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ABSTRACT

OPTIMAL RESERVOIR OPERATION SYSTEM BASED ON 
ARTIFICIAL INTELLIGENCE AND METAHEURISTICS 

ALGORITHMS

Karim Sherif Mostafa Hassan

Over the immediate past decades, global warming across the world and in 

Malaysia has caused extreme changes to the climate by disturbing its 

hydrological cycle, causing drought to some areas and floods to another. As a 

result of this, it has become more important to meet the rising need for water 

in order to facilitate increased agricultural, residential, and industrial 

production. Therefore, the process of developing a prediction for water inflow 

and optimising the release operation in a reservoir has become an increasingly 

crucial undertaking for the management of a reservoir.   Conventionally, the 

simulation and forecasting scenarios were calculated using traditional linear 

models but however, traditional linear models lack the capability to grasp the 

dynamic and non-linear aspects inherent in hydrological applications. 

Therefore, if inflow projections were more accurate, there would be a greater 

need for monitoring of the water quality, and the management of the reservoir 

would be more effective. Following this, the difficulties caused by flash 

flooding and the water crisis in Malaysia and the rest of the world may be 

mitigated with the aid of machine learning. In this study, four different 

machine learning models were proposed to forecast the reservoir inflow 

namely, Support Vector regression (SVR), Multi-layer perceptron neural 
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network (MLPNN), Adaptive Neuro Fuzzy Inference System (ANFIS) and 

Extreme Gradient Boosting (XG-Boost). All the four models were given 

historical data for training and testing that were collected over 19 years (2000-

2019) at Klang Gate Dam which is located in the Gombak District. The data 

was divided into monthly and daily timeframe while the daily is further time 

lagged and subdivided into 7 main scenarios starting with scenario-1 to 

scenario-7 with one, three, and five-days lag for water level and inflow. Four 

optimisation algorithms were used to simulate reservoir operation over a 12-

month period and generate a release curve. For the sake of validation four 

statistical analysis namely coefficient of determination (R²), Mean Square 

Error (MSE), Median Absolute Error (Mead) and root mean squared error 

were adapted to validate and test the machine learning models. On the other 

hand, risk analysis test was carried out to test the optimisation algorithm 

output. The risk analysis consisted of reliability, resiliency to recover from 

failure, vulnerability degree and finally sustainability. Results revealed that: 

(1) For the monthly period, all four models were capable of predicting 

effective monthly reservoir inflows by achieving at least an R² of 0.5; the XG-

Boost model was rated as the best model, followed by the MLPNN, SVR, and 

finally ANFIS. (2) For forecasting daily inflow, the XG-Boost still surpasses 

all other models, but with diminished efficiency. The models were still placed 

in the same order, with the ANFIS doing very poorly in scenarios 2, 3, and 4. 

(3) The best scenarios for daily inflows are scenarios 5, 6, and 7, since the 

models were developed using 1, 3, and 5 days of anticipated inflow, and XG-

Boost consistently beats all other models. Moreover, for the optimisation 

phase all four models were able to produce release curves with a certain 
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degree of validity. Firefly algorithm (FA) was ranked as the best optimisation 

algorithm after obtaining a vulnerability percentage of 39% as the finest 

optimisation algorithm model; followed by the particle swarm (PSO) at 

59.99%, then the genetic algorithm (GA) with a vulnerability of 68%, and 

lastly, the nuclear reaction (NRO) with 72%. The present study proposes a 

novel approach for developing a one-size-fits-all system for forecasting water 

reservoir inflow and optimizing reservoir operation. The proposed system is 

based on a combination of machine learning and optimisation techniques, and 

it has the potential to eliminate the need for tedious and time-consuming 

manual data collection and interpretation. This could lead to significant 

improvements in the efficiency and effectiveness of water resources 

management, and it could also facilitate the development of more informed 

and timely water resources policies at the national and international levels.
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1CHAPTER 

INTRODUCTION

1.1 General Introduction

It is well acknowledged that the global and regional communities are 

now grappling with one of the most significant environmental and social 

challenges: the water crisis. It is projected that climate change brought on by 

human activity, sometimes known as so-called global warming, will make the 

current global water issue even more severe. Global warming has caused 

numerous changes in the large-scale hydrological cycle, including an increase 

in atmospheric water vapor content, altered precipitation patterns, intensities, 

and extremes, decreased snow cover and widespread ice melting, and 

adjustments to soil moisture and run-off, have been linked to the observed 

warming over the past several decades.

Considering that there is a shortage of fresh water, water resource 

management is crucial for efficiently managing the limited supply of water that 

is now accessible and for sustaining it. It is possible to describe water resource 

management as the process of planning, generating, providing, and overseeing 

the best use of water and its resources. Additionally, managing water resources 

is crucial in averting natural calamities like drought and flood. Dams/water-

reservoirs are one kind of infrastructure that will directly contribute to 
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regulating the quantity of fresh water and mitigating natural disasters. The 

reservoir inflow parameter is crucial to the system's proper management and 

functioning. In order to minimise the effects of water surpluses and water 

deficits, decision-making in the water reservoir sector requires good 

forecasting for the inflow parameter. Prior to the development of technology, 

reservoir level forecasting was done via the use of the available hydrologic data 

and a traditional linear water balance Equation. Due to the stochastic nature of 

meteorological processes like evaporation, rainfall, and temperature, the 

findings, however, were not precise and were questionable.

Recently, artificial intelligence (AI)-based data-driven approaches have 

developed as key tools to overcome the disadvantages of traditional modelling 

methodology. These techniques are driven by the data. These data-driven 

techniques are based on collecting and reusing information implicitly present in 

hydrological time series. This is done without explicitly taking into 

consideration the physical rules that underpin the process.

For planners and decision-makers, operating dam reservoirs is one of 

the greatest difficulties in effectively using the available water supplies. 

Finding the right operational guidelines for the water stored behind the dam is 

their primary goal to ensure that it is used as efficiently as possible to satisfy 

various water usage needs.

Due to the current availability of water resources, there is a significant 

lot of interest in developing a computer-aided optimisation model to address 
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the challenge of finding the best operating rule for a dam reservoir (Zor et al., 

2017). The need to master a suitable advanced optimisation method to 

effectively conduct and deal with difficult applications has received substantial 

attention since a dam reservoir system is very nonlinear and complex with 

various limitations and purposes (Damian, 2019). Furthermore, when it comes 

to the design, development, management, and operation of water resources 

systems, there is always an element of uncertainty. It is caused by the fact that 

many of the elements that influence the performance of water resources 

systems are not known with certainty and cannot be understood with certainty 

while a system is being planned, constructed, built, managed, or operated 

(Loucks and van Beek, 2017) perhaps one of the effective tools available to 

overcome these uncertainties would be a metaheuristic algorithm.

The metaheuristics are derived from a variety of natural principles, 

drawn from fields such as biology, ethology, and physics. Modern 

metaheuristics are significantly more flexible than traditional optimisers 

(Sörensen et al., 2018). 

Unlike traditional optimisers, modern metaheuristics do not require the 

objective and constraints to be continuous, differentiable, linear, or convex. 

Additionally, modern metaheuristics can typically solve large-scale problems 

in an effective manner. In spite of the fact that a metaheuristic may not identify 

the best answer, it can often find one that is almost optimal.
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The research that is presented in this thesis intends to construct a 

reliable and robust machine learning model for the purpose of predicting 

reservoir inflow. It is also aimed at deriving an optimum operational strategy 

for reservoirs through metaheuristic algorithms and, finally examining the 

reservoir operation performance. This will allow the problem of uncertainty to 

be resolved. In the next parts, the problem statement, the aim and objectives, 

and the possible contribution of the study are provided.

1.2 Problem Statement 

The effects of climate change extend to every living thing on the planet, 

putting their continued existence in jeopardy. Because of the major changes in 

water dynamics that have resulted from this, immediate action must be taken to 

avert any negative impacts and the catastrophes that may follow them.

These problems may be solved by regulating the amount of water that is 

already accessible. The planning and forecasting of reservoirs are implemented 

in order to tackle these problems. Even while reservoir forecasting is an 

extremely helpful tool for both civil and environmental engineering, it does 

not, on its own, offer an optimal answer for the process of formulating a 

reservoir operation strategy. As a result, it needs to be supported with 

optimisation algorithms so that engineers may make credentialed judgments on 

acceptable water resources, whether short-term or long-term, in the manner that 

is both the most accurate and the most efficient.
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In the past, forecasting reservoir levels were accomplished by the use of 

mathematical water volume balance Equation. The basic water Equation, also 

known as the water balance Equation, is no longer suitable and accurate as a 

result of an increase in the amount of data as well as the inclusion of numerous 

hydrological variables as inputs (Jothiprakash and Magar, 2012). This is in 

addition to the lack of other data for various reasons. Because of this, it became 

necessary to use models based on artificial intelligence as a replacement tool 

for reservoir forecasting. 

Despite the satisfactory performance exhibited by certain conventional 

AI algorithms like ANFIS, SVM, and ANN in reservoir storage or release 

estimation, these methods still possess certain limitations. For instance, they 

have restricted feature extraction capabilities and tend to require more time 

when utilized as stand-alone models (Zhang et al., 2018). Hence, this current 

research aims to overcome such limitations by developing an artificial 

intelligence model coupled with optimisation algorithms to enhance the model 

performance.

The management plan for a reservoir depends on stochastic factors as 

well as the values of deterministic factors and preset behavior, where even little 

changes may have a big impact on the efficacy of water release and the 

functionality of the reservoir (He et al., 2018). The formulation of an adequate 

strategy for the operation of reservoirs is complicated and difficult as a result 

of all of these factors. The quantity of water released from a reservoir is 

governed by operating rule curves, which establish relationships between 
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parametric and non-parametric variables such the volume of water flowing into 

the reservoir, the amount of water evaporating, and the reservoir's level of 

water.

In order to operate a reservoir system in real-time, A forecasting model 

and rule curves may be coupled together to approximate the inflow of water as 

a stochastic vector, despite the historical usage of linear programming in 

Hydrology field it still requires further validation.

 The algorithmic dexterity of classical optimisation techniques, such as 

nonlinear programming, linear programming, and dynamic programming, is 

limited in several ways. For example, linear programming is incapable of 

resolving issues with nonlinear or non-convex objective functions. 

Additionally, the computational time tends to increase when addressing 

problems with a large number of decision variables (Chitsaz and Banihabib, 

2015). While most traditional optimisation techniques take into account several 

different goals, they typically do so in a limited manner by examining each aim 

separately and assigning weights. Hence, such methodologies have shown an 

imbalance between exploitation and exploration at different phases of the 

search (Reddy and Kumar, 2006; Črepinšek et al., 2013). 

In addition to all the above, in many published studies, projected data 

are typically treated as separate entities and not integrated into reservoir 

operations. Moreover, the absence of comparisons between optimisation 

methods based on forecasted inflow by machine learning models attempting to 
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build an ideal reservoir operating rule curve is a foregone conclusion and there 

is currently a lack of a comprehensive optimisation system that utilizes 

artificial intelligence model outputs to generate an optimal release strategy.

In this situation, it is necessary to look into innovative techniques to 

help in creating an ideal water release strategy for dams and reservoirs that 

could minimise the gaps between the water demand and release.

1.3 Aim and Objectives

The main goal of this research project is to develop a powerful hybrid 

system for inflow forecasting using a machine learning model on a daily and 

monthly time frame basis. Following this, a simulation of the reservoir 

operations followed by optimising the operation is carried out to seek optimal 

release curves. The specific objectives of this study are as stated in the four 

points below: 

i) To develop four AI models, namely Support Vector Regression (SVR), 

Multilayer perceptron Neural Network (MLPNN), Extreme Gradient 

Boosting (XG-Boost), and Adaptive Neuro-Fuzzy Inference System 

(ANFIS) for reservoir inflow forecasting.

ii) To optimise reservoir operation by adopting four novel optimisation 

algorithms, the (Genetic Algorithms (GA), the Particle swarm (PSO), 

the Nuclear reaction Optimisation Algorithm (NRO) and the Firefly 

Optimisation Algorithm (FA).
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iii) To propose smart optimising release guidelines through simulating 

reservoir water balance, based on the observed historical data, using the 

AI techniques as stated in objective one, along with the loses; into the 

four proposed optimisation algorithms through developing a semi-

autonomic optimisation system.

iv) To assess the reservoir performances operation under each model and to 

identify the most effective optimisation algorithms, in terms of 

reliability, resilience, vulnerability, and sustainability indicators.

1.4 Scope of study

This research places a significant emphasis on the use of artificial 

intelligence models and metaheuristics algorithms in the optimisation of a 

reservoir system's release strategy. Peninsular Malaysia is the location of the 

researched study region with the utilisation of data for 20 years. The 

performance of the model, which is based on AI approaches, was examined, 

and compared to the findings acquired from simulations, which were created 

by feeding the model historical data to reduce the prediction's uncertainty. 

In detail, a one-of-a-kind optimisation model with two stages was 

developed, with the optimisation process being divided into "actual" and 

"predicted" inflows on the basis of three separate quantitative hydrological 

periods, which are designated as "high," "medium," and "low" inflows, 

respectively. 
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In addition, one of the scopes of this study is to perform a simulation of 

the reservoir condition by integrating evaporation to account for reservoir 

losses. A detailed description of the scope of the study and the data utilised are 

outlined in Chapter 3 of this thesis.

1.5 Contribution of the study

The uniqueness and innovation of this research is that it undertakes a 

second analysis on the combined application of inflow projections with various 

lead periods at KLANG Gate Dam. Developing an optimum reservoir 

operating strategy using projections for the inflow in the form of ranges (High, 

Medium, and Low inflow) rather than fixed values, hence, overcoming the 

inflow uncertainties and expanding the search space which resulted in 

generating a wider range of outputs hence increasing the overall operational 

dependability by fusing both instrumental and reconstructed oscillation data to 

optimise reservoir operation.

Finally, the contribution of this study towards the scientific community 

is that it closes one of the gaps found in the field which is the estimation of 

reservoir losses and the effect of these losses on the reservoir operation as 

evaporation losses are significantly important to the reservoir and in most of 

the cases the data are not available and need to be estimated (Allawi, Jaafar, 

Mohamad Hamzah, Abdullah, et al., 2018; Dashti Latif et al., 2021; Hamdan 

and Zaki, 2016). 
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This study is novel as it developed a closed loop system that forecast, 

simulate, and optimise the reservoir operation with a minimal human 

interference as once the data are being fed to the system, the system will iterate 

and dynamically Configure itself to find the optimum needed output by solving 

the non-linear relationship between the water demand and release to the inflow 

aiming to address the environmental uncertainties, such closed loop system in 

information technology (IT) field is defined as an autonomic computing system 

(Obienu, 2018). 

From the standpoint of the national economy, developing a reservoir 

operating system is a significant decision-support tool. Although the 

established system's accuracy relies on the data's accessibility, it may be 

utilised for any case study in Peninsular Malaysia. Guideline makers can 

precisely utilise this information when creating suitable plans for supplying 

water, timing irrigation,  and other activities in order to encourage the recovery 

and robustness of the national economy, which, regrettably, had been declining 

in recent years.

1.6 Outline of thesis

This thesis is divided into five chapters, including this one. The context, 

purpose, and goals of this research, as well as its scope and contributions, are 

briefly described in Chapter 1. 
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The discussion in Chapter 2 centers on the conclusions drawn from 

earlier research investigations that were carried out in the same area; the 

literature analysis will include optimisation techniques and machine learning 

models. This highlights current research trends, along with their benefits and 

drawbacks. The purpose and uniqueness of this study activity (research gap) 

are described at the conclusion of Chapter 2. The whole research technique, 

including the development of base and hybridised models to identify their ideal 

inputs and structures as well as the testing methods (various training and 

testing cases) to validate the reliability of the models, is described in Chapter 3. 

In Chapter 4, the performance of the basic models under various input 

combinations is discussed, along with the release curves that each model 

produced. This chapter offers a succinct overview of the findings. 

In Chapter 5, a short and concluding comment is provided along with 

suggestions for future research projects linked to the foundation/basis 

established by this research study.
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2CHAPTER

LITERATURE REVIEW

2.1 Forecasting-Based AI Models

2.1.1 Artificial Neural Network 

Neural networks are a subset of artificial intelligence. Since the 1980s, 

artificial neural networks (ANN) have gained a lot of attention in the field of 

artificial intelligence (Specht, 1988; Jang, 1991; Zhang et al., 1998). It 

develops a simplified model which abstracts the neural network of the human 

brain from the viewpoint of information processing and composes various 

networks based on multiple connections. Even if each neuron does its task 

exceedingly slowly and incorrectly, an ANN may learn from examples and 

then generalise to situations that have never been observed. A network can 

collaborate effectively, such as with a data collection function (Wu and Feng, 

2018). 

The number of different neural networks continues to mushroom at an 

alarming rate. When there are so many new architectural styles and methods to 

choose from, one needs a map to guide them. Despite the massive growth of 

neural networks, some well-known models were tested for forecasting the 

future and improving one's ability to make choices based on that prediction. 
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The following list summarises the most reliable models (Leijnen and Veen, 

2020; Hill et al., 1994; Hounmenou, 2021):

 Multilayer Perceptron Neural Network (MLPNN)

 Recurrent Neural Network (RNN)

 Long Short-Term Memory (LSTM)

 Deep Feed Forward (DFF)

 Radial Basis function Network (RBNN) 

 Feed Forward Neural Network (FFNN)

 Convolutional Neural Network (CNN)

The multilayer perceptron does not make any previous assumptions 

about the distribution of the data, in contrast to conventional statistical 

approaches. It can be programmed to properly generalise when given raw, 

untested data and is capable of modelling extremely non-linear functions. 

These characteristics make the multilayer perceptron an appealing 

choice for creating mathematical simulations, as well as for evaluating between 

statistical methods. MLPNN general structure can be seen in Figure 2.1.
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Figure 2.1: MLPNN Model Structure

(Gardner and Dorling, 1998; Taud and Mas, 2018; Ramchoun et al., 

2016) With all being said about the multilayer perceptron neural network, it is 

convincing enough to be selected in this study; however, it will be unfair if a 

full literature review were not conducted. Therefore, the upcoming few 

paragraphs will cover literature reviews, including, but not limited to MLPNN, 

LSTM, and BPNN.

For the purpose of examining data-driven approaches, particularly the 

ANN, for the prediction of monthly river flow, research located in Turkey was 

carried out (Terzi and Ergin, 2014). The (RBFNN) was used with a particular 

dataset of 480 monthly flows since there was an abundance of historical data 

that was easily available. The Feed-Forward Neural Network (FFNN) was used 

in contrast to the autoregressive model and ANFIS, and both of these models 

were evaluated (AR). The output was generated using a kernel transferring 

function of a Gaussian function in the hidden layer, and the number of hidden 

neurons was chosen by trial and error. Although it was demonstrated in the 
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study that the FFNN and the RBFNN could forecast streamflow effectively and 

generate outstanding results, it did not achieve the optimal result, thus it is 

required to test more models.

(Ababaei et al., 2013) proposed a modified RBFNN, FFNN, and GRNN 

as reservoir inflow forecasting models by applying K-Nearest Neighbour 

(KNN) as a data preprocessing technique to improve the model performance to 

carry a fair comparison between the modified and stand-alone model. When 

results from stand-alone models are compared to those from the data fusion 

approach, it becomes clear that the data fusion method may significantly 

enhance the outcomes of individual models and RBFNN yield better results 

than the other models.

 In a follow-up study on the effectiveness of KNN as a data pre-

processing technique (Akbari and Afshar, 2014) implemented KNN to estimate 

error prediction of real-time inflow forecasting models in two catchments. The 

updated inflows are compared to those of persistence-based approaches such as 

autoregressive (AR) and artificial neural network (ANN) models. 

The findings indicate that similarity-based error prediction models have 

the potential to be recognised as an effective option for real-time inflow 

forecasting, particularly in situations where the persistence in the error series 

generated by the flow forecasting model is relatively low; however, it will not 

necessarily yield better results and it is computationally expensive as it 

complicates the model and adds more iteration time. 
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In light of the fact that hydrological time series is made up of several 

frequency components and has nonlinear interactions, data pre-processing 

techniques need to be utilised to enhance the performance of models used for 

forecasting. Beside s KNN, one of the primary data pre-processing techniques 

would be wavelet transform or wavelet decomposition (Nourani et al., 2014; 

Sifuzzaman et al., 2009; Minu et al., 2010).

Wavelet analysis is a multi-resolution analysis that may be performed 

in both the time and frequency domains. Controlling the scaling and shifting of 

a signal representing a time series allows the wavelet transform to breakdown 

the signal into many resolutions. In the time domain as well as the frequency 

domain, it has excellent localization characteristics. It also has the benefit of 

being flexible in terms of picking the mother wavelet, which is the transform 

function, according to the features of the time series. This is another one of its 

advantages (Shensa, 1992).

Additionally, a variety of wavelets, such as the Daubechies, Symmlet, 

Coiflet, Meyer, Gaussian, Mexican caps, Morlet, and Shannon wavelets, may 

be used in conjunction with machine learning to forecast non-linear time series 

data. (Minu et al., 2010).

Owing to the good performance achieved by Wavelet decomposition 

and the fact that reservoir inflow is hard to be predicted and requires a reliable 

model, (Seo et al., 2015) decided to fuse Wavelet with WA-MLPNN and 

compare it with the ordinary MLP model. The results showed that the WA-
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MLPNN is superior to the ANN with an R value of 0.979 to 0.967, 

respectively.

Data pre-processing is important to build a reliable and efficient model; 

however, what is significant is identifying the optimum combination of data for 

the model to forecast and produce the desired output. A study conducted in 

2016 by (Sauhats et al., 2016) put the ANN model through its paces using four 

distinct input scenarios, such is predicting inflow based on the required day 

temperature and previous data on temperature and precipitation (Historical). 

According to the findings of the research, each of the factors that went into the 

model produced positive predicting outcomes. However, to validate forecasts, 

further research is required on different network designs and model properties, 

among other things.

The scientific community has acknowledged the need for more 

effectively chosen inputs in artificial neural network models (ANNs); hence 

(Panagoulia et al., 2017) have performed a trial-and-error multi-stage method 

for input selection variables for the MLP model to forecast river flow. A 

validation process was carried out by comparing MLP to auto-regressive 

model. Few combinations of input were used, and the suggested technique 

identified the last four days' river flow, the past three days' worth of 

precipitation, and the seasonality as reliable input factors. The author 

concluded that further study should be carried to identify the optimum input 

combination for ANN models.
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Scientists and researchers have been in a dilemma since artificial neural 

work was developed as the challenge of selecting the appropriate network size 

and topology is one of the most significant obstacles that researchers who use 

neural networks must overcome. The issue is made much more difficult by the 

fact that when the neural network is taught to make extremely few mistakes, 

there is a chance that it will not react correctly to patterns that were not used 

during the training process (Sheela and Deepa, 2013). 

