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 ABSTRACT 

DETECTING AND MITIGATING BOTNET ATTACKS USING 

DEEP LEARNING IN SOFTWARE-DEFINED NETWORKS  

 

 

 MUHAMMAD WAQAS NADEEM  

 

 

Software-Defined Networking (SDN) is a newly emerging network architecture 

separating control and data planes. It provides easy and flexible organization, 

management, and communication of complex or large-scale networks. Its 

programmable and centralized interfaces facilitate making complex and intelligent 

network decisions seamlessly and dynamically and can address the requirements of 

the data centers for managing the entire network. It also provides opportunities for 

individuals and businesses to build custom network applications based on their 

requirements and enhance their network services. Although SDN architecture 

offers high benefits, it introduced a new array of security and privacy challenges 

(i.e., single point of failure) that can preclude the wide adoption of SDNs. The SDN 

controller is a crucial element that attracts attackers to launch malicious attacks or 
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activities on the controller (s) through OpenFlow switches. Distributed Denial of 

Service (DDoS) and botnet attacks are considered dangerous threats for networks 

such as IoT, SDNs, cloud computing, etc. If the attacker accesses the SDN 

controller, it can reroute the network traffic, causing severe damage to the whole 

network. So, Network Intrusion Detection Systems (NIDSs) have become 

important tools to protect networks against malicious attacks. Deep learning (DL)-

based network applications are trending and have shown promising results in 

detecting and mitigating potential threats with fast response. In this research, we 

analyze and show the classification performance in terms of detecting and real-time 

performance of various DL methods based on Recurrent Neural Networks (RNNs), 

Convolution Neural Networks (CNNs), Multilayer Perceptron (MLP), Deep Neural 

Networks (DNNs), and Long Short Term Memory (LSTM) for botnet-based DDoS 

attacks in an SDN environment. A new simulation-based dataset is developed and 

used to train deep learning methods. We also used feature weighting and threshold 

tuning methods to derive the significant features required for detection. The 

simulation outcomes and measurements are verified using a simulation-based 

dataset and a real-time testbed environment. The aim of comparative analysis 

among the DL methods is to find the lightweight DL method with baseline hyper-

parameters, features and data that can be easily acquired to detect botnet-based 

DDoS attacks. The performance of the methods is evaluated using different metrics 

such as accuracy, detection rate, training and detection times, precision, F1 score, 

True Positive Rate (TPR), and False Positive Rate (FPR). The outcomes proved 

that the DL methods produced good results using optimal features. Finally, based 
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on the simulation results, we observed that the CNN method outperforms using the 

simulated dataset and in real testbed settings. The detection rate of CNN reaches 

97% for attack flows and 99% for normal flows. We also adopted graph theory and 

dynamic flow deletion-based mitigation strategy to protect the SDN environment 

against botnet attacks. 
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CHAPTER 1 

 

INTRODUCTION 

The rapid development of the Internet and the Internet of Things (IoT) [1] 

have explored the limitations of traditional networking [2]. The network community 

has used patching methods and techniques to address the emerging issues of the 

traditional network. These mechanisms make the networks more bloated, and the 

control over the network becomes weaker. Furthermore, traditional network 

architectures can no longer meet data centers' dynamic programming and storage 

needs. This makes it increasingly challenging to manage high heterogeneity 

networks in a distributed architecture, as production networks often have many 

network devices running various protocols and supporting different applications. 

So, the complexity ratio in traditional or heterogeneous network infrastructures is 

increasing, leading to resource management and optimization challenges. 

Implementing intelligent solutions in future networks is necessary to address 

these challenges. A promising approach that has emerged in the last few years to 

introduce automation and intelligence to the internet is the Knowledge Plane (KP) 

approach [3], which utilizes cognitive and machine learning techniques [4]. 

However, the KP approach has yet to be implemented for several reasons. A 

significant obstacle is that conventional network systems are constructed with 

distributed characteristics, meaning that every node (like a router or switch) can only 

perceive and impact a limited network segment. As a result, controlling the local 
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network domain based on the limited information provided by the nodes can be 

extremely challenging [5]. Appreciatively, the recent development of Software 

Defined Networking (SDN) is expected to simplify the learning process. 

Software Defined Networking (SDN) [6], [7], has resolved these issues by 

separating the control and data planes. Now a day, SDN has attracted the research 

and networking community due to its emerging and novel architecture, and it can 

meet the demands of fast-growing networking. It is also known as centralized 

control architecture, enabling the SDN controllers to access all the OpenFlow 

switches and control the whole network using southbound API interfaces [8], [9]. 

SDN controllers and the forwarding and distribution of OpenFlow switches is 

grasped to simplify the network’s management and enhance the network 

capabilities over the traditional networks. The SDN controllers manages network 

resources. The controller has programmable qualities enabling it to program the 

entire network dynamically. It also has a global view of the network thanks to its 

real-time monitoring and information collection of packet and network data 

information. Furthermore, SDN has been applied in the networking world for 

different use cases, such as network traffic monitoring, traffic engineering, 

networking of data centers, and Quality of Services (QoS). Additionally, compared 

to traditional networks, SDN's flexibility enhanced security measures, including 

threat detection and prevention.       

SDN architecture consists of three layers: data, control, and application. The 

application layer runs all the rules and policies defined by the network 

administrator. Then these rules and policies are dynamically forwarded to the SDN 
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controllers for execution. The controllers act and control the network according to 

the rules. Any modification in the application layer may change the entire network 

behavior. Hence, the application layer is a great innovation of the Open-Source 

(OS) platform, which does not force the network administrators to depend on 

vendors [10] completely. SDN allows administrators to build customized network 

applications over general-purpose hardware without license constraints. The 

control layer, which is referred to as the brain of the SDN architecture, is where the 

SDN controllers operate. The application layer passes administrator rules to the 

controllers; after that, these rules are decoded by the controller and then forwarded 

to the data layer. Once these rules are implemented in the data layers, the controllers 

collect the feedback from the data layer and pass it back to the application layer. 

The data layer is known as the non-intelligent layer, and it has different types of 

hardware devices, such as switches, routers, etc. The control layer passes the 

instructions to the data layer [11].   

Furthermore, SDN facilities and simplifies the development, deployment, 

and maintenance of the networks compared to traditional networks. Updating or 

introducing new network applications may improve the network’s features and 

services. SDN-based networks have almost no compatibility issues and can be run 

on simple hardware devices, making these networks cost-effective [12]. The entire 

network accessibility is allowed without revealing information about the 

underlying layers. Hence, SDN is an innovative invention that provides 

controllability and flexibility over a network. Due to its central control, it is known 

as a double-edged sword, meaning that a single controller can easily manage the 
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whole network. The security measures of traditional networks can be improved 

with the help of SDN.  

Although SDN has great capabilities compared to traditional networks, it’s 

emerging architecture and centralized control introduced a new array of security 

threats that can lead toward a single point of failure [13]. To support the vision of 

the next generation of networking [13], extensively trustworthy security measures 

are also needed for SDN. Different attacks, such as DDoS, botnets, saturation, and 

other types, can be easily launched toward SDN controllers due to their centralized 

nature. 

 

Now a days, due to advancements in technology, botnet attacks have 

become more dangerous attacks, and they are considered a critical threat in the next 

generation of networking [14]. The botnet attacks are categorized into network-

based attacks that can breach multiple computers into “bots” to make a “bot force.” 

They could perform malicious activities such as information theft, spamming, 

DDoS, Domain Name System (DNS) spoofing, phishing, etc. In a botnet attack, a 

malicious actor, known as a “botmaster,” attempts to get unauthorized access to a 

single device; after that, it tries to control the device using different botnet malware 

without disturbing normal users. The attacker also makes a Command and Control 

(C&C) center to establish a connection among the bots. The instructions related to 

malicious activities are passed from C&C to bots. 
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The Internet of Things (IoT) and SDN's most sophisticated DDoS attacks 

in recent years have often been launched using botnet technologies. [15]–[17]. The 

flexibility and power of the technology enable the botnets to generate several types 

of DDoS attacks. There are a few reasons behind the use of modern technology by 

the attackers, which are as follows: 

 A big force of bots can fastly generate more powerful flooding attacks. 

 The actual attacker cannot be found easily. 

 The security mechanisms can be dodged using several network protocols. 

 They can produce attack traffic that resembles regular traffic, making real-

time detection challenging. 

Negatively, the advancement in technology makes the attacker more 

competent, and they know they can control the whole SDN-based networks if they 

get access to the controllers. Hence, multiple computers can be easily breached into 

bots, and then a member of the botnet force to perform malicious actions on the 

SDM controllers. So, the botnets have resulted in the progression of huge and 

severe DDoS attacks against the SDN controllers and become a cause of a single 

point of failure. 

DDoS attacks are typical threats that can be launched with bots for different 

purposes, such as sending many requests to exhaust the system’s or controller’s 

resources, synchronizing fake traffic, or blocking the network for legitimate users. 

In DDoS attacks, the victims’ sensitive information is not lost as in other network 

attacks. Instead, the users may experience out-of-service issues during the attack 
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period. Generally, a DDoS attack can be easily launched, but it is hard to trace, e.g., 

because of IP Spoofing [18]. In an SDN environment, attackers use spoofed 

sources’ IP addresses to send many malicious packets to flood the network, and 

these packets cannot match the switch’s flow table entries. Then, the switches send 

“Packet-In “messages to the controller to request how to handle these new packets. 

In response, the controller sends new flow rules to the corresponding switches. To 

process these spoofed packets, the controller uses excessive memory and 

computing resources, which make it unavailable to handle legitimate requests of 

normal users. Thus, the attackers successfully launched a DDoS attack against the 

controller. The DDoS attacks are categorized into application layer attacks, 

protocol attacks, and volumetric attacks. In application layer attacks, the attacker 

consumes controllers' computing resources and bandwidth to prevent them from 

providing legal services. In protocol attacks, the attackers attempt to take advantage 

of protocol rules by using the target server's current states, such as the "three-way 

handshake process of TCP." Attackers flooded the network with malicious traffic 

to perform volumetric attacks, depleting the controllers' resources, including CPU 

usage and bandwidth [19]. DDoS attacks against the data plane of SDN are quite 

similar to the traditional networks; they could impact the switch’s processing 

capabilities of switches links. However, DDoS attacks against the control or 

application planes are considered more dangerous because these two planes are 

responsible for making and implementing network policies. In other words, these 

are high-profit targets for attackers to interrupt the network. This research focuses 



7 
 

on volumetric DDoS attacks because they are a long-term threat to SDN or other 

networks due to rapid growth in network-connected devices.  

Deep learning-based techniques and methods are commonly applied for 

detecting and mitigating intrusion in different networking fields. For instance, In 

traditional networks, AI detection of Distributed Denial of Service (DDoS) attacks 

typically involves the use of anomaly detection algorithms and signature-based 

methods. Anomaly detection relies on establishing a baseline of normal network 

behavior and flagging deviations from this baseline as potential threats. Signature-

based detection involves identifying known patterns or signatures of DDoS attacks 

by comparing network traffic to a predefined set of attack signatures. However, 

traditional networks may face limitations in adapting quickly to new and evolving 

DDoS attack techniques, and false positives/negatives are common challenges. 

On the other hand, in Software-Defined Networking (SDN), AI detection of 

DDoS attacks can be more dynamic and responsive. SDN separates the control 

plane from the data plane, allowing for centralized network management and 

programmability. This enables the deployment of machine learning models that can 

adapt to changing network conditions in real-time. SDN's centralized control 

facilitates faster decision-making for traffic diversion or mitigation strategies, 

enhancing the network's ability to detect and respond to DDoS attacks more 

efficiently compared to traditional networks. The flexibility and programmability 

of SDN enable the integration of advanced AI techniques for improved threat 

detection and mitigation. 
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Furthermore, examining SDN behavior is a new research area in which deep 

learning techniques are applied to study the behavior, it could become the first 

attempt for early detection [20], [21] because machines can respond faster than 

humans. Deep learning techniques use training, trial, and error methods to empower 

the machines’ decisions. These techniques realize the network behavior using 

historical data and can predict incoming traffic flows. Positively, DL techniques 

produced excellent results in classifying attacks or normal traffic flows. Instead of 

relying on packet payload, the DL-based methods take a particular set of features 

to make predictions. It means DL methods could help the SDN controller to monitor 

and recognize the network states in real-time. In different studies [4], [22], to 

predict DDoS attacks in SDN, the authors used machine learning(ML) and deep 

learning (DL) approaches. However, these methods and techniques have not 

achieved appropriate accuracies for detecting DDoS attacks in SDN. They also 

trained and evaluated their methods on old datasets generated in traditional network 

environments. Furthermore, in some studies [23]–[26], the authors used many 

features to train DL/ML methods. The extraction and collection of more features 

from real traffic flows is a tough and time-consuming task because of accessibility 

or authorization. Furthermore, the ML/DL methods show low efficiency in 

detection time (e.g., take a long detection time), which causes a delay in response, 

and the attack traffic cannot be detected in time. Their mitigation methods consume 

excessive computing and CPU resources [27], [28]. Moreover, we also need to 

focus on botnet-based DDoS attacks because these attacks can potentially affect the 

SDN controllers or the whole network due to centralized natures. Lastly, in existing 
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studies [7], [13], most of the methods are verified by simulations or experimental 

datasets only; the real-time testbed validation of these methods is intermittent. 

1.1 Motivations and Problem Statement 

In the current era of technology, cyber-attacks have become critical threats 

to computer networks. The security of communication and computer networks is 

becoming more important as more and more devices connect to the networks. 

Botnet attacks are categorized as the most dangerous cyber-attacks that become a 

major threat to the security of any IT infrastructure. As more devices come online 

everywhere, the potential for new and strong botnet malware has increased 

proportionally. Hackers have evolved and scaled their attacks to match modern 

security systems. In traditional networks, the Botnet owners can access several 

thousand computers at a time and command them to carry out malicious activities. 

Botnets can perform Distributed Denial-of-Service (DDoS) attacks, steal data, send 

spam, and allow the attacker to access the device and its connection. In traditional 

networks, the botnet attack easily breaks down a segment or whole network [29]. 

These networks are changed into SDN to prevent malicious attacks [30]. Botnet 

becomes smarter, and they know the architecture of the SDN as in an SDN network; 

the entire network goes down if the SDN controller is down. [31]. Hence, Botnet 

and DDoS attacks are widespread and can damage SDN-based networks [32]–[34]. 

Botnets can take control of the SDN network by attacking the control plane. In 

botnet-based DDoS attacks toward the control plane of SDN, the attacker can use 

spoofing IP addresses to generate many traffic flows that cannot match flow rules.  

The intelligent protection of the SDN from Botnet-based DDoS attacks is 
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significant because all traditional networks are converted into SDN-based networks 

[35], [36] to support the vision of the Next generation of networks. So, to maintain 

secure and sustainable cyberspaces for the SDN, advanced intrusion systems should 

be applied in the SDN controllers.  These systems detect, prevent, and respond to 

the attacks. For example, an intrusion detection system uses those techniques that 

effectively detect external and internal intrusions or suspicious activities that can 

target a controller.  

