
 

 

i 

 

INTRUSION DETECTION MODELS USING ENHANCED 

DENOISING AUTOENCODERS AND LIGHTGBM CLASSIFIER WITH 

IMPROVED DETECTION PERFORMANCE 

 

 

 

 

 

 

 

 SHEIKH ABDUL HAMEED 

 

 

 

 

 

 

 

 

 

 

DOCTOR OF PHILOSOPHY (ENGINEERING) 

 

 

 

 

 

 

 

LEE KONG CHIAN FACULTY OF ENGINEERING AND SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 

JUNE 2023 

  

  



 

 

ii 

 

 INTRUSION DETECTION MODELS USING ENHANCED 

DENOISING AUTOENCODERS AND LIGHTGBM CLASSIFIER WITH 

IMPROVED DETECTION PERFORMANCE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

 

SHEIKH ABDUL HAMEED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the Department of Electrical and Electronic Engineering, 

Lee Kong Chian Faculty of Engineering and Science, 

Universiti Tunku Abdul Rahman, 

In partial fulfillment of the requirements for the degree of  

Doctor of Philosophy (Engineering) 

June 2023



 

 

i 

 

                                                                ABSTRACT 

 

 INTRUSION DETECTION MODELS USING ENHANCED DENOISING 

AUTOENCODERS AND LIGHTGBM CLASSIFIER FOR IMPROVED 

DETECTION PERFORMANCE 

 

 

                                                     Sheikh Abdul Hameed 
 

 

An intrusion detection system (IDS) is a software developed to monitor network traffic for 

suspicious activities to secure data transmission. The conventional IDS strategies are 

vulnerable to distorted high dimensional network traffic. To overcome this, we proposed an 

IDS that combines a denoising autoencoder (DAE) and LightGBM classifier. The DAE aims 

to reduce the distortions in the network traffic by extracting the compressed hidden features 

representation. The LightGBM classifier aims to classify the samples using the histogram bins 

of the extracted features with larger gradients, which possibly boost the predictive capacity of 

the model. To eliminate the deviations in the latent structure, the DAE is enhanced. They are 

1. DAE with Jacobian Gradient Norm, which minimizes the larger partial derivatives of the 

encoder activation 2. DAE with Iterating Thresholding Function, which minimizes the larger 

magnitude values of the encoder activation weight 3. DAE with Data Pairwise Similarity 

Weight, which groups the similar data points with strong similarity weight in the encoder 

activation clusters 4. DAE with Approximated Standard Normal Distribution, which 

approximates the latent structure to the standard normal distribution using inference strategy. 

To evaluate the effectiveness of the proposed models, they are experimented using various 

benchmark datasets. Notice that our proposed models achieve higher detection rate, which 

outperform the existing IDS models against all the eight commonly used datasets.  
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CHAPTER    1 

 

                          INTRODUCTION 

 

1.1 Intrusion Detection System 

Rapid technological developments necessitate increased usage of the internet, which in turn 

results in the growth of big data, cloud computing, internet of things (IoT) and software defined 

networks. Thus, huge amount of data has been daily flowing in the network system. Any attack 

behaviour that compromises the security of a network system is called an intrusion. The 

attackers try to intrude the network traffic and may possess security issues such as malicious 

interruption, theft, corruption of data (Zarpelao et al., 2017) and cause severe damage to the 

valuable assets. The intruders grow in numbers, that are highly vulnerable to efficient and 

secure data transmission in the network (Hanson and Hunt, 2005). Thus, Intrusion Detection 

System (IDS) is an essential component of the network security and is shown in Figure 1.1. 

 

         Figure1.1: Intrusion Detection System (Denning, 1987) 
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                IDS (Denning, 1987), an automated software that monitors incoming and outgoing 

network traffic to find any unusual behavior in the network including attack attempts and 

generates an alarm to signal network admin to take preventive actions and helps in securing 

the network system. It can be used for detecting any type of harmful and dangerous attackers. 

The IDS is classified into two types (Verwoerd and Hunt, 2002), one is host-based intrusion 

detection system (HIDS) and another is network-based intrusion detection system (NIDS).    

 

As shown in Figure 1.2, HIDS monitors security issues related to a single host. It 

monitors the internal environment of a host system such as resources, system files, applications, 

audit records, mails, OS log files, and system tables etc. It operates on a single system and 

provides security to its servers of the system 

 

As shown in Figure 1.2, NIDS monitors the entire inbound and outbound network 

traffic, i.e., data packets travelling in the network traffic to find any unusual behaviour within 

it to prevent it from illegal activities. It can be placed anywhere within the network (e.g., can 

be deployed in demilitarized zone, as part of an intelligent firewall, virtual private network 

servers, remote access servers and wireless network access points) and monitor the traffic 

activities. 
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Figure 1.2:  Network and Host Based IDS Models 

 

NIDS is also sub-classified (Depren et al., 2005)   as a signature-based detection system 

and an anomaly-based detection system. SIDS is based on signatures such as metadata and file 

fingerprints. It compares signatures of the network activity with previously stored signatures 

in the library database. The signatures need to be updated periodically within the database. It 

is not suitable for detecting any new patterns that are not stored in the library database. On the 

other hand, AIDS monitors the entire network operations and predicts the intruders by 

observing any unusual behaviour in the network traffic that deviates from the normal 

behaviour. The baseline of the normal behaviour is already defined in the IDS. It is very 

efficient in detecting any new abnormal patterns. 
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1.2   Machine Learning 

Artificial intelligence was defined by Minsky (1968) as “The science of making machines do 

things that would require intelligence if done by men”. Another similar definition for the field 

of artificial intelligence provided by Chollet (2017) was that it is simply “The effort to 

automate intellectual tasks normally performed by humans.” 

 

According to Samuel (1959), machine learning was described as “It is a field of study 

that gives computers the ability to learn without being explicitly programmed to”. 

Meanwhile, Mitchell (1997) defined a machine learning algorithm as follows: “A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E”. 

 

In our thesis, task T is to classify the category of network flow activity, computer 

program is the NIDS model that we design, experience E is network traffic used as input to 

train the model. Each sample is defined as the set of features in certain quantitative 

measurements, i.e.  xi ∈ Rn, where xi denotes the training samples corresponding to an 

individual feature Rn. Lastly, performance measure P is the standard metrics that we use to 

evaluate our model. 
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Machine learning (Awad and Khanna, 2015) is a branch of artificial intelligence that 

makes the system to learn from past occurrences and predicts the outcome for new 

observations. It is visually shown in Figure 1.3. The prediction ability of a machine learning  

is measured in terms of standards metrics.   

 

 

Figure 1.3:  Machine Learning Process 

 

The machine learning algorithm is broadly classified into two types (Mitchell, 1997): 

1. Supervised machine learning and 2. Unsupervised machine learning. 

 

The supervised machine learning technique uses labelled data to train the IDS model, 

and then perform the classification task. The supervised ML is mainly used for the 
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classification problem. It learns to map input data to output class labels by proper mapping 

function and intent to map a suitable category for new inputs. The perturbated high dimensional 

non-linear features manifold is highly challenging for the supervised machine learning 

classifiers. They are highly vulnerable to noise and corruptions in the high-dimensional data 

records otherwise called adversarial samples, that affect the performance of those classifiers.  

 

The unsupervised learning techniques use unlabelled data and are mainly used as the 

dimensionality reduction strategy. It can cluster similar data points that belong to identical class 

labels and thereby it can discover the compressed low-dimensional hidden patterns and 

structure from the high dimensional input, which is the main source for the classification 

problem. It can possess a better representation of the original input data.  

 

Machine learning is applied in different research fields (Sharda et al., 2018) such as 

processing natural language, speech recognition, computer vision, audio recognition, machine 

translation and social network filtering, customer relationship management, banking, retail and 

logistics, manufacturing and production, insurance, computer hardware and software, 

government and defence, travel industry, healthcare and medicine, entertainment industry, 

homeland security, law enforcement and sports. Figure 1.4 shows an overview of the machine 

learning process. The processes involved (Fayyad et al., 1996) in the machine learning process 

are listed as follows: 

1. Data Collection: The benchmarking network security datasets are collected from 

various online sources.  
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2. Data Pre-processing: The raw datasets that have been collected from the online web 

sources should be transformed into a proper format that the machine learning model 

should accept.  

3. Feature Extraction/Dimensionality Reduction: As the cyber security datasets are of 

high-dimensional, it suffers from the “curse of dimensionality” that will adversely 

affect the performance of the machine learning model. To reduce the dimensionality of 

the dataset and extract hidden patterns from the raw data, the dimensionality reduction 

process is needed. The dimensionality reduction task belongs to the unsupervised 

learning category. 

4. Model Training: The machine learning classifier is trained using the patterns received 

from the dimensionality reduction stage. The overlearning of the model makes the 

model stuck in overfitting whereas under learning of the model will lead to underfitting. 

Both two issues would decrease the performance of the machine learning model. 

5. Model Testing and Deployment: The trained model is tested, evaluated and measured 

in terms of standard quality metrics and the model with best predictive ability can be 

deployed and implemented as a real-time model. 

 

  Figure 1.4: The Steps Involved in a Machine Learning Model 
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With the rapid advancement in areas of network technology, machine learning and data 

mining techniques can be used to deal with challenges of cyber security issues (Tsuai, 2009). 

Machine learning can be applied in the research areas of signature detection, anomaly 

detection, scan detection, network traffic profiling and privacy-preserving data mining. 

 

The task of predicting an unusual behaviour in the network traffic is termed as a 

classification problem that falls under the supervised machine learning technique (Kotsiantis 

et al., 2007). It is a technique used in machine learning that the learning algorithm aims to 

match a suitable category label for the input samples through a proper mapping function. For 

a function y = f(x), the machine learning model maps the input function x to an output class 

label y. There are two kinds of classification problems based on the category of labels present 

in the dataset. In both classification tasks, the goal of the learning model is to map a function f 

to k labels where k = 2 for binary classification and k ≥ 3 for multi-classification. When k = 2, 

the dataset contains only two labels and the model can classify the records as either normal or 

attack. When k ≥ 3, the dataset has multiple target labels where the model can classify different 

categories of attacks. 

 

            To learn network traffic activities, input is given in the form of a dataset. The dataset 

describes the characteristics of any network traffic samples. These samples are divided into 

training and test sets to train and test the proposed classifier. A classier is trained by samples 

with known outcome and its performance is evaluated using new samples that are not existing 

in the training set. When a test set is applied to a machine learning classifier, it can predict the 

outcome of new samples. The process is picturized in Figure 1.5. The performance analysis of 
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the classification problem is based on the number of correct predictions on the test set and is 

measured in terms of standard quality metrics 

 

Figure1.5: The Machine Learning Process in a Network Security System          

 

In a machine learning approach, a classier is trained using a machine learning algorithm 

on a dataset of normal and abnormal traffic patterns. A trained model may subsequently be 

employed to predict suspicious traffic in real-time. Such a dataset typically considers each 

pattern across several features of an associated target class, which denotes whether the pattern 

corresponds to normal or abnormal usage. Further training on new instances allows the classier 

to adapt to the current network state. Thus, the main focus is to increase the detection 

performance of the deployed intrusion detection system.     

                                             

Various machine learning techniques (Mishra et al., 2018) have been used to build 

different IDS models. Some of the conventional machine learning techniques involved are 

Support Vector Machine (SVM) (Snehal et al., 2010), K-Nearest Neighbour (KNN) (Liao & 
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Vemuri, 2002), Naive Bayes (NB) (Panda & Patra, 2007), Multilayer Perceptron (MLP) (Lee 

& Heinbuch, 2001), Random Forest (RF) (Zhang et al., 2008), Decision Trees (DT) (Snehal et 

al., 2010) , Logistic Regression (LR) (Shukla et al., 2017).The conventional machine learning 

classifiers resulted in low detection performance due to the high dimensional traffic features of 

the input dataset, while, noise and corruptions in the input dataset will still affect the stability 

and performance of an IDS model. The conventional machine learning strategies are vulnerable 

to distortions in the network traffic, that lead to deviations in the extracted patterns, while the 

IDS classifiers on learning it, misclassify the input samples and make wrong classification 

results, which give a low classification rate and high classification loss.  

 

Although there are so many technologies to prevent the intrusion, still the network is 

vulnerable to so many undetected attacks. There are many ways in which a cyber-attack can be 

performed. Therefore, to prevent such attacks, there are many IDS suggested and implemented 

by researchers, still, there is a room for improvement. Many conventional IDS models give 

lower detection performance due to the perturbations in the network traffic. We aim to remove 

the distortions in the network traffic by the DAE. The gaussian noise in the input layer of the 

DAE enforces it to reduce the distortions by extracting the robust compressed hidden patterns, 

where those patterns are used by the LightGBM classifier to classify the intrusive samples. The 

classifier uses the histogram bins of the extracted patterns with larger gradients to construct the 

classification model, instead of evaluating every single feature value, which can boost the 

predictive capacity of our IDS model. The highly efficient IDS is proposed and designed by 

combining DAE and LightGBM to monitor the network traffic activities to assure secure data 

communications. 
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           To evaluate the effectiveness of our proposed model, the model is tested using various 

benchmark datasets for both binary classification and multi-classification tasks. The proposed 

base hybrid model shows better detection rate. However, still the predictive capacity of the 

model is affected, since the representation capacity of the DAE deviates from the original input 

patterns due to the removed hidden distortions in the latent space, which affects the features 

learning capacity and predictive capacity of the model. To suppress the deviations in the latent 

structure, thereby the model could completely group similar data points that belong to identical 

classes in each clusters, and accelerate the features learning capacity of our model, we propose 

to insert some of the additional novel regularization strategies on the encoder side of the DAE 

and  develop enhanced DAE models.  As machine learning is a stochastic process, there is no 

free lunch theorem in it. So, we trail and test four novel strategies separately. The strategies 

have its own unique mathematical algebraic properties in removing the deviations and grouping 

similar data points of the identical classes in each concerned cluster, thus enhancing the features 

learning capacity of our IDS model. The patterns extracted from the latter models are fed to 

the LightGBM classifier for the attack prediction task, which enhance the predictive capacity 

of our IDS model. 

 

                The proposed enhanced models show better detection performance improvement in 

terms of detection rate, detection-loss, precision, accuracy, and f1-score over eight benchmark 

datasets including CIDDS-001,CIDDS-002, ISCX-URL2016, UNSW-NB15, CIC-IDS-2017, 

ISCX-TOR2016, BoT-IoT2018, and IoTID2020 for both binary classification and multi-

classification tasks as compared to other existing IDS. The CIDDS-002, ISCX-TOR, UNSW-

NB are involved in bi-classification tasks whereas CIDDS-001, CIC-IDS, ISCX-URL, BoT-

IoT, IoTID are involved in multiclassification tasks. The datasets are always highly 
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imbalanced. i.e. Each dataset contains certain category with large number of samples and 

certain category with a smaller number of samples and so the datasets contain unbalanced 

classes. The traditional methods are very much sensitive to the imbalanced nature of the 

datasets, giving lower detection score for the minority category.  

 

                The patterns extracted by the enhanced DAE models are more descriptive, 

informative and discriminative in classifying the samples by the LightGBM classifier which 

boost the predictive capacity of our NIDS models. The enhanced DAE models and LightGBM 

together are blended to form robust, stable yet lighter IDS models. Lastly, our proposed 

schemes have higher learning and predictive capacity, that optimize the generalization capacity 

of our models and can perform well against the minority classes when a dataset contains 

unbalanced classes in terms of the number of samples. 

 

1.3    PROBLEM STATEMENT 

The conventional IDS models are highly vulnerable to the perturbations in the high-

dimensional network traffic. The IDS models on learning those distortions, extract the deviated 

latent representations, and misclassify the input samples and give wrong classification results. 

i.e. the intrusive traffic is wrongly predicted as normal and fails to generate and intimate an 

alarm to the network security administrator. On the other hand, the normal traffic is wrongly 

predicted as intrusive and generates an unwanted false alarm and threatens the network 

administrator, which both two cases highly affect the prediction performance and the security 

of the model. More importantly, the deviations in the latent structure i.e. deviated data points 

lead to gaps among the similar data points, such that the data points that belong to identical 

classes are distant apart and are not properly and completely grouped together in their 
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concerned clusters of the latent structure, which highly affect the adversarial robustness, 

representation capacity  and predictive capacity of the model. 

 The impact of the deviations on the latent structure of the model are shown below: 

1. Accelerate the underfitting and overfitting problem. 

2. Affects the learning and predictive capacity of the model, which fails to optimize the 

generalization capacity of the model. 

3. Inability to deal with the imbalanced nature of the high dimensional network traffic. 

4. Produce a biased result. 

The scatter plot graph that illustrates the problem of noise and corruptions (distorted samples) 

in one of the benchmarking datasets are shown below in Figure 1.6. 

 

    Figure 1.6: The Problem of Distortions in a Benchmark Dataset 

The black colour denotes the distorted samples from the ordinary network traffic samples. The 

noisy data points generally have larger gradients and denser weights, which do not easily 

concentrate with the normal traffic data points on the original manifold as shown in Figure 1.6. 

It is noted from the figure that the noisy data points are farther away from the normal traffic 

points due to larger variance and do not concentrate with the normal traffic points on the 

original manifold. 
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        Figure 1.6a Normal Traffic Signal Vs Noise 

The following Figure 1.6a shows how the noise deviates from the normal traffic signals in one 

of our benchmarking datasets. The normal traffic (blue) signals are stable, smooth and possess 

little variability, while the noise swings wildly and unpredictably form one value to another 

and obscure the normal traffic signal.  

 

 

         Figure 1.6b: The performance graph with noise 

As seen from the Figure 1.6b, the performance graph with noise has no uniformity in the curve. 

The detection loss of a benchmark dataset initially converges at 0.02 and starts sudden spike 

of increasing to 0.05 and then decreasing till the loss saturated at 0.04. This confirms the 

presence of distortions in the network traffic. The noise is the cause for non-uniformity in the 

performance graph and there are severe fluctuations, ups and down (spikes) and the graph 

struck in severe overfitting issues since the model tries to overlearns the noise as patterns and 

starts memorizing and generalizing it. 
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The following Figure 1.7 shows the deviations i.e. deviated latent structure of the DAE for one 

of the benchmark datasets, are shown below 

 

Figure 1.7:   Deviated Latent Structure of the DAE for a Benchmark Dataset 

The problem of gaps among the similar data points and those similar data points are not grouped 

in the respective clusters of the latent space of the DAE are shown in Figure 1.7. 

 

1.4      OBJECTIVES 

To remove the distortions in the network traffic and suppress the deviations in the extracted 

latent structure, thereby enhancing the adversarial robustness, representation capacity and 

predictive capacity of our model, we aim to propose, use and test DAE and enhanced DAE 

models with the LightGBM classifier. Firstly, we aim to use the DAE model with the 

LightGBM classifier and develop a base hybrid model. To overcome the shortcomings in the 

DAE, later it is enhanced to be the enhanced DAE models and associated with the LightGBM 

classifier and develop four enhanced hybrid models and evaluate the effectiveness of the 

proposed models on different broadly known network security datasets and so later they can 

be deployed as a real time models in any industrial network traffic. 

The list of proposed models is given below: 

• Base Hybrid Model--------------->DAE with LightGBM 
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• Enhanced Hybrid Model 1 -------->DAE with Jacobian Gradient Norm and LightGBM 

classifier 

• Enhanced Hybrid Model 2 ------>DAE with Iterative Thresholding Function and 

LightGBM classifier 

• Enhanced Hybrid Model 3 ---------> DAE with Data Pairwise Similarity Distance 

Weight and LightGBM classifier 

• Enhanced Hybrid Model 4 -------> DAE with Approximated Standard Normal 

Distribution using Inference Strategy and LightGBM classifier   

 

    The DAE is an enhanced version of a traditional autoencoder by the usage of gaussian 

noise in the input layer of an autoencoder. The gaussian noise could reduce the distortions in 

the network traffic and extract the compressed hidden patterns, where it functions and gives 

only partial regularization and robustness on the encoder activation to extract the hidden 

patterns i.e. partial robust patterns. The enhanced DAE is an enhanced version of a denoising 

autoencoder with the insertion of proposed novel strategies on the encoder activation of the 

DAE. Along with gaussian noise, the proposed strategies give complete regularization and 

robustness on the encoder activation to remove the deviations in latent dimensions and extract 

the compressed core-intrinsic structure and salient descriptive primitive patterns form the high-

dimensional network traffic thereby improving the adversarial robustness and representation 

capacity of the DAE and boost up the predictive capacity of the model. Subsequently, the 

LightGBM classifier uses the histogram bins of the extracted patterns with larger gradients and 

avoids using each and every single feature value which possibly boost up the predictive 

capacity of the model. 
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1.5     CONTRIBUTIONS 

The contribution of the thesis is depicted as follows: 

• The overall contribution of the DAE and the four enhanced DAE models are 

removing the deviations in the latent structure and enhancing the quality of the 

features extracted. Improving the quality of the features extracted boost up the 

predictive capacity of our attack detection model. Thus, the patterns extracted 

from the enhanced DAE models are associated with LightGBM classifier to 

develop four enhanced hybrid models, which all the four models give higher 

detection rate with minimum detection loss and enhance the predictive capacity 

of the model. 

• The first contribution is the proposal of base hybrid model consisting of DAE and 

LightGBM. The DAE reduces the distortions from the network traffic by 

extracting the patterns form the datasets and reduce its dimensionality, where it 

gives only partial regularization and partial robustness. The classifier LightGBM 

enhance the predictive performance of the model. 

• The second contribution is the enhanced hybrid model 1 consisting of enhanced 

DAE 1 and LightGBM. The enhanced DAE 1 is the proposal of jacobian gradient 

norm on the encoder of the DAE. The strategy suppresses the deviations in the 

latent manifold by imposing squishing pressure on the larger partial derivatives 

of the jacobian matrix of the encoder activation. 

• The third contribution is the enhanced hybrid model 2 combining enhanced DAE 

2 with LightGBM. The enhanced DAE 2 is the proposal of iterative threading 

fucntion on the encoder activation of the DAE. This strategy suppresses the 
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deviations by enforcing the magnitude of the encoder weight matrix to be sparse 

by firing only the n-strongest encoder neurons. 

• The fourth contribution is the enhanced hybrid model 3 combining enhanced 

DAE 3 with LightGBM classifier. The enhanced DAE 3 is the proposal of data-

pairwise similarity weight on the DAE. This strategy eradicates the deviations by 

directly grouping the similar data points of the identical class with strong 

similarity weight and filtering out the dissimilar data points with least similar 

weight in the distinctive clusters of the encoder structure. 

• The fifth contribution is the enhanced hybrid model 4 combining enhanced DAE 

4 with LightGBM classifier. The enhanced DAE 4 is the proposal of 

approximated standard normal probability distribution with inference strategy on 

the encoder activation of the DAE. This strategy eradicates the deviations by 

making the latent space to be continuous and complete by approximating it to the 

standard normal distribution. 

 

1.6     ORGANIZATION OF THE THESIS 

 The overall structure of the dissertation are as follows: 

• Section 1 is the introductory part that explains the security issues in the current network 

technology, need for intrusion detection system and the categories of the IDS models. 

It also elaborates the concept of machine learning in IDS, and steps involved in it. 

Section 1 also conveys about problem statement and research gap that coveys the 

shortcomings in the existing models and the necessity for the proposed IDS models to 

resolve those shortcomings. It also contains the objectives part that briefs about the 

objectives of this dissertation to design and evaluate the novel hybrid models and 
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contribution of all the four proposed hybrid models in improving the feature learning 

capacity and predictive capacity of the model. 

• Section 2 is the is the literature review section that depicts the existing research works, 

current IDS models, techniques used in those models and their drawbacks. It also 

reveals the process of different supervised and unsupervised machine learning models, 

their shortcomings and the intention for the proposed new strategies. 

• Section 3 consists of the research methodology part that explains the proposed 

modifications, techniques, architectural design, mathematical properties, theoretical 

explanation and hyperparameter tuning of the proposed strategies. It also contains the 

outer sketch of the proposed IDS models, data-processing techniques and the standard 

metrics used to measure the performance of our models.  

• Section 4 is the results and discussion part that briefly discusses the results obtained by 

the proposed models and validate the performance of the proposed models with 

different existing models to show our models efficiency.  It also discusses about the 

different benchmarking datasets used to evaluate our proposed designs and different 

hardware and software set up for the experimental design. 

• Section 5 is the conclusion and future work part that shows the overall final review and 

findings of our research work, and further improvement that can be made on our 

research work.                                                
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The machine learning algorithm is broadly classified into two types 1. Supervised machine 

learning 2. Unsupervised machine learning 

 

2.1   SUPERVISED MODELS 

The supervised machine learning (Kotsiantis et al., 2007) takes the labelled data and it is mainly 

used for the classification problem. The supervised machine learning learns training inputs with 

its associated class labels through a suitable function and the model aims to map a suitable 

class label for the test inputs as mentioned in Figure 2.1. Some of the supervised machine 

learning techniques include SVM, KNN, NB, MLP, & LR. The supervised machine learning 

process is shown in Figure 2.1. 

 

Figure 2.1: The Supervised Machine Learning Process 
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The KNN is an instance-based algorithm (Cover & Hart, 1967) and takes a longer time 

for the generalization process. It does not assume the structure and distribution of data hence it 

is also named as a non-parametric algorithm. The method finds the k-nearest neighbours for a 

data point in the test set based on the number of neighbours that are most similar in the training 

set. It determines which of the k-instances are most similar to a new test data point according 

to a predefined metric. The new data point is thus mapped to the category label of the majority 

voting of its neighbours. The value of k is a very important hyperparameter since it highly 

determines the classification performance.  

 

               The Naïve Bayes works on the principle of bayes theorem (Scott, 2004) and it is 

defined to be 𝑃(Y/X) = 𝑃(X/Y) 𝑃(Y)/𝑃(X) i.e. posterior = (prior * likelihood)/ (evidence), 

where, P(Y) is the probability of an outcome, P(X) represents the probability of the data 

observed, P(X|Y) is the probability of the data observed where the given outcome is Y and 

P(Y|X) is the probability of an outcome for given observed data X. The aim is to find the 

probabilities of each possible outcome when an input X is given. It possesses the characteristic 

of conditional independence between the attributes and classifies the instances based on the 

concept of likelihood. After evaluating prior probability and likelihood criterion n, a test sample 

can be mapped to the category label that maximizes the posterior distribution. 

 

The SVM (Cortes & Vapnik, 1995), aims to find an optimal hyper-plane that separates 

the classes with a maximum gap and support vectors are the data points that remain close to 

the hyperplane. It uses hyperplane as a boundary to differentiate samples into two distinct 

categories and classifies new samples into one of the categories. The classifier can give better 

performance on finetuning hyperparameters such as kernel function, gamma parameter etc.  
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The Logistic Regression is mainly suitable for binary classification. The regression 

strategy (Banks & Fienberg, 2003) is used to process and solve the classification problem using  

s-shaped sigmoidal  logit function  that gives the class probability values, either being 0 or 1. 

A linear regression-based logit function can convert any real value within the range between 0 

and 1 and so the output value for the logistic regression always lies between 0 and 1. 

     The equation for the logistic regression is shown as z =  
1

1+ⅇ− ((𝑏0+𝑏1𝑖))
 

 Where z is the outcome,  𝑏0 is the bias term and  𝑏1 is the coefficient for the input i.       

  

 The DT algorithm (Quinlan, 1986) is the tree-based classifier that uses information 

gain as the source criteria in constructing the tree. 

The decision tree comprises three essential components: 

1. A decision node denotes a test on an attribute, where the DT can take a decision and 

functions as a decision engine. 

2. A branch denotes one of the possible attribute values as the split node and it defines the 

outcome of the decision node. 

3. A leaf node denotes the class label of the records  

 

The DT works similar to a flow-chart like structure. It starts building the tree from the root 

node with highest information gain and makes a test on every feature value at each split 

decision node and decides the outcome of a node, i.e. leaf node. It can handle multi-dimensional 

data. It is human readable and interpretable since if-then rules is used to make decisions. 

 

The DT is based on informational-theoretic principle. The DT algorithm classify the 

records using feature value. The weight of a feature value is determined by the information 
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gain criteria. The information content of a feature value pertaining to the output category is 

calculated in terms of entropy.  The entropy is the expected reduction in impurity of a node and 

it is shown in equation below: 

                                                   ∑ 𝑝𝑖
𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖)       

      

         The classification of records starts from the root node and expands as the decisive nodes 

and terminated as the leaf node. The node in a DT classifier denotes a feature value to classify 

the records and the branch denotes a weight that the node has. No further splitting is required 

after the leaf node with larger gradient has reached for a branch. The branch can be expanded 

till it reaches the terminal node. 

 

          The current conventional machine learning classifiers employed in the IDS models for 

the attack prediction task are discussed so far. Those classifiers are highly suffered from longer 

training time, high computational complexity, severe overfitting and underfitting issues. 

Moreover, the classifiers do not give a higher classification score for the high-dimensional 

network traffic, since they suffer from the curse of dimensionality. These classifiers are best 

suited for small scale IDS models and are not the apt classifiers for the large scale high-

dimensional network traffic datasets that we aim to design our security monitoring model. 

 

                We suggest using LightGBM classifier, an efficient, faster, lighter ensemble-

boosting technique (Zhou, 2019) as the classifier for our proposed model. The LightGBM uses 

a group of decision trees to do the classification task, where the gradient of the previous DT is 

solved and minimized by the subsequent DT, till the residual reaches the minimum level and 

obtains the optimal solution of higher classification score. The process is shown in Figure 2.2. 
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Moreover, LightGBM has different user-customizable regularization and optimization 

techniques especially histogram-optimized leaf-wise strategies, that resolve the drawbacks of 

the aforementioned traditional classifiers. 

 

                Moreover, the conventional strategies are vulnerable to noise and corruptions in the 

high-dimensional network traffic datasets. In order to reduce the dimensionality of the datasets 

by extracting clean robust features, we need an efficient feature extraction strategy that is to be 

discussed in the unsupervised learning section 

 

Figure 2.2: The Light Gradient Boosting Process-Flow (LeCun et al., 1998) 

 

As shown in Figure 2.2, the workflow of the LightGBM classifier is described below: 

• Let Fm be the initial model. 

• Let hm be the base estimator to predict Y=F by minimizing the pre-defined loss function 

L (Y, F) and Y be the expected output function and F be the predicted output function 

• Let the initial model Fm is fit with the base estimator hm, such that Fm +hm=Y and 

residual hm=Y-Fm is calculated. 
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• Let the new model Fm+1 be constructed by fitting the next estimator hm+1 to the residual 

gradients of its predecessor, such that Fm+1=Fm (residual) +hm+1 

• Let the iteration be continued till the loss function L (Y, F) gets minimized and the 

optimal solution Y=F is reached. 

 

The LightGBM (Chen & Guestrin, 2016) is the improved and optimized gradient 

boosting algorithm discovered by Chen and Gastrin to accelerate the training time and reduce 

memory usage while achieving boosted performance as compared to other machine learning 

algorithms. The classifier uses a group of sequential decision trees, to classify the samples, 

which the classification error of the base decision tree is solved and minimized by the 

subsequent decision trees till the boosting classifier reaches the optimal performance score.  

The objective function consists of two parts,            

                                              Obj (Ѳ)= DL(Ѳ) + R(Ѳ) 

 i.e., detection loss and regularization (e.g., learning rate, tree pruning, column and row 

subsampling, leaf-wise strategy, histogram strategy). The various regularization parameters of 

the LightGBM classifier is used to minimize the model complexity namely overfitting and 

underfitting issues etc. The detection loss of the LightGBM model shows the predictive 

capacity of the model. Besides, it can handle datasets with good training speed and has high 

predictive power.  It can automatically handle the missing values and also supports parallel 

processing with multithreading. LightGBM is used to handle both regression and classification 

problems.  

