15% o
Blur G
Up to 2px it X

+ Add Augmentation Step

Figure 4.1.1.3 Dataset Augmentation

To further enhance model generalization and resilience against real-world perturbations,
data augmentation techniques are applied to the training set. As detailed in Figure
4.1.1.3, the augmentation pipeline includes controlled cropping (0% minimum zoom,
30% maximum zoom), rotation within the range of —10° to +10°, exposure adjustments
from —15% to +15%, and a blur filter up to 2 pixels. These augmentations are
algorithmically applied to synthetically diversify the training data, simulating a wide
array of real-world conditions such as motion blur, lighting variation, and angular
displacement. The intention is not merely to increase data volume, but to cultivate a
model that is resilient, adaptable, and highly tolerant to noise and distortion, as typically

encountered in in-the-wild driving environments.
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Figure 4.1.1.4 Final Daset Size Calculation

As a direct result of this augmentation pipeline, the total dataset size expanded
substantially. Specifically, the original 6670 training images were transformed into
three augmented variants per image, resulting in an effective training subset of
approximately 20,010 samples. When combined with the untouched validation set
(1028 images) and test set (650 images), the final post-augmentation dataset comprises
up to 21,688 image instances. This enlarged dataset plays a critical role in regularizing
the model, enriching its training exposure, and fostering high generalization accuracy

across varying spatial, temporal, and lighting conditions.

4.1.2 YOLO11 Model Training Module
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Figure 4.1.2 YOLO11 Model Training Module
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'pip 1install roboflow

from roboflow import Roboflow
rf = Roboflow(api_key="RwI139D9dtYOsVUHcZOM")

project = rf.workspace(“new—fyp—ciden”).project ("fyp—combined-dataset”)
version = project.version(2)
dataset = version.download("yolovll”)

Figure 4.1.2.1 Download Dataset from Roboflow

The training phase initiates with the downloading of a combined traffic sign dataset
hosted on the Roboflow platform. The dataset is programmatically accessed through
the Roboflow API, specifying version control and compatibility with the YOLOv11
format. This dataset, which has undergone extensive preprocessing, class balancing,
and augmentation as detailed in Section 4.1.1, is used to train the model from a
foundational checkpoint based on yolol1m.pt—a medium-sized variant of YOLO11

pre-trained on a general-purpose object detection corpus.

!pip install ultralytics

import ultralytics

from ultralytics import YOLO

from IPython.display import Image, Video

!yvolo task=detect mode=train data={dataset.location}/data.yaml model="yolollm. pt” epochs=40 imgsz=640 batch=16

Figure 4.1.2.2 Training YOLO model

Model training is conducted using the YOLO CLI interface with the following key
hyperparameters: epochs=40, imgsz=640, batch=16, and the model="yolo11m.pt"
flag to specify the initialization weights. The training command is executed in Colab
using GPU acceleration, and the training results—including best-performing weights,
loss curves, and evaluation metrics—are saved under the project directory
/runs/detect/train. During training, the model iteratively optimizes its parameters
using a default AdamW optimizer, minimizing a compound loss function comprising

bounding box regression loss, object confidence loss, and classification loss.

The YOLO11 model’s optimization routine is guided by backpropagation and
stochastic gradient-based updates, iterating over mini-batches of size 16. Each batch
feeds forward through the convolutional network, produces predictions for bounding
boxes and class probabilities, computes error signals based on ground truth

annotations, and backpropagates gradients to update network weights accordingly.
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Over 40 epochs, the model converges to a local minimum where its performance on

both training and validation sets is maximized.

Throughout the training process, model checkpoints are periodically saved, and
performance metrics are monitored on the validation set. Upon the completion of the
training routine, the system identifies the optimal model state—corresponding to the
lowest validation loss or highest mAP—and exports this configuration as best.pt. This
file encapsulates the learned representations of traffic sign characteristics and serves as

the final output of the training module.

