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ABSTRACT 

 

 

This research study is in the field of deep reinforcement learning 

(DRL) adaptive controllers. The developed DRL controller is an off-policy, 

model-free agent based on the Q-learning algorithm. The research aims to 

address several issues found in the existing DRL work direction. Issues related 

to the ability of the DRL agent to mitigate signal operation under various 

traffic flow conditions, the extension of the model environment in the 

development process of the DRL agent, the under-representation and 

simplification of traffic dynamics, the utilisation of futuristic communication 

technology, and the ability of the DRL system to mitigate signalised junctions 

in an arterial network are pressing challenges for intelligent signal systems. An 

innovative control strategy is proposed to make the single system design 

efficient for global optimisation at network-level operation. The introduced 

downstream policy adapts the signal operation to the available capacity at 

discharge routes. An illustrative case study tests and evaluates the proposed 

control system. The micro-model simulated stochastic and dynamic traffic 

elements to represent the actual traffic. The rigorous tests showed that the 

proposed controller achieved the closest optimal flow condition at 0.80 for the 

network operation and outperformed other controllers in reducing waiting time 

costs (10%-36%), improving travel time experiences (5%−25%), and 

constituting the highest mean travel speed (3.4 m/s). 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

Traffic light signals are signalised devices positioned at road 

intersections to manage traffic flows. Traffic signal operation is a unique 

endeavour that falls within traffic management. The exponential growth in 

urban traffic count has caused traffic management to become more complex. 

As the investment option to expand the road infrastructure is not socially 

feasible (Balaji et al., 2010) and is restricted to financial capacity and space 

availability (Vidali et al., 2019), congestion continues to grow. This urban 

traffic congestion adversely impacts society, the economy, and the 

environment (Ali et al., 2021). Therefore, it is of paramount importance to 

optimise the existing road network using signal control systems. 

 

Traffic control systems have experienced tremendous development in 

control strategies in the past 100 years. Three (3) major traffic light control 

generations include fixed time, actuated and adaptive control systems. Fixed 

time or pre-timed control systems are designed based on historical data to 

create rigid timing plans stored in a control unit's time clock. Since the 

development of the pre-timed controller in the early 1900s, it has widely 

spread and is still commonly used today. The fixed controller is simple in 
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design and cost-efficient; nonetheless, the system fails to accommodate the 

stochastic nature of traffic and responds to uncertainty in traffic conditions. 

The system assumes constant traffic flows and cannot deal with disruption and 

unaccounted fluctuation. 

 

The limitations of fixed systems paved the way for the second 

generation of controllers, namely actuated traffic signals, in the late 1920s 

(Gordon and Tighe, 2005). The actuated controllers rely on real-time data 

from on-site installed sensors such as pressure detectors, loop detectors, radar, 

and video visuals to make control decisions. The control decisions are related 

to phase calling, green extension, gap out, and max out decisions (Feng et al. 

2015). The responsive system works well for isolated intersections; 

nonetheless, the actuated logic performance fails at low-speed saturated 

intersections such as congested grid intersections. Besides that, any control 

decision made by the actuated controller will occur in the following signal 

phase, causing a delayed response for past events. 

 

In order to close the gap between the present traffic needs and signal 

operation, adaptive controllers emerged. The advantage of the adaptive 

controller is that it can forecast the traffic condition and act accordingly to 

address the need in the future. The developments of microprocessors in the 

1960s revolutionised the aspect of controllers by making them more decision-

makers (Gordon and Tighe, 2005). The adaptive controller does not require an 

exact cycle length, in contrast with the actuated control system (Gordon and 
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Tighe, 2005). The adaptive controller requires minimal expert intervention to 

adjust the phase timing compared to the fixed controller. 

 

Meanwhile, adaptive strategy adheres to challenging theories such as 

traffic flow and stochastic traffic environment, as the system does not require 

a complete understanding of its surrounding. Overall, the third generation of 

signal controllers has the potential to achieve higher time-saving on roads, 

lower human intervention, and faster adaptation to the stochastic nature of 

traffic behaviour. Table 1.1 presents a summary of the traffic signal 

controllers. 

 

Table 1.1: Traffic signal control generations (modified from 

Gordon and Tighe, 2005) 

Type of 

Controller 
Introduction 

Traffic Environment 
Limitation 

Isolated Arterial Grid 

Pre-timed 1900s 
Not 

appropriate 

Appropriate 

[requirement: 

coordination & 

traffic flow 

hierarchy] 

Appropriate 

Assumption of 

constant traffic 

flow 

Actuated 1920s Appropriate 

Appropriate 

[requirement: 

coordination, 

high-speed traffic 

flow, detectors 

setting >40m] 

Not 

appropriate 
Delayed response 

Adaptive 1960s Effective# 

Representation of 

environment 

Complex design 

#Experimental tests indicate that the system can work in a grid environment  

 

In the past two decades, adaptive controllers have been widely 

researched and examined. Many theories are proposed and studied, but the 

implementation and deployment of third-generation controllers are still limited 
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and restricted. There are a few issues facing the deployment of adaptive 

systems, including control strategy and infrastructure readiness. By far, no 

adaptive research has focused on proposing an innovative control strategy. 

The present research direction implements a responsive strategy to address 

traffic operations. Such a focus area eventually forces the system developers to 

rely on an accurate representation of the environment. Their responsive 

systems fail to address the intersection capacity and utilisation of available 

road spacing to control the traffic flow.  

 

There are various algorithms used to construct adaptive controllers. 

However, among all the adaptive signal controllers using ML and AI 

techniques, reinforcement learning (RL) is nominated as the favourable 

method for architecting the adaptive signal controller (Ma et al., 2016). This 

class of ML has the capacity for self-learning to extrapolate correct actions in 

an interactive problem. The interactive problem is a form of environment 

where the appropriate behaviour for every condition is usually impractical to 

be constituted entirely (Sutton and Barto, 2018). This category of problem is 

found in traffic movement. Besides that, this characteristic differentiates RL 

from supervised learning. The latter method is limited to expert knowledge. 

Furthermore, unlike unsupervised learning, RL utilises learning (trial and 

error) based on a reward signal to treat the problem. 

 

Many researchers have proposed systems that assume connected 

vehicle technology to access the road environment. There are two (2) 

drawbacks to this assumption. First, roads and vehicles are yet to be equipped 
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with such technology. Second, the investment in these technologies is proven 

expensive. It will require intervention and collaboration among different 

parties. Therefore, implementing connected vehicles is expensive, and the 

preference in practice is given to traffic light systems based on information 

from existing deployed infrastructure (Jin, 2018). On the other hand, other 

researchers have looked into developing adaptive systems based on the status 

quo of present infrastructure detection devices and vehicles on the road.  

 

As traffic congestion is today’s problem, the focus of this research is to 

contribute to developing a deep reinforcement learning (DRL) controller 

system based on available detection devices rather than a futuristic assumption 

in the form of connected vehicle communication. The utilisation of present 

detection technology is important to make the intelligent system practical and 

applicable for deployment. In addition, we introduce a new traffic control 

strategy for signal operation. The control technique enhances the capability of 

the DRL controller to adapt to traffic dynamics and utilise available capacity 

to optimise signal operation.  

 

1.2 Problem Statement 

 

Despite the fruitful developments of models and solution techniques in 

adaptive traffic signal control, some significant limitations in this thesis have 

been examined and tackled to add a genuine and practical contribution to the 

field of traffic engineering. These limitations are addressed in the following 

points.  
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1. Environment Setting and Evaluation: The simplicity of 

studied intersections in researching the adaptive controller. 

Simple geometrical layouts of junctions. Traffic flows are 

constant, low, and have a hierarchy. Uncontrolled turning 

movements are not enclosed. Short-time plan and fixed-phase 

design. Uniform behaviour of road users. As traffic 

environment stochasticity is under-represented accurately, the 

valuation of DRL controllers in mitigating traffic flows remains 

in question. 

2. Controller Design and Communication Protocol: The 

current DRL system designs rely heavily on accurately 

representing the environment. The efficiency of the DRL 

controller drops whenever the communication channel delivers 

partial observation. In this context, studies have constantly 

reported that the DRL agent has either performed equivalently 

to conventional systems (i.e., fixed and actuated signal 

controllers) or even worse. Hence, developing an efficient 

agent using only boundary-based observations within the 

intersection level is yet to be achieved.  

3. Traffic Control Strategy: Though DRL agents are intelligent 

systems, they rely on reward signals to guide their decisions. 

The reward, in this case, is the traffic control strategy. Current 

researchers utilise responsive strategies related to vehicle 

features. The extracted features have a little advantage as they 

serve particular instances under certain traffic conditions (e.g., 
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low demand and hierarchal directional flow). Studies have 

reported that the efficiency of DRL control drops as the traffic 

environment experiences unstable conditions. Hence, there is 

an urgent need to develop traffic control techniques to advance 

the DRL application. 

 

Collectively, the current limitations question the scalability of the 

DRL signal logic for real-world applications.  

 

1.3 Research Questions 

 

Based on the current development in the field of adaptive controllers, 

the following questions are relevant to the context of the limitations addressed 

in this thesis. 

1. What is the extension of the environment model on the agent’s 

performance? 

2. Can the deep learning agent compete against other signal 

system techniques if detection zones are restricted? 

3. How to develop a single agent system that is efficient for 

network operation? 

4. What is a comprehensive traffic control strategy for different 

environmental settings in relation to mixed modes of vehicular 

flow, geometric configuration, and intersection design? 

 



8 

1.4 Research Objectives 

 

This research aims to develop an adaptive signal controller system 

using a deep reinforcement learning (DRL) approach. The controller's design 

must consider the practical aspects of development and current infrastructure 

readiness. This core goal is divided into a number of objectives, including:  

1. To develop a deep Q-learning controller agent for stochastic 

traffic conditions.  

2. To design an adaptive controller agent based on existing 

communication technology and a defined detection zone.  

3. To test the application of a single agent system and its 

efficiency in a traffic network operation context.  

4. To measure the effectiveness of traffic control policies for 

network-wide adaptive signal systems. 

 

1.5 Scope of the Research  

 

The study aims to develop an adaptive traffic control system capable of 

operating at different levels of road intersections. At the most superficial level 

of the network is to optimise a single isolated intersection. A more complex 

road structure of connected intersections to form an arterial road network is 

researched at the second level. The information inputs are based on real-time 

traffic data from the studied road junctions. The experimental setting is based 

on actual network configuration, where calibration and validation procedures 

are emphasized to accurately replicate driving and traffic conditions. The 
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replicated conditions are road geometry, junction configuration, time plan, 

traffic composition, and driver’s behaviour. Stating that all the experimental 

analyses are carried out in a simulation environment. Testing the developed 

software in a non-model environment is not part of this research due to the 

associated implications and restrictions of deploying experimental systems in 

actual life conditions.  

 

As the study is carried out in a model environment, it is assumed that 

built-in infrastructure detectors are available on-site. Though this assumption 

might conflict with the real traffic environment, it is also believed that 

acquiring and installing detection devices is attainable in real-world 

applications. In this research study, detection devices are lanearea and loop 

detectors. These hardware devices are commonly and widely used in signal 

operation.  

 

1.6 Outline of the Thesis 

 

Besides the introduction chapter herein, the remainder of the thesis is 

divided into seven (7) chapters, including (i) Literature Review, (ii) System 

Features and Control Policy, (iii) Methodology, (iv) Results and Discussion, 

(v) Conclusion, (vi) List of References, and (vii) Appendices. 

 

In the Literature Review (Chapter 2), an extensive review was carried 

out for the adaptive control studies and the more recent developments in the 

area of interest, i.e., deep reinforcement learning. Chapter 3 (System Features 
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and Control Policy) presents the technique and system features for the 

proposed signal logic. Chapter 4 (Methodology) details the procedure in terms 

of data collection, micro-model development, control strategy design, deep 

reinforcement logic and training, and comparative control systems and 

evaluation environments. Chapter 5 (Results and Discussion) reports the 

associated outputs of the proposed control logic and compares the findings 

against other comparative systems. Chapter 6 (Conclusion) summarises the 

thesis work and recommends future work direction. Chapter 7 (List of 

References) lists the research works that are cited in this thesis. Chapters 8 to 

11 (Appendices) are needed to provide a separate discussion and details in 

relation to the methodology chapter. Appendix E contains the student’s 

biography and list of publications.  

 

  



11 

CHAPTER 2 

 

LITERATURE REVIEW 

 

 

The literature review contains studies on the aspect of adaptive 

controller generation. Nearly 60 studies were carefully selected for this 

review. The intelligent controller systems are categorised based on (i) design 

(Section 2.2), (ii) communication protocol (Section 2.3), (iii) optimisation 

technique (Section 2.4), and (iv) algorithmic approach (Section 2.5). At the 

end of each section, a discussion is presented to point out specific challenges 

within a class. Section 2.6 assesses common challenges and limitations of 

current adaptive controller studies. Unlike the specific challenges, the joint 

review intends to connect topics across the different classes of adaptive 

programmes. In Section 2.7, prominent deep reinforcement learning (DRL) 

studies are categorised and detailed based on five (5) DRL architectures. The 

current limitations of DRL research are extended in Section 2.8. 

 

2.1 Adaptive Traffic Light Signal Controller  

 

The adaptive controller can close the gap between near-future needs 

and signal operation. This feature distances the adaptive controller from the 

earliest forms of controllers (fixed and actuated systems). Adaptive controllers 

have been widely researched and examined in the past two decades. The 

following sub-sections categorise adaptive signal systems based on system 
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design for signal operation, physical communication channels, traffic control 

strategies, and algorithm techniques. Figure 2.1 presents the categorization of 

adaptive controllers in this literature review study. 

 

 

Figure 2.1: Categories of adaptive traffic light control 

 

2.2 Classification Based on Traffic Light Signal Operations 

 

Traffic signal operation is a unique endeavour that falls within traffic 

management. The impacts of signal operations are usually underestimated, 

despite the improved technology. An urban road network's capacity can be 

increased by using traffic signal controllers (Abdoos et al., 2013; McKenney 

and White, 2013). Adaptive control systems consider measured and predicted 

traffic data input variables to utilise infrastructure capacity. The gathered data 

are treated and processed to achieve local and global optimisations.  
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Local optimisation is a decentralised controller technique where the 

agent acts independently (in solo) to acquire the best performance at the 

intersection level. These systems can adapt to the demand at the intersection 

level and typically have simple logic. These logics do not require interference 

with neighbouring intersections (Płaczek, 2014). In addition, these single-

system designs have primarily focused on flow theory and proposed solutions 

regarding scheduling departures at intersections and capacity allocation. 

 

In contrast, global optimisation is a centralised controller technique 

where the executed action is placed after considering the network input. The 

multi-agent system assigns a single agent to each intersection, allowing agents 

to ‘tutor’ each other to decide on optimal plans for small areas (McKenney 

and White, 2013). The centralised approach makes NP-hard a problem, which 

can lead to high computational complexity for real-time deployment (Płaczek, 

2014). The control policies of multi-agent systems focus on vehicle 

progression, limiting the system’s efficiency by relying on complete 

observation of the traffic environment. 

 

2.2.1 Local Control System Design 

 

Varaiya (2019) proposed an adaptive maximum pressure (AMP) to 

control a traffic signal. The AMP policy is based on the product of weighted 

queue length and corresponding saturation flow for each phase. The control 

algorithm intends to maximise the throughput at the intersection level. The 

major limitation of the proposed policy is that it assumes infinite storage 
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capacity in each lane and does not consider a ‘de facto red’ movement where 

finite queues are observed or when shared movements are within the same 

lane. The AMP is a greedy algorithm that leads to a locally optimal solution 

(Wei et al., 2019). 

 

Hao et al. (2018) designed an online local model predictive controller 

(LMPC) using Urban Cell Transmission Model (UCTM) system feedback for 

traffic density. The LMPC agent forecasts the local delay and decides on the 

switching time to minimise the delay for all vehicles over a prediction horizon 

of a few minutes. The LMPC system was compared against the max-pressure 

and pre-timed controllers. The findings showed that LMPC performed best in 

heavy traffic conditions and recorded the least cumulative delay. In terms of 

outflow, all systems had similar output. On the other hand, the proposed 

controller's performance deteriorated with inaccurate traffic condition 

prediction. 

 

Tiaprasert et al. (2015) formulated a queue-based adaptive control 

system. The proposed system relies on connected vehicle communication to 

estimate the queue length. The proposed model does not require signal timing, 

traffic volume, or queue characteristics as inputs. A discrete wavelet transform 

(DWT) was utilised to improve the steadiness of queue estimation regardless 

of the penetration ratio. The proposed method was implemented without 

assuming a time plan or a specific arrival distribution. The micro-simulation 

results indicated that the DWT is able of estimating queue length for various 
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flow conditions (under-saturated and saturated). Therefore, DWT could 

enhance the performance of an adaptive traffic control system. 

 

Gregoire et al. (2014) studied back-pressure control based on queue 

capacity (BPC). The system's goal is to normalise pressure across all queues 

and allow high upstream pressure to flow to low downstream pressure. The 

normalisation procedure is expected to decrease the blocking probability. The 

authors utilised downstream capacity to regulate traffic flow from upstream. 

For testing, the authors simulated an isolated intersection with four (4) flow 

scenarios. The results showed that the BPC system had the least average travel 

time in the high traffic flow condition compared to the back-pressure 

(Wongpiromsarn, 2012) and fixed systems. As in other back-pressure systems, 

BPC suffers from the “last packet problem” (Ji et al., 2012). A vehicle may be 

starved for a long time if other routes have more considerable queue lengths.  

 

Goh et al. (2012) proposed an online map-matching algorithm based 

on the Hidden Markov Model (HMM). The study focused on two (2) 

improvements over existing HMM-based algorithms, including (1) the use of 

the variable sliding window (VSW) method to guarantee quality solutions 

under uncertain future inputs and (2) the novel combination of spatial, 

temporal, and topological information using machine learning. The study 

evaluated the accuracy of the algorithm using field test data. The results 

indicated that the VSW outperformed the traditional localising method in 

terms of both accuracy and output delay. Moreover, the results suggest that 

VSW is viable for low-latency applications such as traffic sensing. 
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2.2.2 Global Control System Design 

 

Wang et al. (2020) proposed an arterial coordinated real-time adaptive 

control model. The method aims to move vehicle platoons along an arterial 

road with the least signal delay and higher throughput. The system develops a 

joint control to optimise the speed of connected vehicles and coordinate 

signals along the arterial simultaneously. The cooperative controller manages 

a phase length duration to run the vehicle platoon. The authors tested the 

system in a traffic model comprising five (5) signalled intersections. The 

MAXBAND algorithm was tested against the proposed model. The results 

showed that the proposed joint controller reduced the number of stops by 

53.69% and the stops of coordinated signals by 41.15%. The study assumed a 

100% fully connected vehicle environment.  

 

Darmoul et al. (2017) proposed an immune network algorithm based 

multi-agent (INAMAS) for an adaptive control system. The heterarchical 

architecture assigned one (1) agent to each signalled intersection. Each agent 

communicates and coordinates with neighbouring agents to share experiences 

and adapt to road disturbances. The authors limit the communication to only 

two (2) agents (neighbours). To demonstrate the efficiency of the INAMAS, 

the authors tested the system in various scenarios of traffic conditions for three 

(3) and six (6) signalled intersections models. The INAMAS outperformed 

comparative systems: fixed and longest-queue-first-maximal weight-matching 

(LQF-MWM) algorithms in terms of average total delay and average queue 

length. 
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Liu et al. (2017) presented a dynamic clustering algorithm for 

cooperative reinforcement agent (CRLFA). The clustering algorithm is based 

on enhanced affinity propagation to ensure stability. A fast gradient-descent 

function approximation is utilised to seek optimal policy and mitigate the 

curse of dimensionality associated with reinforcement learning. The system is 

tested in a model network environment and compared against three (3) 

controllers: fixed timing, longest-queue-first algorithm (LQFA) and classical 

reinforcement learning (RL). The results indicated that the proposed method 

surpassed the traditional adaptive signal control method in improving 

throughput, reducing waiting time, and avoiding traffic congestion. 

 

Kari et al. (2014) presented an online agent-based adaptive traffic 

signal control based on queue length (ATSC). The proposed methodology 

considers two (2) agents at an intersection, including (1) vehicle agent (VA); 

responsible for communicating real-time vehicle data, and (2) intersection 

management agent (IMA); undertakes to communicate with all VA within a 

communication radius to determine the optimal signal timing. The authors 

tested the system in a single isolated intersection with two (3) traffic flow 

scenarios (constant and varied). The results indicated that the system achieved 

moderate savings of 5% to 14% in reducing travel time and 0% to 5% savings 

in fuel consumption for the constant demand scenario. The system scored 

significant travel time and fuel consumption savings in varied demand 

scenarios at 61% and 32%, respectively. 
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Xiang and Chen (2016) presented a novel multi-agent control method 

for an integrated network of adaptive traffic signal controllers in a vehicle-to-

intersection (V2I) communication environment. The system has two (2) 

innovations: (i) the utilisation of the Gauss model for parallel processing; and 

(ii) the provision of co-learning to recommend the shortest time path. The 

intersection is treated as an agent. Further, the agents interacted with the 

environment by trying out actions and using the resulting feedback to 

reinforce behaviour for the desired outcome. The simulation results showed 

that measured vehicular attributes (travel time, delay, and queue length) under 

the proposed signal system were reduced significantly compared to the 

traditional traffic signal. The limitation is that the system assumes a Markov 

decision process to model an agent's intersection with its own environment. 

 

2.2.3 Review of System Design 

 

The increasing demand for mobility in the 21st century poses a 

challenge in dealing with traffic and transportation systems. Therefore, 

efficient management tools and techniques are required to deal with urban 

traffic in terms of control, optimised use of existing infrastructure, efficient 

assignment of the demand, and so on (Bazzan and Klügl, 2014). The system 

functionality is designed to achieve a local optimisation at the intersection 

level or a global optimisation at the network level. Global optimisation is 

approached using multi-agent systems. The review highlighted two (2) 

standard techniques for multi-agent controllers: centralised control and 

coordinated control.  
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The centralised control is a hierarchical multi-agent. In the first level, 

agents representing intersections (low level) are responsible for sending traffic 

state to a higher level. The highest level is the coordinator agent, which 

provides optimal local signal plans after evaluating all network traffic states 

from low-level agents. Such centralised design ultimately leads to crippling 

the operation due to the exponential amount of information and variables that 

require the attention of the centre agent. This limitation is not addressed 

clearly, and how to practically implement this system mechanism in mitigating 

a large-scale real traffic network is not answered yet.  

 

In order to provide flexibility and robustness, some studies favoured 

the coordination approach for global optimisation. The coordination 

framework allows agents to exploit known configurations (local call) and 

simultaneously explore action combinations (with neighbouring intersections) 

to attempt better gains. The coordination is often restricted to adjacent 

intersections only to reduce messages and computational resources. The 

coordinated controllers do not seem to produce a concrete solution for 

conflicting optimisation. This is a case where the neighbours' request is 

incompatible with the local agent’s action to solve its local optimisation 

problem (Bazzan and Klügl, 2014).  

 

Studies carrying out a comparison between local and global control 

techniques are rare. Among these rare findings is Brys et al. (2014), who 

presented two controllers: coordinated DCEE and RL-SARSA controllers. The 

authors stated that coordination among agents is not necessarily beneficial; 
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SARSA (single control) surpassed DCEE (multi-agent control). Unlike global 

optimisation, the local approach is more straightforward and can be deployed 

in an extensive scale network. The following Table 2.1 presents a summary 

based on system design methods. 

Table 2.1: Classification of adaptive control studies based on 

system design 

System Design Adaptive Traffic Control Study 

Local Control 

(Single Agent) 

Varaiya (2019), Wang et al. (2019), Yao et al. (2020), Hnaif et al (2019), 

Deligkas et al. (2018), Hao et al. (2018), Gao et al. (2017), Zaidi et al. (2016), 

Tiaprasert et al. (2015), Płaczek (2014), Gregoire et al. (2014), 

Wongpiromsarn et al. (2012), Putha et al. (2012) 

Global Control 

(Multi-agent) 

Galvan-Correa et al. (2020), Rasheed et al. (2020), Tan et al. (2019), Li et al. 

(2018), Zhou et al. (2017), Darmoul et al. (2017), Ma et al. (2016), Mannion 

et al. (2015), Kari et al. (2014), Khamis and Gomaa (2014), Smith et al. 

(2013), He at al. (2012) 

 

2.3 Classification Based on Physical Communication Channel 

 

An intersection contains hardware devices to gather local traffic 

statistics. The adaptive control system's quality depends on the available on-

road vehicle data. The ratio of the input data known to the adaptive control 

system is known as the penetration rate (Priemer and Friedrich, 2009). Vehicle 

data such as speed, location, flow, density, and number of vehicles within road 

infrastructure are vital for the control strategy. Two (2) sources for vehicular 

information include infrastructure built-in detection devices and wireless 

communication channels. 

2.3.1 Wired Communication Channel based Adaptive Controller 

 

Some of the designed adaptive controllers rely on utilising existing 

infrastructure sensors. Sensors such as in-pavement, video-based loop, and 
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micro-wave detectors are standard methods to collect data for system 

controllers. The advantage of this assumption in developing a control system 

is that little investment is required to improve road infrastructure. On the other 

hand, these data input devices can only provide instantaneous vehicle 

information such as location, speed, and acceleration (Feng et al., 2015). This 

limitation deteriorates the effectiveness of the adaptive system, which requires 

extensive data input in the absence of a forecasting technique for vehicle 

attributes.  

 

Hnaif et al, (2019) proposed an intelligent road traffic management 

system based on a human community genetic algorithm (IRTMS). The 

IRTMS system is built on the number of vehicles obtained at the intersection 

level using an infrared sensor. The proposed intelligent controller aims to 

optimise vehicle variables, including speed, density, and traffic volume, via 

communicating with neighbouring junctions to obtain a data feed. The authors 

reported that the IRTMS system had the minimum waiting time and total time 

compared to the current conventional system.  

 

Deligkas et al. (2018) designed a schedule-driven adaptive traffic 

controller based on the value of time (VoT). The heuristic forward search 

algorithm intends to minimise the total time cost for cars waiting at an 

intersection. The authors tested the system in two (2) configurations of cross-

intersection (simple and complex). The authors compared the proposed 

controller against a dynamic programming approach. The results showed that 
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the VoT policy is a better optimisation technique than flow attributes in 

asymmetric traffic situations. 

 

Płaczek (2014) introduced a self-organizing traffic light (SOTL) 

system for urban traffic network. The agent optimises signal control based on 

incoming traffic to an intersection. Then the SOTL algorithm predicts the 

effect of possible control actions on the delay of all vehicles. Based on the 

predicted total delay of all vehicles, a control decision (green phase) is made 

for a traffic stream(s) with a minimum delay (lowest action cost). Płaczek 

(2014) experimented against other SOTL systems in Gershenson (2005) and 

Helbing et al. (2005) studies. The results indicated that the proposed SOTL 

outperformed other systems. Besides that, the authors stated the reliance of the 

SOTL on the vehicle position information. 

 

Smith et al. (2013) proposed a scalable urban traffic control 

(SURTRAC) system. The SURTRAC is a multi-agent planning computed 

schedule to decide green phase switching using flow rate. Then the forecasted 

traffic outflows are communicated to downstream neighbouring intersections 

to increase the visibility of vehicles and assist in their respective planning. A 

pilot implementation was carried out for the SURTRAC in nine (9) 

intersection network in Pittsburgh, Pennsylvania, US. The SURTRAC was 

compared against a site actuated system. The actuated timing plans were 

generated using the SYNCHO offline timing package. The findings indicated 

that the proposed system significantly reduced vehicles’ travel time (26%) and 

emissions (21%).  
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2.3.2 Wireless Communication Channel based Adaptive Controller 

 

The built-in vehicular technologies and intelligent infrastructure 

advancements have offered new vehicle detection opportunities in traffic 

network environments (Feng, 2015). The new wireless communication is 

known as the connected vehicle (V2X), where a vehicle communicates with 

other vehicles (V2V) and with the infrastructure (V2I) within dedicated short-

range communication (DSRC) (Wang et al., 2018, Feng et al., 2015). This 

form of communication has the potential to provide probe-vehicle information. 

The communication protocol extracts data for each vehicle on the road and 

transmits it to an adaptive controller. The development of adaptive control 

systems under the assumption of the V2X environment has gained much 

attention in recent years.  

 

Yao et al. (2020) proposed dynamic platoon dispersion for signal 

timing optimisation. The model predicts vehicle arrivals by using connected 

vehicle data. Then a signal strategy based on minimising average delay is 

utilised to set a green time duration. The rolling horizon methods required at 

least a 50% penetration rate to surpass other adaptive control algorithms.  

 

Al Islam and Hajbabaie (2017) proposed a distributed-coordinated 

strategy for signal timing optimisation in a connected vehicle urban 

environment. The decision on terminating or continuing green times is made at 

the intersection level rather than the network level. Then, the intersections 

coordinate their decisions to achieve globally optimal decisions rather than 
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locally optimal solutions. The coordination method reduced the complexity of 

the traffic control problem. The simulation results indicate that the nominated 

algorithm can control the queue length and prevent spillback. Besides that, the 

suggested method decreased travel time between 17% and 48% and 

maximised throughput between 1% and 5% compared to actuated signals. 

 

Feng et al. (2015) proposed a phase allocation algorithm to optimise a 

phase sequence and duration. The authors proposed an estimation of location 

and speed (EVLS) algorithm to construct a complete prediction arrival table. 

In the system, the algorithms are run with different objective functions, 

including minimising total vehicle delay and queue length. The simulation 

results indicated that the proposed strategy performs better than the fully 

actuated controller if the penetration rate exceeds 50%. Moreover, different 

objective functions result in different traffic signal timing behaviours. While 

minimising total vehicle delay generates a lower total vehicle delay, 

minimising queue length serves higher balanced signal phases but results in a 

higher total vehicle delay. 

 

Guler et al. (2014) proposed a traffic signal control algorithm to 

minimise the total delay by optimising sequences of cars' departures from an 

intersection. The results showed that with 60% penetration rates, the system 

recorded the equivalent mark of average delay (i.e., 60%) and minimised the 

total number of experienced stops. In addition, the authors stated that no 

significant effect was achieved beyond a 60% penetration rate. 
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Goodall et al. (2013) developed a predictive microscopic simulation 

algorithm (PMSA) control to optimise an objective function to minimise delay 

only or a combination of delay, stops, and deceleration. Simulation results 

indicate that using the delay-only objective function performs better than the 

combination of delay, deceleration, and stops as the objective function. When 

the delay as the sole objective variable was used, the algorithm maintained or 

improved the performance compared to actuated timing signals at low- and 

mid-level traffic volumes and with a greater than 50% penetration rate of 

equipped vehicles. Moreover, the algorithm showed improved signal 

performance during unexpectedly high demand and the ability to 

automatically respond to year-to-year growth without retiming.  

 

2.3.3 Review on Communication Channel Approach 

 

Based on the literature review for the V2X environment, it is evident 

that such a communication channel boosts the performance of an adaptive 

controller, with the condition that the penetration rate should be at least 55% 

on average across different studies. When the penetration rate is low (below 

30%), the adaptive controller loses its advantage and is constantly reported to 

perform worse than other controller systems. The prediction may yield 

significant variations, especially when the penetration rate is low (He et al., 

2012). Tiaprasert et al. (2015) stated that queue estimation is not accurate in 

the absence of connected vehicles, and a higher penetration rate increases the 

accuracy of the estimation. 
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The costs of optimising existing infrastructures to accommodate V2X 

communication technologies are both expensive and slow. On-board computer 

processing units, towers, coverage, and bandwidth are a few examples that 

require alteration. Policy implications such as international communication 

protocols and communication infrastructure do not yet exist to successfully 

deploy vehicle agents (Raphael et al., 2015). Equipping vehicles with the 

necessary devices is still low compared to the total number of vehicles on the 

road. As the implementation of connected vehicles is expensive, the 

preference in practice is given to traffic light systems based on information 

from existing deployed infrastructure, i.e., traditional devices (Jin, 2018, 

Raphael et al., 2015). Table 2.2 presents adaptive controllers based on the 

communication protocol. 

 

Table 2.2: Classification of adaptive traffic controllers based on 

communication channel 

Communication Channel Adaptive Traffic Control Study 

Wired Communication 

(Road-to-Intersection) 

Chu et al. (2019), Tan et al. (2019), Zeng et al. (2019), Deligkas 

et al. (2018), Casas (2017), Gao et al. (2017), Li et al. (2016), 

Raphael et al. (2015), Płaczek (2014), Smith et al. (2013) 

Wireless Communication 

(Connected Vehicle) 

Yao et al. (2020), Wang et al. (2019), Islam and Hajbabaie 

(2017), Feng et al. (2015), Tiaprasert et al. (2015), Khamis and 

Gomaa (2014), Guler et al. (2014), Gregoire et al. (2014), 

Wang et al. (2014), Goodall et al. (2013) 

 

2.4 Classification Based on Traffic Control Strategy 

 

The mission of the signal controller is to maximise traffic flow while 

considering various factors such as signal timing constraints, real-time 

strategies, and practical implementation (Eom and Kim, 2020). Several control 

strategies have been proposed to address the complexity of mitigation. The 
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intelligent logic mission is to employ timing parameters to achieve specific 

objectives (Ma et al., 2016). 

 

The adaptive strategy executes signal logic criteria such as (i) green 

light extension to prolong the green phase, (ii) max out green phase split, or 

(iii) gap out to terminate a phase when the time interval between consecutive 

activations exceeds a predefined threshold (Eom and Kim, 2020). The core of 

signal optimisation is to achieve specific performance goals. Most of these 

objectives fall within two (2) broad classifications, including mobility and 

sustainability (Lee and Park, 2012). The mobility-based approach focuses on 

serving certain road user classes, but the sustainability-based approach targets 

extracted mobility features. The sustainability-based policy can have either a 

single objective or multiple objectives. The three (3) policy aspects are 

presented in the following sub-sections. 

 

2.4.1 Road User and Vehicle Type 

 

Some researchers considered a passenger car unit (pcu) without 

pedestrians to represent the traffic environment. Having a pedestrian impacts 

the minimum green light required to cross a street. Other researchers focused 

on priority strategy management based on private and public transit vehicles.  

 

Zhou et al. (2017) proposed an active signal controller to reduce the 

delay of a bus rapid transit (BRT) mode of transport and maximise average 

passenger benefit. The controller uses the vehicle infrastructure integration 
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(VII) system to collect data. The VII channel provides precise data related to 

vehicles, including location and speed, to estimate the BRT travel time and 

arrival time. To test the algorithm, an isolated intersection was modelled for a 

BRT route in Jinan, China. Various traffic flow scenarios and a few signal 

priority strategies (green light insertion and green extension) were investigated 

in the study. The results showed that optimal signal priority strategies are 

related to green extension and red truncation. The findings showed that the 

proposed method improves the travel speed of BRT by 7.5% compared to 

existing signal controller systems. In addition, the system achieved an average 

of 19.35% reduction in passenger delay.  

 

Zhang et al. (2017) proposed a traffic scheduling strategy based on 

quadratic programming (MIQP) for signal scheduling. The MIQP considers 

both pedestrians and vehicles in an urban traffic context. The study proposed a 

mathematical model comprising several logic constraints to describe the flow 

of pedestrians. The controller aimed to trade off the delay between pedestrians 

and vehicles and minimise the cost for both road users. The results indicated 

that the proposed controller handled light pedestrian assignment efficiently 

with a small number of junctions and prediction horizon.  

 

Ma et al. (2014) presented a genetic algorithm-based heuristic 

algorithm for a multi-objective model. The model aimed to optimise the 

exclusive pedestrian phase (EPP) and two-way crossing (TWC) intersection. 

The method determines the optimal EPP to best accommodate delays in 

vehicular traffic and pedestrian traffic. The tests indicated that the proposed 
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model was much more effective in producing phase patterns and timing plans 

to address road users' needs than the SYNCHRO technique. Under low traffic 

volume, the TWC was suitable. In high-demand traffic flow, the EPP was 

suitable.  

 

Wang et al. (2014) established a cooperative bus priority system 

(CBPS) based on connected vehicle technology. The system communicates 

with a public bus and a signal controller. The aim is to permit the bus to 

proceed unimpeded through an intersection. For testing, the authors deployed 

the CBPS system at an isolated intersection with two adjacent bus stops in 

Taicang City, Jiangsu Province, China. The results showed that the CBPS 

reduced the probability of the bus stopping from about 90% to 10%. As the 

bus experienced fewer stops, fuel consumption improved by nearly 27%. 

 

Zeng et al. (2014) proposed a stochastic mixed-integer nonlinear 

program (SMINP) model to implement real-time TSP control. The SMINP 

prioritises bus movement by forecasting arrival times. The model considers 

the bus stop dwell time and delay caused by standing vehicle queues to 

estimate arrival time. The results showed that the SMINP yielded a 30% 

improvement in bus delay compared with RBC-TSP in a single-bus case, and 

the SMINP handled the bus priority much more effectively in a multiple-bus 

case. 
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Christofa et al. (2013) proposed a mixed-integer nonlinear program 

(MINLP) to minimise the total person delay at an intersection level by 

providing priority to transit vehicles based on their passenger occupancy. 

 

He at al. (2012) introduced platoon-based arterial multi-modal signal 

control with online data (PAMSCOD) for multiple travel modes. The system 

identifies exiting queues and significant platoons approaching an intersection. 

The mixed-integer linear program (MILP) then determines the optimal future 

signal plan based on current controller status, platoon data, and any priority 

requests from transit buses.  

 

Ekeila et al. (2009) presented a dynamic transit signal priority (DTSP) 

system comprised of an automatic vehicle location (VAL) detection system, a 

transit prediction model, and a priority strategy selection algorithm. The DTSP 

aims to minimise the delay of a transit vehicle while preventing negative 

impacts on street traffic. Whereas such a system can demonstrate that giving 

priority to certain road users can reduce delay, this comes at an inverting delay 

cost for non-priority users. 

