

DETECTING AND MITIGATING BOTNET ATTACKS USING

DEEP LEARNING IN SOFTWARE-DEFINED NETWORKS

MUHAMMAD WAQAS NADEEM

DOCTOR OF PHILOSOPHY COMPUTER SCIENCE

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

 DECEMBER 2023

i

APPROVAL SHEET

This thesis entitled “DETECTING AND MITIGATING BOTNET ATTACKS

USING DEEP LEARNING IN SOFTWARE-DEFINED NETWORKS” was

prepared by MUHAMMAD WAQAS NADEEM and submitted as partial

fulfillment of the requirements for the degree of Doctor of Philosophy in Computer

Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Goh Hock Guan) Date:…………………
Supervisor
Department of Computer and Communication Technology
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

(Dr. Aun Yichiet) Date:………………
Co-supervisor
Department of Computer and Communication Technology
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

24/11/2023

Aun Yichiet
26/11/2023

ii

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 26/09/2023

SUBMISSION THESIS

It is hereby certified that Muhammad Waqas Nadeem (ID No:20ACD06039) has

completed this thesis* entitled “Detecting and Mitigating Botnet Attacks Using

Deep Learning in Software-Defined Networks” under the supervision of Goh Hock

Guan (Supervisor) from the Department of Computer and Communication

Technology, Faculty of Information and Communication Technology, and Aun

Yichiet (Co-Supervisor) * from the Department of Computer and Communication

Technology, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my thesis in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

Muhammad Waqas Nadeem

*Delete whichever not applicable

iii

DECLARATION

I Muhammad Waqas Nadeem hereby declare that the dissertation is based on my

original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

 (Muhammad Waqas Nadeem)

 Date: 26/09/2023

iv

DEDICATION

Dedicated to my parents, wife, supervisors, and friends.

v

ACKNOWLEDGMENTS

I did not find a word to depict my deepest and heartiest gratitude,

respectfulness, and thankfulness to my research advisor, Dr. Goh Hock Guan.

During my Ph.D. journey, Dr. Goh acted as a life teacher by discussing my

professional development and providing the space to improve my critical life-career

skills, which helped me have a clear path to follow. Dr. Goh patiently listened to

my challenges and pushed me to address them.

 As a Ph.D. advisor, Dr. Goh provided significant advice, assistance,

confidence, and the space that helped me to accomplish my Ph.D. successfully. This

research work could not have been accomplished without the extraordinary

guidance of Dr. Goh. Dr. Goh gave me the needed inspiration to be a successful

researcher and teacher in the future. There is nothing I can give to repay Dr. Goh

suitably. Thus, I will cherish your lessons and hopefully be an inspirational

professor to others like you.

I’d like to express my deepest thankfulness and gratefulness to my co-

advisor, Dr. Aun Yichiet and external co-supervisor, Dr. Vasaki Ponnusamy for

their deep collaboration and strong support.

I’d also like to express my deepest thankfulness and gratefulness to Dr.

Muhammad Adnan Khan and Dr. Muzammil Hussain, for their deep collaboration

vi

and strong support. Dr. Muhammad Adnan Khan dedicated much effort and time

to improving my research work by providing extraordinary advice and guidance.

Besides, Dr. Muhammad Adnan Khan helped me improve my research and

teaching skills by providing the needed inspiration and guidelines.

 I also insistently and truly, wish to thank my parents, “Nadeem Ahmad and

Yasmeen Bibi”, and my sincere wife “Sufia Waris” for their unlimited support,

encouragement, and assistance throughout my Ph.D. journey. They have told me

that I can accomplish anything I have set out to achieve. My parents have also

taught me patience and commitment to my goals. My parents and my wife are the

main reasons for any personal success I have had and will have in the future. Many

thanks to my brothers and friends Danyal Mahmood, Adnan, Salman Javed, and

Ashar Wyne for standing with me through this process, for providing unlimited

help, support, and encouragement, and that they have always trusted in my

capabilities in combination with pushing me to achieve my goals.

A special thanks to the Department of Computer and Communication

Technology for its support. It has been my honor to be a Ph.D. student in this

department in the Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman.

DETECTING AND MITIGATING BOTNET ATTACKS USING DEEP

LEARNING IN SOFTWARE-DEFINED NETWORKS

By

MUHAMMAD WAQAS NADEEM

A thesis submitted to the Department of Computer and Communication Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

December 2023

viii

 ABSTRACT

DETECTING AND MITIGATING BOTNET ATTACKS USING

DEEP LEARNING IN SOFTWARE-DEFINED NETWORKS

 MUHAMMAD WAQAS NADEEM

Software-Defined Networking (SDN) is a newly emerging network architecture

separating control and data planes. It provides easy and flexible organization,

management, and communication of complex or large-scale networks. Its

programmable and centralized interfaces facilitate making complex and intelligent

network decisions seamlessly and dynamically and can address the requirements of

the data centers for managing the entire network. It also provides opportunities for

individuals and businesses to build custom network applications based on their

requirements and enhance their network services. Although SDN architecture

offers high benefits, it introduced a new array of security and privacy challenges

(i.e., single point of failure) that can preclude the wide adoption of SDNs. The SDN

controller is a crucial element that attracts attackers to launch malicious attacks or

ix

activities on the controller (s) through OpenFlow switches. Distributed Denial of

Service (DDoS) and botnet attacks are considered dangerous threats for networks

such as IoT, SDNs, cloud computing, etc. If the attacker accesses the SDN

controller, it can reroute the network traffic, causing severe damage to the whole

network. So, Network Intrusion Detection Systems (NIDSs) have become

important tools to protect networks against malicious attacks. Deep learning (DL)-

based network applications are trending and have shown promising results in

detecting and mitigating potential threats with fast response. In this research, we

analyze and show the classification performance in terms of detecting and real-time

performance of various DL methods based on Recurrent Neural Networks (RNNs),

Convolution Neural Networks (CNNs), Multilayer Perceptron (MLP), Deep Neural

Networks (DNNs), and Long Short Term Memory (LSTM) for botnet-based DDoS

attacks in an SDN environment. A new simulation-based dataset is developed and

used to train deep learning methods. We also used feature weighting and threshold

tuning methods to derive the significant features required for detection. The

simulation outcomes and measurements are verified using a simulation-based

dataset and a real-time testbed environment. The aim of comparative analysis

among the DL methods is to find the lightweight DL method with baseline hyper-

parameters, features and data that can be easily acquired to detect botnet-based

DDoS attacks. The performance of the methods is evaluated using different metrics

such as accuracy, detection rate, training and detection times, precision, F1 score,

True Positive Rate (TPR), and False Positive Rate (FPR). The outcomes proved

that the DL methods produced good results using optimal features. Finally, based

x

on the simulation results, we observed that the CNN method outperforms using the

simulated dataset and in real testbed settings. The detection rate of CNN reaches

97% for attack flows and 99% for normal flows. We also adopted graph theory and

dynamic flow deletion-based mitigation strategy to protect the SDN environment

against botnet attacks.

xi

TABLE OF CONTENTS

Page

APPROVAL SHEET i
PERMISSION SHEET ii
DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENTS v
ABSTRACT viii
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xviii

CHAPTERS

1.0 INTRODUCTION 1
 1.1 Motivations and Problem Statement 9
 1.2 Research Questions 12
 1.3 Research Objectives 12

1.4 Contributions of the Research 13
1.5 Organization of Thesis 15

2.0 LITERATURE REVIEW 16
 2.1 Architecture of SDN 16
 2.1.1 Data Plane 17
 2.1.2 Control Plane 18
 2.1.3 Application Plane 20
 2.1.4 SDN Workflow 21
 2.2 Overview of Machine Learning and Deep Learning 22
 Algorithms
 2.2.1 Supervised Learning 25
 2.2.2 Unsupervised Learning 26
 2.2.3 Semi-Supervised Learning 27
 2.2.4 Reinforcement Learning 28
 2.2.5 Deep Learning 28
 2.3 Machine Learning and Deep Learning for Security 29
 in SDN
 2.3.1 Benchmark Datasets 29
 2.3.2 Detecting and Mitigating DDoS Attacks 34
 2.3.3 Detecting and Mitigating Low-Rate DDoS Attacks 61

xii

 2.3.4 Detecting and Mitigating Botnet Attacks 66
 2.3.5 Detecting and Mitigating Saturation Attacks 73
 2.3.6 Detecting and Mitigating Ransomware Attacks 79
 2.4 Summary 80

3.0 System Model 81

3.1 Overview of the Proposed Method 81
3.2 Simulated Dataset 82
3.3 Virtual Simulation Setup and Data Collection 84
 3.3.1 Design of Attack Traffic 87
 3.3.2 Design of Normal Traffic 88
3.4 Feature Extraction and Labeling 90

 3.4.1 CIC Flow Meter 91
 3.5 Data Pre-Processing 95
 3.6 Feature Selection 98
 3.6.1 Feature Weighting 100
 3.6.2 Threshold Tuning 105

3.7 Deep Learning Methods and Hyper-Parameters Settings 105
 3.7.1 Recurrent Neural Networks (RNNs) 105
 3.7.2 Convolution Neural Networks (CNNs) 108
 3.7.3 Multilayer Perceptron (MLP) 110
 3.7.4 Deep Neural Networks (DNNs) 111
 3.7.5 Long Short-Term Memory (LSTM) 115
 3.8 Summary 120

4.0 SIMULATION RESULTS FOR ATTACK DETECTION 121

4.1 Evaluation Metrics 121
4.2 Feature Selection Results 123

 4.3 Effectiveness of the DL Methods for Attack Detection 125
 4.4 Structural Performance of the DL Methods 125
 4.5 Results of Subset-1 Features 126
 4.5.1 Accuracy and Loss Trends of Methods 126
 4.5.2 Performance Evaluation Through 127

Confusion Matrix
 4.6 Results of Subset-2 Features 130
 4.6.1 Accuracy and Loss Trends of Methods 130
 4.6.2 Performance Evaluation Through 131
 Confusion Matrix
 4.7 Results of Subset-3 Features 132
 4.7.1 Accuracy and Loss Trends of Methods 132
 4.7.2 Performance Evaluation Through 134
 Confusion Matrix
 4.8 Results of Subset-4 Features 137
 4.8.1 Accuracy and Loss Trends of Methods 137
 4.8.2 Performance Evaluation Through 139
 Confusion Matrix

xiii

 4.9 Results of Subset-5 Features 139
 4.9.1 Accuracy and Loss Trends of Methods 141
 4.9.2 Performance Evaluation Through 143
 Confusion Matrix

4.10 Overall Analysis of the Performance of Methods 145
4.11 Implementation and Evaluation in Real Testbed 154

4.11.1 Performance of the DL Methods 154
 4.12 Summary 158

5.0 MITIGATION STRATEGY AND PERFORMANCE 160
 ANALYSIS
 5.1 Mitigation Strategy Implementation 160
 5.1.1 Identification of Attack Path 162
 5.1.2 Dropping Strategy 165
 5.2 Performance Analysis and Discussion 167
 5.2.1 Flow Table Utilization 168
 5.2.2 Computational Resources Utilization 172
 5.3 Summary 176

6.0 CONCLUSIONS AND FUTURE WORK 177
 6.1 Conclusions 177
 6.2 Future Work 180

 REFERENCES 183

xiv

LIST OF TABLES

Tables

1.1

Comparison of this research with the existing
research.

Page

11

2.1 Summary of publically available datasets. 33

2.2 Data count for each class of dataset. 33

2.3 ML and DL-based solutions for DDoS detection and
mitigation in SDN.

48

2.4 ML and DL-based solutions for low-rate DDoS
detection and mitigation in SDN.

63

2.5 ML and DL-based solutions for botnet detection and
mitigation in SDN.

69

2.6 ML and DL-based solutions for saturation attack
detection and mitigation in SDN.

77

3.1 The setting of IP addresses and device ports for
experimental network topology.

87

3.2 List of extracted features from traffic flows. 92

3.3 Distribution of the dataset for training and testing. 97

3.4 List of features with assigned weights by SVM. 102

3.5 Hyper-parameters settings of DL methods. 118

4.1 The number of selected features for each subset is
based on the optimal threshold value.

124

4.2 Comparison of performance results with all five sets
of features.

147

xv

LIST OF FIGURES

Figures

2.1

Block diagram of the SDN architecture.

Page

17

2.2 General working of an OpenFlow SDN network.

23

2.3 The working mechanism of a machine learning
model.

24

2.4 Taxonomy of standard machine learning and deep
learning algorithms.

25

2.5 The general procedure of a DDoS attack on both
control and forwarding planes.

35

2.6 General procedure for a saturation attack in SDN.

75

3.1 Systematic diagram of the proposed research.

82

3.2 SDN-based experimental network topology.

86

3.3 An example of flow rules to generate normal traffic.

89

3.4 Partial screenshot of the flow table of an OpenFlow
switch during normal traffic.

90

3.5 General diagram of RNN architecture.

106

3.6 Structural diagram of CNN architecture.

108

3.7 The Architecture of MLP.

110

3.8 Diagram of DNN architecture.

112

3.9 The architecture of LSTM.

116

4.1 List of optimal features in subset-3.

124

4.2 The general structure of a confusion matrix for
anomaly detection.

125

4.3 Accuracy and Loss Curves of DL methods using 76
features.

128

4.4 Confusion Matrix of RNN, CNN, MLP, DNN, and
LSTM using 76 features.

129

xvi

4.5 Accuracy and Loss Curves of DL methods using 43
features.

131

4.6 Confusion Matrix of RNN, CNN, MLP, DNN, and
LSTM using 43 features.

133

4.7 Accuracy and Loss Curves of DL methods using 30
features

135

4.8 Confusion Matrix of RNN, CNN, MLP, DNN, and
LSTM using 30 features.

136

4.9 Accuracy and Loss Curves of DL methods using 23
features.

138

4.10 Confusion Matrix of RNN, CNN, MLP, DNN, and
LSTM using 23 features.

140

4.11 Accuracy and Loss Curves of DL methods using 15
features.

142

4.12 Confusion Matrix of RNN, CNN, MLP, DNN, and
LSTM using 15 features.

144

4.13 Comparison of performance results between all
methods in terms of precision.

149

4.14 Comparison of performance results between all
methods in terms of F1 score.

150

4.15 Comparison of performance results between all
methods in terms of True Positive Rate (TPR).

152

4.16 Comparison of performance results between all
algorithms in terms of False Positive Rate (FPR).

153

4.17 The correct detection rate of each algorithm during
real-time traffic.

156

4.18 Comparison of training time of DL methods using
subset-3 features.

157

4.19 Comparison of detection time during real traffic.

157

5.1 An example of finding the attack path in adopted
network topology.

164

xvii

5.2 The number of flow rules generated in different
network states.

169

5.3 Shows the change in the generated flow rules after
activating the proposed defense method.

170

 5.4 Comparison of the proposed defense method with
existing methods in terms of flow rules.

171

5.5 Comparison of controller CPU resource
consumption in different network states.

173

5.6 Comparison of controller CPU resource
consumption in different network states after
activating the defense method.

173

5.7 Comparison of the proposed defense method with
existing methods in terms of CPU utilization.

175

xviii

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service Attacks

DDoS Distributed Denial of Service Attacks

IDS Intrusion Detection System

IoT the Internet of Things

IT Information Technology

LSTM Long Short-Term Memory

NOS Network Operating System

ML Machine Learning

MLP Multilayer Perceptron

SDN Software Defined Networking

1

CHAPTER 1

INTRODUCTION

The rapid development of the Internet and the Internet of Things (IoT) [1]

have explored the limitations of traditional networking [2]. The network community

has used patching methods and techniques to address the emerging issues of the

traditional network. These mechanisms make the networks more bloated, and the

control over the network becomes weaker. Furthermore, traditional network

architectures can no longer meet data centers' dynamic programming and storage

needs. This makes it increasingly challenging to manage high heterogeneity

networks in a distributed architecture, as production networks often have many

network devices running various protocols and supporting different applications.

So, the complexity ratio in traditional or heterogeneous network infrastructures is

increasing, leading to resource management and optimization challenges.

Implementing intelligent solutions in future networks is necessary to address

these challenges. A promising approach that has emerged in the last few years to

introduce automation and intelligence to the internet is the Knowledge Plane (KP)

approach [3], which utilizes cognitive and machine learning techniques [4].

However, the KP approach has yet to be implemented for several reasons. A

significant obstacle is that conventional network systems are constructed with

distributed characteristics, meaning that every node (like a router or switch) can only

perceive and impact a limited network segment. As a result, controlling the local

2

network domain based on the limited information provided by the nodes can be

extremely challenging [5]. Appreciatively, the recent development of Software

Defined Networking (SDN) is expected to simplify the learning process.

Software Defined Networking (SDN) [6], [7], has resolved these issues by

separating the control and data planes. Now a day, SDN has attracted the research

and networking community due to its emerging and novel architecture, and it can

meet the demands of fast-growing networking. It is also known as centralized

control architecture, enabling the SDN controllers to access all the OpenFlow

switches and control the whole network using southbound API interfaces [8], [9].

SDN controllers and the forwarding and distribution of OpenFlow switches is

grasped to simplify the network’s management and enhance the network

capabilities over the traditional networks. The SDN controllers manages network

resources. The controller has programmable qualities enabling it to program the

entire network dynamically. It also has a global view of the network thanks to its

real-time monitoring and information collection of packet and network data

information. Furthermore, SDN has been applied in the networking world for

different use cases, such as network traffic monitoring, traffic engineering,

networking of data centers, and Quality of Services (QoS). Additionally, compared

to traditional networks, SDN's flexibility enhanced security measures, including

threat detection and prevention.

SDN architecture consists of three layers: data, control, and application. The

application layer runs all the rules and policies defined by the network

administrator. Then these rules and policies are dynamically forwarded to the SDN

3

controllers for execution. The controllers act and control the network according to

the rules. Any modification in the application layer may change the entire network

behavior. Hence, the application layer is a great innovation of the Open-Source

(OS) platform, which does not force the network administrators to depend on

vendors [10] completely. SDN allows administrators to build customized network

applications over general-purpose hardware without license constraints. The

control layer, which is referred to as the brain of the SDN architecture, is where the

SDN controllers operate. The application layer passes administrator rules to the

controllers; after that, these rules are decoded by the controller and then forwarded

to the data layer. Once these rules are implemented in the data layers, the controllers

collect the feedback from the data layer and pass it back to the application layer.

The data layer is known as the non-intelligent layer, and it has different types of

hardware devices, such as switches, routers, etc. The control layer passes the

instructions to the data layer [11].

Furthermore, SDN facilities and simplifies the development, deployment,

and maintenance of the networks compared to traditional networks. Updating or

introducing new network applications may improve the network’s features and

services. SDN-based networks have almost no compatibility issues and can be run

on simple hardware devices, making these networks cost-effective [12]. The entire

network accessibility is allowed without revealing information about the

underlying layers. Hence, SDN is an innovative invention that provides

controllability and flexibility over a network. Due to its central control, it is known

as a double-edged sword, meaning that a single controller can easily manage the

4

whole network. The security measures of traditional networks can be improved

with the help of SDN.

Although SDN has great capabilities compared to traditional networks, it’s

emerging architecture and centralized control introduced a new array of security

threats that can lead toward a single point of failure [13]. To support the vision of

the next generation of networking [13], extensively trustworthy security measures

are also needed for SDN. Different attacks, such as DDoS, botnets, saturation, and

other types, can be easily launched toward SDN controllers due to their centralized

nature.

Now a days, due to advancements in technology, botnet attacks have

become more dangerous attacks, and they are considered a critical threat in the next

generation of networking [14]. The botnet attacks are categorized into network-

based attacks that can breach multiple computers into “bots” to make a “bot force.”

They could perform malicious activities such as information theft, spamming,

DDoS, Domain Name System (DNS) spoofing, phishing, etc. In a botnet attack, a

malicious actor, known as a “botmaster,” attempts to get unauthorized access to a

single device; after that, it tries to control the device using different botnet malware

without disturbing normal users. The attacker also makes a Command and Control

(C&C) center to establish a connection among the bots. The instructions related to

malicious activities are passed from C&C to bots.

5

The Internet of Things (IoT) and SDN's most sophisticated DDoS attacks

in recent years have often been launched using botnet technologies. [15]–[17]. The

flexibility and power of the technology enable the botnets to generate several types

of DDoS attacks. There are a few reasons behind the use of modern technology by

the attackers, which are as follows:

 A big force of bots can fastly generate more powerful flooding attacks.

 The actual attacker cannot be found easily.

 The security mechanisms can be dodged using several network protocols.

 They can produce attack traffic that resembles regular traffic, making real-

time detection challenging.

Negatively, the advancement in technology makes the attacker more

competent, and they know they can control the whole SDN-based networks if they

get access to the controllers. Hence, multiple computers can be easily breached into

bots, and then a member of the botnet force to perform malicious actions on the

SDM controllers. So, the botnets have resulted in the progression of huge and

severe DDoS attacks against the SDN controllers and become a cause of a single

point of failure.

DDoS attacks are typical threats that can be launched with bots for different

purposes, such as sending many requests to exhaust the system’s or controller’s

resources, synchronizing fake traffic, or blocking the network for legitimate users.

In DDoS attacks, the victims’ sensitive information is not lost as in other network

attacks. Instead, the users may experience out-of-service issues during the attack

6

period. Generally, a DDoS attack can be easily launched, but it is hard to trace, e.g.,

because of IP Spoofing [18]. In an SDN environment, attackers use spoofed

sources’ IP addresses to send many malicious packets to flood the network, and

these packets cannot match the switch’s flow table entries. Then, the switches send

“Packet-In “messages to the controller to request how to handle these new packets.

In response, the controller sends new flow rules to the corresponding switches. To

process these spoofed packets, the controller uses excessive memory and

computing resources, which make it unavailable to handle legitimate requests of

normal users. Thus, the attackers successfully launched a DDoS attack against the

controller. The DDoS attacks are categorized into application layer attacks,

protocol attacks, and volumetric attacks. In application layer attacks, the attacker

consumes controllers' computing resources and bandwidth to prevent them from

providing legal services. In protocol attacks, the attackers attempt to take advantage

of protocol rules by using the target server's current states, such as the "three-way

handshake process of TCP." Attackers flooded the network with malicious traffic

to perform volumetric attacks, depleting the controllers' resources, including CPU

usage and bandwidth [19]. DDoS attacks against the data plane of SDN are quite

similar to the traditional networks; they could impact the switch’s processing

capabilities of switches links. However, DDoS attacks against the control or

application planes are considered more dangerous because these two planes are

responsible for making and implementing network policies. In other words, these

are high-profit targets for attackers to interrupt the network. This research focuses

7

on volumetric DDoS attacks because they are a long-term threat to SDN or other

networks due to rapid growth in network-connected devices.

Deep learning-based techniques and methods are commonly applied for

detecting and mitigating intrusion in different networking fields. For instance, In

traditional networks, AI detection of Distributed Denial of Service (DDoS) attacks

typically involves the use of anomaly detection algorithms and signature-based

methods. Anomaly detection relies on establishing a baseline of normal network

behavior and flagging deviations from this baseline as potential threats. Signature-

based detection involves identifying known patterns or signatures of DDoS attacks

by comparing network traffic to a predefined set of attack signatures. However,

traditional networks may face limitations in adapting quickly to new and evolving

DDoS attack techniques, and false positives/negatives are common challenges.

On the other hand, in Software-Defined Networking (SDN), AI detection of

DDoS attacks can be more dynamic and responsive. SDN separates the control

plane from the data plane, allowing for centralized network management and

programmability. This enables the deployment of machine learning models that can

adapt to changing network conditions in real-time. SDN's centralized control

facilitates faster decision-making for traffic diversion or mitigation strategies,

enhancing the network's ability to detect and respond to DDoS attacks more

efficiently compared to traditional networks. The flexibility and programmability

of SDN enable the integration of advanced AI techniques for improved threat

detection and mitigation.

8

Furthermore, examining SDN behavior is a new research area in which deep

learning techniques are applied to study the behavior, it could become the first

attempt for early detection [20], [21] because machines can respond faster than

humans. Deep learning techniques use training, trial, and error methods to empower

the machines’ decisions. These techniques realize the network behavior using

historical data and can predict incoming traffic flows. Positively, DL techniques

produced excellent results in classifying attacks or normal traffic flows. Instead of

relying on packet payload, the DL-based methods take a particular set of features

to make predictions. It means DL methods could help the SDN controller to monitor

and recognize the network states in real-time. In different studies [4], [22], to

predict DDoS attacks in SDN, the authors used machine learning(ML) and deep

learning (DL) approaches. However, these methods and techniques have not

achieved appropriate accuracies for detecting DDoS attacks in SDN. They also

trained and evaluated their methods on old datasets generated in traditional network

environments. Furthermore, in some studies [23]–[26], the authors used many

features to train DL/ML methods. The extraction and collection of more features

from real traffic flows is a tough and time-consuming task because of accessibility

or authorization. Furthermore, the ML/DL methods show low efficiency in

detection time (e.g., take a long detection time), which causes a delay in response,

and the attack traffic cannot be detected in time. Their mitigation methods consume

excessive computing and CPU resources [27], [28]. Moreover, we also need to

focus on botnet-based DDoS attacks because these attacks can potentially affect the

SDN controllers or the whole network due to centralized natures. Lastly, in existing

9

studies [7], [13], most of the methods are verified by simulations or experimental

datasets only; the real-time testbed validation of these methods is intermittent.

1.1 Motivations and Problem Statement

In the current era of technology, cyber-attacks have become critical threats

to computer networks. The security of communication and computer networks is

becoming more important as more and more devices connect to the networks.

Botnet attacks are categorized as the most dangerous cyber-attacks that become a

major threat to the security of any IT infrastructure. As more devices come online

everywhere, the potential for new and strong botnet malware has increased

proportionally. Hackers have evolved and scaled their attacks to match modern

security systems. In traditional networks, the Botnet owners can access several

thousand computers at a time and command them to carry out malicious activities.

Botnets can perform Distributed Denial-of-Service (DDoS) attacks, steal data, send

spam, and allow the attacker to access the device and its connection. In traditional

networks, the botnet attack easily breaks down a segment or whole network [29].

These networks are changed into SDN to prevent malicious attacks [30]. Botnet

becomes smarter, and they know the architecture of the SDN as in an SDN network;

the entire network goes down if the SDN controller is down. [31]. Hence, Botnet

and DDoS attacks are widespread and can damage SDN-based networks [32]–[34].

Botnets can take control of the SDN network by attacking the control plane. In

botnet-based DDoS attacks toward the control plane of SDN, the attacker can use

spoofing IP addresses to generate many traffic flows that cannot match flow rules.

The intelligent protection of the SDN from Botnet-based DDoS attacks is

10

significant because all traditional networks are converted into SDN-based networks

[35], [36] to support the vision of the Next generation of networks. So, to maintain

secure and sustainable cyberspaces for the SDN, advanced intrusion systems should

be applied in the SDN controllers. These systems detect, prevent, and respond to

the attacks. For example, an intrusion detection system uses those techniques that

effectively detect external and internal intrusions or suspicious activities that can

target a controller.

Traditional methods are based on statistical analysis [37], [38] and

signature-based detection and prevention [39], [40], which are encountering

scalability issues due to an increase in attack space. The security industry has

focused on deep learning and machine learning-based approaches and techniques

to detect and mitigate these attacks. Existing techniques, however, rely on statistical

analysis, machine learning, or deep learning and thus exhibit low accuracy and

reduce detection granularity. [37], [38]. Some other methods based on machine

learning exhibit low efficiency in terms of detection time, which may cause a delay

in the response, and attack traffic cannot be detected early. They are using many

traffic features to detect botnet-based DDoS, increasing CPU usage and other

computing resources. Furthermore, previous work focuses on old datasets (from the

literature review part), and they have not ventured into the botnet, and previous

work gives low prediction accuracy using old datasets.

As a result, machine learning and deep learning-based network security

solutions for SDN are becoming increasingly common these days. This inspires me

to research and analyze advanced deep learning methods to detect and prevent

11

botnet-based DDoS attacks in a setting supported by SDN. To protect the SDN

controllers' computational resources, this research employed feature weighting and

threshold tuning as the basis for the best feature selection. The selection of

important traffic features can help to improve the detection accuracy and

performance of the DL methods. A dynamic flow deletion and graph theory-based

dropping strategy is adopted to defend the SDN. A botnet-based DDoS attack can

control the controllers and flood the network with malicious traffic. So, a dedicated

bot management system based on the DL method could become an optimal solution

for the SDN controller to detect and protect from botnet-based DDoS traffic. Lastly,

the progressive development to enhance the security measures of the SDN

encouraged me to develop a DL method named “DepBot” to detect and mitigate

botnet-based DDoS attacks. Table 1.1 shows the contribution of this research

compared to the existing research.

Table 1.1: Comparison of this research with the existing research.

Study Algorithm
used

Feature
Engineering

Flow-
based

Packet-
based

SDN
Environment Botnet DDoS

[13] IE-CNN      

[24]

Random
Forest,
Decision
Tree,
Bagging, k-
Nearest
Neighbor,
and Support
Vector
Machine

     

[26]
PSO, DNN,
DT, and
SVM

     

12

[41] Deep auto
encoders      

[42] SVM      

[43]

Artificial
Neural
Networks
(ANNs) and
Deep
Neural
Networks
(DNNs)

     

[44] LSTM-
CNN      

[45] FT-EHO-
DBN      

[46] SVM      

This
research

RNN, CNN,
MLP,
LSTM, and
DNN

     

1.2 Research Questions

RQ1: Are the publically available intrusion detection datasets can use for SDN?

RQ2: Is Deep Learning methods can effectively detect botnet attacks in SDN?

 RQ3: How can we protect the SDN from botnet attacks?

1.3 Research Objectives

RO1: To develop a specific dataset related to the botnet and simulation

environment for training and testing deep learning methods. Because the existing

datasets used in different studies [17] [20] are old or traditional datasets (i.e., NSL-

13

KDD, DARPA, Na-BaIoT, CIC-DoS-2017, etc.). These datasets are not

specifically used the detection of botnet-based DDoS attacks. Furthermore, these

datasets are unsuitable for SDN environments because they are developed in

traditional network environments and suffer imbalanced problems.

RO2: To propose a deep learning-based method with baseline parameters

for detecting botnets early in the SDN. Because the existing deep learning methods

are trained using traditional or old datasets, and they use many traffic features that

enhance the consumption of time by any DL methods during training and real-time

detection. Furthermore, complex network architectures for the DL methods are also

used to improve the accuracy or detection rate. Moreover, the existing DL methods

are tested and verified only on experimental datasets; so, the real-time testbed

evaluation is intermittent.

RO3: To develop a mitigation strategy to defend the SDN controller from

DDoS attacks powered by botnets. Most of the existing mitigation strategy is based

deletion of traffic flows after detecting the attacks, which enhances the chance of

killing normal flows. The existing studies do not focus on finding the switches with

attack flows. So, a mitigation strategy is needed to find the attack path and then

adopt a more targeted dropping rate to avoid the by-mistake killing of normal flows.

1.4 Contributions of the Research

• The quality of the training dataset has a substantial impact on the

classification performance of DL-based IDS systems. However, the

unavailability of the benchmark datasets could interrupt the development of

14

advanced DL-based IDS for the SDN environments. The main issues behind

the lack of benchmark datasets are the security and privacy of the networks.

This is the first effort to construct a simulation dataset exclusively for

detecting botnet-based DDoS attacks in an SDN-assisted environment. This

dataset is collected in a pure SDN simulated network environment by

generating both the normal and botnet-based DDoS attack traffics. The

collected simulated dataset consists of both normal and attack traffic records

and has a total around 89000 records. This dataset can be used for further

research in the order to secure the SDN.