Generally, four questions need an answer when using any neural 

network which are:

 What kind of neural network architecture need to be utilised? 

 What is the optimal number of neurons to use? 

 How many different patterns ought to be employed during the training 

process? 

 Which algorithm for training should be implemented?

To our regret, there is no simple response to any of these issues. 

Practically speaking, it is exceedingly challenging to establish a decent 

network architecture based just on the of inputs and outputs. Practically 

speaking, it is particularly challenging to develop a decent network architecture 

based just on the quantity of inputs and outputs. It greatly relies on the quantity 

of training instances and the difficulty of the classifications being learned. 

Millions of hidden layers are needed to solve certain issues with a 

single input and output, whereas just one hidden layer, or none at all, is needed 
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to solve challenges with a million inputs and outputs. However, it is true that 

better results may be produced with less training time by selecting the 

appropriate combination of hidden layers and neurons, Thus, prioritising the 

search for the optimal ratio of neurons and hidden layers is essential. (Panchal 

et al., 2011; Karsoliya, 2012; Sheela and Deepa, 2013; Çolak, 2021).

In a comprehensive investigation carried out by (Zhang et al., 2018), 

the neural network model was trained using twenty-two years' worth of 

historical inflow data and then validated using eight years' worth of inflow 

data. The discovery demonstrates that the maximum number of parameters and 

the number of hidden nodes, both of which have an impact on the accuracy of 

the simulation, are two important factors for any neural network model. 

Iterations and simulation accuracy have a relationship that is directly 

proportional to one another, meaning that an increase in the maximum number 

of iterations will also result in an increase in accuracy. A comparison was made 

between the LSTM and the SVR models and MLPNN trained with back 

propagation. The results of the comparison show that the LSTM is more 

accurate than the BP-MLPNN and the SVR, respectively with corresponding R 

values of 0.9996, 09799, and 0.9404. The author (Zhang et al., 2018) 

concluded that determining the optimal number of iterations for the BP-

MLPNN model should be a top priority to increase the accuracy of the model.

For the objective of forecasting river discharge and comparing various 

network architectures, a research report published in 2018 used back-
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propagation neural network models (BPNN). This choice was taken after 

considering the suggestion to test alternative ANN designs. The model with the 

choice to have 3-5-1 layers was shown to perform the best after the research 

examined three separate models with three distinct sets of layers (2-4-1, 3-6-1, 

and 3-5-1). However, the research underlined that there is no conventional 

method to identify the optimal number of layers and that this optimal number 

can only be established by trial and error (Ghose, 2018). 

Despite the fact that earlier research explored a variety of activation 

functions and artificial neural network models using a variety of topologies, the 

climatic indicators have not yet been subjected to any more scrutiny. When 

calculating reservoir inflow for effective dam operating procedures, the 

climatic variability should be considered because it has a significant impact on 

the climatic cycle. This is especially important when the weather conditions are 

difficult (Maity and Kumar, 2009).

For the purpose of optimising reservoir operations and maximising 

hydropower production, a method that is both general and scalable has been 

presented for predicting reservoir inflow and investigating the optimum 

weather factors to be considered. A three-layered artificial neural network 

(ANN) that was hydrologically relevant was fed short-term weather predictions 

and antecedent hydrological data to forecast reservoir inflow for a lead time of 

seven days. The scheme's applicability was shown across 23 dams in the 

United States, each of which had unique hydrological features and climatic 

regimes. An artificial neural network was fed ensembles of weather prediction 
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fields to investigate probabilistic forecasting. According to the results, it seems 

that one's ability to predict accurately increases along with a decrease in the 

coefficient of variation in the reservoir inflow and an increase in drainage area, 

moreover the results shown that MLPNN is a robust forecasting model due to 

its reliable performance when projecting water inflow across the 23 dams used 

in the study (Ahmad and Hossain, 2019). 

Researchers in 2019 employed an ANN model that depended on 

regression parameters and a combination of exogenous components to predict 

reservoir inflow(Kim et al., 2019). There was a total of twenty-four distinct 

climatic variables considered. The autocorrelation function, also known as the 

ACF, was used so that the optimal elements that had the most impact on 

reservoir inflow could be determined. In light of this, the NINO12 and AMO 

indices were chosen as the best options. The MLP-ANN model was put 

through a rigorous test against the other seven AI models, and the results were 

compared to one another. Despite this, it has shown the greatest performance 

out of the eight models that were selected, which implies that the ANN is a 

model that is accurate and has a good capacity for predicting (Kim et al., 

2019).

The researcher's curiosity has been sparked by recent events relating to 

environmental factors. Recent studies have contrasted the NAR and FFNN 

with two artificial neural network (ANN) models, known as static and dynamic 

models, for predicting reservoir input. The models were updated with a small 

number of additional inputs, which included precipitation data and time lags 
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ranging from zero to twelve days. In the course of the research, the question of 

how many hidden neurons should be used to create the best possible ANN 

structure model and the environmental factors that influence the model 

performance was investigated. The NAR dynamic neural network triumphed 

over both static and dynamic models previously developed. It is strongly 

advised that in order to increase the accuracy of weather forecasting, 

precipitation data as well as the date and time index (t) must be considered with 

at least a three-day lag (Q(t-3)). It was demonstrated that while forecasting 

high and peak inflows, vibrant neural networks—which operate on records that 

are being updated automatically and immediately once recorded better than 

other forms of neural networks (Hadiyan et al., 2020).

Recent research released in 2022 (Ibrahim et al., 2022) enhanced 

MLPNN and used it to make predictions about the amount of water entering 

the reservoir on a daily and monthly basis. One-day, three-day, and five-day 

delays are offered for the daily data. Grid-search and trial-and-error methods 

were used to fine-tune the MLPNN's parameters. MLPNN was compared to 

three other forecasting models which were SVR, XG-BOOST, and ANFIS. 

The overall results revealed that XG-BOOST obtained a better score than 

MLPNN despite the minor difference in performance between the top two 

models. Due to this reason, the author recommended that XG-BOOST is an 

effective model for forecasting purposes.
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A summarisation extracted from all the previous literature review 

conducted generally on artificial neural network models and specifically on 

MLPNN is shown in the bullet points below:

 At least 60% of the available data is required for training the 

model.

 The choice of input variables is crucial since it affects the 

effectiveness of the model.

 Identifying the optimum number of neurons and hidden layers is 

extremely important to seek outstanding results.

 There is no standard procedure to identify the model parameters, 

however the most common methods are grid-search and trial-

and-error approach.

 MLPNN is a robust model that can be applied to various case 

studies.

 The main performance test carried out to test any neural 

network model would be coefficient of correlation (R²).

2.1.2 Support Vector Regression/Machine (SVR/SVM)

Support vector machines, also known as SVMs, that were developed by 

(Drucker et al., 1997) are a type of advanced machine learning technique that is 

based on structural risk minimization (SRM). SRM's most fundamental 

principle is to concentrate on lowering an upper limit on the simplification 

error rather than the training error. The SVM produces the optimum network 

structure using this theory as its foundation. Additionally, the SVM solution is 
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always distinct and globally optimum since it is the same as solving a linear 

restricted quadratic programming problem. This technique minimises the 

expected error of a learning model and reduces the issue of over-fitting. 
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The (SVR) approach, on the other hand, is a regressive or forecasting 

strategy that maintains all the crucial components of the optimum margin 

methodology. SVR had proven its regression ability way back in time when it 

was tested by (Drucker et al., 1997; Müller et al., 1997) to predict time series 

data.

Grasp these three fundamental ideas, which are given below, is 

necessary in order to have a comprehensive understanding of the SVM and 

SVR models. These ideas form the basis of the SVM and a typical SVR model 

is presented in Figure 2.2.

 Decomposition of the hyperplane into higher dimensional 

regions.

 Kernel functions and their effects on transferring the nonlinear 

data while generating a linear output.

 Soft margins and the separation of data.
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Figure  2.1: SVR Hyperplane

Finding the most effective activation kernel in the SVR/SVM that will 

lead to an excellent output is one of the most significant challenges that 

researchers face when they adopted SVR model (LIN et al., 2006; She and 

Basketfield, 2005; Liong and Sivapragasam, 2002).

The creation of reliable models that can predict inflows during 

environmental catastrophic such as typhoons is an absolute need for the 

efficient construction and development of reservoirs. A study conducted by 

(Lin et al., 2009) included typhoon characteristics as a new input for SVR 

besides the inflow and rainfall to achieve an even higher level of improvement 

in the long-term forecasts. 

The SVR was compared to MLPNN-based models and the results have 

shown that the suggested SVM-based models are more accurate, resilient, and 

efficient than the current BPN-based models, and the features of typhoons 
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should be utilised as input to the reservoir in-flow forecasting models for long 

lead-time forecasting. It is anticipated that the suggested modelling approach 

would be helpful in enhancing the reservoir inflow forecasts, and the SVM-

based models that have been provided are recommended as an alternative to the 

models that are currently in use.

In order to predict the stream flow for the Alavian reservoir, a further 

state-of-the-art study was conducted in 2011. (Noori et al., 2011). In the 

research, a support vector machine (SVM) that had been trained using (RBF) 

kernel. The study was designed to focus on maximising the amount of data 

points that could be fed into the SVM model in order to get the best potential 

outcomes. In this particular scenario, there were 18 different variables that 

were used as inputs. To find the variables that provided the best results, 

techniques such as principal component analysis (PCA), the Gamma test (GT), 

and forward selection (FS) were utilized to reduce the total number of variables 

used as inputs and the results have shown that principal component analysis 

(PCA) was found to be the most effective input analysis selector to be 

combined with the support vector machine (SVM). This was due to the fact 

that the PCA was able to reduce the total number of input variables while still 

maintaining their presence. 

The principal component analysis (PCA) was utilised with the aim to 

reduce the degree of ambiguity in the input variables. Their descriptive article 

has further material that goes into greater depth about the PCA theory (Gower 

and Blasius, 2005). The gamma test GT computes the minimal mean square 
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error (MSE). The GA test has some additional remarks that are mentioned here 

(Stefansson et al., 1997). The FS is a straightforward strategy that is used when 

there are only a few possibilities to consider for each covariate (N).

 

Streamflow and Inflow time series are always nonlinear, time-varying, 

and indeterminate, and the underlying processes of streamflow production are 

likely to alter significantly throughout low, medium, and high flow periods, 

particularly when severe events occur (Tripathi et al., 2006). It is quite difficult 

to anticipate the streamflow precisely. Therefore, a data preprocessing 

technique is needed. Fortunately, the presence of a powerful de-noise technique 

known as the wavelet decomposition and reconstruction theory. A strong tool 

for processing and evaluating time series signals is the wavelet. The wavelet 

transform is a mathematical technique that was developed from Fourier 

analysis and is especially designed to allow the identification of non-stationary 

signals with distinct frequency properties. It may concurrently offer 

information about time and frequency (Shensa, 1992).

Despite the fact that wavelet transform is an effective tool to de-noise 

any form of data, it has a major disadvantage which is it necessitates a 

considerable amount of data and computing time. To overcome this drawback, 

(Kalteh, 2013) decided to use a new wavelet transform known as the discrete 

wavelet transform along with the SVR that uses radial basis function (RBF) 

kernel. The comparison was made in two steps: first, the ANN and SVR stand-

alone models were compared to the hybridize wavelet models. The comparison 
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results showed that the wavelet models performed better than the stand-alone 

models.

Researchers have taken interest of another study that employs the SVR 

with intermittent wavelet transform for lake level forecasting and compares it 

to three models from varied backgrounds, including the ARMA, ANFIS, and 

SVR (Shafaei and Kisi, 2015). Like (Kalteh, 2013), as evidenced by the SVR 

model, which used the (RBF) as its kernel approach, integrated wavelet models 

have produced better outcomes than stand-alone models.

As pointed out by (Babur et al., 2016; MULUYE and COULIBALY, 

2007; Dettinger, 2011; Gutiérrez and Dracup, 2001), identifying the climate 

phenomena that dominate the local hydrology and incorporating climate 

phenomenon indicators into a given modelling framework may help improve 

reservoir inflow sub-seasonal and seasonal projections. Relying on that fact 

(Yang et al., 2017) incorporated Indicators of 17 different climatic phenomena 

into SVR to forecast reservoir inflow and compared it to Random forest and 

ANN. It was concluded that using climate indicators has improved the model 

performance significantly despite SVR has shown slightly lower results by 

being ranked in the second position. Furthermore, a point worth noting made 

was that Because of the high degree of uncertainty associated with SVR 

predictions, a careful choice of kernel functions and parameterisation is 

necessary before their use in actual settings.
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In 2018, groundbreaking research was released that models and 

simulates reservoir flow using support vector regression, artificial neural 

networks, and deep learning algorithm. This study was carried out by the 

authors of the study. The process of building the four distinct SVR models 

required the employment of all four SVR transfer kernels, hence It has come to 

everyone's attention that the selection of the kernel function has a significant 

impact on the efficiency of the algorithm.

A time series regression model was employed in 2019 to anticipate 

daily reservoir levels using the support vector machine (Ahmed and Amr, 

2019). The SVM  used five cross validation folds in reference to study 

published by (Hipni et al., 2013) and four distinct scenarios. The capacity of 

predictive models to generalise was evaluated using cross-validation, which is 

a data resampling approach (Berrar, 2018). This method also helps avoid over-

fitting. The four input parameters used consisted of the following: the first 

input was daily precipitation, while the second was a combination of daily 

precipitation and a one-day dam water level measurement as inputs. The third 

and fourth scenarios, which included daily precipitation and daily dam water 

levels for seven days. The author recommended that a wavelet or an 

optimisation method should be coupled with the SVM in future research to 

improve performance and the effect of using different kernel should be 

investigated.
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A summary obtained from the literature review on SVR shows:

 The choice of kernels is extremely important when dealing with 

non-linear data as it acts as a hyperplane that creates a relation 

among the non-linear data to produce a linear output.

 The top two recommended kernels to be used as the transfer 

function in SVR would be radial basis function (RBF) and 

sigmoid.

 Wavelet decomposition improves SVR performances; however, 

the improvement is subjected to the data used and does not 

guarantee an optimum performance.

 Cross-validation is an effective way to validate the best range of 

data; however, the number of cross-validation folds need to be 

investigated.

2.1.3 Adaptive-Neuro-Fuzzy-Inference System (ANFIS)

Understanding that traditional system modelling techniques relying on 

numerical tools perform poorly when tackling nonlinear and frequently 

changing problems, such as those found in the hydrology was the main 

motivation for (Jang, 1993) to develop a new machine learning model aiming 

to address the non-linearity  found in such problems.

First, two hypotheses served as the foundation for the development of 

the ANFIS. To begin, there is the theory of neural networks, which includes 

both the fuzzy system (a kind of reasoning system) and Neural Network (a kind 
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of multilayer feed-forward neural network with nodes and neurons that connect 

the output and input over numerous layers) (Jang, 1991). 

The if-then rules serve as the main framework for the second theory, 

which is known as the Fuzzy Inference System. Each fuzzy rule specifies a 

certain network behavior locally, and this makes up the basis of the Fuzzy 

Inference System. The ANFIS model had a total of 5 levels, the first of which 

was an input layer, and the second of which was a layer that represented the 

firing intensity of a rule. Layer 3 is the one that calculates the overall firing 

strength rule, Layer 4 is the one that is called a subsequent layer, and Layer 5 is 

the one that computes the overall and generates the output that is needed. 

In 2009, (Wang et al., 2009) conducted research to anticipate monthly 

water consumption utilising the ANFIS, in addition to the ARMA (benchmark 

model), SVR, ANN, and GP. All of these models were compared with each 

other. According to the findings that were acquired from this research, the 

ANFIS model was able to get the highest peak flows out of all of the models 

that were built in various research areas correspondingly to a similar study 

conducted by (Zounemat-Kermani and Teshnehlab, 2008). As a consequence, 

the findings of the research are quite positive, and they imply that the ANFIS 

technique may be effective in modelling monthly discharge time series. 

A study to predict the water level at was conducted in 2011( Valizadeh, 

2011). The ANFIS used the same hybrid learning technique with some minor 

modifications. These modifications involved testing the ANFIS using a 
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Generalized bell function, which is a kind of function that is classified as 

nonlinear.

Three models were built, each of which contained a distinct type of 

input, in order to investigate the various quantities and types of input into the 

ANFIS. Model one had a daily rainfall as its input, while model two had both a 

daily rainfall and the water level from the previous day as its input. Model 

three used a combination of the inputs from models one and two. After 

analysing the data, the author found that model-3 had shown greater 

performance. Unfortunately, because the length separating the rainfall station 

and the amount of precipitation that landed directly on the reservoir was 

ignored the findings that were produced for the scenario that lasted for less 

than one day were not very impressive. As a result, it was suggested that such 

specifications be considered as a potential option for the future.

In an investigation to compare between the performance of ANFIS and 

ANN when using historical inflow and rainfall lumped data vs distributed data, 

(Jothiprakash and Magar, 2012) tested a few membership functions in ANFIS 

aiming to obtain the optimal number of membership functions. The outcome of 

the study shows that a bell-shaped membership function is optimum on top of 

Gaussian membership, and this is due to the primary difference that bell-

shaped membership functions include a smaller number of parameters. As a 

result, fuzzy set theory may be tackled by tuning the free parameter. In 

conclusion, due to the clustering effect and the increased cost of fuzzifying a 

large number of inputs, dispersed input data models fared marginally worse 
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than those using lumped data. The ANFIS models outperform the best ANN 

models in every category, but notably in peak and longer lead period 

prediction. 

Testing various membership functions in an attempt to find the best 

combination has attracted all researchers’ attention who are adopting ANFIS 

for forecasting purposes. In order to arrive at the best possible model, a process 

of trial and error was used by (Kisi et al., 2012) to forecast lake reservoir 

levels, during which a variety of membership function types and the number of 

layers were utilised. All ANFIS membership activation functions were tested. 

The approach with a triangle basis functions and a 3-3-3 structure ended up 

being the best choice.

(He et al., 2014) studied various membership functions in ANFIS to 

forecast river inflow in semiarid mountain land and compared it to ANN and 

SVR. Overall, the findings showed that the triangle membership function, a 

straightforward straight-line function, was determined to provide the best 

results among the other potential forms of membership functions, and the 

performance of ANN, ANFIS, and SVM models in river flow forecasting is 

good, and there is little to no difference between the training and validation 

periods in terms of the performance gained using various assessment criteria, 

however SVR was slightly superior to ANFIS. 

The goal of this study by (Seo et al., 2015) was to investigate how the 

wavelet transform would affect ANFIS in order to estimate the daily reservoir 
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level as precisely and quickly as feasible. ANFIS was trained using a hybrid 

learning algorithm that combines the least-squares method and the back-

propagation descent technique.

Additionally, in order to determine the parameters, the Gaussian 

membership function was implemented in the nodes of layer 1. One of the 

ANFIS models is known as the stand-alone model, while the other is known as 

the WANFIS. The WANFIS model is a merged model that consists of the 

ANFIS, and a discrete wavelet transform. It has shown that the performance of 

the model is reliant on the input sets and the mother wavelets. Furthermore, it 

has been discovered that wavelet decomposition using the mother wavelet, 

Daubechies, will further increase the effectiveness of the ANFIS model.

In a further investigation on the performance and robustness of ANFIS 

model for the purpose of river inflow forecasting was carried out by (Nguyen 

et al., 2018). Both the ANFIS and dynamic evolving neural-fuzzy inference 

system (DENFIS) models were used for the investigation, the main comparison 

between both models is that in the global model (ANFIS), a subtractive 

clustering approach was utilized, but in the DENFIS model, an evolving 

clustering method was used. 

Every piece of data is considered to be an independent candidate for the 

cluster Centre when using the subtractive clustering method (Priyono et al., 

2005; Benmouiza and Cheknane, 2019). Evolving clustering, nevertheless, is 

comparable to the K-Nearest Neighbor cluster in that it depends on the 
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separation between the selected center and the points (Škrjanc et al., 2019). 

Both the ANFIS and DENFIS models' training was accomplished by applying 

either global or local learning methodologies. During the period of testing, 

ANFIS was executed in the offline mode, whereas the DENFIS model was 

executed both offline (DENFIS 1) and online (DENFIS 2) modes. The study 

concluded that when used for real-time inflow forecasting, a DENFIS model 

with online learning that is started using fuzzy rules discovered after offline 

learning is an effective strategy that uses learning from both historical data and 

the most current data.

As a key solution to overcome natural disasters such as floods, (Chang 

et al., 2016) forecasted inflow aiming to estimate the water shortage rate. Data 

on reservoir inflows for a 44-year period was collected and supplied to ANFIS 

as input. The back-propagation neural network, also known as the BPNN, has 

been selected to serve as a model for comparison to the ANFIS. When the 

model is being constructed, future water needs, expected monthly inflows (or 

seasonal inflow) of the reservoir in the next coming quarter, and historical 

starting reservoir storages are used to Configure the input patterns. On the 

other hand, the ideal seasonal water shortage rates produced from the NSGA-II 

serve as output objectives (training targets) for both neural networks. 

According to the findings, both the ANFIS and the BPNN models provide 

almost equally excellent performance when projecting water scarcity rates; 

however, the ANFIS model offers much greater stability.
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Despite the good performance that was exhibited by ANFIS model in 

the previous studies, it is yet to be reliable when dealing with patterns with a 

high degree of stochasticity and a diverse set of inflow characteristics may be 

seen in the data. Owing to this fact, (Allawi et al., 2018) proposed effective 

modifications to the conventional coactive neuro-fuzzy inference system 

(CANFIS) method. This upgrade contains an update to the back propagation 

technique, which in turn led to an update of the membership criteria and the 

induction of the Centre weighted set rather than the global weighted set that 

was previously utilized in feature extraction and when compared to the 

conventional ANFIS model used in reservoir inflow forecasting for a semi-arid 

area, the modified CANFIS model seems to be more useful and reliable.

According to an examination of various ANFIS articles that were 

studied, and some were cited previously, the following statements can be 

made:

 The choice of the size and type of membership functions 

determines how well ANFIS performs since these two variables 

have the most effects on the computational cost and precision of 

the ANFIS-based model that is created (Talpur et al., 2017).

 There are no established methods for choosing the kind of MF 

that will provide the best possible results. MF plays a significant 

part in the decision-making process.