 

2.4.2 Classification based on a Single Objective  

 

The objective of the signal controller is to provide safe and efficient 

passage of vehicles at the intersection (Wei et al., 2019). The reward function 

directs the priority of adaptive controllers to strategies for the following action 

of signal operation. Various traffic strategies are strategized for intersection 
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control. These optimisation factors are generally segmented into vehicle-

based, time-based (value of time), headway and offset, and traffic flow. 

 

2.4.2.1 Vehicle-based Objective 

 

A feature extraction of individual vehicles, such as queue length, 

waiting time, throughput, and others, is deemed essential in determining signal 

cycle and control.  

 

Queue length: Zaidi et al. (2016) designed an adaptive controller 

based on a back-pressure method. The scheduling algorithm weighs the 

pressure on a direction of travel based on queue length. The controller then 

activates a phase with the highest pressure release. Tiaprasert et al. (2015) 

introduced a queue-based adaptive controller using a discrete wavelet 

transform (DWT). The DWT enhances the consistency of queue estimation. 

Chin et al. (2011) developed a Q-learning traffic signal timing plan 

management (QLTSTM) system. The approach discretised a queue length into 

four (4) levels from low to high and a timing plan of 1 and 5 green phase 

seconds. The simulation results indicated that the proposed system reduced the 

average waiting time and queue length. 

 

Traffic speed: Wang et al. (2019) developed a joint control model to 

optimise the speeds of vehicles. The coordinated system allows a platoon of 

vehicles to pass a series of signals with no stops or the least stop time. The 

proposed system led to savings in delay time and higher throughput.  
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Traffic Volume: Zheng and Liu (2017) proposed to optimise signal 

algorithms using estimated traffic volume. The estimation requires using GPS 

trajectory data from connected vehicles or navigation devices. 

 

2.4.2.2 Value of Time 

 

Becker (1965) was the first to introduce the concept of the value of 

time (VoT). Since then, the VoT parameter has been widely used to estimate 

wasted time at congested travelling corridors and to provide alternative and 

faster-tolled routes (highways) for road users (Bento et al., 2015). The 

application of VoT for intersection control appeared much later in the work of 

(Dresner and Stone, 2004). Dresner and Stone (2004) first introduced a 

reservation-based multi-agent system to manage intersections. Vehicles 

request a time slot (occupancy span) from the controller. Then the proposed 

system serves on a first-come, first-served basis. The authors mentioned that 

their reservation-based system outperformed conventional traffic lights. 

 

Schepperle and Böhm (2008) created a valuation-aware mechanism 

algorithm. The proposed traffic controller takes into account the driver’s VoT 

and allows concurrent use of intersections using an auction mechanism. The 

authors proposed two (2) mechanisms: Free Choice and Clocked. In Clocked, 

time slots are auctioned off, while in Free Choice, the winner selects preferred 

time slots from an interval. The authors concluded that Free Choice is always 

practical compared to Clocked, which is only adequate for higher demands 

and lower degrees of concurrency. Free Choice contributed around 38% of the 
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reduction in the average weighted waiting time. Their work assumes a fully 

connected environment. 

 

Vasirani and Ossowski (2012) examined the combinatorial auction to 

induce changes to the reservation-based system proposed by Dresner and 

Stone (2004). In addition, the authors expanded their contribution by including 

multiple intersections. The authors studied various traffic densities impacting 

the intended amount to “pay” to use intersection-based delays experienced by 

drivers. The findings indicate that the combinatorial auction is effective for 

drivers willing to submit higher bids. The demand-response pricing policy led 

to the distribution of vehicles in the experimental network. Adapting the 

reserve price generates dynamic equilibrium as underutilised junctions become 

cheaper, and highly demanded junctions become more expensive. Hence, a 

homogeneous distribution of vehicles over the network can improve network 

resource utilisation and reduce travel time. The proposed mechanism assumes 

connected vehicle technology. 

 

2.4.2.3 Headway and Offset  

 

The signal optimisation can be viewed as an assignment that minimises 

total delay. Besides the cycle length and green split, an offset is crucial in 

defining a coordinated control plan. The offset and green split allow vehicle 

progression. The limitation of offsetting is that it requires coordination 

between intersections; in many intersections, this approach could face 

computation difficulties (Ma et al., 2016).  
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Ma et al. (2016) proposed a multi-stage stochastic adaptive program 

for coordinated signals. The method allowed extending green time to reduce 

residue queues by adjusting offset settings by switching between coordinated 

approaches and green time under oversaturated conditions. 

 

Li et al. (2018) developed an adaptive coordinated controller for 

stochastic demand via phase clearance reliability (PCR). The method adjusted 

the signal offset to respond to stochastic demands on two (2) stage levels. The 

timing plan was developed to serve demand up to a certain PCR level. A 

queue clearance green was executed if a low reliability level was applied.  

 

2.4.2.4 Traffic Flow  

 

Younes and Boukerche (2016) proposed an intelligent traffic light 

controlling (ITLC) algorithm for the isolated intersection. Under ITLC, the 

flow with the maximum traffic density was scheduled to pass the intersection 

first. The results indicated that ITLC decreased the delay by 25% and 

increased the throughput by 30%.  

 

Shaghaghi et al. (2017) introduced a VANET adaptive green traffic 

signal control (AGTSC-VC). The system divided signal control into two (2) 

levels: (i) VANET to assist in gathering traffic information, and (ii) traffic 

signal timing generation and traffic density assessment. The clustering 

algorithm is utilised to compute the density of the vehicle. Priority-based and 

density-based traffic signal timing methods improved the proposed approach's 
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performance better than the conventional method. The results demonstrated 

the advantage of AGTSC-VC to improve the accuracy of density estimation, 

decrease the waiting delay, boost the travel time of prioritised vehicles, and 

reduce gas emission rates. 

 

Nafi and Khan (2012) presented an intelligent road traffic signalling 

system (IRTSS) using VANET communication. IRTSS aims to mitigate 

vehicle density at an intersection. The proposed IRTSS optimises fuel 

consumption by improving traffic flows. The proposed strategy significantly 

improved waiting time compared to a fixed cycle time control system. 

Nonetheless, IRTSS prioritised certain directions of travel if needed. 

 

2.4.3 Multi-objective Controllers  

 

The multi-objective combines two (2) or more traffic characteristics to 

strategize signal operation. Joo et al. (2020) proposed optimisation for traffic 

signal control by maximising the throughput and minimising the standard 

deviation of queue length. The proposed model was compared with RL 

controllers, including the work of the classical RL approach by Chin et al. 

(2011) and the approximated function-RL agent proposed by Liu (2017). The 

authors claimed to outperform these controllers regarding waiting time, 

average queue length, and standard deviation of queue lengths. 

 

Raphael et al. (2015) suggested an intersection agent based on an 

auction system. The authors designed two (2) variations: saturation (SAT) and 
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saturation with queuing (SATQ). The bidding system extended the green 

phase for the winning travel approach. The decision is made based on the 

highest input. The results validated that SATQ is superior to other controller 

systems as it could perceive traffic state during auction execution. SATQ 

reduced travel time costs between 32% and 38% in comparison to SAT and 

fixed systems. 

 

Brys (2014) studied the impact of control policy on state-action-

reward-state-action (SARSA) algorithm. The objectives include delay and 

throughput. These policies were used individually and combined to guide the 

RL controller. The authors tested the performance at an isolated signal 

intersection. The findings indicated that the multi-objective approach achieved 

more excellent performance than a single objective. In addition, penalising the 

punishment of the controller by squaring the delay alone or combined with 

throughput yielded further improvement. The scalarization approach is a 

disadvantage, as the weights require careful tuning.  

 

2.4.4 Review on Control Strategy 

 

Two (2) principles of traffic lights include maximisation of the 

opportunity for cars to move without stopping and provision of flexible 

operation, which grants minimum delay. The challenge is to find an optimal 

signal configuration to achieve the control task. The presented controllers, 

based on green wave provisions, favour a particular class of road users. Such a 

logic technique is unsuitable for more comprehensive state implementation. 
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This class of strategies will negatively impact other road users due to greed 

and inclination. Other control methods, such as the VoT strategy, are 

challenging to weigh precisely. Utilising the VoT for junction control is 

fundamentally challenging as (i) coordination among intersections is needed 

and (ii) the VoT differs significantly in heterogeneous traffic environment 

(Deligkas et al., 2018), whereas the offset strategies require coordination 

among intersection controllers. Hence, the coordination mission becomes 

challenging, particularly for road network implementation where 

heterogeneous traffic volume and conflicting demands are present. 

 

Subscribing to traffic states seems to be the right solution to mitigate 

intersections. After all, the mission of the controller is to regulate vehicle 

movements. However, feature extraction (vehicle-based) can potentially be 

deceptive for control optimisation problems, and essential information might 

be lost. The control agents respond to the environment and merely look into 

aspects of traffic flows. For instance, using queue length alone could lead to a 

spurious claim by assuming vehicles not in the queue are irrelevant. Similarly, 

using historical data such as flow rate yields a coarse approximation of the 

current state and ignores and abstracts away useful information (Genders and 

Razavi, 2016). 

 

Furthermore, most of the cited works of literature intend to configure 

the incoming lane movements without considering the outbound movement. 

Only a handful of studies attempted to construct a policy compromising 

upstream and downstream flows. These studies are gaps in time and lack 
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researchers' support and investigation. Despite new technologies and 

innovative design mechanisms, there is little to no attention to innovative 

control strategies to maximise the potential of intelligent controllers. Table 2.3 

summarises current studies based on the control policy method. 

 

Table 2.3: Classification based on the control strategy for adaptive 

signal controllers 

Control Policy Adaptive Traffic Control Study 

Mobility & Road User 

Vilarinho et al. (2017), Zhou et al. 

(2017), Dai et al. (2016), Wang et al. 

(2014), Christofa et al. (2013), He at al. 

(2012), Ekeila et al. (2009) 

Sustainability 

Single 

Objective 

Queue length 

Li et al. (2016), Zaidi et al. (2016), 

Tiaprasert et al. (2015), Abdoos et al. 

(2013), Kari et al. (2014), Chin et al. 

(2011) 

Halting time and 

delay 

Yen et al., (2020), Chu et al. (2019), 

Liang et al. (2019), Gao et al. (2017) 

Vehicle speed 
Wang et al. (2019), Khamis and Gomaa 

(2014) 

Value-of-Time 

Deligkas et al. (2018), Vasirani and 

Ossowski (2012), Schepperle and Böhm 

(2008), Dresner and Stone (2004) 

Traffic volume Zheng and Liu (2017) 

Headway and offset Ma et al. (2016), Li et al. (2018) 

Traffic flow and 

arrival 

Yao et al. (2020), Pandit et al. (2013), 

Shen et al. (2018) 

Density 
Younes and Boukerche (2016), Smith et 

al. (2013)  

Saturation Raphael et al. (2015) 

Multi-

Objective 

Vehicle position and 

speed 

Liang et al. (2019), Genders and Razavi 

(2016), Feng et al. (2015) 

Vehicle delay, stops 

and deceleration 
Goodall et al. (2013) 

Throughput and 

delay 
Brys (2014) 

Halting vehicles and 

waiting time 
Zeng et al. (2019) 

Outflow rates and 

queue lengths of 

waiting and 

approaching 

vehicles 

Thunig et al. (2019) 

Throughput and 

queue length 
Joo et al. (2020)  

Saturation and 

queue length 
Raphael et al. (2015) 
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2.5 Classification Based on Agent’s Algorithm  

 

Various algorithms are used to develop intelligent controllers, ranging 

from simple logistic regression to advanced machine-learning techniques. The 

logistic regression methods are typically less complex and do not require 

training. The regression algorithms act online to treat signal control problems.  

 

Since the 1960s, the adaptive signal controllers have witnessed 

significant transformation due to the improvement in microprocessors and 

computing power, alonger with the advancement in machine learning (ML) 

and artificial intelligence (AI) methods. The adaptive control systems become 

more responsive to traffic demands. The ML methods are divided into three 

(3) classes: supervised, unsupervised, and reinforcement learning. All these 

techniques have been widely researched and addressed in adaptive logics.  

 

The literature review for designing adaptive controller systems 

distinguishes between online and offline algorithms. The online algorithm 

utilises the learning during the deployment. This approach gives online 

learning an advantage in adaptation assignments (El-Ghazali, 2020). In this 

aspect, obtaining effectiveness becomes very costly, and extensive data will be 

required to achieve such supremacy. Whereas offline algorithms, as in ML 

methods, gather knowledge from training instances and generalise instance 

features to solve new instances. ML is an advantageous strategy for 

applications related to stochastic behaviour, such as traffic environment. The 

online algorithms are sufficient for slow changes in dynamics over time. 
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Nevertheless, a sudden change could cause online algorithms to fail to 

adapt. On the other hand, offline agents are much more flexible and can 

accommodate various traffic dynamics. Nevertheless, the offline training 

instances need to feature all instances of the environment.  

 

2.5.1 Logistic Regression Controller 

 

The self-organising traffic light (SOTL) and pressure techniques are 

very popular regression agents. The SOTL relies on agent interaction to 

communicate information and make decisions. Gershenson (2005) produced 

one of the initial applications for the SOTL. The author’s work has shown that 

an agent-based controller can control traffic signals effectively. Cools et al. 

(2008) extended the work to test 12 intersections in the city of Brussels. In 

addition, Lämmer and Helbing (2008) tested the SOTL system on a 

hypothetical grid-like network.  

 

McKenney and White (2013) developed a SOTL based on traffic 

volume count. One (1) agent controls each intersection. An agent receives 

input related to traffic volumes on edges leading to and from the intersection. 

The algorithm then assigns proportions of cycle length to each travel direction 

based on their total volume at the intersection. The length of each phase 

(minimum duration of 5 seconds) sums up to the cycle length. The agent's 

performance was investigated against a fixed controller for the simulated area 

of a 9x7 block section (50 signalised intersections) in the city of Ottawa, 

Canada. The results showed that the developed system had 7.36% higher 



41 

speed on the network level during the 11-hour simulation test. This 

performance drops to about 2% higher speed for the proposed STOL during 

the morning peak. The controlling agent requires communication with 

neighbouring intersections. 

 

Wongpiromsarn et al. (2012) pioneered the back-pressure (BP) method 

for adaptive controller systems. For each junction, the algorithm computes a 

“pressure” associated with a traffic movement. The pressure is a weighted 

flow rate, computed by the difference between the number of vehicles at the 

inbound link and the number of vehicles at the outbound link. The local 

controller maximised the network's throughput by releasing the phase 

corresponding to the highest pressure. The testing environment is a network 

with 14 signalled intersections. The proposed system was tested against 

SCATS controller logic. The findings indicate that the queue length was 

reduced by a factor of three (3) using the BP controller compared to SCATS.  

 

Thunig et al. (2019) extended the self-organized traffic light control 

algorithm developed by Lämmer and Helbing (2008) to the agent-based 

transport simulation MATSim. The optimisation strategy prioritised links 

based on predicted outflow rates and queue lengths of waiting and 

approaching vehicles. The control strategy minimised the waiting times and 

queue lengths at the intersection level. The algorithm was tested on a replica 

of 17 intersections in the city of Cottbus, Germany. The results showed that 

the adaptive controller successfully reduced delays and stabilised waiting 

queues compared to fixed and actuated controllers.  
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2.5.2 Supervised Learning Controller 

 

Supervised learning is a form of machine learning taken from 

provided, labelled examples (a training set) by a knowledgeable external 

supervisor (Sutton and Barto, 2018). Fuzzy logic is an infamous supervised 

learning technique in adaptive controllers. Fuzzy logic maps between the 

system’s input and output to quantify magnitudes (Madrigal et al., 2022). 

Fuzzy logic utilises a set of static rules to determine the preferred action for a 

traffic signal. While research shows that this approach is practical for small 

networks, the use of a static rule base means further updates to the system are 

required over time (Hnaif et al., 2019). In addition, it is challenging to 

generate an effective rule base for complex intersections containing a high 

number of possible phases  

 

Madrigal et al. (2022) presented an adaptive traffic fuzzy logic 

controller. The system utilises flow rate to compute the cycle duration. The 

cycle duration is split into phases proportional to the arrived flow rates based 

on Webster’s method. The authors tested the system on an isolated intersection 

calibrated on an actual traffic study. For comparison, five (5) systems were 

included: a fixed controller, a time-gap-based controller, a time-delay-based actuated 

controller, a fuzzy logic for green extension, and an adaptive fuzzy logic-based 

method with a modified Webster's formula. The authors report that the proposed 

controller achieved outstanding performance and preserved a fair balance between 

phases.  
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2.5.3 Unsupervised Learning Controller 

 

Unsupervised learning is a machine learning paradigm where an agent 

intends to find structure hidden in unlabeled training data (Sutton and Barto, 

2018). Evolutionary algorithms are a prevalent unsupervised method used in 

developing intelligent controllers. The evolutionary algorithm (EA) is an 

optimisation and search technique (Vikhar, 2016). The EA is suitable for 

applications where it is impossible to use heuristic solutions and survival for 

the fittest. EA suffers from some problems, like the fact that it needs lots of 

computational resources and is not assured to always give an optimal solution 

to a specific problem within a predictable timeframe. Genetic algorithms and 

heuristic algorithms are trendy in the literature of adaptive controllers. The 

Genetic algorithms choose the fittest priority to regulate vehicles at the traffic 

light intersection (Hnaif et al., 2019). 

 

Putha et al. (2012) proposed a novel technique based on the Ant Colony 

Optimisation (ACO) algorithm to address oversaturated traffic conditions. The ACO 

system requires the departure rates, queue lengths, and arrival rates at the 

intersections to compute the objective function. The objective is to decide on green 

times to maximise network traffic throughput. The proposed model was tested against 

the genetic algorithm (GA) in two network configurations. Model I is a 4x5 1-way 

through movement network, and model II is a 4x4 grid network model with left-turn 

movement, different lane lengths, and the number of lanes compared to the model I. 

The findings indicate that the ACO presented significantly less variance among 

random trials. In addition, statistical analysis showed that the ACO yielded better 
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results for the same computational power, and the ACO is a good alternative for 

solving complicated networks compared to the GA system.  

 

Hyper-heuristic technique is a methodology for selecting or generating 

solutions to multiple optimisation problems to generalise optimisation so 

systems can operate (Ahmed et al., (2018). There are two (2) levels: low-level 

candidate (heuristic) selection and move acceptance to decide on the generated 

solution. Galvan-Correa et al. (2020) designed a unique micro-artificial 

immune system algorithm (MAIS) to optimise the traffic light cycle. The 

proposed MAIS is tested in a model network (15 traffic lights) against 

simulated annealing (SA), genetic algorithm (GA), particle swarm 

optimization (PSO), and differential evolution (DE). The results reported that 

MAIS could achieve competitive performance compared to other systems. 

Under the MAIS system, vehicles experienced lower waiting times, between 

7% and 24%, and reduced trip journeys ranged from 1% to 8%.  

 

Gao et al. (2016) designed a discrete harmony search (DHS) algorithm 

to solve the signal light schedule. The system goal is to minimise the overall 

network delay using the traffic flow data. To evaluate the DHS system, the 

authors generated two (2) sets of traffic light scheduling from real-traffic data 

in Singapore. The first set has a time window of 30 seconds. The second set 

has a time window of 60 seconds. The grid model ranges from 3x3 to 10x10 

grid networks. The DHS was compared with fixed cycle and standard 

harmony search (SH) traffic light systems. Based on the reported results, both 

swarm intelligent controllers, SH and DHS, have superior performance 
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compared to fixed controllers. On the other hand, DHS showed a better 

relative percentage deviation (RPD) than SH.  

 

2.5.4 Reinforcement Learning Controller 

 

The RL mimics the intelligent behaviour of a human being by 

interacting with and learning from the environment and taking corrective 

actions using a trial-and-error process (Nagabandi et al., 2018). The flexible 

orientation of the RL using a customised reward function allows the logic 

programme to choose which parameters to optimise (Mannion et al., 2015). 

The motivation behind using the RL for traffic signal control problems is its 

ability to accommodate the dynamics of the environment. It can assist in 

overlooking some challenging issues, such as defining flow rate (Khamis and 

Gomma, 2014). In addition, an RL agent can self-learn without external 

supervision and prior knowledge (Yau et al., 2017).  

 

Khamis and Gomaa (2014) proposed multi-objective reinforcement 

learning based on a cooperative multi-agent framework. Using Bayesian 

interpretation, the controller agent simulates the driver’s behaviour 

(acceleration/deceleration). The system aims to achieve multi-objectives in 

terms of waiting time, trip time, flow rate, fuel consumption, and others. The 

performance was evaluated against two (2) adaptive controllers: self-

organising traffic lights (SOTL) and genetic algorithm (GA). The test models 

included (i) a network of nine (9) signalled intersections and (ii) a city centre 

network replica of 22 traffic signals. Two (2) traffic situations were modelled 
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(congested and free scenarios). The tests showed that the proposed traffic 

system outperformed the single objective controller in terms of lowering 

waiting time, reducing the number of stops, minimising queue length, and 

improving the throughput. In addition, the authors recommended using a 

scalar-based reward design to boost the performance indices. The system 

requires full access (observation) to environmental attributes.  

 

Mannion et al. (2015) proposed parallel reinforcement learning (PRL) 

for a multi-agent system. The PRL devised multiple agents to learn 

concurrently on a problem and share experiences to expedite learning and 

reduce convergence time. The PRL consists of two agent types: (i) a master 

agent and (ii) slave agents. The slave agents share experiences with a pool 

(Global Q matrix). The master agent can use experience from the pool or 

execute its own experience. The testing was carried out in a simple isolated 

junction with two (2) layout configurations, including two (2) approaches and 

a T-junction. The test set comprised PRL learning agent variations (2, 3, and 

4). The results showed that the performance of the proposed PRL system 

increased with the number of parallel learners. 

 

Pham et al. (2013) presented a tile coding method to approximate the 

value function SARSA agent. The agent has three (3) input states, including 

lapsed time for the last light change, number of seconds for the second-to-last 

light change, and total waiting time at the intersection level. The reward 

function dealt with waiting time. The controller had a small time duration of 2 

seconds for every action. The controller either maintained the status quo or 
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changed to another phase. The controller was tested on a 2x2 grid network. In 

a low traffic scenario, the SARSA controller surpassed other systems in delay 

time. In a high-traffic situation, the SARSA performed better than comparative 

systems in delay and throughput. The authors explained the superiority of the 

RL system to outperform the coordination DCEE framework as the first is 

capable of relating state information to the problem (learning environment).  

 

2.5.5 Review of Algorithm Technique 

 

Traffic control is defined as an interactive problem. The interactive 

problem is a category of environment where the resembled behaviour for 

every situation cannot be comprehended entirely (Sutton and Barto, 2018). 

There are various algorithms used for developing adaptive controllers. Some 

of these methods require much more complex designs than others and are 

prerequisites to achieving efficient performance. For example, nearest 

neighbours and self-organising traffic lights (SOTL) require coordination with 

neighbouring intersections to achieve optimal operation. 

 

Other systems are bound by expert knowledge to define the appropriate 

rules, as in fuzzy logic. Knowledge reliance limits the goal of developing a 

self-sufficient controller to deal with unpredictable situations and unknown 

traffic attributes. Supervised learning requires big data or constant 

experimentation to achieve sustenance. Unsupervised learning can be very 

costly for dynamic problems such as traffic signal controllers. The natural 

driving environment changes continuously. On the other hand, reinforcement 
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learning (RL) can be utilised to approximate the unknown, but the MDP 

assumption restricts its efficiency to exposed training data. Table 2.4 presents 

the design technique and corresponding limitations.  

 

Table 2.4: Overview of main limitation in considering design 

technique 

System Design Suitable with Studies 

Logistic 

Regression 

Slow 

dynamics 

Varaiya (2019), Thunig et al. (2019) Hao et al. (2018), 

Younes and Boukerche (2016), Zaidi et al. (2016), 

McKenney and White (2013), Joo et al. (2020), Li et al. 

(2018), Wongpiromsarn et al. (2012) 

Supervised 

Learning 

Expert 

knowledge 

Madrigal et al. (2022), Yao et al. (2020), Jiang et al. (2021), 

Tunc et al. (2021), Ali et al. (2021), Bi et al. (2014) 

Unsupervised 

Learning 

Constant 

environment 

Galvan-Correa et al. (2020), Hnaif et al (2019), Darmoul et 

al. (2017), Gao et al. (2016), Ma et al. (2014), Putha et al. 

(2012) 

Reinforcement 

Learning 

MDP and 

Large data set 

for training 

Wan and Hwang (2018), Gao et al. (2017), Genders and 

Razavi (2016), Mannion et al. (2015), Khamis and Gomaa 

(2014), Pham et al. (2013), Chin et al. (2011), Priemer and 

Friedrich (2009) 

 

2.6 Review of Application of Adaptive Traffic Controller and 

Challenges  

 

The literature review has over 60 studies on adaptive controllers. These 

intelligent systems were segmented into four (4) categories based on system 

design, control strategy, communication channel, and control algorithm. The 

common drawback refers to a persistent issue requiring immediate action to 

advance research in this field.  
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2.6.1 Environmental Settings 

 

Issue 1: Traffic simulation is a prerequisite for testing intelligent 

traffic control systems. The modelling application aims to reproduce human 

decision-making and behaviour, capturing the level of detail required for a 

particular objective (Bazzan and Klügl, 2014). Single intersections are very 

popular in evaluating adaptive controllers. Nearly 50% of revised works in 

adaptive controllers utilised isolated environments, as in Figure 2.2. Despite 

reporting superior performance in isolated intersections, whether the proposed 

controllers are applicable for mitigating network-level operations is unknown. 

The proposed control methods do not provide details on how mitigation is 

achieved beyond the isolated intersection. 

 

On the other hand, the grid network represents a traffic situation where 

no conflicting movements are faced. Such a testing configuration does not 

reflect a challenge for adaptive systems. In addition, fixed controller systems 

are efficient for this type of network (Gordon and Tighe, 2005). Only three (3) 

in 10 studies considered arterial networks, and a smaller proportion integrated 

real-world scenarios.  
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Figure 2.2: Environment setting for intelligent controller 

development 

 

Issue 2: The training and evaluation are commonly performed in ideal 

simulated traffic scenarios. Figure 2.3 shows that the majority (75%) of 

adaptive controllers are tested in hypothetical testing sets. These traffic 

scenarios are not related to real-world applications. The traffic demand is 

hypothetical, and the route choice behaviour is simplified. The simplest 

methodology for creating several assumptions, such as constant traffic flow, 

fixed headways and gaps, default values of saturation flow, uniformity of 

vehicle class, and others, makes the proposed approaches rigid and impractical 

for real-world class. The current in-practice adaptive systems such as 

TRANSYT (Robertson, 1969), Split Cycle and Offset Optimisation (SCOOT) 

(Hunt, 1982), and Sydney Coordinated Adaptive Traffic Systems (SCATS) 

(Lowrie, 1982) suffer from presuming default saturation flow. Such a 

definition undermines traffic flow patterns, and on large city corridors, these 

systems may fail (Bazzan and Klügl, 2014). Therefore, the effectiveness of 

adaptive signal agents in a real-world application is hard to prove (Gong 

et al., 2019). Robust and more flexible systems for environmental 

dynamics need to be examined.  
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Figure 2.3: Traffic flow and demand for an evaluative 

environment 

 

2.6.2 Communication Protocol 

 

Issue 3: To capture environmental states, researchers utilise two (2) 

methods: real-time traffic feedback and approximation functions. The latter 

method simplifies the traffic representation, but the hypothetical context (issue 

2) restricts their legitimacy integration. The approximate functions do not 

account for mixed transport modes and consider traffic to exhibit homogenous 

features. Some approaches suggested integrating approximation functions to 

improve the online algorithms. The controller with approximate capability 

could perceive the near future state and decide on suitable action. It is 

unknown whether these approximate techniques will eventually capture 

global mitigation. The rolling horizon is short (every signal phase). In 

addition, what is the sensitivity of these approximate methods to error 

cases? The error occurs if the approximate function fails to produce 

information, leading to an inappropriate phase split. This case raises 

another question: How will the agent recover from such a decision error?  
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Issue 4: Four (4) out of 10 studies did not verify the communication 

protocol. as shown in Figure 2.4. Not verifying the communication channel 

indicates that the authors assumed fully observed driving corridors. This 

assumption is naïve, as current detection devices monitor traffic within 

defined boundaries. In addition, the current infrastructure is not equipped to 

accommodate connected vehicle technologies. If this is the case, then the 

penetration rate dilemma is also applicable to this category of studies. It can be 

stated that 70% of proposed adaptive methods' efficiency relies on accurate 

environmental representation. Despite the innovative methods, whether these 

systems can function in a restricted data feed environment remains 

unanswered. Overall, the ability of the proposed controllers to function in real 

mixed-mode traffic using the existing detection devices has not been 

extensively explored.  

 

 

Figure 2.4: Communication channel protocol in adaptive control 

studies 
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2.6.3 Split Optimisation  

 

Issue 5: Agents are the traffic signals, but a priori determination of the 

signal plan is commonly cited in control systems. Restricting an intelligent 

controller to decide on a signal plan assignment contradicts the 

adaptation mission. Traffic is a highly dynamic process, and signal plans 

should not be determined in advance. Figure 2.5 shows that 82% of intelligent 

controllers execute a restricted role of phase allocation or phase duration. Only 

less than 10% of the studies developed free-cycle controllers.   

 

 

Figure 2.5: Technique used in logic's function 

 

2.6.4 Control Optimisation 

 

Issue 6: There are three (3) popular designs: (i) organising control 

agents in a hierarchical structure, (ii) letting agents decide on local control and 

coordinate with neighbours, and (ii) solo action agents. The first centralised 

decision relies heavily on communication. Though the hierarchical system is 
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advantageous in resolving conflict, it is a pure communication-based 

approach. The data transmission protocol is expensive and futuristic 

technology (V2X), and reported experiments showed that the inaccurate data 

exchange cripples the signal operation. So until the road environment 

becomes fully connected, centralised systems are not practically available 

to solve the existing traffic control problem.  

 

Issue 7: The coordinating action systems have a simpler 

communication channel. An agent can only communicate with its immediate 

neighbours to synchronise action. On the other hand, the horizontal system has 

a potential drawback in resolving conflicts. The synchronised action is a form 

of green wave that allows a platoon of vehicles to cross several intersections. 

The assumption that the traffic flow is unanimous and non-conflict will 

eventually restrict the applicability of progressive traffic signals to work 

efficiently in real intersection networks and opposing traffic flows.  

 

Based on Figure 2.5, multi-agent systems (centred and coordinated 

decisions) dominated the literate studies at 65%. 
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Figure 2.6: Design mechanism for adaptive controller 

 

Table 2.5 presents a summary of adaptive control studies in this 

literature review. 
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Table 2.5: Summary of research studies in adaptive traffic control 

No. Author Algorithm Technique 
Time Plan and Signal 

Control 
Traffic Control Strategy Optimisation Mechanism* Communication Channel Simulation Environment 

1 Genders and Razavi (2016) Reinforcement learning Phase duration Cumulative delay Local Wired Isolated Intersection (Hypothetical) 

2 Gao et al. (2017) Reinforcement learning Phase duration Waiting time Local Wired Isolated Intersection (Hypothetical) 

3 Li et al. (2016) Reinforcement learning Phase duration 
Absolute value difference for queue 

length 
Local NA Isolated Intersection (Hypothetical) 

4 Casas (2017) Reinforcement learning Phase duration 
Factor for speed score scaled by a 

discount factor and vehicle counts 
Local Wired 

Isolated Intersection (Hypothetical),  

3x2 Hypothesised Grid Network 

(Hypothetical) & 43 Junctions Network (Real 

Network) 

5 Wan and Hwang (2018) Reinforcement learning 
Phase allocation and 

duration 

Cumulative time delay between 2 

actions 
Local NA Isolated Intersection (Hypothetical) 

6 Liang et al. (2019) Reinforcement learning Phase duration Cumulative waiting time Local NA Isolated Intersection (Hypothetical) 

7 Zeng et al. (2019) Reinforcement learning Phase duration 

Linear combinations of normalised 

halting vehicles, waiting time for 

vehicles at intersection, and scalar 

quantity punishment 

Local NA Isolated Intersection (Hypothetical) 

8 Chu et al. (2019) Reinforcement learning Inverse of the waiting time Waiting time Local Wired Isolated Intersection (Hypothetical) 

9 Wang et. al. (2019) Reinforcement learning Phase allocation 
Throughput factor and a waiting time 

factor with trade-off coefficients 
Local Wired Isolated Intersection (Hypothetical) 

10 Yen et al. (2020) Reinforcement learning Phase allocation 
Ratio of throughput to average end-to-

end delay 
Global Wireless 3x3 Grid Matrix (Hypothetical) 

11 Hao et al. (2018) Logistic regression Phase allocation Minimum delay Local NA 4x4 Manhattan Grid (Hypothetical) 

12 Płaczek (2014) Logistic regression Phase duration Minimum delay Local Wired 4x4 Grid Network (Hypothetical) 

13 Varaiya (2019) Logistic regression Phase allocation Maximum throughput Local NA Na 

14 McKenney and White (2013) Logistic regression Phase duration Maximum throughput Local NA 9x7 Block (50 Signalised Intersection) (Real) 

15 Younes and Boukerche (2016) Logistic regression Phase allocation Maximum density Local Wireless Isolated Intersection (Hypothetical) 

16 Joo et al. (2020) Logistic regression Phase distribution 
Maximising throughput and 

minimising deviation of queue length 
Local NA Isolated Intersection (Hypothetical) 

17 Chin et al. (2011) Reinforcement learning Phase duration Minimum queue length Local NA Isolated Intersection (Hypothetical) 

18 He at al. (2012) Logistic regression Phase duration Prioritise transit buses Global NA Isolated Intersection 

19 Christofa et al. (2013) Logistic regression Phase allocation Minimise the total person delay Local Wired Isolated Intersection 

20 Ekeila et al. (2009) Logistic regression Phase allocation Minimise delay of transit vehicle Local Wired Isolated Intersection 
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No. Author Algorithm Technique 
Time Plan and Signal 

Control 
Traffic Control Strategy Optimisation Mechanism* Communication Channel Simulation Environment 

21 Hanif et al (2019) Unsupervised learning Phase duration 
Mean speed, traffic density and traffic 

flow 
Local Wired 4 Intersections (real) 

22 Putha et al. (2012) Unsupervised learning Phase duration Maximising throughput Local NA 
4x5 (1-way through) Network (hypothetical), 

and 4x4 grid network (real) 

23 Zaidi et al. (2016) Logistic regression Phase allocation Minimising queue length Local NA 24 Intersections (real) 

24 Wongpiromsarn et al. (2012) Logistic regression Phase allocation Maximising throughput Local NA 
Isolated intersection (real)  

and 14 signals (real) 

25 Smith et al. (2013) Logistic regression Phase allocation Maximise traffic flow Global Wired 9 Intersections (real) 

26 Deligkas et al. (2018) Logistic regression Phase duration Minimising total waiting time Local Wired Isolated intersection 

27 Raphael et al. (2015) Logistic regression Phase duration Minimising total waiting time Global Wired Grid network (25 signals) 

28 Vasirani and Ossowski (2012) Logistic regression Phase allocation Minimise vehicle delay Local Wireless Isolated intersection 

29 Zhou et al. (2017) Logistic regression 
Phase allocation and 

duration 
Minimise delay of BRT Global Wired Isolated intersection 

30 Wang et al. (2014) Logistic regression Phase allocation Green phase for bus Local Wireless Isolated intersection 

31 Gregoire et al. (2014) Logistic regression Phase allocation Minimise queue blockage Local Wireless Grid network (64 signals) 

32 Galvan-Correa et al. (2020) Unsupervised learning Phase allocation 
Minimise waiting time, and 

maximising speed 
Global NA Network (15 traffic lights) (real) 

33 Gao et al. (2016) Unsupervised learning Phase allocation Minimise waiting time Global NA Grid network (9 to 100 intersections) 

34 Madrigal et al. (2022) Supervised learning 
Cycle duration (phase split 

and timing) 

Reduce queue length, waiting time, and 

density 
Local Wired Isolated intersection 

35 Li et al. (2018) Logistic regression Offset timing Minimise delay Global NA 3 intersections 

36 Ma et al. (2016) Logistic regression Offset timing Minimise delay and overflow Global NA 3 intersections 

37 Kővári et al. (2021) Reinforcement learning Phase duration 
Occupancy and empty phase 

punishment factor 
Local Wired Isolated intersection 

38 Tan et al. (2019) Reinforcement learning Phase allocation 
Balancing queue length and moving 

vehicles 
Global Wired 4x3 and 4x6 grid networks 

39 Khamis and Gomaa (2014) Reinforcement learning Phase allocation 

Waiting time, trip time, flow rate, fuel 

consumption, flow rate, green waves, 

and accident avoidance 

Global Wireless Grid network (9 signals & 22 signals) 

40 Mannion et al. (2015) Reinforcement learning Phase duration Cumulative waiting time Global NA Isolated intersection 

41 Tiaprasert et al. (2015) Logistic regression Phase duration Minimise queue length Local Wireless Isolated intersection 

42 Wang et al. (2019) Logistic regression Phase duration Minimise delay and increase speed Local Wireless Arterial network (5 intersections) 
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No. Author Algorithm Technique 
Time Plan and Signal 

Control 
Traffic Control Strategy Optimisation Mechanism* Communication Channel Simulation Environment 

43 Yao et al. (2020) Supervised learning Phase duration Minimise vehicle delay Local Wireless Isolated intersection 

44 Darmoul et al. (2017) Unsupervised learning 
Phase allocation and 

duration 

Traffic fluidity (improvement of queue 

length between neighbouring agents) 
Global NA 3 signalised intersections 

45 Goodall et al. (2013) Logistic regression Phase allocation Delay, stops and deceleration Local Wireless 4 signalised intersections (real) 

46 Gong et al. (2019) Reinforcement learning 
Phase allocation and 

duration 
Minimise cumulative waiting time Global Wireless 8 intersections (real) 

47 Pandit et al. (2013) Logistic regression Phase allocation Minimise waiting time Local Wireless Isolated intersection 

48 Rasheed et al. (2020) Reinforcement learning Phase allocation 
Lowering waiting time and increasing 

throughput 
Global NA 

7 signalised intersection (real)  

and 3x3 grid network (hypothetical) 

49 Kari et al. (2014) Logistic regression Phase duration Travel time and fuel consumption Global Wireless Isolated intersection 

50 Liu et al. (2017) Reinforcement learning 
Phase allocation and 

duration 
Reduce waiting time Global Wireless 96 intersections (real) 

51 Priemer and Friedrich (2009) Reinforcement learning Phase allocation Minimise queue length Global Wireless 3x3 grid matrix 

52 Wang et al. (2020) Logistic regression Phase duration 
Minimise delay and increase 

throughput 
Global Wireless 5 signalised intersections (arterial) (real) 

53 Zeng et al. (2014) Logistic regression Phase duration Minimum delay for bus Local NA 
Various grid networks (9,16,25,49,64,100,225 

signals) 

54 Ma et al. (2014) Unsupervised learning Phase duration 
Minimum delay for road users 

(vehicles & pedestrians) 
Local NA Isolated intersection 

55 Byrs et al. (2014) Reinforcement learning Phase allocation 
Minimise delay and increase 

throughput 
Local Wireless Isolated intersection (hypothetical) 

56 Thunig et al. (2019) Logistic regression Phase duration Reduce waiting time and queue length Local Wired 17 intersections (real network) 

57 Pham et al. (2013) Reinforcement learning Phase allocation Waiting time at intersection level Global NA 2x2 grid network (hypothetical) 

58 Al Islam and Hajbabaie (2017) Logistic regression 
Phase allocation and 

duration 

Maximise throughput and minimise 

queue length 
Global Wired 

2 intersections 

 & grid network (9 intersections)-hypothetical 

59 Tunc et al. (2021) Supervised learning Phase duration 
Minimise waiting time and queue 

length 
Local NA Isolated intersection 

60 Jiang et al. (2021) Supervised learning Phase duration Reduce delay Local NA Isolated intersection (real) 

61 Ali et al. (2021) Supervised learning Phase duration 
Reduce waiting, travel times and 

increase speed 
Local Wired Isolated intersection (real) 

*Local refers to single agent design. Global refers to a multi-agent design 
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2.7 Deep Reinforcement Learning as Adaptive Traffic Control System 

 

The RL-based method is a promising self-learning technique that is not 

bound by expert knowledge. The evolution of RL-based adaptive controllers 

can be categorised based on two (2) frameworks, including Markov decision 

process (MDP) and partial observable MDP or (PO-MDP).  