• The DL methods can explore and learn the intrusion patterns in the training

data and achieve better results than traditional ML methods. So, in this

research, a comprehensive analysis on the performance of the DL methods

is performed for detecting the botnet-based DDoS attacks using the

simulated dataset and real-time testbed. Furthermore, different subsets of

the optimal features have been used to improve the detection accuracy of

DL methods while detecting the attack flows and finding out the optimal

subset of features. Based on the simulated results, we observed that the

CNN methods produced superior results using a subset of 30 features and

in the real-time testbed environment. To intelligently detect botnet-based

DDoS attacks in the SDN, the CNN approach is implemented in the SDN

controller.

• The controller(s) responsible for dynamically checking the network flows

in specific time intervals and activating the defense shield after successfully

15

detecting the attacks in the SDN environments. We developed and deployed

a graph theory and deletion-based defense strategy to defend the SDN

controller(s) against botnet-based DDoS attacks. Our proposed defense

methods calculate the variable dropping rates for different OpenFlow

switches based on their location in the attack path to avoid the by-mistake

killing of normal flows. We measured the effectiveness of the defense

methods in terms of flow generation rates and CPU utilization and

compared them with the most recent existing defense methods. Based on

the reported results and comparison with existing methods, our defense

strategy mitigates the botnet-based DDoS attack in a real-time SDN

network with minimal resource consumption.

1.5 Organization of Thesis

The rest of the thesis is structured as follows: A review of the SDN

architecture is provided in Chapter 2, along with a brief explanation of machine

learning and deep learning techniques and their application to SDN security. The

simulation model for identifying and thwarting botnet-based DDoS attacks in SDN

is described in Chapter 3. The results of the simulation used to identify botnet

attacks using deep learning techniques are described in Chapter 4. In addition to

describing the suggested defense strategy's implementation and effectiveness,

Chapter 5 also illustrates how it counters botnet attacks. The thesis is finally

concluded in Chapter 6 with an outline of forthcoming research.

16

CHAPTER 2

LITERATURE REVIEW

The chapter covers the existing and recent research on securing the SDN

from different types of malicious attacks (i.e., DDoS, Botnet, Saturation, and

Ransomware, etc.) using machine learning and deep learning algorithms.

2.1 Architecture of SDN

Over the past few years, SDN has gained significant attention. The Open

Network Foundation (ONF) [47] is a nonprofit organization with the development,

standardization, and growth of SDN as one of its main objectives. As defined by

the ONF, SDN design separated the control and data planes, centralized network

state and intelligence, and derived the essential network infrastructure from

applications. [48]. The control plane, data plane, and application plane are the three

main planes that make up the high-level architecture of SDN, which is based on

this concept. Figure 2.1 illustrates the components comprising the architecture of

each plane, as well as how they interact with one another. In the subsequent

sections, we overview three planes and how they interact.

17

Figure 2.1: Block diagram of the SDN architecture. The physical and virtual
network devices are operated at the data plane. The data and control planes
are connected through the southbound interfaces. The westbound or
eastbound is responsible for the communication among the controllers. The
application and control planes are connected through northbound interfaces.
The application plane is responsible for running different SDN-based business
applications.

2.1.1 Data Plane

The data plane, often called the infrastructure plane, is the lowest level of

the SDN architecture and contains forwarding components, including physical and

virtual switches. Virtual switches run on standard operating systems like Linux [49].

On the other hand, physical switches are made of hardware, either merchant

switches (which vendors install on networking gear) or open network hardware

18

switches (i.e., “NetFPGA. Pantou, Open vSwitch [50], and Indigo [51]”) are three

examples of virtual switches [52], while examples of NetFPGA-based switches are

(ie., “ServerSwitch [53] and SwitchBlade [54]”). Networking hardware vendors like

Cisco, HP, Huawei, etc., have begun supporting SDN protocols in their commercial

switches. Physical switches have a faster flow forwarding rate but are less full and

flexible than virtual switches, which often sacrifice all SDN protocol features. The

switches are in charge of flow-forwarding, modification, and packet dropping in

the data plane following the control plane flow policies. These switches use

Southbound Interfaces (SBIs) to communicate with the CP, which controls the

processing and forwarding capabilities of the data planes.

2.1.2 Control Plane

SDN-based systems have a control plane, commonly called the "brain,"

responsible for dynamically updating forwarding rules, programming network

resources, and improving network administration's flexibility and agility. The central

component of the control plane is the logically centralized SDN controller that

manages communication between applications and forwarding devices. The

controller offers vital features that applications need, including shortest path

routing, device configuration, network condition information notifications, and

network topology storage. It converts application requirements into customized

policies, which are then disseminated across the forwarding devices. Several

controller architectures, such as (i.e., “Floodlight [55], POX [56], NOX [57], Beacon

[58], Open Daylight [59], and Ryu [60]”), have been introduced. To interact with

other planes, the controller utilizes three communication interfaces, including

19

northbound, southbound, and westbound/eastbound. On the one hand, the controller

delivers a summary of network state data to the application plane.

Control Data Plane Interfaces (CDPIs), also known as Southbound Interfaces

(SBIs), facilitate communication between the control and data planes. Through these

interfaces, forwarding devices can communicate with the control plane about

network state and control policies, offer forwarding features, promote device

capabilities, produce statistical reports, and send event notifications. While the

ONF-based OpenFlow [61] the primary and most popular open-standard SBI, other

proposals are less popular, such as (i.e., “OpFlex [62], ForCES [63], OVSDB [64],

Protocol Oblivious Forwarding (POF) [65], Open State [66], LISP [67], and

NETCONF [68]”).

 The Northbound Interfaces (NBIs) refer to interfaces defined between the

application and control planes, allowing various applications to access and

interpret the abstract network information the control plane provides. They

facilitate SDN networks' management, innovation, and automation by

enabling the expression of network requirements and behaviors. The Open

Networking Foundation (ONF) has established a set of standard NBIs and a

common information model [68].

 In multi-controller network architectures, westbound/eastbound interfaces

are utilized. These interfaces are employed in large-scale networks, divided

into several sub-domains, each with a separate controller. As the flow data in

these networks exceeds the processing capacity of a single controller,

multiple SDN controllers are deployed. To provide an overall view of the

20

network to the upper-layer applications, it is essential to establish

communication between the various controllers for exchanging network

information. The private westbound/eastbound interfaces of the Hyper Flow

[69]and Onix [70] distributed control architectures do not allow them to

communicate with each other. Several proposals have been put forward to

facilitate communication between different types of controllers. These

include the West-East Bridges [71], SDNi [72], and Communication

Interface for Distributed Control Plane (CIDCP) [73], which serve as

westbound/eastbound interfaces for exchanging network state information.

However, the standardization of these interfaces is still necessary.

2.1.3 Application Plane

In the SDN design, the application layer is the uppermost layer and is in

charge of numerous business applications that offer services, business

administration, and optimization. The NBIs allow the distribution of network state

information among these applications, which can use this information to modify

network behaviors based on their specific business requirements.

 The acceptance of SDN-based applications has grown significantly in

academia and industries. For instance, [74] conducted a survey on SDN-based

Traffic Engineering (TE) solutions, and SDN security has been reviewed in [27],

[75]–[79], are focused on DDoS attacks in SDN and cloud computing.

Additionally, fault management in SDN has been explored in [80], while [81]

introduced a Four-Dimensional (4D) evaluation framework for SDN centralized

Quality of Service mechanisms.

21

SDN has been implemented in numerous networks because to its inherent

benefits, including logically centralized control, dynamically updated forwarding

rules, and a global network perspective. Including optical networks [82], Internet of

Things (IoT) [83], transport networks [84], wireless networks [85], Wide Area

Network (WAN) [86], cloud computing [87], edge computing [88], and Network

Function Virtualization (NFV) [89], [90]. Various resources are available in [91]–

[97] for further reading on SDN.

2.1.4 SDN Workflow

The basic operations of an OpenFlow-based SDN network architecture

involve the following steps:

 The OpenFlow switch uses flow entries to determine the proper data

plane processing for incoming packets.

 After that, the switch collects the header fields from each packet it

receives on the data plane and compares them to flow entries

previously saved.

 The switch uses its local flow rules to act when any packet matches

its current flow entries.

 The switch sends a Packet-In OpenFlow message to the SDN

controller if the packet does not match the switch's current flow

entries. (arrows 2 and 5).

 • Packet-In messages can contain the entire packet's contents or only

the header information.

22

 After that, the controller develops fresh flow rules in accordance

with the Packet-In message.

 The controller sends a Flow-Mod message to the switch to regulate

and modify the flow rules (arrows 3 and 6).

 Finally, the switching process of the subsequent packets is based on

new flow rules.

This workflow allows the SDN controller to manage the network by

dynamically updating the switch flow entries. This flexibility enables the SDN

architecture to adapt to changing network conditions and optimize performance.

Figure 2.2 will help to understand the working of the SDN network [98].

2.2 Overview of Machine Learning and Deep Learning Algorithms

Machine learning is an advanced aspect of artificial intelligence (AI) that

utilizes powerful algorithms and is widely employed in data mining. Its primary

function is to enable models to recognize structural patterns from the training data.

Training and decision-making are typically the two phases of a machine learning

model, as shown in Figure 2.3. Machine learning models acquire the system model

during training by utilizing the training datasets. Conversely, the trained model

predicts the anticipated output for every new input in the decision-making phase.

23

Figure 2.2: General working of an OpenFlow SDN network. Let, the “SW1”
and “SW2” has two flow entries (i.e., Entry-2 and Entry-3), then the
communications are allowed between two hots with IP “192.168.100.1” and
“192.168.100.2”. However, the traffic from “192.168.100.3” to “192.168.100.2”
is not permitted due to security policies of “SW2”.

24

Figure 2.3: The working mechanism of a machine learning model.

Four different learning methods for machine learning algorithms have been

defined: supervised learning, unsupervised learning, semi-supervised learning, and

reinforcement learning as shown in Figure 2.4. This section will provide a detailed

description of the various machine learning algorithms introduced. To gain a deeper

understanding of the theories and classical concepts related to these algorithms, we

recommend referring to sources [99]–[102]. Machine learning models can also

automatically learn from data [103] and uncover hidden patterns without explicit

programming [104]. These techniques are recognized as highly efficient methods for

reducing false alarm rates, communication, and computational costs [105] while

improving the detection rate.

25

Figure 2.4: Taxonomy of standard machine learning and deep learning
algorithms.

2.2.1 Supervised Learning

Supervised learning involves using labeled input data by ML algorithms to

learn the representation and predict unknown cases [106], [107]. The most common

algorithms used in supervised learning include SVM, Decision Tree (DT), RF, k-

KNN, ANN, Bayes’ Theory (BT), and Hidden Markov Models (HMMs) [108]. For

26

instance, SVM-based algorithms are utilized to solve classification problems, while

RF-based algorithms are used for regression and classification problems [103]. SVM

algorithms are prevalent in NIDS research due to their practicality in computation

and classification prowess. These algorithms can yield successful outcomes for high-

dimensional data; however, it is essential to choose an appropriate kernel function

for optimal results. They also consume significant resources, requiring high

computational power and memory [104]. Although RF algorithms [109] can handle

variable data, they face the problem of over-fitting.

2.2.2 Unsupervised Learning

Unsupervised learning algorithms operate differently from supervised

learning algorithms by being fed unlabeled input data. These algorithms aim to

discover structures, patterns, or knowledge in the unlabeled data and group them into

clusters based on their similarities. Unsupervised learning algorithms are mainly used

for data aggregation, clustering, and feature reduction [99], [106]. For instance,

Principle Component Analysis (PCA) is used for feature reduction, and Self-

Organizing Map (SOM) is utilized for clustering. PCA also speeds up the

unsupervised feature learning process [110]. In various studies, such as [111], the

author used PCA as a feature selector before classification. Distance learning and

clustering-based methods have been used for anomaly detection. Artificial Neural

Network (ANN) based SOM is used to reduce the payload in NIDS [112]. However,

clustering algorithms used in anomaly detection have some limitations that are

27

subjective to the Initial conditions of the clustering algorithms, such as centroid. They

may produce a high False Positive Rate (FPR) [113].

2.2.3 Semi-Supervised Learning

Semi-supervised learning [114] combines labeled and unlabeled data to train

algorithms, which is particularly useful when only a limited amount of labeled data

is available. In situations such as image archives, where many images are unlabeled,

and some are labeled, semi-supervised learning can be a more practical approach.

This approach offers several advantages over supervised and unsupervised learning,

including using a relatively cheap and easy source of unlabeled data to improve

model performance. Different assumptions are considered in semi-supervised

learning to effectively utilize labeled data, including clustering, manifold,

smoothness, and low-density separation. Pseudo-labeling [115] is a popular semi-

supervised learning technique that involves training a model using labeled data,

predicting pseudo-labels for unlabeled data, and then combining this newly labeled

data with the original labeled data to improve model accuracy. Several semi-

supervised learning methods exist, including Co-training, transductive SVM,

Expectation-Maximization (EM), and graph methods, each relying on different

assumptions [116]. For example, transductive SVM is based on the low-density

separation assumption, EM builds on the clustering assumption, and graph-based

methods are built on various hypotheses. In network intrusion detection, semi-

supervised learning techniques such as semi-supervised support vector machines,

Gaussian Fields (GFs), Spectral Graph Transducers, and MPCK have been used to

enhance the performance of detection systems [117], [118].

28

2.2.4 Reinforcement Learning

Three crucial elements make up the well-known learning method known as

(i.e., “RL: an agent, a state space, and an action space”)[119]. The agent works with

the environment to determine the optimum course of action and raise the

cumulative reward—the total of all current and future rewards discounted over

time. RL is used in the context of SDN architecture by treating the network as the

environment and the SDN controller as the agent. The SDN controller learns to

make the best decisions for managing traffic flow due to its ongoing monitoring of

the network's status.

2.2.5 Deep Learning

DL algorithms are a recent update to Artificial Neural Networks (ANN) that

take advantage of inexpensive and abundant computing power. DL allows algorithms

to explore various levels of generalization in the different data representations. These

algorithms have applications in network intrusion detection, object recognition, and

other fields [120]. Both supervised and unsupervised techniques can be used to train

DL algorithms. [103]. For instance, the Convolutional Neural Network (CNN), a

standard DL algorithm, is typically trained in supervised [121], while Auto-encoders

and Deep Belief Network (DBN) algorithms use unsupervised training [122]. Some

algorithms, such as Recurrent Neural Networks (RNN), can be trained using

supervised or unsupervised methods.

29

In conclusion, supervised learning approaches focus on classification and

regression problems, whereas unsupervised learning and reinforcement learning

strategies are frequently used for clustering and decision-making tasks.

2.3 Machine Learning and Deep Learning for Security in SDN

A centralized network view is provided by the SDN controller, which also

makes control and maintenance easier. Leveraging deep learning algorithms and

techniques can introduce intelligence into the controller, enabling it to analyze

network data, optimize network performance, and automatically provide network

services. The SDN controller can make the best decisions to adjust to changes in

the network environment thanks to this learning capacity. This section thoroughly

analyzes recent advances in deep learning and machine learning that address

security issues in SDN. It also discusses how real-time these algorithms are

employed in this context.

2.3.1 Benchmark Datasets

This section gives a brief overview of the commonly used network traffic-

based datasets and attack types that are mentioned in these datasets. The datasets

which were used in various studies are summarized in Table 2.1. The data amount

for each class from the datasets is described in Table 2.2.

 NSL-KDD

This dataset is a modified version of KDD Cup 99. The repetitive and

unnecessary records have been removed from this dataset, which now contains

30

sufficient records. After eliminating unnecessary and duplicate records, it has been

reduced from 5 million records to around 150,000 records. This dataset is divided

into predefined training and testing subsets for the IDS. It has the same classes and

properties as KDD 99. The different attacks, such as Probing, U2R, R2L, and DoS,

are also simulated for this dataset.

 CSE-CIC-IDS 2017

This dataset was created by Canadian Institute for Cybersecurity (CIC) and

Communications Security Establishment (CSE) in 2017. A laboratory-based test

environment with the victim and Offensive networks has been used to create this

dataset. The network where the attacks were made, a computer with a Kali Linux

operating system, a switch, and three computers with Windows 8. While in the

target network, there is one router, one server with Ubuntu-12, one with Ubuntu-

16, one Windows server-16, and one firewall. The Windows server-16 activated

the directory features, and all the connected devices in the victim network were in

the same domain. The Uplink port of the routers was mirrored to view the network

traffic on the victim.

An agent based on the Java-B-profile system was used to generate the

normal network traffic. With this agent, some protocols such as email, HTTPS,

HTTP, SSH, and FTP have been reproduced using statistical and ML algorithms.

The attack traffic was generated using tools such as Ares, Metasploit, Slowhttps,

and slowloris (i.e., “DDoS, Dos, Heartbleed, Web attacks, Brute Force, and

Infiltration attacks”). In this dataset, 14 types of attacks are labeled. These attacks

31

include (i.e., “DoS hulk, DoS Slowloris, Heartbleed, DoS Slow HTTP, DoS Golden

Eye, SQL injection, Brute force, FP, DDoS, XSS, PortScann, Patator, SSH-Patator,

infiltration, and Botnet”). In addition, the CIC Flow Meter was used to convert the

captured network traffic into 80 features and create this dataset.

 CIC-DDoS2019

The CIC created this dataset in 2019 using a Wireshark-emulated

environment. It comprises 50,063,112 records, containing 56,863 rows of normal

traffic and 50,006,249 rows of attack traffic, with 80 different features. The training

dataset consists of 12 DDoS attacks, (i.e., “DNS, LDAP, SNMP, MSSQL, UDP,

NetBIOS, NTP, WebDDoS, TFTP, SSDP, SYN, and UDP-Lag”). On the other hand,

the test dataset encompasses seven attacks, which include (i.e., “PortScan, MSSQL,

UDP-Lag, SYN, NetBIOS, LDAP, and UDP”).

 ISCX-2012

This data collection, which includes both malicious and legitimate network

activity, was created from network data collected over seven days. Attacks on

malicious traffic include Brute Force SSH, DDoS, Infiltration, and HTTP-DoS.

 ISOT

5,424 network traffic flows from several variants of normal and botnet

datasets were used to produce this dataset. The malicious traffic in this dataset was

gathered from the Honeynet French Chapter, which uses the Waledac and Strom

botnets. The normal traffic was obtained from Ericson Research Lab. The network

32

traffic was created using applications such as World of Warcraft, Azures, and

HTTP Web Browsers.

 KDD Cup 99

This dataset is an advanced version based on DARPA 98 dataset program.

The different attacks, such as Probing, User to Root (U2R), Remote to Local (R2L),

and Dos, are simulated. The dataset has around 5 million lines collected during

seven weeks of network traffic. This dataset is most commonly used for evaluating

and assessing Intrusion Detection Systems (IDS).

 CTU-13

This dataset combines 13 attacks and is collected over a nonfictional

network environment. It captures the real and mixed botnet network traffic. The

dataset captures three network traffic types: botnet attacks, normal, and

background. The infected hosts generated the Botnet traffic, and normal hosts were

used for normal traffic. The 13 d scenarios were used to create the different botnet

samples, and each was executed for a particular malware with various protocols.

This dataset is a more labeled and largest dataset created by the Czech Technical

University (CTU) in 2011. The capturing process of this dataset is carried out in a

controlled network environment which is an advantage of this dataset.

 DARPA

33

This is a network-based dataset produced in 1998 at MT Lincoln

Laboratory. The training data records network-based attacks for seven weeks. In

contrast, the test dataset consists of two-week network-based attacks.

Table 2.1: Summary of publically available datasets.

Data Set Year Dataset literature Feature
Count

Attack Type (Classes)

NSL-
KDD

2009 [109,
110,113,128,135]

43 Normal, U2R (User 2 Root), R2L
(Root 2 Local), Probing
DoS (Denial-of-Service)

CICIDS
2017

2017 [138,147] 80 Normal, Brute Force FTP, Brute
Force SSH, DoS slowloris, DoS
Slowhttptest, DoS Hulk, DoS
GoldenEye, Heartbleed, Web Attack,
Infiltration, Botnet, DDoS, SSH-
Patator, SQL injection

CIC-
DDoS20
19

2019 [127,138,145] 80 DDoS-DNS, DDoS-LDAP, DDoS-
MSSQL, DDoS, NetBIOS, DDoS-
NTP, DDoS-SNMP, DDoS-SSDP,
DDoS-SYN, DDoS-TFTP, DDoS-
UDP, DDoS-UDP-Lag, DDoS-Web

ISCX-
2012

2012 [115, 125, 153] 80 Normal, Attacker

ISOT 2010 [115,173,175,179,18
0]

27 Non-Malicious, Malicious

KDD
Cup
1999

1999 [116,133,169] 43 Normal, Probe, R2L, U2R, DoS

CTU-13 2013 [115,173,175,178,17
9,180]

14 Botnet Flows, Normal Flows

DARPA
1999

1999 [124,157] 43 Probes, DoS, R2L, U2R

Table 2.2: Data count for each class of dataset.

Datasets Classes Data counts
NSL-KDD Normal

U2R (User 2 Root)
R2L (Root 2 Local)
Probe
DoS

6817
3086
53
988
11617

CICIDS2017 Normal
Brute Force FTP
Brute Force SSH
DoS slowloris
DoS Slowhttptest
DoS Hulk

1,589,806,681,514
55,742,361
41,241,773
40,681,728
38,871,612
161,067 69,057

34

DoS GoldenEye
Heartbleed
Web Attack
Infiltration
Botnet
DDoS

72,333,060
74
462,190
2,610
1,335,621
8,958,038,445

CIC-DDoS2019 Benign
DDoS-DNS
LDAP
MSSQL
NetBIOS
NTP
SNMP
SSDP
SYN
TFTP
UDP
UDP-Lag
Web

56,863
5,071,011
2,179,930
4,522,492
4,093,279
1,202,642
5,159,870
2,610,611
1,582,289
20,082,580
3,134,645
366,461
439

ISCX-2012 Normal
Attacker

2517
2515

ISOT-Botnet Non-Malicious
Malicious

1,619,520
55,904

ISOT-Ransomware

Non-Malicious
Malicious

103
669

KDD Cup 1999 Normal
Probe
R2L
U2R
DoS

1,033,374
45,268
15,676
297
4,114,845

CTU-13 Botnet Flows
Normal Flows

432,755
369,806

DARPA 1999 Probes
DoS
R2L
U2R

37
63
53
37

2.3.2 Detecting and Mitigating DDoS Attacks

A DDoS attack occurs when excessive traffic is deliberately directed toward

a network, overwhelming its resources and rendering the server inaccessible to

legitimate users. This results in network instability and reduced reliability. DDoS

attacks can be classified into three categories: (i.e., “protocol-exploitation attacks,

volumetric attacks, and application-layer attacks”) [123]. In an SDN-based network

35

architecture, the control plane manages the decision-making process, which can

make intelligent decisions. However, it also presents a Single Point of Failure (SPF)

vulnerability, where attackers who gain control of the controller can disrupt the entire

network infrastructure [124]. SDN utilizes southbound protocols like OpenFlow to

execute actions based on entries in the flow table. These entries encompass various

fields serving specific purposes, such as timeouts, priorities, action fields, and

counters [125]. An attacker can Initialize a DDoS attack on the controller by inserting

malicious flow rules into the flow tables. Figure 2.5 provides an overview of the

general procedure of a DDoS attack within an SDN environment. To counter such

attacks, machine learning techniques are being developed to detect and mitigate them

within the SDN controller. A detailed explanation of these techniques is presented in

the subsequent section.

Figure 2.5: The general procedure of a DDoS attack on both control and
forwarding planes.

36

In the context of SDN, many DDoS attack detection and mitigation methods

are adaptations of techniques used in traditional networks. Among these, the most

popular methods for detecting DDoS attacks are based on statistical information

entropy algorithms. These methods offer the advantage of rapidly processing traffic

data with minimal computational costs. However, their accuracy relies heavily on

choosing an appropriate threshold, which can be limiting and result in one-sided

detection.

Kalkan et al. [126] proposed a Joint Scoring System (JESS) based on

entropy for detecting and mitigating DDoS attacks, which utilizes the joint entropy

tool without increasing the workload of switches. Meanwhile, another study [127]

utilized traffic entropy statistical analysis to effectively protect networks from

DDoS attacks. They validate their model in the Mininet emulator. Additionally,

Kumar et al. [128]developed a technique to identify and counteract SYN flooding

attacks in SDN by using destination IP address entropy and specific TCP flags as

random variables. To determine the attacker, an adaptive threshold is employed. In

addition, machine learning algorithms effectively detect and mitigate anomalies in

SDN [129]. These algorithms utilize training data, automatically make decisions,

and classify traffic based on flow characteristics. Meanwhile, in [130], the authors

proposed a lightweight algorithm for detecting DDoS attacks that utilizes traffic

features. This algorithm processes switch data using the NOX controller and

performs traffic analysis using the unsupervised learning algorithm Self-

Organizing Map (SOM) and competitive learning of ANN. KNN is a

straightforward and efficient algorithm that categorizes flows by determining the

37

arbitrary separation between traffic feature vectors. During the DDoS detection

process, to increase the accuracy of anomalous flow detection and decrease the

False Alarm Rate (FAR), Peng et al. [131] proposed the DPTCM-KNN method for

detecting abnormal traffic. Furthermore, Zang et al. [132] proposed a set of finer-

grained flow indices that extract nine single and 39 dual attributes from various

dimensions such as category, time, space, and intensity.

This subset of fine-grained traffic features successively improves the

detection accuracy for attacks. Xu et al. [133] introduced a modular detection

system based on K-Means++ and Fast K-NN (K-FKNN), which enhances the

controller's accuracy, efficiency, and stability against DDoS attacks.

The paper [6] proposes a new framework that employs a trigger mechanism

to work with detection and defense methods in data and control planes to respond

quickly to DDoS attacks and ease the workload on switches and controllers. Niyaz

et al. [134] offer a multi-Vector DoS detection system that leverages a home

wireless network to gather normal traffic data as a network application deployed on

top of the controller. Hurley et al. [135] present a training-based Baum-Welch

algorithm-based Hidden Markov Model-based detection system for the SDN

environment. They utilize the Mininet emulator and OpenFlow Floodlight

controller to carry out their experimental setup. Alshamrani et al. [136] propose a

new technique to tackle NetFlow and Misbehavior attacks. Their system

periodically gathers network information and applies ML algorithms to categorize

network flow as normal or attack traffic. Hu et al. [137] developed an entropy and

SVM-based flooding attack detection and mitigation system that collects traffic

38

information using an SDN controller and sFlow agents. They also add a mitigation

agent to stop attack traffic while allowing authorized users to access network

resources. Dehkordi et al. [138] offer a hybrid DDoS attack strategy that uses

machine learning algorithms and statistical methods for feature extraction and

categorization. Li et al. [139] describe a two-stage detection method that collects

network traffic with a broad perspective and intelligently identifies network threats.

Using the BDM and Bat algorithm with swarm division, they identify common

features from network traffic flows and then input this data into Random Forest

(RF) for classification. Guozi et al. [140] propose a KNN and φ-entropy-based

hybrid system, where the φ-entropy is used for feature selection, and KNN is used

for classification. Deepa et al. [141] introduce an ensemble method that detects

anomalous network traffic behavior toward the SDN controller using different

algorithms such as SVM, KNN, NB, and SOMs. Phan et al. [142] enhance the

eHIFF scheme instead of HIPF to defend DDoS attacks in SDN and improve attack

traffic's speed and detection rate. Myint et al. [143] suggested an advanced SVM-

based technique that can distinguish between ICMP flood and UDP flood attacks

to detect DDoS attacks with the least overhead. They validate their approach using

the Open Daylight controller in the Mininet emulator.

In the paper [144], the authors proposed an artificial neural network (ANN)

based method to detect known and unknown DDoS attack patterns. Cui et al. [145]

provided a four-module SD-Anti DDoS approach includes attack detection, attack

trigger for detection, attack tracing, and attack mitigation. Xu et al. [146] developed

a method for detecting DDoS attacks using SOM classification and victim

39

detection. Cui et al. [147] suggested a back propagation neural network-based

method to extract the temporal behavior of an attack, while Li et al. [148]

demonstrated a deep learning-based DDoS detection solution for SDN. This

approach involves preprocessing raw data samples before using the cleaned data

set to train the deep learning algorithm. The Flow Table Generator module, which

establishes the attack priorities and discards attack packets, receives network

statistics from the Information Statistics Module (ISM). The authors used real and

simulated datasets to train and test their techniques.

Nam et al. [149] proposed an approach to detect anomalous network

behavior that integrates neural networks with statistical techniques. This method

chooses the most important features from a set of features using an entropy metric

and then utilizes a Self-Organizing Map (SOM) to categorize network behavior.

The proposed approach is validated using the POX controller on the Mininet

emulator.

In another study, Novaes et al. [150] proposed a hybrid system that contains

three phases: characterization, attack detection, and mitigation, for detecting and

preventing Port scan and DDoS attacks. LSTM was used to learn the characteristics

of normal network traffic, and the scientists employed an entropy metric to quantify

network features. Finally, they employed fuzzy logic to find network attacks. On

the Mininet emulator, their strategy was implemented using a Floodlight controller.

Another approach is based on SVM assisted by Genetic Algorithm (GA)

and Kernel Principal Component Analysis (KPCA), is proposed in [42] . The

40

authors used KPCA to reduce the dimension of feature vectors and then optimized

the parameters of SVM through GA. They suggested an improved kernel function

(N-RBF) to reduce the noise produced by feature differences. The proposed model

was installed into the controller to define different security rules to detect the attack,

and a DDoS mitigation module was designed separately inside the controller. The

POX controller on the Mininet emulator was used to validate this approach.

Another study [9] introduced an SVM-based method for DDoS attack

detection, which uses six-tuple characteristic values extracted from the switch's

flow tables for classification. The authors validated this strategy using the Mininet

emulator's Floodlight controller. In yet another research [151], To identify DDoS

attacks in three categories—bandwidth attack, flow-table attack, and controller

attack—the authors examined four different machine learning methods, including

Random Forest (RF), SVM, Decision Tree (DT), and Multi-Layer Perceptron

(MLP). The authors found that DT produces the best performance compared to the

others. To validate their strategy, the Scapy tool produced each attack, a list of more

than 20,000 IP addresses used by attackers, and a simulation using the POX

controller on the Mininet emulator.

In their study, Meti et al. [152] proposed a method based on Neural

Networks (NNs) and SVM for detecting DDoS attacks, which yielded promising

results, achieving an accuracy of 80% and a precision of 100%. Likewise,

Virupakshar et al. [153] analyzed four different algorithms NB, KNN, DT, and

Deep Neural Network (DNN), to detect flooding attacks on an SDN-based

OpenStack private cloud, concluding that the DNN algorithm outperformed the

41

other methods. Another framework for DDoS detection, proposed by [154],

comprises three modules a traffic collection module, an attack detection module,

and a flow table delivery module which work together to identify and mitigate

attacks. SVM utilized multi-dimensional traffic features extracted from statistical

flow table information to detect attack traffic. They used the KDD99 dataset to test

their approach. [155] analyzed various machine learning algorithms, such as SVM,

RF, KNN, and J48, and concluded that the J48 algorithm produced the best

detection results. Once the J48 algorithm detected an attack, a REST message was

sent to the controller to block the DDoS computer ports of the OF switches for 30

seconds. The authors used the RYU controller on the Mininet emulator to validate

their approach. In the study, [156] proposed a DSM-based SVM algorithm for

DDoS attack detection and mitigation, which involved pre-processing the input

data, feature extraction using the MCA algorithm, and attack prediction with the

DSM-SVM. After an attack was discovered, the mitigation server began to block

attack traffic and take in the remaining normal traffic. The authors trained their

machine learning algorithm using the KDD dataset and deployed it into the RYU

controller (i.e., Mininet emulator) for real-time evaluation.

In the study [157], the authors analyzed the performance of various

machine learning algorithms, including Linear Support Vector Machine (LSVM),

Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), and Deep Neural

Network (DNN). The study found that DT provided better results than the other

algorithms, and the models were validated using the CSE-CIC-IDS2018 dataset.