4.1.3 Video-Based Inference Module

e N
Input Video
J

Video Inference

4
0

Frame
Exiraction
-

Y
R

Inference on
Each Frame
-

Bouding Box +
Class Label
Overlay

Output Annotated
Video

Figure 4.1.3 Video-Based Inference Module
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The video-based inference module constitutes the operational deployment layer of the
traffic sign detection system, wherein the trained YOLO11 model (best.pt) is utilized to
perform object detection on traffic signs from video input. This module is designed to
transform continuous video streams into frame-wise visual insights, enabling the model
to interpret, localize, and annotate traffic signs encountered in dynamic environments.
It is the culmination of the prior data preparation and model training stages and serves
as the interface through which detection results are rendered for both analysis and

demonstration.

The inference process begins with the acquisition of a pre-recorded video stream that
simulates a vehicular driving scenario. The video, once loaded into the system, is
decomposed into a sequential set of static image frames. Each of these frames is treated
as an individual inference unit, decoupling temporal continuity in favour of spatial
object recognition. This design decision simplifies implementation while ensuring that
each frame is independently processed, preserving inference stability even in the

presence of motion blur or sudden scene transitions.

video 1/1 (frame 45699/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mpd: 384x640 (no detections), 13.0ms
video 1/1 (frame 45700/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 13.3ms
video 1/1 (frame 45701/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 13.0ms
video 1/1 (frame 45702/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mpd: 384x640 (no detections), 12.9ms
video 1/1 (frame 45703/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 13.5ms
video 1/1 (frame 45704/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 12.9ms
video 1/1 (frame 45705/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mpd: 384x640 (no detections), 13.8ms
video 1/1 (frame 45706/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mpd: 384x640 (no detections), 13.2ms
video 1/1 (frame 45707/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 13.Ims
video 1/1 (frame 45708/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4: 384x640 (no detections), 13.2ms
video 1/1 (frame 45709/45709) /content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mpd: 384x640 (no detections), 13.2ms

Speed: 2.4ms preprocess, 13.2ms inference, 0.8ms postprocess per image at shape (1, 3, 384, 640)
Results saved to runs/detect/predict3

Figure 4.1.3.1 Inference Process

The core of the module is the YOLOI11 detection engine, which accepts each video
frame as input and performs bounding box regression, objectness estimation, and class
probability assignment based on the parameters encoded in the trained weights. The
detection model infers the presence and category of traffic signs in the frame, returning
coordinates for each detected object along with a corresponding confidence score. To
reduce visual noise and false positives, the outputs are filtered using non-maximum
suppression (NMS), which retains only the most confident detection for overlapping

bounding boxes.
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speed_limit 0.77
no_overtaking 0.79

|

Figure 4.1.3.2 Example of Annotated Frames

Once processed, the inference results are visually overlaid onto the original frames.
Each detected traffic sign is enclosed in a bounding box, labelled with its class name
and confidence score. The annotated frames are then recompiled into a coherent video
stream that mirrors the original input but is enriched with semantic interpretation. The
final output video is encoded using standard codecs (e.g., H.264 via FFmpeg) and stored
in a compressed format for evaluation, visualization, or downstream application in

intelligent transportation systems.

from IPython.display import HTML
from base64 import bb64encode
import os

# Input wvideo path

save_path = ’/content/runs/detect/predict3/GermanTest.avi’

# Compressed video path
compressed_path = ”/content/drive/MyDrive/FYPRelated/PredictedVideos/GTWith19C. mp4”

!ffmpeg -i {save_path} -vcodec 1ibx264 {compressed_path}

import os

print (os. getcwd ()

# List files in the current directory and the target directory to check if the file exists
print (os. listdir(’.’))
print (os. listdir  /content/drive/MyDrive/FYPRelated/PredictedVideos/’ ))

# Show video

mp4 = open(compressed_path, rb’).read()
data_url = “data:video/mp4;base64,” + bb6dencode (mp4).decode()
HTML ("""

<video width=400 controls>
{source src="%s” type="video/mp4”>
</video>
" % data_url)

Figure 4.1.3.3 Code to Compressed Inference Video
37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 5 — System Implementation
5.1 Hardware Setup

The hardware used for the project is a laptop with high-performance specifications
suitable for intensive image processing tasks. The detailed specifications of the
hardware used are listed below:

Table 5.1 Laptop Specifications

Brand Predator PHN16-71

Operating System | Microsoft Windows 11 Home Single Language (x64)