Traditional methods are based on statistical analysis [37], [38] and 

signature-based detection and prevention [39], [40], which are encountering 

scalability issues due to an increase in attack space. The security industry has 

focused on deep learning and machine learning-based approaches and techniques 

to detect and mitigate these attacks. Existing techniques, however, rely on statistical 

analysis, machine learning, or deep learning and thus exhibit low accuracy and 

reduce detection granularity. [37], [38]. Some other methods based on machine 

learning exhibit low efficiency in terms of detection time, which may cause a delay 

in the response, and attack traffic cannot be detected early. They are using many 

traffic features to detect botnet-based DDoS, increasing CPU usage and other 

computing resources. Furthermore, previous work focuses on old datasets (from the 

literature review part), and they have not ventured into the botnet, and previous 

work gives low prediction accuracy using old datasets. 

As a result, machine learning and deep learning-based network security 

solutions for SDN are becoming increasingly common these days. This inspires me 

to research and analyze advanced deep learning methods to detect and prevent 
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botnet-based DDoS attacks in a setting supported by SDN. To protect the SDN 

controllers' computational resources, this research employed feature weighting and 

threshold tuning as the basis for the best feature selection. The selection of 

important traffic features can help to improve the detection accuracy and 

performance of the DL methods. A dynamic flow deletion and graph theory-based 

dropping strategy is adopted to defend the SDN.  A botnet-based DDoS attack can 

control the controllers and flood the network with malicious traffic. So, a dedicated 

bot management system based on the DL method could become an optimal solution 

for the SDN controller to detect and protect from botnet-based DDoS traffic. Lastly, 

the progressive development to enhance the security measures of the SDN 

encouraged me to develop a DL method named “DepBot” to detect and mitigate 

botnet-based DDoS attacks. Table 1.1 shows the contribution of this research 

compared to the existing research.                          

Table 1.1: Comparison of this research with the existing research. 

Study Algorithm 
used 

Feature 
Engineering 

Flow-
based 

Packet-
based 

SDN 
Environment Botnet DDoS 

[13] IE-CNN       

[24] 

Random 
Forest, 
Decision 
Tree, 
Bagging, k-
Nearest 
Neighbor, 
and Support 
Vector 
Machine 

      

[26] 
PSO, DNN, 
DT, and 
SVM 

      
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[41] Deep auto 
encoders       

[42] SVM       

[43] 

Artificial 
Neural 
Networks 
(ANNs) and 
Deep 
Neural 
Networks 
(DNNs) 

      

[44] LSTM-
CNN       

[45] FT-EHO-
DBN       

[46] SVM       

This 
research 

RNN, CNN, 
MLP, 
LSTM, and 
DNN 

      

 

1.2 Research Questions 

RQ1: Are the publically available intrusion detection datasets can use for SDN? 

RQ2: Is Deep Learning methods can effectively detect botnet attacks in SDN? 

      RQ3: How can we protect the SDN from botnet attacks? 

1.3 Research Objectives 

RO1: To develop a specific dataset related to the botnet and simulation 

environment for training and testing deep learning methods. Because the existing 

datasets used in different studies [17] [20] are old or traditional datasets (i.e., NSL-
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KDD, DARPA, Na-BaIoT, CIC-DoS-2017, etc.). These datasets are not 

specifically used the detection of botnet-based DDoS attacks. Furthermore, these 

datasets are unsuitable for SDN environments because they are developed in 

traditional network environments and suffer imbalanced problems. 

RO2: To propose a deep learning-based method with baseline parameters 

for detecting botnets early in the SDN. Because the existing deep learning methods 

are trained using traditional or old datasets, and they use many traffic features that 

enhance the consumption of time by any DL methods during training and real-time 

detection. Furthermore, complex network architectures for the DL methods are also 

used to improve the accuracy or detection rate. Moreover, the existing DL methods 

are tested and verified only on experimental datasets; so, the real-time testbed 

evaluation is intermittent. 

RO3: To develop a mitigation strategy to defend the SDN controller from 

DDoS attacks powered by botnets. Most of the existing mitigation strategy is based 

deletion of traffic flows after detecting the attacks, which enhances the chance of 

killing normal flows. The existing studies do not focus on finding the switches with 

attack flows. So, a mitigation strategy is needed to find the attack path and then 

adopt a more targeted dropping rate to avoid the by-mistake killing of normal flows.       

1.4 Contributions of the Research 

• The quality of the training dataset has a substantial impact on the 

classification performance of DL-based IDS systems. However, the 

unavailability of the benchmark datasets could interrupt the development of 
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advanced DL-based IDS for the SDN environments. The main issues behind 

the lack of benchmark datasets are the security and privacy of the networks. 

This is the first effort to construct a simulation dataset exclusively for 

detecting botnet-based DDoS attacks in an SDN-assisted environment.  This 

dataset is collected in a pure SDN simulated network environment by 

generating both the normal and botnet-based DDoS attack traffics. The 

collected simulated dataset consists of both normal and attack traffic records 

and has a total around 89000 records. This dataset can be used for further 

research in the order to secure the SDN.       

• The DL methods can explore and learn the intrusion patterns in the training 

data and achieve better results than traditional ML methods. So, in this 

research, a comprehensive analysis on the performance of the DL methods 

is performed for detecting the botnet-based DDoS attacks using the 

simulated dataset and real-time testbed. Furthermore, different subsets of 

the optimal features have been used to improve the detection accuracy of 

DL methods while detecting the attack flows and finding out the optimal 

subset of features. Based on the simulated results, we observed that the 

CNN methods produced superior results using a subset of 30 features and 

in the real-time testbed environment. To intelligently detect botnet-based 

DDoS attacks in the SDN, the CNN approach is implemented in the SDN 

controller.           

• The controller(s) responsible for dynamically checking the network flows 

in specific time intervals and activating the defense shield after successfully 
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detecting the attacks in the SDN environments. We developed and deployed 

a graph theory and deletion-based defense strategy to defend the SDN 

controller(s) against botnet-based DDoS attacks. Our proposed defense 

methods calculate the variable dropping rates for different OpenFlow 

switches based on their location in the attack path to avoid the by-mistake 

killing of normal flows. We measured the effectiveness of the defense 

methods in terms of flow generation rates and CPU utilization and 

compared them with the most recent existing defense methods. Based on 

the reported results and comparison with existing methods, our defense 

strategy mitigates the botnet-based DDoS attack in a real-time SDN 

network with minimal resource consumption.       

1.5 Organization of Thesis 

The rest of the thesis is structured as follows: A review of the SDN 

architecture is provided in Chapter 2, along with a brief explanation of machine 

learning and deep learning techniques and their application to SDN security. The 

simulation model for identifying and thwarting botnet-based DDoS attacks in SDN 

is described in Chapter 3. The results of the simulation used to identify botnet 

attacks using deep learning techniques are described in Chapter 4. In addition to 

describing the suggested defense strategy's implementation and effectiveness, 

Chapter 5 also illustrates how it counters botnet attacks. The thesis is finally 

concluded in Chapter 6 with an outline of forthcoming research.    
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CHAPTER 2 

 

LITERATURE REVIEW 

The chapter covers the existing and recent research on securing the SDN 

from different types of malicious attacks (i.e., DDoS, Botnet, Saturation, and 

Ransomware, etc.) using machine learning and deep learning algorithms.    

 
2.1 Architecture of SDN 

Over the past few years, SDN has gained significant attention. The Open 

Network Foundation (ONF) [47] is a nonprofit organization with the development, 

standardization, and growth of SDN as one of its main objectives. As defined by 

the ONF, SDN design separated the control and data planes, centralized network 

state and intelligence, and derived the essential network infrastructure from 

applications. [48]. The control plane, data plane, and application plane are the three 

main planes that make up the high-level architecture of SDN, which is based on 

this concept. Figure 2.1 illustrates the components comprising the architecture of 

each plane, as well as how they interact with one another. In the subsequent 

sections, we overview three planes and how they interact. 
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Figure 2.1: Block diagram of the SDN architecture. The physical and virtual 
network devices are operated at the data plane. The data and control planes 
are connected through the southbound interfaces. The westbound or 
eastbound is responsible for the communication among the controllers. The 
application and control planes are connected through northbound interfaces. 
The application plane is responsible for running different SDN-based business 
applications. 

2.1.1 Data Plane  

The data plane, often called the infrastructure plane, is the lowest level of 

the SDN architecture and contains forwarding components, including physical and 

virtual switches. Virtual switches run on standard operating systems like Linux [49]. 

On the other hand, physical switches are made of hardware, either merchant 

switches (which vendors install on networking gear) or open network hardware 
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switches (i.e., “NetFPGA. Pantou, Open vSwitch [50], and Indigo [51]” ) are three 

examples of virtual switches [52], while examples of NetFPGA-based switches are 

(ie., “ServerSwitch [53] and SwitchBlade [54]”). Networking hardware vendors like 

Cisco, HP, Huawei, etc., have begun supporting SDN protocols in their commercial 

switches. Physical switches have a faster flow forwarding rate but are less full and 

flexible than virtual switches, which often sacrifice all SDN protocol features. The 

switches are in charge of flow-forwarding, modification, and packet dropping in 

the data plane following the control plane flow policies. These switches use 

Southbound Interfaces (SBIs) to communicate with the CP, which controls the 

processing and forwarding capabilities of the data planes. 

2.1.2 Control Plane 

SDN-based systems have a control plane, commonly called the "brain," 

responsible for dynamically updating forwarding rules, programming network 

resources, and improving network administration's flexibility and agility. The central 

component of the control plane is the logically centralized SDN controller that 

manages communication between applications and forwarding devices. The 

controller offers vital features that applications need, including shortest path 

routing, device configuration, network condition information notifications, and 

network topology storage. It converts application requirements into customized 

policies, which are then disseminated across the forwarding devices. Several 

controller architectures, such as (i.e.,  “Floodlight [55], POX [56], NOX [57], Beacon 

[58], Open Daylight [59], and Ryu [60]”), have been introduced. To interact with 

other planes, the controller utilizes three communication interfaces, including 
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northbound, southbound, and westbound/eastbound. On the one hand, the controller 

delivers a summary of network state data to the application plane. 

Control Data Plane Interfaces (CDPIs), also known as Southbound Interfaces 

(SBIs), facilitate communication between the control and data planes. Through these 

interfaces, forwarding devices can communicate with the control plane about 

network state and control policies, offer forwarding features, promote device 

capabilities, produce statistical reports, and send event notifications. While the 

ONF-based OpenFlow [61] the primary and most popular open-standard SBI, other 

proposals are less popular, such as (i.e., “OpFlex [62], ForCES [63], OVSDB [64], 

Protocol Oblivious Forwarding (POF) [65], Open State [66], LISP [67], and 

NETCONF [68]”). 

 The Northbound Interfaces (NBIs) refer to interfaces defined between the 

application and control planes, allowing various applications to access and 

interpret the abstract network information the control plane provides. They 

facilitate SDN networks' management, innovation, and automation by 

enabling the expression of network requirements and behaviors. The Open 

Networking Foundation (ONF) has established a set of standard NBIs and a 

common information model [68]. 

 In multi-controller network architectures, westbound/eastbound interfaces 

are utilized. These interfaces are employed in large-scale networks, divided 

into several sub-domains, each with a separate controller. As the flow data in 

these networks exceeds the processing capacity of a single controller, 

multiple SDN controllers are deployed. To provide an overall view of the 



20 
 

network to the upper-layer applications, it is essential to establish 

communication between the various controllers for exchanging network 

information. The private westbound/eastbound interfaces of the Hyper Flow 

[69]and Onix [70] distributed control architectures do not allow them to 

communicate with each other. Several proposals have been put forward to 

facilitate communication between different types of controllers. These 

include the West-East Bridges [71], SDNi [72], and Communication 

Interface for Distributed Control Plane (CIDCP) [73], which serve as 

westbound/eastbound interfaces for exchanging network state information. 

However, the standardization of these interfaces is still necessary. 

2.1.3 Application Plane  

In the SDN design, the application layer is the uppermost layer and is in 

charge of numerous business applications that offer services, business 

administration, and optimization. The NBIs allow the distribution of network state 

information among these applications, which can use this information to modify 

network behaviors based on their specific business requirements. 

 The acceptance of SDN-based applications has grown significantly in 

academia and industries. For instance, [74] conducted a survey on SDN-based 

Traffic Engineering (TE) solutions, and SDN security has been reviewed in [27], 

[75]–[79], are focused on DDoS attacks in SDN and cloud computing. 

Additionally, fault management in SDN has been explored in [80], while [81] 

introduced a Four-Dimensional (4D) evaluation framework for SDN centralized 

Quality of Service mechanisms. 
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SDN has been implemented in numerous networks because to its inherent 

benefits, including logically centralized control, dynamically updated forwarding 

rules, and a global network perspective. Including optical networks [82], Internet of 

Things (IoT) [83], transport networks [84], wireless networks [85], Wide Area 

Network (WAN) [86], cloud computing [87], edge computing [88], and Network 

Function Virtualization (NFV) [89], [90]. Various resources are available in [91]–

[97] for further reading on SDN. 

2.1.4 SDN Workflow 

The basic operations of an OpenFlow-based SDN network architecture 

involve the following steps: 

 The OpenFlow switch uses flow entries to determine the proper data 

plane processing for incoming packets. 

 After that, the switch collects the header fields from each packet it 

receives on the data plane and compares them to flow entries 

previously saved. 

 The switch uses its local flow rules to act when any packet matches 

its current flow entries.    

 The switch sends a Packet-In OpenFlow message to the SDN 

controller if the packet does not match the switch's current flow 

entries. (arrows 2 and 5).  

 • Packet-In messages can contain the entire packet's contents or only 

the header information.    
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 After that, the controller develops fresh flow rules in accordance 

with the Packet-In message.   

 The controller sends a Flow-Mod message to the switch to regulate 

and modify the flow rules (arrows 3 and 6).   

 Finally, the switching process of the subsequent packets is based on 

new flow rules.  

This workflow allows the SDN controller to manage the network by 

dynamically updating the switch flow entries. This flexibility enables the SDN 

architecture to adapt to changing network conditions and optimize performance. 

Figure 2.2 will help to understand the working of the SDN network [98]. 

2.2 Overview of Machine Learning and Deep Learning Algorithms  

Machine learning is an advanced aspect of artificial intelligence (AI) that 

utilizes powerful algorithms and is widely employed in data mining. Its primary 

function is to enable models to recognize structural patterns from the training data. 

Training and decision-making are typically the two phases of a machine learning 

model, as shown in Figure 2.3. Machine learning models acquire the system model 

during training by utilizing the training datasets. Conversely, the trained model 

predicts the anticipated output for every new input in the decision-making phase. 
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Figure 2.2: General working of an OpenFlow SDN network. Let, the “SW1” 
and “SW2” has two flow entries (i.e., Entry-2 and Entry-3), then the 
communications are allowed between two hots with IP “192.168.100.1” and 
“192.168.100.2”. However, the traffic from “192.168.100.3” to “192.168.100.2” 
is not permitted due to security policies of “SW2”.     
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Figure 2.3: The working mechanism of a machine learning model.  
 
