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ASSESSMENT OF FUTURE RAINFALL PATTERNS IN CAMERON 

HIGHLANDS USING THE STATISTICALLY DOWNSCALED LOCAL 

CLIMATE MODEL 

 

 

ABSTRACT 

Due to the disasters, such as heavy rainfall and landslides, that have occurred in 

Cameron Highlands in recent years, significant damage has been inflicted on 

public property safety and the health of the people. This study seeks to explore 

future precipitation changes in different scenarios and spatiotemporal contexts. 

The aim is to provide insights that government agencies can consider when 

formulating guiding principles or land-use plans. It is important to note that the 

scenarios presented by the local precipitation model generated in this study are 

merely possibilities and not definite outcomes. Research aims: 1) To develop the 

local climate model using the statistical downscaling approach. 2)To assess the 

performance of the statistically downscaled local climate model based on SSP2-

4.5 and SSP5-8.5. 3). To analyse the changes in rainfall patterns (2015–2100) 

using spatial analysis. The study compared historical observed and simulated data, 

finding the model effectively represented Tmax, Tmin, and Relative Humidity 

from 1983 to 2014, but had limitations in reproducing historical precipitation. 

Bias correction using the Delta Method was applied to address underestimation. 

Statistical methods confirmed the reliability of the generated historical models. 

For the Local Climate Model (2015-2100), Station 1 and 2 showed similar 

precipitation changes under SSP2-4.5 and SSP5-8.5 until 2063, after which they 

diverged. Station 3 experienced significantly higher precipitation changes. 

Anomalous precipitation under SSP5-8.5 transitioned from negative to positive 

anomalies around 2049. The impact of SSP5-8.5 on precipitation seemed greater 

than SSP2-4.5, less influenced by terrain. Spatial analysis showed elevation 

differences and a correlation between altitude and precipitation, with higher 

altitudes experiencing increased precipitation. 
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Chapter1 

 

Introduction 

 
Anthropogenic activities have been conclusively identified as the primary causal factor 

for the observed global warming of 1°C (with a range of 0.8–1.2°C) above pre-industrial 

levels. Projections indicate a further increase to 1.5°C within the timeframe spanning 

from 2030 to 2052 (IPCC, 2018). The scientific community has accorded significant 

attention to prospective alterations in climate, particularly with regard to extreme 

climatic events, due to their potential hazards for societies. Notably, heightened 

precipitation extremes have a direct bearing on communities as they are closely 

associated with both flooding and drought occurrences. In addition to recent calamitous 

events of global scale, such as the Pakistan Floods claiming a minimum of 1,739 lives 

(June to October 2022), the Floods in Nigeria resulting in a loss of at least 612 lives 

(June to November 2022), South African Flooding claiming the lives of a minimum of 

461 individuals (April 2022), Floods causing a loss of a minimum of 233 lives in Brazil 

(February 2022), Flooding in India resulting in a minimum of 192 casualties (June to 

September 2022), and Floods taking more than 182 lives in Afghanistan (August 2022) 

(USNEWS, 2022). Hence, the prediction of future rainfall pattern is required to take 

adequate mitigation measures. 

 

 The majority of hydrological investigations have primarily relied on 

ground station data. Precipitation forecasting, particularly in relation to rainfall, 

poses a significant challenge within the hydrological cycle (Bennett et al., 2013). 

In most areas, rain gauge stations serve as accessible instruments for estimating 

precipitation. However, it is noteworthy that limitations, such as inadequate 

coverage in remote regions or the presence of only one or two rain gauges in 

expansive catchment areas, are prevalent in developing nations like Malaysia 

(Norsyuhada et al., 2023). Global Climate Models (GCMs) exemplify numerical 

models that encapsulate physical processes across the atmosphere, oceans, 

cryosphere, and land surface. These models stand as advanced tools presently at 

our disposal for simulating responses within the global climate system. When 

coupled with nested regional models, simpler models are employed to provide 
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comprehensive or averaged assessments of climate response. They hold the 

potential to yield geographically and temporally reliable evaluations of global 

climate change (Wilby and Dawson, 2013). 

 

1.1 Problem statement  

In Cameron Highlands, Pahang, a district recently encountered mud floods, resulting in 

the inundation of certain areas with knee-deep, sediment-laden water. These inundations 

were precipitated by a prolonged three-hour downpour that commenced at 

approximately 3 pm on a Tuesday in Kampung Raja. According to Dilip Martin (2022), 

the president of Regional Environmental Awareness Cameron Highlands (REACH), this 

event constitutes the second instance of such mud floods, the initial occurrence 

transpiring on November 18. The prevailing belief is that an agricultural undertaking 

established roughly 300 meters uphill from the residential zone may have instigated 

these mud floods. His report has stated that this undertaking to the residential area, 

thereby augmenting the potential peril of calamitous events. In light of this situation, it 

is anticipated that human lives may be imperilled by flooding due to heightened 

precipitation resulting from the confluence of global warming, soil erosion, and 

deforestation attributed to the excessive utilization of agricultural land. 

 

1.2 Objectives 

1. To develop the local climate model using the statistical downscaling approach.  

2. To assess the performance of the statistically downscaled local climate model based 

on SSP2-4.5 and SSP5-8.5 

3. To analyse the changes in rainfall patterns (2015–2100) using spatial analysis. 

 

1.3 Limitations 

Limitation 1: Monitoring stations for rainfall, wind, humidity, etc. may be in disrepair 

and certain nations may not pay attention to the gathering of data from the stations, which 

may lead to an insufficient collection of historical data and reduce the utility of the 

climate models. 

 

Limitations 2: Since no data model can ever be completely accurate, when a severe 

disaster is projected to happen at a specific moment, it is crucial to consider not only the 

outcome of the prediction but also the findings of a variety of studies, field research, and 
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previous arguments in order to come to a conclusion. The study will be criticised and 

lead to conflict between the public, the government, and the research department if the 

government implements a number of costly and time-consuming steps in response to the 

forecast, but no catastrophic calamity actually materialises. 
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Chapter 2 

 

 

Literature review 

2.1 The Global Climate Model (GCM)  

Global climate models (GCMs) serve as fundamental tools for investigating 

water systems (Knutti and Sedla´ˇcek, 2013; Vrac et al., 2007). Nevertheless, 

their spatial resolution proves inadequate when examining localized effects on 

various water systems, given the intricacies of local processes (Frías et al., 2006; 

Xu, 1999). The prevalent approaches employed to address the limitations of 

coarse resolutions include dynamical downscaling and statistical downscaling 

methodologies (Vrac et al., 2007). 

 

2.2 Downscaling approach 

Downscaling methodologies encompass both statistical and dynamical 

approaches. Statistical downscaling involves discerning relationships between 

large-scale climate drivers and local-scale climate conditions. The large-scale 

climate drivers, as simulated by Global Climate Models (GCMs), serve as 

predictors in statistical models, facilitating the inference of local climate 

variables (e.g., analogue downscaling as demonstrated by Pierce et al., 2014; 

Timbal et al., 2008; Turco et al., 2017). On the other hand, dynamical 

downscaling employs Regional Climate Models (RCMs) operating at high spatial 

resolution. These RCMs are driven by boundary conditions derived from the 

respective GCMs (Giorgi and Gutowski, 2015; Xu et al., 2019). 

 

2.2.1 Dynamical Downscaling  

Important hydrological processes, like the effect of antecedent water storage and 

adherence to the water balance principle, might not be completely captured by 

statistical models (Humphrey and Gudmundsson, 2019). Furthermore, statistical 



5 

 

downscaling presents difficulties in areas where the relationship between changes 

in large-scale water storage and local features is not easily apparent (Yin et al., 

2018). 

 

 As opposed to statistical downscaling, dynamical downscaling uses data 

assimilation techniques to incorporate target datasets into numerical models in 

order to produce physically compatible results (Sun et al., 2019). By using global 

model simulation outputs to feed regional models based on particular physical 

interactions, dynamic downscaling makes it possible to generate finer resolution 

data at smaller sizes. According to Fowler et al. (2007), this method is not 

constrained by data or the strength of the link between local and large-scale 

factors in any particular place worldwide. Concurrently, the thorough integration 

of physical processes and parameterization schemes into the regional model 

guarantees the accuracy of simulation results. 

Dynamical downscaling methods find widespread application in investigating 

both mean and extreme climates in China, owing to their elevated spatial 

resolution, precise surface parameterization, and intricate parameterization 

schemes (Guo et al., 2018; Wu et al., 2020). 

 

2.2.2 Statistical Downscaling 

Global Climate Models (GCMs) typically feature horizontal resolutions ranging 

from 250 to 600 km, rendering their outputs unsuitable for accurate local impact 

studies due to the inherent lack of detailed information required at the local level. 

Researchers have created tools and techniques for statistical and dynamic 

downscaling in order to overcome these constraints (Wilby and Dawson, 2013). 

Wilby and Dawson (2013) conducted a thorough analysis that explores the most 

popular statistical downscaling techniques, their drawbacks, and problems that 

may likely arise in the future. Presently, statistical downscaling techniques are 

considered more cost-effective, flexible, and computationally less demanding 

compared to dynamic downscaling methods (Wilby and Wigley, 1997; Benestad, 

2004). 
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A primary objective of statistical downscaling studies is to assess the comparative 

efficacy of statistical versus dynamic approaches, as well as to compare various 

statistical models. Among the extensively utilized statistical downscaling tools 

are SDSM and LARS-WG. Over the past decades, numerous studies have 

employed various statistical downscaling tools to generate future climate change 

scenarios at local weather stations. 

2.2.3 The Comparison of Statistical Downscaling and Dynamical 

Downscaling 

Dynamical downscaling, as exemplified by regional climate models (RCMs), is 

characterized by computational intensity but offers a physically robust 

representation of climate dynamics. Despite the advancement introduced by 

RCMs, their resolution remains coarse, necessitating further downscaling. 

Consequently, high-resolution models, often referred to as local area models, can 

be generated by downscaling either an RCM or even a GCM. However, the 

resource-intensive nature of this procedure, both in terms of computational costs 

and human resources, limits the availability of downscaled models suitable for 

local studies. It is advised that climate model ensembles be taken into account in 

order to account for uncertainties when addressing this restriction (Benestad et 

al., 2017; Maraun et al., 2010). As a result, the limited number of models 

available may raise questions about how reliable local studies using dynamical 

downscaling are. 

  

In contrast, statistical downscaling offers a relatively straightforward process for 

producing large climate model ensembles. This approach seeks to establish 

relationships between large-scale variables and local observations, with the 

advantage of lower computational costs. Noteworthy is the fact that RCMs 

provide a more nuanced understanding of processes at the regional scale (Maraun 

et al., 2010). Therefore, it is considered best practice to employ both statistical 

and dynamical downscaling methods synergistically: (i) for downscaling an 

RCM to a local scale and (ii) to rectify biases in high-resolution models. 
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2.3 Statistical downscaling approach 

2.3.1 Linear regression 

Using linear regression analysis, one can forecast a variable's value depending on the 

value of another variable. The variable that you wish to be able to forecast is the 

dependent variable. The variable you are using to forecast the value of the other variable 

is known as the independent variable. 

 

Simple linear regression is an empirical method for addressing problems in the statistical 

sense that takes into account the historical data set of climatic values or parameters. 