Processor (CPU) | 13th Gen Intel(R) Core (TM) 17-13700HX @ 2.10 GHz

Graphics (GPU) | NVIDIA GeForce RTX 4060 Laptop (AD107M/GN21-X4)

Memory (RAM) | 2x16GB DDRS5 SDRAM 2400MHz

Storage 2x1TB SSD WD PC SN810 SDCQNRY-1T00-1014

5.2 Software Setup

The software setup for this project is critical to ensure that the system can efficiently
handle large datasets and accurately detect and segment traffic signs. The project is
developed in a Python environment, leveraging open-source libraries specifically
designed for computer vision tasks. The development was conducted using Google
Colab, a cloud-based Jupyter Notebook environment, which provided an interactive
environment ideal for iterative testing, visualization, and refinement of the algorithms
with the access to GPU and TPU resources, making it ideal for machine learning and

deep learning tasks.

Below is a detailed table summarizing the software tools and libraries used in the

system implementation:

Table 5.2 Software Specifications
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Category Description Version
Operating | Microsoft Windows 11 Home Single Language | 22H2 (Build:
System (x64) 22621.2134)
Programming | , (3 19 3.10.12
Language
Development 6.5.5
eop Google Colab with Jupyter Notebook (notebook
Environment .
version)
- OpenCV: For image processing tasks 4.10.0
- NumPy: For numerical computations and matrix 1.26.4
Libraries | operations o
- Matplotlib: For visualizing images and bounding 3.8.0
boxes o
- ultralytics: For implementing with the YOLO
Libraries 8.3.40
model
Model YOLOI11 YOLO11m
Architecture
Dataset fyp-combined-dataset (Managed via Roboflow) v2
Libraries

OpenCV (Open Source Computer Vision Library) is a powerful and popular open-

source library for computer vision and image processing tasks. It contains a

comprehensive set of functions for image manipulation, filtering and more, making it

the best choice for developing our project. Especially in colour space conversions, edge

detection algorithms (like Canny), contour analysis, and bounding box generation will

be utilised in our project.

Development Environment
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Google Colab is a free cloud-based platform that allows users to write and execute
Python code in a Jupyter Notebook environment. It provides access to powerful
hardware accelerators like GPUs and TPUs, which can significantly speed up
computations, especially for deep learning tasks. Colab integrates seamlessly with
Google Drive, making it easy to manage and share files. It also supports collaboration,
allowing multiple users to work on the same notebook simultaneously. With pre-
installed libraries and an easy-to-use interface, Google Colab is an excellent tool for
data scientists, researchers, and developers looking to leverage the power of cloud

computing for their projects.

Dataset Management

Roboflow is a cloud-based computer vision platform designed to streamline the end-to-
end workflow of dataset management, model training, and deployment for object
detection, classification, and segmentation tasks. In the context of this project,
Roboflow plays a pivotal role in the curation, preprocessing, augmentation, and
formatting of the annotated image dataset used to train the YOLO11 detection model.
It provides an intuitive interface and API support for importing diverse image sources,
applying consistent annotations, and automatically generating YOLO-compatible
dataset structures. Through its built-in tools, the platform enables users to perform
critical preprocessing operations such as image resizing and auto-orientation, as well as
advanced augmentation techniques like rotation, cropping, exposure correction, and
blur simulation. Moreover, Roboflow facilitates seamless dataset version control and
automated splitting into training, validation, and test sets, ensuring class-balanced
partitions essential for supervised learning. Overall, Roboflow serves as the data
backbone of this project, enabling a scalable and reproducible pipeline for high-quality

dataset preparation in support of deep learning-based traffic sign detection from video.