 

Four different learning methods for machine learning algorithms have been 

defined: supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning as shown in Figure 2.4. This section will provide a detailed 

description of the various machine learning algorithms introduced. To gain a deeper 

understanding of the theories and classical concepts related to these algorithms, we 

recommend referring to sources [99]–[102]. Machine learning models can also 

automatically learn from data [103] and uncover hidden patterns without explicit 

programming [104]. These techniques are recognized as highly efficient methods for 

reducing false alarm rates, communication, and computational costs [105] while 

improving the detection rate. 
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Figure 2.4: Taxonomy of standard machine learning and deep learning 
algorithms.  

  

2.2.1 Supervised Learning 

Supervised learning involves using labeled input data by ML algorithms to 

learn the representation and predict unknown cases [106], [107]. The most common 

algorithms used in supervised learning include  SVM, Decision Tree (DT), RF, k-

KNN, ANN, Bayes’ Theory (BT), and Hidden Markov Models (HMMs) [108]. For 
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instance, SVM-based algorithms are utilized to solve classification problems, while 

RF-based algorithms are used for regression and classification problems [103]. SVM 

algorithms are prevalent in NIDS research due to their practicality in computation 

and classification prowess. These algorithms can yield successful outcomes for high-

dimensional data; however, it is essential to choose an appropriate kernel function 

for optimal results. They also consume significant resources, requiring high 

computational power and memory [104]. Although RF algorithms [109] can handle 

variable data, they face the problem of over-fitting.  

 
 

2.2.2 Unsupervised Learning 

Unsupervised learning algorithms operate differently from supervised 

learning algorithms by being fed unlabeled input data. These algorithms aim to 

discover structures, patterns, or knowledge in the unlabeled data and group them into 

clusters based on their similarities. Unsupervised learning algorithms are mainly used 

for data aggregation, clustering, and feature reduction [99], [106]. For instance, 

Principle Component Analysis (PCA) is used for feature reduction, and Self-

Organizing Map (SOM) is utilized for clustering. PCA also speeds up the 

unsupervised feature learning process [110]. In various studies, such as [111], the 

author used PCA as a feature selector before classification. Distance learning and 

clustering-based methods have been used for anomaly detection. Artificial Neural 

Network (ANN) based SOM is used to reduce the payload in NIDS [112]. However, 

clustering algorithms used in anomaly detection have some limitations that are 



27 
 

subjective to the Initial conditions of the clustering algorithms, such as centroid. They 

may produce a high False Positive Rate (FPR) [113]. 

2.2.3 Semi-Supervised Learning 

Semi-supervised learning [114] combines labeled and unlabeled data to train 

algorithms, which is particularly useful when only a limited amount of labeled data 

is available. In situations such as image archives, where many images are unlabeled, 

and some are labeled, semi-supervised learning can be a more practical approach. 

This approach offers several advantages over supervised and unsupervised learning, 

including using a relatively cheap and easy source of unlabeled data to improve 

model performance. Different assumptions are considered in semi-supervised 

learning to effectively utilize labeled data, including clustering, manifold, 

smoothness, and low-density separation. Pseudo-labeling [115] is a popular semi-

supervised learning technique that involves training a model using labeled data, 

predicting pseudo-labels for unlabeled data, and then combining this newly labeled 

data with the original labeled data to improve model accuracy. Several semi-

supervised learning methods exist, including Co-training, transductive SVM, 

Expectation-Maximization (EM), and graph methods, each relying on different 

assumptions [116]. For example, transductive SVM is based on the low-density 

separation assumption, EM builds on the clustering assumption, and graph-based 

methods are built on various hypotheses. In network intrusion detection, semi-

supervised learning techniques  such as semi-supervised support vector machines, 

Gaussian Fields (GFs), Spectral Graph Transducers, and MPCK have been used to 

enhance the performance of detection systems [117], [118]. 
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2.2.4 Reinforcement Learning 

Three crucial elements make up the well-known learning method known as 

(i.e., “RL: an agent, a state space, and an action space”)[119]. The agent works with 

the environment to determine the optimum course of action and raise the 

cumulative reward—the total of all current and future rewards discounted over 

time. RL is used in the context of SDN architecture by treating the network as the 

environment and the SDN controller as the agent. The SDN controller learns to 

make the best decisions for managing traffic flow due to its ongoing monitoring of 

the network's status. 

2.2.5 Deep Learning 

DL algorithms are a recent update to Artificial Neural Networks (ANN) that 

take advantage of inexpensive and abundant computing power. DL allows algorithms 

to explore various levels of generalization in the different data representations. These 

algorithms have applications in network intrusion detection, object recognition, and 

other fields [120]. Both supervised and unsupervised techniques can be used to train 

DL algorithms. [103]. For instance, the Convolutional Neural Network (CNN), a 

standard DL algorithm, is typically trained in supervised [121], while Auto-encoders 

and Deep Belief Network (DBN) algorithms use unsupervised training [122]. Some 

algorithms, such as Recurrent Neural Networks (RNN), can be trained using 

supervised or unsupervised methods. 
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In conclusion, supervised learning approaches focus on classification and 

regression problems, whereas unsupervised learning and reinforcement learning 

strategies are frequently used for clustering and decision-making tasks. 

2.3 Machine Learning and Deep Learning for Security in SDN  

A centralized network view is provided by the SDN controller, which also 

makes control and maintenance easier. Leveraging deep learning algorithms and 

techniques can introduce intelligence into the controller, enabling it to analyze 

network data, optimize network performance, and automatically provide network 

services. The SDN controller can make the best decisions to adjust to changes in 

the network environment thanks to this learning capacity. This section thoroughly 

analyzes recent advances in deep learning and machine learning that address 

security issues in SDN. It also discusses how real-time these algorithms are 

employed in this context. 

2.3.1 Benchmark Datasets 

This section gives a brief overview of the commonly used network traffic-

based datasets and attack types that are mentioned in these datasets. The datasets 

which were used in various studies are summarized in Table 2.1.  The data amount 

for each class from the datasets is described in Table 2.2. 

 NSL-KDD  

This dataset is a modified version of KDD Cup 99. The repetitive and 

unnecessary records have been removed from this dataset, which now contains 
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sufficient records. After eliminating unnecessary and duplicate records, it has been 

reduced from 5 million records to around 150,000 records. This dataset is divided 

into predefined training and testing subsets for the IDS. It has the same classes and 

properties as KDD 99. The different attacks, such as Probing, U2R, R2L, and DoS, 

are also simulated for this dataset. 

 CSE-CIC-IDS 2017 

This dataset was created by Canadian Institute for Cybersecurity (CIC) and 

Communications Security Establishment (CSE) in 2017. A laboratory-based test 

environment with the victim and Offensive networks has been used to create this 

dataset. The network where the attacks were made, a computer with a Kali Linux 

operating system, a switch, and three computers with Windows 8. While in the 

target network, there is one router, one server with Ubuntu-12, one with Ubuntu-

16, one Windows server-16, and one firewall. The Windows server-16 activated 

the directory features, and all the connected devices in the victim network were in 

the same domain. The Uplink port of the routers was mirrored to view the network 

traffic on the victim. 

An agent based on the Java-B-profile system was used to generate the 

normal network traffic. With this agent, some protocols such as email, HTTPS, 

HTTP, SSH, and FTP have been reproduced using statistical and ML algorithms. 

The attack traffic was generated using tools such as Ares, Metasploit, Slowhttps, 

and slowloris (i.e., “DDoS, Dos, Heartbleed, Web attacks, Brute Force, and 

Infiltration attacks”). In this dataset, 14 types of attacks are labeled. These attacks 
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include (i.e., “DoS hulk, DoS Slowloris, Heartbleed, DoS Slow HTTP, DoS Golden 

Eye, SQL injection, Brute force, FP, DDoS, XSS, PortScann, Patator, SSH-Patator, 

infiltration, and Botnet”). In addition, the CIC Flow Meter was used to convert the 

captured network traffic into 80 features and create this dataset. 

 CIC-DDoS2019 

The CIC created this dataset in 2019 using a Wireshark-emulated 

environment. It comprises 50,063,112 records, containing 56,863 rows of normal 

traffic and 50,006,249 rows of attack traffic, with 80 different features. The training 

dataset consists of 12 DDoS attacks, (i.e., “DNS, LDAP, SNMP, MSSQL, UDP, 

NetBIOS, NTP, WebDDoS, TFTP, SSDP, SYN, and UDP-Lag”). On the other hand, 

the test dataset encompasses seven attacks, which include (i.e., “PortScan, MSSQL, 

UDP-Lag, SYN, NetBIOS, LDAP, and UDP”). 

 ISCX-2012 

This data collection, which includes both malicious and legitimate network 

activity, was created from network data collected over seven days. Attacks on 

malicious traffic include Brute Force SSH, DDoS, Infiltration, and HTTP-DoS. 

 ISOT 

5,424 network traffic flows from several variants of normal and botnet 

datasets were used to produce this dataset. The malicious traffic in this dataset was 

gathered from the Honeynet French Chapter, which uses the Waledac and Strom 

botnets. The normal traffic was obtained from Ericson Research Lab. The network 
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traffic was created using applications such as World of Warcraft, Azures, and 

HTTP Web Browsers. 

 KDD Cup 99  

This dataset is an advanced version based on DARPA 98 dataset program. 

The different attacks, such as Probing, User to Root (U2R), Remote to Local (R2L), 

and Dos, are simulated. The dataset has around 5 million lines collected during 

seven weeks of network traffic. This dataset is most commonly used for evaluating 

and assessing Intrusion Detection Systems (IDS). 

 CTU-13 

This dataset combines 13 attacks and is collected over a nonfictional 

network environment. It captures the real and mixed botnet network traffic. The 

dataset captures three network traffic types: botnet attacks, normal, and 

background. The infected hosts generated the Botnet traffic, and normal hosts were 

used for normal traffic. The 13 d scenarios were used to create the different botnet 

samples, and each was executed for a particular malware with various protocols. 

This dataset is a more labeled and largest dataset created by the Czech Technical 

University (CTU) in 2011. The capturing process of this dataset is carried out in a 

controlled network environment which is an advantage of this dataset.   

 DARPA 
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This is a network-based dataset produced in 1998 at MT Lincoln 

Laboratory. The training data records network-based attacks for seven weeks. In 

contrast, the test dataset consists of two-week network-based attacks. 

Table 2.1: Summary of publically available datasets. 

Data Set  Year  Dataset literature Feature 
Count 

Attack Type (Classes) 

NSL-
KDD 

2009 [109, 
110,113,128,135] 

43 Normal, U2R (User 2 Root), R2L 
(Root 2 Local), Probing 
DoS ( Denial-of-Service) 

CICIDS
2017  

2017 [138,147] 80 Normal, Brute Force FTP, Brute 
Force SSH, DoS slowloris, DoS 
Slowhttptest, DoS Hulk, DoS 
GoldenEye, Heartbleed, Web Attack, 
Infiltration, Botnet, DDoS, SSH-
Patator, SQL injection 

CIC-
DDoS20
19 

2019 [127,138,145] 80 DDoS-DNS, DDoS-LDAP, DDoS-
MSSQL, DDoS, NetBIOS, DDoS-
NTP, DDoS-SNMP, DDoS-SSDP, 
DDoS-SYN, DDoS-TFTP, DDoS-
UDP, DDoS-UDP-Lag, DDoS-Web 

ISCX-
2012 

2012 [115, 125, 153] 80 Normal, Attacker 

ISOT 2010 [115,173,175,179,18
0] 

27 Non-Malicious, Malicious 

KDD 
Cup 
1999 

1999 [116,133,169] 43 Normal, Probe, R2L, U2R, DoS 
 

CTU-13 2013 [115,173,175,178,17
9,180] 

14 Botnet Flows, Normal Flows 

DARPA 
1999 

1999 [124,157] 43 Probes, DoS, R2L, U2R 

 

Table 2.2: Data count for each class of dataset. 

Datasets Classes Data counts 
NSL-KDD Normal 

U2R (User 2 Root)  
R2L (Root 2 Local) 
Probe 
DoS 

6817 
3086 
53 
988 
11617 

CICIDS2017  Normal 
Brute Force FTP 
Brute Force SSH 
DoS slowloris 
DoS Slowhttptest 
DoS Hulk 

1,589,806,681,514 
55,742,361 
41,241,773 
40,681,728 
38,871,612 
161,067 69,057 



34 
 

DoS GoldenEye 
Heartbleed 
Web Attack 
Infiltration 
Botnet 
DDoS 

72,333,060 
74 
462,190 
2,610 
1,335,621 
8,958,038,445 

CIC-DDoS2019 Benign 
DDoS-DNS 
LDAP 
MSSQL 
NetBIOS 
NTP 
SNMP 
SSDP 
SYN 
TFTP 
UDP 
UDP-Lag 
Web 

56,863 
5,071,011 
2,179,930 
4,522,492 
4,093,279 
1,202,642 
5,159,870 
2,610,611 
1,582,289 
20,082,580 
3,134,645 
366,461 
439 

ISCX-2012 Normal 
Attacker 

2517 
2515 

ISOT-Botnet Non-Malicious 
Malicious 

1,619,520 
55,904  

ISOT-Ransomware 
 

Non-Malicious 
Malicious 

103 
669 

KDD Cup 1999 Normal 
Probe 
R2L 
U2R 
DoS 
 

1,033,374 
45,268 
15,676 
297 
4,114,845 

CTU-13 Botnet Flows 
Normal Flows 

432,755 
369,806 

DARPA 1999 Probes 
DoS  
R2L 
U2R 

37 
63 
53 
37 

 

2.3.2 Detecting and Mitigating DDoS Attacks 

A DDoS attack occurs when excessive traffic is deliberately directed toward 

a network, overwhelming its resources and rendering the server inaccessible to 

legitimate users. This results in network instability and reduced reliability. DDoS 

attacks can be classified into three categories: (i.e., “protocol-exploitation attacks, 

volumetric attacks, and application-layer attacks”) [123]. In an SDN-based network 
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architecture, the control plane manages the decision-making process, which can 

make intelligent decisions. However, it also presents a Single Point of Failure (SPF) 

vulnerability, where attackers who gain control of the controller can disrupt the entire 

network infrastructure [124]. SDN utilizes southbound protocols like OpenFlow to 

execute actions based on entries in the flow table. These entries encompass various 

fields serving specific purposes, such as timeouts, priorities, action fields, and 

counters [125]. An attacker can Initialize a DDoS attack on the controller by inserting 

malicious flow rules into the flow tables. Figure 2.5 provides an overview of the 

general procedure of a DDoS attack within an SDN environment. To counter such 

attacks, machine learning techniques are being developed to detect and mitigate them 

within the SDN controller. A detailed explanation of these techniques is presented in 

the subsequent section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: The general procedure of a DDoS attack on both control and 
forwarding planes. 
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In the context of SDN, many DDoS attack detection and mitigation methods 

are adaptations of techniques used in traditional networks. Among these, the most 

popular methods for detecting DDoS attacks are based on statistical information 

entropy algorithms. These methods offer the advantage of rapidly processing traffic 

data with minimal computational costs. However, their accuracy relies heavily on 

choosing an appropriate threshold, which can be limiting and result in one-sided 

detection. 