 ANFIS model could be enhanced by using wavelet 

decomposition or other clustering variations to cluster the fuzzy 

rules and deliver an optimal fuzzy rule.
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2.1.4 Extreme Gradient Boosting (XG-BOOST)

The Extreme Gradient Boosting (XG-BOOST) technique that was 

presented by (Chen and Guestrin, 2016) is an innovative implementation 

approach for the Gradient Boosting Machine, and in particular, K 

Classification and Regression Trees. The method is founded on the concept of 

"boosting," which involves combining all of the predictions made by a group 

of "weak" learners in order to build a "strong" learner via the use of additive 

training procedures. 

XG-BOOST's primary goals are to avoid over-fitting and maximise the 

use of computational resources. This is accomplished by reducing the 

complexity of the goal functions, which enables the combination of predictive 

and regularization terms while still ensuring that the computing performance is 

optimised (Santhanam et al., 2017). XG-BOOST performance when dealing 

with highly non-linear data-series such as these found in hydrology is yet to be 

explored. On the other hand, The XG-Boost algorithm has received a lot of 

attention for hydrological prediction owing to its great learning performance 

and efficient training time (Fan et al., 2018). The XG-BOOST algorithm is 

shown to be a robust predictor, producing more impressive prediction accuracy 

and generalisation capabilities.

In a recent study, (Yu et al., 2020) adopted XG-BOOST to forecast 

streamflow at Three Gorge Dam in China. The study used time-series data 

which have been divided into 7 components, with a Suitable small number of 
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consecutive frequencies in each component to be used by XG-BOOST as an 

input data. The XG-BOOST was compared to SVR, and the study highlighted 

that XG-BOOST were more efficient and robust compared to SVR however 

further testing is needed.

In a short conference paper published November 2021, XG-BOOST 

performance was investigated to forecast reservoir inflow (Dornpunya et al., 

2021). Despite the lack of comparison between other models, the author 

concluded that when compared to its ability to estimate the monthly inflow, the 

XG-BOOST model's capacity to accurately forecast the daily influx of water 

into the reservoir is much superior. If you anticipate the average values of the 

daily and monthly inflows, your prediction results will be far closer to the 

actual inflows observed. However, none of these two newly established models 

has a very strong capacity to define or forecast the dynamics of values that are 

really severe. In light of this, the author suggests that the model parameters 

need to be modified in order to increase the quality of the machine learning 

algorithm that is used for hydrological prediction.

 

2.1.5 Strengths And Shortcomings of Machine Learning Models

Table 2.1 provides an overview of the benefits and drawbacks 

associated with machine learning models and the application of these models to 

predict reservoir inflow.
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Table  2.1: Model Strengths and Weaknesses 

Model Strengths Weaknesses
Multi-layer perceptron Neural 
Network (MLPNN).
(Svozil et al., 1997; Yaseen et al., 
2015; Oyebode and Stretch, 2019; 
Sherif et al., 2021; Dashti Latif et 
al., 2021)

 The capacity to simulate dynamic and nonlinear 
hydrological processes without pre-setting any 
assumptions about the relationships between the 
input and output variables.

 Dynamic as it is able to continually adapt their 
behaviour in response to the changing conditions 
of their surroundings.

 MLPNN is able to provide accurate models or 
consistent replies based on the learning process 
even when an issue does not have a closed-form 
mathematical model to describe it.

 It is difficult to construct a suitable model 
beforehand since there is neither a standard nor 
a set of rules that regulate the right design and 
development of acceptable models.

 MLPNNs occasionally suffer from over-fitting 
problems.

 If ANN presents a test answer, it provides no 
hint of why and how.

Support Vector Regression (SVR) 
(Yang et al., 2017; Pour et al., 2020; 
Drucker et al., 1997; Hipni et al., 
2013; Bao et al., 2014)

 Ability to be rapidly trained and has a wide 
optimised solution.

 Efficiencies in high dimensional spaces.
 Flexibility for various problems as various kernel 

functions is available.

 Deficient performance when features are more 
than samples.

 cross-validation (K-fold) is used instead of 
probability estimation whereby benchmark for 
K-value identification.
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Table  2.1 (Continued): Model Strengths and Weaknesses

Model Strengths Weaknesses
Adaptive Neuro Fuzzy 
Inference System (ANFIS) 
(Khan and Chai, 2017; 
Karaboga and Kaya, 2019)

 Potential in a single system to utilise the neural network 
and fuzzy logic.

 Fast and accurate training process.
 ANFIS is ideal for providing the hydrological 

information needed for feasibility assessments.

 Sensitive to the number of 
clusters.

 software becomes more 
sophisticated as there are more 
ambiguous rules.

Extreme Gradient Boosting 
(XG-BOOST) (Cinar, 2019; 
Santhanam et al., 2017)

 Gradient Boosted Machines (GBM) and Random Forest 
(RF) vary primarily in that GBM adds a new tree to 
complement existing ones while RF builds trees 
independently of one another.

 Both lambda and gamma are adjustable in XG-BOOST. 
These variables are controlling the penalty score. 
Because of this, the model may be safeguarded against 
over-fitting.

 The error rate decreases with each successive model that 
is used in gradient boosting, up to the very last (final) 
model.

 The operation of XG-Boost might 
be highly time intensive.

 Using gradient boosting to 
construct precise models also calls 
for a great deal of tuning of 
variables.
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2.2 Metaheuristic Optimisation Algorithm

There are two main categories of stochastic algorithms: heuristic and 

metaheuristic. While heuristic algorithms are able to identify answers in a fair 

period of time, they do not guarantee finding the best possible solution. In 

contrast, metaheuristic algorithms are designed to be well-suited for global 

optimisation and make use of a set of trade-offs including randomisation and 

local search (Sharma and Kaur, 2021). This is because randomisation offers a 

decent technique to transition from local search to the pursuit on a global scale. 

The majority of probabilistic algorithms may be categorised as metaheuristics; 

some examples of these are GA, PSO, and FIREFLY, amongst others.

2.2.1 Genetic Algorithm (GA)

The genetic algorithm (GA) is a well-known algorithm that gets its 

name from its inspiration, the process of biological evolution (Katoch et al., 

2021). The Darwinian idea that the strongest and healthiest will survive and 

thrive in nature was modelled after J.H. Holland made the first suggestion for 

GA in 1992 (Holland, 1992). The depiction of chromosomes, the selection of 

individuals based on their fitness, and the use of biologically-inspired operators 

are the fundamental components of GA (Storn and Price, 1997). 

Inversion, a unique component that is often used in GA deployments, 

was another innovation that Holland brought to the Table. In most cases, the 

format of the chromosomes is that of a binary string. Each locus (a particular 
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place on a chromosome) in chromosomes may have either the allele 0 or the 

allele 1. These are different variants of the same gene. In the "solution space," 

chromosomes may be considered individual points. In order to process these, 

genetic operators are used, and their population is replaced in an iterative 

fashion. 

The fitness function is utilised to give each chromosome in the 

population a score out of the possible options. Selection, mutation, and genetic 

crossover make up the biologically inspired operators. During the selection 

process, chromosomes are chosen for further processing based on how well 

they will contribute to the organism's overall fitness. To produce offspring, the 

crossover operator selects a random locus and then modifies the subsequences 

of the chromosomes that are next to each other. During the process of 

mutation, some segments of chromosomes will, on the basis of likelihood, be 

switched around.

It is a well-established fact that the phenomenon that lies beneath the 

seemingly random nature of the inflow is actually quite complicated. In a more 

tangible sense, the modelling of reservoir operations.

To produce an ideal reservoir operation strategy to aid decision-making, 

a technique that combines the constrained genetic algorithm (CGA) where the 

ecological base flow needs are treated as reservoir operation water release 

constraint while optimising the 10-day reservoir storage was developed by 

(Chang et al., 2010). The performance of GA was measured using generalised 
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shortage Index (GSI) and the results revealed that the CGA technique has the 

potential to considerably increase the efficiency and efficacy of water delivery 

capabilities to both human and ecological base flow needs, hence optimising 

reservoir operations for various water users.

(Li et al., 2010) gave a helpful example of how the genetic algorithm 

may help with precise streamflow forecasts, despite the presence of a large 

number of climatic precursors. The SVM and MLR models were used in the 

experiments, and comparisons were made between those models and a hybrid 

SVM model that included a genetic algorithm optimised model and bagged. 

The bootstrap statistical resampling approach serves as the foundation 

for the Bagging method, which results in a variety of training sets that are used 

to construct the SVM model that is part of an ensemble (Breiman, 1996). To 

produce an optimal model of the SVM, a variety of kernels and parameters 

must be adjusted. This parameter tuning is frequently done using an approach 

that requires trial and error. The genetic algorithm uses a combination of three 

real value variables to determine which chromosome belongs to which person. 

The genetic algorithm (GA) starts with the generation of a chromosomal 

population at random. By achieving a higher frequency on the cross-validated 

correlation coefficient, the findings demonstrate that the hybrid SVM and MLR 

models that were bagged and GA-optimized outperformed the traditional SVM 

and MLR models.
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(Fallah-Mehdipour et al., 2012) optimised reservoir systems via the use 

of genetic programming (GP) and genetic algorithms (GP). The operating rule 

curves are guidelines that each period synchronises the reservoir system 

parameters by taking into consideration the observations made of the system in 

the past. In order to consider, the physical and hydrological conditions, these 

Guidelines make use of deterministic and stochastic variables, which are often 

stated via the use of a mathematical Equation. 

The linear decision rule (LDR), which was first presented by (Revelle 

et al., 1969), is one of the most often utilised rules in reservoir operation. It is 

also recognised as being one of the earliest rules to be applied to reservoir 

operation. The GA with the linear decision rule (LDR) and two different forms 

of (GP) were tested for the purpose of predicting reservoir inflow. One type of 

genetic programming utilises stochastic variables, while the other utilizes 

deterministic variables. According to the findings, both the GA and the GP 

were able to accurately forecast the amount of water entering the reservoir. 

Nevertheless, the GP that used deterministic data had shown marginally 

superior performance in comparison to the GA.

(Hossain and El-shafie, 2014) carried out a performance study to 

optimise the stream flow by accurately anticipating it since decision-makers in 

a reservoir structure still need guidance in order to manage the reservoir 

properly. The GA is widely recognised and has been put into use effectively in 

the field of reservoir operational development. As a result, it has been used as a 

benchmark for the ABC (Artificial Bee Colony). 



62

A description of the many rules that may be used as operators in a 

genetic algorithm is found in (Goldberg and Deb, 1991). In the study, the 

crossover technique was used to drive the GA. By comparison to the GA, the 

ABC was superior, as shown by the findings. However, the GA did manage to 

obtain a high dependability percentage of 91.6%, proving both its excellent 

performance and its dependability as an optimisation approach.

Most approaches integrating reservoir management have the 

maximisation of social and economic goals as their primary focus (e.g., power 

generation, flood control, etc). In spite of this, objectives and limits concerning 

eco-environmental issues (such as fish habitat, environmental flow, etc.) are 

gradually being integrated with reservoir operation in response to growing 

concerns over river ecosystems. 

(Chen et al., 2016) replaced the conventional genetic algorithm with 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) aiming to optimise 

the operation of the reservoir by meeting eco-environmental objectives. The 

Non-Dominated Sorting Genetic Algorithm-II which was developed by (Deb et 

al., 2002), is an algorithm that shows potential for solving multi-objective 

problems. NSGA-II is superior to NSGA in a number of respects, including the 

fact that its sorting algorithm is superior, the inclusion of elitism, and the fact 

that its sharing parameter does not need to be determined a priori. Based on the 

case study of Qingshitan reservoir, the performance of the NSGA-II was 

significantly improved in comparison to GA. The case study demonstrated that 

the parallel approach, which uses several parallel groupings of populations, 
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was responsible for the improvement. This progress was made possible as a 

result of an increase in variety brought about by the parallel groupings. The 

outcome of this study was similar to that found in (Tsai et al., 2015).

In 2016, the genetic algorithm was implemented as an optimisation tool 

in the Cameron Highland hydropower reservoir system by (Tayebiyan et al., 

2016). This is just one example of how the scope of genetic algorithm 

applications continues to broaden with each passing year. The primary aim of 

the construction of any hydroelectric reservoir system should be to facilitate 

the production of renewable energy from the area's native resources. As a 

result, to improve the system's operational performance, optimising the total 

power output during working hours has been set as a goal. This will ensure that 

all of the various physical and organisational restrictions are satisfied. When 

developing the goal function, there were two primary limitations, which were 

hydro-plant discharge restrictions and reservoir storage volume requirements. 

Both of these constraints were considered. The three distinct Guidelines 

optimised using GA are the BSOPHP, the CSOPHP, and the standard hedging 

Guideline (SHPHP). Genetic algorithm comes in a few different versions, but 

the real coded genetic algorithm (RCGA) is the most effective one when 

dealing with a constrained algorithm as proven by (Abdul-Rahman et al., 

2013). In terms of optimisation using RCG, the SHPHP proposal was the best 

one out of the three offered since it obtained a high level of efficiency, 

resilience, vulnerability, and lifespan. 
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In the operation of a reservoir, there are several characteristics that 

might have an effect on the operation; nevertheless, the reservoir inflow is the 

one that is considered to be the most crucial. A genetic algorithm has been 

integrated with an artificial neural network (ANN) to build a hybrid model that 

is capable of achieving the optimal reservoir inflow by attaining the optimal 

ANN parameters (Moeeni et al., 2017). This was done to guarantee that the 

reservoir inflow forecasting was as accurate as possible. The genetic algorithm 

combined generator with an artificial neural network was the most generally 

used elite population, and the hybrid model ANN-GA was compared to the 

stand-alone ANN model. The outcomes demonstrated that the hybrid model 

performed better than the stand-alone model. In addition to this, when 

estimating the monthly inflow, it was found that the ANN-GA model had done 

much better than the other two models, including the SARIMA, which is an 

integrated autoregressive model. This was determined by comparing the 

SARIMA to the ANN and the ANN-GA models. Despite this, the SARIMA 

model performed better at forecasting the short-term, such as cycles lasting a 

few days or a few weeks.

The motivation behind integrating machine learning models with 

metaheuristics optimisation algorithms is to overcome the limitation. Owing to 

the fact that Non-Linear Programming (NLP) approaches suffer from a 

sluggish rate of convergence and demand substantial computing storage and 

time, (Krishna et al., 2018) have chosen GA to improve NLP model 

performance when optimising reservoir operation forming a hybrid model 

known as GA-NLP. The author highlighted that GA was chosen as it uses 
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coded copies of the system variables rather than the actual variables 

themselves. Secondly, although almost all conventional optimisation methods 

start their search at a single point, GAs instead use a population of points to get 

the best solution. The model is used for one of 2 potential inflow situations and 

one of three possible priority levels. The overall results demonstrated that GA-

NLP provides more accurate and reliable results as the annual irrigation deficit 

has seen an improvement of 2% compared to the stand-alone model while the 

annual electricity generation has increased by 18% compared to the operation 

when stand-alone NLP was used.

In a recent study published in 2021 by (El Harraki et al., 2021), a new 

developed objective function that combines both the largest possible water 

deficit and the average frequency of shortages was given to GA. The aim of 

this study was to optimise the reservoir operation and compared it to the 

conventional objective function which are calculated based on sum of squared 

deviations (SSD). The comparison of the pattern and performance indicators 

maximum deficit and shortage frequency reveals that the proposed objective 

function produces better results for public water supplies in regard to 

dependability and vulnerability, and slightly better results for irrigation in 

terms of shortage frequency. Hence, the author recommends replacing the 

standard objective function with the newly proposed function.

2.2.2 Particle Swarm Optimisation (PSO)
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Particle Swarm Optimisation (PSO) was developed in the middle of the 

1990s by (Kennedy and Eberhart, 1995) as part of a socio-cognitive study 

investigating the concept of "collective intelligence" in biological populations. 

At the time, Kennedy and Eberhart tried replicating the orchestrated, elegant 

motion of swarms of birds as part of their research. 

In PSO, a set of randomly generated solutions is referred to as the 

"initial swarm." These solutions then begin to move through the design space 

in the direction of the optimal solution throughout a series of iterations, also 

known as "moves." These moves are based on a significant amount of data 

regarding the design space that is assimilated and shared by all members of the 

swarm. PSO is inspired by the capacity of groups of animals, such as flocks of 

birds, schools of fish, and herds of animals, to adapt to their environment, 

locate rich sources of food, and escape predators by employing an "information 

sharing" method, and so establishing an evolutionary advantage.

To make the operating system simpler, it is essential to increase the 

efficacy of inflow forecasting models. To get a more precise assessment of the 

yearly inflow into the reservoir, PSO was used to enhance the Support Vector 

Machine by (Wang et al., 2010). The SVM-PSO is a hybrid model that was 

optimised using the PSO. The radial basis function was chosen to serve as the 

kernel for the support vector machine that was used in this study. The PSO had 

an inertia weight that was somewhere between 0.4 and 0.9. For the purpose of 

making a comparison, BPNN and the Elman neural network model were 

contrasted with the hybrid SVM model. The findings demonstrated that the 

SVM that was optimised using PSO could identify the best parameter values; 
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hence, the SVM that was optimised with PSO performed better than the other 

two models.

In the work that was released, a further investigation of the PSO impact 

on (SVM) was studied by developing a better SVM model to forecast monthly 

streamflow(Guo et al., 2011),. This model was studied in the context of the 

hydrology field, This published study was a novel in its own because it 

consisted of three main phases: In order to limit the amount of unreliable data, 

wavelet de-noising was initially applied to the raw data; after that, chaotic 

feature assessment and parse-space reconstruction were employed to define the 

forecasting model's structure; thereafter, PSO was used to the model 

parameters to identify the ideal parameters. 

In a manner that is analogous to the research conducted by (Wang et al., 

2010), the value w, which refers to inertia, was determined to linearly change 

from 0.4 to 0.9. This was done because it was discovered that larger inertia 

engages in global exploration, whereas smaller inertia engages in the local 

exploration, as was demonstrated by Lin et al. in 2008. The standard SVM, the 

linear adaptive insensitive factor (LAIF-SVM), and the non-linear adaptive 

insensitive factor (NAIF-SVM) were the three SVM models that were 

constructed and the PSO was used to optimise all of the models' parameters. In 

all, three SVM models were produced. The ANN model was included in the 

comparison with the other three models so that the overall dependability of the 

research could be increased. According to the findings, the PSO was able to 

significantly enhance the performance of the models, and the NAIF-SVM 
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model emerged as the most successful one after being optimised by the PSO. 

On the other hand, the number of support vectors grew, which slowed down 

the training process and had a detrimental influence on accuracy. As a result, it 

was said in passing that more As a consequence, it was said in passing that 

more study is required to determine how to speed up training while maintaining 

a suitable number of vectors in the optimised SVM.

Although PSO is most often affiliated with the SVM, it is nevertheless 

possible to use it with machine learning models and it will still produce a 

positive outcome. When there is a high number of decision variables or 

parameters to be optimised, the PSO algorithm has a sever shortcoming is that 

it does not ensure that the solution will converge globally Liu et al., 2020). In 

order to circumvent this shortcoming, research was carried out by (Cheng et 

al., 2015) to anticipate daily reservoir run-off utilizing a quantum-behaved 

particle swarm optimisation with artificial neural networks (ANN), a technique 

known as ANN-QSPO for daily reservoir run-off forecasting. This technique is 

founded on (ANN) and (QPSO), based on the developer of QPSO (Jun et al., 

2004), they claimed that it is theoretically possible to ensure that the global 

optimum solution will be found in the whole searching space in QPSO. In 

addition, the outcomes of several simulations of complicated benchmark 

functions demonstrated that QPSO had a superior capacity for global searching 

in comparison to PSO. In the ANN-QSPO approach that was suggested, QPSO 

was used to pick the ideal parameters for the ANN, and when the training 

process was complete, the ANN was utilised to make predictions. For the 

purpose of predicting the daily run-off of the Hongjiadu reservoir in Southeast 
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China, the suggested method was evaluated alongside a stand-alone ANN 

model. The experiment results demonstrated that the suggested strategy 

produces much higher levels of forecast accuracy than the basic ANN model.
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In a study conducted by (SaberChenari et al., 2016) on one of the 

largest dams in IRAN Mahabad reservoir dam, the PSO was employed as a tool 

for the aim of optimising the functioning of the dam. In four cases under 

ordinary and dry circumstances, streams to the reservoir were considered while 

lowering the probability of monthly average inflows. This was needed to 

enable the reservoir scheme for catastrophic situations. In overall, the results 

showed that the quantities of the discharged water derived by the PSO 

algorithm had an excellent correlation with the downstream water 

requirements, and the storage reservoir had an adequate capacity to satisfy the 

water demands of the following months. 

A flash flood is an Inevitable occurrence that may result in significant 

fatalities. It is most common in rural regions and occurs when there is an 

excessive amount of rainwater that falls into drainage areas and then gathers 

into the main flow. The majority of water flows into the river at some point. 

This causes a significant quantity of water to be released into the river system 

that is farther downstream. Consequently, the purpose of the research was to 

make projections about water levels to forestall a significant increase in the 

volume of the river. The research established the model in stages, each building 

upon the previous one. The first step was initialising the PSO, which involved 

setting the settings for the initial swarm particles and the PSO coefficient, the 

two main parameters. Each step was finished in order. 

When the data preparation stage is over, which creates the optimal data 

set for the model, the third stage is training the PSO procedure. The findings 
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shown that the PSO is extremely capable of lowering the number of inputs and 

creating an ideal model. The model that used an input of 10 upstream water 

level measurements and a trip time from upstream to downstream of 5 hours 

was determined to be the best one. The PSO excels in reducing the number of 

inputs and generating an ideal model. This demonstrated how the PSO might 

be used to determine the ideal input parameters for massive amounts of data.

Owing to the fact that PSO is a robust algorithm, it has been adopted by 

(Karami et al., 2019) to optimise two different reservoirs located in two 

different countries with totally different objective functions and was compared 

to whale optimisation algorithm (WOA) and Genetic algorithm (GA). The first 

case study's objective was to reduce the amount of water that was supplied for 

agriculture at the Aydoughmoush dam in Iran. According to the findings, the 

operational rule of the PSO was good; however, it was not as good as WOA, 

which had an average solution that is quite near to the global solution. The 

second case study was determined to find ways to reduce the amount of unused 

electrical power in the Karun-4 reservoir. In reality, water must be discharged 

to optimise energy production or reduce electricity shortages. According to the 

findings, the operating guideline for the water that was accomplished by the 

PSO generates more electrical power than both the GA and the WOA.