Another study [158] examined six different machine learning algorithms, namely

42

KNN, Logistic Regression (LR), NB, RF, DT, and SVM, using extended native

flow features for ML algorithm training. RF was the most effective for detecting

attacks with a low probability of dropping normal traffic, and the approach was

evaluated using the Floodlight controller on the Mininet emulator. Another study

[159] suggested an architecture with four modules (i.e., “flow collector,

preprocessing, attack detection, and flow manager”) for detecting DoS/DDoS

attacks on the SDN application and transport layers. The flow collector module

generated and collected flows using the CIC Flow Meter application. PCA was

employed in the preprocessing module to reduce the dimension of the flow features.

The detection module used pre-trained machine learning models, including KNN,

SVM, RF, MLP, CNN, Gated Recurrent Units (GRU), and LSTM, to classify the

input flows as normal or suspicious. The Flow manager module then sent

information regarding the suspicious flows to the controller for further action and

created, and visualized flow logs for the classification received from the detection

module. The approach was validated using the ONOS controller in the Mininet

emulator.

An SVM-based Intrusion Detection System (IDS) for detecting DDoS

attacks in SDN was proposed by [160], where traffic information is received by

SVM and then classified as normal or attack traffic. [161] presented a model for

mitigating different DDoS attacks by introducing adaptive polling, sFlow-based

sampling, deep learning, and a Snort Intrusion Detection System (SIDS). In this

model, adaptive polling and sFlow-based sampling are individually deployed in the

data plane to reduce network overhead. In contrast, the Stacked Auto encoder

43

(SAE) and SIDS are deployed in the control plane to optimize detection accuracy.

Meanwhile, [46] designed a Cognitive-Inspired Computing (CIC)-based DDoS

attack detection and defense approach. This method's four components are

collecting statistics, feature computing, attack detection, and attack defense and

recovery. The attack detection module, which recognizes DDoS attacks, was

created using SVM. In contrast, the attack defense and recovery module generates

a fresh flow table and tosses any packets addressed to the targeted host address.

[162] introduced an Extreme Gradient Boosting (XGBoost) based method that uses

the flow packet dataset for detecting DDoS attacks. Finally, to overcome the

challenge of detecting adversarial attacks caused by specific perturbations, a system

for detecting DDoS attacks was proposed by [163], Using an adversarial training

method and a generative adversarial network (GAN) makes the system less

vulnerable to malicious attacks by using an adversarial training method and a

generative adversarial network (GAN). Utilizing IP flow analysis, the system

continuously analyses traffic to activate the detection system and respond in real

time. The detection system is activated to take prompt action, and IP flow analysis

is employed to continuously monitor traffic. The GAN module detects the attack,

and the mitigation module is activated automatically, taking countermeasures to

minimize the attack's effect. Their mitigation approach is based on Event-Condition

Action (ECA), where the Event is associated with a set of specific rules for the

anomaly, the Condition describes the rules where a particular event of anomaly

occurs, and the Action comprises countermeasures taken against the anomaly event.

Their method was evaluated using the CICDoS 2019 dataset.

44

 The Generalized Entropy (GE) approach, Particle Swarm Optimization

(PSO), and (BPNN) were combined in a method that was proposed.[164]. On the

switch, the generalized entropy approach was originally used to detect attacks and

separate normal from anomalous traffic flows. This causes the switch to sound an

anomalous alarm, and the controller's PSO-BPNN, which is installed, collects

characteristics from the abnormal traffic flow to predict potential DDoS attacks.

The extracted features include average packets per flow, bytes per packet,

percentage of pair flow, rate of flow entries, the entropy of source IP address, and

average duration per flow. The effectiveness of this approach was validated using

the Floodlight controller in the Mininet emulator. In a similar vein, Wang et al.

[165] proposed a DDoS detection method that combines Information Entropy (IE)

and Convolutional Neural Networks (CNNs). Their approach utilizes the IE to

examine suspicious traffic flows, and then the CNN performs fine-grained packet-

based detection to classify normal and abnormal traffic. They used the CICIDS2017

dataset to train the CNN, and the method’s performance was evaluated in real-time

using the POX controller in the Mininet emulator.

In addition, a Decision Tree-based lightweight framework called DETPro

was introduced by [166] for efficiently detecting DDoS attacks. DETPro is a

modified version of the DT algorithm that uses the Pessimistic Error Pruning (PEP)

strategy and Gini impurity. Traffic information is collected by sFlow agents and a

POX controller embedded into OpenvSwitch. A white list mechanism is utilized in

the mitigation module to block attack traffic and maintain the network's significant

functionalities without delay. Meanwhile, [167] suggested an ensemble learning

45

and entropy-based DDoS attack detection system. A preliminary detection module

on the edge switch uses entropy to continually monitor network condition

information and notify the controller of unusual activity.

In addition, the authors used edge computing to transfer the responsibility

of attack detection from the controller to the data plane, thereby decreasing the

southbound communication overhead. Using cloud-edge collaboration, [168]

designed a DDoS detection system based on Entropy-Measuring (EM), SOM, and

K-Dimensional tree (EMSOM-KD). The authors selected Ideal SOM maps using

EM and identified most traffic flows directly by the EMSOM. In [169], the authors

proposed a hybrid solution to identify DDoS attacks, where an Information Entropy

(IE)-based module first searches for anomalous traffic, and another detection

module based on Stacked Sparse Auto encoder (SSA)-SVM subsequently verifies

the suspected abnormal traffic. Their defense module speedily releases a new flow

table to resume the network's regular communication after successfully identifying

an attack.

 In the study [170], a hybrid approach was suggested by the authors, which

combined a Genetic Algorithm (GA) and Decision Tree (DT) called GA-DT. Their

approach was compared to other machine learning algorithms like Logistic

Regression (LR), SOM, Neural Network (NN), SVM, and KNN, and their approach

was found to perform better than others. The ML algorithms were trained on the

KDD dataset, and the Mininet emulator was utilized for real-time evaluation.

Another study [171] used sFlow as a macro-detection to monitor the network, and

SOM is used as a micro-detection to identify the attack traffic. An improved source-

46

based DDoS attack detection and defense approach for SDN was created in this

research using SOM.

 The ISCX-IDS2012 dataset was used for training, and real-time evaluation

was carried out using the Floodlight controller in the Mininet emulator. A KNN

and SVM-based detection method was proposed in another study [172] to reduce

resource consumption during the DDoS attack detection process, which was

validated using the Mininet emulator. In a different study, a detection technique

based on Spatial-Temporal Graph Convolutional Networks (ST-GCN) that apply

IN-band Network Telemetry (INT) to sense switch status with samples was

developed [173]. An ensemble model based on optimized weighted voting for

DDoS attack detection in SDN was introduced in another study [174], which used

different hyper-parameter values of six base classifiers to build the ensemble

model. A K-Means clustering-based method was proposed to deal with the

unbalanced distribution of traffic data for DDoS attack detection [175]. A Random

Forest (RF) based DDoS detection and mitigation system was proposed in another

study [176] , which uses flow entries to classify them as normal or attack traffic.

[177] introduced a system that consists of two modules named the trigger module

and the detection module. The trigger module is based on Gini impurity, which

analyses the source and destination IP data. The classification of the traffic flow as

normal or attacked is done by the detection module, which is RF-based and based

on discovered anomalies. Finally, a time series and RF-based detection method

were suggested in another study [178], where the ARIMA model was used to

predict the information of the current flow based on the Historical Information

47

Entropy (HIE), and the detailed traffic features were further extracted to detect the

attack. The ML and DL-based solutions previously mentioned are compared in

Table 2.3, along with their benefits and drawbacks.

48

Table 2.3: ML and DL-based solutions for DDoS detection and mitigation in SDN.

Study Contributions
Controll
er Type Layer Protocols

Classifier
Type

Environment
Type Data Set Evaluation Discussion

[130]

Proposed a simple
DDoS detection
method with very
little overhead
performance and
classified traffic
using flow-based
data.

 NOX
Control
Plane

TCP, UDP
and ICMP

Self-
Organizing
Map (SOM) Physical

Custom
developed

Detection
Rate =
99.11%

The limitation
of this work is
that it cannot
identify the
ports of the
OF switches
from where
the attack is
launched.

[131]

To defend the
controller's control
plane from DDoS
attacks, they created
the Safe-Guard
Scheme (SGS). The
main objective of
the SGS is to use a
controller clustering
technique to deploy
many controllers in
the control plane.

 Ryu

Control
plane and
Data Plane

TCP, UDP
and ICMP

Back
Propagation
Neural
Network
(BPNN) Virtual

Custom
developed

Not
mentioned

The detection
accuracy is
not mentioned
in the paper.

49

[133]

They deploy a
modular detection
system in the
controller to
improve the
accuracy and
stability against
DDoS attacks. Ryu

Applicatio
n Plane

Not
mentioned

K-means++
and K-
FKNN Virtual NSL-KDD

Precision =
97.5%

This work
may be
extended to a
distributed
SDN
environment
to detect other
flooding
attacks.

 [6]

The authors
proposed a new
trigger mechanism-
based framework
which cooperates
the DDoS attack
detection and
defence methods in
data and control
planes. ONOS

Control
and Data
Planes

Not
mentioned

KNN and K-
Means Virtual NSL-KDD

Accuracy =
98.85%

This work is
not dealing
with when the
controller is
under large-
scale network
traffic.

[134]

The authors
introduced a multi-
Vector DDOS
detection system
and installed it on
top of the controller
as a network
application.

POX

Control
and Data
Planes

TCP, UDP
and ICMP

Stacked
Auto
encoder
(SAE) Physical

Custom
developed

Accuracy =
99.82%

To extend this
study, deep
learning
algorithms can
extract
features from
raw flows
instead of
feature
reduction and
are also used
to detect other
types of

50

attacks in
SDN.

[135]

It introduced and
integrated a NIDS
that can track and
detect traffic attacks
and protect the
network based on
information from
the entire network.

.
Floodlig
ht Data Plane

Not
mentioned

Hidden
Markov
Models
(HMMs) Virtual

Custom
developed

Accuracy =
96%

The use of
feature vectors
along with
HMM
improves the
detection
power of the
proposed
approach.

[136]

The authors
developed a new
method to solve two
problems,
Misbehavior and
New-Flow attack in
SDN. POX

Control
Plane

Not
mentioned

Sequential
Minimal
Optimizatio
n (SMO) Virtual NSL-KDD

Accuracy =
99.40 %

This work is
not efficient in
detecting
unknown
attacks.

[138]

The authors
proposed a hybrid
method based on
machine learning
and statistical
techniques.

Floodlig
ht

Control
Plane

Not
mentioned

Bayes Net,
J48, logistic
regression,
Random
Tree and
REP Tree Virtual

ISOT, UNB-
ISCX and
CTU-13

Accuracy
of REP
Tree =
99.88%

They detect
the DDoS
attack on One
controller.

51

[139]

Proposed a two-
stage technique that
records network
flows from a global
point of view and
detects network
attacks.

Not
Mention
ed

Applicatio
n Plane

Not
mentioned

Random
Forest (RF) Virtual

KDD Cup
1999

Accuracy =
96.03%

This approach
is
implemented
in a virtual
network
environment.
This work can
be extended
by
implementing
this approach
in a real-time
network
environment.

[141]

Introduced an
ensemble method
that detects the
anomalous behavior
of the network
traffic toward the
SDN controller. POX

Control
Plane

TCP, UDP
and ICMP

SVM, KNN,
Naïve Bayes
(NB), and
Self-
Organizing
Maps
(SOMs) Virtual CAIDA 2016

Accuracy
of SVM-
SOM =
98.12%

This study
used an old
dataset
version and
may be
extended by
using new
datasets.

[147]

Proposed a method
to extract the
temporal behavior
of an attack in SDN. Not

Mention
ed

Control
Plane

Not
mentioned

Back
Propagation
Neural
Network(BP
NN) Physical DARPA 1999

Not
mentioned

The achieved
accuracy of
the method is
not
mentioned.
This method is
effective in
performing a

52

port recovery
after an attack.

[148]

Suggested a method
that can learn the
traffic patterns from
the sequences of
flows and then
historically trace the
attack activities.

Not
Mention
ed

Control
Plane

TCP, UDP,
HTTP

Bidirectional
Recurrent
Neural
Network
(BRNN) Virtual ISCX2012

Accuracy =
99%

The
significant
advantage of
this study is
that it can help
to reduce the
degree of
dependence
on the
software and
hardware
environments.
It simplifies
the updating
of detection
systems in
real-time.

[149]

The authors
proposed a system
that combined the
neural network with
entropy metric to
identify the
abnormal network
behaviour. POX

Control
Plane

Not
mentioned SOM Virtual CAIDA2015

Detection
Rate =
97.28%

In this study,
the authors
used manual
methods for
the selection
of features and
these methods
can be
replaced with

53

automatic
feature
selection
methods.

[150]

Introduced a hybrid
approach for Port
scan and DDoS
attack detection
based on Long
Short Term
Memory (LSTM).

Floodlig
ht

Control
Plane

Not
mentioned

Long Short
Term
Memory
(LSTM) and
Fuzzy Logic Virtual

CIC DDoS
2019

Area Under
Curve
(AUC) =
99.62%

This study is
an excellent
effort toward
securing the
SDN from
DDoS attacks
and their
mitigation
approach
appears
effective
compared to
others. So,
their
mitigation
policies can be
updated and
used for other
vulnerabilities
that SDN
controllers
might face.

[42]

Proposed a method
that reduces and
selects the relevant
features and then
performs DDoS
detection using
machine learning
classifiers. POX

Control
Plane

TCP and
UDP

SVM,
Genetic
Algorithm
(GA) and
Kernel
Principal
Component
Analysis
(KPCA) Virtual NSL-KDD

Accuracy =
98.90%

This approach
is effective in
a single
controller
environment
and may fail in
a multi-
controller
environment.

[9]

Proposed a
technique that does
classification and
gets the 6-tuple
characteristic values

Floodlig
ht

Control
Plane

TCP, UDP
and ICMP SVM Virtual

Custom
developed

Average
Detection
Rate =
95.24%

This approach
has low
detection
accuracy for
the ICMP
attack flows.

54

from the switch's
flow table.

[156]

Suggested a DSM
based SVM
algorithm for DDoS
attack detection and
mitigation. RYU

Control
Plane

Not
mentioned SVM Virtual NSL-KDD

Accuracy =
99.7%

This method
achieved the
best detection
accuracy, but
in the
mitigation
phase, there is
a chance to
drop the
normal
packets along
with attack
packets.

[159]

Proposed an
architecture to
detect DoS/DDoS
attacks on
application and
transport layers of
the SDN.

Open
Networ
k
Operati
ng
System
(ONOS)

Applicatio
n Plane

TCP and
UDP

KNN, SVM,
RF, MLP,
CN), GRU,
LSTM Virtual

CICDoS2017
and
CICDDoS2019

Accuracy =
99%

In this study,
the authors
observed that
the DL
algorithms
produced the
best results
compared to
ML
algorithms.
Their
mitigation
strategy is
simple and

55

works for the
edge switches.
So, there is a
need to
optimize the
mitigation
strategy to
save the
computation
resources of
the controller.

[161]

They have
implemented a deep
learning model that
utilizes adaptive
polling and sFlow
sampling to mitigate
various DDoS
attacks.

RYU
Control
Plane

TCP, UDP
and ICMP

Stacked
Auto
encoder
(SAE) Virtual

Custom
developed

Accuracy
for sFlow =
91% and
Accuracy
for
Adaptive
Pooling =
89%

Implementing
this
framework
with real-time
traffic streams
can help to
lower the
SDN
controller’s
crucial
overhead.
Further,
training deep
learning
models with
signature-
based and
rule-based
network data
could help to

56

improve the
detection
accuracy of
DDoS attacks
as a whole.

[46]

The authors suggest
a Cognitive-
Inspired Computing
(CIC) mechanism
that integrates dual
address entropy for
detecting and
protecting against
DDoS attacks.

Floodlig
ht

Control
Plane UDP SVM Virtual

Custom
developed

Detection
Rate =
97.65%

In this study,
the authors try
to restore the
communicatio
n function to a
single victim
host, which
could be
extended to
multiple
victim
machines.

[163]

The authors
suggested a system
for identifying
adversarial attacks
that employ
Generative
Adversarial
Networks (GANs).

Floodlig
ht

Applicatio
n Plane UDP

Generative
Adversarial
Network
(GAN) Virtual CICDoS 2019

Detection
Rate =
99.87%

The GAN
framework
has the
potential to
detect
adversarial
attacks in
SDN due to its
adversarial
training
nature, and it
makes the
controller less
sensitive to
DDoS-based

57

adversarial
attacks. But
the proposed
framework is
implemented
in a simple test
scenario.

[165]

A DDoS detection
technique based on
information entropy
(IE) and
convolutional
neural networks
(CNN) was
presented. POX

Control
Plane

HTTP,
TCP, UDP,
ICMP CNN Virtual CICIDS2017

Accuracy =
98.98%

In the
proposed
method, two-
level detection
is performed,
enhancing the
controller’s
workload and
taking a long
time to
identify the
attack.

[167]

The authors
proposed an entropy
and ensemble
learning-based
cooperative DDoS
attack detection
scheme. Ryu Data Plane ICMP

Fine-
Grained and
RF Virtual

Custom
developed

Not
mentioned

The authors
do not
mention the
accuracy of
the proposed
approach.

58

[169]

The Stacked Sparse
Auto encoder
(SSA)-SVM and
Information
Entropy (IE) based
hybrid approach for
dual identification
of attack.

Floodlig
ht

Control
Plane

TCP, UDP
and ICMP

Stacked
Sparse Auto
encoder
(SSA)-SVM Virtual

DARPA and
two custom
developed

Detection
Rate =
96.86%
and
Accuracy =
98.63%

The proposed
approach
performs dual
detection for
the attack, the
Initial
detection
through
information
entropy and
then by
SSAE-SVM.
They observed
that the time
cost and CPU
utilization for
the
combination
of both
modules are
less than the
SSAE-SVM
alone,
indicating that
the combined
approach is
more
effective.

59

[171]

Source-based DDoS
detection using
improved SOM and
sFlow.

Floodlig
ht

Control
Plane TCP SOM Virtual

ISCX-
IDS2012

Detection
Rate =
95.41%

This study
accurately
identifies the
attacker host
and focuses on
source-based
DDoS
detection in
SDN.
Although it
imposes tight
limits on more
falsely alerted
normal flows
that damage
regular users,
the suggested
method loses
effectiveness
when the
normal flows
are
substantially
similar to the
attack flows.

60

[173]

To map the network
into a graph for
attack detection, the
authors presented a
method based on
Spatial-Temporal
Graph
Convolutional
Networks (ST-
GCN).

ONOS Data Plane
TCP, UDP,
HTTP

Spatial-
Temporal
Graph
Convolution
al Network
(ST-GCN Physical CAIDA

Maximum
Accuracy =
91.11%

The proposed
method
detects the
DDoS attack
in the data
plane by
extracting the
data
characteristics
from both
spatial and
temporal
perspectives.
The main
focus of this
study is to
identify the
switches
containing the
attack flows
extending
toward the
controller end.

61

2.3.3 Detecting and Mitigating Low-Rate DDoS Attacks

LR-DDoS is a form of attack that is distinct from the well-known HR-

DDoS. Although identifying HR-DDoS is common, detecting LR-DDoS can be

equally complex. The primary aim of these attacks is to exhaust computing

resources. Unlike HR-DDoS, LR-DDoS does not involve a network flood with high

traffic volumes. Instead, it strategically manipulates specific protocols, such as

Congestion Control mechanisms [179] , TCP's timeout retransmission [180], [181]

and HTTP's keep-alive mechanism [182], to deplete the target's computing

resources.

Wu et al. [183] proposed a detection mechanism for low-rate DDoS attacks

based on Factorization Machine (FM) [184] using features derived from SDN data

layer flow rules. The technique extracts the packet number, duration time, relative

packet interval dispersion, and relative match byte dispersion. The FM algorithm

uses these features to categorize flow as normal or attack flow, integrating the

features to create a correlation between all feature samples. This correlation is then

used to update other parameters, improving real-time detection rate against LR-

DDoS and providing reliable conditions to resist attacks. Dynamic flow rule

deletion is adopted for defense against DDoS attacks. Another adaptable

architecture is suggested that consists of the Intrusion Detection System (IDS) and

Intrusion Prevention System (IPS) modules to detect and prevent LR-DDoS attacks

[11]. Six machine learning algorithms are used to train the IDS, which is embedded

into the controller to perform various tasks, such as identifying and classifying APIs

and flows. The IPS detects HTTP flows and generates new flow rules for malicious

62

flow mitigation, blocking potential attackers. The CIC DoS 2017 dataset trains the

machine learning models [185]. On the Mininet emulator in an SDN environment,

the Open Network Operation System (ONOS) controller is used to validate the

methodology.

Zhang et al. [186] introduced an LR-DDoS detection model that utilizes

SVM and Power Spectral Density (PSD), claiming that PSD-entropy enhances the

system's efficiency and detection power while minimizing computation costs. The

SVM component learns traffic patterns and selects the most appropriate features

for the detection algorithm. The algorithm determines two classification thresholds

by averaging attack traffic and regular traffic. The communication is deemed an

attack if the calculated PSD entropy is below the threshold. To address the inability

of traffic volume analysis to detect LR-DoS attacks, Liu et al. [187] proposed a

Deep Convolutional Neural Network (DCNN)-based system that automatically

extracts available features from traffic flows. The extracted features are then fed

into a Q-Network, a reinforcement learning algorithm, which detects edge LR-DoS

attacks. This system produced satisfactory results in a simulated environment for

protecting SDN from LR-DoS attacks.

[188] proposed a flow-based LR-DDoS attack detection and mitigation

framework that employs ML models such as DT, SVM, and NB. In the mitigation

phase, the controller acquires information on attack flows and uses mitigation rules

to prevent LR-DDoS attacks from the same source. Compared to DT and NB, SVM

exhibited the highest detection accuracy. The above-discussed solutions are

summarized in Table 2.4.

63

Table 2.4: ML and DL-based solutions for Low-Rate DDoS detection and mitigation in SDN.

Study Contributions
Controller
Type Layer Protocols

Classifier
Type

Environment
Type Data Set Evaluation Discussion

[183]

Introduced a
Factorization
Machine
(FM)-based
multi-feature
low-rate
DDoS attack
detection
technique.

Ryu
Data
Plane

TCP, UDP
and ICMP

Factorization
Machine
(FM) Virtual CAIDA

Detection
Accuracy =
95.80%

The suggested
method can be
expanded to a
multi-controller
environment and is
acceptable for
single-controller
network
architecture.
Implementing the
recommended
strategy in a real
network
environment can
demonstrate its
usefulness further.

64

[11]

The authors
proposed a
flexible
architecture
consisting of
two modules:
the Intrusion
Detection
System (IDS)
and the
Intrusion
Prevention
System (IPS),
for
identifying
and
mitigating
LR-DDoS
attacks. ONOS

Control
Plane

TCP and
UDP

J48, Random
Tree (RT),
REP Tree,
RF, MLP, and
SVM Virtual

CIC DoS
Dataset
(2017)

Maximum
Accuracy
Achieved
by MLP =
95.01%

According to this
study, when the
false positive rate
rises, it may be
possible to restrict
real users. This
method is tested in
a simple network
setting. Therefore,
this method is
compatible with a
complicated
network design.

[186]

Introduced a
Power
Spectral
Density
(PSD) based
method to
improve
detection
accuracy with
minimum
computation
cost.

Not
mentioned

Not
mentioned TCP SVM Physical KDD99

Detection
Rate =
99.19%

They did not
mention the
controller type and
layer from which
they will detect the
attack.

65

[187]

Proposed a
Deep
Convolutional
Neural
Network
(DCNN)
based method
which
automatically
extracts the
available
features from
traffic flows
to identify the
attack. Ryu

Control
Plane

TCP, UDP
and ICMP

Deep
Convolutional
Neural
Network
(DCNN) and
Q-Network Virtual

Custom
Developed

Detection
Rate =
97.80%

66

2.3.4 Detecting and Mitigating Botnet Attacks

Researchers have recently utilized machine learning techniques to develop

precise and scalable frameworks for detecting and preventing botnet attacks in SDN.

They have employed centralized learning with distributed detection to achieve

scalability in detection. In the past few years, the use of machine learning techniques

for identifying botnets has grown significantly. This section discusses the latest

developments in machine learning for this type of attack.

A study [189] investigated different types of botnets (P2P, IRC, and HTTP

botnets) in SDN controllers. The study found that Decision Tree (DT) effectively

detects Peer-to-Peer botnets, while Naïve Bayes and SVM detect IRC and HTTP

botnets more successfully. Another study [190] used centralized network flow

statistics collected by OpenFlow counters for detection, applying decision trees and

C4.5 to the collected counters. The proposed method achieved an 80% detection rate

for botnets, using a publicly available real-world botnet dataset for the experimental

analysis. In another research paper [191], the authors analyzed potentially vulnerable

hosts and malicious codes using four different classifiers: NB, DT, Bayesian

Networks (BNs), and C4.5. They used historical data for prediction and deployed

security rules in the SDN controller to protect potentially compromised hosts and

block the entire subnet to restrict the attackers' access. Bayesian Networks achieved

a higher precision rate compared to the other classifiers.

Several research studies have used machine learning (ML) algorithms to

suggest various techniques for detecting and overcoming botnet attacks in software-

67

defined networking (SDN). One way suggested by [192] is using a flow-based

approach instead of packet payload inspection to detect botnets in SDN. Their system

combines real-time flows with historical context to extract an enriched feature set for

classification, which achieved 90% detection accuracy for unknown botnets and 97%

for known botnets. Another framework introduced by [193] integrates an ML

algorithm into the SDN controller to detect and categorize peer-to-peer (P2P)

network traffic in real time. They achieved high accuracy in detecting different P2P

network traffic using a Strom and Zeus botnet dataset for attack traffic and Skype,

eMule, and uTorrent network data for normal traffic. The study proposed by [194]

suggested an ML-based framework that uses traffic flow classes to reduce detection

complexity and determine high-level policies for the derived flow classes. The K-

mean algorithm was used for unsupervised learning to classify NetFlow features, and

the DT was used for supervised learning to classify traffic as normal or attack. In the

study, [195] proposed a framework that integrates ML with SDN/NFV to detect and

mitigate botnet attacks. They suggested a network function which use network

protocols to detect known attacks, and collect real-time network traffic as a data set

for detecting additional distributed attacks.

To detect botnets, a study [196] proposed a method using Multi-Layer

Perceptron (MLP) that analyzes malware traffic data collected from an existing

network. This technique creates network isolation and adds a connection block to

the external network to avoid internal infection. The approach, which had a 99.2%

accuracy rate, was tested using the CTU-13 and ISOT data sets. Another approach

[197], involved building a system that uses SDN’s northbound and southbound API

68

to detect botnets At predetermined intervals during the time window, the switch

notifies the controller with an OpenFlow message that includes statistical data. The

deep learning classifier, which has five hidden layers and is based on ReLU,

receives instructions from the controller to block communication and isolate the

infected host. The detection accuracy of this technique was 99%. The discussed

solutions for botnet attack are summarized in Table 2.5.

69

Table 2.5: ML and DL-based solutions for botnet attacks detection and mitigation in SDN.

Study Contributions
Controller
Type Layer

Type of
Botnet Classifier Type

Environment
Type Data Set Evaluation Discussion

[189]

They used
IPFIX
generic
template for
the detection
of botnets. POX Control Plane

IRC,
HTTP,
P2P

Bayesian
Network,
Neural
Network, SVM,
DT Physical

Custom
developed

Not
Mentioned

The
performance
results are not
discussed.

[190]

Propose a
method on
centralized
network flow
statistics,
which are
collected by
OpenFlow
counters

Open
Daylight

Application
Plane

IRC,
HTTP,
P2P

Decision Tree
and C4.5 Virtual

CTU-13,
ISOT

Accuracy
= 80%

They analyzed
that OpenFlow
counters have
the potential to
identify botnet
behavioral
patterns and are
a suitable
candidate for
flow-based
botnet detection
techniques.

[191]

They used
historical
data to
predict the
potentially
vulnerable
hosts and
malicious
codes and
deploy the
security rules

Not
Mentioned Control Plane

Not
Mentioned

NB, DT,
Bayesian
Networks
(BNs), and
C4.5

Not
Mentioned LongTail

Accuracy
= 91.68%

The BN
achieved a high
precision rate
compared to the
other classifiers.

70

in the SDN
controller.

[192]

A flow-based
approach is
used instead
of reading
packet
payload for
the detection
of the botnet
in SDN

Open
Daylight

Application
Plane

IRC,
HTTP C4.5 Virtual

ISOT and
CTU-13

Accuracy
for
unknown
botnets =
90% and
Accuracy
for known
botnets
=97%

This method
needs extensive
computations.

[193]

An ML
framework is
integrated
with the
controller,
which detects
and
categorizes
the P2P
botnet attack. Ryu Control Plane

Not
Mentioned

SVM, KNN and
RF Virtual

Custom
developed

Accuracy
=99.7%

SVM produces
good detection
results as
compared to
other classifiers.

71

[194]

An ML-
based
framework
uses traffic
flow classes
to reduce the
detection
complexity
and
determines
the SDN
high-level
policies for
the derived
flow classes.

Not
Mentioned Control Plane HTTP

K-mean and
SVM Virtual

Custom
developed

This method did
not be
implemented for
the new types of
network traffic.

[195]

They
integrated the
ML method
with
SDN/NFV
for the
detection and
mitigation of
botnet attack. Floodlight Control Plane

IRC,
HTTP,
P2P RF Virtual CTU-13

Accuracy
= 100%

This work is
limited to a few
protocols that
need to add more
protocols for
botnet detection
in SDN.

[196]

They use
malware
traffic data
collected
over the
existing
network to

Ryu
Application
Plane

IRC,
HTTP,
P2P

Multi-Layer
Perceptron
(MLP) Physical

CTU-13
and ISOT

Accuracy
= 99.2%

The study just
focused on the
controller and
did not
experiment with
the terminals
that were

72

detect the
botnet.

infected by the
botnets.

[197]

The authors
proposed a
system that
detects the
botnets using
northbound
and
southbound
APIs of SDN.

Not
Mentioned

Application
Plane

Not
Mentioned

Artificial
Neural Network Physical

CTU-13
and ISOT

 Not-
Mentioned

Their method is
suitable to block
the attack traffic
at the source.
Further, this
method cannot
be used to
perform real-
time detection
due to the
constrained time
window
duration.

73

2.3.5 Detecting and Mitigating Saturation Attacks

A saturation attack is a form of adversarial attack that can impact the entire

SDN network due to its prolonged duration. When the control plane of the controller

is overloaded, the SDN may become unavailable. The attack involves a malicious

host generating a large volume of table-miss packets, which can deplete the resources

of the control plane. In SDN-based networks, a saturation attack operates by

manipulating the OpenFlow switch, which receives network packets.

 If a new incoming packet does not match the local flow rules, a miss-table

error occurs.

 If the switch's buffer is partially full, a Packet-In message that contains the

header of the table-miss packet will be produced.

 The table-miss packet is encapsulated in the Packet-In message and

forwarded to the controller if the switch's buffer is full.

 The controller receives the Packet-In message, and processes the table-miss

packet.

 Additionally, the controller sends Packet-Mod and Packet-Out messages to

the switch's flow table to add new flow rules.

 This reactive packet processing mechanism exposes the OpenFlow network

to the attacker. The attacker gets an opportunity to consume the different

computation resources such as CPU, memory, etc. of the switches and

controller and saturate the channels of OpenFlow connections which are

74

responsible for delivering the forwarding messages between OpenFlow

switches and controller.