 

                 Instead of scanning all the data instances to estimate the information gain of all 

possible decision tree split points, LightGBM only considers the data instances with large 
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gradients to estimate the information gain. This strategy can obtain a quite accurate estimation 

of the information gain with a smaller data size reducing the time and memory complexities. 

Besides, LightGBM also aims to reduce the number of features without significantly reducing 

the accuracy of split point determination. The LightGBM classifier works mainly using the two 

strategies as follows: The histogram optimized strategy accelerates the training speed of the 

model whereas the leaf-wise tree growth boosts the prediction performance of the model. 

 

Histogram Building 

• Histogram building algorithm requires Ѳ (#data × #feature). 

• The algorithm first discretizes continuous floating-point features into k discrete values 

(also known as bins) and construct a histogram with a width of k.   

• Subsequently, the algorithm traverses the training data and compute the frequency of 

each discrete value in the histogram as shown in Figure 2.3. Besides, the frequency of 

each bin is sorted from high to low and the features with low frequency will be filtered. 

• The constructed histogram of a feature compromises two types of information 1. Sum 

of gradients of the samples in each bin 2. The number of samples in each bin and the 

histogram can be divided into two portions namely 1. Left bin 2. Right bin.  
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Figure 2.3: Histogram-Optimized Strategy 

• The difference between average gradients and total samples of the parent bin and total 

gradients and average samples on one of the child bins give the sum gradients and 

number of samples of another sibling bin i.e. child node. 

• It is computed using the formula  𝐺𝑅 = 𝐺𝑝 − 𝐺𝐿;   𝑁𝑅 = 𝑁𝑃 − 𝑁𝐿  and the loss is 

estimated as  𝛥𝑙𝑜𝑠𝑠  = 𝐺𝐿
2/𝑁𝐿 +  𝐺𝑅

2/𝑁𝑅 - 𝐺𝑃
2/𝑁𝑃 

Where  𝐺𝐿 and 𝐺𝑅,  be the average gradients on the left and right bins, 𝐺𝑝 denote gradient 

sum of parent bin.  𝑁𝐿 and 𝑁𝑅 denote the number of samples on the left and right bins,  𝑁𝑃 

denote the number of samples on the parent bin. 

 

Leaf-wise Strategy 

• After the histogram building, #bin is much smaller than # data since a lot of data are 

discarded and grouped into the same bin if the feature values are within a certain range.  

i.e. The complexity of the histogram strategy is only #bins. 

• The feature value with highest information gain is placed as the parent node. 



 

 

28 

 

• The information gain is measured in terms of entropy, which denotes the possible 

expected impurity reduction of a node. 

• The information gain of a feature F with values I, where V (F) is the set of possible 

values for a feature F, Vs is the subset of V for which the feature F has value s. If the 

target feature takes different values of V, then entropy set (I) and IG are denoted as 

follows: 

              Entropy (I) =  ∑ .𝑠
𝑗=1 𝑞𝑗 𝑙𝑜𝑔2 𝑞𝑗  where 𝑞𝑗  is the proportion of I belongs to class j 

                               Gain (I, F) = Entropy (I) -∑ 𝑉𝑠/𝑉 ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑉𝑠)𝑠∈ 𝑉𝑎𝑙(𝐹)  

• The information gain computation of the histogram strategy involves only eigenvalue 

* histogram bins, which generally speeds up the training process. 

• LightGBM uses a leaf-wise tree growth strategy that searches the child node with 

larger information gain i.e. larger amount of data. The larger the gradient of the data, 

the higher the information gain.  

• The gradient of a leaf node can be calculated based on the gradient difference between 

a parent node and another sibling node.  

• The purity value of a node is the number of identical samples that reach the node. The 

process of tree construction stops until all the expanded branches reaches the terminal 

node. Figure 2.4 shows the leaf-wise tree growth strategy. The depth of a tree is capped 

to prevent overfitting while increasing higher efficiency. 
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Figure 2.4:  Leaf -wise Strategy 

 

2.2 UNSUPERVISED MODELS 

The unsupervised learning (Eskin et al., 2002; Nguyen et al., 2012) is mainly used for the 

dimensionality reduction process. It accepts the high dimensional features and reduces them to 

the low-dimensional features by learning and extracting some hidden patterns from the original 

features as shown in Figure 2.5. Some of the unsupervised learning techniques included in our 

doctoral thesis namely PCA, K-Means Clustering and Autoencoder variants. 

 

Figure 2.5: The Unsupervised Machine Learning Process 
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              The K-Means Clustering (Jiang et al., 2006) is used to find some patterns by grouping 

similar data points. The similarity is measured using the euclidean distance metric, where data 

points are grouped together to form a cluster to covey some information. It is used mainly in 

the outlier detection analysis.  K denotes the number of clusters specified as input by any user.  

 

   PCA (Hong et al., 2017) is the dimensionality reduction technique, which defines a 

new set of low-dimensional features from the high-dimensional features using matrix 

decomposition. The matrix decomposition gives eigenvalues and eigenvectors, through which 

it transforms the data points in each principal component in a lower-dimensional manifold. The 

eigenvector denotes the direction, whereas the eigenvalue denotes the magnitude of data points 

projection. Each principal component is perpendicular and orthogonal to the other. The first 

principal component is thus shown in the equation below: 

                                        z1   = φ1x1 + φ2x2 + φ3x3 +……….+ φnxn  

where φ denotes the direction and x denotes the data points, where z1 is the first principal 

component with eigenvector of largest eigenvalue. 

           If a dataset contains M instances and N features, the matrix decomposition is denoted as 

M*N, where the top K eigenvalues are chosen as the selected attributes. The projected new 

dimensional eigenvector contains the characteristic vector-matrix set N*K. The 

synchronization among them is denoted as 

                                       Final Data (M ∗ K) = O (M ∗ N) ∗ E (N ∗ K)       

Where O is the original data, E is the eigenvector, M is the number of samples, N is the number 

of features, and K is the selected top eigen values. 
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It is very much efficient and applicable for the linear data transformations, where the network 

security datasets used for our evaluation are non-linear types, for which autoencoders with 

activation functions that support non-linear data structure can be used. 

 

Autoencoder (Hinton & Salakhutdinov, 2000; Coates et al., 2011) is a type of artificial 

neural network (ANN), an unsupervised learning technique, widely used as the dimensionality 

reduction technique. The autoencoder produces a replica of the input in the output layer, 

(thereby the number of nodes in the input and output layers are similar) by learning and 

extracting patterns in the hidden layer, which conveys some information about the high-

dimensional input data in  compressed form, thereby the number of nodes in the hidden layer 

are lesser in number than the input and output layers. Unlike ordinary ANN, a supervised 

learning technique, which is used as a classifier, can predict the class label for the input 

samples, thereby the nodes in the output layer are same as the number of outcome labels in the 

input dataset. The autoencoder, a feature extraction strategy can reduce the dimensionality of 

the datasets, by learning and extracting some useful patterns from the original input dataset 

(transform high-dimensional representation to low-dimensional representation). The process is 

shown in Figure 2.6. 

 

                            Figure 2.6: The Block-Diagram of an Autoencoder 

            Before proceeding to the autoencoder, let us discuss the ANN, which is the base for an 

autoencoder model.  Artificial neural networks (Hornik et al., 1989; Nilsson, 1998) are 

universal function approximators, which learn a mapping function from input x to outcome y. 

It is based on the interconnected system of neurons that can work and process artificially like 
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a human brain. The neurons have the capability of learning and extracting patterns and structure 

from the high-dimensional input dataset and it is the main computational processing unit in 

ANN. The architecture of an ANN is shown in Figure 2.7. The operations, structure and 

components are explained below   

 

 Figure 2.7:  The Architecture of an ANN 

 

The ANN consists of an input layer to accept input values, a hidden layer for learning 

patterns and an output layer to produce the outcome values. The layers and their neurons are 

all interconnected. The network is trained (Lee et al., 2001) to learn suitable weights for each 

input values and so the estimated output would not vary much than the expected output. To 

measure the difference between those two outputs and evaluate the performance of a neural 

network, the cost function namely cross-entropy is used. The network is trained several times, 

i.e. forward and backpropagated to fine-tune the weights of the network and maximize the 

objective function. The stochastic gradient descent (SGD) statistics is used in the back-

propagation procedure and a suitable optimiser is fixed within it to optimize the back-

propagation process. The three layers of an ANN are: 
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Input layer: An input layer neuron receives input signal values X (x1, x2, x3). The vector of 

weights W (w1, w2, w3) in the weight matrix is randomly assigned to each input values X (x1, x2, 

x3) in the input matrix. 

                                 Let X ∈ R be the input manifold values, 

                                 Let Y ∈ R be the processing representation, 

                                 Let Z ∈ R be the output fucntion values 

Processing layer: Otherwise called as hidden layer. The processing layer receives the matrix 

multiplication of the weighted sum of inputs i.e. inputs and their corresponding weights from 

the input layer and process it through the activation function to transform the signals to their   

encoded form and learn the required hidden representations from it. The formula used for 

calculating the output of a neuron is shown below: 

                                                             z = 𝜎 ∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖 

where z is the output value, 𝑥𝑖 is the input value and 𝑤𝑖 is the associated weight value, 𝜎 is the 

non-linear activation function. 

The equation shows that the summation of the input values and their corresponding weights 

give the weighted sum of inputs. Then the activation function is applied over the weighted sum 

to transform the non-linear signals into the required output signals. The ANN accepts the input, 

process it and produces the output by a summation- mapping function. Figure 2.8 denotes the 

flow to calculate the output of a neuron. 
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Figure 2.8:  The Output Computation of a Neuron (Hornik et al., 1989) 

Output layer: It gives the processed information as an outcome. 

 

        The ANN is a fully connected dense layer network. The number of nodes in the input, 

hidden and output layers are determined according to the number of input features and the 

number of output values produced. Usually, there are a larger number of neurons in hidden 

layer than the input and output layers to process the input values. The binary classification 

problem requires two output nodes whereas the multiclassification problem requires multi 

nodes. The ANN randomly assigns the weights in the weight matrix to the inputs in the input 

matrix. 

It contains two phases: 1. Feed-Forward Phase 2. Back-Propagate Phase 

Feed-Forward Phase: The FFP of the ANN forward propagated the input data values to 

produce the output by the summation and the activation function in the hidden layer, through 

which it maps the input to output. The feed-forward phase computes the activations in the 

network and gives output values. The cost function measures the difference between real output 

and predicted output by the network.  
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The forward propagation of a neural network is shown in the equation below as follows: Z = 

C (Y) = C (F (XW)), where C is the cost function, F is the activation function, W is the weight 

of the network, and X is the input data.  

The partial derivatives are taken to calculate the gradient of the cost function. The gradient of 

the cost function is computed for each weight of the network and is shown in the equation as 

follows:    

                                                    𝜕 c/ 𝜕𝑤𝑗  =    
𝜕𝑐

𝜕�̅�

𝜕�̅�

𝜕𝜎

𝜕𝑧

𝜕𝑤𝑗
 

 

We will find the derivative of the cost function in a closed-loop form in order to minimize the 

cost function C. i.e. min (C) where C (W, X, Z). W is the weight matrix, X and Z are the input 

and output data. C is the cost function named cross-entropy to measure the difference between 

the predicted output and the actual output. 

 

The cost fucntion (Golik et al., 2013) is used to measure the loss and evaluate the 

network performance. If z denotes the expected output and z’ is the predicted output, then the 

difference between the expected and predicted outputs are measured by the cross-entropy 

function. For a binary classification problem, the cross-entropy is denoted as binary cross-

entropy, where it uses the logistic sigmoid activation to estimate the cost function. The cost 

function is given by the equation, C (z, z’) =∑ [𝑧𝑗 𝑙𝑜𝑔𝑧′𝑗 + (1 − 𝑧𝑗) 𝑙𝑜𝑔 (1 − 𝑧′𝑗)].
𝑛   

𝑗=1
 

 

 For a multi-class classification problem, the cross-entropy is denoted as multi cross 

entropy, where it uses the SoftMax activation to compute the cost fucntion. It is given by the 

equation, C(z, z’)  = ∑ 𝑧𝑗 𝑙𝑜𝑔(𝑧𝑗
,)

𝑛   

𝑗=1
,  where  𝑧𝑗  and 𝑧′𝑗  are the j-th feature of z and z’ respectively. 
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The cost function is continuously differentiable and the network uses chain rule to 

calculate the partial derivatives of the cost function, where it measures the difference between 

the desired and obtained outputs. A gradient is a partial derivative (i.e.)  that rate of change of 

cost function.  𝑧𝑗  is the probability of outcome for classifying records in one class, whereas  

𝑧′𝑗 is the probability of outcome for classifying records in another-class. 

 

The activation functions (Nilsson, 1998) in the ANN support the transformation of non-linear 

input signals to the required encoded signals. The different activation functions used in the 

neural networks are given below: 

 

The sigmoid is a non-linear logistic activation function, which is bounded by discrete 

values 0 and 1 and it is fully differentiable. The sigmoid function is denoted as in the equation 

Sigmoid (z) =    
1

1+ⅇ−𝑧      

 

The RELU is a piece-wise non-linear activation function (Maas et al.,2013) that is 

neither differentiable nor bounded. It is mainly used as the encoder activation function, for 

transforming the input data signals to the latent-encoder signals. The RELU transforms the 

input in the range of (0,1) to compute the probability of an output function and its derivative 

gradient can take only two values 0 and 1. It squashes the negative input values to zero values 

to process it easily. The RELU makes the network converges faster and is not saturated at 1, 0 

or -1 values. It is very much resistant to vanishing gradient problem. The equation of the RELU 

function is RELU(z) = 𝑚𝑎𝑥 (0, x)  
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             The SoftMax probabilistic function is used in the output layer for the multiclassification 

problem as like multinomial logistic regression, which is bounded by multiple target values.   

The function is given by SoftMax (z) = ⅇ𝑥𝑖/ ∑
𝑗=1
𝑛  ⅇ𝑧𝑗, where n is the number of class labels in 

the multi-class problem,  ⅇ𝑥𝑖  is the standard exponential value for an input function,  ⅇ𝑧𝑗  is 

the standard exponential value for an output function. 

 

Back-Propagate Phase: The backward phase (Rumelhart et al., 1986) is used to fine-tune the 

weights in a neural to minimize the cost function so that the optimal output has been achieved. 

After the gradient is computed in the feed-forward phase, the weights are finetuned in a small 

rate known as learning rate, denoted by the parameter 𝛽 . It determines the steep size of the 

updates of weights. By the computed gradient 
𝜕(𝑐𝑜𝑠𝑡)

𝜕𝑤𝑗
, learning step 𝛽 and the previous value of 

the weight 𝑤𝑗, the new value of the weight can be computed as shown in the formulae as below 

                                                      𝑤𝑗+1 = 𝑤𝑗   − 𝛽
𝜕(𝑐𝑜𝑠𝑡)

𝜕𝑤𝑗
 

 

             The phase is carried out using the stochastic gradient descent algorithm and it is 

optimized by different optimizers. The SGD computes the gradients of an output function WRT 

the input function, i.e. rate of change in cost function and is minimized in the direction of 

gradients i.e. steep down from top to bottom. For larger dimensional security datasets, the input 

samples are grouped into batches, such that each batch contain a group of samples to speed up 

the computation process, since the gradient computation for every single sample is a tedious 

and time-consuming task 
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In back-propagation, a learning procedure called SGD (LeCun et al., 1998) is employed 

to minimize the cost function, where the gradients of the cost function are computed and taken 

as a convex optimization problem. The structure of the convex optimization is taken in the 

shape of an inverted bowl, where the initial gradient computed is taken as the slope of the 

tangent as a starting point and the weights are finetuned WRT  gradients and minimize the 

gradient at each learning step, till the gradients move downwards by the tangent of the slope 

and reach the bottom of the inverted bowl. The bottom of the inverted bowl denotes the zero-

minimum level. We can use the derivatives in a feedback loop to update parameter vector w 

by finetuning it in the direction of the gradient. Thus, the gradient reaches zero level and 

converges to a minimal cost function. The slope of the tangent line determined by the gradient 

of the cost is calculated at each step till it reaches the bottom. The important criteria here is the 

learning rate since it determines the step size of the learning criteria i.e. weight updates in the 

direction of convex optimization, to move downwards the slope to minimize the cost function. 

 

              E.g. the gradient of the convex optimization function y=5x2 to be 10x. The gradient 

then becomes the tangent of an initial point on the inverted bowl. On the inverted bowl, the 

slope at any given point is a line tangential to that point. The SGD computes the derivative of 

the cost function to determine the gradient. The gradient determines the direction of the slope 

and thus the gradient moves downwards WRT weight updates at each iteration and reaches the 

bottom of the inverted bowl. The convex-optimization cost fucntion is visually represented as 

shown in Figure 2.9. 
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Figure 2.9: The Convex Optimization Cost Function (Rumelhart et al., 1986) 

     

           The process is repeated for every single record of a dataset, whereas instead of updating 

the weights for every single record in an epoch which is a tedious and time-consuming task, 

group the set of samples into different batches, and the weights are updated for an entire batch 

in a single epoch to make the SGD back-propagation training faster. An epoch is a single 

optimization pass that scans the entire training set in a single round. More rounds of 

optimization passes are applied during SGD training to minimize the reconstruction error. The 

parameter (w) is updated for every epoch to minimize the gradients. 

 

The optimizer (Reddi et al., 2018) is the function used in the SGD statistics that can 

optimise the back-propagation learning process to reduce the cost function and achieve the 

optimal solution. It also makes the back-propagation procedure faster. The Nester-Accelerated 

Adaptive Moment Estimation optimiser is used for the back-propagation procedure. 

 

NADAM (Dozat, 2016) is the optimizer used in the back-propagation procedure to 

optimize and speed up the procedure. The NADAM optimizer is used to compute the gradients 

in a very faster manner to minimize the cost function, since it blends both properties of NAG 
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and ADAM optimizers. The learning process is accelerated by summing the exponential decay 

average of the previous and current gradients and by using this, the moments of the gradients 

are being estimated in the direction of the calculated gradients and is shown in equation as 

follows: 

                          x(t) =x(t-1) - 𝛽 / (√nhat +eps) * nhat 

where  𝛽 is the learning step, √ is the square root fucntion, eps is the parameter added to avoid 

the divide by zero error, x (t-1) is the past gradient at a time t-1,  x(t)is the current gradient to 

be calculated at a time t. 

The concepts of ANN have been discussed detailly so far. Now let us discuss the concept of an 

autoencoder. The AE generally consists of two phases and the two phases of an autoencoder 

are 1. Encoder 2. Decoder.  

The encoder transforms the high-dimensional representation to the low-dimensional 

representation by extracting the hidden patterns, that represents the structure of the input 

dataset. It is the most important part since the features encoded are used for the prediction task. 

The encoder phase is shown in the equation below: 

                                                                     y = F (x) 

Where x is the input representation, F is the encoder-activation function, y is the encoded 

representation. 

The decoder transforms the encoded representation to the output value, which is similar to the 

original input representation. The decoder phase is shown in the equation below: 

                                                                    z = G (y) 

Where z is the output representation, G is the decoder-activation function, y is the encoded 

representation. 
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The decoder reconstructs the input data values using the encoded representation by 

minimizing the reconstruction loss. i.e. difference between the reconstructed input and the 

actual input, which is measured in terms of cross-entropy. The reconstruction loss can be 

minimized using back-propagation optimization such as SGD by finetuning and updating the 

weights in a network. The weights are shared between encoder and decoder i.e. w = wˆ 

                                                    C (w, wˆ) = min C (x, z)   

Where x is the actual input and z is the reconstructed input. 

 

 For each mini-batch, the average gradients computed are back-propagated and the 

weights are finetuned till the gradient reaches the bottom minimum level and obtain the optimal 

solution. The autoencoder has identical nodes in both input and output layers, to reproduce the 

input data in the output layer by minimizing the reconstruction cost. The architecture of an 

autoencoder is shown in Figure 2.10. 

 

Figure 2.10:  Architecture of an Autoencoder 
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The autoencoder consists of two types of parameters (Bergstra  et al., 2011) 1. Trainable 

parameter 2. Non-trainable parameter. 

The trainable parameters are automatically learned by an autoencoder during the 

training phase that includes weights, bias etc. The non-trainable parameters are hyper-

parameters (Bergstra & Bengio, 2012) that can be finetuned by several investigations and fixed 

to get the reliable performance results. The hyperparameters include hidden layers, neurons, 

learning rate, optimizers, back-propagation algorithm etc. 

 

Denoising autoencoder (Vincent et al., 2010) is a type of an improved variant of a 

traditional AE which is robust to the noise and corruptions in the input datasets. It artificially 

corrupts a portion of the original input dataset by adding isotropic gaussian noise with zero 

mean and unit standard deviation. The added noise acts as the partial regularization function to 

learn the robust compressed features representation in the hidden layer and reconstructs the 

original input by removing the noise and corruptions. The structure of the denoising 

autoencoder is shown in Figure 2.11 with the following layers.         
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Figure 2.11: Architecture of a Denoising Autoencoder (Vincent et al.,2010) 

 

Input layer:  Consists of initial input x. 

Corruption layer: Corrupts the initial input x into partially corrupted input �̃� by adding the 

gaussian noise as follows. �̃�= x + N (µ, σ2 I)   

where N (µ, σ2 I) = N (0, 1) be the isotropic gaussian noise, µ is the mean, σ is the standard 

deviation and I is the identity matrix. The ratio of noise added to the initial input is within the 

range of 0.1 to 0.2.    

Encoder layer: The encoder maps the partially corrupted input features �̃� to a hidden layer 

features y in a low dimensional space using the encoding function listed as follow 

                                                                    y = F (w�̃�) 

where F is the encoder nonlinear activation function, w is the weight of the encoder. 
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Decoder layer:  From the hidden layer features y, the decoder reconstructs the output z which 

is as close as possible to the uncorrupted input x, by minimizing the reconstruction loss over a 

training set. The decoding function is shown as follows             

                                                         z = G (w’y) 

where G is the decoder activation function, w’ is the weight of decoder. The reconstruction loss 

between x and z is measured by using the cross-entropy loss function. 

 

The reconstruction loss can be minimized by finetuning the parameters of the denoising 

autoencoder using the backpropagation algorithm. Nadam is the chosen optimizer used in the 

backpropagation algorithm. Notice that the hidden features generated from the encoder are 

used for classification by the LightGBM classifier. Lastly, the binary and categorical cross-

entropy loss functions are used for binary and multi-classification purposes. 

 

The different unsupervised learning strategies such as k-means clustering, pca, 

autoencoder have been studied so far. The k-means clustering is not an efficient dimensionality 

reduction technique. The pca is mainly suited for the linear data types, whereas the network 

traffic is not always linear. The autoencoder is a widely used non-linear dimensionality 

reduction technique but is highly vulnerable to noise and corruptions in the network traffic. 

Thus, we go for the DAE, a suitable dimensionality reduction strategy for our attack detection 

system. The DAE with the gaussian noise in the input layer can remove the distortions and 

compress the dimensionality of the dataset by learning and generating some patterns and 

structures from the high-dimensional network traffic. Reducing both distortions and 

dimensionality, are achieved in a single strategy. Thus, DAE functions as 2 in 1 technique.    
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So far, different supervised and unsupervised machine learning techniques used in 

designing various attack detection models are discussed. In this sub-section, literature summary 

of the current IDS models, techniques and datasets used in designing those models, 

performance and drawbacks of the current techniques are analyzed briefly. This survey also 

gives us knowledge and the need to propose new IDS models that are to be built by the novel 

and innovative strategies, which can predict any intruders with maximum prediction score.  

 

2.3   IDS with Classifiers and without Features Selection  

 The different IDS models existed with only supervised learning classifiers without any feature 

selectors are discussed below in the following sub-section: 

 

The DNN with fully connected layers is used for the IDS model (Vinayakumar et al., 

2019) over the standard benchmarking datasets such as NSL-KDD, UNSW-NB, Kyoto and 

CIC-IDS respectively. The network hyperparameters are tuned in a stochastic manner and the 

SoftMax activation function is used for the multiclass classification task and the model 

achieved a detection score of 92.7%, 78.5%, 65.1%, 95.6% for the datasets, NSL-KDD, 

UNSW-NB, Kyoto, and CIC-IDS respectively. It is to be noted that RELU is the better 

activation function to transform the non-linear signals in neural networks. 

 

The security monitoring tool is proposed and designed (Ahmar et al., 2018) by three 

different machine learning classifiers namely SVM, RF, MLP and their performance is 

measured and compared in terms of accuracy, precision, recall and f1-score. The SVM is 

employed with the RBF kernel. The MLP is with a single processing layer and the random 

forest is an ensemble of decision trees. The NSL-KDD dataset with 80% training set and 20% 
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testing set is employed to estimate the proposed model. The MLP outperformed the other 

classifiers. The MLP with a single processing layer has good processing capability to give a 

better prediction score. 

 

To protect the network traffic from different attacks, intrusion detection system is 

developed and evaluated using the recent modern CIDDS-002 dataset. The conventional 

classifiers of DT and naïve bayes are trained separately (Razdan, 2021) by the dataset features 

to classify the samples. The IDS built on DT outperforms the naïve bayes classifier by 

obtaining 99% accuracy. 

 

            Tama and Rhee (2019) proposed an IDS by gradient boosting machine strategy against 

the three datasets NSL-KDD, UNSW-NB15, and GPRS. The GBM is an ensemble learning 

methodology, consists of a sequence of decision trees to solve the classification problem. The 

researchers evaluated and compared the performance of GBM with other different classifiers 

such as random forest (RF), deep neural network (DNN), support vector machine (SVM), 

decision trees (DT) in terms of standard performance metrics. Finally, they concluded the 

research by confirming that GBM with k-fold cross validation outperforms all other classifiers 

in all three datasets respectively. The hyper-parameters tuning of the classifiers are done using 

the grid search to find suitable hyper-parameters. 

 

                 To ensure information security in the network, recurrent neural networks are 

involved (Yin et al., 2017) to ensure information security in the network using NSL-KDD. The 

model is evaluated for both bi-class and multi-class problems and also compared with various 

traditional machine learning algorithms such as DT, ANN, RF, SVM. It is observed the RNN 
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is not much superior in performance when compared with other traditional methods. The RNN 

is most apt network for the sequential and temporal data types. However, the network traffic 

taken for our evaluation are all structured data types and RNN is not suitable for our model 

design. 

 

                The port scan behavior is predicted on the network traffic of the datasets namely 

NSL-KDD and UNSW-NB using the multilayer neural networks (Nguyen et al., 2018), which 

consists of two stages 1. pre-training stage 2. refining stage. The pre-training stage is proceeded 

by the greedy-forward propagation algorithm, that forwards the activation from input to the 

output layer. The refining stage is carried out by the back-propagation strategy, which 

backpropagates the gradient of the cost function, to finetune the weights of the network and 

minimize the cost function. 

 

             The intruder monitoring tool is designed using the convolutional neural network 

(CNN), over the NSL-KDD (Wu et al., 2018), where the data samples are converted to image 

format, before feeding to CNN, since it mainly supports only image format. As the dataset is 

highly imbalanced, cost function weight coefficient is proposed to fine-tune the weights of the 

cost function and the model achieved a detection score of 79%. It is clear from the results, that 

the CNN network is the most suitable for the image data types due to its convolution structure.  

The cyber security datasets we use to evaluate our proposed designs belong to CSV data 

formats. The CNN is not a suitable network architecture for the CSV datatypes. 

 

            The BoT-IoT dataset is used to design an IDS to protect the IoT network environment. 

The proposed model (Ferrag et al.,2020) consists of two stages: stage 1 classifies the IoT 
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network traffic as normal or attack by the decision tree classifier, stage 2 categorize the type of 

attack (multiclassification) using the random forest classifier. The two-stage tree-based 

classifiers are blended to build an IDS model and obtain a higher performance level. 

 

          Ahmim et al. (2019) describes the stacking approach consisting of three tree-based 

classifiers namely REP Tree, JRip algorithm and Forest PA to construct the intrusion 

monitoring system and evaluate the model against the CIC-IDS. The first two classifiers 

performed the binary classification task i.e. classifies the samples as normal or benign. The 

outcome of those are used by the third classifier for the multiclassification task i.e. predicts the 

category of attacks.   

 

            The classifiers without any feature selection technique scan and use every single value 

of all features including any insignificant feature values to classify the samples, which affect 

the classification score and increases the computational complexity, training time, memory 

resources etc. The feature selection is an important part in designing an IDS model for the 

attack prediction task, since the techniques used, select attribute values that can contribute some 

extent to obtain better prediction score and remove an attribute value that is adversary for any 

ML classifier performance. The literature survey also shows that instead of a single classifier, 

an ensemble technique with a group of classifiers i.e. more than a single classifier gives a better 

prediction score, but consumes a longer time to train the model. 
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2.4    IDS with Classifiers and Features Selection  

The different intrusion detection models that are currently available contain two parts 1. feature 

selectors 2. classifiers. Feature selector which selects an optimal subset of features, through 

which any classifier can classify the samples with reliable score in short training time.  

 

An IDS model is designed by Aksu et al. (2018) over the CIC-IDS dataset to predict 

DDoS attacks, where it can flood the network traffic by continuous messages from the 

intruders. The dataset is divided into 90% training data to train the model and 10% testing set 

to evaluate the model. The feature selection algorithm-fisher score, a filter method, that can 

rank the attributes based on the fisher’s score in descending order and the attributes with least 

scores are eliminated. The filter methods, based on the statistical and numerical properties of a 

feature, are faster and less computationally expensive to eliminate the useless features of the 

dataset and the proposed model is built over three machine learning classifiers such as KNN, 

SVM and DT. In the KNN algorithm, the k-value is set as 4.  The linear kernel is used in the 

SVM classifier and Gini’s diversity index is used as the split criterion in the DT algorithm. 

Among them, the KNN classifier with 30 features performed best in terms of standard quality 

performance metrics for the bi-classification task. The number of nearest neighbours play a 

major role in predicting DDoS attacks.   

 

             The researchers (Ambusaidi et al.,2014) filtered the irrelevant features in the datasets 

such as KDD Cup99, NSL-KDD and Kyoto 2006+, respectively using the flexible mutual 

information method. The filter-based feature selection algorithm selects the predominant 

subset of features using the mutual information share i.e. cross-entropy among the features and 

it deals with the relevance of a feature for the class. After the feature selection process is over, 
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the selected attributes from the corresponding datasets are used for the classification process 

by the least square-support vector machine (LS-SVM) and the model achieves better 

performance in terms of accuracy for all the three corresponding datasets. 

 

To secure the IoT-interconnected devices, a security monitoring tool is designed 

(Alsamiri & Alsubhi, 2019) against the BoT-IoT dataset that contains modern and realistic IoT 

network traffic. The importance of the traffic features is measured by the random forest 

regressor and the most weighted subset of features are evaluated by the random forest  

classifier to classify the samples. 

