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ABSTRACT 
 
 

META-HEURISTIC APPROACHES FOR RESERVOIR 
OPTIMISATION OPERATION AND INVESTIGATION OF  CLIMATE 

CHANGE IMPACT AT KLANG GATE DAM 
 
 

 Vivien Lai Mei Yen  
 
 
 
 
 
 

Due to the extraordinarily rapid growth in population and development, the 

demand for energy and water has increased to critical demanding levels, 

globally. Thus, the reservoir, the essential infrastructure for water storage 

during extreme events such as intense rainfall or drought periods, is indeed 

crucial to ensure availability of potable water. With the right reservoir 

functioning, society can achieve hydrological resilience, water sustainability, 

relief from and control of urban flooding, and sustainable energy. Over the 

years, dam operators, stakeholders, and scholars have shown their 

commitment to sustaining reservoir operations and doing their best to gain 

knowledge on how to manage reservoir operations, in order to maximise 

benefits while minimising the drawdowns in water supplies or overcoming 

poor performance. In 1998, a severe water crisis in the Klang Valley, 

Malaysia, due the El Niño phenomenon, had the water level at the Klang Gate 

Dam (KGD) dropped dramatically. This intricately added to the reservoir and 

dam issues in Malaysia, particularly the frequent intense rainfall within short 

periods of time, which made it difficult for the reservoir and dam operator to 

monitor and maintain the storage level of the reservoir and discharge water 

downstream to prevent overflow and flooding. Consequently, seeking 
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managing of reservoir optimisation operations had always been at the forefront 

and to improve managing, algorithms have had been presented over the past 

few decades, beginning with conventional algorithms, followed by heuristic 

algorithms, and finally, the meta-heuristic algorithms (MHAs). However, due 

to the drawbacks of the conventional algorithm as well as the heuristic 

algorithms handling complicated and multi-objective reservoir optimisation, 

the advantages of the strategy of simultaneous exploration and exploitation led 

to the decision to utilise meta-heuristic algorithms in this study. The original 

idea of this study was to investigate the climate impact onto the KGD current 

and future operations. By preserving the equilibrium between the proposed 

MHAs and reservoir risk analysis indices, the stakeholder can select or control 

the optimal KGD operation by referring to the summary of findings for the 

observed period assessments. The Whale Optimisation Algorithm (WOA), 

Harris Hawks Optimisation (HHO) Algorithm, Lévy Flight WOA (LFWOA) 

and the Opposition-Based Learning of HHO (OBL-HHO) were proposed to 

simulate the initial model’s response and optimise the Klang Gate Dam (KGD) 

release operation with observed inflow, water level (storage), release, and 

evaporation rate (loss). There were two observed periods of timeline: (a) for 

year 2001-2019 and (b) for year 1987-2008 (compared with past studies). The 

results obtained from the proposed meta-heuristic algorithms of this study 

were then evaluated for reservoir risk analysis, for the observed period 

assessment and the climate assessment. In addition, extreme climate change 

occurrences have impacted the future reservoir operation, and this is 

something that previous KGD studies have yet to investigate. Thus, the 

continuing investigation of the optimisation of the future KGD operation 
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under various climatic scenarios by leveraging on the proposed MHAs, was 

conducted for the climate assessment for year 2020-2099. The comparison 

between the reservoir simulation (ANN) and reservoir simulation-optimisation 

(MHAs) were carried out in terms of examining  the reservoir climate 

assessments, as well as the monthly storage capacity. In addition, a few 

scenarios of the future water demand were developed and estimated based on a 

close proximity of real condition: (i) Temperature Scenarios and (ii) 

Forecasted Population Growth.  Scenario 1 was developed for the base period 

and the water demand was identical to the observed period assessment. 

Scenario 2: Maximum Temperature, Scenario 3: Mean Temperature and 

Scenario 4: Minimum Temperature; were developed for the water demand 

conditions. The results obtained for year 1987 - 2008 assessments showed the 

proposed MHAs as an optimistic conclusion for the dam operator to consider 

based on the trade-off between reliability and resilience or other reservoir risk 

indices. The proposed MHAs were next compared to past studies and it was 

shown that the GA binary had the lowest reliability and  the Artificial Bee 

Colony (ABC) in the past studies, had the most vulnerability and sensitivity in 

data interpretation, especially with limited observed datasets. The LFWOA 

showed the highest level of periodic reliability, with 69.70%, while the HHO 

exhibited a slightly lower percentage of 63.26%. The ABC and PSO 

algorithms exhibited lower periodic reliability percentages of 61.36% and 

59.47%, respectively. The OBL-HHO and WOA algorithms showed periodic 

reliability with percentages of 56.44% and 56.06%, correspondingly. The GA-

RC algorithm showed a periodic reliability percentage of 55.65%, whereas the 

GA algorithm exhibited the lowest periodic reliability percentage of 23.5%.  
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For the year  2001-2019 assessments,  the algorithms varied in the ranking of 

reservoir risk assessments for all the three inflow magnitude types (low, 

medium and high). For the high inflow category, the LFWOA exhibited the 

highest periodic reliability in terms of meeting exact demand with a value of 

15.35% whilst the WOA had achieved a reliability of 14.47%. At the same 

time, the HHO and OBL-HHO algorithms resulted in lower levels of periodic 

reliability, with values of 13.16% and 9.21% respectively. The HHO model 

was still inspired to be the model to perform the reservoir optimisation 

operation even though it had obtained the highest sequence for the 

vulnerability in the high inflow category. Within the medium inflow category 

in terms of meeting precise demand, the LFWOA exhibited the highest level 

of periodic reliability with a percentage of 42.54%. This was closely followed 

by the WOA with 39.91%, the HHO with 38.60%, and then, the OBL-HHO 

with 20.54%. The resilience metric associated with the medium inflow 

category exhibited performances that align with the periodic reliability in a 

similar sequence. Regarding the medium inflow category for the vulnerability 

metric, it has been observed that the algorithms of OBL-HHO, HHO, WOA, 

and LFWOA exhibited significant robustness. For the 2020-2099 climate 

assessments, the sequence of the respective algorithms in terms of individual 

reservoir risk analysis assessment in accordance with RCP 2.6 of Scenario 2, 

Scenario 3, and the forecasted population growth of future water demand 

showed that the WOA was extremely vulnerable and sensitive. The monthly 

storage capacity fails in 2077, substantially earlier than the other three 

algorithms in Scenario 2. The LFWOA was used in this study to improve the 

efficacy of the algorithms by delivering a more accurate monthly storage 
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capacity and reservoir risk assessment for Scenario 2 of RCP 2.6. In Scenario 

4, the lowest ranking of vulnerability showed that the LFWOA was the most 

vulnerable and sensitive whereby the month storage capacity failed in 2077, 

but it was able to recover, as LFWOA gained the second-highest resilience 

index ranking. In RCP 4.5,  Scenarios 3, Scenario 4, and forecasted population 

growth had no monthly storage failures. However, the LFWOA had the lowest 

vulnerability sequence for Scenario 2, which occurred in 2062 and after. On 

the other hand, the monthly storage failure occurred too rapidly in the near 

future for Scenario 3, Scenario 4, and future population growth since RCP 8.5 

is called "High emissions". To retain the balance of trade-offs at the KGD 

operation, the best reservoir operation decision must be aware of the storage 

failure event when an extreme event occurs. From the above-mentioned, the 

major findings of this study were on the investigations of the climate 

assessments during KGD operations under the scope of the different climate 

change scenarios, using an ensemble of GCMs with the purpose of equally 

distributing the uncertainty accuracy of the downscaled as compared to 

previous studies which were then using the single GCM approach. Few 

recommendations of future work direction such as by hybridisation or utilising 

other algorithms (with a similar strategy of exploitation and exploration) to 

further examine the critical events obtained in this study, were suggested 

further improvements. Aside from that, it is also recommended that with the 

implementing of the most recent GCMs (ensemble) of CMIP 6 to analyse and 

compare with the current studies conducted at KGD using ensembles GCMs 

of CMIP 5, should pave the way for more intense forward research. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Background 

 

The global demand for energy and water has reached critical and 

demanding levels due to the incredibly fast increase in population and 

development (Wang et al., 2009; Yan et al., 2017; Feng et al., 2019). The 

reservoir is widely considered one of the key infrastructure strategies for 

increased water quality sources (Yang et al., 2016; Zhang et al., 2017; Niu et al., 

2018a; Feng et al., 2020a). The reservoir is also the important infrastructure for 

storing, stocking, and supplying fresh surface water for many purposes. 

Effective reservoir maintenance will inevitably provide society with 

hydrological resilience, water sustainability, urban flood control and the 

generation of safe, sustainable electricity. Over the past century, dam owners, 

decision makers and scientists have made a great deal of effort to understand the 

operations of the reservoir better and build optimal reservoir operating 

techniques (Yang et al., 2017). 

 

Many countries have taken much aggressive measures in recent years to 

mitigate the harmful impacts of reservoirs and protect the health of the river 

habitats. In order to achieve all forms of reservoir functions and prevent danger 

to humans and the river ecosystems, science-based estimates, simulations and 
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forecasts on reservoir storage or release and designing proper plans of reservoir 

service are necessary (Loucks and Sigvaldason, 1982). Similar attention has 

been granted to several hydro power ventures (Hui et al., 2016; Pang et al., 2018; 

Xu et al., 2020). For example, the Three Gorges is the world's biggest water 

supply inter-base network (Liu et al., 2015; Zhao et al., 2015; Wang et al., 2018a) 

and China's most esteemed water reservoir supported by huge turbine reservoirs 

(Chen et al., 2013; Ming et al., 2017; Feng et al., 2020b). But the reservoir 

operations and maximum storage capacities are challenging for policy makers, 

as they require numerous decision criteria and physical constraints, such as top 

and bottom reservoir storage limits, discharged turbine limits and upstream 

water levels, etc. Therefore, the main priority is the optimum function of the 

water supply and release from the dam. More focus and consideration are also 

given to this topic by several academics and engineers (Bai et al., 2017; Xie et 

al., 2018).  

 

Of utmost importance, climate change has led to inevitable drastic 

hydrological globalisation changes: - processes such as ice melting, rising sea 

levels and deterioration of living environments are immediate examples (Sun et 

al., 2013). The phenomenon of climate change was an added dimension 

challenge to the reservoir and dam problems in Malaysia. The intense rainfall 

conditions and severity pose obstacles to the workings of the reservoir and dam 

while managing storage of the reservoir and discharge water downstream to 

deter floods and runoff is in progress. These phenomena have influenced the 

trend towards water supply and it is important to reduce these problems for 
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decision-makers. Temperature and precipitation mainly exhibit the effect related 

to climate change on water sources (Zaman et al., 2018).  

 

Therefore, a suitable optimisation method for managing the reservoir is 

essential for guiding and advising decision-makers, on the effectiveness of 

present and future climatic scenarios. Scientists from all over the world have 

successfully founded and developed numerous experiments, including 

conventional approaches, dynamic programming, network-based methods and 

swarm intelligence approaches, in attempts to solve this optimisation problem. 

Traditional mathematical models such as non-linear programming struggle to 

adjust to multi-objective concerns and to run the optimisation process in a 

suitable time frame. There is a need for additional research due to the fact that 

these traditional approaches have limitations in solving real-world functional 

engineering challenges (Feng et al., 2018a; Liu and Luo, 2019;). In addition, the 

optimisation process has never before being influenced by the factors like 

climate change conditions (climate variables) or uncertain reservoir inflows 

(Wan et al. 2017). 

 

Optimisation algorithms capable of gathering and analysing massive 

data under various climate change conditions has also useful for managing 

reservoirs as efficient methods of preparing and tracking water supplies. 

Problems with planned reservoirs have several boundary conditions caused by 

climate change conditions (Afshar, et al., 2011). In addition, to adequately 

supply downstream water needs, the releases from the dams must be controlled 

in order to minimise the over-supply and waste that can contribute to floods. On 
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this note, the first and second objectives of this study are to simulate initial 

model’s response, and optimise the Klang Gate Dam (KGD) release operation, 

by utilising metaheuristic algorithms with observed datasets of inflow, water 

level (storage), release, and evaporation rate (loss). The results obtained are then 

evaluated in the reservoir risk performance analysis, which forms the third 

objective of this study. 

 

1.2 Problem Statement 

 

In many regions of the globe, socioeconomic growth were impacted by 

water resource management, which was a key of hydrological field topic. For 

those concerned with dam or reservoir management, particularly stakeholders, 

have seen the worldwide water shortage or deficit as a key concern (Haddad et 

al., 2008; Haddad et al., 2011). Recently, there have been many discussions 

about and technological advancements made in relation to the problem of water 

consumption viz a viz, to river regulations and operations. One of the most 

innovative approaches to address water scarcity is optimising the operations of 

the reservoir or dam. In addition, the fundamental and primary function of the 

Klang Gate Dam, (KGD, the chosen study area of this research) was to meet the 

most urgent potable water needs and also to serve as the safety reason for the 

downstream communities to alleviate flooding by saving up the water during 

the rainy season. 

 

Climate change undoubtedly, will alter the rhythm of the water cycle and 

the hydrological variables of precipitation and temperature, and subsequently, 
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will thus affect the reservoir's performance. In 1998, a severe water crisis in 

Klang Valley had led to the water level at the KGD to drop dramatically due to 

the El Niño phenomenon (Latif et al., 2020; Latif et al., 2021). The major issue 

is that the operation of the reservoir depends on the time of the inflow, which is 

dependent on precipitation, making it one of the most susceptible hydrological 

variables in the era of climate change.  

 

The effect of concern is on the inflow to the reservoir in order for it to 

function properly and to meet the downstream KGD's water supply needs. 

Several heuristic algorithms, namely the Particle Swarm Optimisation (PSO), 

Genetic Algorithm (GA), and Artificial Bee Colony (ABC), were implemented 

at the KGD to develop the optimal operation rules (Hossain and El-Shafie, 

2014a). However, this investigation was generally retrieved from observed 

inflows to reservoirs using optimised algorithms and was rarely interpreted 

using anticipated hydrological variables such as projected rainfall and 

temperature in the context of including climate change scenarios. Aside from 

this, these algorithms were troubled with the following disadvantages: such as 

their rapid collapse through the local optimum in high-dimensional space and; 

their poor or premature convergence rate during the iterative process due to the 

nature of the algorithms. 

 

While considering research gaps and objectives, there is very little 

comprehensive information available on the impacts of the reservoir at the 

KGD. By adding the predicted hydrological variables to the proposed models in 

this analysis, it is possible to investigate future inflows resulting from future 
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reservoir operations to achieve optimal operating conditions. Incidentally, 

determining whether the current reservoir operation rules are capable of 

addressing the future period with optimal operating conditions is all the more 

important for efficient management strategies. The reservoir should be operated 

optimally to obtain an acceptable level of release and storage volume, taking 

into consideration prospective inflows and the requirement to resolve climate 

change scenarios in order to solve this issue. Thus in this study, the meta-

heuristic algorithms, namely Whale Optimisation Algorithm (WOA), Harris 

Hawks Optimisation (HHO) algorithm, and their respective enhancement 

methods are proposed for simulation and optimisation of the KGD reservoir 

operation.  

 

1.3 Research Gap 

 

In previous studies, three distinct optimisation techniques namely the 

particle swarm optimisation (PSO), the genetic algorithm (GA), and the artificial 

bee colony (ABC) were deployed to handle the reservoir release optimisation 

problems located at the study area of this study. Several studies that mentioned 

in problem statement showed the disadvantages of these algorithms, such as 

their rapid collapse through the local optimum in high-dimensional space and 

their poor or premature convergence rate during the iterative process due to the 

nature of the algorithms. As a result, meta-heuristic algorithms that are proposed 

to overcome the drawbacks of existing methods ought to be seeked out for 

development, by applying the strategy of exploitation and exploration 

simultaneously. 
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In Malaysia, dams are also vulnerable to environmental challenges such 

as the ubiquitous climate change calamites. According to the Department of 

Irrigation and Drainage (DID), wet, hot or dry weather causes severe water 

crises, and as a result, practically all significant dams across the country are 

either drying up or swollen from intense runoff at particlar times of the year. For 

instance, the standard height of Klang Gate Dam had decreased from 94 metres 

to 90.26 metres, considering the sedimentation over the years. This action will 

likely affect the water supply-demand balance and violate the dam's traditional 

designed operational guidelines. Despite very limited systematic research has 

been conducted in Malaysia, dam operations under various climate change 

scenarios are now mandatorily having been examined to optimise release and 

mitigate any risks. 

 

In addition, the earlier problem statement emphasised the importance of 

investigating the influence of climate change on reservoir operations for 

effective water resource management. In Malaysia, however, there is a 

limitation of organised data regarding the impact of climate change scenarios on 

optimal future reservoir operations, simply due the fact that no study has ever 

being made in this direction as yet. Infrequently too, are projected hydrological 

variables being used to interpret the standard investigation, which is often 

derived from observed reservoir inflows using optimised methods. 

 

The hydrological factors that affect the volume of water held in a 

reservoir are precipitation, temperature, and evaporation. However, anticipated 

precipitation is the most important hydrological variable when taking 
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cognizance of the climate change vagaries. Therefore, it would be more useful 

and reliable to assess the reservoir optimisation operating rules using more 

useful hydrological variables, such as anticipated rainfall, as these are more 

practical and closely related to the real approximation of the future reservoir 

operations as determined by research carried out under various climate change 

scenarios provided by the UN IPCC (Bates et al., 2008). The objectives of this 

study is to simulate the initial model’s response by analysing the current KGD’s 

operation and providing the optimal  release policy in order to address the future 

reservoir performance with the proposed meta-heuristic algorithms (MHAs):- 

(i) Whale Optimisation Algorithm, WOA; (ii) Lévy flight WOA, LFWOA; (iii) 

Harris Hawks Optimisation Algorithm, HHO; (iv) Opposition-Based Learning 

HHO, OBL-HHO. 

 

1.4 Objectives 

 

i. To simulate the initial model’s response using  the observed 

inflow, water level(storage), release, and evaporation rate 

located at Klang Gate Dam through implementing the Meta-

heuristic Algorithms (MHAs) such as Whale Optimisation 

Algorithm (WOA), Lévy Flight WOA (LFWOA), Harris Hawks 

Optimisation (HHO) Algorithm, and Opposition-Based Learning 

HHO (OBL-HHO) by generating the current reservoir release 

operation  

ii. To optimise the simulation results reservoir release operation 

with the WOA, LFWOA, HHO, and OBL-HHO in respect of 
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observed inflow, water level(storage), release, and evaporation 

rate at the KGD. 

iii. To evaluate the model performance of the WOA, LFWOA, HHO 

and OBL-HHO in terms of the metrics for reliability, 

vulnerability, and resiliency. 

iv. To investigate the impact of the climate change at the KGD under 

the scope of the different climate change scenarios using an 

ensemble of GCMs considering the CMIP5 scenario. 

 

1.5 Scope of Study  

 

The most critical problem faced by decision-makers in reservoir 

management is the water release operations to downstream that would be 

influenced by climate change and also the constraint of the hydrological 

elements. Therefore, defining an appropriate optimisation algorithm by 

considering the influential variables is essential to provide effective operation 

guidance and information to decision-makers for comprehensive planning in 

current and future times. Furthermore, due to the nature of the algorithms, the 

problem related to previous studies such as the PSO, ABC, and GA had resulted 

in the rapid collapse through the local optimum in high-dimensional space and 

their poor or premature convergence rate during the iterative process. Hence, 

with these problems arising, the motivation to conduct the current study has 

proposed the optimisation algorithms by considering climatic amd hydrological 

variables and the constraint of the reservoir. In order to verify and validate the 

optimal reservoir water release algorithm, the proposed approaches have 
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compared with other previous algorithms carried out at the KGD. The outcome 

of the current study has examined and evaluated the optimal optimisation 

algorithm for the reservoir release operation to ease the complexity of the multi-

purpose reservoir and maximise its operations and also minimise the wastage of 

water release to downstream. Additionally, by anticipating various climate 

change scenarios, to take into account how future climate change may impact 

future reservoir release operations. Few future water demand scenarios have 

been suggested to a near approximation of realistic circumstances which is 

based on the temperature factors and forecasted population growth. The scope 

of this study does not extend to the sustainability and water quality downstream 

of the reservoir during or after reservoir release operations. 

 

1.6 Contributions of the Study 

 

The aim of this study was to prioritise which reservoir risk analysis index 

that would correspond best to the present climate event and which that should 

be implemented to achieve optimal KGD release operations, and as a result, to 

provide the dam operator or stakeholder with alternatives of the recommended 

MHAs. In addition, by implementing the proposed MHAs, it has expected that 

they are capable of closing the gap of this research and overcoming the problems 

mentioned in this study.  

 

The novel aspects of this research are categorised into three 

subcategories. First, the outcome of this research has believed to be beneficial 

for other scholars, researchers or universities to consider and examine at other 
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dams around the world, particularly on the aspect of the impact under future 

emission scenarios in reservoir optimisation, as very little comprehensive 

knowledge on the impacts of climate change under different climate scenarios 

has been discussed, especially about the reservoir at at the KGD. Next, it has 

been anticipated that the novelty of this study has a significant impact on 

policymakers, particularly dam operators under the Lembaga Urus Air Selangor 

(LUAS – Selangor Water Management Board) to maximise the operational 

benefits of the KGD simultaneously to reduce the water scarcity. Aside from 

that, the findings of this study can help alleviate the risk of flooding the 

downstream of the KGD, which has been always under the authority of the 

Department of Irrigation and Drainage (DID), Malaysia. Finally, the novelty of 

this study has also included the benefit of the socio-economic aspects by 

adopting the flow of this study to investigate the impact of climate change on 

future reservoir operation and management across many climate change 

dimensions using data mining and meta-heuristic approaches with the concern 

of the National Fourth Industrial Revolution (4IR) Policy to facilitate more 

sustainable development projects throughout Malaysia. 

 

1.7 Outline of the Thesis  

 

Chapter 1 provides a concise overview of the research issue. Begin with 

the background of the study, followed by the problem statement and then the 

elaboration on the research gap of this study. The research questions are 

addressed in accordance with the study's objectives. 
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 Chapter 2 includes past reviews of the literature in relation to the 

limitations of the traditional algorithms and modern evolutionary algorithms 

integrated with various reservoir operations to obtain an optimisation strategy. 

The introduction of the recent meta-heuristic algorithms has the capability of 

overcoming the limitation of the previous studies. Followed by climate change 

investigations on the future operation of the reservoir under different climate 

scenarios. Prior research employing various global climatic models (GCMs) and 

the method for downscaling GCMs has been discussed. In addition, this chapter 

elaborates on prior knowledge regarding the computation of rainfall-runoff, 

estimation of evaporation, and future water demand. 

 

 The reservoir formulations, statistical uncertainty evaluation, and 

reservoir risk analysis in terms of metrics reliability, resilience, and vulnerability 

have described in Chapter 3. Additionally, this chapter includes the flow of 

methodology. 

 

 In Chapter 4, the observed period results for the years 2001-2019 and 

1987-2008 have presented and discussed. In addition, this chapter discusses the 

future KGD’s operations under climate change scenarios.  

 

Chapter 5 concludes the investigation conducted throughout the study. 

In addition, some future recommendations and study limitations have been 

given. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Reservoir system operation and optimisation, is a critical area of study 

for both, water resource management and hydrology. To operate a reservoir 

system optimally, numerous researchers have developed various modelling 

processes that would more conveniently represent the operating system. These 

advancements include progressions in calibrating decision-making policies, 

optimisation processes, or both. This study is primarily concerned with 

intelligent optimisation processes and this chapter will discuss previous 

modelling approaches and optimisation techniques used in this field. 

 

2.2 Reservoir Optimisation Techniques 

 

In the next sub-sections, the sequence of reservoir optimisation 

techniques or models implemented in previous decades is described. 
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2.2.1 Conventional Optimisation Techniques  

 

According to past studies, the performance of the existing reservoirs can 

be elevated by employing the models based on the mathematic concepts to 

mimic the pattern of the observed data and to optimise reservoir operations. The 

very first original and traditional dam design was based on Rippl's method, 

which was efficient on the small-scale reservoir capacity in order to ensure the 

release met the demand in the event of a worst-case drought (Rippl, 1883; Hazen, 

1914; Loucks and Van Beek, 2017). It is hard to use this method on the 

reservoirs with multiple objectives and some other operations that are more 

complicated than an isolated operation (Lee et al., 1963). As reported by Dobson 

et al. (2019), adaptable strategies for addressing these disadvantages have been 

suggested and addressed (Vogel and Stedinger, 1987;1988; Douglas et al., 2002; 

Celeste, 2016) .  Conventional optimisation techniques have been recommended 

over Rippl's method in order to determine the optimal reservoir capacity that 

meets the objective functions under a diverse range of hydrological conditions. 

Using these design techniques, a simulation of the reservoir system versus an 

extensive period of the inflow time series data was conducted. There are two 

main categories for conventional stochastic optimisation (SO) techniques: 

which are the implicit (ISO) and the explicit (ESO) optimisation. 

 

 ISO implicitly accounts for forcing input variability by utilising a long 

and varied realisation, particularly one that is represented by a statistical model 

of the reservoir systems based on the time series of historical observations 

(Dobson et al., 2019). A deterministic optimisation approach is used by ISO, 
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also known as the Monte Carlo optimisation, to identify the best reservoir 

releases for a range of inflow ensembles (Celeste and Billib, 2009; Liu et al., 

2014). However, the deterministic model is hinged on observed data and easily 

affected by extreme conditions.  

 

Instead, during the optimisation process, the ESO incorporates the 

statistical model directly. Labadie (2004) showed that this method is more 

established for reservoir operation optimisation. The ESO is only useful for the 

most straightforward scenarios involving reservoir systems with a single input 

because it can typically characterise the full range of inflow uncertainty using 

probability distributions. To increase clarity and understanding, it is also vital 

to take into account the significance and size of these trade-offs at both the 

geographical and temporal dimensions (Derepasko et al., 2021). Thus, the 

invention of model efficiency in reservoir optimisation is advanced through the 

application of linear programming. 

 

2.2.2 Linear Programming  

 

In both the standard and modified forms, linear programming (LP) has 

been widely used in reservoir optimisation problems (Loucks, 1969; Houck et 

al., 1980). The stochastic approaches integrated with the LP in the modified 

category include stochastic linear programming (SLP) and chance-constrained 

linear programming (CCLP). In the SLP, inflows are thought to follow a single 

Markov chain. Several studies have been conducted to assess the efficacy of the 

SLP in reservoir systems. Loucks (1969) created a SLP to represent an unified 
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reservoir operating policy. Houck et al. (1980) proposed a linear decision rule 

for calibrating a release policy to maximise the hydropower reservoir's benefits. 

Furthermore, various recent studies have used the CCLP in various fields of 

study (Stuhlmacher and Mathieu, 2020a;2020b; Yuan et al., 2021). While 

developing the release policy in the CCLP, violations of constraints were kept 

within allowable limits. The constraints are created by taking into account the 

storage capacity or release limits. Feng et al. (2020a) presented an integration 

of the dynamic programming and the linear programming, to investigate power 

generation in a cascaded hydropower reservoir in China. Though the LP is very 

useful for developing operating rules, the accuracy of the results may not always 

meet the researchers' expectations because most reservoir problems are highly 

non-linear. As a result, the chronological order for the optimisation topic on the 

reservoir has moved forward to nonlinearity and stochastic dynamic 

programming. 

 

2.2.3 Non-Linear Programming  

 

The benefits terms (to achieve the objective function of the specific 

reservoir) and the operational cost as the non-linear formation are sometimes 

included in the objective functions. Non-linear programming (NLP) is 

commonly used in these situations because the water or hydrology studies are 

predominantly non-linear. As a result, there were some previous studies that 

involved the optimisation of the water distribution system (Samani and Taghi, 

1996; Benli and Kodal, 2003). According to Lansey  Mays (1989), the utilisation 

of the existing simulation model for the water distribution purpose was 
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hybridised with the non-linear programming techniques and this hybridisation 

can achieve and provide better optimal water allocation and management 

purposes compared to the stand-alone simulation model on water distribution. 

However, the results of this study's solution may not be an integer for the pumps 

and pipes. Another disadvantage perceived is that the model required a 

significant amount of computer time. Carini et al. (2018) proposed a non-linear 

least-cost optimisation model that was applied to a real-world case study in the 

province of Croton, Southern Italy. However, the studies showed the output by 

minimising the cost of total water transportation, which includes piping, 

distribution, and labour, rather than just the energy cost.  

 

2.2.4 Stochastic Dynamic Programming  

 

Numerous works utilised dynamic programming to improve water 

resource systems (Yakowitz, 1982; Chaves et al.,2004). Stochastic dynamic 

programming (SDP) is among the most widely utilised techniques for reservoir 

operations (Loucks et al., 1984). In order to achieve the maximisaton of the 

economic value for the cascaded hydropower reservoir, the water volume and 

head must taken into account in the objective function of the reservoir 

optimisation (Lund and Guzman, 1999).  Wu et al. (2018) investigated multiple 

local optima cascaded hydropower reservoir operations. The authors proposed 

a two-stage solution algorithm to enhance the accuracy of the outcome with the 

integration of the traversing and search functions. Starting with the feasible 

region, finding one or more promising points near local optima via local search 

algorithm. However, the objective values and simulation results showed no 
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significant improvement. Due to the dimensionality and complexity of a multi-

reservoir system, Zeng et al. (2019) proposed a rule-based improved DP (RIDP) 

and rule-based SDP. Stochastic programming was used to optimise the joint 

operation of multiple reservoirs in the Pi River Basin (China) during flood 

seasons (Xu et al., 2020). In a multi-reservoir system of the Pi River Basin, Lu 

et al. (2021) proposed a risk-based aggregation-decomposition method for to 

inspect the floodwater. As compared with the deterministic model, the results 

showed no significant difference in floodwater usage. All these studies mainly 

improved the basic DP application approaches in the reservoir optimisation 

problem.  

 

2.2.5 Heuristic Algorithms  

 

The existence of optimisation methods may be traced back to the days 

of Newton, Bernoulli, Lagrange, and others when the mathematical analysis was 

formed on the basis of calculus or variations (Rao, 2019). A real-world problem 

that needs to be solved must first be modelled mathematically. As a result, 

utilising this mathematical formula as a criterion seeks to identify the optimal 

answer in the shortest amount of time. The heuristic algorithm's drawback is that 

it does not guarantee the best outcome. The algorithm is considered effective 

depending on how rapidly it arrives at a decent result.  

 

Genetic Algorithm (GA) is a subcategory of heuristic algorithms. It is 

inspired by the theory of evolution with features such as mutations, crossover, 

and selection, as presented in Figure 2.1. A further brief description of the GA 
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can be found in Holland (1992). Due to its ease of use and problem-independent 

applicability, the GA is one of those major EAs used in reservoir optimisation 

(Li et al., 2020; Tegegne and Kim, 2020). Wang et al. (2011) examined the 

Shihmen Reservoir via GA in order to optimise the irrigation basis. However, 

the authors find that the GA often fails to simplify complex reservoir problems 

to accelerate and improve the search for answers. The authors proposed a multi-

tiered interactive GA (MIGA) to determine the optimal reservoir operation plan 

and the results showed there was an increase proportion of 25% and a reduction 

proportion of 80% of the performances in terms of fitness value and the 

computation time, respectively. In addition, Liu et al. (2020a) showed an 

improved GA technique named as non-dominant sorting GA II method (NSGA-

II) by optimising the multi-objective problems in reservoir operation. Deb et al. 

(2002) provide a more thorough description of the NSGA-II. A limited quantity 

of information was provided regarding dam releases to strike a compromise 

between fish habitat preservation (ecology) and electricity generation (Cioffi 

and Gallerano, 2012; Ren et al., 2019). The authors discovered the best Pareto 

front for this trade-off issue using the NSGA-II and ϵ-constraint approaches. The 

robustness results in the ϵ-constraint approach were computed in a faster manner   

and provided a straightforward solution under constraint via sensitivity analysis, 

according to a comparison of the two methods. Meanwhile, the NSGA-II can be 

useful for learning about the more complete space solution. Additionally, Feng 

et al. (2018a) highlighted a concatenation for the GA called the parallel multi-

objective GA (PMOGA), which was carried out at the Wu Hydropower in China 

and had the similar advantages of trade-off in ecology. The PMOGA was meant 

to make solutions more likely to work and to speed up the time it takes for the 
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stand-alone GA to converge. The authors suggested this research strategy to 

optimise real reservoirs using heuristic techniques. Additionally, Li and Qiu 

(2016) leveraged the NSGA-II  to optimise the hydropower or PV hybrid power 

system in Qinghai, China. By segregating hydropower and PV generation, the 

NGSA-II yielded findings that were both computationally accurate and 

reasonably priced. In addition to these common GA blending techniques, the 

originality of the multi-objectives GA provided to enhance simulation and 

optimisation in streamflow and reservoir operation (Srivastav et al., 2011). This 

strategy, however, is too simplistic to be used in real-world situations, showing 

that it lacks concepts of consistency and is susceptible to sample size. 

 

 

 

 

 

 

Figure 2.1: Simple flow charts of GA 

 

Apart from the GA, Tabu search (TS) is also part of the heuristic 

algorithm. The mechanism of the TS is to avoid repeating movements during 

the preceding steps, solving is forbidden again in the following steps. As a result, 

a regional search is undertaken to study solutions to reach the optimum solution. 

A detailed explanation of the TS can be found in (Glover and Laguna, 2013). 

There were relatively few TS researches in the reservoir optimisation field. 
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However, the TS was shown to be popular in the water distribution network. Da 

Conceição et al. (2004)  used the TS to determine the lowest-cost design of water 

distribution networks. However, because of the limited number of studies 

conducted, this study could not conclude that the TS was a promising algorithm 

in this subject field. As a result, the authors proposed that additional study and 

exploration be conducted on various algorithms applied in this field to compare 

more complete research works. After a 17-year hiatus, there was a new update 

on TS with the same topic of study work as De Macêdo et al. (2021). Due to the 

disadvantage of the PSO being readily caught in local optima, the authors 

showed the integration of the TS with the PSO. This integration was then 

evaluated with three distinct benchmark networks, with the results compared to 

the stand-alone Particle Swarm Optimisation (PSO). The results revealed that 

the integration models gave superior solutions than the PSO by minimising the 

computation of the water distribution cost design and executing in a suitable 

time frame due to the efficiency of the exploration in the search space. In 

addition, the blending approach with the conditional TS and the conditional GA 

was ultimately implemented in reservoir operation (Thongwan et al., 2019). 

This study was carried out at Thailand's Ubolrat Reservoir for both past and 

future B2 scenarios. The results revealed that the rule curves developed from 

both reservoir models corresponded to the real rule curves with the condition of 

maintaining the water at the end of the rainy season (November), as the dry 

period needed a sufficient amount of water to be released to the downstream 

area. 
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Besides, the GA and TS, the Simulated Annealing is an estimate that is 

feasible for a function with a broad search space. The location determines 

whether there is a chance of survival or return to a previous state. This will 

optimise the system's energy use. Electronic circuit design is frequently utilised 

to solve problems such as image processing and navigation. There are few 

studies that utilised the Simulated Annealing in reservoir optimisation operation. 