Kalkan et al. [126] proposed a Joint Scoring System (JESS) based on 

entropy for detecting and mitigating DDoS attacks, which utilizes the joint entropy 

tool without increasing the workload of switches. Meanwhile, another study [127] 

utilized traffic entropy statistical analysis to effectively protect networks from 

DDoS attacks. They validate their model in the Mininet emulator. Additionally, 

Kumar et al.  [128]developed a technique to identify and counteract SYN flooding 

attacks in SDN by using destination IP address entropy and specific TCP flags as 

random variables. To determine the attacker, an adaptive threshold is employed. In 

addition, machine learning algorithms effectively detect and mitigate anomalies in 

SDN [129]. These algorithms utilize training data, automatically make decisions, 

and classify traffic based on flow characteristics. Meanwhile, in [130], the authors 

proposed a lightweight algorithm for detecting DDoS attacks that utilizes traffic 

features. This algorithm processes switch data using the NOX controller and 

performs traffic analysis using the unsupervised learning algorithm Self-

Organizing Map (SOM) and competitive learning of ANN. KNN is a 

straightforward and efficient algorithm that categorizes flows by determining the 
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arbitrary separation between traffic feature vectors. During the DDoS detection 

process, to increase the accuracy of anomalous flow detection and decrease the 

False Alarm Rate (FAR),  Peng et al. [131] proposed the DPTCM-KNN method for 

detecting abnormal traffic. Furthermore, Zang et al. [132] proposed a set of finer-

grained flow indices that extract nine single and 39 dual attributes from various 

dimensions such as category, time, space, and intensity. 

This subset of fine-grained traffic features successively improves the 

detection accuracy for attacks. Xu et al. [133] introduced a modular detection 

system based on K-Means++ and Fast K-NN (K-FKNN), which enhances the 

controller's accuracy, efficiency, and stability against DDoS attacks. 

The paper [6] proposes a new framework that employs a trigger mechanism 

to work with detection and defense methods in data and control planes to respond 

quickly to DDoS attacks and ease the workload on switches and controllers. Niyaz 

et al. [134] offer a multi-Vector DoS detection system that leverages a home 

wireless network to gather normal traffic data as a network application deployed on 

top of the controller. Hurley et al. [135] present a training-based Baum-Welch 

algorithm-based Hidden Markov Model-based detection system for the SDN 

environment. They utilize the Mininet emulator and OpenFlow Floodlight 

controller to carry out their experimental setup. Alshamrani et al. [136] propose a 

new technique to tackle NetFlow and Misbehavior attacks. Their system 

periodically gathers network information and applies ML algorithms to categorize 

network flow as normal or attack traffic. Hu et al. [137] developed an entropy and 

SVM-based flooding attack detection and mitigation system that collects traffic 
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information using an SDN controller and sFlow agents. They also add a mitigation 

agent to stop attack traffic while allowing authorized users to access network 

resources. Dehkordi et al. [138] offer a hybrid DDoS attack strategy that uses 

machine learning algorithms and statistical methods for feature extraction and 

categorization. Li et al. [139] describe a two-stage detection method that collects 

network traffic with a broad perspective and intelligently identifies network threats. 

Using the BDM and Bat algorithm with swarm division, they identify common 

features from network traffic flows and then input this data into Random Forest 

(RF) for classification. Guozi et al. [140] propose a KNN and φ-entropy-based 

hybrid system, where the φ-entropy is used for feature selection, and KNN is used 

for classification. Deepa et al. [141] introduce an ensemble method that detects 

anomalous network traffic behavior toward the SDN controller using different 

algorithms such as SVM, KNN, NB, and SOMs. Phan et al. [142] enhance the 

eHIFF scheme instead of HIPF to defend DDoS attacks in SDN and improve attack 

traffic's speed and detection rate. Myint et al. [143] suggested an advanced SVM-

based technique that can distinguish between ICMP flood and UDP flood attacks 

to detect DDoS attacks with the least overhead. They validate their approach using 

the Open Daylight controller in the Mininet emulator. 

In the paper [144], the authors proposed an artificial neural network (ANN) 

based method to detect known and unknown DDoS attack patterns. Cui et al. [145] 

provided a four-module SD-Anti DDoS approach includes attack detection, attack 

trigger for detection, attack tracing, and attack mitigation. Xu et al. [146] developed 

a method for detecting DDoS attacks using SOM classification and victim 
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detection. Cui et al. [147] suggested a back propagation neural network-based 

method to extract the temporal behavior of an attack, while Li et al. [148] 

demonstrated a deep learning-based DDoS detection solution for SDN. This 

approach involves preprocessing raw data samples before using the cleaned data 

set to train the deep learning algorithm. The Flow Table Generator module, which 

establishes the attack priorities and discards attack packets, receives network 

statistics from the Information Statistics Module (ISM). The authors used real and 

simulated datasets to train and test their techniques. 

Nam et al. [149] proposed an approach to detect anomalous network 

behavior that integrates neural networks with statistical techniques. This method 

chooses the most important features from a set of features using an entropy metric 

and then utilizes a Self-Organizing Map (SOM) to categorize network behavior.  

The proposed approach is validated using the POX controller on the Mininet 

emulator. 

In another study, Novaes et al. [150] proposed a hybrid system that contains 

three phases: characterization, attack detection, and mitigation, for detecting and 

preventing Port scan and DDoS attacks. LSTM was used to learn the characteristics 

of normal network traffic, and the scientists employed an entropy metric to quantify 

network features. Finally, they employed fuzzy logic to find network attacks. On 

the Mininet emulator, their strategy was implemented using a Floodlight controller. 

Another approach is based on SVM assisted by Genetic Algorithm (GA) 

and Kernel Principal Component Analysis (KPCA), is proposed in [42] . The 
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authors used KPCA to reduce the dimension of feature vectors and then optimized 

the parameters of SVM through GA. They suggested an improved kernel function 

(N-RBF) to reduce the noise produced by feature differences. The proposed model 

was installed into the controller to define different security rules to detect the attack, 

and a DDoS mitigation module was designed separately inside the controller. The 

POX controller on the Mininet emulator was used to validate this approach. 

Another study [9] introduced an SVM-based method for DDoS attack 

detection, which uses six-tuple characteristic values extracted from the switch's 

flow tables for classification. The authors validated this strategy using the Mininet 

emulator's Floodlight controller. In yet another research [151], To identify DDoS 

attacks in three categories—bandwidth attack, flow-table attack, and controller 

attack—the authors examined four different machine learning methods, including 

Random Forest (RF), SVM, Decision Tree (DT), and Multi-Layer Perceptron 

(MLP). The authors found that DT produces the best performance compared to the 

others. To validate their strategy, the Scapy tool produced each attack, a list of more 

than 20,000 IP addresses used by attackers, and a simulation using the POX 

controller on the Mininet emulator. 

In their study, Meti et al. [152] proposed a method based on Neural 

Networks (NNs) and SVM for detecting DDoS attacks, which yielded promising 

results, achieving an accuracy of 80% and a precision of 100%. Likewise, 

Virupakshar et al. [153] analyzed four different algorithms NB, KNN, DT, and 

Deep Neural Network (DNN), to detect flooding attacks on an SDN-based 

OpenStack private cloud, concluding that the DNN algorithm outperformed the 
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other methods. Another framework for DDoS detection, proposed by [154], 

comprises three modules a traffic collection module, an attack detection module, 

and a flow table delivery module which work together to identify and mitigate 

attacks. SVM utilized multi-dimensional traffic features extracted from statistical 

flow table information to detect attack traffic. They used the KDD99 dataset to test 

their approach. [155] analyzed various machine learning algorithms, such as SVM, 

RF, KNN, and J48, and concluded that the J48 algorithm produced the best 

detection results. Once the J48 algorithm detected an attack, a REST message was 

sent to the controller to block the DDoS computer ports of the OF switches for 30 

seconds. The authors used the RYU controller on the Mininet emulator to validate 

their approach. In the study, [156] proposed a DSM-based SVM algorithm for 

DDoS attack detection and mitigation, which involved pre-processing the input 

data, feature extraction using the MCA algorithm, and attack prediction with the 

DSM-SVM. After an attack was discovered, the mitigation server began to block 

attack traffic and take in the remaining normal traffic. The authors trained their 

machine learning algorithm using the KDD dataset and deployed it into the RYU 

controller (i.e., Mininet emulator) for real-time evaluation. 

In the study  [157], the authors analyzed the performance of various 

machine learning algorithms, including Linear Support Vector Machine (LSVM), 

Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), and Deep Neural 

Network (DNN). The study found that DT provided better results than the other 

algorithms, and the models were validated using the CSE-CIC-IDS2018 dataset. 

Another study [158] examined six different machine learning algorithms, namely  
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KNN, Logistic Regression (LR), NB, RF, DT, and SVM, using extended native 

flow features for ML algorithm training. RF was the most effective for detecting 

attacks with a low probability of dropping normal traffic, and the approach was 

evaluated using the Floodlight controller on the Mininet emulator. Another study 

[159] suggested an architecture with four modules (i.e., “flow collector, 

preprocessing, attack detection, and flow manager”) for detecting DoS/DDoS 

attacks on the SDN application and transport layers. The flow collector module 

generated and collected flows using the CIC Flow Meter application. PCA was 

employed in the preprocessing module to reduce the dimension of the flow features. 

The detection module used pre-trained machine learning models, including KNN, 

SVM, RF, MLP, CNN, Gated Recurrent Units (GRU), and LSTM, to classify the 

input flows as normal or suspicious. The Flow manager module then sent 

information regarding the suspicious flows to the controller for further action and 

created, and visualized flow logs for the classification received from the detection 

module. The approach was validated using the ONOS controller in the Mininet 

emulator. 

An SVM-based Intrusion Detection System (IDS) for detecting DDoS 

attacks in SDN was proposed by [160], where traffic information is received by 

SVM and then classified as normal or attack traffic. [161] presented a model for 

mitigating different DDoS attacks by introducing adaptive polling, sFlow-based 

sampling, deep learning, and a Snort Intrusion Detection System (SIDS). In this 

model, adaptive polling and sFlow-based sampling are individually deployed in the 

data plane to reduce network overhead. In contrast, the Stacked Auto encoder 
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(SAE) and SIDS are deployed in the control plane to optimize detection accuracy. 

Meanwhile,  [46] designed a Cognitive-Inspired Computing (CIC)-based DDoS 

attack detection and defense approach. This method's four components are 

collecting statistics, feature computing, attack detection, and attack defense and 

recovery. The attack detection module, which recognizes DDoS attacks, was 

created using SVM. In contrast, the attack defense and recovery module generates 

a fresh flow table and tosses any packets addressed to the targeted host address. 

[162] introduced an Extreme Gradient Boosting (XGBoost) based method that uses 

the flow packet dataset for detecting DDoS attacks. Finally, to overcome the 

challenge of detecting adversarial attacks caused by specific perturbations, a system 

for detecting DDoS attacks was proposed by [163], Using an adversarial training 

method and a generative adversarial network (GAN) makes the system less 

vulnerable to malicious attacks by using an adversarial training method and a 

generative adversarial network (GAN). Utilizing IP flow analysis, the system 

continuously analyses traffic to activate the detection system and respond in real 

time. The detection system is activated to take prompt action, and IP flow analysis 

is employed to continuously monitor traffic. The GAN module detects the attack, 

and the mitigation module is activated automatically, taking countermeasures to 

minimize the attack's effect. Their mitigation approach is based on Event-Condition 

Action (ECA), where the Event is associated with a set of specific rules for the 

anomaly, the Condition describes the rules where a particular event of anomaly 

occurs, and the Action comprises countermeasures taken against the anomaly event. 

Their method was evaluated using the CICDoS 2019 dataset. 
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 The Generalized Entropy (GE) approach, Particle Swarm Optimization 

(PSO), and (BPNN) were combined in a method that was proposed.[164]. On the 

switch, the generalized entropy approach was originally used to detect attacks and 

separate normal from anomalous traffic flows. This causes the switch to sound an 

anomalous alarm, and the controller's PSO-BPNN, which is installed, collects 

characteristics from the abnormal traffic flow to predict potential DDoS attacks. 

The extracted features include average packets per flow, bytes per packet, 

percentage of pair flow, rate of flow entries, the entropy of source IP address, and 

average duration per flow. The effectiveness of this approach was validated using 

the Floodlight controller in the Mininet emulator. In a similar vein, Wang et al. 

[165] proposed a DDoS detection method that combines Information Entropy (IE) 

and Convolutional Neural Networks (CNNs). Their approach utilizes the IE to 

examine suspicious traffic flows, and then the CNN performs fine-grained packet-

based detection to classify normal and abnormal traffic. They used the CICIDS2017 

dataset to train the CNN, and the method’s performance was evaluated in real-time 

using the POX controller in the Mininet emulator. 

In addition, a Decision Tree-based lightweight framework called DETPro 

was introduced by [166] for efficiently detecting DDoS attacks. DETPro is a 

modified version of the DT algorithm that uses the Pessimistic Error Pruning (PEP) 

strategy and Gini impurity. Traffic information is collected by sFlow agents and a 

POX controller embedded into OpenvSwitch. A white list mechanism is utilized in 

the mitigation module to block attack traffic and maintain the network's significant 

functionalities without delay. Meanwhile, [167] suggested an ensemble learning 



45 
 

and entropy-based DDoS attack detection system. A preliminary detection module 

on the edge switch uses entropy to continually monitor network condition 

information and notify the controller of unusual activity. 

In addition, the authors used edge computing to transfer the responsibility 

of attack detection from the controller to the data plane, thereby decreasing the 

southbound communication overhead. Using cloud-edge collaboration, [168] 

designed a DDoS detection system based on Entropy-Measuring (EM), SOM, and 

K-Dimensional tree (EMSOM-KD). The authors selected Ideal SOM maps using 

EM and identified most traffic flows directly by the EMSOM. In [169], the authors 

proposed a hybrid solution to identify DDoS attacks, where an Information Entropy 

(IE)-based module first searches for anomalous traffic, and another detection 

module based on Stacked Sparse Auto encoder (SSA)-SVM subsequently verifies 

the suspected abnormal traffic. Their defense module speedily releases a new flow 

table to resume the network's regular communication after successfully identifying 

an attack. 

 In the study [170], a hybrid approach was suggested by the authors, which 

combined a Genetic Algorithm (GA) and Decision Tree (DT) called GA-DT. Their 

approach was compared to other machine learning algorithms like Logistic 

Regression (LR), SOM, Neural Network (NN), SVM, and KNN, and their approach 

was found to perform better than others. The ML algorithms were trained on the 

KDD dataset, and the Mininet emulator was utilized for real-time evaluation. 

Another study [171] used sFlow as a macro-detection to monitor the network, and 

SOM is used as a micro-detection to identify the attack traffic. An improved source-
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based DDoS attack detection and defense approach for SDN was created in this 

research using SOM. 