There can only be one dependent variable and one independent variable in it. There can 

only be two variables in a basic linear regression model. Simple linear regression will be 

depicted as follows: 

𝑌 = 𝛼 + 𝛽𝑋                            

where Y is the dependent variable, X is the independent variable, and, are the regression 

coefficients. We shall execute simple linear regression by calculating the slope and 

intercept since it will resemble a mathematical equation of slope and intercept line. The 

strength and direction of the association between the two variables can be determined 

using the regression coefficient formula. The mathematical and statistical evolution 

processes may also be used to calculate various correlation coefficient formulae. The 

formula for r is as follows:  

𝑌 =
Σ(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

Σ(𝑥𝑖 − �̅�)2
 

 The ability of the regression line to represent the data is measured by the 

coefficient determination. One can characterize the degree and direction of the 

relationship between the independent and dependent variables. The difference between 

the actual and expected values, as well as the error, can be calculated after calculating 

the projected values. The method for figuring out mistake is  

𝑅𝑀𝑆𝐸 = √
(𝑦𝑖 − 𝑦�̅�)2

𝑛
 

Yi = Actual value, 𝑦�̅�= Predicted value, n = Total number of samples. RMSE can be 

known as root mean square error or root mean square deviation. It can be used measure 

of difference between sample and population value.  
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2.3.2correction test 

When compared to local climate variables for a reference period, the raw GCM climate 

predictors are typically prone to biases in the magnitude and frequency of a climate 

variable. As previously stated, this is true especially with precipitation. In light of these 

shortcomings, a brand-new class of statistical downscaling techniques known as QM 

bias-correction techniques have been put out recently, and they seem to be more effective 

at forecasting local climate than the traditional SDSM. 

 

 Quantifying potential biases by contrasting the distribution of the GCM-

simulated climate predictors with that of the regionally observed variables over the 

historical reference period forms the fundamental premise of all bias-correction 

techniques. Furthermore, the primary premise in the application of classical QM is the 

stationarity of the biases and other distributional properties, such as variance and 

skewness, meaning that these parameters—aside from the distribution's mean, which is 

subject to change—should remain constant for both the reference and subsequent periods. 

 

 Non-stationary QM bias-correction techniques have recently been proposed, 

which have been shown to be more effective tools for decreasing the bias of GCM 

predictors than the earlier stationary QM methods. There is now sufficient evidence to 

show that the statistics of the climate variables will not necessarily be stationary. 

 

2.4 Shared Socioeconomic Pathways (SSPs) 

Shared Socioeconomic Pathways (SSPs) are projections of anticipated worldwide 

socioeconomic trends through the year 2100. They are applied to create scenarios for 

greenhouse gas emissions under various climate policies. The most recent climate 

models currently incorporate these SSPs as significant inputs, which will be included in 

the IPCC's sixth assessment report, which is scheduled for publication in 2020–21. They 

are also being used to investigate how societal decisions may impact greenhouse gas 

emissions and, consequently, how the Paris Agreement's climate goals might be achieved. 

 

 According to the SSP2-4.5 and SSP5-8.5 scenarios, Chen et al. (2023) analyses 

the changes in wind power and related CAP caused by climate change across China in 

the two-level years (2030 and 2060). The findings indicate that in 2060, the wind 

capacity factor over China will be on a downward trend in most parts of the country and 
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upward in the southeast. In general, climate change will have a minimal effect on the 

CAP of wind power in 2030, however some southern areas would experience a rise. 

 

 The Shared Socioeconomic Pathway scenarios (SSPs) of the CMIP6 used six 

distinct Regional Climate Models, which were bias-corrected with CMhyd across 

Greater Accra utilising ground station and PUGMF reanalysis data. (Ebenezer et al). 

According to the study, the intensity of precipitation in the area covered by the SSPs has 

decreased and may have even shifted. Under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5 scenarios, respectively, maximum temperatures are predicted to rise by 0.81-

1.45°C, 0.84-1.54°C, 0.96-1.70°C, and 0.98-1.73°C, while minimum temperatures are 

predicted to rise by 1.33-2.02°C, 1.49-2.22°C, 1.71-4.75°C, and 1.75-4.83°C. 

 

 Under shared socioeconomic pathway and representative concentration pathway 

(SSP-RCP) scenarios, combining land use and climate change can produce more precise 

projections of the risks to water supply, assisting decision-making for spatial planning 

with an emphasis on climate adaptation. There are both temporal and regional variations 

in climate change. Further study is required to evaluate the hazards associated with the 

water supply at various basin or regional sizes in order to satisfy the needs of spatial 

planning. In order to analyse four SSP-RCP scenarios, Tang et al. (2023) took the 

temporal scale of spatial planning into account. Using a Taylor diagram, which rates the 

effectiveness of climate element simulations, five global climate models (GCMs) and a 

multi-model ensemble (MME) were assessed for their ability to simulate climate. 
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Chapter 3 

 

 

Methodology 

 
3.1 Research Study Set-up  

The Study workflow of this study showed in Figure 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The Study Workflow 

 

3.2 Study Area 

 
Cameron Highlands, situated in the state of Pahang, exhibits diverse terrain with 

elevations ranging from 1070 to 2110 meters above sea level. Characterized by its 

mountainous topography, it stands as the smallest district in Pahang, occupying the 

Station Data NCEP Data 

Quality Control 
Predictor 

screening 

Model Calibration – SDSM version 

4.9.2 

SSP Outputs – Historical 

model, SSP 4.5 and 8.5 

Summary 

Statistics  
Spatial analysis 

QGIS  
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Northwestern corner of the state over a total area of 71,000 hectares and hosting a 

population of around 300,000 residents. Sharing borders with the states of Kelantan to 

the north and Perak to the west, Cameron Highlands is comprised of three mukims: 

Mukim Ulu Telom, Mukim Ringlet, and Mukim Tanah Rata. These mukims collectively 

encompass nine places, including Blue Valley, Kg. Raja, Kuala Terla, Tringkap, Kea 

Farm, Tanah Rata, Brinchang, Ringlet, and Kg. Bertam Valley. 

 

 Presently, a significant portion of Cameron Highlands, amounting to 5890 

hectares, is dedicated to agricultural activities, primarily focused on vegetable farming. 

Meteorological data indicates that the region receives an average annual rainfall of 

approximately 2800 mm. 

 

3.3 Data 

 

3.3.1 Observed climate data 

 
Daily precipitation (Prcp), maximum temperature (Tmax), minimum temperature 

(Tmin), and humidity data were gathered from both the NASA Earthdata portal and the 

Malaysia Meteorological Department (MMD). This dataset covers the period from 1983 

to 2022 and pertains to three specific stations located in the Cameron Highlands of 

Malaysia (refer as figure 3.2). To ensure data integrity, the SDSM 4.2 software's quality 

control function was employed. Addressing weather data quality is a critical undertaking 

in developing nations due to the prevalent occurrence of missing data. Failing to rectify 

these gaps can impede subsequent processes such as predictor screening and calibration. 

In the context of this study, station one exhibited 12 instances of missing data. These 

gaps were distributed such that every three missing data points were observed in the 

daily Prcp, Tmax, Tmin, and humidity variables within the dataset obtained from the 

NASA Earthdata portal (https://power.larc.nasa.gov/ ). As emphasized by Wilby et al. 

(2014), regions most susceptible to climate variability often coincide with those 

exhibiting substantial data deficiencies.  
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Figure 3.2: The Location of three Station  

3.3.2 GCMs used NECP data and Predictor Screening 

 
The investigation made use of the The Canadian Earth System Model version 5 

(CanESM5)a Global Climate Model (GCM). Notably, CanESM5 demonstrates a higher 

equilibrium climate sensitivity of 5.6 oK in comparison to its precursor, CanESM2, 

which registered 4.5 oK. Predictors refer to large-scale variables housed within the 

archives of the GCMs. 

 

 Predictors should, in an ideal situation, be conceptually and physically coherent 

with their matching predictands, or the observed data. Furthermore, accurate modeling 

by the GCMs depends on a strong and stable connection between predictors and 

predictands. Preference was given to the set of predictors that included circulation, 

stability, thickness, and moisture content factors in order to downscale precipitation. As 

Siabi et al. (2021) point out, these predictors are crucial to the model's calibration and 

validation. 

 

 A total of 26 predictors, as detailed in Table 3.1, sourced from the National 

Centres for Environmental Prediction (NCEP) and National Centre for Atmospheric 

Research (NCAR) reanalysis dataset of CanESM5, were utilized for model calibration. 

All three stations were accommodated within a unified GCM framework for the 

downscaling process. Consequently, CanESM5 and NCEP data were employed for 
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model calibration, whereas CanESM5 predictors were utilized for both model validation 

and generating future projections. Notably, the predictors derived from CanESM5 are 

available under the SSP2-4.5 and SSP5-8.5 scenarios for future climate projection 

downscaling, spanning from 2015 to 2100.  

Table 3.1: The 26 atmospheric predictors 

 

No. 
Variable 

ID 
Predictor variable 

1 mslp Mean sea level pressure 

2 p1_f 1000 hPa Wind speed 

3 p1_u 1000 hPa Zonal wind component 

4 p1_v 1000 hPa Meridional wind component 

5 p1_z 1000 hPa Relative vorticity of true wind  

6 p1th 1000 hPa Wind direction 

7 p1zh 1000 hPa Divergence of true wind 

8 p5_f 500 hPa Wind speed 

9 p5_u 500 hPa Zonal wind component 

10 p5_v 500 hPa Meridional wind component 

11 p5_z 500 hPa Relative vorticity of true wind  

12 p5th 500 hPa Wind direction 

13 p5zh 500 hPa Divergence of true wind 

14 p8_f 850 hPa Wind speed 

15 p8_u 850 hPa Zonal wind component 

16 p8_v 850 hPa Meridional wind component 

17 p8_z 850 hPa Relative vorticity of true wind  

18 p8th 850 hPa Wind direction 

19 p8zh 850 hPa Divergence of true wind 

20 p500 500 hPa Geopotential 

21 p850 850 hPa Geopotential 

22 prcp Total precipitation 

23 s500 500 hPa Specific humidity 

24 s850 850 hPa Specific humidity 

25 shum 1000 hPa Specific humidity 

26 temp Air temperature at 2m 

 

 

 

 

3.4 SDSM (Statistical Downscaling Model) 

The SDSM uses a hybrid methodology that combines multiple linear regression with a 

stochastic weather generator. The latter provides an empirical link between data from 

the National Centers for Environmental Prediction (NCEP) and variables from the 

Global Climate Model (GCM). By using a multilinear regression model and stochastic 

bias-correction approaches, SDSM establishes a statistical relationship between the 
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GCM variables (predictors) and the local variables (predictands), facilitating the 

downscaling of GCM outputs. 

 

 Subsequent to data quality control procedures, predictors were selected for each 

predictand based on criteria such as correlation, partial correlation, and P-value matrices. 

This selection process was carried out using the Statistical Package for the Social 

Sciences (SPSS) software. Typically, more than 78 iterations (3 stations × 26 predictors) 

were analysed for a single predictand, and 312 iterations (3 stations × 26 predictors × 4 

predictands) were conducted for the four predictands (precipitation, Tmax, Tmin, and 

Humidity) employed in this study. The model was implemented at a monthly temporal 

scale to enhance its performance. Additionally, in configuring SDSM for calibration, 

two distinct datasets were requisitioned: daily observed data and NCEP daily predictors. 