However, the  Simulated Annealing has been implemented in hydrometric 

network topics (Chebbi et al., 2017) and landslide (Ferreiro-Ferreiro et al., 2020). 

After that, the temporal order proceeded to change into algorithms that drew 

inspiration from nature. The knowledge of nature-inspired algorithms has the 

strategy of exploitation and exploration, making it difficult to get stuck in a local 

optimum while also searching for global optimal solutions. 

 

2.2.6 Meta-Heuristic Algorithms (MHAs)  

 

The transition was then moved to the most successful and well-known 

swarm-based MHAs, namely the Particle Swarm Optimisation (PSO), Ant 

Colony Optimisation (ACO), Firefly Algorithm, and etc, which are inspired by 

the movements of the swarms in nature. After that, more advanced fields in 

MHAs such as multimodal and multi-objective optimisation, hybrid MHAs, 

constraints or penalty function handling were developed. In order to conduct 

thorough space searches, nature-inspired MHAs often go through two unique 

phases of search: exploitation and exploration. There are a variety of categories 

based on the MHAs such as evolutionary, swarm, physics, human, biology, 

system, math, and music. These research works is tabulated in Table 2.1 by 
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segregating them into different categories. Following this are the benefits and 

drawbacks of these reservoir algorithms which are tabulated in Table 2.2. 

However, in this chapter, the elaboration will focus on the swarm-based studies 

and its enhancement techniques that have been conducted in earlier studies to 

support the selection of reservoir models in Chapter 3 - Methodology. It begins 

with a swarm-based algorithm, then an insect-based algorithm, and finally an 

animal-based algorithm. 

 

Below are the case studies implemented under the swarm based 

algorithms in reservoir optimisation. Al-Aqeeli and Mahmood Agha (2020) 

investigated the reservoir operation by finding the optimum operation between 

maximising hydropower and flood control in Iraq (Mosul and Badush Dams) 

via the PSO. He et al. (2014) suggested using the enhancement strategy namely 

the chaotic PSO (CPSO) to decrease the standard deviation of the discharge flow 

and a piecewise linear interpolation function (PLIF) was employed to deal with 

the restrictions for solving the objective function (OF). Following that, the 

findings gained showed that the CPSO outperformed than the GA, DE, and PSO. 

For more effective scheduling, multi-objective flood control actions should be 

taken into account. Bai et al. (2019) showed the equilibrium ecology system of 

the Yellow River in China by conducting a compensation element between 

water and sediment process. The authors utilised the PSO and the feasible search 

space to minimise disasters and maximise the advantages of the water storage 

capacities of the two cascade reservoirs. Furthermore, the PSO and GA both 

used the same execution principles from the parallel multi-objectives (PMO) for 

the cascade hydropower reservoir in China (Niu et al., 2018b). Aside from that, 
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to solve the multi-objective problems, Chen et al. (2020) established a new 

blending reservoir model namely the adaptive random inertia weight (ARIW)-

PSO algorithm to optimise the dispatch of the Panjiakou Reservoir, and  the 

flood control operation at China's Luanhe River. The probability distribution 

function led to the blending, while the inertia weight was randomly generated. 

To begin with, global optimisation favours inertia weights that are higher. As 

evolution proceeds, however, the inertia weights progressively decrease, 

benefitting local search optimisation. Then, the authors showed that the 

blending reservoir model obtained the objective function with the value of  

0.8514, which was outperformed by other algorithms such as the GA and stand-

alone PSO, at 0.9651 and 0.8876, respectively. The authors claimed that this 

blending model could effectively solve the real-time optimisation problem. The 

Cuckoo Search (CS) is the most used strategy for enhancement after the PSO. 

There are numerous strategies for enhancing population initialisation. Meng et 

al. (2019) suggested an improved multi-objective cuckoo search (IMOCS) to 

alleviate one drawback of the MOCS.  

 

The Klang Gate Dam (Hossain and El-shafie, 2014a) and the Aswan 

High Dam (AHD) (Hossain and El-Shafie, 2014b) with the PSO, were used as 

examples of the other application of the swarm-based reservoir models' 

popularity to provide optimal release policy for reservoir systems. Next, the past 

studies were based on insect -based algorithms. The water distribution system 

design challenges were solved using the ant-colony algorithm, which was then 

verified using a few test functions (Zheng et al., 2017). However, this study 

showed the model's performance in terms of convergence rate; no actual 
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optimisation problem was presented. The same is true of the firefly optimization, 

which is solely used as an algorithmic test function in mathematics (Aydilek, 

2018). The Moth-flame Optimisation (MFO) was created by Mirjalili (2015). In 

order to prevent settling into a local optimum, the new strategy for the flame 

population has to be enhanced by using the moth's linear flying path. This 

process is known as the improved MFO (IMFO). The inadequacies of the 

traditional Pareto domination led Zhang et al. (2020) to propose a new blending 

technique based on the R-domination (R-IMFO) to address the trade-off 

between the ecology and navigation of the cascade reservoir operation. The 

following paragraph briefly described the case studies utilising animal-based 

algorithms. 

 

Animal-based algorithms consist of  the Bats, Sharks, Lion Swarms, 

Grey Wolf, and more. Ehteram et al. (2017a)  has attempted to reduce the 

reservpor water scarcity with a demonstration of the shark algorithm (SA) and 

the other standalone method (GA and PSO) to evaluate based on the reservoir 

risk assessments. The results revealed that the SA surpassed the other two 

standalone algorithms in respective with reservoir risk assessment and model 

performance. The SA continues to have the lowest vulnerability (31%) and the 

highest reliability (96%). Dehghani et al. (2019) suggested integrating the Grey 

Wolf Optimisation with the ANFIS for the development of the hydropower 

generation at the Dez basin. The output of this study showed that the integration 

of the GWO-ANFIS managed to forecast and optimise hydropower production 

and successfully facilitate policymakers. There is little information available on 

the Lion swarm algorithm employed in the optimisation procedure especially in 
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reservoir field. In their demonstration of the LSA in cascade hydropower, Liu 

et al. (2020b) examined the robustness of the LSA via various of model 

performances. 

 

The hybridisation under MHAs is the main topic of the current paragraph. 

Allawi et al. (2019a) suggested the SVR and RBF as AI models for forecasting 

inflow and evaporation of the reservoir as the Scenario 1. By hybridising the 

machine learning in the SA (SMLA), GA and PSO were utilised and optimised 

where inflow and evaporation as observable deterministic variables (Scenario 

2). SMLA outperformed GA and PSO for optimisation, whereas SVR exceeded 

RBF for projected hydrological parameters. Scenario 2 leveraged expected 

deterministic factors to optimise existing unreal conditions to lower the water 

shortage. In addition, the blending algorithms of PSO, Differential evolution 

(DE), WOA, and crow search algorithm was formed a Master-slave model 

strategy in order to identified and attained best reservoir policy at the AHD 

(Turgut et al., 2019). This method's advantage is that it is extremely competent 

at identifying and perceiving the considerable stochastic character and non-

linearity of the reservoir system. Yaseen et al. (2019) suggested a commonly 

used hybridisation technique in reservoir control, called as the bat-swarm 

algorithm, the HB-SA, in order to reduce irrigation shortfalls at the respective 

dam of the Golestan and Voshmgir. One of the advantages for the hybridisation 

techniques was capable to speed up the convergence rate whereby it is necessary 

for a workable real-time dam and reservoir to provide optimal solution. The HB-

SA was compared to the other stand-alone algorithms and outperformed, 

attained the highest reliability readings in the range between 94% to 96%. 



27 

 

However, Turgut et al. (2019) has also been mentioned in this study by 

suggesting for the future research to examine and determine if the existing 

reservoir policy can continue to be applied in future climatic and hydrological 

circumstances at dam scales.  
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Table 2.1: Studies under a variety of categories based on MHAs

Categories Objective of study Method adopted Findings and Limitation  Reference 

Evolutionary 

based 

To solve the climate 

uncertainty in reservoir 

management 

1. Coral reefs algorithm (CRO) 

2. Constrained CRO 

3. Reinforcement learning CRO 

The acquired findings were then 

compared to LP. To summarise, the 

reinforcement learning CRO 

outperforms others in terms of 

convergence and accuracy  to the 

problem of a four-reservoir system.  

Due to the CRO being easily trapped 

in local optimum, two enhanced 

methods were introduced for the 

equilibrium tradeoff between 

exploration and exploitation. 

(Emami et al., 

2021) 

Physic based To solve the large-scale 

Dez reservoir operation 

optimisation problem 

1.Gravitational search algorithms 

(GSA) 

2. Partially Constraint GSA 

(PCGSA) 

3. Fully constraint GSA (FCGSA)

  

4. Unconstrained GSA (UCGSA) 

FCGSA was very efficient in resolving 

this optimisation issue, resulting in a 

substantial decrease in the search area. 

It obtained 7.377 cost values in Dez 

hydropower.  As the GSA is slow with 

convergence speed and trap in local 

minima, the hybrid GSA were 

conducted in different months of 

operation in order to validate among 

the models. 

(Moeini et al., 

2017) 
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 Table 2.1 (continued): Studies under variety of categories based under MHAs

Categories Objective of study Method adopted Findings and Limitation Reference 

Physic based To solve the 

hydropower 

optimisation problem in 

karon4 and four-

reservoir optimisation 

problem 

1. GSA 

2. GA 

The GSA standard deviations for 

Karon4 and four-reservoir 

optimisation were 0.0009 and 0.277, 

respectively, whereas the GA standard 

deviations were 0.161 and 0.705. As a 

consequence, the GSA outscored GA 

in terms of reliability and its tuning 

parameters were easier and faster. 

(Bozorg-Haddad 

et al.,2016) 

Physic based 

+ Swarm 

based 

To solve the multiple 

hydropower reservoirs 

and solar photovoltaic 

plants optimisation 

problem 

1.GSA 

2. Neighbourhood search strategy 

GSA 

3. Adaptive mutation strategy GSA 

4. Constraint handling technique 

GSA 

5. GA 

6. PSO 

7. DE 

The simulation results show that the 

improvement technique can overcome 

the early convergence problem in 

GSA. Furthermore, GSA enhancement 

methods have proven that dynamically 

scheduling both hydropower and solar 

PV facilities may produce higher-

quality scheduling schemes. 

(Niu et al., 2021) 

Physic based 

+ Swarm 

based 

To examine the 

effectiveness of the 

methods 

Integration of PSO and GSA 

(HGSPSO) 

This method integrates the local search 

skills of GSA with the global best skills 

of PSO. The HGSPSO was 

satisfied for optimising reservoirs. 

(Khan and Ling, 

2021) 
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 Table 2.1 (continued): Studies under variety of categories based under MHAs

Categories Objective of study Method adopted Findings and Limitation Reference 

System based 

+ Swarm 

Based 

1. To minimise the 

water deficit at Klang 

Gates Dam 

2. To investigate the 

efficiency of CSS 

1. Charged System Search (CSS) 

2. ABC 

3. PSO 

4. GA 

CSS was verified and compared to 

other algorithms; the findings showed 

that CSS was accurate in simulating, 

and the release policy excelled other 

algorithms. CSS can achieve the 

overall  reliability  of  96% compared 

to the other algorithms. 

(Latif et al., 2021) 

System based 

+ Swarm 

Based 

To derive the water-

supply and hydropower 

operating policies in 

Dez reservoir 

1. CSS 

2. GA 

3. ACO 

4. PSO 

5. NLP 

CSS had faster and more exact 

convergence. The result was 

employed in Dez reservoir 

optimization. CSS proved to be an 

efficient strategy for improving 

reservoirs. Uncertainty may affect 

policy due to the study's known river 

inflow. 

(Asadieh and 

Afshar, 2019) 

Math based To balance global 

exploration and local 

exploitation  in a 

cascade hydropower 

reservoir in China 

1. Sine Cosine Algorithm (SCA) 

2. Adaptive SCA 

At Wu hydropower in China, ASCA 

can improve scheduling in 

different runoff cases. ASCA 

demonstrated strong performance and 

global search capability when 

compared to SCA. 

(Feng et al.,2020a) 
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Table 2.2: Benefits and Drawbacks of the algorithms 

Algorithm Benefits Drawbacks 

GA  It can manage complexity 

problems and constraints 

in non-linear conditions. 

 It is easy to implement.  

 It can be utilised on its own 

to address a particular 

problem. 

 It does not rely on any 

additional algorithms or 

heuristics. 

 Uncertainty of achieve  

global maxima, easily 

stuck in local maxima, 

and loses population 

density. 

 Due to the numerous 

factors involved, it can 

be time-consuming 

and lacks common 

termination criteria. 

DE  It is competent at 

exploration and 

diversification.  

 It can handle both unimodal 

and multimodal situations. 

 The convergence rate is 

unstable. 

 The local optimum is 

reached quickly. 

PSO  The computation is easy. 

 It is perfect for dynamic 

applications due to its rapid 

response. 

 Population density is 

declining, therefore 

premature convergence 

is unusual. 

ABC  It has a flexible tuning range 

and few parameters. 

 Less parameter 

adjustment is needed, 

which reduces 

accuracy. 

Ant-colony  It avoids early premature 

convergence and is 

essentially parallel because 

the solutions can be found 

independently and 

concurrently. 

 It ensures the 

convergence aspect, 

but the time is not 

specified. 
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Table 2.2 (continued): Benefits and Drawbacks of the algorithms 

Algorithm Benefits Drawbacks 

Firefly & 

Moth flame 

 Because it naturally 

separates the population 

into various groups, it has 

strong diversity. 

 It can become stuck in 

local optima when 

faced with complex 

multi-objective. 

Bat,Shark, 

Lion,and 

grey wolf 

 Simultaneously searching 

of exploration stages and 

exploitation stages.  

 It is simple to implement 

and adaptive. 

 

 It cannot handle 

discrete problems. 

 Enhancement 

techniques, data-driven 

techniques, or MHA 

hybridisation help 

solve this problem.  

 

2.2.7 Hybridisation Technique  

 

Numerous hybridisation studies have been conducted. The hybridisation 

is divided into three kinds in this sub-section: (i) hybridisation under EA, (ii) 

integration of EA and SI, and finally, (iii) MHAs inspired by nature. The 

following lines begin with hybridisation under EA. The shortcomings of the 

standalone algorithms can be overcome by the hybrid algorithm. Hybrid 

algorithms' consistency may be helpful in research on multi-objectives trade-offs. 

Ibrahim et al. (2021), for instance, showed how to combine optimisation 

modelling and data-driven methodologies to forecast streamflow. At the 

Vanderkloof Dam, efficient optimisation (Pareto multi-objective DE) and 

precise reservoir inflow predictions (artificial neural networks) can increase 

daily hydropower production (Olofintoye et al., 2016). To achieve the optimal 

reservoir policy, investigations of combining NN and EAs were undertaken 

(Feng et al., 2019). To show how trade-off of the water distribution system, (i.e., 
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costs and design size) were made, the EPANET water distribution model and 

EAs were merged (Kurek and Ostfeld, 2013). Additionally, because they are 

simple and effective, multi-objectives optimisation reservoir procedures like the 

DE (Yazdi and Moridi, 2018) and the PSO (Sedki and Ouazar, 2012) are well-

liked hybrid EAs. Additionally, the multi-objectives EAs were employed for 

purposes other than reservoir optimisation, such as a method for experiment 

design (Li et al., 2021), and they also serve as a radiation detecting system 

(Holland et al., 2021). The PSO had two flaws: inertia weight and poor variety. 

The DE can lead to premature convergence, whereas the PSO is capable of 

looking for local optimum solutions. In order to improve the fundamental 

composition of the DE and PSO algorithms, respectively, Ahmadianfar et al. 

(2020) suggested an adaptive (A-DEPSO) method. Modern technology is used 

by A-DEPSO to enhance both local and worldwide search. A four-reservoir 

hydroelectric facility in southwest Iran is being used to test the suggested method. 

Because it accounted for 57% of the decrease variance in the hydropower plant, 

this method performed better than previous stand-alone approaches. Ehteram et 

al. (2017b) have established the GA and the krill algorithm as a hybrid approach 

for a multi-purpose reservoir systems. The fundamental drawbacks of the present 

GA algorithms, weak convergence and local optimum, are overcome through 

integration. The suggested hybrid algorithm was compared to identify and assess 

the algorithm's effectiveness based on reservoir risk assessments. For each 

situation, the suggested hybrid algorithm discovered the overall best value. 

Reservoir optimisation, a formula for the greatest possible control of a dam or 

reservoir, however, necessitates realistic simulation. In essence, hybrid EAs deal 

with challenging problems in water resource management. However, a different 
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method is used to balance the weakness of the stand-alone EAs and strengthen 

or improve them. Next is the combination of EA-SI.  Hossain et al. (2018) 

developed the passive congregation theory in particle movement, the PC-PSO at 

the Klang Gate Dam. Although the PSO was an excellent optimizer, the PC-PSO 

performed slightly better than the PSO, in terms of reservoir risk analysis 

assessment. When an extreme weather event occurs, the vulnerability and the 

resilience index (heavy-rainfall or extreme draught), respectively are vital as is 

life threatening to the residents at the downstream.  Moeini and Babaei (2020) 

showed the original concept of an improved PSO to a constrained version 

(CIPSO) in order to deal with uncertain inflows. The explicit satisfaction of the 

CIPSO requirement limits the search space and lowers the computing expense. 

According to the findings, SVM-CIPSO2, performed better than expected in 

terms of reservoir risk analysis and raised the sustainability index by 11.27% 

with the observed data loaded into the CIPSO, and the outputs were then 

transmitted to the SVM, a data-driven model that may duplicate an earlier 

optimised data pattern which generated a smaller search space. Then, a 10-

cascaded hydro plant using this approach was implemented in a multi-objectives 

reservoir system. Performance indicated that the MGPSO had a lesser energy 

deficit than the DE and PSO (Zhang et al., 2013). The estimation of distribution 

algorithm, EDA and the PSO were also integrated to address the multi-objectives 

reservoir activities in order to alleviate the flood at Ankang Reservoir (Luo et al., 

2015). Yang et al. (2015) established a non-linear global evolutionary 

optimisation by concatenating with principal component analysis, PCA and 

crowding distance operation to solve the multiplex objectives at California 

hydroelectric dam. The immune algorithm-based PSO is another illustration. It 
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combines the PSO and the idea of an immune information processing 

mechanism to provide good global optimal capability (Fu et al., 2011). However, 

these conjunction techniques were not the most well-liked SI techniques for 

enhancing reservoir operations. Finally, the hybridisation of MHAs with nature 

inspiration. To determine if the existing reservoir policy can continue to be 

successful, scholars must take the initiative to examine the future climatic 

scenarios and hydrological circumstances. Besides, the same suggestion made 

by Turgut et al. (2019) has also been mentioned in this study, namely that the 

insufficient climatic data and the effect of climate effects on reservoir operations 

should be taken into cognizance in future studies.  

 

 As a result, it is suggested in this study to utilise the meta-heuristic 

algorithms, namely the Whale Optimisation Algorithm, Harris Hawks 

Optimisation Algorithm, due to their strategy of exploration and exploitation 

during the search simultaneously and their respective enhancement approach, 

which will be described in the Methodology section. Thus far, both meta-

heuristic algorithms (MHAs) been not be performed at the KGD operation, 

leading to their selection algorithms in this study. In Chapter 3.6, will be further 

elaborate the equtions involved in WOA and HHO. The model structures of 

WOA (spiral bubble attacking method) and HHO are depicted in Figure 2.2 and 

Figure 2.3, respectively. Figure 2.4 depicts the summary of reviewed 

optimisation techniques utilised in reservoir optimisation operation in this study. 

A few categories have been mentioned and classified under the traditional 

approach, heuristic algorithms, and meta-heuristic algorithms. In short, most of 

the hybridisation case studies in this section were executed in swarm-based 
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intelligence and this included the benefits and drawbacks of the algorithms, as 

seen in Table 2.2. 

  

 

Figure 2.2: WOA model structure - Spiral bubble (El Ghamrawy and 

Hassanien, 2020) 

 

 

 

 

 

 

 

Figure 2.3: HHO model structure (Heidari et al., 2019)
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Figure 2.4: Summary of Optimisation Techniques Reviewed 
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2.2.8 Summary  
 

 The purpose of this section is to provide a comprehensive overview of 

all the sub-sections contained within section 2.2. In summary, the limitations of 

Rippl's method, as outlined in section 2.2.1, have been addressed through the 

integration of conventional optimisation techniques. This was necessary due to 

the limited capacity of the reservoir design and the challenges associated with 

its adoption in the context of multiplex objective functions. Subsequently, the 

ISO and ESO were implemented, both of which were classified as conventional 

optimisation techniques. Nonetheless, the ESO exhibited similar behaviour to 

Rippl's approach in that its capacity was limited to addressing only the simple 

optimisation problem of reservoirs.  The ISO, also referred to as the Monte Carlo 

optimisation, has been found to have limitations due to its dependence on 

observed data and susceptibility to extreme conditions. Despite the frequent 

applications of LP in various studies, where it has been incorporated with other 

methodologies to enhance the development of operating rules, its limitations 

have been brought out to the forefront. Specifically, the accuracy of the results 

obtained through LP has been adjudged into question due to the prevalence of 

non-linear reservoir problems. With regards to the NLP characteristic, it is 

observed that it does not exhibit the dual characteristics of exploitation and 

exploration that are typically associated with meta-heuristic algorithms. 

Consequently, as the complexity of reservoir operation problems increases, the 

computational time required for NLP and heuristic algorithms (presented in 

Table 2.2) increases. The complexity of reservoir problems pertaining to trade-

off operation necessitated an integration of commonly employed approaches 

from basic dynamic programming (DP), namely the stochastic programming 
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(SDP) and the rule-based improved DP. Table 2.2 has shows the limitations 

associated with the corresponding  meta-heuristic algorithms (MHAs) were 

found to exhibit both exploitation and exploration characteristics. However, 

minor adjustments in terms of convergence and the challenge of being trapped 

in local optima when dealing with multi-dimensional trade-offs, necessitated the 

introduction and proposal of hybridization techniques to enhance the 

applications of MHA 

 

2.3 Climate Change Impact on Reservoir Optimisation 

 

The transition of the climate is undoubtedly caused by human activities 

as a result of more sophisticated lifestyles that place a higher priority on energy 

demand, resulting in increases in greenhouse gases (Akbary et al., 2019). The 

increase in global temperatures is causing these gases to rise  (Terzi and Manolis, 

2020). Greenhouse emissions are the primary source of global warming. 

Greenhouse gases are significant in climate change. Other factors that affect 

climate change include variations in sunlight intensity and the Earth's direction 

(Coelho et al., 2020). It also caused temperature, rainfall, and wind speeds turn 

into more extreme. This also impact the reservoir operations. These dramatic 

developments also significantly affect human health, poverty, and the wellbeing 

of people (Yalew et al., 2020). 

 

The likelihood of experiencing severe weather will ascend as a result of 

climate change (Katelaris, 2021). If climate change intensifies, heat waves are 

predicted to intensify. This will trigger many droughts and calamities. These 
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occurrences pose a threat to the current designed system for delivering the water 

in different climatic regime. The transition of the extreme climate affects 

planning, design, and execution of water projects. The major contribution factors 

especially temperature and precipitation (rainfall) which reflect the potential and 

influence to the water supplies (Manzanas et al., 2020). Therefore, effective 

water management approaches should include and focus on integrating in all of 

its dimensions that is from the impacts of climate change.  

 

One of the most crucial pieces of a climate change impact assessment is 

using the global climate models (GCMs). The models were, however, limited in 

their ability to be applied on a local scale due to their coarse horizontal spatial 

resolution (100 to 200 km) (Solomon,  et al., 2007). As a result, coarse resolution 

GCMs output is downscaled to a finer regional resolution in order to ensure 

logical readings display for projected future data (Teutschbein and Seibert, 

2010).  

 

The output of a GCM can also be downscaled statistically or dynamically 

(Fowler et al., 2007). According to Jakob Themeßl et al. (2011), a large-scale 

lateral boundary circumstances from GCMs is utilised for the dynamic 

downscaling process in order to encourage better resolution outputs from a 

regional climate model (RCM). Although more costly and introducing additional 

biases due to increased uncertainties in local forcing, the RCMs do offer a more 

accurate physical depiction than the lateral bounds of the GCMs (Rowell, 2006). 

In Malaysia, a tropical nation with a highly variable precipitation pattern, 
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statistically downscaled GCMs are utilised for the vast majority of studies in this 

region. 

 

The climate projections from CMIP 5 showed good performance in 

historical rainfall simulation in the Malaysia region, as claimed by Tan et al. 

(2017). For validation purposes, from the year 1991 to 2005 was chosen as base 

period; whilst for the future timeline are sub-divided into the near future year 

(2020-2039), mid future year (2040 – 2069), and the far future years (2070 – 

2099). The selection of the GCMs mainly from Queensland Climate Change Centre 

(CSIRO-Mk 3.6) and University of Tokyo (MIROC-ESM-CHEM, MIROC-ESM 

and MIROC 5) due to the acceptable and tolerable resolution at this study region 

than the other GCMs in the CMIP 5. In this study, three RCP scenarios will be 

examined, which include the RCP 2.6 as the low emission path scenario, the 

RCP 4.5 scenario act as the intermediate level and lastly the RCP 8.5 scenario 

as a very high and excessive greenhouse gas emission scenario. The respective 

radiative forcing pathway can be referred to in Table 2.3. 

 

According to Yaseen et al. (2019)  and  Turgut et al. (2019), climate 

change uncertainties or scenarios can have a significant impact on how reservoirs 

operate in future reservoir policies. Therefore, this would make determining 

optimal reservoir operation rules in the future more feasible and reliable. General 

circulation models (GCMs) resulting from the fifth phase of the Coupled Model 

Intercomparison Projects, CMIP 5 (Taylor et al., 2007), were used for future 

climate scenarios, as part of the Intergovernmental Panel on Climate Change's, 

IPCC Fifth Assessment Report, AR5 (Stocker et al., 2013). Each GCM in AR5 
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disclosed various representative concentration pathways (RCPs), which 

represent various ways of greenhouse gas concentrations resulting in radiative 

forcing by 2100, depending on human activity mitigation (Meinshausen et al., 

2011). The listing characteristics of RCPs are presented in Table 2.3. RCP 2.6 is 

known as the most optimistic scenario for maximum mitigation; RCP 4.5 and 

RCP 6.0 are known as intermediate level of emissions in which there is increased 

radiative forcing, but it stabilises; and RCP 8.5 is known as the most pessimistic 

scenario or highest emissions in which higher levels of radiative forcing and 

temperature increase do not stop. 

 

However, there were some case studies still had adopted the Special 

Report on Emission Scenarios (SPRES), which was reported based on the IPCC- 

Fourth Assessment Report (AR4). In AR4, the emission scenarios were built 

based on a more economic focus and a more environmental or sustainable 

development. The radiative forcing in RCP 8.5 is roughly similar to A2 scenario 

in AR4; the RCP 4.5 is roughly similar to B1 scenario in AR4. Then RCP 6.0 

and RCP 8.5 are corresponded to A1B and A1F1 in AR4, respectively. Table 2.3 

presents the RCPs corresponding to the SRES. The investigation carried out by 

Ahmadi et al., (2014) segregated the periods of the estimated precipitation and 

temperature with early, middle, and late periods of 21st century under the 

emission scenario of A2.  

 

Estimated precipitation and temperature parameters were used to 

simulate reservoir inflow at the Karoon-4, Iran. NSGA-II was then utilised to 
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optimise Karoo-4's operation rules. Considering the impact of climate change on 

the future reservoir, this study determined that activities are required. According 

to Ehteram et al.（2019), climatic change impacts reservoir discharge activity. 

Climate change affects rainfall-runoff, which affects river input. This research 

analysed temperature and precipitation trends as an indicator for decreasing the 

gap between water supply and demand. Iran's Aydoughmoush Dam was the 

research site. This investigation used the HAD-CM3 model for climate change 

backdrop based on the A1B scenario with two primary predictors (precipitation 

and temperature) for 2046-2065. IHACRES calculated runoff. The novel nature-

inspired optimisation algorithm, the shark algorithm, utilised climate change 

results to generate an optimum operating rule for reservoir release operation. The 

performance and operating rules currently in place may be impacted by climate 

change and escalating the maintenance requirements for ageing reservoirs 

(Desiree et al., 2020). This study showed the integration reservoir's operational 

performance for the SOP and climate scenarios under RCP 8.5 via ResSim. 

However, it can be improved using ensembled GCMs and other factors affecting 

future reservoir operation. Besides, global climate change puts pressure on 

resources management, specifically for reservoirs, as fluctuating precipitation 

due to rising global average temperature which also increased 

evapotranspiration rates. This study conducted by Mandal et al. (2019) utilised 

four downscaling climate models (CanESM2, CCSM4, CSIRO-MK3-6-0, and 

GFDL-ESM2G) for future reservoir simulation release policies via system 

dynamics simulation model, SDM. However, this analysis does not address 

reservoir optimisation or other factors affecting hydropower generation (e.g., 

population growth). Zhang et al. (2017) conducted a comprehensive analysis of 
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the reservoir release policy with various operating rules (i.e., conventional, fixed 

and adaptive) in order to maximise the utilisation of water resources and avoid 

profits sharply decreasing for agriculture development via two-dimensional 

dynamical programming under future scenario (2015-2040). However, the study 

lack consideration of the perspective of population growth or socioeconomic 

land use land cover change (LULCC). 

 

Apart from that, there were several studies conducted under investigation 

of climate change based on RCPs in IPCC-AR5 for the future reservoir 

optimisation operation. Nourani et al. (2020) suggested an integration approach 

to examine the dam operation in order to adapt the climate change at the 

Shahrchay reservoir in Iran.  Among the immense number of possible large-scale 

climate variables of the General Circulation Models (GCMs), the model M5 tree 

was introduced to pick the most appropriate predictors. Furthermore, an 

Artificial Neural Network (ANN) preparation was used for the observed 

temperature and precipitation time series. RCP 4.5 and RCP 8.5 have been 

implemented to obtain insight into potential changes in rainfall and temperature. 

Finally, the GA was used to refine the reservoir system's operational rule curves 

using the annual estimated evaporation and inflow of precipitation, considering 

water supply and municipal targets, and minimising possible overall square 

deficiencies. Aside from this, Thomas et al. (2021) presented the adaption policy 

in Narmada basin, India for the future RCPs, such as RCP 4.5 and RCP 8.5 

scenarios in reservoir optimisation operation. Huangpeng et al. (2021) showed 

the hydropower production at Jinanqiao Dam in Chiana’s Yunnan Province. The 

authors considered three scenarios, namely RCP 2.6 (low), RCP 4.5 (medium) 
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and RCP 8.5 (high) which have been developed by the IPCC-AR5 (Rogelj et al., 

2012). Besides, this study was then implemented by metaheuristic algorithms 

(MHAs) for the future reservoir optimisation operation in RCP 2.6, RCP 4.5, 

and RCP 8.5. The study was intended to forecast the future hydropower 

production (2021–2050) under RCP2.6, RCP4.5, RCP 8.5. Hydropower plants 

can be susceptible to changes in the amount of precipitation to the reservoir. A 

method has been used that improves the accuracy of flow estimation. The new 

version of the Developed Crow Search Algorithm (DCSA) was used to solve the 

problem. It improves precision by overcoming the drawbacks of the optimisation: 

trapped in optimal location, imbalances between exploitation and exploration of 

ANN. This study was conducted under climate change scenarios of RCP2.6, 

RCP4.5 and RCP8.5. The result notes that the amount of electricity production 

should escalate in the coming years. These findings will support managers in 

controlling water and energy resources.  

 

With all these case studies mentioned above and summarised in Table 

2.4, however, there is very little information of the Klang Gate Dam (Case Study 

location) being investigated with the climate change scenarios and implementing 

MHAs approaches by following the AR5 climate scenarios. Under the Coupled 

Model Intercomparison Project (CMIP3 and CMIP5), researchers have 

continuously assessed the simulated surface temperature for climatic variable 

projections. The most recent version of CMIP5, which is also a component of 

the IPCC-AR5, incorporates relatively higher resolution and a variety of 

experiments. In their study, Jourdain et al. (2013) compared the performance of 

models available under CMIP5 to CMIP3. Additionally, Sperber et al. (2013) 
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claimed that the multi-model mean produced in CMIP5 is more accurate than 

CMIP3. However, the CORDEX-SEA in Asia domain region, namely the WAS-

44 or WAS-44i was not in the finer resolution of the GCM and the data 

availability in the Earth System Grid Federation (ESGF) portal for the RCPs do 

not have complete sets. Hence, CMIP5 was selected as the GCM in this study to 

further the investigation into future reservoir optimisation operation.  

 

According to Table 2.3, the RCP 2.6 act as the most optimist condition 

for maximum mitigation, RCP 4.5 and RCP 6.0 both considered as stabilisation 

scenarios, and RCP 8.5 as the worst-case scenario. The predictor variables for 

RCP 6.0 were insufficient for inclusion in this study simply because there were 

inadequate CMIP 5 data available for this study region. Additionally, using an 

unfair combination of predictors and predictor variables due to the 

inaccessibility of the RCP 6.0 predictor data will increase the degree of 

uncertainty regarding the results. Hence, the executions of the RCPs scenarios 

implemented in this study are the RCP 2.6, RCP 4.5, and RCP 8.5 at Klang Gate 

Dam (KGD) while utilising MHAs to investigate the climate change impact on 

the future reservoir operation. Based on the observation in Table 2.4, it shows 

the climatic variables involved in and how future reservoir operations will be 

affected by climate change.  

 

In short, the review of the past studies made in section 2.3 have 

highlighted several points, especially the model involved in SDSM, where it 

certainly has constraints on the climatic variables as it is only operated on a daily 

time frame and could be analysed and solely in a single GCM. Hence, the 
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uncertainty of the model itself was high as compared to the other model (data-

driven or weather-classification model) where ensembled GCMs can be 

involved in the downscaling process and have equally distributed onto the 

uncertainty manner.The selection of the GCMs or the emsemble of GCMs are 

also significant for future climate impact investigations. In addition, some 

regions of study area may have difficulties in the aspect of quality of the data 

(missing data in majority) or insufficient predictor variable criteria in order to 

downscale the GCM, which could lead to the high uncertainty in terms of 

accuracy for the downscaled output.  