 

  The tor-traffic conceals the identity of network users and provides private 

communication among the network users, where the network traffic is misused by hackers and 

online criminals for their illegal transactions and fraudulent activities. To classify the tor traffic 

from the non-tor traffic, the ISCX-TOR dataset is used, where it contains imbalanced samples 

in the minor output category and it is balanced by the resampling technique. The importance 

of the features is measured using the SHAP values, which computes the feature weight by the 

average marginal contribution of each variable. The selected weighted features are being used 

by the different machine learning classifiers namely logistic regression (LR), support vector 

machine (SVM), and neural networks (NN) to perform the classification task (Chowdhury et 

al., 2019). The neural network classifier overtakes the other two classifiers. In addition to this 

(Lashkari et al., 2017), the same dataset is evaluated by the correlation coefficient feature 

selection algorithm with random forest classifier and the proposed model obtained an DR of 

86.92% in 12.5s training time. 
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            The IoT devices in the cloud networks are secured by the attack detection tool, 

developed by Mahajan et al. (2020) the decision tree (DT) classifier. The model is built over 

by the CIDDS-001 dataset. Firstly, the optimal subset of features is chosen by the entropy-

statistical measure and the selected features are used by the DT classifier to discriminate the 

inputs. 

 

The attack prediction system is built using five different classifiers namely LR, SVM, 

RF, GBM, and NB against the datasets such as NSK-KDD and KDD99 respectively, which are 

very old datasets. The authors (Gupta & Kulariya, 2016) evaluated the performance of those 

classifiers by the standard performance metrics and concluded that LR performed better in 

289.105s training time using the features selected by the correlation feature selection (CFS) 

strategy, whereas the RF obtained a higher prediction score using the features selected by the 

chi-square feature selection strategy. The CFS removes the highly correlated features. The chi-

square test deals with the hypothesis testing using pearson’s chi-squared tests.   

 

An IDS model (Amangele et al., 2019) explores the use of machine learning algorithms 

against CIC-IDS for attack traffic detection in an Internet of Things (IoT) connected through a 

software-defined network (SDN). The seven categories of attacks are taken for the prediction. 

The feature selection is done using GINI importance, which calculates the variable weight as 

average over the number of splits, a tree-based strategy and the model is built using the 

classifiers namely LR, KNN, DT, NB, SVM. The LR is a simple logistic s-shaped activation 

function, mainly used for the regression task and bi-class classification problem. The DT 

classifier is based on if-then rules. The NB is the conditional probability that assumes 

conditional independence among the attributes and is based on its probability of success. The 

https://www.sciencedirect.com/science/article/pii/S1877050916314806#!
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SVM classifier performance is determined by the hyperplane constructed between the classes 

and the support vectors nearer to those hyperplanes. The performance among the classifiers is 

measured and compared. It is noted that the CART tree led in the race by giving better 

performance in lesser training time, but it is often stuck in overfitting like neural networks.   

 

              The internet of things is getting popular nowadays since it connects the world through 

digital devices and so the threats against IoT prevail and grow in numbers. To secure the IoT 

network against the vulnerabilities launched by the attackers in its application protocols (DNS, 

HTTP etc.), an intruder prediction model (Moustafa et.al., 2018) is evaluated on the datasets 

namely UNSW-NB15 and NIMS botnet, using the ensemble method consisting of three 

conventional ML classifiers namely DT, NB and ANN respectively. Previously, split is 

involved in the feature reduction process. The proposed model achieved higher performance. 

 

                The weighted vote scheme by combining the classifiers such as KNN, DT, MLP, 

SVM is used in building the attack monitoring model (Sornsuwit & Jaiyen, 2019) and the 

correlation feature selection  removed the uncorrelated features of the datasets namely UNSW-

NB and NSL-KDD. Finally, the remaining selected optimal subset of features are fed to the 

weighted vote scheme technique to classify the samples. 

 

               Lopez et al. (2019) evaluated the CIC-IDS dataset for their IDS model design to 

predict the DDoS attack. The feature selection techniques of recursive feature elimination 

(RFE), and correlation feature selection (CFS) are used to select the optimal set of features. 

The RFE is a wrapper technique, that selects the features based on a classifier performance 

score. The CFS, a filter method, analyses the weight of a feature based on the correlation score. 

https://www.tandfonline.com/author/Jaiyen%2C+Saichon
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Since the dataset is imbalanced, i.e. contains an unequal number of samples in the minority 

classes, stratified shuffle split technique, a cross-validation strategy is used to resolve the class 

imbalance problem. The samples of the dataset are classified using the classifiers, RF, DT, 

MLP, SNN, KNN and DNN and the performance is analyzed in terms of standard quality 

metrics. The model obtained higher detection rate and precision by RF classifier using its 

subsampling technique i.e. random selection of proportion of records at each iteration. The 

neural network took a long time to train the model.   

 

     The IDS is built by Mamun et al. (2016) to detect harmful malicious URLs on the web, 

through the ISCX-URL dataset, since the URLs are the main platform for online illegal 

activities. The model consists of two phases 1. feature Selection 2. URL detection. The feature 

selection process is performed by the IG and ranker methods. The IG selects the features in 

according to the entropy-informative measure and the ranker method ranks the attributes 

corresponding to the predictive capability of each feature. Using the selected subset of features, 

the URL samples are classified by the RF classifier and obtained higher precision and recall. 

 

       The two benchmarking datasets such as NSL-KDD and CIC-IDS are employed for the 

IDS evaluation. The authors, Bansal and Kaur (2019) performed the features selection using 

the ensemble strategy consisting of three filter based-feature selectors namely symmetric 

uncertainty (SU), chi-squared and relief. The symmetrical uncertainty computes the interaction 

gain of a feature measure. The chi-squared is a statistical hypothesis test, that measures the 

relevance of a feature. Relief is a statistical measure that estimates the weight of a feature based 

on the variance measure. The attack classification is carried out using the different ensemble 

classifiers like XGBoost, Ctree and stand-alone classifiers like SVM, neural net. The XGBoost 
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leads in the race by achieving an DR of 98.85% against the NSL-KDD and 98.42% DR against 

the CIC-IDS. 

 

      A new dataset named IoTID is developed and used by Ullah et al. (2020) to detect the 

modern category of intruders in an IoT network environment. The correlated features are 

removed first using CFS technique and the novel feature selection strategy named shapira-wilk 

algorithm, a  test of normality in frequentist statistics is proposed to rank the features, where 

the ranking of the features is computed according to the regularity distribution of occurrences 

WRT the features and the highly ranked features are used by the various supervised classifiers 

namely SVM, LR, NB, DT, RF to classify the IoT traffic samples. The tree-based algorithm 

outperforms the rest of the classifiers. 

 

    The hybrid feature selection techniques such as correlation feature selection and bat 

algorithm, a bio-inspired algorithm, that functions based on the echolocation of bats, are 

blended by Zhou et al. (2019) to select the subset of features from the CIC-IDS. The CFS 

technique filters the uncorrelated features and the bat algorithm uses the frequency tuning and 

form the fitness function to select the subset of features and finally, 13 features are selected. 

The ensemble technique, consisting of classifiers namely DT, RF, and Forest by Penalizing 

Attributes are used to do the attack prediction task and the voting technique that combines the 

probability distribution of the aforementioned classifiers are finally employed in classifying 

the instances. The assembling of decision tree-based classifiers gives higher performance. 

 

From the literature survey, we come over different feature selection techniques. Each 

feature selectors (Dash et al., 1997) have its own mathematical, algebraic, and statistical 

https://en.wikipedia.org/wiki/Normality_test
https://en.wikipedia.org/wiki/Statistics
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properties, that estimate the weight of a feature. The feature reduction methods may remove 

some features that are insignificant and irrelevant to their properties. The number of features 

in a reduced features subset are always lesser than the number of features in an original feature 

set. From the survey, we come to understand that the feature selection techniques improve the 

classification score and accelerates training speed of the model. 

 

Though feature selectors remove some of the features in a dataset, there are cases that 

every single feature value may contribute some extent to classify the datasets samples in the 

IDS model. Moreover, the high-dimensionality of the cyber-security datasets is highly 

challenging for the ML classifiers to train and classify the samples. In such cases, the feature 

selection techniques do not contribute much successful results in reducing the dimensionality 

of the dataset by learning and extracting any useful patterns and structure from the high-

dimensional datasets. Thus, we move our survey studies on different feature extraction 

strategies that can reduce the dimensionality of the dataset by learning and extracting the 

hidden patterns. The feature extraction techniques use all features in an original feature set and 

combine the features using its strategy, and transform the data points into the lower-

dimensional manifold. The extracted features are lesser in number and are different from the 

original feature set, but includes all feature values in an encoded form of representation. The 

survey shows some of the feature extraction strategies used for the dimensionality reduction of 

the IDS models. 

 

The dimensionality reduction techniques do not remove any subset of features from the 

original feature set. Instead, it reduces the high- dimensionality of the original features by 
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combining the feature values in an original feature set and projecting the values in another form 

of encoded representation in the lower-dimensional manifold. 

 

2.5 IDS with Classifiers and Features Extraction  

The intrusion detection models developed by combining different feature extraction strategies 

with machine learning classifiers are discussed in this sub-section. 

 

The high-dimensional CIDDS-001 cyber security dataset is compressed by the PCA 

technique, an unsupervised dimensionality reduction strategy and SMOTE strategy is involved 

(Cuautla et al., 2020) to increase the minority class samples of the dataset. The latent manifold 

is used by the KNN to classify the records. The hyperparameters are tuned by the grid-search 

optimization technique and obtain good performance scores such as an accuracy of 98.72%, 

precision of 98.17%, DR of 98.15%. 

 

In another work by Yulianto et al. (2019), PCA is involved in the reduction of high-

dimensional features of the CIC-IDS, where the imbalanced class distribution of the dataset is 

handled by the SMOTE to increase the samples of the minority classes. The ensemble-boosting 

technique is further employed to classify the samples and obtain better performance. 

 

On continuation of evaluation on the CIC-IDS (Abdulhameed et.al., 2019), the high-

dimensionality of the dataset is reduced by the principal component analysis (PCA), and the 

lower-dimensional latent manifold extracted are used by the classifiers namely RF and NB 

respectively. The class imbalance problem of the dataset is handled by the uniform distribution 
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based balancing scheme (UDBS). The PCA-RF combined approach gives better detection rate 

in both binary and multi-classification tasks in 752.67s training time.  

 

The PCA is the principal component analysis that projects the data points in each 

principal component through matrix decomposition, by decomposing the high-dimensional 

original input matrix into its eigenvalues and eigenvectors, that corresponds to the magnitude 

and direction of projection of data points in a lower-dimensional manifold. Each principal 

component is orthogonal to the other. The major drawback is that the PCA does not support 

any activation function to deal with the non-linear structure of the datasets and it is mostly 

suitable for the linear-data types, where the network traffic of the cyber-security datasets is not 

always linear in type. Thus, we focus our survey studies towards autoencoder, another feature 

extraction strategy that supports different non-linear activation functions. 

 

The non-symmetric deep autoencoder (NDAE) is proposed by Shone et.al. (2018) for 

the feature learning task. The NDAE is not symmetric with an encoder-decoder paradigm and 

contains only an encoder paradigm to learn and extract the hidden features from the dataset 

namely NSL-KDD. Previously, the feature values with threshold values < 20 are removed and 

the RF classifier is involved to classify the samples and the performance of the model is 

measured in terms of standard quality metrics. 

 

A hybrid-IDS model consisting of an autoencoder (AE) and DNN is employed by Catak  

and Mustacoglu (2019) for the DDoS attack detection on the UNSW-NB15, where the dataset 

is random-sampled. The latent features are extracted by the AE and the samples are classified 

by the DNN, that has been experimented with different activation functions. The SGD 
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optimization is the back-propagation technique and cross-entropy is the objective function used 

in this experimental design. 

 

To secure the massive amount of data generated by the network technology from the 

attackers, the authors (Hsu et al., 2019) proposed to design an intrusion detection system (IDS) 

using the stacked ensemble learning approach consisting of three machine learning approaches 

namely autoencoder (AE), support vector machine (SVM), and random forest (RF). The 

standard datasets such as UNSW-NB and NSL-KDD are used for the evaluation. The AE 

compressed the network traffic features, where the compressed features are then passed to the 

RF and SVM based stacking model to classify the records. The model achieved a considerable 

performance in both the datasets. 

 

In the research work by Aygun and Yavuz (2017), the ANN technique namely 

autoencoder is trained over the NSL-KDD, to predict the attack, according to the novel 

stochastic anomaly threshold selection approach and considerable performance is achieved in 

this work. 

 

The autoencoder, a neural network-based feature extraction technique that functions 

like PCA (Baldi & Hornik 1989) except the autoencoder adapts different activation functions 

that support the transformation of non-linear network traffic signals, which gives a better 

prediction score. So, AE is a better choice than PCA. Moreover, each dimension of an 

autoencoder are independent of each other and are not orthogonal to each other. But 

autoencoder is highly vulnerable to noise and corruptions present in the high-dimensional 

network traffic. These distortions are challenging for an autoencoder that adversely affects its 
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performance. The AE overlearns the distortions as hidden patterns, which cause deviations in 

the learnt and extracted patterns, and any machine learning classifier will misclassify the 

samples, on learning these deviated hidden patterns. So denoising autoencoder (DAE), a variant 

and an improved version over traditional AE, which is highly robust to noise and corruptions 

is suggested to use as the feature extraction technique for our IDS model. The gaussian noise 

in the DAE can reduce those distortions and functions as regularizer on the encoder side to 

assemble the robust similar data points that belong to identical class labels in each cluster, and 

extract the hidden patterns in the latent manifold by reducing the dimensionality of the dataset 

and deviations in the latent structure. Hence, we focus our literature survey on the DAE. 

                  

On continuation of the same work by Aygun and Yavuz (2017),  DAE is used to extract 

the patterns from the NSL-KDD dataset, and classify the dataset samples using the patterns 

based on the novel stochastic anomaly threshold selection approach. The DAE overtakes the 

traditional AE due to the denoising criterion. 

 

   The unsupervised learning strategies namely autoencoder and its variant DAE are 

employed by Choi et.al. (2019) to develop attack detection models. In DAE, 10% gaussian 

noise is used, wherein Both DAE and AE, RELU non-linear activation function is taken to 

transform the non-linear data values and both models are evaluated by the NSL-KDD, where 

the classification of samples is based on the threshold of the reconstruction error. The detection 

score of the DAE is higher than AE.  

 

     The intrusion monitoring tool is designed by Abusitta et al. (2019), to monitor and 

secure the cloud networks using the hybrid model consisting of DAE and SVM. The proposed 
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model contains two phases, (i.e.) phase 1. feature extraction, phase 2. attack recognition. In the 

1st phase, the DAE removes the distortions from the high-dimensional network traffic and 

reduce the dimensionality of the dataset by learning and extracting the patterns from the BoT-

IoT dataset. In the 2nd phase, the SVM classifier recognises and classify the samples using the 

features extracted in phase 1. The proposed hybrid model obtains 95% accuracy. 

 

               The network intrusion prevention model to predict different categories of attacks on 

the NSL-KDD is built by Fahimen et al. (2018) over the denoising autoencoder, which contains 

two stages. Stage1 describes the unsupervised pre-training stage, that deals with the extraction 

of features, stage 2 describes the supervised fine-tuning stage, that deals with the prediction of 

samples by the SoftMax function. The dataset is randomly sampled and the model outperforms 

the other machine learning classifiers with a DR of 96.85%.  

 

               The DAE and SoftMax classifier are blended to design an IDS model (Khan et al., 

2019) on the UNSW-NB15 dataset. The model consists of two stages 1. pre-training stage, 

where the features extraction task is carried out by the DAE 2. fine-tuning stage, where the 

attack classification task is done by the SoftMax classifier, using the features extracted from 

the pre-training stage and the model achieved a good performance score. 

 

For the prediction of multisource heterogeneous attack categories in the network 

intrusion dataset IoTID, an intrusion detection algorithm with a combination of DAE and ELM, 

a type of ANN, is proposed (Wei et al., 2021). Highly robust, abstract low dimensional 

integration of features are extracted by the DAE. The supervising learning task of recognizing 
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the category of network attack is done by the ELM, a fast learner algorithm.  The SDA-ELM 

algorithm improves the accuracy and detection rate of the minority category intruders. 

 

To enhance the standard of detection effectiveness, intrusion detection framework 

combining unsupervised learning based DAE and supervised learning based DNN are 

introduced by Lopes et al. (2022). The unsupervised learning is used to obtain the compressed 

low-dimensional representation of the network security dataset CIC-IDS, and the supervised 

learning is used to classify the multiclass attacks. Our proposed hybrid approach outperforms 

other relevant methods by maintaining 99.6% DR. 

 

                From the literature study, we come to a point that the DAE is the suitable 

dimensionality reduction technique for our security system. Since the network traffic is high-

dimensional with noise and corruptions, DAE is the suitable feature extraction strategy to 

reduce the distortions and high-dimensionality of the network traffic by learning and extracting 

hidden patterns from the traffic and also to be noted that convolutional and recurrent network 

structures are mainly suited for image and sequential data types i.e. unstructured data types, 

whereas the architecture is not best suited for our network security datasets, that are in CSV 

types  i.e. structured data types. 

 

     As far as, different supervised machine learning classifiers are studied in this 

literature summary, instead of a single classifier, an ensemble strategy that consists of a group 

of classifiers show better performance improvement. Over the ensemble classifiers, the 

gradient boosting ensemble strategy, outperforms all the other machine learning classifiers. 

Thus, we take LightGBM, an advanced, lighter, optimized and improved variant of the gradient 
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boosting ensemble strategy as the classifier for its efficiency and fastness. The classifier has 

various regularization techniques (leaf wise strategy, histogram-optimized strategy, sub-

sampling technique, etc.) that can outperform the other ML classifiers. Thus, we finalized that 

LightGBM is the suitable ML classifier for our NIDS model design to classify the samples of 

all our cyber-security datasets.  

 

                It is to be noted from this survey, rather than a single technique, a hybrid model 

(Peddabachigari et al., 2007) combining more than a single strategy gives better prediction 

score. Especially an efficient feature extraction strategy and an effective classifier can be 

combined and well-organized to develop a hybrid model, that can extract the patterns and 

classify the samples in a better way by securing a good prediction score in short training time. 

Thus, we combine DAE, an unsupervised learning technique and LightGBM, a supervised 

learning technique, together to develop a novel hybrid model that can train the network traffic 

samples in a faster manner and give a better detection score in short training time. 

 

           The major set-backs that exist in all the aforementioned models are most primarily they 

are vulnerable to noise and corruptions in the higher-dimensional network traffic by which the 

models could not properly learn and extract meaningful patterns and lead to wrong 

classification results. Besides, the methods are sensitive to the imbalanced nature of the high-

dimensional datasets and could not successfully predict the samples of the minority category. 

By increasing the learning and predictive capacity, the model can able to correctly classify the 

minority samples. Firstly, DAE is proposed which is robust to noise and corruptions. The DAE 

is well-versed in reducing the distortions by extracting the lower-dimensional useful patterns 

in the network traffic. Secondly, LightGBM, which is very much lighter and faster is proposed 
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as a classifier, which can classify the samples with good performance. The LightGBM is well-

versed in improving the predictive capacity of the model. The combined learning and 

predictive efficiency of those two strategies are very sufficient to deal with the imbalanced 

nature of the datasets. The DAE and LightGBM combined strategy can give a robust, stable, 

lighter, yet stronger IDS. 
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CHAPTER 3 

 

RESEARCH MEHTODOLOY 

 

  3.1   Enhanced IDS Design 

 Figure 3.1 shows an overview of our proposed network-based IDS. The datasets samples are 

first pre-processed (Barreca, 2001) using one-hot encoding and normalization techniques. 

Subsequently, an enhanced denoising autoencoder is used to remove the deviations in the latent 

structure and reduce the high dimensional features by extracting salient, primitive and 

descriptive patterns i.e. core-structure. Finally, the LightGBM is exploited to classify the 

samples using the extracted optimal subset of low-dimensional features. 

 

Figure 3.1: The Overall Design of the Enhanced Hybrid IDS Models 
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3.1.1 Data-Pre-processing 

One-hot encoding and normalization are the two standard steps of the data pre-processing 

stage.  

 

One-hot encoding  

As the datasets consist of nominal features, the categorical values of the features are converted 

to numerical values using one-hot encoding by assigning different integer I to each category 

value of the attribute and converting it into a binary vector with the number of different 

categories as length. The position of the integer value I have a value one where all other 

positions are set as zero. E.g. The categorical values of the attribute destination port in the 

dataset UNSW-NB15 are shown in Table 3.1. 

Table 3.1: The categorical values of the attribute 

 

 

 

 

The numericalized values of the categorical attribute are shown in the Table 3.2. 

 

Table 3.2: The encoded values of the categorical attribute 

 

 

                                    
 

 

 

 

 

   Attribute - Destination port 

                     UDP 

                     TCP 

                    ICMP 

ID UDP TCP ICMP 

1 1 0 0 

2 0 1 0 

3 0 0 1 
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Min-max normalization 

 The range of numerical values can vary between a minimum and a maximum, min-max 

normalization is used to normalize the feature values in the range of [0, 1] as follows: 

                                               𝑋𝑛 = 𝑥𝑖 − 𝑥𝑚𝑖𝑛 / 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  

Where 𝑥 𝑖is the feature value, 𝑋𝑛 is the normalized feature value,  𝑥𝑚𝑖𝑛 ,  𝑥𝑚𝑎𝑥    are the 

minimum and maximum feature values. 

 

3.1.2   Performance metrics 

Various criteria that are generally considered to measure the performance (Labatut & Sheriff, 

2012) of the designed security models are as follows: 

Confusion matrix 

Confusion matrix is a N*N matrix that gives the holistic view of the model performance, where 

N is the number of target class. The matrix relates the actual target value with those of predicted 

value.  E.g. for a binary classification problem, the model has 2 output category and a 2*2 

matrix is formed that gives 4 values as shown in Table 3.3. 

Table 3.3: Confusion matrix for a binary classification problem 

 

 

 

 

True Negative (TN): The benign network traffic is correctly classified as benign. 

True Positive (TP): The intrusive network traffic is correctly classified as intrusive. 

False Negative (FN): The intrusive traffic is misclassified as benign and the traffic is actually 

intrusive. 

P
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u
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                            Actual values 

 Positive (P) Negative (N) 

Positive (p)   TP  FN 

Negative (N)   FP TN 
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False Positive (FP): The benign traffic is misclassified as intrusive and the traffic is actually 

benign. 

 

Based on the above four criteria, the performance metrics used to evaluate the proposed IDS 

models are as follows: 

Detection rate: It is also known as sensitivity and recall. It is the ratio of intrusive traffic 

records that are correctly classified to the total intrusive traffic records in the input dataset, 

which is ours aim. It is a very important metric in evaluating the performance of a model. The 

detection rate is measured as follows: 

                                                        𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Accuracy: It indicates how an IDS can accurately classify the network traffic records in the 

dataset. Accuracy is measured as follows: 

                                               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 

Precision: It is the proportion of correctness in the predicted intrusive traffic records. Precision 

is measured as follows: 

                                                   𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

F1-score: It is a harmonic mean between precision and recall. F1-score is measured as follows: 

                                            𝐹1 − 𝑠𝑐𝑜𝑟ⅇ =
2×(𝑅ⅇ𝑐𝑎𝑙𝑙×𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅ⅇ𝑐𝑎𝑙𝑙+𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)
 

Classification loss: The classification loss computes the difference between the actual output 

and predicted output and estimates the performance of the model on test set samples. Usually 

the cross-entropy is chosen. It is a an another very important criteria in measuring the detection 

performance. Generally, when the classification loss is low, the detection rate would be high. 

The model should have high detection rate close to 1. 
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3.2      Proposed enhanced DAE Models 

Though the gaussian noise in the input layer of the DAE has the capability to remove distortions 

and extract robust clean meaningful patterns, the DAE could not completely remove it due to 

the small ratio of gaussian noise used in the DAE. It gives only partial regularization and 

robustness on the encoder activation of the DAE. Still there are variations in the latent space 

of the DAE due to the hidden unremoved distortions. As a result, the similar data points are 

distant apart i.e. there are gaps among the similar data points and the DAE could not completely 

group similar data points in each clusters of the latent structure. This led to the deviations in 

the latent structure which affects the quality of the patterns extracted and the predictive capacity 

of the model. More importantly, the usage of higher proportion of gaussian noise i.e. corrupting 

larger proportion of input samples collapse the entire latent structure and degrade the 

performance. Thus, some other additional constraints can be added on the encoder side of the 

DAE to suppress the deviations in the latent space. In the following ways, the deviations in the 

latent structure can be suppressed.  They are: 

1. By minimizing the larger partial derivatives in the encoder activation. 

2. By minimizing the magnitude of the encoder weight matrix activation to be 

sparser 

3. By directly transforming and projecting similar data points and filtering the 

dissimilar points in the encoder activation. 

4. By enforcing the generated distribution on the encoder activation to be an 

approximation i.e. maximum likelihood of the standard normal distribution, 

which can minimize the deviations by enforcing continuous and complete latent 

space. 
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The research methodology deals with the description of theoretical, mathematical, 

algebraic properties of the additional novel strategies that are to be added to the encoder 

activation layer of the DAE that give four enhanced DAE models which can minimize the rate 

of change in the latent manifold, by removing the distortions and enhance the feature learning 

capacity of the DAE.  

 

All the four models have their own unique mathematical and algebraic properties in 

suppressing the deviations in the latent structure of the DAE and enhancing the feature learning 

capacity of the DAE. Among the four enhanced models, the fourth model, enhanced DAE 4 

otherwise named as generative DAE, slightly outperforms the other three enhanced models in 

improving the features learning capacity of the model. The fourth model, generative DAE, as 

the name suggests that it can extract the entire probability distribution of the network traffic in 

the latent space, which is continuous and complete in nature, unlike the other three enhanced 

DAE and traditional DAE models, which can output discrete real vector values in the latent 

structure, which may be discontinuous and incomplete in nature. The generative DAE due its 

generative nature can generate meaningful sampled points and outperforms the other models, 

since the generative models always outperform the stochastic and deterministic models by 

generating the quality enriched patterns. The four enhanced DAE models are described and 

derived as below: 
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3.2.1 Enhanced DAE model 1 

By minimizing the larger partial derivatives on the encoder activation of the DAE, the 

deviations in the latent space can be suppressed. To enforce the partial derivatives to be smaller, 

the jacobian gradient norm is inserted on the encoder activation of the DAE.  

The overall design of the DAE with jacobian gradient norm is visualized as shown in Figure 

3.2. 

 

Figure 3.2:  The Architecture of the Enhanced DAE 1 
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The jacobian matrix (Ford, 2015) computed at the encoder activation of the DAE 

contains the partial derivatives of the extracted hidden patterns corresponding to the actual 

input data patterns.The partial derivatives denote the gradients generally refer to the rate of 

change of an output function from the corresponding input function. That is what it refers to 

the rate of change of a hidden layer representation WRT to the corresponding input patterns. 

 

The higher-order partial derivatives denote the variations in the latent manifold region 

from the original input manifold. The distorted representation makes the network unstable. The 

smaller partial derivatives denote the less deviation or no deviation. 

 

By minimizing the larger partial derivatives, important patterns, compact 

representations and descriptive structure can be captured  and transformed from the original 

high-dimensional space and well projected in the non-linear latent subspace, by removing the 

gaps among the similar data points that are distant apart and  grouping of similar data points 

that belong to identical classes in each distinctive cluster labels of the latent space. 

 

If the partial derivative value is closer to zero, then no major change is observed in the 

mapped latent representation WRT original representation, whereas if the value is closer to 

one, then a major change is observed in that mapped latent representation. Thus, the data points 

are not properly mapped and deviations are observed in the latent structure.  

 

             The gradient norm (Rego and Lupu, 2021) denotes the square root of the sum of 

squares of all the partial derivatives in the encoder layer i.e. latent data points WRT input data 
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points. The gradient vector norm has the important property of being invariant (Goodfellow et 

al. 2009), and hence we are utilizing its algebraic and mathematical property in DAE. 

 

                  The gradient norm applied on the jacobian matrix enforces squishing pressure on 

the higher-order partial derivatives i.e. magnitude close to 1, shrink it to smaller singular values 

i.e. magnitude close to 0. Hence the space among the similar data points gets squished and the 

similar data points of the identical classes are clustered together in their respective clusters due 

to the pressure applied by the gradient norm. By squishing and reducing the gaps among the 

data points that are distant apart, large number of similar data points that belong to identical 

classes are grouped together to form distinctive clusters in the latent manifold which suppress 

the deviations in the latent manifold.  Thus, the latent manifold extracts the intrinsic and 

primitive patterns of the original high-dimensional network traffic, which enriches the quality 

and structure of the features extracted by the model and enhances the features learning and 

predictive capacity of the model. 

 

The jacobian matrix is thus computed as follows: 

                                𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 Matrix:    𝐽ℎ(𝑥)  = 
 𝜕ℎ (𝑥)𝑚

𝜕𝑥𝑛
 = 

[
 
 
 
𝜕ℎ(𝑥)1

𝜕𝑥1
⋯

𝜕ℎ(𝑥)1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕ℎ(𝑥)𝑚

𝜕𝑥1
⋯

𝜕ℎ(𝑥)𝑚

𝜕𝑥𝑛 ]
 
 
 

  

 which denotes the partial derivatives of the hidden features’ WRT to the input features.  

                                     

                                                  𝐽ℎ(𝑥)= 
𝜕(ℎ𝑖=1………….ℎ𝑚) 

𝜕(𝑥𝑖=1………..𝑥𝑛)
   = 

𝜕ℎ𝑚

𝜕𝑥𝑛
    

                                                        where    𝐽𝑚𝑛 =   (
𝜕ℎ𝑚

𝜕𝑥𝑛
)
2
        

         Where i =1 to m denotes the input (x) - summed over i input data points 
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                   j= 1 to n denotes the hidden features (h) - summed over j hidden points 

 Consider h (x) as a vector-valued function, each hidden unit has a separate gradient vector. 

The gradient norm thus computed is shown as follows: 

                               
              

𝐺𝑟𝑎𝑑ⅇ𝑖𝑛𝑡  𝑛𝑜𝑟𝑚   𝑜𝑓 𝑡ℎⅇ 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥  𝜆 𝐹
𝑚𝑛

  = √𝐽𝑚𝑛
2

    

where λ represents denotes the weight of the gradient norm applied. 

 

             Parameter alpha is the tuning hyperparameter that denotes the strength of the gradient 

vector norm of the Jacobian matrix. It denotes the quantity of contracting pressure, that is to be 

applied on the larger partial derivatives. It denotes the magnitude and direction of the pressure 

applied on the gradients. The magnitude is the proportion of the contracting pressure applied, 

whereas the direction denotes reaching the bottom of the steepest descent to maximize the 

objective function. The contraction ratio maximizes up to the point of saturation of the 

activation units. 

 

The jacobian matrix on the encoder layer of the enhanced DAE is thus calculated as 

                                                                       zm = wnxn 

                                                                       hm  = ϕ(zm)  

where ϕ denotes the non-linearity in activation fucntion.   

The dot product of the nth attribute value and its associated weight gives the mth hidden unit.  

                                                                     
𝜕ℎ𝑚

𝜕𝑥𝑛
  =     

𝜙(𝑧𝑚)

𝜕𝑥𝑛
 

                                                         Jacobian norm  =  ∑ (
𝜕ℎ𝑚

𝜕𝑥𝑛
)
2

𝑚𝑛
                                                                        

                                                                            

The first strategy suppresses the deviations by minimizing the larger partial derivatives on the 

encoder activation of the DAE. 



 

 

74 

 

 

3.2.2    Enhanced DAE Model 2 

The second strategy focuses on suppressing the deviations by enforcing the weight matrix of 

the encoder activation to be sparser. i.e.  By minimizing the magnitude of the encoder activation 

weights, the deviation can be suppressed. To enforce the weight matrix to be sparser, iterative 

thresholding function is inserted on the encoder activation of the DAE. Figure 3.3 shows the 

architecture of the DAE with ITF.      