 

The MDP considers a full state representation and environment are 

known. The earliest MDP studies of adaptive controllers are found in Thorpe 

(1997) and Abdulhai et al. (2003). Both of these studies expeditiously caused a 

state-space representation complication as their agents needed to map every 

possible arrangement of states (Khamis and Gomma, 2014). The drawback of 

the MDP systems is the computational requirement, which grows 

exponentially with road links with multiple traffic junctions. In fact, it is 

nearly impossible to have a fully observed environment specifically for traffic 

conditions.  

 

In order to reduce the complexity and computational cost, a partially 

observable state environment is considered using the approximation technique. 

The PO-MDP is first introduced by Prashanth and Bhatnagar (2011). The 

authors introduced a function approximation for the Q-learning algorithm to 

develop a traffic control signal (QTLC-FA). The results indicated that QTLC-

FA outperformed a Q-learning (MDP) algorithm and a fixed traffic signal 

controller in various test scenarios. Abdoos et al. (2013) proposed a linear 

function approximation for a Q-learning agent. The control algorithm 
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outperformed standard Q-learning in reducing the delay time across the 

network. Yin et al. (2014) proposed optimisation for a traffic controller based 

on an approximate dynamic programming (ADP) approach. The results 

indicated that the ADP outperformed existing controller strategies, including 

fixed-time and actuated controls, under high traffic loads. 

 

On the other hand, the PO-MDP is similar to the MDP in that it 

considers a stationary traffic environment. Hence, in high dimensional state 

space (as in a realistic driving environment), the function approximation 

cannot efficiently learn the attributes of the environment (Haydari and Yilmaz, 

2020). To overcome this challenge, a deep learning (DL) structure based on 

function approximation is appropriate for handling feature learning. Feature 

learning is achieved by extracting useful patterns from data and forming 

feature maps (Sutton and Barto, 2018). The DL herein refers to using multiple 

layers of an artificial neural network to learn feature mapping.  

 

Sections 2.7.1 to 2.7.6 present prominent studies in deep reinforcement 

learning (DRL) control systems based on their neural structure, followed by 

challenges and drawbacks in Section 2.7.8. 
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2.7.1 Deep Q-Learning Controllers (DQL) 

2.7.1.1 Convolution Neural Network for Adaptive Controller - Genders 

and Razavi (2016) 

 

Control Agent: Genders and Razavi (2016) were the first to propose a 

convolutional neural network (DQTSCA). The action-value model used 

discrete traffic state encoding (DTSE) to monitor the environment’s states. 

The DTSE comprised three (3) vectors: vehicle presence, vehicle speed, and 

current signal phase. The DTSE discretized inputs within a cell length of lane. 

The action space is pre-configured phase definitions. There are four (4) 

possible actions the DQTSCA could choose from. The control strategy is 

based on changes in cumulative vehicle delay between subsequent actions. 

The DQTSCA has two (2) hidden convolution layers, two (2) fully connected 

layers, and one (1) output layer (action call).  

 

Experimental Design: The authors micro-modelled a 4-way isolated 

intersection with three controller movement definitions (left, through, and 

right turns). The observed lane length is 75 metres, which was divided into 12 

DTSE (1 cell = 5 metres). The traffic flows used probability distributions 

ranging from 0 to 150veh/hr and from 250 to 450veh/hr. The phasing time is 

fixed at 7 seconds (2 seconds green and 5 seconds transition).   

 

For comparison, a shallow neural network (TSCA) was designed. The 

TSCA agent has one (1) hidden layer with 64 neurons using a sigmoid 

activation functions and four (4) neurons with a linear activation function for 
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the output layer. The TSCA agent has two (2) states input: queue length and 

signal phase. DQTSCA and TSCA agents have similar reward and action 

attributes and were trained using the same number of epochs and gradient 

descent algorithm.  

 

Results: To validate the proposed system, the authors compared data 

from each agent's last 100 training epochs (>93% exploitative action). The 

results indicated that the proposed DQTSCA agent reduces cumulative delay 

by 83%, average queue length by 66%, and travel time by 20% compared with 

STSCA. The authors explained the significant achievement in cumulative 

delay as the DQTSCA agent interacts with the cumulative delay parameter as 

a reward function. On the other hand, there is a negligible throughput 

difference between both agents. This attribute is an indication of the DQTSCA 

agent’s policy fairness. A fair policy is expected to ensure that all vehicles are 

given equal priority to traverse the intersection. Although the authors 

compared two (2) RL agents, there is a conflict in considering different state 

representations for each system.  

 

2.7.1.2 Deep Q-Learning Network with Experience and Target 

Network - Gao et al. (2017) 

 

Control Agent: Gao et al. (2017) extended the work of Genders and 

Razavi (2016) and introduced a target network for the deep convolution neural 

agent (DQN). The experience replay and target network mechanism improved 

the agent’s stability. Stability is defined as the ability of the trained agent to 
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make steady control decisions without diverging to bad action policies or 

oscillating between good and bad action policies. The state is based on DTSE 

(vehicle position, speed, and signal status). The two (2) vehicle state vectors 

were fed to convolution layers. The signal status input has a size of two (2) to 

indicate the location of the green phase. These input layers are concatenated 

into two (2) fully connected layers, followed by a fully connected output layer 

(action). For an action decision, there are two (2) action spaces for the agent’s 

selection. The reward policy is to reduce the cumulative waiting time at the 

intersection. 

 

Experimental Design: The authors modelled a 4-way signalled 

intersection with three turning movements (left, through, and right) to test the 

DQN. The lane length is 500 metres, and the observed length is 160 metres, 

with a cell length of 8 metres for the DTSE. Vehicle length is 5 metres with a 

2.50 metres minimum gap between vehicles. High and low traffic flow 

demands were designed for the micro-model using the Bernoulli process. The 

traffic light has signal durations of 10 seconds for green and 6 seconds for 

yellow phases.   

 

The authors utilised the longest-queue-first algorithm (LQFA) and 

fixed control algorithm to evaluate performance measures for the testing stage. 

 

Results: Overall, the simulation showed that the developed controller 

reduces vehicle delay by 47% and 86% compared with LQFA and fixed time 

controllers, respectively. It was also observed that when traffic demand 
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increases, the average delay by the proposed DQN increases as well. In two 

out of the four (4) intersection routes, the proposed DQN led to a higher 

vehicle delay when the rate control parameter p>0.80 compared to LQFA. A 

similar observation was made for one of the routes versus the fixed controller. 

The authors have not clarified these findings. Moreover, the extension of the 

stability of the mentioned controller was not examined extensively. The 

testing and training sets had similar flow hierarchies (major and minor flows). 

Ideally, the trained deep reinforcement learning algorithm gains an 

understanding of environmental dynamics. Hence, if a testing set closely 

reflects these dynamics, the trained agent will achieve a favourable 

performance.  

 

2.7.1.3 Deep Q-learning Neural (DQN) Network using Dynamic 

Discount- Wan and Hwang (2018) 

 

Agent Controller: Wan and Hwang (2018) proposed a deep Q-

learning neural (DQN) network. The authors proposed a dynamic discount 

factor to prevent a biased estimation of the action-value function. The agent 

used an experience reply and target network similar to Gao et al. (2017). 

DTSE enclosed vehicle positions and signal phase states. The control policy 

minimised the accumulated time delay between two subsequent actions. The 

phase action is chosen from a predefined phase signal plan.  

 

Experimental Design: The authors constructed a 4-way isolated 

intersection. There are three (3) directions of travel (left, through, and right 
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turns). The arrival is random, but the traffic demand is fixed. The amber light 

is fixed to 3 seconds, whereas the green phase corresponds to five (5) seconds. 

The cycle phase is 180 seconds.  

 

For comparison, the authors developed a deep Q-learning logic with 

one (1) state input (vehicle position) (DQN-1) and a fixed timing plan. For 

testing, the authors proposed two (2) scenarios, including (i) an unsaturated 

scenario with a traffic flow of 800veh/hr for each direction and (ii) an 

oversaturated scenario with a traffic flow of 2,000veh/hr for each north and 

west directions and 100veh/hr for the east and south directions.  

 

Results: The findings indicated that the proposed trained agent 

outperformed the pre-timed signal plan for reducing total system delay by 

20% and 15% for unsaturated and oversaturated conditions, respectively. In 

addition, the proposed controller improved throughput by 17% in an 

oversaturated condition compared to fixed timing. The results showed that the 

DQN-1 had worse performance than the fixed controller. The authors related 

the poor performance of the DQN-1 to a lack of the discount factor. However, 

the experiments were not conclusive enough to strongly support their 

justification, and there is a good chance that the DQN-1 had not converged to 

the optimal policy during training.  
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2.7.1.4 Mixed Deep Q-Network (MQN)- Zeng et al. (2019) 

 

Control Agent: Zeng et al. (2019) introduced a unique deep Q-

learning algorithm consisting of two (2) branches: a softmax classification and 

a Q-value network. The mixed Q-Network (MQN) agent was integrated with a 

memory palace (MP). The MP’s function is to induce prior experience 

knowledge to the MQN to enhance learning. The state input was represented 

by DTSE, similar to Genders and Razavi (2016). The MQN had a multi-

objective reward comprising five (5) metrics. The reward metrics are (i) 

counts of vehicles passing the stop line, (ii) counts of halting vehicles in the 

green phase direction, (iii) a phase skip punishment, (iv) a normalised halting 

factor of vehicles at the intersection level, and (v) total waiting time of 

vehicles around the intersection. There is four (4) action space for the MQN 

controller.  

 

Experimental Design: The authors tested an isolated cross-

intersection. Each approach direction has an inner lane for a left turn, two (2) 

middle through lanes, and an outer shared lane for right and through 

movements. The observed length of the lane is 120 metres, and the vehicle 

length (cell length) is five (5) metres, with two and a half (2.5) metres as a 

minimal safe gap. The yellow phase is fixed to four (4) seconds, while the 

minimum green phase is six (6) seconds and is capped at 60 seconds with two 

(2) seconds of incremental extension at each time step. 
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In order to evaluate the MDQN, a fixed controller and deep Q-learning 

with experience reply (DQN) were developed. The test bed is a three-hour 

simulation with two (2) classes of traffic demand (low and high). The low 

traffic demand is half the high demand flow. A uniform increment to simulate 

varied traffic flow was used for the simulation model. The left turn had 50 to 

200veh/hr, the through movement was 150 to 600veh/hr, and the right turn had 

100 to 400 veh/hr.  

 

Results: Based on the results, both reinforcement learning agents 

surpassed the performance of the fixed signal system. On the other hand, the 

performance of the MDQN is not completely monotonous compared to a 

DQN. The MDQN outperformed the DQN in average reward value. 

Nevertheless, DQN has outperformed MDQN in average delay, average queue 

length, and average travel time. The authors reported that these differences are 

insignificant between both deep learning techniques. The contribution of the 

MP method to enhancing the MDQN is not detailed in the study.  

 

2.7.1.5 Deep Q-learning Network Controller- Tan et al. (2019) 

 

Tan et al. (2019) tried to solve the action space challenge associated 

with controlling a large-scale network by introducing a cooperative deep 

reinforcement learning (Coder) framework. The system breaks down RL tasks 

into a number of sub-problems with relatively easy RL goals. This design was 

achieved by dividing the network region into sub-regions. Each agent learns to 

achieve a solution. Then, a centralised global agent aggregates these solutions 
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and forms the final Q-function for the traffic grid. Overall, the agent intends to 

balance the costs of waiting in a queue and moving vehicles. The agent 

chooses from a pre-defined phase list to meet the control policy requirement. 

The Coder includes two (2) dense hidden layers for inputs. 

 

Experimental Design: The authors constructed two (2) hypothetical 

grid networks (B and C) to test the Coder system. Network B is a 4x3 

intersection network and was portioned into two (2) 2x3 sub-regions. The 

network had evenly distributed 904 vehicles. Network C is a 4x6 intersection 

network and was portioned into four (4) 2x3 sub-regions. The network had 

evenly distributed 1,344 vehicles. The phase time for Coder’s action was 

restricted to five (5) seconds, and it can be extended or terminated at the end 

of the time interval. The distance between each adjacent intersection is 150 

metres. 

 

The authors compared the proposed Coder algorithm for the testing 

stage against fixed, random, linear Q-learning, and R-DRL.  

 

Results: According to the observation, the Coder outperformed all the 

other methods in terms of waiting time and waiting for queue length. In 

network B, the Coder achieved a lower average queue length of 33% and a 

shorter waiting time of 71%. In network C, the Coder registered a lower 

average queue length of 28% and a shorter delay of 63%. The authors attribute 

the drop in performance when comparing networks B and C to the number of 

sub-regions (network B= 2, network C= 4). As the number of sub-regions 
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increases, the agent has to coordinate more local agents and search for 

improved local optimisation solutions in a much larger discrete action space. 

Thereof, the authors recommended restricting the sub-region size to ≤4. This 

limitation in learning might not be optimal in a stochastic traffic environment 

where the variation of traffic flow is evident and leads to complexity. In 

addition, the Coder requires a total observed environment and assumes the 

environment is in MDP states.   

 

2.7.1.6 Capacity as Control Strategy for Adaptive Signal Control- 

Kővári et al. (2021) 

 

Agent Controller: Kővári et al. (2021) introduced a unique control 

strategy for a deep Q-learning network (DQN) agent and a reinforcement 

learning agent with policy gradient (RL-PG). The state input for both agents 

corresponded to the capacity ingress approach at the intersection level. The 

reward policy has two (2) factors: (i) normalised standard deviation of 

occupancy distribution among the incoming lanes of the intersection to the 

traffic flow, and (ii) punishment factor for prioritising empty flow direction. 

The agent has an action size of two (2). 

 

Experimental Design: The testing model is an isolated intersection 

environment. The single-lane junction has four (4) directional flows with two 

(2) turning movements (through and right). The lane length is 500 metres, and 

the authors assume these lanes are fully monitored using loop detectors. The 

minimum phase duration is 30 seconds. The simulation deploys random, 



70 

uniform traffic flow with a frequency of 1veh/sec. A time-loss-actuated 

controller was used to test the proposed control policy.  

 

Results: The results showed that the proposed occupancy policy 

surpassed the performance of the actuated controller in all measured attributes 

except travel time. The travel time showed that the actuated controller had a 

close performance to the RL-PG agent (1%), and it surpassed the DQN agent 

(by 6%). DQN performs better than the actuated controller in reducing waiting 

time (20%), and queue length (19%). Though the control policy based on 

measuring standard deviation can be effective for apparent traffic flow 

concentration, in low flow scenarios, such a difference might diminish, 

making the controller stuck in deploying an unfavourable decision. In 

addition, the controller strategy corresponds to vehicle-related measures and 

does not address the optimisation of intersection capacity.  

 

2.7.2 Double Dueling Deep Q Network (3DQN) 

2.7.2.1 Double Dueling Deep Q-network (3DQN) with Prioritized 

Experience Reply- Liang et al. (2019) 

 

Agent Controller: Liang et al. (2019) initiated a double dueling deep 

Q network with prioritised experience reply (3DQN). The integration between 

double DQN and dueling DQN reduces the possibility of overestimation and 

improves performance. The state representation is based on DTSE for vehicle 

position and velocity. The traffic policy aims to minimise the cumulative delay 
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between two (2) cycles. The action space is size four (4). The reward is a 

function of the cumulative waiting time between two neighbouring cycles. 

 

Experimental Design: The authors designed a 4-way isolated 

intersection with three (3) lanes at each of the four (4) directions. Each 

direction allowed for three (3) turn movements (left, through, and right). The 

lane length is 150 metres, and the vehicle size is five (5) metres with two (2) 

metres of minimum gap spacing. The traffic flow per lane was fixed to a 1/10 

frequency rate, or one (1) vehicle every 10 seconds. The phase allocation 

corresponded to a cycle plan, but the phase duration corresponds to a 

minimum of zero (0) seconds (phase-skip) and a maximum of 60 seconds. The 

proposed controller extends or terminates the phase duration every five (5) 

seconds.  

 

For examining the proposed system, the study compared four (4) 

systems, including two (2) fixed controllers with pre-timed phase durations of 

30 and 40 seconds, the adaptive traffic signal control (ATSC) from Pandit et 

al. (2013), and the deep Q-network (DQN) with auto-encoder by Li et al. 

(2016).  

 

Results: The authors evaluated the training session’s performance. 

Regarding average waiting time, the 3DQN achieved about 9 seconds of 

saving compared to fixed controllers. The online ATSC algorithm’s 

performance is limited as it lacks foresight for future demand. The DQN’s 

performance was unstable as it relied on the queue length attribute. The queue 
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length did not capture traffic conditions accurately, as explained by the 

authors. Overall, the training evaluation for the average waiting time showed 

that the proposed 3DQN agent was stable and outperformed other strategies by 

20%. The work is limited to training; the 3DQN was not tested for 

convergence. During the training examination, it was noticed that the proposed 

agent’s variations (3DQN, no double, no duelling, no prioritisation) reached a 

comparable cumulative reward near the 1,050 episode mark. 

 

2.7.2.2 Traffic Policy Using High-Resolution Event-Based Data for 

Adaptive System – Wang et al. (2019) 

 

Wang et al. (2019) extended a double dueling deep Q network for an 

adaptive system using a novel traffic policy (3DQN). Three (3) representative 

states' input was retrieved from the environment, including phase signal, 

vehicle position, and occupancy. The action phase was acyclic, where the 

agent chose from four (4) fixed signal phase plans. The multi-objective reward 

function was based on factored measurements of throughput and waiting time 

with trade-off coefficients for vehicles at the intersection. Therefore, the agent 

aimed to maximise the throughput and minimise the trip delay. The 

architecture comprised three (3) convolution layers, followed by two (2) fully 

connected layers, and then one (1) layer for each value and advantage function 

for the dueling network. The output is one (1) layer for action size. 

 

Experimental Design: The authors observed the state of the 

environment via three (3) inductive loop detectors. The first detector is placed 
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at the stop line to record vehicle throughput; the second detector is setback at a 

distance of 51 metres from the stop line; and the third detector is placed at one 

(1) metre from the beginning of the lane. Each approach had a similar detector 

configuration. The study set the green and yellow phases to four (4) seconds 

each. The vehicle length was uniform at four (4) metres with a minimum 

headway gap of two (2) metres. The car following model corresponded to the 

Krauss model and followed the Poisson process. The authors implement 

various vehicular arrival rates every 15 minutes for the 1.5-hour model. The 

quarter-hour flow rate ranged from 180 to 360 vehicles per hour.  

 

The testing was carried out on a similar junction configuration to Liang 

et al. (2017). To evaluate the performance of the proposed 3DQN, a fixed time 

and a fully actuated controller were added to the study. The fixed time had 

effective green time ranges between 27 and 30 seconds. The actuated 

controller executed a minimum phase duration starting from 17 seconds to a 

maximum duration of 32 seconds.  

 

Results: The evaluation performance indicated that the proposed 

system exceeds the fixed and actuated controllers in reducing the average 

vehicle delay by 21.2% and 10.1%, respectively, reducing queue length by 

29.7% and 16.4%, respectively, and increasing average vehicle speed by 

15.5% and 6.9%, respectively. There is a significant difference in phasing time 

between the proposed 3DQN and the conventional controllers. The 3DQN had 

a very short phase duration compared to the comparative controllers. The low 
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phase duration is the advantage of the 3DQN system, as it ultimately reduces 

the waiting time and shortens the queue length. 

 

2.7.2.3 Decentralised Network Adaptive Signal Control by Mulit-Agent 

Deep Reinforcement Learning- Gong et al. (2019) 

 

Control Agent: Gong et al. (2019) proposed a double dueling deep Q-

network to optimise the signal problem (3DGN). The decentralised system 

assigns one agent to each intersection. The control agents are coordinated with 

each other to share information (traffic data and signal state) and achieve 

better network optimisation. The state is two (2) vectors: a vehicle’s location 

and a signal phase state. The controller actioned an acyclic programme for 

managing the intersection’s traffic flow. The control policy (reward) aims to 

minimise the cumulative waiting time of vehicles in the queue.  

 

Experimental Design: The authors experimented with an arterial 

network comprising eight (8) intersections. The intersections were modelled 

after an actual traffic network in Seminole County, Florida, US. The two-hour 

model had a total traffic flow of nearly 13,200 vehicles. The calibration 

indicated that the root mean square error (RMSE) is 4.7 vehicles per hour 

between the simulated and real counts. The training and testing were 

conducted in the same suburban simulation set but with a random state for the 

fixed traffic flow. The data input was monitored within 90 metres of lane 

length. 
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Results: The proposed decentralised 3DQN algorithm improved travel 

time experience by 10.27% and reduced travel delay by 46.46% compared to 

the actuated controller. On the other hand, the proposed system increased the 

number of stops by 11.29%. The authors justified this increment as the 3DQN 

controller’s objective is to mitigate the delay. Such a control policy gave a fair 

travelling right between major and minor approaches and through and turning 

movements. The fair right of the movement led to force-stopping vehicles at 

major approaches. The control policy is limited to serving narrow aspects of 

traffic conditions and trading on other traffic conditions.  

 

2.7.3 Deep Stacked Autoencoders (SAE) Neural Network- Li et al. 

(2016) 

 

Agent: Li et al. (2016) introduced a deep stacked autoencoders (SAE) 

neural network for Q-learning algorithm. The SAE consists of two (2) hidden 

layers. An autoencoder sets the target output layer equal to the input layer with 

the sigmoid activation function. The state of the environment is represented by 

queue lengths. The reward function corresponds to the absolute value 

difference in queue length between the competing directions.  

 

Experimental Design: The authors tested the proposed SAE system 

on a cross intersection with a simple through movement only (no U-turn, right, 

and left turns are allowed). Furthermore, the signal operation is simple, with 

two (2) phases for opposing direction movement and no red phase clearance. 

Each approach had a random traffic flow volume between 100veh/hr and 
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2,000veh/hr. The green phase corresponds to a minimum of 15 seconds, and 

extension is allowed. The authors compared their proposed deep Q-learning 

based on the SAE system and a conventional Q-learning.  

Results: The findings showed that the SAE system outperformed the 

conventional system by reducing the mean delay time by 14%, and mean 

values for the number of stopped vehicles were reduced by 410 during the 

entire simulation run. Regarding the queue lengths, both systems had a similar 

effect on producing balanced queues. The limitation of this work is related to 

simplifying intersection movement to one (1) direction only. The efficiency of 

the SAE in achieving the control policy (queue length) is also limited.  

 

2.7.4 Deep Deterministic Policy Gradient (DDPG) Reinforcement 

Learning - Casas (2017) 

 

Agent: Casas (2017) developed a deep deterministic policy gradient 

(DDPG) for a continuous state-action urban traffic light control environment. 

Vehicle information, including vehicle counts, average speed, and occupancy 

percentage, is used for state representation. The author proposed a unique 

approach to operating the traffic light by controlling the phasing duration but 

fixing the cycle time and phase order. This time plan was programmed by 

capping the phasing duration to 80% of the cycle time using a phase 

adjustment matrix. The reward function is based on a score factor for speed 

scaled by counts of vehicles and a discount factor to restrain rewards in the 

range [-1,+1]. The activation function is rectified linear activation (ReLU).  
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Experimental Design: The author considered three (3) testing 

scenarios to evaluate the proposed DDPG against conventional multi-agent Q-

learning and a random signal phasing generated by the micro-simulation 

software. The one (1) hour testing simulation environments are: (i) a 4-way 

isolated intersection with through and right turn movements only and traffic 

flow of 150veh/hr, (ii) a 3x2 hypothesised grid network with six (6) 

intersections and three movement permissions, i.e., left, right, and through, 

with a random traffic flow, and (iii) a network representing the Sants area in 

Barcelona, Spain, with 43 junctions and traffic demand matching the peak 

hour in the study area. The state input was obtained using loop detectors. 

 

Results: The author refers to the performance of DDPG as superior to 

classical Q-learning in scenario 1 (simplest case), slightly better in scenario 2, 

and at the same level for scenario 3 (real-world network). The convergence of 

DDPG is linearly proportional to the scenario level of complexity, and a 

longer training time could have led to better performance of the proposed 

technique. The author stated that DDPG addressed the curse of dimensionality 

better than classical Q-learning. It is unclear if the chosen reward scheme was 

fair and whether the placement of road detectors assisted in the performance of 

DDPG. The arrangement of detectors in the first two (2) situations is similar. 

In contrast, the placement of detectors was random in the real-traffic model of 

the network.  

 



78 

2.7.5 Multi-agent Deep Q-learning Agent (MADQN) - Rasheed et al. 

(2020) 

 

Control Agent: Rasheed et al. (2020) proposed a multi-agent deep Q-

learning agent (MADQN) to optimise signalised intersections under disturbed 

traffic flow. Four (4) inputs represent the state: queue length of all incoming 

lanes at the controlled intersection, queue lengths of all incoming lanes at the 

neighbouring intersection, elapsed red timing at the stopped approach of the 

controlled intersection, and rainfall intensity (disturbance level). The latter 

was scaled into five (5) levels, ranging from no rain to a maximum value of 

heavy rain. The action was chosen from pre-determined traffic phases. It is 

unknown if the controller adjusts the timing. The reward function is the 

difference between the waiting time between past and present actions. 

 

Experimental Design: The authors simulated two network models for 

the environment: (i) a real network and (ii) a grid network. The real-traffic 

network model comprised seven (7) intersections in Sunway City, Selangor, 

Malaysia. The grid network consisted of nine (9) intersections. The Bur type 

XII function was utilised for vehicle arrival. This function is suitable for 

traffic disturbances, particularly rainfall. No information about the hourly 

traffic flow was provided in the study. 

 

For comparison, the authors used three (3) signal controllers, including 

deterministic, RL, and MARL. Two (2) traffic scenarios, including (i) a 

recurring congestion and (ii) a non-recurring congestion, were modelled. The 
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recurring congestion scenario resulted from increased traffic volume during 

peak hours. 

 

Results: The results showed that the proposed MADQN converged 

faster than the MARL during training for both scenarios. The testing indicates 

that the proposed agent surpassed other techniques by increasing throughputs 

(70%), reducing queue lengths (75%), and lowering waiting times (70%).  

 

2.7.6 End-to-End Policy for Deep Learning Controllers 

2.7.6.1 Deep Dueling On-policy SARSA Learning Agent-Yen et al. 

(2020) 

 

Control Agent: Yen et al. (2020) were the first to apply a deep dueling 

agent for an on-policy SARSA approach to coordinate a network of 

intersections (2DSARSA). The state represented traffic flow maps (TFM); 

traffic flow in terms of delays. The TFM is an image encoding the Head-of-

Line (HOL) of sojourn times of each lane at each intersection. The HOL 

sojourn times differ between adjacent intersections. The reward function is a 

power metric defined by the throughput ratio to the average end-to-end delay. 

The action function reflected a phase activation function.  

 

Experimental Design: The authors test the system in a 3x3 grid matrix 

(9 intersections) with a simple action plan size of two (2). For testing, the 

authors developed two (2) architectures (single and dueling) for SARSA and 

Q-learning. The singles are deep learning agents, including DQN and 
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DSARSA. The dueling structures are 3DQN and the proposed 2DSARSA. In 

addition, to evaluate the performance, two (2) back pressure controllers (BPC) 

were used with different control functions: delay (DBPC) and queue (QBPC).  

 

Results:  The results indicated that the proposed 2DSARSA and 

DSARSA learn effectively from the environment and have faster convergence 

and stability during the learning process. This quick convergence was 

expected as SARSA is an on-line policy that relies on the initial policy. In 

comparison, the Q-learning algorithms (3DQN and DQN) are off-line policies, 

and they need to learn the actions from the policy. This reported finding is not 

supervising due to the different structure of both algorithm categories. Also, 

the comparison was based on training convergence, but the ability of the 

proposed 2DSARSA to perform in a test environment was not convincingly 

proven.  

 

The queue-based back pressure (QBPC) showed better performance in 

end-to-end delay based on box plot analyses. The QBPC showed a better inter-

quartile median, minimum, and maximum) range (compared to the proposed 

2DSARSA and delay-based back pressure (DBPC). The 2DSARSA showed 

smaller outliers in box-plot analyses. The training showed that the 2DSARSA 

algorithm had reached an average end-to-end delay of as high as 350 seconds. 

Overall, the centralised system (2DSARSA) versus the decentralised system 

(QBPC) did not show outperformance in end-to-end delay, even though the 

2DSARSA utilised delay to mitigate intersection operation.  
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2.7.6.2 Deep RL-Background Removal ResNet (BGR ResNet)-Chu et al. 

(2021) 

 

Agent: Chu et al. (2021) presented a unique end-to-end off-policy 

deep reinforcement learning. The system aims to develop a low-cost system 

based on images captured by surveillance cameras. A background removal 

ResNet (BGR ResNet) is added to the system to reduce its complexity. These 

devices are assumed to partially observe the road state condition, such as 

vehicle position, speed, and queue length, and transmit them to the agent 

controller. The control strategy is to minimise the average waiting time at the 

intersection. The agent determines the optimal action from two (2) possible 

phase configurations. 

 

Experimental Design: The authors adopted a real-world intersection 

and synthetic scenarios for testing. The isolated intersection is a four-way 

junction in Cologne, Italy. The site data indicated a total traffic flow of 1,800 

vehicles per hour for the modelled intersection. In addition, four (4) generated 

scenarios based on random traffic flows were tested, including 2,000 vehicles 

per hour (S1), 1,500 vehicles per hour (S2), 1,250 vehicles per hour (S3), and 

1,150 vehicles per hour (S4). The S1 had equal traffic flow for all directions 

(500 vehicles per hour per direction). The other scenarios differentiated flows 

among directions into major and minor flows.  

 

The proposed BGR ResNet system comparison included: a fixed 

signal, a max pressure, a greedy algorithm based on fleet size, a greedy 
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algorithm based on waiting time, a DQN logic (Mnih et al., 2015), a C51 

(Bellemare et al., 2017), and a Rainbow (Hessel et al., 2018). Two (2) 

architectures are developed for each RL agent, including convolution neural 

network (CNN) and ResNet.  

 

Results: Overall, the proposed BGR ResNet system surpassed others 

in all but one (1) scenario. In this scenario (S4), the greedy algorithm based on 

waiting time reacted to the approaches with higher traffic to relieve the 

pressure that eventually led to surpassing the performance of the BGR ResNet 

system. The average waiting time delay for all scenarios is improved by at 

least 13% compared to the closest rival (greedy algorithm). 

 

The comparison between the agent’s structure for CNN and ResNet did 

not show regularity. For instance, DQN-CNN surpassed DQN-ResNet in 

Cologne, S1, and S2 scenarios, and it showed an improvement of 4.8% in 

average waiting time for all scenarios. A similar pattern was found in C51, 

where the CNN design outperformed ResNet in all scenarios but S3 and S4 

scenarios and achieved a 12.2% lower average delay. In contrast, the 

Rainbow-ResNet performed better than the Rainbow-CNN in all scenarios and 

achieved 29% savings in the timing attribute for all five (5) tested scenarios. 

From these reported measures, the contribution of the agent’s architecture to 

the agent’s performance was not evident.  

 

Moreover, based on the reported results, it is noticed that the 

performance measure in terms of average delay across different systems 
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closed up with low traffic flow. The authors ran 10 minutes of simulation 

scenarios; this training time is probably insufficient to converge the proposed 

systems to their optimal potential and caused poorer performance at an 

imbalanced traffic ratio. The impact of penetration rate is not explored in the 

study. The camera angle is assumed to cover all roads at the intersection. 

Besides that, the authors assumed that vehicles transmitted their waiting time 

to the controller (connected vehicle technology). 

 

2.8 Review of Current Challenges for Deep Reinforcement Learning 

Controllers 

 

The DRL signal controllers gained momentum after their initial 

introduction by Genders and Razavi (2016). A present review of the DRL 

studies indicated that many advanced methods were utilised. Six (6) 

architectures were identified, including DQL, 3DQN, SAE, DDPG, MADQN, 

and DSARSA. Several findings require attention in terms of agent 

architecture, environment model, and control strategy. 

 

2.8.1 Agent Architecture 

 

In terms of agent architecture, the review of the DL controller studies 

does not conclusively prove the superiority of a particular DL type. Limited 

studies have incorporated the testing and comparison of various DL structures. 

For instance, the earliest study by Genders and Razavi (2016) compared two 

(2) neural network architectures. The first neural agent was based on three (3) 
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hidden layers of convolution with experience reply (DQTSCA), and the 

second agent was one (1) shallow hidden layer without experience reply 

(STSCA). In terms of results, the authors reported that both systems had an 

insignificant difference in throughput, and the outstanding performance of 

DQTSCA in mitigating delay was related to its own reward function 

(cumulative delay).  

 

Another issue associated with control agent design is sustenance in 

control decisions. The agent converges to a wrong decision under certain 

circumstances. Casas (2017) indicated that the deep learning agent converged 

to conventional Q-learning, Li et al. (2016) stated that the DL system had 

limited significance to enhance attributes of traffic performance, and Chu et al. 

(2021) reported underperformance of the agent in imbalanced conditions of 

traffic flow. 

 

The current review shows that simple DQN achieved better 

performance than complex DQN, particularly 3DQN, MADQN, 2DSARSA, 

and ReNEST. Figure 2.7 compares the cited works of literature regarding 

waiting time and travel time improvements. 
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Figure 2.7: DRL controller studies and performance 

 

2.8.2 Environment Model 

 

The DL agent requires training and then testing. Given that the RL 

agent learns from the model context, it is a requisite that the model of 

environment imitates the actual conditions and estimate precise changes in 

correspondence to the decisions made by the agent (Han, 2018). Both of these 

tasks are achieved using a suitable concept of environment. The review of 

current studies pointed out the following major evaluation issues: 

 

1. Under-represented traffic model. Most of the current developments 

in ML techniques focus on hypothesised isolated intersections. The 

4-way junction is further simplified to controlled approaches only 

and non-conflicting movements. The stochasticity of the traffic 

environment is not accurately addressed. The studies anticipate 
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similar drivers’ characteristics and do not test mixed-mode travel 

corridors.  

2. The simplicity of intersection movement. Many authors have 

mainly focused on isolated intersection and grid network models. 

Both of these environments simplify the complexity of the traffic 

environment and the control mission. Few studies tested arterial 

networks. Unfortunately, their systems were unsuitable for network 

operation, despite passing the isolated junction, as in Casas (2017). 

 

3. Split optimisation. The control plan is usually associated with 

phase allocation. The signal controller re-locates, terminates, or 

skips a phase in a cyclic arrangement. A few studies considered 

phase duration. Split durations are very small (<5 seconds). Such 

duration does not adhere to safe operation in the real world and is 

incompatible with driver expectations.  

 

4. Traffic flow. Most researchers develop a network model with a 

clear distinction between traffic hierarchies (major and minor). 

Using primary and minor flows is not always representative of a 

real-world scenario. The traffic flow hierarchy diminishes at major 

urban intersections, and vehicles compete for an equal right of 

passage in actual driving conditions. Another pressing model issue 

is that traffic flows are presumed to be constant. Such a design 

concept also contradicts natural flow characteristics. The flow 



87 

saturation is low (<3,200veh/hr). The investigation of various 

demands is rare. 

 

The experimental design setting gives the agent an advantage. This is 

because training and testing are carried out on the same platform for the 

memory-based controller. By default, the DRL agent passes the test scenario. 