The model was calibrated using selected predictors for each predictand, a process 

executed through rigorous screening. Temperature and humidity variables (Tmin, Tmax, 

and Humidity) were calibrated under unconditional processes at a monthly scale, 

whereas precipitation underwent calibration under conditional processes, also on a 

monthly scale. 

 

 The model, when calibrated with the most strongly correlated predictors, 

generated up to 100 ensembles of daily time-series data, with the ensemble mean serving 

as its corresponding output. However, for the purposes of this study, the model's output 

comprised 20 ensembles for the current period. The ensemble mean was employed to 

assess the performance of SDSM in simulating local data (Wilby and Dawson, 2007; 

Tavakol-Davani et al., 2013). 

 

3.4.2 QGIS (Quantum Geographic Information System) 

A free, open-source programme called QGIS (Quantum Geographic Information System) 

enables users to generate, modify, visualise, analyse, and publish geographic data. To 

generate spatial analysis of annual rainfall averages for Cameron Highland under the 

SSP2-4.5 and SSP5-8.5 scenarios, the following steps were undertaken. Firstly, the 

"open street map" function was employed to pinpoint the specific place of Cameron 

Highland. Subsequently, a new shape line layer was created to delineate the boundaries 

of Cameron Highland. It is imperative to note that the conversion of the multiline layer 

to a polygon layer using the geometry tool was necessary in order to enable the 

application of the "clip raster by mask layer" function. 
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 Secondly, a delimited text layer was added to input the files (refer to table 3.2 

and 3.3). p1, p2, and p3, represent the three designated research places, along with their 

respective longitude and latitude coordinates, allowing for precise identification on the 

polygon layer map. Additionally, the numerical ranges 15-35, 36-55, 56-75, and 76-100, 

in conjunction with their corresponding lists, respectively denote aggregated annual 

precipitation for the years 2015 to 2035, 2036 to 2055, 2056 to 2075, and 2076 to 2100. 

Thirdly, the IDW interpolation function was employed to analyse precipitation for each 

of the four time periods on the polygon layer, with fixed pixel coordinates of x and y at 

0.0001, resulting in the production of eight distinct maps. Subsequently, the "clip raster 

by mask layer" function was applied to remove any excess areas outside the boundaries 

of Cameron Highland.  

 

Finally, adjustments were made to the properties of the eight clipped maps. 

Specifically, the render type was modified to "singleband pseudocolor," and the 

minimum and maximum precipitation values were standardized. The interpolation 

method was set to discrete, with the mode fixed at quantile and 7 quantile value range. 

Notably, it is crucial to ensure that the quantile value ranges and the colour ramp across 

all eight maps are consistent, in order to facilitate clear visualization of rainfall variations. 

 

Table 3.2: Average Annual precipitation (2015-2035, 2036-2055, 2056-2075, 

2076-2100) of three places based on SSP2 

ID longitude latitude 15-35 36-55 56-75 76-100 

p1 101.394 4.5714 2499.7 2602.8 2689.6 2777.9 

p2 101.5229 4.428 2479.7 2579.5 2675.9 2760.8 

p3 101.3714 4.4842 3052.8 3179.2 3268.7 3379.9 

 

 

Table 3.3: Average Annual precipitation (2015-2035, 2036-2055, 2056-2075, 

2076-2100) of three places based on SSP5 

ID longitude latitude 15-35 36-55 56-75 76-100 

p1 101.394 4.5714 2495.3 2688.0 2865.9 3128.6 

p2 101.5229 4.428 2503.1 2663.4 2850.7 3079.2 

p3 101.3714 4.4842 3031.4 3367.2 3499.7 3606.5  

 

 

Chapter 4 
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Results and Discussion 

 

 

4.1 Historical Model Generation 

4.1.1 Precipitation 

The observational data encompassing daily precipitation, daily maximum and 

minimum temperatures, as well as daily humidity, spanning from January 1, 1983, 

to December 31, 2022, were acquired from two distinct geographical coordinates 

using NASA's POWER dataset. Station 1 is situated at a latitude of 4.5714 and a 

longitude of 101.394, while Station 2 is positioned at a latitude of 4.4663 and a 

longitude of 101.5836. 

 

The historical models for both Station 1 and Station 2 were constructed 

utilizing the SDSM software within the temporal range of 1983 to 2014. These 

models were subsequently juxtaposed with their respective sets of observational 

data. As depicted in Figures 4.1 to 4.5, owing to the proximity of the two places, 

the generated historical models exhibit notable similarity, with the observational 

data displaying a corresponding degree of comparability. One can argue that the 

climate in Cameron highland does not vary substantially spatially because of its 

small area. Notably, with regard to the annual mean precipitation (refer to figure 

4.1 and 4.2), both generated historical models exhibited a tendency to 

overestimate the corresponding observational data (red curve displays historical 

observed data, green curve demonstrates the modelled data). However, for 

maximum precipitation values (refer to figure 4.3 and 4.4), the historical models 

demonstrated a proclivity to underestimate the actual observed data; in other 

words, the historical model cannot predict the extremely change of maximum 

precipitation. 
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Figure 4.1: Mean of Average Monthly Rainfall of Station 1 

 

 

Figure 4.2: Mean of Average Monthly Rainfall of Station 2 

 

 

Figure 4.3: Maximum of Average Monthly Rainfall of Station1 
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Figure 4.4: Maximum of Average Monthly Rainfall of Station2 

 

 

Figure 4.5: Minimum of Average Monthly Rainfall of Station1 

 

 
 

Figure 4.6: Minimum of Average Monthly precipitation of Station 2 

 

4.1.2 Temperature Maximum 

The outcomes of juxtaposing the historical predictive models with actual maximum 

temperature observations at the specified places, depicted in Figures 4.7 to 4.12, manifest 

that the historical models demonstrated a commendable level of accuracy in forecasting 
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observed values. While occasional instances of both overestimation and underestimation 

of observed data were noted (refer to Figure 4.9 and 4.10), the graphs (refer to Figure 

4.7 and 4.8) illustrating the average maximum temperatures at both places exhibited a 

seamless alignment, thereby diminishing the significance of these disparities to a 

negligible extent. 

 

 

Figure 4.7: Mean of Average Monthly Maximum Temperature of Station1 

 

 

Figure 4.8: Mean of Average Monthly Maximum Temperature of Station2 
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Figure 4.9: Maximum of Average Monthly Maximum Temperature of 

Station 1 

 

Figure 4.10: Maximum of Average Monthly Maximum Temperature of 

Station2 

 

 

Figure 4.11: Minimum of Average Monthly Maximum Temperature   of 

Station 1 
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Figure 4.12: Minimum of Average Monthly Maximum Temperature of 

Station2 

 

4.1.3 Temperature Minimum 

The outcomes of evaluating the historical predictive model against the actual maximum 

temperature observations at a specific site are presented in Figures 4.13 to 4.18. These 

figures illustrate that the historical model demonstrates noteworthy precision in 

forecasting the observations. Similarly, the graph representing the average minimum 

temperature at two distinct stations(refer to Figure 4.13 and 4.14) showcases a coherent 

correlation, thereby diminishing the magnitude of these disparities to negligible 

proportions. 

 

Figure 4.13: Mean of Average Monthly Minimum Temperature of Station1 

 

 

Figure 4.14: Mean of Average Monthly Minimum Temperature of Station2 
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Figure 4.15: Maximum of Average Monthly Minimum Temperature  of 

Station 1 

 

 

Figure 4.16: Maximum of Average Monthly Minimum Temperature of 

Station 2 

 

 

 

Figure 4.17: Minimum of Average Monthly Minimum Temperature   of 

Station1 
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Figure 4.18: Minimum of Average Monthly Temperature minimum of 

Station 2 

 

4.1.4 Relative Humidity 

As indicated by Figures 4.23 and 4.24, it becomes evident that the historical model 

exhibits a limited sensitivity to pronounced variations and tends to overestimate the 

observed values, From June to August, the historical observed humidity percentage 

deviates from simulated values by initially decreasing and then subsequently increasing, 

eventually realigning with the simulated humidity. The minimum humidity occurs in 

July (refer to Figures 4.23). Meanwhile (refer to Figures 4.24), There were two instances 

of observed humidity dropping and then rising again, with the current occurrence having 

a larger span. This pattern was observed from March to June and from June to September. 

The historical minimum humidity percentage was recorded in April. This phenomenon 

could potentially be attributed to the intricate nature of the local meteorological 

processes, rendering them challenging to simulate comprehensively, thereby impeding 

the model's capacity for accurate representation. Moreover, protracted climatic trends 

and unforeseen meteorological events may contribute to instances of overestimation in 

observational data. 
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Figure 4.19: Mean of Average Monthly Relative Humidity of Station 1 

 

 

Figure 4.20: Mean of Average Monthly Relative Humidity of Station 2 

 

 

Figure 4.21: Maximum of Average Monthly Relative Humidity of Station 1 

 

 

Figure 4.22: Maximum of Average Monthly Relative Humidity of Station 2 
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Figure 4.23: Minimum of Average Monthly Humidity of Station 1 

 

 

Figure 4.24: Minimum of Average Monthly Relative Humidity of   Station 

2 

 

Based on the aforementioned figures, it is evident that Cameron Highlands in Malaysia 

experiences pronounced fluctuations in rainfall, while exhibiting minimal deviations in 

temperature and humidity. Specifically, parameters such as temperature maximum, 

temperature minimum, and humidity, particularly their mean values, demonstrate a 

consistent horizontal trajectory over the course of a year. This apparent lack of 

correlation between precipitation and variables such as Tmax, Tmin, and humidity can 

be attributed to two primary factors. Firstly, Cameron Highlands is distinguished by its 

rugged topography, characterized by elevated terrain. When moist air originating from 

adjacent areas encounters these elevated features, it undergoes forced ascent, inducing 

orographic lifting. Consequently, as the air ascends, it undergoes cooling and 

condensation, resulting in escalated precipitation levels, particularly in localized regions 

characterized by significantly heightened rainfall. Secondly, anthropogenic activities, 

encompassing urbanization, deforestation, and alterations in land use, possess the 

capacity to influence local climatic patterns. These alterations may, on occasion, lead to 

adjustments in precipitation regimes. 

%
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4.2 Historical model validation using PDF, Prediction Accuracy, Index of 

Accuracy, RMSE analysis, ANOVA 

PDF (Probability Density function): The possibility that a certain outcome will come 

about from a process that produces observable data is described in (PDF). Using PDFs 

to determine which values are most likely to occur as well as which values are less likely. 

Sort the data using the Probability Density function from lowest to highest, where 𝑍 =

𝑋𝑖−𝑋𝑚𝑒𝑎𝑛

𝜎
; 𝜎 = Standard Deviation 

PA (Prediction Accuracy):0<x<1 

𝑃𝐴 = ∑
(𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)

(𝑛 − 1)𝜎𝑝𝜎𝑜

𝑛

𝑖=1

 

IA (Index of accuracy):0<x<1 

𝐼𝐴 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 

RMSE (Root mean square error):(0, ∞) 

to calculate the typical discrepancy between the projected values of a statistical model 

and the actual values. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛 − 1
 

ANOVA (Analysis of Variance): 

to determine if the two groups' average means vary or not. 