 

Figure 3.3:  The Architecture of the Enhanced DAE 2 

            By inserting  ITF  i.e. iterative thresholding function in the encoder layer activates only  

n-number of hidden units with largest activation values randomly at every iteration and 

deactivate the rest of the nodes in both forward and backward phase to learn and extract the 
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patterns, which enforce the weight matrix to be  sparse and regulate the activation weights of 

the encoder layer . By taking the highest activation nodes in the encoder layer guarantee sparse 

representation for each input data values and achieve exact sparsity in the encoder activation. 

The ITF (Fornasier and Rauhut, 2008) algorithm generally involves two steps: 

1. The first step involves a dictionary that sparsely denotes the input data. 

2. The second step involves transforming the original input space to a new latent feature 

space. 

 

Let E is an estimated support set, Ec is the complement of the support set. Wc is the 

inverse of W (weight),  supn  is the fucntion  that contains the indexes of the  n-largest magnitude 

coefficients of input features,  hE  is the hidden vector obtained by  penalizing the values  of h  

hidden units to the indices of  E and  WE is the weight matrix got by penalizing the columns of 

W to the indices of  E. 

 

           In the feed-forward activation phase, after calculating the hidden vector code  

h = Wi x, the n-highest nodes are identified by adjusting the threshold values of the encoder 

activation units using the ITF strategy and sorting the activation values of the RELU hidden 

units with thresholds that are adaptively adjusted by the ITF, until the n-highest activation 

nodes are identified. This gives a vector of activations by the support set of supn (W
i x) and the 

support set is defined by αsupn (W
i x) where it is further weighted by the regularization operator 

alpha.  

 

     For a fixed input data vector x and its associated weights W, starting from h0= 0 (hidden 

units), ITF iteratively obtains the sparse representation of x = Wh that follows the below stages: 
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• Perform the feedforward phase of the DAE and then calculate the hidden layer 

activation units. It is shown in equation h = Wi x 

• The support set E = supn (W
i x)   is estimated primarily by the ITF algorithm. 

• Find the n-highest activated nodes (activations) in the encoder layer and set rest of the 

nodes to zero.  

•  Let E denotes a support set that contains the n-largest activation node values and  Ec 

denotes the pseudo-inverse set of E contains the rest of the activation values. 

 

    The ITF algorithm learns a dictionary that satisfies x=Wh using the estimated support set 

E = supn (W
i x). After computing the support set of h as E, we constraint W (weight matrix) to 

the indices contained in the support set E and obtain WE. The pseudo-inverse of WE are used to 

evaluate and obtain the non-zero values by minimizing (x- WEhE)2. In the inversion step, after 

estimating the support set, Eh = supn (W
i x), the elements of the dictionary are updated to obtain 

the corresponding non-zero values in the support set. Using the support set, the non-zero, i.e. 

strongest nodes are sorted and obtained as h1, h2, h3,….hn. 

 

               Compute the outcome and reconstruction cost using the n-highest encoder units. 

Back-propagate the gradient cost using the n-highest hidden units used in the feed-forward 

phase, that is defined by the supn (W
i x) and iterate. 

 

               Extract the features h = Wix supported by Eh = supn α (Wi x) using the αn highest 

nodes and rest of the nodes are set as zero, that supports sparse representation for each input 

data. As a last step, the support estimation is refined and repeated till convergence and achieves 

exact sparsity in latent space representation 
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                                              h(E)
c = 0    where E = supαn (h) 

 

                The conventional sparse coding techniques involve complex matrix operations and 

do not have provision to control sparsity level in the encoder activation nodes and a large 

number of dead nodes are formed. The traditional sparse penalty constraints the hidden layer 

nodes to be dead for most of the time. The conventional sparse constraint can only partially 

assure the sparsity in the hidden activation nodes and no exact sparsity is achieved in the encode 

activation layer and there is no guarantee that every input data achieves sparse representation. 

The sparse coding using ITF (Blumensath and Davies, 2008) is the latest trend in unsupervised 

features learning, whereas it involves only simple matrix operations and the sparsity level in 

the encoder activation layer can be controlled using the parameter ‘n’.  In the enhanced DAE, 

after several iterations, using the support set, we use the αn largest hidden units to obtain the 

sparse features where α denotes the strength of the sparsity level.  

 

               The node is considered highly active only if its activation value is close to 1, whereas 

the node is considered inactive if its activation value is close to 0. The n-highest nodes are 

retained by the ITF function to impose sparsity in the encoder activation and achieve sparse 

representation for each input training point and penalize the weight matrix to be sparse and 

regulate the activation weights. 

 

                 The recent improved, optimized and controlled sparse effect can be enforced and 

combined with DAE to suppress the deviations on the latent manifold and extract more quality 

meaningful patterns and descriptive structure from the high-dimensional network traffic. The 

extracted features are used to train the LightGBM classifier on the top of the encoder layer. 
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The resulting representations achieve state-of-the-art classification results, solely by enforcing 

n- sparsity in the hidden units. 

 

                The ITF (Gregor and LeCun, 2010) adjusts and set the threshold of activation values 

of only the n-nodes to the higher values closer to 1 and penalizes the activation values of the 

rest of the nodes to lower values closer to zero. The n-number of units with the high level of 

activation values generally have higher capacity in extracting primitive, salient patterns and in-

depth-core structure of the network traffic.  

 

                    By constraining the weights of the encoder activation using the ITF, the rate of 

change in the latent space can be suppressed. This enables a large number of similar data points 

that belong to identical class labels are grouped in each distinctive cluster of the latent space, 

that enhance the feature learning capacity of the DAE, which further boost the predictive 

performance of the classifier.      

      

3.2.3 Enhanced DAE Model 3  

By reducing the space among the similar data points that are distant apart and grouping of 

larger number of similar data points that belong to identical classes and filtering dissimilar data 

points in each distinctive cluster, suppress the deviations in the latent space of the DAE. This 

can be achieved by using the data-pairwise similarity distance weight. By enforcing strong 

bonding among the data points using the data-pairwise similarity distance weight, the feature 

extraction capacity of the DAE can be improved. 
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  Considering strong relationships among the data points and filtering out the 

overemphasized i.e. weak relations are the major highlight in this research work.The strong 

relation is termed as the pairwise-similarity distance weight (Shimada et al., 2021; Fred and 

Jain, 2006) and it estimates the relation between the data pairs. The relation weight Sij between 

the data pairs (𝑥𝑗 , 𝑥𝑖
.)  is measured by the pairwise similarity distance formula as shown in 

                                                          Sij = ‖ 𝑥𝑗 − 𝑥𝑖
′‖2 

 

 First of all, construct a relation set for the data points in each dimension of the latent 

manifold. The data points with similarity weight close to 1 are included in the relation set, 

whereas the data points with weight close to 0 are not included in the relation set and are being 

filtered by the scalar parameter alpha. The pairwise-distance weight varies between [0-1] in the 

step rate of 0.02. 

 

  On the latent manifold, data relation is finetuned based on the pair-wise similarity 

distance weight defined on the latent representation and the relation sets are determined based 

on several iterations. The architecture of the enhanced DAE 3 otherwise known as relational 

DAE is shown in Figure 3.4.                                                  
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                                       Figure 3.4:  The Architecture of the Enhanced DAE 3 

 

The figure is explained as follows: In the traditional DAE, the data point xi is only 

involved in the reconstruction of itself and the reconstruction cost is measured to be the distance 

between xi and x’i   i.e.   ‖ 𝑥𝑖 − 𝑥𝑖
′‖2  . In the proposed DAE, data point xi is used to reconstruct 

the set of neighboring similar data points in the relation set, thus minimizing the reconstruction 

cost to a possible extent.  For e.g. the reconstruction cost between the data points 𝑥𝑗 and  𝑥𝑖
′ is 

measured to be the weighted distance   i.e.  Sij ‖ 𝑥𝑗 − 𝑥𝑖
′‖2. 

 

The data relation (Wang and Sun, 2015) is initialized by measuring the data pair-wise 

similarity distance between the data points in the latent space and constructing a relation set 

for each feature dimensions.  A relation set consists of N-nearest neighbours (Indyk and 

Motwani, 1998).   
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A relation set otherwise can be called as reconstruction set is constructed for each 

dimension and each relation set consists of  identical data points that correspond to the similar 

class label which can be projected in each dimensional distinctive clusters, by reducing the 

space among the similar data points that are distant apart, such that the latent manifold contains 

distinctive clusters with identical data points through which the intrinsic structure, prominent 

behaviours and characteristics of the original high-dimensional input data structure can be 

extracted. Maintaining mutual data relations further enhance the quality of the patterns 

extracted.  

 

The proposed model filters the least weighted data points in each dimension using the 

scalar parameter alpha defined in the RELU activation function. Alpha is denoting the scalar 

parameter to control and filter the weak similar or dissimilar data points. The parameter alpha 

that is inserted in the activation function RELU varies in the range between [0-1] in step size 

of 0.02 as like the similarity weight. The value close to 1 denotes the strong relation among the 

data points i.e. they are similar data points. The value close to 0 denotes the weak relation 

among the data points i.e. they are dissimilar data points and it is filtered from being included 

in the relation set by the parameter alpha.  

 

To model the data relation, the decoder reproduces a set of identical data points defined 

as Ωi = {j, k...} with specific weights {sij, sik} for a data point xi defined through one 

reconstructing the others in a relation set, Thus the weighted reconstruction cost C is given 

below. 

                                         Sij ‖ 𝑥𝑗 − 𝑥𝑖
′‖2………. Sik ‖ 𝑥𝑘 − 𝑥𝑖

′‖2 
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The weighted reconstruction cost is back-propagated to update and finetune the weights 

to minimize the reconstruction cost and information loss  i.e. impurity, where impurity is 

defined as the ratio between number of similar data points i.e. data points that correspond to 

identical class labels to the number of dissimilar data points i.e. data points that corresponds to 

other non-identical class labels. This shows the significance of considering data relation on the 

latent manifold during the iterative learning, which is the major motivation of this work. The 

proposed methods can discover more complex structure by iteratively exploring the data 

relation. 

 

 Each data point is used to reconstruct a set of identical samples in the relation set 

rather than itself due to the similarity weight, thus minimizing the reconstruction and 

information loss and so the optimal solution can be reached. The relational DAE can find large 

number of similar data points in each distinctive cluster around the lower-dimensional manifold 

by reducing the gaps and suppressing the rate of change in the extracted patterns, which results 

in a meaningful compact structure. On continuous iterations, the proposed DAE can find large 

number of similar data points forming distinctive clusters in the latent manifold. These features 

contribute to the LightGBM classifier to achieve good prediction score. 

 

3.2.4 Enhanced DAE Model 4   

By enforcing the latent space distribution to be an approximation  i.e. maximum likelihood of 

the standard normal distribution, through which continuous and complete latent space is 

obtained by suppressing the deviations in the latent space i.e. reducing the gaps among the 

similar data points that are distant apart and grouping  large number of similar data points that 
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belong to identical classes in each clusters of the latent manifold, thus enhancing the features 

learning capacity of the model. 

 

         The traditional DAE encodes discrete set of data points i.e.  discrete real vector values in 

the latent representation, which gives an incomplete and discontinuous latent structure, that 

lacks information and useful patterns. To have a full complete and continuous latent space, the 

DAE is enhanced to be an enhanced DAE 4 otherwise known as generative DAE (Im et al., 

2018).  The architecture of the generative DAE is shown in Figure 3.5.  

 

        Figure 3.5: Architecture of Generative DAE 

 



 

 

84 

 

        The generative DAE, while transforming the data points, the original input data 

distribution of the cyber security datasets is enforced to be a standard normal distribution i.e. 

zero mean and unit variance. The mean and variance of each feature in the input dimension is 

transformed into a normal distribution by using the formula as shown below  

𝑓(𝑥)  =  
1

√2𝜋
𝜎 ⅇ−

1
2 (

𝑥 − µ

𝜎
)
2

 

f(x) - Probability density function 

x - Actual input distribution 

µ - Mean,   𝜎 −  Standard deviation 

The value is standardized by taking the z-score of the feature value i.e. normal distribution 

value as shown in the formula 

                                                               z =  
𝑥−µ

𝜎
 

 

       The encoder instead of outputting a single real discrete value for each dimension to 

describe each latent feature, it outputs a probability distribution for each latent feature. (i.e. for 

𝑥𝑖)  it outputs two encoder values that is close to a standard normal distribution.  1. mean 2. 

variance that describes the probability distribution (Sugiyama et al., 2019) for each dimension 

of feature in the latent manifold. 

 

                It is a probabilistic encoder with parameters 𝜇   and  √Σ (σ) and it is shown in the 

equation below, thus each latent feature has a continuous probability distribution of the network 

traffic which is  also regular and complete in nature, from which the data points are generated 

and sampled, that give the meaningful core structure of the entire network traffic, 

                                               𝑧 = 𝜇(𝑥𝑖) + √𝛴(𝑥𝑖) 
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We change the log variance to the standard deviation for the numerical stability by taking the 

log exponent of the variance function. we can draw samples from z (), that gives continuous 

latent structure from which the data points can be sampled (Dawid, 2011). 

 

       The sampled points generated and drawn from the z () gives a continuous and complete 

latent structure. In order to ensure the generated distribution and the sampled points to be 

approximation or maximum likelihood of the original input distribution and the data points, the 

bayesian inference strategy is used.  (i.e.) Infer good values of z, given observed data x. 

 

Bayesian inference 

The bayesian inference strategy (KingRobert and Eckersley, 2019) is used to approximate the 

latent space i.e. generated distribution, to the standard normal i.e. prior distribution. The mean 

and variance of the latent space distribution are approximated to the prior standard normal 

distribution by the bayesian inference strategy and the approximation difference is measured 

by the KL-divergence term and it is almost closer to zero. The inference strategy is shown as 

follows:  

• The prior distribution p(x) -The standard normal input distribution - Expected  

                                                       N (0, I) 

• The posterior distribution p(z)  - The generated latent distribution - Extracted  

                                                   N(μ (x), σ(x)I) 

• P(z/x)  - Maximum likelihood - Given the prior distribution, the generated distribution 

to be an approximation of the original distribution. 

• Let p(z) generated from p(x) have maximum likelihood distribution and it is represented 

using the formulae 
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                                           𝑝(𝑧) =∫…∫𝑝(𝑧|𝑥)𝑝(𝑥) 𝑑𝑧 

• To measure the divergence between the original prior distribution, μ = 0, σ= 1 and the 

likelihood approximated distribution x ~N (μ, σ²), the KL-metric is used to estimate the 

divergence and it is always close to zero. The KL-divergence metric is given in the 

equation as: 

𝐾𝐿(𝑧||𝑥) ≟ 𝑝(𝑧) − 𝑝(𝑥) 

 

For each dimension in the latent space, mean close to zero enforces the generated 

sampled  similar data points of the identical class to be centred around zero for each clusters in 

the latent structure, while variance close to 1 enforces the subsequent generated similar 

sampled  similar data points of the identical class to spread and distributed uniformly from the 

centred point in each distinctive clusters of the latent space, thus giving a continuous and 

complete latent structure form which the primitive, descriptive core-structure of high-

dimensional network traffic can be extracted. The generated distribution is quite tighter and the 

latent space is tightly bounded. This maintains continuity and completeness among the data 

points in the latent space and enhances the features learning capacity of the DAE. 

 

The patterns extracted from the enhanced DAE models are passed to the LightGBM 

classifier to classify the samples and the performance is measured in terms of standard quality 

performance metrics. The continuous probability distribution and complete latent 

representation is shown in Figure 3.6.  
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Figure 3.6: The Continuous Latent Representation of the Generative DAE 

 

                        

3.3     Hyperparameter Tuning 

The hyperparameters (Bergstra et al. 2011) are the tuning parameters that can be finetuned to 

get the reliable results. The experimentations are iterated several times to finetune and fix the 

parameters to give the improved performance score.Various hyperparameters are fine-tuned to 

improve the feature extraction and classification processes as follows 

Hidden layer and Neurons: The DAE with a single hidden layer is used to extract the features 

of different datasets. However, the number of neurons differ for different datasets and it 

depends on the input features. 

Weight and Bias: In all our experiments, the weights are randomly initialized while the bias 

are set to zero. 

Activation Function: The RELU and sigmoid activation functions are used to transform the 

non-linear input signals to the processed format (latent encoded signals). 



 

 

88 

 

Optimizer: Optimizer is important to minimize the reconstruction loss by updating the weights 

and learning rate. It is used within the SGD, to optimize and accelerate the back-propagation 

process. Nadam is the optimizer used in all our datasets. 

Gaussian Noise: Gaussian noise in DAE is used to remove noise and corruptions in the 

network traffic. 10% - 20% of gaussian noise is used for eight different benchmark datasets. 

 Batch Size: Instead of training a single record at each iteration in an epoch, a cluster of records 

are grouped together as a batch to increase the training speed of the SGD. 

Epoch: The entire dataset i.e. each record in a training dataset is both forward and back-

propagated to complete those two passes in a network once to finetune and update the weights 

to minimize the loss. An epoch is comprised of a large number of batches. 

Three most hyperparameters considered in the LightGBM are described as follows 

Number of trees: It denotes the number of base learners or DT required to learn the patterns 

and classify the samples. 

Depth of trees: It denotes the height i.e. branches of the DT that can be extended to solve the 

classification problem.  

Learning rate: It denotes the step size of the DT to learn the patterns and classify the samples 

with minimum prediction loss. 
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CHAPTER   4 

 

 

RESULTS & DISCUSSIONS 

 

4.1   DATASETS  

To evaluate the effectiveness of the proposed IDS models, the following datasets are used. 

These are the standard public benchmarking datasets that are used by most of the machine 

learning researchers to evaluate their different IDS models.  

                                             

ISCX-TOR 2016 (Mamun et al., 2016): The tor network is known for providing privacy to 

users by concealing the user's identity. The users are allowed to communicate while keeping 

their internet activities unmonitored. The tor network is often misused by hackers for illegal 

activities. ISCX-TOR was created to capture tor traffic which downgrades the security, 

confidentiality and privacy of internet users. Various real-world network categories of web 

browsing, email, chat, video and audio streaming, file transfer, VoIP and P2P have been 

included as a set of tasks in this dataset. The dataset consists of 152,028 samples and 28 features 

with an output label. In total, there are 129,478 non-tor traffic samples and 22,552 tor traffic 

samples.  

 

UNSW-NB15 (Moustafa et al., 2015): UNSW-NB15 was created by the cyber range lab of the 

Australian Centre for Cyber Security (ACCS). The dataset contains 47 features and an output 

class label. The features in the data set are classified into six categories as follows: table flow 

features, basic features, content features, time features, additional generated features, labelled 

features and they are extracted using network flow analyzers such as argus and bro-IDS tools. 
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There are in total 2.54 million samples with two class labels as normal or attack. It consists of 

2,217,764 normal class samples and 321,283 attack class samples. Through random sampling, 

221,776 normal class samples and 96,385 attack class samples are considered for our research.  

 

ISCX-URL2016 (Lashkari et al., 2017): ISCX-URL2016 was discovered by the UNB-

Canadian Institute of Cybersecurity (UNB-CIC) for the harmful URL’s detection in web-

related activities, since the deadly harmful URL’s on the web is the main platform for online 

illegal activities. The dataset contains 114,400 samples and 79 features with an output class 

label. The target class label consists of benign class (35,000 samples) and four attack classes 

including spam URL (12,000 samples), phishing URL (10,000 samples), malware URL 

(11,500 samples) and defacement URL (45,450 samples). The URL samples in the dataset are 

collected from the following sources: over 35,000 benign URL’s from the alexa top websites, 

around 12000 spam URL’s from the WEBSPAM-UK2007 dataset, around 10,000 phishing 

URL’s from the open phishing website, more than 11,500 malware URL’s from the DNS-BH 

malware websites, and more than 45,450 defacement URL’s from the hermitic web crawler. 

 

 CIDDS-01 (Ring et al., 2017): CIDDS-01 is a network security dataset containing the network 

traffic samples of both legitimate and intrusive behaviors of denial of service, brute force, port 

scan, and ping scan attacks. It is developed in an open stack virtual environment with different 

servers namely email server, web server, HTTP server. CIDDS-001 contains 28 million 

samples, but many samples are duplicated. The duplicated samples are removed. Through 

random sampling, 225,000 normal samples, 23,464 port scan samples, 146,800 DoS samples, 

6,090 ping scan samples and 7,440 brute force samples are taken for evaluation. The dataset 

consists of 12 features with an output class label. 
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CIDDS-002 (Ring et al., 2017): CIDDS-002 is a network security dataset containing two 

weeks of network traffic samples. This dataset is taken specifically for the port scan attack 

detection. The dataset contains 16 million samples, but many samples are duplicated. Through 

random sampling, 481,322 port scan attack samples and 611,970 normal samples are taken for 

evaluation. Similar to CIDDS-01, CIDDS-02 consists of 12 features with an output class label. 

The testbed architecture of both datasets consists of three subnets reflecting organizational 

structure namely 1. server subnet 2. developer subnet 3. office subset. The developer subnet 

contains various clients such as nmap tools that exhibit port scan behavior. The office subnet 

consists of window clients. The server subnet includes three main servers namely file, email 

and web servers, which provide service to the clients.  

                              

 BoT-IoT (Koroniotis et al., 2018): The BoT-IoT dataset was developed by the UNSW 

Canberra Centre for Cyber to detect various malicious activities in the IoT network traffic. The 

dataset possesses the following characteristics: 1. realistic testbed configuration 2. realistic 

traffic 3. labelled data 4. IoT traces 5. diverse attack scenarios 6. full packet capture 7. new 

generated features. The dataset contains various IoT attacks including DoS, distributed DoS, 

reconnaissance, theft and normal network traffic. The testbed architecture consists of three 

components namely 1. network platform 2. simulated IoT services 3. forensics analytics. The 

network platform contains virtual machines to generate network traffic. The IoT devices 

include devices such as weather stations etc. The forensic analytics include tools namely argus 

to extract the features. It contains over 3.6 million records with 43 attributes and an output class 

label. There are 1,926,624 DDoS samples, 1,650,260 DoS samples, 91,082 reconnaissance 

samples, 70 theft samples, and 478 normal samples.                    
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IoTID-2020 (Ullah et al., 2020): The advancement of IoT devices led way for the intruders to 

launch cyber-attacks against IoT devices. The IoTID-2020 dataset was developed to detect 

malicious activities in the IoT networks. The testbed architecture contains various 

interconnected IoT devices that form smart home environment. The dataset consists of 80 

network and flow-based features and an output class label. It contains 625,783 samples with 

five class labels (one normal class and four attack classes). There are 40,073 normal samples, 

415,677 mirai samples, 75,265 scan samples, 59,391 DoS samples and 35,377 MITM ARP 

spoofing samples.  

 

CIC-IDS-2017 (Sharafaldin et al., 2018) was created by the Canadian Institute of 

Cybersecurity. It contains the abstract behavior of users based on various protocols like HTTP, 

HTTPS, FTP, SSH, email protocols and satisfies the eleven characteristics namely anonymity, 

attack diversity, complete capture, complete interaction, complete network configuration, 

available protocols, complete traffic, feature set, metadata, heterogeneity, and labelling. The 

wednesday captured network traffic dataset that consists of 692,703 samples is taken for our 

evaluation.  The CIC-IDS dataset totally contains 5 days of network traffic. We have taken 

only the wednesday network traffic and the other four days network traffic have been skipped 

since the attack types given in those are similar as in the other seven benchmarking datasets 

taken for evaluation. The wednesday network traffic contains the various DoS attack varieties, 

which are missed in the other aforementioned datasets. We skip the four days network traffic, 

since we don’t want to evaluate the same attack categories given in the other aforementioned 

benchmarking datasets. 
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It includes the results of network traffic based on the time stamp, source and destination IPs, 

source and destination ports, protocols and attacks. The B-Profile system has been used in this 

dataset to profile the naturalistic real-time network traffic and the abstract behavior of humans. 

The testbed architecture contains modem, firewall, switches, routers, and a variety of operating 

systems such as windows, ubuntu and mac OS X. There are 78 numerical features with an 

output class label in total. The output class label consists of benign traffic along with six attack 

types (i.e. 440,031 benign samples, 5,796 DoS Slow Loris samples, 5,499 DoS Slow HTTP 

Test samples, 231,073 DoS Hulk samples, 10,293 DoS Golden Eye samples and 11 Heartbleed 

samples). This dataset is taken specifically for the DoS and heart bleed detection.                                         

 

The datasets are partitioned into 80% training set to train our model and 20% test set to validate 

our model performance. From all the aforementioned datasets, the following attacks (Ahamad 

et al., 2009) are successfully predicted by our IDS models: 

 

Heartbleed: Heartbleed is a major attack in the open SSL cryptographic open-source code 

library where the confidentiality and privacy of user data will be leaked out.  

Denial of service (DoS) attack: The intruder blocks the network traffic by injecting continuous 

malicious requests and preventing legitimate users from accessing it. 

Botnet attack: Botnets are network of computers infected by malware that allow the intruders 

to control them. 

Distributed denial of service (DDoS) attack: DDoS is same as DoS but multiple intruders 

from multiple sources are involved. 

Port scan attack: The intruders scan numerous server ports to find an active port to launch an 

attack on the network services available on a host machine. 
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Defacement URL: The URL modifies the visual appearance and original contents of 

legitimate social websites and spoils their reputation. 

Phishing URL: The phishing URL sends fake, dangerous emails to benign users, i.e. it 

pretends to be from authorized sources to steal their personal information such as PIN, 

passwords etc. 

 Spam URL: The spammed URL spreads irrelevant, junk messages to a large number of 

legitimate users to spread fake advertisements, false messages etc.  

 Malicious URL: The malicious URL pretends to be safer, but contains malicious source codes 

and voluntarily direct the legitimate users to malware websites in a back doorway with aim of 

possessing a threat to the system.  

 Reconnaissance: It is a type of scanning attack, that scans the victim ports on the system 

intending to launch a threat on the network system (through the vulnerable ports). 

 Theft: It is a common attack in the network traffic that the intruder hacks the legitimate user's 

password, PIN’s etc to possess fraudulent activities and transactions. 

 Brute force attack: The attackers hack the passwords of an authorized user by trying all 

combinations of passwords or passphrases with the hope of eventually guessing it correctly. 

 Ping scan attack: The intruders ping many hosts at the same time to identify whether the hosts 

belong to the same network and use their IP addresses to launch an attack. 

ARP spoofing: ARP spoofing is a man in the middle attack where the attackers send forged 

ARP messages on behalf of the sender to hijack the information sent in between two users. 

Scan: Various smart devices in the IoT network are scanned in an unauthorized way by 

intruders to exploit the weak points. The different types of scanning attacks in the IoT 

environment are IP address scanning, port scanning, and version scanning etc. 

https://en.wikipedia.org/wiki/Passphrase
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Mirai: Mirai is a type of botnet that attacks smart IoT devices such as IP cameras, home routers 

and ARC processors. It alternates the data flow from the authorised clients or users to the 

malware-infected device. 

 

The eight standard benchmark datasets taken for the evaluation contains modern, 

realistic network traffic of real-world category with updated attack types. Out of these eight 

datasets, three datasets, namely CIDDS-002, ISCX-Tor2016 and UNSW-NB15, are utilized 

for performing binary classification task. The rest of six datasets are used to perform multi-

classification task. All the benchmarking datasets contain the traffic patterns of the entire 

network system. On evaluating the statistical analysis of all the datasets,  (Ring et al., 2019) 

(Moustafa et al., 2019) the network traffic of those are developed from the common back 

ground  and has similarity in the network configuration, network profile system, client/server 

set up, testbed  scenario, operating system, types of protocols used, abstract behaviour of users 

scenario, traffic diversity, feature set, labelled data, network environment, extracted flow 

traffic, network-flow generators, and extractors.  Moreover, all the datasets are non-linear and 

structured type (CSV format). Both DAE and LightGBM can handle and perform well on the 

structured datasets. The recent datasets that are developed between 2015 to 2020 are taken for 

evaluation since it contains the modern network traffic of the real-world scenarios and updated 

attack diversity. The datasets developed in recent years are the updated version of the previous 

years, thus over-coming the shortcomings of the previous ones and contain the similar 

structure, patterns of the previous ones in addition with the new features (Hindy et al., 2020). 

There are minor variations among these datasets, mainly in the attack diversity, which are 

acceptable.  Each different dataset is adjusted with different training parameters to achieve 

reliable detection score. 
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4.2     Experimental setup       

The software and hardware setup for the proposed models are shown in Tables 4.1 and 4.2. 

Software setup 

Table 4.1: The software setup for the proposed models 

 

 Hardware setup 

Table 4.2: The hardware setup for the proposed models 

 

 

ML Packages 

The ML packages and scripting languages (Pedregosa et al., 2011) used in our models are 

briefed below: 

Python: Python is the main scripting language, contains many built-in libraries, useful for data 

science, data mining, and machine learning applications. Many machine learning libraries are 

scripted by the python scripting language. Some of the libraries included are TensorFlow, 

Keras, Scikit-learn. The python programming language is more flexible, powerful and easy to 

implement different machine learning models. 

Anaconda: The anaconda is free and open-source software built on python language, and 

useful for various data science and machine learning applications. It consists of over 1400 

Operating System Windows 10 64 bit 

Code Editor Jupyter Notebook 

Machine Learning Packages 

 

LightGBM, Pandas, Matplotlib, SciPy, Sklearn, 

Seaborn, Keras with TensorFlow, NumPy 

Implementation Environment Anaconda Software 

Scripting Language Python 2.6  

Processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz   2.00 

GHz 

System Type 64-bit operating system 

RAM 8GB RAM 
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machine learning packages. The major advantage is that any required machine learning 

packages can be installed on it. 

Keras: Keras is a high-level open-source library used to frame different neural network 

architectures. It contains source codes for building different blocks of NN such as layers, 

optimizers, cost function, activation etc. It is user-friendly, modular, and extensible. 

Numpy: Numpy is a python library that consists of high-level mathematical functions that 

supports large multi-dimensional arrays and matrices. 

Scikit: Scikit-learn is a free open-source library, contains built-in script codes to perform 

various machine learning operations such as classification, regression, clustering, 

dimensionality reduction etc. It can interoperate with other python libraries namely NumPy, 

SciPy etc. 

Matplotlib: The matplotlib is a powerful library in python useful for plotting graphs and 

visualizing any pictorial and graphical representations. The different kinds of plots, histograms, 

bar charts, scatterplots, etc., can be generated using this library. 

Jupyter notebook: Jupyter notebook supports interactive computing and web-based 

applications. It supports the whole computation process of scripting, debugging codes, and 

execution of results. It functions as an IDE to end-users. The two main functions of jupyter 

notebook are: 

•  As a web application: The jupyter- notebook IDE is integrated with web-browser and 

supports interactive computing of documents which includes explanatory text, 

mathematical computations etc. 

•  As a notebook document: The end-user can interact with web applications through 

jupyter notebook code editor and view the inputs and outputs of the computations, 
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explanatory text, mathematical functions, images, graphs and rich media 

representations of objects. 

It helps us to script, edit each piece of code and test for any bugs by integrating the code editor 

with any browser. The end-user can view the results of computations. 

Pandas: Pandas is a python library that contains inbuilt mathematical functions, which 

supports different data manipulation and data analysis operations on the data frames.  

 LightGBM: It is a machine learning library built on the python platform. The advanced light 

gradient boosting library is used to solve the classification problems. 

 

4.3 Results and Discussions 

At first, the initial experiment setup that comprises our base hybrid model consisting of DAE 

with LightGBM is evaluated. Based on the results, later the DAE is enhanced to be the  

enhanced DAE models with the insertion of four proposed additional novel strategies and are 

associated with LightGBM and develop four enhanced hybrid IDS models to satisfy our 

objectives and also to estimate which one of the four strategy is very best in satisfying our 

objective based on the detection loss and detection rate obtained. Finally, all the proposed 

models are experimented and evaluated on all the eight benchmark datasets by the standard 

performance quality metrics and the results obtained by the proposed models are shown below 
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Tables 4.1a and 4.2a present the optimal hyperparameters used for our experiments.   