Nevertheless, this does not mean that the DRL is being validated accurately. 

When testing condition changes, the DRL tends to show unstable performance 

as in Casas (2017), Chu et al. (2019), Wan and Hwang (2018). Therefore, 

validating the ability of DL applications in stochastic traffic environments is 

questioned and requires study.  

 

2.8.3 Control and Reward 

 

The review of RL and DL agents indicates that researchers do not 

segregate between state input and reward feedback. Both of these parameters 

are similarly defined using environmental dynamics. As it is challenging to 

deal with dynamic attributes, the utilised reward strategies eventually lead to 

complex agent design and unworkable assumptions for current infrastructure 

readiness.  

 

For network optimisation, researchers presented DL systems requiring 

global coordination and centralised systems for decision-making. The 

multiplex design ensures that traffic states and rewards are monitored closely. 

Researchers assumed infinite space and storage capacity to accommodate 
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vehicles in isolated intersection situations. There is no specified boundary for 

the DL controller to mitigate signal operation. No research has yet proposed 

an efficient control strategy to optimise the junction’s capacity directly.  

 

The following Table 2.6 provides a summary of research work in the 

DRL and its application in adaptive traffic signal controllers.  
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Table 2.6: Summary of literature review for deep reinforcement learning (DRL)agents  

No. Author Agent State Action 
Traffic Control Strategy 

(Reward) 

Simulation Settings 

Comparative 

System(s) 

System 

Control 

Communication 

Channel 
Improvement Limitation 

Test Bed 
Traffic Flow 

Distribution 

Traffic Flow 

Volume (veh/hr) 
Phase Plan 

1 

Genders 

and 

Razavi 

(2016) 

DQTSCA DTSE 
Phase 

allocation 

Cumulative delay of all 

vehicles at intersection 

Isolated 

intersection 

(hypothetical) 

Inverse 

Weibull: left 

and right turns, 

Burr: through 

traffic 

Inverse Weibull: 0-

150 Burr:250-450 

Total (max): 3,000 

4 Phases = 

{EW,NS, 

NSL, EWL} 

TSCA Single NA 

83% lower cumulative 

delay 66%shorter queue 

length, 20% lower travel 

time 

Control policy, 

different state 

representation, 

constant traffic 

condition 

2 

Gao et 

al. 

(2017) 

DQN DTSE 
Phase 

allocation 

Cumulative waiting time 

of all vehicles at 

intersection 

Isolated 

intersection 

(hypothetical) 

Bernoulli 

process 

Left turn = 1/10, 

through major = 

1/5, through minor 

= 1/10, Total (max): 

2,280 

2 Phases = 

{EW,NS} 

LQFA & 

Fixed 

controllers 

Single NA 
47%-86% lower delay 

time 

Stability examination, 

constant traffic 

condition 

3 

Zeng et 

al. 

(2019) 

MQN DTSE 

Phase 

extension, 

phase skip 

(i) number of vehicles 

passing stop line, (ii) 

number of halting 

vehicles at green phase 

direction, (iii) phase skip 

punishment, (iv) 

normalised halting 

vehicles at intersection 

level, and (v) total 

waiting time of vehicles 

around the intersection. 

Isolated 

intersection 

(hypothetical) 

Fixed* 

Mean configuration 

I#: major: 1,800, 

minor: 1,200, total: 

3,000 mean 

configuration II#: 

4,800 

4 Phases = 

{EW,NS, 

NSL, EWL} 

Fixed & DQN Single NA 

Compared to Fixed, the 

MQN had 7% lower 

average delay, 27% 

shorter queue length, 7% 

average travel time, 26% 

lower average waiting 

time. 

Superiority of MQN 

is not evident versus 

DQN 

4 

Kővári et 

al. 

(2021) 

DQN & 

RL-PG 
Occupancy 

Phase 

allocation 

(i) normalised standard 

deviation of occupancy 

distribution among the 

incoming lanes of the 

intersection to the traffic 

flow, and (ii) punishment 

factor for prioritising 

empty flow direction 

Isolated 

intersection 

(hypothetical) 

Random 300 
2 Phases = 

{EW,NS} 

Time loss 

actuated 

Controller 

Single Loop detectors 

3% lower travel time , 

28% lower waiting time, 

18% lower queue length, 

8% lower emissions, 7% 

lower fuel consumption 

control policy 

requires conceivable 

traffic flow difference 

to function 

effectively 

5 

Liang et 

al. 

(2017) 

3DQN 

DTSE={Vehi

cle's position 

and speed} 

Phase 

duration 

cumulative waiting time 

between two 

neighbouring cycles 

Isolated 

Intersection 

(hypothetical) 

Random 
Major: 1,440 Minor: 

720 Total:2,160 

4 Phases = 

{E,W,N, S} 

fixed 

controllers, 

ATSC, DQN 

auto-encoder 

Single NA 
20% lower waiting time 

in training 

No testing was 

carried out to verify 

agent's performance 

stability 

6 

Gong et 

al. 

(2019) 

3DQN 

DTSE= 

{Vehicle's 

position and 

phase status} 

Phase 

extension, 

phase skip 

cumulative waiting time 

of vehicles in queue 

8 intersections 

(modelled 

from real 

scenario) 

Calibrated 

using real 

traffic condition 

13,175 3 & 4 phases 
actuated 

controller 

Mutli-

agent 

Connected 

vehicle 

10.27% lower trave time, 

46.46% reduced total 

delay 

Control strategy 

trade-off 
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No. Author Agent State Action 
Traffic Control Strategy 

(Reward) 

Simulation Settings 

Comparative 

System(s) 

System 

Control 

Communication 

Channel 
Improvement Limitation 

Test Bed 
Traffic Flow 

Distribution 

Traffic Flow 

Volume (veh/hr) 
Phase Plan 

7 

Wang et 

al. 

(2019) 

3DQN 

DTSE={Vehi

cle's position 

and 

occupancy} 

Phase 

allocation 

maximise the throughput 

and minimise the trip 

delay 

Isolated 

intersection 

(hypothetical) 

Poisson process 3,250 

4 Phases = 

{EW,NS, 

NSL, EWL} 

Fixed and 

actuated 

controller 

Single Inductive loops 

lower waiting time 

(21.2%-fixed, 10.1% 

actuated) reduced queue 

length (29.7% fixed, 

16.4% actuated) higher 

vehicle speed (15.5% 

fixed, 6.9% actuated) 

Phase timing is 

shorter for the 3DQN 

versus comparative 

systems 

8 
Tan et al. 

(2019) 
Coder Queue length 

Phase 

allocation 

balancing queue length 

and moving vehicles 

Grid network 

B: 4x3 Grid 

network C: 

4x6 

[hypothetical] 

Evenly 

distributed 

Grid B: 904, grid 

C:1,344 

2 Phases = 

{EW,NS} 

fixed, random, 

linear Q-

learning, and 

R-DRL 

Mutli-

agent 
NA 

Network B: lower average 

queue length by 33%, and 

shorted waiting time by 

average of 71%. Network 

C, lower average queue 

length by 28%, and 

shorter delay by 63%. 

Sub-region size, & 

MDP environment 

9 

Wan and 

Hwang 

(2018) 

DQN with 

discount 

factor 

DTSE= 

{Vehicle's 

position and 

phase status} 

Phase 

allocation 

and duration 

Cumulative time delay 

between 2 actions 

Isolated 

intersection 

(hypothetical) 

Random 

Undersaturated: 

800/direction, Over-

saturated: major 

2,000/direction and 

minor: 100/direction 

8 phases = 

{N, S, E, W, 

NL, SL, WL, 

EL}## 

DQN with 1 

input and 

Fixed 

Single NA 

Undersaturated: 20% 

lower delay, (not 

reported) 

Oversatruated:15% lower 

delay, 17% higher 

throughput 

MDP environment & 

experiment settings 

10 
Casas 

(2017) 
DDPG RL 

Vehicle 

counts, speed 

and 

occupancy 

Phase 

duration 

Factor for speed score 

scaled by a discount 

factor and vehicle counts   

Isolated 

intersection 

(hypothetical), 

3x2 

hypothesised 

grid network 

(hypothetical) 

and 43 

junctions’ 

network (Real 

network) 

Random 

Isolated 

intersection: 300,  

 

hypothesised and 

real network: NA 

Isolated 

intersection 

(no Left 

turn), 2 

phases = 

{EW,NS}, 

hypothesised 

grid network 

varies 4-6 

phases,  43 

junctions 

network 

varies 1-6 

phases 

mainly 2 

phases 

Random 

algorithm and 

multi-agent Q-

learning 

Single Loop detectors 

DDPG as superior Q-

learning in scenario 1 

(simplest case), slightly 

better in scenario 2, & 

same level for scenario 3 

(real world network). 

Both RL surpassed 

random algorithm 

Experimental settings 

to verify superiority 

of DDPG vs. RL 

11 
Li et al. 

(2017) 
SAE Queue length 

Phase 

duration 

difference of queue 

length between 

competing directions 

Isolated 

intersection 

(hypothetical) 

Random 

100 to 2,000 per 

approach (only 

through is allowed) 

2 Phases = 

{EW,NS} 
Q-Learning Single NA 

SAE system: 14% lower 

delay time, 410 lowered 

stops. 

2DSARSA lacks to 

mitigate operation 

based on its reward 

policy compared to 

QBPC 
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No. Author Agent State Action 
Traffic Control Strategy 

(Reward) 

Simulation Settings 

Comparative 

System(s) 

System 

Control 

Communication 

Channel 
Improvement Limitation 

Test Bed 
Traffic Flow 

Distribution 

Traffic Flow 

Volume (veh/hr) 
Phase Plan 

12 

Yen et 

al. 

(2020) 

2DSARSA 

traffic flow in 

terms of 

delays 

Phase 

allocation 

power ratio (throughput: 

end-to-end delay) 

3x3 grid 

matrix (9 

intersections) 

(hypothetical) 

Poisson process 

minor (2 

directions): 135, 

moderate 338, and 

major 675. 

Total=1,283 

2 Phases = 

{EW,NS} 

Deep Q-

Learning 

(2DQN, 

DQN), Deep 

SARSA, back 

pressure 

(DBPC, 

QBPC) 

Multi-

agent 

Connected 

vehicle 

QBPC: ~20% lower 

median end-to-end delay 

vs. 2DSARSA 

Experimental settings 

to verify superiority 

of 2DSARSA vs. 

BPC, extensive 

environment 

knowledge 

13 

Rasheed 

et al. 

(2020) 

MADQN 

Queue 

length, 

rainfall 

intensity, and 

red time 

Phase 

allocation 

difference in waiting time 

between two (2) actions 

7 signalised 

intersection 

(real) 3x3 grid 

network 

(hypothetical) 

NA NA 
Varies: 2-4 

phases 

Deteministic, 

RL, MARL 

Multi-

agent 
NA 

MADQN: 70% lower 

throughput, 75% lower 

queue length, 70% lower 

waiting time 

Experimental 

settings, extensive 

environment 

knowledge 

14 

Chu et 

al. 

(2021) 

DQN-BGR 

ResNet 
Traffic image 

Phase 

allocation 

Minimise the average 

waiting time 

Isolated 

intersection 

with real and 

hypothetical 

traffic flow 

NA 2,286 
2 Phases = 

{EW,NS} 

Fixed signal, 

Max pressure, 

Greedy-based 

fleet size, 

Greedy-based 

waiting time, 

DQN, C51, 

and Rainbow  

Single 

Surveillance 

cameras and 

connected 

vehicles 

DQN-BGR ResNet: 

>13% lower waiting time 

Experimental 

settings, extensive 

environment 

knowledge 

 

 

 

EW: Green for East and West approaches, NS: Green for North and South approaches, EWL: Green for East and West approaches with Green for Left turning movements, NSL: Green for North and South approaches with Green for Left 

turning movements, E: Exclusive green for East approach only, W: Exclusive green for West approach only, N: Exclusive green for North approach only, S: Exclusive green for South approach only 

*assumed fixed arrival rate as not mentioned in the study 

#configuration II is equally distributed among flow all directions 

## phase length as short as 1 second, N, S, E, W = Exclusive through and/or right turning, NL, SL, EL, WL = Exclusive left turning only 
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2.9 Summary  

 

2.9.1 Adaptive Control Systems 

 

The review of adaptive controllers revealed attractive methods to deal 

with a traffic light. Many of these approaches are restricted to the conceptual 

level and suffer from drawbacks that restrict them to prototypes. Therefore, 

real-world scenarios pose a challenge due to their complexity. There are three 

(3) areas of improvement that require primary intervention in the field of 

adaptive controllers:  

 

 

Figure 2.8: Adaptive system improvement cycle 

 

1. Scalability of the adaptive system in realistic environment 

application. Two (2) aspects of improvements are needed.  

 

Aspect 1: The simplicity of system design to mitigate network 

operations. The solo agent system performs independently and is less complex 

than the multi-agent system. The single agent is slow in converging to an 

optimal decision in online learning. Vibrant traffic dynamics could bring the 
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operation to its knees. In this regard, system developers resorted to ML and AI 

(offline) techniques to equip the single agent with a prior understanding of the 

environment assignment using training. Based on studies, memory-based 

control systems surpassed online agents in mitigating signal controllers. 

 

Aspect 2: Though much development in computing power has been 

achieved recently, the communication-based approach is not visible, at least 

for the current time. Connected and autonomous vehicle technology is far 

from being reached in the coming years. In addition, the function 

approximation for traffic stare is a coarse representation that ignores the 

stochasticity and heterogeneity of traffic nature. Hence, real-time 

communication is recommended to deal with the signal problem using 

intelligent adaptive controllers. Traffic congestion is an issue, and using 

available technology is necessary to make the signal controller more practical. 

 

2. Sustenance of the system to achieve complete adaptation without 

human interface. Two (2) aspects require intervention and implementation. 

 

Aspect 1: Agents are the traffic signals, but the learning task is 

formulated for feature extraction. The system utility is measured from the 

perspective of vehicle objectives, and this presents a core challenge for the 

signal controller. The signal controller has to deal with ever-changing 

dynamics. Such limitations restrict the implementation of adaptive controllers 

in an actual traffic situation. Instead, the control strategy must mitigate flow 

rates based on available capacity at travel corridors.  
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Aspect 2: The adaptation assignment should control the cycle 

operation. Restricting the role of the adaptive controller to phase duration or 

sequencing only narrows the applicability of the controller to adapt to 

surrounding dynamics. Thus, the acyclic technique is recommended for 

adaptive controllers. 

 

3. Evaluation of the system in a representative model context. 

Including a high level of realistic details in the simulated models is necessary 

(Gao et al., 2016). The proposed systems' credibility remains questionable 

without validating the simulation (Bazzan and Klügl, 2014). To validate a 

system, thorough testing is required to determine how well the controller 

system corresponds to the natural environment. In addition, there is a need to 

develop flexible and robust systems capable of treating complex simulation 

scenarios. 

 

2.9.2 Deep Reinforcement Learning Controllers 

 

The review of DRL studies showed a promising controller type that 

could revolutionise adaptive system generation. The researchers’ experiments 

strongly suggested that the DRL outperformed other generations of traffic 

signal systems and online adaptive controllers. On the other hand, the current 

study direction in DRL agents suffers from similar major issues in adaptive 

control studies, including scalability, sustenance, and proper evaluation.  
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Given the growing complexity of DRL techniques, new techniques 

must be deployed, and the mechanisms of the traffic environment must be 

better understood for the whole system to become more efficient. Innovative 

control strategies are needed to address intersection capacity rather than the 

standard feature extraction approach. The latter technique has reduced the role 

of DRL to responsive rather than adaptive systems. Integrating a junction-

based strategy is anticipated to be more effective. Congestion at an 

intersection is a result of insufficient capacity (Tiaprasert et al., 2015). 

 

Given that the DRL agent learns using a trial-and-error process, it is of 

prominent significance that the modelled environment reflects the actual 

traffic conditions and estimates accurate dynamics in response to the agent’s 

decision (Han, 2018). Nonetheless, most presented modelling approaches do 

not consider aspects of the actual traffic environment. It is imperative to 

perform research on signal control theory based on the multimodal traffic 

environment (Wang et al., 2018). The current benchmarking approach is hard 

to prove for real-world applications (Gong et al., 2019). 
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CHAPTER 3 

 

SYSTEM FEATURES AND CONTROL POLICY 

 

 

This chapter introduces the features of the proposed traffic signal control in 

this study. Then, a novel control strategy is presented for the DRL controller. The 

proposed system design is to tackle the limitations cited in the literature review in 

Chapter 2. 

 

3.1 System Design Features 

 

Many promising ideas were presented in the present works. However, 

most of the described methods are still at the conceptual prototype level, and 

their application in the real-world poses a challenge. In this study, we intend to 

develop a controller that closes the literature review gaps. Issues related to 

scalability, sustenance, and valuations are encountered in the DRL systems. 

Therefore, the design framework must feature (i) a low-cost communication 

protocol, (ii) an ability to function with minimal knowledge, (iii) an adaptation 

to traffic dynamics, and (iv) an optimisation for various traffic metrics. 

 

In terms of system design, a single-agent framework is adapted. This is 

because the solo system is less complex, sufficient to learn optimal decisions, 

and prevents chaotic behaviour in large-scale implementation. In comparison, 

coordination and centralised systems incur high set-up costs. The single agent 

herein refers to a system where each junction is controlled by one (1) agent 
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only, and this control agent (i) does not communicate with neighbouring 

intersections and (ii) deploys logic decisions independently. Figure 3.1 

presents the recommended system characteristics.  

 

 

Figure 3.1: Characteristics of DRL controller 

 

The DRL is capable of feature mapping and self-learning and requires a 

certain model set-up. A model-free RL is an option for system development. The 

model-free, unlike the model-based, does not require a transition function and 

acquires knowledge of the unknown using exploration (Mannion et al., 2015). The 

transition function adds unnecessary complexity and is difficult to determine 

in highly stochastic problems (El-Tantawy et al., 2013).  
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Two (2) popular model-free methods in adaptive control systems are 

Q-learning and State-Action-Reward-State-Action (SARSA). The SARSA (on-

policy) follows an initial policy and cannot explore other policies (Yen et al., 2020). 

In comparison, Q-learning (off-policy) estimates rewards by selecting actions to 

maximise the expected cumulative reward (Yen et al., 2020). As Q-learning offers 

exploration and updates policy accordingly, it is often used for developing the signal 

controller. Q-learning is proven to converge to optimum action values as long 

as all actions are repeatedly sampled and are represented discretely (Mannion 

et al., 2015).  

 

3.2 Traffic Control Policy 

 

The existing policies used in DRL controllers seem to lack innovation 

and capacity to support infrastructure integrity. The recent DRL studies in 

Section 2.7 focused on responding to vehicle-based features. The lack of an 

appropriate control strategy made intelligent controllers responsive to vehicle 

dynamics, requiring intensive data input and complicating design by 

coordinating or centralising decision-making.  

 

We propose a novel traffic strategy to support the DRL system in 

mitigating signal control based on intersection-based feedback. Laval et al. 

(2007) stated that a system will be at equilibrium if the system input 

accumulation across time is as close to optimal as possible. This understanding 

forms the basis for this research study's proposed traffic control policy. To 

achieve the optimal operation level, downstream (outbound) routes must be 

maintained at an acceptable level of service. Congestion occurs when the road 
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section exceeds its desirable density. Considering downstream-based policies 

are presented in other traffic engineering fields, particularly tunnel (Gazis, 

1972) and ramp metering assignments (Khoo, 2011), this is the first time such 

a strategy is proposed to solve the DRL signal problem. 

 

There are two (2) challenges with junction layout. First, the urban 

signal intersection represents a multi-directional traffic flow challenge as 

opposed to the tunnel and off-ramp metering (1-directional traffic flow). 

Second, the junction configuration often includes unsignalled slip lanes. 

Figure 3.2 presents each direction of travel as a tunnel scheduling challenge.  
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Figure 3.2: Traffic streams at signal junction viewed as tunnelling 

movements (Left-Hand Traffic) 

 

Each direction has four (4) allowed turning movements (left turn, right 

turn, through, and U-turn). The left turn guides an uncontrolled traffic stream 

Sucl with a short slip lane. The remainder of traffic flows comprises 

individually metered movement Scl by the traffic controller. The Scl is 

governed by phasing time and allocation. The signal logic deploys an 
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executive phase pexe for each direction of travel. Such an intersection layout is 

typical in the real world.  

 

At time step t, a platoon of vehicles Scl passing from the upstream stop 

line to the downstream destination via the intersection will pass through three 

(3) zones, as in Figure 3.3. These proposed zones include a junction’s zone 

(Z1), a merging zone (Z2), and a post-merging or recovery zone (Z3). At the 

edges of these zones, there are four (4) observed mean speed v values for the 

passing vehicular traffic. These v measurements can be computed from widely 

available surveillance tools such as cameras or built-in road detectors within a 

pre-defined time step t. These measured values include (i) entry speed vent to 

Z1, (ii) exit speed vext from Z1 (equivalent to entry speed to Z2), (iii) merge 

speed vmerg at the end of Z2 (or at the entry of Z3), and (iv) depart speed vdepart 

at the edge of Z3. The Z3 is assumed to have free flow condition, and speed 

limit vlmt can be achieved. The detection area length l of these zones is equal. 

The l should not be less than (i) the minimum merging distance and (ii) the 

minimum allowable distance to reach vlmt for a vehicle accelerating from rest 

at l=0.  
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Figure 3.3: Traffic flow entering the intersection from Northbound 

(Left-Hand Traffic) 

 

The significance of maintaining density at Z3 kZ3 to be as close as to its 

optimal density kop is necessary to ensure that the transition from upstream to 

downstream is kept balanced at all times (kZ3≈ kop.Z3). There are two (2) 

propositions made for kZ3 including (i) kZ3>>kop.Z3 and (ii) kZ3<<kop.Z3. These 

cases are directly proportional to the arrived flow rate Sext. If case (i) is 

observed, this suggests that the downstream is overutilized, and the solution is 

to mitigate the Sext from Z2. On the other hand, if case (ii) is detected, this 

indicates that the concentration k is insufficient and road capacity at Z3 Csec.Z3 

is underutilised and is less than optimal. Then, the control system should 

execute green duration Dgreen to permit cumulative optimum flow passage Scl 
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only to exit routes. Hence, the formulated strategy questions are (i) how to 

meter the signal duration Deff to induce the right amount of traffic volume V to 

ensure optimal density at downstream kopt.dwns is not exceeded (Obj. 1), and (ii) 

how to assign the correct phase logic pexe among competing arms of signal 

intersection to deliver throughput V to downstream (Obj. 2).  

 

A set of rules forms the basis of the signal strategy. The fixation of 

phase allocation at any competing arms of the signalised intersection should 

fulfil the following two (2) rules. 

 

Rule 1: Maximising the optimum density at downstream i.e., 

𝒎𝒂𝒙 ∑ 𝒌𝒁𝟑
𝒏𝑵

𝒏=𝟏  where N is the number of exit destinations per a direction of 

travel.  

 

The density in Z3 kz3 is computed from the following equation 3.1.  

 

𝑘𝑧3  =  
𝑉𝑡𝑜𝑡

𝑙
                   (3.1) 

 

Where 𝑉𝑡𝑜𝑡 is the total number of controlled  𝑉𝑐𝑙 and uncontrolled 𝑉𝑢𝑐𝑙 

vehicles entering the Z3 region. These measurements can be obtained from the 

D2 and D3 observer points, as in earlier Figure 3.3.  

 

As the Vcl corresponds to effective green time Geff, the maximum 

allowable throughput Vmax.cl is computed using the weighted density of 
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different lanes at downstream kw.dwn within l distance. The following equation 

3.2 presents this relationship. 

 

𝑉𝑚𝑎𝑥.𝑐𝑙  ≤  
𝑘𝑤.𝑑𝑤𝑛

𝑙
                   (3.2) 

 

Equation 3.2 gives a good indication of the range of allowed 

throughput (Obj. 1) to meet the downstream demand. However, this rule 

partially addresses the second part of the policy (Obj. 2) as it falls short if the 

competing direction of travels has equal opportunity. The l is fixed for all 

directions and is bound by local communication input and fixed storage 

capacity.  

 

Rule 2: Maximising speed gains vmerg for the exit flow at Z2 𝑺𝒆𝒙𝒕.𝒁𝟐 

and minimising difference-in-differences (DID) speeds for downstream 

discharge 𝒁𝟑 zones ∆vZ3.  

 

If a car accelerates 𝑎𝑣𝑒ℎ from rest (0m/s) then vext > vent. This is true as 

speed 𝑣 =  
𝑑

𝑡
 and Z1 is assumed to be vacant from other road users. The Z2 is 

a section of the road where Sucl merges with the passing Scl. The traffic 

completely merges within l space of Z2 and before entering Z3. Hence, the 

release of Sucl happens at two conditions: (i) within an acceptable gap time h 

allowed by incoming Scl>0, and (ii) when Scl =0. The condition (ii) occurs 

only if the permitted pexe is located at the Sucl approach or when a turning 

movement is void (Vcl=0veh) during the permitted pexe. 
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Overall, the ability of the exiting traffic stream Sext to absorb the Sucl 

without disturbance is determined by the available headway gap h and the road 

section’s capacity Csec. The Csec drop happens due to bottleneck activation. It 

is observed that merging causes a reduction of speed on the main road 

depending on traffic composition (Laval et al., 2007). Therefore, if the 

merging occurs at Z2, then the difference in speed before and after merging at 

Z2 ∆𝑣𝑍2 is presented in equation 3.3. 

 

∆𝑣𝑍2 =  𝑣𝑚𝑒𝑟𝑔 − 𝑣𝑒𝑥𝑡 =  {
+ 
0
− 

𝑛𝑜 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑡𝑜 𝑆𝑒𝑥𝑡

  𝑣𝑚𝑒𝑟𝑔 = 𝑣𝑒𝑥𝑡

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑡𝑜 𝑆𝑒𝑥𝑡

             (3.3) 

 

If quantity ∆𝑉𝑍2 ≥ 0 this presents that the section has acceptable h and 

suitable space in lZ2 and vice versa if ∆𝑉𝑍2 < 0. We call equation 3.3 

maximising speed gains for exit flow 𝑆𝑒𝑥𝑡 at Z2. 

 

The recovery Z3 is assumed to discharge traffic flow 𝑆𝑑𝑖𝑠 at nominal 

vdepart>vmerg towards next junction and improve the capacity at Z2 to Csec.Z2<1. 

The vdepart = vlmt as this section of road has passed the merging zone and lane 

changing and/or overtaking (if any) behaviour towards the next junction is 

anticipated to take place beyond this zone. The difference ∆𝑣𝑍3 for each Z3 is 

detonated in equation 3.4. 

 

∆𝑣𝑍3  =  𝑣𝑑𝑒𝑝𝑡 − 𝑣𝑚𝑒𝑟𝑔 =  {
+
0

  
𝑛𝑜 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑡𝑜 𝑆𝑑𝑖𝑠

𝑣𝑚𝑒𝑟𝑔 == 𝑣𝑙𝑚𝑡
            (3.4) 
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The ∆𝑣𝑍3 is used as a factor to weigh the impact of action pexe on 

downstream discharge links. To maintain the system at equilibrium, the 

difference-in-differences DID between discharge zones ∆𝑣𝑍3 needs to be 

minimal, as in equation 3.5. 

 

𝐷𝐼𝐷 = 𝑚𝑖𝑛∆(∆𝑣𝑍3)                  (3.5) 

 

The DID determines the volatility of the executed action i.e., pexe, on 

the surrounding intersection discharge links in terms of speed v performance. 

This global observer factor accounts for all exit links. The lower the score of 

the DID, the better the action return. This is to ensure system integrity and 

assist in simultaneously monitoring exit zones.  

 

The perseverance of Rules 1 and 2 is expected to meter upstream flow 

input, considering uncontrolled flow and downstream capacity. Rule 1, as in 

equation 3.2, maximises throughput to meet demand at exit links. On the other 

hand, Rule 2 tunes the input flow to ensure that the discharge links closely 

acquire travel speed across all intersection discharge links (equation 3.5) while 

maximising the speed gains in discharged flow (equation 3.3). 
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CHAPTER 4 

 

METHODOLOGY 

 

 

The flow chart of the methodology is presented in Figure 4.1. The 

process is divided into five (5) stages, including (i) data collection and 

processing, (ii) development of traffic micro-model environment, (iii) design 

of the DRL control system, (iv) training the DRL controller and (v) testing and 

analysis. Stages 2 to 4 are repeated for different traffic environment models. 

 

 

Figure 4.1: Flow chart for the study's methodology 
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4.1 Pre-development Stage 

 

The data were obtained from a local traffic consultant company (JA 

Project Consultant Sdn. Bhd., Kuala Lumpur, Malaysia). The records reported 

that the traffic count survey was conducted on 5th September 2019. Based on 

the factsheet, the traffic survey was carried out during peak hours. The peak 

hour durations are between 7.00am to 10.00am and 4.00pm to 7:00pm. These 

hours represent the peak periods during which the highest daily traffic flows 

are encountered. The mobility vehicles were divided into five (5) categories: 

passenger car, small lorry (or van), heavy lorry, bus and motorcycle. The 

following Figure 4.2 shows the location of the study area. 

 

 
Figure 4.2: Study area and junction locations 

 

The study region is a 3.5x5.5km2 area in Subang Jaya, Selangor, 

Malaysia. The location accommodates land use types of residence, commerce, 

and industry. This mixed development site location makes traffic operation 

very challenging as road users' habits and journey purposes differ from one 
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class to another. Of further interest, the study region has an international 

airport, Sultan Abdul Aziz Shah Airport (Subang Int. Airport), within a 3km 

radius. There are nine (9) signalled intersections. These intersections are 

closely located near each other (≤1km distance). The only isolated intersection 

is J1, which is about 1.6km from J2. The isolated junction is as a signalled 

intersection with a distance of 1.6km or more from its closest neighbouring 

intersection (Manual, 2000). The longest travel distance is 7.5km, from J1 to 

J9. Table 4.1 presents the distance matrix between the junctions. 

 

Table 4.1: Origin-Destination matrix based on measured distance 

(m) between the intersections 

Junction ID J1 J2 J3 J4 J5 J6 J7 J8 J9 

J1  1,600 2,600 3,100 3,950 4,750 5,500 6,500 7,500 

J2 1,450  1,000 1,500 2,350 3,150 3,900 4,900 5,900 

J3 2,450 1,000  500 1,350 2,150 2,900 3,900 4,900 

J4 2,950 1,500 500  850 1,650 2,400 3,400 4,400 

J5 3,800 2,350 1,350 850  800 750 2,550 3,550 

J6 4,600 3,150 2,150 1,650 800  750 1,750 2,750 

J7 5,350 3,900 2,900 2,400 750 750  1,000 1,000 

J8 6,350 4,900 3,900 3,400 2,550 1,750 1,000  1,000 

J9 7,350 5,900 4,900 4,400 3,550 2,750 2,000 1,000  

 

The signalised junctions differ in terms of geometric configuration and 

road hierarchy. The number of controlled approach arms ranges from two (2) 

(as in J2) to four (4) (as in J1 and J7). Each junction layout has an exclusive 

slip lane for left-turn movement. Two (2) urban road categories in the 

illustrative case study include arterial and collector roads. The collector roads 

are between junction J1 and junction J5. The arterial corridors are between 

junctions J6 and J7, J7 and J9, and along the northbound and southbound 

travelling directions of junction J1.  
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The hourly traffic counts and vehicle composition are presented in 

Table 4.2. The passenger car class has the highest composition, with an 

average value of 67% of total road users. The second mode of transport is 

motorcycles, representing almost a quarter of road users. The medium lorry 

represents a 7% occupancy rate. The heavy and bus types of vehicles together 

account for about 2% of road users.  
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Table 4.2: Traffic counts and survey 

Junction ID 

Traffic Counts (veh/hr) per Peak Hour Count 6 Hours Vehicle Composition (%)** 

7.00-

8.00C/L 

8.00-

9.00T 

9.00-

10.00V/l 

16.00-

17.00* 

17.00-

18.00T 

18.00-

19.00T 

Passenger 

Car 

Medium 

Lorry 

Heavy 

Lorry 
Bus Motorcycle Total 

J1 5,639 5,439 4,213 4,085 4,970 5,308 71.00% 8.10% 1.90% 0.30% 18.80% 100% 

J2 6,023 6,072 4,593 4,161 5,506 5,261 64.20% 7.00% 1.50% 0.30% 27.00% 100% 

J3 4,859 4,677 3,389 3,240 4,175 4,134 66.80% 5.70% 1.30% 0.50% 25.90% 100% 

J4 3,626 3,305 2,693 2,729 3,456 3,582 66.30% 5.60% 1.90% 0.50% 25.70% 100% 

J5 5,919 5,477 3,894 4,320 4,920 4,794 66.70% 8.60% 2.50% 0.10% 22.20% 100% 

J6 5,990 5,545 3,733 4,351 4,878 4,953 67.50% 7.70% 2.00% 0.30% 22.50% 100% 

J7 6,670 6,505 4,799 5,004 5,663 6,069 69.30% 8.50% 2.10% 0.10% 20.00% 100% 

J8 4,327 4,116 3,153 2,904 3,656 3,690 63.20% 5.40% 1.30% 0.04% 29.70% 100% 

J9 4,995 4,427 3,125 3,120 4,317 4,858 65.00% 5.00% 0.90% 0.30% 28.90% 100% 

Minimum 

Record 
3,626 3,305 2,693 2,729 3,456 3,582 63.20% 5.00% 0.90% 0.04% 18.80% 100% 

Maximum 

Record 
6,670 6,505 4,799 5,004 5,663 6,069 71.00% 8.60% 2.50% 0.50% 29.70% 100% 

Average Record 5,339 5,063 3,732 3,768 4,616 4,739 66.67% 6.84% 1.71% 0.27% 24.52% 100% 

Total Record*** 48,048 45,563 33,592 33,914 41,541 42,649  
CCalibration dataset, VValidation dataset, LTraining DRL Logic, TTesting dataset, *Back-up dataset 
**The hourly composition differs slightly from the 6-hours composition 

***Unbalanced total traffic counts of all the intersections 
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The junction capacity C under the fixed control was computed using 

formula 4.1 (Hunter-Zaworski et al., 2003).  

 

𝐶 =  (𝑔/𝐶𝑇). 𝑆                  (4.1) 

 

Where C is the capacity of the signalised intersection (pcu/hr), g is the 

effective green time (s), CT is the cycle length (s), and S is the saturation flow 

rate (pcu/hr). The saturation flow rate of 1,900pcu/hr/lane is standard and 

frequently used (Hunter-Zaworski et al., 2003).  

 

The region has a highly saturated flow rate during both peak periods. 

The utilisation of each junction varied notably, with some junctions 

experiencing medium flow (<66%) and others experiencing overflow 

(>100%). Table 4.3 presents the saturation flow and corresponding capacity 

for each junction. The computations indicate that the vicinity of the study area 

has a high saturated flow condition during the traffic count period.  
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Table 4.3: Existing capacity utilisation of the junctions at the study area 

Junction ID 

Saturation Flow (pcu*/hr) per Peak Hour Count Capacity Utilisation (%) per Peak Hour Count 

7.00-

8.00 

8.00-

9.00 

9.00-

10.00 

16.00-

17.00 

17.00-

18.00 

18.00-

19.00 

7.00-

8.00 

8.00-

9.00 

9.00-

10.00 

16.00-

17.00 

17.00-

18.00 

18.00-

19.00 

J1 3,212 3,237 2,790 2,867 3,221 3,373 81% 81% 70% 74% 83% 87% 

J2 1,664 1,925 1,624 1,652 1,924 1,836 62% 72% 60% 58% 68% 64% 

J3 3,180 3,146 2,803 2,777 3,279 3,154 78% 77% 69% 88% 104% 100% 

J4 1,665 1,586 1,549 1,674 1,925 1,930 52% 49% 48% 51% 59% 59% 

J5 2,148 1,842 1,783 2,054 2,178 2,112 62% 53% 51% 59% 63% 61% 

J6 4,091 3,811 3,041 3,259 2,979 2,855 102% 95% 76% 84% 77% 74% 

J7 5,795 4,202 3,614 4,066 4,080 4,770 126% 91% 78% 135% 135% 158% 

J8 2,345 2,325 2,001 1,964 2,221 2,244 55% 55% 47% 46% 52% 53% 

J9 2,679 2,392 2,011 2,123 2,680 2,758 83% 74% 62% 62% 78% 81% 

Minimum Record 1,664 1,586 1,549 1,652 1,924 1,836 52% 49% 47% 46% 52% 53% 

Maximum Record 5,795 4,202 3,614 4,066 4,080 4,770 126% 95% 78% 135% 135% 158% 

Average Record 2,975 2,718 2,357 2,493 2,721 2,781 78% 72% 63% 73% 80% 82% 

Total Record** 26,779 24,466 21,216 22,436 24,487 25,032  
*pcu is passenger car unit. The conversion factor is based on urban signal design conversion from the local consultant’s traffic data, i.e., passenger 

car =1pcu, medium lorry = 1.19, heavy lorry = 2.27pcu, bus = 2.08pcu, and motorcycle =0.22  

**Unbalanced total saturation flow of all the intersections 
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4.2 Development of Stochastic Traffic Micro-model 

 

A reliable micro-model mimicking the actual traffic situation is 

required to understand the complex nature of the traffic network system. This 

simulation approach allows for modelling each vehicle explicitly. It is crucial 

to research multimodal traffic in the theory of traffic control (Wang et al., 

2018). The Simulation of Urban Mobility (SUMO) software was used for this 

modelling mission. 

 

The micro-model is developed using the Simulation of Urban Mobility 

(SUMO) software. The SUMO is an open-source, microscopic, multi-model 

traffic simulation software developed by the Institute of Transportation 

Systems at the German Aerospace Center in the year 2000. The advantage of 

SUMO is that it addresses various traffic model applications and has a Traffic 

Control Interface (TraCI) tool. The TraCI gives access to run a traffic 

simulation using an application programming interface (API). This feature is 

vital as it allows integration of the traffic control algorithm in stage C of this 

methodology. The API in this research is Python. 