 The ISCX-IDS2012 dataset was used for training, and real-time evaluation 

was carried out using the Floodlight controller in the Mininet emulator. A KNN 

and SVM-based detection method was proposed in another study [172] to reduce 

resource consumption during the DDoS attack detection process, which was 

validated using the Mininet emulator. In a different study, a detection technique 

based on Spatial-Temporal Graph Convolutional Networks (ST-GCN) that apply 

IN-band Network Telemetry (INT) to sense switch status with samples was 

developed [173]. An ensemble model based on optimized weighted voting for 

DDoS attack detection in SDN was introduced in another study [174], which used 

different hyper-parameter values of six base classifiers to build the ensemble 

model. A K-Means clustering-based method was proposed to deal with the 

unbalanced distribution of traffic data for DDoS attack detection [175]. A Random 

Forest (RF) based DDoS detection and mitigation system was proposed in another 

study [176] , which uses flow entries to classify them as normal or attack traffic. 

[177] introduced a system that consists of two modules named the trigger module 

and the detection module. The trigger module is based on Gini impurity, which 

analyses the source and destination IP data. The classification of the traffic flow as 

normal or attacked is done by the detection module, which is RF-based and based 

on discovered anomalies. Finally, a time series and RF-based detection method 

were suggested in another study [178], where the ARIMA model was used to 

predict the information of the current flow based on the Historical Information 
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Entropy (HIE), and the detailed traffic features were further extracted to detect the 

attack. The ML and DL-based solutions previously mentioned are compared in 

Table 2.3, along with their benefits and drawbacks. 
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Table 2.3:  ML and DL-based solutions for DDoS detection and mitigation in SDN. 
 

Study Contributions 
Controll
er Type Layer Protocols 

Classifier 
Type 

Environment 
Type Data Set Evaluation Discussion 

 
[130]  

Proposed a simple 
DDoS detection 
method with very 
little overhead 
performance and 
classified traffic 
using flow-based 
data. 

 NOX 
Control 
Plane 

TCP, UDP 
and ICMP 

Self-
Organizing 
Map (SOM)  Physical 

Custom 
developed 

Detection 
Rate = 
99.11% 

The limitation 
of this work is 
that it cannot 
identify the 
ports of the 
OF switches 
from where 
the attack is 
launched. 

 
[131] 

To defend the 
controller's control 
plane from DDoS 
attacks, they created 
the Safe-Guard 
Scheme (SGS).  The 
main objective of 
the SGS is to use a 
controller clustering 
technique to deploy 
many controllers in 
the control plane. 

 Ryu 

Control 
plane and 
Data Plane 

TCP, UDP 
and ICMP 

Back 
Propagation 
Neural 
Network 
(BPNN) Virtual 

Custom 
developed 

Not 
mentioned 

The detection 
accuracy is 
not mentioned 
in the paper. 
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[133]  

They deploy a 
modular detection 
system in the 
controller to 
improve the 
accuracy and 
stability against 
DDoS attacks. Ryu 

Applicatio
n Plane 

Not 
mentioned 

K-means++ 
and  K-
FKNN   Virtual NSL-KDD 

Precision = 
97.5% 

This work 
may be 
extended to a 
distributed 
SDN 
environment 
to detect other 
flooding 
attacks. 

 [6]  

The authors 
proposed a new 
trigger mechanism-
based framework 
which cooperates 
the DDoS attack 
detection and 
defence methods in 
data and control 
planes. ONOS 

Control 
and Data 
Planes 

Not 
mentioned 

KNN and K-
Means  Virtual NSL-KDD 

Accuracy = 
98.85% 

This work is 
not dealing 
with when the 
controller is 
under large-
scale network 
traffic. 

 
[134]  

The authors 
introduced a multi-
Vector DDOS 
detection system 
and installed it on 
top of the controller 
as a network 
application. 

POX 

Control 
and Data 
Planes 

TCP, UDP 
and ICMP 

Stacked 
Auto 
encoder 
(SAE) Physical 

Custom 
developed 

Accuracy = 
99.82% 

To extend this 
study, deep 
learning 
algorithms can 
extract 
features from 
raw flows 
instead of 
feature 
reduction and 
are also used 
to detect other 
types of 
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attacks in 
SDN.   

[135]  

It introduced and 
integrated a NIDS 
that can track and 
detect traffic attacks 
and protect the 
network based on 
information from 
the entire network. 

. 
Floodlig
ht Data Plane 

Not 
mentioned 

Hidden 
Markov 
Models 
(HMMs)  Virtual 

Custom 
developed 

Accuracy = 
96% 

The use of 
feature vectors 
along with 
HMM 
improves the 
detection 
power of the 
proposed 
approach. 

[136] 

The authors 
developed a new 
method to solve two 
problems, 
Misbehavior and 
New-Flow attack in 
SDN. POX 

Control 
Plane 

Not 
mentioned 

Sequential 
Minimal 
Optimizatio
n (SMO) Virtual NSL-KDD 

Accuracy = 
99.40 % 

This work is 
not efficient in 
detecting 
unknown 
attacks. 

[138]  

The authors 
proposed a hybrid 
method based on 
machine learning 
and statistical 
techniques. 

Floodlig
ht 

Control 
Plane 

Not 
mentioned 

Bayes Net, 
J48, logistic 
regression, 
Random 
Tree and 
REP Tree Virtual 

ISOT, UNB-
ISCX and 
CTU-13  

Accuracy 
of REP 
Tree = 
99.88% 

They detect 
the DDoS 
attack on One 
controller.  
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[139]  

 

 

 

Proposed a two-
stage technique that 
records network 
flows from a global 
point of view and 
detects network 
attacks. 

Not 
Mention
ed 

Applicatio
n Plane 

Not 
mentioned 

Random 
Forest (RF)  Virtual 

KDD Cup 
1999 

Accuracy = 
96.03% 

This approach 
is 
implemented 
in a virtual 
network 
environment. 
This work can 
be extended 
by 
implementing 
this approach 
in a real-time 
network 
environment. 

[141]  

Introduced an 
ensemble method 
that detects the 
anomalous behavior 
of the network 
traffic toward the 
SDN controller. POX 

Control 
Plane 

TCP, UDP 
and ICMP 

SVM, KNN, 
Naïve Bayes 
(NB), and 
Self-
Organizing 
Maps 
(SOMs) Virtual CAIDA 2016 

Accuracy 
of SVM-
SOM = 
98.12% 

This study 
used an old 
dataset 
version and 
may be 
extended by 
using new 
datasets. 

[147]  

Proposed a method 
to extract the 
temporal behavior 
of an attack in SDN. Not 

Mention
ed 

Control 
Plane 

Not 
mentioned 

Back 
Propagation 
Neural 
Network(BP
NN) Physical DARPA 1999 

Not 
mentioned 

The achieved 
accuracy of 
the method is 
not 
mentioned. 
This method is 
effective in 
performing a 
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port recovery 
after an attack. 

[148] 

Suggested a method 
that can learn the 
traffic patterns from 
the sequences of 
flows and then 
historically trace the 
attack activities. 

 

Not 
Mention
ed 

Control 
Plane 

TCP, UDP, 
HTTP 

Bidirectional 
Recurrent 
Neural 
Network 
(BRNN) Virtual ISCX2012 

Accuracy = 
99% 

The 
significant 
advantage of 
this study is 
that it can help 
to reduce the 
degree of 
dependence 
on the 
software and 
hardware 
environments. 
It simplifies 
the updating 
of detection 
systems in 
real-time. 

[149] 

The authors 
proposed a system 
that combined the 
neural network with 
entropy metric to 
identify the 
abnormal network 
behaviour. POX  

Control 
Plane 

Not 
mentioned SOM Virtual CAIDA2015 

Detection 
Rate = 
97.28% 

In this study, 
the authors 
used manual 
methods for 
the selection 
of features and 
these methods 
can be 
replaced with 



53 
 

automatic 
feature 
selection 
methods. 

 

[150] 

Introduced a hybrid 
approach for Port 
scan and DDoS 
attack detection 
based on Long 
Short Term 
Memory (LSTM). 

Floodlig
ht  

Control 
Plane 

Not 
mentioned 

Long Short 
Term 
Memory 
(LSTM) and 
Fuzzy Logic Virtual 

CIC DDoS 
2019 

Area Under 
Curve 
(AUC) = 
99.62% 

This study is 
an excellent 
effort toward 
securing the 
SDN from 
DDoS attacks 
and their 
mitigation 
approach 
appears 
effective 
compared to 
others. So, 
their 
mitigation 
policies can be 
updated and 
used for other 
vulnerabilities 
that SDN 
controllers 
might face. 

[42] 

Proposed a method 
that reduces and 
selects the relevant 
features and then 
performs DDoS 
detection using 
machine learning 
classifiers. POX 

Control 
Plane 

TCP and 
UDP 

SVM, 
Genetic 
Algorithm 
(GA) and 
Kernel 
Principal 
Component 
Analysis 
(KPCA)  Virtual NSL-KDD 

Accuracy = 
98.90% 

This approach 
is effective in 
a single 
controller 
environment 
and may fail in 
a multi-
controller 
environment.   

[9] 

Proposed a 
technique that does 
classification and 
gets the 6-tuple 
characteristic values 

Floodlig
ht 

Control 
Plane 

TCP, UDP 
and ICMP SVM Virtual 

Custom 
developed 

Average 
Detection 
Rate = 
95.24% 

This approach 
has low 
detection 
accuracy for 
the ICMP 
attack flows. 
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from the switch's 
flow table. 

 

[156]  

Suggested a DSM 
based SVM 
algorithm for DDoS 
attack detection and 
mitigation. RYU 

Control 
Plane 

Not 
mentioned SVM Virtual NSL-KDD 

Accuracy = 
99.7%  

This method 
achieved the 
best detection 
accuracy, but 
in the 
mitigation 
phase, there is 
a chance to 
drop the 
normal 
packets along 
with attack 
packets. 

[159]  

Proposed an 
architecture to 
detect DoS/DDoS 
attacks on 
application and 
transport layers of 
the SDN. 

Open 
Networ
k 
Operati
ng 
System 
(ONOS) 

Applicatio
n Plane 

TCP and 
UDP 

KNN, SVM, 
RF, MLP, 
CN), GRU, 
LSTM Virtual 

CICDoS2017 
and 
CICDDoS2019  

Accuracy = 
99% 

In this study, 
the authors 
observed that 
the DL 
algorithms 
produced the 
best results 
compared to 
ML 
algorithms. 
Their 
mitigation 
strategy is 
simple and 
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works for the 
edge switches. 
So, there is a 
need to 
optimize the 
mitigation 
strategy to 
save the 
computation 
resources of 
the controller.  

 

[161]  

They have 
implemented a deep 
learning model that 
utilizes adaptive 
polling and sFlow 
sampling to mitigate 
various DDoS 
attacks. 

RYU 
Control 
Plane 

TCP, UDP 
and ICMP 

Stacked 
Auto 
encoder 
(SAE)  Virtual 

Custom 
developed 

Accuracy 
for sFlow = 
91% and 
Accuracy 
for 
Adaptive 
Pooling = 
89% 

Implementing 
this 
framework 
with real-time 
traffic streams 
can help to 
lower the 
SDN 
controller’s 
crucial 
overhead. 
Further, 
training deep 
learning 
models with 
signature-
based and 
rule-based 
network data 
could help to 
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improve the 
detection 
accuracy of 
DDoS attacks 
as a whole.   

[46]  

The authors suggest 
a Cognitive-
Inspired Computing 
(CIC) mechanism 
that integrates dual 
address entropy for 
detecting and 
protecting against 
DDoS attacks. 

 
Floodlig
ht 

Control 
Plane UDP SVM  Virtual 

Custom 
developed 

Detection 
Rate = 
97.65%  

In this study, 
the authors try 
to restore the 
communicatio
n function to a 
single victim 
host, which 
could be 
extended to 
multiple 
victim 
machines. 

[163]  

The authors 
suggested a system 
for identifying 
adversarial attacks 
that employ 
Generative 
Adversarial 
Networks (GANs). 

Floodlig
ht 

Applicatio
n Plane UDP 

Generative 
Adversarial 
Network 
(GAN)  Virtual CICDoS 2019  

Detection 
Rate = 
99.87% 

The GAN 
framework 
has the 
potential to 
detect 
adversarial 
attacks in 
SDN due to its 
adversarial 
training 
nature, and it 
makes the 
controller less 
sensitive to 
DDoS-based 
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adversarial 
attacks. But 
the proposed 
framework is 
implemented 
in a simple test 
scenario.   

[165]  

A DDoS detection 
technique based on 
information entropy 
(IE) and 
convolutional 
neural networks 
(CNN) was 
presented. POX 

Control 
Plane 

HTTP, 
TCP, UDP, 
ICMP CNN Virtual CICIDS2017 

Accuracy = 
98.98% 

In the 
proposed 
method, two-
level detection 
is performed, 
enhancing the 
controller’s 
workload and 
taking a long 
time to 
identify the 
attack.   

[167] 

The authors 
proposed an entropy 
and ensemble 
learning-based 
cooperative DDoS 
attack detection 
scheme. Ryu Data Plane ICMP 

Fine-
Grained and 
RF  Virtual 

Custom 
developed 

Not 
mentioned 

The authors 
do not 
mention the 
accuracy of 
the proposed 
approach. 
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[169]  

The Stacked Sparse 
Auto encoder 
(SSA)-SVM and 
Information 
Entropy (IE) based 
hybrid approach for 
dual identification 
of attack. 

Floodlig
ht 

Control 
Plane 

TCP, UDP 
and ICMP 

Stacked 
Sparse Auto 
encoder 
(SSA)-SVM Virtual 

DARPA and 
two custom 
developed  

Detection 
Rate = 
96.86% 
and 
Accuracy = 
98.63% 

The proposed 
approach 
performs dual 
detection for 
the attack, the 
Initial 
detection 
through 
information 
entropy and 
then by 
SSAE-SVM. 
They observed 
that the time 
cost and CPU 
utilization for 
the 
combination 
of both 
modules are 
less than the 
SSAE-SVM 
alone, 
indicating that 
the combined 
approach is 
more 
effective.   
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[171]  

Source-based DDoS 
detection using 
improved SOM and 
sFlow. 

Floodlig
ht 

Control 
Plane TCP SOM Virtual 

ISCX-
IDS2012  

Detection 
Rate = 
95.41% 

This study 
accurately 
identifies the 
attacker host 
and focuses on 
source-based 
DDoS 
detection in 
SDN. 
Although it 
imposes tight 
limits on more 
falsely alerted 
normal flows 
that damage 
regular users, 
the suggested 
method loses 
effectiveness 
when the 
normal flows 
are 
substantially 
similar to the 
attack flows. 
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[173] 

To map the network 
into a graph for 
attack detection, the 
authors presented a 
method based on 
Spatial-Temporal 
Graph 
Convolutional 
Networks (ST-
GCN). 