Further investigation on the robustness and effectiveness of PSO in 

comparison to newly developed models such as Shark machine learning 

Algorithm (SMLA) and conventional model GA was carried out by (Allawi et 

al., 2019) to validate the newly developed algorithm. The goal function of this 
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research was to minimise the gap between water demand and release. The 

results that were published have ranked PSO in second placed right after 

SMLA with a minor difference in terms of reliability, resilience, and 

vulnerability. The main findings of the study showed that the incorporation of 

reservoir inflow predictions into the operational period of a reservoir system is 

advantageous for getting closer to the real behaviour of optimisation models 

used in the management of reservoir systems and optimising PSO is a critical 

stage that needs to be carried in a proper manner to obtain an optimum 

performance.

Although the PSO method searches for the best solution more quickly 

than other optimisation techniques do, it is plagued by the drawbacks of early 

completion and limited fine-tuning capabilities. Because of their low inertia 

weight, particles tend to settle into their respective local optimums during the 

early stages of development. In contrast, the fine-tuning impact of particles is 

relatively weak in the latter stage due to the enormous inertia weight, and it is 

possible that the ideal solution will not be reached at this point. 

Hence, a study conducted by (Chen et al., 2020) proposed an adaptive 

random inertia weight (ARIW) Equation, to enhance the inertia of particle 

adaptivity when optimising Panjiakou reservoir operation in China. An ARIW 

technique is suggested as a means of making the PSO algorithm more effective 

in its operation. Randomized inertia weights are produced via a triangle 

probabilistic density function and these weights are modified as a result of 

particles swarm evolution. It has been shown via the application that the 
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ARIW-PSO method is more effective than both the traditional PSO and the GA 

algorithms. When the ARIW-PSO algorithm is used, the water deficit for the 

water supply tends to be levelled out, which helps to alleviate the loss that is 

produced by a lack of water. The results reflected the similar outcome obtained 

by (Al-Aqeeli and Mahmood Agha, 2020) when optimising multi-objective 

reservoir operation.

2.2.3 Firefly Optimisation Algorithm ( FA)

One of the most unique and interesting species that can be found in the 

natural world are fireflies, sometimes known as lightning bugs. They are able 

to produce light as a result of specialised photometric organs that are located 

extremely near to the body surface and are covered by a window of cuticle that 

is transparent. Bioluminescent signals are known to perform a variety of 

functions, including as components of courting rituals, techniques of attracting 

prey, methods of social orientation, and as a warning system to attackers 

(Lewis et al., 2020). The phenomena of fireflies illuminating is a subject of 

ongoing study, taking into consideration both the biological and sociological 

components of the phenomenon.

Inspired by the magnificent behaviour of fireflies when they are in 

groups has motivated (Yang, 2009a) to develop an optimisation algorithm that 

mimic the firefly behaviour in 2009. The following are the three fundamental 

principles used by FA:

1. Fireflies are mutually attractive since they are all of the same gender.
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2. As distance increases, both the appeal and the brightness diminish. 

Therefore, when there are two flashing fireflies, the one that is less 

brilliant will travel closer to the one that is brighter. If there is not a 

firefly that is brighter than the one that is now moving, then it will 

travel at random.

3. The light level is specified by an objective function that either 

maximises or minimises the optimisation space.

Despite the fact that it has been shown to be extremely effective at 

optimising typical benchmark functions (Adil Hashmi, 2013; Łukasik and Żak, 

2009; Yang, 2013), the Firefly Algorithm is only hardly ever employed to 

solve issues that are generally encountered in hydrology or specifically in 

reservoir optimisation problems (Kumar and Kumar, 2021).

In contrast of its rarity, (Garousi-Nejad et al., 2016a) used FA to tackle 

two long-term operations that both included the same reservoir but served 

distinct goals. These activities were the provision of irrigation water and the 

generation of hydropower. In the first step of the process, the performance of 

the FA was evaluated using five distinct mathematical test functions. In these 

cases, the FA converged to near-global solutions more quickly than the GA 

did. In addition to this, in comparison to the GA, the FA was able to acquire 

the value of the objective function that was closer to the global solution. After 

that, the results of the reservoir operating systems fully exposed the 

tremendous capability of FA and stressed its ability in addressing complicated 

restricted optimisation issues. 
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Furthermore, it can be determined that the FA attained a closer average 

value of an objective function (3.6078) to non-linear programming (NLP) 

(3.3727) than the average value of the objective function acquired by GA 

(6.6754). In addition, the results of five runs of the FA demonstrated a smaller 

standard deviation (0.06), whereas the results of five runs of the GA exhibited 

a standard deviation of 0.31, which is approximately five times worse. The 

author concluded that the findings indicated that the FA was capable of 

arriving at more optimum solutions than the GA and NLP. The author has 

found that even with all these advantages, FA has some limitations such as the 

optimal parameters are hard to be defined and it requires relatively large 

amount of data for training purposes.

In an attempt to overcome the limitations of firefly mentioned 

previously, (Garousi-Nejad et al., 2016b) developed a modified version from 

the original firefly and named it as MFA. The MFA was used to find solutions 

for three benchmark reservoir operating issues, which were known as discrete 

four reservoir (DFP), continuous four reservoir (CFP), and lastly continuous 

10-reservoir (CTP). The conclusion that can be drawn from the findings of the 

first issue, the DFP, is that the MFA is capable of calculating the optimal value 

of the objective function, which is equivalent to the global optimum that can be 

attained via LP. Applying the MFA to solve the DFP led to the discovery of 

four distinct alternative optimum solutions, none of which had been reported 

before by other scientists utilising various methods. This is an additional 

significant success brought about by the use of the MFA. Concerning the CFP, 

the optimum solution achieved with the MFA is 99.99% of the LP solution. 
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This little difference demonstrates that the MFA is trustworthy when applied to 

issues involving continuous operations involving many reservoirs. When it 

comes to the results of the MFA for the third problem, the CTP, the benefits 

and superior performance of the MFA were brought to light by solving the 

complex CTP and reaching the best value of the objective function which was 

99.21% of the LP solution. This highlighted the advantages and superior 

performance of the MFA. With all being said, the author has concluded that the 

FA is a strong non-linear algorithm capable of solving non-linear problems by 

expanding its search space.

2.2.4 Nuclear Reaction Optimisation Algorithm (NRO)

In the field of artificial intelligence (AI), optimisation strategies are 

becoming more relevant as optimisation challenges get more complicated and 

demands for operative accuracy and iteration rate increase. In 2019, (Wei et al., 

2019) developed a novel and versatile approach to produce electricity that is 

based on the way nuclei react with one another (NRO). This technique is 

completely novel and has been experimented out on 28 modern benchmark and 

23 traditional benchmark problems. Ten alternative optimisation methods were 

evaluated with the generated model (NRO) for the purpose of validation, 

namely atom search optimisation algorithm (ASO) (Zhao et al., 2019), 

Biogeography based optimisation (BBO) (Simon, 2008), butterfly optimisation 

algorithm (BOA) (Arora and Singh, 2019), Cuckoo search (CS) (Yang and 

Deb, 2010), Multi-Verse Optimiser (MVO) (Mirjalili et al., 2016), lighting 

search algorithm (LSA) (Shareef et al., 2015), Salp Swarm Algorithm (SSA) 
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(Mirjalili et al., 2017), Harmony Search Algorithm (HS) (Yang, 2009b) and 

finally Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Igel et 

al., 2007).

Based on the developer of the model (Wei et al., 2019), the quality of 

the solutions presented by NRO is superior, with a more desirable mean answer 

and a lower standard deviation. According to the preceding investigation, the 

performance of NRO's exploitation in terms of multimodal low-dimensional 

functions compares well to that of the algorithms that were evaluated for 

comparison as shown in the spider chart by Figure 2.3. On the other hand, 

NRO is yet to be tested for real case study optimisation problem and therefore 

the application of developing a reservoir operation scenario using NRO is 

among the novelties of the current research.

Figure  2.2: Spider Chart for Comparison between NRO vs 10 Models
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Most reservoir operating models include historical inflow projections 

(Niu et al., 2019). The inflow prediction based on historical data, however, 

cannot match the actual inflow throughout the whole forecast horizon owing to 

the limitations of present forecasting tools. This means that inflow prediction 

will always be susceptible to forecast uncertainty, which might hinder optimum 

reservoir management (Liu et al., 2020; Allawi et al., 2019). Although some 

studies tried to address the inflow forecast uncertainties (Zhang et al., 2019; 

Liu et al., 2019), it remains completely unexplored. 

As a result, it is also necessary to assess the inflow uncertainty 

associated with the reservoir operating rules by replacing the historical inflow 

data with more reliable data obtained through projecting inflow based on 

machine learning models to reduce the errors that might have occurred due to 

faulty equipment readings at the site. A novel two-stage optimisation model 

will be developed for this study, dividing the optimisation process into two 

stages (instrumental and forecast inflow) based on three different hydrological 

periods (high, medium, and low inflow).

To lessen the uncertainty of the prediction, the current study utilised 

this model to substitute the historical inflow. Firstly, historical inflow was 

utilised as an input for machine learning models; as a result, the model will be 

depending on a pattern thus decreasing the inflow uncertainty.

Besides addressing the inflow uncertainty gap that was found in 

previous studies, the novelty of this study could be further seen in the choice of 
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the algorithms as in the current study for the first time for solving optimisation 

problems, four hybrid models (XG-Boost-based) using four optimisation 

algorithm Nuclear Reaction Optimisation (NPO), Real coded genetic algorithm 

RCGA, Firefly (FA) and particle swarm optimisation (PSO) are used. These 

models’ accuracy is examined to solve the inflow uncertainty forecasting 

problem, and meanwhile developing a release scenario and hence developing a 

semi-integrated-real-time system.

Despite the popularity of optimisation algorithms, the core questions on 

performance issues are still partially answered due to limited insightful 

analyses. Mere investigation and comparison of results may not reveal the 

reasons behind what is poor or better performance. Therefore, tuning and 

analysing exploration and exploitation of swarm and physics-based 

metaheuristic algorithms is crucial to obtain an optimum model (Hussain et al., 

2019). With all being said, this study was intended to overcome this gap by 

tuning the four models to obtain the best exploration and exploitation 

performance.

1
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3CHAPTER

METHODOLOGY

3.1 Introduction

The operating strategy of a reservoir is a set of guidelines that the 

decision maker of the reservoir system should adhere to in an attempt to meet 

their objectives, which may include the supply of water, the prevention of 

flooding, or the production of hydroelectric power. This chapter covers an in-

depth discussion on the approach taken to forecast, simulate and optimise the 

reservoir operation as well as the concerns that go along with it. The data 

preprocessing methods carried out in this study are reviewed in detail along 

with the method of handling and replacing missing data.

This research is divided into three main phases; phase (1) is the 

development of machine learning forecasting base models which are able to 

project volume of water flowing into the reservoir catchment using historical 

data available. The output and the performance of these models were verified 

using a few statistical tests and the models were ranked based on the results 

obtained from the statistical metrics tests. In phase (2), the objective function 

was formulated without violating the reservoir constraints which were the 

storage and release levels. 
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In phase (3), the reservoir water loss condition was simulated using the 

best performing machine learning model from phase (1). The simulation was 

integrated with the metaheuristic optimisation algorithm and subsequently 

developing a closed-loop system capable of forecasting, simulating, and 

optimising with minimal human interference. Finally, the risk analysis to assess 

the metaheuristic models and reservoir performance were computed using four 

main indicators known as vulnerability, resilience, reliability, and 

sustainability. 

The storage capacity of the reservoir as well as the volume of water 

inflow value for each step must be obtained to do this after the development of 

the operational rules that were achieved by utilising optimisation approaches. 

This may be accomplished by obtaining the value of the inflow. The amount of 

water that will be stored in the reservoir at the commencement of the step is 

calculated using the anticipated amount of water that will flow into the 

reservoir at the beginning of the phase. With knowledge of both the beginning 

storage and the inflow category (i.e., the value that is expected to be received), 

it is possible to derive from the operating rule graph for this specific month, the 

determination of the ideal amount of water to be released. Keeping in mind that 

the volume of the inflow is uncertain at the beginning of each time step, which 

is why the anticipated inflow value is employed. On the other hand, since the 

actual inflow was received after each stage, it would be utilised to calculate the 

reservoir capacity after each time step in the following formulation.
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3.2 Study Area and Data Collection

The Klang Gate Dam (KGD) is located in the Ulu Klang region, 

Gombak District, Selangor, Malaysia. Data collection of the KGD was 

undertaken in this project. The Klang Gate Dam was the very first dam to be 

built in Malaysia, and it did not become fully operational until the year 1958. 

The dam was constructed with an average height of 37.0 m and a maximum 

length of 139 m. It can be found in the Gombak district in the state of Selangor. 

There is a capacity of 25,104 million litres of water that may be stored in the 

catchment reservoir of the dam. A full diagram of the KGD is shown in Table 

3.1 while the location of the dam is shown in Figure 3.1.

The nation's capital city of Kuala Lumpur then and now, has the Bukit 

Nanas water treatment facility that receives water supply from KGD and treats 

it. Of course in modern times, there are many more sources of water for the 

capital. Each day, the Bukit Nanas facility generates 144 million gallons of 

filtered water. The Klang Gate Ridge, the biggest quartz dyke in the world, is 

located close to the dam. The Klang Gate Ridge is 200 meters wide and 

extends over 22 kilometres.
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Table 3.1: Klang Gate Dam Properties

Item Description
River Name Klang River
Structure Type Arched Concrete Gravity Dam
Date Of Completion June 1980
Elevation (M) 97.87
Length (M) 138.72
Height (M) 36.89
Location From City Centre (Km) 19.9
Catchment Area (Km²) 77
Flood Control Volume (M³) 6.2 X10
Total Storage Capacity (M³) 35.4 X10
Spillway Type Overflow Gated Spillway



84

 

Figure 3.1: Klang Gate Dam Location 

3.3 Study Flowchart
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Figure 3.2 shows the overall study flowchart in this present study. The 

full explanation on the flowchart is covered in the next few sections under the 

methodology chapter. The first phase in this research was the data collection 

and processing hence the next section will cover all the data pre-processing 

approaches to refine the data. All the machine learning models, and the 

optimisation algorithms specified in the flowchart is explained briefly in this 

chapter.

(a)
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(b)

Figure  3.2: Overall Study Flowchart (a) – (b)
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3.4 Data Preprocessing 

Data analysis is challenging when there are missing values (MVs). For 

researchers, the existence of Missing Values might cause significant issues. 

Discarding the instances that include MVs is the easiest method to handle 

them. However, this strategy is only useful when the data includes only a 

limited number of cases of MVs and when the inference process will not be 

seriously biased by the examination of the entire examples. When such faults 

are present, data preprocessing is typically necessary and readily available to 

prepare and tidy up the data.

Data preprocessing encompasses data preparation, which is further 

enhanced by the incorporation, cleaning, normalisation, and transformation of 

data; as well as data reduction activities, such as feature extraction, instances 

selection, discretisation, and so on. A final dataset that may be regarded as 

valid and helpful for future data mining algorithms is the outcome that is 

anticipated to come about as the consequence of reliable chaining of data 

preparation operations. 

The data collected in this study was supplied by the Lembaga Urus Air 

Selangor (LUAS) and Jabatan Pengairan dan Saliran Malaysia (JPS). However, 

unfortunately, despite the many years of operation of the dam, only 20 years of 

almost complete sets of daily natural inflow at KGD along with water level, 

rainfall, and evaporation were available during the period between 2000 and 

2019, at the KGD reservoir and river. It is important to mention that some of 

the data were missing and some appear to be faulty which might have occurred 
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due to various reasons, for instance, manual data entry techniques, equipment 

malfunctions, and inaccurate measurements.

In the current study, the data preparation procedure consisted of these 

few steps mentioned below:

i) Data Cleansing

ii) Data Integration 

iii) Data Transformation 

iv) Data normalization

3.4.1 Data Cleansing

Analysing the data to find mistakes and irregularities in the database is 

the first stage in data cleansing. In other words, this stage is known as data 

auditing, and it is at this stage that all kinds of irregularities inside the database 

will be discovered (García et al., 2015). Data cleansing becomes increasingly 

important when numerous data sources need to be combined, as in reservoir 

databases or international web-based information systems. This is due to the 

sources frequently including duplicate data in various forms. In addition, data 

analysis will be used to uncover issues with data quality by obtaining 

information about the data attributes. Data mining and data profiling are two 

methods used as data analysis in the current study. Data segmentation places a 

focus on the examination of specific instances of particular attributes. 
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Data mining, on the other hand, focuses on identifying a specific data 

trend in a vast dataset. Hence, in the current study all the missing data were 

replaced by averaging the current data for each category and replacing the 

missing data with the simple moving average approach (SMA). The SMA 

approach works when a value is absent at a certain time point, the average of 

the neighbor data points over a given window size and a predetermined number 

of prior data points are computed to fill the gap. The SMA has been proven to 

be effective and robust in the replacement of missing data (Hansun, 2013).

3.4.2 Data Integration

It included the process of combining data from two different sources 

(LUAS & JPS). This procedure was carried out with extreme caution to 

prevent redundancy and inconsistencies in the data set that was ultimately 

produced. 

A data integration strategy had to meet a number of criteria. First of all, 

both when integrating several data sources and when using a single data 

source, it should identify and correct all significant mistakes and 

inconsistencies. The method involved human examination, and clean data from 

many sources was combined into a centralised database or data warehouse. 

Additionally, data integration was done in conjunction with schema-related 

data transformations based on extensive information, never alone.
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The identification and unification of variables and domains, the study 

of attribute correlation, the duplication of tuples, and the discovery of conflicts 

in the data values of diverse sources were all carried out within the context of 

data integration.

3.4.3 Data Transformation

During this stage of preprocessing, the data were either transformed or 

consolidated in order to make the results of the mining process more applicable 

or maybe more effective. The smoothing of data, the generation of features, the 

aggregation or summarisation of data, the normalisation, discretisation, and 

generalisation of data are all subtasks that fall under the umbrella of data 

transformation. A major sensitive transformation method that was used in the 

current study is known as column transformer. 

Column transformation in machine learning is the process of 

preprocessing or applying certain transformations to specific columns 

(features) in a dataset. This estimator enables the transformation of individual 

columns or column subsets of the input independently. The attributes produced 

by each transformer are then combined to create a single feature matrix. The 

objective is to modify the data in a way that improves machine learning model 

performance or renders the data better suited to analysis (Ahsan Md et al., 

2021).

3.4.4 Data Normalisation
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In the current study, various parameters were considered and each 

parameters have its own unit and reference which impacts in the analysis of the 

data by each measuring unit that was utilised. Every single one of the 

characteristics have to make use of a standard scale or range, in addition to 

being represented in the same units of measurement. The process of 

normalising the data that were used revolved around giving all of the input 

variables an equal amount of weight, to avoid misinterpretation of the data by 

the machine learning model.

A well-known data transformation technique known as the ”one-hot 

encoding” was used in the current study to transform the data. One-hot 

encoding splits a single variable with n observations and d unique values into d 

binary variables, each having n observations. Depending on the observation, 

the dichotomous binary variable is either present (1) or absent (0) (Potdar et al., 

2017).

3.5 Inputs and Forecasting Based-Models

The research considered daily based evaporation, rainfall, water level, 

and reservoir input data, with a total of seven thousand records for each 

parameter. The data span a period of 20 years, beginning in the year 2000 and 

continuing until 2019. Because the objective of this research was to make a 

prediction regarding the amount of water that would flow into a reservoir, the 
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amount of water that flowed into the reservoir was designated as the Y-

variable, and the other three parameters were categorised as the X-variables.

It is the dynamical daily reservoir operating mechanism that alters the 

control of reservoirs proactively depending on the reservoir's water storage 

level, the hour of the day, and volume of water coming from the water source 

(river), as well as reacts to variations in the climate. The research has 

considered both monthly and daily events as a result. As a result, this study was 

able to develop a more extensive and accurate scale to evaluate the impact of 

dams on the regulation of downstream flow, which can be calculated using the 

river's level and the amount of water released.

One of the major goals of the present research is to anticipate the 

inflow, with rainfall serving as the primary supply to the reservoir catchment 

that forms the inflow, hence understanding the climate of Malaysia. It is 

extremely important to understand the rainfall pattern in the current research. 

As is the case in other parts of the world, the climate of Malaysia is altering. 

Numerous recent studies have pointed to global climate change as the cause of 

variations in the amount of rainfall and the severity of rainfall extremes in 

Malaysia (Pour et al., 2020; Nashwan et al., 2019; Ridwan et al., 2021; Khan et 

al., 2019). In the last few years, researchers have seen repeated instances of 

catastrophic flooding and water stress, which are clear indicators of the effects 

of growing rainfall extremes. The monthly observed pattern of rainfall that 

spans over collected data for this study is shown in Figure 3.3.
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Figure  3.3: Monthly Rainfall Pattern

When the climate and hydraulic properties change due to rainfall, water 

bodies are affected. As the volume of water streaming into a reservoir is 

directly proportional to the duration and intensity of rainstorms, variations in 

rainfall patterns have a significant effect on reservoir parameters. Based on the 

findings (Li et al., 2015), it is evident that rainfall is an important factor to 

include when estimating daily inflow since it considerably raises forecasting 

accuracy.

To sum up, in the next section, the input parameters that were 

considered in this study and the formulation of the mathematical formula will 

be explained and shown in detail.

Let us assume that {} is an abbreviation that stands for precipitation 

time series. It is possible to recast it as a number of time vectors, such as , 

where (t) represents the quantity of precipitation that was measured at a 

particular period, which may either be monthly or daily period, or daily-time 
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delay records provided by  , by (N) denoting specific number of days, where (t) 

is the amount of rainfall that was recorded at a certain time.

When it comes to making an accurate prediction of inflow, one of the 

most important parameters is the water level, which is symbolised by the letter 

‘’. The water level is measured over time and provided in the form of a time 

series that is written down as . Records of water levels may be reorganised to 

create time series as well as time-delay series, which are provided by the 

formula (t-n), where (t) stands for the time when each recorded date was taken.

While essential to the hydrological cycle, evaporation is complicated 

and hard to predict because of the wide variety of variables that affect it. For 

reservoir planning in dry and semiarid regions, an accurate estimate of 

evaporation is crucial.

As another example, researchers may refer to evaporation as a time 

series denoted by the {}  By writing  as a sequence of time vectors, we may 

think about it in a different way. … , where (t) represents the time in each 

record, expressed as a day or month.

For each model, we may draw the following mathematical relationship 

among the input and output vectors donated by the transfer function .

(3.1)

3.5.1 Support Vector Regression (SVR)
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The main goal of SVR is to allow linear regression by non-linearly 

scaling the training data X into a multidimensional space (F) therefore 

separating the support vectors between positive and negative hyperplane. This 

process is denoted by Equation (3.2).