 

In order to achieve the objectives of the thesis, two traffic 

environments are developed, including (i) the isolated intersection J1 (4-leg) 

and (ii) the full network of nine (9) junctions. The traffic environment is 

defined as a 1-hour peak micro-model comprising five (5) classes of 

transportation modes. The configuration of each junction layout is presented in 

Figure 4.3. 
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Figure 4.3: Study area and extracted junction layouts from the SUMO model 
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Isolated Junction Model: The purpose of the isolated junction model 

is to measure (i) the stochasticity of learning environment impact in stabilising 

adaptive traffic controller performance in various traffic conditions (objective 

1), (ii) the significance of detection zone in developing an intelligent controller 

(objective 2), and (iii) the sustenance of the DRL agent under various traffic 

operation conditions.  

 

Arterial Network Model: The goal of micro-modelling the arterial 

network is to (ii) scale single system design for network operation (objective 

3), (i) test the sufficiency of local detection zones on network operation 

(objective 2), and (iii) verify the sustenance of the proposed downstream 

policy (Section 3.2) against other mainstream upstream policies in mitigating 

signal operation (objective 4).  

 

The micro-modelling assignment is challenging, especially in 

capturing traffic flow dynamics. There are two (2) challenges related to 

modelling assignment, including (i) modelling uncertainty behaviour and (ii) 

identifying proper parameters to reflect driving conditions. The framework for 

building a model is presented in Figure 4.4. 
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Figure 4.4: Calibration and validation procedure for micro-model 

 

Integrated model assessment requires consistently dispersed data 

sources in a spatially and temporarily complete data set to provide the model 

inputs (Janssen et al., 2009). Recorded data usually lack quality and reliability 

as the details vary enormously in spatial and temporal dimensions regarding 

the site-exhibited behaviour. With increasing study area size, input data tend 

to be more uncertain relative to the point of the studied site (Kersebaum et al., 

2015). Therefore, the uncertainty of the model increases simultaneously with 

the area under investigation (Antoniou et al., 2014).  

 

Furthermore, if improper model parameters are used, a simulation 

model falls short of mimicking the field conditions (Park and Won, 2006). 

Therefore, there is a significant need to define the proper parameters 

(Antoniou et al., 2014). Parameterization estimates fixed model parameter 

values for single processes under controlled conditions. 
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These challenges create the need to perform the decisive calibration 

and validation procedure. Calibration is defined as adjusting model parameters 

outside the model code to fit their output to a set of measured state variables 

(Kersebaum et al., 2015). A measure of performance is applied to identify the 

performance of a certain parameter value. Once the best calibration parameter 

set is measured, the next step is to perform validation. Validation examines 

whether a model is not beyond its application and can describe other 

scenarios. This examination of a calibrated model should be against an 

independent data set that has not been used for calibration (De Wit, 1982). 

Validation is performed on an unused set of field data, such as different day 

conditions or field conditions.  

 

4.2.1 Micro-Model Attributes  

 

The SUMO includes numerous parameters that permit a user to define 

a traffic model. The modelling attributes are divided based on their 

functionality into four (4) models: vehicle model, car following model, lane 

changing model, and junction model. This division helps to identify a 

particular behaviour within the simulation environment. In total, 20 

parameters and attributes fall within these categories. Figure 4.5 presents a 

summary of the four (4) categories of the micro-model. 
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Figure 4.5: Micro-model and associated modelling attribute 

categories 

 

 

4.2.1.1 Vehicle Model 

 

The vehicle attributes control how it will be inserted into the network 

and how it leaves it. The details for each vehicle class dimension and default 

values as per the SUMO documentation manual are presented in Table 4.4. 

 

Table 4.4: Vehicle class, physical dimension and speed features 

Vehicle 

Class 

No. 

Vehicle 

Type 

Length 

(m) 

Width 

(m) 

Height 

(m) 

minGap 

(m) 

Accel 

(m/s2) 

decal 

(m/s2)** 

emergency 

decal. 

(m/s2) 

Max. 

Speed 

(km/hr) 

1 Passenger 4.3 1.8 1.5 2.5 2.9 7.5 9 180 

2 Motorcycle 2.2# 0.9# 1.5 2.5 6 10 10 200 

3 Delivery 6.5 2.16 2.86 2.5 1.3 4 7 180 

4 Trailer/Truck 12* 2.50* 3.5* 2.5 1.1 4 7 130 

5 Bus 10** 2.50 3.4 2.5 1.2 4 7 85 

#2m, 0.80m width (Malaysian market 99%) 

*average of 12m is used to suit both trucks (7.1m) and trailers (16.1m) 

**average of 10m is used to suit local buses of 8.5m and 12m, respectively 
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The SUMO has default values for these parameters. Nonetheless, some 

of the pre-defined values were changed to reflect the driving environment of 

the study area. For instance, the default maximum speed of 200km/hr 

(55.55m/s) was changed to 110km/hr (30.55m/s) as this is the maximum speed 

limit on Malaysian roads.  

 

While vehicles were capped at the speed limit, individual speeds can 

vary to avoid homogeneous speeds and, consequently, invalid driving 

behaviour because vehicles cannot catch up with their leader vehicles. 

Assigning a speed factor is significant in capturing variation in cruise speed 

and making the simulation environment more realistic. The normal 

distribution was utilised to create the speed distribution using a 20% speed 

factor. The following Table 4.5 presents the vehicle attributes with default 

values. 

 

Table 4.5: Vehicle Model Attributes 

Parameter 

No. 

Parameter 

Attribute ID 

Default 

SUMO value 
Remark 

1 maxSpeed (m/s) 55.55 20.55 

2 SpeedFactor NA 
95% vehicles drive between 80% and 120% 

of speed limit. 

3 minGap (m) 2.5  

4 departPos (m) base  

5 departLane first  

6 departSpeed (m/s) 0  

7 maxSpeedLat 1  

8 latAlignment center  
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4.2.1.2 Car-Following Model 

 

The car-following model is a replica of the driver’s behaviour 

following another vehicle in the same lane in a traffic simulation (Kanagaraj et 

al., 2013). Despite enormous work in traffic flow theories, there is no such 

optimum traffic flow model to be accepted (Krauß, 1998). In this research, the 

Krauss theory is used as a traffic flow model. Krauss model performs well in 

non-steady or dynamic environmental conditions (Kanagaraj et al., 2013). This 

model is integrated into the SUMO software, and a modeller can customise 

two (2) attributes (sigma and tau) to calibrate the Krauss module. The sigma 

value controls a driver’s imperfection. The tau value measures a driver’s 

minimum desired time headway. Table 4.6 encloses the values of the Krauss 

model attributes. 

 

Table 4.6: Car Following Model Attributes for Krauss Model 

Parameter No. Parameter Attribute ID Default SUMO Value 

1 Sigma 0.5 

2 tau (s) 1.0 

 

 

4.2.1.3 Lane-changing Model 

 

The driving rules permit one vehicle per lane, but vehicles on the road 

intend to share the available lane space. This driving behaviour is most 

apparent among 2-wheeled vehicles. Two (2) observations were made from 

visual inspection: (i) motorcyclists drive in parallel to other vehicle classes on 

the road, and (ii) motorcyclists occupy the lane space of other road users 
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during stops or when trying to negotiate their ways in dense traffic conditions. 

The driving technique requires the formation of virtual lanes (sub-lane model) 

using the lane-changing model option, denoted as ‘SL215’, in SUMO 

software. By default, this model option is “off”, and a modeller needs to 

activate the sub-lane model. 

 

There are 10 parameters corresponding to the lane-changing model. 

These parameters measure various driver’s behaviour, including strategic lane 

changing (lcStrategic), minimum lateral gap (minGapLat), eagerness to use 

the configured lateral alignment within the lane (lcSublane), willingness to 

accept lower front and rear gaps on the target lane (lcAssertive), maximum 

lateral acceleration per second (lcAccelLat), cooperative lane changing 

(lcCooperative), encroach laterally on other drivers (lcPushy), impatience 

(lcImpatience), reluctance to perform speed gains to place the vehicle across a 

lane boundary (lcLaneDiscipline), and probability to violate red light 

(jmDriveAfterRedTime). Table 4.7 summarises the default values of lane-

changing parameters. 

 

Table 4.7: Lane-changing Model “SL2015” 

Parameter No. Parameter Attribute ID Default SUMO value Remark 

1 lcStrategic 1  

2 minGapLat (m) 0.60  

3 lcSublane 1  

4 lcAssertive (m) 1  

5 lcAccelLat (m/s2) 1 1.80 

6 lcCooperative 1  

7 lcPushy 0  

8 lcImpatience (s) 0 (no effect)  

9 lcLaneDiscipline 0  

10 jmDriveAfterRedTime -1 0 
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4.2.1.4 Junction Model 

 

The junction model is a representation of the geometric and lane 

configuration of the junctions. The layout was imported using OpenStreetMap. 

This tool is an available option for SUMO users. This was found to give better 

accuracy for the geometric design and road coordinates. Upon successful 

importation, the modeller must thoroughly check the intersection layouts and 

all associated links and nodes of the imported map. Moreover, it is necessary 

to ensure that traffic movements from a lane to a target lane are checked and 

verified. Wrong routing movement causes vehicle blockage and disturbs 

traffic insertion and flow. 

 

Another part of the junction model is to include the signal programme. 

The junctions in the study area operate under a fixed controller system. From 

site data, it was observed that each junction had a different cycle plan and 

phase duration. Refer to Appendix A for detailed information about the time 

plan for each of the nine (9) signalised junctions. There are no measured 

values for junction model attributes. 

 

After identifying and scripting the model attributes for the SUMO 

model and before performing the calibration and validation exercise, a 

preliminary exercise is required. This exercise aims to understand the 

modelling of software behaviour and evaluate the midnight threshold. The first 

step (a feasibility test) is crucial to determine the confidence level of the 

model’s outputs and associated model iterations. The second step (a midnight 
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test) is a must to remove outputs that can skew the results from the model. 

Figure 4.6 charts the progress towards calibration and validation.  

 

 

Figure 4.6: Flow chart of preliminary tests prior to calibration 

assignment 

 

4.2.2 Feasibility Test and Minimum Simulation Run 

 

The simulation uses multiple generating random numbers (RNG) to 

decouple different simulation aspects and reflect random behaviour. In this 

regard, SUMO implements the Mersenne Twister algorithm to generate seed 

value (SUMO Documentation). The default value in SUMO is fixed at 23423. 

Nonetheless, random RNG is activated throughout this research to ensure that 

the simulation model is stochastic and is not biased towards the deterministic 

behavioural output.  

 

This stochastic modelling approach leads to variation in model 

environment dynamics and output. The solution is to conduct a feasibility test 

to determine the required number of simulation runs. This minimum number 

of iterations must achieve a certain level of confidence (CL) and accuracy in 

the model’s stochastic behaviour and output.  
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The procedure for feasibility test is taken from Dowling et al. (2004). 

The minimum number of runs needs to fulfil the following equation 4.2. 

 

𝐶 =  2 ∗ 𝜎 ∗ 
𝑡(1−𝐶𝐼,𝑁−1)

√𝑁
                (4.2) 

 

Where C is 1-CL, σ is the standard deviation for the simulation runs, t 

is the t-distribution value corresponding to the confidence interval and number 

of model runs, and N is the number of simulation runs. For this research study, 

a 95% CL is targeted. Table 4.8 presents the minimum simulation runs 

required to achieve the targeted CL for both developed models. 

 

Table 4.8: Feasibility Test and minimum simulation run 

requirement 

Model 

Type 

Confidence 

Level (CL) 

No. Of 

Simulation 

Runs (N) 

Standard 

Deviations 

(σ) 

t(0.95,64) 

Value 

Confidence 

Factor (C) 

Confidence 

Level to 

Standard 

Deviation (C/σ) 

Isolated 

Junction 
95% 64 49.35 1.998 24.66 0.50 

Network 95% 10 236.14 2.262 338.00 1.43 

4.2.3 Midnight Effect for Simulation Duration 

 

How vehicles are inserted during simulation is significant to the 

model's overall performance. This is because, at the beginning of the 

simulation, the modelled section is empty, with no vehicles on the road. This 

initial part of the simulation is referred to as the ‘midnight’ driving period 

(Antoniuo et al., 2014). Vehicles during the ‘midnight’ period of the 

simulation do not experience external impacts of headways, speed restrictions, 

congestion, and travell time is perfect. Therefore, outputs from the start of the 
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simulation run have a strong tendency towards minor delays and do not reflect 

the actual traffic situation (Antoniuo et al., 2014).  

 

In this research study, the identified midnight durations for the isolated 

intersection and network model are 66 seconds (1 minute and 6 seconds), and 

780 seconds (13 minutes), respectively. The outputs from these initial 

durations are not considered for all assignment exercises, including calibration 

and validation (Stage 2), and testing (Stage 5). In addition, an extension of the 

peak hour model by midnight duration to have a complete 1-peak hour model 

was performed (i.e., 3660 seconds and 4380 seconds for isolated and network 

models, respectively).  

 

4.2.4 Calibration and Validation of Micro-model Traffic Environment 

 

The challenge with micro-model assignment is the ability of a model to 

represent traffic conditions. A simulation model falls short of mimicking the 

field conditions if improper model parameters are used (Park and Won, 2006). 

The calibration and validation is an iterative process until the model 

parameters are adjusted within a reasonable range. The calibrated attributes 

are categorised based on their functionality into three (3) models: vehicle, car 

following, and lane changing. This division helps to identify a particular 

behaviour within the simulation environment. A performance measure is 

applied to identify the performance of certain parameter values. Figure 4.7 

presents the cycle of calibration and validation assignment. 
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Figure 4.7: Procedure steps for calibration to testing 

 

The parameterization estimates fixed model parameter values for 

single processes under controlled conditions (Kersebaum et al., 2015). As five 

(5) classes of vehicles represent the heterogeneous driving environment, some 

of the calibrated attributes differ per class user. Once the parameters are tuned 

using the calibration test sets, validation is performed. Validation examines 

whether a model is not beyond its application and can describe other 

scenarios. This examination of a calibrated model should be against an 

independent data set that has not been used for calibration (De Wit, 1982). To 

validate a model, the appropriate measure of performance is needed. 

 

4.2.4.1 Measure of Performance (MoP) 

 

The measure of performance (MoP) characterises the distance between 

the aggregate measurements observed from the real traffic data and the 

simulation results (Zhang et al., 2008). The most commonly utilised 

measurements are link counts from various network locations, average travel 

speed, and trip travel time (Zhang et al., 2008). To measure the simulated 

traffic counts, detector loops were placed at the end of each approach lane 

(before the stop line).  
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Several fitness functions are commonly utilised as a measure of 

performance. Herein, a statistic called Geoffrey E. Havers (GEH) is used for 

the calibration target and goodness of fit. The GEH formula is helpful in 

creating a mathematically consistent data set that can be used for travel 

demand forecasting and traffic simulation models. The GEH is useful in 

comparing two (2) different flow values using the following equation 4.3. 

 

𝐺𝐸𝐻 =  √
(𝑉2−𝑉1)2

(0.5(𝑉1+𝑉2)
                   (4.3) 

 

Where V1 is the observed vehicle count from the traffic survey, and V2 

is the modelled vehicle count from the simulation run. 

 

As a rule of thumb, in comparing assigned and observed volumes, a 

GEH parameter of 5 or less is considered acceptable, and links > 10 GEH 

would require closer attention (Horowitz et al., 2014).  

 

It is important to mention that the GEH was computed for controlled 

lanes. Therefore, a second MoP is appended to represent the overall model 

accuracy. The environment model is of good quality if its output is within a 

15% margin of error to the site condition (Dowling et al., 2014).  

 

Examining the validation sets for both micro-models, the MoP 

outcome based on 95% CL indicates that the isolated micro-model intersection 

has 94.05% accuracy and a GEH value of 2.03. The network model has also 

achieved acceptable accuracy at 93.00% for link counts, 87.50% for travel 
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time and speed, and a 1.46 GEH score. Table 4.9 presents a summary of the 

MoP attributes for both developed models in this study.  

 

Table 4.9: validation summary with the MoP attributes 

Validation Set 

MoP Attribute 

Link Count (veh) 
Travel Time 

(sec) 

Speed 

(m/sec) 
GEH 

Site Data 5,301 NA NA  

Isolated Junction Model 4,985 NA NA  

Difference (Model:Site) 94.05% - - 2.03 

Validation Set 
Link Count 

(veh)* 

Travel Time 

(sec)* 

Speed 

(m/sec)* 
GEH 

Site Data 23,099 129 11.22  

Network Model 22,811 151 10.13  

Difference (Model:Site) 93.00% 87.50% 87.50% 1.46 

*Based on link counts ≤15%error. Refer to Appendix B for further details 

 

This study modelled the isolated intersection first; its calibrated values 

were incorporated into the network’s micro-model. The calibration and 

validation assignment for the network indicated that all values are suitable 

except for the maximum speed and departure position of a vehicle. The 

maximum speed for the network was reduced to 20.55m/s. This speed value is 

suitable as the arterial road network has a design speed limit of 70km/hr. The 

departure location of vehicles was “freed”. Therefore, vehicles can be inserted 

in the most suitable position at the insertion link. This finding is suitable as the 

network model's origin-destination trip is much more complex than the 

isolated intersection. The summary list of these parameters and their calibrated 

and validated values are presented in Table 4.10. 

 

Appendix B presents detailed calibration and validation procedures for 

the isolated intersection and network models. 

 



130 

Table 4.10: Calibrated and validated modelling attributes 

Parameter No. 
Parameter Attribute 

ID 
Description Default SUMO value Calibrated Value Range Validated Value 

i. Vehicle Model Attributes 

1 maxSpeed (m/s) Maximum velocity  55.55 30.55 (fixed for all) 30.55 (isolated), 20.55(network) 

2 SpeedFactor 
Speed multiplier to vary the speed 

among vehicle of fleets 
 

95% vehicles drive between 80% and 120% of speed limit. 

(fixed for all) 
Normc(1,0.1,0.2,2) 

3 minGap (m) 

Empty space after leading vehicle 

during stopping  2.5 0.80-3.2 

Passenger car and motorcycle: 0.89 

Medium lorry: 1.07 

Heavy lorry and bus: 2.50 

4 departPos (m) 
Insertion position for vehicle to 

enter the network  
base “>=0”, "random", "free", "random_free", "base", "last", "stop" Position (isolated), free (network) 

5 departLane Departing lane of inserted vehicle  first ≥0, "random", "free", "allowed", "best", "first Free 

6 departSpeed (m/s) 
Initial speed of inserted vehicle to 

network 
0 ≥0, "random", "max", "desired", "speedLimit" Max 

7 maxSpeedLat Maximum lateral speed 1 >=0 1.80 

8 latAlignment 
Preferred lateral alignment for the 

sublane-model.  

left, right, center, 

compact, nice, arbitrary 

Motorcycle: “nice” 

Other classes: “center” 

Motorcycle: “nice” 

Other classes: “center” 

ii. Car Following Model (Krauss model theory) 

9 Sigma 
Driver’s imperfection (0 denotes 

perfect driving) 
0.5 0-1 

Passenger car and motorcycle: 0.22 

Medium lorry: 0.44 

Heavy lorry and bus: 0.50 

10 tau (s) 
Driver's desired (minimum) time 

headway 
1.0 1.0-3.0 1.0 

iii. Lane Changing Model: SL2015 

11 lcStrategic 
Eagerness for performing strategic 

lane changing 
1 0-4 

Passenger car and motorcycle: 0.67 

Medium lorry: 1.33 

Heavy lorry and bus: 1.00 

22 minGapLat (m) 
Desired minimum lateral gap 

when using the sublane-model 
0.60 0.15-2.5 

Passenger car, motorcycle and medium lorry: 0.67 

Heavy lorry and bus: 0.60 

13 lcSublane 
Eagerness for using configured 

lateral alignment within a lane 
1 0-4 

Passenger car, motorcycle and medium lorry: 4.00 

Heavy lorry and bus: 1.00 

14 lcAssertive (m) 

Willingness to accept lower front 

and rear gaps on the target lane. 

The gap is divided by this value 

1 0.15-2.5 

Passenger car: 0.41 

Motorcycle: 0.33 

Medium lorry: 0.41 

Heavy lorry and bus: 1.00 

15 lcAccelLat (m/s2) Maximum lateral acceleration  1 1.80  1.80 

16 lcCooperative 

Willingness for performing 

cooperative lane changing. Lower 

values result in reduced 

cooperation 

1 0-1 

Passenger Car and Motorcycle: 0.94 

Medium lorry: 0.89 

Heavy lorry and bus: 1.00 

17 lcPushy  
Willingness to encroach laterally 

on other drivers 
0 0-1 

Passenger car and motorcycle: 0.83 

Medium lorry: 0.67 

Heavy lorry and bus: 0.00 

18 lcImpatience (s) 
Dynamic factor for modifying 

lcAssertive and lcPushy. 
0 (no effect) -1,0 to 1 

Passenger car, motorcycle and medium lorry: 0.44 

Heavy lorry and bus: 0 

19 lcLaneDiscipline 

Reluctance to perform speedGain-

changes that would place the 

vehicle across a lane boundary 

0 0-4 

Passenger car and motorcycle: 0.22 

Medium lorry: 0.44 

Heavy lorry and bus: 0 

20 jmDriveAfterRedTime 
Driving at yellow light and break 

at red. 
-1 0 0.00 
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4.3 Traffic Signal Controller Development 

 

As stated in Section 3.1, this research study proposes a single system 

controller based on a deep Q-leaning algorithm. The signal operation is 

independent of other neighbouring controllers. This system concept 

decentralises decision-making to the local intersection only.  

 

Hidden layers between input and output characterise the deep Q-neural 

technique. This technique is capable of classifying nonlinear data and feature 

extraction compared to other machine learning types where boundary 

classification is limited to linear data.  

 

The task of interference between the agent and the environment 

includes decision-making (action), a policy to guide the action process, and a 

reward to evaluate the choices. Ultimately, the agent is expected to reach an 

optimal operation that maximises the reward’s return. The interaction between 

the agent controller and the traffic environment is depicted in Figure 4.8. 
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Figure 4.8: Adaptive controller interaction with the traffic 

environment 

 

Based on Figure 4.8, at time step; t, the agent controller observes an 

input or state; st. Based on this input, the agent selects an appropriate traffic 

signal phase; output, this choice is referred to as action; at. As vehicles move 

under this action phase at, a new state, st+1 is received. The performance of the 

action, at, is measured, and the agent receives a reward, Rt at the end of the 

time step; t+1. In time progression, the learning agent engages with the 

intersection utilising the reward function as a guide to make the decision and 

to move towards an optimal solution that maximises its rewards or decreases 

its punishment.  

 

4.3.1 Approximation Technique for Developed Controller Agent 

 

The Q-learning algorithm for a pair of state s and action a Q(s,a) and a 

reward R in a timestep t is represented by the Bellman equation (Wang et al., 

2018) in equation 4.4.  

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼(𝑅𝑡+1 +  𝛾𝑄𝑚𝑎𝑥𝑎
(𝑠𝑡+1, 𝑎) − 𝑄 (𝑠𝑡, 𝑎𝑡))  (4.4) 
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To accommodate future rewards, a discount rate γ is commonly used. 

The weighting factor α adds significance to the future. Further explanation for 

these factors is in Section 4.4 Training and Testing.  

 

Two (2) traffic signal systems were developed in this study. The main 

difference between these logic systems is the traffic control policy (reward).  

1. Logic 1: Deep convolution neural network (DCNN) agent. 

The DCNN is in line with other adaptive controller studies. The 

logic programme utilises an upstream control policy to operate 

a signal intersection. The development of this logic system is to 

study the impact of the stochastic traffic environment on 

learning and testing the controller and the application of 

enclosing loop detectors with defined detection areas (local 

protocol). Further specifics about the DCNN system are 

presented in Section 4.3.2. 

2. Logic 2: Deep sequential Q-learning agent based on 

density-speed policy at discharge routes (DQLA k-v). The 

QLA k-v is the first adaptive controller to utilise downstream 

conditions to control a signalised junction. This development 

aspect aims to test the efficiency of the novel downstream 

policy in mitigating arterial network operation and validate the 

capacity of decentralised adaptive single controllers in a 

network context using a local communication protocol. Further 

details about the DQLA k-v system are presented in Section 

4.3.3. 
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4.3.2 Upstream Controller: DCNN Agent 

 

4.3.2.1 State Inputs 

 

The DCNN logic observes using discrete lane cells (DLC). There are 

three (3) inputs from the traffic environment, including (i) the speed of a 

vehicle, (ii) the position of a vehicle, and (iii) signal phasing. These inputs 

correspond to vehicle information and junction state. The observations are 

registered within a time interval t equivalent to green phase duration Tgreen. 

 

The input shape for these parameters depends on the number of lanes 

and edge configuration. The input matrices should propagate for a specific 

stretch of road using a reference point. In this regard, a 70 metres catchment is 

chosen. This choice is found to be practical, as existing hardware devices are 

capable of covering such a detection area. Lanearea detectors are used in the 

SUMO model of the environment. Lanearea detector captures the traffic 

within a specified area along a lane. 

 

The traffic light status is either green or yellow. The yellow phasing is 

indicated with “1”, while “0” represents the green phase. The following 

matrices in equation 4.5 represents the state input for the speed, position, and 

traffic light.  

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  [
𝑃1
𝑃2.

..
𝑃70

]     𝑆𝑝𝑒𝑒𝑑 =  [
𝑆1
𝑆2.

..
𝑆70

]   𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐿𝑖𝑔ℎ𝑡 =  [
0
1

]               (4.5) 
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Figure 4.9: Explanatory snapshot at time step t of the isolated intersection 

and two input matrices for position and velocity for a 20 metres length of 

road from stop lines as received by the DCNN agent 

 

Table 4.11 summarises the neural structure of the DCNN logic. 

 

Table 4.11: Parameters for the DCNN agent 

Agent DQLA k-v 

Hidden Layer Class  Conv2D 

Number of Hidden Layers 3 

Activation Function  ReLU 

Loss Function Mean Squared Error (mse) 

Target Network Function Gradient Desecnt (RMSprop) 

Weight Factor for Loss Fucntion, tau 0.15 

Output Layer Class Flat 

Activation Function-Output Layer  Linear 
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4.3.2.2 Traffic Control Reward Policy  

 

The reward is a traffic control strategy utilized by the agent to 

understand the effects of the latest action (Nagabandi et al., 2018). The reward 

strategy 𝑅𝑡 for DCNN agent is cumulative halting time for vehicles during 

each action. This 𝑅𝑡 is vector value with negative or positive arithmetic. The 

positive reward (𝑅𝑡+1 > 0) points out a decrease in delay. The negative 

reward (𝑅𝑡+1 < 0) relates to an increment in halting time. Hence, a phase re-

allocation will be executed if the halting time in the green direction falls below 

the cumulative halting time in other directions, as represented in equation 4.6.  

 

𝑅 =  𝑅𝐺  – ∑ 𝑅𝑅                      (4.6) 

 

Where 𝑅 is the total value of vector reward responding to the 

summation of halting vehicles during the green phase 𝑅𝐺  and red phase 𝑅𝑅.  

 

4.3.3 Downstream Controller: DQLA k-v Agent 

 

4.3.3.1 State Input 

 

The DQLA k-v logic observes a 1-dimensional input. The state input is 

the density in each direction of travel. Like the DCNN controller, a detector 

observes the state within 70 metres from a stop line. The SUMO model can 

extract the required value within the specified communication detection zone. 
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This observation is registered within a time interval t equivalent to green phase 

duration Tgreen. 

 

𝐼𝑛𝑝𝑢𝑡 =  [𝑘1,𝑗]1≤j≤N                    (4.7) 

 

Where k is the average density per the direction of travel, and N is the 

number of junction approaches.  

 

Table 4.12 summarised the structure of the DQLA k-v logic. 

 

Table 4.12: Parameters for the DQLA k-v agent 

Agent DQLA k-v 

Hidden Layer Class Dense 

Number of Hidden Layers 2 

Activation Function  ReLU 

Loss Function Mean Squared Error (mse) 

Target Network Function Gradient Desecnt (RMSprop) 

Weight Factor for Loss Fucntion, tau 0.15 

Output Layer Class Dense 

Activation Function-Output Layer  Softmax 

 

4.3.3.2 Traffic Control Reward Policy  

 

The intelligent DQLA manages signal operation based on the proposed 

downstream k-v traffic control policy, as presented in Section 3.2. The reward 

R represents the k-v components as in equation 4.8.  

 

𝑅 =  𝑅𝑘 + 𝑅𝑠                 (4.8) 
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The scalar reward 𝑅𝑘 is a ratio of the downstream density to the 

optimum density at Z3 (kZ3:kop.dwn). To generalise favoured density values, the 

density ratio Rk is categorised into five levels (close definition to Level of 

Service LOS for road capacity) as in Figure 4.10. The highest positive reward 

is given for near optimum condition (kZ3≈kop.dwn). The optimum kZ3 is a 15% 

(above or below) kop value. The award 𝑅𝑘 deteriorates as kZ3 records value 

further away from kop.dwn. A punishment is awarded if a pexe leads to kZ3 =0. 

Because of incurred waiting time costs associated with the poor allocation of 

the assigned signal phase.  

 

Figure 4.10 Categorical reward return for density to optimum 

density ratio at discharge zone 

 

The kop.dwn is half of jam density kjam. The kjam is computed from the 

Greenshield model (1934) given the road section capacity k, average speed v, 

and free-flow speed vf as in equation 4.9. The Greenshield model was found to 

be the best-fit model to represent the speed-density relationship (Khoo and 

Tang, 2016).  

 

𝑘𝑗𝑎𝑚 =
𝑘

(1− 
𝑣

𝑣𝑓
 )

                 (4.9) 

 

The kop.dwn is as in the following equation 4.10.  
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𝑘𝑜𝑝.𝑑𝑤𝑛 =
1

2
 𝑘𝑗𝑎𝑚 =

𝑘

2(1− 
𝑣

𝑣𝑓
 )

               (4.10) 

 

The scalar 𝑅𝑠 in earlier equation 4.8 consists of two (2) quantities: (i) a 

reward related to maximising speed gains for exit flow 𝑆𝑒𝑥𝑡.𝑍2 at Z2 as in 

earlier equation 3.2 (Section 3.2), and (ii) a reward factor to quantify the DID 

for speed v performance as in earlier equation 3.5 (Section 3.2). To scale the 

DID, a coefficient of variation CV is utilised. The CV value is the ratio of 

standard deviation 𝜎 of the speed difference ∆𝑣𝑍3 at discharge links affected 

by pexe to the mean µ of the speed difference ∆𝑣𝑍3 at unaffected discharge 

links. The lower the degree of the CV, the better the action return. A negative 

operator is added as v is not a negative value and to punish the agent if the 

ratio is large, as in equation 4.11.  

 

𝐶𝑉 = −
𝜎

𝜇
                 (4.11) 

 

4.3.4 Action Assignment and Phase Control 

 

The traffic light operation is cycle free. The acyclic control gives 

complete freedom to the agent to decide on phase allocation and duration 

assignment. The agent decides on the time plan and phase duration. Each 

action should ensure a transition from green to yellow and vice versa. A 

governing duration of time will last before the agent is allowed to implement a 

new phase plan. Each execution of an action 𝐴𝑡 will undergo a transition 

process in the following order: 
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1. Changing a green phase into a yellow phase.  

2. Turning the yellow phase into a red phase. 

3. Assigning a new green phase. 

 

The number of permissible actions a is equivalent to the number of 

competing traffic movements X i.e., (a = X). The concept of the phasing plan 

is to dedicate a single phase for each approach to avoid conflicting 

movements, as in Figure 4.11.  

 

 

Figure 4.11: Executive phase action for the intelligent controller 
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4.3.4.1 Phase Timing for Isolated Intersection Model 

 

One of the isolated testing model's main objectives is to investigate the 

environment model's extension in DRL and the ability of the adaptive 

controller to act effectively in the traffic environment. Earlier studies in DRL 

indicated unrealistic phase timing (<5 seconds). The naive timing durations 

not only skew results in favour of the proposed DRL but also negatively 

impact and jeopardise the safe operation. 

 

In order to reduce such bias, the DCNN signal controller executes an 

action every 20 seconds. The action timing corresponds to 16 seconds of green 

time (Tgreen) and 4 seconds of yellow time (Tyellow). The green allocation is 

closely related to the recommended minimum green phase time of 15 seconds 

to match the driver’s expectation (Urbanik et al., 2015). In addition, the phase 

is benchmarked closely to the least phase of the present fixed signal controller 

during the survey data collection. The least phase duration is 20 seconds from 

site records.  

 

4.3.4.2 Phase Timing for Network Model 

 

In the network model context, a dynamic phase time is used. The 

effective green time comprises green time Tgreen and yellow time Tyellow. The 

Geff  ranges between 𝑇𝑚𝑖𝑛 ≤ 𝐺𝑒𝑓𝑓 ≤  𝑇𝑚𝑎𝑥. Whereas, the Tyellow is fixed at 4 

seconds, the Tgreen is flexible between minimum Tmin.green and maximum 

Tmax.green durations.  
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Minimum duration Tmin.green: The Tmin is required to meet safe traffic 

operations. Two (2) timing attributes are associated with this requirement, 

including (i) start-up lost time Tlst of 2 seconds (Manual, 2000), and (ii) timing 

required to reach optimum flow rate Topt.min. The Topt.min is equivalent to time 

required for four (4) vehicles to pass an intersection. To pass the intersection, 

the headway gap h is computed using the kinematic law incorporating conflict 

zone length s, vehicle’s acceleration a, and number of successive cars left the 

intersection O as in equation 4.12. 

 

ℎ𝑖 =
√(−𝑎.

1

𝑠𝑚
.(𝑂−1))2+2.𝑎.𝑠

𝑎
              (4.12) 

 

Maximum duration Tmax.green: The Tmax is computed from the last 

vehicle moving from rest alast at the end of l as in equation 4.13. 

 

𝑇𝑚𝑎𝑥 = √
2𝑙

𝑎𝑙𝑎𝑠𝑡 
                (4.13) 

 

4.4 Training the Deep Q-learning Controller 

 

Solving the Bellman function (earlier equation 4.4) to find the optimal 

policy for the agent control requires a comprehensive search for all scenarios, 

forecasting their chances of occurrence, and evaluating their profitability in 

terms of expected rewards. Hence, finding the optimal policy will require two 

(2) elements: (i) a complete understanding of the environmental dynamics and 
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(ii) a computational capacity and hardware resources capable of providing 

complete computation of the solution (Sutton and Barto, 2018).  

 

Two (2) challenges were encountered in training the proposed agents. 

First, there is no documented guideline for training a DRL agent for traffic 

signal control, specifically for the dynamic and stochastic environment, as in 

this study. Second, the model of arterial network training is more challenging 

and requires more computational power compared to the isolated intersection. 

Therefore, we took the initiative to document a systematic training procedure 

for the DRL agent. Figure 4.12 presents a flow chart for the DRL training.  

 

 

Figure 4.12: Flow chart for DRL Training 
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4.4.1 Pre-training Agent  

 

This stage is essential to determine the minimum requirements for memory 

size, iteration runs, and grid search (if required).  

 

4.4.1.1 Replay Memory Size 

 

The training is offline, where the system’s memory and neural network are 

created. Pre-training is required to accumulate tuples of states, actions, rewards, and 

experiences for replay memory. Initially, the decision on action is random, where the 

agent selects an element from the specified action range. The random selection 

follows the normal (Gaussian) distribution. The Gauss distribution is a continuous 

probability distribution for a real-valued random variable that takes the form of a 

density function, as in the following equation 4.14. 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
 𝑒−

1

2
(

𝑥−𝜇

𝜎
)2

              (4.14) 

 

Where f(x) is the distribution function, 𝜎 is the standard deviation of 

observations, µ is the mean of observations, and x is an examined observation in the 

data.  

 

There is no specific optimal memory size. Studies in traffic signal controls 

reported various ranges of memory sizes for their training assignments. A study by 

Liu and Zou (2018) showed that buffer size substantially affects an agent’s learning 

dynamics. Too much or too little memory can slow down the value function learning. 

In this aspect, we recommend that a reply memory size be at least sufficient to 
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accommodate one (1) complete model run assignment incorporating the warm-up 

period. The phase time definition determines how many instances or actions are 

taken. This threshold value is computed using the following formula 4.15. 

 

#𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑝𝑒𝑟 𝑒𝑝𝑖𝑠𝑜𝑑𝑒) =  
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑎𝑐𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒
            (4.15) 

 

For the isolated model, the number of instances per episode amounts to 183 

or (3660 seconds/20 seconds). For the network model, the number of instances per 

episode amounts to 486 or (4380 seconds/9 seconds). The instant is equivalent to one 

(1) action decision per agent. Setting a higher memory size could capture higher CL 

on the model and more instances of the environment. For the arterial traffic network, 

little more than two (2) hours (2 training episodes) of environment instances were 

embedded into the memory at 1,200 memory size. The isolated intersection model 

had a buffer size of 2,000, equivalent to 11 hours of operation instances. These values 

were also suitable for the available computing power. 

 

4.4.1.2 Iteration and Episode Runs 

 

After the memory is filled with random actions, the agent begins training. 

The new experiences are embedded in the memory to replace the older decisions. The 

training is carried out in a continuous task involving episodes. Each episode is 

equivalent to one (1) model run (i.e., peak hour simulation time). The least number of 

episodes during the training is determined from traffic model features. The stochastic 

approach in this study requires the model to be freed from the RNG value. In 

addition, the traffic flow is dynamic, with a 20% variation. In other words, 

each simulation episode is different from other episodes.  
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To ensure that the trained agent captures environment dynamics 

accurately, the least number of training episodes needs to follow the 95% CL 

threshold (Section 4.2.2). The CL means that the re-occurrence of a particular 

dynamic happens within a 95% chance in these iterations. So, the training 

should comprise at least 64 episodes for the isolated intersection model and at 

least 10 episodes for the network model. Otherwise, the trained agent will fall 

short of sufficient knowledge of the environment.  