Table:4.1a: The hyperparameter tuning of DAE for different datasets for all the proposed models 

 

 

 

 

 

 

#Epoch is set to 100, activation fucntion is set as RELU, 10% -20% of gaussian noise is used 

for the benchmark datasets and a single hidden layer is used respectively. 

 

Table:4.2a: The hyperparameter tuning of  LightGBM for different datasets for all the proposed models 

 

 

 

 

 

 

                                         # Depth of the tree is set to 25 respectively 

 

4.3.1 Results and Discussions for the Base Hybrid Model  

The datasets are pre-processed as mentioned in Section 3.1.1. Uniformly 10-20% proportion 

of gaussian noise is applied in the input layer for all the datasets to remove the perturbations. 

As this is a stochastic process, different proportion of noise insertion is experimented. The 

proportion of noise is varied for each dataset input features. i.e. 10% for CIDDS-001, 20% for 

 Datasets                   Hyperparameters 

  Neurons Learning 

rate 

Gaussian 

noise 

1 IoTID 30 0.0002 20 

2 BoT-IoT 30 Default 20 

3. CIC-IDS  30 0.0002 20 

4. CIDDS-001 8 0.0002 10 

5. CIDDS-002 8 0.0002 10 

6 ISCX-URL 30 Default 20 

7 ISCX-TOR 13 0.0002 15  

8 UNSW-NB 25 0.0002 20 

  

Datasets 

        

Hyperparameters 

  Trees Learning 

rate 

1 IoTID  100 0.1 

2 BoT-IoT  100 0.01 

3. CIC-IDS  150 0.5 

4. CIDDS-001  100 0.05 

5. CIDDS-002  100 0.05 

6 ISCX-URL  100 0.5 

7 ISCX-TOR  100 0.5 

8 UNSW-NB  100 0.5 
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IoTID, 20% for BoT-IoT, 20% for CIC-IDS, 10% for CIDDS-002, 20% for ISCX-URL, 15% 

for ISCX-TOR and 20% for UNSW-NB respectively. The original experimental input data for 

the benchmark datasets are listed in Appendix section. Applying gaussian noise artificially 

corrupts a portion of the samples in the input layer i.e. input nodes with those corrupted portions 

are deactivated. This gaussian noise forces the DAE to filter the distortions and group the robust 

clean similar data points in each distinctive clusters of the latent space and extract the 

compressed hidden patterns from the high-dimensional network traffic.  

 

The number of hidden features i.e. patterns required differ for each dataset depends on 

the model performance. i.e. 8 hidden features for both CIDDS datasets, 13 for ISCX-TOR2016, 

25 for UNSW-NB15, 30 for CIC-IDS2017, ISCX-URL2016, BoT-IoT2018 and IoTID2020 

datasets respectively. Since the extracted patterns are in encoded format, it is not easily 

understandable and interpretable by the humans and thus the efficiency and quality of the 

extracted patterns can be checked and evaluated by passing it through any machine learning 

classifier and measuring the performance metrics. 

 

 In the same way, the patterns from the DAE are passed to our proposed LightGBM 

classifier, where using those patterns, the classifier now classifies the input samples.The 

LightGBM instead of evaluating every single feature value to perform the classification, using 

its histogram binning strategy, it discretizes all feature values into histogram bins. It sorts the 

features values with higher to lower gradients and those feature histograms with larger 

gradients i.e. higher information gain are used to classify the samples, by filtering the feature 

values with lower gradients, that boost the predictive capacity of the model. Table 4.3 shows 

the results for the base hybrid model containing DAE and LightGBM classifier 
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                    Table 4.3: The classification performance of the base hybrid model 

 

 

 

       

 

 

 

 

 

 

 

                  

On notifying the performance of all the benchmark datasets in Table 4.3. the detection loss of 

the model decreases and converges to a minimum level within the range between 0.10% to 

0.96% over the epochs. i.e. 0.10% for IoTID, 0.35% for BoT-IoT, 0.15% for CIC-IDS, 0.20% 

for CIDDS-001, 0.42% for CIDDS-02, 0.20% for ISCX-URL, 0.11% for ISCX-TOR, and 

0.96% for UNSW-NB respectively. 

 

 

 

 

 

 

 

 

 

 

 

Datasets Detection 

  rate 

Detection 

   loss 

Precision Accuracy F1-score 

IoTID 97.43% 0.10% 97.42% 97.43% 97.42% 

BoT-IoT 99.91% 0.35 %                    99.92% 99.91% 99.91% 

CIC-IDS 99.86% 0.15%                  99.84% 99.85% 99.84% 

CIDDS-001 99.60%  0.20 %                     99.58% 99.60% 99.59% 

CIDDS-002 99.90% 0.42 %                  99.90% 99.89% 99.89% 

ISCX-URL 97.76% 0.20 %                  97.73% 97.72% 97.72% 

ISCX-TOR 97.00% 0.11%    97.11% 96.96% 97.00% 

UNSW-NB 96.11% 0.96 %               95.96% 96.00% 95.99% 
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The performance graph that illustrates the detection loss of the base hybrid model for 

all the benchmark datasets are given below in Figure 4.1. 

            

 
Figure 4.1:  The detection loss of the base hybrid model for the benchmark datasets  
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The bar graph that illustrates detection loss of the base hybrid model for the  

 benchmark datasets are shown in Figure 4.2. 

 

 

Figure 4.2: The detection loss of the base hybrid model is shown in graphical bar 

 

On notifying the performance of all the benchmark datasets in Table 4.3. the detection rate of 

the model increases and converges to a maximum level within the range between 96.11% to 

99.91% over the epochs. i.e. 97.43% for IoTID, 99.91% for BoT-IoT, 99.86% for CIC-IDS, 

99.60% for CIDDS-001, 99.90% for CIDDS-002, 97.76% for ISCX-URL, 97% for ISCX-

TOR, 96.11% for UNSW-NB.  
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The bar graph that illustrates detection rate of the base hybrid model for the benchmark datasets 

are shown in Figure 4.3. 

 

 

Figure 4.3: The detection rate of the base hybrid model is shown in graphical bar 

 

It is clear the distortions are greatly reduced and the proposed model gives minimal DL 

with better DR. More importantly, it is to be noticed that the proposed hybrid model can detect 

all classes including any minority class with a smaller number of samples. i.e. “DoS”, “MITM” 

and “Scan” are the minority intrusive classes of the IoTID. “Reconnaissance”, and  “Theft” are 

the  minority intrusive classes of the  BoT-IoT,  “DoS Gold Eye”, “DoS Slow Http Test”, “DoS 

Slow Loris”,  and  “Heartbleed” are the  minority intrusive classes of the  CIC-IDS,  “Brute 

Force”, “Port Scan”, and  “Ping Scan” are the  minority intrusive classes of the  CIDDS-001,  

“Port Scan” is the minority intrusive class of the CIDDS-002,  “ Malware”, “Phishing” and 

“Spam” are the minority intrusive classes of the ISCX-URL,  “Tor” is the minority intrusive 

class of the ISCX-TOR,  and “Attack” is the minority intrusive class of the UNSW-NB 

respectively. The class-wise performance of the benchmark datasets is shown Table 4.4. 
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Table 4.4:  The class-wise performance of the base hybrid model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

If DAE is not involved in the feature extraction task, the presence of deviations in the 

performance graph (i.e. features extraction) of one of the benchmark datasets, namely CIDDS-

001 is shown below in Figure 4.4.     

 

Dataset #Sample Class Detection  

rate 

Precision 

  IoTID 59,391 DoS 99.29% 99.92% 

 35,377 MITM  93.61% 94.45% 

 415,677 Mirai 97.85% 97.57% 

 40,073 Normal 98.00% 99.15% 

 75,265 Scan 95.10% 95.04% 

 BoT-IoT 1,926,624 DDoS 99.91% 99.93% 

 1,650,260 DoS 99.91% 99.92% 

 478 Normal 92.36% 94.39% 

 91,082 Reconnaissance 99.94% 99.95% 

 70 Theft 91.44% 91.64% 

CIC-IDS  440,031 Benign 99.88% 99.90% 

 10,293 DoS Goldeneye 98.72% 99.24% 

 231,073 DoS Hulk 99.91% 99.78% 

 5,499 DoS Slowhttptest 98.88% 99.53% 

 5,796 DoS Slowloris 98.93% 99.28% 

 11 Heartbleed 96% 96.21% 

 CIDDS-001 225,000 Benign 99.45% 99.88% 

 7,440 Brute Force 99.87% 98.14% 

 146,800 DoS 99.93% 99.21% 

 23,464 Port Scan 99.52% 99.71% 

 6,090 Ping Scan 97.52% 98.65% 

CIDDS-002 611,970 Benign 99.92% 99.91% 

 481,322 Port scan 99.51% 99.64% 

ISCX-URL 45,500 Defacement 97.43% 97.55% 

 35,000 Benign 99.74% 99% 

 11,900 Malware 96.05% 96.26% 

 10,000 Phishing 92.70% 94.25% 

 12,000 Spam 96.46% 97.53% 

ISCX-TOR 22,552 Tor  92.64% 92.38% 

 129,478 Non-Tor  97.78% 97.94% 

UNSW-NB 96,385 Attack 95.75% 95.85% 

 221,776 Normal 96.86% 96.19% 
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     Figure 4.4: The presence of distortions in the performance graph of a benchmark dataset 

 

 It is clear from the graph; the training vs validation loss has many ups and downs i.e. spikes 

and ridges and has no flatness i.e. uniformity in the graph. Moreover, we observe major 

variations between the two. This shows the distortions are present in the network traffic and 

due to it, the model stuck in several underfitting/overfitting issues, and could not learn and 

extract the intrinsic patterns with core structure properly, which would give lower detection 

rate and higher detection loss. 

 

The base hybrid model combining DAE and LightGBM gives a better DR and DL. Though 

DAE is a good feature extractor that reduces the perturbations as much as possible, it gives 

only partial robustness and regularization on the encoder side in learning and extracting 

patterns. On viewing the latent structure of the DAE  for one of the benchmarking datasets, (for 

e.g.) CIDDS-001, Still there are deviations in the latent space, that lead to gaps among the 

similar data points which belong to identical class in each distinctive cluster labels such that 

the identical data points are distant apart due to the hidden unremoved distortions in the latent 

space, which affects the quality of the patterns extracted and so the DAE could not completely 

transform and group similar data points in each distinctive clusters of the latent space, which 
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makes the LightGBM classifier to misclassify the samples, that  affects the predictive capacity 

of the model.   

 

The scatter plot graph that shows the presence of hidden distortions in one of the benchmark 

datasets, namely CIDDS-001, after being processed by the DAE is shown in Figure 4.5.                      

 

    Figure 4.5.   The presence of hidden distortions in a benchmark dataset 

 

The deviations i.e. (deviated latent structure) in the latent structure of the DAE for one of the 

benchmark datasets, namely CIDDS-001 are shown below in Figure 4.6. 

 

Figure 4.6: The deviated latent structure of a benchmark dataset 
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The smaller proportion of gaussian noise used in the input layer of the DAE gives only 

partial robustness and regularization on the encoder side of the DAE in extracting the hidden 

patterns. The higher proportion of usage of gaussian noise in the input layer of the DAE lead 

to corruption of larger proportion of input data samples in the input layer nodes which entirely 

collapse the latent structure and degrade the network performance. 

 

 In order to suppress the deviations in the latent structure and eradicate the gaps among the 

similar data points that are distant apart and completely project and group the similar data 

points that belong to identical class in each distinctive clusters of the latent space, we propose 

some additional novel strategies on the encoder activation of the DAE. As machine learning is 

a stochastic process, we test nearly four strategies and develop four enhanced DAE models i.e. 

Enhanced DAE 1, Enhanced DAE 2, Enhanced DAE 3, Enhanced DAE 4. Mainly, all the four 

strategies are simple and efficient in removing the deviations and enhancing the features 

learning capacity of the model. The patterns extracted from the enhanced DAE models are 

associated with LightGBM classifier and develop four enhanced hybrid models that can 

classify the datasets samples with higher prediction performance. The investigations and results 

of the proposed enhanced hybrid models are discussed below 

 

4.3.2 The Results and Discussions for the Enhanced Hybrid Model 1 

This model uses the jacobian gradient vector norm in the encoder layer of the DAE for the 

feature extraction task i.e. in removing the deviations. For discussion, let us take one of the 

benchmark datasets, namely CIDDS-001, which contains the real-world updated network 

traffic categories.The original experimental input data for the benchmark datasets are listed in 

Appendix section. 
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 The jacobian matrix computes the partial derivatives of all the extracted patterns i.e. 8 

latent features WRT to the original input patterns i.e. 32 input features. The extracted encoded 

patterns and the input patterns vary for each benchmark datasets. i.e. 28 input features and 13 

extracted patterns for the ISCX-TOR,  47 input features and  25 extracted patterns for the 

UNSW-NB, 79 input features and 30 extracted patterns for the ISCX-URL, 12 input features 

and 8  extracted patterns for the both CIDDS datasets,  43 input features and 30 extracted 

patterns for the BoT-IoT,  43 input features and 30 extracted patterns for the IoTID, 78 input 

features and  30 extracted patterns for the CIC-IDS respectively. The partial derivative denotes 

the rate of change. The value close to 1 denotes the larger partial derivatives, and it represents 

the deviations in the latent manifold. The value close to 0 denotes the smaller partial derivatives 

and it represents the lesser or no deviations in the latent manifold. 

 

The gradient norm with weight 10e-3 is applied on the larger partial derivatives of jacobian 

matrix. i.e. The proportion of gradient norm weight varies for each dataset input features. i.e. 

10e-3  for CIDDS-001, CIDDS-002 and ISCX-TOR , whereas 10e-4 for IoTID, BoT-IoT, CIC-

IDS, ISCX-URL and UNSW-NB datasets respectively. The gradient norm is the sum square 

of partial derivatives of all the extracted patterns WRT the input patterns. It enforces squishing 

pressure on all the larger partial derivatives i.e. values closer to 1 contract to smaller singular 

values closer to 0.Thus, it eradicates the deviations by reducing the gaps among the similar 

data points and group those data points in each distinctive cluster and grouping large number 

of similar data points of the identical class in each distinctive cluster contain the meaningful 

salient in-depth core-structure of the network traffic. 
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The extracted patterns from the enhanced DAE 1 are used by the LightGBM classifier to 

classify the datasets samples with higher DR and minimum DL.The same experimental strategy 

is followed and repeated for the rest of the other datasets. Table 4.5 shows the results for the 

enhanced hybrid model 1 containing enhanced DAE 1 and LightGBM classifier. 

 

             Table 4.5: The classification performance of the enhanced hybrid model 1 

 

   

 

 

    

 

                          

On notifying the performance of all the benchmark datasets in Table 4.5. the detection loss of 

the model decreases and converges to a minimum within the range between 0.03 to 0.78% i.e. 

0.03% for IoTID, 0.30% for BoT-IoT, 0.12% for CIC-IDS, 0.12% for CIDDS-001, 0.33% for 

CIDDS-002, 0.12% for ISCX-URL, 0.04% for ISCX-TOR, and 0.78% for UNSW-NB 

respectively.  

 

 

 

 

 

 

 

Dataset Detection 

  rate 

Detection 

   loss 

Precision Accuracy F1-score 

IoTID 98.58% 0.03% 98.56% 98.52% 98.57% 

BoT-IoT 99.95% 0.30% 99.91% 99.93% 99.93% 

CIC-IDS 99.91% 0.12% 99.89% 99.91% 99.90% 

CIDDS-001 99.80% 0.12% 99.78% 99.80% 99.79% 

CIDDS-002 99.96% 0.33% 99.93% 99.92% 99.94% 

ISCX-URL 97.97% 0.12% 97.93% 97.95% 97.95% 

ISCX-TOR 98.12% 0.04% 98.05% 98.03% 98.08% 

UNSW-NB 97.36% 0.78% 97.31% 97.32% 97.33% 
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The performance graph that illustrates the detection loss of the enhanced hybrid model1 

for all the benchmark datasets are given below in Figure 4.7. 

           

     Figure 4.7: The detection loss of the enhanced hybrid model1 for all the benchmark datasets 
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The bar graph that illustrates detection loss of the enhanced hybrid model 1 for the benchmark 

datasets are shown in Figure 4.8. 

 

Figure 4.8:  The detection loss of the enhanced hybrid model 1 is shown in graphical bar 

 

On notifying the performance of all the benchmark datasets in Table 4.5. the detection rate of 

the model increases and converges to a maximum level within the range between 97.36% to 

99.96% over the epochs. i.e. 98.58% for IoTID, 99.95% for BoT-IoT, 99.91% for CIC-IDS, 

99.80% for CIDDS-001, 99.96% for CIDDS-002, 97.97% for ISCX-URL, 98.12% for ISCX-

TOR, and 97.36% for UNSW-NB respectively. This shows that proposed enhanced hybrid 

model 1 outperforms the base hybrid model and other existing systems as given in Tables (4.42 

– 4.49). 
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The bar graph that illustrates the detection rate of the enhanced hybrid model 1 for the 

benchmark datasets are shown in Figure 4.9. 

      

 
 

Figure 4.9:  The detection rate of the enhanced hybrid model 1 is shown in graphical bar             . 
 

More importantly, on measuring the classwise performance of the benchmark datasets as 
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Table 4.6: The class-wise performance of the enhanced hybrid model 1 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

It is clear that the proposed strategy increases the learning and predictive capacity of the model, 

which shows higher performance for the minority category samples without any oversampling 

technique. 

 

 

 

Dataset #Sample Class Detection   

rate 

Precision 

  IoTID 59,391 DoS 99.94% 99.88% 

 35,377 MITM  95.30% 95.38% 

 415,677 Mirai 98.87%  98.82% 

 40,073 Normal 99.45% 99.35% 

 75,265 Scan 97.13% 97.13% 

 BoT-IoT 1,926,624 DDoS 99.97% 99.92% 

 1,650,260 DoS 99.93 %       99.90% 

 478 Normal 95.39 % 95.39% 

 91,082 Reconnaissance 99.91 %         99.91% 

 70 Theft 93.33% 93.33% 

CIC-IDS  440,031 Benign 99.93% 99.91% 

 10,293 DoS Goldeneye 98.77% 99.51% 

 231,073 DoS Hulk 99.97% 99.90% 

 5,499 DoS Slowhttptest 98.94% 99.73% 

 5,796 DoS Slowloris 98.98% 99% 

 11 Heartbleed 96.24% 100% 

 CIDDS-001 225,000 Benign 99.92% 99.93% 

 7,440 Brute Force 99% 99% 

 146,800 DoS 99.68% 99.65% 

 23,464 Port Scan 99.70% 99.70% 

 6,090 Ping Scan 98.91% 98.81% 

CIDDS-002 611,970 Benign 99.99% 99.95% 

 481,322 Port scan 99.53% 99.32% 

ISCX-URL 45,500 Defacement 98% 97.97% 

 35,000 Benign 99.36% 99.26% 

 11,900 Malware 97% 97% 

 10,000 Phishing 95.18% 95.18% 

 12,000 Spam 97.12% 97.12% 

ISCX-TOR 22,552 Tor  93.66% 93.48% 

 129,478 Non-Tor  98.89% 98.85% 

UNSW-NB 96,385 Attack 97.12% 97.12% 

 221,776 Normal 97.86% 97.71% 
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4.3.3 Results and Discussions for the Enhanced Hybrid Model 2 

This model uses the iterative thresholding function in the encoder layer of the DAE for the 

feature extraction task i.e. in removing the deviations. The original experimental input data for 

the benchmark datasets are listed in Appendix section. The extracted encoded patterns and the 

input patterns vary for each benchmark datasets. i.e. 28 input features and 13 extracted patterns 

for the ISCX-TOR,  47 input features and  25 extracted patterns for the UNSW-NB, 79 input 

features and 30 extracted patterns for the ISCX-URL, 12 input features and 8  extracted patterns 

for the both CIDDS datasets,  43 input features and 30 extracted patterns for the BoT-IoT,  43 

input features and 30 extracted patterns for the IoTID, 78 input features and  30 extracted 

patterns for the CIC-IDS respectively. 

 

For discussion, let us take one of the benchmark datasets, namely CIDDS-001, which 

contains the real-world updated network traffic categories.  Firstly, the ITF converges the 

activation values of all the encoder neurons i.e. 8 neurons to nearly zero i.e. it deactivates the 

hidden neurons. Secondly, it adaptively adjusts the threshold values of only the n- encoder 

neurons to nearly one. i.e. 4 neurons. The value of ‘n’ varies for each dataset input features and 

are determined by several investigations. i.e. n=4 for CIDDS-001 and 002, n=7 for ISCX-TOR, 

n=15 for IoTID, BoT-IoT, CIC-IDS, UNSW-NB, and n=20 for ISCX-URL datasets 

respectively. The ‘n’ value is further strengthened and weighted by the parameter α, that varies 

for each dataset. i.e.  α = 2 for datasets IoTID, BoT-IoT, CIC-IDS, ISCX-URL, ISCX-TOR 

and UNSW-NB, whereas α= 3 for datasets CIDDS-001 & 002 respectively. 

 

For CIDDS-001, instead of activating all eight encoder nodes at every iteration, only 4 

encoder nodes are randomly involved at every iteartion, by deactivating the rest of the nodes. 
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The sum of weight matrix computation is restrcited  only for the n-strongest encoder nodes, 

which enforce the weight matrix to be sparser. The sparser weight matrix consists of only the 

smaller magnitude elements that can regulate the activation weights. i.e.  it minimizes the 

magnitude of the encoder weight matrix.By minimizing the values of the encoder weight matrix 

by activating only n-strongest neurons using the ITF, remove the deviations by grouping 

similar data points of the identical class in each corresponding clusters of the latent space and 

enhance the features learning capacity of the model. 

 

It is noted in the support estimation set maintained by the ITF. The set consists of indexes 

of the n-number of strongest encoder nodes and its enforced weights in the weight matrix. On 

the other hand, it also contains the complement (inverse) of it.  i.e. indexes of inactive nodes 

and its restricted weights. The information is periodically updated in the estimation set at each 

iteration. i.e. the encoder weight matrix is obtained by restricting the columns of w to indices 

of the support estimation set and thus the hidden vector values i.e. latent patterns are obtained 

by restricting the columns of h to the indexes of the support estimation set. Thus, it has a chance 

of obtaining sparse representation for each input values and achieves exact sparsity in the 

encoder activation at controlled level. 

 

The proposed model eradicates the deviations and improves the structure and quality of the 

patterns by adjusting and penalizing the encoder weight activation at controlled sparsity level.  

By penalizing the activation weights of the encoder at controlled level generally suppress the 

deviations in the latent space of the DAE  by reducing the gaps among the similar data points 

and group those data points in each corresponding clusters and  grouping large number of 

similar data points of the identical class in each distinctive clusters contain the meaningful 
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salient in-depth core-structure of the network traffic and enhance the quality of the features 

patterns extracted.  

 

The extracted patterns from the enhanced DAE 2 are used by the LightGBM classifier to 

classify the samples and the classifier classify the datasets samples with higher detection rate 

and minimal detection loss. The same experimental strategy is followed and repeated for the 

rest of the other datasets. Table 4.7 shows the results for the enhanced hybrid model 2 

containing enhanced DAE 2 and LightGBM classifier. 

 

                          Table 4.7: The classification performance of the enhanced hybrid model 2 

 

 

 

 

 

 

 

On notifying the performance of all the benchmark datasets in Table 4.7. the detection loss of 

the model decreases and converges to a minimum within the range between 0.05% to 0.74%.  

i.e. 0.05 % for IoTID, 0.30% for BoT-IoT, 0.11% for CIC-IDS, 0.13% for CIDDS-001, 0.32% 

for CIDDS-002, 0.12% for ISCX-URL, 0.04% for ISCX-TOR, and 0.74 % for UNSW-NB 

respectively. 

 

 

 

Dataset Detection 

  rate 

Detection 

   loss 

Precision Accuracy F1-score 

IoTID 98.57% 0.05% 98.54% 98.52% 98.55% 

BoT-IoT 99.95% 0.30% 99.91% 99.92% 99.93% 

CIC-IDS 99.92% 0.11% 99.90% 99.89% 99.91% 

CIDDS-001 99.79% 0.13% 99.79% 99.78% 99.79% 

CIDDS-002 99.97% 0.32% 99.95% 99.92% 99.96% 

ISCX-URL 97.97% 0.12% 97.95% 97.90% 97.96% 

ISCX-TOR 98.12% 0.04% 98% 98.07% 98.06% 

UNSW-NB 97.34% 0.74% 97.32% 97.33% 97.33% 
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The performance graph that illustrates the detection loss of the enhanced hybrid model 

2 for all the benchmark datasets are given below in Figure 4.10. 

 

 

          Figure 4.10: The detection loss of the enhanced hybrid model 2 for the benchmark datasets 
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The bar graph that illustrates detection loss of the enhanced hybrid model 2 for the benchmark 

datasets are shown in Figure 4.11.  

 

 

  Figure 4.11: The detection loss of the enhanced hybrid model 2 is shown in graphical bar  

 

On notifying the performance of all the benchmark datasets in Table 4.7. the detection rate of 

the model increases and converges to a maximum level within the range between 97.34% to 

99.97% over the epochs. i.e. 98.57% for IoTID, 99.95% for BoT-IoT, 99.92% for CIC-IDS, 

99.79% for CIDDS-001, 99.97% for CIDDS-002, 97.97% for ISCX-URL, 98.12% for ISCX-

TOR, 97.34% for UNSW-NB datasets respectively.  
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The bar graph that illustrates the detection rate of the enhanced hybrid model 2 for the 

benchmark datasets are shown in Figure 4.12. 

 

 

Figure 4.12: The detection rate of the enhanced hybrid model 2 are shown in graphical bar 

 

This shows that proposed enhanced hybrid model 2 outperforms the base hybrid model and 

other existing systems as given in Tables (4.42 - 4.49). More importantly, on evaluating the 

class-wise performance of benchmark datasets as shown in Table 4.8. the model gives good 

detection rate for the minority category samples without any oversampling technique. 
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Table 4.8: The class-wise performance of the enhanced hybrid model 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          

It is clear that the proposed strategy has no overfitting/underfitting issues and is not biased 

towards any majority class and optimizes the generalization capacity of the model, which gives 

higher performance for the minority category samples. 

 

 

 

Dataset #Sample Class Detection rate Precision 

  IoTID 59,391 DoS 99.88% 99.80% 

 35,377 MITM  95.38% 95.38% 

 415,677 Mirai 98.81% 98.80% 

 40,073 Normal 99.35% 99.35% 

 75,265 Scan 97.13% 97.13% 

 BoT-IoT 1,926,624 DDoS 99.97% 99.92% 

 1,650,260 DoS 99.93 %       99.90% 

 478 Normal 95.39 % 95.39% 

 91,082 Reconnaissance 99.91 %           99.91% 

 70 Theft 93.33% 93.33% 

CIC-IDS  440,031 Benign 99.92% 99.90% 

 10,293 DoS Goldeneye 99.51% 99.51% 

 231,073 DoS Hulk 99.95% 99.94% 

 5,499 DoS Slowhttptest 99.73% 99.73% 

 5,796 DoS Slowloris 99.60% 99% 

 11 Heartbleed 96.35% 100% 

 CIDDS-001 225,000 Benign 99.93% 99.93% 

 7,440 Brute Force 99% 99% 

 146,800 DoS 99.68% 99.68% 

 23,464 Port Scan 99.70% 99.70% 

 6,090 Ping Scan 98.81% 98.81% 

CIDDS-002 611,970 Benign 99.98% 99.97% 

 481,322 Port scan 99.72% 99.38% 

ISCX-URL 45,500 Defacement 98% 97.98% 

 35,000 Benign 99.36% 99.31% 

 11,900 Malware 97% 97% 

 10,000 Phishing 95.18% 95.18% 

 12,000 Spam 97.12% 97.12% 

ISCX-TOR 22,552 Tor  93.66% 93.37% 

 129,478 Non-Tor  98.89% 98.81% 

UNSW-NB 96,385 Attack 97.12% 97.12% 

 221,776 Normal 97.80% 97.74% 
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4.3.4 Results and Discussions for the Enhanced Hybrid Model 3 

This model uses the data-pairwise similarity distance weight on the encoder-activation of the 

DAE.The original experimental input data for the benchmark datasets are listed in Appendix 

section. For discussion, let us take one of the benchmark datasets, namely CIDDS-001, which 

contains the real-world updated network traffic categories. The dataset has 32 input dimensions 

and 8 encoder latent dimensions with 81759 data points. 

 

The extracted encoded patterns data with and the input patterns vary for each benchmark 

datasets. i.e. 28 input features and 13 extracted patterns with 35406 data points  for the ISCX-

TOR,  47 input features and  25 extracted patterns with  63632 data points for the UNSW-NB, 

79 input features and 30 extracted patterns with 22880 data points for the ISCX-URL, 12 input 

features and 8  extracted patterns with 218658 data points for  CIDDS-002 dataset,  43 input 

features and 30 extracted patterns with 733703 data points for the BoT-IoT,  43 input features 

and 30 extracted patterns with 125156 data points for the IoTID, 78 input features and  30 

extracted patterns with 138541 data points for the CIC-IDS respectively. 

 

        By observing strong relationship among the data points, the deviation can be suppressed. 

We initialize the data relation by computing the data pairwise similarity distance weight among 

the data points in each dimension and determine a relation set for each dimension. We set 

similarity to be the weight of each pairwise relationship. For each dimensional data point i.e. 

xi, data points with relational weight close to 1 are included in the relation set and those with 

relational weight close to zero are not included in the relation set and are being filtered by the 

alpha scalar parameter that is inserted in the encoder activation fucntion.   Both the similarity 

weight and the scalar parameter varies in the range between 0 to 1 in the step size of 0.02.     .  
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.       Consider a relation set for each dimension. For each dimensional data point, e.g.  let xi be 

a data point, let xj, xk, xl, xm, xn  be the set of other data points. Let us compute the data pairwise 

similarity weight among the data points.  

• Relational similarity distance weight sij for the data point xj is 0.82 

              xi ------ xj (i.e. (xi, xj) they are similar data points) 

• Relational similarity distance weight sik for the data point xk is 0.02 

              xi ------------------------------- xk (i.e. (xi, xk) they are not similar data points) 

• Relational similarity distance weight sil for the data point xl is 0.71 

             xi ----------- xl     i.e.  (xi, xl) they are neighboring data points) 

• Relational similarity distance weight sim for the data point xm is 0.33 

             xi --------------------------- xm i.e. (xi, xm) they are not neighboring data points). 

• Relational similarity distance weight sin for the data point xn is 0.90 

             xi ---- xn    i.e.  (xi, xn) they are neighboring data points). 

 

           As per the similarity weight principle, data points (xi, xl, xn) with similarity weight close 

to 1 are similar i.e. most weighted data points, whereas data points (xk, xm) with similarity 

weight close to 0 are not considered as similar i.e. least weighted data points. The most 

weighted data points are included as neighbors and the least weighted data points are not 

included as neighbors in a relation set that is constructed for each dimensional cluster. Thus, 

the data points (xi , xl, xn) are included in the relation set and rest of the data points (xk, xm)   are 

not included in the relation set.   