(3.2)

where:

f(x)= Expected Output

φ(x)= Input data feature

w= vector coefficient weight

b= vector offset (threshold)

The objective is to reduce the amount of variation that exists between 

the two groups in terms of the weight coefficient vector (w) and the offset 

vector threshold (b). Because of this, Equation (3.3) estimates the two 

coefficients by using a regularised risk function to determine w and b.

(3.3)

Equation 3.3 is made to satisfy the necessary requirements outlined in 

Equation 3.4.
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(3.4)

In which:

C= Penalising coefficient

Size of each Tube

= Slack variables 

φ(x)= Input data features

Equation 3.4 represents a bounded optimisation problem, which may be 

solved by utilising the primal Lagrangian form indicated in the following 

Equation: (3.5).

(3.5)

Equation (3.5) is subjected to Lagrangian multipliers constraints which 

are shown in Equation (3.6)

(3.6)

In consequence of the Equation (3.6), Equation (3.7) is a consideration 

of the previous multiplier.

(3.7)
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Where:

K= activation functions (Kernel)

ai, ai’= multipliers of Lagrangian

b= Offset Vector (threshold)

The kernel function, K, in Equation (3.8) can enhance the mapping 

process. The information can be implicitly mapped into a subspace using the 

kernel function, which is particularly effective because it does not require 

complete knowledge of (). In the current study all the four kernels shown in 

Equation (3.8) are tested and their performance was ranked based on the 

statistical analysis.

(3.8)

In summary, the regression function considers the non-zero Lagrange 

multipliers as well as the support vectors, which are associated with the input 

vectors of the dataset, hence the final Equation is simplified as below:

(3.9)

3.5.2 Multilayer Perceptron Neural Network (MLPNN)

In this line of study, the studies proposed using a feed-forward neural 

network that consists of three hidden layers in conjunction with the back-

propagation method. The MLPNN model comprises a few transfer functions, 
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the most important of which are presented in Equations 3.10 and 3.11, 

respectively.

(3.10)

Where:

hj= jth value Hidden Neurons 

= activation Function (transfer function)

Wi= Weight Assigned for Each jth Neuron 

=Input Data 

(3.11)
f

Where:

= k-th the Output layer value

= Transfer Function 

hj= Hidden Layer

= Weight Assigned 

Transfer functions from Equation (3.10) & (3.11), serve as a 

representation of the activation function for the output layer and the hidden 

layer. which are designated by the letter  & , respectively. They were tested in 

the present research, moreover, each of the activation functions, namely the 

hyperbolic tan function, the rectified linear unit function, the logistic sigmoid 

function, and finally the identity function which are shown in the Equations 
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below beginning with Equation (3.12) and ending with Equation (3.15), were 

subjected to testing.

(3.12)

(3.13)

  (3.14)

(3.15)

The number of hidden layers and nodes is a crucial element to consider 

since the model is sensitive to the different combinations of hidden layers and 

nodes chosen. The optimal number of nodes cannot presently be determined 

using any acknowledged standard method. The optimal hidden layer (NH) 

node count for building a neural network is between (2nv0.5 +m) and (2n+1), 

where n is the total number of input nodes and m is the total number of output 

nodes (Fletcher and Goss, 1993). In addition, it was hypothesised by (Palani et 

al., 2008; Ibrahim et al., 2023; Karsoliya, 2012) that the greatest number of 

neurons that might exist in the hidden layer (NH) is equal to . In the current 

investigation, in addition to the approach of trial and error, other methods were 

used, which are represented in Equation (3.16). 

In this Equation,  represents the hidden nodes amount, and  represents 

the number of inputs that were utilised. A basic diagram of MLPNN which 

illustrates the model architecture is shown in Figure 3.4.

(3.16)
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Figure 3.4: MLPNN Model Structure
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3.5.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The present investigation used a version of the ANFIS model, and that 

version had five layers. As can be seen in Equation (3.17), in both the Takagi-

Sugeno forms, there are two if-then rules that are not quite clear. Figure 3.5 

presents a straightforward representation of the ANFIS, which may be used to 

get a deeper comprehension of the functioning of the five levels. This 

representation labels both the inputs and the outputs.

(3.17)

In which:

Aᵢ and Bᵢ = Membership Functions related to x, y

x and y = Inputs

rᵢ, pᵢ, qᵢ = Output parameters

Figure 3.5: ANFIS 5-Layer Structure Model
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Layer 1

The name given to this section is the "fuzzification layer." Fuzzification 

layer generates fuzzy clusters from input data by using membership functions. 

The mathematical form is shown in Equation 3.18.

(3.18)

Where:

x and y = Inputs to nodes

 = linguistic fuzzy defined by the shape of membership functions

Layer 2 (Membership Rules)

A whole fuzzy set may be defined by its membership function. 

Triangular, Gaussian, trapezoidal, sigmoidal, and generalised bell membership 

computations are only a few examples. Straight-line segments are included in 

trapezoidal and triangular functions, although these shapes are not smooth at 

the corners as defined by the input parameters. Since Bell and Gaussian 

functions have clear notations and a smooth form, they are often used to 

characterise fuzzy sets. 

It has an extra degree of flexibility that may be used to adjust the degree 

of steepness at the artificial intelligence node of crossover. Up to this date there 

is no optimal way to find the best membership function and it all depends on a 
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case-to-case basis (Talpur et al., 2017; Nur Adli Zakaria et al., 2021; Sherif et 

al., 2021); hence, all the five membership functions were tested in this study.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Where:

{ai, bi, ci} = bell-shape parameters function.

Layer 3 (Normalising/Averaging Rules)

The membership strengths that were assessed in the layer before this 

one is normalised in this layer so that the discharging strengths of each rule 

may be differentiated from the overall discharging strengths of all rules.

(3.24)



105

Layer 4 (Consequent Layer)

In this stage, node I determines how much the ith rule contributed to the 

final result based on Equation 3.25.

(3.25)

Where:

= Output from Layer 3

= following variables

layer 5 (Output Layer)

At this level, a single node is responsible for calculating the overall 

output by adding together the portions contributed by each layer.

(3.26)
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1.1.1 Extreme Gradient Boosting (XG-BOOST)

In order to find a mapping that is appropriate for the training data sets, 

XG-BOOST makes use of an ensemble of regression and reclassification trees, 

often known as CARTs. Each CART has its own unique selection rule 

framework in the form of a binary tree and stores an ongoing score on each leaf 

node. The main objective of Equation (3.27) is minimise the difference 

between each cart score seeking for an optimal score.

(3.27)

Whereby:

Q: differentiable loss function.

: Mapped Result.

: Predicted Inflow.

: The number of leaves in the vth cart.

: Vector that represents the scores of CART leaves.

Minimization for the objective function would not be achieved without 

training the CART leaves and iterating it based on Equation (3.28):

(3.28)

Where the new term in Equation (3.28) is the  which stands for 

mapping parameter obtained from Vth cart. The minimisation objective 
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function (3.27) is further expanded and corrected by Taylor expansion factor as 

shown in Equation (3.29)

(3.29)

It is possible to further reduce the complexity of Equation (3.29) by 

eliminating the constant components as seen in Equation (3.30).

(3.30)

In which the ohm () unit is denoted by Equation (3.31) as shown:

(3.31)

Since the ohm () parameter is directly proportional to the optimal value 

of the parameter () hence the optimal value is computed using the Equation 

(3.32):

(3.32)

Normally, it is challenging to list all possible tree architectures The 

greedy method, which starts with a single leaf and progressively adds 

branching is an alternative for the conventional method. Equation (3.33) 

provides the mathematical formula for the greedy algorithm.
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(3.33)

A simplified illustration of XG-Boost CART leaves is shown in Figure 

3.6.

Figure 3.6: XG-BOOST Simplified Model
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3.6 Optimisation and Simulation Models

During this stage of the project, there will be two phases that will 

address objectives two and three, respectively. Nevertheless, these two 

processes did not take place in the sequence that was specified there. The 

second goal is to create a simulation of the functioning of the reservoir, but 

instead of utilising historical data to determine the losses, this study will use 

anticipated losses instead. In contrast, objective three itself is carried out in two 

stages, the first of which involves optimising the reservoir operation by taking 

the historical losses into consideration, and the second of which involves 

optimising the reservoir operation by carrying out a real-time reservoir 

operation by integrating the forecasting models into the objective two.

Both of these stages are carried out in order to accomplish objective 

three. As a result, the artificial intelligence model that is based on loss 

forecasting operates simultaneously with the optimisation algorithm, so 

transforming it into a cohesive system. The goal function and the reservoir 

constraints that bind the reservoir operation, which is the minimum and 

maximum storage and release during a monthly period have been defined as 

shown in Figure (3.7).

These are the parameters that define the reservoir operation. In addition 

to that, the catchment area losses and gains have been included into the 

calculation used to determine the balance of the reservoir. The water deficit 

Equation has finally been minimised using a formulation based on a year's 
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worth of data. In conclusion, twelve different release curves that are dependent 

on three different inflow situations (high, medium, and low) have been 

constructed as shown in Table 3.2. In the upcoming few subsections, the 

methodology of how each optimisation algorithm operates will be discussed.

Figure 3.7: Reservoir Storage Levels

Table 3.2: Ranges of Inflow

Inflow Category Inflow Range (MCM)
High 8.40 & above

Medium 5.21 – 8.39
Low 2.00 – 5.20
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3.6.1 Real-Coded-Genetic-Algorithm (RCGA)

There are many different sorts of GA operators, which results in many 

different varieties of GA, such as real-coded GA (RCGA) and binary-coded 

GA (BCGA). When binary and real-coded GA are compared, both conceptual 

evidence and facts from the actual case studies show that RCGA performs 

better than BCGA in the majority of circumstances, especially when dealing 

with real-world optimisation problems (Katoch et al., 2021; Akopov et al., 

2019) As a consequence, this research uses RCGA as an optimisation strategy. 

The RCGA runs on a few successive phases that are shown in Figure 3.8.

Figure 3.8: RCGA Flowchart
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3.6.2 Particle Swarm Optimisation (PSO)

The PSO technique conducts its search for optimal solutions in a search 

space that is composed of many dimensions using a swarm of particles. 

Although each particle is a product of a greater system, it is nonetheless formed 

and influenced by both the environment in which it is located and the events 

that occur within its own existence. The PSO technique conducts its search for 

optimal solutions in a search space that is composed of many dimensions using 

a swarm of particles.

Although each particle is a product of a greater system, it is nonetheless 

formed and influenced by both the environment in which it is located and the 

events that occur within its own existence. Each PSO particle is given a 

location and velocity, and those values are updated depending on the finest 

particle as shown in Equation (3.34), such that the remainder of the swarm will 

join the best individual as shown in Equation (3.35).

(3.34)

(3.35)

Whereby  = velocity;  = weight of Inertia; = Constant integers;  = 

Random variables; = particle best location achieved;  = newly born member of 

the flock;  = Existing individual member of the flock; = global best position 

achieved by one member of the flock. The whole process that PSO goes 
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through in order to optimise the current problem is shown in Figure 3.9, which 

may be seen below. 

Figure 3.9: PSO Flowchart

3.6.3 Nuclear Reaction Optimiser (NRO)

As was noted earlier, the NFi and NFu phases of a physics-based 

algorithm that was inspired by nuclear processes are employed for utilising and 

analysing a search solution space. Because nuclear processes make use of 

several operational principles, the method in question has been given the name 

"nuclear reaction optimisation." The NRO approach, much like other meta-

heuristic algorithms, begins by randomly constructing an evenly dispersed 

populations of N nuclei. This process is known as initialisation, and it is 

depicted by the mathematical formula in Equation (3.36)
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(3.36)

Where  is the initial population generated,  stands for the lower and 

upper bond for the dth variable located in the search space, and lastly, rand 

stands for randomly distributed integers between 0 and 1.

The continuous production of neutrons by an earlier event is often what 

keeps the reaction going in a process known as chain nuclear fission. It has 

been suggested that the nuclear fusion of two distinct random nuclei might 

result in the production of hot neutrons following Equation (3.37).

(3.37)

Whereas  stands for the heated neutron, 'Xi' and 'Xj' stand for the initial 

and final nuclei that result from the fission process, respectively. The fission 

process uses Gaussian distribution when locating the global best optima as 

shown by Equation (3.38). 

(3.38)

However, there is a question which is how does the fission process 

computes  ? The answer to this question is logged and used to compute sigma 

determined by calculating the difference between the value of a random 

nucleus formed and the best nucleus value produced. The fusion step of the 

algorithm comes at the very end of the process. 
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Nuclear fusion processes may be categorised as either hot nuclear 

fusion or cold nuclear fusion, depending on the conditions present throughout 

the ionisation event. When nuclei are heated to temperatures above that of 

plasma, a process known as thermal nuclear fusion may take place. This occurs 

when the nuclei combine to produce a heavier nucleus than the original light 

nuclei.

The ionisation stage is the initial step in the process of nuclear fusion. 

In accordance with the principles of ionisation, the NFL phase utilises this step 

for the purpose of investigation. The ionisation Equation is shown in the 

following Equation:

(3.39)

Where  represents the ionized variable, whiles stands for the worst and 

best random variable found during the fission states. The complete process of 

(NRO) is shown in Figure (3.10).
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Figure 3.10: NRO Flowchart
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3.6.4 Firefly Optimisation (FA)

The FA was influenced by firefly' innate behaviour. Fireflies use their 

accumulated energy to manifest as light in order to procreate, feed, or avoid 

predators. Fireflies attract attention by emitting light. The FA presupposes the 

next two idealised rules.

Since all fireflies are gender-neutral, their attractiveness is decided by 

the amount of light they flash, as quantitatively shown in Equation (3.40).

(3.40)

In which  = attractiveness of fireflies; = attractiveness at the starting 

point when no distance moved (r = 0);  = coefficient used to represent the 

absorption of light

The allure of fireflies is directly proportional to the intensity of their 

glow. Therefore, if there are two flashing fireflies in the area, the firefly that 

flashes less often will go toward the firefly that flashes more frequently. 

The greater the gap that separates two fireflies, the less stunning and 

brilliant each of them will become. As a consequence of this, the migration of 

fireflies continues until there are no fireflies in the group that are more brightly 

lit. When this takes place, the fireflies will wander about in a random pattern. It 
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is necessary to calculate Equations (3.41) and (3.42) in order to understand 

their motion in terms of distances and locations.

(3.41)

In which  = is the cartesian distance measured among a pair of fireflies  

& ;  & = kth dimension of the spatial coordinate of the iterated firefly for I & j 

respectively; d = the number of dimensions analysed to obtain the optimal 

solution.

(3.42)

By which  and  = new position of firefly I with less brightness and 

current position of firefly I with less brightness, respectively;  = position of 

firefly j with more brightness; α =a randomized parameter; and stands for 

random variable chosen between 0 and 1. The processes that firefly goes 

through, from the very beginning to the very end, in order to produce an 

optimum solution for the optimisation issue are shown in Figure 3.11.
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Figure 3.11: Firefly Flowchart

Determining an appropriate objective function is a crucial part of any 

optimisation model that aims to achieve a certain goal. The primary goal of this 

investigation is to reduce the possibility of water shortages in the public water 

supply as well as in the demand for irrigation. In order to better align with the 

planned operating strategy of Malaysia's water managers and planners. The 

formulated objective will be covered in the following section (3.7).

3.7 Objective Function and Constraints

The main objective function for this study is deemed to be achieved 

when the gap between the downstream water demands and water discharged is 

near to zero during a 12-month period. Equation (3.43) translates it into 

mathematical form that is understood by the optimisation models.

(3.43)

Where:
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Z: Shortage of water supply

: Downstream Demand at a certain Month (t)

: Released water at a certain month (t)

The value that is calculated at any particular period for a certain amount 

of water that is released will have an effect on the reservoir storage value in the 

period that comes after it, in accordance with the continuous-discrete method. 

In a simpler word there must be an Equation that updates the reservoir at the 

beginning of new water cycle, such Equation is given by Equation (3.44).

(3.44)

The activities of the reservoir should adhere to the operational rules and 

follow the technical constraints. Some examples of these constraints are the 

reservoir water balance, the allowable boundaries of water release and storage, 

as well as the ultimate aim of water storage. The two constraints that were 

considered in the current research are the storage  and release  as shown in 

Equation (3.45) and (3.46), respectively.

(3.45)

(3.46)

Researchers have only lately created a number of limited handling 

strategies in order to retain the applicability of optimisation algorithms to 

constrained optimisation issues and avoid the algorithm search from leaving 
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the viable zone (Zhou et al., 2019; Kulkarni et al., 2018; Chang et al., 2010). 

Constrained handling strategies include, but are not limited to, the use of 

penalty functions, repair methods, isolating the purpose from the constraints, 

and using particular representations and operators.

But among the EA community's most established and widely utilised 

strategies are penalty functions (Kumar et al., 2020). The process of penalty 

functions take place by converting a restricted optimisation problem into an 

unconstrained one by adding the constraints to the objective function in the 

form of a penalty term. When the solution cannot be implemented, the goal 

value is reduced according to a predetermined reduction factor. Two penalty 

functions will be considered, and the formulas are shown in Equation (3.47) 

and (3.48).

(3.47)

(3.48)

Where:

: Penalty Coefficients were chosen by trial & Error depending on the range.

: Minimum storage (Lower Bound)

: Maximum storage (Upper Bound)

The reservoir storage capacity limit range is associated with the penalty 

coefficients C1 and C2, which may be written as: (maximum and minimum 

storage). An iterative method is used to determine the values that should be 
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assigned to these two variables so that they can accurately reflect the tolerance 

that the objective function has for the end outcome. 

As a direct consequence of this, Equation (3.43) has been altered such 

that it now includes a correction for the objective function as shown in 

Equation (3.49).

(3.49)
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3.8 Models Evaluation

The present study makes use of a number of statistical measures in 

order to assess the performance integrity of the presented technique to predict 

inflow and optimise the entire reservoir operation. This was done in order to 

accomplish the objectives of the research. These indicators are being used to 

analyse not just the effects of the training process but also the efficiency of the 

models when they are being tested

There are four primary indices that have been modified in order to 

evaluate the effectiveness of the optimisation methods, namely vulnerability, 

reliability, resiliency, and sustainability. Each and every index will be briefly 

explained in the next few sections
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3.8.1 Root Mean Square Error (RMSE)

In hydrology, air quality, and climate research investigations, the root 

mean square error (RMSE) has been employed as a standard statistical tool to 

quantify the performance of the models (Chai and Draxler, 2014).  The basic 

concept behind RMSE is that is computes the difference between the projected 

data and the historical data. The RMSE mathematical Equation is shown in 

Equation (3.50).

(3.50)

Where:

n = observation samples

 = forecasted inflow for i-th 

 = observation Data

3.8.2 Median Absolute Error (MedAE)

The fact that the median absolute error is unaffected by outliers makes 

it a particularly intriguing statistic. The number that represents the loss is 

derived by finding the middle value of all the absolute deviations that exist 

between the goal and the forecast data. The Equation is given as follows:

(3.51)

Where:
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n = observation samples

 = forecasted inflow for i-th 

 = Observation Data

3.8.3 Mean Absolute Error (MAE)

The MAE is appropriate for use when describing mistakes that are 

evenly distributed because it is more common for model errors to have a 

uniform distribution than a non-uniform distribution. The Equation is given as 

below:

(3.52)

Where:

n = observation samples

 = forecasted inflow for i-th 

 = Observation Data
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3.8.4 Coefficient of determination (R)

In regression models, the coefficient of determination, which also goes 

by the name R², indicates the percentage of variance in the dependent variable 

that can be accounted for by the predictors that are included in the model. This 

coefficient is well-defined. To extend it for our forecasting models, we use the 

Equation below.

(3.53)

While the lower bound of the previous four statistical models is mainly 

limited to zero the upper bound however is not restricted to a certain value. As 

the sample size expands, the upper bound of RMSE (Root Mean Square Error) 

also expands. 

This implies that even if one model is superior to the other, two models 

with different sample sizes might have the same RMSE. As a result, it is 

critical to exercise caution when comparing RMSE values from two different 

sample sizes. Some relations between RMSE and MAE can be presented as 

shown in Equation 3.54 below:

(3.54

)
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3.8.5 Reliability Index

The reliability of the water demand is measured as the chance that the 

available water supply will be sufficient to fulfil the water demand during the 

duration of the simulation. In other words, Reliability is the likelihood that 

there will not be any failures during a certain time frame, which is often 

believed to be the planning period. The Equation of reliability is given by:

(3.55)

In which:

 = Water Deficit 

= Target demand and supplied demand

Equation (3.55) is subjected to form the main reliability Equation 

shown by Equation (3.56)

(3.56)

Whereby  stands for the number of time intervals considered.
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3.8.6 Resilience Index

The ability of a system to adjust to shifting circumstances is known as 

resilience. Resilience must be considered as a statistic that evaluates the ability 

of water management operations to respond to changing circumstances since 

climatic conditions are no longer constant. Resilience may also be defined as 

the likelihood that a system will recover after a time of failure. The resiliency 

formula to assess the reservoir failure probability is given by Equation (3.57).

(3.57)

3.8.7 Vulnerability 

The potential impact of losses, if they materialise, is referred to as a 

vulnerability value. Vulnerability, in its most basic form, is an expression of 

the intensity of failures. One way to describe vulnerability is as (1) the typical 

rate of failure. (2) the average of the largest deficits during the whole of the 

continuous failure time, and (3) the chance of going beyond a specific deficit 

threshold. The vulnerability Equation adapted in the current study is based on 

the average failure; hence the Equation is shown as follows:

(3.58)

In which,  failed models not meeting the demand, : Targeted demand, : 

Release generated by the metaheuristic optimisation models.
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3.8.8 Sustainability Index (SI)

(Loucks and van Beek, 2017) suggested the SI as a means of 

quantifying the sustainability of water resources systems. Additionally, the SI 

was developed with the intention of making it easier to evaluate and compare 

various water management approaches. 

The Sustainability Index (SI) is a summary index that evaluates the 

sustainability of water resources systems; it may be used to evaluate the 

sustainability for water users and to get the change in sustainability by 

analysing the index among many water Guidelines that have been offered. 

Hence, the SI could be seen as the summation of all the previous water indices 

as shown in Equation number (3.59).

(3.59)
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4CHAPTER 

RESULTS AND DISCUSSION

4.1 Parameter Tuning

In this section, the approach used to tune the parameters of the machine 

learning models and the optimisation algorithms will be discussed and 

reviewed. Tuning machine learning parameters is an essential step in training a 

machine learning model. It involves adjusting the values of the parameters that 

control the behaviour of the model in order to optimise its performance on a 

given task. There are several reasons why tuning machine learning parameters 

is essential, as one may frequently enhance a machine learning model 's 

efficiency on the problem it was developed to handle by adjusting its 

parameters. This may be particularly essential if the objective is crucial, like 

when the model is being used to make judgments that might have serious 

repercussions such as the forecasting task discussed in this research. 