 Once the attacker gets access to the controller, it can launch different

saturation attacks such as TCP-SYN, ICMP, UDP, TCP-SARFU flooding,

and IP Spoofing and their combinations (i.e., hybrid saturation attacks) at

data-to-control planes. The attacker overtakes the SDN network's numerous

hosts (also known as "zombie machines") and transmits forged packets,

making it hard for the controller to match the new packets with the switch's

flow rules. As a result, the controller begins to receive numerous Packet-In

notifications. As a result, the attack from the data-to-control plane depletes

the controller's computing capabilities.

 The controller sends Packet-Out and Packet-Mod messages in response to

a data-to-control plane flooding attack, which results in flooding attacks

from the control-to-data plane. Therefore, the flow tables of the targeted

switches are filled with fake flow rules.

 So, the whole switch buffer is consumed and becomes unavailable for the

legitimate new packets.

 Finally, the OpenFlow channel's bandwidth is used up, which prevents

OpenFlow messages from being delivered between the switches and the controller.

The above-discussed scenario is shown in Figure 2.6.

75

Figure 2.6. General procedure for a saturation attack in SDN.

A study [198] examined how machine learning-based systems detect

saturation attacks within an SDN environment. The study found that adversaries

could bypass machine learning classifiers by creating adversarial attacks that evade

detection. The authors proposed an adversarial testing tool that generated four types

of saturation attacks by manipulating different traffic features to address this. They

also suggested using various machine learning classifiers to improve detection, but

their tests showed that the saturation attacks reduced the detection power of the

system.

Another study [199] suggested a time window-based machine-learning

method for identifying saturation attacks in SDN. The authors found that if the

window size were too large, the response time of the detection method would be

too slow, giving the attacker time to saturate the network. Conversely, if the

window size were too small, it would cause frequent false alarms and high-

76

performance overheads for the controller. They investigated the impact of time

windows on three different classifiers using OpenFlow traffic data.

Abusnaina et al. [200] introduced a method called FlowMerge that used a

Convolutional Neural Network to detect different types of saturation attacks, but

the approach had some limitations. The authors generated the attack samples based

on the machine learning classifier. It was unclear whether the attacks could evade

other machine learning classifiers installed in the SDN controller. Mossavi-

Dezfooli et al. [201] presented a Deep Neural Network-based Deep-fool algorithm

to generate and detect saturation attacks in SDN. They used image inputs to perform

classification. Papernot et al. [202] proposed a library named Clearhans v0.1 to

create attacks in SDN and to help improve the robustness of machine learning

classifiers.

Finally, a framework called Fast Recovery Saturation Attack Detection and

Mitigation (FSDM) was proposed [203]. The FSDM framework employed various

strategies to stop the attack flows after using Control Channel Occupation Rate

(CCOR) distribution to identify the ports from which the attacker originates.

Additionally, the framework contained a brand-new function module called Force

Checking, which enables the SDN controller to recover and clean up any leftover

attack quickly flows. The discussed solutions for saturation attacks are summarized

in Table 2.6.

77

Table 2.6: ML-based solutions for saturation attacks detection in SDN.

Study Contributions
Controller
Type Layer

Type of
Saturation
Attack

Classifier
Type

Environment
Type Data Set Evaluation Discussion

[198]

A machine
learning-
based
solution was
suggested by
the author to
identify
saturation
attacks in an
SDN.

Floodlight
Application
Plane

TCP-SYN,
UDP, ICMP,
and TCP-
SARFU

K-NN, NB,
SVM, ANN
and Isolation-
Forest Physical

Custom
developed

The
maximum
accuracy
achieved by
KNN = 96%

This study
focus on four
types of
saturation
attacks, so
more types of
attacks can be
added.

[199]

The time
window
concept has
been used to
analyze and
detect
saturation
attacks in
SDN. Floodlight

Application
Plane

TCP, UDP,
ICMP, SCTP
(Stream
Control
Transmission
Protocol)

NB, KNN,
SVM

Use both
Physical and
Virtual

Custom
developed

KNN
achieved the
best results
Precision =
97% Recall
= 99% F-1
score = 98%.

This study is
suitable for a
single-
controller SDN
environment
and maybe
extend to
multiple
controllers. It
was the first
attempt to
detect
unknown
saturation
attacks.

78

[200]

The author
proposed a
method
named Flow
Merge to
detect
different
saturation
attacks. POX

Application
Plane

TCP, ICMP,
and UDP

Convolutional
Neural
Network
(CNN) Physical

Custom
developed

Accuracy =
99.83%

The authors
created Flow-
Merge after
demonstrating
how generic
adversarial
examples
(AEs)
techniques
result in
unrealistic
flows. Weight
merging
techniques are
used rather
than ratio-
based features
to develop the
adversarial
inputs. The
adversarial
methods
provide a
strong defense
against general
attacks, but it is
necessary to
investigate the
defenses
against Flow-
Merge.

79

2.3.6 Detecting and Mitigating Ransomware Attacks

Ransomware is malware that encrypts and locks a user's files and demands a

ransom to release them. To spread the attack, the perpetrator seeks control of the SDN

controller and employs HTTPS to deliver the malware, making extracting and identifying

features through deep packet inspection difficult. However, detection and mitigation

techniques are available to safeguard the SDN controller from ransomware attacks. One

such technique is machine learning, and this section focuses on its development for

ransomware detection and prevention in SDN.

According to a study [204], the authors propose a K-Nearest Neighbor (KNN)-

based prediction system that identifies ransomware traffic packets and integrates a dynamic

isolation method in SDN. The system achieves 97.7% prediction precision for ransomware.

In another study [205], a two-phase approach is introduced consisting of stream processing

and classification. In the stream processing phase, the system reads a flow, manages a

custom flow table, and extracts flow features. In the classification phase, the Random

Forest (RF) classifier trains on the extracted features to distinguish normal traffic from

ransomware traffic. In yet another proposal [206], a federated learning-based anti-

ransomware learning mechanism is suggested for detecting and mitigating four types of

ransomware attacks: (i.e., “Petya, PowerGhost, BadRabbit, and WannaCry”). During the

defense phase, the trained federated learning classifier is installed in the SDN controller,

which detects ransomware attacks and blocks traffic from the victim device.

80

2.4 Summary

In this chapter, first, we describe the architecture and workflow of the SDN

in detail. Second, a comprehensive overview with a taxonomy of the machine

learning and deep learning algorithms is given. Finally, a related work on ML and

DL development for securing SDN is explained in detail. The section related to

security in SDN covers the following: a) a description related to the available

benchmark dataset, b) machine learning and deep learning in detecting and

mitigating attacks such as DDoS, low-rate DDoS, botnet, saturation and

ransomware.

81

 CHAPTER 3

SYSTEM MODEL

3.1 Overview of the Proposed Method

To successfully protect the SDN controllers from botnet-based DDoS

attacks, it is important to detect and block the attack traffic flows. A flow consists

of large number of packets with same information’s (e.g., source IP address,

destination IP address, source port number, destination port number, protocols,

etc.). During an attack, the source IP addresses are belonging to the attackers. For

example, we have “y” classes with “N” number of flow samples. Let the flow

samples are represented as 𝑿 = {𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … … … , 𝑭𝑵} 𝜺 ℝ𝒅×𝑵, where 𝑭𝒊 is the

ith flow, 𝒅 represents the number of original features of the flow, and 𝑵 is total

number of flows. The actual tables for a 𝑭𝒊 flow can be defined as 𝒚𝒊 = {𝟎, 𝟏}. The

aim of this research is to develop an end-to-end method which can predict a label

as an actual label (𝑦𝑝𝑟𝑒𝑑(𝑖) = 𝑦𝑖). This chapter discusses the system model which

is proposed in this research for the flow classification. A comparative analysis on

deep learning methods with features selection is performed. The DL methods

deployed in the SDN controllers would help to classify the attack and normal flows.

A systematic diagram which shows the operational phases of the proposed research

is described in Figure 3.1. First, a pretty table is created to place the incoming

packets, Second, the flows features are computed and extracted from each traffic

flow. Third, features weight and threshold tuning method is used to select the

82

optimal features, Then, the selected optimal features are combined and then

converted into five different subsets, finally, these subsets are passed as input to the

DL methods (e.g., MLP, DNN, CNN, RNN, and LSTM) for the training and

validation. Lastly, these methods are deployed in the controller for real time flow

classification.

Figure 3.1: Systematic diagram of the proposed research.

3.2 Simulated Dataset

The quality of the training datasets is highly important for the better

performance of the IDS methods and techniques. However, one of the main issues

is the availability of benchmark datasets for the detection of intrusion in various

fields of networking. This problem interrupts the development of efficient intrusion

83

detection systems. Some other fields such as biomedical engineering, language

translation, etc., have a massive amount of benchmark datasets to evaluate the

performance of ML/DL methods. However, security and privacy are the main

reasons behind the lack of benchmark datasets for the detection of network

intrusion. These datasets may have sensitive information, so, the customer

information may be revealed to the public by the availability of these datasets

publically. Besides, most of the available datasets have different issues such as

being laboriously anonymized, don’t contains modern attacks found in the current

networks, and being outdated. To the best of our knowledge, there are currently no

publicly accessible benchmark datasets for the training, testing, and assessment of

deep learning-based IDS in an SDN environment besides the issues above. These

datasets also don’t contain botnet-based DDoS attack records. In several recent

studies, typical datasets generated by conventional networks have been employed

extensively in SDNs to detect intrusion. However, in SDN networks, the

characteristics of the network traffic are quite different from those of traditional

network environments. SDN architecture is more vulnerable to threats that do not

exist in conventional networks because of its centralized nature. For instance, the

decoupling of network devices from the SDN controllers increases the chances for

the attackers to launch different types of malicious attacks or activities on SDN

controllers themselves or data communication systems. So, attacks on the SDN

controllers become hard to detect because the attacker uses an authorized way to

connect with the victim server.

84

To tackle the above-mentioned problems, in this research, a custom dataset

is developed in a pure SDN-supported environment to evaluate the performance of

the different DL methods (e.g., MLP, DNN, CNN, RNN, LSTM). This dataset

contains the botnet-based DDoS attack and normal network traffic. We developed

this dataset in two different formats (i.e., “Pcap” and “CSV” file formats), where

CIC Flow Meter is used to extract more than 83 statistical flow features. To capture

both attack and normal network traffic and mimic real-world attack scenarios, a

custom network topology consisting of different hosts, OpenFlow switches, and an

SDN controller is used.

3.3 Virtual Experimental Setup and Data Collection

A Mininet virtual environment with a POX controller [207] is used to

conduct all the experiments in this research. The Mininet V 2.3.2 (“version 2.3.2)

which supports Open Virtual Switches (OVS) [208] is used in testing environments.

In recent years, Mininet is widely preferred by the network and research community

to perform SDN-based network emulations. The OVS is an open-source virtual

machine that supports various commonly used OpenFlow protocols. Because the

POX is an interface-rich SDN controller and permits the development of network

applications in Python, the network and research communities promote it.

All the experiments are performed on an Intel Core i7 with Windows 10

operating system and 8GB RAM. The deep learning methods are coded using

Python language with the Keras framework. To adopt and maintain a pure SDN

85

environment in the research, we developed a customized centralized network

topology in Mininet.

The used network topology is developed in a complex network three

structure manner to adopt real-network structure. Figure 3.2 shows the

experimental virtual network topology. Figure 3.2 depicts the three planes that

make up the SDN architecture: the application, control, and data planes. The

application plane has four different planes Flow Statistics Collector (FSC), Feature

Extractor (FE), DL classifier, and Mitigator. The Flow Statistics Collector module

collects the flow information in Δ time and then stores these flows in a pretty table

for further analysis. Feature Extractor module extracts the flow features. The DL

classifier module accepts the extracted flows and classifies normal and attack flows.

The Mitigator module activates the defense shield to protect the SDN controller

from attacks. The data plane has a POX SDN controller which centrally controls

the OpenFlow switches which exist in the data layer. The data plane consists of

several switches and hosts. The adopted network topology has one POX controller

and 7 OpenFlow switches, and 18 hosts. Each OpenFlow switch is connected to

three hosts except OpenFlow S1. The S1 is connected to the six hosts.

86

Figure 3.2: SDN-based experimental network topology.

After successfully developing the network topology in the Mininet, we run

the “ping” command on all the connected hosts to verify the access to the controller,

switches, and other hosts. The host H2 is selected as a botmaster, and H3, H4, H5,

and H6 are corresponding bots, while H13 is selected as the target server and the

other remaining hosts operated as normal users. The hosts H1, H7, H8, H9, H10,

H11, H12, H14, H15, H16, H17, and H18 are used to generate background or

normal network traffic while collecting the dataset and real-time evaluation. The

OpenFlow switches are used to forward the network traffic, while the POX

controller controls the entire network and helps to detect the attack. The port and

87

IP address settings of the network topology are described in Table 3.1. for further

understanding.

Table 3.1: The setting of IP addresses and device ports for experimental
network topology.

Device Networks
Port

Address State Device Networks
Port

Address State

Controller eth0 127.0.0.1 - H10 eth0 10.0.0.10 Normal

H1 eth0 10.0.0.1 Normal H11 eth0 10.0.0.11 Normal

H2 eth0 10.0.0.2 Bot-
master

H12 eth0 10.0.0.12 Normal

H3 eth0 10.0.0.3 Bot H13 eth0 10.0.0.13 Target
Server

H4 eth0 10.0.0.4 Bot H14 eth0 10.0.0.14 Normal

H5 eth0 10.0.0.5 Bot H15 eth0 10.0.0.15 Normal

H6 eth0 10.0.0.6 Bot H16 eth0 10.0.0.16 Normal

H7 eth0 10.0.0.7 Normal H17 eth0 10.0.0.17 Normal

H8 eth0 10.0.0.8 Normal H18 eth0 10.0.0.18 Normal

H9 eth0 10.0.0.9 Normal

3.3.1 Design of Attack Traffic

Botnet-based DDoS attack in the custom-developed network topology is

generated using Python scripts in all our experiments. These files have the code

written in Python language to design and launch the attack. Initially, the “ping”

command is executed on all the hosts to verify their reachability in the network

topology. Once the complete topology is set up, then we run a file named

“target.py” on the host H13 to set it as a target server. After that, we execute the

88

“bot.py” file on hosts H3, H4, H5, and H6 to set these hosts as bots. Finally, the

“botmaster.py” Python file is executed on host H2 to set it as bot master. Here, the

concept of socket programming is used to design and create specific ports for the

corresponding bot hosts to connect with the bot master and listen to the instructions.

For example, the bot master instructs the bots to remain ready and sends the date

and time for the attack. When the date and time of all the bots are matched with

instructed time and date of the bot master, then the bots quickly start to send the

attack traffic to the specified target server. To collect the attack traffic for the data

set, we launch the attack in the network topology for approximately “14.26”

minutes.

3.3.2 Design of Normal Traffic

We used Distributed Internet Traffic Generator (D-ITG) [209] to generate

background or normal network traffic to collect the normal traffic for the data set

as well as for real-time verification. In our experiments, we used the D-ITG-2.8.1-

r1023 version. The ITGSend and ITGRecv commands are executed on the normal

hosts such as H1, H7, H8, H9, H10, H11, H12, H14, H15, H16, H17, and H18 to

send and accept the normal network traffic. We approximately injected more than

200 flows as background flows into the network. The aim of this is to make the

background traffic like the real network traffic. Different transmission rates such as

constant, exponential, gamma distribution, uniform, and Poisson are followed with

TCP protocol to inject each flow in the network. During each flow, the packet size

also variated using different distributions such as constant, exponential, gamma

distribution, uniform, and Poisson. Here, our focus was not on the same size of

89

packets so, we used variations in the packet size to make the virtual network like a

real network. Figure 3.3 shows an example of flow rules written in D-ITG to

generate the background traffic.

Figure 3.3: An example of flow rules to generate normal traffic.

Each row as shown in Figure 3.3 has a flow rule to generate the background

traffic. So, to generate background traffic these flow rules are executed on different

hosts which are specified as normal users. By taking the red box in Figure 3.3 as an

example, we can observe that the 3rd flow rules are follows the 2nd flow rules and

so on. Where the aim is to send the normal traffic to the destination host H13 (“IP

address 10.0.0.13 with port 5000”). The uniform distribution from 500 to 1000

follows to send the number of packets/per flow, and the size of the transmitted

packets is fixed at 512 bytes. The duration of the traffic for the flow is set to 12000

milliseconds, where the TCP protocol-based traffic is generated for this flow rule.

Figure 3.4 shows a portion of the screenshot of the OpenFlow switches' flow table.

The red box in Figure 3.4 highlights the background traffic is successfully injected

90

into the network. The red box also shows a flow entry of host H1 (“IP address

10.0.0.1) to host H13 (“IP address 10.0.0.13”) with destination port 5000 in the

flow table of the OpenFlow switch. The above-discussed procedure can be used to

successfully inject the background traffic using G-ITG into the SDN-based

network.

Figure 3.4: Partial screenshot of the flow table of an OpenFlow switch during
normal traffic.

3.4 Feature Extraction and Labeling

A software-defined network environment is adopted to capture the attack

and normal traffic. The captured traffic is initially stored in the “Pcap” format in

Wireshark. After that, CIC Flow Meter V4 (version 4) [210], [211] is used to

convert the “Pcap” format to “CSV” and make a dataset to train and validate deep

learning methods. The following subsection gives an overview of the CIC Flow

Meter.

91

3.4.1 CIC Flow Meter

 In the field of network intrusion detection, the CIC Flow Meter is used to

generate bidirectional flows and to convert “Pcap” files to “CSV” files. Each flow

consists of 83 features. A network flow is the traveling of packets in a unidirectional

sequence from source to destination with a particular protocol in a specific period.

CIC Flow Meter terminates any flow in two ways: time out is reached and the

connection is closed. First, we can set a specific time duration to terminate the

flows, and when the set time out is reached then the flow automatically terminates.

Second, any flow is terminated by detecting any packet having a “FIN flag” either

from destination to source or source to destination side. The definition of TCP

specification [212] is ignored in the connection closed method in this way: the flow

is terminated when both side source and destination send packets that are containing

“FIN flags”. This creates two severe consequences. First, the construction of that

flow which are having “ACK” and “FIN” flags because that part of the current flow

and the other flows. The second one is ignorance of flows that do not have “FIN”

flags packets. For example, CIC Flow Meter originally ignored the packets that are

having “RST” flags and did not consider them to close connection and terminate

flows.

The second method has more consequences than the first method to

terminate the flows. So, in this research, we adopted the first method (e.g., flow

time out is reached) and set the “600” seconds to terminate the flows. The CIC Flow

Meter converted the “Pcap” file into a dataset that has a total of 89, 632 flow records

with 83 features. Furthermore, the dataset has 41,242 attack flow records and

92

48,390 normal flow records with the same 83 features. Table 3.2. shows the feature

names, feature codes, and descriptions of all the extracted features.

Table 3.2: List of extracted features from traffic flows.

Forward Description Feature Code and
Names

Description

F1. Flow ID The assigned ID of a
Flow

F43. Forward
Packets/second

The number of
packets transmitted in
the forward direction
per second.

F2. Source IP Source IP address F44. Backward
Packets/second

The number of
packets transmitted in
the backward
direction per second.

F3. Source Port Source port number F45. Packet Len
Min

The minimum length
of a packets in a flow.

F4. Destination IP Destination IP address F46. Packet Len
Max

The maximum length
of a packets in a flow.

F5. Destination Port Destination port number F47. Packet Len
Mean

Mean of a flow length

F6. Protocol Type of protocol F48. Packet Len Std Standard deviation of
a flow length

F7. Timestamp Capture time F49. Packet Len Var Minimum nter-arrival
time of a packet

F8. Flow Duration The duration of a flow F50. FIN Flag Cnt FIN-flagged packet
count for a flow

F9. Total Forward
Packets

Total number of forward
packets

F51. SYN Flag Cnt SYN-flagged packet
count for a flow

F10. Total Backward
Packets

Total number of
backward packets

F52. RST Flag Cnt RST-flagged packet
count for a flow

F11. Total Length
Forward Packets

The total length of
forward packets

F53. PSH Flag Cnt PSH-flagged packet
count for a flow

F12. Total Length
Backward Packets

Total length of backward
packets

F54. ACK Flag Cnt ACK-flagged packet
count for a flow

F13. Forward Packets
Length Maximum

The maximum length of
forward packets

F55. URG Flag Cnt URG-flagged packet
count for a flow

93

F14. Forward Packets
Length Minimum

The minimum length of
forward packets

F56. CWE Flag
Count

CWE-flagged packet
count for Flows

F15. Forward Packets
Length Mean

The length Mean of the
forward packets

F57. ECE Flag
Count

ECE-flagged packets
count for a flow

F16. Forward Packets
Length Strand
Deviation

The length variance of
the forward packets

F58. Up/Down
Ratio

Download and
Upload ratio

F17. Backward
Packets Length
Maximum

The maximum length of
backward packets

F59. Packet Size
Average

Size of a package on
average

F18. Backward
Packets Length
Minimum

The minimum length of
the backward packets

F60. Forward
Segment Size
Average

Observed average
packet size moving in
forward direction

F19. Backward Packet
Length Mean

The length Mean of the
backward packets

F61. Backward
Segment Size
Average

Observed average
packet size moving in
backward direction

F20. Backward Packet
Length Strand
Deviation

The length variance of
the backward packets

F62.Forward
Bytes/b Average

Observed average
counts of bytes per
bulk moving in
forward direction

F21.Flow
Bytes/second

Number of bytes of the
flow per second

F63. Forward
Packets/b Average

Observed average
counts of packets per
bulk moving in
forward direction

F22. Flow
Packets/second

Number of packets of the
flow per second

F64. Forward Bulk
Rate Average

The average rate of
bulk data
transmission
observed in the
forward direction.

F23. Flow IAT Mean Mean of Packets flow
inter arrival time

F65. Backward
Bytes/b Average

Observed average
counts of bytes per
bulk moving in
backward direction

F24. Flow IAT Strand
Deviation

Standard deviation of
Packets flow inter arrival
time

F66. Backward
Packets/b Average

Observed average
counts of packets per
bulk moving in
backward direction

F25. Flow IAT
Maximum

Maximum of Packets
flow inter arrival time

F67. Backward Bulk
Rate Average

The average rate of
bulk data
transmission

94

observed in the
backward direction.

F26. Flow IAT
Minimum

Minimum of Packets
flow inter arrival time

F68. Subflow
Forward Packets

Observed subflow
packets counts in
forward direction

F27. Forward IAT
Total

Total time interval of the
forward packets

F69. Subflow
Forward Bytes

Observed subflow
bytes counts in
forward direction

F28. Forward IAT
Mean

Mean time interval of the
forward packets

F70. Subflow
Backward Packets

Observed subflow
packets counts in
backward direction

F29. Forward IAT
Strand Deviation

Standard deviation time
interval of the forward
packets

F71. Subflow
Backward Bytes

Observed subflow
bytes counts in
backward direction

F30. Forward IAT
Maximum

Maximum time interval
of the forward packets

F72. Initially
Forward Window
Bytes

Initially window byte
counts moved in
forward

F31. Forward IAT
Minimum

Minimum time interval
of the forward packets

F73. Initially
Backward Win
Bytes

Initially window byte
counts moved in
backward

F32. Backward IAT
Total

Total time interval of the
backward packets

F74. Forward Act
Data Packets

Number of packets in
the forward direction
with at least one byte
of TCP data payload

F33. Backward IAT
Mean

Mean time interval of the
backward packets

F75. Forward
Segment Size
Minimum

Observed Minimum
size of a segment
moving in the forward
direction

F34. Backward IAT S
Strand Deviation

Standard deviation time
interval of the backward
packets

F76. Active Mean Mean of time when a
flow was active
before becoming idle

F35. Backward IAT
Maximum

Maximum time interval
of the backward packets

F77. Active
Standard Deviation

Standard deviation of
time when a flow was
active before
becoming idle

F36. Backward IAT
Minimum

Minimum time interval
of the backward packets

F78. Active
Maximum

Maximum of time
when a flow was
active before
becoming idle

95

F37. Forward PSH
Flags

PSH-flagged packet
counts moving in the
forward direction

F79. Active
Minimum

Minimum of time
when a flow was
active before
becoming idle

F38. Backward PSH
Flags

PSH-flagged packet

counts moving in the

backward direction

F80. Idle Mean Mean of time when a
flow was idle before
becoming active

F39. Forward URG
Flags

URG-flagged packet
counts moving in the
forward direction

F81. Idle Standard
Deviation

Standard deviation of
time when a flow was
idle before becoming
active

F40. Backward URG
Flags

URG-flagged packet
counts moving in the
backward direction

F82. Idle Maximum Maximum of time
when a flow was idle
before becoming
active

F41. Forward Header
Length

Bytes count for headers
moving in the forward
direction

F83. Idle Minimum Minimum of time
when a flow was idle
before becoming
active

F42. Backward
Header Length

Bytes count for headers
moving in the backward
direction

3.5 Data Pre-Processing

In this research, three steps including quantization, removing irrelevant

features, and normalization are performed to pre-process the dataset. The developed

dataset has different categorical attributes (e.g., protocol, flags, services, classes,

etc.). So, the quantization process is performed to convert the categorical values

96

into numerical values by assigning a unique number to each attribute category.

Quantization is an important task in deep learning because DL methods cannot

process the nominal features directly. In the second step, the irrelevant features

such as Flow ID, source IP address, destination IP address, source port number,

destination port number, timestamp, and protocol has been removed to generalize

the dataset. Removing the irrelevant above-mentioned features prevents the DL

methods from attributing the specific ports, IPs, protocols, etc. as attack nodes and

maintains the generalized nature of DL methods. Lastly, the normalization tasks are

performed to evaluate the dataset for missing and infinities values. The

normalization of data is particularly helpful for the DL methods represented at

several levels. It also helps the learning process of the DL methods may not be

affected by the value ranges of different features of the dataset. In this research, we

used Min-Max normalization to normalize the values of the dataset and it helps the

neural networks to generalize themselves in a more consistent way. This method

can effectively and accurately conduct all data connections. The increasing function

follows the min-max range for the true values which was added during the

classification process. Nevertheless, the values of the features can lie within the

existing range [213] . This method is mathematically formulated as follows:

𝑋𝑛𝑒𝑤 = 𝑋−𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

 (3.1)

After performing the above-mentioned steps for data pre-processing, the

dataset is encoded (the normal flows labeled as 0 and attack flows labeled as 1). As

mentioned earlier, the dataset has 41,242 attacks and 48,390 normal flow records.

97

The imbalance is retained in the dataset to replicate real-world scenarios for the DL

methods (“where the number of normal flows is always greater than attack flows”).

The following formula is used to maintain the imbalanced structure.

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑅) = 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 (max)
𝑡ℎ𝑒 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 (min)

 (3.2)

For all experiments, we divided the dataset into 75% and 25% ratios. 75%

of the dataset is used for training and 25% for the validation of all DL methods for

all subsets of features. The distribution of the dataset for the training and validation

for all subsets is given in Table 3.3.

Table 3.3: Distribution of the dataset for training and testing.

Classes Total Records 75% for Training 25% for Testing

Normal Flows 48,390 36,293 12,097

Attack Flows 41,242 30,932 10,310

 89,632 67,225 22,407

Data Reshaping. A CNN can accept input in three-dimensional image

format (height, width, and channel). CNNs can deal with network traffic data that

is typically one-dimensional. We must add one more step to modify the input traffic

data to meet CNN's resolution parameters. For example, for a subset with 43

features, we convert the 73-dimensional vector into an image with a “7 ×6” shape,

and for the 30-dimensional input vector an image with “6 ×5” is created, etc. In this

research, for all experiments and DL methods, only grayscale images were

generated with a single channel, and we set “1” for the channel number.

98

3.6 Feature Selection

Feature engineering or feature selection is an important pre-processing task

before the training and evaluation of DL methods. Because the presence of

redundant and irrelevant features in a dataset can reduce the performance of the

predictive models, due to the curse of dimensionality and over-fitting problems.

Moreover, even if any model has effective performance with noise and redundancy,

the presence of those features poses some other disadvantages such as increasing

computational and storage costs, increasing time costs and reducing the model

interpretability. So, the feature selection methods can help to mitigate these

problems through the identification and selection of important or relevant features,

and discarding the of redundant and irrelevant features.

Especially, the growing interest in explainable AI encourages the researcher

to focus on improving the interpretability of models. The interpretability of deep or

machine learning models becomes essential because it enables the models to adopt

social requirements such as privacy, fairness, reliability, unbiasedness, and trust.

Since modern and advanced DL methods and applications have an ever-

growing number of features, so, a virtual understanding of prediction outcomes

without dimension reduction becomes quite difficult. On the other side of model

interpretation, for example, data visualization helps to reduce the number of

features. The other advantage of feature selection is for those applications where

the acquisition of data is costly. In such cases, the identification of redundant and

irrelevant features is important to reduce the acquisition cost of data.

99

In current years, the usage of feature selection methods has increased in

deep learning-based network intrusion detection applications. Because the attackers

are using modern technology to launch malicious attacks and they are hard to

detect. So, the detection of these attacks becomes easier and more effective with

optimal features. As deep learning-based intrusion detection systems take a short

time to analyze a large number of traffic time. Thus, the subset of optimal features

can become an optimal solution to improve the performance and operations of the

IDS in terms of accuracy, speed, response time, and simplicity.

In the current research, CIC Flow Meter generates 83 statistical features for

a flow which are described in Table 3.2. Although some of them are important for

the detection of attack flows, some may have no or little effect on the prediction

accuracy of the DL methods, they just upsurge the time and computational costs.

So, we need to select the subset of optimal features that can help the DL methods

to discriminate the attack and normal flows, also accurate, and boost the

classification performance. In all our experiments, the optimal feature selection is

performed using two different methods: (i) Feature Weighting and (ii) Threshold

Tuning. This method selects the optimal features without changing the original

features and then converts them into five different subsets. Let’s consider a given

set of features can be represented as {𝐹1, 𝐹2, 𝐹3, … … … 𝐹𝑑} are 𝑑 features of 𝑋,

where 𝑑 indicates the number of high-dimension features. First, we convert the

high-dimension features 𝑑 to low-dimension features 𝑟(𝑟 < 𝑑) using the above-

mentioned methods and then make a subset of optimal features to recognize the

100

attack and normal flows. The complete procedure of feature selection is described

in Algorithm 2.

Algorithm 2: Procedure of feature selection

Input: Feature Set F = {F1, F2, F3, F4, ………. Fd}, the threshold of weight α,
and the number of selected features r;

Output: Selected feature set F’

 // Calculate the weights of the features

1: F’ Ø

2: for (i = 0; i < d; i++) do

3: r(i) compute weights (Fi)

4: if (|r(i)| < α) then

5: remove feature Fi;

6: else

7: FA [] = Fi

8: end if

9: end for

10: F’ store (FA [])

11: return F’

3.6.1 Feature’s Weighting

In this research, we used iterative wrapper-based feature selection with

Support Vector Machine (SVM). The whole dataset is converted into five different

subsets with optimal features. SVM is a powerful classifier that assigns weights to

all the features while predicting the output. The SVM allocates a weight that can be

101

used to rank the significance of the feature. It divides the various classes using a

hyperplane and employs a kernel function to translate the Initially input feature

space to a high-dimensional feature space. The following procedure is used to

compute the weights for a binary soft margin SVM and rank the weights.

Let’s consider {𝑋, 𝑌} is a training dataset with {1, −1} are labels, where 𝑋

represents the input features and 𝑌 represents labels. The training dataset has 𝑘

samples. ∅ Feature mapping is applied to the inputs, then the decision function can

be formulated as follows:

𝑓(𝑋) = (𝜔, ∅(𝑋)) + 𝑏 (3.3)

In the above Equation 3.3 𝑏 and 𝜔 defined the properties of the SVM

hyperplane. The training goal of SVM is to achieve the optimal values for 𝑏 and 𝜔

that maximize the distance between the hyperplane and the mapped training

samples ∅(𝑋). The loss function (𝐿) can be minimized by applying the quadratic

penalties to the misclassified examples.