 

The number of training episodes is not to be confused with the pre-

training episodes (build-up of buffer memory). The summation of both 

episodes will give the minimum iteration runs required to build up memory 

and then train the DRL to achieve optimal value function.  

 

4.4.1.3 Hyper-parameter Tuning 

 

The greedy Q-Learning policy π selects alternatives based on 

immediate and local considerations without considering the long-term 

alternatives that could be better present decisions (Sutton and Barto, 2018). 

The π policy takes the following form in equation 4.16. 

 

𝜋 = 𝑎𝑟𝑔maxQ(𝑠,𝑎) for all s ∈ S, a ∈ A             (4.16) 

 

Choosing the correct value for parameters is significant for training the 

model more effectively. Two (2) parameters impact the Q-learning algorithm, 

as in earlier equation 4.4. These parameters are (i) the learning rate ∝ to 
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control the action-value assessment and (ii) the discount factor γ to weigh 

short-term (immediate) and long-term rewards. The γ is crucial to give 

significance to the future rewards over the immediate ones. Both of these 

factors are ∈[0,1]. Once the Q-function is estimated, the agent selects an 

action reflecting the highest value paired with a present state. 

 

However, the agent can get stuck in local minima if no proper 

exploration strategy is in place (Sutton and Barto, 2018). Therefore, to balance 

the exploration and exploitation approaches, a trade-off decay ε factor is 

implemented where 0≤ε≤1 (Mannion et al., 2016). At the value of 1, 

exploration is chosen. On the other hand, with probability 1-ε, exploitation is 

chosen. 

 

To begin with, there are popular default values commonly used in 

literature studies. For instance, the default values for α, γ and ε are 0.001, 0.95, 

and 0.995, respectively. While these values were found suitable for training 

the DRL agent in the isolated intersection model, they proved very costly to 

train the agent in the arterial network condition. In particular, the decay factor 

ε was very costly for the network micro-model.  

 

In order to decay from 1 (exploration) to 0.01 (exploitation), 198 

model runs will be needed. These runs caused the training assignment of the 

14,000 vehicles network to cripple as it exceeded the computation power of 

the used machine. In addition, the SUMO software is a single-thread CPU. 

Hence, running parallel multi-thread sessions was not applicable to reduce the 
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load on the computer. Several solutions were also attempted, such as using 

remote servers and cloud computing machines. However, the most practical 

solution is to perform a hyper-parameter exercise. This solution is practical 

when computation power is restricted.  

 

The grid search exercise yielded attribute values of 0.001, 0.50, and 

0.44 for the epsilon, learning rate, and weight, which are most suitable for the 

DRL algorithm. Further details on the hyper-parameter tuning are detailed in 

Appendix C. 
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4.4.2 Training Agent 

 

The training was carried out using a Windows 7 professional 64-bit 

operating system with process specifications of Intel(R) Xeon(R) CPU E5-

1650 @ 3.20GHz and Random-access memory (RAM) of 32.0GB. 

 

The training for the isolated intersection included a total of 500 

episodes. Each episode is a simulation run of 63 minutes, or about 22 days of 

continuous traffic. The agent’s learning assignment took little more than 24 

hours (one day) to complete the training session on the mentioned machine. 

 

The arterial network learning process included 100 to 180 episodes for 

DQLA k-v and DCNN agents, respectively. Each episode took an average of 

three and a half (3.5) hours to complete. Overall, it took about 16 days to 

complete the training session for DQLA k-v and nearly 23 days to complete 

the training of DCNN agent for the network environment due to the machine's 

capacity. 

 

Table 4.13 summarises the training attributes for DRL agents in the 

isolated and network traffic micro-models. 

 

Table 4.13: Agent training and environment model 

Model Isolated Network 

Traffic Volume (veh/hr) 5,639 14,182B 

Memory Size 2000 1200 

Batch Size 32 128 

Minimum Episodes# 273 15 

Actual Training Episodes 500 100 (DQLA k-v) and 180 (DCNN) 
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Model Isolated Network 

Discount Factor α 0.95 0.50 

Learning Rate γ 0.001 0.001 

Decay Factor ε 0.995 0.44 

Training Duration (hrs) 84 140 

Number of Trained 

Instances* 
91,500 

437,400 (DQLA k-v) ** and 

787,320 (DCNN)** 
BReported volume after balancing the network of 48,048veh/hr 
#Estimated from the required episodes for memory size+95%CL+Exploration-

exploitation episodes 

*Estimated from the product of the actual training episodes and the number of instances 

per episode 

**Total of all nine (9) intersections of the arterial network 

 

4.4.2.1 Performance Measure 

 

The traffic signal problem represents the NP-hardness class (Al Islam 

and Hajbabaie, 2017). The properties of the solution are not linear, making the 

convergence to the solution a challenge for the agent. The convergence 

problem is faced in this stochastic, highly dense training environment. 

Similarly, it is not anticipated that the agent during training will not achieve 

optimal decisions at every instant. The dynamics of traffic change with every 

decision. Nevertheless, the agent must enhance operation within the specified 

traffic flow duration (i.e., peak hour).  

 

Therefore, a performance measure is used to identify the right agent for 

testing. A ranking system based on multi-objectives is used to determine the 

most suitable trained agent for testing. The system is based on the number of 

halting vehicles, the ratio of clearance, the mean waiting time, the mean travel 

time, and the mean cruising speed. This measuring technique is practical 

because computational power has been exceeded. For further details on trained 

agent selection, refer to Appendix D. 
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4.5 Testing and Evaluation 

 

The testing is an online stage where the deployed controller monitors 

and manages the junction using the trained memory and neural architecture. 

The testing of the developed controllers is carried out on a different set of 

traffic data. This arrangement is necessary to ensure that the agent during the 

learning process is not overfitting and is capable of performing in alternative 

scenarios. Besides that, having a separate dataset will not give the developed 

intelligent controllers an advantage over the other comparative systems. 

 

Table 4.14: Traffic volume for testing sets 

Model Isolated Network 

Data Set 8:00-9.00am 

Traffic Volume (veh/hr) 5,439 15,508B 

BReported volume after balancing the network of 45,563veh/hr 

 

4.5.1 Comparative Systems 

The comparative controller programmes include all generations of 

traffic controllers: fixed, actuated, and adaptive. The fixed controller 

represents the site condition of the traffic data. The time plan and cycle 

assignment correspond to the site condition during data collection.  

 

4.5.1.1 Fixed Controller 

The fixed controller was driven from Webster’s theory. The objectives 

of Webster’s technique include (i) the development of shorter queues for 
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traffic streams, (ii) the minimization of total vehicle delays, and (iii) the 

increment of the intersection’s throughput (Krishna et al., 2018). The optimum 

cycle length 𝐶𝑜𝑝𝑡 is the ratio of total lost time L to total critical flow ratio Y. 

This ratio is presented by equation 4.17 (Zakariya and Rabia, 2016). 

 

𝐶𝑜𝑝𝑡 =  
1.5𝐿+5

1−𝑌
                 (4.17) 

 

4.5.1.2 Delay-based Actuated Controller 

 

The actuated signal controller based on delay time (Delay) approach is 

an actuated generation strategy proposed by Oertel and Wagner (2011). The 

system adjusts the green duration by utilising vehicles’ delay. The green phase 

is terminated as soon as the accumulated delay on an approach is dissolved. A 

single delay di occurs within a time increment ∆t when the current speed of a 

vehicle vi cannot reach its maximum speed limit vmax. The summation of di 

gives the delay in an approach d as in equation 4.18. The Delay system was 

initially developed for isolated intersections and was reported to outperform 

traditional strategies with penetration rates above 10%.  

 

𝑑 =  ∑ ∆𝑡 (1 −
𝑣𝑖(𝑡)

𝑣𝑚𝑎𝑥
)𝑛

𝑖=1                (4.18) 
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4.5.1.3 Longest-Queue-First Controller 

 

The longest-queue-first algorithm (LQFA) is online adaptive control 

logic. The LQFA aims to minimise queue size in each direction of traffic flow 

for a junction (Wunderlich, 2007). This queue-based scheme prioritises lanes 

with larger queue lengths (Wu et al., 2017). The original Wunderlich’s 

algorithm has a weighting factor for a certain class of vehicles (e.g., 

emergency). However, considering the vehicles carry the same weight in this 

study, the algorithm only focuses on maximising queue output per phase. The 

signal phase �⃗� corresponds to the maximum number of vehicles queued at a 

current time Qt (queue occupancy vector), as in equation 4.19. 

 

�⃗�  ∈ max(𝑄𝑡)                 (4.19) 

 

4.5.1.4 Maximum Pressure Controller 

 

The online adaptive maximum pressure control algorithm 

(MaxPressure) responds to the maximum product of weighted queue length γ 

and its corresponding saturation flow S for each phase (Varaiya, 2013). The γ 

is the difference between the upstream and downstream queue lengths. The 

greedy policy aims to increase throughput at the signalised junction. The 

MaxPressure u at every state X is given as in equation 4.20. 

 

𝑢(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝛾(𝑆)(𝑋)}               (4.20) 
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4.5.1.5 Actor-Critic Reinforcement Learning Controller 

 

The AC-RL is an RL algorithm enclosing an actor that selects actions 

and a critic that gets the agent near to long-term objectives (Aslani et al., 

2017). 

 

The above systems (excluding Fixed) are developed based on a similar 

acyclic programme for this research's proposed intelligent agents. This design 

consideration is vital to ensure that system variations are technically 

associated with traffic policy and to rule out any bias that could arise from 

inequivalent timing plan strategies during the testing and evaluation stage.  

 

4.5.2 Traffic Environment Models 

 

We developed two (2) DRL control logics (DCNN and DQLA k-v) to 

achieve the objectives and close the current gaps in the DRL studies. Two (2) 

stochastic traffic micro-model environments (isolated and arterial) were 

calibrated and validated using real-traffic conditions.  

 

Each intelligent controller has a different traffic control strategy. 

DCNN executes an upstream strategy (waiting time), a popular technique in 

present DRL studies. DQLA k-v is based on a downstream capacity policy. 

The novel proposed downstream policy directly addresses traffic flow and 

intersection capacity.  
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Both DRL controllers (DCNN and DQLA k-v) have similar deep 

learning structures, and their performance variation is anticipated to be 

directly related to the reward control policy. Table 4.15 summarises each 

testing model environment and the comparative systems used. 

  



156 

Table 4.15: Testing Models and comparative systems 

Test Model 
Agent/ 

Policy 

State 

Representation 
Signal Reward Comparative Systems Testing Objectives 

Isolated 

Intersection 
DCNN/ 

Upstream 

Speed, Position 

and Traffic State 
Waiting time  

• Fixed 

• LQFA  

• Actor-critic RL  

• Efficiency of the DRL agent in a stochastic traffic model of 

the environment   

• Stability of DRL in various traffic conditions 

• Implementing built-in infrastructure detection technology for 

the DRL system 

Network 

• Fixed 

• Actuated-delay  

• LQFA  

• MaxPressure  

• Scalability of a single system for network operation 

• Sustenance of control strategy 

• Compatibility of communication channel for optimising 

signal operation in the arterial network 

• Evaluating the system in a realistic and stochastic traffic 

model of the environment 

DQLA k-v/ 

Downstream 
Density 

Speed and density 

at exit links 
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4.6 Summary of Methodology 

 

The deep learning technique for the logic design is intended to advance 

the signal operation by predicting near-future changes in the intersection 

environment. To ensure that the controller has the ability to meet the demand, 

the acyclic plan is integrated into the controller system. Thereof, an executed 

phase will serve the demand instantaneously. The phase duration meets the 

standards and requirements for safe operation.  

 

To scale up the design of the controller and suitability for present 

integration using available detection technology, both developed controllers 

rely on data input from detector devices within a defined area of the 

intersection. The detection zone is within a practical range of not more than 

140 metres from the stop line. Furthermore, both of the developed controller 

logics are decentralised and do not require coordination with neighbouring 

junctions. The single design is preferred in order to reduce the complexity and 

system requirements that are often associated with centralised and coordinated 

systems. The centralization and coordination implicate the applicability of 

DRL deployment on a real-world scale.  

 

To deal with the issue of evaluation and validate the performance of 

the DRL controllers, an accurate model of the study area was developed. The 

features of the model comprise five (5) vehicle classes, various junction 

configurations, road geometric elements, and behavioural attributes to 

accurately represent patterns and driving conditions in the environment. In 
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total, two (2) models were developed for an actual study area in Malaysia, 

including (i) the isolated intersection and (ii) the arterial network. Each of 

these evaluative models is required to validate a number of objectives. 

 

The formulated procedure in this research work is comprehensive and 

takes into account aspects of system features, evaluation, and operation. This 

methodological approach is believed to be necessary to answer the research 

questions and is meant to close the mentioned gaps (scalability, sustenance, 

and evaluation) that were cited in this thesis work. Figure 4.13 presents the 

procedure summary. 

 

 

Figure 4.13: Summary of the procedure 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

 

The chapter is segmented into two (2) sections based on test bed type. 

Section 51 presents the findings related to the isolated traffic signal 

environment, and Section 5.2 presents the findings for the network model 

environment. All the reported results take into account the midnight effect of 

the simulation. The early minutes of the simulation run are disregarded from 

the analyses. In addition, the average measured attributes are based on a 

number of iterations corresponding to the 95% confidence level. This 

repetition of model runs is significant to ensure that the results are valid and 

reflect real-world conditions.  

 

5.1 Isolated Signal Operation 

 

Four (4) model scenarios corresponding to various levels of traffic 

saturation flow were developed to evaluate the controller's stability and the 

proposed training method. The quantitative analysis is essential to benchmark 

the DCNN agent performance under various traffic conditions and to weigh 

the DCNN agent’s stability. The traffic scenarios are as follows: 

• Low Saturation Environment (L-Sat Env.): the capacity utilisation is 

below 36%. Low arrival rate to the intersection at 3,284veh/hr. 
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• Medium Saturation Environment (M-Sat Env.): the moderate 

utilisation of the capacity between 36% and 66%.  

• High Saturation Environment (H-Sat Env.): this scenario represents the 

actual surveyed junction condition with traffic flow amounting to 

5,439veh/hr. The capacity utilization is 83%.  

• Over Saturation Environment (Over-Sat Env.): the total traffic flow at 

the junction exceeds capacity (>100%). This environment represents 

severe traffic conditions with high flow rates (6,984veh/hr). Signal 

controllers typically fail to adapt and mitigate such traffic events. 

 

Each saturation condition was tested for the following systems: (i) 

fixed (FC), (ii) longest-queue-first (LQFA), (iii) actor-critic RL (AC-RL), and 

(vi) the proposed deep convolution neural network (DCNN) algorithm.  

 

Three (3) aspects to examine the impact of the signal systems influence 

on (i) traffic attributes in terms of time and speed, (ii) traffic flow and 

simulation run time, and (iii) phase time and traffic demand. In addition, the 

proposed DCNN was benchmarked against other prominent DRL systems. 

 

5.1.1 Timing and Speed Performance Measures 

 

The t-statistic test was conducted to evaluate the significance of the 

reported difference between DCNN and comparative signal systems. Table 5.1 

presents the test findings, followed by a detailed discussion.  
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Table 5.1: Measure of performance for various traffic attributes 

Test Set L-Sat Env M-Sat Env. H-Sat Env. Over-Sat Env. µ. Under-Sat 

System 

µ.TT (s) 
p-

value 

µ.TT (s) 
p-

value 

µ.TT (s) 
p-

value 

µ.TT (s) 
p-

value 
µ.TT (s) DCNN = 

74.32 

Diff. 

(%) 

DCNN = 

93.30 

Diff. 

(%) 

DCNN = 

101.16 

Diff. 

(%) 

DCNN = 

101.80 

Diff. 

(%) 

FC 90.03 -17% <0.05 106.26 -12% <0.05 135.23 -25% <0.05 163.64 -38% <0.05 

-18% A-C RL 71.43 4% 0.62 92.3 1% 0.81 97.98 3% 0.35 109.32 -7% <0.05 

LQFA 63.27 17% 0.09 79.94 17% 0.07 94.16 7% 0.06 98.73 3% 0.09 

System 

µ.WT (s) 
p-

value 

µ.WT (s) 
p-

value 

µ.WT (s) 
p-

value 

µ.WT (s) 
p-

value 
µ.WT (s) DCNN = 

0.33 

Diff. 

(%) 

DCNN = 

0.28 

Diff. 

(%) 

DCNN = 

0.91 

Diff. 

(%) 

DCNN = 

9.05 

Diff. 

(%) 

FC 0.33 0% 0.47 0.57 -51% 0.13 40.87 -98% <0.05 184.6 -95% <0.05 

-91% A-C RL 0.37 11% 0.36 0.29 -3% 0.66 0.24 279% 0.32 10.91 -17% 0.71 

LQFA 0.33 0% 0.44 0.81 -65% 0.24 5.6 -84% <0.05 61.51 -85% <0.05 

System 

µ.RS (m/s) 
p-

value 

µ.RS (m/s) 
p-

value 

µ.RS (m/s) 
p-

value 

µ.RS (m/s) 
p-

value 
µ.RS (m/s) DCNN = 

0.39 

Diff. 

(%) 

DCNN = 

0.28 

Diff. 

(%) 

DCNN = 

0.21 

Diff. 

(%) 

DCNN = 

0.14 

Diff. 

(%) 

FC 0.31 26% <0.05 0.24 17% <0.05 0.16 31% <0.05 0.09 56% 0.05 

2% A-C RL 0.41 -5% 0.38 0.29 -3% 0.59 0.22 -5% 0.07 0.16 -13% 0.05 

LQFA 0.51 -24% <0.05 0.37 -24% <0.05 0.25 -16% <0.05 0.24 -42% 0.05 

µ.WT (s) = mean Waiting Time, µ.TT = mean Travel Time, µ.RS (m/s) = mean Relative Speed (m/s), Diff = Difference between DCNN to a comparative 

logic 

µ-Under-Sat: mean performance computed for under-saturated conditions (low, medium and high test scenarios) where p<0.05 
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DCNN vs. FC: the measure of performance attributes indicated that 

the proposed DCNN surpassed the site condition in various test scenarios. The 

recorded values showed travel time savings between 12% and 38%. The 

saving gap increases almost linearly with the scenario challenge. Between L-

Sat and Over-Sat, the mean travel time under the FC system rose from 90 

seconds to 164 seconds, or an 82% increment. In comparison, DCNN showed 

an increment of only 37% (from 74 seconds to 102 seconds). On the same 

basis, the mean waiting time experienced by vehicles increased to three (3) 

minutes for FC in Over-Sat conditions compared to less than 10 seconds for 

DCNN. The significant improvement in operational conditions for DCNN is 

related to two (2) factors: (i) the real-time adjustment to traffic demands and 

(ii) the controller’s policy associated with halting time at the intersection level. 

In contrast, FC is rigid as signal timing is predetermined based on assuming 

constant traffic flow.  

 

DCNN vs. A-C RL: these memory-based RL systems were designed 

using similar reward functions (i.e., waiting time). Hence, it is not surprising 

to find out that their performance is indistinguishable in terms of waiting time 

(p<0.05). The only cited significance is in travel time for the Over-Sat 

scenario. In the Over-Sat model, DCCN significantly reduced travel time by 

7%. The relative speed gap produced the time gains. The relative speed 

between moving and halting vehicles was significantly reduced by 13% under 

the DCNN controller. Putting into account that the training conditions of both 

algorithms were similar, the finding indicated that the policy-driven RL 
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algorithm was possibly better at managing operations in a new environment 

than the temporal difference RL algorithm (A-C RL). 

 

DCNN vs. LQFA: The superiority of DCNN is evident in the H-Sat 

and Over-Sat test beds. Under these traffic flow conditions, DCNN produced 

lower waiting times (reward policy), closing the gap between halting and 

moving vehicles. There is a flux in waiting time by 10 folds between the H-Sat 

(6 seconds) and Over-Sat (62 seconds) under LQFA operation. On the other 

hand, LQFA barely increased by 4 seconds (4%) in travel time and differed by 

0.01 (4%) in mean relative speed between the H-Sat and Over-Sat conditions. 

LQFA optimises operations based on queue length. Hence, as the traffic 

arrival rate fasted and became almost equal in all directions of the intersection 

(filling detection space), LQFA converged to vehicle platoon optimisation. 

The finding presents the importance of detection boundary limits for 

developing controllers.  

 

The log travel time for all test scenarios showed that RL-based 

controllers achieved moderate travel time during the peak hour simulation. 

Figures 5.1 to 5.4 present the log travel time.  
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Figure 5.1: Log travel time for over-saturated (Over-Sat) scenario 

 

 

Figure 5.2: Log travel time for high saturated (H-Sat) scenario 
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Figure 5.3:  Log travel time for medium saturated (M-Sat) 

scenario 

 

 

Figure 5.4: Log travel time for low saturated (L-Sat) scenario 

 

5.1.2 Flow Rate and Simulation Run 

 

The traffic volume is peak hour counts at the junction border. All flow 

rates correspond to 3,440 seconds, which was found suitable during the 
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calibration and validation process. As all lanes lead to the signalised 

intersection, the throughput will directly impact the time of the simulation run 

(completion). The simulation run is the total time duration needed for each 

vehicle to complete its trip and exit the model. Alternatively, the simulation 

end time will take longer to terminate whenever the vehicle flow is disrupted. 

The sources of disruption are related to (i) delay at the junction level due to 

stopping and (ii) delayed insertion into the model if there is a backlog from the 

junction (shortage of space). The active vehicles are defined as the count of 

running vehicles per unit time (veh/s). For simplicity, the term active vehicles 

is interchangeable with flow rate (veh/s). This performance measure is 

significant in determining the effectiveness of the signal logic in mitigating 

throughput. The whisker analysis is utilised for this section.  

 

Over-Sat Env.: Based on iterative runs for oversaturated flow 

conditions, the proposed DCNN system acquired the most optimal 

performance and led to the highest median flow rate at 295veh/sec, and the 

least simulation time at 63 minutes. The FC system recorded a close median 

flow with nearly a 1% difference (292veh/sec) to DCNN, but FC had twice the 

simulation time (133 minutes) to reach the mentioned flow record. In other 

words, in a real-world situation, the pre-timed programme will need more than 

two (2) hours to clear the imbalanced traffic condition. This time duration for 

FC logic is twice the needed time for DCNN logic to deal with similar traffic 

conditions.  
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Though LQFA showed the second slowest signal operation (after FC) 

at 83 minutes for averaged simulation runs. The recorded time of LQFA is 

30% more than the proposed DCNN to clear the rush hour traffic volume. In 

addition, LQFA registered the lowest mean flow rate at 202veh/sec, or a 29% 

lower flow value compared to DCNN. From these findings, it seems that the 

policy based on queue length diminishes in imbalanced conditions and when 

the difference among traffic volumes in competing directions reduces. This 

suggests that LQFA works best when there is an apparent hierarchy in traffic 

demands.  

 

Comparing the flow rate and simulation run for DCNN and A-C RL, 

the former showed a 5% higher average flow rate and a 3% shorter simulation 

run. Though these results might not be of much significance in the isolated 

intersection context, in a large-scale network, these performance achievements 

are translated to greater reward and mitigation gains. The following Figure 5.5 

presents the flow rate and simulation duration for the Over-Sat model. 
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Figure 5.5: Flow rate (primary access-left) and simulation time 

(secondary access-right) for Over-Sat environment 

 

H-Sat Env.: The whisker analysis provided information on the flow 

rate distribution (veh/s). Results indicated that FC had the highest flow rate at 

220veh/sec. The pre-timed controller was designed to correspond to the 

saturation flow of the site condition. However, the FC system's rigid time 

phasing does not change in real-time, causing the fixed timer control to take 

longer to mitigate the operation at the intersection level. The proposed DCNN 

system effectively serves demand, and the traffic input is cleared 15 minutes 

faster (or 19% improvement) than the FC system. 

 

Other comparative systems (LQFA, and A-C RL) showed comparable 

performance in clearing the model’s traffic with nearly a 2% (1~2minutes) 

time difference compared to the proposed DCNN system. Nonetheless, the 

mean traffic flow for the proposed DCNN controller was improved by 7% and 

21% compared to A-C RL and LQFA, respectively. The improved flow aligns 

with the earlier gains in timing and speed attributes. The following Figure 5.6 

presents the flow rate and simulation duration for the H-Sat environment. 
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Figure 5.6: Flow rate (primary access-left) and simulation time 

(secondary access-right) for H-Sat environment 

 

Med-Sat and L-Sat Env.: In under-saturated scenarios, the FC system 

maintained the highest median traffic movement rate compared to other 

controllers. Simultaneously, the pre-time logic produced the highest spread in 

flow ratio. The wide range of flow is caused by the traffic policy, which 

corresponds to saturation flow. Longer phase time is given to directions with 

higher demand, and vice versa.  

 

In comparison, the proposed DCNN controller minimised flow spread 

distribution (fairer policy) for both test conditions and cleared directional flow 

within approximately 2% of the other controllers. The results indicate that 

DCNN is superior in responding to traffic demand and treating directional 

flow faster and fairer. In the L-Sat, DCNN lowered the distribution between 

3% and 38%. In the M-Sat, DCNN improved the distribution by 12% to 34%. 

Figures 5.7 and 5.8 present the flow rate and simulation duration for the M-Sat 

and L-Sat environments. 
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Figure 5.7: Flow rate (primary access-left) and simulation time 

(secondary access-right) for M-Sat environment 

 

 

Figure 5.8: Flow rate (primary access-left) and simulation time 

(secondary access-right) for L-Sat environment 

 

The flow rate and run time analyses verify that the proposed DCNN 

achieved the best performance, especially in imbalanced saturation conditions. 

The over-saturated test verified that the conventional system (FC) and online 

controller (LQFA) had difficulty mitigating signal operations. The traffic 

policy for both systems causes the deficiency. The classic fixed controller 

considers fixed arrival rates, whereas LQFA requires slow changes in traffic 
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dynamics. Evaluating the difference in run time between under-saturated and 

over-saturated scenarios, the efficiency in signal operation dropped by 49% 

and 30% for FC and LQFA, respectively. In actual traffic applications, these 

deficient values mean that signal lights will require additional time between 20 

and 30 minutes to clear the one-hour traffic flow. 

 

The memory-based controllers showed a small deviation in signal 

operation between 2% and 6% for the proposed DCNN and A-C RL 

controllers, respectively. On this ground, the value-based logic (DCNN) 

surpassed the actor-critic (A-C RL). The finding indicates that the proposed 

DCNN signal logic and policy were trained and implemented successfully, 

contributing to its stable performance. Table 5.2 presents a summary of the 

flow rate values and simulation runs. 
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Table 5.2: Summary of Whisker analyses and data in terms of statistics 

Scenario Over-Sat Env H-Sat Env M-Sat Env L-Sat Env Under-Sat Env 

Controller F
C

 

D
C

N
N

 

A
-C

 R
L

 

L
Q

F
A

 

F
C

 

D
C

N
N

 

A
-C

 R
L

 

L
Q

F
A

 

F
C

 

D
C

N
N

 

A
-C

 R
L

 

L
Q

F
A

 

F
C

 

D
C

N
N

 

A
-C

 R
L

 

L
Q

F
A

 

F
C

 

D
C

N
N

 

A
-C

 R
L

 

L
Q

F
A

 

Whisker 

Box 

Values for 

Flow Rate 

(veh/sec) 

Minimum 134 120 129 59 108 71 46 31 28 39 9 13 4 11 1 1 47 40 19 15 

Q1 276 287 272 200 204 180 167 165 140 119 116 96 83 66 63 52 143 122 116 104 

Median 292 295 280 207 221 188 185 171 153 125 128 105 89 73 68 58 154 128 127 111 

Q3 309 299 284 211 243 193 195 175 161 133 136 119 94 79 76 65 166 135 135 120 

Maximum 330 307 295 224 262 227 205 188 184 155 159 143 114 90 93 83 187 157 152 138 

Range 195 186 166 165 154 156 159 157 156 117 151 130 110 80 92 82 140 117 134 123 

Data 

Average Flow 

Rate (veh/sec) 
287 283 268 202 218 185 177 163 148 125 124 106 87 71 68 58 151 127 123 109 

Average 

Simulation 

Time (min.) 

133 63 65 89 78 63 62 64 63 62 61 61 61 61 61 61 67 62 62 62 
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5.1.3 Signal Phasing Controller and Traffic Demand 

 

Cycle-free means choosing the appropriate phase assignment without 

following a particular order of green time allocation or road hierarchy. The 

acyclic plan was embedded in three (3) logics (DCNN A-C RL and LQFA). 

The FC controller presented the site condition. A major player in assigning the 

phase signal depends on the travel demand at the intersection.  

 

The approach’s demand for the test set showed that the north approach 

had a higher traffic volume at 2,005 or 37%, followed by the southern 

approach at 33% (1,815 vehicles), the eastern approach at 24% (1,316 

vehicles), and lastly, the west approach at 6% (with 303 vehicles). 

 

Generally, the traffic phasing corresponded proportionally to the 

approaches with the highest demand volume (northern and southern 

directions). This correspondence is true for the acyclic-based controllers, as 

shown in Figure 5.9.  
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Figure 5.9: Proportion of traffic light phase per controller 

 

On the other hand, lower travel corridors had varied findings. Where 

the RL-based controllers intended to give lower phase allocations, the queue-

based controller (LQFA) gave a higher allocation to the east leg of the 

intersection. Breaking down the volume at this intersection showed that the 

traffic volume at the east approach includes 59% (uncontrolled) left-turning 

movement in the test set. The traffic signal does not control the short storage 

left-turn lane. The memoryless online controller (LQFA) likely corresponded 

to the spillback queue and eventually allocated more phase timing for the 

eastern approach. The mitigation had impacted the signalised junction's global 

optimisation, leading to higher time costs and lower throughput, as in Sections 

5.1.1 and 5.1.2.  

 

In comparison, the RL-based controllers (DCNN and A-C RL) were 

much more capable of anticipating traffic dynamics using the taught memory 
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to configure the phasing assignment. The operation assignment depends on the 

forecasted input (vehicle speed, position, and signal phase) and expected gains 

(minimising the halting time between the red and green directions). Based on 

the results, the green movement allocation at major approaches with higher 

traffic demand increased by 42% for the peak hour test. In contrast, the west 

and east approaches witnessed a simultaneous reduction of 43% and 33% for 

each dataset, respectively. In addition, the results prove the importance of 

acyclic design to boost the performance of the RL-based controllers. 

Furthermore, the ability of RL-based controllers to evolve to optimal solutions 

in stochastic environments with proper training and a bias-free guidance 

policy.  

 

5.1.4 Benchmarking to DRL Studies 

 

The purpose of this section is to evaluate the performance of the 

proposed DCNN (simple structure) with other similar and complex DRL 

structures from the literature review chapter (Section 2.7). It is worth noting 

that the DRL studies had different experimental settings and traffic flow 

aspects, making this benchmarking qualitative rather than quantitative. The 

qualitative approach determines the extent of the design aspect in the agent’s 

performance.  

 

The experimental context in this PhD study is more complex compared 

to other DRL studies for the following reasons: 
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1. Stochastic traffic environment. The traffic flow is not uniform. The 

variation in traffic flow behaviour reaches 20%. The micro-model 

does not have a fixed seed value.  

2. Mixed-mode traffic model. The model comprises five (5) classes of 

vehicles. Each class exhibited unique behaviour and was calibrated 

and validated individually against site conditions. 

3. Illustrative case study. The intersection layout and volume 

represent site condition. The traffic volume stands at 5,439 vehicles 

(H-sat environment). The intersection layout has uncontrolled 

turning movements. The approach lanes differ in the number of 

lanes. All turning movements are considered for the signal 

operation. 

4. Training and testing environment. Unlike many DRL studies, the 

DCNN controller was trained and tested on a different traffic data 

set. Training and testing on the same traffic data set is biased as it 

gives the memory-based controller an advantage in knowing its test 

model and better chances to exceed other comparative controllers. 

5. Various testing scenarios based on intersection capacity were 

developed in this study. The traffic volume for DCNN test 

scenarios ranged from 3,284 vehicles (L-Sat) to 6,984 vehicles 

(Over-Sat). This study's lowest traffic flow ratio in the L-Sat 

scenario is comparable to other DRL studies' commonly reported 

flow ratios for the isolated signal intersection.  
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These five (5) environmental characteristics make the testing bed much 

more challenging for the proposed controller. Comparatively, the DRL studies 

integrated some (but not all) of the settings mentioned above.  

 

The DCNN architecture is similar to popular studies as in Genders and 

Razavi (2016) and Gao et al. (2017), and DCNN is less complex compared to 

DDPG (Casas, 2017), 2DSARSA (Yen et al., 2020), and 3DQN (Liang et al., 

2017). The state representation is DTSE, with adjustments to accommodate 

vehicle categories. The action of DCNN is acyclic. In this aspect, less than 

30% of studies proposed this signal assignment and mainly focused on 

restricting the role of the adaptive RL controller to phase execution. While the 

authors intended to propose short durations (<5 seconds), the developed 

DCNN logic executed an effective green time of 20 seconds. The choice of 

long duration is to reduce the causes of variation in experimental settings to 

evaluate the DRL agent's effectiveness in a stochastic environment against real 

signal operation settings (pre-timed controller). 

 

Overall, the DCNN controller has more similarities in control agent 

design and state representation but differs in environment settings and action 

plan from other DRL controllers.  

 

Two (2) popular traffic measures in traffic control studies are often 

reported: travel time and waiting time. Based on Figure 5.9, the proposed 

DCNN agent achieved the most waiting time improvement at 90%, and it 

marked about a 10% improvement over the nearest controller agent. 
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Regarding travel time, the proposed controller yielded the highest saving in 

travel cost (20% improvement) and performed equivalently to the control 

agent presented in Genders and Razavi (2016). These findings indicated that 

the proposed DCNN logic converged better in the operating signal 

environment.  

 

 

Figure 5.10: Benchmarking the mean performance of DCNN and 

other DRL controllers from the literature review 

 

The other main observations are as follows: 

 

Traffic policy: the control strategy for DCNN is commonly used 

(57%) in DRL studies. The architecture of DCNN design is comparable to 

Genders and Razavi (2016), Gao et al. (2017), Kővári et al. (2021), Wan and 

Hwang (2018), and Chu et al. (2021), and DCNN is less complex compared to 

DDPG (Casas, 2017), 2DSARSA (Yen et al., 2020), and 3DQN (Liang et al., 

2019, and Wang et al., 2019). The DTSE of DCNN is often utilised for state 

representation in nearly 57% of the reported DRL studies. The reward policy 
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is not uncommon and is addressed in several DRL techniques. Of further 

interest, the traffic volume used to test the proposed controller is high 

compared to other studies. Nonetheless, the proposed DCNN logic showed the 

highest gains. The comparative discussion indicates that the method of 

training DCNN successfully yields better results. Hence, the extension of 

accurate representation of the environment model is evident to impact the 

intelligent controller performance. 

 

5.1.5 Closing Remarks for DCNN Controller 

 

Gao et al. (2017) defined stability in control decision when no 

oscillation between good and bad action is observed. Several DRL studies 

showed that their proposed agents were unstable enough to maintain stability 

in various testing conditions. The studies of Casas (2017), Li et al. (2016) and 

Chu et al. (2021) reported deficiency challenges in various testing conditions. 

In contrast, the DCNN system could maintain stable performance in the 

alternative, non-trained environments.  

 

Another issue is the communication protocol, where almost two-thirds 

of the studies considered the environment fully known to the controller. This 

assumption led to exponentially growing state representation and limited the 

practicality of DRL controllers for large networks. It is essential to include the 

multimodal traffic environment in the control theory (Wang et al., 2018). 
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To address these gaps, we focused mainly on the environmental aspect, 

where little attention was given to this part of the study. Since the RL agent 

learns in a model-free context, it is necessary that the environment model 

mimics the actual traffic conditions and reflects accurate changes in relation to 

the agent’s decision (Han, 2018). This is the first study to consider a 

heterogeneous micro-model to train and test the DCNN algorithm. The 

training environment needs to be stabilised to train an effective DRL 

algorithm. To test this hypothesis, we integrated a real isolated signalised 

junction.  

 

The micro-model has heterogeneous features and was calibrated and 

validated accurately. The state-space definition was based on the adjusted 

DTSE to suit the mixed road and user classes. The data feed is bound to 70 

metres of road length. The signal plan is acyclic with a minimum phase 

duration of 16 seconds to keep the system close to site condition (fixe system). 

The memory-based agent was trained to 95% CL to ensure effective learning. 

The 95% CL is a popular threshold in traffic engineering modelling 

assignments.  

 

The examined results verified that the proposed method stabilised the 

DCNN agent. Though training and testing differed in traffic volume, the 

memory-based controller converged to optimal operation and outperformed 

other comparative systems in over-saturated and under-saturated operational 

conditions. The benchmarking also showed the superiority of DCNN over 

other “similar” and “complex” DQN agents’ structures. The present 
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accomplishments verify the importance of the environment in stabilising 

intelligent controllers. The following findings are summarised as follows: 

 

1. Extend of the environment to stabilise the operation of the 

intelligent controller. DQN training needs to be integrated with 

the appropriate representation of the model environment. 

2. Local feed channel is sufficient for deep signal control. Built-in 

infrastructure detection tools can be incorporated with 

intelligent adaptive controllers. The fully observed and 

unbounded assumption of the environment is not necessary for 

DQN controllers. 

3. Unlike other problems, the traffic dynamics can be generalised 

to address control operations. The agents need to learn suitable 

control policies to optimise signal timing. 

4. Appropriate traffic signal phasing. Using a short-phase signal 

gives the advantage to any controller. Therefore, research 

studies must observe caution when determining signal phasing 

and validate DRL controllers using proper and fair time plans 

for test settings.  