Another important reason for parameter tuning is that it helps in 

minimising over-fitting. Over-fitting arises when a model tries to match the 

training data noise instead of the underlying pattern because it is too 

sophisticated. This might result in inaccurate generalisation to new predicated 

data.
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To conclude, the enhancement of parameters in a machine learning 

model plays a significant role in expediting the training process. This aspect 

holds particular significance within the context of the current case study, 

considering the utilization of a substantial dataset during the model's training. 

In the current research, two methods of tuning were considered to tune the 

hyper-parameters of the forecasting models which are Grid-Search Method and 

Cross-Validation (K-fold). 

Identical to the repetitive randomised subsampling procedure, cross-

validation ensures that no two test sets overlap by careful sampling. The 

available learning set was divided into ten k-folds distinct subgroups of 

roughly similar size for k-fold cross-validation. The number of resultant 

subsets is the "fold" in this context. The learning set's cases were randomly 

sampled for this division without being replaced. The training set was made up 

of k-1 subsets, which collectively made up the learning dataset. The 

performance of the model was then evaluated once it has been applied to the 

final subset, also known as the validation, set. Up till each of the k subsets has 

intervened as a validation set, this process was repeated. The results of the 

cross-validation sampling are shown in Table 4.1. 

It is significant to highlight that there is no recognised technique for 

estimating the frequency of folds; rather, it is totally dependent on the kind and 

amount of noise in the data. The optimal range of K-folds, however, was 

shown to be between 4 and 19folds in all of the prior research, and it was 

suggested that the optimal number of K-folds is 10, especially when the 
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computing system is confined. (Berrar, 2018; Wang et al., 2019; Arlot and 

Lerasle, 2012).

Table 4.1: Inflow Scenario vs Tuning Option

Inflow
Scenario Model Tuning Option Coefficient of Determination

Monthly

SVR
K-FOLD (10-Folds) 0.4832

Grid-Search 0.7757

MLP
K-FOLD (10-Folds) 0.2863

Grid-Search 0.6501

ANFIS
K-FOLD (10-Folds) -0.0718

Grid-Search 0.3894

XG-Boost
K-FOLD (10-Folds) 0.9885

Grid-Search 0.5885

Daily

SVR
K-FOLD (10-Folds) 0.3568

Grid-Search 0.6492

MLP
K-FOLD (10-Folds) 0.1598

Grid-Search 0.5236

ANFIS
K-FOLD (10-Folds) -0.1983

Grid-Search 0.2629

XG-Boost K-FOLD (10-Folds) 0.8620
Grid-Search 0.4621
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According to Table 4.1, each of the four model were given a trial 

dataset from the original database. The training amount of data was 80% out of 

the trial set given to each model while the testing was the remaining 20%. 

Table 4.1 clearly shows that the four models did not perform well when tuned 

with K-Fold cross-validation method. However, the suggested model's 

accuracy significantly improved with the addition of grid-search accompanied 

by a Trial-and-error approach. 

The suggested models provide the greatest accuracy in forecasting the 

inflow by including this stage in the machine learning (ML) process. The value 

of the coefficient of determination in predicting monthly rainfall using K-fold 

varies between -0.07 to 0.9885, and for the grid-search it ranges between 

0.2629 to 0.7757.

In daily inflow prediction, it ranges between -0.1983 – 0.46 for K-Fold 

tuning approach while for the grid search method it ranges between 0.2629 – 

0.86. Based on these findings, it can be claimed that all four models are 

capable of forecasting inflow over a range of time horizons with a respectable 

degree of accuracy, and that the model's accuracy increased as additional 

inputs were included.

When employing a metaheuristic algorithm to address an optimisation 

problem, two primary stages require user input: defining the objective and 

assessing the model's fitness. The objective is usually well-defined in most 

cases and can easily be changed to suit the user demand. However, selecting 
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the component of an evolutionary algorithm is challenging as each component 

contains its own variables such as mutation probability, selection size, 

population size, iteration rate, etc. These parameters' settings have a significant 

impact on the algorithm's ability to efficiently identify solutions that are close 

to optimal. Nevertheless, selecting the appropriate parameter values is a time-

consuming process.

Fundamentally, researchers differentiate between parameter control and 

parameter tuning as the two primary methods of setting parameter values 

(Eiben et al., 2007). By parameter tuning, researchers mean the method that is 

frequently used, which entails determining suitable values for the parameters 

before the algorithm is performed and then executing the algorithm using these 

values, which stay constant during the iterations. Tuning these parameters has a 

crucial effect on the exploration and exploitation ability of the optimisation 

model.Exploration and exploitation are particularly significant in any 

optimisation method since they describe the pattern of attaining an optimum 

state for a system's overall iteration stages. Explore and exploit are two distinct 

processes in the search space. Exploration involves visiting new parts of a 

search space. 

In particular, exploration entails searching the solution space more 

thoroughly, and during this stage, the algorithm makes every effort to forget its 

initial local point. In particular, the impact of the good local points must be 

lowered in the case of local optima, resulting in the algorithm emerging in a 

distinct direction to discover a divergent solution in the global optima.
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Additionally, exploitation refers to making the most use of the 

advantageous population ancestors in order to develop in a certain path, thus 

not only causing the algorithm to converge more rapidly but also shrinking the 

search area. In other words, visiting earlier search spaces with the aim of 

pushing the search process to its limit.  

A search algorithm must have a good balance of exploration and 

exploitation to be effective. Firstly, to address these optimisation issues, a 

series of exploratory runs should be carried out to determine the right values 

for the suggested algorithms' parameters. 

The number of iterations and population size were maintained while the 

rest of the parameters were adjusted until the optimum parameters have been 

achieved, as seen in Table 4.2. As it can be seen in Table 4.2, firefly (FA) is a 

parameter-rich algorithm as it contains seven major parameters that need to be 

tuned followed by Particle Swarm Optimisation (PSO) that has six parameters 

that require tuning. Genetic algorithm (GA) and nuclear reaction (NRO) have a 

relatively small number of tuning parameters, suggesting that they are more 

user-friendly and less time-consuming.
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Table 4.2: Parameters Tuning

Optimisation Algorithm Model Parameters Values

Genetic Algorithm (GA)

Iterations 2000.00
Population Size 10.00
cross-over probability 1.00
Mutation Probability 0.02

Particle Swarm Optimisation (PSO)

Iterations 2000.00
Population Size 10.00
C1 (Local coefficient) 2.05
C2(Global Coefficient) 2.05
w_min (Minimum weight 
of bird)

0.40

w_max (Maximum weight 
of bird)

0.90

Firefly Algorithm (FA)

Iterations 2000.00
Population Size 10.00
γ (Gamma coefficient for 
light absorption)

5.50

β (Beta coefficient for 
attraction)

2.00

α (Alpha coefficient for 
mutation)

0.50

α_ damp (Alpha coefficient 
for mutation damp rate)

0.99

Δ (Delta coefficient for step 
size mutation)

0.05

Nuclear reaction optimisation 
(NRO)

Iterations 2000.00
Population Size 10.00

According to the selected parameters, all four optimisation algorithms 

have been developed successfully and could search through the search space 

while maintaining a balance between the exploration and exploitation process, 

as seen in Figure 4.1.
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(a)

(b)
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(c)

(d)

Figure 4.1: Exploration Vs Exploitation (a) Genetic algorithm, (b) Particle 

Swarm Optimisation, (c) Nuclear Reaction Optimisation and (d) Firefly 

Optimisation
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As is seen in Figure 4.1, all four algorithms had a similar shape of a 

plot among the exploration and exploitation curves; as if they are mirroring 

each other, which illustrates that each algorithm was trying to balance both 

phenomena. An analysis of the Genetic algorithm graph shows its strong 

capability in searching the search space as the patterns were deep and 

interconnected between each other, forming a triangular ascending and 

descending pattern that shows that the algorithm is taking a long time in 

finding the local and global optima and that it tries to avoid being stuck in the 

local space. In a genetic algorithm, the exploration and exploitation mainly 

depend on the crossover operator. 

To increase the likelihood of producing superior offspring, a crossover 

operator mixes two or more parents. The notion that knowledge sharing 

between good offspring individuals would result in offspring who are even 

better than their parents can be used to justify such a pairing. A crossover 

operator is viewed in this light to be more of an exploitation operator. A 

successful crossover operator should also produce individuals in the 

exploratory zone. The exploratory power of an operator is the number of 

possible ways it might create a new offspring individual. In many 

circumstances, predicting whether newly created individuals generated by 

crossover and/or mutation operators will fit into the search space zones, is 

challenging (Črepinšek et al., 2013). The Particle swarm optimisation shows a 

sharp pattern through the first 100 iterations. However, as it continues iterating 

the algorithm untangles itself, forming a clearer rectangular trend. 
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It is evident from the line graphs that the PSO and FA were exploitative 

in the majority of repetitions. An interesting observation of the NRO shows 

that it had a similar graphical pattern as the PSO but, with more tangles among 

exploration and exploitation for the first 200 iterations, and as it iterates further 

the pattern changes to a linear shape.

On the other hand, the Firefly graph has formed a bowl shape with an 

increase in the exploration and exploitation percentage until it reaches iteration 

number 2000, and then it drops immediately. One reason for this could be that 

the algorithm has not found the global optima yet and a greater number of 

iterations is required. FA was extremely excellent on exploration and similarly 

poor on exploitation, which was the two opposing qualities. This is due to Levy 

Flight, which makes use of the swarm's long-distance mobility to assist in 

escaping the local optima. 
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4.2 Forecasting-Based-Model (Monthly Inflow)

4.2.1 Forecasting Scenarios 

Forecasts for both the long-term and short-term reservoir inflow are 

required for this research. As a result, several input patterns were used with the 

algorithms SVR, XG-BOOST, ANFIS and MLPNN, to predict the reservoir 

inflow. There have been seven different scenarios formulated for this study 

starting from scenario-1 with no time lags consideration for any input variable 

while for scenario-2, scenario-3 and scenario-4 time lagging was considered 

for water-level input variable. 

Similarly, scenario-5, scenario-6 and scenario-7 had a one, three and 

five time-lags for historical inflow and water level as shown in Table 4.3. In 

general, performance metrics were used to determine which approach is better. 

During the testing period, all indicators were determined by comparing the 

output of the four models to the actual inflow records (20 years).

Table 4.3: Forecasting Scenarios

No. Of Scenarios Inputs Outp
1
2
3
4
5
6
7

Notation:

4.2.2 Support Vector Regression (SVR)
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To begin, there are many different parameters in the SVR that need to 

be calibrated. Nevertheless, according to the findings of our research, the 

kernel type is the hyper-parameter in the SVR that has the greatest impact, 

followed by the Gamma, coef, and epsilon. The SVR model makes use of a 

total of four kernels: the (RBF), the Sigmoid (SGD), linear kernel, and the 

polynomial kernel (POLY). Only some parameters affect each kernel; for 

example, the coef effect is only meaningful when the polynomial and sigmoid 

kernels are used together. On the other hand, the linear kernel is unaffected by 

either gamma or coef.

The model was initially constructed using the default (def) 

configuration settings for each parameter, as shown in Table 4.4. The default 

value for Coef and epsilon was 0.0, and 0.25 for gamma.  Initially, The linear 

kernel has shown excellent result, while the polynomial kernel was far from 

accurate. However, these findings might be misleading. A value based on the 

(MAE), the linear method has shown (MSE), the R² value, and the median 

absolute error, which are correspondingly 42.346, 2420.5624, 0.5813, and 

42.4249. During this time, the value of the polynomial has fluctuated between 

60.1283, 8111.9762, -0.4032, and 41.8226, respectively. When calculated 

using the default settings, the model does not perform well enough to provide 

the desired results in their optimal form. As a result, we were able to improve 

the model by using a diverse set of values for each parameter. For example, the 

gamma value ranged from 0.00001 to 0.1, and the epsilon value ranged from 

0.001 to 1.



143

Table 4.4: SVR Parameter Tuning

 Kernel Type Gamma coef0 epsilon Mean Absolute Error Mean Square Error R² Median Absolute Error
RBF 1 / n_features 0.0000 0.1000 44.5896 3163.0666 0.4529 42.0476

Sigmoid 1 / n_features 0.0000 0.1000 47.1196 3390.5640 0.4135 41.0463
linear 1 / n_features 0.0000 0.1000 42.3461 2420.5624 0.5813 42.4249

Polynomial 1 / n_features 0.0000 0.1000 60.1283 8111.9762 -0.4032 41.8226
 

RBF 0.0100 - 0.1095 44.1958 2564.1918 0.5565 40.8344
Sigmoid 0.0213 0.0010 0.1971 43.4654 2425.7390 0.5804 41.9831
Linear - - 0.3820 42.7106 2357.4203 0.5922 46.4137

Polynomial 0.0008 97.0000 0.0070 38.7946 2108.9788 0.6351 37.2362
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For the RBF, the values for the gamma parameter were taken from the 

range of 0.001-0.1 and the values for the epsilon parameter were picked from 

the range of 0.001-1.0. The coef parameter was omitted since it does not have 

an impact on the effectiveness of the model. The model result evaluations 

based on the (MAE, MSE, R², and MDAE) displayed values that were 

substantially less accurate than the default values. 

At first, increasing gamma and epsilon enhances the model's 

performance; but, after the model hits its optimal point, doing so results in a 

decline in performance. It was discovered that a gamma value of 0.01 and an 

epsilon value of 0.1095 produced the best results for the RBF kernel's set of 

variables. When these settings were used, the performance of the model 

achieved its maximum potential, displaying a value of 44.1958, 2564.1918, 

0.5565, and 40.8344 for MAE, MSE, R², and MDAE, respectively. The 

performance of the model will suffer if gamma and epsilon are increased above 

their current values of 0.01 and 0.1095, respectively.

The sigmoid kernel's response to changes in gamma, coef, and epsilon 

is analogous to that of the RBF: the model's performance improves with 

increasing values of these parameters, but then reaches an optimal value 

beyond which further increases in these values actually degrades performance. 

For gamma, the best range of values was between 0.02-0.03, while for epsilon, 

it was between 0.200-0.300. Although finding the optimal value of gamma and 

epsilon for the model's performance might be challenging due to the limitless 
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combinations of these two variables within a certain range, there are a number 

of methods that can help.

Because the epsilon is the only hyper-parameter that may affect the 

linear kernel, it's also known as the transparent box kernel occasionally. There 

are no complexities in the linear kernel, thus the name. Changing the epsilon 

parameter does not seem to have any effect on the model's efficiency. On 

average, the linear kernel's R² was 0.580, while the relative best performance 

was recorded at 42.710, 2357.420, and 0.592., and 46.413 for the MAE, MSE 

R², and MDAE, respectively.

The polynomial kernel is the most enhanced kernel since it is affected 

by all three hyper-parameters; nevertheless, the coef has the most significant 

impact on the polynomial kernel. Because of this, finding the value that is 

optimal for the model has been given the highest emphasis throughout the 

tuning process. With these parameters set to their ideal values of 0.001, 99, and 

0.01, we get an R² of 0.6352, a (MAE) of 38.7946, a (MSE) of 2108.9788, a 

median absolute error of 37.2362, and an R² of 0.6352.

In order to acquire a full comparison of each kernel, Figure 4.2 depicts 

the finest coefficient of correlation achieved with each kernel vs the optimal 

epsilon value for each kernel. This was done so that the reader may receive this 

information in a clearer form. 
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The results of the R² performance metric test showed that the 

polynomial attained the greatest possible performance. In predicting inflow 

based on the monthly data series, thus, it is considered to be the most 

outstanding kernel, followed by linear, then sigmoid, and finally is the RBF.

Figure 4.2: SVR Kernel Performance

4.2.3 Multilayer Perceptron Neural Network (MLPNN)

It is nearly impossible to find the ideal collection of parameters that will 

allow the MLPNN to operate at its highest level since it is a parametric 

machine learning model with several parameters that need to be adjusted. The 

logistic sigmoid function (log), identity function (Id), rectified linear unit 

activation function (relu), and hyperbolic function are the first four main 

nonlinear functions of the MLPNN (Tanh). Second, there are three 

fundamental solvers: the stochastic gradient descent (sgd), the (lbfgs) operator 

from the family of quasi-Newton methods, and (adam). To get the best results 
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possible, each of these solutions is put to the test. The most important 

characteristics of the MLPNN are the hidden layer, the node size, the 

activation, and solver parts. Alpha and tol have been evaluated since, in 

addition to the previously listed factors, they may potentially have a little 

impact on the model. The optimal set of hyper-parameters is shown in Table 

4.5, where tol values range from 0.0001 to 1.0000, and alpha values range from 

1.0000 to 25.0000.

Table  4.5: Four Hidden Layer MLPNN Parameter Tuning

FXN Solver Tol Alpha MAE MSE R² MDAE

Id
lbfgs 0.1000 1.0000 40.5646 2236.2584 0.6132 39.2476
sgd 0.0001 1.0000 40.0521 2242.2707 0.6121 39.7365

adam 0.0001 1.0000 40.2090 2234.2954 0.6135 44.2946

Log
lbfgs 0.0001 2.3000 38.9555 2243.8250 0.6119 35.4898
sgd 0.0001 1.1000 49.5325 3406.4963 0.4108 51.3071

adam 0.0001 0.1000 45.2135 2729.8948 0.5278 42.4114

tanh

lbfgs 0.0001 3.9000 33.3901 1747.2303 0.6978 28.1564
sgd 0.0001 5.0000 43.6977 2638.3413 0.5436 41.2286

adam 0.0010 25.000
0 43.8127 2963.4753 0.4874 40.6189

relu

lbfgs 0.0100 3.0000 37.0488 2145.2520 0.6289 27.1342
sgd 0.0001 8.0000 39.0564 2140.1385 0.6298 41.7922

adam 0.0001 10.000
0 39.2656 2272.1355 0.6070 35.5422

With the focus to get the desired optimal outcomes, each of the four 

activation functions must be tuned and computed independently. Each 

activation function is based on a different underlying concept. In order for the 

solver to successfully generate the four convolution layers, it is necessary for it 

to also reposition the nonlinear and linear data into a feature space. Cross-

validation is required for each and every one of the model's activations 
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functions and solvers in order to get the best possible result from the model. In 

addition to this, the number of hidden layers and nodes has an effect on all five 

of the models since the three solvers and the four activation functions are all 

components of the same model.

The findings show inconsistent pattern across the trials and that each 

trial's greater performance is a result of its own unique set of factors. With a 

Tol of 0.10000, the "Identity" activation function with solver "lbfgs" obtained 

an R² of 0.6132; in contrast, the identical activation function with solver 

"adam" needed a Tol of 0.0001 to obtain an R² value that was close to that of 

"lbfgs" (0.6135).

The results demonstrate uneven patterns throughout the trials, 

indicating that each trial's superior performance is due to a different collection 

of specific circumstances. Using the identical activation function with the 

solver "adam" resulted in an R² value that was near to that of "lbfgs," but using 

the "Identity" activation function with the solver "lbfgs" resulted in an R² value 

of 0.6132 with a Tol of 0.1000 (0.6135).

The "logistic" activation-function has underperformed the other kernel 

function on average, with an R² of 0.5168. This is due to the fact that "sgd" and 

"adam" solvers both produced R² values lower than 0.6000. Although it was 

useful, the "tanh" activation function used with the "lbfgs" solver was superior. 

All of the "relu" activation function solvers have R² values over 0.6000, 

suggesting satisfactory performance. R² was 0.6978, tol was 0.0001, and alpha 



149

was very near to 4 with just 4 hidden layers and nodes. It's also the best and 

most precise option available. Figure 4.3 displays the visual displays to 

demonstrate how each activation function has affected the trend. The outcomes 

of each variable can be considered to be linearly related to one another.

Figure 4.3: MLPNN Activation Functions vs R²
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4.2.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS distinguishes out from other techniques of forecasting because 

it is a hybrid model that incorporates aspects of fuzzy systems with neural 

networks. This gives it a distinct advantage over other approaches. This 

indicates that it has virtually precisely the same qualities as other frequently 

used neural network models in terms of setting the number of layers and nodes. 

These characteristics include the fact that no one approach works for 

everyone and that the number of concealed layers is often established via a 

process of trial and error. This is analogous to the process of selecting the 

optimal neural network design before training.

There are eight distinct membership functions in ANFIS known as 

Gaussian Membership (GAUSSMF), Two-term Gaussian Membership 

(GAUSS2MF), Triangular Membership (TRIMF), Trapezoidal Membership 

(TRAPMF), Gaussian Bell Membership (GBELL), Sigmoidal Membership 

(DSIGMF), pi-shaped membership function (PIMF) and finally polynomial 

sigmoid membership function (PISGMF) each one was put through its paces 

throughout the various trials.

The outcomes of the several tests conducted with varying numbers of 

hidden layers produced a wide diversity of model architectures ranging from 

M222, M333, M444, M355, M455, M555, M655, M525, M522, M535, M545, 

M552, M553, M554, M556, M244, M344, M544, M666, M777, M622, M633, 
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M644 and finally M523. Among all the 24 models M553 has shown the best 

results hence it has been selected for further testing as shown in Table 4.6.

The four statistical factors that were discussed before were used in 

making the decision to go with the improved membership function. As a result, 

the generalised bell function was discovered to be the most suitable 

membership function for the structure M553, as it had an R² value of 0.6244 

and a mean average error (MAE) value that was quite low at 30.7858. 

It was shown that as the number of hidden layers increases, the training 

process slows down and the results accuracy decline. This finding is in good 

agreement with the observation discovered by (Marjani et al., 2020; Allawi et 

al., 2021). Beyond M553, as the number of hidden layers increased, the overall 

training time increased by around two minutes for each additional hidden layer. 

Because of this, it is suggested that not more than 15 layers are employed to 

reduce the amount of time required for the calculation and get superior results.
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Table 4.6: M553 Membership Tuning

Statistical Tests Membership Functions
TRIMF TRAPMF GBELLMF GAUSSMF GAUSS2MF PIMF DSIGMF PSIGMF

MAE 38.2310 41.4323 30.7858 42.8744 35.7744 36.9835 36.3460 36.0646

MSE 3412.1488 4364.2261 1780.3422 5494.4008 1294.6172 2056.8016 2385.1147 3552.7232

R² 0.4177 0.3926 0.6244 0.2887 0.5110 0.4403 0.4398 0.4010

MDAE 1740.6887 1800.2192 1659.6838 1871.8942 1671.5526 1674.7755 1716.9322 1742.8262
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4.2.5 Extreme Gradient Boosting (XG-BOOST)

XG-Boost is a contemporary model that requires little fine-tuning to 

provide significant performance gains. The XGB's versatility in hyper-

parameter support makes it a powerful query language for almost any database. 