𝑚𝑖𝑛𝜔,𝛿 𝐿 = 1
2

||𝜔||2 + 𝐶 ∑ 𝛿𝑖
2𝑘

𝑖=1 (3.4)

∀𝑖, 𝑦𝑖𝑓(𝑥𝑖) ≥ 1 − 𝛿𝑖 (3.5)

Where 𝐶 represents the penalty factor and 𝛿𝑖 are slack variables

representing the distances by which the soft margins are despoiled by the

misclassified examples. 𝑥𝑖 are input variables and 𝑦𝑖 represents the labels of a

single training sample. So, the weights are calculated as follows:

102

𝑊 = ∑ 𝑎𝑖
∗𝑦𝑖

𝑘
𝑖=1 ∅ (𝑥𝑖) (3.6)

Where 𝑎𝑖
∗ is the solution of:

𝑚𝑖𝑛𝑎𝑖 𝑊(𝑎𝑖) = ∑ 𝑎𝑖 + 1
2

∑ 𝑎𝑖𝑎𝑗
𝑘
𝑖,𝑗=1

𝑘
𝑖=1 𝑦𝑖𝑦𝑗(𝐾(𝑥𝑖, 𝑥𝑗) + 1

𝐶
𝜗𝑖,𝑗) (3.7)

𝑠. 𝑡. ∑ 𝑎𝑖𝑦𝑖 = 0𝑘
𝑖=1 (3.8)

∀𝑖, 𝑎𝑖 ≥ 0

Where 𝜗𝑖,𝑗is the Kronecker symbol and 𝐾(𝑥𝑖, 𝑥𝑗) = { ∅ (𝑥𝑖), ∅ (𝑥𝑗)}

represents the Gram matrix of the training samples. So, the SVM weights 𝜔 can be

used to score the feature’s importance. The feature with a higher weight is

considered more important compared to the feature with a lower weight. It means

that the features with higher weights are more important for detecting attack flows.

Table 3.4. Described the SVM assigned absolute weights values for the distinct

features. After obtaining the weight values for all the features, a threshold tuning

method is used to derive an optimal threshold value. During each iteration, this

optimal threshold value is used to evaluate the feature weight and select the optimal

features. The features with weights equal to or greater than the threshold

(𝐹𝑛(𝑤𝑛) ≥ 𝛼) were selected and placed into the corresponding subset. Then, the

optimal feature subsets are given as input to the DL methods for classification.

Table 3.4: List of features with assigned weights by SVM.

Feature Code and Names Assigned Weights Feature Code and
Names

Assigned Weights

F1. Flow ID - F43. Forward Packets/s 6.17

103

F2. Source IP - F44. Backward
Packets/s

5.25

F3. Source Port - F45. Packet Len Min 1.17

F4. Destination IP - F46. Packet Len Max 2.53

F5. Destination Port - F47. Packet Len Mean 1.22

F6. Protocol - F48. Packet Len
Standard deviation

5.12

F7. Timestamp - F49. Packet Len Var 1.05

F8. Flow Duration 4.51 F50. FIN Flag Cnt 2.75

F9. Tot Forward Packets 2.05 F51. SYN Flag Cnt 6.23

F10. Tot Backward
Packets

4.30 F52. RST Flag Cnt 1.94

F11. Tot Len Forward
Packets

4.70 F53. PSH Flag Cnt 1.56

F12. Tot Len Backward
Packets

9.48 F54. ACK Flag Cnt 2.07

F13. Forward Packet Len
Max

1.58 F55. URG Flag Cnt 0.00

F14. Forward Packet Len
Min

2.92 F56. CWE Flag Count 0.00

F15. Forward Packet Len
Mean

2.13 F57. ECE Flag Cnt 0.00

F16. Forward Packet Len
Standard deviation

5.70 F58. Down/Up Ratio 4.82

F17. Backward Packet
Len Max

1.16 F59. Packet Size
Average

2.10

F18. Backward Packet
Len Min

3.78 F60. Forward Segment
Size Average

2.13

F19. Backward Packet
Len Mean

2.81 F61. Backward
Segment Size Average

2.81

F20. Backward Packet
Len Standard deviation

3.38 F62. Forward Bytes/b
Average

0.00

F21. Flow Bytes/s 1.01 F63. Forward Packets/b
Average

0.00

104

F22. Flow Packets/s 1.55 F64. Forward Blk Rate
Average

0.00

F23. Flow IAT Mean 1.81 F65. Backward Bytes/b
Average

0.00

F24. Flow IAT Standard
deviation

3.39 F66. Backward
Packets/b Average

0.00

F25. Flow IAT Max 1.16 F67. Backward Blk
Rate Average

0.00

F26. Flow IAT Min 1.82 F68. Subflow Forward
Packets

2.05

F27. Forward IAT Tot 4.18 F69. Subflow Forward
Bytes

4.70

F28. Forward IAT Mean 1.09 F70. Subflow
Backward Packets

4.30

F29. Forward IAT
Standard deviation

1.30 F71. Subflow
Backward Bytes

9.48

F30. Forward IAT Max 6.00 F72. Initial Forward
Win Bytes

0.00

F31. Forward IAT Min 1.86 F73. Initial Backward
Win Bytes

1.16

F32. Backward IAT Tot 5.72 F74. Forward Act Data
Packets

1.05

F33. Backward IAT
Mean

9.59 F75. Forward Segment
Size Minimum

0.00

F34. Backward IAT
Standard deviation

8.10 F76. Active Mean 1.48

F35. Backward IAT
Maximum

9.67 F77. Active Standard
deviation

3.02

F36. Backward IAT
Minimum

1.27 F78. Active Max 1.17

F37. Forward PSH Flags 0.00 F79. Active Min 7.51

F38. Backward PSH
Flags

1.56 F80. Idle Mean 6.81

F39. Forward URG Flags 0.00 F81. Idle Standard
deviation

1.61

105

F40. Backward URG
Flags

0.00 F82. Idle Maximum 1.07

F41. Forward Header
Len

2.52 F83. Idle Minimum 5.27

F42. Backward Header
Len

2.09

3.6.2 Threshold Tuning

An optimal threshold value is calculated from feature weights using a

simple threshold tuning method. This method takes absolute feature weight values

from minimum to maximum and then returns an optimal value between the given

range. The best threshold value is computed as the value which reduce the features

dimensions. So, based on the optimal values we make the five different subsets of

the features to evaluate the performance of the DL methods.

3.7 Deep Learning Methods and Hyper-Parameters Settings

3.7.1 Recurrent Neural Networks (RNNs)

Generally, RNNs are used to deal the problems related to time series,

because these methods have the capabilities to learn the features from the time-

series data compared to CNNs and other DL methods. For example, one sentence

in the natural language is considered a type of time-series data. It means that each

word in a sentence has a correlation with the other words so, the previous and

current words can be used as input to predict the next word. Further, the feed-

forward methods cannot store or remember the previous input information, that’s

why these methods are not suitable for tasks related to time-series data. RNNs can

106

learn from data sequentially. In a neural network, the information related to

previous inputs can be stored in an internal state and the RNN methods can learn

from time-series data. In intrusion detection, the malicious traffic may be hidden

within the normal traffic, so, the RNNs can perform better than others for attack

detection [214], [215]. Figure 3.5 shows a directed cell, which can be used to

construct a connection among various neurons.

Figure 3.5: General diagram of RNN architecture.

An RNN consists of input, hidden, and output units. Let’s consider the input

units {𝑥0, 𝑥1, 𝑥2, … … … 𝑥𝑡 … … … 𝑥𝑡+1}, hidden units

{ℎ0, ℎ1, ℎ2, … … … ℎ𝑡 … … … ℎ𝑡+1}, and output units

{𝑦0, 𝑦1, 𝑦2, … … … 𝑦𝑡 … … … 𝑦𝑡+1} for an RNN. So, in Figure 3.5, it is shown that at

time step 𝑡, RNN takes as input the current sample 𝑥𝑡 and the previously hidden

representation ℎ𝑡−1 to obtain the currently hidden representation ℎ𝑡, and it is

performed using the following mathematical formulation:

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1) (3.9)

107

Where 𝑓 represents an encoder function for an RNN. For time step 𝑡, the

most commonly useable vanilla for the RNN can be formulated as follows:

ℎ𝑡 = 𝑓(𝑊ℎ𝑥,𝑥𝑡 + 𝑊ℎ𝑦,ℎ𝑡−1 + 𝑏ℎ) (3.10)

𝑦𝑡 = 𝑔(𝑊ℎ𝑦,ℎ𝑡−1 + 𝑏𝑦) (3.11)

In the above Equations 3.10, 3.11 𝑓 and 𝑔 represent the encoder and

decoder, respectively and 𝜃 = {𝑊ℎ𝑥, 𝑊ℎℎ, 𝑊ℎ𝑦, 𝑏ℎ, 𝑏𝑦} is a set of parameters.

During a forward pass, RNN can capture the dependencies between the current

sample 𝑥𝑡 and the previous sample 𝑥𝑡−1 by integrating the previously hidden

representation ℎ𝑡−1. RNN also can capture arbitrary-length dependencies in the

data. However, RNNs do not produce effective results while dealing with long-term

dependencies in the data due to gradient vanishing problems. Other methods such

as Long Short-Term Memory (LSTM) etc., have solved the gradient vanishing and

gradient exploding problems of the RNNs. In recent years, the usage of RNN and

its variants have increased in different applications such as machine translation,

intrusion detection, etc. The parameter settings for the RNN which is used in this

research are given in Table 3.5.

108

3.7.2 Convolutional Neural Networks (CNNs)

A convolutional neural network is a type of multi-layer ANN that is mostly

used for intrusion detection. CNNs run a simple mathematical operation which is

known as convolution. Convolution is a specialized type of linear operation. These

networks have at least one convolutional layer rather than general matrix

multiplication [216]. Generally, CNNs composed of a convolutional, pooling, and

fully connected layer. CNNs can automatically learn and extract complex attributes.

The convolutional layer provides an advanced representation of the attributes [217].

The CNN architecture with one layer is shown in Figure 3.6.

Figure 3.6: Structural diagram of CNN architecture.

 The convolutional operation for any CNN can be formulated as follows:

𝑋𝑖
𝑎 = ∅[∑ 𝑋𝑗

𝑎−1 × 𝑊𝑖𝑗
𝑎 + 𝑏𝑗

𝑎
𝑖𝜖𝑘𝑖] (3.12)

Where 𝑋𝑖
𝑎 represents the attribute map 𝑖 of the convolutional layer 𝑎. The

∅ demonstrate an activation function. 𝑘𝑖 represent the set of input features for the

109

layer (𝑎 − 1). 𝑊𝑖𝑗
𝑎 is the connection weight between the feature 𝑖 of the

convolutional layer 𝑎 and feature j of the convolutional layer (𝑎 − 1). The 𝑏𝑗
𝑎 is

used to show the deviation among the related layers.

The pooling layer is next to the convolutional layer. This layer aims to

reduce the size of the feature map. The operations of the pooling layer are

responsible for the proper identification of important features, reducing the

complexities in the data, and improving the network tolerance against

environmental changes. The following mathematical equation demonstrates the

operation in the pooling layer.

𝑋𝑖
𝑎 = ∅[𝛽𝑖

𝑎𝑐(𝑋𝑗
𝑎−1 + 𝑏𝑗

𝑎)] (3.13)

In Equation 3.13, 𝛽 represents the weighting matrix while 𝑐 is the sub-

sampling function. In CNNs, the classification process is performed from

convolutional layers to pooling layers through fully connected layers. The output

function for the fully connected layers can be formulated as follows:

𝑌𝑚 = ∅[𝑊𝑚𝑋𝑚−1 + 𝑏𝑚] (3.14)

In the above Equation 3.14, the layer index is represented by the 𝑚, 𝑌𝑚

indicates the output of the fully connected layer, 𝑋𝑚−1 is the fully connected layer

input, 𝑊𝑚 is the weighting coefficient, and 𝑏𝑚 term is deviation [56]. The hyper-

parameter setting of the CNN which is used in this research is given in Table 3.5.

110

3.7.3 Multilayer Perceptron (MLP)

It maps the input data to output in a feed-forward way [218]. The general

architecture of the MLP is shown in Figure 3.2. Its architecture has multiple layers

of interconnected neurons and each layer is fully connected with its previous and

next layers [219]. Our research used one hidden layer for the MLP method to reduce

its complexity and computing resources. We used the ReLu activation function in

hidden layers and the sigmoid activation function at the output layer. Table 3.5

shows the parameter settings of the used MLP method. The architecture of MLP is

shown in Figure 3.7.The hit-and-trial method is used for all the DL classifiers to

find the best parameters.

Figure 3.7: The architecture of MLP.

During the training of MLP, the connection weights are adapted to minimize

the difference between the obtained and actual output. To achieve this, we used the

backpropagation method. The output of each neuron is referred to as a weight unit,

followed by an activation function to discriminate the linearly or nonlinearly

111

separable data [220]. The following mathematical equation can be used to calculate

the output activation 𝛼𝑙+1 at layer 𝑙 + 1.

𝛼𝑙+1 = ∅(𝑊𝑙𝛼𝑙 + 𝑏𝑙) (3.15)

Where 𝑙 indicates the layer, ∅ is the activation function (i.e., rectified linear

unit, hyperbolic tangent, sigmoid), 𝑊𝑙 represents the weights, and 𝑏𝑙 is biased at

the particular layer. For example, if we have MLP with 𝑚 layers then the first and

last layers can be formulated as follows:

 𝛼𝑙 = 𝑥

ℎ𝑊,𝑏(𝑥) = 𝛼𝑚 (3.16)

The back-propagation method is used to decide the learning weights and

bias and to get an approximation of unknown input and output relation. The

objective function described below reduces the divergence between expected and

actual outcomes.

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 1
2

||ℎ𝑊,𝑏(𝑥) − 𝑦||2 (3.17)

3.7.4 Deep Neural Networks (DNNs)

Generally, a vector format is used in the neural networks for the inputs.

These inputs then pass through numerous hidden layers. The network's output layer

shows the output outcomes of processing from hidden layers finally. Each of the

network's hidden layers contains several neurons linked to the previous neurons.

Each layer's neurons function independently and have no connections to other

112

neurons. The final completely connected layer's output layer is in charge of

determining a grade for each class. CNNs frequently aren't the best choice for

regular data. So, DNNs [221], [222] take advantage of the inputs containing

accurate examples and appropriately restrict the network's architecture. An ANN is

a term that describes a subfield of machine learning known as deep learning. The

term "deep learning" is exceedingly popular in artificial intelligence. The neural

network's hidden layer count increases. On a large scale, ANNs learn from

observational data. The original format of any neural network is shown in Figure

3.8.

 Figure 3.8: Diagram of DNN architecture.

An ANN is typically created by embedding two sets of neurons in the input

and output layers. The input layer receives the features 𝑋𝑖, and the output layer

113

responds with a view of the features. The output layer creates a bias and a set of

weights for the input features. The results are then produced by applying non-linear

or linear transfer functions, also called non-linear or linear transfer functions, also

referred to as "activation functions." A building block of actual neural networks is

the activation law for neurons. The following equation is used to calculate the total

weight for the input feature 𝑋𝑖 and allocated weight to it 𝑊𝑖 from an N-dimensional

features vector.

𝑍 = ∑ (𝑋𝑖 . 𝑊𝑖) + 𝑏𝑛
𝑖=1 (3.18)

Where 𝑊𝑖 is the weight for the input vector and 𝑏 represents the bias term.

In neural networks, the bias term is a significant factor for arranging activator

flexibility when calculating neurons’ output. The ANN architecture performance is

specified using the activation function. The activation function terms the output of

a neuron corresponding to given input features. Researchers have proposed several

activation functions, and some specific parameters, and new functions have also

been investigated in recent years. There are some commonly used activation

functions such as Rectified Linear units (ReLu), Sigmoid (logistic), Hyperbolic

Tangent (Tanh), etc. The range of a sigmoid function is between 0 and 1 and it can

be easily understood and implemented. But, it has a few drawbacks: a) slow

convergence, and b) vanishing gradient problems. The sigmoid activation function

is mathematically formulated as follows:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1+exp (−𝑥)

 (3.19)

114

 The output of the Tanh activation function is zero-centered because it has

a range between -1 to 1(e.g., -1 < output <1). Although this method simplifies

optimization more than the sigmoid function, vanishing gradient issues still exist.

The mathematical formula of the Tanh function is given in Equation 3.20.

𝑇𝑎𝑛ℎ(𝑥) = 1−𝑒𝑥𝑝 (−2𝑥)
1+𝑒𝑥𝑝 (−2𝑥)

 (3.20)

ReLu is known as a general activation function, easy to understand,

efficient, and fast, and most widely used in different cases. ReLu is simple because

it does not require any exponential computation and normalization and also has

simple mathematical operations compared to Tanh or sigmoid activation functions.

Furthermore, this function rectifies and avoids the vanishing gradient problems and

also has improved in convergence. This function is mathematically formulated in

Equation 3.21.

𝑅𝑒𝐿𝑢 (𝑥) = max(0, 𝑥) = {0 , 𝑥 < 0
𝑥 , 𝑥 ≥ 0} (3.21)

Furthermore, The Tanh or sigmoid activation functions are unsuitable for

the hidden layers because if x is too small or too large that makes the gradient very

small and slows down the gradient descent. For hidden layers, the ReLu activation

function is the right choice, its derivative is 0 when x is negative and 1 when x is

positive.

For binary classification problems, given that the output value is either 1 or

0, the sigmoid function, compared to Relu or Tanh, is appropriate for the output

layer. In this research, a DNN which consists of three hidden layers shown in Figure

115

3.5 is used. The development of hidden layers with activation functions makes its

architecture deeper to solve complicated problems. we used ReLu activation

functions in hidden layers and sigmoid activation functions in the output layer. The

hyper-parameters setting of DNN is given in Table 3.5.

3.7.5 Long Short-Term Memory (LSTM)

Another commonly useable Deep learning algorithm is Long Short-Term

Memory (LSTM), which can learn the data's short-term dependencies. For some

DL algorithms such as DNNs, the inputs can be considered as independent of each

other. These algorithms produce fixed-sized outputs by accepting fixed-sized

inputs. They cannot handle the inputs with varying sequence lengths or output data.

Recurrent Neural Networks (RNNs) overcome these drawbacks by processing the

sequences of variable or fixed lengths. Compared to DNNs, RNNs compute the

next output by using all the information of the previous inputs (i.e., previous

timestamp information effect on the prediction of current timestamp). So, RNNs

can learn or capture short-term dependencies between input data and outputs. The

architecture of LSTM with one hidden layer which is used in this research is given

in Figure 3.9.

116

Figure 3.9. The architecture of LSTM.

RNNs can perform better when they used past or recent information to

predict the next output. However, with the large gaps between the relevant

information, RNNs cannot produce good results. Because they have vanishing

gradient problems, which arise with exponential decay in back-propagated error.

LSTM is an advancement in the RNNs, that utilizes the inputs at the current

timestamp and the previous timestamps information to produce outputs. In their

architecture, they have layers of neurons that can capture data’s long-term

dependencies and can remember selective information for long periods. They have

the power to decide what previous information they can retain and what information

they can discard from memory. LSTMs use three gates such as input, forget, and

output while adding and discarding information, and producing outputs.

117

Input/Update Gate: It helps the LSTM to decide which information is

going to store in the cell state. First, the input gate uses a sigmoid activation

function to decide the updates in the information and then a new vector is added to

the cell state through the Tanh activation function. After that, LSTM updates the

cell state with new vector values and forgets the information that information who

was decided to forget. It can be calculated using the following mathematical

formulas:

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 = 𝑖𝑡 = ∅(𝑊𝑖 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖) (3.22)

𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑑𝑎𝑡𝑒 𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒 = 𝐶𝑡
′ = 𝑇𝑎𝑛ℎ(𝑊𝐶 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝐶) (3.23)

Forget Gate: It looks at the input and previously received hidden layer data

to decide which information needs to delete from the cell state using the sigmoid

activation function (i.e., 0 means delete it, and 1 means keeps it). This gate is

mathematically formulated as:

𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒 = 𝑓𝑡 = ∅(𝑊𝑓 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓) (3.24)

𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒 = 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡
′ (3.25)

Output Gate: It executes the sigmoid activation function to decide which

part of LSTM cells is going to output. After that, the output results are calculated

using Tanh (i.e., a value between 1 and -1) and also decide which output

information is passed to the next neuron. The mathematical formulation of this gate

is as follows:

118

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 = 𝑜𝑡 = ∅(𝑊𝑜 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜) (3.26)

𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 = 𝐻𝑡 = 𝑇𝑎𝑛ℎ(𝐶𝑡 × 𝑜𝑡) (3.27)

In the above Equations 3.22-3.27 𝐶 represents the state of the cell, ∅

represent the sigmoid activation function, 𝑇𝑎𝑛ℎ is the hyperbolic Tangent

activation function, 𝑋𝑡 indicates the inputs at the time 𝑡, 𝐻𝑡−1 are output, the

weights are represented by 𝑊𝑖, 𝑊𝐶, 𝑊𝑓, 𝑊𝑜, and biases are represented using 𝑏𝑖, 𝑏𝐶,

𝑏𝑓, 𝑏𝑜. The architecture of the LSTM can help to address the vanishing gradient

problems in the RNNs. The hyper-parameter settings for LSTM architecture are

given in Table 3.5.

Table 3.5: Hyper-parameters settings of DL methods.

Hyper-parameters
settings

MLP DNN CNN RNN LSTM

Number of hidden
layers

1 3 1 1 1

Hidden layer neurons 128 128 128 128 128

Activation function in
hidden layers

ReLu ReLu ReLu Tanh

Tanh

Activation function at
the output layer

Sigmoid

Sigmoid Sigmoid

Sigmoid

Sigmoid

Learning rate (p) 0.1 0.1 0.1 0.1 0.1

Optimizer adam adam adam adam adam

Epochs 20 20 20 20 20

Batch size 32 32 32 32 32

119

 Algorithm 1: Training of deep learning methods for attack detection

Input: dataset: data-subsets, learning rate: learning rate (𝑝), optimizer: adam,
training rounds: epochs

Output: accuracy: acc

1: Set the parameters of the DL classifiers according to TABLE 2.

2: Initialize a parameter matrix using random values

3: for each training round, do

4: select a subset from the dataset to form a batch for the training

5: if the number of training rounds%100=0 then

6: return acc

7: end if

8: input batch and calculate predicted value y

9: Calculate the loss value between the actual value of the label 𝑦 and the
predicted value 𝑦

10: Calculate loss value for gradient descent direction with optimizer adam

11: Update the parameter matrix with the gradient descent direction and learning
rate (𝑝)

12: if training rounds reach the epochs, then

13: stop training of DL classifier

14: end if

15: end for

120

3.8 Summary

In this chapter, first, we give an overview of the proposed system for

detecting botnet-based DDoS attacks in an SDN network. Second, explain the

simulated dataset, virtual simulation setup and data collection, design of attack and

normal traffic, data pre-processing, selection of optimal features. Finally we discuss

the architectures of DL methods and their hyper-parameter settings.

121

CHAPTER 4

SIMULATION RESULTS FOR ATTACK DETECTION

This chapter provides a detailed analysis of the results achieved using DL

methods. The performance of the methods is evaluated on the generated dataset and

in real time by conducting a series of experiments.

4.1 Evaluation Metrics

Different metrics can be used to assess the performance and efficacy of

machine learning- or deep learning-based intrusion detection techniques. These

evaluation metrics are accuracy, Detection Rate (DR), precision, F1 score, and

False Positive Rate (FPR). Furthermore, these evaluation metrics are computed

using the confusion matrix of network anomaly classification. The confusion

matrix has four different parameters as True Positive (TP), True Negative (TN),

False Positive (FP), and False Negative (FN). These parameters for any deep

learning-based IDS can be explained as follows:

 True Positive (TP): indicates the number of attack records correctly

identified as botnet-based DDoS attacks.

 True Negative (TN): indicates the number of normal records accurately

detected as normal.

 False Positive (FP): indicates the inaccurately detected number of normal

records as an attack traffic.

122

 False Negative (FN): indicates the number of attack records incorrectly

identified as normal traffic.

The following mathematical equations can be used to compute the

evaluation mentioned above metrics:

Accuracy: The accuracy evaluation metric is the proportion of the

accurately identified number of attacks and normal records to the all-over records.

This can be formulated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

 (4.1)

Detection Rate (DR): DR is the proportion of correctly identified accurate

attack records. It is also called True Positive Rate (TPR) and recall or sensitivity.

This metric is mathematically computed using the following formula:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐷𝑅) 𝑜𝑟 𝑇𝑃𝑅 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 (4.2)

Precision: A proportion of correctly identified attack records are accurate

attack records.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 (4.3)

F1 Score: This metric is computed through the harmonic means of recall

and precision. This metric is considered more reliable than the accuracy when the

DL methods are trained using imbalanced datasets. The following mathematical

equation can be used to compute this metric:

123

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

 (4.4)

False Positive Rate (FPR): The ratio of the incorrectly detected number of

normal records as attack records. The following mathematical equation can be used

to compute this metric:

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

 (4.5)

So, if the values of accuracy, detection rate, precision, and F1 score are high

for any implemented DL/ML method the same way, the value of FPR is low. That

method is considered best for botnet-based DDoS attack detection.

4.2 Feature Selection Results

The importance of each feature present in the dataset is calculated using

features weighting and threshold tuning mechanism and then split the whole dataset

into five different subsets. As discussed earlier, in this research, first, we used SVM

to assign the weight to each feature, and then the weighted values were used by the

tuning methods to determine an optimal threshold value for feature selection. The

tuning method automatically compares the weight value of each feature with the

threshold value. The features with equal and higher weight values than the threshold

value are picked and placed in a subset of features. First, all features are placed in

a set called Subset-1. Second, the tuning method returns an optimal value of “1.8”,

resulting in 43 features being selected with weights {α ≥ 1.80 } and placed in

subset-2. For subset-3, the tuning method returns a “2.70” optimal value, so the

features with weights {α ≥ 2.70} are selected for this subset. Similarly, the features

124

with weights {α ≥ 3.15} are picked and placed in subset-4. Lastly, a threshold

value of {α ≥ 4.90} is used to select features for subset-5. Table 4.1 shows the

description of selected features for each subset. Figure 4.1 shows an example of

selected features for subset-3.

Table 4.1: Number of selected features for each subset based on optimal
threshold value.

Feature Sets Threshold value Number of Selected Feature

Subset-1 - 76

Subset-2 1.80 43

Subset-3 2.70 30

Subset-4 3.15 23

Subset-5 4.90 15

Figure 4.1: List of optimal features in subset-3.

125

4.3 Effectiveness of the DL Methods for Attack Detection

The effectiveness of the DL methods for detecting botnet-based DDoS

attacks in an SDN environment is also verified in this research. We used identical

structures with minimum values of the hyper-parameters for the DL methods to

simulate and overserve their classification performances. As discussed in the above

section, the confusion matrix is used to measure the performance evaluation metrics

for each DL method for all subsets of features. The general structure of the

confusion matrix is shown in Figure 4.2.

Figure 4.2. The general structure of a confusion matrix for anomaly detection.

4.4 Structural Performance of the DL Methods

Five DL approaches (MLP, DNN, CNN, RNN, and LSTM) are tested for

classification performance to detect botnet-based DDoS attacks. The five feature

subsets are divided into training and testing sets individually. The DL method uses

the same neural network architecture, including learning rates, optimizers, batch

126

sizes, hidden layer counts, hidden layer neuron counts, hidden and output layer

activation functions, and hidden and output layer number of hidden layers. It is

observed that on the same subset of features with the same network structure, the

methods produced variable results. The main aim is to adopt the same structure for

all the methods to find the best method without increasing the method’s

complexities.

4.5 Results of Subset-1 Features

This section describes the results of the DL methods using a set of 76

features collected in an SDN environment.

4.5.1 Accuracy and Loss Trends of Methods

Figure 4.3 shows the change in training and validation accuracy and loss

across the total number of epochs for several DL algorithms using 76 features. After

20 iterations, it is shown that the accuracy and loss trends for the training and

validation sets suited to one another converge. The maximum training accuracies

of DL methods, RNN, CNN, MLP, DNN, and LSTM using 76 features are 98.64%,

98.91%, 97.47%, 98.94%, and 98.54%, respectively. The maximum achieved

validation accuracies of methods are 98.68%, 98.85%, 98.01%, 99.00%, and

98.94%, respectively.

It is also observed that the accuracy curves of CNN and DNN are more

stable than the other methods, and the accuracy curve of MLP continuously

fluctuates during each epoch. Since more, the MLP method has more noise in the

127

loss curves. Because dropout layers are used when the techniques are being trained,

it is also seen that the validation loss methods have more minor relative losses than

the training loss methods. The noise that was not injected during the validation

period is made more apparent by the dropout layers. As a result, the error is

decreased during the validation phase due to greater generalization to address

overfitting issues.

4.5.2 Performance Evaluation Using Confusion Matrix

The performance of the DL methods using a set of 76 features is also

evaluated using the confusion matrix. It summarizes the false and correct

predictions. The confusion matrix for all five methods is given in Figure 4.4. It is

observed that the normal data recognition ability of RNN is 98.17%, CNN is

98.18%, MLP is 92.17%, DNN is 97.71%, and LSTM is 98.56%. Similarly, RNN,

CNN, MLP, DNN, and LSTM recognition abilities for attack data are 99.28%,

99.37%, 99.94%, 99.75%, and 99.37%, respectively. It is also noticed that the

identifying attacks underreporting rate (i.e., False Negative Rate (FNR) is 2.16%,

2.16%, 11.11%, 2.77%, and 1.69%, respectively. MLP has a greater FNR of

11.11% compared to the other methods. High sensitivity is needed for the DL-based

detection methods because the attack traffic can harm the SDN controllers. Among

all the methods, MLP could perform better using the full feature set.

128

(a) Training Accuracy Curves (b) Validation Accuracy Curves

(c) Training Loss Curves (d) Validation Loss Curves

Figure 4.3: Accuracy and Loss Curves of DL methods using 76 features.

129

(a) RNN (b) CNN

(c) MLP (d) DNN

(e) LSTM

Figure 4.4: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 76
features.

130

4.6 Results of Subset-2 Features

This section discusses the results of the DL methods using a set of 43

optimal features collected through the feature selection method.

4.6.1 Accuracy and Loss Trends of Methods

The classification performance of the DL methods using a set of 43 optimal

features is evaluated through training accuracy, training loss, validation accuracy,

and validation loss curves shown in Figure 4.5. Similarly, it is observed that after

the 20 epochs, the training and validation curves start to converge, and we stopped

the training and validation processes on 20 epochs. For the 43 features set, the

maximum achieved accuracy by the RNN is 99.22%, CNN is 99.40%, MLP is

99.14%, DNN is 99.37%, and LSTM is 98.95%. Similarly, the validation

accuracies of the methods are 99.33%, 99.43%, 99.24%, 99.53%, and 99%,

respectively. For subset-2, the DNN method achieved maximum validation

accuracy compared to others. The accuracy curves of the MLP are stable with 43

features compared to the 76 features set. But the LSTM method does not produce

good results using the 43 feature set and has more fluctuation in the curve than other

methods. Compared to other algorithms, the loss ratio of MLP is more excellent.

Although MLP achieved better results using the 43 features set compared to the 76

features set due to its more excellent loss ratio, it is unsuitable for attack detection.