 

            For each dimensional cluster, the set can be composed of M similar neighbors. i.e. the 

latent space consists of 29120 similar data points in DoS class cluster, 1527 similar data points 
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in Brute Force class cluster, 5652 similar data points in Port Scan class cluster, 1160 similar 

data points in Ping Scan class cluster, and 45130 similar data points in benign class cluster. 

 

           It minimizes the pairwise distance in the projected sub-space weighted by the 

corresponding distance in the original space. Minimizing the pairwise distance in the projected 

sub-space weighted by the corresponding distance in the original space reduces the rate of 

change in the latent structure by grouping similar data points in each respective clusters of the 

latent space.  

 

          Thus, large number of similar data points are grouped together in each corresponding 

clusters of the latent space which give more meaningful, useful patterns and improves the 

structure and quality of the features extracted by the model. Thus, the similarity weight is 

preserved in the latent manifold.  

 

          The extracted patterns from the enhanced DAE 3 are used by the LightGBM classifier 

to classify the samples with higher detection rate and minimal detection loss. The same 

experimental strategy is followed and repeated for the rest of the other datasets. 
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Table 4.9 shows the results for the enhanced hybrid model 3 containing enhanced DAE 3 and 

LightGBM classifier: 

                         Table 4.9: The classification performance of the enhanced hybrid model 3 

 

 

 

 

 

 
                 
 

 

 

More importantly, on evaluating the classification performance of the proposed enhanced 

hybrid model 3 as shown in Table 4.9. the detection loss of the model decreases and converges 

to a very minimum within the range between 0.03% to 0.75% i.e. 0.03 % for IoTID, 0.28% for 

BoT-IoT, 0.11% for CIC-IDS, 0.12% for CIDDS-001,  0.32% for CIDDS-002, 0.10% for 

ISCX-URL, 0.05% for ISCX-TOR, and 0.75% for UNSW-NB datasets respectively.  

 

 

 

 

 

 

 

 

 

 

Dataset Detection 

   rate 

Detection  

   loss 

Precision Accuracy F1-score 

IoTID 98.58% 0.03% 98.52% 98.50% 98.55% 

BoT-IoT 99.96% 0.28% 99.93% 99.91% 99.94% 

CIC-IDS 99.92% 0.11% 99.90% 99.90% 99.91% 

CIDDS-001 99.80% 0.12% 99.77% 99.79% 99.78% 

CIDDS-002 99.97% 0.32% 99.94% 99.93% 99.95% 

ISCX-URL 97.99% 0.10% 97.93% 97.90% 97.96% 

ISCX-TOR 98.11% 0.05% 98.10% 98.07% 98.10% 

UNSW-NB 97.35% 0.75% 97.33% 97.31% 97.34% 
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The performance graph that illustrates the detection loss of the enhanced hybrid model 

3 for all the benchmark datasets are given below in Figure 4.13. 

 

 
             Figure 4.13:  The detection loss of the enhanced hybrid model 3 for the benchmark datasets 

 

CIDDS-001 CIDDS-002 IoTID 

                  

 

 

 

 

 

Detection loss – 0.12 

 

Detection loss – 0.32 Detection loss – 0.03 

ISCX-URL CIC-IDS ISCX-TOR 

 

 

 

 

 

 
Detection loss – 0.10 

 
Detection loss – 0.11 Detection loss – 0.05 

UNSW-NB                                        BoT-IoT 

 

 

 
 

 

Detection loss – 0.75 Detection loss – 0.28  

                        

 

 

         

Classification logloss 

Epoch 

 

                        

 

 

         

  Classification logloss 

Epoch 

                        

 

 

         

 Classification logloss 

Epoch 

 

  

                                                                                              

                                                                                                   

   

Classification logloss 

Epoch 

                                                                                                   

   

                                                                                                     

                                                          

 

Classification logloss 

Epoch 

                        

 

 

         

    

  Classification logloss 

Epoch 

                        

 

 

         

  Classification logloss 

Epoch 

                        

 

 

         

  Classification logloss 

Epoch 



 

 

127 

 

The bar graph that illustrates detection loss of the enhanced hybrid model 3 for the benchmark 

datasets are shown in Figure 4.14. 

 

 Figure 4.14: The detection loss of the enhanced hybrid model 3 are shown in graphical bar 

 

More importantly, on evaluating the classification performance of the proposed enhanced 

hybrid model 3 as shown in Table 4.9. the detection rate of the model increases and converges 

to a maximum level within the range between 97.35% to 99.97% over the epochs. i.e. 98.58% 

for IoTID, 99.96% for BoT-IoT, 99.92% for CIC-IDS, 99.80% for CIDDS-001, 99.97% for 

CIDDS-002, 97.99% for ISCX-URL, 98.11% for ISCX-TOR, 97.35% for UNSW-NB, 

respectively.  
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The bar graph that illustrates detection rate of the enhanced hybrid model 3 for the benchmark 

datasets are shown in Figure 4.15.  

 

Figure 4.15: The detection rate of the enhanced hybrid model 3 are shown in graphical bar 

 

 

This shows that proposed enhanced hybrid model 3 outperforms the base hybrid model and 

other existing systems as given in Tables (4.42 - 4.49). More importantly, on evaluating the 

class-wise performance of the benchmark datasets as shown in Table 4.10. the model gives 

good detection rate for the minority category without any oversampling technique.   
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Table 4.10: The class-wise performance of the enhanced hybrid model 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                         

                              

 

It is clear that the proposed strategy optimizes the generalization capacity of our model and is 

free from any overfitting/underfitting issues, which gives higher performance for the minority 

category samples. 

 

 

 

Dataset #Sample Class Detection   

Rate 

Precision 

  IoTID 59,391 DoS 99.94% 99.78% 

 35,377 MITM  95.30% 95.38% 

 415,677 Mirai 98.86% 98.79% 

 40,073 Normal 99.45% 99.35% 

 75,265 Scan 97% 97.04% 

 BoT-IoT 1,926,624 DDoS 99.97% 99.94% 

 1,650,260 DoS 99.95% 99.93% 

 478 Normal 95.47% 95.39% 

 91,082 Reconnaissance 99.93% 99.91% 

 70 Theft 93.33% 93.33% 

CIC-IDS  440,031 Benign  99.94 % 99.92% 

 10,293 DoS Goldeneye  99.58% 99.51% 

 231,073 DoS Hulk  99.97 % 99.94% 

 5,499 DoS Slowhttptest 99.72% 99.72% 

 5,796 DoS Slowloris  99.64% 99.56% 

 11 Heartbleed 96.35%  96.35% 

 CIDDS-001 225,000 Benign 99.92% 99.93% 

 7,440 Brute Force 99% 99% 

 146,800 DoS 99.68% 99.65% 

 23,464 Port Scan 99.90% 99.70% 

 6,090 Ping Scan 98.91% 98.81% 

CIDDS-002 611,970 Benign 99.98% 99.96% 

 481,322 Port scan 99.72% 99.35% 

ISCX-URL 45,500 Defacement 98% 97.97% 

 35,000 Benign 99.36% 99.26% 

 11,900 Malware 97% 97% 

 10,000 Phishing 95.4% 95.18% 

 12,000 Spam 97.12% 97.12% 

ISCX-TOR 22,552 Tor  93.59% 93.52% 

 129,478 Non-Tor  98.90% 98.90% 

UNSW-NB 96,385 Attack 97.11% 97.12% 

 221,776 Normal 97.83% 97.77% 
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4.3.5 Results and Discussions for the Enhanced DAE Model 4 

This model uses the inference based approximated standard normal distribution on the encoder 

activation of the DAE.The original experimental input data for the benchmark datasets are 

listed in Appendix section. For the discussion, let us take one of the benchmark datasets 

CIDDS-001, which contains the real-world updated network traffic categories. The dataset has 

32 original input patterns and we extract 8 hidden patterns from it. 

 

The extracted encoded patterns and the input patterns vary for each benchmark datasets. 

i.e. 28 input features and 13 extracted patterns for the ISCX-TOR,  47 input features and  25 

extracted patterns for the UNSW-NB, 79 input features and 30 extracted patterns for the ISCX-

URL, 12 input features and 8  extracted patterns for the both CIDDS datasets,  43 input features 

and 30 extracted patterns for the BoT-IoT,  43 input features and 30 extracted patterns for the 

IoTID, 78 input features and  30 extracted patterns for the CIC-IDS respectively. 

 

We enforce the distribution of each input feature dimension to be the standard normal 

distribution i.e. zero mean and unit variance. The values are standardized by taking the z-score 

of the normal distribution values. It is set as the prior distribution. 

 

The enhanced DAE 4, for each dimension, instead of computing a single real vector value 

for each dimension, it outputs two vector values 1. mean 2. variance that are close to the 

standard normal distribution i.e. mean close to zero, variance close to one and it gives an entire 

probability distribution for each and every features dimension of the network traffic, i.e. it 

makes the latent space continuous and complete in nature, by reduing the gaps  among the 

similar data points that are distant apart and grouping the similar data points that belong to 
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identical class in each various clusters of the latent space, giving the salient abstract core-

structure lying in the  high-dimensional network traffic, which eradicates the deviations in the 

latent space and enhances the  quality of the patterns extracted. It is the generated posterior 

distribution, from which the data points are generated and sampled, that gives the  meaningful, 

salient and useful strcture of the network traffic. 

 

In order to ensure the generated distribution to be an approximation/maximum likelihood 

of the original prior distribution, we can use the inference stratgey,In this investigation 8 

encoder latent dimensions with 413794  sampled data points are generated and extracted . The 

encoded latent representation values are given below 

                Output µ [0.081, 0.031, -0.004, 0.1, 0.002, 0.019, -0.011, 0.09] 

 

                   Output 𝜎  [0.931, 0.90, 0.701, -0.801, 0.992, -0.786, 0.891, 0.912] 

 

Latent distribution z = (z1 ~ N  (0.081, 0.9312), z2  ~ N (0.031, 0.902 ), z3~ N (-0.004, 0.7012),   z4 ~ N (0.1, 

-0.8012),    z5 ~ N(0.002, 0.9922) , z6~ N(0.019, -0.7862), z7~ N(-0.011, 0.8912) , z8~ N (0.09, 0.9122)) 

 

             Sampled vector points [ 0.66, 0.23, 0.28, 0.33, 0.19, 0.71, 0.14, 0.17] 

 

          All the encoded generated dimensions i.e. 8  gives the entire probability distribution of 

the input network traffic, i.e. 8 latent dimensions give the approximated standard normal 

continuous probability distribution, which give continuous and complete structure by removing 

the deviations and grouping large number of similar data points of identical class in each 

distinctive cluster labels and enhancing the quality and structure of the  features extracted. 
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         The extracted patterns from the enhanced DAE 4 are used by the LightGBM classifier to 

classify the samples and the classifier classify the datasets samples with highest detection rate 

and lowest detection loss. The same experimental strategy is followed and repeated for the rest 

of the other datasets. 

 

Table 4.11. shows the results for the enhanced hybrid model 4 containing enhanced DAE 4 and 

LightGBM classifier: 

                              

Table 4.11: The classification performance of the enhanced hybrid model 4 

 

 

 

 

 

 

 

On notifying the performance of all the benchmark datasets in Table 4.11. the detection loss of 

the model decreases and converges to a very minimum within the range between 0.01% to 

0.70%. i.e.  0.01% for IoTID, 0.20% for BoT-IoT, 0.09% for CIC-IDS, 0.07% for CIDDS-001, 

0.30% for CIDDS-002, 0.06% for ISCX-URL, 0.02% for ISCX-TOR and 0.70% for UNSW-

NB respectively.   

 

 

 

 

Dataset Detection 

rate 

Detection 

loss 

Precision Accuracy F1-score 

IoTID 98.61% 0.01% 98.58% 98.57% 98.59% 

BoT-IoT 99.98% 0.20% 99.95% 99.96% 99.96% 

CIC-IDS 99.94% 0.09% 99.91% 99.92% 99.92% 

CIDDS-001 99.85% 0.07% 99.80% 99.85% 99.82% 

CIDDS-002 99.98% 0.30% 99.97% 99.96% 99.97% 

ISCX-URL 98.06% 0.06% 98% 98.03% 98.04% 

ISCX-TOR 98.14% 0.02% 98.12% 98.12% 98.13% 

UNSW-NB 97.39% 0.70% 97.36% 97.35% 97.34% 
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The performance graph that illustrates the detection loss of the enhanced hybrid model 

4 for all the benchmark datasets are given below in Figure 4.16. 

 

 
Figure 4.16: The detection loss of the enhanced hybrid model 4 for all the benchmark datasets  
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The bar graph that illustrates detection loss of the enhanced hybrid model 4 for the benchmark 

datasets are shown in Figure 4.17. 

 

Figure 4.17: The detection loss of the enhanced hybrid model 4 is shown in graphical bar 

 

On notifying the performance of all the benchmark datasets in Table 4.11. the detection rate of 

the model increases and converges to a very maximum level within the range between 97.39% 

to 99.98% over the epochs. i.e. 98.61% for IoTID, 99.98 % for BoT-IoT, 99.94% for CIC-IDS, 

99.85% for CIDDS-001, 99.98% for CIDDS-002, 98.06% for ISCX-URL, 98.14% for ISCX-

TOR, 97.39% for UNSW-NB respectively. 
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The bar graph that illustrates detection rate of the enhanced hybrid model 4 for the benchmark 

datasets are shown in Figure 4.18. 

 

Figure 4.18: The detection rate of the enhanced hybrid model 4 is shown in graphical bar 

 

This shows that proposed enhanced hybrid model 4 outperforms the other three enhanced 

hybrid models with the base hybrid model and other existing systems as given in Tables (4.42- 

4.49). More importantly, on evaluating the class-wise performance of the benchmark datasets 

as shown in Table 4.12. the model gives good detection rate for the minority category without 

any oversampling technique.  
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                         Table 4.12:  The class-wise performance of the enhanced hybrid model 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

It is clear that the proposed strategy has no overfitting/underfitting issues and is not biased 

towards any majority class. It has higher learning and predictive capacity that accelerates the 

generalization capacity of the model, which gives highest performance for the minority 

category samples. 

 

 

Dataset #Sample Class Detection 

rate 

Precision 

  IoTID 59,391 DoS 99.94% 99.90% 

 35,377 MITM  95.46% 95.38% 

 415,677 Mirai 98.87% 98.83% 

 40,073 Normal 99.45% 99.45% 

 75,265 Scan 97.13% 97.06% 

 BoT-IoT 1,926,624 DDoS 99.99% 99.97% 

 1,650,260 DoS 99.97% 99.93% 

 478 Normal 95.47% 95.47% 

 91,082 Reconnaissance 99.98% 99.96% 

 70 Theft 93.33% 93.33% 

CIC-IDS  440,031 Benign 99.94% 99.92% 

 10,293 DoS Goldeneye 99.52% 99.51% 

 231,073 DoS Hulk 99.97% 99.94% 

 5,499 DoS Slowhttptest 99.73% 99.73% 

 5,796 DoS Slowloris 99.64% 99% 

 11 Heartbleed 96.35% 96.35% 

 CIDDS-001 225,000 Benign 99.93% 99.92% 

 7,440 Brute Force 99.14% 99% 

 146,800 DoS 99.78% 99.68% 

 23,464 Port Scan 99.90% 99.87% 

 6,090 Ping Scan 98.95% 98.91% 

CIDDS-002 611,970 Benign 99.98% 99.98% 

 481,322 Port scan 99.90% 99.72% 

ISCX-URL 45,500 Defacement 98% 98% 

 35,000 Benign 99.84% 99.36% 

 11,900 Malware 96.65% 97.14% 

 10,000 Phishing  95.36% 95.36% 

 12,000 Spam 97.70% 97.66% 

ISCX-TOR 22,552 Tor  93.79% 93.66% 

 129,478 Non-Tor  98.90% 98.89% 

UNSW-NB 96,385 Attack 97.12% 97.12% 

 221,776 Normal 97.96% 97.86% 
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Figure 4.19 represents the removed distortions in a benchmark dataset are shown in scatter plot 

graph 

 

Figure 4.19: The removed distortions in a benchmark dataset 

 

Figure 4.19 denotes the distortions are removed from a benchmark dataset CIDDS-001, i.e. the 

dataset has less distortions or no distortions. 

 

The undeviated clustered latent structure of one of the benchmark datasets, is shown below in 

Figure 4.20. 

 

Figure 4.20:  The undeviated latent structure by the Enhanced DAE 
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From the Figure 4.20, it is noticed that the deviations are removed and the similar data points 

are grouped in their corresponding class clusters of the latent space, which give a meaningful 

and descriptive structure of the network traffic. 

 

4.3.6 The evaluation and interpretation of results of the benchmark datasets  

The results obtained by the proposed models for the benchmark datasets are interpreted as 

below, where Base denotes the base hybrid model, M1 denotes the enhanced hybrid model 1, 

M2 denotes the enhanced hybrid model 2, M3 denotes the enhanced hybrid model 3, M4 

denotes the enhanced hybrid model 4. 

 

IoTID-2020 

The confusion-matrix of IoTID for each class is shown below in Tables (4.13 – 4.17): 

The confusion-matrix for the Mirai class is shown in Table 4.13. 

Table 4.13:  The confusion matrix for the Mirai class 

 

Detection rate = TP/TP + FN 

Detection rate 

Base = 81055/81055 + 1899 = 81055/82954 

M1 = 82021/82021 + 933 = 82021/82954            M2 = 81967/ 81967 + 987 = 81967/82954 

M3  =  82021/82021 + 933 = 82021/82954            M4 = 82021/82021 + 933 = 82021/82954 

 

As for the Mirai class is concerned, Among the 82954 total Mirai class samples in a test set, 

81055 samples are correctly detected as Mirai by the base hybrid model, 82021 samples are 
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                                                                                                  Actual values 

                       Mirai (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Mirai 

(P) 

(TP)                       81055 82021 81967 82021 82021 (FN) 1899 933 987 933 933 

Other 

classes 

(N) 

(FP) 2018    1001 993 978 962 (TN) 40185 41202 41210 41225 41241 
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correctly detected by the enhanced hybrid models M1, M3 and M4 , whereas 81967 samples 

are correctly detected by the enhanced hybrid model M2.The detection rate of all the enhanced 

hybrid models is higher than our base hybrid model. 

 The confusion-matrix for the DoS class is shown in Table 4.14 

Table 4.14:  The confusion-matrix for the DoS class 

 

Detection rate 

Base = 12029/ 12029 + 50 = 12029/12079 

M1= 12072/12072 + 7 = 12072/12079                                         M2 = 12065/12065 + 14 =    12065/12079 

M3 = 12072/12072 + 7 = 12072/12079                                        M5 = 12077/12077 + 72 =    12077/12079 

As for the DoS class is concerned, Among the 12079 total DoS class samples in a test set, 

12029 samples are correctly detected as DoS by the base hybrid model ,12065  samples are 

correctly detected by the enhanced hybrid model M2, 12072 samples are correctly detected by 

the enhanced hybrid models M1 and M3, whereas 12077 samples are correctly detected by the 

enhanced model M4.The detection rate of  all the enhanced hybrid models is higher than our 

base hybrid model. 

The confusion-matrix for the Scan class is shown in Table 4.15. 

Table 4.15:  The confusion-matrix for the Scan class 

P
r
e
d

ic
te

d
 v

a
lu

es
 

                                                                                             Actual values 

                       DoS (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS (P) (TP)                        12029 12072 12065 12072 12077 (FN) 50 7 14 7 2 

Other 

classes 

(N) 

(FP) 9 14 24 26 7 (TN) 113069 113050 113040 113038 113064 
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                                                                                             Actual values 

                       Scan (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Scan 
(P) 

(TP)                    14408 14710 14710 14696 14731 (FN) 736 434 434 448 413 

Other 
classes 
(N) 

(FP) 753 434 435 448 435 (TN) 109210 109579 109578 109565 109578 
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Detection rate 

Base = 14408/ 14408+ 736 = 14408/15144 

M1 = 14710/14710 +434 = 14710/ 15144                             M2 =  14710/14710 +434 = 14710/ 15144 

M3 =  14696/14696 + 448 =   14696/ 15144                         M4 =   14731/14731 + 413 = 14731/ 15144 

 

 As for the Scan class is concerned, Among the 15144 total Scan class samples in a test set, 

14408 samples are correctly detected as Scan by the base hybrid model , 14710 samples are 

correctly detected by the enhanced hybrid models M1 and M2, 14696 samples are correctly 

detected by the enhanced hybrid model M3, whereas 14731 samples are  correctly detected by 

the enhanced hybrid model M4. The detection rate of the enhanced hybrid models is higher 

than our proposed base hybrid model. 

The confusion-matrix for the MITM ARP Spoofing class is shown in Table 4.16. 

Table 4.16:   The confusion-matrix for the MITM ARP Spoofing class 

                                        

Detection rate 

Base = 6576/ 6576+ 391 = 6576/6967 

M1 = 6640/6640 + 327  = 6640/6967                         M2 =  6645/6645 + 322 =   6645/6967 

M3 = 6640/6640 + 327  = 6640/6967                          M4 =     6651/ 6651+ 316  =  6651/ 6967 

 

As for the MITM class is concerned, Among the 6967  total MITM class samples in a test set, 

6576 samples are correctly detected as MITM by the base hybrid model,  6640 samples are 

correctly detected by the enhanced hybrid models M1 and M3, 6645  samples are correctly 

detected by the subsequent enhanced hybrid model M2, whereas 6651 samples are correctly 
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                                                                                             Actual values 

                       MITM (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

MITM 
(P) 

(TP)                         6576 6640  6645 6640 6651 (FN) 391 327 322 327 316 

Other 
classes 
(N) 

(FP) 386 321 322 328 321 (TN) 117804 117869 117868 117862 
 

117869 
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detected by the enhanced hybrid model M4. The detection rate of all the enhanced hybrid 

models is higher than our base hybrid model. 

The confusion-matrix for the Normal class is shown in Table 4.17. 

Table 4.17:   The confusion-matrix for the Normal class 

 

 

                                                   

Detection Rate 

Base = 7881/ 7881+ 132 = 7881/8013 

M1 = 7969/7969 + 44 = 7969/8013                                                   M2 = 7961/7961 + 52 =   7961/8013 

M3 = 7969/7969 + 44 = 7969/8013                                                   M4 = 7969/7969 + 44    =   7969/8013 

 

As for the Normal class is concerned, Among the 8013 total Normal class samples in a test set, 

7881 samples are correctly detected as benign by the base hybrid model M1, 7969 samples are 

correctly detected by the enhanced hybrid models M1, M3 and M4, whereas 7961 samples are 

correctly detected by the enhanced model M2. The detection rate of all the enhanced hybrid 

models is higher than our base hybrid model. 

 

Totally, out of 117144 intrusive samples in IoTID, 115480 samples are correctly 

detected by the enhanced hybrid model 4, 115429 samples are correctly detected by the 

enhanced hybrid models 1 and 3, 115387 samples are correctly detected by the enhanced hybrid 

model 2, 114068 samples are correctly detected by the base hybrid model. The enhanced hybrid 

models outperform the base hybrid model. The enhanced hybrid model 4 outperforms the other 

three enhanced models.  
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                                                                               Actual values 

                       Normal                  Other classes  

 Base M1 M2 M3 M4 Base M1 M2 M3 M4 

Normal  7881 7969 7961 7969 7969 132 44 52 44 44 

Other 
classes  

67 52 51 52 45 117077 117144 117093 117144 117099 
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The bar graph that illustrates the classification performance of the proposed models for IoTID  

is shown in Figure 4.21.  

 

     Figure 4.21:  The classification performance of the proposed models for IoTID 

          

BoT-IoT-2018  

 The confusion matrix of BoT-IoT for each class is shown below in Tables (4.18 – 4.21): 

The confusion-matrix for the DDoS class is shown in Table 4.18. 

Table 4.18:  The confusion-matrix for the DDoS class 

 

Detection rate 

Base = 385000/385000 + 324 = 385000/385324 

M1 = 385215/385215 + 109 = 385215/385324                 M2 = 385215/385215 + 109 = 385215/385324 

M3 = 385215/385215 + 109 = 385215/385324                 M4 = 385307/385307 +17 =  385307/385324 

 

117144

114068

115429

115387

115429

115480

112500 113500 114500 115500 116500 117500

Total number of intrusive samples

Intrusive samples predicted by the base hybrid model

Intrusive samples predicted by the enhanced  hybrid model 1

Intrusive samples predicted by the enhanced  hybrid model 2

Intrusive samples predicted by the enhanced  hybrid model 3

Intrusive samples predicted by the enhanced  hybrid model 4

Intrusive samples

Classification performance of the proposed models for IoTID
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                                                                                             Actual values 

                       DDoS (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DDoS 
(P) 

(TP)                         385000 385215 385215 385215 385307 (FN) 324 109 109 109 17 

Other 
classes 
(N) 

(FP) 266 219 219 219 99 (TN) 348203 348250 348250 348250 348370 
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There are 385324 DDoS samples in a dataset and 385000 of them are correctly classified as 

DDoS by the base hybrid model, whereas 385215 of them are correctly classified by the 

enhanced hybrid models M1, M2 and M3, whereas 385307 of them are correctly classified by 

the enhanced hybrid model M4. Larger number of DDoS samples are correctly classified by 

the four enhanced hybrid models than our base hybrid model. 

The confusion-matrix for the DoS class is shown in Table 4.19 

Table 4.19:  The confusion-matrix for the DoS class 

                          

Detection rate 

Base= 329740/329740 +312 = 329740/330052 

M1 = 329825/329825 +227 = 329825/ 330052                  M2 = 329825/329825 +227 = = 329825/  330052 

              M3 =    329890/329890 + 162 =   329890/ 330052             M4 = 329955/329955 + 97 = 329955/330052 

                                                                                                 

There are 330052 DoS samples in a dataset and 329740 of them are correctly classified as DoS, 

by the base hybrid model, 329825 of them are correctly classified by the enhanced hybrid 

models M1 and M2, 329890 of them are correctly classified by the enhanced hybrid model M3, 

329955 of them are correctly classified by the enhanced hybrid model M4. Larger number of 

DoS samples are correctly classified by the four enhanced hybrid models than our base hybrid 

model. 
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                                                                                             Actual values 

                       DoS (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS 
(P) 

(TP)                         329740 329825 329825 329890 329955 (FN) 312 227 227 162 97 

Other 
classes 
(N) 

(FP) 262 317 317 222 217 (TN) 403479 403424 403424 403519 403524 
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The confusion-matrix for the Reconnaissance class is shown in Table 4.20.  

Table 4.20:  The confusion-matrix for the Reconnaissance class 

 

Detection rate 

Base = 18285 / 18285 + 22 = 18285/18307 

M1 =     18291/18291 + 16 =  18291/ 18307                                 M2= 18291/18291 + 16 =  18291/ 18307 

M3 = 18295 / 18295 + 12 = 18295/18307                                     M4= 18304/18304 + 3 = 18304/18307 

                                                                                                   

There are 18307 Reconnaissance samples in a dataset and 18285 of them are correctly 

classified as Reconnaissance, by the base hybrid model, whereas 18291 of them are correctly 

classified by the  enhanced hybrid models M1 and M2, 18295 of them are correctly classified 

by the enhanced hybrid model M3, whereas 18304 of them are correctly classified by the 

enhanced hybrid model M4. Larger number of Reconnaissance samples are correctly classified 

by the four enhanced hybrid models than our base hybrid model. 

The confusion-matrix for the Theft class is shown in Table 4.21. 

Table 4.21:   The confusion-matrix for the Theft class 

 

Detection rate 

 

Base = 13/13 + 2 =13/15 
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                                                                                             Actual values 

                       Reconnaissance (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Reconnaissance 
(P) 

(TP)                         18285 18291 18291 18295 18304 (FN) 22 16 16 12 3 

Other classes 
(N) 

(FP) 9 16 16 16 16 (TN) 715477 715470 715470 715470 715470 
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                                                                                             Actual values 

                       Theft (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Theft (P) (TP)                         13 14 14 14 14 (FN) 2 1 1 1 1 

Other 
classes (N) 

(FP) 1 1 1 1 1 (TN) 733777 733777 733777 733777 733777 
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M1=     14/14 + 1 = 14/15                        M2 = 14/14 + 1 = 14/15 

M3 =       14/14 + 1 = 14/15                     M4 = 14/14+ 1 = 14/15 

 

There are 15 Theft samples in a dataset and 13 of them are of them are correctly classified as 

Theft, by the base hybrid model, whereas 14 of them are correctly classified by all the enhanced  

hybrid models M1, M2, M3, M4 and hence the detection rate of all the enhanced models is 

higher than our proposed base model. 

The confusion-matrix for the Normal class is shown in Table 4.22 

Table 4.22:  The confusion-matrix for the Normal class 

 

Detection Rate 

Base =  90/ 90 + 5 = 90/95 

M1 = 92/92 + 3 = 92/95                          M2 = 92/92 + 3 = 92/95 

M3 = 91/91+ 4 = 91/95                            M4 = 93/93 + 2 = 93/95 

 

There are 95 benign samples in a dataset and 90 of them are  of them are correctly classified as 

benign by the base hybrid model, 92 of them are correctly classified by the enhanced hybrid 

models M1and M2, 91 of them are correctly by the enhanced hybrid model M3, whereas 93 of 

them are correctly classified by the enhanced  hybrid model M4 and hence the detection rate 

of all the enhanced  hybrid models is slightly higher than our proposed  base hybrid model. 

Totally, out of 733698 intrusive samples in BoT-IoT, 733580 samples are correctly 

detected by the enhanced hybrid model 4, 733414 samples are correctly detected by the 

enhanced hybrid models 1 and 3, 733345 samples are correctly detected by the enhanced hybrid 
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                                                                                             Actual values 

                       Normal                  Other classes  

 Base M1 M2 M3 M4 Base M1 M2 M3 M4 

Normal 90 92 92 91 93 5 3 3 4 2 

Other 
classes  

5 3 3 4 2 733693 733695 733695 733694 733696 
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model 2 and 733038 samples are correctly predicted by the base hybrid model. The enhanced 

hybrid models outperform our base hybrid model and enhanced hybrid model 4 outperforms 

the other three enhanced hybrid models.  

The bar graph that illustrates the classification performance of the proposed models for BoT-

IoT are shown in Figure 4.22. 

 

 

        Figure 4.22: The classification performance of the proposed models for BoT-IoT 

 

CIC-IDS-2017 

The confusion matrix of CIC-IDS for each class are discussed below in Tables (4.23 – 

4.28): 

The confusion-matrix for the DoS Hulk class is shown in Table 4.23. 

                                           Table 4.23:  The confusion-matrix for the DoS Hulk class 

 

 

733698

733038

733414

733345

733414

733580

732600 732800 733000 733200 733400 733600 733800

Total number of intrusive samples

Intrusive samples predicted by the base hybrid model

Intrusive samples predicted by the enhanced  hybrid model 1

Intrusive samples predicted by the enhanced hybrid model 2

Intrusive samples predicted by the enhanced hybrid model 3

Intrusive samples predicted by the enhanced hybrid model 4

intrusive samples

Detection performance of the proposed models for BoT-IoT
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                                                                                             Actual values 

                       DoS Hulk (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS Hulk  
(P) 

(TP)                         46109 46122 46131 46122 46133 (FN) 36 23 14  23 12 

Other classes 
(N) 

(FP) 101 23 45 23 27 (TN) 85551 85629 85607 85629 85625 
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Detection Rate 

Base= 46109/46109 + 36 = 46109/46145 

M1 = 46122/46122 + 23 = 46122/ 46145                M2 =    46131/46131 + 14 =   46131/46145 

M3 = 46122/46122 + 23 = 46122/  46145                 M4 =   46133/46133 + 12 =    46133/ 46145 

 

Among the 46145 DoS Hulk category samples in a dataset, 46109 samples are correctly 

predicted as DoS Hulk by the base hybrid model, whereas 46122 samples are correctly 

predicted by the enhanced hybrid models M1 and M3. 46131 samples are correctly predicted 

as DoS Hulk by the enhanced hybrid model M2, whereas 46133 samples are correctly predicted 

as DoS Hulk by the enhanced hybrid model M4. The detection rate of all the four enhanced 

hybrid models is higher than our base hybrid model. 