- Hypothesis null: There is no statistically significant difference between the means. H0 : 

𝜇1 = 𝜇2 = 𝜇3 … 

- Hypothesis one: Some of the mean differences are statistically significant H1 :𝜇1 ≠

𝜇2 ≠ 𝜇3 …  

P ≥0.05 rejects H1; accepts H0; F crucial > F value 

 

4.2.1  Precipitation   (mm/month) 

Output (Station 1): 

(In Figure 4.25) Probability density functions (PDFs) serve as a statistical tool for 

assessing the agreement between the historical model and the observational dataset. The 

x-axis denotes the precipitation variable, while the y-axis represents the probability 

density. The blue curve corresponds to the PDF derived from the monthly observation 
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dataset spanning from 1983 to 2014, while the orange curve depicts the PDF generated 

by the historical model which from the monthly data of mean of 20 ensembles. Notably, 

it is discernible that the peaks of the two PDFs do not align, indicating a substantial 

disparity between the model and the observed data. This lack of convergence in the peak 

regions suggests that the model may not comprehensively capture specific facets of the 

observed phenomenon. Moreover, metrics such as PA: 0.635, IA: 0.742, R2: 0.4035, 

RMSE (Root Mean Square Error): 73.03, and ANOVA (Analysis of Variance) with a 

significance level of P<0.05 further underscore the model's lack of reliability. 

Consequently, it is imperative to employ bias correction techniques to refine the model's 

calibration. 

 

Figure 4.25: Precipitation PDF output of  Station 1 

 

For a more comprehensive visual analysis of the Probability Density Functions 

(PDFs), the Kernel Density Estimation function in the R programming language 

was employed (see Figure 4.26). This function facilitated an examination of the 

historical model dataset alongside the observed dataset, yielding the KDE figure 

(depicted in Figure 4.27). Along the x-axis, the variable of interest, precipitation, 

is ranged from 0 to 600 mm/monthly, while the y-axis represents estimated 

density, spanning from 0 to 0.007. 

 

 Evidently, discernible peaks in the KDE curves for both the modelled and 

observed data are observed, manifesting around 200mm/monthly and 

150mm/monthly, respectively. Correspondingly, valleys, indicative of lower 

density regions in the modelled data, are notably situated at approximately 
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250mm/monthly. Overlapping segments in the KDE curves suggest similarity 

within the precipitation range of 150 to 350mm/monthly. Noteworthy is the 

discernible difference in curve width; the historical model dataset exhibits a range 

from 50 to 400 mm/monthly, while the observed data spans from 0 to 600 

mm/monthly. Nevertheless, the slender right tail of the observed data suggests a 

lower probability, rendering its influence negligible. 

 

 It is imperative to highlight the presence of multiple peaks in the KDE 

curve of the historical model. This phenomenon may arise from two plausible 

explanations. Firstly, the historical model might incorporate additional variables, 

features, or factors not accounted for in the observation dataset, leading to the 

emergence of distinct modes in the KDE. Alternatively, the observation dataset 

may lack crucial variables or details considered in the historical model, 

potentially resulting in a simpler, unimodal distribution. 

 

Figure 4.26: The  programming coding to obtain the Kernel Density 

Estimation (KDE)output through the R programming language 
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Figure 4.27: TheKernel Density Estimation (KDE)output ofthe historical 

observed datavs. historical modelled data of  Station 1 by R programming 

language output 

 

 Nevertheless, this method (KDE analysis) serves as an initial visual tool for 

comparing the probability density functions of two datasets. For a more rigorous 

quantitative assessment of the disparities between the modelled and observed datasets, 

the Hellinger distance was employed. The Hellinger distance is a statistical metric 

utilized to quantify the degree of similarity or dissimilarity between two discrete 

probability distributions, such as probability density functions (PDFs) or histograms. 

This calculation was executed using the R programming language, yielding an output of 

0.244 (refer to Figure 4.28 & 4.29). A Hellinger distance falling within the range of 0 

to 0.5 implies a state of moderate to high dissimilarity. Within this interval, the 

distributions exhibit some degree of overlap but also notable disparities in their shapes. 

 

 

  

Figure 4.28 & 4.29: the detailed programming content to get the Hellinger 

distance value through the R programming language and the 

corresponding Hellinger distance value 

Output after Bias correction: 

Delta Method (Precipitation) 

𝑃𝑖 = 𝑃𝑠𝑖𝑚.𝑖 × 𝛼 

𝛼 = 𝑃𝑎𝑣𝑒 𝑜𝑏𝑠/𝑃𝑎𝑣𝑒 𝑠𝑖𝑚 
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where, Pave obs = Average observation value; Pave sim. = Average modelled 

value; Pi = corrected modelled value at time i; P sim. i = modelled value at time 

i 

 

 After applied the delta method fto bias correct the historical modelled 

dataset, the PA value doesn’t change, IA change from 0.742 to 0.745, R2 doesn’t 

change 0.4035, RMSE change from to 73.03to 70.2, ANOVA:P>0.05.(refer to 

Figure 4.30) It illustrates the Probability Density Functions (PDFs) of the bias-

corrected historical modelled dataset  and the observed data. Notably, there is a 

noticeable degree of overlap between the two curves, indicating a significant 

similarity in the underlying distributions. This suggests that the historical model 

accurately captures certain aspects of the observed phenomenon. 

 

 

 

Figure 4.30: Precipitation PDF output of   Station1(Afterbiased correction) 

 

 In the biased-corrected KDE (as figure 4.31), the density of peak from 0.007 to 

0.006. After bias correction, the Hellinger distance from 0.24 to 0.09 (as figure 4.32), If 

the Hellinger distance is close to 0, it implies a high degree of similarity between the 

compared distributions. This suggests that the distributions are very similar in shape, and 

their overlap is substantial. 
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Figure 4.31: the kernel density estimation chart about the historical 

observed data versus historical modelled data of   Station1 by R 

programming language output —biased corrected version 

 

 

 

 

Figure 4.32: The Hellinger distance value of R programming language 

output—biased corrected version 

 

Output (Station 2): 

Using the duplicated method to analyse the Station 2, the initial result display that PA: 

0.605, IA: 0.710, R2 (coefficient of determination): 0.367, RMSE: 71.6, ANOVA: 

P<0.05. After using the delta method: PA:0.619, IA: 0.710, R2: 0.383, RMSE: 67.9, 

ANOVA: P=0.99>0.05, those statistical data substantiate the indistinguishability 

between the model and observed data in terms of their underlying distributions. 
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Figure 4.33: Precipitation PDF output of Station2 

 

 

Figure 4.34: Precipitation PDF output of Station2 (Afterbiased correction) 

 

 

4.2.2  Temperature at 2 Meters Maximum (Tmax) (0C) 

Figures 4.35 and 4.36 present the Probability Density Functions (PDFs) depicting 

the historical model data  alongside the historical observation data. Noteworthy 

is the remarkable correspondence between the two curves, indicating a notable 

congruence in the underlying distributions. The x-axis delineates the maximum 

temperature variable, ranging from 25℃ to 30℃, while the y-axis represents the 

probability density, with its maximum value capped at 0.4. Beyond the evident 

visual overlap in PDFs, quantitative metrics further affirm this congruence. 

Specifically, PA at 0.569 and 0.700, IA at 0.732 and 0.812, R2 at 0.324 and 0.490, 

RMSE at 0.57 and 0.55, and ANOVA with p-values of 0.099 and 0.387 for 

Station1 and Station 2 respectively, substantiate the indistinguishability between 

the model and observed data in terms of their underlying distributions. This high 

level of concordance underscores the historical model's efficacy in faithfully 

replicating the characteristics of the observed data, providing a robust indication 

of its reliability in emulating real-world phenomena. Nevertheless, a subtle 

deviation arises in the representation of the historical model, particularly in the 

left tail of the x-axis ranging from 25 to 26. This deviation may be attributed to 
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inherent limitations within the model, specifically in accurately capturing 

temperature ranges at the lower end of the spectrum. 

 

Figure 4.35: Tmax PDF output of Station 1 

 

 

Figure 4.36: Tmax PDF output of Station 2 

 

 

4.2.3  Temperature at 2 Meters Minimum (Tmin)(C) 

Figures 4.37 and 4.38 display the Probability Density Functions (PDFs) 

illustrating the historical model data  juxtaposed with the historical observation 

data. In Station 1, the Historical Observation Tmin spans from 18.6℃ to 22.62℃, 

while the Historical Model Tmin data ranges from 18.41℃  to 21.75℃ . 

Conversely, for Station 2, the Historical Observation Tmin encompasses a range 

from 19.24℃ to 23.95℃, and the Historical Model of Tmin ranges from 19.29℃ 

to 23.16℃. 
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In addition to the conspicuous visual alignment observed in the PDFs, 

quantitative assessments further validate this congruence. Specifically, (PA) 

values of 0.811 and 0.846, (IA) values of 0.893 and 0.914, (R2) values of 0.655 

and 0.716, (RMSE) values of 0.43 and 0.48, and (ANOVA) results with p-values 

of 0.811 and 0.782 for Station1 and Station2 respectively, substantiate the 

indistinguishability between the model and observed data in relation to their 

underlying distributions. 

 

This notable level of concordance underscores the historical model's 

proficiency in faithfully reproducing the attributes of the observed data, offering 

substantial evidence of its reliability in simulating real-world phenomena. 

However, a subtle discrepancy also emerges in the representation of the historical 

model like in the Tmax PDFs, particularly in the right tail of the x-axis. 

 

Figure 4.37: Tmin PDF output of Station1 
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Figure 4.38: Tmin PDF output of Station2 

 

 

4.2.4Relative Humidity at 2 Meters (%) 

Figures 4.39 and 4.40 depict the Probability Density Functions (PDFs) 

illustrating the historical model data (depicted in orange) in conjunction with the 

historical observation data (depicted in blue). The x-axis pertains to the humidity 

variable. In Station 1, the Historical Observation Relative Humidity (RH2M) 

ranges from 80.12% to 91.9%, while the Historical Model spans from 83.09% to 

89.93%. In contrast, for Station 2, the observed RH2M encompasses a range from 

88.06% to 93.26%, and the modelled data extends from 88.77% to 90.50%. 

Quantitative metrics, including (PA) values of 0.585 and 0.470, (IA) values of 

0.743 and 0.587, (R2) values of 0.342 and 0.21, (RMSE) values of 1.52 and 1.76, 

and (ANOVA) results with p-values of 0.311 and 0.478 for Place 1 and Place 2 

respectively, toughly attest to the congruence between the model and observed 

data in relation to their underlying distributions. Nonetheless, a subtle deviation 

also arises in the representation of the historical model, akin to what was observed 

in the Tmax and Tmin Probability Density Functions, particularly in the right tail 

of the x-axis. 

 

Figure 4.39: Humidity PDF output of Station1 
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Figure 4.40: Humidity PDF output of Station2 

 

 

 

Followed conclusion from above picture，Correlation examinations are employed to 

assess the linear interdependence between model prognostications and factual 

observations. for the bias-corrected precipitation and humidity, the correlation between 

the model and the factual values evinces greater robustness at the Station 1which is 

0.4035, 0.342 respectively more than 0.383, 0.21 in Station 2. Conversely, for the 

Temperature maximum and Temperature minimum, coefficient of determination of 

Station2 (0.49, 0.716) higher than point 1(0.324, 0.655), potentially signifying 

heightened precision. 