 

Table 2.3: Similarities between RCP projections and SRES 

Fifth 

Assessment 

Report  

Radiative Forcing (W/m2) 

 

Forth 

Assessment 

Report 

RCP 2.6 From 3 W/m2 then decreases to 2.6 W/m2 (by 

2100) 

Not available 

RCP 4.5 4.5 (post 2100) SRES B1 

RCP 6.0 6 (post 2100) SRES A1B 

RCP 8.5 8.5 (post 2100) SRES A1F1 
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Table 2.4: Summary of the case studies on climate change impacts  

Author(s), 

Year 

RCP/SRES GCMs Involved Downscaling 

Method 

Climatic Variables Future 

Periods 

Study Area Approaches for Reservoir 

Optimisation 

Huangpeng 

et al. (2021) 

RCP 2.6 

RCP 4.5 

RCP 8.5 

GFDLCM3 LARC-WG Minimum Temperature 

Maximum Temperature 

Precipitation 

2021-2050 Jinanqiao Dam, 

China 

Crow Search algorithm 

Thomas et al. 

(2021) 

RCP 4.5 

RCP 8.5 

CSIRO 

CCAM 

ACCESS1.0 

CNRM-CM5 

CCSM4 

GFDL-CM3 

MPI-ESM-LR 

NorESM-M 

- Temperature 

Precipitation 

2006-2040 

2041-2070 

2071-2099 

Narmada Basin, 

India 

NSGA-II + MOGA  

Yaghoubi et 

al. (2020) 

A2  HadCM3 SDSM Daily temperature 

Daily precipitation 

2026-2036 

2048-2058 

2081-2091 

Gaverood River 

Basin, western 

Iran 

Quantitative-Qualitative 

model 
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Table 2.4 (continued): Summary of the case studies on climate change impacts 

Author(s), 

Year 

RCP/SRES GCMs Involved Downscaling 

Method 

Climatic Variables Future 

Periods 

Study Area Approaches for Reservoir 

Optimisation 

Nourani et 

al. (2020) 

RCP 4.5 

RCP 8.5 

A1B 

B1 

CGCM3 

ACCESS1.0 

MIROC-ESM-

CHEM 

ANN Precipitation 

Temperature 

2020-2060 Shahrchay Dam, 

western Iran 

GA 

Fallah-

Mehdipour et 

al. (2020) 

RCP 2.6 

RCP 4.5 

RCP 8.5 

CanESM2 SDSM Daily precipitation 

Daily maximum 

temperature 

Daily minimum 

temperature 

2009-2059 Karkhe Basin, 

Iran 

NSGA-II 

Ahmadianfar 

& Zamani 

(2020) 

RCP 8.5 CSIRO-Mk 3.6 

MIROC-ESM 

GFDL-ESM2M 

LARC-WG Daily precipitation 

Daily maximum 

temperature 

Daily minimum 

temperature 

2025-2054 Jarreh reservoir, 

southwestern Iran 

Two-dimensional  

hedging rule 
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Table 2.4 (continued): Summary of the case studies on climate change impacts 

Author(s), 

Year 

RCP/SRES GCMs Involved Downscaling 

Method 

Climatic Variables Future 

Periods 

Study Area Approaches for Reservoir 

Optimisation 

Ehteram et 

al.（2019) 

A1B HadCM3 LARC-WG Minimum Temperature 

Maximum Temperature 

Precipitation 

2046-2065 Aydoughmoush 

Dam, Iran 

Shark algorithm 

Abera et al. 

(2018) 

RCP 4.5 

RCP 8.5 

Ensembled 

CORDEX-

AFRICA  

- Precipitation 

Temperature 

2011-2040 

2041-2070 

2071-2100 

Tekeze reservoir, 

eastern Nile 

Hec-ResPRM 

Ashofteh et 

al. (2017) 

A2 HadCM3 - Precipitation 

Temperature 

2026-2039 Aidoghmoush 

Basin, East 

Azerbaijian, Iran 

MO-GP 

Shukla et al. 

(2016) 

 HadCM3 SDSM Daily precipitation 

Daily temperature 

(maximum & minimum) 

1961-2099 Indira Sagar 

Canal, India 

- 

Ashofteh et 

al. (2015) 

A2 HadCM3 - Precipitation 

Temperature 

2026-2039 Aidoghmoush 

Basin, East 

Azerbaijian, Iran 

GP 
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Table 2.4 (continued): Summary of the case studies on climate change impacts 

 

 

Author(s), 

Year 

RCP/SRES GCMs Involved Downscaling 

Method 

Climatic Variables Future 

Periods 

Study Area Approaches for Reservoir 

Optimisation 

Zamani et al. 

(2017) 

A2 

B1 

BCM2 

CGCM3 

CNRM-CM3 

CSIRO-Mk3 

ECHAM5-OM 

ECHO-G 

GFDL-CM2 

GISS-E-R 

HadCM3 

INM-CM3 

IPSL-CM4 

MRI-CGCM2.3.2 

CCSM3 

PCM 

LARS-CF 

combination 

Mean Precipitation 

Mean Temperature 

2025-2054 Jarreh reservoir, 

southwest of Iran 

Differential evolution 

algorithm 
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Table 2.4 (continued): Summary of the case studies on climate change impacts 

Author(s), 

Year 

RCP/SRES GCMs Involved Downscaling 

Method 

Climatic Variables Future 

Periods 

Study Area Approaches for Reservoir 

Optimisation 

Ashofteh, et 

al. (2016) 

A2 HadCM3 

CCSR-NIES 

CSIRO-Mk2 

CGCM2 

GFDL-R30 

NCAR-PCM 

ECHAM4 

Proportional 

method 

Precipitation 

Temperature 

2026-2039 Aidoghmoush 

Basin, East 

Azerbaijian, Iran 

Simulation 

Ahmadi et al. 

(2014) 

A2 HadCM3 Proportional 

method 

Precipitation 

Temperature 

2025-2039 

2055-2069 

2085-2099 

Karoon-4, Iran NSGA-II 

Jahandideh-

Tehrani et al. 

(2014) 

A2 HadCM3 Proportional 

method 

Precipitation 

Temperature 

2025-2039 

2055-2069 

2085-2099 

Karoon-4, Iran Non-linear programming 

Ashofteh et 

al. (2013) 

A2 HadCM3 Proportional 

method 

Precipitation 

Temperature 

2026-2039 Aidoghmoush 

Basin, East 

Azerbaijian, Iran 

Non-linear programming 
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2.4 Downscaling of GCMs 

 

Generally, climate change has enormous effects on natural and human 

systems. Droughts and heat waves pose a high threat of causing irreversible 

damage to the terrestrial and maritime ecology, fresh water resources, food 

production, and human health under medium and high emission scenarios for 

this century (Field et al., 2014; Ali Khan et al., 2014). The climate at the 

upstream of the KGD is influenced by the rainy season from the southwest 

monsoon which approximately begins from May or June to September or early 

October and the second inter monsoonal phase (October to November). In 

addition, the location of the case study is situated in Peninsular Malaysia, which 

is significantly impacted by extreme precipitation events (Tan et al., 2017) and 

consequent flooding (Durumin Iya, 2014). The recorded precipitation over 

Peninsular Malaysia over the past 40 years demonstrates a significant upward 

trend in the yearly total precipitation (Mayowa et al., 2015). Peninsular Malaysia 

has likewise experienced an escalating trend in the frequency of extreme 

precipitation occurrences (Mayowa et al., 2015). Despite existing trends, given 

the possible effects of increased possibility of the extreme precipitation on the 

community and the ecosystem, it is imperative to examine the anticipated future 

changes in precipitation in the area. Climate models are an important tool for 

examining the potential risks of the changing hydrological extreme from a 

scientific standpoint, strengthening disaster prevention and adaptation measures 

in the face of a changing climate. 
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According to Bates et al. (2010), GCMs are the most advanced methods 

to project global scale climate change using hydroclimatic data. Furthermore, 

Earth system models (ESMs) are also used to simulate historical and future 

climatic change (Li et al., 2018). GCMs are constrained to generate future global 

climate scenarios based on predicted future GHG emission scenarios. Due to the 

coarse spatial scale of GCMs and ESMs, they are less effective in resolving the 

Earth's topography, cloud physics, and land surface processes (Bao et al., 2015). 

As a result, the catchment/station application does not readily utilise the climatic 

scenario variables. Numerous downscaling strategies have been developed to 

reduce the coarse-scale climatic scenario variables to the catchment or station 

level (Wilby and Wigley, 1997). In addition, downscaling techniques are divided 

into two major categories: dynamical and statistical downscaling, described in 

the following sub-section. Also, a detailed comparison between dynamic 

downscaling and statistical downscaling techniques can be found in (Zhang et 

al., 2020a). 

 

2.4.1 Statistical Downscaling Method 

 

To close the gap between them, statistical correlations between GCM 

outputs and catchment or station-scale hydroclimatic variables are constructed. 

It also requires less computational work than dynamic downscaling, thus it is the 

most popular downscaling technique. The statistical downscaling approaches 

can be further sub-divided into a few categories: the most common statistical 

method applied was the statistical downscaling models (SDSMs) (Wilby et al., 

2002), weather classification-based approaches (Lu et al., 2017), weather 
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generators-based approaches (Semenov and Barrow, 1997), and non-linear 

regression or artificial intelligence models. However, the SDSM model is only 

applicable to execute the daily data and predictor-predictants for future 

investigation on climatic impact in the study area. It may be problematic for the 

user as the data availability and limitation source is somewhat, a hindrance. 

 

Weather classification-based methods need a local variable whose 

forecast depends on the "states" of the atmosphere on a large scale. Due to their 

local or hidden weather patterns, the states can be considered as a complicated 

system. A GCM compares the predicted future state of the atmosphere to its most 

similar past state. The historical state of the atmosphere that was chosen is linked 

to a value or set of values for the local variable. These are then replicated based 

on what the weather will be like. These methods are perfect for downscaling 

non-normal distributions, like the amount of rain that falls daily. To look at all 

possible meteorological situations, though, require a lot of daily observational 

data, like 30 years of daily observational data for the area of interest. Moreover, 

these methods are more computationally intensive than regression because of the 

vast amount of daily data that is analysed and created. Subsequently, in order to 

better comprehend this method, some previous studies utilising weather 

classification in engineering matters will be discussed. The weather 

classification approach was used to provide accurate solar power estimates for 

21 solar photovoltaic (PV) installations in Germany (Amarasinghe et al., 2020). 

The authors recommended comparing the accuracy of solar PV forecasting with 

several single machine learning techniques, including [deep belief network 

(DBN), support vector regression (SVR), and random forest (RF) regression 
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models] and proposed ensemble models of weather classification using deep 

learning. The results obtained for the suggested ensemble models were then 

analysed by RMSE error, revealing the declines RMSE error by 10.49%, 7.78%, 

and 7.95%, respectively, for the DBN, SVR, and RF. In order to outperform 

other strategies, however, this ensemble approach with deep learning may 

necessitate GPUs rather than CPUs due to its reliance on massive amounts of 

data. Consequently, the cost to the end user increased because of implementing 

this strategy. Other than that, convolutional neural networks were the most used 

approach for integrating with weather classification (CNN). This integration is 

evident in the research (Villarreal Guerra et al., 2018) and in the literature 

(Elhoseiny et al., 2015). Similar to the DBN, the limitation of the CNN increases 

the complexity of its development because it requires a significant quantity of 

data, which can only be processed by GPU settings. Despite the fact that, 

regardless of how reliable the methods or approaches have been studied in the 

past, there were still uncertainties in the practical implementation. When the 

model forecasts over a longer time horizon, by the rule of thumb in terms of 

inaccuracy, may increase even more. Consequently, other standard single ML 

approaches may still be an alternative for the statistical downscaling topic. The 

weather generators approach, which is an alternative to weather classification, is 

discussed in the next paragraph. 

 

Weather generators (WG) are also commonly employed in temporal 

downscaling (Schoof, 2013). For example, these methods make daily sequences 

of weather variables like precipitation, the maximum and minimum temperatures, 

humidity, and other variables either in monthly or annual mean basis. It also used 
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to maintain the physical coherence between the downscale climate variable, for 

instance, precipitation and temperature, also known as inter-variable dependence. 

Also, some impact models need local spatial data with a daily resolution that 

cannot be dependably obtained from GCMs. This is where temporal 

downscaling comes in. Moreover, hydrological modelling requires an accurate 

depiction of inter-site dependency. For instance, the absence of spatial 

connection for precipitation downscaling would mislead the streamflow 

extremes at the catchment outlet. This would result in the possibility of higher 

runoff in one sub-basin and lower runoff in the other sub-basin. WG are data-

intensive, need long series of daily data, and can be affected by missing or wrong 

calibration data (Wilby et al., 2009). Li and Babovic (2019a) developed a multi-

multivariate WG based on Empirical Copula (EC) approach (MMWG-EC), 

wherein meteorological time series were simulated from a single-site 

multivariate WG in the first stage. Then the EC approach was used to overcome 

the limitations of conventional WG in the second stage. Thus, some 

enhancement of weather generators has been shown in (Li and Babovic, 2019b) 

as multivariate WG to address the limitation. A  few additional studies were 

conducted by including the WG in multivariate two-stage techniques, as 

indicated by Li et al. (2017) and Chen et al. (2018). Due to the temporal 

persistence (low-frequency variables) discovered in (Chen et al., 2018) and the 

Iman shuffling applied in (Li et al., 2017) to rebuild and overcome the limitations 

of WG. However, neither study could replicate the post-processed series' 

temporal persistence and inter-annual variability. 
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The non-linear regression techniques were widely used in statistical 

downscaling which include the Multi Linear Regression (Sachindra et al., 2014), 

Artificial Neural Network (Nourani et al., 2014; Ahmed et al., 2015), Support 

Vector Machine (Sachindra et al., 2013; Moazenzadeh et al., 2018; Danandeh 

Mehr et al., 2019), Genetic Programming etc (Sachindra et al., 2018a). All these 

techniques also known as machine learning techniques (Sachindra et al., 2018b; 

Xu et al., 2020). Among these non-linear regressions or AI or machine learning 

techniques, there is a massive ability on the characteristic of the ANN whereby, 

to derive the correlation between predictor and predictants (Nourani et al., 2013). 

There were also some other successful studies that implemented ANN in 

downscaling. In addition, Campozano et al. (2016) performed a comparison of 

the SDSM, ANN, and least square SVR (LS-SVR) approaches for the monthly 

downscaled precipitation on a watershed scale in southern Ecuador. The authors 

concluded that the ANN and LS-SVR were both more resilient than the SDSM, 

despite the SDSM matching the mean and standard deviation of the observed 

monthly precipitation for some months. Table 2.5 depicts the reason for the 

selection in the machine learning statistical downscaling method (ANN and SVR) 

in this study. The model structures for ANN and SVR are depicted in Figure 2.5 

and Figure 2.6, respectively.  

 

 

 

 

Figure 2.5: ANN structure 

Input  Data  
Output   

Input  Layer  Hidden  Layer  Output  Layer  
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Figure 2.6: SVR structure 

 

2.4.2 Dynamical Downscaling Method 

 

Dynamical downscaling techniques are used in conjunction with 

physically based regional climate models, RCMs which are numerical models in 

which the GCM findings serve as the boundary conditions for the local climate 

domain (Guo and Wang, 2016; Wang, et al., 2017; Liang et al., 2019). RCMs 

can fine-tune physical atmospheric processes and simulate regional climatic 

characteristics at higher resolutions than GCMs given the same computational 

resources (Demory et al., 2020). Ensemble downscaling simulations using 

various RCMs and GCMs can deliver a more accurate estimation of the climate 

change and an uncertainty range (Xu and Yang, 2015). However, RCMs 

demonstrate considerable uncertainty in predicting precipitation over Southeast 

Asia, as their performance depends on the RCM configuration and the lateral 

boundary conditions derived from GCMs ( Tangang et al., 2020; Nguyen-Thuy 

et al., 2021). In order to generate a more accurate regional climate projection, 

further research has applied bias correction techniques to the GCM data before 

Kernel function  Input  Vector  Output Vector  
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dynamical downscaling. There were various bias correction techniques applied 

in regional climate projection. For example, the latest studies that conducted by 

Rocheta et al. (2017) and Dai et al. (2020), utilised the bias correction of a multi-

GCM ensemble and nested bias correction , respectively. Apart from that, mean 

bias correction (Holland et al., 2010) also known as linear bias correction, bias 

correction with physical consistent constraint (Meyer and Jin, 2016), mean and 

variance bias corrections (Xu and Yang, 2012), and Quantile-quantile correction 

(Colette et al., 2012). The further explanation of these methods by showing the 

advantages and limitation of respective methods was investigated by Xu et al. 

(2019). The comparison of the linear bias correction approach and the quantile 

bias correction method in monthly basis time frame has been shown in White 

and Toumi (2013). However, the quantile bias method has the substantial 

drawback of introducing spurious fluctuations to the GCM fields, increasing the 

variance in the RCM downscaled variables and harming the domain interior. The 

authors also noted that it is challenging to simulate extreme values using either 

method accurately. The climatological mean and the inter-annual fluctuations of 

the GCM were corrected using reanalysis data prior to RCM downscaling by 

utilising an improved linear bias correction approach. According to Xu and Yang 

(2012), this bias correction strategy considerably enhances downscaled 

temperature and precipitation extremes. 

 

However, the complex design, massive computation, high computing 

cost of RCMs and manpower involved in the ensemble downscaling are 

significant disadvantages. Multimodal data resources were provided by the 

global Coupled Model Intercomparison Project (CMIP). Due to the limitations 
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of their course resolution and intermodal uncertainty, GCMs have been shown 

to be lacking the ability of resolving the specifics of localised climate change 

aspects ( Moise et al., 2015; Ning and Bradley, 2016; Marotzke et al., 2017). For 

such reasons, in this study, the statistical downscaling method has been chosen. 

However, there are various groups under statistical downscaling, thus the 

following sub-section explains briefly which group should be selected for the 

implementation of the GCMs.  

 

2.4.3 Summary of Downscaling Approaches 

 

The following table summarises and compares the various aspects of 

dynamical and statistical downscaling. 

 

Table 2.5: Summaries of the downscaling approaches 

Aspects Dynamic downscaling Statistical downscaling 

Provides 

 Data from 20-50km 

grid cells  

 Data from sites with 

no observed data  

 Daily time-series 

 Time-series data on a 

monthly basis 

 Information at any 

scale, right down to the 

station level 

 Time series on a daily 

basis (SDSM method)  

 Time series on a 

monthly basis 

 Extreme event 

scenarios 

 Scenarios for any 

variable that is 

consistently observed 
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Table 2.5 (continued): Summaries of the downscaling approaches 

Aspects Dynamic downscaling Statistical downscaling 

Requires  a large volume of data 

inputs 

 Computational resources 

that are required in 

medium to low level 

 A moderate volume of 

data inputs 

 A sufficient amount of 

observed data 

Advantages  Addresses both 

atmospheric and surface 

processes that happen at a 

relatively small grid scale 

than a GCM. 

 Not constrained by 

historical precedent, 

allowing for the 

simulation of novel 

scenarios. 

 The same method can be 

applied to other 

comparisons across 

different case studies 

regions, allowing for 

 Uses observed climate to 

drive future projections 

 Has the ability to supply 

point-scale 

meteorological variables 

for GCM-scale output 

Disadvantages  Uncertainty analysis is 

now possible with 

experiments involving an 

ensemble of RCMs 

 Computationally 

demanding  

 Limited number of RCMs 

available, with no model 

results for many regions 

 Various RCM 

assumptions generate 

different results. 

 Tools are widely 

available and simple to 

use 

 For many areas or 

variables, high-quality 

observed data may be 

unavailable. 

 Assumes that the 

relationships between 

large and small-scale 

processes will remain 

constant in the future 

(assumptions) 
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2.5 Hydrological Process Involved in a Reservoir 
 

 The following subsection briefly describes the variables involved in the 

hydrological process of a reservoir for the future climate scenario, as well as the 

approaches that have been used in prior studies that are also suited for the 

topography and climate of this study area. 

 

2.5.1 Rainfall-Runoff Relationship  
 

This sub-topic will introduce the rainfall-runoff relationship by providing 

a simple definition, describing the alternative approach available and supported 

by the Malaysian Department of Irrigation and Drainage (DID) for computing 

the rainfall-runoff relationship, also the difficulties and purpose of the procedure 

for selecting the appropriate method to use throughout this study. 

 

Rainfall-Runoff is a relationship of the complex natural system that 

divides rainfall into surface runoff, evaporation, and moisture that is stored in 

the soil or groundwater (Peel and McMahon, 2020).  The choice of rainfall-

runoff approach or method is critical throughout the design flood estimating 

process if streamflow and rainfall records are available, as the objective of this 

study is to maximise the benefits of reservoir operation while minimising 

reservoir constraint. Additionally, an excessive flow of water to the downstream 

might result in a flooding incident. In addition, issues occured when no such 

comprehensive records of rainfall are available, it can be done by setting up the 

instrument on the physical site for the period required to gather the hydrological 

data necessary to derive the design flood. However, the rain gauge was not 100% 
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found in complete records throughout the year. Besides, some records are not 

reliable as all the data present a similar value for a long period. These may be 

due to human error or failure of the instrument during the data collection or data 

download period. Also, it is significantly more time-consuming and generally 

more expensive in terms of liaising with numerous departments in order to 

acquire the entire dataset. Other than that, the mean area precipitation can be 

calculated with three methods, namely the station average method (Arithmetic 

Mean method), Theissen polygon method, and isohyetal method. The details of 

these methods are not in the scope of this study as of the aim of this study is the 

reservoir optimisation operation at KGD. Every method has its own pros and 

cons (Zhao et al., 2015). For instance, the arithmetic mean method can be 

straightforward and does not require a large amount of data or equipment to 

compute rainfall-runoff relation. However, its use is limited, and it rarely applies 

in real life scenarios. In addition, there are other aspects to consider (e.g., the 

area of the drainage basin not permitted to be large, the topographic inequality 

is small and rainfall station distribution must be homogenous). On the other hand, 

the Thiessen polygon method can be applied broadly, particularly in locations 

with an unequal distribution of rainfall stations. However, there were a few 

assumptions underlying this method: (a) the rainfall dataset is stable; and (b) the 

mean absolute percentage discrepancy increases when the catchment becomes 

smaller and rain gauge density becomes lesser. Finally, the isohyetal method is 

applied to a large-area region with obvious topographic variation and numerous 

rainfall stations. Unfortunately, this strategy is challenging to implement at KGD 

due to the limited availability of rainfall stations and topographic information. 

Besides the demerits mentioned, Hwang et al. (2020) have further examined the 
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other effects or limitations corresponding to the interpolation methods. Apart 

from that, the historical development of rainfall-runoff relationship models 

consists of various models which can be found in detail in (Peel and McMahon, 

2020) including the brief elaborate of bottom-up and top-down approaches. The 

transition of rainfall-runoff relation development models, begin in the past few 

decades, there were studies conducted by utilising Artificial Intelligence (AI) 

approach (Daniell, 1991), followed by recent studies in AI methods for rainfall-

runoff relation studies (Poonia and Tiwari, 2020; Safari, et al., 2020; 

Tikhamarine et al., 2020). 

 

Hence, with all the above description which leaving the researcher the 

only option is to use a flood estimation procedure, to determine the design flood. 

Thus, this alternative is obviously more relevant, it must be employed in the 

absence of a complete hydrological record. There were four estimating 

procedures available in DID, Malaysia for computing rainfall-runoff relations. 

The detail of the various procedures by comparing each by catchment type and 

area will be further elaborated in Chapter 3. 

 

2.5.2 Evaporation in Reservoir and its Approaches 
 

When it comes to maintaining the water and heat balance of 

reservoirs/dams, evaporation is one of the most important processes involved. It 

is responsible for transporting enormous volumes of water and energy to the 

atmosphere through latent heat flow. Understanding the loss due to evaporation 

is extremely important when it comes to implementing water resource 
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management policies, as well as the operation and sizing of reservoirs, 

respectively. Furthermore, evaporation in tropical reservoirs has a significant 

impact on water quality, which can be adversely affected by increased 

concentrations of contaminants, and this must be taken into consideration while 

managing these assets. It is also necessary to have an accurate understanding of 

evaporation in reservoirs in order to discover the impact of climate change on 

society (Xu et al., 2020). 

 

 The escalating of the temperature threaten to reduce accessible surface 

water through increased evaporation, the evaporation process becomes even 

more critical. The studies conducted in Brazil in the context of climate change 

impact on the hydropower reservoirs in Brazil, by providing the current and 

future perspectives (Dias et al., 2018). The authors provided the overview and 

highlighted the main point of this study that the hydropower reservoir was an 

essential element in generating electricity in Brazil and shall be managed wisely. 

The intensity and length of rainfall are affected by climate change, as well as 

river discharge volume and the increased evaporation rate of reservoirs 

(Jahandideh-Tehrani et al., 2014). As a result, these factors interfere with the 

availability of water for energy generation and may result in indirect 

consequences such as changes in land usage and an increase in the demand for 

irrigation water (Sample et al., 2015). The rate of evaporation is influenced by a 

wide range of meteorological factors, such as the temperature differential 

between water and air, disparities in condensation pressure between water and 

air, wind speed, and solar radiation (Bhatt and Hossain, 2019; Yan et al., 2019) 

as well as the relative humidity of the surrounding air. However, estimating 
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evaporation rates in humid regions and other bodies of water is extremely hard 

due to the nonlinear behaviour of the different physical processes that drive 

vaporisation. Evaporation rates are also a sensitive indication of climate change 

(Wang et al., 2018b). Thus, more precise estimates of evaporation losses are 

critical for developing efficient water resource management plans and 

regulations ( Kang and Park, 2014; Tinoco et al., 2016). Actual evaporation can 

be determined indirectly using empirical equations such as water balances, 

hydrometeorological, and energy balances, or experimentally via weighing 

lysimeters and remote sensing (Rana and Katerji, 2000). Compared to other 

experimental approaches, the lysimeter provided the most consistent method for 

determining the evaporation rate (Tao et al., 2018). However, the lysimeter 

approach is costly and time demanding, and it should only be used by highly 

qualified professionals (Jensen and Allen, 2016) also subject to significant 

uncertainties.  As a result, empirical methods are devised for calculating the rate 

of evaporation. 

 

The approaches to estimate the evapotranspiration rate varies according 

to the climatic variable’s availability which were based on temperature, radiation 

and combination methods which being the most commonly applied. The initial 

way to estimate the evapotranspitation rate was by the use of FAO56 Penman-

Monteith standards; some previous reviews utilising this approach can be 

obtained in (Allen, 1998; Valiantzas, 2018; Adnan et al., 2021). According to 

Muhammad et al. (2021), the proficiency of the FAO56 Penman-Monteith (PM) 

approach was evaluated across different  regions, and the output of this shown 

the method's capability up to a certain level of reliability. However, the pitfall of 
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this method is the need for multiple meteorological characteristics as well as a 

large data span. Long-term data availability is critical for this method; however, 

not all developing nations have such long-term data availability (Lang et al., 

2017; Shiri, 2017) . 

 

The Thornthwaite model was the first temperature-based model, 

assuming an exponential relationship between average consumption and average 

temperature in a monthly basis (Thornthwaite, 1948). Blaney and Criddle (1950) 

established the temperature-based Blaney-Criddle model to have an approximate 

evapotranspiration rate in 1950; the most recent elaboration is available at 

(Blaney, 2017). This approach needs the meteorological data input of daylight 

hours and mean monthly temperature to determine the evaporation rate. 

Hargreaves and Samani (1985) devised the Hargreves-Samani model for 

evapotranspiration rate estimation, which uses just the maximum and lowest 

temperatures, as well as radiation, as meteorological input factors. Makkink 

(1957) developed the Makkink model, which used just solar radiation as input 

factors to compute the evapotranspiration rate during a 10-day period in the 

Netherlands under a cold climatic condition. Turc (1961) introduced the Turc 

model for estimating evapotranspiration rate, with mean temperature, solar 

radiation, and relative humidity as needed meteorological parameters. Priestley 

and Taylor (1972) proposed the approach of estimating the evapotranspiration 

rate simply using the radiation parameter as an input. 

 

Numerous studies have been conducted to compare the performance of 

various empirical estimate approaches. Kisi and Heddam (2019) investigated 
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evaporation in Turkey using solely temperature as input data and heuristic 

regression. Nourani et al., (2020) estimated evaporation using the Kharuffa 

approach, which is a temperature-based approach that requires only monthly 

mean temperature and monthly daytime hours used out of the yearly daytime 

hours of the year. However, this approach was discovered to be more appropriate 

for arid regions. Tukimat et al. (2012) concluded that the radiation-based 

technique beat the temperature-based approach in estimating the evaporation 

rate. The authors remarked that Turc model was suggested because of its 

simplicity and fewer input parameters. Muhammad et al. (2019) evaluated 

empirical evaporation conducted in Peninsular Malaysia using a compromise 

programming approach.  

 

According to the analysis, the most appropriate estimation approach was 

the FAO-56 PM model, followed by Priestly and Taylor. However, because 

meteorological data may be challenging to get, the authors propose substituting 

Priestly and Taylor for FAO-56 PM. In general, it is quite difficult to determine 

the most appropriate approach for estimating the evapotranspiration rate since 

data availability and the topography of the study locations may make the 

approaches subjective. Chapter 3 will discuss the methodology used to estimate 

the evaporation rate at KGD in this study. 
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2.6 Future Water Demand Estimation  

 

Climate is widely regarded as the most important determinant of a 

region's water balance ( Middelkoop et al., 2001; Wang et al., 2015; Anang et 

al., 2017; Payus et al., 2020; Chan et al., 2021).  As a result, changes in 

temperature caused by global warming could have a wide range of consequences 

for water resources. Climate change would likely result in significant 

temperature increases, which will affect evaporation and water demand (Xiao-

jun et al., 2014). Besides, temperature is a key factor that is well-established, 

also the least uncertainties in GCM outputs (Liu et al., 2017). Numerous studies 

have been conducted to ascertain the effects of climate change on irrigation 

water demand across a range of geographical and climatic locations (Shahid, 

2011; Al-Najar and Ashour, 2013; Wada et al., 2013). Näschen et al. (2019) 

developed a method named soil and water assessment tool (SWAT) for 

quantifying the impact of land use and climate change. The outcome of this study 

can be further utilised and improved by correlating with climatic models under 

few scenarios and developed a future reservoir optimisation operation policy 

 

Water demand comes in a variety of forms and may affect the ecosystem 

as a result of climate change. They are categorised as agricultural, residential, 

and industrial. A critical piece of information given in Huang et al. (2018) 

whereby the authors did not transform and separate livestock water demand from 

irrigation water, despite the fact that irrigation water occupied for more than 90% 

of the overall agricultural water demand. With the preceding line, Du et al. (2021) 

showed that agricultural water demand in the future is determined by varying the 
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number of cropland and the amount of irrigation per unit of cropland. As a result 

of their lack of expertise on this complex subject, the authors made the decision 

to exclude the effect of climate change on irrigation rate per unit cropland area. 

For this reason, this would not be included in the scope of this study. The 

majority of KGD's downstream demand was and is for residential water demand. 

Sunil et al. (2021) investigated the future irrigation water demands for 

agricultural crops in India in the context of climate change using RCP 4.5 and 

RCP 8.5 climatic scenarios, respectively. The results indicated that irrigation 

demand for Kharif crops was greater under RCP 4.5 than under RCP 8.5, owing 

to the increased intensity of the forecasted rainfall values under RCP 8.5. This 

suggested that there is a greater likelihood of a flooding incident occurring under 

RCP 4.5. For Rabi crops, the average irrigation demand was lower under RCP 

4.5 than under RCP 8.5, owing to the temperature increase under RCP 8.5. This 

phenomenon results in an increase in evaporation and a corresponding increase 

in water demand. Besides, residential water demand could be affected by many 

factors, such as population growth and climate change. Du et al. (2021) 

mentioned that there were few past studies by assuming the future residential 

water consumption will rise by 1% as daily maximum air temperature rises by 

1◦C in accordance to Al-Zubari et al. (2018).  

 

In addition, a detailed review of integrating the effects of climate change 

and land-use can be found in (Pokhrel et al., 2018) at Mekong River Hydrology. 

Besides, a case study was conducted in Gauteng Province, Republic of South 

Africa (Zubaidi et al., 2020)  to examine the historical trend of urban water 

demand using Artificial Neural Networks and Backtracking Search Algorithms 
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in order to forecast monthly water demand in the future under climate and 

population growth variability. The outcome of this case study assists 

the decision-makers and managers to improve the management of the current 

municipal water system and reservoirs, as well as to develop a more 

comprehensive plan for extension in response to the increased consumption in 

the downstream of study area. However, this case study relied solely on 

historical water demand trends to forecast future water demand due to a lack of 

thorough climate and demographic data. Nevertheless, the authors recommend 

that researchers to investigate other AI approaches in order to apply them to 

other study areas.  

 

Apart from that, several studies have shown that land-use and land cover 

changed (LULCC) has an effect on the future trend of water demand, specifically 

in the area of cropland water demand using a dynamical downscaling approach 

(Näschen et al., 2019), biodiversity (Trisurat et al., 2019), and domestic water 

demand (Chishugi et al., 2021). With comprehensive studies, this study will 

apply climatic scenarios in terms of temperature as the major factor to generate 

a few scenarios for the future water demand trend. Also, by employing LULCC 

and population to generate various scenarios for future water demand at the KGD. 

Chapter 3 will go over the scenarios' application and a more detailed presentation 

of the formula. 
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2.7 Review on Reservoir Assessment Metrics 
 

 The three most common indices for measuring the levels of performance 

for a reservoir system are namely; reliability, resilience, and vulnerability (RRV). 

This set of evaluations were introduced by Hashimoto et al. (1982) and Fowler 

et al. (2003). Based on the past studies that were conducted by Hossain and El-

Shafie (2013; 2014a) and KGD Hossain et al. (2018), similar reservoir 

assessment metrices had also been invoked. A review paper by Allawi et al. 

(2018) showed that one of the essential metric, periodic (��)  to be applied for 

the reservoir optimisation operation correspond with the algorithms application 

and parameter involved is shown in Equation (3.59).The conventional approach 

to assessing reservoir performance includes the utilisation of resilience metrics, 

as discussed in the study was conducted by Asefa et al. (2014). Nevertheless, a 

novel metric was incorporated in this research. Shin et al. (2018) presented an 

extensive analysis of various indicators of resilience. In this study, the Water 

Storage Resilience (WSR) metric serves as a supporting measure of resilience. 

The final metric, the maximum annual deficit, is determined through a 

commonly used mathematical expression and is calculated by dividing it with 

the annual water demand. 

 

2.8 Summary 

 

Chapter 2 begins with an introduction that discusses the operation of 

reservoir systems and the optimisation techniques used in previous research. The 

methods for reservoir optimisation outlined and explored in previous studies 

include conventional optimisation, linear, non-linear, and stochastic dynamic 



74 

 

programming which were discussed and tallied. These approaches were justified 

in the text by describing their constraints and limitations, which resulted in the 

novel methods used in reservoir optimisation operations using heuristic methods 

By careful identification of all these prior studies utilising the conventional 

optimisation and heuristic algorithms, it is crucial to further examine this topic 

by utilising MHAs. This was because MHAs have gained popularity in recent 

decades for their use in reservoir optimisation operations and are yet to explore 

at KGD. In addition, the nature of the strategy of these proposed MHAs in this 

study obtained the unique equilibrium strategy of the exploration and 

exploitation which is not found in conventional algorithms and heuristic 

algorithms that had been used in the previous studies conducted at KGD. Hence, 

the MHAs are proposed in this study to fill up one of the research gaps.  