131

(a) Training Accuracy Curves (b) Validation Accuracy Curves

(c) Training Loss Curves (d) Validation Loss Curves
Figure 4.5: Accuracy and Loss Curves of DL methods using 43 features

4.6.2 Performance Evaluation Using Confusion Matrix

Similarly, as in the above section, the confusion matrix is used to evaluate

the DL methods using 43 features. The confusion matrix of all methods using 43

features is shown in Figure 4.6. We can observe using Figure 4.6 that the

recognition abilities for the normal data of methods RNN, CNN, MLP, DNN, and

132

LSTM are 99.32%, 99.58%, 99.52%, 99.57%, and 99.39%, respectively. The attack

data recognition ability of RNN is 99.24%, CNN is 99.23%, MLP is 99.23%, DNN

is 99.47%, and LSTM is 98.85%. The False Negative Rates (FNRs) of all the

methods are 0.80%, 0.48%, 0.55%, 0.50%, and 0.69%, respectively. So, we can

conclude that all the methods have over 99% recognition ability for normal and

attack data using a set of 43 optimal features except LSTM. The FNR of CNN is

lower than the other methods. Considering the sensitivity metric, we can conclude

that CNN can detect the attack using 43 optimal features.

4.7 Results of Subset-3 Features

A set of 30 optimal features are selected and placed in subset-3. The

classification performance of the DL techniques is assessed using 30 features in

this section. The accuracy and loss curves and confusion matrix is used for

evaluation.

4.7.1 Accuracy and Loss Trends of Methods

The training accuracy, validation accuracy, training loss, and validation loss

of all the methods using a set of 30 features are shown in Figure 4.7. During the

training and validation phase, it is also observed that these curves start to converge

on 20 epochs. So, we stop the further training and validation of the DL methods

using 30 features at epoch number 20. The maximum achieved training accuracies

by the DL methods (i.e., RNN, CNN, MLP, DNN, LSTM) with 30 features are

99.21%, 99.31%, 99.12%, 99.27%, 99%, and their validation accuracies are

133

99.25%, 99.37%, 99.33%, 99.30%, and 99.16%, respectively. For the subset-3

features, it is observed that all the DL methods achieved over 99% training and

(a) RNN (b) CNN

(c) MLP (d) DNN

(e) LSTM
Figure 4.6: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 43
features.

134

validation accuracies. CNN has become a top performer in training and

validation accuracies using 30 features. The loss curve of the CNN is also more

stable than the other methods. Although all the methods achieved maximum

accuracies over 90%, MLP again has more fluctuation in its accuracy curves,

indicating MLP is not suitable for attack detection in the adopted scenario.

Furthermore, the DL methods achieved good accuracies, so we can conclude that

the set with 30 features becomes an optimal set of features.

4.7.2 Performance Evaluation Using Confusion Matrix

Similarly, as in the above two sections, the performance of the DL methods

using a set of 30 features is analyzed through a confusion matrix. Figure 4.8 shows

the confusion matrixes of all the methods using 30 features. For the subset-3

features, the recognition ability for normal data of RNN is 99.33%, CNN is 99.65%,

MLP is 99.49%, DNN is 99.24%, and LSTM is 99.25%. It is also observed that the

attack recognition ability of RNN is 99.14%, CNN is 99.04%, MLP is 99.05%,

DNN is 99.29%, and LSTM is 99.05%. So, the recognition abilities of all the DL

methods for the normal and attack data is over 99% using 30 features. Since more,

the FNR of RNN is 0.78%, CNN is 0.40%, MLP is 0.59%, DNN is 0.89%, and

LSTM is 0.87%. Here, we can conclude that the CNN method has more than 99%

recognition abilities for normal and attack data and has lower FNR than other

methods using 30 optimal features. Compared to previous methods employing 30

features, the CNN method can successfully identify the botnet-based DDoS attack.

135

(a) Training Accuracy Curves (b) Validation Accuracy Curves

(c) Training Loss Curves (d) Validation Loss Curves
Figure 4.7: Accuracy and Loss Curves of DL methods using 30 features

136

(a) RNN (b) CNN

(c) MLP (d) DNN

(e) LSTM
Figure 4.8: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 30
features.

137

4.8 Results of Subset-4 Features

A set of 23 features is used in this section to assess the classification

performance of the DL approaches. Their performance is analyzed using accuracy,

loss curves, and confusion matrix.

4.8.1 Accuracy and Loss Trends of Methods

Here, the DL methods are trained and validated using a set of 23 optimal

features, and their training and validation accuracy curves and training and

validation loss curves are depicted in Figure 4.9. The training and validation

processes of all the methods are stopped on epoch 20 because, at 20 epochs, all the

methods start to converge. It is observed in Figure 4.9 that the maximum achieved

training accuracy by the RNN is 99.21%, CNN is 99.34%, MLP is 99.05%, DNN

is 99.28%, and LSTM is 98.50%. Similarly, the maximum achieved validation

accuracy by the RNN is 99.22%, CNN is 99.29%, MLP is 99.31%, DNN is 99.25%,

and LSTM is 99.06%. The maximum training and validation accuracies achieved

by all the methods using 23 features is over 99%, except for LSTM. So, among all

the DL methods, the CNN method achieved the highest training accuracy using 23

features, and the validation accuracy is also reasonable compared to RNN, DNN,

and LSTM. Here, we also observed that the validation accuracies of the DL

methods become lower than training accuracies, indicating that some important

features may be dropped in subset-4. Furthermore, the loss curves of the CNN and

DNN are more stable than other methods.

138

(a) Training Accuracy Curves (b) Validation Accuracy Curves

(c) Training Loss Curves (d) Validation Loss Curves
Figure 4.9: Accuracy and Loss Curves of DL methods using 23 features.

In the case of MLP, it again fluctuates its accuracy curves and has the

highest loss ratio compared to other methods. So, the MLP is not a suitable

classifier for attack detection for the adopted scenarios of this research.

139

4.8.2 Performance Evaluation Using Confusion Matrix

The DL methods’ performance through the confusion matrix is also

observed using 23 features. The confusion matrix of all the methods using a set of

23 features is depicted in Figure 4.10. It is observed that the normal data recognition

ability using 23 features of RNN is 99.18%, CNN is 99.43%, MLP is 99.33%, DNN

is 99.18%, and LSTM is 99.16%. Similarly, the attack data recognition ability of

RNN is 99.26%, CNN is 99.04%, MLP is 99.20%, DNN is 99.24%, and LSTM is

98.94%. All the methods' normal and attack data recognition abilities are more than

99% instead of LSTM, which shows 98.94% recognition ability for attack data.

Through the confusion matrix, we also observed that the FNR of RNN is 0.94%,

CNN is 0.64%, MLP is 0.78%, DNN is 0.94%, and LSTM is 0.97%. By analyzing

the performance of all the DL methods using a set of 23 features, we can conclude

that CNN is the best method for the detection of botnet-based DDoS attacks in the

adopted scenario because it achieved over 99% recognition abilities for both normal

and attack data and also has lower False Negative Rate (FNR) compared to other

methods.

4.9 Results of Subset-5 Features

In this section, the classification performance of the DL methods is

evaluated using a set of 15 features. Their performance is analyzed using accuracy,

loss curves, and confusion matrix.

140

(a) RNN (b) CNN

(c) MLP (d) DNN

(e) LSTM

Figure 4.10: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using
23 features.

141

4.9.1 Accuracy and Loss Trends of Methods

This section discusses the performance of the DL methods in terms of

accuracy and loss using 15 optimal features. The curves of all the methods related

to training accuracy, validation accuracy, training loss, and validation loss are given

in Figure 4.11.

The training and validation curves of all the methods using 15 features

started to converge in 20 epochs, so we stooped further training and validation of

the methods. The maximum achieved accuracies by the DL methods (i.e., RNN,

CNN, MLP, DNN, and LSTM) are 99.06%, 99.21%, 99.06%, 99.24%, and 99.63%,

respectively. The maximum achieved validation accuracy by the RNN is 99.15%,

CNN is 99.26%, MLP is 98.91, DNN is 99.32%, and LSTM is 97.60%. Here, we

observed that the training accuracies of all the methods are over 99%. But, during

the validation phase, some methods drop their accuracies. For example, the drop in

the validation accuracy of CNN is 0.05%, MLP is 0.15%, DNN is 0.08%, and

LSTM is 2.03%. So, LSTM has more drop in the validation accuracies than the

other methods. The decrease in the validation accuracies of the methods resulted in

some important features being discarded from the subset-5. The training and testing

accuracy of the CNN is over 99% using 15 features. In contrast, the training and

validation curves of the MLP are not stable, and these curves are continuously

variating with the change in epochs. The loss ratio of MLP is also high than the

other methods. Similarly, due to continuous variations in accuracy curves, the

LSTM method is also unsuitable for detecting botnet-based DDoS attacks with 15

142

features. RNN, CNN, and DNN are influential classifies in detecting botnet-based

DDoS attacks using 15 features in the adopted scenario.

(a) Training Accuracy Curves (b) Validation Accuracy Curves

(c) Training Loss Curves (d) Validation Loss Curves
Figure 4.11: Accuracy and Loss Curves of DL methods using 15 features.

143

4.9.2 Performance Evaluation Using Confusion Matrix

The confusion matrix is also used to analyze the performance of the DL

methods using 15 features. Figure 4.12 shows the confusion matrix of all the

methods using 15 features. The recognition ability for the normal data of RNN is

99.06%, CNN is 99.20%, MLP is 96.13%, DNN is 99.41%, and LSTM is 97.81%.

The attack data recognition ability of RNN is 99.11%, CNN is 99.31%, MLP is

98.98%, DNN is 99.16%, and LSTM is 97.36%. Furthermore, the FNR for RNN is

1.10%, CNN is 0.93%, MLP is 4.93%, DNN is 0.68%, and LSTM is 2.55%. It is

observed that the normal and attack data recognition abilities of RNN, CNN, and

DNN are over 99%, but MLP and LSTM methods have lower than 99%. The FNR

of CNN and DNN is lower than 1%, indicating that CNN and DNN are effective

methods for attack detection. In contrast, MLP has the highest FNR, which is

4.93%. The FNR of MLP and LSTM using 15 features is also high compared to

other subsets of features, indicating that this subset of features is unsuitable for

detecting botnet-based DDoS attacks in the adopted scenarios. Furthermore, all the

methods produce poor results using this subset of features than others. It means we

can reduce the number of features at a certain level.

144

(a) RNN (b) CNN

(c) MLP (d) DNN

(e) LSTM
Figure 4.12: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using
15 features.

145

4.10 Overall Analysis of the Performance of Methods

This section discusses the overall performance in terms of training time,

accuracy, detection rate, precision, F1 score, True Positive Rate (TPR), and False

Positive Rate (FPR) of the methods for detecting botnet-based DDoS attacks in

SDN. The performance comparison results of all the methods are shown in Table

4.2. The overall classification performance of all the methods is improved by

reducing the number of features at a certain level. Table 4.2 shows that CNN and

DNN have a trend to achieve maximum accuracy of 99.43% and 99.53% using

subset-2 features, respectively.

The CNN method achieved the highest detection rate of 99.60% using

subset-3 features. The CNN also performed the second highest detection rate of

99.51% using subset-2 features. The training time of CNN is 185.92 seconds using

subset-2 features and 181.88 seconds using subset-3 features. The training time of

the CNN is reduced by 4.04 seconds while using subset-3 features. The decreased

accuracy and detection rate and increased training time while using subset-4 and

subset-5 features by the CNN indicate that some important features are removed by

making these two subsets. In contrast, LSTM has achieved minimum accuracy of

97.60% using subset-5 features. MLP has a minimum detection rate of 89.99%

using subset-1 features, for example, by considering the results of all the methods

using subset-3 features. The accuracy of the CNN is 0.12%, 0.04%, 0.07%, and

0.21% is higher than the other four classifiers (i.e., RNN MLP, DNN, and LSTM),

respectively. Also, the detection rate of CNN is 0.39% higher than that of RNN,

0.19% higher than that of MLP, 0.49% higher than that of DNN, and 0.47% higher

146

than that of LSTM. In addition, the training time of the CNN is 39.51 seconds more

heightened than that of MLP and 27.75 seconds more elevated than that of DNN,

while 81.29 seconds lower than that of RNN and 29.85 seconds lower than LSTM.

Furthermore, CNN has increased in accuracy by nearly 0.04% to 0.21%, and its

detection rate is improved from 0.19% to 0.49%. Since all the methods are trained

in an offline way and are not frequently updated, so, while ensuring the best

accuracy and detection rate, a slightly higher training time could be accepted for

any ML/DL method. Here, we can summarize that the ML/DL-based detection

methods are trying to achieve maximum accuracy or detection rate with reasonable

training time. It is observed that the CNN method achieved a maximum detection

rate of 99.60% while using subset-3 features compared to other methods and other

subsets. The accuracy of CNN is 99.29% using subset-4 features and 99.26% using

subset-5 features. Similarly, the detection rate of CNN is 99.35% using subset-4

features and 99.07% using subset-5 features. Although these subsets consist of

minimum features compared to subset-3, the training time of the CNN using subset-

3 is 3.98 seconds and 20.53 seconds lower than that of subset-4 and subset-5

features. The detection rate of CNN is 0.25% and 0.53% higher while using the

other two subsets.

147

Table 4.2: Comparison of performance results with all five sets of features.

Feature Sets DL Models Computational Time
(Seconds)

Maximum
Accuracy (%)

Detection Rate (%)

All feature Set-1

RNN

CNN

MLP

DNN

LSTM

264.43

202.39

142.94

202.39

323.46

98.68

98.85

98.01

99.00

98.94

97.86

97.87

89.99

97.29

98.32

Subset-2

RNN

CNN

MLP

DNN

LSTM

256.78

185.92

117.76

185.92

223.06

99.33

99.43

99.24

99.53

99.14

99.20

99.51

99.45

99.49

99.31

Subset-3

RNN

CNN

MLP

DNN

LSTM

263.17

181.88

142.37

154.13

211.73

99.25

99.37

99.33

99.30

99.16

99.21

99.60

99.41

99.11

99.13

Subset-4

RNN

CNN

MLP

DNN

LSTM

278.09

185.86

119.37

155.66

231.18

99.22

99.29

99.31

99.25

99.06

99.06

99.35

99.21

99.06

99.02

Subset-5

RNN

CNN

MLP

DNN

259.45

202.41

117.40

202.42

99.15

99.26

98.91

99.32

98.90

99.07

95.24

99.31

148

LSTM 203.40 97.60 97.44

Furthermore, the performance of all the methods using all five subsets of

the features in terms of precision is shown in Figure 4.13. For subset-1, the

precision of RNN is 99.29%, CNN is 99.37%, MLP is 99.94%, DNN is 99.75%,

and LSTM is 99.37%. The precision of all the methods (i.e., RNN, CNN, MLP,

DNN, and LSTM) using subset-2 is 99.24%, 99.23%, 99.23%, 99.47%, and

98.85%, respectively. For subset-3, the precision of RNN is 99.13%, CNN is

99.03%, MLP is 99.05%, DNN is 99.29%, and LSTM is 99.05%. Similarly, the

precision for subset-4 features is 99.26%, 99.04%, 99.20%, 99.24%, and 98.94%,

respectively, for all methods. Lastly, the precision for subset-5 features is 99.11%,

99.31%, 98.98%, 99.16%, and 97.36%, respectively. Based on Figure 4.13, we can

analyze the highest precision percentage of MLP using subset-1 features compared

to other methods and subsets. In contrast, the lowest precision rate is 97.36 of

LSTM using features subset-5. With the reduction in the number of features, the

precision percentage of the MLP decreases from 99.94 to 98.98. Similarly, for

LSTM, it also reduced from 99.37% to 97.36%. The precision percentage ratio of

RNN, CNN, and DNN methods remains over 99% for all subsets, which indicates

that these methods’ precision performance is more stable than MLP and LSTM.

Although MLP has the highest precision percentage compared to other ways, it may

not be recommended for attack detection because of the continuous decrease. The

DNN is more stable in terms of precision compared to RNN and CNN.

149

Figure 4.13: Comparison of performance results between all methods in terms
of precision.

The classification performance of all the methods is evaluated using the F1

score parameter using all subsets. Figure 4.14 shows the performance of all the

methods regarding the F1 score. The F1 score of RNN is 98.57%, CNN is 98.61%,

MLP is 94.70%, DNN is 98.50%, and LSTM is 98.84% using subset-1 features.

For subset-2, the F1 score of all the methods (i.e., RNN, CNN, MLP, DNN, and

LSTM) is 99.22%, 99.37%, 99.34%, 99.48%, and 99.07%, respectively. The F1

score for subset-3 features of RNN is 99.17%, CNN is 99.31%, MLP is 99.23%,

DNN is 99.20%, and LSTM is 99.09%. Similarly, for subset-4 features, RNN is

99.16%, CNN is 99.19%, MLP is 99.21%, DNN is 99.15%, and LSTM is 98.98%.

Lastly, the F1 score using subset-5 features of RNN is 99%, CNN is 99.19%, MLP

is 97.07%, DNN is 99.23%, and LSTM is 97.4%. The DNN method achieved the

highest F1 score of 99.48% using subset-2 features, while MLP has the lowest of

150

94.70% using subset-1. The F1 score of RNN lies in the range of 98.57%-99.21%,

CNN of 98.61%-99.37%, MLP of 94.70%- 99.34%, DNN of 98.50%-99.48%, and

LSTM of 97.40% to 99.07% using different subsets. Here, the F1 score of MLP

and LSTM is continuously variable, which indicates these methods are unsuitable

for attack detection in the adopted scenarios. RNN, CNN, and DNN methods

achieved over 99% F1 score using all subsets of features except subset-1, which

indicates that these methods are effective in attack detection.

Figure 4.14: Comparison of performance results between all methods in terms
of F1 score.

The True Positive Rate (TPR) evaluation metric is also used for the

performance evaluation of all the methods using five different subsets of features.

The TPR of the methods using all subsets of features is shown in Figure 4.15. It is

observed in Figure 4.15, that the TPR of RNN is 97.86% CNN is 97.87%, MLP is

151

89.99%, DNN is 97.29%, and LSTM is 98.32% using subset-1 features. For subset-

2, the TPR of RNN is 99.20%, CNN is 99.51%, MLP is 99.45%, DNN is 99.49%,

and LSTM is 99.31%. Similarly, the TPR of all methods (i.e., RNN, CNN, MLP,

DNN, and LSTM) using subset-3 features is 99.21%, 99.60%, 99.41%, 99.11%,

and 99.13%, respectively. For subset-4, the TPR of RNN is 99.06%, CNN is

99.35%, MLP is 99.21%, DNN is 99.06%, and LSTM is 99.02%. Lastly, the TPR

of RNN is 98.90%, CNN is 99.07%, MLP is 95.24%, DNN is 99.31%, and LSTM

is 97.44% using subset-5 features. The TPR of RNN lies in the range of 97.86%-

99.21%, and it has the highest TPR using subset-3 features and the lowest using

subset-1. The range of TPR for CNN is 97.87%-99.60, with the highest using

subset-3 and the lowest using subset-1. The range of TPR for MLP is 89.99%-

99.45%, with the highest using subset-2 and the lowest using subset-1. Similarly,

the range of TPR for DNN is 97.59%-99.49%, with the highest using subset-2 and

the lowest using subset-1. The range of TPR for LSTM is 97.44%-99.31%, with

the highest using subset-2 and the lowest using subset-5. CNN and DNN have over

99% TPR for all subsets except subset-1, while RNN, MLP, and LSTM have over

99% for 2,3 and 4 subsets. The ratio of TPR for CNN and DNN is more stable than

other methods. Among all the methods, CNN achieved the highest TPR of 99.60%.

We can conclude that CNN becomes an effective method for detecting attacks than

other methods by evaluating the performance of the methods using this evaluation

parameter.

152

Figure 4.15: Comparison of performance results between all methods in terms
of True Positive Rate (TPR).

Lastly, the False Positive Rate (FPR) is also used to analyze the

performance of all the DL methods using five different subsets of features. The FPR

of all the methods using different subsets of features is shown in Figure 4.16. Here,

the ML/ DL methods with the lowest FPR are considered effective for attack

detection. For subset-1, the FPR of RNN is 0.61%, CNN is 0.53%, MLP is 0.04%,

DNN is 0.21%, and LSTM is 0.53%. Similarly, for subset-2, the FPR of RNN is

0.63%, CNN is 0.64%, MLP is 0.65%, DNN is 0.44%, and LSTM is 0.99%. the

FPR of RNN is 0.74%, CNN is 0.83%, MLP is 0.81%, DNN is 0.6%, and LSTM

is 0.81% using subset-3 features. For subset-4, the FPR of RNN is 0.64%, CNN is

0.83%, MLP is 0.68%, DNN is 0.66%, and LSTM is 0.91. Lastly, the FPR of RNN

is 0.75%, CNN is 0.57%, MLP is 0.82%, DNN is 0.71%, and LSTM is 2.24%. The

153

range of the FPR for RNN is 0.61%-0.75%, CNN is 0.53%-0.83, MLP is 0.04%-

0.82%, DNN is 0.21%-0.71%, and LSTM is 0.53%-2.24%. RNN has the lowest

FPR using subset-1 and the highest using subset-5, CNN has the lowest using

subset-1 and the highest using 3 and 4 subsets features, MLP has the lowest using

subset-1 and the highest using subset-5, DNN has the lowest using subset-1 and the

highest using subset-5, and LSTM has the lowest using subset-1 and the highest

using subset-5. By analyzing the overall performance of all the methods in terms of

FPR, we can conclude that the MLP has the lowest of 0.04% using subset-1

features, and LSTM has the highest of 2.24% using subset-5 features. RNN, CNN,

and DNN seem more stable for all the subsets than MLP and LSTM.

Figure 4.16: Comparison of performance results between all algorithms in
terms of False Positive Rate (FPR).

154

In summary, based on the above-discussed and evaluating the classification

performance results in terms of accuracy and loss curves, confusion matrix, training

time, accuracy, detection rate, precision, F1 score, TPR, and FPR of all the methods

using five different subsets of features, we can conclude that the all the methods

produced good results using subset-2 and subset-3 features. Subset-1 has many

features, and some of the features need to be participating in improving the

classification performance. At the same time, subset-4 and subset-5 may be lost

some important features, which causes a decrease in the performance of the

classifiers. Although the performance of all the methods using subset-2 and subset-

3 is good, the number of features in subset-2 is more than in subset-3. After the

overall analysis, we select and recommend the subset-3 features for detecting

botnet-based DDoS attacks in the SDN environment. We also observed that the

CNN method became a top performer with more effective and stable performance

than other classifiers in the adopted network scenarios of this research. Thus, there

are some advantages of this outcome: (i) the training sets are collected easily

without knowing the details of traffic flows; (ii) with optimal features, the training

phase becomes simple; (iii) the resource consumption and complexity of the

methods is reduced due to training set with optimal features.

4.11 Implementation and Evaluation in Real Testbed

4.11.1 Performance of the DL Methods

This section discusses the performance of the DL methods on the real

testbed. As we overserved and concluded in the above sections, the DL methods

155

achieved the best results using a subset of 30 features. So, to evaluate and validate

the performance of the methods on the real testbed, we have selected the methods

trained using subset-3 features of the self-generated dataset. The same network

topology shown in Figure 3.2 is used for the real testbed analysis. To generate and

collect the attack and normal flow statistics, the same process explained in section

3.8 has been followed. All DL methods trained using a subset of 30 features are

individually implemented in the controller. The implemented methods inside the

SDN controller classify the incoming flows with “0” or “1” labels (i.e., as we used

a binary classes data set in our experiments, so, the DL methods have only two

options, and each method labels the attack flows with “1” and normal flows with

label “0”). Furthermore, we used “50” consecutive decisions made by any method

under two network states (attack flow or normal flow) to validate the overall

performance of the methods during real-time network traffic. Figure 4.17 shows the

rate of correct detections of each method during real-time traffic. We observed that

the ratio of output prediction for normal flows is superior to the attack flows by all

the methods. The prediction rate of RNN for normal flows is 93%, CNN is 99%,

MLP is 87%, DNN is 95%, and LSTM is 92%. Similarly, the prediction rate of

RNN for attack flows is 87%, CNN is 97%, MLP is 85%, DNN is 93%, and LSTM

is 85%. Here we observed that all the methods have more than a 90% detection rate

for normal flows instead of MLP, while the CNN method achieves a 99% detection

rate. The performance of the CNN method in detecting the attack flows is superior

to the other methods. So, we can conclude that the performance of the CNN for

both normal and attack flows is better than the other methods. A graphical

156

comparison of the training time (i.e., seconds) for all methods using subset-3

features is shown in Figure 4.18. Here we have observed that the RNN method took

longer to train than other methods. The training time of the CNN using subset-3

features is reasonable. The detection time (in microseconds (µs)) per flow is shown

in Figure 4.19. The detection time per flow of RNN is 6.7µs, CNN is 1.4µs, MLP

is 4.5µs, DNN is 1.7µs, and LSTM is 8.4µs. The detection time of CNN is slightly

lower than the other methods. In comparison, LSTM is a significantly higher

detection time, indicating that during attack traffic, LSTM can handle a few flows

per second. We may conclude that CNN becomes a practical approach for detecting

botnet-based attacks by considering the various characteristics, such as detection

rate, training time, and detection time, for evaluating the DL methods during the

real-time testbed.

Figure 4.17: The correct detection rate of each algorithm during real-time
traffic.

75

80

85

90

95

100

105

RNN CNN MLP DNN LSTM

Co
rr

ec
t D

et
ec

tio
n

Ra
te

 [%
]

Normal Flows Attack Flows

157

Figure 4.18: Comparison of training time of DL methods using subset-3
features.

Figure 4.19: Comparison of detection time during real traffic.

0

50

100

150

200

250

300

Tr
ai

ni
ng

 T
im

e
(s

ec
on

ds
)

RNN CNN MLP DNN LSTM

0

1

2

3

4

5

6

7

8

9

De
te

ct
io

n
Ti

m
e

(m
ic

ro
 se

co
nd

s)

RNN CNN MLP DNN LSTM

158

4.12 Summary

This chapter addresses the security issues in SDN networks by analyzing

the performance of deep learning methods. Especially the focus of this chapter is

to detect the botnet-based DDoS attacks in SDN using different deep learning

methods. This chapter analyzes and describes the simulation results on detecting

botnet-based DDoS attacks in SDN. First, we discuss the results of the selection of

optimal features. Second, the structural performance of the DL methods is

analyzed. Then the classification performance of the DL methods is described in

detail.

The performance of the DL methods is evaluated using different evaluation

metrics (i.e., accuracy, detection rate, precision, F1 score, True Positive Rate

(TPR), False Positive Rate (FPR), training time, and detection time). The efficiency

of the DL or ML methods can be enhanced using a set of optimal features. So, we

only replay a portion of the dataset with a few features. The whole dataset is

converted into five different subsets of features based on their importance (i.e.,

subset-1 consists of 76 features, subset-2 consists of 43 features, subset-3 consists

of 30 features, subset-4 consists of 23 features, and subset-5 consists of 15 features)

using features weighting and threshold tuning methods. Then, these subsets of

features are individually used to measure the impact of optimal features on the

method’s performance while detecting botnet-based DDoS attacks. Simulation

results show that DL methods with the same hyper-parameter settings produced

different results using different feature subsets. We also observed that each DL

method's performance differs on the same feature subset. It means that the DL

159

method trained with optimal features could improve the detection rate and detect

the attack flows more effectively and quickly. Based on the above discussion and

experimental performance results of the DL methods, we found that the CNN

produced effective performance results compared to other methods (i.e., RNN,

MLP, DNN, and LSTM) in the adopted network experimental scenarios. It

achieved a maximum detection rate of 99.60% and an accuracy of 99.37% using a

subset of 30 features during offline training. We also considered timing metrics

(i.e., training and real-time detection time) for evaluating DL methods. We

observed that the CNN method took reasonable time during training and real-time

detection of flows. As a result, the CNN method shows a respectable accuracy or

detection rate for detecting botnet-based DDoS attacks in an SDN environment

during real-time testbed evaluation.

160

CHAPTER 5

MITIGATION STRATEGY AND PERFORMANCE ANALYSIS

This chapter discusses the proposed defense method and then analyze the

effectiveness of the defense method on the real testbed. We observed and measured

our mitigation strategy's effectiveness during normal and attack traffic.

5.1 Mitigation Strategy Implementation

The SDN controllers are responsible for regularly analyzing the network

traffic flows to protect them from several types of malicious attacks. For example,

if the deep learning classifier inside the controller detects any type of malicious

activity or attack, then it needs to speedily activate the defense shield to diminish

the conceivable impact of the attack and ensure that normal network operations

remain continue. In the existing studies [6], [11] the concepts of block or modify

attack flows are commonly used by the authors in their mitigation methods. There

is a chance the OpenFlow switches may contain many malicious flow entries after

blocking the attack flows, which influence the network’s normal forwarding

process and quickly consume switches and controller resources. To effectively

protect the SDN controller from botnet-based DDoS attacks and overcome the

above-mentioned problems, a graph theory and dynamic flow deletion-based

161

mitigation strategy are adopted in this research. The same network topology which

is discussed in chapter 3 used for the implementation of mitigation strategy.

In our mitigation strategy, Initially, the controller sends in every 𝛥𝑇 (e.g., 5

sec) a request to the connected corresponding switches for the flow statistics. After

collecting the flow statistics, the features extractor module inside the controller

extracts the flow features according to the subset-3, and then the controller passes

these features’ information to the already trained DL classifier (e.g., CNN) to detect

the flows whether the attack or normal. Once, any flow is detected as an attack flow

by the DL classifier, then it sharply starts to alert the controller.

Once the classifier inside the controller detects any attack flow, it informs

the controller. After that, a gray list Sg is created in the database by the controller

to put the incoming flows of the switches to the controller for further analysis. It

helps to reduce the mistakenly killing of normal packets and continue the normal

operation of the residual network. After successfully placing the attack flows in the

Sg list, the controller redirects the flows of the Sg list to the DL classifier (CNN) to

classify the normal flows with the label “0” and attack flows with the label “1”.

Here we create a counter variable 𝐶 that starts to calculate those flows which are

labeled as attack flows by the classifier and set a limit for attack flows (i.e., C≥10).

At the same time, the controller creates other two new lists; the Sd delete list and

the Sb block list in the database. The Sd list stored the attack flows that need to be

deleted from the OpenFlow switches and the Sb list stored the information of hosts

which are involved in the attack to block these hosts and for further future use. The

controller has a host tracker feature that can extract the attacking hosts' information

162

(e.g., IP or MAC address, UDP or TCP port number, entry port, etc.) When the

counter 𝐶 research to its set limit (i.., C≥10), then we used the concept of graph

theory derived to trace out the attacking path in the network.

5.1.1 Attack Path Identification

 Here finding the path from where the attack flows to pass and locating the

switches through where the attack flows enter the network is more important. The

attacking path between more than two switches can be formulated as:

𝐸𝑖,𝑗 = ∑(𝑠𝑖, 𝑟𝑖) → (𝑠𝑗, 𝑟𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖, 𝑠𝑗𝜀 𝑆𝑎𝑡𝑡𝑎𝑐𝑘 (5.1)

Where 𝐸𝑖,𝑗 is the edge (i.e., the path for attack), and 𝑆𝑎𝑡𝑡𝑎𝑐𝑘 represents the

set of switches from where the botnet-based DDoS attack is passed. When the

attack flows pass through both 𝑠𝑖 and 𝑠𝑗 OpenFlow switches and the forwarding

rules are meet. Then we can predict that the edge between the (𝑠𝑖, 𝑠𝑗) switches is a

close hop in the attacking path. So, our mitigation strategy is based on two

principles: 1) use a dynamic flow deletion mechanism to delete or shield as many

as possible attack flows, and 2) avoid the by-mistake killing of the normal flows.

Hence, by finding the attacking edge or path 𝐸(𝑖, 𝑗), We can implement a more

targeted flow deletion strategy to mitigate botnet-based DDoS attacks in an SDN

environment.