 

The Root Mean Square Error (RMSE) serves as a metric quantifying the level 

of disparity between model prognostications and empirical observations. for the bias-

corrected precipitation and temperature maximum, the RMSE of model deployed at the 

secondary place（67.9，0.55）lesser than the Station 1（70.2，0.57） that manifests 

superior performance in this context. On the contrary, for temperature minimum and 

humidity, the RMSE of Station 1（0.43，1.52） lesser than the Station 2（0.48，

1.76）,it shows that the difference of historical dataset and observed dataset lesser than 

Station 2. 

The outcomes derived from the Analysis of Variance (ANOVA) evinced 

outcomes obtained at the Station 2 exhibited statistically greater significance for the 
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bias-precipitation, Tmax and Humidity, thus intimating the potential for heightened 

accuracy. 

 

4.3 Local climate model generation (2015-2100) 

 

4.3.1 Precipitation  

 

According to Figure 4.41, the grey curve representing observational data for the period 

from 2015 to 2021 exhibits significant fluctuations, starting at 2255.47 mm in 2015, 

reaching its first peak of 3080.32 mm in 2017, dropping to its second lowest point of 

2280.12 mm in 2019, and subsequently experiencing a rapid ascent to second zenith of 

2956.34mm in 2021. Notably, the maximum observed precipitation of 3080.32 mm 

surpasses the projected annual precipitation values from 2015 to 2100 under the SSP2-

4.5 scenario indicated by the blue curve and surpasses the projected annual precipitation 

values from 2015 to 2080 under the SSP5 indicated by the orange curve, and is 1.05 

times greater than the highest projected precipitation of 2930.55 mm in the year 2097 

under the SSP2-4.5 scenario. 

 

Based on Figures 4.41 and 4.42, the projected future rainfall under the SSP2-4.5 and 

SSP5-8.5 scenarios demonstrates a stable increase with slight fluctuations from 2015 to 

2100. This stands in contrast to the historical observed rainfall, which exhibited a range 

of fluctuations from a minimum of 2235.37 mm in 2016 to a maximum of 3080.32 mm 

in 2017; Over an extremely short one-year period, the precipitation variation amounted 

to 844.95 mm. However, the anticipated annual precipitation, as projected, does not 

undergo such extreme changes within a single year. 

 

 The Figure 4.41 and 4.42 illustrate the rainfall patterns in the two Stations 

exhibit remarkable uniformity and stability, devoid of any instances of extreme 

conditions. One plausible explanation for this observation could be the limited spatial 

resolution of the data. The absence of records pertaining to extreme conditions, 

especially in regions characterized by complex topography or intricate rainfall 

distributions such as the Cameron Highlands, suggests that an enhancement in spatial 

resolution may facilitate a more precise simulation of local extreme events. It is also 

conceivable that extreme rainfall occurrences are contingent upon specific weather and 

climatic phenomena, such as monsoons and cyclones, which were not explicitly 
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integrated into the model over the fifty-year, or even century-long, period. The 

manifestation of extreme events may be influenced by non-linear factors such as 

atmospheric humidity and sea temperature. Considering Malaysia's geographical place 

in proximity to both the Pacific and Indian Oceans, along with the influence of sea 

temperature, these non-linear factors warrant inclusion in the model.  

 

Moreover, the model should undergo periodic updates to ensure its sustained 

accuracy. An additional conjecture posits that the absence of extreme precipitation 

events from 1983 to 2014 might be attributed to the emergence of extreme climate 

conditions post-2014, possibly influenced by urbanization, deforestation, inadequate 

land management, and expansion of crop fields, however from 2015 to 2021 year which 

is very short as input file for output future model. Therefore, in order to get more accurate 

projected annual precipitation, it is very crucial that having a long period of time with 

real extreme precipitation as input learning file. There is a speculation, Perhaps, the 

proposed approach of combining real observational data from 1983 to 2014 with non-

linear factors (2015-2021), such as flash floods, monsoon, El Niño, La Niña, influenced 

to some extent by urbanization, deforestation, inadequate land management, and 

expansion of crop fields, to generate simulated historical observation data (1983-2021) 

for the future climate model is plausible.  

 

However, several considerations must be taken into account. Firstly, the quality 

of the data is paramount, ensuring that the real observational data from 1983 to 2014 is 

of high quality and consistency. Simultaneously, it is essential to verify the accuracy of 

the non-linear factors and their representation in the model. Secondly, the validation of 

the generated simulated historical observation data against independent observational 

data is imperative to assess the model's accuracy and reliability. Thirdly, there is a need 

to assess the consistency of temporal trends and patterns in the combined data to ensure 

that the model captures realistic changes over time. Fourthly, it is crucial to model the 

influence of non-linear factors accurately, reflecting their impact on precipitation 

patterns, and to consider uncertainties in the relationships between non-linear factors and 

precipitation. It is noteworthy that the assumption of stationarity may not hold, and the 

relationships between non-linear factors and precipitation may evolve over time. Lastly, 

consideration should be given to the complexities of urbanization, deforestation, and 

land management changes, along with their dynamic interactions with climate variables. 
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Additionally, the model's ability to project future climate conditions relies on the 

assumptions made during the simulation, and uncertainties may exist. 

 

Refer to Figure 4.41, it is important to highlight that both the blue and orange 

curves exhibit a positive linear trendline with equations y = 4.3662x – 6334.7 and y = 

10.067x - 17902, respectively. The R² (coefficient of determination) values increase 

from 0.7225 to 0.9186. In statistical terms, R² signifies the proportion of the total 

deviation that can be explained by the regression sum of squares, when performing linear 

regression analysis using the least squares method for parameter estimation. A higher R² 

indicates a more accurate and significant regression effect, with values closer to 1 

implying a better fit. Generally, a model with a goodness of fit exceeding 0.8 is 

considered to be high; hence, this prospective model offers greater accuracy when 

analysing precipitation patterns under the SSP5-8.5 scenario. 

 

 

Figure 4.41：Projected Annual Precipitation (2015-2100) based on SSP2-

4.5, SSP5-8.5 and observation (2015-2021) of Station 1 

 

Based on Figure 4.42, the noteworthy observation is that both the orange and blue curves 

exhibit a positive linear trendline represented by the equations y = 4.3923x – 6407 and 

y = 9.2738x - 16292, respectively. Furthermore, the coefficients of determination (R²) 

show an increase from 0.7476 to 0.9181. A higher R² indicates a more accurate model 
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and a more pronounced regression effect. Consequently, this model demonstrates 

increased accuracy when analysing precipitation patterns under the SSP5-8.5 scenario. 

 

As depicted in Figure 4.42, the curve (p1-obs) representing observational data 

for the period spanning from 2015 to 2021 displays significant fluctuations, commencing 

at 2176.41 mm in 2015, reaching its initial peak of 3232.08 mm in 2017, descending to 

its second lowest point of 2172.03 mm in 2019, and subsequently experiencing a sharp 

ascent to its second zenith of 3096.66 mm in 2021. It is of particular note that the 

maximum observed precipitation of 3232.08 mm exceeds the projected annual 

precipitation values from 2015 to 2100 under the SSP2-4.5 scenario, as indicated by the 

orange curve. Furthermore, the maximum observed precipitation of 3232.08 mm firstly 

is surpassed by the projected precipitation in 2091 which is 3328.87 mm under the SSP5-

8.5 scenario. 

 

Figure 4.42: Projected Annual Precipitation (2015-2100) based on SSP2-

4.5, SSP5-8.5 and observation (2015-2021) of Station 2 
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Figure 4.43：Projected Annual Precipitation (2015-2100) based on SSP2-

4.5 and SSP5-8.5 of Station 3(MMD) 

 

In Figure 4.43, the curve (p3-ssp2) illustrates variations in rainfall from 2015 to 

2100 under the SSP2-4.5 scenario. With an R² value of 0.1505, it is noteworthy 

that the minimum recorded rainfall of 2626.77 mm is approximately 1.7 times 

lower. The   curve (p3-ssp5), representing rainfall changes from 2015 to 2100 

under the SSP5-8.5 scenario, demonstrates greater stability with an R² value of 

0.4126. The maximum recorded rainfall in 1986 was 4199.65mm, which is about 

1.8 times the minimum recorded rainfall of 2302.32 mm. By comparing Figures 

4.41 and 4.42, it can be deduced that for rainfall variations from 2015 to 2100 

under SSP2-4.5 and SSP5-8.5 scenarios, the ratio of maximum to minimum 

rainfall is approximately 1.25 and 1.4, respectively. Similarly, at Station2, the 

maximum to minimum rainfall ratio is approximately 1.23 and 1.4, respectively. 

This indicates that in 1986, the SSP5-8.5 scenario exhibited a greater proportion 

of maximum to minimum rainfall compared to the SSP2-4.5 scenario. 

 

The MMD data relies predominantly on its dedicated meteorological 

observation network, encompassing meteorological radar, satellites, 

meteorological stations, and field data collection by on-site observers. Its primary 
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objective is to provide precise meteorological information and localized weather 

forecasts for Malaysia, addressing the meteorological requirements of local 

residents, businesses, and governmental entities. As depicted in Figure 4.44, it is 

evident that the projected future rainfall generated by MMD exhibits substantial 

fluctuations, ranging from 2250 mm to 4500 mm. Notably, the projected annual 

rainfall from 2015 to 2100 significantly surpasses the historical records. 

Consequently, it can be reasonably posited that utilizing MMD's historical 

observation data as a baseline, the resultant local climate model proves to be more 

accurate and suitable for forecasting future rainfall changes in Malaysia, 

particularly in the specific context of the Golden Marun Plateau. In contrast, the 

NASA Power project leverages satellite remote sensing data and meteorological 

model information on a global scale, emphasizing global energy resources 

forecasting. Given the broader scope, precision may be comparatively diminished. 

Hence, MMD stands out as a more fitting choice for developing a localized future 

climate model for the Cameron Highlands compared to NASA POWER. 

 

Figure 4.44: Projected Annual Precipitation(2015-2100) based on SSP2-4.5 

and SSP5-8.5 of three Station 
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Anomaly analysis involves subtracting the average historical observed annual 

rainfall data from 2015 to 2021 for Station 1 and 2 from the predicted rainfall 

data under the scenarios SSP2-4.5 and SSP5-8.5 from 2022 to 2100. This process 

aims to highlight anomalies or deviations from the historical average. The results 

are then presented in four sets of bar charts. Each set of bar charts corresponds to 

a specific combination of Station and emission scenario (SSP2-4.5 or SSP5-8.5). 

The x-axis represents the years from 2022 to 2100, and the y-axis represents the 

anomaly values; Each bar in the chart corresponds to the anomaly for a specific 

year. 

 

In the context of the identical SSP2-4.5 scenario, a comparative analysis 

of rainfall anomalies between Station 1 and Station2 reveals distinctive patterns. 

The maximum negative anomaly at Station 1 is estimated to be approximately -

250mm, while at Station 2, it is observed to be in the vicinity of -300mm. In 

contrast, the maximum positive anomaly at Station 1 is approximately 270mm, 

whereas at Station2, it is approximately 180mm. Furthermore, an examination of 

the areas enclosed by the P1-sspP2-4.5 and P2-ssp2 curves in relation to the x-

axis reveals noteworthy differences. Specifically, the area corresponding to 

negative anomalies at Station 2 significantly surpasses that of Station 1, while the 

area associated with positive anomalies at Station1 is markedly greater than that 

at Station2. In summary, Station1 is confronted with a heightened risk of extreme 

rainfall events compared to Station 2. 
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Figure 4.45：Anomaly Variation of precipitation of Station 1 based on 

SSP2-4.5 (2022-2100) 

 

 

According to Figure 4.46, the distribution of anomalous rainfall at Station 2 under 

the SSP2-4.5 scenario exhibits an inverted iceberg shape, with the majority of 

negative anomalies concentrating between 2022 and 2055. From 2055 to 2091, 

the fluctuation of anomalies revolves around the x-axis, while positive anomalies 

exhibit substantial variation, dropping below the y-axis between 2058 and 2090. 