The confusion-matrix for the DoS Golden Eye class is shown in Table 4.24.  

Table 4.24:  The confusion-matrix for the DoS Golden Eye class 

 

.                                                                                              Detection Rate 

Base = 1647/1647 + 30 = 1647/1677 

M1 = 1669/1669 + 8 =    1669/1677                                       M2 = 1656/1656 + 21 = 1656/1677 

                                 M3 = 1669/1669 +8 =     1669/1677                                         M4 = 1670/1670+7 = 1670/1677 

Among the 1677 DoS Golden Eye category samples in a dataset, 1647 samples are correctly 

predicted as DoS Golden Eye by the base hybrid model, 1669 samples are correctly predicted 

by the enhanced hybrid models M1 and M3, 1656 samples are correctly predicted by the 

enhanced hybrid model M2, whereas 1670 samples are correctly predicted by the enhanced 
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                                                                                             Actual values 

                       DoS Golden Eye (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS 
Golden  
Eye (P) 

TP                      1647 1669 1656 1669 1670 FN 30 8 21 8 7 

Other 
classes (N) 

FP 12 8 25 8 8 TN 130108 130112 130095 130112 130112 
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hybrid model M4.Thus, the detection rate of all the four enhanced hybrid models is higher than 

our base hybrid model. 

The confusion-matrix for the DoS Slow Loris class is shown in Table 4.25. 

Table 4.25:  The confusion-matrix for the DoS Slow Loris class 

 

 

Detection rate 

Base = 1115/1115 + 10 = 1115/1125 

M1 = 1121/1121 + 4 = 1121/1125                                    M2 = 1114/1114 + 11 = 1114/1125 

M3 = 1121/1121 + 4 = 1121/1125                                     M4 = 1121/1121 + 4 = 1121/1125                               

Among the 1125 DoS Slow Loris category samples in a dataset, 1115 samples are correctly 

predicted as DoS Slow Loris by the base hybrid model, 1114 samples are correctly predicted 

by the enhanced hybrid model M2, whereas 1121 samples are correctly predicted by the 

enhanced hybrid models M1, M2 and M4. Thus, the detection rate of all the four enhanced 

hybrid models is higher than our base hybrid model. 

 The confusion-matrix for the DoS Slow Http Test class is shown in Table 4.26. 

Table 4.26:  The confusion-matrix for the DoS Slow Http Test class 
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                                                                                             Actual values 

                       DoS Slow Loris (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS Slow 
Loris (P) 

(TP)                         1115 1121 1114 1121 1121 (FN) 10 4 11 4 4 

Other 
classes (N) 

(FP) 8 11 12 11 5 (TN) 130664 130661 130660 130661 130667 
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                                                                                             Actual values 

                       DoS  Slow Http Test (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

 DoS Slow Http 
Test (P) 

(TP)                        1061 1074 1066 1074 1075 (FN) 16 3 11 3 2 

Other classes 
(N) 

(FP) 5 3 3 3 3 (TN) 130715 130717 130717 130717 130717 
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Detection rate 

Base = 1061/1061 + 16 = 1061/1077 

M1 = 1074/1074 + 3 = 1074/1077                                   M2 = 1066/1066 + 11 = 1066/1077 

M3 = 1074/1074 + 3 = 1074/1077                                   M4 = 1075/1075 + 2 = 1075/1077 

Among the 1077 DoS Slow HTTP Test category samples in a dataset, 1061 samples are 

correctly predicted as DoS Slow HTTP Test by the base hybrid model, whereas 1074 samples 

are correctly predicted by the enhanced hybrid models M1 and M3, 1066 samples are correctly 

predicted by the enhanced hybrid model M2, whereas 1075 samples are correctly predicted by 

the enhanced hybrid model M4.Thus the detection rate of all the four enhanced hybrid models 

is higher than our base hybrid model. 

The confusion-matrix for the Heartbleed class is shown in Table 4.27. 

Table 4.27:  The confusion-matrix for the Heartbleed class 

 

Detection rate 

Base = 5/5 + 0 = 5/5 

M1 = 5/5 + 0  = 5/5                                   M2 = 5/5 + 0 = 5/5 

M3 = 5/5 + 0 = 5/5                                    M4 =  5/5 + 0 = 5/5 

Among the Heartbleed samples in a dataset, all the 5 samples are correctly predicted as 

Heartbleed by the proposed models. The detection rate is almost similar for all the proposed 

models. 
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                                                                                             Actual values 

                       Heartbleed (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Heartbleed 
(P) 

(TP)                       5 5 5 5 5 (FN) 0 0 0 0 0 

Other classes 
(N) 

(FP) 0 0 0 0 0 (TN) 131792 131792 131792 131792 131792 
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The confusion-matrix for the Normal class is shown in Table 4.28.  

Table 4.28: The confusion-matrix for the Normal class 

 

Detection rate 

Base = 81670/81670 +98 = 81670/81768 

M1 = 81703/81703 + 65 = 81703/81768                                     M2 = 81711/81711 + 57 = 81711 /81768 

M3 = 81703/81703 + 65 = 81703/81768                                     M4 = 81720/81720 + 64 = 81720/81768 

  Among the 81768 normal category samples in a dataset, 81670 samples are correctly predicted 

as normal by the base hybrid model, 81703 samples are correctly predicted by the enhanced 

hybrid models M1 and M3, 81711 samples are correctly predicted by the enhanced hybrid 

model M2, whereas 81720 samples are correctly predicted by the enhanced hybrid model 

M4.Thus the detection rate of the four enhanced hybrid models is higher than our base hybrid 

model. 

        Out of 50029 intrusive samples in CIC-IDS, 50,002 samples are correctly detected by 

the enhanced hybrid model 4, 49991 samples are correctly detected by the enhanced hybrid 

models M2 and M3, 49974 samples are correctly detected by the enhanced hybrid model M1 

and 49937 samples are correctly detected by the base hybrid model.  The enhanced hybrid 

models outperform the base hybrid model and the enhanced hybrid model 4 outperforms the 

other three enhanced hybrid models.  
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                                                                                             Actual values 

                       Normal                  Other classes  

 Base M1 M2 M3 M4 Base M1 M2 M3 M4 

Normal 81670 81703 81711 81703 81720 98 65 57 65 48 

Other 
classes  

75 80 72 80 64 49954 49949 49957 49949 49965 
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The bar graph that illustrates the classification performance of the proposed models for CIC-

IDS are shown in Figure 4.23. 

 

                Figure 4.23: The classification performance of the proposed models for CIC-IDS 

 

CIDDS-001 

The confusion matrix of CIDDS-001 for each class are discussed below in Tables (4.29 

– 4.33): 

The confusion-matrix for the DoS class is shown in Table 4.29. 

Table 4.29: The confusion-matrix for the DoS class 

 

Detection rate 

Base =    29120/29120 + 93 = 29120/29213 

M1 = 29150/29150 + 63 = 29150/29213                               M2 = 29150/29150 + 63 = 29150/29213 

M3 = 29150/29150 + 63 = 29150/29213                              M4 = 29199/29199 + 14 = 29199/29213  

50029

49937

49974

49991

49991

50,002

49880 49900 49920 49940 49960 49980 50000 50020 50040

Total number of  intrusive samples

Intrusive samples predicted by the base hybrid model

Intrusive samples predicted by the enhanced hybrid model 1

Intrusive samples predicted by the enhanced hybrid model 2

Intrusive samples predicted by the enhanced hybrid model 3

Intrusive samples predicted by the enhanced hybrid model 4

Intrusive samples

Classification performance of the proposed models for CIC-IDS
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                                                                                             Actual values 

                       DoS (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

DoS 
(P) 

(TP)                         29120 29150 29150 29150 29199 (FN) 93 63 63 63 14 

Other 
classes 
(N) 

(FP) 231  102 93 111 93 (TN) 53314 53443 53452 53434 53452 
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There are 29213 DoS samples in a dataset, 29120 of them are correctly classified as DoS by 

the base hybrid model, 29150 of them are correctly classified as DoS by the enhanced hybrid 

models M1, M2, and M3, whereas 29199 of them are correctly classified as DoS by the 

enhanced hybrid model M4. Larger number of DoS samples are correctly classified by the four 

enhanced hybrid models than our base hybrid model. 

The confusion-matrix for the Brute Force class is shown in Table 4.30.  

Table 4.30:  The confusion-matrix for the Brute Force class 

 

Detection rate 

Base = 1518/1518 + 24 = 1518/1542 

M1 = `1527/1527 + 15 = 1527/1542           M2 = 1527/1527 + 15 = 1527/1542 

M3 = 1529/1529 + 13 = 1529/1542              M4 = 1538/1538 + 15 = 1538/1542 

There are 1542 Brute Force samples in a dataset and 1538 of them are correctly classified as 

Brute Force by the base hybrid model, whereas 1527 of them are correctly classified by the 

enhanced hybrid models M1 and M2, 1529 of them are  correctly classified by the enhanced  

hybrid model M3, whereas 1538 of them are correctly classified by the enhanced hybrid model 

M4. The detection rate of all the enhanced hybrid models is slightly higher than our proposed 

base hybrid model. 
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                                                                                             Actual values 

                       Brute Force (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Brute 
Force (P) 

(TP)                         1518 1527 1527 1529 1538 (FN) 24 15 15 13 4 

Other 
classes 
(N) 

(FP) 29 15 15 15 15 (TN) 81187 81201 81201 81201 81201 



 

 

153 

 

The confusion-matrix for the Port Scan class is shown in Table 4.31. 

Table 4.31:  The confusion-matrix for the Port Scan class 

 

Detection rate 

Base = 5631/5631 + 38 ==5631/5669 

M1 = 5652/5652 + 11 = 5652/5669                                  M2 = 5646/5646 + 17 = 5646/5669 

M3 = 5652/5652 + 11 = 5652/5669                                  M4 =     5663/5663 + 9 =   5663/ 5669                   

There are 5669 Port Scan samples in a dataset and 5631 of them are correctly classified as Port 

Scan by the base hybrid model, 5652 of them are correctly classified as Port Scan, by the 

enhanced  hybrid models M1 and M3,  5646 of them are correctly classified as  Port Scan, by 

the enhanced  hybrid model M2, whereas  5663 of them are correctly classified as  Port Scan, 

by the enhanced  hybrid model M4. The detection rate of all the four enhanced hybrid models 

is higher than our proposed base hybrid model. 

The confusion-matrix for the Ping Scan class is shown in Table 4.32. 

Table 4.32: The confusion-matrix for the Ping Scan class 

 

Detection rate 

Base = 1144/1144 + 29 = 1144/1173 

M1 = 1160/1160 + 13 = 1160/1173                                          M2 = 1159/1159 + 14 = 1159/1173 

M3 = 1160/1160 + 13 = 1160/1173                                           M4 = 1161/1161 + 12 = 1161/1173 
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                                                                                             Actual values 

                       Port  Scan(P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Port 
Scan (P) 

(TP)                         5631 5652 5646 5652 5663 (FN) 38 11 17 11 6 

Other 
classes 
(N) 

(FP) 16 11 17 11 17 (TN) 77073 77078 77072 77078 77072 
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                                                                                             Actual values 

                       Ping Scan (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Ping 

Scan (P) 

(TP)                         1144 1160 1159 1160 1161 (FN) 29 13 14 13 12 

Other 

classes 

(N) 

(FP) 16 14 14 14 12 (TN) 81569 81571 81571 81571 81573 
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There are 1173 Ping Scan samples in a dataset and 1144 of them are correctly classified as Ping 

Scan by the base hybrid model, 1160 of them are correctly classified as Ping Scan by the 

enhanced hybrid models M1 and M3, 1159 of them are  correctly classified as Ping Scan by 

the enhanced hybrid  model M2, whereas  1161 of them are correctly classified  as Ping Scan 

by the enhanced hybrid model M4. The detection rate of all the enhanced hybrid models is 

higher than our proposed base hybrid model. 

The confusion-matrix for the Normal class is shown in Table 4.33. 

Table 4.33:  The confusion-matrix for the Normal class 

     

Detection rate 

Base = 44918 /  44918 + 243 = 44918/45161  

   M1 = 45130/45130 + 31 = 45130/45161           M2 =   45131/45131 + 30  =    45131/  45161  

M3 = 45130/45130 + 31 = 45130/45161          M4 =  45134/45134 + 27 = 45134/45161  

Among the 45161 normal category samples in a dataset, 44918 samples are correctly predicted 

as normal by the base hybrid model, whereas 45130 samples are correctly predicted by the 

enhanced hybrid models M1 and M3, 45131 samples are correctly predicted by the enhanced 

hybrid model M2, whereas 45134 samples are correctly predicted by the enhanced hybrid 

model M4. The detection rate all the four enhanced hybrid models is higher than our base 

hybrid model. 

Out of 37597 intrusive samples in CIDDS-001, 37503 samples are correctly detected 

by the enhanced hybrid model 4, 37458 samples are correctly detected by the enhanced hybrid 

model M2 , 37460 samples are correctly detected by the enhanced hybrid models M1 and M3, 
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                                                                                             Actual values 

                       Normal                  Other classes  

 Base M1 M2 M3 M4 Base M1 M2 M3 M4 

Normal 44918 45130 45131 45130 45134 243 
 

31 30 31 27 

Other 
classes  

53 31 30 31 35 37544 
 

37566 37567 37566 37562 
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37413 samples are correctly detected by the base hybrid model. The enhanced hybrid models 

outperform the base hybrid model and the enhanced hybrid model 4 outperforms the other three 

enhanced hybrid models.  

The bar graph that illustrates the classification performance of the proposed models for CIDDS-

001 are shown in Figure 4.24.  

 

Figure 4.24:   The classification performance of the proposed models for CIDDS-001 

 

ISCX-URL 2016 

The confusion matrix of ISCX-URL for each class is shown below in Tables (4.34 - 

4.38)  

The confusion-matrix for the Malware class is shown in Table 4.34. 

Table: 4.34 The confusion-matrix for the Malware class 

 

                                                                                                     Detection rate 

Base = 2309/2309 + 71 = 2309/2380 

 
M1 = 2310/2310  + 70  = 2310/2380                                     M2 = 2310/2310  + 70  = 2310/2380 

 

37597

37413

37460

37458

37460

37503

37300 37350 37400 37450 37500 37550 37600 37650

Total number of Intrusive samples

Intrusive samples predicted  by the base hybrid model

Intrusive samples predicted  by the enhanced  hybrid model 1

Intrusive samples predicted  by the enhanced  hybrid model 2

Intrusive samples predicted  by the enhanced  hybrid model 3

Intrusive samples predicted  by the enhanced  hybrid model 4

Intrusive samples

Detection performance of the proposed models for CIDDS-001
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                                                                                             Actual values 

                       Malware (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Malware 
(P)  

(TP)                         2309 2310 2310 2310 2312 (FN) 70 71 71 71 68 

Other 
classes 
(N) 

(FP) 90 71 71 71 68 (TN) 20410 20429 20429 20429 20432 
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     M3 = 2310/2310  + 70  = 2310/2380                                       M4 = 2312/2312 + 68  =   2312/2380 

Out of 2380 malware class samples in a test set, only 2309 samples are correctly predicted as 

malware by the base hybrid model, 2310 samples are correctly classified by the enhanced 

hybrid models M1, M2 and M3, whereas 2312 samples are correctly classified by the enhanced 

hybrid model M4. The detection rate of all the enhanced hybrid models is higher than the base 

hybrid model. 

The confusion-matrix for the Defacement class is shown in Table 4.35. 

                                  Table 4.35: The confusion-matrix for the Defacement class 

 

Detection rate 

Base =  8860/8860 + 240 = 8860/ 9100  

M1 =  8918/8918 + 182 =  8918/9100                 M2 =  8918/8918 + 182 =  8918/9100  

M3 =8918/8918 + 182 =  8918/9100                 M4 = 8918/8918 + 182 =  8918/9100  

Out of 9100 Defacement class samples in a dataset, only 8860 samples are correctly predicted 

as Defacement by the base hybrid model, whereas 8918 samples are correctly classified by all 

the enhanced hybrid models M1, M2, M3 and M4. The detection rate of all the enhanced hybrid 

models is higher than the base hybrid model. 
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                                                                                             Actual values 

                       Defacement (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Defacement 
(P) 

(TP)                        8860 8918 8918 8918 8918 (FN) 240 182 182 182 182 

Other 
classes (N) 

(FP) 222 185 184 185 182 (TN) 13558 13595 13596 13595 13598 
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The confusion-matrix for the Spam class is shown in Table 4.36. 

Table 4.36: The confusion-matrix for the Spam class 

 

Detection rate 

Base = 2325/2325 + 75 = 2325/2400  

M1 = 2331/2331 + 69 = 2331/2400                                      M2 = 2331/2331 + 69  = 2331/2400  

M3 = 2331/2331 + 69 = 2331/2400                                      M4 = 2345/2345 + 55  =  2345/2400  

Out of  2400 Spam class samples in a test set, only 2325  samples are correctly predicted as 

Spam by the base hybrid model, whereas 2331 samples are correctly classified by the enhanced 

hybrid models M1 ,M2 and M3, whereas 2345 samples are  correctly classified by the enhanced 

hybrid model M4.The detection rate of the enhanced hybrid models is higher than the base 

hybrid model. 

The confusion-matrix for the Phishing class is shown in Table 4.37. 

Table 4.37: The confusion-matrix for the Phishing class 

 

Detection rate 

Base = 1886/1886 +114 = 1886/2000 

M1 = 1903/1903 + 97 =   1903/ 2000                        M2 = 1903/1903 + 97 =   1903/ 2000 

M3 = 1908/1908 + 92 = 1908/2000                                M4 = 1908/1908+ 92 = 1908/2000 
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                                                                                             Actual values 

                       Spam (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 
Spam  
(P) 

(TP)                         2325 2331 2331 2331 2345 (FN) 75 69 69 69 55 

Other 
classes 
(N) 

(FP) 59 69 69 69 56 (TN) 20421 20411 20411 20411 20424 
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Actual values 

                       Phishing (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Phishing 
(P) 

(TP)                        1886 1903 1903 1908 1908 (FN) 114 97 97 92 92 

Other 
classes 
(N) 

(FP) 115 97 97 97 93 (TN) 20765 20783 20783 20783 20787 
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Out of 2000 Phishing category samples in a test set, only 1886 samples are correctly predicted 

as phishing by the base hybrid model, 1903 samples are correctly classified by the enhanced 

hybrid models M1 and M2, whereas 1908 samples are correctly classified by the enhanced 

hybrid models M3 and M4. The detection rate of the enhanced hybrid models is slightly higher 

than the base hybrid model. 

The confusion-matrix for the Normal class is shown in Table 4.38. 

Table 4.38: The confusion-matrix for the Normal class 

                                                       

Detection rate 

Base = 6930/ 6930 + 70 = 6930/7000 

M1 = 6955/6955 + 45 = 6955/7000              M2 = 6955/6955 + 45 = 6955/7000  

M3 =   6955/6955 + 45 = 6955/7000              M4 = 6956/6956 + 44 = 6956/7000  

 

Out of 7000 normal category samples in a test set, only 6930 samples are correctly predicted 

as normal by the base hybrid model, 6955 samples are correctly classified by the enhanced 

hybrid models M1, M2 and M3, whereas 6956 samples are correctly classified by the enhanced 

hybrid model M4. The detection rate of all the enhanced hybrid models is higher than the base 

hybrid model. 

               Out of 15800 intrusive samples in ISCX-URL, 15481 samples are correctly detected 

by the enhanced hybrid model 4, 15466 samples are correctly detected by the enhanced hybrid 

model M3, 15461 samples are correctly detected by the enhanced hybrid models M1 and M2, 

whereas 15,380 samples are correctly detected by the base hybrid model.  The enhanced hybrid 
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                                                                                             Actual values 

                       Normal                  Other classes  

 Base M1 M2 M3 M4 Base M1 M2 M3 M4 

Normal 6930 6955 6955 6955 6956 70 45 45 45 44 

Other 
classes  

70 52 48 52 45 15810 15828 15832 15828 15835 
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models outperform the base hybrid model and the enhanced hybrid model 4 outperforms the 

other three enhanced hybrid models.  

The bar graph that illustrates the classification performance of the proposed models for ISCX-

URL are shown in Figure 4.25.  

 

        Figure 4.25:  The classification performance of the proposed models for ISCX-URL 

 

CIDDS-002 

The confusion matrix of CIDDS-002 is shown Table 4.39. 

Table 4.39: The confusion matrix of CIDDS-002 

 

Detection rate 

Base = 7208/7208 + 57= 7208/7265 

M1 = 7231/7231 + 34 =  7231/7265         M2 = 7245/7245 + 20 = 7245/7265 

M3 = 7245/7245 + 20 = 7245/7265                M4 =7258/7258 + 7 = 7258/7265                                                                                           

There are 7264  intrusive Port Scan samples in a dataset and 7208 of them are correctly 

classified as Port Scan by the base hybrid model, 7245 of them are correctly classified by the 

15800

15,380

15461

15461

15466

15481

15100 15200 15300 15400 15500 15600 15700 15800 15900

Total number of intrusive samples

Intrusive samples predicted by the base hybrid model

Intrusive samples predicted by the enhanced hybrid model 1

Intrusive samples predicted by the enhanced hybrid model 2

Intrusive samples predicted by the enhanced hybrid model 3

Intrusive samples predicted by the enhanced hybrid model 4

Intrusive samples

Detection performance of the proposed models for ISCX-URL
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                                                                                             Actual values 

                       Port Scan (P)                  Other classes (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Port 
Scan  (P) 

(TP)                         7208 7231 7245 7245 7258 TN 57 34 20 20 7 

Other 
classes 
(N) 

(FP) 26 49 45 47 19 FN 202424 202401 202405 202403 202431 
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enhanced  hybrid models M2 and M3, 7231 of them are correctly predicted by the enhanced 

hybrid model M1, whereas 7258 of them are correctly classified by the enhanced  hybrid model 

M4. The detection rate of all the enhanced hybrid models is higher than our base hybrid model. 

The detection rate of the enhanced hybrid model 4 is higher than the other three enhanced 

hybrid models.  

The bar graph that illustrates the classification performance of the proposed models for CIDDS-

002 are shown in Figure 4.26. 

 

Figure 4.26: The classification performance of the proposed models for CIDDS-002 

 

ISCX-TOR 2016 

The confusion matrix of ISCX-TOR is shown in Table 4.40. 

Table 4.40:  The confusion matrix of ISCX-TOR 

 

Detection Rate 

Base = 4145/4145 + 370 = 4145/4515 

M1 = 4229/4229 + 286 = 4229/4515     M2 = 4229/4229 + 286 = 4229/4515 

M3 = 4225/4225 + 290 = 4225/4515      M4 = 4235/4235+ 280 = 4235/4515 

7264

7208

7231

7245

7245

7258

7180 7190 7200 7210 7220 7230 7240 7250 7260 7270

Total number of intrusive samples

Intrusive samples predicted by the base hybrid model

Intrusive samples predicted by the enhanced hybrid model 1

Intrusive samples predicted by the enhanced hybrid model 2

Intrusive samples predicted by the enhanced hybrid model 3

Intrusive samples predicted by the enhanced hybrid model 4

Intrusive samples

Detection performance of the proposed models for  CIDDS-002
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                       Tor   (P)                  Non-Tor (N) 

  Base  M1 M2 M3 M4  Base M1 M2 M3 M4 

Tor (P) (TP)                         4145 4229 4229 4225 4235 TN 370 286 286 290 280 

Non-Tor 
(N) 

(FP) 342 300 295 293 286 FN 25549 25591 25596 25598 25605 
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The total number of Tor intrusive samples in the test set is 4515. Among them, 4145 samples 

are predicted correctly as Tor by the base hybrid model, 4229 samples are predicted correctly 

by the enhanced hybrid models M1 and M2. 4225 samples are predicted correctly by the 

enhanced hybrid model M3, whereas 4235 samples are predicted correctly by the enhanced 

hybrid model M4. The enhanced hybrid models give higher detection rate when compared with 

our base hybrid model. The enhanced hybrid model 4 gives higher DR than the other three 

enhanced hybrid models.  

The bar graph that illustrates the classification performance of the proposed models for ISCX-

TOR are shown in Figure 4.27. 

 

              Figure 4.27: The classification performance of the proposed models for ISCX-TOR 
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UNSW-NB 15 

The confusion matrix of UNSW-NB is shown in Table 4.41. 

Table 4.41:  The confusion matrix of UNSW-NB 

 

Detection Rate 

Base = 10238/ 10238 + 520  = 10238/10758 

M1 = 10528/10528 + 230 = 10528/10758    M2 =  10522/10522 + 236= 10522/10758 

M3 = 10525/10525 + 233=     10525/ 10758            M4  = 10539/ 10539+ 219= 10539/10758 

 

The total number of intrusive samples in the test set is 10758. Among them, 10238 samples ar

e predicted correctly as intrusive by the base hybrid model, 10528 samples are predicted corre

ctly by the enhanced hybrid model M1, 10522 samples are predicted correctly by the enhanc

ed hybrid model M2, 10525 samples are predicted correctly by the enhanced hybrid model 

M3, whereas 10539 samples are correctly predicted by the enhanced hybrid model M4. The 

enhanced hybrid models give higher detection rate than our base hybrid model. The enhanced 

hybrid model 4 gives highest detection rate than the other three enhanced hybrid models. 
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                                                                                             Actual values 

                       Attack (P)                  Normal (N) 

  Base M1 M2 M3 M4  Base M1 M2 M3 M4 

Attack (P) TP                       10238 10528 10522 10525 10539 TN 520 230 236 233 219 

Normal (N) FP 443 247 243 240 230 FN 21768 21964 21968 21971 21981 
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The  bar graph that illustrates the classification performance of the proposed models for 

UNSW-NB are shown in Figure 4.28. 

 

Figure 4.28: The classification performance of the proposed models for UNSW-NB 

 

 From the classification performance of the proposed models for the eight standard 

benchmark datasets as given in Tables (4.23 – 4.41), the detection rate of the enhanced hybrid 

models is higher than our base hybrid model. The enhanced hybrid model 4 outperforms the  

other three enhanced hybrid models. The proposed enhanced hybrid models show at least 1% 

increase in detection rate for the benchmark datasets, when compared with the base hybrid  

model. 
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4.4   Performance Comparison 

The comparison of classification performance of the proposed models with different schemes 

are shown in Tables (4.42 – 4.49) 

 

Table: 4.42 shows our proposed model results for the CIDDS-001 with different existing 

scheme 

Table: 4.42 Proposed model results for CIDDS-001 with different existing schemes 

 

 

 

 

 

 

 

No Features selection Classifier Detection rate Detection   

loss 

Accuracy Precision 

 

F1score 

1. Statistical methods-

entropy  

J48 99 % (Mahajan et al., 2020) - 94% 95% - 

2. PCA (Grid search) RF+ KNN 98.14% (Cuautla et al., 2020) - 98.14% 98.33% 98.23% 

3. Ensemble feature selection MLP 99.40% (He et al., 2019) - - - - 

4. Manual selection CART 96.74%   (Verma and Ranga, 2020) - - 97.30% - 

5. Data reshape algorithm LSTM 89.71% ( Oliveira et al., 2021) - - 94.03% 91.66% 

6. DAE LightGBM 99.60%  (Ayubkhan et al., 2022)  
(Base Hybrid Model) 

 0.2% 99.58% 99.60% 99.59% 

7. Enhanced DAE 1 LightGBM 99.80 %   ( Enhanced Hybrid Model 1) 0.12% 99.80% 99.78% 99.79% 

8. Enhanced DAE 2 LightGBM 99.79%   ( Enhanced Hybrid Model 2) 0.13% 99.78% 99.79% 99.79% 

9. Enhanced DAE 3 LightGBM  99.80 %  ( Enhanced Hybrid Model 3) 0.12% 99.79% 99.77% 99.78% 

10. Enhanced DAE 4 LightGBM 99.85 %   (Enhanced Hybrid Model 4) 0.07%  99.85% 99.80% 99.82% 
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The bar graph that illustrates the detection loss comparison for CIDDS-001 is shown in Figure 

4.29. 

 

    Figure 4.29:  The detection loss comparison for CIDDS-001 is shown in graphical bar 

 

The bar graph that illustrates the detection rate comparison for CIDDS-001 is shown in Figure 

4.30. 

            

Figure 4.30:  The detection rate comparison for CIDDS-001 is shown in graphical bar 

             

On notifying the performance graphs in Figure 4.29 and Figure 4.30. the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 
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detection loss. The enhanced hybrid model 4 outperform slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

 

Table 4.43 shows our proposed model results for the CIDDS-002 with different existing 

schemes 

Table 4. 43 : Proposed model results for CIDDS-002 with different existing schemes 

                                  

The bar graph that illustrates the detection loss comparison for CIDDS-002 is shown in Figure 

4.31. 

 

Figure 4.31:  The detection loss comparison for CIDDS-002 is shown in graphical bar 
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No Features selection Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

F1score 

1. - J48 Tree 99%    (Razdan et al., 2021)    - - - - 

2. - Bagging 99.71%  (Ainurrochman et al., 2021) - 99.71% - - 

3. Feature 
importance 
embedding 

Cart 99%  ( Thapa et al., 2020) - 99.64% - - 

4. - XGboost 99.64% (Quang et al., 2021) - - 99.60% - 

5. DAE LightGBM 99.90%  (Ayubkhan et al., 2022)                
(Base Hybrid Model) 

0.35% 99.89% 99.90% 99.89% 

6. Enhanced DAE 1 LightGBM 99.96 % (Enhanced Hybrid Model 1) 0.33% 99.92% 99.93% 99.94% 

7. Enhanced DAE 2 LightGBM 99.97%  (Enhanced Hybrid Model 2) 0.32% 99.92% 99.95% 99.96% 

8. Enhanced DAE 3 LightGBM 99.97%   (Enhanced Hybrid Model 3) 0.32% 99.93% 99.94% 99.95% 

9. Enhanced DAE 4 LightGBM 99.98%  (Enhanced Hybrid Model 4) 0.30% 99.96% 99.97% 99.97% 
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The bar graph that illustrates the detection rate comparison for CIDDS-002 is shown in Figure 

4.32. 

 

Figure 4.32: The detection rate comparison for CIDDS-002 is shown in graphical bar 

On notifying the performance graphs in Figure 4.31 and Figure 4.32, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperform slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

 

Table 4.44 shows our proposed model results for the IoTID with different existing schemes 

Table 4.44:  Proposed model results for IoTID with different existing schemes 
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No Features 
selection 

Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

F1score 

1. Correlation DT 88% (Ullah et al., 2020) - 88% 88% 88% 

2. Extra tree 
classifier 

CNN 97.88 % (Alkahtani et al., 2021) - 98.33% 97.42% 97.64% 

3. PSO CNN-RNN 98.20% (Ullah et al., 2022) - 98% 98.40% - 

4. - AE 97% (Song et al., 2021) - 95.20% 97% - 

5.  DAE LightGBM 97.43%  (Ayubkhan et al., 2022)         
(Base Hybrid Model)  

0.10% 
 

97.43% 97.42% 97.42% 

6. Enhanced DAE 1 LightGBM 98.58%   (Enhanced Hybrid Model 1) 0.03% 98.56% 98.52% 98.57% 

7. Enhanced DAE 2 LightGBM 98.57% (Enhanced Hybrid Model 2) 0.05% 98.52% 98.54% 98.55% 

8. Enhanced DAE 3 LightGBM 98.58% ( Enhanced  Hybrid Model  3) 0.03% 98.50% 98.52% 98.55% 

9. Enhanced DAE 4 LightGBM 98.61% ( Enhanced  Hybrid Model 4) 0.01% 98.57% 98.58% 98.59% 
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The bar graph that illustrates the detection loss comparison for IoTID is shown in Figure 4.33. 