5.3 Setting and Configuration

The training process was conducted on the Google Colab Pro platform, leveraging a
high-performance NVIDIA A100 GPU backend, which enabled efficient parallelized
training using mixed-precision arithmetic. The YOLO11 model architecture was
instantiated using the Ultralytics implementation and initialized with the pretrained
weight file yolol1lm.pt—a medium-complexity model offering a balance between
speed and accuracy. The annotated image dataset, prepared and augmented via the
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Roboflow platform, was downloaded in YOLOv11-compatible format and included 18

distinct traffic sign classes, pre-stratified into training, validation, and testing subsets.
The training hyperparameters were configured as follows:

Table 5.3 Model training parameters

Parameter Value
imgsize 640x640
Batch 16
epochs 40
1r0 0.01

The default AdamW optimizer was employed, which utilizes adaptive learning rates in
conjunction with decoupled weight decay regularization, ensuring stable and efficient
convergence during backpropagation. The model was trained using YOLO’s CLI

interface in task=detect mode, with full logging enabled for performance tracking.

Inference was conducted on the same platform, using the best-trained model checkpoint
(best.pt) derived from the training phase. During inference, video files were
decomposed into frames and passed sequentially through the YOLO11 model using a
confidence threshold of 0.25, with non-maximum suppression (NMS) activated to
eliminate redundant bounding boxes. The system generated annotated video outputs
with detected traffic signs clearly enclosed in labelled bounding boxes, preserving

detection fidelity across frames.

All system paths, including dataset directory references and export locations for
weights and videos, were configured relative to the Colab working directory and
integrated with Google Drive for persistent storage. This configuration not only ensured
reproducibility across training sessions but also facilitated streamlined transfer of

outputs between local and cloud-based environments.

5.4 System Operation
The operational execution of the traffic sign detection system is conducted in a
structured sequence that transitions the trained YOLO11 model from a passive weight

file (best.pt) into an active inference engine capable of processing and interpreting
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visual input from video streams. This system operation was carried out within the
Google Colab environment, taking advantage of its integrated GPU acceleration,
seamless directory management, and support for media rendering. The following
subsections delineate the procedural steps undertaken during system execution,

supported by appropriate visual documentation.

lyolo task=detect mode=predict model="/content/runs/detect/train/weights/best.pt” conf=0.25 source="/content/drive/MyDrive/FYPRelated/InferenceVideos/GermanTest. mp4” save=True

Streaming output truncated to the last 5000 lines.
40713/45709) mp4: 384x640 (no detections), 12
(no detections),

ic 1
(no detections), 1
(no detections)
(no detections),

ns), 13
nfer eVideo ST, mp Bax( (no detections), 13.1ms

Figure 5.4.1 Colab execution cell running YOLOvV11 prediction command

Speed: 2.4ms preprocess, 13.2ms inference, 0.8ms postprocess per image at shape (1, 3, 384, 640)
Results saved to runs/detect/predict3
Learn more at https://docs. ultralytics. com/modes/predict

Figure 5.4.2 Console output showing path to output video

The process initiates with the mounting of Google Drive within the Colab workspace
to access the trained model weights and the inference video files. After initializing the
YOLO environment via the Ultralytics library, the system loads the best.pt checkpoint
and configures the detection task. A pre-recorded video—representing a simulated
driving scenario—is provided as input. The video is then segmented into individual
frames, which are passed sequentially through the YOLO11 detection pipeline. Each
frame is evaluated independently, allowing for spatially localized detections without

temporal dependency.
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Figure 5.4.3 Sample frame from the output video showing bounding boxes on

detected traffic sign

Once inference is complete for each frame, the system overlays the bounding boxes and
class labels corresponding to the detected traffic signs. The predictions are visually
encoded using color-coded annotations and confidence scores, thereby enabling rapid
human interpretability of detection performance. After all frames are processed, the
annotated outputs are recompiled into a video stream using FFmpeg and saved in .mp4

format for efficient compression and playback.

Output #0, mp4, to '/content/drive/MyDrive/FYPRelated/PredictedVideos/GTWithl9C.mpd’ :

Metadata:
sof tware : Lavf59. 27. 100
encoder : Lavf58. 76. 100
Stream #0:0: Video: h264 (avel / 0x31637661), yuvj420p(pe, bt470bg/unknown/unknown, progressive), 1920x1080, ¢=2-31, 25 fps, 12800 tbn
Metadata:
encoder : Lave38. 134. 100 1ibx264
Side data:

cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A
frame=45709 fps= 38 q=-1.0 Lsize= 2529177kB time=00:30:28.24 bitrate=11332.8kbits/s speed=1.51x
video:2528623kB audio:0kB subtitle:OkB other streams:0kB global headers:0kB muxing overhead: 0.021903%
[1ibx264 @ 0x56c6baB835e¢00] frame I:187 Avg QP:21.33 size:338120
[1ibx264 @ 0x56c6baB35e¢00] frame P:14086 Avg QP:24.88 size:109155
[1ibx264 @ 0x56c6baB835e00] frame B:31436 Avg QP:28.03 size: 31446