 

ONOS Data Plane 
TCP, UDP, 
HTTP 

Spatial-
Temporal 
Graph 
Convolution
al Network 
(ST-GCN Physical CAIDA 

Maximum 
Accuracy = 
91.11% 

The proposed 
method 
detects the 
DDoS attack 
in the data 
plane by 
extracting the 
data 
characteristics 
from both 
spatial and 
temporal 
perspectives. 
The main 
focus of this 
study is to 
identify the 
switches 
containing the 
attack flows 
extending 
toward the 
controller end.    
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2.3.3 Detecting and Mitigating Low-Rate DDoS Attacks  

LR-DDoS is a form of attack that is distinct from the well-known HR-

DDoS. Although identifying HR-DDoS is common, detecting LR-DDoS can be 

equally complex. The primary aim of these attacks is to exhaust computing 

resources. Unlike HR-DDoS, LR-DDoS does not involve a network flood with high 

traffic volumes. Instead, it strategically manipulates specific protocols, such as 

Congestion Control mechanisms [179] , TCP's timeout retransmission [180], [181] 

and HTTP's keep-alive mechanism [182], to deplete the target's computing 

resources. 

Wu et al. [183] proposed a detection mechanism for low-rate DDoS attacks 

based on Factorization Machine (FM) [184] using features derived from SDN data 

layer flow rules. The technique extracts the packet number, duration time, relative 

packet interval dispersion, and relative match byte dispersion. The FM algorithm 

uses these features to categorize flow as normal or attack flow, integrating the 

features to create a correlation between all feature samples. This correlation is then 

used to update other parameters, improving real-time detection rate against LR-

DDoS and providing reliable conditions to resist attacks. Dynamic flow rule 

deletion is adopted for defense against DDoS attacks. Another adaptable 

architecture is suggested that consists of the Intrusion Detection System (IDS) and 

Intrusion Prevention System (IPS) modules to detect and prevent LR-DDoS attacks 

[11]. Six machine learning algorithms are used to train the IDS, which is embedded 

into the controller to perform various tasks, such as identifying and classifying APIs 

and flows. The IPS detects HTTP flows and generates new flow rules for malicious 
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flow mitigation, blocking potential attackers. The CIC DoS 2017 dataset trains the 

machine learning models [185]. On the Mininet emulator in an SDN environment, 

the Open Network Operation System (ONOS) controller is used to validate the 

methodology. 

Zhang et al. [186] introduced an LR-DDoS detection model that utilizes 

SVM and Power Spectral Density (PSD), claiming that PSD-entropy enhances the 

system's efficiency and detection power while minimizing computation costs. The 

SVM component learns traffic patterns and selects the most appropriate features 

for the detection algorithm. The algorithm determines two classification thresholds 

by averaging attack traffic and regular traffic. The communication is deemed an 

attack if the calculated PSD entropy is below the threshold. To address the inability 

of traffic volume analysis to detect LR-DoS attacks, Liu et al. [187] proposed a 

Deep Convolutional Neural Network (DCNN)-based system that automatically 

extracts available features from traffic flows. The extracted features are then fed 

into a Q-Network, a reinforcement learning algorithm, which detects edge LR-DoS 

attacks. This system produced satisfactory results in a simulated environment for 

protecting SDN from LR-DoS attacks. 

[188] proposed a flow-based LR-DDoS attack detection and mitigation 

framework that employs ML models such as DT, SVM, and NB. In the mitigation 

phase, the controller acquires information on attack flows and uses mitigation rules 

to prevent LR-DDoS attacks from the same source. Compared to DT and NB, SVM 

exhibited the highest detection accuracy. The above-discussed solutions are 

summarized in Table 2.4. 
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Table 2.4:  ML and DL-based solutions for Low-Rate DDoS detection and mitigation in SDN. 

Study Contributions 
Controller 
Type Layer Protocols 

Classifier 
Type 

Environment 
Type Data Set Evaluation Discussion 

[183] 

Introduced a 
Factorization 
Machine 
(FM)-based 
multi-feature 
low-rate 
DDoS attack 
detection 
technique. 

 

Ryu 
Data 
Plane 

TCP, UDP 
and ICMP 

Factorization 
Machine 
(FM) Virtual CAIDA 

Detection 
Accuracy = 
95.80% 

The suggested 
method can be 
expanded to a 
multi-controller 
environment and is 
acceptable for 
single-controller 
network 
architecture. 
Implementing the 
recommended 
strategy in a real 
network 
environment can 
demonstrate its 
usefulness further. 
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[11]  

The authors 
proposed a 
flexible 
architecture 
consisting of 
two modules: 
the Intrusion 
Detection 
System (IDS) 
and the 
Intrusion 
Prevention 
System (IPS), 
for 
identifying 
and 
mitigating 
LR-DDoS 
attacks. ONOS 

Control 
Plane 

TCP and 
UDP 

J48, Random 
Tree (RT), 
REP Tree, 
RF, MLP, and 
SVM Virtual 

CIC DoS 
Dataset 
(2017)  

Maximum 
Accuracy 
Achieved 
by MLP = 
95.01% 

According to this 
study, when the 
false positive rate 
rises, it may be 
possible to restrict 
real users. This 
method is tested in 
a simple network 
setting. Therefore, 
this method is 
compatible with a 
complicated 
network design. 

 

[186]  

Introduced a 
Power 
Spectral 
Density 
(PSD) based 
method to 
improve 
detection 
accuracy with 
minimum 
computation 
cost. 

Not 
mentioned 

Not 
mentioned TCP SVM  Physical KDD99  

Detection 
Rate = 
99.19% 

They did not 
mention the 
controller type and 
layer from which 
they will detect the 
attack. 
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[187]  

Proposed a 
Deep 
Convolutional 
Neural 
Network 
(DCNN) 
based method 
which 
automatically 
extracts the 
available 
features from 
traffic flows 
to identify the 
attack.  Ryu 

Control 
Plane 

TCP, UDP 
and ICMP 

Deep 
Convolutional 
Neural 
Network 
(DCNN) and 
Q-Network  Virtual 

Custom 
Developed 

Detection 
Rate = 
97.80%   

 

 

 

 

 



66 
 

2.3.4 Detecting and Mitigating Botnet Attacks  

Researchers have recently utilized machine learning techniques to develop 

precise and scalable frameworks for detecting and preventing botnet attacks in SDN. 

They have employed centralized learning with distributed detection to achieve 

scalability in detection. In the past few years, the use of machine learning techniques 

for identifying botnets has grown significantly. This section discusses the latest 

developments in machine learning for this type of attack. 

A study [189] investigated different types of botnets (P2P, IRC, and HTTP 

botnets) in SDN controllers. The study found that Decision Tree (DT) effectively 

detects Peer-to-Peer botnets, while Naïve Bayes and SVM detect IRC and HTTP 

botnets more successfully. Another study [190] used centralized network flow 

statistics collected by OpenFlow counters for detection, applying decision trees and 

C4.5 to the collected counters. The proposed method achieved an 80% detection rate 

for botnets, using a publicly available real-world botnet dataset for the experimental 

analysis. In another research paper [191], the authors analyzed potentially vulnerable 

hosts and malicious codes using four different classifiers: NB, DT, Bayesian 

Networks (BNs), and C4.5. They used historical data for prediction and deployed 

security rules in the SDN controller to protect potentially compromised hosts and 

block the entire subnet to restrict the attackers' access. Bayesian Networks achieved 

a higher precision rate compared to the other classifiers. 

Several research studies have used machine learning (ML) algorithms to 

suggest various techniques for detecting and overcoming botnet attacks in software-
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defined networking (SDN). One way suggested by [192] is using a flow-based 

approach instead of packet payload inspection to detect botnets in SDN. Their system 

combines real-time flows with historical context to extract an enriched feature set for 

classification, which achieved 90% detection accuracy for unknown botnets and 97% 

for known botnets. Another framework introduced by [193] integrates an ML 

algorithm into the SDN controller to detect and categorize peer-to-peer (P2P) 

network traffic in real time. They achieved high accuracy in detecting different P2P 

network traffic using a Strom and Zeus botnet dataset for attack traffic and Skype, 

eMule, and uTorrent network data for normal traffic. The study proposed by [194] 

suggested an ML-based framework that uses traffic flow classes to reduce detection 

complexity and determine high-level policies for the derived flow classes. The K-

mean algorithm was used for unsupervised learning to classify NetFlow features, and 

the DT was used for supervised learning to classify traffic as normal or attack. In the 

study, [195] proposed a framework that integrates ML with SDN/NFV to detect and 

mitigate botnet attacks. They suggested a network function which use network 

protocols to detect known attacks, and collect real-time network traffic as a data set 

for detecting additional distributed attacks. 

To detect botnets, a study [196] proposed a method using Multi-Layer 

Perceptron (MLP) that analyzes malware traffic data collected from an existing 

network. This technique creates network isolation and adds a connection block to 

the external network to avoid internal infection. The approach, which had a 99.2% 

accuracy rate, was tested using the CTU-13 and ISOT data sets. Another approach 

[197], involved building a system that uses SDN’s northbound and southbound API 
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to detect botnets At predetermined intervals during the time window, the switch 

notifies the controller with an OpenFlow message that includes statistical data. The 

deep learning classifier, which has five hidden layers and is based on ReLU, 

receives instructions from the controller to block communication and isolate the 

infected host. The detection accuracy of this technique was 99%. The discussed 

solutions for botnet attack are summarized in Table 2.5.  
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Table 2.5: ML and DL-based solutions for botnet attacks detection and mitigation in SDN. 

Study Contributions 
Controller 
Type Layer 

Type of 
Botnet Classifier Type 

Environment 
Type Data Set Evaluation Discussion 

 
[189] 

They used 
IPFIX 
generic 
template for 
the detection 
of botnets. POX Control Plane 

IRC, 
HTTP, 
P2P 

Bayesian 
Network, 
Neural 
Network, SVM, 
DT Physical 

Custom 
developed  

Not 
Mentioned 

The 
performance 
results are not 
discussed.  

[190] 

Propose a 
method on 
centralized 
network flow 
statistics, 
which are 
collected by 
OpenFlow 
counters 

Open 
Daylight 

Application 
Plane 

IRC, 
HTTP, 
P2P 

Decision Tree 
and C4.5  Virtual 

CTU-13, 
ISOT 

Accuracy 
= 80% 

They analyzed 
that OpenFlow 
counters have 
the potential to 
identify botnet 
behavioral 
patterns and are 
a suitable 
candidate for 
flow-based 
botnet detection 
techniques. 

[191] 

They used 
historical 
data to 
predict the 
potentially 
vulnerable 
hosts and 
malicious 
codes and 
deploy the 
security rules 

Not 
Mentioned Control Plane 

Not 
Mentioned 

NB, DT, 
Bayesian 
Networks 
(BNs), and 
C4.5 

Not 
Mentioned LongTail 

Accuracy 
= 91.68% 

The BN 
achieved a high 
precision rate 
compared to the 
other classifiers. 
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in the SDN 
controller.  

[192] 

A flow-based 
approach is 
used instead 
of reading 
packet 
payload for 
the detection 
of the botnet 
in SDN 

Open 
Daylight 

Application 
Plane 

IRC, 
HTTP C4.5  Virtual 

ISOT and 
CTU-13 

Accuracy 
for 
unknown 
botnets = 
90% and 
Accuracy 
for known 
botnets 
=97% 

This method 
needs extensive 
computations. 

[193] 

An ML 
framework is 
integrated 
with the 
controller, 
which detects 
and 
categorizes 
the P2P  
botnet attack. Ryu Control Plane 

Not 
Mentioned 

SVM, KNN and 
RF Virtual 

Custom 
developed  

Accuracy 
=99.7% 

SVM produces 
good detection 
results as 
compared to 
other classifiers.   
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[194] 

An ML-
based 
framework 
uses traffic 
flow classes 
to reduce the 
detection 
complexity 
and 
determines 
the SDN 
high-level 
policies for 
the derived 
flow classes.  

Not 
Mentioned Control Plane HTTP 

K-mean and 
SVM  Virtual 

Custom 
developed    

This method did 
not be 
implemented for 
the new types of 
network traffic.  

[195] 

They 
integrated the 
ML method 
with 
SDN/NFV 
for the 
detection and 
mitigation of 
botnet attack. Floodlight Control Plane 

IRC, 
HTTP, 
P2P RF Virtual CTU-13 

Accuracy 
= 100% 

This work is 
limited to a few 
protocols that 
need to add more 
protocols for 
botnet detection 
in SDN. 

[196] 

They use 
malware 
traffic data 
collected 
over the 
existing 
network to 

Ryu 
Application 
Plane 

IRC, 
HTTP, 
P2P 

Multi-Layer 
Perceptron 
(MLP)  Physical 

CTU-13 
and ISOT  

Accuracy 
= 99.2% 

The study just 
focused on the 
controller and 
did not 
experiment with 
the terminals 
that were 
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detect the 
botnet. 

infected by the 
botnets.  

[197] 

The authors 
proposed a 
system that 
detects the 
botnets using 
northbound 
and 
southbound 
APIs of SDN. 

Not 
Mentioned 

Application 
Plane 

Not 
Mentioned 

Artificial 
Neural Network Physical 

CTU-13 
and ISOT  

 Not-
Mentioned 

Their method is 
suitable to block 
the attack traffic 
at the source. 
Further, this 
method cannot 
be used to 
perform real-
time detection 
due to the 
constrained time 
window 
duration.  
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2.3.5 Detecting and Mitigating Saturation Attacks  

A saturation attack is a form of adversarial attack that can impact the entire 

SDN network due to its prolonged duration. When the control plane of the controller 

is overloaded, the SDN may become unavailable. The attack involves a malicious 

host generating a large volume of table-miss packets, which can deplete the resources 

of the control plane. In SDN-based networks, a saturation attack operates by 

manipulating the OpenFlow switch, which receives network packets. 

 If a new incoming packet does not match the local flow rules, a miss-table 

error occurs. 

 If the switch's buffer is partially full, a Packet-In message that contains the 

header of the table-miss packet will be produced. 

 The table-miss packet is encapsulated in the Packet-In message and 

forwarded to the controller if the switch's buffer is full. 

 The controller receives the Packet-In message, and processes the table-miss 

packet. 

 Additionally, the controller sends Packet-Mod and Packet-Out messages to 

the switch's flow table to add new flow rules. 

 This reactive packet processing mechanism exposes the OpenFlow network 

to the attacker. The attacker gets an opportunity to consume the different 

computation resources such as CPU, memory, etc. of the switches and 

controller and saturate the channels of OpenFlow connections which are 
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responsible for delivering the forwarding messages between OpenFlow 

switches and controller. 

 Once the attacker gets access to the controller, it can launch different 

saturation attacks such as TCP-SYN, ICMP, UDP, TCP-SARFU flooding, 

and IP Spoofing and their combinations (i.e., hybrid saturation attacks) at 

data-to-control planes. The attacker overtakes the SDN network's numerous 

hosts (also known as "zombie machines") and transmits forged packets, 

making it hard for the controller to match the new packets with the switch's 

flow rules. As a result, the controller begins to receive numerous Packet-In 

notifications. As a result, the attack from the data-to-control plane depletes 

the controller's computing capabilities. 

 The controller sends Packet-Out and Packet-Mod messages in response to 

a data-to-control plane flooding attack, which results in flooding attacks 

from the control-to-data plane. Therefore, the flow tables of the targeted 

switches are filled with fake flow rules. 

 So, the whole switch buffer is consumed and becomes unavailable for the 

legitimate new packets. 

 Finally, the OpenFlow channel's bandwidth is used up, which prevents 

OpenFlow messages from being delivered between the switches and the controller. 