 
                                  

Figure 4.33: The detection loss comparison for IoTID is shown in graphical bar 

 

The bar graph that illustrates the detection rate comparison for IoTID is shown in Figure 4.34.    

     

                               

Figure 4.34: The detection rate comparison for IoTID is shown in graphical bar 

 

On notifying the performance graphs in Figure 4.33 and Figure 4.34, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 
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detection loss. The enhanced hybrid model 4 outperform slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

Table 4.45 shows our proposed model results for the ISCX-URL with different existing schemes 

Table 4.45:  Proposed model results for the ISCX-URL with different existing schemes 

 

 The bar graph that illustrates the detection loss comparison for ISCX-URL is shown in Figure 

4.35. 

 

Figure 4.35: The detection loss comparison for ISCX-URL is shown in graphical bar 
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No Features selection Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

F1score 

1. Infogain + Ranker RF 97 % (Mamun et al., 2016) 
 

- 97% 97% - 

2. Grid search +N-
gram 

RF+ ANN 97.26% (Alsaedi et al., 2022) - 97.25% 97.36% 97.31% 

3. - RF 93 % (sahib, 2022) - 94.9% 97.4% - 

4. Random RF 96.1% (Kapil et al., 2019) - 96.1% 96.1% 96.1% 

5. DAE LightGBM 97.76 % (Ayubkhan et al., 2022)           
(Base Hybrid Model) 

 

0.2% 97.72% 97.73% 97.72% 

6. Enhanced DAE 1 LightGBM 97.97%   (Enhanced Hybrid  Model 1) 

 
0.12% 97.95% 97.93% 97.95% 

7. Enhanced DAE 2 LightGBM 97.97%   (Enhanced Hybrid Model 2) 

 
0.12% 97.90% 97.95% 97.96% 

8. Enhanced DAE 3 LightGBM 97.99%    (Enhanced Hybrid Model 3) 

 
0.10% 97.90% 97.93% 97.96% 

9. Enhanced DAE 4 LightGBM 98.06%   (Enhanced  Hybrid Model 4) 

 
0.06% 98.05% 98.06% 98.04% 
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The bar graph that illustrates the detection rate comparison for ISCX-URL is shown in Figure 

4.36.         

 
     

Figure 4.36:  The detection rate comparison for ISCX-URL is shown in grapical bar 

 

 

On notifying the performance graphs in Figure 4.35 and Figure 4.36, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperforms slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 
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Table 4.46 shows our proposed model results for the CIC-IDS with different existing schemes 

Table 4.46: Proposed model results for the CIC-IDS with different existing schemes 

 

The bar graph that illustrates the detection loss comparison for CIC-IDS is shown in Figure 

4.37. 

 

Figure 4.37:  The detection loss comparison for CIC-IDS is shown in graphical bar 
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No Features 
selection 

Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

 F1score 

1. - DBN 96.67 % (Manimurugan et al., 2020) 
 

- 95.21% 97.34% 97% 

2. Naïve Bayes SVM 98.92% (Gu and lu, 2021) 
 

- - - - 

3. - RF 99%  (Lopez et al., 2019) 
 

- 99% 99% - 

4. LDA RF 98.%  (Attak et al., 2018) 
 

- - 98.00% 98.00% 

5. Correlation KNN 98.72% (Santikellur et al., 2019) 
 

- 98.12% 98.17% 98.15%- 

6.  DAE LightGBM 99.86% (Ayubkhan et al., 2022)             
(Base Hybrid Model) 

0.15% 99.84% 99.85% 99.84% 

7. Enhanced DAE 1 LightGBM 99.91% (Enhanced Hybrid Model 1) 0.12% 99.91% 99.89% 99.90% 

8. Enhanced DAE 2 LightGBM 99.92% (Enhanced Hybrid Model 2) 0.11% 99.89% 99.90% 99.91% 

9. Enhanced DAE 3 LightGBM 99.92% (Enhanced Hybrid Model 3) 0.11% 99.90% 99.90% 99.91% 

10. Enhanced DAE 4 LightGBM 99.94% (Enhanced Model Hybrid 4) 0.09% 99.92% 99.91% 99.92% 
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The bar graph that illustrates the detection rate comparison for CIC-IDS is shown in Figure 

4.38. 

 

Figure 4.38:  The detection rate comparison for CIC-IDS is shown in graphical bar 

 

 On notifying the performance graphs in Figure 4.37 and Figure 4.38, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperform slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss 
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Table: 4.47 shows our proposed model results for the ISCX-TOR with different existing 

systems 

Table 4.47: Proposed models results for ISCX-TOR   with different existing schemes 

                   

The bar graph that illustrates the detection loss comparison for ISCX-TOR is shown in Figure 

4.39. 

 
 

Figure: 4.39: The detection loss comparison for ISCX-TOR is shown in graphical bar 
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No Features selection Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

F1score 

1. Extra tree classifier  DCNN 86% (Lashkari et al., 2020) 86% 86% 86% 86% 

2. Data augmentation CNN 86.94% (Shapira et.al., 2021) 
 

- 86.94% - 64.93% 

3. IG RF 97.1% (Zhoul et al.,  2020) 
 

- - 97.1% 97.1% 

4. Genetic algorithm RNN LSTM 96% (Priya et al.,  2021) - 97% 98% 97% 

5. Apriori algorithm Multi-
Relative 
Entropy  

91% (Yan et al., 2022) - 91% 91% - 

6. DAE LightGBM 97%   (Ayubkhan et al., 2022)              
(Base Hybrid Model) 
 

0.10% 96.96% 97.11% 97.00% 

7. Enhanced DAE 1 LightGBM 98.12% (Enhanced Hybrid Model 1) 
 

0.04% 98.03% 98.05% 98.08% 

8. Enhanced DAE 2 LightGBM 98.12% (Enhanced Hybrid Model 2) 
 

0.04% 98.07% 98% 98.06% 

9. Enhanced DAE 3 LightGBM 98.11% (Enhanced Hybrid Model 3) 
 

0.05% 98.07% 98.10% 98.10% 

10. Enhanced DAE 4 LightGBM 98.14% (Enhanced Hybrid Model 4) 0.02% 98.12% 98.12% 98.13% 
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The bar graph that illustrates the detection rate comparison for ISCX-TOR is shown in Figure 

4.40. 

 
 

Figure 4.40: The detection rate comparison for ISCX-TOR is shown in graphical bar 

 

 On notifying the performance graphs in Figure 4.39 and Figure 4.40, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperforms slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

 

Table 4.48 shows our proposed model results for UNSW-NB with different existing schemes. 

Table 4.48:   Proposed models results for UNSW-NB with different existing schemes 
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Detection rate

Detection rate comparison for ISCX-TOR

No Features 
selection 

Classifier Detection rate Detection 
loss 

Accuracy Precision 
 

F1score 

1. - ensemble   91.8%   (Hsu et al., 2019) - 93.2% 91.7% - 

2. Stacked AE SoftMax 89.13%  (Khan et al.,  2019) - 89.7% 89% 89% 

3. Naïve Bayes SVM 93.75%   (Gu and lu,  2021) - - - - 

4. - Ensemble 86.40% (Baig et al., 2017) - 86.74% 93.38% 89.94% 

5. - DNN 78.40% (Yan et al., 2018) - 94.40% 72.50% 82.00% 

6.  DAE LightGBM 96.11%  (Ayubkhan et al., 2022)             
(Base Hybrid Model) 

0.96% 96.00% 96% 95.99% 

7. Enhanced DAE 1 LightGBM 97.36%   (Enhanced Hybrid Model 1) 0.78% 97.32% 97.31% 97.33% 

8. Enhanced DAE 2 LightGBM 97.34%  (Enhanced Hybrid Model 2) 0.74% 97.33% 97.32% 97.33% 

9. Enhanced DAE 3 LightGBM 97.35%  (Enhanced Hybrid Model 3) 0.75% 97.31% 97.33% 97.34% 

10. Enhanced DAE 4 LightGBM 97.39%  (Enhanced Hybrid Model 4) 0.70% 97.35% 97.36% 97.34% 
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 The bar graph that illustrates the detection loss comparison for UNSW-NB is shown in 

Figure 4.41. 

 

Figure 4.41: The detection loss comparison for UNSW-NB is shown in graphical bar 

 

The bar graph that illustrates the detection rate comparison for UNSW-NB is shown in Figure 

4.42. 

 
                   

Figure 4.42:  The detection rate comparison for UNSW-NB is shown in graphical bar 
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On notifying the performance graphs in Figure 4.41 and Figure 4.42, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperforms slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

 

Table 4.49 shows our proposed models results for BoT-IoT with different existing schemes 

Table 4.49:  Proposed models results for BoT-IoT with different existing schemes 

                                              

The bar graph that illustrates the detection loss comparison for BoT-IoT is shown in Figure 

4.43. 

 

Figure 4.43:  The detection loss comparison for BoT-IoT is shown in graphical bar 
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No Features selection Classifier Detection rate 
 

Detection 
loss 

Accuracy Precision 
 

F1score 

1. Manually selected  Random forest 99.80% (Ullah et al., 2020) - 99.90% 99.75% 99.80% 

2. Random forest 
regressor 

KNN 99% (Alsamiri et al., 2019) -  99% 99% 99% 

3. Manual selection Ensemble  96.99% (Ferrag et al., 2020) - - - - 

4. Manual selection CNN 88.30% (Susilo et al., 2020) -  91.27%  

5. Block chain 
framework 

Bidirectional 
LSTM 

99.79 % (Alkadi et al., 2021) - 98.91% - - 

6. DAE LightGBM 99.91% (Ayubkhan et al., 2022)             
(Base Hybrid Model) 

0.32% 99.91% 99.92% 99.91% 

7. Enhanced DAE 1 LightGBM 99.95% (Enhanced Hybrid Model 1) 0.30% 99.93% 99.91% 99.93% 

8. Enhanced DAE 2 LightGBM 99.95% (Enhanced Hybrid Model 2) 0.30% 99.92% 99.91% 99.93% 

9. Enhanced DAE 3 LightGBM 99.96%  (Enhanced  Hybrid Model 3) 0.28% 99.91% 99.93% 99.94% 

10. Enhanced DAE 4 LightGBM 99.98%  (Enhanced Hybrid  Model 4) 0.20% 99.96% 99.95% 99.96% 



 

 

177 

 

The bar graph that illustrates the detection rate comparison for BoT-IoT is shown in Figure 

4.44. 

 

Figure 4.44:  The detection rate comparison for BoT-IoT is shown in graphical bar  

 On notifying the performance graphs in Figure 4.43 and Figure 4.44, the enhanced hybrid 

models outperform our base hybrid model by obtaining higher detection rate and minimum 

detection loss. The enhanced hybrid model 4 outperforms slightly the other three enhanced 

hybrid models by securing highest detection rate and lowest detection loss. 

 

4.5    Overview of the classification results 

All the proposed four strategies have its unique standard mathematical algebraic properties in 

removing the deviations and enhancing the adversarial robustness and representation capacity 

of our model. 

 

All the four strategies work out very well with DAE i.e. gaussian noise in the DAE, in 

suppressing the deviations and enhancing the quality of the patterns extracted. All the four 

strategies outperform our base hybrid model in extracting the useful, continuous complete core 
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structure of the network traffic. All the four strategies are simple, adaptable, and compatible to 

use and fucntion with gaussian noise in the DAE.  

 

Among the four proposed strategies, the fourth strategy, enhanced DAE 4 i.e. generative 

denoising autoencoder,  as a generative model it outperforms the other three stochastic and 

deterministic models since the other three models encodes only the discrete real vector values 

in the latent space structure, the fourth strategy outputs an entire probability distribution of the 

network traffic, which is full, regular,  complete and continuous in nature and gives the more 

meaningful and quality enriched structure and patterns, that outperforms the other three 

enhanced DAE models. 

 

The enhanced DAE models are associated with LightGBM classifier and develop four 

enhanced hybrid models which give higher detection score with very minimum detection loss. 

For ease of understanding, we present the experimental results on each of the datasets (Tables 

4.3, 4.5, 4.7, 4.9, 4.11) before comparing our results with other work (Tables 4.42 - 4.49). 

Notice that, our proposed schemes achieve a detection rate of at least 96% with a detection loss 

of at least 0.96% for all eight different datasets. Moreover, refer to Tables (4.42 - 4.49), our 

proposed schemes outperform other existing schemes against eight different commonly used 

datasets. 

 

The performance of our proposed schemes against different datasets show that our 

proposed schemes are lighter and yet achieve good detection rate  with minimal detection loss  

due to the enhanced DAE and LightGBM  i.e. due to the proposed novel regularization 

strategies that can remove deviations and give complete regularization along with gaussian 
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noise to extract the important low-dimensional hidden patterns lying in the dataset and 

histogram optimized leaf-wise strategy that can classify the samples using histogram bins of 

the hidden patterns with higher information gain in short training time.  

 

It is to be noticed from the Tables (4.42 - 4.49), the enhanced hybrid models outperform 

the base hybrid model by securing higher detection rate with minimum detection loss. Among 

the four enhanced hybrid models, the enhanced hybrid model 4, outperforms the other three 

enhanced hybrid models by obtaining highest detection rate with lowest detection loss against 

all the eight benchmark datasets. 
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The main functionalities of the DAE and the four enhanced DAE models are shown in Table 

4.50. 

 
Table 4.50: The main functionalities of the DAE and the four enhanced DAE models 

 

DAE Enhanced DAE 1 Enhanced DAE 2 Enhanced DAE 3 Enhanced DAE 4 

Contains 

gaussian noise 

in the input 

layer 

Contains jacobian 

gradient norm on the 

encoder layer along 

with gaussian noise 

in the input layer  

Contains iterative 

thresholding 

function on the 

encoder layer along 

with gaussian noise 

in the input layer 

Contains data 

pairwise similarity 

weight on the 

encoder layer along 

with gaussian noise 

in the input layer 

Contains 

approximated 

standard normal 

distribution with 

inference strategy on 

the encoder layer 

along with gaussian 

noise in the input 

layer  

Ensures partial 

regularization 

on the encoder 

layer to 

minimize the 

deviations 

during 

transformation 

and extract 

salient patterns 

Ensures complete 

regularization on the 

encoder layer along 

with gaussian noise 

in the input layer 

Ensures complete 

regularization on the 

encoder layer along 

with gaussian noise 

in the input layer 

Ensures complete 

regularization on the 

encoder layer along 

with gaussian noise 

in the input layer 

Ensures complete 

regularization on the 

encoder layer along 

with gaussian noise 

in the input layer 

Ensures partial 

robustness by 

partially 

corrupting the 

portion of input 

samples using 

gaussian noise 

Ensures complete 

robustness by 

minimizing the 

partial derivatives in 

removing the 

distortions along 

with gaussian noise 

Ensures complete 

robustness by 

sparsification of the 

weight matrix in 

removing the 

deviations along 

with gaussian noise 

Ensures complete 

robustness by taking 

the most weighted 

similar points in 

each cluster using 

the data pairwise 

similarity weight. 

Ensures complete 

robustness by taking 

the entire probability 

distribution of the 

input network traffic 

by enforcing the 

mean and variance to 

be the closer to the 

(standard normal) 

which is to be 

continuous in nature 

a 

Encodes 

discrete real 

latent vector 

which gives the 

partial 

continuous and 

completeness. 

Encodes discrete 

real latent vector 

which gives more 

than partial 

continuous and 

completeness 

Encodes discrete 

real latent vector 

which gives more 

than partial 

continuous and 

completeness 

Encodes discrete 

real latent vector 

which gives more 

than partial 

continuous and 

completeness 

Encodes continuous 

latent values (close 

to zero mean and 

unit variance to 

ensure full 

completeness and 

regularity. 
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4.5.1 Classification results against minority classes 

It is commonly known that the commonly used intrusion detection dataset is unbalanced where 

most of the samples are considered benign and only a minority of the samples are considered 

as an intrusion. 

 

          Tables (4.4, 4.6, 4.8, 4.10, 4.12) show the performance of our proposed schemes against 

different unbalanced classes of eight different datasets. Notice that the detection rate of our 

proposed schemes ranges from 93.33% to 99.98% which demonstrates the effectiveness of our 

proposed schemes to detect all classes including the minority classes. i.e. 99.94% for DoS, 

95.46% for MITM, 97.13% for Scan, 99.98% for Reconnaissance, 93.33% for Theft, 99.52% 

for  DoS Golden Eye, 99.73% for  DoS Slow Http Test, 99.64% for DoS Slow Loris, 96.35% 

for  Heartbleed, 99.14% for  Brute Force, 99.90% for  Port Scan, 98.95% for Ping Scan, 96.65% 

for Malware, 95.36% for Phishing, 97.70% for Spam, 93.79% for Tor, 97.12% for Attack.It is 

to be noticed that the enhanced hybrid model 4 achieves the higher detection rate for the 

minority category samples without any oversampling technique.  
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The bar graph that illustrates the detection rate of the minority classes for the benchmark 

datasets as shown in Figure 4.45. 

 

Figure 4.45:  The detection rate of the minority classes is shown in graphical bar 

 

The enhanced DAE models enhance the learning capacity of the model and are combined 

with LightGBM classifier to enhance the predictive capacity of the model. The combined 

efficiency of the two strategies (Enhanced DAE + LightGBM) are very sufficient to deal with 

the imbalanced nature of the datasets. The performance of our proposed schemes against 

unbalanced minority classes demonstrate the effectiveness of our model to detect all classes 

including any minority class. It is clear that our models are free from overfitting or underfitting 

issues and are not biased towards any classes and give optimal solution.  The proposal has 
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higher learning and predictive capacity that optimizes the generalization capacity of our IDS 

system.   

 

         The proposed models can be deployed in any industrial sector to ensure secure data 

transmission i.e. proper data security, whereas the network traffic of those are always mixed 

with perturbations, where the IDS models are confused by those perturbations, learnt and 

extract deviated patterns and make wrong predictions. The enhanced DAE which is highly 

robust to noise and corruptions can be applied to remove those distortions and deviations in the 

learnt patterns, i.e. structure by making the model clear in its learning and prediction task. 

Besides, the existing models are very slow in train the features (samples) and learn the network 

traffic, whereas the LightGBM, which is very much faster, lighter and efficient can be applied 

to train the security system to learn the network traffic and take corrective decisions. Moreover, 

the industrial network traffics are very high-dimensional, perturbated and imbalanced in nature, 

where the combined strategies are very much adoptable and reliable to any network traffic 

dimensions. 
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CHAPTER  5 

 

 

CONCLUSION AND FUTURE WORK 

 

 5.1 Conclusion 

The conventional IDS models are highly vulnerable to the distortions in the network traffic. To 

overcome this, we proposed an IDS consisting of DAE and LightGBM. The DAE, which is 

robust to the distortions are applied to remove the distortions by extracting the hidden features. 

The LightGBM, which is lighter and efficient are applied to classify the samples. Though the 

proposed base hybrid model obtained better detection rate, still there are deviations in the latent 

structure due to the hidden distortions in the network traffic. To remove the distortions and 

eliminate the deviations, the DAE is enhanced to be the enhanced DAE models. The four 

enhanced DAE models eliminated the deviations in the latent structure using its own unique 

mathematical algebraic properties. The patterns extracted from the enhanced DAE models are 

associated with LightGBM and form four enhanced hybrid models. The effectiveness of the 

proposed models is evaluated using the standard benchmark datasets. The combined strategy 

reduced the detection loss and increased the detection rate of our IDS system against all the 

eight benchmark datasets. More importantly, the proposed models have higher generalization 

capacity which can deal with the imbalanced nature of the high-dimensional network traffic by 

securing good DR for the minority class samples without any oversampling technique. The 

proposed models can be deployed as real time models for any industrial network traffic.  
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5.2   Future work 

The evaluation datasets are in structured type i.e. in CSV format. Our proposed models 

combining enhanced DAE and LightGBM work very well on structured data types. In future 

any unstructured cybersecurity datasets can be used, if any, to evaluate the performance and 

efficiency of the models and see how the models react with those data types. The unstructured 

data types such as temporal and sequential formats can be explored in future.  At present, dense 

connected network layered architecture is used to design and evaluate our IDS models. In order 

to support unstructured data types, different architectures such as recurrent and convolution 

network layers can be used to design and explore our models as our future work. DAE is an 

enhancement over AE by the insertion of gaussian noise in the input layer of the AE. Enhanced 

DAE is an enhancement over DAE by the insertion of proposed additional novel regularization 

strategies on the encoder activation of the DAE. The future work can be done to see if any 

additional regularization strategies can be used and added in the decoder activation of our 

enhanced DAE to further reduce the reconstruction cost and make it the most enhanced version 

and more and more number of updated, modern, real world network traffic category datasets 

can be used to evaluate our proposed models. 
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APPENDIX 

 

FEATURES OF THE DATASETS 

 

CIC-IDS-2017 

The features of the CICIDS dataset are listed in the below table 

Features Features Features 

Destination Port Flow Duration Total Fwd Packets 

Total Backward Packets Total Length of Fwd Packets Total Length of Bwd Packets 

Fwd Packet Length Max Fwd Packet Length Min Fwd Packet Length Mean 

Fwd Packet Length Std Bwd Packet Length Max Bwd Packet Length Min 

BwdPacketLength Mean Bwd Packet Length Std Flow Bytes/s 

Flow Packets/s Flow IAT Mean Flow IAT Std 

Flow IAT Max Flow IAT Min Fwd IAT Total 

Fwd IAT Mean Fwd IAT Std Fwd IAT Max 

Fwd IAT Min Bwd IAT Total Bwd IAT Mean 

Bwd IAT Std Bwd IAT Max Bwd IAT Min 

Fwd PSH Flags Bwd PSH Flags Fwd URG Flags 

Bwd URG Flags Fwd Header Length Bwd Header Length 

Fwd Packets/s Bwd Packets/s Min Packet Length 

Max Packet Length Packet Length Mean Packet Length Std 

Packet Length Variance FIN Flag Count SYN Flag Count 

RST Flag Count PSH Flag Count ACK Flag Count 

URG Flag Count CWE Flag Count ECE Flag Count 

Down/Up Ratio Average Packet Size Avg Fwd Segment Size 

Avg Bwd Segment Size Fwd Header Length2 Fwd Avg Bytes/Bulk 

Fwd Avg Packets/Bulk Fwd Avg Bulk Rate Bwd Avg Bytes/Bulk 

Bwd Avg Packets/Bulk Bwd Avg Bulk Rate Subflow Fwd Packets 

Subflow Fwd Bytes Subflow Bwd Packets Subflow Bwd Bytes 

Init_Win_bytes_forward Init_Win_bytes_backward act_data_pkt_fwd 

min_seg_size_forward Active Mean Active Std 

Active Max Active Min Idle Mean 

Idle Std Idle Max Idle Min 

Label   

                                                                    

Features of CIC-IDS2017 
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ISCX-TOR 2016 

The following table lists the features of the dataset, which are all numerical features, except 

the features, Source IP and Destination IP, that both are nominal 

 

 

 

 

                                                                   

                                                          
Features of ISCX-Tor 2016 

 

 

                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features Features Features Features 

Source IP Source Port Destination IP Destination Port 

Protocol Flow Duration Flow Bytes/s Flow Packets/s 

Flow IAT Mean Flow IAT Std Flow IAT Max Flow IAT Min 

Fwd IAT Mean Fwd IAT Std Fwd IAT Max Fwd IAT Min 

Bwd IAT Mean Bwd IAT Std Bwd IAT Max Bwd IAT Min 

Active Mean Active Std Active Max Active Min 

Idle Mean Idle Std Idle Max Idle Min 

Label    
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UNSW-NB15 

The features of the UNSW-NB 15 dataset are given in following table 

                                                                 
Features of UNSW-NB 15 

 

 

 

 

 

                                                              

 

 

 

 

 

 

 

 

 

 

Features Datatype Features Datatype Features Datatype 

srcip   nominal sport integer dstip nominal 

dsport                                          integer proto nominal state nominal 

dur float sbytes Integer dbytes integer 

sttl integer dttl Integer sloss integer 

dloss integer service nominal sload float 

dload float Spkts integer dpkts integer 

swin integer dwin integer stcpb integer 

dtcpb integer smeansz integer dmeansz integer 

trans_depth integer res_bdy_len integer sjit float 

djit float Stime Timestamp ltime timestamp 

Sintpkt float dintpkt Float tcprtt float 

synack float ackdat Float is_sm_ips binary 

ct_state_ttl integer ct_flw_http_mthd Integer is_ftp_login binary 

ct_ftp_cmd integer ct_srv_src integer ct_srv_dst integer 

ct_dst_ltm integer ct_src_ ltm integer ct_src_dport_ltm integer 

ct_dst_sport_ltm integer ct_dst_src_ltm integer label  
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CIDDS  

The following table gives an overview of the attributes in the CIDDS- datasets (i.e. CIDDS-001 and 

002)  

 

 

 

 

 

                                                                  

                                                                   

Features of CIDDS datasets 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Features Data Type Features Data Type 

Src IP Nominal Src Port Numeric 

Dest IP Nominal Dest Port  Numeric 

Proto Nominal Date first seen Nominal 

Duration Numeric Bytes Nominal 

Packets Numeric Flags Nominal 

Class Nominal AttackType- label Nominal 

AttackID Nominal AttackDescription Nominal 
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ISCX-URL2016 

The following table shows the 80 numerical features of the ISCX-URL-2016 

                                                             

                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 
Features of ISCX-URL2016 

                                                    

 

 

 

 

 

 

 

Features  Features Features 

Querylength domain_token_count path_token_count 

avgdomaintokenlen longdomaintokenlen avgpathtokenlen 

tld charcompvowels charcompace 

ldl_url ldl_domain ldl_path 

ldl_filename ldl_getArg dld_url 

dld_domain dld_path dld_filename 

dld_getArg urlLen domainlength 

pathLength subDirLen fileNameLen 

this.fileExtLen ArgLen pathurlRatio 

ArgUrlRatio argDomanRatio domainUrlRatio 

pathDomainRatio argPathRatio executable 

isPortEighty NumberofDotsinURL ISIpAddressInDomainName 

CharacterContinuityRate LongestVariableValue URL_DigitCount 

host_DigitCount Directory_DigitCount File_name_DigitCount 

Extension_DigitCount Query_DigitCount URL_Letter_Count 

host_letter_count Directory_LetterCount Filename_LetterCount 

Extension_LetterCount Query_LetterCount LongestPathTokenLength 

Domain_LongestWordLength Path_LongestWordLength sub-Directory_Longest 

WordLength 

Arguments_LongestWord 

Length 

URL_sensitiveWord URLQueries_variable 

spcharUrl delimeter_Domain delimeter_path 

delimeter_Count NumberRate_URL NumberRate_Domain 

NumberRate_DirectoryName NumberRate_FileName NumberRate_Extension 

NumberRate_AfterPath SymbolCount_URL SymbolCount_Domain 

SymbolCount_Directoryname SymbolCount_FileName 

 

SymbolCount_Extension 

SymbolCount_Afterpath Entropy_URL Entropy_Domain 

Entropy_DirectoryName Entropy_Filename Entropy_Extension 

Entropy_Afterpath URL_Type_obf_Type    
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BoT-IoT 

The features of the BoT-IoT dataset are given in table below. There are 36 numerical and 7 

categorical features 

 

 

  

 

 

                                                                  

 

 

 

 

 

 

 

Features of BoT-IoT dataset 

 

 

  

 

 

 

 

 

 

 

 

Features Datatype Features Datatype 

 pkSeqID numeric  Stime numeric 

 Flgs nominal  flgs_number numeric 

 Proto numeric  proto_number nominal 

 Saddr nominal  Sport nominal 

 daddr nominal  Dport nominal 

 Pkts numeric  Bytes numeric 

 State nominal  state_number numeric 

 Ltime numeric  Seq numeric 

 Dur numeric  Mean numeric 

 Stddev numeric  Sum numeric 

Min numeric  Max numeric 

 Spkts numeric  Dpkts numeric 

 Sbytes numeric  Dbytes numeric 

 Rate numeric  Srate numeric 

 Drate numeric  TnBPSrcIP numeric 

 TnBPDstIP numeric  TnP_PSrcIP numeric 

 TnP_PDstIP numeric  TnP_PerProto numeric 

 TnP_Per_Dport numeric  AR_P_Proto_P_SrcIP numeric 

 AR_P_Proto_P_DstIP numeric  N_IN_Conn_P_DstIP numeric 

 N_IN_Conn_P_SrcIP numeric  AR_P_Proto_P_Sport numeric 

 AR_P_Proto_P_Dport numeric  Pkts_P_State_P_Protocol_

P_DestIP 

numeric 

 Pkts_P_State_P_Protocol

_P_SrcIP 

numeric  Category  Class Label 
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IoTID-2020 

The following table shows the 80 numerical features of the IoTID2020 dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features of IoTID dataset 

 

 

 

 

Features Features Features 

Src_Port Dst_Port Protocol 

Flow_Duration Tot_Fwd_Pkts Tot_Bwd_Pkts 

TotLen_Fwd_Pkts TotLen_Bwd_Pkts Fwd_Pkt_Len_Max 

Fwd_Pkt_Len_Min Fwd_Pkt_Len_Mean Fwd_Pkt_Len_Std 

Bwd_Pkt_Len_Max Bwd_Pkt_Len_Min Bwd_Pkt_Len_Mean 

Bwd_Pkt_Len_St Flow_Byts/s Flow_Pkts/s 

Flow_IAT_Mean Flow_IAT_Std Flow_IAT_Max 

Flow_IAT_Min Fwd_IAT_Tot Fwd_IAT_Mean 

Bwd_IAT_Mean Fwd_IAT_Max Fwd_IAT_Min 

Bwd_IAT_Tot Bwd_IAT_Mean Bwd_IAT_Std 

Bwd_IAT_Max Bwd_IAT_Min Fwd_PSH_Flag 

Bwd_PSH_Flags Fwd_URG_Flags Bwd_URG_Flags 

Fwd_Header_Len Bwd_Header_Len Fwd_Pkts/s 

Bwd_Pkts/s Pkt_Len_Min Pkt_Len_Max 

Pkt_Len_Mean Pkt_Len_Std Pkt_Len_Var 

FIN_Flag_Cnt SYN_Flag_Cnt RST_Flag_Cnt 

PSH_Flag_Cnt ACK_Flag_Cnt URG_Flag_Cnt 

CWE_Flag_Count ECE_Flag_Cnt Down/Up_Ratio 

Pkt_Size_Avg Fwd_Seg_Size_Avg Bwd_Seg_Size_Avg 

Fwd_Byts/b_Avg Fwd_Pkts/b_Avg Fwd_Blk_Rate_Avg 

Bwd_Byts/b_Avg Bwd_Pkts/b_Avg Bwd_Blk_Rate_Avg 

Subflow_Fwd_Pkts Subflow_Fwd_Byts Subflow_Bwd_Pkts 

Subflow_Bwd_Byts Init_Fwd_Win_Byts Init_Bwd_Win_Byts 

Fwd_Act_Data_Pkts Fwd_Seg_Size_Min Active_Mean 

Active_Std Active_Max Active_Min 

Idle_Mean Idle_Std Idle_Max 

Idle_Min Cat -Label  