[1ibx264 @ 0x56c6baB835e00] consecutive B-frames: 4.8% 7.9% 7.8% 79.6%

[1ibx264 @ 0x56c6baB835¢00] mb I T16..4: 7.0% 81.8% 11.2%

[1ibx264 @ 0x56c6baB835¢00] mb P I16..4: 2.8% 20.7% 3.0% P16..4: 26.2% 12.1% 10.0% 0.0% 0.0% skip:25, 2%

[1ibx264 @ 0x56c6baB35e00] mb B I16..4: 0.9% 4.1% 0.6% BI16..8: 36.1% 8.3% 3.8% direct: 2.8% skip:43.5% L0:48.1% L1:40.2% BI:11.7%

[1ibx264 @ 0x56c6baB835e00]
[1ibx264 @ 0x56c6ba835e00]

8x8 transform intra:77. 1% inter:58.6%
coded v, uvDC, uvAC intra: 67.9% 56.3% 6. 2% inter: 20.7% 10.2% 0. 3%

[1ibx264 @ 0x56c6baB835e00]
[1ibx264 @ 0x56c6ba835e00]
[1ibx264 @ 0x56c6ba835e00]
[1ibx264 @ 0x56c6baB835e00]
[1ibx264 @ 0x56c6ba835e00]
[1ibx264 @ 0x56c6baB835e00]
[1ibx264 @ 0x56c6ba835e00]
[1ibx264 @ 0x56c6ba835e00]
[1ibx264 @ 0x56c6baB35e00]

i16 v, h, dc,p: 26% 40% 17% 16%

i8 v, h, dc, ddl, ddr, vr, hd, v1, hu: 18% 27% 32% 3% 3%
i4 v, h, dc, dd1, ddr, vr, hd, v1, hu: 23% 26% 15% 5% 6%
i8c dc, h,v,p: 49% 30% 17% 4%

Weighted P-Frames: Y:1.0% UV:0. 4%

ref P LO: 64.5% 16.7% 13.8% 4.9% 0.0%

ref BLO: 89.1% 9.2% L 7%

ref BL1: 95.3% 4.T%

kh/s:11329. 54

3% 6% 3% 6%
5% 9% 4% T%

Figure 5.4.4 Compressed output video

The output video is automatically stored in the specified Google Drive directory

(/PredictedVideos/) to allow for persistence beyond session expiration. To improve
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accessibility and reduce storage footprint, the final annotated video is transcoded using
the H.264 codec and compressed without loss of detection fidelity. The result is a fully
processed visual demonstration of traffic sign detection applied to real-world video

input.

5.5 Implementation Issues and Challenges

Despite the structured methodology and the systematic deployment of modern deep
learning tools, the implementation of the traffic sign detection system was not devoid
of technical intricacies and unforeseen impediments. As is characteristic of data-driven
systems operating at the intersection of real-world perception and artificial intelligence,
the challenges encountered during this project spanned across multiple phases of the
development lifecycle—ranging from data acquisition and model training to inference

stability and output fidelity.

A significant early-stage challenge arose during the dataset curation and annotation
phase, particularly due to the diversity and inconsistency inherent in traffic sign datasets
sourced from open repositories. While the Roboflow platform provided an invaluable
interface for dataset assembly and augmentation, it was observed that many original
datasets featured poorly annotated samples, ambiguous class definitions, or
underrepresented categories. This necessitated a selective cloning and manual
inspection process to ensure only semantically meaningful and structurally complete
images were included. The problem of class imbalance further complicated the dataset
design, as several rare traffic signs—though critical in real-world scenarios—were

sparsely represented, thus threatening to introduce learning bias into the model.