The above-discussed scenario is shown in Figure 2.6. 
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Figure 2.6. General procedure for a saturation attack in SDN.  

A study [198] examined how machine learning-based systems detect 

saturation attacks within an SDN environment. The study found that adversaries 

could bypass machine learning classifiers by creating adversarial attacks that evade 

detection. The authors proposed an adversarial testing tool that generated four types 

of saturation attacks by manipulating different traffic features to address this. They 

also suggested using various machine learning classifiers to improve detection, but 

their tests showed that the saturation attacks reduced the detection power of the 

system. 

Another study [199] suggested a time window-based machine-learning 

method for identifying saturation attacks in SDN. The authors found that if the 

window size were too large, the response time of the detection method would be 

too slow, giving the attacker time to saturate the network. Conversely, if the 

window size were too small, it would cause frequent false alarms and high-
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performance overheads for the controller. They investigated the impact of time 

windows on three different classifiers using OpenFlow traffic data. 

Abusnaina et al. [200] introduced a method called FlowMerge that used a 

Convolutional Neural Network to detect different types of saturation attacks, but 

the approach had some limitations. The authors generated the attack samples based 

on the machine learning classifier. It was unclear whether the attacks could evade 

other machine learning classifiers installed in the SDN controller. Mossavi-

Dezfooli et al. [201] presented a Deep Neural Network-based Deep-fool algorithm 

to generate and detect saturation attacks in SDN. They used image inputs to perform 

classification. Papernot et al. [202] proposed a library named Clearhans v0.1 to 

create attacks in SDN and to help improve the robustness of machine learning 

classifiers. 

Finally, a framework called Fast Recovery Saturation Attack Detection and 

Mitigation (FSDM) was proposed [203]. The FSDM framework employed various 

strategies to stop the attack flows after using Control Channel Occupation Rate 

(CCOR) distribution to identify the ports from which the attacker originates. 

Additionally, the framework contained a brand-new function module called Force 

Checking, which enables the SDN controller to recover and clean up any leftover 

attack quickly flows. The discussed solutions for saturation attacks are summarized 

in Table 2.6. 
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Table 2.6: ML-based solutions for saturation attacks detection in SDN. 

Study Contributions 
Controller 
Type Layer 

Type of 
Saturation 
Attack 

Classifier 
Type 

Environment 
Type Data Set Evaluation Discussion 

[198] 

A machine 
learning-
based 
solution was 
suggested by 
the author to 
identify 
saturation 
attacks in an 
SDN. 

 

Floodlight 
Application 
Plane 

TCP-SYN, 
UDP, ICMP, 
and TCP-
SARFU 

K-NN, NB, 
SVM, ANN 
and  Isolation-
Forest Physical 

Custom 
developed  

The 
maximum 
accuracy 
achieved by 
KNN = 96% 

This study 
focus on four 
types of 
saturation 
attacks, so 
more types of 
attacks can be 
added. 

[199]  

The time 
window 
concept has 
been used to 
analyze and 
detect 
saturation 
attacks in 
SDN. Floodlight 

Application 
Plane 

TCP, UDP, 
ICMP, SCTP 
(Stream 
Control 
Transmission 
Protocol) 

NB, KNN, 
SVM 

Use both 
Physical and 
Virtual 

Custom 
developed  

KNN 
achieved the 
best results 
Precision = 
97% Recall 
= 99%  F-1 
score = 98%. 

This study is 
suitable for a 
single-
controller SDN 
environment 
and maybe 
extend to 
multiple 
controllers. It 
was the first 
attempt to 
detect 
unknown 
saturation 
attacks. 
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[200] 

The author 
proposed a 
method 
named Flow 
Merge to 
detect 
different 
saturation 
attacks. POX 

Application 
Plane 

TCP, ICMP, 
and UDP 

Convolutional 
Neural 
Network 
(CNN) Physical 

Custom 
developed  

Accuracy =  
99.83% 

The authors 
created Flow-
Merge after 
demonstrating 
how generic 
adversarial 
examples 
(AEs) 
techniques 
result in 
unrealistic 
flows. Weight 
merging 
techniques are 
used rather 
than ratio-
based features 
to develop the 
adversarial 
inputs. The 
adversarial 
methods 
provide a 
strong defense 
against general 
attacks, but it is 
necessary to 
investigate the 
defenses 
against Flow-
Merge.   
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2.3.6 Detecting and Mitigating Ransomware Attacks  

Ransomware is malware that encrypts and locks a user's files and demands a 

ransom to release them. To spread the attack, the perpetrator seeks control of the SDN 

controller and employs HTTPS to deliver the malware, making extracting and identifying 

features through deep packet inspection difficult. However, detection and mitigation 

techniques are available to safeguard the SDN controller from ransomware attacks. One 

such technique is machine learning, and this section focuses on its development for 

ransomware detection and prevention in SDN. 

According to a study [204], the authors propose a K-Nearest Neighbor (KNN)-

based prediction system that identifies ransomware traffic packets and integrates a dynamic 

isolation method in SDN. The system achieves 97.7% prediction precision for ransomware. 

In another study [205], a two-phase approach is introduced consisting of stream processing 

and classification. In the stream processing phase, the system reads a flow, manages a 

custom flow table, and extracts flow features. In the classification phase, the Random 

Forest (RF) classifier trains on the extracted features to distinguish normal traffic from 

ransomware traffic. In yet another proposal [206], a federated learning-based anti-

ransomware learning mechanism is suggested for detecting and mitigating four types of 

ransomware attacks: (i.e., “Petya, PowerGhost, BadRabbit, and WannaCry”). During the 

defense phase, the trained federated learning classifier is installed in the SDN controller, 

which detects ransomware attacks and blocks traffic from the victim device. 
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2.4 Summary 

In this chapter, first, we describe the architecture and workflow of the SDN 

in detail. Second, a comprehensive overview with a taxonomy of the machine 

learning and deep learning algorithms is given. Finally, a related work on ML and 

DL development for securing SDN is explained in detail. The section related to 

security in SDN covers the following: a) a description related to the available 

benchmark dataset, b) machine learning and deep learning in detecting and 

mitigating attacks such as DDoS, low-rate DDoS, botnet, saturation and 

ransomware.    

 

 

 

 



81 
 

 CHAPTER 3 

 

SYSTEM MODEL 

3.1 Overview of the Proposed Method 

To successfully protect the SDN controllers from botnet-based DDoS 

attacks, it is important to detect and block the attack traffic flows. A flow consists 

of large number of packets with same information’s (e.g., source IP address, 

destination IP address, source port number, destination port number, protocols, 

etc.). During an attack, the source IP addresses are belonging to the attackers. For 

example, we have “y” classes with “N” number of flow samples. Let the flow 

samples are represented as 𝑿 = {𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … … … , 𝑭𝑵} 𝜺 ℝ𝒅×𝑵, where 𝑭𝒊 is the 

ith flow, 𝒅 represents the number of original features of the flow, and 𝑵 is total 

number of flows. The actual tables for a 𝑭𝒊 flow can be defined as 𝒚𝒊 = {𝟎, 𝟏}. The 

aim of this research is to develop an end-to-end method which can predict a label 

as an actual label (𝑦𝑝𝑟𝑒𝑑(𝑖) = 𝑦𝑖 ). This chapter discusses the system model which 

is proposed in this research for the flow classification. A comparative analysis on 

deep learning methods with features selection is performed.  The DL methods 

deployed in the SDN controllers would help to classify the attack and normal flows. 

A systematic diagram which shows the operational phases of the proposed research 

is described in Figure 3.1. First, a pretty table is created to place the incoming 

packets, Second, the flows features are computed and extracted from each traffic 

flow. Third, features weight and threshold tuning method is used to select the 



82 
 

optimal features, Then, the selected optimal features are combined and then 

converted into five different subsets, finally, these subsets are passed as input to the 

DL methods (e.g., MLP, DNN, CNN, RNN, and LSTM) for the training and 

validation. Lastly, these methods are deployed in the controller for real time flow 

classification.      

Figure 3.1: Systematic diagram of the proposed research. 

3.2 Simulated Dataset 

The quality of the training datasets is highly important for the better 

performance of the IDS methods and techniques. However, one of the main issues 

is the availability of benchmark datasets for the detection of intrusion in various 

fields of networking. This problem interrupts the development of efficient intrusion 
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detection systems. Some other fields such as biomedical engineering, language 

translation, etc., have a massive amount of benchmark datasets to evaluate the 

performance of ML/DL methods. However, security and privacy are the main 

reasons behind the lack of benchmark datasets for the detection of network 

intrusion. These datasets may have sensitive information, so, the customer 

information may be revealed to the public by the availability of these datasets 

publically. Besides, most of the available datasets have different issues such as 

being laboriously anonymized, don’t contains modern attacks found in the current 

networks, and being outdated. To the best of our knowledge, there are currently no 

publicly accessible benchmark datasets for the training, testing, and assessment of 

deep learning-based IDS in an SDN environment besides the issues above. These 

datasets also don’t contain botnet-based DDoS attack records. In several recent 

studies, typical datasets generated by conventional networks have been employed 

extensively in SDNs to detect intrusion. However, in SDN networks, the 

characteristics of the network traffic are quite different from those of traditional 

network environments. SDN architecture is more vulnerable to threats that do not 

exist in conventional networks because of its centralized nature. For instance, the 

decoupling of network devices from the SDN controllers increases the chances for 

the attackers to launch different types of malicious attacks or activities on SDN 

controllers themselves or data communication systems. So, attacks on the SDN 

controllers become hard to detect because the attacker uses an authorized way to 

connect with the victim server.  
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To tackle the above-mentioned problems, in this research, a custom dataset 

is developed in a pure SDN-supported environment to evaluate the performance of 

the different DL methods (e.g., MLP, DNN, CNN, RNN, LSTM). This dataset 

contains the botnet-based DDoS attack and normal network traffic. We developed 

this dataset in two different formats (i.e., “Pcap” and “CSV” file formats), where 

CIC Flow Meter is used to extract more than 83 statistical flow features. To capture 

both attack and normal network traffic and mimic real-world attack scenarios, a 

custom network topology consisting of different hosts, OpenFlow switches, and an 

SDN controller is used. 

3.3 Virtual Experimental Setup and Data Collection 
 
 

A Mininet virtual environment with a POX controller [207] is used to 

conduct all the experiments in this research. The Mininet V 2.3.2 (“version 2.3.2) 

which supports Open Virtual Switches (OVS) [208] is used in testing environments. 

In recent years, Mininet is widely preferred by the network and research community 

to perform SDN-based network emulations. The OVS is an open-source virtual 

machine that supports various commonly used OpenFlow protocols. Because the 

POX is an interface-rich SDN controller and permits the development of network 

applications in Python, the network and research communities promote it. 

All the experiments are performed on an Intel Core i7 with Windows 10 

operating system and 8GB RAM. The deep learning methods are coded using 

Python language with the Keras framework. To adopt and maintain a pure SDN 
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environment in the research, we developed a customized centralized network 

topology in Mininet.          

The used network topology is developed in a complex network three 

structure manner to adopt real-network structure. Figure 3.2 shows the 

experimental virtual network topology. Figure 3.2 depicts the three planes that 

make up the SDN architecture: the application, control, and data planes. The 

application plane has four different planes Flow Statistics Collector (FSC), Feature 

Extractor (FE), DL classifier, and Mitigator. The Flow Statistics Collector module 

collects the flow information in Δ time and then stores these flows in a pretty table 

for further analysis. Feature Extractor module extracts the flow features. The DL 

classifier module accepts the extracted flows and classifies normal and attack flows. 

The Mitigator module activates the defense shield to protect the SDN controller 

from attacks. The data plane has a POX SDN controller which centrally controls 

the OpenFlow switches which exist in the data layer. The data plane consists of 

several switches and hosts. The adopted network topology has one POX controller 

and 7 OpenFlow switches, and 18 hosts. Each OpenFlow switch is connected to 

three hosts except OpenFlow S1. The S1 is connected to the six hosts. 
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Figure 3.2: SDN-based experimental network topology. 

After successfully developing the network topology in the Mininet, we run 

the “ping” command on all the connected hosts to verify the access to the controller, 

switches, and other hosts. The host H2 is selected as a botmaster, and H3, H4, H5, 

and H6 are corresponding bots, while H13 is selected as the target server and the 

other remaining hosts operated as normal users. The hosts H1, H7, H8, H9, H10, 

H11, H12, H14, H15, H16, H17, and H18 are used to generate background or 

normal network traffic while collecting the dataset and real-time evaluation. The 

OpenFlow switches are used to forward the network traffic, while the POX 

controller controls the entire network and helps to detect the attack. The port and 
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IP address settings of the network topology are described in Table 3.1. for further 

understanding. 

Table 3.1: The setting of IP addresses and device ports for experimental 
network topology. 
 

Device Networks 
Port 

Address State Device Networks 
Port 

Address State 

Controller eth0 127.0.0.1 - H10 eth0 10.0.0.10 Normal 

H1 eth0 10.0.0.1 Normal H11 eth0 10.0.0.11 Normal 

H2 eth0 10.0.0.2 Bot-
master 

H12 eth0 10.0.0.12 Normal 

H3 eth0 10.0.0.3 Bot H13 eth0 10.0.0.13 Target 
Server 

H4 eth0 10.0.0.4 Bot H14 eth0 10.0.0.14 Normal 

H5 eth0 10.0.0.5 Bot H15 eth0 10.0.0.15 Normal 

H6 eth0 10.0.0.6 Bot H16 eth0 10.0.0.16 Normal 

H7 eth0 10.0.0.7 Normal H17 eth0 10.0.0.17 Normal 

H8 eth0 10.0.0.8 Normal H18 eth0 10.0.0.18 Normal 

H9 eth0 10.0.0.9 Normal 

 

3.3.1 Design of Attack Traffic 

Botnet-based DDoS attack in the custom-developed network topology is 

generated using Python scripts in all our experiments. These files have the code 

written in Python language to design and launch the attack. Initially, the “ping” 

command is executed on all the hosts to verify their reachability in the network 

topology. Once the complete topology is set up, then we run a file named 

“target.py” on the host H13 to set it as a target server. After that, we execute the 



88 
 

“bot.py” file on hosts H3, H4, H5, and H6 to set these hosts as bots. Finally, the 

“botmaster.py” Python file is executed on host H2 to set it as bot master. Here, the 

concept of socket programming is used to design and create specific ports for the 

corresponding bot hosts to connect with the bot master and listen to the instructions. 

For example, the bot master instructs the bots to remain ready and sends the date 

and time for the attack. When the date and time of all the bots are matched with 

instructed time and date of the bot master, then the bots quickly start to send the 

attack traffic to the specified target server. To collect the attack traffic for the data 

set, we launch the attack in the network topology for approximately “14.26” 

minutes. 