Additionally, the impact of climate change on future reservoir operation and 

activities in prior studies were briefly discussed. However, majority of the 

climatic influence on future reservoir operations in prior studies were carried out 

via single GCMs. Furthermore, some of the studies used the SDSM approach as 

the downscale approach which is constrainted to the daily time frame climatic 

variables. However, some portions of the research area may have data quality 

issues (missing data in majority) or insufficient predictor variable criteria to 

downscale the GCM, resulting in substantial uncertainty in the downscaled 

output's accuracy. In terms of dynamical downscaling, the pitfall was the limited 

number of RCMs available, with no model results for many regions and 

computationally demanding. Besides that, other than the common reservoir 

assessment metrices, the additionally support Water Storage Resilience (WSR) 

used to evaluate the resilience aspect in order to address the performance of the 
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reservoir system against climatic or hydrological variability. Thus, these 

motivates to fill up the other research gap of this study by investigating the 

impact of climate change on future KGD operation via ensembled GCMs in 

CMIP5 under various climate scenarios by utilising statistical downscaling 

approach.  
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CHAPTER 3 

 

 

METHODOLOGY 

 

3.1 Introduction 

 

This chapter describes the metaheuristic algorithms (MHAs) that were 

used to simulate and optimise the current operation at the KGD for the base 

period data, also referred to as observed data, spanning the years 2001–2019. 

Additionally, the suggested metaheuristic algorithms were applied to the second 

observed timeline of 1987–2008 for the main purpose of comparing and 

validating them against previous studies that had been conducted at the KGD. 

The generated results are then analysed and evaluated using reservoir risk 

assessments that are typically used in reservoir optimisation topics. The 

subsequent segment of this investigation scrutinises the potential repercussions 

of climate change on KGD's operations, taking into account the stated three 

different climate change scenarios. (RCP 2.6, RCP 4.5, and RCP 8.5). Three time 

periods of the future climate scenarios are named as: (a) Near Future (2020-

2049); (b) Mid Future (2050-2079); and (c) Far Future (2080-2099). As stated 

in Chapter 2, the merits and drawbacks of various optimisation techniques were 

briefly covered. However, not all approaches can be used and practised in similar 

optimisation problems because they are dependent on the sensitivity of the 

datasets and also due to their availability in each case study. This study was 

aimed to develop metaheuristic models capable of simulating and optimising 

reservoir operation at KGD, as well as determining whether the current reservoir 
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optimisation policy can cope with future climate change events and water 

demand. The flow of this chapter begins with the description of the case study 

site location, followed by the variables involved in this study, as well as the 

concept of the proposed algorithms, and lastly the problem formulation for the 

reservoir optimisation and reservoir risk assessments. 

 

3.2 Flow of Methodology  

 

The sequential order of reservoir operation optimisation began with 

conventional optimisation models, dynamic programming, and heuristic 

algorithms which included several studies as outlined in the previous chapter, 

where some of the algorithms performed inconsistently and took an 

exceptionally long time to convergence. Additionally, a tremendous 

computation burden was discovered in the reservoir operation optimisation. As 

a result, the diversity of metaheuristic algorithms (MHAs) has increased 

significantly during the last decade. However, further investigation is required 

due to the scarcity of knowledge regarding reservoir optimisation at the KGD 

via metaheuristic algorithms (MHAs). Figure 3.1(a) illustrates the overall flow 

of the study.  

 

 The data required for reservoir optimisation operation were then 

managed, and it consisted of two sections of historical datasets spanning the 

years (A) 2001–2019 and (B) 1987–2008. The first set of historical data from 

(A) 2001 to 2019 was utilised to optimise the current operation of KGD to 



78 

 

determine the robustness of the proposed MHAs and the reservoir risk 

assessments. The second set of historical data from (B) 1987 to 2008 was used 

in the proposed meta-heuristic algorithms to evaluate reservoir risk assessments, 

for comparison with previous prior studies as presented by Hossain and El-

Shafie (2013; 2014a) and Hossain et al. (2018). The summary findings of these 

investigations were extensively utilised to compare with the proposed MHAs for 

this time frame. The historical variables were recorded in monthly intervals, and 

the variables involved, namely input, losses, release, demand, and storage, may 

be related and found in the continuous equation of the common reservoir. The 

flow of this analysis was then continued and depicted in Figure 3.1(b) by using 

the reservoir optimisation procedure in conjunction with the initialisation of the 

conceptual flow of the proposed MHAs until the objective function value 

reached the optimal value. The following sections further elaborate on the 

datasets used in this study. The flow of the analysis proceeds to the design of 

experiments (DoE), which utilised the Taguchi model to generate the response 

graph and ANOVA results. The intention of this DoE is to examine the effect of 

observed variables on the response graph to obtain the optimal reservoir release 

operation. The final stage before concluding observed reservoir optimisation 

operation analyses, was to conduct a reservoir risk analysis (observed period 

assessment). 

 

 Subsequently, the analysis acquired future climatic data from 2020 to 

2099 for study on impact of future climate. The GCM data was then statistically 

downscaled. The Hydrology Procedure No. 11 ( DID Technical Publications), 

gives the guidelines to the rainfall-runoff relationship that is used to compute the 
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inflow into the KGD. Also, the estimation of evaporation was through prediction 

with existing methods given in the literature and with measured temperature and 

radiation. The future downstream demand is also a vital variable in water supply 

reservoirs. The temperature and population growth factors were used in this 

study to anticipate future water demand. Once the reservoir simulation was 

satisfied, then the reservoir optimisation procedure was carried out in 

accordance with the proposed MHAs, and finally, the flow was completed with 

a reservoir risk analysis (climate assessment).
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Figure 3.1: (a) Overall flow of the study 
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Figure 3.1: (b) Reservoir Optimisation Procedure and Conceptual flow of the proposed algorithms
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3.3 Study Area 

 

The study area is the KGD  dam situated in the  the heart of Kuala 

Lumpur, the Capital of Malaysia, and is located in the Gombak neighbourhood 

of Taman Melawati. The Bukit Tabur Dam is another name for it, and the rainfall 

station numbers are 3217002 and 3217004 respectively (Source: JPS). Figure 

3.2 shows the map index of the Klang Gate Dam (KGD). The main purpose of 

this KGD was and still is, to distribute the potable water supply to the 

downstream of the water treatment plants (WTP) named as Bukit Nanas and 

Wangsa Maju, but it also serves as a flood mitigation dam. The features of the 

reservoir is presented in Table 3.1. Figure 3.2 displays a representation of the 

KGD which consists of inactive zone, conservation zone, and flood control zone. 

The estimation of the total capacity of the KGD is given in Figure 3.3.
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Figure 3.2: Case Study Area 
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Table 3.1: KGD features 

Element Explanation 

Objective Water supply and flood mitigation  

Height 37.0metre 

Length 138.7metre 

Area of catchment  74.46km2 

Area of storage 2.70km2 

Overall capacity 32.02 million cubic metre (MCM) 

Storage for inactive  3.2 million cubic metre (MCM) 

Storage for flood control 6.2 million cubic metre (MCM) 

Storage for conservation 22.6 million cubic metre (MCM) 

 Maximal Level  95.22metre ODL 

 

Figure 3.3: Illustration of the KGD’s reservoir (Lai et al., 2021) 
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3.4 Datasets 
 

The datasets used for the observed period and the investigation of the impact of 

climate change (climate assessment) is outlined below. 

 

3.4.1 Datasets from Year 2001 to 2019 

 

The observed time data set comprised storage, inflow, evaporation rate, 

and discharge (Source: LUAS). The observed dataset is summarised in Table 3.2 

with basic statistics presented in million cubic metres (MCM), were incorporated 

into the proposed algorithms for the purpose of the simulation and optimisation 

execution at the KGD. The inflow categories and KGD storage stages conditions 

are tabulated in Table 3.3 and Table 3.4, respectively. In addition, the monthly 

losses based on the range of the inflow to the KGD is tabulated in Table 3.5, and 

the respective months of the water demand is presented in Table 3.6.  
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Table 3.2: Monthly Descriptive Statistics in MCM unit 

Variable/ 

Statistic 

Inflow Losses Releases Demand Storage 

Total Count 228 228 228 228 228 

Mean 6.963 2.552 4.562 4.578 11.852 

Stnd Dev 2.285 1.152 0.359 0.230 4.331 

Sum 1,587.660 581.740 1,010.170 1,043.370 2,702.318 

Maximum 17.790 5.000 6.013 4.920 23.932 

Minimum 2.070 0.040 3.282 4.100 6.297 

Median 6.785 2.430 4.563 4.565 11.111 

Skewness 0.56 0.52 -0.70 -0.27 0.96 

Kurtosis 1.45 1.13 4.81 -0.50 0.18 

 

Table 3.3: Inflow Categories 

Inflow Categories Limits of Inflow (MCM) 

High More than 8.88 and above 

Medium 3.88 – 8.87 

Low 0.47 – 3.87 
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Table 3.4. KGD Storage Conditions (MCM) 

Stage Storage Conditions (MCM) 

1 6.24 

2 8.15 

3 10.06 

4 11.98 

5 13.88 

6 15.80 

7 17.71 

8 19.62 

9 21.54 

10 23.44 

 

Table 3.5. Range of the �� (MCM)  

Inflow, I (million cubic metre, MCM) Loss, L� (million 

cubic metre, MCM) 

Inflow from 1.89 and less than or equal to 3.78 0.04 

Inflow from 3.79 and less than or equal to 5.68 1.78 

Inflow from 5.69 and less than or equal to 7.57 2.43 

Inflow from 7.58 and less than or equal to 9.46 2.80 

Inflow from 9.47 and less than or equal to 11.35 5.00 

Inflow more than or equal to 11.36 8.28 

 (Source: Puncak Niaga (M) Sdn Bhd) 
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Table 3.6: Monthly targeted Demand at KGD 

Month Targeted Demand (MCM) 

January 4.92 

February 4.10 

March 4.36 

April 4.44 

May 4.54 

June 4.81 

July 4.76 

August 4.57 

September 4.39 

October 4.56 

November 4.59 

December 4.89 

(Source: Puncak Niaga (M) Sdn Bhd) 

 

3.4.2 Datasets from Year 1987 to 2008 

 

This sub-section elaborates on the base period study relying on 22 years 

of observed monthly rainfall data for the investigation of optimal release at the 

KGD from the year 1987 to 2008. The actual rainfall was converted into 

reservoir inflow. The monthly rainfall data are presented in millimetres and 

tabulated as a descriptive statistic in Table 3.7.  
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Table 3.7: Monthly Descriptive Statistic of Rainfall Data  

Variable Mean StdDev Sum Minimum Median Maximum Skewness Kurtosis 

1987 154.5 61.9 1853.9 72.5 145.5 256.1 0.29 -1.21 

1988 144.6 67.8 1734.6 47.5 143.8 271.0 0.30 -0.67 

1989 142.1 90.6 1704.8 20.5 116.9 311.3 0.64 -0.77 

1990 137.6 65.7 1650.8 49.0 133.8 242.8 0.35 -1.01 

1991 188.3 96.1 2259.2 16.8 189.2 308.2 -0.35 -0.88 

1992 117.1 55.9 1404.8 17.0 138.5 192.4 -0.58 -0.83 

1993 184.4 60.1 2212.8 103.6 167.7 296.7 0.75 -0.08 

1994 201.1 125.9 2413.0 17.8 190.5 424.0 0.14 -0.72 

1995 247.6 91.1 2971.0 85.5 255.9 359.7 -0.78 -0.31 

1996 224.1 114.3 2689.0 22.5 239.5 411.5 -0.18 -0.75 

1997 231.3 122.5 2775.7 119.9 194.3 521.0 1.52 1.88 

1998 182.6 99.8 2191.5 53.0 152.6 412.5 1.12 1.29 

1999 255.5 108.5 3065.8 104.5 260.5 399.3 0.04 -1.62 

2000 285.0 102.2 3420.3 123.5 342.6 386.6 -0.49 -1.74 

2001 234.0 131.0 2808.1 101.1 183.7 467.6 0.92 -0.47 

2002 207.9 118.3 2494.5 16.0 215.3 421.7 -0.13 0.08 
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Table 3.7 (continued): Monthly Descriptive Statistic of Rainfall Data  

Variable Mean StdDev Sum Minimum Median Maximum Skewness Kurtosis 

2003 214.8 92.6 2577.3 99.2 215.6 394.0 0.44 -0.52 

2004 221.6 137.9 2658.9 25.5 245.0 463.4 0.09 -1.03 

2005 213.7 101.1 2564.9 9.6 233.0 334.0 -0.94 0.10 

2006 253.6 78.9 3043.5 109.8 289.3 323.3 -0.85 -1.06 

2007 245.4 100.1 2944.4 91.9 239.0 393.7 0.09 -1.22 

2008 275.2 109.5 3302.8 72.3 302.9 431.5 -0.33 -0.67 

 

Equation (3.1) elaborates on the inflow states utilised in Hossain (2013), 

in order to interpret the volume of the inflow whereby the rainfall flow into the 

catchment area of KGD during the month t. 

�� = 0.5 � ����ℎ���� ���� � ���������   (3.1) 

which indicate I is inflow of the month t 

Following that, the inflows were divided into three different states. The 

inflow benchmarking was the same as Table 3.3. 

 

3.4.3 Datasets for Future Climatic Investigation  

 

This section examined the impact of climate change on the optimal 

release of the KGD from 2020 to 2099, using future projection data. The monthly 

averages of the hydrological variables, reservoir demand, and temperature are 
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tabulated in Table 3.8 as parameters in the investigation of the impact of climate 

change for the base period (for year 1991- 2005). In addition, Table 3.9 tabulates 

the average values of the hydrological variables for various climatic scenarios 

(for year 2020-2099). Statistical downscaling methods were utilised in this study 

to determine the relationship between the predictants and predictor variables at 

the KGD via ANN and SVR: (i) radial basis function and (ii) polynomial kernel 

function. Table 3.10 contains the complete list of GCMs in the CMIP5 that 

correlate to the availability of RCPs for predictant variables. However, due to 

some predictor variables being unavailable, hence, to avoid any uncertainty 

during the downscaling, this study selected the RCPs with availability in both 

predictant-predictor variables. Next, the selection of climatic scenarios was 

based on the past implementation and execution of the majority of case studies. 

Additionally, the RCPs in each of the corresponding CMIP5 scenarios 

correspond to the data accessibility on the Earth System Grid Federation (ESGF) 

site. 

 

The next step was to compute the rainfall-runoff relation and estimate 

evaporation for future periods using the Kharuffa Method, Turc Method, 

prediction-based of the data-driven techniques. Apart from that, the investigation 

of the climate assessment for the reservoir optimisation procedure based on 

temperature factor were classified into four Scenarios: Scenario 1: Base Period; 

Scenario 2: Maximum Temperature; Scenario 3: Mean Temperature; and 

Scenario 4: Minimum Temperature. Lastly, the execution of the climate 

assessment based on the forecasted population growth. 
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Table 3.8: Monthly average hydrological variables for the base period (1991–2005) under CMIP 5 

 

Monthly average/ 

Description 

1 2 3 4 5 6 7 8 9 10 11 12 

Maximum temperature (◦C) 32.8 33.2 33.3 33.3 33.2 33.0 32.5 32.5 32.7 32.6 32.6 32.6 

Mean temperature (◦C) 27.6 28.0 28.0 27.9 27.9 27.9 27.9 27.9 27.9 27.7 27.6 27.5 

Mininimum temperature (◦C) 27.7 28.0 28.1 28.1 28.2 28.1 28.0 27.9 28.0 27.8 27.5 27.6 

Precipitation (mm) 65.2 60.7 97.3 133.8 113.6 104.3 104.4 100.8 101.7 126.5 123.9 102.4 

Inflow  

(Million cubic metre) 

2.4 2.2 4.3 6.6 5.3 4.7 4.7 4.5 4.6 6.2 6.0 4.6 

Evaporation  

(Million cubic metre) 

0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 

Demand 

 (Million cubic metre) 

4.92 4.1 4.36 4.44 4.54 4.81 4.76 4.57 4.39 4.56 4.59 4.89 
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Table 3.9: Monthly average hydrological variables for climatic scenarios (2020 to 2099) under CMIP5

Monthly average/ 

Description 

1 2 3 4 5 6 7 8 9 10 11 12 

RCP 2.6 

Precipitation (mm) 189.45 193.30 209.41 236.31 253.67 259.00 252.92 254.71 254.96 253.14 234.60 210.03 

Evaporation (MCM) 0.56 0.58 0.57 0.57 0.55 0.58 0.56 0.57 0.55 0.54 0.55 0.52 

Maximum temperature (◦C) 32.8 33.0 33.2 33.1 32.8 32.8 32.7 32.7 32.7 32.7 32.8 32.8 

Mean temperature (◦C) 25.5 26.1 26.3 26.0 25.6 26.0 25.8 25.8 25.7 25.5 25.5 25.3 

Minimum temperature (◦C) 26.7 27.1 27.2 27.1 26.8 27.0 27.0 27.0 26.9 26.9 26.9 26.6 

RCP 4.5 

Precipitation (mm) 301.30 317.51 365.06 413.11 381.35 378.20 357.51 362.65 362.11 373.64 386.77 333.95 

Evaporation (MCM) 0.57 0.59 0.59 0.58 0.58 0.59 0.57 0.57 0.56 0.56 0.57 0.54 

Maximum temperature (◦C) 32.5 32.5 32.42 32.4 32.4 32.4 32.4 32.5 32.5 32.5 32.5 32.5 

Mean temperature (◦C) 27.2 27.2 27.18 27.2 27.2 27.2 27.2 27.2 27.2 27.3 27.3 27.2 
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Table 3.9 (continued): Monthly average hydrological variables for climatic scenarios (2020 to 2099) under CMIP5 

 

 

Monthly average/ 

Description 

1 2 3 4 5 6 7 8 9 10 11 12 

RCP 4.5 

Minimum temperature (◦C) 26.6 26.8 26.9 26.8 26.7 26.8 26.7 26.7 26.8 26.9 26.8 26.5 

RCP 8.5 

Precipitation (mm) 453.24 459.63 510.57 562.75 532.76 519.87 512.00 519.65 528.78 537.73 554.99 510.74 

Evaporation (MCM) 0.56 0.59 0.58 0.58 0.58 0.58 0.57 0.57 0.56 0.55 0.54 0.53 

Maximum temperature (◦C) 32.5 32.5 32.4 32.4 32.4 32.4 32.4 32.5 32.4 32.5 32.5 32.5 

Mean temperature (◦C) 26.8 26.9 26.9 26.9 26.8 26.8 26.8 26.9 27.0 27.0 26.7 26.8 

Minimum temperature (◦C) 27.5 27.7 27.9 28.0 27.8 27.8 27.8 27.8 27.8 27.7 27.5 27.4 
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Table 3.10: CMIP5 GCMs (IPCC-AR5) for Predictant Variables 

GCM Institution/Modelling centre RCP 

2.6 4.5 6.0 8.5 

BCC -CSM1.1 Beijing Climate Centre, China 

Meteorological Administration  

O O O O 

BCC-CSM1.1(m) O O O O 

BNU-ESM Beijing Normal University O O X O 

CCCMA-

CanESM2 

Canadian Centre for Climate Modelling 

and Analysis 

O O X O 

CESM1 -BGC National Science Foundation, 

Department of Energy, National Centre 

for Atmospheric Research 

X O X O 

CESM1 -CAM5 O O O O 

CSIRO-

ACCESS1.0 

Commonwealth scientific and industrial 

Research Organisation (CSIRO) and 

Bureau of Meteorology (BOM), 

Austrialia 

X O X O 

CSIRO-

ACCESS1.3 

X O X O 

CSIRO-Mk3.6 Queensland Climate Change Centre of 

Excellence and Commonwealth 

Scientific and Industrial Research 

Organisation 

O O O O 

EC - EARTH European centre for medium range 

weather forecasts  

X X X O 

FIO - ESM The first institute of oceanography, State 

Oceanic Administration, China 

O O O O 

GFDL - CM3 NOAA geophysical fluid dynamics 

Laboratory 

O O O O 

GFDL - ESM2G O O O O 

GFDL - ESM2M O O O O 
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Table 3.10 (continued): CMIP5 GCMs (IPCC-AR5) for Predictant 

Variables 

GCM Institution/Modelling centre RCP 

2.6 4.5 6.0 8.5 

GISS-E2H NASA Goddard Institute for Space 

Studies USA 

O X O O 

GISS-E2HCC X O X X 

GISS-E2R O O O O 

GISS-E2RCC X O X X 

INM - CM4 Institute of numerical mathematics of 

the Russian Academy of Sciences 

X O X O 

IPSL-CM5A-LR Institute Pierre Simon Laplace O O O O 

IPSL-CM5A-MR O O X O 

IPSL-CM5B-LR X X X O 

LASG-FGOALS-

G2 

Institute of Atmospheric Physics 

(LAGS) and Tsinghua University 

(CESS) 

O O X O 

MIROC-ESM University of Tokyo, National Institute 

for Environmental Studies and Japan 

Agency for Marine-Earth Science and 

Technology 

O O O O 

MIROC-ESM-

CHEM 

O O O O 

MIROC-MIROC5 O O O O 

MOHC-

HadGEM2-CC 

UK Met Office Hadley Centre X O X O 

MOHC-

HadGEM2-ES 

O O O O 

MPI-ESM-LR Max Planck Institute for Meteorology O O X O 

MPR-ESM-MR  O X X O 

MRI-CGCM3 Meteorological Research Institute O O O O 



97 

 

Table 3.10 (continued): CMIP5 GCMs (IPCC-AR5) for Predictant 

Variables 

 

3.4.4 Selection of GCMs in CMIP5 

 

As depicted in Table 3.11, the resolution of the four selected GCMs are 

in acceptable and finer resolution. The consideration of these modelling centre 

based in Asia and Australia is also depending on the availability of the RCPs 

data as shown in Table 3.10. Apart from that, there are also no specific rules or 

standard operating procedures for selecting how many GCMs can be 

implemented in the climate change assessment for the future reservoir 

optimisation operation and there are no fixed rules of the predictor variables 

selection for downscaling of GCMs (Chu et al., 2010). Thus, one to three 

predictors are frequently sufficient. For example, by analysing the downscale of 

GCMs for precipitation predictors, it is possible to determine that precipitation 

is dependent on and affected by gravity, winds, and temperature. On the other 

hand, there were prior studies conducted in this aspect by claiming that a single 

GCM execution in climate change assessment was discouraged ( Tan et al., 2014; 

GCM Institution/Modelling centre RCP 

2.6 4.5 6.0 8.5 

NCAR - CCSM4 US National Centre for Atmospheric 

Research 

O O O O 

NCC - NorESM1 -M Norwegian climate centre O O O O 

NIMR - HADGEM2 

- AO 

National institute of meteorological 

research and Korea meteorological 

administration 

O 

 

O O O 
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Hussain et al., 2018). Further elaboration on this aspect corresponding to South 

Asia, East Asia, and South East Asia for GCMs in CMIP5 was reported by 

Hussain et al. (2018). Furthermore, there was a case study which investigated 

the future reservoir optimisation operation with three GCMs selection at 

Shahrchay dam, West of Iran (Nourani et al., 2020). The numbers of the GCMs 

selection chosen that were involved in climate change aspects for the respective 

case studies are presented in Table 2.4.  

 

Table 3.11: Resolution for the selected GCMs 

Model name/Country Atmospheric Resolution 

(Degree; Lat x Lon) 

Nearest Site to the 

Study Area  

(Degree; Lat x Lon) 

CSIRO-Mk 3.6 1.9x1.9 4.7x101.3 

MIROC 5 1.4x1.4 3.5x101.3 

MIROC-ESM 2.8x2.8 4.2x 101.3 

MIROC-ESM-CHEM 2.8x 2.8 4.2x 101.3 

 

In view of the numerous predictors under the CMIP 5 that had been 

figured out that would match with the selected four GCMs as well as the RCPs, 

hence, first of all, the trial and error procedure was carried out to identify the 

overall best R2 for the base period. Numerous researchers have utilised this 

method extensively (Nourani et al., 2020; Jaiswal et al., 2021) As a result, Table 

3.12 presents the predictor and predictants variables that has been identified with 

the overall best combinations.  



99 

 

Table 3.12: Conceivable combinations of predictant-predictor variables 

under CMIP5 

Note: Pr = Precipitation; Ta = Mean Temperature; Tas_max = Maximum Temperature; 
Tas_Min = Minimum Temperature; Zg = Geopotential Height; Ua = Eastward Wind; Va= 
Nortward Wind; rsds = Surface Downwelling Shortwave Radiation; Tas = Near-surface Air 
Temperature; hus = Specific Humidity; rlds = Surface Downwelling Longwave Radiation 

 

3.4.5 Missing Data in Future Projected Climatic Scenario 

 

Missing data can seriously impact quantitative research, causing 

parameter estimates to be biased, information to be lost, statistical results to be 

reduced, standard errors to be increased, and funding generalisability to be 

weakened. The majority of early-stage studies used listwise, pairwise, or mean 

substitution methods to deal with missing data (Schafer,1997). Despite their 

simplicity, these methods are notorious for producing biased and/or inefficient 

estimates (Myers, 2011). 

 

Aside from that, there is another approach to dealing with missing data. 

To solve this issue, the interpolation method required more than two data stations. 

This interpolation method incorporates several techniques, including Arithmetic 

Average, Normal Ratio, and Inverse Distance. Some studies on these methods 

Predictants Variables Predictor Variables 

Pr Zg, Tas, Ua, Va 

Ta rsds, Zg, hus, Tas 

Tas_Max rsds, Zg, hus, Tas_Max 

Tas_Min rsds, Zg, hus, Tas_Min 

Solar Radiation  Ta, Tas_Max, Tas_Min, rlds 
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have been conducted in climate change studies, particularly for predictors-

predictants relationships in precipitation and temperature (Wan et al., 2017;  

Abdulla, 2020).  

  

The Maximum likelihood (ML), expectation maximisation (EM), and 

multiple imputation are however, more statistically appropriate methods for 

dealing with missing data. Based on the available data, the ML procedures model 

the missing data and treat the accessible data as a sample that accurately 

represents a certain distribution. Basically, machine learning aims to create 

models that maximise the probability of discovering observed relationships in 

the data. Although the process is iterative, the EM is similar to the ML 

procedures for dealing with missing data. Finally, in this study, the multiple 

imputation technique with SPSS was used to fill in the missing data of the time 

series for the climate scenarios in precipitation and temperature. 

 

3.5 Data Preparation Stages for Climate Assessment 

 

 The following sub-sections describe the stages involved in the 

investigation of climate assessment. It consists of rainfall-runoff relationship, 

estimation of evaporation, estimation of future water demand based on 

temperature factor and population growth. The last sub-section 3.5.4 is the 

description of the statistical model performances evaluation. 
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3.5.1 Computation of Rainfall-Runoff Relationship 
 

In Table 3.13, the Regional Flood Frequency Method and the Rational 

Method in the Hydrological Procedures (HP) 4 and the HP 5, respectively, give 

a method for predicting the design flood peak. These approaches are adequate 

for engineering work involving the consideration of storage upstream of the 

structure (rural catchment type)., A more recent revised version in 2018 is 

the  Design Flood Hydrograph, HP 11, which is acceptable for calculating the 

rainfall-runoff relationship was adopted for this study under a variety of climate 

conditions. In order to determine the inflow into the KGD from the rural 

catchment, the total storm rainfall was multiplied by the area of storage of KGD 

(Table 3.1). For Peninsular Malaysia, where P is the total storm rainfall in mm 

and Q is direct runoff in mm as shown in Equation (3.2) and Equation (3.3), 

respectively. 

 

       Q = 0.33 P;                         P < 75mm       (3.2) 

      Q = P2 / (P+150);               P > 75mm      (3.3) 
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Table 3.13: Summaries of three estimation procedure for rural catchment recognised by DID, Malaysia 

Methods  HP No. Year Published/ 

(Revised) 

Area, km2 Catchment Type Variable involved 

Regional Flood 

Frequency  

4 1987 >20 Rural Rainfall 

Rational 

Method 

5 1974 13-104 Rural Rainfall 

Design Flood 

Hydrograph 

11 1980 (2018) <518 Rural Rainfall 
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3.5.2 Estimation Method for Evaporation 
 

Evaporation or potential evaporation is a crucial component in 

hydrological and irrigation planning design. Despite the fact that this parameter 

is so crucial, there has not yet been created a practical, highly accurate way for 

determined it. Furthermore, no single strategy is universally reliable; instead, it 

is necessary to select the models that are most appropriate for a study area. This 

study therefore presented two empirical evaporation methods based on 

temperature and radiation for future RCPs. In order to validate the Kharuffa and 

the Turc methods, prediction-based of the data-driven strategies (SVR-PKF and 

SVR-RBF) were utilised to anticipate by employing temperature variables and 

by combining temperature and solar radiation variables which act similarly to 

the Kharuffa and Turc mathematical statements.  

 

(a) Empirical Evaporation Method - Kharrufa Method  

Nourani et al. (2020) utilised the Kharrufa Method to estimate the 

evaporation at Iran for both baseline and climatic scenarios in a monthly basis. 

The expression is represented by Equation (3.4). 

Ed = 0.34 X p X Tmean
1.3                                                         (3.4) 

 

(b) Empirical Evaporation Method - Turc Method  

A radiation-based evaporation method that averagely combined the 

variables as listed in  Equation (3.5) and Equation (3.6) in order to estimate the 

evaporation rate for the various climatic scenarios.  
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For RH < 50%, 

�� = 0.013 �
�����

��������
� (���23.8846 + 50)(1 +

�����

��
)  (3.5) 

For RH > 50%, 

  �� =  �
�����

��������
� (���23.8846 + 50)    (3.6) 

 

where Ed is the depth of the reservoir evaporation in a month (mm/month); p is 

summation of the monthly daylight hours correlate to the summation of the 

yearly daylight hours (12 X 365) (Kharuffa, 1985; Xu and Singh, 2001); Tmean is 

the average temperature (◦C) in a monthly basis; RH denotes the relative air 

humidity in percentage; Rs represents of the solar radiation proportion to the 

surface of the crop (Wm-2). 

 

(c) Data-Driven Techniques for Prediction of Evaporation  

 

Based on factors related to temperature and radiation empirical methods, 

the following equations show potential combinations for future evaporation 

prediction and is expressed in Ed (mm/month) and in order to get cubic metre per 

month, Ev (m3/month) is calculated by the production of the surface area of the 

KGD. 

By employing temperature-based concept of prediction: 

���� ���������� �� ������������,����. =  ���� �����,� + ���� ����,� +

���� ����,�                     (3.7) 
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By combining temperature and radiation-based concept of prediction: 

���� ���������� �� ������������,����.���������� =  ���� �����,� +

���� ����,� + ���� ����,� +  ���� ���,�      (3.8) 

 

where x represents the three RCPs climate scenarios in this study; Stnd 

represents the variables undergo the standardisation before proceeding to the 

prediction. 

 

3.5.3 Estimation of Future Water Demand  
 

(a)  Estimation of Future Water Demand Based on Temperature-factor under 

various scenario of climatic variables 

 

Anang et al. (2017) discovered that various parts of the water supply 

pattern are affected in some way by climate change in terms of water availability, 

quality, and quantity. For instance, during the dry season, the downstream 

resident needed higher water demand as such must increase its consumpation 

and water supply. Consequently, this study examined on how meteorological 

parameters affected and the temperature as a key factor in determining water 

consumption by predicting the future water demand using ANN as presented in 

Equation (3.9) – Equation (3.11). 
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���� ���������� ���. ����������� �� ����� ������� =

 ���� ����� ��������� + ���� ������� + ���� ������������ +

���� ��� + ���� ���. �����                           (3.9) 

 

���� ���������� ���� ����������� �� ����� ������� =

 ���� ����� ��������� + ���� ������� + ���� ������������ +

���� ��� + ���� ���� �����                                                                  (3.10) 

 

���� ���������� ���. ����������� �� ����� ������� =

 ���� ����� ��������� + ���� ������� + ���� ������������ +

���� ��� + ���� ���. �����                                                                    (3.11) 

 

x indicated the RCP 2.6, RCP 4.5, and RCP 8.5;  Stnd represents the procedure 

of the standardisation for the respective variables; obs stands for the 

observational data for water demand. 

 

 (b) Estimation of Future Water Demand Based on Population Growth 

Forecasting and in conjunction with LULCC Detection Map as evidence 

 

The design of water supply network at the downstream of KGD was 

completed considering the temperature factor under the climatic scenario given 

in section 3.6.2. The estimation of future water demand can be further refined 

into an idea by estimating the population growth as well as examining and 
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validating the forecasted population growth in conjunction with the LULCC 

detection map, as this would be more visual than a tabulated figure of the 

population changes in the city over the years.  The current and historical 

population data for Kuala Lumpur were derived from census population records 

(Sources of data: Department of Statistics, Malaysia). Following the collection 

of these data, population forecasting can be estimated using a variety of 

techniques, as described in (Mohamad et al., 2020). In this study, geometrical 

increase method was chosen for the population growth technique, as presented 

in Equation (3.12). The population growth of Kuala Lumpur city by employing 

the geometrical increase method is tabulated in Table 3.14. Meanwhile, the 

LULCC detection maps from 1988 to 2021 are illustrated in Figure 3.3 to Figure 

3.5, respectively.  

�� = � �1 +
��

���
� �              (3.12) 

where P population at present ; n number of decades ; IG geometric 

mean (%) 
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Table 3.14: Population Growth at Kuala Lumpur from year 1988 to 2019 

Year Population ('000) Increment ('000) Growth (%) 

1988 1169.6     

1989 1194.1 24.5 2.05 

1990 1217.8 23.7 1.95 

1991 1262.1 44.3 3.51 

1992 1281.5 19.4 1.51 

1993 1298.7 17.2 1.32 

1994 1314.4 15.7 1.19 

1995 1328.9 14.5 1.09 

1996 1342.5 13.6 1.01 

1997 1356.4 13.9 1.02 

1998 1373 16.6 1.21 

1999 1394 21 1.51 

2000 1416 22 1.55 

2001 1446.2 30.2 2.09 

2002 1474.1 27.9 1.89 

2003 1500.5 26.4 1.76 

2004 1526.4 25.9 1.70 

2005 1551.8 25.4 1.64 

2006 1577.5 25.7 1.63 

2007 1603.3 25.8 1.61 

2008 1628.9 25.6 1.57 

2009 1652.8 23.9 1.45 

2010 1674.8 22 1.31 

2011 1693 18.2 1.08 

2012 1702.1 9.1 0.53 

2013 1723.4 21.3 1.24 

2014 1737.4 14 0.81 

2015 1780.4 43 2.42 

2016 1789.7 9.3 0.52 

2017 1793.2 3.5 0.20 

2018 1790 -3.2 -0.18 

2019 1782.5 -7.5 -0.42 

Total 612.9 41.76 

Average 19.8 1.35 
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The geometrical increase method was used to calculate the population 

growth index each year. The average percentage of population growth in Kuala 

Lumpur city is shown in Table 3.14, with an average of 19,800 people per year 

or 1.35 percent of population growth. With the above average percentage growth 

index, thus the population forecasting results from year 2020 to 2099 can be 

determined as  P���� = 1,169,600, r (%) = 1.35, P���� = 1,782,500 and with 

the interval of t = 31. 