To effectively implement the graph theory concept to find out the attacking

path, we need to consider the characteristics of the network traffic. Let’s assume

(e.g., “the closer the hop is to the attack sources on an attacking path, the proportion

163

of the botnet-based DDoS attack is greater in the link traffic”). It can be

mathematically formulated as follows:

𝑈(ℎ(𝑠𝑖,𝑠𝑖+1)) < 𝑈 (ℎ(𝑠𝑗,𝑠𝑗+1)) , 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗 (5.2)

By considering our network topology, let us consider two attack paths

(𝑠1, 𝑠5, 𝑠7)and (𝑠2, 𝑠5, 𝑠7) are detected in the network, and they are overlapped to

each other on the link (𝑠5, 𝑠7) as shown in Figure 5.1. For the links (𝑠1, 𝑠5) and

(𝑠2, 𝑠5), the proportions of the attacks are 𝑈(ℎ(𝑠1,𝑠5)) and 𝑈(ℎ(𝑠2,𝑠5)), are

respectively. Then the proportion of the botnet-based DDoS attack on the link

(𝑠5, 𝑠7) can be represented as 𝑈(ℎ(𝑠5,𝑠7)) =

(𝐵(𝑠1,𝑠5)
𝑑 + 𝐵(𝑠2,𝑠5)

𝑑 + 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑑)

(𝐵(𝑠1,𝑠5)
𝑡 + 𝐵(𝑠2,𝑠5)

𝑡 + 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑡)⁄ , so it can be pointed

that the link (𝑠5, 𝑠7) may contain the traffic from the other links such as (𝑠3, 𝑠5)

beside then (𝑠1, 𝑠5) and (𝑠2, 𝑠5) links. Since these links do not have the attack

traffic, 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑑 = 0 and 𝐵𝑜𝑡ℎ𝑒𝑟𝑠

𝑡 ≥ 0. If the links (𝑠5, 𝑠7) do not contain the traffic

from the other links except (𝑠1, 𝑠5,) and (𝑠2, 𝑠5), then 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑡 = 0. Therefore,

𝑈(ℎ(𝑠5,𝑠7)) 𝑈(ℎ(𝑠1,𝑠5))⁄ ≤ 1and 𝑈(ℎ(𝑠5,𝑠7)) 𝑈(ℎ(𝑠2,𝑠5))⁄ ≤ 1. An attacking path

𝑃𝑠,𝑑 = (𝑠𝑠, 𝑠𝑠+1, … … … , 𝑠𝑑), 𝑤ℎ𝑒𝑟𝑒𝑁𝑠𝑖,𝑑 = 𝑠𝑖+1, 𝑈(ℎ(𝑠𝑖−1,𝑠𝑖)) ≥ 𝑈(ℎ(𝑠𝑖+1,𝑠𝑖+2))

holds presume that they hold for each link in the path. So, according to Figure 5.1,

the links (𝑠1, 𝑠5,) and (𝑠2, 𝑠5), contain much larger attack traffic instead of normal

business traffic due to botnet-based DDoS attack (i.e., 𝑈(ℎ(𝑠1,𝑠5)) >> 1 −

𝑈(ℎ(𝑠1,𝑠5)) and 𝑈(ℎ(𝑠2,𝑠5)) >> 1 − 𝑈(ℎ(𝑠2,𝑠5)). The flow dropping rate should be

increased to minimize the attack at switches and controllers since the switches from

164

which the attack traffic enters the network typically contain more attack flows than

other switches. For convenience, the switches which are closer to the attack hop

can be called edge switches 𝑆𝑒 while the other switches in the path 𝑃𝑖,𝑗 are called

intermediate switches 𝑆𝑚 letter on. So, the dropping rate on the intermediate

switches should be smaller compared to the edge switches to shrink the impact on

the normal requests. Hence the significant issues are: to find the proper attacking

path 𝑃𝑖,𝑗 and trace out the edge switches 𝑆𝑒 form where the attack enters, and set

the appropriate dropping rate on the switches which are present in the attacking

path. And, there is no need to set the dropping rate on that switches only contain

normal traffic.

Figure 5.1: An example of finding the attack path in adopted network
topology.

165

5.1.2 Dropping Strategy

After successfully finding the attack path, there is a need to implement an

effective dropping strategy against the attack flows. To avoid the chance of by-

mistake dropping the normal flows, the dropping rate at the intermediate switches

𝑆𝑚 should be smaller than the edge switches 𝑆𝑒. So, by considering the

characteristics of botnet-based DDoS attacks, we can use the entropy 𝐻 of source

IP address packets and change the number of passing packets 𝑁 through an edge

switch 𝑠𝑒 per unit of time. So, the dropping rate for the edge switch can be

calculated using the following formula.

𝐷𝑟𝑒𝑑𝑔𝑒 = 𝑘(𝛥𝐻, 𝛥𝑁) (5.3)

Where in the above Equation 3.30, 𝛥𝐻 represents the difference in entropy

of source IP addresses of packets per unit of time, and 𝛥𝑁 is the difference in the

number of packets passing through a switch per unit of time, and 𝐷𝑟𝑒𝑑𝑔𝑒 𝜖 (0,1).

The values of the 𝐻 and 𝑁 start to rapidly increase in some switches when there is

a botnet-based DDoS attack, so, to mitigate the attack traffic there is an increase

expected in the dropping rate of that switches. However, a continuous increase in

the dropping rate can affect normal network traffic. Additionally, we must indicate

the upper bound for dropping rates much less than 1. Therefore, the dropping rate

𝐷𝑟𝑒𝑑𝑔𝑒 can be calculated as follows:

𝜑(𝑤) = 1
(1+𝑒𝑤)

− (1 − 𝑙) (5.4)

166

In the above Equation 5.4, 𝑤 represents the weighted sum of 𝛥𝐻 and 𝛥𝑁

values and 𝑤 > 0. 𝑙 represents the upper limit for the dropping rate during the

attack, thus, 𝐷𝑟𝑒𝑑𝑔𝑒𝜖 [𝑙 − 0.5, 𝑙]

The intermediate switches 𝑆𝑚 may be connected with the edge or other

switches. There is a chance the intermediate switches have fewer attack flows or

only normal flows. It means that the dropping rate 𝐷𝑟𝑚𝑖𝑛 at the intermediate

switches keeps smaller than the edge switches. So, the edge switches have a

dropping rate relatively smaller than the upper limit 𝑙, which indicates that is attack

is not severe and can be easily mitigated at the edge switches. Otherwise, there is

also need to set an appropriate dropping rate 𝐷𝑟𝑚𝑖𝑛 at the intermediate switches.

The dropping rate for the intermediate switches may be computed by including

edge switches to prevent the attack as 𝐷𝑟𝑚𝑖𝑛 = 𝑘 × 𝐷𝑟𝑒𝑑𝑔𝑒, where 𝑘 𝜖 (0,1) The

shortest hops in the attack path from the edge to the intermediate switches, and 𝑘 is

a coefficient whose value depends on the distance between the edge and

intermediate switches. If the edge and intermediate switches are far away, then the

intermediate switches perform dropping at a smaller dropping rate. Hence we can

get:

 𝐷𝑟𝑚𝑖𝑛 = {
0, 𝑙 − 𝐷𝑟𝑒𝑑𝑔𝑒 > 𝜖
𝑘 × 𝐷𝑟𝑒𝑑𝑔𝑒, 𝑙 − 𝐷𝑟𝑒𝑑𝑔𝑒 ≤ 𝜖 } (5.5)

Where 𝜖 is the smallest constant that determines the difference between 𝑙

and 𝐷𝑟𝑒𝑑𝑔𝑒.The following formula can be used to obtain the value of 𝑘.

167

𝑘 = 𝑁ℎ𝑜𝑝𝑠−𝑛ℎ𝑜𝑝𝑠

𝑁ℎ𝑜𝑝𝑠
 (5.6)

Where 𝑁ℎ𝑜𝑝𝑠 is the distance in the attack path 𝑃𝑖,𝑗 from the edge switch to

the destination switch, and 𝑛ℎ𝑜𝑝𝑠 is the distance from the edge to intermediate

switch.

 Finally, after successfully finding the attack path, and the switch near the

attacking source, and calculating the dropping rates for edge and intermediate

switches, the controller sends the “OFPFC_ADD” messages to the corresponding

switches to insert new flow entries in the flow tables of the switches. After receiving

the intrusion by the controller, the corresponding edge and intermediate switches

start to dynamically delete or drop the incoming attack flows according to the delete

list Sd using the calculated dropping rates. Here, if the dropping rate for any host

reaches 100%, then, first, the corresponding host is blocked, and the information of

that host is placed in the block list Sb for future use. In short, this mitigation strategy

successfully protects the SDN controller from botnet-based DDoS attacks and

reduces the by-mistake killing of normal flows, and also helps the controller to

continue its normal services.

5.2 Performance Analysis and Discussion

 The performance of the mitigation strategy is evaluated through flow table

utilization and the computational resources utilization. We also evaluated how

effectively our suggested defence method performed against those already used.

Southbound links are frequently utilized to transmit the packet headers to the

168

control plane. The packet headers are examined to classify the normal or attack

traffic on the controller plane. Generally, the transfer of instructions and

communication between the control and data planes typically take place across the

southbound interfaces. The increased traffic load on the southbound interfaces will

hamper the normal connection between the control and data planes.

5.2.1 Flow Table Utilization

The flow table utilization is measured in terms of generation of flow rules

in both network states (i.e., normal traffic and attack traffic). The number of flow

rules generated by the SDN controller under two different network states (i.e.,

normal and attack) are shown in Figure 5.2. Here the storage limit for the flow rules

on the various switches is set to a maximum of “1500”. Furthermore, the number

of flow rules generated by the controller under the attack network traffic and normal

network traffic are calculated separately, as shown in Figure 5.2. The experimental

network is kept in a relatively network-stable condition with only background

traffic that is typical for networks, and the number of flow rules is always

maintained at 180 per second. On the other hand, the botnet-based DDoS attack

started in the 20th second, and we noticed that the number of flow rules

dramatically rose. The amount of flow rules exceeded the OpenFlow switches'

maximum storage capacity in less than 5 seconds. Therefore, installing new flow

rules for normal network users won't be possible if the switches' flow rules storage

is full.

169

Figure 5.2: The Number of flow rules generated in different network states.

We start the defense method after the 40th seconds when both normal and

attack traffic is running in the network. Here we can observe that after activating

the defense method, the number of flow rules starts to decrease gradually and

maintain the flow rules limit for the attack flows around 250 within 15 seconds as

shown in Figure 5.3. So, our defense methods kept generating flow rules below 250

per second.

0

300

600

900

1200

1500

0 20 40 60 80 100 120

N
um

be
r

of
 F

lo
w

 R
ul

es

Time (Seconds)

Normal Traffic

Attack Traffic

170

Figure 5.3: Shows the change in the generated flow rules after activating the
proposed defense method.

A comparison of the proposed defense methods with some existing methods

is shown in Figure 5.4. We individually implemented different defense methods in

the SDN controller to evaluate their performance in our adopted network scenarios.

Figure 5.3 shows that the number of flow rules remains stable in the first 10 seconds

for all methods without attack traffic. Gradually more flow rules are added to the

network due to the botnet-based DDoS attack. When the attack is launched after 10

seconds, the number of flow rules steadily increases, and we activate the various

defense strategies to assess how well they perform in terms of flow rules. Our

proposed method effectively controls the growth of flow rules and always keeps

0

300

600

900

1200

1500

0 20 40 60 80 100 120

N
um

be
r o

f F
lo

w
 R

ul
es

Time (Seconds)

Normal Traffic

Attack Traffic

171

them around 250 per second. The growth of flow rules is unaffected by the SIFT

approach, and they quickly reach the maximum rate of 1500 per second. The

defense strategy based on dynamic flow deletion slows the rate of flow rule growth

to about 350 per second. Similarly, the SD-Anti DDoS defense approach

consistently limits the expansion of the flow rules at around 400 per second. Last

but not least, when the Load-Aware technique is activated, the flow rules expand

at a rate of 1000 per second, and after 60 seconds, they continue to grow at a rate

of about 800 per second.

Figure 5.4: Comparison of the proposed defense method with existing methods
in terms of flow rules.

Compared with the other defense methods, our defense method keeps the

number of rules at the lowest and helps the controller process the flow rules request

of the normal users even when the network is under attack.

0

300

600

900

1200

1500

0 20 40 60 80 100 120

N
um

be
r o

f F
lo

w
 R

ul
es

Time (Seconds)

SIFT

The Proposed Defense Method

Dynamic Deletion of Flow Rules based
Defense Methods
SD-Anti-DDoS

Load-Aware

172

5.2.2 Computational Resources Utilization

The effectiveness of the proposed defense method is also validated through

the evaluation of the consumption of CPU usage by the controller during normal

and attack network states. Because the controller is responsible for managing and

configuring every OpenFlow switch in the network, assessing the controller's CPU

resource use is crucial. Therefore, we need to verify that the controller is not

excessively consuming the CPU resources during the attack and after activating the

defense method. Figure 5.5 compares the CPU utilization under two network states

(i.e., normal or attack). We observed that the CPU utilization remains controlled

when only the background traffic runs in the network (i.e., at around 20%). After

10 seconds, when we inject the attack traffic into the network, the CPU utilization

gradually increases and reaches about 70%-90%. After 15 seconds of the attack, we

activate the defense methods, which gradually decrease the CPU utilization by

dynamically deleting the attack flows. After 40 seconds, it controls the utilization

of the CPU and maintains it at around 40%. A graphical representation of CPU

utilization after activating the defense methods is shown in Figure 5.6.

173

Figure 5.5: Comparison of controller CPU resource consumption in different
network states.

Figure 5.6: Comparison of controller CPU resource consumption in different
network states after activating the defense method.

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

 U
ta

liz
at

io
n

[%
]

Time (Seconds)

Normal Traffic

Attack Traffic

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

 U
ta

liz
at

io
n

[%
]

Time (Seconds)

Normal Traffic

Attack Traffic

174

In addition, a CPU utilization comparison between the proposed method

and those that are currently in use is shown in Figure 5.7. As discussed above, we

implemented different defense methods (i.e., SIFT, dynamic flow deletion method,

SD-Anti DDoS, and Load-Aware) in the controller to observe their performance

while controlling the CPU utilization. Figure 5.7 shows that for the first 10 seconds,

when only the background traffic runs in the network, the CPU utilization remains

stable at around 20%-25%. When the botnet-based DDoS attack traffic is injected

into the network, the CPU utilization increases in a gradient way. After 10 seconds

of the attack, when the CPU utilization increases gradually, we activate the defense

methods to observe their performance in controlling the CPU utilization. Our

proposed method does not increase the workload of the controller and also controls

the CPU utilization and always keeps it around 40%. After activating the SIFT

method, we observed that it does not help to control the CPU utilization and reaches

90%-95%. The dynamic flow deletion method controls the CPU utilization within

the range of 45%-50% in our adopted network scenarios. Similarly, the SD-Anti

DDoS method keeps CPU utilization at around 55%. Lastly, the Load-Aware

method maintains CPU utilization at around 70% during the attack.

175

Figure 5.7: Comparison of the proposed defense method with existing methods
in terms of CPU utilization.

In short, our proposed defense method proved effective in controlling the

generation of flow rules and CPU utilization in normal and attack network states

compared to other defense methods. Our proposed method differs from other

defense methods as data and control planes are programmable. However, in our

method, when the CNN methods detect the attack traffic, we use the graph theory

concept to find switches in the attack path and dynamically delete attack packets

with different dropping rates on different switches. Most existing defense methods

try to delete the attack traffic of the last switch on the attack path. This makes our

defense method more effective in protecting the SDN controller from botnet-based

DDoS attacks.

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

 U
ta

liz
at

io
n

[%
]

Time (Seconds)

SIFT
The Proposed Defense Method
Dynamic Deletion of Flow Rules based Defense Methods
SD-Anti-DDoS
Load-Aware

176

5.3 Summary

This chapter discusses the proposed defense method’s effectiveness in

protecting SDN networks from botnet-based DDoS attacks. The proposed defense

method has two main principles (a) find the attacking path in the network, (b) adopt

a more systematic dropping strategy to prevent accidentally killing normal flows.

First, graph theory is used to find the switches in the attack path. Second, dropping

rates for the different OpenFlow switches are calculated based on the switch

position in the attack path, and then dynamically, attack flows are deleted using

estimated dropping rates. Furthermore, we studied different defense approaches to

provide more scalable and effective countermeasures against these attacks without

changing the SDN network design or adding new network devices. We validate the

effectiveness of our defense methods using two different metrics (i.e., Rate of

generated flow rules and CPU utilization). Our proposed method maintains the

Flow rate at around 250 per second and CPU Utilization at approximately 40%

during the attack. We also compared our defense method with the existing methods.

Based on the reported results, we can conclude that the proposed defense method

in this research can protect the SDN controllers from botnet-based DDoS attacks

without increasing the overhead of the SDN controller.

177

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

SDN redefines the network’s organization and management, which leads to

network reforms. However, SDN resolves emerging problems, such as

flexibility, security, scalability, etc., in traditional networks. Simultaneously,

the emerging architecture of the SDN introduced a new array of privacy and

security challenges that needs great attention from the research and network

community. Because malicious attacks against computer networks and SDN are

potentially growing, intelligent intrusion detection systems are required to

detect and mitigate these attacks. The botnet attacks are considered more

dangerous in the modern era of networking technologies. Attacks from botnets

can target controllers in the control plane or network devices in the data plane

(such as routers, OpenFlow switches, etc.) in an SDN environment. The

sophistication of network flow features makes the detection of botnets and

DDoS attacks in SDNs more challenging than in traditional networks. The

decoupled architecture of the SDN allows to develop and deploy the intrusion

detection models in the architecture to detect and mitigate botnet-based DDoS

attacks. Nevertheless, secure SDN networks shall be adopted by providing a

reliable definition of the behavior of botnet-based DDoS attacks. Recently, deep

learning-based networking applications have been in trading and become a

178

viable option for network intrusion detection systems. DL methods use large

historical training datasets for learning intrusion patterns. They can predict the

real-time network state (i.e., normal traffic flows or attack traffic flows) and

update the controller(s). This research proposed an IDS based on deep learning

methods named “DepBot” to detect and mitigate botnet-based DDoS in an SDN

environment. First, we generate a simulation-based dataset in a pure SDN-

supported environment. Then the attack detection is performed using various

DL methods such as RNN, CNN, MLP, DNN, and LSTM. We implemented

and tested the DL methods using a simulated dataset to detect the attack flows.

The simulated dataset consists of two classes (i.e., normal and attack). We also

used pre-processing techniques such as feature elimination and selection to

select a set of best features and improve the performance of the DL methods

while detecting attacks. The dataset with 83 features is converted into five

different subsets of features based on their importance, where 30 optimal

features were selected out of 83. We also performed min-max normalization at

the preprocessing stage to give equal weightage to all features and observe their

effect on the method’s performance. The whole system model, from the dataset

collection to attack detection and mitigation, is implemented over a single

controller and gratitude to the centralized control of the SDNs.

179

 RQ1: Are the publically available intrusion detection datasets can use for

SDN?

Aa core contributing factor of this research is to develop a dataset in a pure

SDN environment to train DL methods instead of relying on traditional or old

datasets. Because, in most of the existing studies [17] [20], the authors are using

old or traditional datasets (i.e., NSL-KDD, DARPA, Na-BaIoT, CIC-DoS-2017,

etc.) for the training of machine learning or deep learning methods. These datasets

are unsuitable for SDN environments because they are developed in traditional

network environments and suffer imbalanced problems. The power and efficiency

of the DL methods are evaluated by adopting baseline hyper-parameters in their

architectures.

RQ2: Is Deep Learning methods can effectively detect botnet attacks in SDN?

 According to the results on the simulation dataset, the CNN method

achieved superior accuracy and detection rate results. CNN achieved a maximum

accuracy of 99.37% and a detection rate of 99.60% using 30 optimal features. In

addition, the performance of the DL methods training using a set of 30 optimal

features was also evaluated in real-time testbed settings where the CNN method

achieved a higher real-time detection rate compared to RNN, MLP, DNN, and

LSTM. The real-time detection rate of CNN reaches 97% for attack flows and 99%

for normal flows. The performance of the CNN method proved that the DL methods

can effectively detect the botnet-based DDoS attacks in SDN.

180

 RQ3: How can we protect the SDN from botnet attacks?

 After successfully detecting botnet-based DDoS attacks, we deployed that

graph theory and dynamic flow deletion-based mitigation strategy to protect the

SDN controller against these attacks. The effectiveness of our defense methods is

measured using two parameters: rate of flow rules generation by controller and

CPU utilization. The proposed method maintains a flow generation rate of around

250 per second and CPU utilization at about 40% during the attack, which is better

than the existing work.

The limitations of this research are: This research focuses on detecting

botnet-based flooding attacks in SDN environments. This produced dataset cannot

be used for detecting non-volumetric attacks (i.e., slow-rate DDoS attacks). This

research also did not help to detect other types of malicious attacks (i.e., saturation,

ransomware, other types of DDoS attacks, etc.) In this research, we used around

89000 records to train and test DL methods, so the number of records for the dataset

can be enhanced for better training of machine learning or deep learning methods.

Lastly, we just used a single SDN controller in our experimental network, it may

not be effective in a distributed or multi-controller network architecture.

6.2 Future Work

Our current research focuses on detecting and mitigating botnet-based

DDoS attacks in a single-controller SDN architecture. For future work, we intend

to extend this research to investigate other security issues of SDN. For example,

181

detection and mitigation of other malicious attacks such as slow-rate DDoS, DDoS-

web, other types of DDoS attacks, saturation attacks, ransomware attacks, etc.

This research can be extended to detecting other types of malicious attacks,

such as spoofed, low-rate, botnet-based low-rate DDoS, etc., in the SDN

environment.

This research can extend the development of new optimization solutions to

reduce the false positive rate and improve the true positive rate for detecting botnet-

based DDoS attacks in SDN-based networks.

In the future, a score reporting scale can be introduced by using this research

to measure the performance of the machine learning or deep learning methods for

the SDN environments (i.e., selection of datasets, features selections with advanced

methods, overfitting problems).

A fair comparison scale can be implemented to assess the effectiveness of

deep learning methods in identifying various attacks in SDN systems.

Furthermore, in the future, this research will help researchers to apply more

advanced deep learning and machine learning algorithms with optimized feature

selection methods for intrusion detection in SDN as other domains such as IoT,

smart grid, cloud computing, etc.

In the future, hybrid or ensemble deep learning approaches can be

introduced for the SDN networks for intrusion detection.

182

Furthermore, deep learning or machine learning methods can be trained in

real-time to keep the DL/ML-based systems updated.

This research can be extended to detect malicious attacks in other SDN-

based environments such as cloud computing, IoT, and ISP networks.

Recently, researchers are trying to adapt SDN multi-controller networks to

solve the security problems of a single-controller architecture (i.e., “single point of

failure”). In the future, this research may be extended to the investigation of security

issues of the multi-controller SDN architecture. A multi-controller architecture has

a positive aspect because it can be divided into a hierarchal or flat architecture. The

flat SDN architecture can consist of multiple domains in different locations, and

each domain can be controlled by a single controller, so the controllers can use east-

bound interfaces to communicate with each other. The hierarchal SDN architecture

maybe consists of multiple layers, the top layer is referred to as the master layer,

where the master controller can work and control the whole network, and the rest

of the layer is referred to as the slave layers that have multiple controllers, and these

controllers can control multiple domains.

Although multi-controller SDN architecture has several advantages over

single-controller architecture, it may face a set of major challenges. For example,

high availability and reliability cannot be assured for multi-controller architecture

because the attackers can target the connection links between the multiple

controllers or send many malicious packets to overwhelm the controllers'

processing. Thus, the connected switches or targeted controllers will be isolated

183

from the other part of the network. Therefore, it is crucial to design defense methods

for the multi-controller that can detect incoming flows, monitor the multiple

controllers in different domains, and countermeasure them without affecting the

other network.

The proposed defense method is tested in a single-controller network

architecture that can protect the SDN controller against botnet-based DDoS attacks.

In future research, we will focus to develop a defense method that can protect the

controller(s) in a multi-controller architecture.

REFERENCES

[1] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani,
“A survey of machine and deep learning methods for internet of things (IoT)
security,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1646–1685,
2020.

[2] S. H. Haji et al., “Comparison of software defined networking with
traditional networking,” Asian J. Res. Comput. Sci., vol. 9, no. 2, pp. 1–18,
2021.

[3] A. Mestres et al., “Knowledge-defined networking,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 3, pp. 2–10, 2017.

[4] M. W. Nadeem, H. G. Goh, V. Ponnusamy, and Y. Aun, “Ddos detection in
sdn usingmachine learning techniques,” Comput. Mater. Contin., vol. 71, no.
1, 2022, doi: 10.32604/cmc.2022.021669.

[5] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Commun. Surv. tutorials, vol.
10, no. 4, pp. 56–76, 2008.

[6] L. Tan, Y. Pan, J. Wu, J. Zhou, H. Jiang, and Y. Deng, “A new framework
for DDoS attack detection and defense in SDN environment,” IEEE Access,
vol. 8, pp. 161908–161919, 2020.

[7] S. Wang et al., “Detecting flooding DDoS attacks in software defined
networks using supervised learning techniques,” Eng. Sci. Technol. an Int.
J., vol. 35, p. 101176, 2022.

184

[8] Y. Cui et al., “Towards DDoS detection mechanisms in software-defined
networking,” J. Netw. Comput. Appl., vol. 190, p. 103156, 2021.

[9] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A DDoS attack detection
method based on SVM in software defined network,” Secur. Commun.
Networks, vol. 2018, 2018.

[10] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using
deep learning approach for Internet of Things,” Futur. Gener. Comput. Syst.,
vol. 82, pp. 761–768, 2018.

[11] J. A. Perez-Diaz, I. A. Valdovinos, K.-K. R. Choo, and D. Zhu, “A flexible
SDN-based architecture for identifying and mitigating low-rate DDoS
attacks using machine learning,” IEEE Access, vol. 8, pp. 155859–155872,
2020.

[12] R. K. Chouhan, M. Atulkar, and N. K. Nagwani, “A framework to detect
DDoS attack in Ryu controller based software defined networks using
feature extraction and classification,” Appl. Intell., pp. 1–21, 2022.

[13] Y. Liu, T. Zhi, M. Shen, L. Wang, Y. Li, and M. Wan, “Software-defined
DDoS detection with information entropy analysis and optimized deep
learning,” Futur. Gener. Comput. Syst., vol. 129, pp. 99–114, 2022.

[14] O. Habibi, M. Chemmakha, and M. Lazaar, “Imbalanced tabular data
modelization using CTGAN and machine learning to improve IoT Botnet
attacks detection,” Eng. Appl. Artif. Intell., vol. 118, p. 105669, 2023.

[15] M. Wazzan, D. Algazzawi, A. Albeshri, S. Hasan, O. Rabie, and M. Z.
Asghar, “Cross Deep Learning Method for Effectively Detecting the
Propagation of IoT Botnet,” Sensors, vol. 22, no. 10, p. 3895, 2022.

[16] M. M. Alani, “BotStop: Packet-based efficient and explainable IoT botnet
detection using machine learning,” Comput. Commun., vol. 193, pp. 53–62,
2022.

[17] G. L. Nguyen, B. Dumba, Q.-D. Ngo, H.-V. Le, and T. N. Nguyen, “A
collaborative approach to early detection of IoT Botnet,” Comput. Electr.
Eng., vol. 97, p. 107525, 2022.

[18] D. Yin, L. Zhang, and K. Yang, “A DDoS attack detection and mitigation
with software-defined Internet of Things framework,” IEEE Access, vol. 6,
pp. 24694–24705, 2018.

[19] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Commun. Surv. tutorials, vol. 15, no. 4, pp. 2046–2069, 2013.

185

[20] H. S. Ilango, M. Ma, and R. Su, “A FeedForward–Convolutional Neural
Network to Detect Low-Rate DoS in IoT,” Eng. Appl. Artif. Intell., vol. 114,
p. 105059, 2022.

[21] M. W. Nadeem, H. G. Goh, Y. Aun, and V. Ponnusamy, “A Recurrent
Neural Network based Method for Low-Rate DDoS Attack Detection in
SDN,” in 2022 3rd International Conference on Artificial Intelligence and
Data Sciences (AiDAS), 2022, pp. 13–18.

[22] K. N. Rao, K. V. Rao, and P. R. PVGD, “A hybrid intrusion detection system
based on sparse autoencoder and deep neural network,” Comput. Commun.,
vol. 180, pp. 77–88, 2021.

[23] P. L. S. Jayalaxmi, G. Kumar, R. Saha, M. Conti, T. Kim, and R. Thomas,
“DeBot: A deep learning-based model for bot detection in industrial internet-
of-things,” Comput. Electr. Eng., vol. 102, p. 108214, 2022.

[24] H.-T. Nguyen, Q.-D. Ngo, D.-H. Nguyen, and V.-H. Le, “PSI-rooted
subgraph: A novel feature for IoT botnet detection using classifier
algorithms,” ICT Express, vol. 6, no. 2, pp. 128–138, 2020.

[25] A. Al Shorman, H. Faris, and I. Aljarah, “Unsupervised intelligent system
based on one class support vector machine and Grey Wolf optimization for
IoT botnet detection,” J. Ambient Intell. Humaniz. Comput., vol. 11, pp.
2809–2825, 2020.

[26] M. Asadi, M. A. J. Jamali, S. Parsa, and V. Majidnezhad, “Detecting botnet
by using particle swarm optimization algorithm based on voting system,”
Futur. Gener. Comput. Syst., vol. 107, pp. 95–111, 2020.

[27] J. Xie et al., “A survey of machine learning techniques applied to software
defined networking (SDN): Research issues and challenges,” IEEE
Commun. Surv. Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[28] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for intrusion
detection,” IEEE Commun. Surv. tutorials, vol. 21, no. 1, pp. 686–728, 2018.

[29] S. Almutairi, S. Mahfoudh, S. Almutairi, and J. S. Alowibdi, “Hybrid botnet
detection based on host and network analysis,” J. Comput. Networks
Commun., vol. 2020, pp. 1–16, 2020.

[30] X. Pei, S. Tian, L. Yu, H. Wang, and Y. Peng, “A two-stream network based
on capsule networks and sliced recurrent neural networks for DGA botnet
detection,” J. Netw. Syst. Manag., vol. 28, pp. 1694–1721, 2020.

[31] F. Ja’fari, S. Mostafavi, K. Mizanian, and E. Jafari, “An intelligent botnet
blocking approach in software defined networks using honeypots,” J.

186

Ambient Intell. Humaniz. Comput., vol. 12, pp. 2993–3016, 2021.

[32] T. E. Ali, Y.-W. Chong, and S. Manickam, “Comparison of ML/DL
Approaches for Detecting DDoS Attacks in SDN,” Appl. Sci., vol. 13, no. 5,
p. 3033, 2023.

[33] G. O. Anyanwu, C. I. Nwakanma, J.-M. Lee, and D.-S. Kim, “RBF-SVM
kernel-based model for detecting DDoS attacks in SDN integrated vehicular
network,” Ad Hoc Networks, vol. 140, p. 103026, 2023.

[34] W. G. Negera, F. Schwenker, T. G. Debelee, H. M. Melaku, and Y. M.
Ayano, “Review of Botnet Attack Detection in SDN-Enabled IoT Using
Machine Learning,” Sensors, vol. 22, no. 24, p. 9837, 2022.

[35] P. W. Eslinger et al., “Projected network performance for next generation
aerosol monitoring systems,” J. Environ. Radioact., vol. 257, p. 107088,
2023.

[36] R. Ahmad, M. Hämäläinen, R. Wazirali, and T. Abu-Ain, “Digital-care in
next generation networks: Requirements and future directions,” Comput.
Networks, vol. 224, p. 109599, 2023.

[37] D. Kwon, H. Kim, D. An, and H. Ju, “DDoS attack volume forecasting using
a statistical approach,” in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 2017, pp. 1083–1086.

[38] M. E. Ahmed, S. Ullah, and H. Kim, “Statistical application fingerprinting
for DDoS attack mitigation,” IEEE Trans. Inf. Forensics Secur., vol. 14, no.
6, pp. 1471–1484, 2018.