During the training phase, the model initially demonstrated instability in convergence
behaviour. Fluctuating validation loss and inconsistent mAP scores were observed
across early epochs, which suggested the presence of noisy labels and overly aggressive

augmentations that distorted key sign features beyond interpretability.

The inference module also presented non-trivial complexities, particularly in the
context of frame-by-frame processing of high-resolution videos. Variations in frame
lighting, occlusions, and motion blur frequently tested the robustness of the trained
YOLOI11 model, occasionally resulting in false negatives—especially for signs

positioned at oblique angles or partially truncated. While the system performed
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admirably under most conditions, these edge cases highlighted the need for future
integration of temporal smoothing techniques or multi-frame consensus mechanisms to

enhance detection reliability in video streams.

45

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 6 — System Evaluation and Discussion
6.1 System Testing and Performance Metrics

To substantiate the efficacy and operational readiness of the developed traffic sign
detection system, a rigorous system testing phase was conducted using the final trained
YOLOI11 model. The model was evaluated on a reserved validation set comprising
unseen data, thereby offering an unbiased estimate of generalization capacity and
detection fidelity under practical conditions. The evaluation relied on a suite of standard
object detection metrics, including Precision, Recall, mean Average Precision at IoU
threshold 0.50 (mAP@50), and mean Average Precision across IoU thresholds from
0.50 to 0.95 (mAP@50-95).

At the conclusion of training (Epoch 40), the system achieved a precision of 96.83%, a
recall of 97.33%, and an exceptionally high mAP@50 of 98.67%, reflecting a strong
ability to correctly localize and classify most traffic signs within the validation set. The
more stringent mAP@50-95 score of 90.83% further affirmed the model’s robustness
across various IoU thresholds, indicating a high level of consistency in detecting signs

of varying scales and positional offsets.

The loss components at the final epoch also converged effectively, with a bounding box
loss 0f 0.4366, classification loss of 0.2236, and distribution focal loss (DFL) of 0.9504,
suggesting that the model had reached an optimized state with no signs of overfitting.
The performance progression over training epochs is illustrated in Figure 6.1.1, which
shows the decreasing loss curves and upward trend in precision and mAP metrics across

the 40-epoch timeline.
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Figure6.1.1 YOLOI11 training performance overview—Iloss convergence and mAP

progression across epochs

To further contextualize model behaviour, the confusion matrix presented in Figure
6.1.2 offers insight into class-specific detection performance. It highlights strong
diagonal dominance, indicating high precision across most classes, though minor
confusion is noted between semantically and visually similar signs such as "No Entry"

and "No U-Turn."

Confusion Matrix
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Figure 6.1.2 Confusion matrix showing class-wise detection accuracy and inter-class
misclassifications
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The normalized confusion matrix, shown in Figure 6.1.3, aids in interpreting relative

performance by visualizing the proportion of correct predictions per class.

Confusion Matrix Normalized 1o
No U-turns - '

Pass an the left -
Round-About -
Warning -

bend - os
crosswalk -
intersection -
no_entry -
0.6

no_left_turn -

no_overtaking -

Predicted

no_right_turn -
no_stopping -
-04
no_u_turn -
parking -
pedestrian -
speed_bump -
-02
speed_limit -

stop -

u_turn -

background -

0.06 0.01 0.02 0,01 0,01 002 0.03 001 0.07 0.03 0.01
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g -
parking - &
stop -

pping
no_u_turn - £
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o
2
]

Figure 6.1.3 Normalized confusion matrix representing per-class detection

proportions

In addition, the precision-recall (PR) curve in Figure 6.1.4 further demonstrates the
model’s discriminative capacity across traffic sign categories, with most classes
achieving high area-under-curve (AUC) values, reinforcing the reliability of prediction

confidence.

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Precision-Recall Curve
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Figure 6.1.4 Precision—Recall (PR) curves across all detected classes

Complementary to the PR curve, the F1 score curve in Figure 6.1.5 confirms the
model’s balanced performance between precision and recall for each class, particularly

emphasizing stable performance on critical regulatory signs.