 

The average projected population number in Kuala Lumpur city in 2099 

is 4,673,800, which is nearly 60% of the current total population. The LULC for 

the years 1988, 2010, and finally 2021 has represented in Figure 3.4. The 

information in the figure shows that the built-up area was becoming increasingly 

being developed in 2021, but in 1988, the forest and grass areas landscape had 

remained the majority landuse in Kuala Lumpur then, which is downstream of 

the KGD. Figures 3.5 and Figure 3.6 depicted the detection maps from 1988 to 

2010 and 2010 to 2021, respectively. However, it is difficult to see any 

substantial difference between the two figures. As a result, Table 3.15 was 

created for the purpose of detecting changes in the years 1988, 2010, and 2021 

and was expressed in km2/year. The LULC changes include Forest Area (FA), 

Green Area (GA), Water Bodies (WB), and Built-up Area (BA). Water bodies, 

forest area, grass area, and built-up area all remained constant at 187 km2/yr, 546 

km2/yr, 613 km2/yr, and 5,126 km2/yr, respectively. However, FA-WB results 

reflect a change of 297 km2/yr between 1988 and 2010. 
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Table 3.15: LULCC Detection Maps during 1899 vs 2010 and 2010 vs 2021 

LULC Changes 

1988 vs 2010 2010 vs 2021 

km2/year km2/year 

Water Bodies, WB (No Change) 187 462 

FA-WB 297 95 

GA-WB 171 254 

BA-WB 260 1,016 

WB-FA 59 162 

Forest Area, FA (No Change) 546 1,055 

GA-FA 209 914 

BA-FA 97 461 

WB-GA 192 335 

FA-GA 489 312 

Grass Area, GA (No Change) 613 1,538 

BA-GA 483 2,220 

WB-BA 668 795 

FA-BA 1,041 285 

GA-BA 1,401 700 

Built up Area, BA (No Change) 5,126 12,088 
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Figure 3.4: LULCC Detection Map from year 1988 to 2021 
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Figure 3.5: LULCC Detection Map at downstream of KGD During 1988 to 2010 
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Figure 3.6: LULCC Detection Map at downstream of KGD During 2010 to 2021 
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3.5.4 Statistical Model Performance Evaluations 
 

There are various indices employed for the purpose of evaluating the 

statistical model performances of the uncertainty in the climatic model. In this 

study, the Nash-Sutcliffe efficiency, the Percent Bias, and the Coefficient of 

Determination,  were used and evaluated for the climate change impact. The 

additional statistical error performance such as RMSE and MAE were used to 

evaluate the model performance in future projected data and other which 

involved of the implementation data-driven techniques.  

 

(a) Nash-Sutcliffe Efficiency (NSE) 

 

The values range from -∞ to 1, with a higher value indicating better 

model performance (Begou et al., 2016). It also determines how much the 

residual variance (also known as "noise") varies from the observed data variance. 

Equation (3.13) is used to calculate the NSE. 

��� = 1 −  
∑ ���

������
���

����
�

�
���

∑ ��
�
������

��������������������
��

�
���

           (3.13) 

 

(b) Percent Bias (PBIAS) 

 

As indicated in Equation (3.14), PBIAS examines the model's calculation 

bias. Positive and negative PBIAS values showed model underestimation and 

overestimation bias, respectively, whereas small magnitude values indicated 

more accurate model simulations (Begou et al., 2016).  



115 

 

����� =  
∑ ���

������
������

� � ����
���

∑ �
�
�������

���

              (3.14) 

 

(c) Coefficient of Determination (R2) 

 

The values ranges from 0 to 1 whereby the value closer to 1 indicates the 

error is low and vice versa, the values equal to or more than 0.5 are commonly 

considered acceptable in watershed scales, which is calculated using Equation 

(3.15) (Begou et al., 2016). 

�� = �
∑ ���

������
�����������������������

�����������������
���

�∑ ��
�
������

���������������������
���

�
�∑ ���

�����������������
���

�
�

�

           (3.15) 

 

(d) Root Mean Square Error (RMSE) 

 

The root mean square error (RMSE) is a commonly used measure of the 

difference between the values simulated by a model and the actual observation 

data (targeted). The lower the value in this indicator represents better model 

performance with minimum error obtained. This can be evaluated using 

Equation (3.16) (Ahmadzadeh Araji et al., 2018). 

���� =  �
∑ (��

������
������

)��
���

�
�          (3.16) 

 

(e) Absolute Error in Mean (MAE) 
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MAE is a measure of the difference in error between simulated and 

targeted. It can be calculated using Equation (3.17) (Atmaja and Akagi, 2021). 

��� =  
�

�
∑ ���

��� − ��
������

��
���           (3.17) 

 

where: ��
���  = ith simulated ; ��

������
 = ith targeted; ���������� = simulated mean 

value ; ���������������� = targeted mean value; n = total number of targets  

 

3.6 Metaheuristic Algorithms (MHAs) 
 

The following sub-sections describe the proposed MHAs in this study. 

 

3.6.1 Whale Optimisation Algorithm (WOA) 
 

The WOA defines how humpback whales approach prey by swirling 

above it in the water to form sphere-shaped bubbles that encircle it (Mirjalili and 

Lewis, 2016). Figure 3.7 illustrates the flow of WOA. 

 

The initial step in the chasing ritual of humpback whales is to encircle 

the target, which is known as encircling the prey. It indicates that the target prey 

is the optimal option at the moment, and trying to improve its location toward 

the intended outcome. The following Equation (3.18) and Equation (3.19) are 

the expressions. 

  
�
→ = |

�
→ .

�
→ (�) −

�
→ (�)|              (3.18) 

  
�
→ (� + 1) = ��� [

�∗
→ (�) −

�
→ .

�
→]                 (3.19) 
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�
→ ��� 

�
→ are calculated as: 

  
�
→ = 2

�
→ .

��
→ −

�
→                (3.20) 

  
�
→ = 2

��
→                 (3.21) 

which 
�
→  indicates the separation between 

�
→  and 

�∗
→  ; 

�
→  represent 

decrease linearly from 2 to 0 through iterations; followed by the 
��
→ and 

��
→ shows 

vectors in [0,1] in randmly ; 
�
→  and 

�
→   represent vectors in coefficient;  t 

indicates on-going iterations ; 
�
→ gives the vector with the best positions that 

obtained so far; · is the multiplication of two vectors pairwise; and lastly int 

represents an integer number. 

 

As indicated in Equation (3.22), the WOA search agents are correct to 

the closest integer for discrete issues. Next, the following techniques known as 

encircling the prey are shown by the Bubble-net idea in mathematical modelling 

of the attacking strategies: (a)  By reducing the encircling process, the value of 

a can be decreased in Equation (3.20).  The random value of 
�
→ in the interval [-

a, a] and (b)  The current best method for imitating whale spiral movement 

between the present position  of the whale and the prey are shown in Equation 

(3.22) and Equation (3.23). 

  
����

�∗��(�)�
�
→(�)�

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�                (3.22) 

  
�
→ (� + 1) = ��� [ 

��.
�� ���. cos(2��) +  

�∗
→ (�)]            (3.23) 
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where  
��
→= distance of ith whale to the prey; b= the definition of the shape of 

the logarithmic spiral; l = random number [-1.1] 

 

When using a spiral equation, the assumption of the 50% probability 

of selecting between updating the whales' new position or reducing their 

encirclement is written as in Equation (3.24). 

�
→ (� + 1) =  �

��� {
�∗(�)
�⎯⎯� −

�
→ .

� 
→                         �� � < 0.5

��� [ 
��.
�� ���. cos(2��) + 

�∗
→ (�)]  �� � ≥ 0.5   

         (3.24) 

where p = numerical number of [0,1] randomly. 

 

Instead of employing the best effective search agent throughout the 

process of discovery, humpback whales randomly explore for prey; this 

mechanism occurs when �
�
→� ≥ 1 ; it is also known as exploration. These 

equations facilate to select a random search agent and alter its location: 

����
�
→.

��
���

�
→(�)�

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�               (3.25) 

�
→ (� + 1) = ��� [

��
→ −

�
→ .

�
→]                         (3.26) 

which 
��
→ indicates the vector position by randomly selecting a whale from the 

on-going iteration or population; When a random search yields a better result, 
��
→, 

or the most recent search solution (
�∗→), are modified by the searching patterns.
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Figure 3.7: Flow Chart of the WOA
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3.6.2 Lévy Flight WOA (LFWOA) 
 

The most effective type of random walk to utilise is Lévy flight where 

the situation range widely, as shown in Figure 3.8. This concept allows the have 

a better global search. By applying Lévy flight in algorithms, Kamaruzaman et 

al. (2013) showed how the swaping between exploration and exploitation during 

the search process and trapping in local optima can be avoided. This was done 

by using the Lévy flight trajectory (Yang and Deb, 2009). The flow of LFWOA 

is presented in Figure 3.9. 

 

 

 

 

 

 

Figure 3.8: Denotes the conceptual idea of the Lévy flights (Houssein et al., 

2020) 

 

In this study, the WOA was integrated with the Lévy flight to speed up 

the convergence of the WOA, enhances efficiency and prevents the occurrence 

of local minimums (Zhou et al., 2018) via the simultaneously searching process 

of exploration and exploitation. The new positions of the humpback whale in the 

Origin point 
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form of random, which can be stated as Equation (3.27) is the length of the search 

step in the manner of stochastic version. 

�⃗(� + 1) =  �⃗(�) + µ ����� −
�

�
� ⊕ Levy            (3.27) 

which  �⃗(t) indicates the vector �⃗ located at the iteration of t;  µ is a 

stochastic variable that conforms to a uniform probability distribution ; product 

⊕ means entry wise multiplication; rand denotes the numerical from the range 

0 to 1 in random; [rand - 
�

�
 ] only has three possible values: 1, 0, and -1.  

 

According to Yang and Deb (2009), the Lévy random walk provides the 

following distribution: 

Levy ~ u = t-λ, 1 < λ ≤ 3               (3.28) 

  s = 
µ

|�|�/�                 (3.29) 

 where: 

s = step length of the Levy flight, which is Levy(λ)  

λ in Equation (3.28) obeys the formulation that λ = 1+ β, where β = 1.5, 

µ = N (0, �µ
�)   

� = � �0, �µ
� �   are both normal stochastic distributions in Equation 

(3.30). 

 �µ = [ 
(���)� ���(� � �/�

���
�

�
�� � � �(���)/�

]1/β                                      (3.30) 
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Figure 3.9: Flow chart of the LFWOA 

 

3.6.3 Harris Hawks Optimisation Algorithm (HHO) 

 

The harris hawk (HH) equipped with the characteristic of the intelligence 

and sharp observation, can pursue, encircle, hunting to the prey in cluster is a 

common strategy among this species. HHO algorithm employ various different 

hunting strategies to target rabbit (optimal solution). The leader hawk will try to 

catch the prey at first in a random pace, but if the prey is dynamic and has a 

tendency to flee, the hawk will move to a different approach of the hunting 

strategies. The rest of the flock will continue to pursue and aim until the target 

rabbit is caught. Hawks can chase after fleeing prey by distorting and decimating 
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the prey. The targeted prey in HHO is the optimal or ultimately solution, whereas 

hawks are candidate solutions. Consequently, HHO undergoes exploration and 

exploitation stages (Heidari et al., 2019; Islam et al., 2020) whereby the details 

are elaborated as following paragraphs. Also, the detail of the HHO is depicted 

in Figure 3.10. 

 

During this exploration stage, the surveillance and detection process is 

carried out by the Harris Hawks. The majority of the time, Harris Hawks often 

fly to higher level to stalk their prey. Equation (3.31) is the statement that starts 

the searching process of Harris Hawks. The Harris Hawks will perch close to the 

hunting area if q <0.5, vice versa, and they often choose a tall tree and stay on it.  

X(iter + 1) 

�
�����(����) − �������(����) − 2��(����) … … … �� … � ≥ 0.5

�������(����) − ��(�����) − ��(�� + �� (�� − ��) … �� … � < 0.5
�      (3.31) 

 where q is a positve integer from 0 to 1. 

�� =
�

�
∑ ��(����)�

���                                                            (3.32) 

 

Equation (3.32) depicts the stage of transition from exploration- 

exploitation. Iteration E fluctuates randomly between -1 and 1, then shifts from 

-2 to 2, but it decreases throughout the process. HHs are in the stage of seeking 

for prey if |E| is bigger than one, and when |E| is less than one the HHs are most 

likely hunting rabbits, which is a likely exploitation stage. Exploration and 

exploitation potentially transform the energy flow. 

� = 2 ��(1 −
����

�
)                                                             (3.33) 



124 

 

Xiter  represents the present hawks position; Xrand represents the hawk is selected 

randonly from the available population; iter is for the current repetition; Xrabbit 

stands for the position of the rabbit; r1, r2, r3, and r4 stand for random numbers 

from 0 to 1; Xm denotes the current median location of the hawks; LB denotes 

lower boundary values; UB indicates upper boundary values; N is the number of 

hawks in the population; Xi represents the position of each hawk; T denotes the 

maximal repetitive runs; E0 represents the preliminary stage of the energy.  

 

Based on multiple hawk surveillance techniques and evasion from rabbit 

environments schemes in the exploitation stage, four feasible solutions have 

been attained, which explained in the next paragraph Technique (a)-(d) (Heidari 

et al., 2019). A better and straightforward flow chart of these techniques is 

depicted in Figure 3.10 associated to the equations that were involved in the 

HHO. 

 

Technique (a) act as the hawks encircle the rabbit softly, the rabbit 

maintains sufficient energy and attempts to escape by making a series of 

random leaps. This is referred to as a soft siege. This innovation serves as a 

model for the following guidelines: 

�(� + 1) =  ∆�(�) − �|��������(�) − �(�)|                    (3.34) 

∆�(�) =  �������(�) − �(�)                                              (3.35) 

which �(�) denotes the distance and the vector position of the rabbit during 

iteration t;  J = 2(1- ��) indicates the random jump strength of the rabbit;  �� 

represents a random number inside (0,1). 
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The rabbit has almost entirely exhausted itself and has reached its limits. 

This is referred to as a hard siege, Technique (b). The following description has 

been updated for this position: 

�(� + 1) =  �������(�) − �|∆�(�)|                                    (3.36) 

 

Before the hawks can undertake a surprise attack, a soft siege must be 

established. The Soft siege with continuous quick dives, Technique (c) as 

illustrated in Equation (3.37) which is superior to Technique (a) due to the 

implementation of the Lévy flight idea.  

� =  ������� (�) − �|��������(�) − �(�)|                            (3.37) 

 

In order to establish several attempts based on Lévy flight (LF) whether 

was successful or unsuccessful is shown as follows: 

� = � + � � ��(�)                                                              (3.38) 

 

D represents dimension of the problem; S denotes random vector of size 1 X D ; 

LF function can be indicated as statement: 

��(�) = 0.01 � 
� � � 

|�|
�
�

                                                           (3.39) 

� =  �
⌈(���)� ����

��

�
�

�
(���)

�
 � � � � 

(���)

�
�
�

�

�

                                                     (3.40) 
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u and v are identical values in the interval [0,1], and is a constant considered to 

equal 1.5. Thus, the ultimate rule for updating hawks in this Technique (c) is as 

follows: 

� (� + 1) =  �
�           �� �(�) < �(�(�))

�       ���(�) < �(�(��))                                      
         (3.41) 

which Y and Z are compute via Equation (3.37) and Equation (3.38). 

 

This update rule for Hard siege with continual quick dives, Technique (d) 

is as follows: 

 

� (� + 1) =  �
�           �� �(�) < �(�(�))

�       ���(�) < �(�(��))                                     
        (3.42) 

� =  ������� (�) − �|��������(�) −  ��(�)|                                  (3.43) 

� = � + � � ��(�)                                                                       (3.44) 

 

Until the ideal solution is found, the Y and Z variables denote the 

positions for the subsequent iterations as presented in Equation (3.42) and 

Equation (3.43).
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Figure 3.10: Flow chart of the HHO 
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3.6.4 Opposition-Based Learning HHO (OBL-HHO) 
 

The study by Kelidari and Hamidzadeh (2020), applied Opposition-

based learning (OBL) by concatenating with other techniques have been 

proposed as potential solutions for addressing real-world problems. The 

utilisation of OBL has been found to be a proficient approach in 

comprehensively examining the issue space. This approach can enhance 

efficiency by searching simultaneously for the solution and inverse. Although 

this approach imposes a greater computational burden on the algorithm, it 

substantially enhances the rate of convergence. The subsequent equation 

delineates the OBL methodical in a space of D dimensions. Also, Figure 3.11 

shows the flow of OBL-HHO. 

��� =  �� + �� − ��        j = 1,2,…,D                         (3.45) 

where � = The concept of habitat within a search space.; �� = The contrary of a 

habitat that was produced during the timeframe of [u,l]; � = Every dimension of 

the additive inverse. 
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Figure 3.11: OBL-HHO 

 

3.6.5 Evaluation of Exploration and Exploitation Capabilities in 

Benchmark Functions Testing 

 

These six benchmark functions of  EvoloPy are proposed as shown in 

Equation (3.46) to Equation (3.51) (Faris et al., 2016). These benchmark 

functions were utilised to evaluate the efficacy and robustness of the proposed 

MHAs. The outcome of the performance measure based on the benchmark 

functions served as the comparison between the MHAs and datasets before 

applying it to reservoir optimisation. The characteristic of EvoloPy test function 

has presented in Table 3.16 (Khurma et al., 2020; Qaddoura et al., 2020). Each 

function group performed an average of 20-runs for respective proposed MHAs 

to determine the optimal value of these functions. The tested results will be 
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further discussed in Chapter 4, in Table 4.1. The reason for an average 20-runs 

having been initially set as the optimal target iterations was mentioned in Chong 

et al. (2021). It has also achieved the optimal values after several trial-and-error 

attempts from the 6 difference benchmark functions of EvoloPy, and it was found 

that was unnecessary to execute the extra runs as it takes up more time of 

execution.  

 

��(�) = ∑ �∑ ��
�
��� �

��
���                 (3.46) 

��(�) = ∑ |��| + ∏ |��|�
���

�
���                 (3.47) 

��(�) = ∑ (�� + 0.5)��
���                  (3.48) 

��(�) = ���
� + ������ (0,1)                (3.49) 

��(�) =
�

�
{10����(���) + ∑ (�� − 1)�[1 + 10����(�����)] +���

���

              (�� − 1)�} + ∑ �(�� , 10,100,4)�
���   

�� = 1 +
����

�
, �(��, �, �, �) = �

�(�� − �)�      �� > �
0                      − � ≤ �� < �

�(−�� − �)�                �� < −�
            (3.50) 

��(�) = 0.1{����(3���) + ∑ (�� − 1)�[1 + ����(3����� + 1)] + (�� +�
���

1)�[1 + ����(2���)]} + ∑ �(��, 5, 100, 4)�
���                          (3.51) 
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Table 3.16: Characteristic of EvoloPy Test Functions 

Description F1 F2 F3 F4 F5 F6 

Function group Unimodal Unimodal Unimodal Unimodal Multimodal Multimodal 

Population 80 80 80 80 80 80 

Minimum frequency (fmin) -100 -100 -100 -1.28 -50 50 

Maximum frequency (fmax) 100 100 100 1.28 50 50 

Number of examination, m 10 10 10 10 10 10 

Number of runs 20 20 20 20 20 20 

Number of dimensions 30 30 30 30 30 30 
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3.6.6 Parameters Setting for the Respective Proposed MHAs 

 

The Taguchi technique was built on orthogonal arrays, which explained 

how to do the minimum possible trials while obtaining adequate details on all 

parameter settings in MHAs likely to impact the resulting parameter. The 

execution of the orthogonal array in this sub-section of L9 (3^2) was used to 

investigate the influence of two factors using 9 experiment runs and 3 levels of 

values. The benchmark testing for the respective algorithms in terms of 

population was presented in Figure 3.12(a) to Figure 3.12(d), and the sensitivity 

analysis, also referred to as accuracy testing, was adjusted accordingly. As 

illustrated in Figure 3.12(a) to Figure 3.12(d), the x-axis (mean) represented of 

the steep (high) slope whilist for the y-axis represented the three initial target  

population values and their respective sensitivity (accuracy setting value) to be 

executed in trial-and-error in order to understand what were the most impacted 

parameter settings corresponded to the respective proposed MHAs. According 

to the respond graphs for respected proposed MHAs, the population's peak 

impact was 80, and the accuracy testing was 0.0001. Table 3.17 contains the 

parameter settings for the proposed MHAs.
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Figure 3.12: Response Graph of the (a) WOA and (b) LFWOA 
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(c) HHO                (d) OBL-HHO 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Response Graph of the (c) HHO and (d) OBL-HHO 
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Table 3.17: Parameter Setting for proposed MHAs 

Algorithms Parameters Values 

WOA 

*initial 

adjustment 

Epsilon and 

Dimension 

Whales number 35 

a ϵ [0,2] 

a2 ϵ [-1,-2] 

Lévy flight WOA 

(LFWOA) 

*initial 

adjustment 

Stepwise and 

Dimension 

Search agent 35 

Threshold 2 

CSV 0.5 

β 1.5 

a� 10 

a� 0.00005 

a� 0.005 

�� 0.9 

�� 0.1 

HHO 

*initial 

adjustment 

Epsilon and 

Dimension 

Rabbit energy 

β  

[0,2] 

1.5 

 

OBL-HHO 

*initial 

adjustment 

Dimension 

Follow the LFWOA  parameter setting 
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3.6.7 Design of Experiment (DoE) 
 

The objective of this study was set to determine the optimal release at the 

KGD and minimise the water deficit without compromising the constraints.  The 

details of comparing various designs of experiment (DoE) can be found in 

(Tanco et al., 2009). The DoE conducted for this study was the Taguchi Method 

which aims to investigate the main effects of the factors involved in the water 

demand reservoir and the parameter setting of the corresponding proposed 

MHAs.  

 

The primary objective of the Taguchi method is to examine the main 

effects of variables (Heidari-Rarani et al., 2020). The Taguchi method yielded 

more consistent findings than factorial design DoE, when results from two 

factorial DoE cases in the same experiments might be different and not easy to 

interpret (Roy, 2010). Hence, the potential application for the DoE, Taguchi 

method, was introduced. Some past studies implemented the Taguchi method 

involved in real-engineering (Liao et al.,2008; Heidari-Rarani et al., 2020; Zhang 

et al., 2021). It was also found in the studies of reservoir operation optimisation 

(Chong et al., 2021). The DoE software package applied in this study is the 

Minitab (Minitab Inc.).  

 

The present sub-section of L16 employs an orthogonal array with a 2^4 

design to examine the impact of four factors, sixteen experimental runs were 

conducted, each featuring two levels that were defined by an upper and lower 
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boundary. Figure 3.13 illustrates the main effect plot for the simulated releases. 

The simulated release at the KGD was most significantly impacted by inflow, 

with storage, demand, and loss following in descending order of influence.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Main effect plot for Taguchi Method 

 

The response table generated by the Taguchi method is summarised in 

Table 3.18. The delta value demonstrates the significant effects of inflows 

because it received the highest score, 0.085, and had the greatest influence on 

the main effects of the factors, whereas the delta value for the storage factor was 

0.071, followed by demand with a delta value of 0.032, and lastly loss 

variable with a delta value of 0.005. 
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Table 3.18: Response Table 

 

The present study employed a univariate analysis of variance (ANOVA) 

to examine the effects of various elements on the response parameters. The data 

used in the analysis were obtained from the Taguchi method analysis. Table 3.19 

presents the results of the ANOVA, which examines the effects of different 

factors on the explanatory variables and their relations. The table also displays 

the pairwise interactions between the factors. The presentation of the effects of 

each factor on the explanatory variables does not include any statistically 

significant results with a significance level of less than 0.05. The study 

determined that the inflow factor had the greatest impact on the percentage of 

contribution (PC), as evidenced by the results presented in Table 3.19. 

Specifically, the PC value of 11.55% ranked first in the main effects plot, while 

the remaining PC values in Table 3.19 were consistent with those in Table 3.18 

in terms of rank and delta value. The principal component with the highest 

percentage obtained for the interaction between the factors was demand*storage, 

which accounted for 32.07%. This was followed by inflow*demand and 

inflow*storage, which accounted for 19.72% and 12.10%, respectively. 

 

 

Level Inflow Loss Demand Storage 

1 4.636 4.676 4.694 4.714 

2 4.720 4.680 4.662 4.643 

Delta 0.085 0.005 0.032 0.071 

Rank 1 4 3 2 
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Table 3.19: ANOVA analysis 

Source F-value P-Value Degree 

of 

Freedom 

Sum of 

Squares 

Mean of 

Sum 

Squares 

Percentage 

of 

Contribution 

(%) 

Inflow 5.4 0.07 1 0.0287 0.0287 11.6 

Loss 0.02 0.91 1 0.000081 0.000081 0.03 

Demand 0.78 0.42 1 0.0042 0.0042 1.7 

Storage 3.8 0.11 1 0.0203 0.0203 8.2 

Inflow*Loss 0.00 1.00 1 0.000 0.000 0.0 

Inflow*Demand 9.2 0.029 1 0.0491 0.0491 19.7 

Inflow*Storage 5.7 0.063 1 0.0301 0.0301 12.1 

Loss*Demand 1.2 0.33 1 0.0062 0.0062 2.5 

Loss*Storage 0.7 0.44 1 0.0037 0.0037 1.5 

Demand*Storage 14.99 0.012 1 0.0798 0.0798 32.1 

Total     15 0.2488  0.2488 100 

 

 

3.7 Problem Formulation  
 

The optimal release reservoir operation serves as a guide for decision-

makers in achieving the reservoir's intended function (water supply, flood 

mitigation, and in some cases, hydropower generation, and so on). This section 

covers the features and considerations for a reservoir management system. The 

problem has been formulated in a straightforward manner that can be optimised 

using improved techniques, specifically meta-heuristic algorithms based on 

swarm intelligence. For the purpose of verifying the efficiency of the algorithms 
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and datasets in reservoir operation at the KGD, simulation was performed, and 

performance indices were introduced to analyse the output of the results obtained 

to determine whether the algorithm was able to achieve the target function. 

 

For the purpose of addressing the best release for the KGD operation, the 

formulation of the problem in the reservoir at the Klang Gate Dam (KGD) 

consists of three considerations: (a) objective function, (b) threshold or 

constraints, and (c) penalty functions (Allawi et al., 2019b).  The following sub-

sections introduce these considerations and the equations of the performance 

indices involved in this optimisation release operation at KGD.  

 

3.7.1 Objective Function 

 

Minimising the water deficit or shortage is the objective function of this 

optimisation operation at KGD. In other words, is to minimise the disparity 

between the amount of water required and the amount of water discharged. as 

defined by Equation 3.52. 

Minimisation of function Z = ∑ (�� − ��)���
���                     (3.52) 

 

where t denotes the months within a calendar year; �� denotes demand in 

monthly basis;  �� indicate release in monthly basis.  
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3.7.2 Handling of the Thresholds or Constraints 
 

The most efficient and widely used method for dealing with constraints 

in optimisation algorithms is to impose a penalty for any violation of the 

thresholds or constraints. In general, for reservoir operation, decision-makers 

may face a few types of thresholds or constraints in determining the optimal 

release amount, boundaries of release, and storage level in order to ensure 

reservoir operation for the next period would be sufficient to supply and safe 

operational zone if there is an extreme weather event (i.e., heavy rainfall). This 

study introduces two types of thresholds, which are elaborated on below: - 

 

(a) Equal Continuity: 

Eq. 3.53 below gives the statement: 

 ���� =  �� + �� − �� − ��                                                          (3.53) 

 

where: 

���� denotes ending of the storage; 

�� represents the starting of the storages; 

t denotes months in a year;  

�� indicates the inflow to the KGD; 

�� denotes the release from the KGD; 

�� is tabulated as in Table 3.5.  
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(b) Inequality for:  

(i) Storage Capacity, St:  

Upper boundary ≤ 6.24 million cubic metre and lower boundary 

≤  23.44 million cubic metre  (for t = Jan, Feb, …., Dec)    (3.54)  

 

(ii)   Release, Rt: 

Upper boundary ≤ 3.28 million cubic metre and lower boundary 

≤ 5.22 million cubic metre  (for t=Jan, Feb, …, Dec)         (3.55) 

 

3.7.3 Penalty Functions 

 

This section briefly explains the penalty functions applied in the reservoir 

optimisation operation. For decades, penalty functions (PF) have been a 

component of the literature on restricted optimisation. There are two basic forms 

of PF: (a) external PF, which disguises infeasible solutions as feasible ones, and 

(b) internal PF, which penalises feasible solutions. A feasible solution is one that 

meets all the requirements, whereas an infeasible solution is the inverse 

condition. Static PF is a straightforward approach for penalising infeasible 

solutions by imposing a continuous penalty on solutions that violate feasibility 

in any way. Dynamic PF was used by enabling the exploration of infeasible 

regions while still requiring the ultimate solution to be feasible. Finally, while 

including distance and the time of the search into the PF has been usually 

beneficial, these penalties that disregard any other elements of the search is 
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known as the adaptive PF (Smith and Coit, 1997). In this study, the penalty 

function is to convert the infeasible to feasible solution. The threshold for the 

storage capacity  can be resolved by utilising the following equation to penalise 

the objective function. 

 penalty 1 = �
0                                  �� �� > ����

��(���� − ��)�           �� �� < ����                        
        (3.56) 

 penalty 2 = �
0                                  �� �� < ����

��(���� − ��)�           �� �� < ����                        
       (3.57) 

 

where:  

�� and �� are the coefficients of the penalty; 

��  is expressed as storage; 

����   denotes the minimum storage;  

���� represents the  maximum storage. 

 

After applying the penalty functions, the ultimate objective function of 

the optimisation operation at KGD has been rewritten in Equation (3.58) for a 

monthly basis. 

Minimisation of function Y = Minimisation of function Z + penalty 1 + 

penalty 2                                      (3.58) 
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3.8 Reservoir Risk Assessments  
 

After obtaining the results of simulations and optimisation, the 

performance is checked to determine the system's failure or success. The three 

most common indices for measuring the level of performance are reliability, 

resilience, and vulnerability (Hashimoto et al., 1982). The three indices are 

elaborated on below. 

 

3.8.1 Reliability 

 

For a model to be effective in achieving the objectives of a reservoir 

optimisation model, periodic reliability serves as one of the most important 

indicators. The system is more reliable when the Rp indices are higher. 

Periodic Reliability, �� =  �
�

�
�  � 100%                  (3.59)  

 

3.8.2 Resilience 
 

Resilience is the likelihood of a scarcity to satisfy future demand. The 

correlation of the number of meeting the demand followed by the unfavourable 

events (shortage) occurred with the overall shortage period. An alternate 

definition of resilience is the capacity of a framework for overcoming a sequence 

of persistent setbacks. Resilience can be expressed mathematically as in 

Equation (3.60).  

����������, �� =  
��

��
                   (3.60) 
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The average WSR has been applied in this study as one of the indicators 

of reservoir system resilience to address the performance of the reservoir system 

against climatic or hydrological variability. The negative values denotes the 

failure of the reservoir system, and vice versa. 

������ (�) =

���� (�)����� ������ (�)����� ������ (�)��������� ���.(�)������� ������ (�)

������ ������ (�)
     (3.61) 

 

3.8.3 Vulnerability 
 

Is an index that depicts how catastrophic the failure conditions are 

which stated in Equation (3.62): 

��� =  
�

�
 � ∑ [max(0, �� − ��)] �

���         for t=1,2,…..N              (3.62) 

 

3.8.4 Maximum Deficit  
 

This indicator is calculated by dividing the annual water deficit by the 

annual water demand which represents in Equation (3.63). 

��� ������������� =
������� ������

����� ������������
                                       (3.63) 

 

in which � is defined as overall times meeting the exact period; N represents the 

total number of time periods that were examined, NS represents the number of 

time periods that were considered satisfactory and followed by a shortage period, 

and NT represents the total number of failure periods. The defines of  m as the 
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number of model failure periods when there is water deficit, given that Nv is the 

total time period considered for simulation in months, Dt is the targeted demand 

for any given month t, and Rt is the water release for that particular month t.  

 

3.9 Summary 

 

This chapter discussed the practical applications involving the problem 

formulations at the KGD to meet the objective function of the optimisation, 

along with the reservoir risk analysis assessment for both observed period and 

climate assessment. The characteristics of the KGD were highlighted and the 

overall flow path of the study was provided. This chapter also discussed the 

datasets involved for year 2001-2019, followed by the comparison of the 

proposed MHAs with the previous studies that had investigated at KGD for year 

1987-2008.The more recent revised version (2018) of Design Flood Hydrograph, 

HP 11 has been utilised to compute the rainfall-runoff relationship. The 

estimation approaches for evaporation and future water demand have been 

briefly discussed by employing two empirical evaporation methods (a) Kharuffa 

and (b) Turc. In order to validate the Kharuffa and the Turc methods, prediction-

based of the data-driven strategies were used to anticipate with temperature 

variables and by combining temperature and solar radiation variables. In 

addition, few future water demands have been developed via data-driven 

approaches and forecasted to a near approximation of realistic circumstances 

based on temperature factor and forecasted population growth before proceeding 

to the investigatingthe impact of the climate change. The most essential was the 

selection of the proposed MHAs with the simultaneous characteristic of 
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exploration and exploitation applied in this study and the respective parameter 

settings have been presented. Furthermore, the DoE was conducted using the 

Taguchi method and ANOVA to determine which of the variables have the 

greatest influence on the reservoir optimisation policy at the KGD. The 

Friedman test, also the part of the DoE which will be presented in section 4.2.2. 

An evaluation of the capabilities of the strategy of exploration and exploitation 

in proposed MHAs was examined by implementing the EvoloPy benchmark test 

functions. The objective function at KGD has been set in order to minimise the 

water deficit by involving several thresholds of KGD as well as penalty functions. 

Lastly, the level of performances for the proposed MHAs in optimisation were 

evaluated using the common metrices (reliability, resilience, and vulnerability) 

in reservoir risk assessment. A new metric namely Water Support Resilience 

(WSR) implemented, is an extension of resilience metric to address the 

performance of the reservoir system against climatic or hydrological variability. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

This chapter discusses the results obtained from the reservoir 

optimisation at the KGD using the WOA, LFWOA, HHO, and the OBL-HHO. 