[39] Y. Otoum and A. Nayak, “As-ids: Anomaly and signature based ids for the
internet of things,” J. Netw. Syst. Manag., vol. 29, pp. 1–26, 2021.

[40] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy signature-
based intrusion detection systems,” Appl. Soft Comput., vol. 92, p. 106301,
2020.

[41] Y. Meidan et al., “N-baiot—network-based detection of iot botnet attacks
using deep autoencoders,” IEEE Pervasive Comput., vol. 17, no. 3, pp. 12–
22, 2018.

[42] K. S. Sahoo et al., “An evolutionary SVM model for DDOS attack detection
in software defined networks,” IEEE Access, vol. 8, pp. 132502–132513,
2020.

[43] A. A. Ahmed, W. A. Jabbar, A. S. Sadiq, and H. Patel, “Deep learning-based
classification model for botnet attack detection,” J. Ambient Intell. Humaniz.
Comput., pp. 1–10, 2020.

187

[44] H. Alkahtani and T. H. H. Aldhyani, “Botnet attack detection by using CNN-
LSTM model for Internet of Things applications,” Secur. Commun.
Networks, vol. 2021, pp. 1–23, 2021.

[45] S. Velliangiri and H. M. Pandey, “Fuzzy-Taylor-elephant herd optimization
inspired Deep Belief Network for DDoS attack detection and comparison
with state-of-the-arts algorithms,” Futur. Gener. Comput. Syst., vol. 110, pp.
80–90, 2020.

[46] J. Cui, M. Wang, Y. Luo, and H. Zhong, “DDoS detection and defense
mechanism based on cognitive-inspired computing in SDN,” Futur. Gener.
Comput. Syst., vol. 97, pp. 275–283, 2019.

[47] S. Schaller and D. Hood, “Software defined networking architecture
standardization,” Comput. Stand. interfaces, vol. 54, pp. 197–202, 2017.

[48] S. Sezer et al., “Are we ready for SDN? Implementation challenges for
software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7, pp. 36–
43, 2013.

[49] “Pantou: OpenFlow 1.3 for OpenWRT.” online:
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-for-
OpenWRT

[50] “Open vSwitch.”

[51] “Indigo: Open Source OpenFlow Switches.”

[52] J. W. Lockwood et al., “NetFPGA--an open platform for gigabit-rate
network switching and routing,” in 2007 IEEE International Conference on
Microelectronic Systems Education (MSE’07), 2007, pp. 160–161.

[53] G. Lu et al., “{ServerSwitch}: A Programmable and High Performance
Platform for Data Center Networks,” 2011.

[54] M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feamster, “Switchblade:
A platform for rapid deployment of network protocols on programmable
hardware,” in Proceedings of the ACM SIGCOMM 2010 conference, 2010,
pp. 183–194.

[55] “Floodlight, “Project Floodlight open source software for building
softwaredefined networks.”

[56] M. McCauley, “About Pox,” 2013.

[57] N. Gude et al., “NOX: towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

188

[58] D. Erickson, “The beacon openflow controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, 2013, pp. 13–18.

[59] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a
model-driven sdn controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, 2014, pp. 1–6.

[60] Ryu, “Ryu SDN Framework,” 2013.

[61] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[62] M. E. A. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N.
Weidenbacher, “OpFlex control protocol,” IETF, Apr, 2014.

[63] A. Doria et al., “Forwarding and control element separation (ForCES)
protocol specification,” 2010.

[64] B. Pfaff and B. Davie, “The open vswitch database management protocol,”
2013.

[65] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, 2013,
pp. 127–132.

[66] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp.
44–51, 2014.

[67] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The locator/ID separation
protocol (LISP),” 2013.

[68] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
configuration protocol (NETCONF),” 2011.

[69] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, 2010, vol. 3, pp. 10–5555.

[70] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” 2010.

[71] P. Lin, J. Bi, and Y. Wang, “East-west bridge for SDN network peering,” in
Frontiers in internet technologies, Springer, 2013, pp. 170–181.

189

[72] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “Sdni: A message
exchange protocol for software defined networks (sdns) across multiple
domains,” IETF Draft. Work Prog., 2012.

[73] F. Benamrane and R. Benaini, “An East-West interface for distributed SDN
control plane: Implementation and evaluation,” Comput. Electr. Eng., vol.
57, pp. 162–175, 2017.

[74] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, “A survey on the
contributions of software-defined networking to traffic engineering,” IEEE
Commun. Surv. Tutorials, vol. 19, no. 2, pp. 918–953, 2016.

[75] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey
on the security of stateful SDN data planes,” IEEE Commun. Surv. Tutorials,
vol. 19, no. 3, pp. 1701–1725, 2017.

[76] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN)
and distributed denial of service (DDoS) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Commun. Surv. tutorials, vol. 18, no. 1, pp. 602–622, 2015.

[77] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing
networks using software defined networking,” IEEE Trans. Reliab., vol. 64,
no. 3, pp. 1086–1097, 2015.

[78] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1,
pp. 623–654, 2015.

[79] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: A survey,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4,
pp. 2317–2346, 2015.

[80] P. C. Fonseca and E. S. Mota, “A survey on fault management in software-
defined networks,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2284–
2321, 2017.

[81] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Commun. Surv. Tutorials, vol. 20, no. 1, pp. 388–415,
2017.

[82] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W.
Kellerer, “Software defined optical networks (SDONs): A comprehensive
survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2738–2786,
2016.

[83] S. Bera, S. Misra, and A. V Vasilakos, “Software-defined networking for

190

internet of things: A survey,” IEEE Internet Things J., vol. 4, no. 6, pp.
1994–2008, 2017.

[84] R. Alvizu et al., “Comprehensive survey on T-SDN: Software-defined
networking for transport networks,” IEEE Commun. Surv. Tutorials, vol. 19,
no. 4, pp. 2232–2283, 2017.

[85] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined networking:
A survey and taxonomy,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp.
2713–2737, 2016.

[86] O. Michel and E. Keller, “SDN in wide-area networks: A survey,” in 2017
Fourth International Conference on Software Defined Systems (SDS), 2017,
pp. 37–42.

[87] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Commun. Mag., vol. 51,
no. 11, pp. 24–31, 2013.

[88] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing benefit
from software-defined networking: A survey, use cases, and future
directions,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2359–2391,
2017.

[89] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surv. Tutorials, vol. 17, no.
1, pp. 358–380, 2014.

[90] Y. Li and M. Chen, “Software-defined network function virtualization: A
survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[91] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for software defined networking,” IEEE Commun.
Surv. Tutorials, vol. 18, no. 1, pp. 655–685, 2015.

[92] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, “A survey on
large-scale software defined networking (SDN) testbeds: Approaches and
challenges,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 891–917,
2016.

[93] C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello, “A survey
on SDN programming languages: Toward a taxonomy,” IEEE Commun.
Surv. Tutorials, vol. 18, no. 4, pp. 2687–2712, 2016.

[94] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software defined
networks: A survey,” Comput. Commun., vol. 67, pp. 1–10, 2015.

[95] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-

191

defined networking,” IEEE Commun. Surv. Tutorials, vol. 17, no. 1, pp. 27–
51, 2014.

[96] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy of
software-defined networking,” IEEE Commun. Surv. tutorials, vol. 16, no.
4, pp. 1955–1980, 2014.

[97] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Commun. Surv. tutorials, vol. 16, no. 3, pp.
1617–1634, 2014.

[98] OpenFlow Switch Consortium, “OpenFlow Switch Specification Version
1.0 of OpenFlow.”

[99] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[100] M. Kubat and Kubat, An introduction to machine learning, vol. 2. Springer,
2017.

[101] S. Marsland, Machine learning: an algorithmic perspective. Chapman and
Hall/CRC, 2011.

[102] M. Mohammed, M. B. Khan, and E. B. M. Bashier, Machine learning:
algorithms and applications. Crc Press, 2016.

[103] J. Brownlee, “Supervised and unsupervised machine learning algorithms,”
Mach. Learn. Mastery, vol. 16, no. 03, 2016.

[104] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson,
“Shallow and deep networks intrusion detection system: A taxonomy and
survey,” arXiv Prepr. arXiv1701.02145, 2017.

[105] M. Zamani and M. Movahedi, “Machine learning techniques for intrusion
detection,” arXiv Prepr. arXiv1312.2177, 2013.

[106] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical
learning. Springer series in statistics,” New York, NY, USA, 2001.

[107] M. W. Nadeem, H. G. Goh, M. A. Khan, M. Hussain, M. F. Mushtaq, and
V. A. P. Ponnusamy, “Fusion-Based Machine Learning Architecture for
Heart Disease Prediction,” Comput. Mater. Contin., vol. 67, no. 2, 2021, doi:
10.32604/cmc.2021.014649.

[108] M. Anam et al., “Osteoporosis prediction for trabecular bone using machine
learning: a review,” Comput. Mater. Contin., vol. 67, no. 1, 2021, doi:
10.32604/cmc.2021.013159.

192

[109] S. Thaseen and C. A. Kumar, “An analysis of supervised tree based
classifiers for intrusion detection system,” in 2013 international conference
on pattern recognition, informatics and Mobile engineering, 2013, pp. 294–
299.

[110] F. E. Heba, A. Darwish, A. E. Hassanien, and A. Abraham, “Principle
components analysis and support vector machine based intrusion detection
system,” in 2010 10th international conference on intelligent systems design
and applications, 2010, pp. 363–367.

[111] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software defined
networking,” in 2016 international conference on wireless networks and
mobile communications (WINCOM), 2016, pp. 258–263.

[112] S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for an
intrusion detection system,” in Proceedings of the 2004 ACM symposium on
Applied computing, 2004, pp. 412–419.

[113] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering
approach for network anomaly detection,” in International conference on
networked digital technologies, 2012, pp. 135–145.

[114] X. Zhou and M. Belkin, “Semi-supervised learning,” in Academic Press
Library in Signal Processing, vol. 1, Elsevier, 2014, pp. 1239–1269.

[115] H. Wu and S. Prasad, “Semi-supervised deep learning using pseudo labels
for hyperspectral image classification,” IEEE Trans. Image Process., vol.
27, no. 3, pp. 1259–1270, 2017.

[116] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Trans. Neural
Networks, vol. 20, no. 3, p. 542, 2009.

[117] S. Ding, Z. Zhu, and X. Zhang, “An overview on semi-supervised support
vector machine,” Neural Comput. Appl., vol. 28, no. 5, pp. 969–978, 2017.

[118] C. Chen, Y. Gong, and Y. Tian, “Semi-supervised learning methods for
network intrusion detection,” in 2008 IEEE international conference on
systems, man and cybernetics, 2008, pp. 2603–2608.

[119] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[120] M. W. Nadeem et al., “Brain tumor analysis empowered with deep learning:
A review, taxonomy, and future challenges,” Brain Sci., vol. 10, no. 2, 2020,
doi: 10.3390/brainsci10020118.

193

[121] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[122] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using deep
belief networks,” in 2015 National Aerospace and Electronics Conference
(NAECON), 2015, pp. 339–344.

[123] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, “DDoS attacks
in cloud computing: Issues, taxonomy, and future directions,” Comput.
Commun., vol. 107, pp. 30–48, 2017.

[124] K. S. Sahoo, S. K. Panda, S. Sahoo, B. Sahoo, and R. Dash, “Toward secure
software-defined networks against distributed denial of service attack,” J.
Supercomput., vol. 75, no. 8, pp. 4829–4874, 2019.

[125] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on SDN
based network intrusion detection system using machine learning
approaches,” Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 493–501, 2019.

[126] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, “JESS: Joint entropy-based
DDoS defense scheme in SDN,” IEEE J. Sel. Areas Commun., vol. 36, no.
10, pp. 2358–2372, 2018.

[127] N. A. S. Lima and M. P. Fernandez, “Towards an efficient DDoS detection
scheme for software-defined networks,” IEEE Lat. Am. Trans., vol. 16, no.
8, pp. 2296–2301, 2018.

[128] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, “SAFETY: Early
detection and mitigation of TCP SYN flood utilizing entropy in SDN,” IEEE
Trans. Netw. Serv. Manag., vol. 15, no. 4, pp. 1545–1559, 2018.

[129] B. V Karan, D. G. Narayan, and P. S. Hiremath, “Detection of DDoS attacks
in software defined networks,” in 2018 3rd International Conference on
Computational Systems and Information Technology for Sustainable
Solutions (CSITSS), 2018, pp. 265–270.

[130] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE Local Computer Network
Conference, 2010, pp. 408–415.

[131] Y. Wang, T. Hu, G. Tang, J. Xie, and J. Lu, “SGS: Safe-guard scheme for
protecting control plane against DDoS attacks in software-defined
networking,” IEEE Access, vol. 7, pp. 34699–34710, 2019.

[132] X.-D. Zang, J. Gong, and X.-Y. Hu, “An adaptive profile-based approach for
detecting anomalous traffic in backbone,” IEEE Access, vol. 7, pp. 56920–
56934, 2019.

194

[133] Y. Xu, H. Sun, F. Xiang, and Z. Sun, “Efficient DDoS detection based on K-
FKNN in software defined networks,” IEEE access, vol. 7, pp. 160536–
160545, 2019.

[134] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based DDoS detection
system in software-defined networking (SDN),” arXiv Prepr.
arXiv1611.07400, 2016.

[135] T. Hurley, J. E. Perdomo, and A. Perez-Pons, “HMM-based intrusion
detection system for software defined networking,” in 2016 15th IEEE
International Conference on Machine Learning and Applications (ICMLA),
2016, pp. 617–621.

[136] A. Alshamrani, A. Chowdhary, S. Pisharody, D. Lu, and D. Huang, “A
defense system for defeating DDoS attacks in SDN based networks,” in
Proceedings of the 15th ACM international symposium on mobility
management and wireless access, 2017, pp. 83–92.

[137] D. Hu, P. Hong, and Y. Chen, “FADM: DDoS flooding attack detection and
mitigation system in software-defined networking,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference, 2017, pp. 1–7.

[138] A. Banitalebi Dehkordi, M. Soltanaghaei, and F. Z. Boroujeni, “The DDoS
attacks detection through machine learning and statistical methods in SDN,”
J. Supercomput., vol. 77, no. 3, pp. 2383–2415, 2021.

[139] J. Li, Z. Zhao, R. Li, and H. Zhang, “Ai-based two-stage intrusion detection
for software defined iot networks,” IEEE Internet Things J., vol. 6, no. 2, pp.
2093–2102, 2018.

[140] S. U. N. Guozi, W. Jiang, G. U. Yu, R. E. N. Danni, and L. I. Huakang,
“DDoS attacks and flash event detection based on flow characteristics in
SDN,” in 2018 15th IEEE international conference on advanced video and
signal based surveillance (AVSS), 2018, pp. 1–6.

[141] V. Deepa, K. M. Sudar, and P. Deepalakshmi, “Design of ensemble learning
methods for DDoS detection in SDN environment,” in 2019 International
Conference on Vision Towards Emerging Trends in Communication and
Networking (ViTECoN), 2019, pp. 1–6.

[142] T. V Phan and M. Park, “Efficient distributed denial-of-service attack
defense in SDN-based cloud,” IEEE Access, vol. 7, pp. 18701–18714, 2019.

[143] M. Myint Oo, S. Kamolphiwong, T. Kamolphiwong, and S. Vasupongayya,
“Advanced support vector machine-(ASVM-) based detection for distributed
denial of service (DDoS) attack on software defined networking (SDN),” J.
Comput. Networks Commun., vol. 2019, 2019.

195

[144] J. Li, Y. Liu, and L. Gu, “DDoS attack detection based on neural network,”
in 2010 2nd international symposium on aware computing, 2010, pp. 196–
199.

[145] Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in software-
defined networks,” J. Netw. Comput. Appl., vol. 68, pp. 65–79, 2016.

[146] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in IEEE
INFOCOM 2016-the 35th annual IEEE international conference on
computer communications, 2016, pp. 1–9.

[147] J. Cui, J. He, Y. Xu, and H. Zhong, “TDDAD: Time-based detection and
defense scheme against DDoS attack on SDN controller,” in Australasian
Conference on Information Security and Privacy, 2018, pp. 649–665.

[148] C. Li et al., “Detection and defense of DDoS attack–based on deep learning
in OpenFlow‐based SDN,” Int. J. Commun. Syst., vol. 31, no. 5, p. e3497,
2018.

[149] T. M. Nam et al., “Self-organizing map-based approaches in DDoS flooding
detection using SDN,” in 2018 International Conference on Information
Networking (ICOIN), 2018, pp. 249–254.

[150] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, “Long short-
term memory and fuzzy logic for anomaly detection and mitigation in
software-defined network environment,” IEEE Access, vol. 8, pp. 83765–
83781, 2020.

[151] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, “Machine
learning algorithms to detect DDoS attacks in SDN,” Concurr. Comput.
Pract. Exp., vol. 32, no. 16, p. e5402, 2020.

[152] L. Barki, A. Shidling, N. Meti, D. G. Narayan, and M. M. Mulla, “Detection
of distributed denial of service attacks in software defined networks,” in
2016 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2016, pp. 2576–2581.

[153] K. B. Virupakshar, M. Asundi, K. Channal, P. Shettar, S. Patil, and D. G.
Narayan, “Distributed denial of service (DDoS) attacks detection system for
OpenStack-based private cloud,” Procedia Comput. Sci., vol. 167, pp. 2297–
2307, 2020.

[154] L. Yang and H. Zhao, “DDoS attack identification and defense using SDN
based on machine learning method,” in 2018 15th international symposium
on pervasive systems, algorithms and networks (I-SPAN), 2018, pp. 174–
178.

[155] O. Rahman, M. A. G. Quraishi, and C.-H. Lung, “DDoS attacks detection

196

and mitigation in SDN using machine learning,” in 2019 IEEE world
congress on services (SERVICES), 2019, vol. 2642, pp. 184–189.

[156] M. Revathi, V. V Ramalingam, and B. Amutha, “A machine learning based
detection and mitigation of the DDOS attack by using SDN controller
framework,” Wirel. Pers. Commun., pp. 1–25, 2021.

[157] T.-K. Luong, T.-D. Tran, and G.-T. Le, “Ddos attack detection and defense
in sdn based on machine learning,” in 2020 7th NAFOSTED Conference on
Information and Computer Science (NICS), 2020, pp. 31–35.

[158] F. Khashab, J. Moubarak, A. Feghali, and C. Bassil, “DDoS attack detection
and mitigation in SDN using machine learning,” in 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft), 2021, pp.
395–401.

[159] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz, “SDN-
based architecture for transport and application layer DDoS attack detection
by using machine and deep learning,” IEEE Access, vol. 9, pp. 108495–
108512, 2021.

[160] R. T. Kokila, S. T. Selvi, and K. Govindarajan, “DDoS detection and
analysis in SDN-based environment using support vector machine
classifier,” in 2014 sixth international conference on advanced computing
(ICoAC), 2014, pp. 205–210.

[161] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and J.
González, “Towards sFlow and adaptive polling sampling for deep learning
based DDoS detection in SDN,” Futur. Gener. Comput. Syst., vol. 111, pp.
763–779, 2020.

[162] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “XGBoost classifier
for DDoS attack detection and analysis in SDN-based cloud,” in 2018 IEEE
international conference on big data and smart computing (bigcomp), 2018,
pp. 251–256.

[163] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença Jr, “Adversarial
Deep Learning approach detection and defense against DDoS attacks in SDN
environments,” Futur. Gener. Comput. Syst., vol. 125, pp. 156–167, 2021.

[164] Z. Liu, Y. He, W. Wang, and B. Zhang, “DDoS attack detection scheme
based on entropy and PSO-BP neural network in SDN,” China Commun.,
vol. 16, no. 7, pp. 144–155, 2019.

[165] L. Wang and Y. Liu, “A DDoS attack detection method based on information
entropy and deep learning in SDN,” in 2020 IEEE 4th Information
Technology, Networking, Electronic and Automation Control Conference
(ITNEC), 2020, vol. 1, pp. 1084–1088.

197

[166] Y. Chen, J. Pei, and D. Li, “DETPro: a high-efficiency and low-latency
system against DDoS attacks in SDN based on decision tree,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC), 2019, pp.
1–6.

[167] S. Yu, J. Zhang, J. Liu, X. Zhang, Y. Li, and T. Xu, “A cooperative DDoS
attack detection scheme based on entropy and ensemble learning in SDN,”
EURASIP J. Wirel. Commun. Netw., vol. 2021, no. 1, pp. 1–21, 2021.

[168] Y. Xu, Y. Yu, H. Hong, and Z. Sun, “DDoS detection using a cloud-edge
collaboration method based on entropy-measuring SOM and KD-tree in
SDN,” Secur. Commun. Networks, vol. 2021, 2021.

[169] Z. Long and W. Jinsong, “A hybrid method of entropy and SSAE-SVM
based DDoS detection and mitigation mechanism in SDN,” Comput. Secur.,
vol. 115, p. 102604, 2022.

[170] P. Preamthaisong, A. Auyporntrakool, P. Aimtongkham, T. Sriwuttisap, and
C. So-In, “Enhanced DDoS detection using hybrid genetic algorithm and
decision tree for SDN,” in 2019 16th International Joint Conference on
Computer Science and Software Engineering (JCSSE), 2019, pp. 152–157.

[171] M. Wang, Y. Lu, and J. Qin, “Source-Based Defense Against DDoS Attacks
in SDN Based on sFlow and SOM,” IEEE Access, vol. 10, pp. 2097–2116,
2021.

[172] Z. Ma and B. Li, “A DDoS attack detection method based on SVM and K-
nearest neighbour in SDN environment,” Int. J. Comput. Sci. Eng., vol. 23,
no. 3, pp. 224–234, 2020.

[173] Y. Cao, H. Jiang, Y. Deng, J. Wu, P. Zhou, and W. Luo, “Detecting and
mitigating ddos attacks in SDN using spatial-temporal graph convolutional
network,” IEEE Trans. Dependable Secur. Comput., 2021.

[174] A. Maheshwari, B. Mehraj, M. S. Khan, and M. S. Idrisi, “An optimized
weighted voting based ensemble model for DDoS attack detection and
mitigation in SDN environment,” Microprocess. Microsyst., vol. 89, p.
104412, 2022.

[175] J. Cui, J. Zhang, J. He, H. Zhong, and Y. Lu, “DDoS detection and defense
mechanism for SDN controllers with K-Means,” in 2020 IEEE/ACM 13th
International Conference on Utility and Cloud Computing (UCC), 2020, pp.
394–401.

[176] H. Nurwarsito and M. F. Nadhif, “DDoS Attack Early Detection and
Mitigation System on SDN using Random Forest Algorithm and Ryu
Framework,” in 2021 8th International Conference on Computer and
Communication Engineering (ICCCE), 2021, pp. 178–183.

198

[177] J. Tan, S. Jing, L. Guo, and B. Xiao, “DDoS detection method based on Gini
impurity and random forest in SDN environment,” in 2021 International
Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 2021,
pp. 601–606.

[178] H. Meigen and C. Yunqiang, “A DDoS attack detection method based on
time series and random forest in SDN,” in 2021 International Conference on
Intelligent Computing, Automation and Systems (ICICAS), 2021, pp. 323–
327.

[179] X. Luo and R. K. C. Chang, “On a new class of pulsing denial-of-service
attacks and the defense.,” 2005.

[180] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols
for computer communications, 2003, pp. 75–86.

[181] A. Shevtekar, K. Anantharam, and N. Ansari, “Low rate TCP denial-of-
service attack detection at edge routers,” IEEE Commun. Lett., vol. 9, no. 4,
pp. 363–365, 2005.

[182] E. Adi, Z. Baig, C. P. Lam, and P. Hingston, “Low-rate denial-of-service
attacks against HTTP/2 services,” in 2015 5th International Conference on
IT Convergence and Security (ICITCS), 2015, pp. 1–5.

[183] W. Zhijun, X. Qing, W. Jingjie, Y. Meng, and L. Liang, “Low-rate DDoS
attack detection based on factorization machine in software defined
network,” IEEE Access, vol. 8, pp. 17404–17418, 2020.

[184] S. Rendle, “Factorization machines,” in 2010 IEEE International conference
on data mining, 2010, pp. 995–1000.

[185] “CIC Dos Dataset,” 2017.

[186] N. Zhang, F. Jaafar, and Y. Malik, “Low-rate DoS attack detection using
PSD based entropy and machine learning,” in 2019 6th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th
IEEE International Conference on Edge Computing and Scalable Cloud
(EdgeCom), 2019, pp. 59–62.

[187] Z. Liu, X. Yin, and Y. Hu, “CPSS LR-DDoS detection and defense in edge
computing utilizing DCNN Q-learning,” IEEE Access, vol. 8, pp. 42120–
42130, 2020.

[188] K. M. Sudar and P. Deepalakshmi, “Flow-Based Detection and Mitigation
of Low-Rate DDOS Attack in SDN Environment Using Machine Learning
Techniques,” in IoT and Analytics for Sensor Networks, Springer, 2022, pp.

199

193–205.

[189] U. Wijesinghe, U. Tupakula, and V. Varadharajan, “Botnet detection using
software defined networking,” in 2015 22nd International Conference on
Telecommunications (ICT), 2015, pp. 219–224.

[190] F. Tariq and S. Baig, “Botnet classification using centralized collection of
network flow counters in software defined networks,” Int. J. Comput. Sci.
Inf. Secur., vol. 14, no. 8, p. 1075, 2016.

[191] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in SDN using machine learning approach,” in 2016
IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2016, pp. 167–172.

[192] F. Tariq and S. Baig, “Machine learning based botnet detection in software
defined networks,” Int. J. Secur. Appl, vol. 11, no. 11, pp. 1–12, 2017.

[193] S.-C. Su, Y.-R. Chen, S.-C. Tsai, and Y.-B. Lin, “Detecting p2p botnet in
software defined networks,” Secur. Commun. Networks, vol. 2018, 2018.

[194] D. Comaneci and C. Dobre, “Securing networks using SDN and machine
learning,” in 2018 IEEE International Conference on Computational
Science and Engineering (CSE), 2018, pp. 194–200.

[195] Y. Park, N. V. Kengalahalli, and S.-Y. Chang, “Distributed security network
functions against botnet attacks in software-defined networks,” in 2018
IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2018, pp. 1–7.

[196] S. Maeda, A. Kanai, S. Tanimoto, T. Hatashima, and K. Ohkubo, “A botnet
detection method on SDN using deep learning,” in 2019 IEEE International
Conference on Consumer Electronics (ICCE), 2019, pp. 1–6.

[197] I. Letteri, M. Del Rosso, P. Caianiello, and D. Cassioli, “Performance of
Botnet Detection by Neural Networks in Software-Defined Networks.,”
2018.

[198] S. Y. Khamaiseh, I. Alsmadi, and A. Al-Alaj, “Deceiving machine learning-
based saturation attack detection systems in sdn,” in 2020 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-
SDN), 2020, pp. 44–50.

[199] S. Khamaiseh, E. Serra, Z. Li, and D. Xu, “Detecting saturation attacks in
sdn via machine learning,” in 2019 4th International Conference on
Computing, Communications and Security (ICCCS), 2019, pp. 1–8.

[200] A. Abusnaina, A. Khormali, D. Nyang, M. Yuksel, and A. Mohaisen,

200

“Examining the robustness of learning-based ddos detection in software
defined networks,” in 2019 IEEE Conference on Dependable and Secure
Computing (DSC), 2019, pp. 1–8.

[201] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2574–2582.

[202] N. Papernot et al., “Technical report on the cleverhans v2. 1.0 adversarial
examples library,” arXiv Prepr. arXiv1610.00768, 2016.

[203] X. Huang, K. Xue, Y. Xing, D. Hu, R. Li, and Q. Sun, “FSDM: Fast recovery
saturation attack detection and mitigation framework in SDN,” in 2020 IEEE
17th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), 2020, pp. 329–337.

[204] H.-Y. Chang, T.-L. Lin, T.-F. Hsu, Y.-S. Shen, and G.-R. Li,
“Implementation of ransomware prediction system based on weighted-KNN
and real-time isolation architecture on SDN Networks,” in 2019 IEEE
International Conference on Consumer Electronics-Taiwan (ICCE-TW),
2019, pp. 1–2.

[205] G. Cusack, O. Michel, and E. Keller, “Machine learning-based detection of
ransomware using SDN,” in Proceedings of the 2018 ACM International
Workshop on Security in Software Defined Networks & Network Function
Virtualization, 2018, pp. 1–6.

[206] C. Thapa, K. K. Karmakar, A. H. Celdran, S. Camtepe, V. Varadharajan, and
S. Nepal, “FedDICE: A ransomware spread detection in a distributed
integrated clinical environment using federated learning and SDN based
mitigation,” in International Conference on Heterogeneous Networking for
Quality, Reliability, Security and Robustness, 2021, pp. 3–24.

[207] P. V Shalini, V. Radha, and S. G. Sanjeevi, “Early detection and mitigation
of TCP SYN flood attacks in SDN using chi-square test,” J. Supercomput.,
pp. 1–33, 2023.

[208] K. Subratie, S. Aditya, and R. J. Figueiredo, “EdgeVPN: Self-organizing
layer-2 virtual edge networks,” Futur. Gener. Comput. Syst., vol. 140, pp.
104–116, 2023.

[209] S. A. Wagan, J. Koo, I. F. Siddiqui, N. M. F. Qureshi, M. Attique, and D. R.
Shin, “A fuzzy-based duo-secure multi-modal framework for IoMT anomaly
detection,” J. King Saud Univ. Inf. Sci., vol. 35, no. 1, pp. 131–144, 2023.

[210] S. Gamage and J. Samarabandu, “Deep learning methods in network
intrusion detection: A survey and an objective comparison,” J. Netw.

201

Comput. Appl., vol. 169, p. 102767, 2020.

[211] T. H. H. Aldhyani and H. Alkahtani, “Cyber Security for Detecting
Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning
Model,” Mathematics, vol. 11, no. 1, p. 233, 2023.

[212] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon,
and D. Siracusa, “LUCID: A practical, lightweight deep learning solution
for DDoS attack detection,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 2,
pp. 876–889, 2020.

[213] D. K. Thara, B. G. PremaSudha, and F. Xiong, “Auto-detection of epileptic
seizure events using deep neural network with different feature scaling
techniques,” Pattern Recognit. Lett., vol. 128, pp. 544–550, 2019.

[214] M. Sheikhan, Z. Jadidi, and A. Farrokhi, “Intrusion detection using reduced-
size RNN based on feature grouping,” Neural Comput. Appl., vol. 21, pp.
1185–1190, 2012.

[215] C. Yue, L. Wang, D. Wang, R. Duo, and X. Nie, “An ensemble intrusion
detection method for train ethernet consist network based on CNN and
RNN,” IEEE Access, vol. 9, pp. 59527–59539, 2021.

[216] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[217] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,”
arXiv Prepr. arXiv2106.11342, 2021.

[218] A. I. Georgevici and M. Terblanche, “Neural networks and deep learning: a
brief introduction,” Intensive Care Med., vol. 45, no. 5, pp. 712–714, 2019.

[219] H. Zheng, G. Wang, and X. Li, “Swin-MLP: A strawberry appearance
quality identification method by Swin Transformer and multi-layer
perceptron,” J. Food Meas. Charact., vol. 16, no. 4, pp. 2789–2800, 2022.

[220] F. Sharifzadeh, G. Akbarizadeh, and Y. Seifi Kavian, “Ship classification in
SAR images using a new hybrid CNN–MLP classifier,” J. Indian Soc.
Remote Sens., vol. 47, pp. 551–562, 2019.

[221] P. Devan and N. Khare, “An efficient XGBoost–DNN-based classification
model for network intrusion detection system,” Neural Comput. Appl., vol.
32, pp. 12499–12514, 2020.

[222] S. P. RM et al., “An effective feature engineering for DNN using hybrid
PCA-GWO for intrusion detection in IoMT architecture,” Comput.
Commun., vol. 160, pp. 139–149, 2020.

202