5. These extra granted seconds to an approach could lead to 

longer waiting times and worsen the operational performance. 

Therefore, it is vital to liberate the signal system towards a 

more practical green time phasing where minimum phase 

allocation is granted to ensure the safety and practicality of the 
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signalised junction and fair distribution based on traffic volume 

demand and lane occupancy. 

 

5.2 Arterial Network Operation  

 

The efficiency of the DRL adaptive signal controller is particularly 

challenging in the context of urban network operation. This study introduces a 

control strategy based on intersection capacity (DQN k-v). The optimisation 

technique is formulated based on the available space at the discharge zone. 

This analysis aims to test the efficiency of DQLA k-v logic versus other signal 

controllers, including the earlier proposed DCNN logic. Based on Section 5.1, 

DCNN surpassed comparative system controllers. In this section, DCNN 

action is adjusted to a similar control plan as DQLA k-v. This control plan 

adjustment eliminates any bias that could arise from a long signal duration. 

The micro-model of the urban network environment consists of nine (9) 

signalised junctions. 

 

The statistical analyses are segmented into four (4) categories, 

including (i) time and speed factors, (ii) traffic flow clearance ratio, (iii) 

number of experienced stops, and (iv) network-wide time loss. The analyses 

are based on mean values based on several iterations to capture traffic 

dynamics.  
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5.2.1 Waiting Time, Travel Time and Travel Speed 

 

The hypothesis test statistic (t-statistics) was utilised to verify the 

significance of DQLA k-v over other comparative logics.  

 

DQLA k-v vs. Fixed: the proposed DQLA k-v control method showed 

superior performance (p<0.05) in terms of mean waiting time and travel time 

compared to the Fixed technique. Vehicles traversing the network experienced 

10% savings in halting time and 5% shorter travel time. On the other hand, 

both controllers showed a similar mean travel speed of 3.40m/sec. 

 

DQLA k-v vs. Delay: based on recorded data, the proposed method 

optimised cursing speed by almost three (3) folds compared to the actuated 

controller. As vehicles traversed at higher speeds, they experienced a lower 

travel time of 12% across the 7.5km network. Despite DQLA k-v leading to a 

shorter mean waiting time of 2.3%, this result was insignificant at p>0.05. The 

policy strategy of the Delay controller is to reduce the delay of competing 

traffic demands and terminate the green phase once the accumulated delay on 

an approach is dissolved. Delay’s strategy delivered its purpose but was not 

flexible enough to accommodate other traffic measures. 

 

DQLA k-v vs. LQFA: The online optimisation using LQFA 

performed the worst in terms of mean timing parameters. LQFA strategizes 

queue length to manage the operation. In this aspect, low-traffic demand 

approaches were held for longer, leading to higher accumulative costs at the 
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network operation level. On the other hand, the k-v policy had a balanced 

approach to equating signal chances based on available capacity downstream, 

leading to better signal plans and reducing waiting and travel time costs by 

about 37% and 23%, respectively. In addition, DQLA significantly (p<0.05) 

improved travel speed by 29% compared to LQFA.  

 

DQLA k-v vs. MaxPressure: mean timing elements did not 

significantly differ between DQLA k-v and MaxPressure. On the other hand, 

DQLA k-v surpassed (p<0.05) MaxPressure to improve mean travel speed by 

18%. The control strategy of MaxPressure responds to the maximum product 

of weighted queue length and saturation flow. The weighted length is the 

difference between the upstream and downstream queue lengths. Therefore, 

this control strategy works best if there is an apparent backlog downstream 

(e.g., waiting vehicles at a neighbouring intersection). In the experimental 

design, the downstream observation is immediate to outflow links as the 

communication is local and not coordinated. The ‘de facto red’ movement 

could have also contributed to poor performance in travel speed. 

 

DQLA k-v vs. DCNN: These controllers have similar DQN structures 

and action plans. However, they differ in terms of state representation and 

control strategy. The DTSE for DCNN proved suitable, and earlier analyses 

showed the superiority of DCNN in signal operation, as in Section 5.1. 

However, at the network operation level, DCNN performed worse than DQLA 

k-v. Therefore, the outperformance of DQLA k-v in terms of time savings and 

traversing speed is directly associated with the downstream policy. The results 
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reported that the k-v strategy improved waiting time by 16%, travel time by 

8%, and mean travel speed by 18% using DQLA k-v.  

 

Table 5.3 compares MoPs attributes for the DQLA k-v against other 

systems.  

 

Table 5.3: Measure of performance attributes for comparative 

logic controllers 

MoP µ Waiting Times (s) µ Travel Time(s) µ Travel Speed (m/s) 

Control 

Logic 

DQLA k-v 

= 125.51 
Diff. (%) 

DQLA k-v 

= 398.20 
Diff. (%) 

DQLA k-v 

= 3.40 
Diff. (%) 

Fixed 140.24 -10.50% 420.55 -5.31% 3.40 -0.10%* 

Delay 128.51 -2.34%* 452.11 -11.92% 1.21 180.78% 

LQFA 198.90 -36.90% 518.63 -23.22% 2.64 28.62% 

MaxPressure 122.71 2.28%* 400.31 -0.53%* 2.89 17.73% 

DCNN 149.49 -16.04% 434.57 -8.37% 2.88 18.03% 

µ: Mean value 

*Insignificant difference: p>0.05 

 

5.2.2 Traffic Flow Clearance Ratio 

 

The clearance ratio is the rate of exiting vehicles to entering vehicles in 

the model environment. Figure 10.1 presents the progression of controllers 

during the simulation run. The presented data were taken every 13 minutes. 

The first 13 minutes were disregarded from analyses as the stated duration 

represents the warm-up period of the model. Overall, all controllers witnessed 

a steady increase in clearance ratio. The exceptions to this observation are 

Delay and MaxPressure.  

 



186 

 

Figure 5.11: Progression of arrived vehicles to inserted vehicles at 

network level during the test 

 

Delay had the lowest clearance ratio from the beginning of time until 

the end of the test. The control strategy is imbalanced for closed space and 

high traffic demand. The actuation technique works best at isolated 

intersections with travelling directions that have distinct traffic demands. 

MaxPressure had the highest clearance ratio for the first third of the model run 

(20 minutes), and then the operation plunged below the proposed DCNN k-v 

and Fixed. At the end of the simulation, MaxPressure finished in 4th place 

after the DCNN system, indicating that the pressure mechanism could not 

recover the system. The high arrival rate and defined detection zone caused 

the deterioration of MaxPressure. As traffic dynamics grew faster and storage 

capacity was limited, the online MaxPressure policy could not identify the best 

signal decisions. 
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The progress of DCNN intersected with MaxPressure in the first half 

of the peak hour simulation. The result showed the ability of the offline 

controller to adapt to traffic dynamics. The intelligent controller could make 

decisions from learned memory on an online test platform. The Fixed system 

was calibrated offline using a saturation flow rate. Though the Fixed system is 

rigid, it continued to provide a high clearance ratio. Comparing the policies of 

DQLA k-v and DCNN controllers, the k-v policy was able to meet flow 

demands and provide better solutions to signal decisions. The k-v policy 

mitigated signal controllers and led to a stable clearance ratio throughout the 

run time. On the other hand, the halting time of DCNN was less than optimal 

for mitigating flow when compared to Fixed.  

 

The optimal clearance ratio is 1 (
𝑒𝑥𝑖𝑡𝑒𝑑

𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑
= 1). The statistics indicated 

that DQLA k-v and Fixed had the highest number of completed vehicle trips 

compared to other controllers. This saturation flow-based optimisation 

approach for the Fixed system ensures more phase timings for higher 

vehicular demands to clear the network and, eventually, a higher arrival rate. 

On the other hand, the quantitative technique overlooks timing values for road 

users. The earlier MoPs showed deterioration in waiting time and travel time 

compared to the DQLA k-v system, as in Section 5.2.1. 

 

The DQLA k-v achieved a significantly higher arrival rate (~2.30%), 

although MaxPressure had a higher inserted vehicle (~1.7%) at the network 

level. The policy for MaxPressure incorporates the product of queue length 

and density at upstream inbounds, leading to larger storage for routes with 
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higher traffic demand. In comparison, the proposed DQLA k-v mitigates 

downstream discharges to aim for equilibrium operation (exited/entered=1). 

The downstream strategy does not adhere to the volume of the inbound traffic 

stream. As such, the DQLA k-v controller restricts the storage capacity for 

high traffic flow at the upstream approach in favour of utilising discharge zone 

capacity based on competing traffic turning movements.  

 

The proposed DQLA k-v significantly outperformed other signal 

controllers that aimed to respond to traffic characteristics, including vehicular 

delay and waiting time, as policy guidance. The responsive systems (LQFA, 

Delay, and DCNN) can function at a local intersection operation. However, 

their traffic control techniques cannot achieve global optimisation for single 

system design and restricted data feeds for network operation. The responsive 

systems fell back in terms of inserted vehicles (6.70%-9.30%) and arrived 

vehicles (14.70%-47.90%) to the proposed k-v system policy.  

 

Overall, the DQLA k-v had the highest clearance ratio of 0.80 at the 

end of the peak hour model run. This result indicates that the model operation 

is close to the optimum operating level under DQLA k-v. Table 5.4 presents 

the mean traffic volumes based on controllers compared to DQLA k-v.  
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Table 5.4: Mean values for traffic input and output at the network 

level 

Traffic Count 
µ Inserted Vehicle Count 

(veh.) 

µ Arrived Vehicle Count 

(veh.) 

Clearance 

Ratio 

Control Logic 
DQLA k-v 

= 9,827 
Diff. (%) p-value 

DQLA k-v 

= 7,820 
Diff. (%) p-value 

DQLA k-v 

= 0.80 

Fixed 10,016 -1.88% <0.05 7,879 -0.74% 0.64 0.79 

LQFA 8,995 9.25% <0.05 6,597 18.54% <0.05 0.73 

Delay 9,213 6.67% <0.05 5,287 47.92% <0.05 0.57 

DCNN 8,989 9.33% <0.05 6,818 14.71% <0.05 0.76 

MaxPressure 9,995 -1.68% <0.05 7,646 2.28% <0.05 0.77 

 

5.2.3 Stopped Vehicles 

 

To improve the journey experience, vehicles must traverse to the 

furthest destination with minimal halts. The relationship between the number 

of stopped vehicles and logic schemes during the simulation is presented by 

polynomial functions, as in Figure 5.11.  
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Figure 5.12: Polynomial functions representation for stopped 

vehicles per logic schemes 

 

At the initial time of network analyses (minute 13), all systems (except 

Delay) recorded a number of stopped vehicles ≤1,060 vehicles. As the model 

progressed, the proposed k-v strategy maintained the least stopped vehicles at 

any given time, with a mean value of 1,130 and a standard deviation of 175. 

The mean value is less than a 7% deviation from the initial simulation record 

(i.e., 1,060 vehicles). The small standard deviation represents the level of 

harmony among the independently controlled junctions to handle traffic 

movement, and the proposed controller is closer to equilibrium than other 

controllers. The closest function to DQLA k-v is the pre-timed controller. The 

offline optimisation based on saturation flow corresponded well with traffic 

movement.  
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In comparison, MaxPressure had started with the least experienced 

stops, but as inbound flow demand grew, the curve slanted up to the end of 

traffic volume insertion. At the end of the model run, both online algorithms 

incorporating queue length elements in the control method (MaxPressure and 

LQFA) finished with a mean value of 1,498 stopped vehicles. This value 

represents a 41% increment from the initial simulation experience and a 21% 

difference from ML and classical system controllers. The actuated system had 

the worst performance as it could not mitigate the arterial network. The halting 

vehicle statistical values are presented in Table 5.5. 

 

Table 5.5: Number of halting vehicles statistics 

Controller System 
Mean 

(veh.) 

Standard Deviation 

(veh.) 

Minimum 

(veh.) 

Maximum 

(veh.) 

Fixed 1,209 164 748 1,460 

Delay 3,153 885 1455 4,261 

LQFA 1,578 182 1024 2,002 

MaxPressure 1,417 267 679 1,844 

DCNN 1,379 183 854 1,676 

DQLA k-v 1,129 175 675 1,414 

 

5.2.4 Network-wide Time Loss 

 

Investigating the travel routes, no single policy ultimately (p>0.05) 

improved the journey experience. This finding is rational, as the stochastic 

flow nature of traffic means varied arrival rates and the ever-changing 

dynamics of the traffic environment. The signal function aims to cope with 

these dynamics and enhance the travelling experience. A comparison between 

weighted hourly flow and weighted density at the network level was carried 

out to validate the time loss analyses. The purpose is to ensure that the 
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experimental settings do not show a significant deviation. The results showed 

no significant difference (p>0.05) between DQLA k-v and other controllers in 

both parameters. The only significant difference was found for DQLA k-v and 

Delay in weighted density. Figure 5.12 presents the weighted flow and 

density. 

 

 

Figure 5.13: Weighted flow and weighted density per route for 

logic schemes 

 

The mean time loss experienced by a single vehicle on each route is 

presented in Table 5.6. The recorded data indicated that the proposed DQLA 

k-v has the least average time loss at 98 seconds per route and the least 

cumulative time loss at 1,560 seconds at the network level. These values 

present nearly 4% improvements to the nearest rival, i.e., Fixed controller. A 

travelling vehicle saved about one (1) minute traversing the 7.5km. The time-

saving value is crucial for the signal operation and indicates relieved 

congestion at traversing routes (Bento et al., 2015). 
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Table 5.6: Time loss based on route and signal controller 

Route 

Links 

(Junction 

to 

Junction) 

Mean Time Loss (s) 

Fixed Delay LQFA MaxPressure DCNN DQLA k-v 

J1-J2 128.63 1290.77 261.46 112.24 94.59 114.46 

J2-J3 24.56 1428.65 108.36 23.23 27.81 125.75 

J3-J4 3.17 414.78 9.02 4.29 3.68 2.27 

J4-J5 12.07 779.73 12.58 100.91 14.82 4.93 

J5-J6 35.39 334.89 160.80 567.03 38.18 114.83 

J5-J7 165.21 1504.41 86.99 13.84 226.64 8.81 

J7-J8 31.08 396.72 42.09 54.49 28.60 16.59 

J8-J9 25.92 953.84 17.69 460.22 36.59 13.83 

J9-J8 827.31 1178.58 1089.25 895.89 914.01 794.42 

J8-J7 1.92 664.09 1.96 1.81 1.88 2.19 

J7-J5 10.83 581.26 20.28 135.03 91.31 20.19 

J6-J5 77.84 2126.59 65.05 34.12 48.24 115.50 

J5-J4 140.99 1081.03 82.98 25.86 74.64 122.78 

J4-J3 10.70 1351.41 17.70 3.21 7.87 12.03 

J3-J2 25.46 317.57 66.84 50.84 15.80 23.60 

J2-J1 97.61 403.70 144.84 63.91 85.04 68.18 

Average 101.17 925.50 136.74 159.18 106.86 97.52 

Total 1,618.68 14,808.02 2,187.90 2,546.93 1,709.70 1,560.35 

 

Furthermore, the results showed that the offline algorithms (DQLA k-v 

and DCNN) surpassed the online algorithms (MaxPressure, LQFA, and 

Delay), producing lower time losses. The measured performance is expected 

as the applicability of the online algorithm to maintain efficient performance is 

associated with slow traffic dynamics (Jamshidnejad et al., 2019). In contrast, 

the offline algorithm is appropriate for high-dimensional features and complex 

dependencies in the datasets (Cui et al., 2019). Figure 5.13 graphically 

presents the mean time loss experienced by a single vehicle on each route. 
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Figure 5.14: Time loss per single vehicle at route links 

 

5.2.5 Closing Remarks for DQLA k-v Controller  

 

The network test is carried out using the single-agent system design. 

Various online and offline logic schemes were used and categorised by 

generation into pre-time (Fixed), actuated (Delay), and adaptive (LQFA, 

MaxpPressure, DCNN, and DQLA k-v). Each of these systems used a different 

control strategy. Fixed is an offline optimised controller based on historical 

saturation flow rate data representing site condition. Delay is an online 

algorithm incorporating waiting time to manage time plans. LQFA is an online 

adaptive controller optimising signal operation via queue length at each 

direction of travel. MaxPressure is an online adaptive controller that manages 

intersection control based on queue length differences and saturation flow. 

DCNN utilises offline-taught memory to operate the signal controller using a 

reward strategy (waiting time). DCNN controller showed superior 

performance at the isolated intersection, as in earlier Section 5.1. DQLA k-v 
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(similar to the DCNN category) relies purely on a novel downstream available 

capacity to manage the signal environment. The evaluation of the system was 

tested in an accurately calibrated arterial network with a high saturation flow 

(15,508veh/hr) condition.  

 

DQLA k-v vs. Comparative Systems: The statistical analyses 

indicated that the DQLA k-v controller improved waiting time between 10% 

and 36% across different comparative systems, reduced travel time between 

5% and 25%, and recorded the highest mean speed at 3.40m/s, a notable 18% 

to 180% significant improvement.  

 

Furthermore, the DQLA k-v logic system had the highest clearance 

ratio at 80%. This recorded value means eight (8) out of 10 vehicles cleared 

the network within the peak hour. The optimal flow rate is 1. Indeed, the 

signalised network cannot reach such an optimum value. Nonetheless, 

achieving a close-to-optimum score indicates the scalability of the proposed 

system in mitigating traffic operations.  

 

The vehicles experienced the least number of stops under the guidance 

of the k-v method. In fact, unlike other controllers, the proposed k-v technique 

had a minimal deviation (~7%) from the initial network condition. Moreover, 

the outbound-based controller significantly reduced experience time loss per 

route. A vehicle experienced VoT saving between 1 and 10 minutes compared 

to all other controllers.  
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Intelligent Control Policies: Adaptive controllers aim to respond to 

traffic demands and accurately tune the signal operation to meet such 

demands. The literature review for this generation of controllers indicates that 

many have focused on system design, but little attention was given to 

producing a comprehensive policy. The comprehensive policy (i) must not 

adhere to vehicle characteristics per se, (ii) does not assume vehicle hierarchy, 

and (iii) mitigates infrastructure corridor. This is because vehicle-based 

solutions (i) restrict mitigation to specific objective(s) and ignore others, and 

(ii) have greedy optimisation.  

 

These vehicle-based deficiencies are particularly evident in LQFA and 

DCNN controllers. Both of these systems relied on control strategies 

describing the state of vehicles, such as queue length (LQFA) and halting time 

(DCNN). Generally, the mentioned controllers surpassed the Fixed controller 

in isolated intersection performance. The findings indicated that LQFA 

surpassed Fixed in timing attributes as the first controller scheduled longer 

queues. On the other hand, the scheduling algorithm (LQFA) was not capable 

of fast convergence at the network level of operation, where mean travel speed 

and flow rates were typically slower than the Fixed logic.  

 

The DCNN controller managed the isolated intersection better than the 

Fixed controller. DCNN had a taught memory, which enhanced its experience 

with environmental dynamics and future mapping characteristics. However, 

the future prediction of DCNN was not helpful in the arterial network 

operation. Fixed surpassed DCNN in various traffic attributes. This is not the 
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first time a DQN controller has failed to operate at the network level. Casas 

(2017) previously reported that the DQN controller, which optimised 

operation at an isolated intersection test, had failed to mitigate a network-level 

operation. The author suggested that more extended training is required to 

enhance performance. However, the findings in this study suggest a drawback 

related to control policy. Even if the training claim is correct, a counterclaim is 

raised for the significant role of policy strategy in enhancing the convergence 

of DQN to network operation. The DCNN agent was trained for more sessions 

than the DQLA k-v agent (Section 4.4.2 Training Agent). The control strategy 

plays a direct and crucial role in mitigating signal operation. 

 

Delay-based controller failed to operate at the network level. The 

actuated controllers require noticeable differences between competing 

directions of travel. At a high arrival rate where all directions tend to have 

equal or close demands, the controller is crippled to operate. Therefore, 

control strategies should address the traffic demand hierarchy. 

 

Saturation flow is a component of traffic flow. As a standalone policy, 

it effectively optimised signal operation at the network level. The pre-timed 

controller was calibrated based on expert knowledge and was static for a pre-

defined period. Signal operations require human interference. In contrast, 

MaxPressure’s approach combined saturation flow and factored queue length. 

The factor is the difference between the upstream and downstream queue 

lengths. But the assumption that downstream has a queue length is not always 

accurate. The backlog of traffic platoon between two (2) intersections is not 
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always true in the actual environment, as in the tested arterial network. On this 

basis, MaxPressure becomes the subject of the longest upstream queue, 

reflecting the highest arrival rate condition. Another way to compute the 

downstream is by communicating with neighbouring junctions. This study is 

interested in localised communication to adhere to current infrastructure 

readiness. Hence, a coordination approach was not attempted and is beyond 

the scope of this study. Furthermore, coordination is an expensive 

communication protocol that is challenged in a conflicting work environment.  
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CHAPTER 6 

 

CONCLUSION 

 

 

In the past decades, many studies related to adaptive traffic signal 

controls have been carried out. Various techniques, system designs, and 

experimental contexts were used for developing the adaptive controls. 

However, the literature review of over 60 studies showed that the recent 

research directions are limited to conceptual frameworks and hypothetical 

assumptions, restricting the proposed methods from practically addressing the 

control problem. The current proposed adaptive system techniques suffer from 

scalability, sustenance, and valuation issues.  

 

In order to overcome these major limitations and bring the adaptive 

control generation a step closer to actual deployment, we designed a single 

system controller based on the deep reinforcement learning (DRL) technique. 

The DRL can self-learn to extrapolate the correct action, requires little human 

intervention, and can solve interactive problems using a reward signal. The 

design framework of the proposed DRL controller considers the stochastic and 

dynamic nature of the traffic environment, the low-cost communication 

protocol using the available detection devices, the scalability factor for 

network-level operation, and the sustenance of mitigating signal operations. 

 



200 

To illustrate the stochasticity of the traffic environment, the 

development of traffic micro-models used a real-traffic case study. The 

illustrative case study consists of nine (9) arterial intersections with highly 

saturated flow conditions. Two (2) mixed-mode environments were further 

developed to address the various objectives of this research study. Each 

vehicle class was modelled, calibrated, and validated to an acceptable 

accuracy level. Unlike this research, the recent DRL studies do not emphasise 

traffic flow and environment modelling.  

 

The proposed control agent received data from the junction 

environment using available built-in devices such as lanearea and induction 

loops. These detectors were embedded into the traffic micro-model. The 

detection zones were also restricted to reflect current capability and limit the 

agent's exposure to dynamics. The detection zones ranged from 70 metres to 

140 metres from the stop line, depending on the type of control agent. This 

design aspect is rarely examined in DRL methods. Instead, the researchers 

often assume that the signal logic has full exposure to vehicle data. This 

assumption is based on the utilisation of the futuristic V2X communication 

channel. 

 

One of the major challenges with adaptive controllers is their capacity 

to operate at the network level. While studies intended to address the 

scalability by developing complex multi-agent systems, we resolved the 

complexity by introducing a state-of-art policy. The policy treats the control 

problem by mitigating the downstream route's capacity. Unlike vehicle-based 
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policies (existing DRL studies), the junction-based approach is fairer in 

regulating flow demands within the intersection level only. No coordination is 

required for the downstream control policy.  

 

We employed a deep Q-learning algorithm to develop two (2) 

intelligent controllers: deep convolution neural network (DCNN) and deep Q-

learning agent based on density-speed features (DQLA k-v). Both systems are 

alike in design architecture but differ in state input and reward function. The 

design difference comes with the need to evaluate multi-objectives in the 

study. These developed controllers were tested against different generations of 

traffic controllers, including fixed, actuated, and adaptive. The training and 

testing of the proposed DRL controllers were carried out using different traffic 

data. In contrast to many existing studies, the different training and testing 

settings are vital for evaluating the system’s sustenance. 

 

In the isolated intersection test bed, the DCNN controller performed 

better than other controllers, particularly in the over-saturated traffic scenario. 

The system significantly improved travel time between 7% and 38%, reduced 

waiting time by an average of 90%, and reduced the gap between waiting and 

moving vehicles from 13% to 43%. In addition, the system showed the highest 

flow rate at 283veh/hr with the least simulation time. Moreover, the signal 

logic showed stable performance across various test scenarios. In addition, the 

DCNN controller showed about 10% higher improvement in waiting time 

compared to its closest DRL rival system from the literature review.  
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Regarding the arterial network operation, the DQLA k-v proved to 

surpass other controllers (including the DCNN agent) for network evaluation. 

The DQLA k-v system achieved remarkable performance in optimising 

network operation. Statistical analyses measured significant cost savings in 

halting time (10%-36%) and travel time (5%-25%). Moreover, the DQLA k-v 

controller recorded the highest mean travel speed (3.4m/s) compared to other 

controllers. Consequently, vehicular traffic experienced the least time loss 

while traversing routes, and it witnessed fewer stops during the trip, leading to 

close to optimum network operation at a 0.80 clearance ratio. 

 

Overall, it can be concluded that mitigating signal operation using 

downstream policy is favourable. The development aspect of this control 

policy can be measured and contained using factors of the physical 

environment (capacity and available space), including the integration of 

uncontrolled flow from exclusive turn vehicles, the reliance on built-in 

infrastructure communication channel, and the limitation of traffic state input 

to the controller within the specific boundary of a signalised junction. 

 

6.1 Future Work Direction 

 

The findings in this study strongly suggest that the single system 

design-based DRL method is capable of achieving effective performance in 

network operation using built-in detectors with a limited amount of data feed 

within the intersection level. On the other hand, the final product showed the 

need for an extensive configuration of detectors. The extensive configuration 
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is expected to induce operational and maintenance costs. This is because loop 

detectors often breakdown. Further work is required to reduce this reliance and 

examine the proposed system's actual application.  

 

This work has incorporated a stochastic mixed model evaluation for 

the intelligent controller and control strategies. Whereas the DRL controllers 

learnt to optimise the signal operation by forecasting the features of the 

environment, the impact of vehicular composition was not examined. A future 

analysis could also examine the impact of various classes of vehicles on 

operating the adaptive controllers.  

 

Lastly, the analyses and comparisons for the downstream policy 

enclosed other policies using a local communication protocol. It is 

recommended that future work broaden the comparison exercise to test the 

proposed control policy based on local communication against other studies 

proposing connected vehicle environments for operating the traffic network.  
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APPENDIX A: JUNCTION TIME PLAN AND PHASING 

 

 

JC1: Junction J1 

 

  

Station: J1

Location: Jalan Sungai Buloh / Jalan Pekan Subang

Traffic Light Timing

Time Time Totat time

AM Green 7:15:18 7:16:26

Red 7:16:26 7:18:40

Time Time Totat time

PM Green 16:48:11 16:49:02

Red 16:49:02 16:51:08

Jalan Sungai Buloh

Jalan Pekan Subang

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time
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Red 7:17:34 7:20:30 Red 7:17:10 7:19:48
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JC2: Junction J2 

 

  

Station: J2

Location: Jalan Bukit Badak / Jalan Pekan Subang

Traffic Light Timing

Time Time Totat time

AM Green 7:22:21 7:22:53

Red 7:22:53 7:23:56

Time Time Totat time

PM Green 16:28:53 16:29:31

Red 16:29:31 16:31:15

Jalan Bukit Badak

Jalan Pekan Subang

Traffic Light Timing

Time Time Totat time

AM Green 7:21:20 7:22:21

Red 7:22:21 7:22:53

Time Time Totat time

PM Green 16:27:27 16:28:53

Red 16:28:53 16:29:31
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JC3: Junction J3 

 

  

Station: J3

Location: Jalan Kampung Baru Subang / Jalan Subang Perdana

Traffic Light Timing

Time Time Totat time

AM Green 7:32:53 7:33:53

Red 7:33:53 7:35:38

Time Time Totat time

PM Green 17:02:56 17:04:19

Red 17:04:19 17:06:48 Traffic Light Timing

Time Time Totat time

AM Green 7:30:38 7:32:53 0:02:15

Red 7:32:53 7:33:53 0:01:00

Time Time Totat time

PM Green 17:00:30 17:02:56 0:02:26

Jalan Subang Perdana Red 17:02:56 17:04:19 0:01:23

8

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:30:38 7:32:17 AM Green 7:32:17 7:32:53 0:00:36

Red 7:32:17 7:33:53 Red 7:32:53 7:35:15 0:02:22

Time Time Totat time Time Time Totat time

PM Green 17:00:30 17:02:11 Jalan Kampung Baru Subang PM Green 17:02:11 17:02:56 0:00:45

Red 17:02:11 17:04:19 Red 17:02:56 17:05:58 0:03:02

Traffic light Phasing 
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JC4: Junction J4 

 

  

Station: J4

Location: Jalan Lapangan Terbang Subang lama / Jalan Subang Perdana

Traffic Light Timing

Time Time Totat time

AM Green 7:32:53 7:33:53

Red 7:33:53 7:35:38

Time Time Totat time

PM Green 17:02:56 17:04:19

Red 17:04:19 17:06:48 Traffic Light Timing

Time Time Totat time

AM Green 7:30:38 7:32:53 0:02:15

Red 7:32:53 7:33:53 0:01:00

Time Time Totat time

PM Green 17:00:30 17:02:56 0:02:26

J3 / Jalan Subang Perdana Red 17:02:56 17:04:19 0:01:23

8

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:30:38 7:32:17 AM Green 7:32:17 7:32:53 0:00:36

Red 7:32:17 7:33:53 Red 7:32:53 7:35:15 0:02:22

Time Time Totat time Time Time Totat time

PM Green 17:00:30 17:02:11 Jalan Lapangan Terbang Subang Lama PM Green 17:02:11 17:02:56 0:00:45

Red 17:02:11 17:04:19 Red 17:02:56 17:05:58 0:03:02

Traffic light Phasing 
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JC5: Junction J5 

 

  

Station: J5

Location: Jln Lapangan Terbang Subang Baru / Jln Lapangan Terbang Subang Lama

Direction 1 (Straight Traffic)

Traffic Light Timing

Time Time Totat time

AM Green 7:28:42 7:30:40

Red 7:27:54 7:28:42

Time Time Totat time Jalan Lapangan Terbang Subang Baru

PM Green 17:39:24 17:41:23

Red 17:38:35 17:39:24

9 Traffic Light Timing

Direction 2 (Right Turn) Time Time Totat time

Traffic Light Timing AM Green 7:28:42 7:30:03

Time Time Totat time Red 7:27:54 7:28:42

AM Green 7:30:03 7:30:40 7

Red 7:27:54 7:30:03 Time Time Totat time

PM Green 17:39:24 17:40:45

Time Time Totat time Red 17:38:35 17:39:24

PM Green 17:40:45 17:41:23

Red 17:38:35 17:40:45 8

Jalan Lapangan Terbang Subang Lama

Traffic Light Timing

Time Time Totat time

AM Green 7:27:54 7:28:42

Red 7:28:42 7:30:40

Time Time Totat time

PM Green 17:38:35 17:39:24

Red 17:39:24 17:41:23

Traffic light Phasing 
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JC6: Junction J6 

 

  

Station: J6

Location: Jln Lapangan Terbang Subang Baru / Jln Lapangan Terbang Subang Lama

Direction 1 (Straight Traffic)

Traffic Light Timing

Time Time Totat time

AM Green 7:07:32 7:09:27 Jalan Lapangan Terbang Subang Baru

Red 7:06:31 7:07:32

Time Time Totat time 9 Traffic Light Timing

PM Green 17:40:14 17:41:10 Time Time Totat time

Red 17:39:48 17:40:14 AM Green 7:07:32 7:09:27

Red 7:06:31 7:07:32

7

Direction 2 (Right Turn) Time Time Totat time

Traffic Light Timing PM Green 17:40:14 17:41:10

Time Time Totat time Red 17:39:48 17:40:14

AM Green 7:09:27 7:09:44

Red 7:06:03 7:09:27 8

Time Time Totat time

PM Green 17:41:10 17:41:23

Red 17:39:48 17:41:10

Jalan Lapangan Terbang Subang Lama

Traffic Light Timing

Time Time Totat time

AM Green 7:06:31 7:07:32

Red 7:07:32 7:09:44

Time Time Totat time

PM Green 17:39:48 17:40:14

Red 17:40:14 17:41:23

Traffic light Phasing 

0:01:55

0:01:01

0:00:56

0:00:26 0:01:55

0:01:01

0:00:56

0:00:26

0:01:01

0:02:12

0:00:26

0:01:09

0:00:17

0:03:24

0:00:13

0:01:22
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JC7: Junction J7 

  

Station: J7

Location: Jln Lapangan Terbang Subang Baru / Jln Sg Buloh

Direction 1 (Straight Traffic) Direction 9 (U-Turn)

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:25:11 7:27:31 Jalan Sungai Buloh AM Green 7:23:28 7:25:11

Red 7:21:19 7:25:11 Red 7:21:19 7:23:28

Time Time Totat time 9 Time Time Totat time

PM Green 17:41:51 17:43:23 PM Green 17:40:10 17:41:51

Red 17:38:02 17:41:51 Red 17:38:02 17:40:10

Direction 2 (Right Turn) 7 Direction 6 (Straight Traffic)

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:25:38 7:27:31 AM Green 7:23:28 7:25:38

Red 7:21:19 7:25:38 Red 7:21:19 7:23:28

8

Time Time Totat time Time Time Totat time

PM Green 17:42:20 17:43:23 PM Green 17:40:10 17:42:20

Red 17:38:02 17:42:20 Red 17:38:02 17:40:10

Jalan Lapangan Terbang Subang Baru

Traffic Light Timing

Time Time Totat time

AM Green 7:21:19 7:23:28

Red 7:23:28 7:27:31

Time Time Totat time

PM Green 17:38:02 17:40:10

Red 17:40:10 17:43:23

Traffic light Phasing 

0:02:20 0:01:43

0:03:52 0:02:09

0:01:32 0:01:41

0:03:49 0:02:08

0:01:53 0:02:10

0:04:19 0:02:09
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JC8: Junction J8 

 

  

Station: J8

Location: Jalan Sungai Buloh / Persiaran Kosmos

Traffic Light Timing

Time Time Totat time

AM Green 7:06:59 7:07:43

Red 7:07:43 7:09:59

Time Time Totat time

PM Green 16:27:33 16:28:18

Red 16:28:18 16:30:56

Persiaran Kosmos

8

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:07:43 7:09:01 AM Green 7:06:03 7:06:59 0:00:56

Red 7:09:01 7:10:45 Red 7:06:59 7:09:01 0:02:02

Time Time Totat time Time Time Totat time

PM Green 16:28:18 16:29:40 Jalan Sungai Buloh PM Green 16:26:19 16:27:33 0:01:14

Red 16:29:40 16:31:36 Red 16:27:33 16:29:40 0:02:07

Traffic light Phasing 

Persiaran Kosmos Persiaran Kosmos

Jalan Sungai Buloh

Jalan Sungai Buloh
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Jalan Sungai Buloh
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JC9: Junction J9 

 

  

Station: J9

Location: Jalan Sungai Buloh / Persiaran Galaksi

Traffic Light Timing

Time Time Totat time

AM Green 7:17:17 7:17:57

Red 7:17:57 7:19:11

Time Time Totat time

PM Green 16:58:42 16:59:15

Red 16:59:15 17:00:37 Traffic Light Timing

Time Time Totat time

AM Green 7:16:03 7:17:17 0:01:14

Red 7:17:17 7:17:57 0:00:40

Time Time Totat time

PM Green 16:57:22 16:58:42 0:01:20

Persiaran Galaksi Red 16:58:42 16:59:15 0:00:33

Traffic Light Timing Traffic Light Timing

Time Time Totat time Time Time Totat time

AM Green 7:16:44 7:17:17 AM Green 7:16:03 7:16:44 0:00:41

Red 7:17:17 7:18:37 Red 7:16:44 7:17:57 0:01:13

Time Time Totat time Time Time Totat time

PM Green 16:58:03 16:58:42 PM Green 16:57:22 16:58:03 0:00:41

Red 16:58:42 16:59:59 Jalan Sungai Buloh Red 16:58:03 16:59:15 0:01:12

Traffic light Phasing 
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APPENDIX B: MODEL CALIBRATION AND VALIDATION 

 

 

Environment Model 1: Isolated Intersection 

 

Calibration is a process to establish input parameter values to reflect 

traffic conditions (Hellinga, 1998). This is an iterative process until the model 

parameters are adjusted within a reasonable range.  

 

Some of the parameters have infinite values, as per the SUMO manual 

documentation. The value definition is presumed to indicate the weight of the 

parameter in comparison to other factors. Therefore, it is recommended to 

scale such infinite values to discrete values to make them practice for 

simulation. To assist with this task, a literature review was carried out to 

determine the appropriate range for infinite values. The studied modelling 

parameters include minimum gap to the leading vehicle (minGap), desired 

headway gap (tau), strategic lane changing (lcStrategic), minimum lateral gap 

(minGapLat), eagerness for lateral position space (lcSublane), accepting front 

and rear gaps (lcAssertive).  

 

• minGap (m) is the empty space after a leading vehicle during 

stops. The default SUMO value is 2.5m. In practice, cars tend 

to use smaller gaps, especially during congestion. The value for 

the minGap ranges from 0.8 to 3.2m. The additional value of 
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0.80m (over the default value) is chosen to allow for 

motorcycle manoeuvrability. 

• tau is a measure of the driver's desired (minimum) time 

headway. The default SUMO value is 1 second. Vogel (2003) 

investigated headway. The author found that drivers maintain a 

constant headway under 2s across various situations. In more 

complex instances, drivers tend to reduce speed rather than 

longer headway time. Moreover, smaller headways were 

measured on the way towards the junction than away from it. 

This is because the upcoming junction event is a very 

predictable situation (Vogel, 2003). In Germany, the 

recommended minimum distance is “half the speedometer”, 

which means if a car travels at 80 km/h, it should maintain a 

minimum distance of 40 metres. This rule is translated to a 

recommended time headway of 1.8 seconds (Vogel, 2003). A 

similar rule is followed in this study to compute the minimum 

headway time based on a 90km/hr speed limit. A 45 meters 

minimum distance is required, equivalent to 1.80 seconds. The 

upper limit for headway time is 3 seconds (the three-second 

rule). 