This chapter consists of two sections: (i) reservoir optimisation during the 

Observed Period; and (ii) investigating the future climate change impact for year 

2020-2099 on the reservoir release operation under the different climate change 

scenarios at the KGD. The reservoir optimisation during the observed period 

consists of two timelines of the datasets. Firstly, the reservoir risk assessment for 

2001- 2019 was examined, and the datasets for this timeline will be further 

utilised to investigate the impact of climate change under the different climate 

change scenarios. In the second sub-section of the observed period, a comparison 

was made between the proposed MHAs and published heuristic algorithms for 

year 1987 - 2008 on the reservoir's risk analysis. This is followed by the 

assessments including GCMs downscaling using the statistical downscaling 

method, and the future climate scenarios for RCP 2.6, RCP 4.5, and RCP 8.5 

were determined in this study in order to investigate the climate change impact 

on the future KGD operations. The rainfall-runoff analysis was then computed. 

Several empirical evaporation methods have also been described and validated 
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with data-driven approach. In addition, the estimation of the future water demand 

for 2020 to 2099 was determined by analysing the temperature factors and the 

indirect relationship between population growth and land use and land cover 

change. Also, the impact of climate on reservoir operation at KGD was studied 

using data-driven techniques for reservoir simulation, and the results were 

compared to reservoir optimisation in respect of reservoir risk assessment. 

Finally, the efficacy of the proposed MHAs was identified and examined by 

conducting a ranking analysis of a non-parametric test. 

 

4.2 Execution of EvoloPy Benchmark Test Functions  

 

This study tested the MHAs capabilities and efficacy using six EvoloPy 

benchmark test functions mentioned in section 3.6.5. The following sub-section 

discusses the findings. 

 

4.2.1  Statistical Model Performances  

 

Table 4.1 indicates the obtained statistical results of the WOA, LFWOA, 

HHO, and the OBL-HHO for the unimodal functions (F1-F4) and multimodal 

functions (F5-F6), respectively.   

 

Table 4.1 shows the overall optimal statistical results of the EvoloPy 

Functions with the setting of the accuracy level of ϵf = 1.0e-04 for WOA, HHO, 

and OBL-HHO, respectively whilst LFWOA applied ϵf = 1.0e-02.  The accuracy 

level setting was then applied to the subsequent reservoir optimisation. The 
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statistical criteria examined for the respective proposed MHAs in this benchmark 

test functions are the average, standard deviation (SD), worst, and best.  

 

The purpose of these statistical findings from the benchmark testing as 

presented in Table 4.1 was to examine and validate the robustness of the 

algorithm as well as to show the statistical criteria obtained from the respective 

proposed algorithmic behaviour and datasets. The ranking of the respective 

proposed MHAs were also provided after the statistic criteria had been analysed 

from the benchmark test functions. According to the ranking based on the 

benchmark test function presented in Table 4.1, the HHO and OBL-HHO 

provided the optimal ranking in F4 (in unimodal characteristic), respectively 

which anticipated both algorithms’ behaviour are consistent and correlated to the 

datasets. Unlike the WOA and LFWOA, the optimal ranking for both algorithms 

fell in F3 (in unimodal characteristic) and F6 (in multimodal characteristic), 

respectively indicated both the algorithms presented the behaviour of sensitivity 

to the datasets. 
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Table 4.1: Statistical results for benchmark testing for year 2001 to 2019 

Algorithms Criteria Functions 

F1  F2  F3 F4 F5 F6 

WOA 

ϵf = 1.0e-04 

Average 2.01E-111 5.28E-62 1.11E-02 2.74E-04 1.13E-03 2.02E-02 

SD 4.20E-111 1.05E-61 7.92E-04 1.54E-04 7.47E-05 6.27E-03 

Worst 1.30E-110 2.30E-61 1.26E-02 1.01E-04 1.09E-03 1.60E-02 

 Best 6.64E-121 8.96E-65 1.05E-02 6.26E-04 1.22E-03 2.20E-02 

 Ranking 6 5 1 4 3 2 

LFWOA 

ϵf = 1.0e-02 

Average 9.03E-59 1.04E-32 6.97E-03 1.80E-03 8.42E-04 2.61E-02 

SD 1.36E-58 7.44E-33 2.49E-03 1.87E-03 2.82E-04 8.73E-03 

Worst 4.52E-59 1.09E-32 3.06E-03 1.04E-03 1.04E-04 4.7E-02 

 Best 3.59E-62 3.96E-34 9.93E-03 7.55E-03 8.89E-04 1.5E-02 

 Ranking 6 5 2 3 4 1 
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Table 4.1 (continued): Statistical results for benchmark testing for year 2001 to 2019 

Algorithms/ 

Accuracy 

Level 

Criteria Functions 

F1  F2  F3 F4 F5 F6 

HHO 

ϵf = 1.0e-04 

Average 3.91E-88 8.96E-68 4.42E-06 8.56E-04 4.68E-06 0.00E+00 

SD 1.17E-87 2.67E-67 2.29E-06 1.18E-03 1.76E-06 0.00E+00 

Worst 3.89E-87 8.91E-67 2.42E-06 1.09E-03 1.29E-06 0.00E+00 

Best 3.23E-117 8.46E-74 4.66E-06 4.48E-04 7.358E-06 0.00E+00 

Ranking 5 4 3 1 2 6 

OBL-HHO 

ϵf = 1.0e-04 

Average 2.58E-14 1.96E-11 1.71E-04 1.06E-02 4.09E-05 0.00E+00 

SD 7.50E-14 3.94E-11 1.04E-04 1.19E-02 2.34E-05 0.00E+00 

Worst 2.51E-13 1.26E-10 1.24 E-04 3.84E-02 1.51E-05 0.00E+00 

Best 9.04E-24 7.07E-15 8.74E-05 4.43E-03 3.64E-05 0.00E+00 

Ranking  5 4 2 1 3 6 
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4.2.2 Ranking Assessment 

 

This sub-section was the extension workflow under the DoE after 

Taguchi and ANOVA test been conducted in section 3.6.7. For data analysis in 

Computational Intelligence, non-parametric tests are incredibly valuable. The 

use of rank-based metrics allows for the analysis of both nominal and real data. 

To run a non-parametric test on a set of multiple issues, a result must be provided 

for each algorithm or pair of problems. Several previous studies have been 

undertaken and can be found in (Derrac et al., 2014; Ahmadianfar et al., 2020). 

 

Before applying the test to the data, developing a null or no-effect 

hypothesis is essential. It frequently supports the equality or lack of 

discrepancies between algorithmic findings and allows alternate hypotheses to 

be formed that suggest the opposite. H0 stands for the null hypothesis, whereas 

H1,...,Hn stand for the alternative hypotheses. After conducting the tests, a 

statistic that can be used to reject the null hypothesis at a predetermined 

significance level, is calculated. 

 

The Friedman test is utilised to assess and contrast the efficacy of the 

exploration and exploitation of the suggested MHAs, respectively. The validity 

of this claim can be ascertained by referring to the equations for the Friedman 

test and Chi-square, as presented below: 

�(�) =  
�(���)

�
            (4.1) 

�� =  
��

�· �·(���)
. ∑ �� − 3 · � · (� + 1)         (4.2) 
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in which N = summation of rows ; k = summation of columns;  �� = sum 

of the ranks. 

 

Table 4.2 provides a summary of the Friedman test findings acquired 

utilising the different EvoloPy functions and proposed algorithms. The HHO 

algorithm has been identified as the most efficient, with the WOA algorithm and 

its corresponding enhancement techniques, namely the LFWOA and the OBL-

HHO, exhibiting comparable performance. The determination of a statistically 

significant difference involves consulting the Chi-Square distribution table, 

which yielded a value of 11.071, with a significance level of 0.05 while the 

computation of the degree of freedom (df) entails the subtraction of k-1, where 

k is equivalent to 5. Chi-square values of X2 = 1.142 were found for F1 through 

F5, whereas X2 = -0.2142 was found for F6. Also, it was identified did not extend 

beyond the critical threholds, thereby indicating the absence of any statistically 

significant difference. Consequently, the post-hoc analysis (Bonferroni-Dunn 

procedure) is not performed.  

 

Table 4.2: Friedman ranks 

Algorithms Functions Average 

rank 

Rank 

F1 F2 F3 F4 F5 F6 

WOA 1 2 4 1 4 1 2.20 2 

LFWOA 3 3 3 3 3 2 2.83 3 

HHO 2 1 1 2 1 3 1.70 1 

OBL-HHO 4 4 2 4 2 3 3.20 3 

Sum of 

Rank, ∑ � 
10 10 10 10 10 9 
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4.3 Execution of Observed Period Assessments for Year 2001- 2019 

 

The proposed MHAs were utilised and investigated in these observed 

period datasets. The findings based on statistical model performance, optimal 

monthly releases curves via the proposed MHAs, optimal storage capacity, and 

reservoir risk analysis assessment are discussed in the next follow sections. 

 

4.3.1 Statistical Model Performances Evaluations  

 

(a) WOA 

 

As shown in Figure 4.1 (a), the RMSE value for the medium inflow was 

the highest when compared to the other two inflow categories. In the category of 

the medium inflow, the month of January had the highest RMSE at 7.92, while 

the month of April had the lowest at 4.67. Aside from this, the second category 

with the highest RMSE was the high inflow, with the highest RMSE at 2.97 in 

June and the lowest RMSE in February, when there was no high inflow input. 

The maximum RMSE value for the low inflow reached was 1.63. The average 

RMSE attained for the high, medium and low inflow was 2.04, 5.94, and 0.49, 

respectively. 
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Figure 4.1: (a) Monthly RMSE (MCM) for different inflow categories in 

WOA 

 

The monthly PBIAS for WOA is shown in Figure 4.1 (b). The leading 

value of PBIAS fell in the medium inflow category, reaching a peak of 120.3 in  

February and a lowest of 0.16 in November. In addition, the average PBIAS for 

medium inflow was 30.6. Despite the low inflow category, the average PBIAS 

was half the medium inflow category at 18.6, with August and January 

displaying the highest values at 72.1 and 54.3, respectively. The average PBIAS 

for the high inflow category was 6.4, whereas the highest PBIAS values were 

recorded in March and April, at 22,6 and 24,9, respectively. 
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Figure 4.1: (b) Monthly PBIAS (MCM) for different inflow categories in 

WOA 

 

By utilising the WOA, Figure 4.1 (c) depicts the monthly MAE in million 

cubic metre for three inflow categories. It  shows the peak of the MAE in WOA 

fell within the medium inflow category, with a value of 0.86 in February, while 

the other months attained negative values of MAE ranging from -0.01 to -0.6. In 

April, the highest MAE values reached for the categories of high inflow (0.2) 

and low inflow (-0.2). The mean absolute error (MAE) for the medium inflow 
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group was -0.21. In contrast, for the high and low inflow groups, the MAE values 

were 0.08 and -0.09, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: (c) Monthly MAE (MCM) for different inflow categories in 

WOA 

 

The R2 values for the three different inflow categories are depicted in 

Figure 4.2(a)-(c). Using the HHO algorithm, the graphs displayed a high degree 

of precision between the simulated and targeted KGD demand. R2 was found to 

be 0.9964 for the high inflow category, followed by R2 = 0.99763 for the low 

inflow category and R2 = 0.8755 for the category of medium inflow. Even though 

the category of the medium inflow had lower accuracy than the other two inflow 
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categories, evaluations with an accuracy of 0.85 or higher are still considered 

reliable. The NSE is the final component to be highlighted. The average NSE for 

the high and medium inflow categories were 0.9155 and 0.9083, respectively. 

The NSE for the low inflow category for January was, however, negative. As a 

result, the average NSE for the low inflow category was drastically distorted, but 

it was well obtained for R2. In addition, the months of April, May, July, 

September, November, and December showed no indications of low inflow.  
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Figure 4.2: R2 evaluation (a) in High Inflow, (b) in Medium Inflow (c) in 

Low Inflow for WOA algorithm from 2001 to 2019 

 

(b) LFWOA 

 

When compared to the other two inflow categories, the RMSE value for 

the medium inflow was the highest, as depicted in Figure 4.3 (a). The month of 

January had the highest RMSE of 8.13, while the month of April had the lowest 

RMSE of 4.77 in the category of medium inflow. Apart from that, the second 

highest RMSE category was the high inflow, with the maximum RMSE of 3.80 

in November and the lowest RMSE in February, when there was no high inflow 

input. For the low inflow, the maximum RMSE value was 1.63. The average 

RMSE gained for high inflow (2.04), medium inflow (5.94), and low inflow 

(0.55).  
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Figure 4.3: (a) Monthly RMSE (MCM) for different inflow categories in 

LFWOA 

 

Figure 4.3 (b) presents the monthly PBIAS for LFWOA. The PBIAS's 

peak value fell into the medium inflow category, hitting a high of 78.44 in 

February and a low of 0.29 in August. Furthermore, for medium inflow, the 

average PBIAS was 24.5. Despite being in the low inflow category, the average 

PBIAS was marginally lower than the medium inflow category at 19.4, with the 

highest values of 71.8 and 54.5 in August and January, respectively. The average 

PBIAS for the high inflow category was 4.4, with the highest PBIAS values of 

11.1 and 9.2, respectively, in April and August. 
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Figure 4.3: (b) Monthly PBIAS (MCM) for different inflow categories in 

LFWOA 

 

Figure 4.3 (c) represents the monthly MAE for three different inflow 

categories using the LFWOA. Figure 4.3 (c) shows that the peak of MAE in the 

WOA occurred in the medium inflow category, with a value of 0.69 in February, 

whereas the other months had negative MAE values ranging from -0.04 to -0.6. 

The greatest MAE values in April were 0.15 and -0.26, respectively, for the 

categories of high inflow and low inflow. The average MAE attained for medium 

inflow (-0.21), whereas the high inflow (0.08) and low inflow (-0.09).  
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Figure 4.3: (c) Monthly MAE (MCM) for different inflow categories in 

LFWOA 

 

Using the LFWOA algorithm, the graphs in Figure 4.4(a)–(c) show that 

the simulated and targeted demand at KGD are very close. The category with the 

highest inflow had the highest R2, at 0.9991. The category with the lowest inflow 

had a value of 0.9572, and the category with the medium inflow was 0.9085. The 

average NSE for high inflow is (0.915) and for the medium inflow is (0.9114). 

The NSE achieved in the low inflow category, on the other hand, was a negative 

value, which is less ideal for evaluating uncertainty. Overall, the R2 obtained in 
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LFWOA has shown a high correlation between simulated and targeted demand 

at KGD. 
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Figure 4.4: R2 evaluation (a) in High Inflow, (b) in Medium Inflow, (c) in 

Low Inflow for LFWOA algorithm 

 

(c) HHO 

 

The statistical analysis of Root Mean Square Error (RMSE) on a monthly 

basis from 2001 to 2019 is presented in Figure 4.5(a) in respect of three different 

input categories. During the month of January, it was observed that the medium 

inflow category showed the highest root mean square error (RMSE) with a 

recorded value of 3.44(MCM). Nonetheless, no noteworthy distinction was 

detected between the categories of high and low inflow. Additionally, it is worth 

mentioning that in both high and low inflow categories, April showed the highest 

RMSE values, specifically 0.54 and 0.59, respectively. The root mean square 

error (RMSE) values for medium, low, and high inflow were 1.03, 0.19, and 0.17, 

respectively. 
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Figure 4.5: (a) Monthly RMSE (MCM) for different inflow categories in 

HHO 

Figure 4.5(b) presents the uncertainty evaluation of the monthly PBIAS 

from 2001 to 2019 for three different inflow categories. In comparison to the 

medium and low inflow categories, which provided a greater average magnitude 

value for PBIAS, the high inflow categories obtained the lowest average 

magnitude range for PBIAS. As shown in Figure 4.1(b), the low inflow 

categories achieved the highest magnitude of PBIAS for August, with a value of 

79.4, and an average PBIAS of 19.4. The highest magnitude for the medium 

inflow category was recorded in January and July, with 41.2 and 40.9, 

respectively, while the average PBIAS for the medium inflow category was 15.7. 

In addition, the average PBIAS for the high inflow category was 7.7, with April 

and May reporting the highest magnitudes at 24.4 and 15.1, respectively.  
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Figure 4.5: (b) Monthly PBIAS (MCM) for different inflow categories in 

HHO 

Figure 4.5(c) displays the monthly MAE analysed by the HHO algorithm 

from 2001 to 2019 for the three distinct inflow categories. As seen from Figure 

4.1(c), positive and negative values of MAE occur, with the high inflow category 

obtaining a positive MAE value of 0.11 on average. However, April and May 

had the highest MAE, with 0.23 and 0.20, respectively. In addition, the majority 

of MAE's negative fell into the medium and low inflow categories. The average 

negative value of MAE for medium inflow reached -0.21, with January and July 

recording the highest values, -0.58 and -0.558, respectively. Moreover, the 

average negativity of MAE for the low inflow category was -0.09, with the 

highest MAE occurring in August at -0.27. 
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Figure 4.5 : (c) Monthly MAE (MCM) for different inflow categories in 

HHO 

Figure 4.6(a) - (c) represented the R2 values for the three distinct inflow 

categories. Utilising the HHO algorithm, the graphs displayed high accuracy 

between the simulated and targeted demand at the KGD. The highest R2 was 

obtained for the high inflow category with 0.9977, followed by the low inflow 

category with R2 = 0.9825 and the medium inflow category with R2 = 0.9467. 

Even though the medium inflow category achieved a lower accuracy than the 

other two inflow categories, evaluations with an accuracy greater than 0.85 are 

still considered reliable. The final component to be highlighted is the NSE. The 

average NSE for the categories of high inflow, medium inflow, and low inflow  
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were 0.9149, 0.9082, and 0.56, respectively. However, the NSE for the low 

inflow category was low because several months (May, September, November, 

and December) exhibited no indication of low inflow. 
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Figure 4.6: R2 evaluation (a) in High Inflow，(b) in Medium Inflow, (c) in 

Low Inflow for HHO algorithm 

 

(d) OBL-HHO 

 

Fig. 4.7(a) depicts the statistical evaluations of RMSE (monthly) by the 

three input categories from 2001 to 2019. In January, the medium inflow 

exhibited the highest RMSE (million cubic metre) of 5.2, despite the fact that 

high and low inflow categories did not distinguish noticeably from one another. 

Aside from this, the RMSE values for the high inflow category reached 0.49 in 

April and 0.51 in August for the low inflow category. The average RMSE for 

medium inflow was 1.39, while for low and high inflow it was 0.14 and 0.2, 

respectively. 
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Figure 4.7: (a) Monthly RMSE (MCM) for different inflow categories in 

OBL-HHO 

 

The uncertainty assessment of the monthly PBIAS from 2001 to 2019 for 

the three different inflow categories is shown in Figure 4.7(b). Figure 4.7(b) 

demonstrates that the low inflow category, with a value of 55.43 and an average 

PBIAS of 14.2, had the highest PBIAS magnitude for August. The highest 

magnitude for the medium inflow category was 61.7, and the average PBIAS for 

this category was 20.9 in January. The average PBIAS for the category of high 

inflow was 8.9, with the highest magnitudes observed in April and September at 

22.3 and 34.03, respectively. 
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Figure 4.7: (b) Monthly PBIAS (MCM) for different inflow categories in 

OBL-HHO 

 

The monthly MAE for each of the three different inflow categories from 

2001 to 2019 is depicted in Figure 4.7 (c) that the MAE occurs in the high inflow 

category, with the maximum value of 0.22 recorded in April. The MAE achieved 

in the high inflow category on average was 0.11. Additionally, the majority of 

MAE's negativity was classified as having a medium or moderate inflow. The 

highest readings of -0.72 were recorded in January, with the average negative 

MAE for medium inflow reaching -0.19. Furthermore, the average MAE for the 

low inflow category was 0.08, with August having the highest MAE of 0.23. 
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Figure 4.7: (c) Monthly MAE (MCM) for different inflow categories in 

OBL-HHO 

 

The R2 values for the three different inflow categories are shown in 

Figure 4.8(a) - (c). The graphs showed the high accuracy between the simulated 

and targeted demand at KGD by using OBL-HHO algorithm. The high inflow 

category has the highest R2 of 0.9967, followed by the low inflow category 

0.9865, and the medium inflow category 0.9098. The mean NSE values for the 

categories of high inflow, medium inflow, and low inflow categories were 

0.9151, 0.9051, and 0.5662, respectively. Despite of this, the NSE for the low 
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inflow category was low because May, July, September, November, and 

December showed no signs of low inflow. 
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Figure 4.8: R2 evaluation (a) in High Inflow, (b) in Medium Inflow (c) in 

Low Inflow for OBL-HHO algorithm  

 

The summary of statistical model performance evaluations has been 

thoroughly examined and has tabulated in Table 4.3 according to the respective 

algorithms.  Table 4.3 indicates that both HHO and enhancement of its model 

exhibited the lowest RMSE values in the high inflow category, as was also 

observed in the categories of medium inflow and low inflow. The LFWOA has 

the least PBIAS magnitude for the high inflow category. However, the results of 

PBIAS for the categories of medium inflow and low inflow increased 

significantly, ranging between 14.20 and 30.63, while the HHO and 

enhancement of its model achieved the lowest magnitudes, 15.72 and 14.20, 

respectively, for the categories of medium inflow and low inflow. The 

algorithms for high inflow were identical to those for medium inflow and low 

inflow for the MAE assessment, with no appreciable differences among the 

proposed algorithms. However, the MAE was negative for both categories of 
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inflow, resulting in an inability to draw conclusions regarding the MAE for 

medium inflow and low inflow. Additionally, the findings of R2's performances 

were above average, showing that the simulated and targeted demand was 

satisfied for all three categories. Similarly, the proposed algorithms achieved 

above-average outcomes, but because some months showed no trace of the low 

inflow category into KGD, there was a significant NSE difference between all 

three inflow categories. As a result, it gives an inconclusive summary for the 

overall ranking of the suggested algorithms, and further evaluation is necessary 

and must be examined in terms of how well those algorithms perform when it 

comes to reservoir risk analysis. 
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 Table 4.3: Summary of Statistical Performance Evaluations 

 

Average 

Statistical 

Evaluation/Inflow 

Categories/                                        

Algorithms 

RMSE  PBIAS MAE R2 NSE 

High Medium Low High Medium Low High Medium Low High Medium Low High Medium Low 

WOA 2.04 5.94 0.49 6.39 30.63 18.16 0.08 -0.21 -0.09 0.996 0.876 0.976 0.916 0.908 0.26 

LFWOA 2.04 5.94 0.51 4.42 24.50 19.44 0.08 -0.20 -0.08 0.999 0.909 0.957 0.915 0.911 0.26 

HHO 0.17 1.03 0.19 7.65 15.72 19.41 0.11 -0.21 -0.09 0.998 0.947 0.983 0.915 0.908 0.56 

OBL-HHO 0.20 1.39 0.14 8.99 20.88 14.20 0.11 -0.19 -0.08 0.997 0.910 0.987 0.915 0.905 0.57 
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4.3.2 Monthly Release Curves Correspond with Inflow Categories  

by Utilising WOA versus LFWOA  

 

By implementing WOA and LFWOA, the observed period of the release 

curves presented in month for year 2001- 2019 was shown to correspond with 

the storage capacity as depicted in Figure 4.9 (a) - (l). As shown in Figure 4.9 (a) 

- (l), the upper graphs were plotted using the WOA whereas the lower graphs 

were generated using the LFWOA. The input data were processed by separating 

the inflow categories into three and splitting the storage represented on the X-

axis into ten discrete storage, d. The maximum and minimum reservoir capacity 

Smin and Smax was calculated by utilising N as the state option and dividing the 

value by N-1 as the interval. Figure 4.9 (a) - (l) display the release curves 

presented for January to December by utilising the WOA and LFWOA under 

various storage condition limits. Figure 4.9 (a) and (b) display the January and 

February monthly release curves, respectively. For both months, the releases 

lines provide the ramp up trend towards the demand lines. As there was no 

significant high inflow during the month of February, the graph depicts only low 

and medium inflows. As depicted in Figure 4.9 (a) for WOA and LFWOA, 

respectively, during the storage level of 17.71 MCM, there was minor wastage 

during the high inflow in January. As depicted in Figure 4.9 (c) and (d) for March 

and April, there were a few instances in which the algorithms of LFWOA in 

March were oversupplied as the inflow within these storage boundaries at 10.06 

MCM to 17.71 MCM was high, without jeopardising the KGD reservoir 

constraints and resulting in the wastage condition to occur. In addition, as shown 

in Figure 4.9 (d) for April, both the WOA and LFWOA algorithms exhibit a 
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comparable pattern for the release curves for the ten discrete storage locations. 

One scenario stands out, though, where both release curves intersect at a storage 

level between 6.24 MCM and 8.15 MCM, indicating that there was still 

sufficient reservoir storage to fill it up and fulfil the demand line. For May, July, 

September, November, and December, there were no low inflow categories 

indicated in Figure 4.9 (e),(g),(i), and (k) - (l). Figure 4.9 (a) - (l), which depict 

the plots of the release curves in the low and medium inflow categories, 

respectively, revealed that the releases have been increasing towards the demand 

lines. However, most of the plots display in these figures revealed that water 

surplus or oversupply typically occurred in the high inflow category, resulting 

in the excessive release of water back into the river or sea. Therefore, this 

incidence ought to be advised and recommended for future study. The optimal 

outcome is usually achieved by the demand versus release curve that exhibits the 

least amount of water deficit. The results of the reservoir risk analysis are 

tabulated in the subsequent section of sub-section 4.3.3. 
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Figure 4.9: (a) January release curve - (l) December release curve by 

utilising WOA and LFWOA 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.8 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.00

6.000.00

1.00

2.00

3.00

4.00

5.00

6.00

6.24 8.15 10.06 11.98 13.88 15.8 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

Storage Conditions (MCM)



186 

 

4.3.3 Reservoir Risk Assessment for WOA and LFWOA 

 

In this sub-section, the outcomes of the reservoir risk assessment from 

year 2001- 2019 are discussed. The periodic reliability between the WOA and 

LFWOA were compared in Table 4.4. Between 2001 and 2019, the three 

different inflow categories resulted in a total of 228 outcomes. No specific period 

of scarcity has been identified for optimising the high inflow category, given that 

the present inflow was adequated to meet the existing demand. For the WOA, 

excess periods happened 17 times (7.46%) and for LFWOA, 15 times (6.58%). 

WOA fulfilled demand 33 times (14.47 %) and LFWOA 35 times (15.35 %) 

during the periods of high inflows. The WOA satisfied 91 times (39.91 %) of the 

medium inflow demand, while the LFWOA satisfied 97 times (42.54 %), 2.63 % 

more than the WOA. During the excess period, the WOA and LFWOA produced 

33 times (14.47%) and 29 times (12.72%), respectively. The WOA had delivered 

38 times (16.67%) and LFWOA had obtained 35 times (15.35%) during the 

shortage with a medium inflow. The WOA attained 9 times (3.95%)  and 

LFWOA gained 6 times (2.63%) in hitting the exact demands. 
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Table 4.4: Periodic Reliability performance via WOA and LFWOA 

Inflow categories Surplus period Exact period Shortage period 

WOA (times, %) 

High 17,(7.46%) 33, (14.47%) 0, (0%) 

Medium 33, (14.47%) 91, (39.91%) 38, (16.67%) 

Low 0, (0%) 9, (3.95%) 7, (3.07%) 

Total no. of release 50, (21.93%) 133, (58.33%) 45, (19.73%) 

LFWOA (times, %) 

High 15, (6.58%) 35, (15.35%) 0, (0%) 

Medium 29, (12.72%) 97, (42.54%) 35, (15.35%) 

Low 0, (0%) 6, (2.63%) 11, (4.82%) 

Total no. of release 44, (19.30%) 138, (60.52%) 45, (39.90%) 

 

Table 4.5 summarises the WOA and LFWOA model performance for the 

KGD. According to the shortage index evaluation criteria, the LFWOA had a 

shortage index value of zero in the low inflow categories, while the WOA 

achieved a value of 0.00005, which is very close to zero. In contrast, for the 

category in medium inflow, the shortage index, the WOA achieved 0.00024 

while the LFWOA achieved 0.00033, indicative the system might experience a 

water scarcity in the future. During medium and low input events, both 

algorithms could recover from failure; however, during high inflow events, 

neither algorithm could do so and would go beyond the storage capacity. Finally, 



188 

 

the vulnerability index produced the lowest value would be the more consistent 

way. The least value series begins with the WOA 0.35, 0.49, and 2.74 for 

medium, high, and low values, respectively. In contrast, the LFWOA obtained 

0.12, 0.44, and 0.55 for the low, medium, and high inflow, respectively. Except 

for the high inflow category, the LFWOA is much more robust than the WOA 

in this vulnerability criteria of evaluation reservoir risk analysis. 

 

Table 4.5: Reservoir Risk Assessment 

 

 

 

MHAs Assesments High Medium Low 

 

 

WOA 

Wastage due to excess release(%) 7.46 14.47 0 

Meeting demand (%) 14.47 39.91 3.95 

Shortage index  0.00007 0.00024 0.00005 

Vulnerability  0.49 0.35 2.74 

Resiliency  - 3.26 1.29 

 

 

LFWOA 

Wastage due to excess release(%) 6.58 12.72 0 

Meeting demand (%) 15.35 42.54 2.63 

Shortage index  0.00003 0.00033 0 

Vulnerability  0.55 0.44 0.12 

Resiliency  - 3.60 0.55 
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4.3.4 Monthly Release Curves Correspond with Inflow Categories  

by Utilising HHO versus OBL-HHO  

 

Figure 4.10 (a) - (l) depict the release curves of the HHO and OBL-HHO 

under different storage condition limits from January to December. Figure 4.10 

(a) and (b) display the monthly release curves for January and February, 

respectively. The releases have performed an escalate pattern approaching to the 

demand lines for both months. As there was no major high inflow for February, 

only low and medium inflows are depicted on the graph. As shown in Figure 

4.10 (a) for the the HHO and its enhancement model, respectively, the algorithms 

executed and produced the optimal water release curves in supplying minimum 

deficit and no excessive release occurred during these months in comparison to 

Figure 4.10 (a) and (b) implemented via the WOA and LFWOA. As shown in 

Figure 4.10 (c) and (d) for March and April, an oversupplied scenario occurred 

in March due to the utilisation of the WOA at the storage boundary of 15.80 

MCM for the high inflow category, resulting in a waste condition. In addition, 

as depicted in Figure 4.10 (d) during the month of April, the WOA exhibited an 

excessive water release at the storage level of 15.80 MCM, whereas the LFWOA 

did not demonstrate an excess loss of water. In Figure 4.10 (e),(g),(i), and (k)-

(l) during the months of May, July, September, November, and December, there 

were no low inflow category. Figure 4.10 (f) depicts a scenario where both 

release curves intersect at a storage level between 6.24 MCM and 8.15 MCM, 

demonstrating that there is still sufficient reservoir storage to fill the reservoir 

and satisfy demand. Figure 4.10 (g)-(l), which illustrates the plots of the release 

curves for the low and medium inflow categories, reveals that the releases have 
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been increasing toward the demand lines. Most plots in these figures showed that 

water surplus or overflow often occurred in the high inflow category, resulting 

in excessive water discharge back into the river or sea, as illustrated in Figure 

4.10 (g)- (k) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.00

6.000.00

1.00

2.00

3.00

4.00

5.00

6.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

(a) January Release Options



191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)



192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.00

6.000.00

1.00

2.00

3.00

4.00

5.00

6.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

Storage Conditions (MCM)



193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)



194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)

0.00

1.00

2.00

3.00

4.00

5.000.00

1.00

2.00

3.00

4.00

5.00

6.24 8.15 10.06 11.98 13.88 15.80 17.71 19.62 21.54 23.44

R
el

ea
se

 (
M

C
M

)



195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 : (a) January release curve - (l) December release curve by 

utilising HHO  and OBL-HHO 
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4.3.5 Reservoir Risk Assessment for HHO and OBL-HHO 

 

Table 4.6 presents a comparative analysis of the periodic reliability of 

HHO and OBL-HHO. Between 2001 and 2019, a total of 228 outcomes were 

generated by the HHO and its enhancement model utilising three different input 

categories. The high inflow category does not have a specified shortage period 

for optimisation purposes, as the inflow is deemed adequate to satisfy demand. 

The HHO system experienced surplus periods, which exceeded the water 

demand, on 21 times, accounting for 9.21% of the total observations. On the 

other hand, the OBL-HHO system had 28 surplus periods, representing 12.28% 

of the total observations. At times of high inflows, the HHO was able to satisfy 

demand on 30 times, which corresponds to 13.16% of the total, while the OBL-

HHO met demand 21 times, equivalent to 9.21%. The HHO convened on 88 

times, which accounted for 38.60% of the medium inflow demand. In contrast, 

the OBL-HHO convened on 47 times, representing 20.61% of the demand, 

which is 1.87 times lower than the HHO. During the surplus period, the HHO 

gained 15.35% (35 times) and OBL-HHO generated  27.19% (62 times). During 

the period of scarcity with a medium inflow, the HHO was observed to have a 

delivery rate of 16.67%, which amounted to 38 times. On the other hand, the 

OBL-HHO was found to have an acquisition rate of 23.68%, which equated to 

54 times. Within the low inflow category, the HHO and its enhancement model 

exhibited a frequency of 3.95% (9 times) and 4.39% (10 times), respectively. 

With respect to the specific criteria for the low inflow categories, it was observed 

that the HHO and enhancement of its model met on 3.07% (7 times) and 2.63% 

(6 times), respectively.    
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Table 4.6: Periodic Reliability performance via HHO and OBL-HHO 

Inflow categories Surplus period Exact period Shortage period 

HHO (times, %) 

High 21, (9.21%) 30, (13.16%) 0, (0%) 

Medium 35, (15.35%) 88, (38.60%) 38, (16.67%) 

Low 0, (0%) 7, (3.07%) 9, (3.95%) 

Total no. of release 56, (24.56%) 125, (54.83%) 47, (20.61%) 

OBL-HHO (times, %) 

High 28, (12.28%) 21, (9.21%) 0, (0%) 

Medium 62, (27.19%) 47, (20.61%) 54, (23.68%) 

Low 0, (0%) 6, (2.63%) 10, (4.39%) 

Total no. of release 49, (21.49%) 163, (71.49%) 16, (7.02%) 

 

Table 4.7 provides a summary of the KGD performances via HHO and 

enhancement of its model. The reliability of the model is evidenced by its 

success and failure rates.  Based on the criteria used in the shortage index 

evaluation, the disparity between high and low inflow for the HHO was not 

found to be statistically significant. However, for the OBL-HHO, the respective 

values were determined to be 0.00008 and 0.00004. Nonetheless, the HHO and 

OBL-HHO systems garnered the highest scarcity for medium inflow, suggesting 

that water scarcity may be a potential challenge for the system in the times ahead. 