The peak value of positive anomalies reaches approximately 180mm. Figure 4.48 

illustrates the anomalous rainfall distribution at Station 2 under the SSP5-8.5 

scenario, where negative anomalies are primarily concentrated between 2022 and 

2049, with the last negative anomaly occurring in 2055. Positive anomalies show 

a continuous upward trend from 2056 to 2100, with fluctuations but no instances 

falling below 0mm. The peak value of positive anomalies surpasses 600mm, 

occurring in 2091. It is evident that under the SSP5-8.5 scenario, simulated 

rainfall exhibits an earlier onset of positive growth compared to the historical 

average. Comparing the areas enclosed by the P2-SSP2 and P2-SSP5 curves with 

the x-axis, the area below the x-axis in the former is significantly greater than in 

the latter. In the comparison of areas above the x-axis, the latter is significantly 

greater than the former. These observations suggest that under low-emission 

scenarios, the likelihood and potential impact of simulated rainfall influenced by 

extreme precipitation are lower than under high-emission scenarios. 

 

 For Figures 4.47 and 4.48, the occurrence of maximum positive 

anomalies exceeding 600mm indicates an increased flood risk, especially in areas 

with poor drainage systems or low-lying regions (both Station 1 and Station2 are 

low-lying areas). Excessive rainfall, while crucial for crop growth in the 

numerous plantations in the Cameron Highlands, may lead to waterlogging, 

nutrient leaching, and other agricultural challenges. Intense and prolonged 

rainfall increases the risk of soil erosion and landslides, particularly in hilly or 

mountainous areas, where excess water saturates the soil, making it more 
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susceptible to erosion and slope instability. Heavy rainfall can impact 

infrastructure such as roads, bridges, and buildings, while increased runoff and 

flooding may cause damage and disruptions in transportation and other services. 

Certainly, above-average rainfall has positive implications for water resources, 

resulting in rising water levels in reservoirs, lakes, and aquifers. This can be 

advantageous for water supply and agricultural irrigation but may pose 

challenges in managing excess water resources. 

 

 

Figure 4.46：Anomaly variation of precipitation of   Station 2 based on 

SSP2-4.5 (2022-2100) 

 

 



46 

 

Figure 4.47：Anomaly Variation of precipitation of Station 1 based on 

SSP5-8.5 (2022-2100) 

 

 

Figure 4.48：Anomaly Variation of precipitation of Station2 based on 

SSP5-8.5(2022-2100) 

 

4.3.2 Maximum Temperature (Tmax) 

In accordance with Figure 4.49, the L1-Tmax-Obs and L2-TMax-Obs graphs 

represent the observed historical maximum temperature data for Station 1 and 2 

from 2015 to 2022, with average maximum temperatures of 27°C and 29°C, and 

maximum values of 27.6°C and 29.5°C, respectively. The deep blue and orange 

lines depict the predicted Temperature maximum data for place 1 under the SSP2-

4.5 and SSP5-8.5 scenarios from 2015 to 2100, starting at 27.04°C and 27.05°C, 

respectively. It is visually apparent that in both scenarios, the predicted data 

surpass the historical average of 27°C, notably in SSP5-8.5 where the predictions 

equal the historical maximum in 2096 and 2100. The line  (L2-Tmax- SSP2 and 

L2-Tmax-SSP5) represent the predicted Temperature maximum data for Station 

2 under the SSP2-4.5 and SSP5-8.5 scenarios from 2015 to 2100, starting at 

28.68°C and 28.76°C, respectively. Predictions under SSP2-4.5 remain below the 

historical average of 29°C, while under SSP5-8.5, predictions exceed the 

historical average from 2067 onwards, indicating a potential increase in the 

frequency of extreme temperature events under this scenario. However, in both 
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scenarios, the predicted data do not surpass the historical maximum values, 

emphasizing that model predictions should be regarded as possibilities rather than 

deterministic future forecasts. 

 

 Considering the differing geographical places of Station 1 and 2, with 

historical average maximum temperatures of 27°C and 29°C, respectively, it 

suggests that Station 2 may inherently be situated in a hotter climate zone. This 

difference may be associated with local topography, elevation, and other factors 

influencing the baseline temperature. Overall, the SSP5-8.5 emission scenario 

seems more suitable for predicting maximum temperature changes in Station 1 

and 2, aligning with the historical extreme temperature events observed in both 

places. 

 

 Upon coarse observation of the four lines' fluctuation patterns, starting 

around 2060, the predicted temperatures for both places no longer intersect under 

the two scenarios. This suggests that this point may be a critical threshold. 

Around 2060, there might be a non-linear transformation in the climate system, 

leading to a more dispersed prediction of temperatures under both scenarios. This 

could be indicative of triggered positive feedback mechanisms or threshold 

effects, accelerating the rate of temperature increase. Regional responses to 

climate change may also be localized, with 2060 being a pivotal time for regional 

climate system changes. 
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Figure 4.49: Projected Annual Tmax (2015-2100) based on SSP2-4.5, SSP5-

8.5 and historical observation (Obs)  (2015-2022) for Station 1 and 2 

 

 

4.3.3 Minimum Temperature (Tmin.) 

According to figure 4.50, the observation dataset of Tmin (2015-2022) cannot 

perfectly match the local climate model generation in SSP2-45 and SSP5-85 

scenario (2015-2100). In this study, applying the bias correction, delta method, 

to correct the 2015-2100 monthly modelled dataset. The argument laid on the 

historical modelling that could fit perfectly the observation datasets for the Tmax, 

however, the future climate model is unideal. In fact, it has been stated in many 

studies that the past climate is not always a good indicator of future performance 

(Charles et al., 1999; Christensen and Christensen, 2007; Maraun et al., 2010). 
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Figure 4.50：Projected Annual Tmin (2015-2100) Based on SSP2-4.5 and 

SSP5-8.5 of Station 1 and 2 

 

 

After employing the delta method to adjust the modelled data based on SSP2-4.5 

and SSP5-8.5 for two places (as shown in Figure 4.3.3.2), it is evident that the 

biased correction method has effectively aligned the historical observed data with 

the historical modelled data. This alignment is due to the historical data 

consistently fluctuating around the modelled data, significantly enhancing 

reliability. Notably, two accurate predictions emerged: in the SSP5-8.5 scenario, 

the predicted minimum temperature for Station 2 in the year 2018 was equal to 

the observed value, and in the SSP2-4.5 scenario, the predicted minimum 

temperature for Station 1 in the year 2020 was equal to the observed value. 

 

 For Tmin. the fluctuation distances of historical observed values (2015-

2022) at Station 1 and 2 are 0.37°C and 0.45°C, respectively. It is worth noting a 

4-year difference between the occurrence of the highest peak (2017) and the 

lowest trough (2021). Regarding Tmax, the fluctuation distances for places 1 and 

2 are 0.81°C over a 3-year period and 0.91°C over a 6-year period, with a 4-year 

difference between the highest (2017) and the lowest peak (2021). A comparative 
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analysis reveals that historical observed fluctuations are greater, with an average 

of 0.86°C, exceeding the average fluctuation distance of 0.41°C for historical 

observed Tmin.. This suggests that Tmax. exhibits more significant fluctuations 

and a broader range, indicating greater instability compared to Tmin.. However, 

for both Tmax. and Tmin., the models generated under SSP2-4.5 and SSP5-8.5 

scenarios show subdued temperature fluctuations for both places. Moreover, 

there are no occurrences of fluctuation distances exceeding or equalling the 

corresponding historical observed values within the 3 to 6-year period. This may 

be attributed to potential limitations in the model's ability to handle extreme 

temperature fluctuations. The model's performance can be influenced by factors 

such as its structure, training data, and the climate model employed. The model 

may not have effectively captured extreme temperature events present in 

historical observations (1983-2014). Additionally, calibration using historical 

observed values (1983-2014) may not have accounted for significant temperature 

changes post-2014, influenced by factors such as population growth, tourism 

development, replacement of trees with crops, and elevated atmospheric carbon 

dioxide levels. These factors may induce non-linear responses in the climate 

system, especially causing abrupt changes in the short term. If these factors were 

inadequately considered in the model's training data, the model may struggle to 

accurately simulate future climate changes. 

 

For Station 1, in the SSP2-4.5 and SSP5-8.5 scenarios, the predicted years 

for Tmin. to reach or exceed the historical observed highest point are 2048 and 

2046, respectively. For Station 2, in the SSP2-4.5 and SSP5-8.5 scenarios, the 

predicted years are 2056 and 2050, respectively. 
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Figure 4.51：Projected Annual Tmin (2015-2100) Based on SSP2-4.5 and 

SSP5-8.5 of Station 1 and2(after biased correction) 

 

 

4.3.4 Relative Humidity 

For Station 1 and   2, in order to output the projected relative humidity from 2015 

to 2100 based on SSP2-4.5 and SSP5-8.5. The historical calibration   file of 

humidity which using historical observed data (from 1983 to 2014) as predictand 

and 500hpa specific humidity (s500) as predictor variable in unconditional 

process and choosing monthly type in the SDSM software and the output file will 

be used to proceed scenario generator of future scenario generator of SSP2-4.5 

and SSP5-8.5. Based on the figure 4.52, the fluctuation trend of observed data 

(2015 - 2022) experienced repetitive fall and rise which assembles a wave and 

the later height of wave is higher than prior wave; Furthermore, the change of 

historical data enwinds that of the future data; from January to May, November 

to December the trend is congruous between projected monthly humidity of nine 

groups and observed humidity; Therefore, the future model of humidity is 

relatively credible at a qualitive level.  

 

For a more detailed quantitative analysis of relative humidity changes 

over years and months, the observed humidity percentages from 2015 to 2019 in 

January, May, November, and December intervals were 87.55%, 88.81%, 
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90.24%, and 89.14%, respectively. These values represent the maximum within 

their respective intervals, with differences of 0.9%, 0.62%, 1.55%, and 1.04% 

from the lowest predicted relative humidity in each interval. In February, March, 

and July to September intervals, the observed humidity percentages from 2015 to 

2019 were the lowest compared to other relative humidities within the same 

intervals, measuring 85.48%, 85.18%, 88.10%, 87.67%, and 87.98%, 

respectively. The differences from the highest predicted humidity in each interval 

were 0.98%, 1.67%, 1.12%, 1.67%, and 1.93%. In April, June, and October 

intervals, the observed humidity percentages from 2015 to 2019 did not 

significantly deviate from predicted values and remained within the range of 

predicted humidity percentages. 

 

As the years progress, carbon emissions increase, leading to global 

warming and climate anomalies, inducing changes in humidity. However, unlike 

temperature, humidity does not exhibit a straightforward upward trend. Global 

climate warming may cause an increase in humidity in some regions, while others 

may experience a decrease. Warmer air has a higher capacity for water vapor, so 

in certain areas, humidity may increase with rising temperatures. This effect is 

more pronounced in tropical and subtropical regions, where higher temperatures 

lead to increased evaporation and water vapor content. Nevertheless, some areas 

may undergo a decrease in humidity, especially in arid regions, where higher 

temperatures can accelerate soil moisture evaporation, reducing humidity levels. 