On the other hand, in this study, only the Gamma, learning rate, Max depth, 

and Reg lambda hyper-parameters had any noticeable impact on the model's 

performance. There is a total of 24 hyper-parameters. The default values for 

each parameter were used when the model was initially run. Unexpectedly, the 

model's efficiency under the default conditions was somewhat better than that 

of the other three forecasting models.

As discussed Earlier the K-Fold cross-validation technique was 

examined and evaluated in this research project. K-fold had a detrimental effect 

on the performance of the three forecasting models, rather than improving or 

maximising those models' capabilities. In contrast, when paired with the XG-

Boost, it yielded results that were very near too perfect. Performance measures 

were found to have an MAE of 37.9172, MSE of 2194.5987, R² of 0.6204, and 

MDAE of 30.9001 when the model's parameters were first set to their default 

values and statistical analysis was performed. These values are very close to 

those obtained by tuning the SVR and ANFIS models, despite only using the 

models' default settings.

The XGB undergoes further fine-tuning via a process of trial and error. 

The values gamma (γ), (learning Rate), and lambda λ were all found to be 
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within the range of 0 to 1. The XGB has one noteworthy parameter, which is 

the (Max depth). The (Max depth) specifies the deepest you may let your tree 

roots grow because XGBoost is modelled like a tree and its growth process. 

This is a very relevant option. Therefore, when the value of (Max depth) rises, 

the model will grow more complicated as a result of the addition of new layers. 

Because we wanted to conduct the training and testing of the model using the 

fewest possible values in this investigation, we specified that the maximum 

depth should be between 1 and 20.

The model was first updated without first transforming the input into 

folds. After experimenting with different values for Lambda and Max depth, it 

was found that 0.60 for lambda and 6.00 for depth produced the best results for 

the model. If these factors are manipulated more, the model's efficiency will 

decline. We determined that gamma= 0 is the best value, and that increasing it 

will decrease the performance of the model. According to the results shown in 

Table 4.7, the parameters gamma (γ) = 0.00, Learning rate (L_R) =0.10, Max 

depth =12.00, Reg lambda (λ) = 0.80, and the number of K-folds (k-25) =25.00 

resulted in the best performance. 

Table 4.7: XG-Boost Hyper-Parameters Tuning 

γ L_R Max
depth λ MAE MSE R² MDAE Random 

State
K-Fold 
(splits)

0.25 1.00 1.00 0.0001 37.92 2194.60 0.62 30.90 1.00 -

0.00 1.00 6.00 0.60 34.82 1763.30 0.69 29.20 1.00 -

0.00 0.10 12.00 0.80 12.05 213.44 0.88 9.80 10.00 25.00
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In an effort to wrap up this section, four separate reservoir inflow 

forecasting models were built using the monthly period scenarios. Four 

independent reservoir inflow forecasts models were created based on the 

monthly period scenarios in an effort to wrap up this section of the debate. A 

total of 240 samples for four different parameters—evaporation, precipitation, 

water level, and historical inflow—were incorporated in these models. 

Researchers used not one but two distinct methods, namely the Grid-Search 

methodology and the trial-and-error method, in order to discover the optimal 

parameter configurations to alter in each model in order to get more accurate 

predictions. 

The terms "search strategy" and "search method" allude to these two 

different approaches. The four different statistical scores used to rate each 

predictive model were distinct. Last but not least, Figure 4.4 provides a fair 

comparison of the four models, by comparing the predicted inflows from each 

model to the actual predictions. 

Figure 4.4: Actual Inflow vs Predicted Inflow from the Models
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The maximum reservoir inflow measured in Figure 4.4 was 40xm3, 

whereas the lowest was 8xm3. A total of 48 months over 4 years were used to 

evaluate the model. Southwest of Peninsular Malaysia is where the reservoir 

station is located and where the data were collected. The monsoon season (SW 

monsoon) for this area begins in the month of MAY and lasts until around 

SEPTEMBER (Pour et al., 2020). In light of this, the models suggest that the 

maximum inflow pattern shown in Figure 4.4 will match with the pattern of 

rainfall, which starts to increase by the end of the fifth month and decreases by 

the end of the ninth month. 

4.3 Forecasting-Based-Model (Daily Inflow)

In this part, the same four artificial intelligence models that were used 

earlier to estimate the monthly inflows are evaluated to see how well they can 

predict the flow into the Klang Gate reservoir based on the daily 

circumstances. In addition, to determine which Input variables were the most 

sensitive, a sensitivity analysis was run using autocorrelation. The term 

"autocorrelation" refers to a measurement that determines the degree of the link 

that exists between two successive time periods. In a time, series, there are two 

versions of datasets which are referred to as the time-lagged data and the 

original time series.

Since the gaps in time between observations are substantial and the 

inflow to the reservoir follows an indeterminate non-uniform distribution, it is 

imperative to create a time lag model. These varying time delays serve as a 
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helpful reminder that the significance of previous observations ought should 

lessen with the passage of time (Luo et al., 2018), in the event that a variable is 

missing for a long period of time. It is possible to improve streamflow 

predictions by delaying data collection for a longer period of time (Yang et al., 

2017). 

This research agree with (Kim et al., 2019; Khazaee Poul et al., 2019) 

in their assertion that considerably more accurate predictions may be generated 

by including flow, temperature, and precipitation lag periods among the inputs. 

In light of this decision-making process, it is thus strongly suggested to employ 

lagged inflow since it is helpful in forming judgements about the functioning of 

the reservoir. 

The correlogram that was plotted for the 60-day lag is shown here by 

Figure 4.5. Rainfall was chosen as the independent variable in this study since 

it is the mainstream of water supply to the reservoir. In addition, the elements 

that were being examined, however, were the water levels, evaporation, and 

historical inflows. In accordance with Figure 4.5, the water level was the most 

impactful variable, followed by the inflow, while evaporation was the least 

significant contributor.
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Figure 4.5: Input Variable Sensitivity Analysis

Before moving on to more complex situations, each of the four 

previously used models was put through its paces by being tested on the first 

four scenarios. The top two models were then used to estimate reservoir inflow 

for Scenarios 5 through 7, which used the historical inflow as an input, based 

on the first four Scenarios. The outcomes of each of the possible situations are 

shown below in Table 4.8
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Table 4.8: Statistical Evaluation of All Models

Scenarios Model Kernel Hidden Layers
Statistical Evaluation

MAE MAE R² MSE

1

SVR Poly - 59.9802 8919.3302 0.4240 40.1389
MLPNN relu (lbfgs) (14-9) 52.5941 7130.6476 0.5395 33.9323
ANFIS Pi (4-4-2) 59.6012 7985.8597 0.4247 39.2593

XG-Boost - 5 30.2360 5097.1204 0.7220 18.4754

2

SVR (RBF) - 51.1157 7241.3984 0.4814 28.3359
MLPNN logistic (lbfgs) (10-5) 51.0265 6836.7206 0.5682 32.1400
ANFIS TRAPMF (3-3-5) 612.1626 10125.1133 0.1681 170.943

XG-Boost - 6 40.6211 5486.8070 0.6457 21.1554

3

SVR (RBF) - 51.9611 7368.4589 0.4723 29.7794
MLPNN logistic (lbfgs) (10-5) 51.0926 7586.3967 0.5208 32.0243
ANFIS Gaussian (2-5-5) 530.6267 10304.8390 0.1624 172.844

XG-Boost - 5 41.3030 5449.3034 0.6481 23.1501
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Table 4.8 (continued): Statistical Evaluation of All Models

Scenarios Model Kernel Hidden Layers
Statistical Evaluation

MAE MAE R² MSE

4

SVR (RBF) - 52.7055 7424.5836 0.4682 31.0070
MLPNN logistic (lbfgs) (10-5) 50.6292 7597.9790 0.5201 30.7787
ANFIS Gaussian (2-2-4) 621.8024 10435.1987 0.1615 170.5209

XG-Boost - 5 43.1057 5892.9277 0.6194 24.0792

5
MLPNN relu(adam) 2 3.5969 4.4547 0.9964 1.8845

XG-Boost - 5 0.4493 1.3707 0.9999 0.2209

6
MLPNN relu(adam) 2 12.7200 6.1468 0.9641 9.2036

XG-Boost - 5 0.3863 1.7039 0.9999 0.2055

7
MLPNN relu(adam) 2 19.8485 9.8198 0.9459 14.1924

XG-Boost - 5 0.3854 1.6764 0.9999 0.2020
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When used on the first four scenarios, it has been demonstrated that 

perhaps the MLPNN and the XG-Boost are the two models that perform best in 

terms of the model performance indices. An R² of 0.53949 was obtained in 

scenario 1 for the MLPNN model with two hidden layers, 14 nodes in the first 

layer and 9 nodes in the second layer. This was a better outcome than the SVR 

model's R² of 0.42397 and the ANFIS model's R² of 0.42469. However, it fell 

short of the XG-Boost, which outperformed the other two models and achieved 

an R² score of 0.7222.

While the ANFIS performed poorly in scenarios 2 through 4, earning an 

R² of 0.16808 in scenarios 2 and 3, performance continued to deteriorate, 

earning an R² of 0.16239. The ANFIS obtained an R² of 0.16808 in scenario-2 

for scenario-4. In scenario-4, the ANFIS got an R² of 0.16808 in scenario-2. In 

addition to this, it was still classified as the worst model for the fourth scenario 

since its performance is becoming worse and worse, and it had the worst R² 

score of all the different situations, which was 0.16154. Because of this, the 

model was given the lowest possible score.

The MLPNN and XG-Boost both performed similarly and were rated as 

the top two models in scenario two. However the XG-performance Boost's was 

slightly down from scenario one, with an R² of 0.6456. The MLPNN and SVR 

performances, on the contrary side improved by 5.3% and 13.536%, 

respectively. 
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Model performance continues to drop until scenario 4, when the 

MLPNN achieves its lowest score R² of 0.5200 and the XG-Boost reaches an 

R² of 0.6194, a drop of 14% from its best-ever R² value in scenario 1. SVR's 

performance was also going downhill, but to a lesser extent; the metric's R² 

value was 0.46. In Scenario 5, the XG-Boost achieved an R² of 0.9999, which 

was almost perfect and higher than the MLPNN's R² of 0.9964. For all 

situations 6 and 7, the XG-Boost kept up its remarkable performance, 

achieving an R² of 0.9999 while the MLPNN performance dipped to 0.9459. 

After testing all the models across the seven proposed scenarios 

ultimately, it can be finalised that MLPNN and XG-Boost are the best two 

forecasting models. By using estimates for the previous day's influx, the 

models' predicting accuracy is greatly improved. Figure 4.6 shows a 3-D 

graphic depiction of each model's performances that have been described 

earlier under.
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Figure 4.6: Statistical Analysis Tests for Scenarios 5, 6 and 7

To provide a brief summary of this section When dividing the data for 

the daily time series into their respective 7 scenarios, a separate procedure was 

used. Scenario 1 was the control, and there was no time lag in this scenario. 

Scenarios 2, 3, and 4 each had a time lag of one, three and five, respectively, 

where (t) denotes the total number of days in the scenario. Scenario 1 was the 

control, and there was no time lag in this scenario.

Following the completion of an autocorrelation function computation 

for each of the parameters, the water level and historical input of the time lag 

series were selected. Therefore, it turned into a historical inflow in situations 5 

through 7, which were equivalent to scenarios 2 through 4, yet the historical 

input is delayed in time. In other words, the predicted influx by the model 

served as the basis for training the models to anticipate reservoir inflow. The 

XG-Boost continues to come out on top when compared to the other three 

models during the first four scenarios. The ANFIS received the lowest possible 

score, falling below both the MLPNN and the SVR, which tied for second 

place. In contrast, the ANFIS generated results that were somewhat better than 

those of the SVR in scenario 1, which placed it as the third-best model overall.

As the XG-Boost and the MLPNN were the top performers in the first 

four conditions, these two models were further investigated for the remaining 

three cases. Results were consistent with those from earlier iterations, with 

XG-Boost again emerging as the top contender (R² = 0.9999) and proving to be 
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the best model overall. Based on the results of the study, XG-Boost is the best 

performing model, followed by MLPNN, SVR, and finally ANFIS. 

4.4 Conventional Operation System

4.4.1 Real Coded Genetic Algorithm (RCGA)

The first remark that can be derived using the 12 release curves (Figure 

4.7) is that the three types of input do not always occur in the same month. This 

can be seen from the fact that there is a difference in the slopes of these curves. 

The reservoir only had flows of medium and low levels throughout the months 

of January, February, and July. Only high and medium levels of inflow were 

received by the reservoir during the months of May, October, and November.

This is consistent with the pattern of rainfall that happens in the state of 

Selangor, where the largest rainfall totals occur between the months of October 

and November, followed by the second highest rainfall totals which occur 

between the months of April and May (Bahar et al., 2021). During the course 

of the year, the genetic algorithm was successful in meeting the demand on one 

occasion, with the exception of the first three months (January, February, and 

March). For the whole month of January, the downstream demand was 5.90 

MCM, whereas for both February and March it was 4.90 MCM. 
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(l)

Figure 4.7: GA Release Curves for Conventional Operation System (CS) 

for (a) Jan - (l) Dec

As can be seen from Figure 4.7, the lowest volume of water that was 

released during the months of January and February was 6.13 MCM, which is 

about one MCM more than the demands of the downstream communities. 

Although the inflow was more than the required amount of water farther 

downstream in March, it was not enough to satisfy the demand for water. 

When the storage level is between 19 MCM and 23 MCM, the release will be 
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the same regardless of whether the reservoir gets a large or medium amount of 

input. 

This is a further point that stands out when looking at the release curve. 

Since the purpose of using the optimisation algorithm is to fulfil the 

downstream demand with no deficit, the GA has not been able to reach its 

optimisation goal during the first two months of its use. This is because the 

goal requires there to be no deficit. Moving on to the months of April and May, 

downstream demand was virtually exactly the same for both months; it was 

5.33 MCM in April and 5.78 MCM in May, and these demands were the 

second and third greatest downstream requests after January.

The release curve for April demonstrates that the reservoir release was 

proceeding upward to satisfy the demand. When the reservoir storage level 

reached 24 MCM, the release that was created due to the high inflow was 

finally able to satisfy the demand farther downstream. They were just about 

able to satisfy the demand with the medium and low levels of input, but only 

just. However, the reservoir operation in May can be considered relatively the 

best operation among the twelve months because both the high and medium 

inflows could meet the demand consistently for a longer duration. This was the 

case because May had the most inflows and extended duration of any of the 

months. In terms of the medium inflow, it was sufficient to meet the demand 

when the storage level was 14.5 MCM until it reached 19.526 MCM. 
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On the other hand, the high inflow was sufficient to meet the demand at 

the storage level of 19.526 MCM and maintained its level until the storage 

level reached 23 MCM. After successfully completing the requirements, both 

inflow patterns have shown an increasing tendency.

Because it displays continuous release at certain places, generating 

what is known as a step function, the release curves that were created by the 

GA beginning in June and continuing all the way through December have a 

graphical shape that is comparable to the pattern of a staircase. A step function 

will always have the same value at the same intervals, but the value of the 

constant will change between intervals. The concept that the constant varies at 

each interval causes the jumps in the series of horizontal lines, which is formed 

by the constant value at each interval. 

The constant value at each interval creates the sequence of horizontal 

line segments. This is why the graph of a step function looks like a flight of 

stairs. In June, the high and medium inflows could only satisfy the demand of 

4.81 MCM at two or three places alone. This was the case for both categories.

Addressing the month of July, the medium inflow fulfilled the 

requirement when the reservoir storage was 19.526 MCM, and it maintained 

doing so until the storage levels were increased to 23.526 MCM. This allowed 

the inflow to continue serving the demands of the downstream areas (which 

forced the reservoir operator to release more water downstream to avoid 

entering the critical stage). In the month of August, the downstream demand 
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was satisfied by all three inflows while the storage capacity of the reservoir 

was 15, 19, and 23 MCM, respectively, for high, medium, and low inflows.

The trend made sense when considering the fact that the high inflow 

was able to reduce the water deficit more quickly than both the medium and the 

low inflow. In September, the high and medium inflows were both able to 

decrease the water deficit almost exactly at the same reservoir storage level, 

which was 20 MCM; however, the low input could not fulfil the downstream 

demand.

In October, the GA was able to show good performance as the high 

inflow reached its optimal performance by meeting the demand of releasing 4.5 

MCM of water when the storage level was 18 MCM and had continued 

fulfilling the demand. This was made possible because the high inflow could 

reach its optimum performance. 

When the storage level was increased to 23 MCM, the medium inflow 

could only match the demand by a hair's breadth. One of these constant values, 

more specifically the one before the last step, met the demand exactly and 

generated a water deficit equal to zero during the month of November when the 

high inflow had a perfect staircase graph with a constant release at each step 

size. This was the case because the high inflow occurred during November. 

With regard to the medium inflow, the demand was satisfied by the most recent 

step size, which demonstrates that the medium inflow is capable of satisfying 

the demand even when the reservoir levels are getting close to their maximum 
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storage levels. In December, both the high and the medium had rather 

successfully satisfied the expectations.

4.4.2 Particle Swarm Optimisation (PSO)

In contrast to GA, a linear pattern can be seen in the Particle swarm 

release curves (Figure 4.8). PSO has historically been known to demonstrate 

better performances when compared to GA. This is due to the fact that the 

computing effort required by PSO to identify high-quality solutions is less than 

that required by the GA (Hassan et al., 2005; Zhang et al., 2014). As a result, 

the curves illustrate a higher degree of linearity by showing straight lines. 

Particle swarm has always been known to show better performances. PSO was 

able to supply the demands of the downstream in approximately nine months 

regardless of the inflow condition; nevertheless, it was unable to satisfy the 

needs of the downstream in only three months (January, March, and May when 

the inflow was medium/low).
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Figure 4.8: PSO Release Curves for Conventional Operation System (CS) 

for (a) Jan - (l) Dec

When there was a medium inflow of water into the reservoir catchment 

in January, PSO was able to reduce the water deficit to zero. However, when 

there was a low inflow of water, the reservoir was unable to satisfy demand 

and was only just able to increase the water level to prevent the storage level 

from reaching a critical level. The reservoir experienced all three types of 

inflow patterns throughout the month of March; thus, it was able to fulfil the 

requirements of the downstream community when the storage capacity of the 

reservoir reached 18 MCM as a result of the large amount of water that was 

being added to the reservoir (high inflow).
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In a similar way, the PSO was able to optimise the operation of the 

reservoir and reduce the gap between the water that was released and the 

downstream from medium inflow because it released 4.90 MCM of water and 

continued to supply a constant release, which brought the gap down to zero. 

This enabled the PSO to reduce the gap between the water that was released 

and the downstream from medium inflow. 

On the other hand, when there was a low level of incoming water, the 

reservoir let out water, but it was not enough to meet the demands of the area 

downstream. This was because, throughout the month, whenever there was a 

low level of incoming water, the reservoir was unable to release an amount of 

water that was sufficient to meet the downstream demand.

In May, the reservoir was able to fulfil the downstream needs of 5.80 

MCM when the storage level was approximately 24 MCM, which was close to 

the peak storage level. On the other hand, even though the medium inflow was 

getting very close to achieving the optimal release by fulfilling the downstream 

needs, it was not able to do so. For the remainder of the year, PSO has 

demonstrated strong optimising ability as it has the reservoir water release that 

was able to meet the need from water either by intersecting the downstream 

line at one point and then releasing more than the downstream need from water 

or by remaining to supply the downstream with the volume of water that they 

demand precisely.
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4.4.3 Nuclear Reaction Optimisation (NRO)

Given that it was just recently invented in 2019, the nuclear reaction 

optimisation method is a relatively new algorithm. Due to the fact that it was 

only evaluated on benchmark functions, it has not yet been put to the test for 

applications in the real world. One of the many novelties in this work was 

employing NRO to enhance reservoir operation; nevertheless, as shown by the 

release curves (Figure 4.9), which were created by NRO, its performance was 

substandard.
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Figure 4.9: NRO Release Curves for Conventional Operation System (CS) 

for (a) Jan - (l) Dec

In the first two months of the year, January and February, the model did 

not at any time satisfy the demand that was placed on it. The NRO simulation 

in January which found that the reservoir produced 6.12 MCM despite the 

downstream demand being just 5.9 MCM. However, the NRO produced curve 

shows that the reservoir is lacking around 0.10 million cubic meters of water; 

this is despite the fact that the downstream demand in February was 4.90. 

In the subsequent three months of March, April, and May, NRO 

simulated that the reservoir can only meet the demand when the water level is 

raised to fill up the reservoir or else it is not able to meet the demand. 
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For example, in the month of March, high and medium inflow could 

only satisfy the need when the water level was at 24 MCM, which 

demonstrates that NRO is not robust enough to meet the demand while it is 

being constrained and bounded by the storage and release mechanisms.

In June, it came as a surprise that the reservoir was able to discharge the 

same quantity of water that was needed downstream for the whole month. 

Additionally, it has been observed that NRO performance is inconsistent and 

varies. Because of this, the release pattern does not have any curvature; rather, 

it is a straight line, which refers to a constant amount of water that is to be 

released throughout the month while ignoring the demand but satisfying the 

constraints.

This is one more noticeable observation. NRO does not search for the 

global optimal solution; instead, it is stuck in the local optimal solution, which 

assumes that the optimal release has been found. In July and December, the 

model discharged water at a rate that was greater than the demand downstream, 

with a total of 4.8 MCM and 5.25 MCM, respectively; however, from August 

until November, the reservoir was unable to meet the demand in any way, 

except when the reservoir storage is at its maximum capacity.
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4.4.4 Firefly Optimisation Algorithm (FA)

The optimisation issue for which this study seeks a solution is known as 

a noisy optimisation problem. Because it is based on a real-world application in 

which the assessment of a solution's fitness may be impacted by a variety of 

kinds of ambiguity, ambiguity plays a role in the evaluation. Historically, FA 

has been used for optimising situations that are noisy and nonlinear. 

According to Figure 4.10, FA has shown outstanding performance since 

it has been able to solve the issue with the reservoir and keep up with the 

demand during the whole year. In the months of March, May, July, August, 

September, October, and November, and December, the model provided 

virtually flawless results, as it conformed exactly to the downstream demand 

straight line. This was a clear observation that was made from the release 

curves that were created by FA.
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Figure 4.10: FA Release Curves for Conventional Operation System (CS) 

for (a) Jan - (l) Dec

The release curves that FA generated were able to meet the demand 

earlier than those that were generated by Genetic algorithm, Particle Swarm, 

and Nuclear reaction Optimisation in the majority of cases. 
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This was demonstrated by the fact that FA was able to meet the demand 

when the water level in the reservoir was raised to approximately 14 MCM. 