F1-Confidence Curve

—— Pass on the left
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stop
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"0.0 0.2 0.4 0.6 08
Confidence

Figure 6.1.5 F1-score per class, reflecting the harmonic balance between precision

and recall

To qualitatively assess detection integrity, a series of validation predictions were

visualized. As shown in Figure 6.1.6, the system demonstrates consistent localization
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of traffic signs across diverse scene contexts. Each bounding box is rendered with its
predicted class and confidence score, aligning accurately with ground truth annotations

and affirming spatial alignment.

no_overtaking 0.9 j
/mpAE D UmselimUye_jpg.rt.92t

Figure 6.1.6 Sample validation predictions (val_batchO pred.jpg)—bounding boxes

and class labels rendered on test frames

Collectively, these results underscore the YOLO11 model’s high detection precision,
spatial sensitivity, and classification reliability in video-derived traffic sign detection.
The synergy between quantitative metrics and visual evidence confirms the system’s
readiness for integration into intelligent perception modules within autonomous vehicle

architectures, subject to future real-time testing and platform-specific optimization.

6.2 Objectives Evaluation

The first objective was to curate and preprocess a high-quality image dataset
comprising 18 traffic sign classes under varied environmental conditions, including

different lighting, occlusions, and backgrounds. This goal was systematically fulfilled
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through the integration of Roboflow as the dataset management and augmentation
platform. Traffic sign images were selectively cloned from multiple publicly available
sources and then meticulously labelled to ensure semantic consistency and bounding
box precision. The dataset was further enriched through controlled augmentation
strategies—such as exposure adjustment, rotation, blur simulation, and cropping—to
simulate environmental variability without compromising structural integrity. This
preprocessing effort produced a robust, class-balanced dataset with sufficient variance

to train a generalizable model, thereby achieving the intended data quality and diversity.

The second objective was to train and fine-tune the YOLO11 model using the prepared
dataset, optimizing for detection performance through data augmentation,
hyperparameter tuning, and iterative model validation. This was successfully realized
through a well-calibrated training process conducted over 40 epochs using Google
Colab’s A100 GPU backend. The model was initialized with pretrained yolo11m.pt
weights and configured with a batch size of 16 and image resolution of 640x640.
Augmented data was incorporated directly into the training loop to improve robustness,
while training parameters such as learning rate and optimizer settings were selected to
ensure efficient convergence. The final model exhibited low loss values and consistent
learning trends, confirming that both the training and fine-tuning objectives were

rigorously met.

The third objective aimed to evaluate the trained model using industry-standard
performance metrics, including precision, recall, mean average precision (mAP), F1-
score, and Intersection over Union (IoU), ensuring the system’s reliability and
robustness across different sign categories. The model's performance was assessed
using a dedicated validation set, yielding a precision of 96.83%, recall of 97.33%,
mAP@50 of 98.67%, and mAP@50-95 of 90.83%, in addition to favourable class-
specific F1-scores. These results, supported by detailed confusion matrices and PR/F1
curves, provided quantitative evidence of the model’s capability to detect, localize, and
classify traffic signs across diverse categories with exceptional accuracy. Thus, the
system’s evaluation phase fully satisfied the performance assessment criteria outlined

in the objective.
Finally, the fourth objective was to apply the trained model to frame-by-frame detection
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tasks on recorded video feeds, analysing system behaviour in realistic driving scenarios
and assessing generalization capability in dynamic visual environments. This was
achieved through the implementation of a video-based inference module that
decomposed recorded driving scenes into individual frames and processed each using
the YOLOI11 detection engine. The model consistently rendered accurate bounding
boxes and class labels, even under challenging conditions involving motion blur,
occlusions, and non-uniform lighting. Output videos demonstrated high detection
fidelity, validating the system’s functionality in temporally disjointed, spatially

dynamic contexts representative of real-world applications.
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Chapter 7: Conclusion and Recommendation

7.1 Conclusion

This project commenced with the careful curation and refinement of a traffic sign
dataset composed of 18 classes, derived from open-access sources and augmented using
the Roboflow platform. The emphasis was placed on dataset fidelity, annotation
precision, and visual variability, thus ensuring that the model would be trained under
conditions reflective of actual road scenes. Preprocessing procedures including resizing,
orientation correction, and normalization were coupled with augmentation techniques
such as blur, exposure shifts, and rotational distortion to simulate realistic visual

challenges while preserving the semantic core of each sign.