Additionally, changes in precipitation patterns due to climate change may 

contribute to decreased humidity in certain areas. The predicted humidity data 

from 2015 to 2019 for the first group (dark blue line) is at its lowest from March 

to October, with January, February, November, and December higher than other 

year groups. The second group (orange line) representing the 2020-2029 period 

has lower predicted relative humidity in February and November compared to 

the first group, but higher values for the remaining months. The 2030-2039 period 

has lower predicted relative humidity in January and December than any of the 

first two groups, with higher values for the other months. Similarly, the fourth, 

fifth, sixth, seventh, eighth, and ninth groups show variations in predicted 
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humidity over different months. The probabilities of negative changes in January 

and December are highest, as all nine modelled groups exhibit predicted humidity 

lower than observed group in these two months. February follows with the lowest 

probability, while March and the months from May to August have positive 

changes. Therefore, assuming an increase in humidity as positive and a decrease 

as negative, January and December are more likely to experience negative 

changes, reflecting the consistency of data variation across different scenarios. 

 

In summary, the findings suggest that humidity changes are influenced by 

climate warming, and future predictions should consider the complex interplay 

of factors leading to varied humidity trends in different regions. 

 

 

 

Figure 4.52: Monthly Average Relative Humidity Based on SSP2-4.5 of   

Station1 
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Comparing Figures 4.52 and 4.53, it is visually evident that the 10- years monthly 

average predicted humidity   from 2015 to 2100 under the SSP5-8.5 scenario 

exhibit more dispersion than those based on the SSP2-4.5 scenario. This implies 

that under the SSP5-8.5 scenario, there is a larger difference in humidity 

percentages among different annual periods, likely due to the anticipated high 

population growth, intense economic development, and extensive energy use, 

leading to higher levels of greenhouse gas emissions. In this scenario, the impacts 

of climate change may be more severe, resulting in more significant variations in 

humidity. In contrast, the assumptions under the SSP2-4.5 scenario involve 

milder socioeconomic development and lower greenhouse gas emissions, 

suggesting relatively minor climate impacts and more stable humidity changes 

among different annual periods. In general, scenarios play a crucial role in 

predicting future climate changes. Different scenarios lead to varying degrees of 

humidity changes, resulting in distinct dispersion trends. 

 

 Assuming an increase in humidity with each subsequent year as positive 

change and a decrease relative to the previous year as negative change, the 2015-

2019 period exhibits negative changes in predicted humidity for January, May, 

July, November, and December. The 2020-2029 period shows negative changes 

in predicted humidity for January, July, October, and December. The 2030-2039 

period shows negative changes in predicted humidity for January, November, and 

December. The 2040-2049 period also exhibits negative changes in predicted 

humidity for January, February, and December. The 2050-2059 period exhibits 

negative changes in predicted humidity for December. The 2060-2069 period 

shows negative changes in predicted humidity for February and December. The 

2070-2079 period shows negative changes in predicted humidity for January. The 

2080-2089 period shows negative changes in predicted humidity for May and 

October. The 2090-2100 period shows negative changes in predicted humidity 

for January, March, and November. January and December intervals exhibit the 

highest frequency of negative changes, and this pattern is consistent in both 

SSP5-8.5 and SSP2-4.5 scenarios, reflecting a similarity in data variation 

between the two scenarios. 
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 Quantitative analysis based on the SSP5-8.5 scenario reveals a 

relationship between predicted and observed and relative humidity. In January, 

the observed relative humidity (2015-2022) is recorded as the highest values 

within that interval, while in February, March, July, August, September, and 

October, the observed humidity from 2015 to 2019 is the lowest compared to 

other relative humidities within the same intervals. This indicates that, compared 

to the SSP2-4.5 scenario, the monthly average predicted relative humidity from 

2015 to 2100 under the SSP5-8.5 scenario is generally higher value. 

 

Figure 4.53:   Monthly Average Relative Humidity based on SSP5-8.5 of   

Station 1 

 

Through a preliminary comparison of Figures 4.52 to 4.55, it is evident that, in 

contrast to Station 1, the monthly average predicted data for the nine periods from 

2015 to 2100 at Place 2 under the SSP2-4.5 and SSP5-8.5 scenarios exhibit a 

better fit with the historical observed data from 2015 to 2022. This scenario 

suggests that the historical humidity data at Station 2 from 1983 to 2014, used as 

a calibration reference, can yield more accurate future models. Conversely, it 

indicates that the historical observed data at Station 1 may have lower accuracy 
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or systemic errors. In both scenarios, for the nine annual groups in January and 

December, the monthly average predicted values at both Station 1 and   2 

underestimate the historical observed relative humidity values from 2015 to 2022. 

Additionally, for the months of February, March, July, August, September, and 

October from 2015 to 2022, the historical observed relative humidity values are 

lower than the corresponding monthly average predicted values. These 

observations suggest a fundamental similarity in the future predictive models for 

both Stations. 

 

Figure 4.54:  Monthly average Relative  Humidity based on SSP2-4.5 of  

Station2 
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Figure 4.55:  Monthly average Relative Humidity based on SSP5-8.5 of 

Station 2 

 

 

In Figure 4.56, the   curves （H1-Obs and H2-Obs) represent the historical 

humidity variations at Station1 and  2 from 2015 to 2022, respectively. It exhibits 

fluctuations around the corresponding future model (2015-2100) generated for 

each station. Starting from 2017 until the end of the historical observed data in 

2022, it is roughly observed that the gap between the observed humidity data at 

both places remains nearly constant. Translation in either upward or downward 

directions results in overlapping states, a condition replicated in the predicted 

data for both stations under the SSP2-4.5 and SSP5-8.5 scenarios. Based on these 

phenomena, it can be qualitatively concluded that the predictive models for both 

places are reliable. 

 

 Upon examining the historical observed data, two significant peaks and 

two significant troughs are evident, with peaks occurring in 2017 and 2020, 

spaced two years apart, and troughs primarily appearing in 2016 and 2019, also 
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spaced two years apart. For the predicted data under the SSP2-4.5 scenario at 

Station 1 and 2, significant peaks mainly occur in 2020, 2048, 2052, 2056, 2060, 

2068, 2092, 2095, and 2098. Interestingly, the peak humidity values from 2048 

to 2060 occur every four years, while from 2092 to 2098, they occur every three 

years. Additionally, it is noteworthy that humidity is generally higher from 2076 

to 2087. Consequently, it is inferred that with the increase in years, the frequency 

of extreme humidity occurrences also increases. 

 

For the predicted relative humidity under the SSP5-8.5 scenario at Station 

1 and 2, significant peaks mainly occur in 2032, 2037, 2047, 2052, 2056, 2067, 

2071, 2076, 2081, 2084, 2089, 2091, 2095, and 2099. A clear distinction between 

the two scenarios is evident, with the SSP5-8.5 scenario showing a higher 

frequency and more occurrences of peak humidity values, and the peaks are more 

irregular and challenging to be predicted in the study. 

 

 

Figure 4.56: Projected and Observed Average Relative Humidity (2015-

2100) based on SSP2-4.5 and SSP5-8.5 of Station 1 and 2 
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4.3.5 Spatial Analysis of Future Precipitation   

 

The Figures 4.57 to 4.64 illustrate the predicted total rainfall distribution at three 

study sites in Cameron Highlands, Malaysia, based on the SSP2-4.5 and SSP5-

8.5 scenarios for the periods 2015-2035, 2036-2055, 2056-2075, and 2076-2100. 

The Stations labelled as P1, P2, and P3 on the map correspond to the three study 

station in Chapter 3   , represented by Figure 3.4.2.1 and Figure 3.4.2.2. The 

former two stations were sourced from NASA Power, while the latter was from 

the Malaysia Meteorological Department (MMD). Based on the rainfall patterns, 

it is observed that the higher rainfall at the P3 compared to P1 and P2 which may 

be attributed to the mountainous terrain, where the higher altitude results in rapid 

air cooling, conducive to convection, condensation, and precipitation formation. 

This phenomenon, commonly known as "orographic precipitation," often leads 

to persistent cloud cover and increased precipitation in certain mountainous 

regions. Conversely, lowland areas are generally situated at relatively lower 

elevations and may be shielded by mountain ranges, reducing the chances of 

moist air ascending, cooling, condensing, and subsequently experiencing less 

precipitation. However, these are general trends and may not be universally 

applicable to all highland and lowland areas. Factors such as geographic place, 

climate region, and topography can significantly influence rainfall patterns. 

Therefore, rainfall distribution may vary considerably in specific circumstances. 

Additionally, the arrow in the upper right corner indicates the north direction, 

while the legend in the lower-left corner, composed of a title and groups 

represented by different colours, provides information about different rainfall 

ranges. 

 

Longitudinal comparisons were made for the rainfall variations at places 

P1, P2, and P3 over year year-span groups (2015-2035, 2036-2055, 2056-2075, 

2076-2100) under the scenarios of SSP2-4.5 and SSP5-8.5. The analysis of 

Figure 4.65's data in conjunction with Figure 4.57 to 4.58 reveals the rainfall 

distribution at P1, P2, and P3 from 2015 to 2035 under the SSP2-4.5 and SSP5-

8.5 scenarios. In the SSP2-4.5 scenario, the rainfall at P1, P2, and P3 is 
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respectively 2499.73 mm, 2479.74 mm to 3052.79 mm. Under the SSP5-8.5 

scenario, the rainfall at P1, P2, and P3 is 2495.32 mm, 2503.08 mm, and 3031.36 

mm, with only P2 experiencing a slight increase of 23.34 mm; P1 and P3 witness 

decreases of 4.41 mm and 21.43 mm, respectively. Examining the data from 

Figure 4.65 and dynamic changes in Figures 4.59 to 4.60, for the time span group 

of 2036 to 2055, under SSP2-4.5, the rainfall at P1, P2, and P3 is 2602.83 mm, 

2579.54 mm to 3179.17 mm. Under SSP5-8.5, the rainfall at P1, P2, and P3 is 

2687.97 mm, 2663.35 mm, and 3367.17 mm. In this group, the rainfall at P1, P2, 

and P3 is higher under SSP5-8.5 compared to SSP2-4.5, with increases of 85.14 

mm, 83.81 mm, and 188.00 mm, respectively. The rainfall increase at P3 is 2.2 

times the average increase at P1 and P2. Further considering the data from Figure 

4.65 and dynamic changes in Figures 4.61 to 4.62, for the time span group of 

2056 to 2075, under SSP2-4.5, the rainfall at the three places is 2689.64 mm, 

2675.87 mm, and 3268.68 mm. Under SSP5-8.5, the rainfall increases to 2865.91 

mm, 2850.71 mm, and 3499.7 mm, with increases of 176.27 mm, 174.84 mm, 

and 231.02 mm, respectively. The rainfall increase at P3 is 1.3 times the average 

increase at P1 and P2. Considering the data from Figure 4.65 and dynamic 

changes in Figures 4.63 to 4.64 for the time span group of 2076 to 2100, under 

SSP2-4.5, the rainfall at the three places is 2777.93 mm, 2760.75 mm, and 

3379.92 mm.  