Not to mention the fact that the reservoir FA was able to meet demand in 

February, which was 4.9 MCM, as well as demand in May, which was higher 

with approximately 1 million cubic metre (5.8 MCM). 

This demonstrates that the model is robust and is able to optimise the 

water deficit problem even when there are large variations in the needs of the 

downstream area. Beginning in June and continuing through December, the 

release curves predicted by the model were in perfect alignment with the 

downstream line when the level of the reservoir was roughly 15.5 MCM. 

Starting in June and continuing through December, the requirements for the 

downstream were 4.76 MCM, 4.57 MCM, 4.39 MCM, 4.56 MCM, 4.59 MCM, 

and 5.23 MCM, respectively.

4.5 Real-time Simulated Losses Operation System

In this subsection, the existing reservoir operating system is improved 

by taking into account the reservoir losses in the form of a predicted output 

generated by XG-Boost. It is defined as a closed-loop system that will iterate 

and generate the release curves with minimal user interaction. In this way, it 

overcomes the necessity of having a reservoir operating manager available at 

the reservoir site to feed the model with the most recent recorded data obtained 

from the sensors. The optimisation systems that were developed under this 

section are defined as having been developed as a closed-loop system.
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The first thing that can be noticed among all of the operation curves is 

that the shape of the line graph has become more linear in comparison to the 

traditional system. This indicates that the algorithms were able to reach the 

global solution with fewer numbers of iterations, which is the second 

observation that can be seen among all of the operation curves.

4.5.1 Genetic Algorithm (IS)

While both systems were able to fulfil demand in January when inflow 

was medium, the conventional system never came close to doing so when 

inflow was low. However, the integrated system's GA was able to meet 

demand at one moment in both the medium and low inflow situations when 

storage levels hit 22.264 MCM and 23.798 MCM, respectively, as shown in 

Figure 4.11. However, the storage level required to reach 19.526 MCM in 

medium and 24.5 MCM in low for the model to supply the downstream 

demand.
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Figure 4.11: GA Release Curves for Integrated System (IS) for (a) Jan - (l) 

Dec

In February, GA fared somewhat better in the integrated system as it 

was able to meet the demand in both circumstances. The model did not 

function well in March because it was unable to meet the requirements of the 

downstream processes, with the exception of situations in which the reservoir 

received strong inflow and the reservoir storage was increased to over 18 

MCM. 

In the months of April and May, the model was able to suit the 

requirements of the community since it was able to provide the demand 

regardless of the circumstances. When the reservoir's storage reached the level 

of 14 MCM in April, when there was a large inflow, the reservoir could supply 

the needs when it kept its release at the same level of 5.3 MCM. 
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In addition, the model successfully met demand even during periods of 

medium and low input when the water level in the reservoir was down to 

around 22 MCM. In spite of the difference in storage level, the pattern of the 

release curve under high inflow circumstances in May was quite similar to the 

one attained in April. This was the case despite the fact that the model satisfied 

the demand in May when the storage level was increased to around 16.5 MCM. 

Next in line, the model was not sensitive enough or accurate enough 

during the month of June. As a result, the reservoir was compelled to release 

more water than was necessary since the model could not fulfil the demand 

under any circumstances.

The amount of water that is discharged from the reservoir during times 

of intense inflow is always greater than the demand. This holds true from July 

until December (with the exception of September, when the model was unable 

to satisfy any downstream needs under any inflow conditions), so the overall 

conclusion is as follows: when there was a medium amount of incoming water, 

practically all of the discharges were able to meet the demand even if there was 

limited storage. 

Nevertheless, when there was a low inflow, the volume of water that 

was released by the reservoir was only just enough to meet the exact demand. 

This was due to the fact that the variable changes (low inflow) immediately 

impacted both the capacity of the reservoir and the amount of water that was 

released.
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4.5.2 Particle Swarm (IS)

A cursory review of the rule curves shown in Figure 4.12 indicated that 

the low storage capacity phase of the monthly release curves had a serious lack 

of available water. This was discovered when the curves were examined. The 

integrated PSO model suggested emptying the reservoir with a high storage 

capacity of a significant amount of water (an oversupply) during times of high 

inflow in order to keep the reservoir storage within a safe range and doing the 

opposite during times of low inflow in order to satisfy the demand for the 

water.
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Figure 4.12: PSO Release Curves for Integrated System (IS) for (a) Jan - 

(l) Dec

The results shown in Figure 4.12 suggested that the Loss integrated 

PSO operation rule that was proposed might perhaps reduce the water deficit in 

a more efficient manner. The results also showed that the planned PSO 

performed substantially better than GA in which it was able to satisfy the 

demands of the downstream area in 9 out of 12 months regardless of the inflow 

conditions. March, May, and December were the three months in which PSO 

was unable to supply the demand downstream. The demand downstream was 

4.50 MCM, 5.78 MCM, and 5.3 MCM correspondingly during those three 

months.

In addition to its strong performance, the PSO algorithm is a viable 

choice for optimal water distribution in times of scarcity and drought due to its 

low sensitivity to the starting population and rapid reaction time in comparison 
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to other heuristic algorithms. This makes the PSO algorithm a good option for 

optimal water distribution in times of scarcity and drought (such as genetic 

algorithms). As a result of the results acquired by PSO, it is possible to deduce 

that the PSO model has a high capacity to produce satisfying outcomes for 

optimising reservoir operations in a short period of time. This can be derived 

from the fact that the PSO model was successful in obtaining the findings.

4.5.3 Nuclear Reaction Optimisation (IS)

In comparison to the traditional NRO, the performance of the NRO that 

has been integrated with the losses modelling system has been marginally 

improved, as shown in Figure 4.13. Utilizing the differential operator of each 

parameter, the NRO develops the ion that efficiently balances the exploitation 

and exploration capacities in proportion to the risk of ionisation at this stage. 

In order for the NRO to manufacture fusion products during the fusion 

phase, it employs differential operators of whole ions in addition to modelling 

exploitation and exploration while taking into consideration the likelihood of 

fusion. The integration of losses has prompted NRO to employ the Levy flight 

variants to seek at random and be able to escape the local minimum at each 

step. This was done as a result of the motivation provided by the integration of 

losses.



215

(a)

(b)



216

(c)

(d)



217

(e)

(f)



218

(g)

(h)



219

(i)

(j)



220

(k)

(l)

Figure 4.13: NRO Release Curves for Integrated System (IS) for (a) Jan - 

(l) Dec

4.5.4



221

4.5.5 Firefly Optimisation (FA)

It is clear from looking at all of the graphs that were produced by FA in 

Figure 4.14 that the model once again proves its powerful optimisation skill 

since it was able to satisfy the demand every month despite the fact that the 

inflow was relatively modest in both the Integrated and Conventional System. 

Since firefly lacks velocity in addition to various other variables, it may be able 

to avoid reaching local maxima. At the conclusion of each cycle, the output 

will consist of the solution that is deemed to be the most appropriate. After 

making use of these outputs as its initial population input, the acquired 

population is then enhanced and promoted by FA throughout each iteration of 

the process.
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Figure 4.14: FA Release Curves for Integrated System (IS) for (a) Jan – (l) 

Dec

4.6 Reservoir Performance Assessment

During the process of analysing the proposed optimisation algorithms, 

several distinct performance statistical metrics were tested and evaluated. In 

addition, during this investigation, two distinct methods have been taken into 

consideration. 

The first approach, known as the standard approach, considers the 

availability of precise forecasting for the reservoir's intake. The second method 

incorporates the anticipated model accuracy for the reservoir's intake 

throughout the simulation period. This method is based on the second 

technique. In order to evaluate how well the operational rules perform when 

the reservoir system is being operated, the following novel technique, which 
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involves running the reservoir system under situations as close to real life as 

possible, is advised. In this Section, four indices were used to assist the 

metaheuristic algorithm models: Reliability, Resilience, Vulnerability and 

finally sustainability index which indicates how sustainable the produced 

release curves are.

4.6.1 Reliability Index (Rel)

In the reservoir management approach, many widely used statistical 

performance measures are utilised in conjunction with a reliability index to 

assess the efficiency of the release operating strategy. This is done so in order 

to determine whether or not the plan is successful. These criteria are derived 

from the extensive range of potential scenarios that may arise throughout the 

course of its operational lifetime. The term "reliability" in reference to a 

reservoir relates to the measuring of an output from an activity.

According to Figure 4.15, all four models' reservoir releases have been 

evaluated to see how accurate the output of each model is in each of the three 

inflow conditions. The results of these tests are shown in the given Figure. 

Each model needed to operate based on two distinct systems in order to 

optimise the reservoir's functioning. 

The first one was called the conventional system (cs), and in it, the 

reservoir losses were not recreated by any machine learning model; instead, 

they were left as historical data. 
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This system was used. The second system is known as an integrated 

system (IS), and it is the one in which the optimisation model combines the 

losses that were simulated by XG-Boost while simultaneously optimising the 

reservoir operation.

(a)

(b)
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Figure 4.15: Reliability Indices for (a) High, (b) Medium and (c) Low

Figure 4.15 demonstrates that the firefly algorithm is a superior model 

because the release values that it generates are more reliable than the release 

values produced by any of the other models in the conventional and the 

integrated loss system. The firefly algorithm achieved its highest reliable score 

of 3.6 and 4.4 in June for high and medium inflows, respectively, with a slight 

disparity between the scores achieved by the integrated system and the 

conventional system. Except for the months of April and December, Firefly 

was able to get points for good dependability in every month when there was 

substantial inflow. 
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However, when the reservoir had a medium inflow, fireflies achieved 

the most ideal outcomes virtually every month, with the exception of March 

and December, when their scores were below 1 in both systems. When the 

water volume received in the reservoir catchment was low, the firefly model 

was still able to produce excellent results, which allowed it to outperform all of 

the other models in nearly every month, with the exception of April and 

September, when it scored a reliability point that was less than 1.0. 

Out of the four algorithms, it can be said that the firefly algorithm is the 

one that is the most trustworthy. This may be stated in a nutshell. In addition to 

this, the integrated losses that are simulated by XG-Boost considerably 

increase the model's dependability.

4.6.2 Resiliency Index (Res)

The resilience index is a measurement that determines how fast a 

system can recover from a failure or a deficit period when it is faced with 

either situation. The failure sequence will have an effect on the performance of 

the system; for instance, if a 12-month operation period fails over four periods, 

the performance will be reduced. To put it another way, a failure in one period 

is always followed by a period in which there is no failure: but a failure in four 

times in a row results in a different conclusion.

Figure 4.16 demonstrates that the release curve that was generated by 

Firefly performed better than the other order rule curves, achieving a low 



232

resilience index overall. This was the case despite the fact that the Nuclear 

Reaction algorithm achieved a low resilient score in the month of March, April, 

May, June, August, Sept, Oct and November during periods of high inflow 

only. However, firefly still scores low resilient score in medium and low 

inflow. In fact, the resilience index was not a clear performance as it did not 

provide us with a straightforward ranking; hence vulnerability index is needed 

in this case.

(a)

(b)
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Figure 4.16: Resilience Index for (a) High, (b) Medium and (c) Low

4.6.3 Vulnerability Index

In this context, vulnerability refers to the potential severity of a failure 

if it does take place. Even when there is a low likelihood of anything going 

wrong, it is still essential to consider the worst-case scenario and plan 

accordingly. Efforts to improve a system's dependability include attempting to 

break it in some way so that it cannot function properly.

Free yet, there are not many systems that can be constructed so big or 

have so many backups that failures are never an option. After a certain point, it 

is better to expend effort making the implications of failure less severe and 

more acceptable than it is to attempt to eradicate the chance of failure.  When 

floods do occur, it is possible to lessen the financial toll they take by taking 

precautions such as flood-proofing buildings, investing in early warning 
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systems, and obtaining flood insurance. Other measures that may be taken to 

reduce the financial impact of flooding include keeping structures away from 

floodplains and repurposing areas at risk of flooding as agricultural land, 

natural preserves, and parks.

Using a method that was susceptible to error, the performance of the 

models was analysed, and the results exposed the severe shortage scenario. 

According to the data, firefly optimisation gave much better results than 

monthly optimisation did in terms of vulnerability index performance (lower 

value). To put it another way, the firefly optimisation was effective in 

determining the worst failure’s worst magnitude. This unequivocally illustrates 

that the Firefly optimisation outperformed in terms of vulnerability, which 

ultimately led to developing a superior release plan for efficient operation, as 

seen in Figure 4.17.

Figure 4.17: Vulnerability Index
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Comparing the results of the traditional system, which got 50%, with 

those of the firefly model, which got 39% overall, it can be observed that the 

firefly model integrated with reservoir losses was the model with the least 

amount of vulnerability overall. In contrast, the Genetic Algorithm was the 

model with the highest level of vulnerability among the integrated and 

conventional systems. 

This was due to the fact that the vulnerability percentage obtained for 

the integrated system was approximately 65%, whereas the vulnerability 

percentage obtained for the conventional system was approximately 80%. 

Overall, it is possible to draw the conclusion that adding reservoir losses into 

optimisation models has enhanced them, making them less fragile and leading 

to the acquisition of more accurate release curves.

4.6.4 Sustainability Index (SI)

Using the SI outlined in this work, one is able to evaluate the degree to 

which different water management practices are environmentally friendly. The 

SI defines strategies that, in the future, will either maintain or enhance the 

basin's intended features for its water management. When there are trade-offs 

between several performance criteria such as the one seen in this study as the 

performance of each model varies in terms of resiliency and reliability, the SI 

makes it much simpler to analyse, compare, and create adaptive solutions that 

will enhance water management.
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The scientific community has relied on the SI because it concisely 

outlines key performance characteristics of water management while excluding 

irrelevant or irrelevantly complex components (Ye et al., 2018; de O. Vieira 

and Sandoval-Solis, 2018; Sandoval-Solis et al., 2011). In order to give a 

comparison between the four models, the average performance that was 

achieved from each category of inflow for each model was computed, and the 

results are displayed in Table 4.9. 

Table 4.9: Sustainability Index for Optimisation Models

Model
Conventional System (CS) Integrated System (IS)

Inflow
High Medium Low High Medium Low

GA 0.057 0.071 0.111 0.139 0.153 0.193
PSO 0.123 0.113 0.072 0.205 0.195 0.154
FA 0.241 0.331 0.207 0.323 0.413 0.289

NRO 0.045 0.06 0.128 0.127 0.142 0.210

When the reservoir losses were incorporated into the system, the 

capabilities of the model were enhanced overall. Additionally, this gave the 

system additional credibility when optimising the operation at the end of each 

month and syncing it with the beginning of the following month.

The Firefly model, which was developed by integrating the reservoir 

losses, demonstrates how it is sustainable in handling any inflow changes that 

may occur as it obtained a scoring value of 0.413, 0.323, and 0.289 for 

medium, high and low inflow respectively. Furthermore, it demonstrates that it 

is capable of being used as sustainable tool for effectively optimising reservoir 

release, as it has obtained the highest average points. The PSO achieves a score 
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of 0.205, 0.195, and 0.154, respectively, for high, medium, and low inflows, 

which places it in the second-place position in the ranking. The Genetic 

Algorithm (GA) has once again shown superior performance in contrast to the 

Nuclear Reaction (NRO), which has fallen to the very bottom of the rating. 

In a nutshell, the results presented in this research, which sought to 

determine the optimal optimisation algorithm integrated with machine learning 

model, show that the particle swarm algorithm frequently exhibits better 

performance than the genetic algorithms and nuclear reaction optimisation. The 

innovative firefly algorithm, on the other hand, outperforms the PSO, GA and 

NRO in terms of efficacy and the speed at which the desired results are 

obtained. This shows that the firefly method has the potential to be excellent at 

solving difficult complex problems.
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5CHAPTER 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Conclusions

The study presented in this thesis focused on developing a credible 

solution to the issue of predicting reservoir inflow at a dam in Peninsular 

Malaysia while getting a precise and trustworthy reservoir operating system. 

Empirical measurements and actual inflow computations are now faced with 

significant obstacles due to several factors, such as cost, technological 

viability, and the required prerequisite trained labour. Positive results were 

obtained when the linear water-balance equation and black-box machine 

learning models were intercepted, but they were both qualitatively and 

quantitatively data hungry. 

The research described in this thesis intended to construct a reliable 

machine learning model for reservoir inflow forecasting in Peninsular Malaysia 

with minimal data needs to optimise, simulate, and was assessed at the Klang 

gate Dam, the oldest water dam in Malaysia. The strategy that was used to 

accomplish this employed the Multi-layer perceptron neural network 

(MLPNN), Support vector regression (SVR), Adaptive neuro fuzzy inference 

system (ANFIS) and the extreme gradient boosting (XG-BOOST) as the four 

machine learning models to forecast and simulate the reservoir inflow and 
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operation. Additionally, there are four metaheuristic algorithms known as the 

genetic algorithm (GA), particle swarm optimisation algorithm (PSO), firefly 

optimisation algorithm (FA) and the nuclear reaction optimisation algorithm 

(NRO) for the purpose of optimising the reservoir operations to generate an 

optimised release curve.

Four objectives drove the undertaking of this extensive research, the 

findings from each objective are given as follows. The most important 

conclusions drawn from Objective-1 are as follows:

 As much as the hyper-parameters of each machine learning model plays 

a critical role, there is no standard method to obtain an optimal 

combination among the model parameters and the trial-and-error along 

with the grid-search and cross-validation are for now, the best available 

strategies to search for the optimum parameters.

 MLPNN is a super-rich parametric model and obtaining the best 

combination of parameters is a challenging process. SVR is sensitive to 

the number of folds in the cross-validation stage and XG-Boost is the 

easiest model to be tuned, while ANFIS requires a huge amount of 

training data to obtain positive outcomes.

 Rainfall is the most important input variable when forecasting reservoir 

inflow as the highest volume of water that flows into the reservoir is 

contributed by rainfall.

 Time-lags are necessary when forecasting inflow as it expands the 

forecasting search space, therefore providing a wider range of 

forecasted inflow.
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 XG-BOOST forecasting abilities are superior to the other three models 

as it has obtained an R² value of 0.7220, while MLPNN is a good 

competitor to XG-BOOST scoring an R² value of 0.5392 which was 

superior to SVR which had an  R² value of 0.4247 and ANFIS with an 

R² of 0.4240.

Optimising reservoir operation was never an easy task due to the 

involvement of many unknown factors and the thousands, if not millions, of 

expected release scenarios. Nevertheless, researchers were constantly seeking 

ways to solve such tasks. The second objective of this research was to optimise 

reservoir operation and obtain a satisfactory resolution hence the main 

conclusion points that may be drawn from objective-2 are as below:

 Real coded Genetic Algorithm is a super-simple and user-friendly 

algorithm as it does not require intensive parameter tuning. PSO and 

FA are totally opposite to GA as they have various hyper-parameters.

 NRO is a newly developed novel algorithm, and it is yet to be tested in 

real case studies, especially in environmental and hydrology fields.

 FA was able to optimise the reservoir performance nearly obtaining a 

perfect operation with minimal or zero water deficit across all twelve 

months.

 PSO avoids falling in local optima and consistently searching for the 

global optima; hence the release output differs in each iteration. While 

NRO gets trapped in the local minima assuming the best release 

scenario has been achieved therefore the release curves produced by 

NRO are mainly linear with minimal increments.
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In objective-3, it is noteworthy that the overall and total deficit 

capacities for each optimisation model changed when the reservoir was 

managed using the predicted inflow data or under more actual conditions. It is 

helpful to obtain the real behaviour of the optimisation in managing a reservoir 

system if the reservoir inflow forecasting is integrated alongside the simulation 

of reservoir losses throughout the duration of operating a reservoir system. The 

third objective achieved by this study was to simulate the reservoir operation 

by integrating the losses in the form of evaporation and adding the forecasted 

inflow as an input hence developing an autonomic/semi-real-time reservoir 

operating system.

Finally, even though each objective was presented separately;’ all the 

objectives are however, interrelated. Hence, the performance of the reservoir 

that was optimised in objective-3 requires an assessment to assess the 

performance and thus therefore objective-4 is necessary. In objective-4, the risk 

analysis assessment has been conducted on the reservoir by testing each model 

output which reflects the reservoir condition based on the reliability, resiliency, 

vulnerability, and sustainability index. It is important to note that there was 

some variation among the results. Hence, it was challenging to identify the best 

model but the sustainability index which considers all the other three analytical 

tests could wrap up the results by ranking firefly as the most sustainable 

algorithm followed by particle swarm, Genetic algorithm and finally the 

nuclear reaction optimisation.
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In a nutshell, the strategies that were provided in our research and the 

optimisation system are generally applicable to different case studies, and they 

are flexible enough to allow for a specialized design to address any specific 

water resources planning issue. All the forecasting-based model and the 

objective function are robust and flexible for any alterations. Furthermore, this 

research study has proffered a solution to the dilemma of forecasting an 

accurate reservoir inflow and optimising the reservoir operation, by developing 

an autonomic computing program that runs on integrating the forecasted inflow 

from the machine learning model along with the optimisation algorithm to 

generate an optimal release scenario.

5.2 Future Recommendations

Despite the fact that the forecasting models used in this study have a 

high level of accuracy, the work that is being presented here does have certain 

shortcomings that might be remedied by a series of follow-up actions.  Due to 

the reservoir data's profoundly stochastic nature, certain processes necessitate 

supplementary improvements through pre-processing methods such as the 

Wavelet Algorithm (Rahman et al., 2020). The wavelet function decompresses 

time series data into sub-components which provide more information at 

different resolution levels, that results in improving the accuracy of forecasting 

models. Although the suggested Algorithms performed admirably in 

determining the ideal operation strategy for the hydropower production, more 

research into alternative optimisation algorithms is necessary since they may 

provide an even more effective operation Guideline.
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As a future recommendation, it is suggested that downstream demand 

shall be treated as an unpredictable variable rather than a fixed variable 

throughout the month to further provide robustness to the research field by 

updating the objective function hence resulting in a broader sets of output 

which does not just provide a complete picture on the reservoir operation but a 

detailed information on how each variable contributes to reservoir operation. 

In addition, reservoir operations could be tested in real-time with 

optimisation of operations reported at the time rather than relying on historical 

data. Other variations of each algorithm, such as the Self-organizing 

Hierarchical PSO with Time-Varying Acceleration Coefficients (HPSO 

TVAC) and the Gaussian Distribution Firefly and other hybrid versions of the 

GA, should be tested for comparative purposes.
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