Hence, it is imperative to assess the system's capacity to recuperate from a 



198 

 

breakdown. The HHO model showed resilience in the face of medium and low 

inflow events, however, it exhibited an inability to recover during high inflow 

events, leading to a breach of the storage constraint. The resilience-based 

criterion for the occurrence of OBL-HHO was analogous to that of HHO. Hence, 

it may be imperative for us to heighten our vigilance towards this unfavourable 

phenomenon. In a more dependable manner, the vulnerability index showed the 

lowest value. The series exhibiting the minimum values for the HHO initiates 

with medium inflows,0.34; high inflows, 0.63; and low inflows, 1.23. In contrast, 

the OBL-HHO exhibits values for medium inflows, 0.20; high inflows, 0.49; and 

low inflows, 0.96, as observed in the series. The findings of this study on 

reservoir risk assessment indicate that the OBL-HHO model exhibits greater 

resistance compared to the HHO model across all three inflow categories. During 

the analysis period from 2001 to 2019, the HHO model outperformed the OBL-

HHO model in terms of periodic reliability performance, and the system was 

better able to "bounce back" after a failure. 

 

Table 4.7: Reservoir Risk Assessment 

MHAs Assessments High Medium Low 

 

HHO 

Wastage due to excess release(%) 9.21 15.35 0 

Meeting demand (%) 13.16 38.60 3.07 

Shortage index  0.00007 0.00024 0.00005 

Vulnerability  0.63 0.34 1.23 

Resiliency  - 3.24 0.78 
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Table 4.7(continued): Reservoir Risk Assessment 

MHAs Assessments High Medium Low 

 

OBL-

HHO 

Wastage due to excess release(%) 12.28 27.19 0 

Meeting demand (%) 9.21 20.61 2.63 

Shortage index  0.00008 0.000021 0.00004 

Vulnerability  0.49 0.20 0.96 

 Resiliency  - 2.02 0.60 

 

4.4 Execution and Validation of  Reservoir Risk Assessment for year 

1987 - 2008  

 

The proposed MHAs were implemented in these observed period 

datasets of years 1987-2008 and the findings will be discussed. The proposed 

MHAs are compared to previous reservoir periodic reliability and risk analysis 

assessment studies. 

 

Table 4.8 presents an overview of the performance of various meta-

heuristic algorithms in the context of the KGD. The investigation spanned a total 

of 264 months and yielded findings indicating that the HHO and enhancement 

of its model produced periodic reliability that satisfied downstream demand (i.e., 

exact period) at rates of 63.26% and 56.44%, respectively. In contrast, the WOA 

and LFWOA algorithms provided rates of 56.06% and 69.70%, respectively. 

Subsequently, a comparison was made between the aforementioned findings and 

the previous research conducted by Hossain in 2013.  Hossain (2013) reported 

that the ABC outcomes met the demand by 61.36%,  PSO (59.47%), real-coded 



200 

 

GA (55.68%), and lastly binary GA (23.5%). The results indicate that the 

LFWOA, HHO, ABC, PSO, OBL-HHO, WOA, GA (real coded), and GA 

(binary) exhibit the highest levels of periodic reliability, in descending order. 

During the surplus period, where excess release leads to wastage, the HHO 

showed a yield of 12.88%. Similarly, the OBL-HHO and WOA exhibited a 

comparable percentage of 15.91% in excess of the expected yield. The ABC and 

PSO both have shown a similar level of reliability, achieving a yield of 12.1%. 

The binary GA exhibited the highest level of wastage at 28.4%, whereas the real-

coded GA resulted in a wastage of 14.4%. The LFWOA exhibited the lowest 

percentage of excess release, measuring at 8.71%. The study delineates the 

succession of the scarcity phase in the optimal release strategy, commencing 

with the placement of minimal efficacy. The placements were evaluated using 

various optimisation algorithms, including binary GA, real-coded GA, PSO, 

WOA, OBL-HHO, ABC, HHO, and LFWOA. The results indicate that LFWOA 

had the highest percentage at 48.10%, followed by HHO at 29.92%, and ABC at 

26.54%. The lowest percentage was recorded for OBL-HHO at 21.59%. 

 

Table 4.8: Comparison of the Periodic Reliability performance 

Optimisation Surplus period Exact Period Shortage 

Period 

Total no. of 

release 

WOA 42 times 

(15.91%) 

148 times 

(56.06%) 

74 times 

(28.03%) 

264 

LFWOA 23 times 

(8.71%) 

184 times 

(69.70%) 

57 times 

(21.59%) 

264 
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Table 4.9 shows the reservoir risk analysis performance from 1987 to 

2008. The lowest vulnerability index demonstrated the robustness of the model. 

The vulnerability index value that the HHO achieved was 160.10. The algorithm 

with the lowest vulnerability index was the Binary-GA, which scored 136.91. 

Additionally, it was noted that there was no statistically significant difference 

between the Binary-GA and OBL-HHO in respect of vulnerability indices, 

which had values of 136.91 and 137.83, respectively. The highest vulnerability 

index was that provided by the ABC, with a score of 220.94, followed by 

LFWOA, which obtained 197.60, the PSO, real coded-GA, and WOA, 

Table 4.8 (continued): Comparison of the Periodic Reliability 

performance 

Optimisation Surplus period Exact Period Shortage 

Period 

Total no. of 

release 

HHO 34 times 

(12.88%) 

167 times 

(63.26%) 

63 times 

(23.86%) 

264 

OBL-HHO 42 times 

(15.91%) 

149 times 

(56.44%) 

73 times 

(27.65%) 

264 

ABC 32 times 

(12.1%) 

162 times 

(61.36%) 

70 times 

(26.54%) 

264 

PSO 32 times 

(12.1%) 

157 times 

(59.47%) 

75 times 

(28.41%) 

264 

GA  

(real coded) 

38 times 

(14.4%) 

147 times 

(55.68%) 

79 times 

(29.92%) 

264 

GA  

(binary) 

75 times 

(28.4%) 

62 times 

(23.5%) 

127 times 

(48.1%) 

264 
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attained values of 149.66 and 203.27, respectively. The findings of the shortage 

index are also tabulated in Table 4.9. The algorithms suggested in this study, the 

WOA, LFWOA, HHO, and OBL-HHO, had the least index, each with a value 

of 0.01, according to the results of the shortage index. The values obtained for 

the ABC, PSO, and real coded-GA are 0.68, 0.67, and 0.67, respectively, and do 

not exhibit significant differences. The binary-GA, with a value of 0.73, was the 

system with the highest potential for failure at the time. As a result, the following 

resilience evaluation is critical to understanding how quickly the algorithms 

recover from failure. With values of 1.88 and 1.56, respectively, the LFWOA 

and HHO algorithms have the highest ability to recover from system failure. The 

OBL-HHO and WOA, which generated values of 1.01 and 0.62, respectively, 

and the ABC algorithm, which provided a value of 0.16, were the subsequent 

robust models in terms of resilience factor. Following values were that, PSO 

(0.15) and the real coded -GA (0.14). The Binary-GA algorithm exhibited the 

lowest efficacy in system recovery, as indicated by its score of 0.09. 
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Table 4.9: Comparison of the Reservoir Risk Assessments 

 

 

4.5 Statistical Model Performances for Investigation of Future Climate 

Change Impact under Climatic Scenarios 

 

In this sub-section, the statistical model performances for the predictants, 

water demand and evaporation, are described.  

 

4.5.1 For the Predictants  

 

This sub-section evaluated the KGD reservoir under the CMIP5 climate 

scenarios RCP 2.6, RCO 4.5, and RCP 8.5, respectively. From 1991 to 2005, 

Table 4.10 presents the summary of the base period statistical performances 

Algorithm Vulnerability (MG) Shortage Index Resiliency 

WOA 149.66 0.01 0.62 

LFWOA 197.6 0.01 1.88 

HHO 160.10 0.01 1.56 

OBL-HHO 137.83 0.01 1.01 

ABC 220.94 0.68 0.16 

PSO 203.27 0.67 0.15 

GA  

(real coded) 199.15 0.67 0.14 

GA  

(binary) 136.91 0.73 0.09 
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between the predictants and predictors variables for the downscaling procedure. 

The SVR-Poly Kernel function (PKF) obtained the highest coefficient of 0.62, 

followed by the ANN which attained 0.49, and the SVR-RBF Kernel function 

gained the lowest coefficient with 0.28 for the training of the Pr predictant 

variable. In addition, for the Temperature predictants, the PKF attained the 

highest correlation at 0.57, 0.69, and 0.60, respectively for the Mean, Maximum, 

and Minimum Temperature. In contrast, the ANN revealed the best correlation 

for the Solar Radiation predictants during model training yet thePKF served as 

the aim of validation, and it attained the least error. In short, throughout the 

statistical downscaling process and assessments it was revealed that the 

downscaling strategy via the PKF delivered more convincing output due to the 

results obtained for the testing, which obtained the lowest error of RMSE and 

MAE. Thus, PKF was selected to downscale the climatic scenarios. 

 

Table 4.11 illustrates the summary of the climatic scenarios for the 

statistical performance of the PKF for year 2020-2099. The downscaling 

statistical output acquired during training and testing periods had an average R 

value of more than 0.70, while the RMSE and MAE averaged 0.50. 
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Table 4.10: Summary of the Base Period Statistical Performance for the Predictants - Predictors 

Training 

Statistical Performance/ 

Predictants 

ANN SVR-PKF SVR-RBF 

R MAE RMSE R MAE RMSE R MAE RMSE 

Pr 0.49 0.47 0.59 0.62 0.27 0.44 0.28 0.44 0.55 

Ta 0.50 0.71 0.86 0.57 0.56 0.82 0.28 0.77 0.95 

Tas_Max 0.60 0.73 0.91 0.69 0.47 0.72 0.32 0.75 0.95 

Tas_Min 0.22 0.82 1.01 0.60 0.53 0.79 0.31 0.76 0.95 

Solar Radiation 0.81 0.53 0.67 0.53 0.45 0.85 0.29 0.56 0.96 

Testing 

Pr 0.40 0.47 0.56 0.39 0.48 0.60 0.19 0.48 0.61 

Ta 0.23 0.91 1.13 0.26 0.82 1.00 0.26 0.82 1.00 

Tas_Max 0.30 0.85 1.04 0.30 0.92 1.14 0.03 0.90 1.10 

Tas_Min 0.21 0.94 1.12 -0.03 1.13 1.38 0.14 0.92 1.11 

Solar Radiation 0.26 0.96 1.27 0.37 0.72 1.08 0.27 0.62 1.11 
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Table 4.11: Summary of the Climatic Scenarios for the Statistical Performance for year 2020 - 2099 (Poly Kernel Functions) 

Training 
Statistical 
Performance/ 
Predictants 

RCP2.6 RCP4.5 RCP8.5 

R MAE RMSE R MAE RMSE R MAE RMSE 

Precipitation 0.8119 0.2493 0.3921 0.7583 0.1883 0.2519 0.909 0.2188 0.2895 

Mean Temperature 0.74088 0.7433 0.9683 0.7112 0.218 0.2941 0.8802 0.2722 0.3498 

Max. Temperature 0.8436 0.1539 0.2017 0.5538 0.1759 0.2332 0.7046 0.1996 0.2558 

Min. Temperature 0.697 0.4053 0.5242 0.847 0.3376 0.4501 0.909 0.1168 0.1531 

Solar Radiation 0.6957 0.2419 0.3416 0.6671 0.2399 0.3551 0.6935 0.2384 0.3468 

Testing 

Precipitation 0.9243 0.0462 0.0597 0.6923 0.222 0.2777 0.8709 0.264 0.3423 

Mean Temperature 0.6799 0.8379 1.0777 0.6777 0.2491 0.3181 0.8597 0.3102 0.3877 

Max. Temperature 0.7773 0.1913 0.2459 0.4072 0.2147 0.2715 0.5927 0.2404 0.3016 

Min. Temperature 0.5741 0.5117 0.6329 0.8091 0.4164 0.5218 0.8852 0.1347 0.1727 

Solar Radiation 0.4286 0.5257 0.6681 0.5307 0.313 0.4495 0.4358 0.3584 0.491 
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Tan et al. (2014) revealed that a group of GCMs could produced more 

competent results for the future planning of water management. This is in 

contrast to a previous study by Nourani et al. (2020), which only conducted a 

single GCM. As a result, in this study it was conducted by utisling four 

ensembles of GCMs. Table 4.12 illustrates the average proportion (%) of 

predictants corresponded to RCPs and base period. Based on the table, 

precipitation generally showing the highest proportion with 11.88% under RCP 

2.6 giving that the inflow to the KGD is the major contributing element when 

compared to the other predictant factors. Even the next contributing element is, 

mean temperature, which is estimated to have a moderate impact on water 

demand forecasting. In addition, the highest average proportion and contributing 

predictant under RCP4.5 to the base period was minimum temperature gained 

4.39 %, and the mean temperature obtained 2.26% followed by the least 

proportion at 2.12% which is precipitation. Lastly, the highest average 

proportion under the RCP 8.5 was precipitation which has attained the highest 

percentage of 7.87% and 3.52% for mean temperature. In short, the precipitation 

and mean temperature were exerting the greatest influence on the future KGD 

optimisation operation under RCP 2.6 and RCP 8.5.  

 

Table 4.12: Average Proportion (%) of Predictants Corresponded to RCPs 

and Base Period 

RCP Precipitation Maximum 

Temperature 

Minimum 

Temperature 

Mean 

Temperature 

2.6 11.88 0.037 3.73 8.02 

4.5 2.12 1.23 4.39 2.26 

8.5 7.87 1.79 0.70 3.52 
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Figure 4.11 illustrates the monthly mean inflow (MCM) corresponded to 

RCPs and Base Period, while Figure 4.12 illustrates the inflow variance 

corresponded to RCPs and Mean Base Period (MCM).  

 

 

 

 

 

 

 

 

 

Figure 4.11: Monthly mean inflow (MCM) corresponded to RCPs and 

Base Period 

 

Figure 4.12: Inflow variation corresponded to RCPs and Mean Base 

Period (MCM) 
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4.5.2 For the Estimation of Water Demand  

 

Table 4.13 displays the performance of the statistical model for 

predicting future water demand based on the Eqns. (3.9) - (3.11) by employing 

the ANN under various RCPs. In summary, the statistical performance under 

RCP 2.6, RCP 4.5, and RCP 8.5 provided an acceptable range of R, with the 

majority with ability to perform more than 0.55 on average. As a result, the future 

KGD optimisation operation can rely on the predicted water demand based on 

the temperature factor provided by the ANN. 

 

Table 4.13: Statistical model performance for predicted of future water 

demand based on temperature factor under climate change scenarios 

Predicted future water demand based on temperature factor via ANN 

Statistical 

test 

Maximum 

Temperature 
Mean Temperature Minimum Temperature  

R
C

P
2

.6 

R
C

P
4

.5 

R
C

P
8

.5 

R
C

P
2

.6 

R
C

P
4

.5 

R
C

P
8

.5 

R
C

P
2

.6 

R
C

P
4

.5 

R
C

P
8

.5 

Training 

R 0.808 0.608 0.940 0.766 0.576 0.887 0.763 0.744 0.929 

MAE 0.096 0.134 0.051 0.113 0.147 0.093 0.126 0.115 0.055 

RMSE 0.14 0.182 0.078 0.165 0.188 0.123 0.178 0.157 0.085 

Testing 

R 0.811 0.574 0.941 0.766 0.536 0.859 0.751 0.731 0.930 

MAE 0.092 0.160 0.058 0.112 0.170 0.113 0.143 0.124 0.061 

RMSE 0.14 0.201 0.084 0.154 0.208 0.144 0.176 0.169 0.091 
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4.5.3 For the Estimation of Evaporation  

 

The performance of the statistical models for the estimation of 

evaporation under climatic scenarios via empirical methods and the prediction-

based method (SVR) are shown in Table 4.14(a) and (b). 

 

Even though the Kharuffa method  had achieved the highest R results , 

as shown in Table 4.14(a), this method was not chosen because the MAE attained 

the highest error compared to others. Moreover, the Kharuffa method was 

primarily employed in dry locations, while the Malaysia condition is wet and 

tropical area (Poyen et al., 2018). Next, evaporation under future RCPs scenarios 

was studied using the Turc method. In the training phase, the Turc method had 

the greatest coefficient, 0.8453, compared to Kharuffa methods, 0.7408. Under 

RCP 4.5, the Turc method achieved a consistent R coefficient of 0.8468 with 

minimal variation in the training process. Additionally, the prediction based 

SVR methods were employed to validate the Kharuffa and Turc methods which 

are presented in Table 4.14(b). According to Tukimat et al. (2012), Muniandy et 

al. (2016) and Muhammad et al. (2019),  the  Turc method is more reliable than 

temperature-based methods especially for the study area at  Peninsular Malaysia. 

Furthermore, prior research has shown that the Turc method is better for use in 

Malaysia since it is more reliable to be applied in moist and wet region (Jensen 

et al., 1990; Tukimat et al., 2012; Goh et al., 2021), and sub-humid region (Birara 

et al., 2021). As a result, in this study, the future KGD optimisation operation 

will use the Turc method to estimate evaporation under various climate change 

scenarios. 
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Table 4.14: (a) Performance of statistical tests for empirical methods 

Statistical 
test 

Empirical Methods  

Kharuffa method Turc method 

(Temperature based) (Radiation based) 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Training  

R 0.7408 0.7112 0.8802 0.739 0.8453 0.9528 

MAE 0.7433 0.218 0.2722 0.3584 0.2804 0.158 

RMSE 0.9683 0.2941 0.3498 0.4722 0.377 0.2137 

Testing 

R 0.6799 0.6777 0.8597 0.6807 0.8468 0.9465 

MAE 0.8376 0.2491 0.3102 0.4056 0.3053 0.1761 

RMSE 1.0777 0.3181 0.3877 0.5272 0.3873 0.2299 

 

Table 4.14 : (b) Performance of statistical tests for prediction-based 

methods 

Statistical 
test 

Prediction-based Methods  

SVR Prediction  
(in respect to Temperature) 

SVR Prediction 
(in respect to Temperature and 

Radiation)  
RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5  

Training   

R 0.5525 0.5767 0.7505 0.5984 0.5761 0.7386  

MAE 0.3352 0.3435 0.2684 0.3213 0.3383 0.2951  

RMSE 0.4179 0.4111 0.3407 0.4032 0.41 0.3479  

Testing  

R 0.5944 0.5732 0.6865 0.6244 0.5731 0.6846  

MAE 0.3354 0.3582 0.3078 0.3231 0.3503 0.3096  

RMSE 0.411 0.424 0.3836 0.3985 0.4214 0.3882  
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4.6 Climate Change Impact on Future Water Demand Based on 

Temperature Factor  

 

In section 2.3 the justifications has been given for the climatic change 

impacts reservoir discharge activity, ans the impact ultimately also affect the 

trend of the rainfall-runoff indirectly, thus affecting the river input as well as 

temperature factor. Hence, the motivation for capturing the temperature factor 

in the future water demand is pertinent to investigate in order to close up the gap 

between water supply and demand for future scenarios. In section 3.5.3, a 

mention was made on the estimation of the future water demand based on 

temperature factor via ANN. The statistical results of the training and testing 

were then discussed in section 4.5.2 under different climate scenarios. In order 

to investigate the potential impact of climate change on the future operations of 

the KGD, the estimation of the future water demand associated with three 

distinct temperature factors including the maximum, mean, and minimum 

temperatures, are thus anticipated to be developed and analysed with different 

climate change scenarios. Hence, the outcomes of the future climate change 

impact based on temperature factor of the future water demand for the years 

2020-2099 are discussed in the subsequent sections and the arrangement begins 

with Scenario 1: base period (demand similar as observed period); Scenario 2: 

maximum temperature of water demand; Scenario 3: mean temperature of water 

demand; and lastly, Scenario 4: minimum temperature of water demand. The 

purpose of execution of the base period was to understand how the proposed 

algorithms behaved in observed period during simulation and simulation-

optimisation compared with future timeline. 
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4.6.1 Scenario 1: Base Period 

 

This sub-section describes the outcome obtained for Scenario 1. 

According to Figure 4.13, simulation vs simulation-optimisation comparisons 

were conducted for the base period of 1991 to 2005. The proposed algorithms 

exhibit the same optimal release trend line for the base period. Comparing 

simulation vs simulation-optimisation, Table 4.15 presents the reservoir risk 

analysis assessment for the base period. In comparison to simulation-

optimisation, the periodic reliability of simulation attained a much lower 

percentage. In addition, the shortage index for the proposed MHAs outperformed 

the simulation release by a small margin.  

 

Figure 4.13: Comparison of base period releases (1991-2005)
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Table 4.15: Comparison between simulation vs simulation-optimisation for reservoir risk analysis evaluation in base period 

 

Algorithms/ 

Reservoir risk analysis 

evaluation 

Simulation Optimisation 

WOA LFWOA HHO OBL-HHO 

Periodic Reliability 8.89% (15 times) 22.22% (40 times) 22.22% (40 times) 22.22% (40 times) 22.22% (40 times) 

Vulnerability 0.2175 0.3142 0.3142 0.3142 0.3142 

Shortage Index 0.000468 0.000713 0.000713 0.000713 0.000713 

Resiliency 6.09 4.77 4.77 4.77 4.77 
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4.6.2 Scenario 2: Maximum Temperature  

 

In this section, the findings of proposed MHAs are described. This 

comprise a reservoir risk analysis assessment, optimal monthly release curves, 

and optimal storage capacity.  

 

(a) Reservoir release operation under various RCPs 

 

Figure 4.14 (a) – (c) illustrates the monthly release curves derived 

from the WOA and LFWOA. According to the observation, neither the 

the WOA nor the LFWOA release curves exhibit excessive release 

scenarios. In Scenario 2, according to RCP 2.6, the periodic reliability of 

the WOA and LFWOA to meet exact demand was 37.60% and 37.40%, 

respectively. The monthly release curves for Scenario 2 under RCP 4.5 

indicated that the simulation was incapable of meeting the exact demand 

line while simultaneously generating an excess release. Consequently, 

the WOA and LFWOA in Scenario 2 under RCP 4.5 are capable of 

meeting the water demand for July to September with periodic reliability 

of 30.0% for both algorithms. Nevertheless, based on the graphs, a policy 

of excessive release might emerge in Scenario 2 under RCP 8.5, as the 

WOA and LFWOA were unable to achieve a minimal deficit state for 

several months (the algorithms go beyond the water demand line). 
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(a)  RCP 2.6 

 

 

(b)  RCP 4.5 
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(c)  RCP 8.5 

Figure 4.14: WOA vs LFWOA for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 2 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 

 

Figure 4.15 (a) – (c) illustrates the monthly release curves for Scenario 2 

under the HHO and OBL-HHO for RCP 2.6, RCP 4.5, and RCP 8.5. Using the 

HHO and OBL-HHO in accordance with RCP2.6 resulted in an excessive release 

in Scenario 2. In Scenario 2, under RCP 2.6, the periodic reliability of the HHO 

and its enhancement model to meet exact demand was 22.23% and 27.8 %, 

respectively. Comparing the HHO and its enhancement model to the WOA and 

LFWOA, the percentage of periodic reliability under RCP 2.6 dropped. The 

monthly release curves for Scenario 2 under RCP 4.5 revealed that the simulation 

was unable to match the exact demand line, leading to the exceed reservoir 

release policy. In comparison, the HHO and OBL-HHO in Scenario 2 under RCP 
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29.90%, respectively, as shown in Figure 4.15 (a). Due to the inability of the 

HHO and its enhancement model to establish a minimal deficit state for Scenario 

2 under RCP 8.5, the graphs reveal that an excessive release policy may be found 

in various months (January, February, July to September). 

 

(a) RCP 2.6 
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(b) RCP 4.5 

 
 
 

(c) RCP 8.5 

 
Figure 4.15: HHO vs OBL-HHO for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 2 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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(b) Monthly Reservoir Storage Capacity under various RCPs  

 

Figure 4.16 (a) illustrates the monthly storage capacity at the 

KGD under RCP 2.6 for Scenario 2 that could maintain its safety levels 

till the Mid-Future (2050-2079). In this Figure 4.14 (a) the WOA 

encountered a storage breach of 24.18 MCM approximately in the year 

2077 and onwards, whereas the HHO, OBL-HHO, and LFWOA 

experienced a storage failure approximately in the year 2079 and 

onwards at level 25.35 MCM, 25.63 MCM, and 23.97 MCM, 

respectively. On the other hand, Figure 4.16 (b) presents the monthly 

storage capacity under RCP 4.5 for Scenario 2. In contrast to RCP 2.6, in 

which the storage failure occurred in 2062 (Mid Future), it occurred 10 

years earlier under this scenario. The OBL-HHO at level 24.04 MCM 

was the first MHA to encounter a storage failure, followed by the 

LFWOA at level 24.99 MCM, HHO at level 24.72 MCM, and the WOA 

at level 24.35 MCM. However, Figure 4.16 (c) shows the monthly 

storage capacity under RCP 8.5 for Scenario 2, demonstrating that the 

same storage failure occurred in the Mid Future, nearly in the year 2075 

and onwards at a storage level of 23.86 MCM, which had a similar 

situation under RCP 2.6. In terms of the monthly storage capacity, the 

proposed MHAs do not exhibit consistency under Scenario 2. This will 

be further elaborated until all the MHAs have described the outcomes of 

the optimal monthly storage capacity for Scenario 3 and Scenario 4. 
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(a) For Maximum Temperature Scenario (Scenario 2) under RCP 2.6  

 

 

(b) For Maximum Temperature Scenario (Scenario 2) under RCP 4.5 
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(c) For Maximum Temperature Scenario (Scenario 2) under RCP 8.5 

Figure 4.16: Monthly storage capacity (MCM) for Scenario 2 (a) RCP 2.6, 

(b) RCP 4.5 and (c) RCP 8.5 

 

4.6.3 Scenario 3: Mean Temperature  

 

(a) Reservoir Simulation vs Reservoir Simulation-Optimisation of the 

reservoir release operation under various RCPs 
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periodic reliability for the WOA and LFWOA to satisfy exact demand 

was 36.15% and 33.13 %, respectively. The monthly release curves for 

Scenario 3 under RCP 4.5 revealed once more that the simulation was 

unable to satisfy the exact demand line while simultaneously generating 

an excessive release. Consequently, the WOA and LFWOA in Scenario 

3 under RCP 4.5 attained the optimal monthly release policy without 

surpassing the downstream water demand, achieving 94.69% and 

87.81%, respectively. However, based on the graphs an excessive release 

policy could occur in Scenario 3 under RCP 8.5 as the WOA and 

LFWOA were unable to achieve a minimal deficit state. 

 

(a) RCP 2.6 
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(b) RCP 4.5 

 

(c) RCP 8.5 

 

Figure 4.17: WOA vs LFWOA and for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 3 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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Figure 4.18 (a) – (c) depicts the monthly release curves for Scenario 3 

applying the HHO and enhancement of its model for RCP 2.6, RCP 4.5, and 

RCP 8.5.  Scenario 3 involving the use of HHO and OBL-HHO in accordance 

with RCP2.6 resulted in an excessive release. In Scenario 3, under RCP 2.6, the 

periodic reliability of the HHO and enhancement of its model to meet exact 

demand was 18.54 % and 29.04 %, respectively. In comparison to the WOA, the 

percentage of periodic reliability under RCP 2.6 for the HHO and enhancement 

of its model had decreased by half. The monthly release curves for Scenario 3 

under RCP 4.5 have shown that the simulation could not meet the exact demand 

line, resulting in the exceeding of reservoir release policy. In contrast, the HHO 

and enhancement of its model in Scenario 3 under RCP 4.5 met the ideal monthly 

release policy without exceeding the downstream water demand, attaining 93.4% 

and 96.25%, respectively. The graphs show that an excessive release policy may 

be performed because the HHO and enhancement of its model were unable to 

generate a minimal deficit state for Scenario 3 under RCP 8.5. 

 

(a) RCP 2.6 
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(b) RCP 4.5 

 

(c) RCP 8.5 

 

Figure 4.18: HHO vs OBL-HHO for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 3 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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(b) Monthly Reservoir Storage Capacity under various RCPs  

 

Figure 4.19 (a) – (c) depicts the monthly storage capacity at the 

KGD for Scenario 3 under RCP 2.6 that could maintain its safety levels 

until the mid-future safety levels (2050-2072). In this Figure 4.19 (a), the 

WOA and LFWOA experienced a storage failure of 24.16 MCM in year 

2074 onwards, while the HHO and OBL-HHO experienced storage 

failures in year 2075 onwards at levels of 24.53 MCM and 23.91 MCM, 

respectively. In contrast to Scenario 2 of RCP 4.5, which is depicted in 

Figure 4.19 (b), Scenario 3 of RCP 4.5 revealed a highly significant 

outcome in which no MHAs encountered storage failure events. This was 

due to the fact that both future water demand scenarios had different 

temperatures, with Scenario 2 having the maximum temperature and 

Scenario 3 having the mean temperature. Figure 4.19 (c) displayed the 

monthly storage capacity under RCP 8.5 for Scenario 3, indicating that 

the initial phase of storage failure occurred in the near future onwards. 

However, this overestimation of the mitigation plan under RCP 8.5 for 

Scenario 3 has yet to occur at the current KGD reservoir operation and 

can be attributed to the current climate change at KGD, which relates to 

the RCPs in CMIP5 (AR5).  
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(a) For Mean Temperature Scenario (Scenario 3) under RCP 2.6 

 

 (b) For Mean Temperature Scenario (Scenario 3) under RCP 4.5 
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 (c) For Mean Temperature Scenario (Scenario 3) under RCP 8.5 

Figure 4.19: Average monthly storage capacity (MCM) for Scenario 3 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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2.6 were inadequate to meet the water demand. The periodic reliability 

to meet exact water demand at downstream for the WOA and LFWOA 

were 34.69% and 38.11 %, respectively under RCP 2.6. Based on the 

observation made in Scenario 4 under RCP 2.6, the simulation illustrated 

the excessive release to the downstream that resulted in the release flow 

returning to the river/sea. The monthly release curves for Scenario 4 

under RCP 4.5 have shown that the simulation was unable to satisfy the 

exact demand line and yet produced the situation of exceeding release to 

the reservoir policy. As a result, the WOA and LFWOA in Scenario 4 

under RCP 4.5 obtained the optimal monthly release policy without 

exceeding the downstream water demand and obtained 91.15% and 

96.67 %, respectively. For Scenario 4 under RCP 8.5, the WOA and 

LFWOA were unable to produce a minimal deficit state, and based on 

the graphs, an excessive release policy could emerge. As a result, 

Scenario 4 under RCP 8.5 is regarded as a critical state, and additional 

recommendations are detailed in Chapter 5. 
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(a) RCP 2.6 

 

(b) RCP 4.5 
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(b) RCP 8.5 

Figure 4.20: WOA vs LFWOA for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 4 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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reliability for the HHO was slightly higher. The monthly release curves 

for Scenario 4 under RCP 4.5 indicated that the simulation was unable to 

satisfy the exact demand line and generated the exceed release to 

reservoir policy, which is comparable to the HHO level of 37.92%. In 

contrast, the OBL-HHO in Scenario 4 under RCP 4.5 reached the optimal 

monthly release policy without exceeding downstream water demand, 

achieving 92.40 %. The HHO and enhancement of its model were unable 

to establish a minimal deficit state for Scenario 4 under RCP 8.5, and 

based on the graphs, an excessive release policy could occur. 

 

(a)  RCP 2.6 
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(b) RCP 4.5 

 

(c) RCP 8.5 

Figure 4.21: HHO vs OBL-HHO for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in Scenario 4 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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(b) Monthly Reservoir Storage Capacity under various RCPs  

 

From 2050 to 2076, Figure 4.22 (a) demonstrates the average 

monthly storage capacity in KGD for Scenario 4 under RCP 2.6 to 

balance the storage capacity of the KGD between its maximum and 

minimum. However, the HHO encountered storage failure in the year 

2076 onwards at the level of 23.87 MCM, followed by the OBL-HHO 

and LFWOA in the year 2077 onwards at the storage levels of 26 MCM 

and 23.62 MCM, respectively, and then WOA, which faced failure later 

than the other three algorithms, in the year 2079 onwards at the level of 

23.66 MCM. Similar to Scenario 2 and Scenario 3 of RCP 4.5, Scenario 

4 of RCP 4.5 presumed a highly significant outcome in which no MHAs 

experienced a storage failure event which depicts in Figure 4.22 (b). 

Figure 4.22 (c) represents the average monthly storage capacity for 

Scenario 4 under RCP 8.5, revealing the initial phase of storage failure 

occurred in the near future which had a similar storage event failure to 

Scenario 3. 
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(a) For Minimum Temperature Scenario (Scenario 4) under RCP 2.6 

 

(b) For Minimum Temperature Scenario (Scenario 4) under RCP 4.5 
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(c)  For Minimum Temperature Scenario (Scenario 4) under RCP 8.5 

Figure 4.22: Average monthly storage capacity (MCM) for Scenario 4 (a) 

RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5 
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In Scenario 3, there is no evidence whether increase or decline trend was 

achieved for the shortage period, especially under RCP 8.5, as there does not 

show any proportion in reaching the exact water demand. Tables 4.16 - 4.19 

depict an overflow period under RCP 8.5 reaching the maximum proportion for 

Scenario 3 and Scenario 4, respectively. This denotes the KGD received more 

inflows than in Scenario 3 and Scenario 4. Consequently, if this circumstances 

occurs, Scenario 3 and Scenario 4 requires additional consideration, particularly 

under RCP 8.5. Based on Tables 4.16 - 4.19, the WOA, LFWOA, HHO, and 

OBL-HHO under RCP 2.6 allocated a surplus event weighting of 63.13%, 

71.77%, 71.77 % and 69.69%, respectively in Scenario 3. Besides, the  surplus 

event under RCP 4.5 for WOA, LFWOA, HHO, and OBL-HHO generated 

1.35%, 6.88%, 3.54%, and 1.25%, respectively in Scenario 3.  