 

Under SSP5-8.5, the rainfall increases to 3128.62 mm, 3079.16 mm, and 

3606.45 mm, with increases of 350.69 mm, 318.41 mm, and 226.53 mm, 

respectively. The rainfall increase at P3 is 0.7 times the average increase at P1 

and P2. In summary, regarding the temporal trends, over the last three year-span 

groups (2036-2055, 2056-2075, 2076-2100), the rainfall at P1, P2, and P3 

exhibits an increasing trend over time for both SSP2-4.5 and SSP5-8.5 scenarios, 

while the first year-span group (2015-2035) experiences a decrease in rainfall. 

One possible explanation is that P1 and P3 under the SSP2-4.5 scenario may be 

influenced by specific meteorological or environmental factors, resulting in 

reduced rainfall during this specific period. This may include, but is not limited 

to, prolonged drought, climate anomalies, or other natural variations. In such 
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cases, even if the overall trend is an increase, specific places may experience 

short-term decreases in rainfall during specific time periods. Through scenario 

comparisons, particularly between SSP2-4.5 and SSP5-8.5, it is observed that in 

each time span group, the rainfall under SSP5-8.5 is generally higher than under 

SSP2-4.5. This suggests that higher emission scenarios may lead to greater 

precipitation when considering climate change. Through place comparisons, in 

each time span group, the rainfall at P3 is consistently higher than at P1 and P2, 

indicating that certain regions may be more susceptible to the effects of climate 

change or are likely to experience greater precipitation in the future. Therefore, 

when planning future regional development, such as constructing residential or 

agricultural areas, it is advisable to avoid placing areas susceptible to rainfall 

impacts in the P3 place. Through incremental comparisons, it is evident that, over 

time, the incremental increase under SSP5-8.5 gradually surpasses that under 

SSP2-4.5. Particularly in the later time span groups (2056-2075 and 2076-2100), 

the incremental increase is relatively large, indicating that climate change under 

high emission scenarios may lead to more significant rainfall increases. 

 

Longitudinal comparisons were conducted between two scenarios, SSP2-

4.5 and SSP5-8.5, regarding the rainfall variations at places P1, P2, and P3 over 

four 20-years-span groups (2015-2035, 2036-2055, 2056-2075, 2076-2100 

period). In the SSP2-4.5 scenario, the rainfall at P1 varied as 2499.73 mm, 

2602.83 mm, 2689.64 mm, and 2777.93 mm, with respective increments of 103.1 

mm, 86.81 mm, and 88.29 mm. At P2, the rainfall varied as 2479.74 mm, 2579.54 

mm, 2675.87 mm, and 2760.75 mm, with respective increments of 99.8 mm, 

96.33 mm, and 84.88 mm. For P3, the rainfall varied as 3052.79 mm, 3179.17 

mm, 3268.68 mm, and 3379.92 mm, with respective increments of 126.38 mm, 

89.52 mm, and 111.24 mm. In the SSP5-8.5 scenario, the rainfall at P1 varied as 

2495.32 mm, 2687.97 mm, 2865.91 mm, and 3128.62 mm, with respective 

increments of 192.65 mm, 177.94 mm, and 262.71 mm. At P2, the rainfall varied 

as 2503.08 mm, 2663.35 mm, 2850.71 mm, and 3079.16 mm, with respective 

increments of 160.27 mm, 187.36 mm, and 228.45 mm. For P3, the rainfall varied 
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as 3031.36 mm, 3367.17 mm, 3499.7 mm, and 3606.45 mm, with respective 

increments of 335.81 mm, 132.53 mm, and 106.75 mm.  

 

It is noteworthy that in the SSP5-8.5 scenario, the most significant 

increase in rainfall at P3 is 335.81 mm for Increment 1, which is 1.9 times the 

average of Increment 1 at the other two places, while in the SSP2-4.5 scenario, it 

is only 1.3 times. Subsequently, the increase in P3 rainfall significantly decreases 

to 132.53 mm, then gradually decreases to 106.75 mm. This suggests that, under 

the SSP5-8.5 scenario, the rainfall variation at P3 is concentrated in the early time 

span group, followed by a decline. It is evident that under the SSP2-4.5 scenario, 

the rainfall increment remains relatively stable, with minimal variations at P1, P2, 

and P3, averaging only 22.69 mm. This may indicate that under lower emission 

scenarios, the impact of extreme climatic events is less pronounced. However, 

under the SSP5-8.5 scenario, the rainfall increment variations at P1, P2, and P3 

are substantial, with an average of 127.30 mm. This underscores that under high 

emission scenarios, different places may experience extreme precipitation 

variations, and such changes may not be uniformly distributed. In summary, the 

rainfall variations under the SSP5-8.5 scenario are significantly greater than those 

under the SSP2-4.5 scenario, especially at the P3 . Given the notable changes in 

rainfall at P3, the government may need to consider implementing urgent climate 

adaptation and water resource management measures. This could involve 

strengthening flood prevention measures, improving water resource utilization 

efficiency, and promoting climate-adaptive planning. Government collaboration 

with scientists, communities, and stakeholders is essential to formulate 

comprehensive climate change response strategies. In response to the abrupt 

changes at P3, a more in-depth risk assessment should be conducted to 

understand potential impacts, such as flood risks and ecosystem changes. Based 

on these assessments, more effective and targeted planning and policies can be 

formulated. 
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Figure 4.57: Average of Annual Rainfall Pattern of three Stations based on 

SSP2-4.5 (2015-2035) 

Figure 4.58:   Average of Annual Rainfall Pattern of three Stations Based on 

SSP5-8.5(2015-2035) 
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According to Figure 4.65, a comparison of precipitation changes between the 

years 2015-2035 under the scenarios SSP2 and SSP5 reveals a decrease in 

precipitation at locations P1 and P3, while P2 experiences an increase. Figures 

4.57 and 4.58 indicate that the precipitation range of 2400-2600mm is shifting 

inward towards point P2 and expanding outward at P3. Simultaneously, the 

precipitation range of 3000-3200mm shows a significant reduction in coverage. 

 

 

 

 

Figure 4.59:  Average of Annual Rainfall Pattern of three Stations Based 

on SSP2-4.5 (2036-2055) 
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Figure 4.60:  Average of Annual Rainfall Pattern of three Stations based on 

SSP5-8.5 (2036-2055) 
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Figure 4.61:   Average of Annual Rainfall Pattern of three Stations based 

on SSP2-4.5 (2056-2075) 

 

 

Figure 4.62:   Average of Annual Rainfall Pattern of Three Stations based 

on SSP5-8.5 (2056-2075) 
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Figure 4.63:   Average of Annual Rainfall Pattern of Three Stations based 

on SSP2 -4.5 (2076-2100) 

Figure 4.64:   Average of Annual Rainfall Pattern of Three Stations based on 

SSP5-8.5 (2076-2100) 
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According to Figures 4.57 to 4.64, precipitation changes correspond to contour 

variations, indicating a gradual migration of the coverage of high precipitation 

values from high-altitude zones to low-lying areas. Assuming a horizontal line 

drawn from point p3 and seeking the centre of Cameron Highlands as the 

coordinate origin, it can be observed that over time, the region with high 

precipitation values predominantly diverges from the southwest and spreads 

north-eastward. Despite higher rainfall in elevated areas and lower rainfall in 

low-lying areas, it does not necessarily imply that the likelihood of disasters in 

points p1 and p2 is lower than that in the p3 region. For instance, mudslides may 

be influenced by gravity and reach low-lying areas. Therefore, further disaster 

analysis should consider specific circumstances. 

 

 

Figure 4.65：Aggregated precipitation in (2015-2035), (2036-2055), (2056-

2075), (2076-2100) of Three Stations based on SSP2-4.5  and SSP5-8.5 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

When comparing historical observed data with historical simulated data, it was 

observed that the model effectively simulated historical Tmax, Tmin, and 

Humidity values from 1983 to 2014, exhibiting consistency in terms of means, 

maximums, and minimums. However, the model showed limitations in 

adequately reproducing historical precipitation. For both study places 1 and 2, 

the simulated values exhibited consistent trends with observed values for average 

monthly precipitation. Nevertheless, concerning the maximum monthly 

precipitation, both places showed instances where the historical simulated 

precipitation significantly underestimated the observed values. Consequently, a 

bias correction using the Delta Method was applied to historical simulated 

precipitation. To demonstrate the model's robustness, statistical methods such as 

Probability Density Function (PDF), Prediction Accuracy, Index of Accuracy, 

RMSE analysis, ANOVA, etc., were employed to validate historical model data. 

The results indicated that the bias-corrected historical simulated precipitation 

aligned well with historical precipitation, reaffirming the reliability of the 

generated historical models related to Tmax, Tmin, and Humidity. 

 

For the generated Local Climate Model (2015-2100), in terms of 

precipitation, study places 1 and 2, based on SSP2-4.5 and SSP5-8.5 scenarios, 

exhibited nearly identical precipitation changes. However, under these two 

emission scenarios, precipitation changes began to diverge notably from 2063 

onwards. Conversely, for study place 3, precipitation changes based on both 

emission scenarios were significantly higher than those observed in places 1 and 

2. Interestingly, emission scenarios did not seem to influence precipitation 

changes at study place 3, as the precipitation changes under the two scenarios 

remained intertwined from 2015 to 2100 without distinct separation. 
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In the study of anomalous precipitation for study places 1 and 2, there 

appeared to be no apparent correlation in anomalous precipitation under the 

SSP2-4.5 scenario. However, under the SSP5-8.5 scenario, a turning point in 

anomalous precipitation was observed around 2049, transitioning from negative 

anomalies to positive anomalies. Subsequently, positive anomalies exhibited a 

clear upward trend. In contrast, anomalous precipitation under the SSP2-4.5 

scenario for both places continued to fluctuate significantly after 2049. These 

observations suggest that the impact of the SSP5-8.5 emission scenario on 

precipitation is much higher than that of the low emission scenario, and this 

impact may be less influenced by terrain, altitude, and non-human activities. 

 

Spatial analysis of annual average precipitation was conducted for the three study 

places using QGIS software under the SSP2-4.5 and SSP5-8.5 scenarios. The 

contour map revealed that the elevation of study place 1 was 2520 meters, study 

place 2 was 2490 meters, and study place 3 was 3000 meters. Study places 1 and 

2 were similar depressions, while study place 3 was a plateau with ridges 

extending in the northeast direction. With increasing altitude, a general trend of 

temperature decrease was observed. Colder air at higher altitudes may lead to 

water vapor condensation into clouds and eventual precipitation. Thus, in certain 

circumstances, high-altitude areas may experience higher precipitation, a 

phenomenon corroborated by the precipitation distribution map. 

 

5.2 Recommendations  

i.Deployment of Diverse Climate Models: 

Employ multiple climate models to simulate scenarios and comprehend 

variations among them. This approach offers valuable insights into the diversity 

of model responses, contributing to a more comprehensive assessment. 

 

ii.Exploration of Local Climate Mechanisms: 

Delve into region-specific climate mechanisms that may induce disparities with 

general emission principles. This involves a meticulous examination of local 
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factors, topographical nuances, and non-human influences impacting climate 

outcomes. 

 

iii. The incorporation of dynamic downscaling methods is anticipated to facilitate 

a more comprehensive capture of future climate dynamic variations, thereby 

enhancing the precision of simulated outcomes. This integrated approach holds 

promise in furnishing more dependable future precipitation simulations, 

consequently rendering the model's response to scenario-induced emissions 

changes more cogent. 
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