The core of the detection framework centred around the YOLOI11 architecture,
initialized with pretrained weights and fine-tuned over a structured training regime
spanning 40 epochs. The training phase yielded a model capable of high-performance
detection, achieving a precision of 96.83%, a recall of 97.33%, and a mean Average
Precision (mAP@50) of 98.67%, with a generalization score (mAP@50-95) 0f 90.83%.
These results, validated on an unseen test set, substantiate the model’s ability to reliably
detect and classify traffic signs even under visual variability and moderate occlusion.
Furthermore, these metrics were complemented by a series of confusion matrices, PR
and F1 curves, and bounding box overlays, all of which confirmed the operational

integrity of the model.

The video-based inference module further demonstrated the functional feasibility of
deploying the trained model in a frame-by-frame processing pipeline. Video sequences
simulating real-world vehicular navigation were successfully analysed, with the
YOLOI11 model reliably identifying and labelling traffic signs in each frame. Output
videos were generated with bounding boxes and class labels rendered on-screen,
confirming both the spatial alignment and the semantic correctness of the model’s
predictions. These demonstrations serve as visual validation of the system’s

applicability in intelligent transportation ecosystems.

Throughout the implementation, several challenges were encountered—including
limitations in dataset class balance, sensitivity to augmentation extremes, and

constraints imposed by the cloud-based development environment. However, each of
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these obstacles contributed to a deeper understanding of system parameters, guiding
incremental refinements that ultimately led to a robust and scalable solution. The
resulting system represents not only a successful technical artifact but also a blueprint
for how deep learning techniques can be pragmatically applied to address one of the

many perception problems in autonomous vehicle development.

In sum, the project has fulfilled all its core objectives, delivering a fully functional,
quantitatively validated, and qualitatively demonstrated system for traffic sign
detection from video. It offers practical insights into the synthesis of data preparation,
model training, and deployment strategies within a constrained yet realistic research
and development context. As such, it serves as both a proof of concept and a

springboard for further innovations in autonomous visual perception systems.

7.2 Recommendation

While the system developed herein has demonstrated commendable levels of accuracy
and operational robustness, several avenues for enhancement remain open and merit
further exploration. These recommendations are offered not as remedies for failure, but
as prospective optimizations to push the boundaries of what the system may achieve

under more demanding, real-world conditions.

Firstly, the current system relies solely on frame-by-frame analysis, which, while
effective, does not exploit temporal continuity—a key feature of video data. Future
iterations could incorporate recurrent or transformer-based modules to enable temporal
tracking, allowing the system to remember sign positions across multiple frames and
enhance detection under occlusion or transient visual noise. This would be particularly

beneficial for handling blurred or momentarily obstructed signs in fast-moving scenes.

Secondly, while the model was trained on an image dataset constructed from diverse
sources, the geographic and regulatory scope of traffic signs remains limited to a
controlled subset. Expanding the dataset to include region-specific variants (e.g.,
European triangular warnings, Japanese pictorial signs) and non-standard signs would
enhance the system’s generalizability and move it closer to real-world deployment
readiness in global contexts. This expansion would also necessitate the integration of
multilingual or symbol-sensitive classification layers capable of interpreting context-
rich signage.
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Another critical recommendation involves real-time deployment on embedded systems.
While Google Colab offers an ideal environment for rapid prototyping, operational
deployment in autonomous vehicles demands hardware-optimized models running on
edge devices such as NVIDIA Jetson or Raspberry Pi with Coral TPU. Converting the
YOLOI11 model to TensorRT or ONNX format and benchmarking it under latency and
power constraints would provide meaningful insights into the system’s viability in real-

time ADAS architectures.

In conclusion, while the project has reached a successful milestone, the broader journey
of deploying robust, adaptive, and globally scalable traffic sign detection systems
remains ongoing. The recommendations offered herein lay a roadmap for this continued
advancement, reinforcing the role of computer vision as a cornerstone in the

development of safer, smarter, and more autonomous vehicles.
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