 

According to Tables 4.16 - 4.19, there were few shortage events under 

RCP 2.6 and RCP 4.5 of Scenario 4, with averages of 0.42% and 0.83%, 

respectively. However, there was a significant variation between the surplus 

events in Scenario 4 under RCP2.6 and RCP 4.5 with the weightage of 6.56% 

and 66.77 %, respectively. Overall, the periodic reliability obtained under 

Scenario 3 and Scenario 4 were in average of 90%, respectively. In order to be 

well-prepared and reduce the possibility of losses in terms of lives and assets, 

decision-makers at KGD should be cognizant of these scenarios, especially the 

Scenarios 2 and Scenario 3 under all RCPs that could occur in the future.
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Table 4.16: Periodic Reliability by utilising WOA 
Periodic Reliability/RCPs RCP2.6 RCP4.5 RCP8.5 

Maximum Temperature-Scenario 2, (%, times) 

Surplus Period 61.25%; (588) 76.46%; (734) 61.15% ;(587) 

Exact Period 37.60% ;(361) 13.96%; (134) 17.50% ; (168) 

Shortage Period 1.15% ; (11) 9.58% ; (92) 21.35% ; (205) 

Mean Temperature-Scenario 3, (%, times) 

Surplus Period 63.13%; (606) 1.35%; (13) 100%; (960) 

Exact Period 36.15%; (347) 94.69%; (909) 0 

Shortage Period 0.73%; (7) 3.96%; (38) 0 

Minimum Temperature-Scenario 4, (%, times) 

Surplus Period 65.00%; (624) 6.77%; (65) 100%; (960) 

Exact Period 34.69%; (333) 91.15%; (875) 0 

Shortage Period 0.31%; (3) 2.08%; (20) 0 
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Table 4.17: Periodic Reliability by utilising LFWOA 
Periodic Reliability/RCPs RCP2.6 RCP4.5 RCP8.5 

Maximum Temperature-Scenario 2, (%, times) 

Surplus Period 61.46%; (590) 66.25%; (636) 58.02% ;(557) 

Exact Period 37.40% ;(359) 30.00%; (288) 25.83% ; (248) 

Shortage Period 1.15% ; (11) 3.75% ; (36) 16.15% ; (155) 

Mean Temperature-Scenario 3, (%, times) 

Surplus Period 71.77%; (689) 6.88%; (66) 100%; (960) 

Exact Period 18.54%; (178) 87.81%; (843) 0 

Shortage Period 9.69%; (93) 5.31%; (51) 0 

Minimum Temperature-Scenario 4, (%, times) 

Surplus Period 61.04%; (586) 3.33%; (32) 100%; (960) 

Exact Period 38.13%; (366) 96.67%; (928) 0 

Shortage Period 0.83%; (8) 0 0 
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Table 4.18: Periodic Reliability by utilising HHO 
Periodic Reliability/RCPs RCP2.6 RCP4.5 RCP8.5 

Maximum Temperature-Scenario 2, (%, times) 

Surplus Period 71.88%; (690) 76.46%; (734) 61.15% ;(587) 

Exact Period 23.23% ;(223) 13.96%; (134) 17.50% ; (168) 

Shortage Period 4.90% ; (47) 9.58% ; (92) 21.35% ; (205) 

Mean Temperature-Scenario 3, (%, times) 

Surplus Period 71.77%; (689) 3.54%; (34) 100%; (960) 

Exact Period 18.54%; (178) 93.54%; (898) 0 

Shortage Period 9.69%; (93) 2.92%; (28) 0 

Minimum Temperature-Scenario 4, (%, times) 

Surplus Period 61.88%; (594) 8.54%; (82) 100%; (960) 

Exact Period 37.92%; (364) 90.21%; (866) 0 

Shortage Period 0.21%; (2) 1.25%; (12) 0 
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Table 4.19: Periodic Reliability by utilising OBL-HHO 
Periodic Reliability/RCPs RCP2.6 RCP4.5 RCP8.5 

Maximum Temperature-Scenario 2, (%, times) 

Surplus Period 71.67%; (688) 66.35%; (637) 61.15% ;(587) 

Exact Period 27.81% ;(267) 29.90%; (287) 17.40% ; (167) 

Shortage Period 0.52% ; (5) 3.75% ; (36) 21.46% ; (206) 

Mean Temperature-Scenario 3, (%, times) 

Surplus Period 69.69%; (669) 1.25%; (12) 100%; (960) 

Exact Period 29.06%; (279) 96.25%; (924) 0 

Shortage Period 1.25%; (12) 2.50%; (24) 0 

Minimum Temperature-Scenario 4, (%, times) 

Surplus Period 79.17%; (760) 7.60%; (73) 100%; (960) 

Exact Period 20.52%; (197) 92.40%; (887) 0 

Shortage Period 0.31%; (3) 0  0  



243 

 

According to Table 4.20 and Table 4.21, the reservoir risk assessment 

was conducted using the proposed MHAs to investigate the impact of climate 

change on the future KGD operations under RCP 2.6, RCP 4.5, and RCP 8.5, 

with distinctive future water demand based on temperature factor. As shown in 

Table 4.20, the LFWOA performed marginally better than the WOA in Scenario 

2 in terms of resiliency, as the higher value indicates the system's ability to 

recover from a failed operation. In addition, there was no significant variance 

between the WOA and LFWOA in terms of vulnerability. In Scenario 3, the 

WOA have shown improved risk analysis assessment ability. Under RCP 8.5, 

however, both algorithms produced pessimistic results, rendering the system 

incapable of recovering from the failure. Then comes Scenario 4, wherein the 

LFWOA is more resilient than the WOA under RCP 2.6. However, theLFWOA 

revealed pessimistic results at RCP 4.5 and RCP 8.5 since the resiliency criteria 

could not be evaluated. 

 

According to Table 4.21, there are no significant differences between the 

HHO and enhancement of its model in terms of vulnerability criteria for Scenario 

2. However, the OBL-HHO performed admirably for RCP 2.6 and RCP 4.5 in 

Scenario 2. In Scenario 3, the HHO showed the lowest vulnerability in 

comparison to the OBL-HHO. Under RCP 8.5, the pessimistic outcome occurred, 

and both algorithms were incapable of examining the resiliency. In Scenario 4, 

the HHO and OBL-HHO under RCP 4.5 and RCP 8.5, respectively, were unable 

to assess the resiliency criterion based on the pessimistic results obtained, which 

are identical to Table 4.20. As a result, an extensive assessment was conducted 

on the average water storage resilience indicator (WSRavg) to examine the 
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resilience criterion, particularly for the worst-case scenarios, as tabulated in 

Table 4.22. The negative value of the (WSRavg) indicated the  reservoir system 

may be a violate in certain period, as illustrated in the aforementioned optimal 

reservoir release curves via proposed MHAs. 
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Table 4.20: WOA vs LFWOA comparison of the reservoir risk assessment under various RCPs based on temperature water demand 

Temperature Based 

Water Demand (WD)/ 

Reservoir risk analysis  

Maximum Temperature, Scenario 2 Mean Temperature ,Scenario 3 Minimum Temperature, Scenario 4 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

WOA 

Vulnerability 0.6093 0.4782 0.1907 0.6933 0.1176 0.61146 0.6890 0.5764 0.6833 

Shortage Index 0.001787 0.002070 0.0003 0.002497 4.72E-07 0.0044 0.002574 3.22E-05 0.005671 

Resiliency 8.82 1.46 0.82 29.43 15.79 - 56 6 - 

LFWOA 

Vulnerability 0.6006 0.5804 0.2022 0.6511 0.008547 0.61146 0.7189 1.4688 0.6833 

Shortage Index 0.001866 0.002018 0.0002731 0.002415 1.32E-08 0.004418 0.002515 2.96E-05 0.005671 

Resiliency 32.64 8 1.60 6.18 8.63 - 112 - - 
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Table 4.21: HHO vs OBL-HHO comparison of the reservoir risk assessments under various RCPs based on temperature water demand  

Temperature Based 

Water Demand (WD)/ 

Reservoir risk analysis  

Maximum Temperature, Scenario 2 Mean Temperature, Scenario 3 Minimum Temperature, Scenario 4 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

HHO 

Vulnerability 0.5074 0.4782 0.1907 0.5345 0.001774 0.6115 0.7131 0.5638 0.6833 

Shortage Index 0.001876 0.002070 0.00030 0.002415 1.56E-10 0.004418 0.002491 3.76E-05 0.005671 

Resiliency 4.74 1.46 0.82 1.52 32.07 - 103 14 - 

OBL-HHO 

Vulnerability 0.5325 0.5795 0.1866 0.6358 0.05556 0.61146 0.5570 0.6438 0.6833 

Shortage Index 0.001826 0.002018 0.00030 0.002592 5.24E-08 0.004418 0.002491 2.96E-05 0.005671 

Resiliency 24 4 0.14 17 10.50 - 8.33 - - 
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Table 4.22: Extensive assessment in terms average water storage resilience (WSRavg) indicator under various RCPs based on temperature 

water demand  

Temperature Based 

Water Demand (WD)/ 

Extensive assessment  

Maximum Temperature, Scenario 2 Mean Temperature, Scenario 3 Minimum Temperature ,Scenario 4 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

WOA 

WSRavg -0.98 -0.97 -0.97 -0.98 -0.99 0.30 -0.98 -0.99 0.32 

LFWOA 

WSRavg -0.98 -0.97 -0.98 -0.98 -0.99 0.30 -0.99 -0.99 0.32 

HHO 

WSRavg -0.98 -0.97 -0.97 -0.98 -0.99 0.30 -0.98 -0.99 0.32 

OBL-HHO 

WSRavg -0.98 -0.97 -0.97 -0.98 -0.99 0.30 -0.98 -0.99 0.32 
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4.7 Execution of Future Climate Change Impact Based on Forecasted 

Population Growth  

 

The results of the investigation into the effects of climate change based 

on forecasted population growth and future water demand using the suggested 

MHAs are described in this sub-section. In the subsequent sub-sections, the 

impact on the monthly release operation and monthly storage capacity will be 

described. 

 

4.7.1 Monthly Release Operation under various RCPs  

 

As depicted in Figure 4.23(a) – (c), the simulation vs simulation-

optimisation utilising the WOA versus LFWOA and the HHO versus OBL-HHO 

under RCP 2.6, RCP 4.5, and RCP 8.5 of the anticipated population growth of 

water demand is given. For Figure 4.23 (a) at RCP 2.6, the LFWOA achieved 

7.81% periodic reliability but the WOA only achieved 4.17 %. Both algorithms 

are incapable of optimising reservoir release. In addition, for the simulated bar 

chart (shown in grey) that occurred under RCP 2.6, it was unable to achieve the 

ideal reservoir release in accordance with the forecasted population growth of 

the water demand line and only achieved 2.6% in periodic reliability using the 

ANN. 

 

 In addition, the WOA and LFWOA were tasked with examining the 

appropriate release policy under RCP 4.5 for the anticipated increase in water 

demand due to population growth. Figure 4.23 (b) under RCP 4.5 shows that the 
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WOA under RCP 4.5 increased by 6.88% to meet water demand, however the 

LFWOA under RCP 4.5 decreased by 6.77% compared to RCP 2.6. With an 

ANN result of 15.94%, the simulated release met the exact water demand far 

more precisely. 

 

The next step is to evaluate the appropriate release curves using the WOA 

and LFWOA under RCP 8.5. However, the obtained results were incapable of 

producing a minimum deficit state. This is the weakness of the algorithms in the 

critical scenario state. Therefore, recommendations for future research are 

required for this case. 

 

(a)  WOA vs LFWOA 
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(b) RCP 4.5 

 

 (c) RCP 8.5 

Figure 4.23: WOA vs LFWOA for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in forecasted 

population growth factor (a) RCP 2.6, (b) RCP 4.5, and (c) RCP 8.5 
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For Figure 4.24 (a) – (c) at RCP 2.6, the HHO attained a periodic 

reliability of 4.58% whereas the OBL-HHO achieved just 3.02%. Neither 

algorithm is able to optimise reservoir release. In addition, the HHO and 

enhancement of its model were engaged in analysing the optimal RCP 4.5 release 

policy for the forecasted water demand owing to population growth. Figure 4.23 

(b) demonstrates that the HHO under RCP 4.5 surged by 5.31 % to meet water 

demand, however, the OBL-HHO under RCP 4.5 did not change significantly 

from RCP 2.6 and reached 3.44 %. According to RCP 8.5, neither the HHO nor 

OBL-HHO could produce a minimum deficit state. The LFWOA, HHO, WOA, 

and OBL-HHO, in that order, achieved the highest periodic reliability when 

comparing these proposed algorithms for the forecasted population growth 

of water demand under RCP 2.6. The sequence for getting the optimum periodic 

reliability under RCP 4.5 is then followed by the WOA, LFWOA, HHO, and 

finally OBL-HHO. For RCP 8.5, no algorithm is able to supply the water demand 

satisfactorily. 
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(b) RCP 4.5   

 

(c)  RCP 8.5 

Figure 4.24: HHO vs OBL-HHO for the comparison of simulation vs 

simulation-optimisation of optimal reservoir releases in forecasted 

population growth factor (a) RCP 2.6, (b) RCP 4.5, and RCP 8.5 
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4.7.2 Monthly Reservoir Storage Capacity under various RCPs  

 

Figure 4.25 (a) depicts the average monthly storage capacity at the KGD 

for future population growth and water demand projections under RCP 2.6. The 

HHO and OBL-HHO experienced storage failure in the year 2077 at the level of 

24.02 MCM and 25.08 MCM, respectively, followed by the LFWOA in the year 

2079 at the level of 24.09 MCM, and finally the WOA, which encountered 

storage failure later than the other three algorithms, in the year 2082 at the level 

of 23.96 MCM. Figure 4.25 (b) demonstrates a similar outcome to Scenario 3 

and Scenario 4 of RCP 4.5, in which no MHAs had a storage failure event. Figure 

4.25 (c) depicts the average monthly storage capacity for Scenario 4 under RCP 

8.5, indicating that the initial phase of storage failure has occurred in the Near 

Future, which experienced a storage event failure identical to Scenario 3 and 

Scenario 4. 

 

(a) Storage for Forecasted Population Growth under RCP 2.6 
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(b) Storage for Forecasted Population Growth under RCP 4.5 

 

(c) Storage for Forecasted Population Growth under RCP 8.5 

Figure 4.25: Average monthly storage capacity (MCM) for forecasted 

population growth of water demand (a) RCP 2.6, (b) RCP 4.5, and (c) 

RCP 8.5 
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4.7.3 Reservoir Risk Assessment  

 

According to Tables 4.23 and 4.24, the outcomes of the reservoir 

optimisation operation at the KGD were determined by comparing the proposed 

algorithms with the execution of water demand based on population growth/land 

use land cover change. As presented in Table 4.23, the majority of the scarcity 

periods occurred under RCP2.6 and RCP4.5, with an average of 95.08% and 

94.12%, respectively. In addition, the surplus period under RCP 8.5 reached 

100 %. Overall, based on population growth and land use land cover changed, 

most proposed algorithms are unable to meet the water demand under all RCPs 

scenarios by only achieving between 3.02 and 7.8 %.  

 

Based on Table 4.24, the reservoir risk analysis performance based on 

the population growth of water demand yielded a pessimistic result in which the 

vulnerability attained was much higher than resiliency, which elevates this 

scenario and requires additional recommendations to improve the study in this 

context. In addition, the novelty of this study is to highlight the investigation of 

climate change's impact on future reservoir operations at KGD and to provide 

valuable knowledge to the reservoir's decision-maker, whose actions and 

management of the reservoir in response to this matter should be more focus due 

to the erratic in order to mitigate or dissuade any disaster event.  
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Table 4.23: Comparison of Periodic Reliability under several RCPs  

Algorithms Periodic Reliability/RCPs RCP2.6 RCP4.5 RCP8.5 

WOA Surplus Period 0 0 100% ;(960 times) 

 Exact Period 4.17% ;(40 times) 6.88%; (66 times) 0 

 Shortage Period 95.83% ; (920 times) 93.13% ; (894 times) 0 

LFWOA Surplus Period 0%; (0 time) 0%; (0 times) 100%; (960 times) 

 Exact Period 7.81%; (75 times) 6.77%; (65 times) 0 

 Shortage Period 92.19%; (885 times) 93.23%; (895 times) 0 

HHO Surplus Period 0.10%; (1 time) 0.21%; (2 times) 100%; (960 times) 

 Exact Period 4.58%; (44 times) 5.31%; (51 times) 0 

 Shortage Period 95.31%; (915 times) 94.48%; (907 times) 0 

OBL-HHO Surplus Period 0 0.94%; (9 times) 100%; (960 times) 

 Exact Period 3.02% ;(29 times) 3.44%; (33 times) 0 

 Shortage Period 96.98% ; (931 times) 95.63% ; (918 times) 0 
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Table 4.24: Comparison of the Reservoir Risk Assessments under various 

RCPs  

 

 

 

 

 

Algorithm RCP 2.6 RCP 4.5 RCP 8.5 

WOA 

Vulnerability 3.52 4.00 3.10 

Shortage Index 0.04160 0.05069 0.03523 

Resiliency 0.03 0.06 - 

LFWOA 

Vulnerability 3.69 4.00 3.04 

Shortage Index 0.04228 0.05089 0.03390 

Resiliency 0.03 0.06 - 

HHO 

Vulnerability 3.55 3.93 3.06 

Shortage Index 0.0420 0.05064 0.03404 

Resiliency 0.01 0.05 - 

OBL-HHO 

Vulnerability 3.50 3.85 3.10 

Shortage Index 0.04207 0.05050 0.03404 

Resiliency 0.02 0.04 - 
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4.8 Summary 

 

In this sub-section, the model performances of the respective MHAs are 

explained briefly and discussed in relation to the observed and climate period 

reservoir risk analysis assessments and the monthly storage capacity. All the 

optimisation of the reservoir policy was done by setting up a slightly tolerance 

to the objective function which also known as penalty function in order to 

achieve the trade-off of the KGD optimisation operation policy.   

 

4.8.1 Relationship between Reservoir Risk Assessment and MHAs for 

Observed Period Assessments 

 

 This paragraph focuses mostly on a summary of the observed period 

evaluation for the years 1987-2008. Based on Table 4.25, each algorithm 

revealed its advantages and disadvantages when subjected to the reservoir 

optimisation analysis. This table provides alternatives for the dam operator or 

stakeholder to choose between reliability and resilience to optimise the operation 

of the KGD. For instance, based on the results acquired from 1987 to 2008, the 

sequence with the lowest reliability was the GA binary, but at the same time, it 

had the highest resilience sequence, demonstrating its ability to recover from 

reservoir operation failure. In addition, the ABC showed the most vulnerability 

and sensitivity in terms of data interpretation, particularly when coping with the 

absence of partially observed datasets. In view of the two examples provided for 

the years 1987 and 2008, the advice to the dam operator or stakeholder is to 

avoid choosing these algorithms to conduct the optimisation operation policy 
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due to the inconsistent effectiveness of the algorithms and the limitations of these 

modern evolutionary algorithms (without the strategy of exploration and 

exploitation simultaneously). In contrast, the overall findings obtained by 

utilising the MHAs for the years 1987-2008 indicated an optimistic conclusion 

for the dam operator to evaluate based on the priority of the trade-off between 

reliability and resilience or other possible combinations of reservoir risk indices. 

 

 In contrast, this paragraph elaborates mostly on the observed assessments 

for the years 2001-2019. The algorithms exhibited variation in the order of 

reservoir risk analysis assessments for all inflow categories. These observed 

period datasets for years 2001-2019 served as the base period scenario and also 

were utilised for the climate assessment to generate the future variables such as 

rainfall, temperature, evaporation, and demand. With these inputs that were 

incorporated with the observed period datasets, the proposed MHAs were 

executed and had the reservoir risk assessment performed in order to investigate 

the climate assessment for the future KGD operation management and planning. 

Furthermore, the dam operator or stakeholder can decide which algorithm is 

suited for the current KGD operation strategy based on the reservoir risk indices 

and inflow conditions that are most important to them. For instance, during the 

high inflow category condition, the dam operator or stakeholder can look for the 

OBL-HHO algorithm to execute the KGD operation policy in order to fulfil the 

objective functions of KGD without violating the storage condition and, at the 

same time, meeting the exact demand period in the downstream by placing the 

highest priority between reliability and vulnerability. However, for the resilience 

index of high inflow, the final outcome showed all identical ranking due to being 
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unable to recover from the system if facing any failure event. Table 4.25 provides 

the dam operator or stakeholder with an option for constructing their policy 

based on their prioritised reservoir risk assessments. 
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Table 4.25: Comparison of the Reservoir Risk Assessment  for the Observed Period for year 2001-2019 and for year 1987-2008 
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4.8.2 Relationship between Reservoir Risk Climate Assessments and 

Monthly Storage Capacity via MHAs under various RCPs Based on 

Temperature and Forecasted Population Growth Factors 

 

 This paragraph focuses primarily on RCP 2.6. This emission pathway, 

commonly referred to as "Low emissions" or too optimist future event is an 

example of a scenario that would result in very low concentrations of greenhouse 

gases (GHGs). The future in this scenario is low energy intensity, CO2 emissions 

remain at current levels until 2020, then drop and turn negative in 2100, with a 

world population of 9 billion people, reducing fossil fuel use, and a 40% 

reduction in methane emissions (Van Vuuren et al., 2011). Table 4.26 compares 

the ranking of the respective algorithms in terms of individual reservoir risk 

assessment in accordance with RCP 2.6 of Scenario 2, Scenario 3, Scenario 4, 

and the forecasted population growth of future water demand. The findings were 

then further analysed and simultaneously interpreted with reference to Figure 

4.16(a), Figure 4.19(a), Figure 4.22(a), and Figure 4.25(a). Since the 

vulnerability indices of the WOA fall in the lowest sequence number for 

Scenario 2 and Scenario 3 of RCP 2.6 compared to other algorithms, this 

indicates that the WOA is extremely vulnerable and sensitive to climatic datasets. 

This may be observed in Figure 4.16(a) which demonstrates that the monthly 

storage capacity has failed roughly from year 2077 onwards which is much 

earlier than the other three algorithms happened roughly after two years for 

Scenario 2. Consequently, the LFWOA was utilised in this study to alleviate the 

limitations of WOA in order to increase the efficacy of the algorithms by 

providing a more accurate monthly storage capacity and reservoir risk analysis 
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assessment in terms of resilience and vulnerability for Scenario 2 of RCP 2.6. In 

addition, Figure 4.19 (a) depicts the monthly storage capacity has failed 

approximately in year later 2074 for the WOA and LFWOA for Scenario 3 of 

RCP 2.6.  This can be seen in Table 4.26, where the WOA attained the lowest 

sequence for Scenario 2 and Scenario 3 in terms vulnerability indices. However, 

in terms of resilience indices, the WOA has the competence to recover from the 

storage failure as is shown in Table 4.26 for Scenario 3. In contrast to Scenario 

2 and Scenario 3,  the lowest sequence of the vulnerability in Scenario 4 showed 

that the LFWOA was the most vulnerable and sensitive based on Table 4.26. 

This may be observed in Figure 4.22 (a) which demonstrates the LFWOA has 

failed monthly storage capacity roughly in year 2077, but it is capable of 

rebounding back from the storage failure as indicated in Table 4.26 in which the 

resilience indices generated the confidence level by achieving the second highest 

sequence. Besides, the WOA performed in forecasted population growth of 

future water demand happened an odd event in which the storage capacity goes 

beyond the minimum storage capacity during 2067 to 2073 as depicted in Figure 

4.25 (a). Even though the WOA occurred in this odd event, resilience indices for 

the forecasted population growth of future water demand scenario showed the 

highest capability to recover from the failure as shown in Table 4.26. In a similar 

scenario of future water demand, the LFWOA attained the lowest sequence of 

the vulnerability indices as tabulated in Table 4.26, which indicates the algorithm 

was the most vulnerable and sensitive to the dataset, yet the resilience indices 

showed the competency to recuperate from the storage failure.  
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 This paragraph focuses primarily on RCP 4.5. The future occurrence in 

this scenario, called as an "intermediate emission" is compatible with reducing 

grassland and agricultural use because of productivity gains and dietary changes, 

constant methane emissions, and a slight increase in CO2 emissions before the 

reduction begins about 2040. Scenario 3, Scenario 4, and forecasted population 

growth of future water demand as represented in Figure 4.19 (b), Figure 4.22 (b), 

and Figure 4.25 (b) did not experience any monthly storage failures. Yet, to keep 

the balance of the trade-offs at the KGD operation, the optimal decision of the 

reservoir operation shall be aware as there is a possibility of facing the storage 

failure event when an extreme event occurs. However, the LFWOA was the 

algorithm with the lowest sequence of vulnerability for Scenario 2. As shown in 

Table 4.26, the monthly storage failure in the year 2062 and beyond (mid-future) 

for Scenario 2. 

 

In conclusion, this paragraph focuses on RCP 8.5. This scenario is 

referred to as "High emissions" or an overly pessimistic future event because it 

is compatible, an escalating event of the methane emissions, a massive reliance 

on fossil fuels, a high energy intensity with a world population of 12 billion by 

2100, and an increase in croplands and grasslands caused by a growth in 

population. The monthly storage failure occurred too quickly at the beginning of 

the near future for Scenario 3, Scenario 4, and forecasted population growth of 

future water demand which are displayed in Figure 4.19 (c), Figure 4.22 (c) and 

Figure 4.25 (c). Besides, the lowest sequence of vulnerability was the LFWOA 

for Scenario 2, which according to Figure 4.16 (c) and Table 4.26 occurred in 

year 2062 onwards. Referring to the reservoir risk analysis assessment indices 
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of vulnerability and resilience yields a convincing and reliable conclusion 

regarding the respective scenario events corresponding to the MHAs 

effectiveness.  The ranking that showed all identical indicates that all the 

proposed MHAs do not show any significant difference and obtained in overall 

similar final outcome. 
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Table 4.26: Comparison of Reservoir Risk Assessments under various RCPs Based on Temperature and Forecasted Population Growth  
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

In this study, the meta-heuristic algorithms (MHAs) such as the WOA, 

LFWOA, HHO, and OBL-HHO, were proposed for computing and simulating 

the initial model’s response using the observed datasets by generating the current 

reservoir release operation (Objective 1). It was then further taken to optimise 

the current reservoir release operation for the observed periods until they attained 

the ideal objective functions (Objective 2). Carrying it further along, the 

objective functions, decision variables, constraints, and penalty functions of the 

reservoir optimisation procedure were determined and established to evaluate 

the reservoir risk analysis for the observed period assessment and climate 

assessment (Objective 3).  

 

The final outcomes for the evaluation assessment for year 2001-2019 

were described. The LFWOA had the highest periodic reliability in the high 

inflow category for meeting exact demand, at 15.35%, followed by the WOA 

(14.47%), HHO (13.16%), and the OBL-HHO (9.21%). For the vulnerability in 

the high inflow category, it was shown that the HHO was still persuaded to 

conduct the reservoir optimisation operation, as it achieved the highest sequence; 

this showed that the model was robust and imbued with efficacy. However, the 
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resilience metric for high inflow categories did not produce any optimistic 

results; this indicating that the system may not be able to recover from any 

reservoir failure event. As a result, the stakeholder or policymaker should be 

more concerned and vigilant. Some recommendations on this have been 

provided in the final paragraph in this section. The LFWOA has the highest 

percentage of periodic reliability for the medium inflow category to meet exact 

demand, at 42.54 %, followed by the WOA (39.91 %), HHO (38.60 %), and 

OBL-HHO (20.54 %). The resilience metric for the medium inflow category 

which achieved the performances in the same sequence to the periodic reliability. 

In terms of medium inflow category for the vulnerability metric, the algorithms 

OBL-HHO, HHO, WOA, and LFWOA have shown to be the most robust. 

 

A reservoir risk analysis was performed and compared to validate the 

proposed MHAs and other heuristic algorithms developed in the prior work in 

terms of their efficacy performances for the years 1987-2008. The LFWOA 

exhibited the highest percentage of periodic reliability at 69.70%, with the HHO 

followed closely at 63.26%. The ABC and PSO algorithms showed periodic 

reliability percentages of 61.36% and 59.47%, respectively. The OBL-HHO and 

WOA algorithms exhibited periodic reliability percentages of 56.44% and 

56.06%, respectively. The GA-RC algorithm showed a periodic reliability 

percentage of 55.65%, while the GA algorithm exhibited the lowest periodic 

reliability percentage at 23.5%. However, the proposed MHAs were incapable 

of reaching the lowest vulnerability. In respect of shortage index and resilience, 

however the algorithms results have shown that they have outperformed those in 

previous prior studies conducted.  
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Even though there was inconsistency among the MHAs in respect of 

reservoir risk assessments for both observed periods (1987-2008 and 2001-

2019), the outcome of this sub-section of the observed periods were used to 

enhance the understanding of water resources management by implementing 

reservoir optimisation into the KGD operation in order to maximise the benefits 

and simultaneously satisfy the objective functions of KGD. Consequently, the 

dam operator or stakeholder can control the indices of the reservoir risk analysis 

for the current KGD operation by prioritising current climate events. By 

preserving the equilibrium between the proposed MHAs and reservoir risk 

analysis indices, the stakeholder can select the optimal KGD operation by 

referring to the summary of findings for the observed period assessments. For 

instance, to select the optimal algorithm between reliability and vulnerability, 

etc. 

 

 Even if greenhouse gas emissions were to be stopped, many parts of 

climate change and its accompanying effects will persist for millennia. As global 

warming intensifies, the likelihood of abrupt or irreversible consequences 

increases. Thus, the continuing investigation of the optimisation of the future 

reservoir operation under various climatic scenarios was conducted by 

leveraging the proposed MHAs (Objective 4). The comparison between the 

reservoir simulation (ANN) and reservoir simulation-optimisation (MHAs) were 

carried out in terms of examined the reservoir risk analysis evaluation for climate 

assessments as well as the monthly storage capacity. In addition, a few scenarios 

of the future water demand were developed and predicted based on a close 

proximity of real condition: (i) Temperature Scenarios and (ii) Forecasted 
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Population Growth.  Scenario 1 was developed for the base period investigation 

and the water demand was identical to the observed period assessment. Apart 

from that, the temperature scenarios of future water demand were segregated 

into three scenarios: (a) Scenario 2: Maximum Temperature; (b) Scenario 3: 

Mean Temperature and lastly (c) Scenario 4: Minimum Temperature.  

 

 This sub-section under climate assessments provide a summary of the 

temperature scenarios for future water demand incorporated with RCPs events 

(Objective 4).   There were no monthly storage failures in any of the scenarios 

examined under RCP 4.5. However, the results of all RCP 2.6 scenarios 

indicated that monthly storage capacity failures occurred from the Mid-Future 

decade onwards into the Far Future. According to the vulnerability indices, the 

WOA was the most vulnerable in this event; nevertheless, the resilience indices 

revealed the ability of the WOA managed to recover from the storage capacity 

failure. In addition, some worst-case scenarios were identified under RCP 8.5 in 

Scenario 3 and Scenario 4, respectively, for the temperature scenarios of future 

water demand, which showed that the proposed MHAs were unable to achieve 

the minimal deficit state due to the high precipitation, resulting in a high inflow 

into the KGD. Moreover, the high emissions event of an escalating methane 

emissions and a massive reliance on fossil fuels contributed to the breakdown of 

the monthly storage capacity in Scenario 3 and Scenario 4 under RCP 8.5 in the 

earliest stages of the Near Future. Yet, under RCP 8.5 of Scenario 2 there was 

supposedly, a similar storage capacity breakdown beginning in 2062, way later 

than Scenario 3 and Scenario 4 which demonstrates that the suggested MHAs 



271 

 

operated adequately with the Scenario 2’s datasets as compared to Scenario 3 

and Scenario 4. 

 

Next, the proposed MHAs were implemented to accommodate the 

forecasted population growth of future water demand incorporated with the 

RCPs events (Objective 4). Due to an increase in croplands and grasslands 

caused by population growth (LULCC maps), the current reservoir release 

operation policy was unable to supply the minimal deficit state in order to meet 

the forecasted population growth of future water demand. Thus, in the following 

section, a few recommendations have been highlighted. According to RCP 4.5, 

there were no monthly storage failures in terms of monthly storage capacity for 

the forecasted population growth of future water demand. However, there was 

an uncommon occurrence where the monthly storage capacity goes beyond the 

minimum storage capacity from year 2067 to 2073 under RCP 2.6. Lastly, the 

monthly storage failure dropped significantly under RCP 8.5 in the near future 

time. 

 

In summary, this study has accomplished the four objectives established 

in Chapter 1, and it is believed that the research gaps and issues raised and 

discussed in Chapters 1 and 2 earlier have been adequately addressed. The 

research gaps of the the previous studies conducted at KGD had not included 

any investigation of the impact of climate change. As such, the ensembled GCMs 

have been applied in this study for the investigation of the the climate impact at 

KGD operation in future timeline. Furthermore, a near approximation of realistic 

circumstances which were based on the temperature factors and forecasted 
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population growth for future water demand have been developed to investigate 

and optimise the future KGD operations. Lastly, the proposed MHAs in this 

study were seek for the development and enhancement from the drawbacks of 

the algorithms that used in previous studies (e.g., GA, PSO and ABC) by 

applying the strategy of exploitation and exploration simultaneously. 

 

5.2 Limitations and Recommendations 

 

Some limitations of this study have been identified during the execution 

of the KGD optimisation operation for the observed period and investigation of 

the impact of climate change on KGD operation. First, the sedimentation 

variable, which may impact the reservoir's storage capacity, was not taken into 

account because the historical data are either inaccessible or unavailable. 

Followed by the next limitation was the investigation of climate change impact 

under the various RCPs. Due to a shortage of CMIP 5 data for this study region, 

the predictors variables for RCP 6.0 were insufficient for inclusion in this study, 

as by executing an unfair possible combination of predictants-predictor variables 

it would have resulted in a greater degree of uncertainty regarding the final 

outcome. As a result, the investigation of the future KGD operation was limited 

to three RCPs except RCP 6.0. Additionally, there was inconsistency among the 

MHAs in respect of reservoir risk assessments for both observed periods. Hence, 

the pitfall of the proposed MHAs can be further enhance in the following 

paragraph. 
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With the limitations arising, hence, a few future recommendations have 

suggested in this paragraph to improve this research which includes two sub-

divisions that relate to the proposed MHAs in connection to the observed period 

and climatic assessments. Firstly, a technical execution approach by integrating 

(hybridisation) or utilising other algorithms (with a similar nature of strategy of 

exploitation and exploration) to further examine the critical events obtained in 

this study, particularly under the RCP 4.5 of Scenario 3 and Scenario 4 for the 

monthly optimal release operation. The monthly storage capacity failure and 

optimal release operation at KGD under RCP 8.5 of Scenario 2, Scenario 3, and 

Scenario 4 can be improved by adopting hedging rules in order to have the 

highest possibilities of meeting the demand by minimising the reliability period 

and simultaneously reduce scarcity during failure periods (vulnerability). 

Secondly, the investigation could be expanded by implementing the most recent 

GCMs of CMIP 6 to analyse and compare the impact of climate change on the 

future reservoir optimisation operation findings with those of the current studies 

conducted at KGD using ensembles GCMs of CMIP 5. 

 

Finally, this study has provided a new insights of the reservoir policy for 

the stakeholder or policymakers at KGD to cope the extreme events which was 

influenced by the climate change to the future optimal KGD operation and at the 

same time to satisfy the forecasted population growth of future water demand at 

the KGD. Nevertheless, this would necessitate increasing the KGD storage 

capacity, implementing a new release policy, relocating or constructing of a new 

structure either in the upper stream of the KGD or an underground dam, which 

was not within the control of the scholars or researchers of this topic, but the new 
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implementation of the policy shall be created by policymakers. However, 

scholars can further investigate to enhance the current study as mentioned in 

previous paragraph. In short, the outcome of this study is to provide the options 

of the proposed MHAs for the dam operator or policymaker to prioritise which 

indices of the reservoir risk assessments correlate to the present climate event to 

be adopted to meet the optimal KGD release operations. 
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