• IcStrategic is a value for eagerness to perform strategic lane 

changing. The default SUMO value is 1. To measure a driver’s 

eagerness to perform lane-changing across the five (5) vehicle 

classes, a range of 0 to 4 was tested. 
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• minGapLat (m) is the desired minimum lateral gap when using 

the sub-lane model. The default SUMO value is 0.60m. 

Budhkar and Maurya (2017) studied the characteristics of 

lateral vehicular interactions in a heterogeneous traffic 

environment. Based on the authors' findings, the lateral gap 

tends to be smaller at lower speeds and increases at higher 

speeds, with motorcycles having the least lateral clearance. The 

range of lateral gaps is between 0.15 and 2.5 metres.  

• IcSublane is the eagerness to use the configured lateral 

alignment within the lane. The default SUMO value is 1. The 

higher values result in an increased willingness to sacrifice 

speed for alignment. A range between 0 (maintain speed) and 4 

(sacrifice speed) is used to represent the parameter. The interval 

values of 0 to 4 weigh the five (5) classes of vehicles. 

• lcAssertive (m) represents the willingness to accept lower front 

and rear gaps on the target lane. The default SUMO value is 

1.0. The critical gap is divided by this value. The values 

between 1 and 5 are used to determine acceptance. The higher 

the value, the smaller the accepted gap.  

• The remaining parameters (sigma, IcImpatience, lcCooperative, 

IcPushy, and lcLaneDisplane) have values ranging between 0 

and 1. 
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Each of the above 11 parameters was divided at a space interval of 

10% (10 clusters). Table 9.1 presents the scalar values for each of the 11 

parameters. 

 

Table 9.1: Scalar values for parameterisation exercise 

Parameter Value for Simulation 

P
a
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m

et
er

 

ID
 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

A
ct
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 (
%

) 
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) 

si
g

m
a

 

ta
u

 

lc
S

tr
a

te
g

ic
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e
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m
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C

o
o

p
er
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ti
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e 

 

Ic
P
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L

a
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n
e
 

10 0.80 0 1.00 0.00 0.15 0.00 0.15 0.00 0.00 0.00 0.00 

20 1.07 0.11 1.22 0.44 0.41 0.44 0.41 0.11 0.11 0.11 0.11 

30 1.33 0.22 1.44 0.89 0.67 0.89 0.67 0.22 0.22 0.22 0.22 

40 1.60 0.33 1.67 1.33 0.93 1.33 0.93 0.33 0.33 0.33 0.33 

50 1.87 0.44 1.89 1.78 1.19 1.78 1.19 0.44 0.44 0.44 0.44 

60 2.13 0.56 2.11 2.22 1.46 2.22 1.46 0.56 0.56 0.56 0.56 

70 2.40 0.67 2.33 2.67 1.72 2.67 1.72 0.67 0.67 0.67 0.67 

80 2.67 0.78 2.56 3.11 1.98 3.11 1.98 0.78 0.78 0.78 0.78 

90 2.93 0.89 2.78 3.56 2.24 3.56 2.24 0.89 0.89 0.89 0.89 

100 3.20 1.00 3.00 4.00 2.50 4.00 2.50 1.00 1.00 1.00 1.00 

 

Calibration Test Value Sets  

 

The number of possible parameter combinations is equivalent to 

9.77x106 for the 11 parameters. One method to pull out the most significant 

scenarios is by using the Latin Hypercube sampling (LHS) method. 

 

The LHS is a statistical method to obtain near-random sample 

parameter values for a multi-dimensional distribution. The advantage of the 
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LHS is that it ensures each component is represented in a fully stratified 

manner, regardless of which components might be significant for the output 

(McKay et al., 2000). In this regard, the LHS covers the entire parameter 

surface. This sampling procedure was acquired from Park et al. (2006).  

 

There is one more step to determine the independence of the generated 

LHS set. The Pearson correlation is used to measure the linear dependency 

among the variables. The r value ranges between 0 and 1. A value nearer to 

zero (0) indicates no linear relationship, and a value closer to one (1) presents 

a linear fit. Furthermore, the value of r is presented with an arithmetic symbol 

to indicate a direct relationship (+) and an inverse relationship (-). 

 

Based on Sokal and Rohlf (1995), the significance of the r coefficient 

is dependent on the number of paired variables and the risk value alpha (α). 

There are 10 parametric sets in this study, or eight (8) degrees of freedom, and 

a significance value of 0.05. The critical value r at which the causation is 

significant is 0.632. Hence, a significant linear relationship should have a 

value of 0.632 or more.  

 

The process of producing LHS and verifying the r threshold is iterative 

until an appropriate LHS sample is achieved, as shown in Figure 9.1. 
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Figure 9.1: Process of generating acceptable LHS set 

 

Table 9.2 presents the 1+20 sets to be tested during calibration. The 

first set (D1) is the default SUMO parameter set, while the 10 sets correspond 

to the generated sample space using the LHS method.  

 

Table 9.2: Parameter sets for calibration assignment 

Parameter ID 

Value Source SUMO Defaults 

Set ID. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

D1 2.50 0.50 1.00 1.00 0.60 1.00 1.00 0.00 1.00 0.00 0.00 

Value Source LHS Sampling Method 

Set ID. 
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S1 1.33 0.11 2.56 1.78 0.93 0.44 0.67 0.00 0.11 1.00 0.00 

S2 2.67 0.22 1.22 3.11 2.24 0.00 0.93 0.67 0.56 0.11 1.33 

S3 0.80 0.67 3.00 2.22 1.72 0.89 1.72 0.56 1.00 0.33 2.67 

S4 1.60 1.00 1.67 2.67 0.41 1.33 2.50 1.00 0.22 0.78 1.78 

S5 1.07 0.44 1.00 1.33 0.67 4.00 0.41 0.44 0.89 0.67 0.44 

S6 3.20 0.56 1.89 0.00 0.15 2.22 1.46 0.78 0.78 0.44 2.22 

S7 2.13 0.33 2.78 0.44 1.98 2.67 1.19 0.89 0.00 0.22 0.89 

S8 2.93 0.78 2.11 3.56 1.19 3.11 0.15 0.33 0.33 0.00 3.11 

S9 2.40 0.00 2.33 4.00 1.46 3.56 2.24 0.22 0.67 0.89 3.56 

S10 1.87 0.89 1.44 0.89 2.50 1.78 1.98 0.11 0.44 0.56 4.00 

 

The maximum Pearson coefficient is 0.491 (P7-P11) below the 

threshold of 0.632, which means that sets P11 and P7 are not linearly 

correlated. The 10 sets and their corresponding parameter values are 
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acceptable for the calibration test. Table 9.3 presents the Pearson coefficient 

values. 

 

Table 9.3: Pearson coefficient matrix for parameter ID sets 

Parameter ID P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

P1 -0.09 -0.14 0.09 -0.14 0.23 -0.10 0.19 -0.15 -0.39 0.33 

P2  -0.23 -0.14 -0.02 -0.04 0.19 0.21 0.05 -0.27 0.34 

P3   -0.01 0.11 -0.13 0.06 -0.05 -0.22 -0.12 0.02 

P4    0.07 0.04 0.05 -0.21 0.02 0.08 0.36 

P5     -0.21 0.10 -0.23 -0.15 -0.39 0.28 

P6      -0.16 -0.06 0.12 0.06 0.26 

P7       0.21 0.00 0.39 0.49 

P8        -0.01 -0.30 -0.22 

P9         -0.13 0.25 

P10          -0.17 

 

Measure of Performance  

 

A measure of performance (MoP) is applied to identify the 

performance of certain parameter values. The MoP characterises the distance 

between the aggregate measurements observed from actual traffic data and the 

simulation results (Zhang et al., 2008). The link counts are used for the 

isolated intersection model based on the available data. Three (3) rush hour 

durations are used from the collected traffic counts to measure the accuracy of 

the 11 parameter value sets (Table 9.2 above: Parameter sets for calibration 

assignment). 

 

To measure the simulated traffic counts, detector loops are placed at 

the end of each approach (before the traffic signal). 10 induction loops were 
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used to count the through and right-turn movements. The induction loops are 

placed before the stop line of the modelled junction J1. The detectors record 

the traffic count based on vehicle class and approach. There are five (5) 

vehicle classes and four (4) approaches for the modelled junction J1.  

 

The GEH is used to compare the two (2) flow values. The default set  

D1 was found to be suitable for heavy lorry, and bus modes of transport. The 

set ID S5 was found to be adequate for the medium lorry class. On the other 

hand, additional parametric sets are tested for car and motorcycle vehicles.  

 

To improve the GEH for the simulated car vehicle, the value parameter 

is found by utilising the Pearson coefficient and S5 of parameter values. 

Additional 10 sets are developed with adjusted values. Table 9.4 presents the 

set ID S5 parameter values.  

 

Table 9.4: Additional test set driven from S5 parameter values 
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1 0.80 0 1 0 0.15 0 0.15 0.2 0.5 0.5 0 

2 0.89 0.06 1.06 0.22 0.41 0.44 0.41 0.29 0.56 0.56 0.22 

3 0.98 0.11 1.11 0.44 0.67 0.89 0.67 0.38 0.61 0.61 0.44 

4 1.07 0.17 1.17 0.67 0.93 1.33 0.93 0.47 0.67 0.67 0.67 

5 1.16 0.22 1.22 0.89 1.19 1.78 1.19 0.56 0.72 0.72 0.89 

6 1.24 0.28 1.28 1.11 1.46 2.22 1.46 0.64 0.78 0.78 1.11 

7 1.33 0.33 1.33 1.33 1.72 2.67 1.72 0.73 0.83 0.83 1.33 

8 1.42 0.39 1.39 1.56 1.98 3.11 1.98 0.82 0.89 0.89 1.56 

9 1.51 0.44 1.44 1.78 2.24 3.56 2.24 0.91 0.94 0.94 1.78 

10 1.60 0.50 1.50 2.00 2.50 4.00 2.50 1.00 1.00 1.00 2.00 
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The following Table 9.5 summarises the 11 calibrated parameters for 

the SUMO model based on vehicle category. 

 

Table 9.5: Final calibrated parameter values 

Parameter ID 

Vehicle Category 
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Passenger Car 0.89 0.22 1.00 0.67 0.67 4.00 0.41 0.44 0.94 0.83 0.22 

Motorcycle 0.89 0.22 1.00 0.67 0.67 4.00 0.33 0.44 0.94 0.83 0.22 

Medium Lorry 1.07 0.44 1.00 1.33 1.33 4.00 0.41 0.44 0.89 0.67 0.44 

Bus/Heavy Lorry 2.50 0.50 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 

 

The performance measure has shown improvement using the set of 

parameters in former Table 9.5. The GEH of 5 and below was achieved for 

two (2) calibration sets, CS2 and CS3, while calibration set CS1 shows a GEH 

greater than 5. Table 9.6 presents the GEH values for the three (3) calibration 

data sets.  

 

Table 9.6: GEH value for calibration test sets 

Direction East North South West Average 

Calibration 

Set 

CS1 5.30 13.77 7.78 0.00 7.18 

CS2 1.25 3.88 1.02 3.44 2.78 

CS3 7.86 5.82 0.08 0.00 1.97 

 

The high GEH value is found to be related to the north approach in 

CS1. Interestingly, the traffic volume in this data set is the highest across all 

the data sets in this study. The average value of the GEH measure across the 

three (3) calibration sets is 3.98, which is smaller than the acceptable threshold 

(GEH<5). 
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Model Validation  

 

The validation set is utilised in this final step to verify the ability of the 

model to accurately reproduce data different from those used for calibration.  

 

The error resulting from the validation error is often larger than the 

calibration error. Nevertheless, a measure performance of 85% is considered 

good quality, i.e., the link counts should have less than 15% error in them 

(Dowling et al., 2004).  

 

The following parameter values are used to validate the isolated 

intersection scenario. The validation set was not used in the earlier calibration 

procedure. A distinction between the chi-square and GEH methods is that the 

earlier gives relatively more significant weight to larger differences between 

flow counts. These differences are reflected in the aggregate measure of 

computing the average of all GEH statistics from a set of counts. Based on the 

MoP, the average GEH is equivalent to 2.03 with a 95% confidence level. A 

total of 64 simulation run are performed to acquire this GEH value during the 

validation stage. Table 9.7 summarises the GEH based on vehicle type and the 

junction’s approach. 

 

Table 9.7: GEH score for the validation set 

GEH 

Approach East  North South  West Average 

Vehicle 

Category 

Car 8.31 5.13 5.84 0.00 4.82 

Motorcycle 5.59 1.91 2.76 0.00 2.56 

Bus 0.83 0.00 0.00 NA 0.21 
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GEH 

Approach East  North South  West Average 

Van 2.77 1.13 1.29 0.00 1.30 

Lorry 3.96 0.71 0.29 0.00 1.24 

 Overall Average 4.29 1.78 2.04 0.00 2.03 

NA: No vehicle count (0veh/hr) 

 

Even though the presented GEH values have shown acceptable MoP 

for the model, these GEH values exclude the right turn movement at the 

signalised intersection. Therefore, the overall model accuracy should include 

traffic counts from all approaches that have been inserted and crossed the 

screenline position.  

 

Based on the GEH reference, the hourly volume estimates inherently 

contain more relative error on average in comparison to daily models. On the 

other hand, the single-hour model should perform better than the daily model, 

as the earlier model has to encompass a lower variety of conditions. The 1-

hour validation set has a total volume of 4,213 vehicles.  

 

The simulation has a runtime of 61 minutes to minimise the impact of 

the midnight simulation at the beginning of the simulation run. The validation 

set achieved a 5.95% error. Overall, the hourly simulation has about 94% 

accuracy, with 4,985 vehicle counts on all approaches successfully inserted 

and crossed the screenline counting location. This accuracy level is above the 

minimum required accuracy threshold of 85%, which is set for this study. 

Therefore, the validation set and its set of parameters are acceptable for testing 

the model and are suitable for the isolated intersection.  

  



253 

Environment Model 2: Arterial Network Model Validation 

 

Traffic Counts and Flow Volume 

 

The route distribution defines the probability of a vehicle traversing the 

network routes from its origin to its destination. The network has 13 origins 

(similarly, 13 destinations) corresponding to its edges. The first step is to 

ensure that each junction has at least 85% accuracy in terms of link counts. If 

not, then the route distribution exercise must be revised until the network 

routes achieve the required road volume and junction volumes to reflect the 

site condition.  

 

Based on the validation exercise, the network has 93% accuracy in 

terms of volume at links. Besides that, the GEH mean value is found to be 

appropriate at 1.46. Table 9.8 presents the 10 runs and their associated 

volumes per intersection approach.  

  



254 

Table 9.8: Validation results for network model for link counts 

 Volume Counts (Veh.) 
Average (veh.) Site Observation (veh.) Difference (%) 

Error Counts <=15% (value of 1) 

Error Counts >15% (value of 0) 
GEH 

Run ID 1 2 3 4 5 6 7 8 9 10 

J1 

North 932 961 938 919 965 969 946 938 951 943 946.2 935 1% 1 0.37 

South 1,311 1,315 1,282 1,237 1,286 1,266 1,310 1,287 1,314 1,245 1,285.3 1,299 -1% 1 0.38 

East 468 457 480 524 518 522 499 500 540 472 498 476 5% 1 1 

West 230 241 227 232 236 221 236 240 228 231 232.2 236 -2% 1 0.25 

J2 

North 567 516 568 569 547 540 543 584 525 558 551.7 549 0% 1 0.12 

South 506 506 506 506 506 506 506 506 506 506 506 506 0% 1 0 

East 1,034 1,000 1,006 1,055 1,019 1,006 1,018 1,035 1,045 1,046 1,026.40 1088 -6% 1 1.89 

J3 

North 407 383 388 392 391 381 392 399 420 391 394.4 408 -3% 1 0.68 

East 998 1,032 975 1,027 978 1,012 1,000 1,003 1,004 1,021 1,005.00 1025 -2% 1 0.63 

West 1,427 1,380 1,347 1,395 1,384 1,381 1,433 1,317 1,403 1,357 1,382.40 1435 -4% 1 1.4 

J4 

North 610 595 612 603 601 605 675 590 601 624 611.6 630 -3% 1 0.74 

East 789 740 769 775 721 766 794 783 726 799 766.2 702 9% 1 2.37 

West 362 312 341 327 341 348 344 350 341 334 340 345 -1% 1 0.27 

J5 

North 411 400 417 424 391 435 426 412 414 437 416.7 438 -5% 1 1.03 

South 866 868 888 880 840 912 855 837 900 860 870.6 908 -4% 1 1.25 

West 589 550 560 583 568 547 594 569 570 545 567.5 589 -4% 1 0.89 

J6 

North 1,815 1,851 1,792 1,822 1,838 1,842 1,802 1,803 1,885 1,854 1,830.4 1,878 -3% 1 1.11 

South 1,192 1,163 1,185 1,161 1,131 1,194 1,183 1,162 1,159 1,174 1,170.4 1,149 2% 1 0.63 

West 331 332 328 327 334 329 330 334 334 332 331.1 331 0% 1 0.01 

J7 

South 864 795 883 868 831 903 833 813 858 879 852.7 1,027 -17% 0 5.69 

East 1,168 1,140 1,143 1,132 1,133 1,126 1,182 1,155 1,095 1,128 1,140.20 1,189 -4% 1 1.43 

West 1,072 1,044 1,059 1,053 1,052 1,073 1,070 1,079 1,059 1,035 1,059.60 1,240 -15% 1 5.32 

J8 

North 390 360 367 358 386 402 375 360 395 394 378.7 399 -5% 1 1.03 

East 1,225 1,264 1,187 1,161 1,151 1,193 1,209 1,186 1,172 1,110 1,185.80 1,009 18% 0 5.34 

West 886 885 863 855 857 905 902 874 879 887 879.3 882 0% 1 0.09 

J9 

North 484 516 484 495 486 521 498 522 498 506 501 462 8% 1 1.78 

East 1,487 1,484 1,406 1,372 1,365 1,434 1,429 1,418 1,414 1,361 1,417.00 1,268 12% 1 4.07 

West 638 683 662 634 638 692 682 683 675 664 665.1 696 -4% 1 1.18 

Total 22,811.50 23,099.00 -1% 93% 1.46 
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Measure of Performance: Travel Time and Travel Speed 

 

The travel time is the time required for a vehicle to travel between two 

intersections. This time parameter is computed from the instant the vehicle 

enters the edge route heading towards its destination junction, and it ends at 

the instant the vehicle passes its destination junction. Therefore, the travel 

time might include the waiting time if the vehicle has to wait for its phasing 

turn movement.   

 

The travel speed parameter is the mean speed of vehicles that travel 

between two (2) junctions. Like the travel time, the speed is measured from 

the instant the vehicle enters the edge until it passes its destination junction.   

 

The travel time and speed attributes were recorded from the site based 

on a few runs using a private passenger car. Based on the validation process, 

both of these MoPs have reached an acceptable accuracy of 87.50%, which is 

above the threshold of 85% required for the model. The following Table 9.9 

presents the findings for validation. 
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Table 9.9: Validation results for network model for travel time and 

speed 

Summary of 10 

Runs 
Mean Travel Time (s) Mean Speed (m/sec) 

Route (Junction 

To Junction) 

Model 

Output 
Field Data 

Difference 

(%) 

Model 

Output 
Field Data 

Difference 

(%) 

J1-J2 223.03 199.13 12.00% 9.45 10.74 -12.06% 

J2-J3 89.52 97.33 -8.03% 12.96 13.43 -3.46% 

J3-J4 80.73 76.27 5.85% 12.42 11.11 11.78% 

J4-J5 83.86 88.75 -5.51% 11.99 10.74 11.64% 

J5-J6 69.06 76 -9.13% 11.28 12.22 -7.71% 

J5-J7 344.8 90.67 280.30% 4.5 10.56 -57.36% 

J7-8 125.92 129.17 -2.51% 10.27 11.85 -13.34% 

J8-J9 120.09 139.2 -13.73% 9.09 10.42 -12.73% 

J9-J8 284.83 182.47 56.10% 6.48 13.33 -51.43% 

J8-J7 183.97 189.55 -2.94% 11.81 11.57 2.07% 

J7-J5 94.95 97.33 -2.45% 9.93 11.48 -13.47% 

J6-J5 64.79 72.68 -10.85% 11.44 10.92 4.79% 

J5-J4 225.13 203 10.90% 9.26 9.63 -3.79% 

J4-J3 115.42 102.3 12.82% 10.08 10.74 -6.13% 

J3-J2 96.36 97.07 -0.73% 11.51 10.37 11.03% 

J2-J1 206.57 220.4 -6.27% 9.57 10.33 -7.34% 

Total Number of 

Routes 
  16   16 

Number of 

Counts <= 15% 

Error 

  14   14 

Number of 

Counts >= 15% 

Error 

  2   2 

Accuracy (%)   87.50%   87.50% 
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APPENDIX C: HYPERPARAMETER TUNNING FOR NETWORK 

MODEL  

 

 

The following steps were followed to tune the parameters for the 

network model.  

 

Step1: Determination of Grid Search Scope 

 

Typically, a grid search involves picking values approximately on a 

logarithmic scale. The learning rate α is taken within the set {0.1, .01, 10−3, 

10−4, 10−5} whereas the weight factor γ usually investigated for the following 

values: 0.5, 0.90, and 0.99 (Goodfellow et al., 2017). During the test runs, the 

weight value of 0.95 was used instead of 0.99, as it was found to be more 

suitable for future reward consideration. In total, there are 27 combination sets 

for the hyperparameters. Table 10.1 presents these various test sets. 

 

Table 10.1: Composition of 27 sets for three parameters of the Q-

learning 

Discount Factor  Learning Rate Epsilon Set ID 

0.95 

0.1 

0.42 10 

0.44 11 

0.34 12 

0.01 

0.42 13 

0.44 14 

0.34 15 

0.001 

0.42 16 

0.44 17 

0.34 18 

0.9 0.1 
0.42 1 

0.44 2 
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Discount Factor  Learning Rate Epsilon Set ID 

0.34 3 

0.01 

0.42 4 

0.44 5 

0.34 6 

0.001 

0.42 7 

0.44 8 

0.34 9 

0.5 

0.1 

0.42 19 

0.44 20 

0.34 21 

0.01 

0.42 22 

0.44 23 

0.34 24 

0.001 

0.42 25 

0.44 26 

0.34 27 

 

Step 2: Benchmarking Grid Search Results with the Fixed Controller  

 

Step 2 is to shortlist the combinations of appropriate measures based 

on the fixed controller set. Only the top achievers will be further scrutinised. 

The performance results are based on 10 frames with a 20 minutes cap time 

for each combination set ID. Several performance measures were looked at, 

including the run time, the number of inserted and ended traffic volumes, the 

waiting time, the mean travel time, and the mean speed. These attributes are 

generated from SUMO. 

 

Furthermore, two (2) additional attributes were computed, including 

the ratio of end/inserted vehicles and the ended/loaded vehicles. These two (2) 

statistics give insight into optimal flow conditions. A balanced traffic flow is 

associated with a small ratio. Table 10.2 presents the findings. 
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Table 10.2: Measure of performance for fixed time controller and 

various DQLA k-v set attributes 
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10 0:17:28 5,038 3,678 1,474 39% 29% 11% 34.53 299.98 1.87 0.080 

11 0:16:44 4,829 3,820 1,503 39% 31% 8% 27.29 271.82 2.30 0.095 

12 0:16:09 4,662 3,447 1,397 40% 30% 10% 39.05 251.69 1.98 0.082 

13 0:15:38 4,513 3,518 1,316 37% 29% 8% 26.36 253.26 1.78 0.075 

14* 0:17:17 4,981 3,906 1,561 40% 31% 9% 35.54 283.24 1.82 0.076 

15 0:14:59 4,328 3,425 1,098 32% 25% 7% 22.80 247.19 1.98 0.086 

16* 0:17:33 5,060 4,264 1,743 41% 34% 6% 23.92 265.36 1.92 0.082 

17 0:16:44 4,827 3,687 1,234 33% 26% 8% 28.39 283.99 1.68 0.073 

18 0:17:18 4,988 4,096 1,608 39% 32% 7% 17.20 244.73 1.84 0.078 

1 0:16:49 4,850 3,725 1,351 36% 28% 8% 31.83 283.47 1.89 0.079 

2 0:17:44 5,115 4,040 1,577 39% 31% 8% 26.52 283.67 1.83 0.078 

3 0:16:56 4,885 3,688 1,410 38% 29% 9% 25.92 263.98 1.78 0.078 

4 0:16:28 4,753 3,729 1,418 38% 30% 8% 19.16 256.23 1.70 0.072 

5 0:18:13 5,254 4,107 1,782 43% 34% 9% 27.66 286.60 2.11 0.09 

6* 0:16:46 4,839 3,915 1,423 36% 29% 7% 22.85 275.43 1.78 0.076 

7* 0:19:33 5,634 4,467 1,931 43% 34% 9% 37.90 311.28 2.00 0.082 

8 0:17:55 5,167 4,081 1,726 42% 33% 9% 34.13 271.55 2.10 0.09 

9* 0:15:19 4,421 3,416 1,198 35% 27% 8% 21.13 260.79 2.22 0.096 

19* 0:16:27 4,747 3,662 1,323 36% 28% 8% 31.86 255.88 1.46 0.062 

20 0:18:55 5,453 4,132 1,702 41% 31% 10% 31.90 290.26 1.75 0.075 

21 0:17:53 5,157 3,648 1,498 41% 29% 12% 32.98 293.46 2.03 0.086 

22 0:18:01 5,193 4,090 1,557 38% 30% 8% 36.74 306.51 1.70 0.074 

23 0:17:17 4,983 3,808 1,398 36% 28% 9% 28.29 262.81 1.88 0.082 

24* 0:16:47 4,842 3,876 1,519 39% 31% 8% 22.74 236.38 1.80 0.079 

25 0:16:49 4,853 3,728 1,344 36% 27% 8% 23.48 236.94 1.61 0.07 

26* 0:18:55 5,451 4,361 1,816 42% 33% 8% 22.58 265.48 2.01 0.085 

27 0:16:17 4,696 3,332 1,281 38% 27% 11% 35.11 251.94 1.90 0.082 

*The top performing sets 
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With careful observation of the results, it was determined that set 

numbers 14, 16, 6, 7, 9, 19, 24, and 26 achieved the best performances. 

Therefore, additional testing sets were required to calibrate the decay value 

(exploration-exploitation) further.  

 

Three (3) epsilon values were found to give exceptional learning 

results based on the calibration exercise. These values are 0.44, 0.42, and 0.33. 

The performance indicators are presented in Table 10.3.  

 

Table 10.3: Measure of performance for three epsilon values 

ep
si

lo
n

 

L
o

a
d

ed
 (

v
rh

.)
 

In
se

r
te

d
 (

v
eh

.)
 

E
n

d
e
d

 (
v

eh
.)

 

en
d

ed
/i

n
se

r
te

d
  

en
d

ed
/l

o
a

d
ed

  

D
if

fe
r
en

ce
  

M
ea

n
 W

a
it

in
g

 

T
im

e 
(s

) 

M
ea

n
 T

ra
v

el
 T

im
e
 

(s
) 

M
ea

n
 S

p
ee

d
 (

m
/s

) 

0.442 4,687.00 3,542.00 1,370.00 0.39 0.29 0.09 20.43 246.87 2.48 

0.420 5,552.00 4,510.00 1,795.00 0.40 0.32 0.07 55.61 265.56 2.02 

0.344 5,007.00 3,623.00 1,757.00 0.48 0.35 0.13 24.50 284.52 2.72 

 

Based on the hyperparameter calibration test, the attribute values (Set 

ID 16) of 0.44, 0.001, and 0.50 for the epsilon, learning rate, and weight, 

respectively, are found to be most suitable for the Q-learning algorithm.  

  



261 

APPENDIX D: TRAINING AGENT AND MEASURE OF 

PERFORMANCE 

 

 

It was impossible to have a smooth, curve-shaped geometry 

progressing towards convergence. Each episode showed different scoring 

across performance measures. Hence, a ranking system based on multi-

objectives is used to determine a suitable agent for testing. The system is 

based on the number of halting vehicles, the ratio of clearance, the mean 

waiting time, the mean travel time, and the mean cruising speed.  

 

Environment Model 1: Isolated Intersection 

 

Training the DCNN Agent: A total of 500 episodes were trained. 

Table 11.1 presents the measured attributes for every 20 episodes. The top 

three (3) agents in the following category were then extracted.  

1. Highest arrival rate  

2. Lowest number of halting vehicles 

3. Lowest mean waiting time 

4. Lowest mean travel time 

5. Highest mean speed, and  

6. Highest clearance ratio (arrived vehicles:inserted vehicles) 
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Table 11.1: Performance measure per training session for DCNN 

agent for isolated intersection model 

Run 

ID 

Arrived 

(veh.) 

Halting 

(veh.) 

Mean Waiting 

Time (s) 

Mean Travel 

Time (s) 

Mean Speed 

(m/se) 

Clearance 

Ratio 

1 2,769.27 95.70 0.276191 89.48972 5.432787 49.1% 

20 2,773.336 94.53 0.275374 95.3738 5.44226 49.2% 

40 2,773.089 90.99 0.265041 87.72622 5.661022 49.2% 

60 2,782.992 84.40 0.266902 85.69429 5.901822 49.4% 

80 2,773.614 94.20 0.312645 88.39339 5.64721 49.2% 

100 2,748.234 105.94 4.525964 99.75839 5.072495 48.8% 

120 2,811.493 97.540 0.315954 92.50248 5.563734 49.9% 

140 2,765.583 99.131 0.318511 92.16764 5.444137 49.1% 

160 2,815.124 94.824 0.291849 98.64769 5.532718 49.9% 

180 2,755.682 109.482 0.26426 103.8559 4.860749 48.9% 

200 2,828.104 84.020 0.305298 86.60718 5.92461 50.2% 

220 2,759.684 101.419 0.611598 102.0272 5.211448 49.0% 

240 2,745.07 110.509 5.345391 112.4887 4.764962 48.7% 

260 2,777.374 88.922 0.285544 87.6026 5.804087 49.3% 

280 2,777.669 86.663 0.274675 88.90044 5.805981 49.3% 

300 2,776.575 88.965 0.273085 96.46739 5.619369 49.3% 

320 2,772.398 92.026 0.26894 91.78448 5.483331 49.2% 

340 2,767.91 99.594 0.266301 99.86902 5.177281 49.1% 

360 2,772.586 94.130 0.272634 93.74133 5.460801 49.2% 

380 2,783.555 83.521 0.274415 85.13241 5.94253 49.4% 

400 2,772.552 93.161 0.266301 86.507 5.591418 49.2% 

420 2,780.567 86.534 0.298948 86.41232 5.869082 49.3% 

440 2,774.529 90.528 0.276456 94.85795 5.615191 49.2% 

460 2,752.067 98.870 5.104959 112.2856 5.206973 48.8% 

480 2,745.014 112.185 0.553615 106.5843 4.825112 48.7% 

500 2,769.879 94.778 0.754046 89.97945 5.585552 49.1% 

 

Each of these above measures of performance is weighted equally. A 

score of one (1) is given to each of the three (3) top scores among the agents. 

Based on Table 11.2, the highest scorer is agent ID200. The trained agent is 

most likely to perform best compared to other trained agents for the isolated 

model.  
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Table 11.2: Top scoring trained agents for isolated intersection 

model 

Trained 

Agent 

Arrived 

(veh.) 

Halting 

(veh.) 

Mean 

Waiting Time 

(s) 

Mean 

Travel 

Time (s) 

Mean 

Speed (s) 

Clearance 

Ratio 

Total 

Score 

200 1 1   1 1 4 

160 1     1 2 

120 1     1 2 

380  1  1 1  3 

60  1  1 1  3 

40   1    1 

180   1    1 

340   1    1 

420    1   1 

Score 3 3 3 3 3 3 18 

 

Environment Model 2: Arterial Network 

 

The total number of training episodes for DQLA k-v and DCNN agents 

is 100 and 180 episodes, respectively. Each agent acts solely at the network 

level and controls one intersection. In other words, the training episode will 

produce nine (9) agents. The training aims to identify the training session with 

the highest optimisation impact at the network level. Similar to the isolated 

intersection, a range of performance measures were taken into account to 

determine the best training session. Then the associated session’s agents will 

be saved and used for testing. Only the significant results are reported in the 

following for DQLA k-v and DCNN.  

 

Training the DQLA k-v Agent: The training yielded that training 

session #21 performed significantly better compared to other trained episodes. 

In particular, this session led to higher arrival rates, shorter travel time, and 

faster traversing experiences at the network level. 
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Table 11.3: Measure of performance during the training session of 

DQLA k-v agent for arterial network model 

Controller 

Session ID #21 = 7299.71 

Session ID 

#20 

Session ID 

#30 

Session ID 

#84 

Session ID 

#88 

Session ID 

#96 

Session ID 

#100 

Inserted (veh.) 7206.86* 7076.38 6976.83 7887.91 6697.74 6760.53 

Controller 

Session ID #21 = 4674.11 

Session ID 

#20 

Session ID 

#30 

Session ID 

#84 

Session ID 

#88 

Session ID 

#96 

Session ID 

#100 

Arrived (veh.) 4418.19 4279.20 3824.88 4286.89 3311.82 3812.80 

Controller 

Session ID #21 = 175.8 

Session ID 

#20 

Session ID 

#30 

Session ID 

#84 

Session ID 

#88 

Session ID 

#96 

Session ID 

#100 

Mean Waiting 

Time (s) 
157.28 194.6 176.02* 205.76 209.86 178.64* 

Controller 

Session ID #21 = 494.93 

Session ID 

#20 

Session ID 

#30 

Session ID 

#84 

Session ID 

#88 

Session ID 

#96 

Session ID 

#100 

Mean Travel 

Time (s) 
530.88 530.71 565.4134 644.48 593.77 559.27 

Controller 

Session ID #21 = 2.32 

Session ID 

#20 

Session ID 

#30 

Session ID 

#84 

Session ID 

#88 

Session ID 

#96 

Session ID 

#100 

Mean Speed 

(m/s) 
2.14 2.02 1.77 1.36 1.59 1.72 

*Insignificant at p>0.05  

 

Training the DCNN Agent: The DCNN agent was trained earlier for 

the isolated model. However, as the arterial network has sophisticated 

dynamics and more complex traffic movement across different junction 

configurations, training the agent is necessary to capture these variables. 

Training session ID #104 had the highest score across other training episodes. 

The following Table 11.4 includes the shortlisted training sessions.  

  



265 

Table 11.4: Measure of performance during the training session of 

DCNN agent for arterial network model 

Session 

ID # 

Inserted 

(veh.) 

Waiting 

(veh.) 

Arrived 

(veh.) 

Halting 

(veh.) 

Mean 

Waiting Time 

(s) 

Mean Travel 

Time (s) 

Mean Speed 

(m/s) 

Clearance 

Ratio 

104 8,304.78 1,586.29 6,343.57 1,185.18 91.97 387.81 3.74 76.38% 

131 8,068.21 1,822.85 5,854.92 1,448.27 90.09 408.40 3.32 72.57% 

97 8,047.98 1,843.09 6,104.57 1,235.92 103.07 374.28 3.57 75.85% 

69 7,660.72 2,230.34 5,808.89 1,190.96 130.57 375.35 3.64 75.83% 

 

  



266 

APPENDIX E: STUDENT’S BIOGRAPHY AND LIST OF 

PUBLICATIONS 

 

 

Muaid Ahmed received a BEng in Civil Engineering from Swinburne 

University of Technology in 2013 and a Master degree in Engineering Science 

from Universiti Tunku Abdul Rahman in 2017. He is currently pursuing a 

Ph.D (Engineering) degree in traffic and transportation engineering at 

Universiti Tunku Abdul Rahman. His research interests include traffic 

management, artificial intelligence, driver behaviour, and accident analyses 

and prevention. He has several published papers and actively participates in 

engineering conferences and talks. 

 

The following are the list of publications related to this thesis work. 

 

Ahmed M. A. A., Khoo H. L., and Ng O. E., 2023. Discharge control 

policy based on density and speed for deep Q-learning adaptive traffic signal, 

Transportmetrica B: Transport Dynamics, 11:1, pp. 1707-1726. doi: 

10.1080/21680566.2023.2243388. 

 

Ahmed, M.A.A., Khoo, H. L., and Ng, O. E., 2022. Application of 

Convolution Neural Network for Adaptive Traffic Controller System. KSCE 

Journal of Civil Engineering, 26(9), pp.4062-4072. doi: 10.1007/s12205-022-

1936-x. 

 



267 

Ahmed, M. A. A., Khoo, H. L., and Ng, O. E., 2023. ‘Adaptive Signal 

Controller based on Convolution Neural Network Agent for Heterogeneous 

Traffic Environment:  A Case Study in Shah Alam, Malaysia’. In proceedings 

of The 15th International Conference of Eastern Asia Society for. 

Transportation Studies (EASTS), Selangor, Malaysia, 4-7 September 2023. 

 

Other list of publications related to the student are as follows.  

 

Khoo, K. L., and Ahmed, M. A.., 2018. Modeling of passengers’ safety 

perception for buses on mountainous roads. Accident Analysis & Prevention, 

113 (2018), pp. 106-116. doi: 10.1016/j.aap.2018.01.025. 

 

Khoo, K. L., and Ahmed, M. A., 2015. ‘Bus driver behavior on rural 

highways: a case study of Karak Expressway’. In proceedings of the 

Conference of ASEAN Road Safety 2015 (CARS2015), Kuala Lumpur: 

Malaysian Institute of Road Safety Research. 

 

Khoo, K. L., and Ahmed, M. A., 2015. A case study of public bus 

driver at Batu Feringghi. Journal of the Eastern Asia Society for 

Transportation Studies, 11(2015), pp. 1982-1998. doi: 

10.11175/easts.11.1982. 