3.3.2 Design of Normal Traffic 

We used Distributed Internet Traffic Generator (D-ITG) [209] to generate 

background or normal network traffic to collect the normal traffic for the data set 

as well as for real-time verification. In our experiments, we used the D-ITG-2.8.1-

r1023 version. The ITGSend and ITGRecv commands are executed on the normal 

hosts such as H1, H7, H8, H9, H10, H11, H12, H14, H15, H16, H17, and H18 to 

send and accept the normal network traffic. We approximately injected more than 

200 flows as background flows into the network. The aim of this is to make the 

background traffic like the real network traffic. Different transmission rates such as 

constant, exponential, gamma distribution, uniform, and Poisson are followed with 

TCP protocol to inject each flow in the network. During each flow, the packet size 

also variated using different distributions such as constant, exponential, gamma 

distribution, uniform, and Poisson. Here, our focus was not on the same size of 
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packets so, we used variations in the packet size to make the virtual network like a 

real network. Figure 3.3 shows an example of flow rules written in D-ITG to 

generate the background traffic. 

 

Figure 3.3: An example of flow rules to generate normal traffic. 

Each row as shown in Figure 3.3 has a flow rule to generate the background 

traffic. So, to generate background traffic these flow rules are executed on different 

hosts which are specified as normal users. By taking the red box in Figure 3.3 as an 

example, we can observe that the 3rd flow rules are follows the 2nd flow rules and 

so on. Where the aim is to send the normal traffic to the destination host H13 (“IP 

address 10.0.0.13 with port 5000”). The uniform distribution from 500 to 1000 

follows to send the number of packets/per flow, and the size of the transmitted 

packets is fixed at 512 bytes. The duration of the traffic for the flow is set to 12000 

milliseconds, where the TCP protocol-based traffic is generated for this flow rule. 

Figure 3.4 shows a portion of the screenshot of the OpenFlow switches' flow table. 

The red box in Figure 3.4 highlights the background traffic is successfully injected 
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into the network. The red box also shows a flow entry of host H1 (“IP address 

10.0.0.1) to host H13 (“IP address 10.0.0.13”) with destination port 5000 in the 

flow table of the OpenFlow switch. The above-discussed procedure can be used to 

successfully inject the background traffic using G-ITG into the SDN-based 

network.  

Figure 3.4:  Partial screenshot of the flow table of an OpenFlow switch during 
normal traffic. 

3.4 Feature Extraction and Labeling 

A software-defined network environment is adopted to capture the attack 

and normal traffic. The captured traffic is initially stored in the “Pcap” format in 

Wireshark. After that, CIC Flow Meter V4 (version 4) [210], [211] is used to 

convert the “Pcap” format to “CSV” and make a dataset to train and validate deep 

learning methods. The following subsection gives an overview of the CIC Flow 

Meter. 
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3.4.1 CIC Flow Meter 

 In the field of network intrusion detection, the CIC Flow Meter is used to 

generate bidirectional flows and to convert “Pcap” files to “CSV” files. Each flow 

consists of 83 features. A network flow is the traveling of packets in a unidirectional 

sequence from source to destination with a particular protocol in a specific period. 

CIC Flow Meter terminates any flow in two ways: time out is reached and the 

connection is closed. First, we can set a specific time duration to terminate the 

flows, and when the set time out is reached then the flow automatically terminates. 

Second, any flow is terminated by detecting any packet having a “FIN flag” either 

from destination to source or source to destination side. The definition of TCP 

specification [212] is ignored in the connection closed method in this way: the flow 

is terminated when both side source and destination send packets that are containing 

“FIN flags”. This creates two severe consequences. First, the construction of that 

flow which are having “ACK” and “FIN” flags because that part of the current flow 

and the other flows. The second one is ignorance of flows that do not have “FIN” 

flags packets. For example, CIC Flow Meter originally ignored the packets that are 

having “RST” flags and did not consider them to close connection and terminate 

flows. 

The second method has more consequences than the first method to 

terminate the flows. So, in this research, we adopted the first method (e.g., flow 

time out is reached) and set the “600” seconds to terminate the flows. The CIC Flow 

Meter converted the “Pcap” file into a dataset that has a total of 89, 632 flow records 

with 83 features. Furthermore, the dataset has 41,242 attack flow records and 
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48,390 normal flow records with the same 83 features. Table 3.2. shows the feature 

names, feature codes, and descriptions of all the extracted features. 

Table 3.2: List of extracted features from traffic flows. 
 

Forward Description Feature Code and 
Names 

Description 

F1. Flow ID The assigned ID of a 
Flow 

F43. Forward 
Packets/second 

The number of 
packets transmitted in 
the forward direction 
per second. 

F2. Source IP Source IP address F44. Backward 
Packets/second 

The number of 
packets transmitted in 
the backward 
direction per second. 

F3. Source Port Source port number F45. Packet Len 
Min 

The minimum length 
of a packets in a flow. 

F4. Destination IP Destination IP address F46. Packet Len 
Max 

The maximum length 
of a packets in a flow. 

F5. Destination Port Destination port number F47. Packet Len 
Mean 

Mean of a flow length 

F6. Protocol Type of protocol F48. Packet Len Std Standard deviation of 
a flow length 

F7. Timestamp Capture time F49. Packet Len Var Minimum nter-arrival 
time of a packet 

F8. Flow Duration The duration of a flow F50. FIN Flag Cnt FIN-flagged packet 
count for a flow  

F9. Total Forward 
Packets 

Total number of forward 
packets 

F51. SYN Flag Cnt SYN-flagged packet 
count for a flow  

F10. Total Backward 
Packets 

Total number of 
backward packets 

F52. RST Flag Cnt RST-flagged packet 
count for a flow  

F11. Total Length 
Forward Packets 

The total length of 
forward packets 

F53. PSH Flag Cnt PSH-flagged packet 
count for a flow  

F12. Total Length 
Backward Packets 

Total length of backward 
packets 

F54. ACK Flag Cnt ACK-flagged packet 
count for a flow  

F13. Forward Packets 
Length Maximum 

The maximum length of 
forward packets 

F55. URG Flag Cnt URG-flagged packet 
count for a flow 
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F14. Forward Packets 
Length Minimum 

The minimum length of 
forward packets 

F56. CWE Flag 
Count 

CWE-flagged packet 
count for Flows 

F15. Forward Packets 
Length Mean 

The length Mean of the 
forward packets 

F57. ECE Flag 
Count 

ECE-flagged packets 
count for a flow 

F16. Forward Packets 
Length Strand 
Deviation 

The length variance of 
the forward packets 

F58. Up/Down 
Ratio 

Download and 
Upload ratio 

F17. Backward 
Packets Length 
Maximum 

The maximum length of 
backward packets 

F59. Packet Size 
Average 

Size of a package on 
average 

F18. Backward 
Packets Length 
Minimum 

The minimum length of 
the backward packets 

F60. Forward 
Segment Size 
Average 

Observed average 
packet size moving in 
forward direction   

F19. Backward Packet 
Length Mean 

The length Mean of the 
backward packets 

F61. Backward 
Segment Size 
Average 

Observed average 
packet size moving in 
backward direction   

F20. Backward Packet 
Length Strand 
Deviation 

The length variance of 
the backward packets 

F62.Forward 
Bytes/b Average 

Observed average 
counts of bytes per 
bulk moving in 
forward direction 

F21.Flow 
Bytes/second 

Number of bytes of the 
flow per second 

F63. Forward 
Packets/b Average 

Observed average 
counts of packets per 
bulk moving in 
forward direction 

F22. Flow 
Packets/second 

Number of packets of the 
flow per second 

F64. Forward Bulk 
Rate Average 

The average rate of 
bulk data 
transmission 
observed in the 
forward direction. 

 

F23. Flow IAT Mean Mean of Packets flow 
inter arrival time  

F65. Backward 
Bytes/b Average 

Observed average 
counts of bytes per 
bulk moving in 
backward direction 

F24. Flow IAT Strand 
Deviation 

Standard deviation of 
Packets flow inter arrival 
time 

F66. Backward 
Packets/b Average 

Observed average 
counts of packets per 
bulk moving in 
backward direction 

F25. Flow IAT 
Maximum 

Maximum of Packets 
flow inter arrival time 

F67. Backward Bulk 
Rate Average 

The average rate of 
bulk data 
transmission 
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observed in the 
backward direction. 

 

F26. Flow IAT 
Minimum 

Minimum of Packets 
flow inter arrival time 

F68. Subflow 
Forward Packets 

Observed subflow 
packets counts in 
forward direction  

F27. Forward IAT 
Total 

Total time interval of the 
forward packets 

F69. Subflow 
Forward Bytes 

Observed subflow 
bytes counts in 
forward direction 

F28. Forward IAT 
Mean 

Mean time interval of the 
forward packets 

F70. Subflow 
Backward Packets 

Observed subflow 
packets counts in 
backward direction 

F29. Forward IAT 
Strand Deviation 

Standard deviation time 
interval of the forward 
packets 

F71. Subflow 
Backward Bytes 

Observed subflow 
bytes counts in 
backward direction 

F30. Forward IAT 
Maximum 

Maximum time interval 
of the forward packets 

F72. Initially 
Forward Window 
Bytes 

Initially window byte 
counts moved in 
forward 

F31. Forward IAT 
Minimum 

Minimum time interval 
of the forward packets 

F73. Initially 
Backward Win 
Bytes 

Initially window byte 
counts moved in 
backward 

F32. Backward IAT 
Total 

Total time interval of the 
backward packets 

F74. Forward Act 
Data Packets 

Number of packets in 
the forward direction 
with at least one byte 
of TCP data payload 

F33. Backward IAT 
Mean 

Mean time interval of the 
backward packets 

F75. Forward 
Segment Size 
Minimum 

Observed Minimum 
size of a segment 
moving in the forward 
direction 

F34. Backward IAT S 
Strand Deviation 

Standard deviation time 
interval of the backward 
packets 

F76. Active Mean Mean of time when a 
flow was active 
before becoming idle 

F35. Backward IAT 
Maximum 

Maximum time interval 
of the backward packets 

F77. Active 
Standard Deviation  

Standard deviation of 
time when a flow was 
active before 
becoming idle 

F36. Backward IAT 
Minimum 

Minimum time interval 
of the backward packets 

F78. Active 
Maximum 

Maximum of time 
when a flow was 
active before 
becoming idle 
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F37. Forward PSH 
Flags 

PSH-flagged packet 
counts moving in the 
forward direction 

 

F79. Active 
Minimum 

Minimum of time 
when a flow was 
active before 
becoming idle 

F38. Backward PSH 
Flags 

PSH-flagged packet 

counts moving in the 

backward direction 

 

F80. Idle Mean Mean of time when a 
flow was idle before 
becoming active 

F39. Forward URG 
Flags 

URG-flagged packet 
counts moving in the 
forward direction 

 

F81. Idle Standard 
Deviation  

Standard deviation of 
time when a flow was 
idle before becoming 
active 

F40. Backward URG 
Flags 

URG-flagged packet 
counts moving in the 
backward direction 

 

F82. Idle Maximum Maximum of time 
when a flow was idle 
before becoming 
active 

F41. Forward Header 
Length 

Bytes count for headers 
moving in the forward 
direction  

 

F83. Idle Minimum Minimum of time 
when a flow was idle 
before becoming 
active 

F42. Backward 
Header Length 

Bytes count for headers 
moving in the backward 
direction  

 

 

3.5 Data Pre-Processing 

In this research, three steps including quantization, removing irrelevant 

features, and normalization are performed to pre-process the dataset. The developed 

dataset has different categorical attributes (e.g., protocol, flags, services, classes, 

etc.). So, the quantization process is performed to convert the categorical values 
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into numerical values by assigning a unique number to each attribute category. 

Quantization is an important task in deep learning because DL methods cannot 

process the nominal features directly.  In the second step, the irrelevant features 

such as Flow ID, source IP address, destination IP address, source port number, 

destination port number, timestamp, and protocol has been removed to generalize 

the dataset. Removing the irrelevant above-mentioned features prevents the DL 

methods from attributing the specific ports, IPs, protocols, etc. as attack nodes and 

maintains the generalized nature of DL methods. Lastly, the normalization tasks are 

performed to evaluate the dataset for missing and infinities values. The 

normalization of data is particularly helpful for the DL methods represented at 

several levels. It also helps the learning process of the DL methods may not be 

affected by the value ranges of different features of the dataset. In this research, we 

used Min-Max normalization to normalize the values of the dataset and it helps the 

neural networks to generalize themselves in a more consistent way. This method 

can effectively and accurately conduct all data connections. The increasing function 

follows the min-max range for the true values which was added during the 

classification process. Nevertheless, the values of the features can lie within the 

existing range [213] . This method is mathematically formulated as follows: 

𝑋𝑛𝑒𝑤 = 𝑋−𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

           (3.1)   

After performing the above-mentioned steps for data pre-processing, the 

dataset is encoded (the normal flows labeled as 0 and attack flows labeled as 1). As 

mentioned earlier, the dataset has 41,242 attacks and 48,390 normal flow records. 
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The imbalance is retained in the dataset to replicate real-world scenarios for the DL 

methods (“where the number of normal flows is always greater than attack flows”). 

The following formula is used to maintain the imbalanced structure. 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑅) = 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 (max)
𝑡ℎ𝑒 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 (min)

      (3.2) 

For all experiments, we divided the dataset into 75% and 25% ratios. 75% 

of the dataset is used for training and 25% for the validation of all DL methods for 

all subsets of features. The distribution of the dataset for the training and validation 

for all subsets is given in Table 3.3. 

Table 3.3: Distribution of the dataset for training and testing. 
 

Classes Total Records 75% for Training  25% for Testing 

Normal Flows 48,390 36,293 12,097 

Attack Flows 41,242 30,932 10,310 

                                        89,632 67,225 22,407 

 

Data Reshaping. A CNN can accept input in three-dimensional image 

format (height, width, and channel). CNNs can deal with network traffic data that 

is typically one-dimensional. We must add one more step to modify the input traffic 

data to meet CNN's resolution parameters. For example, for a subset with 43 

features, we convert the 73-dimensional vector into an image with a “7 ×6” shape, 

and for the 30-dimensional input vector an image with “6 ×5” is created, etc. In this 

research, for all experiments and DL methods, only grayscale images were 

generated with a single channel, and we set “1” for the channel number. 
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3.6 Feature Selection 

Feature engineering or feature selection is an important pre-processing task 

before the training and evaluation of DL methods. Because the presence of 

redundant and irrelevant features in a dataset can reduce the performance of the 

predictive models, due to the curse of dimensionality and over-fitting problems. 

Moreover, even if any model has effective performance with noise and redundancy, 

the presence of those features poses some other disadvantages such as increasing 

computational and storage costs, increasing time costs and reducing the model 

interpretability. So, the feature selection methods can help to mitigate these 

problems through the identification and selection of important or relevant features, 

and discarding the of redundant and irrelevant features. 

Especially, the growing interest in explainable AI encourages the researcher 

to focus on improving the interpretability of models. The interpretability of deep or 

machine learning models becomes essential because it enables the models to adopt 

social requirements such as privacy, fairness, reliability, unbiasedness, and trust. 

Since modern and advanced DL methods and applications have an ever-

growing number of features, so, a virtual understanding of prediction outcomes 

without dimension reduction becomes quite difficult. On the other side of model 

interpretation, for example, data visualization helps to reduce the number of 

features. The other advantage of feature selection is for those applications where 

the acquisition of data is costly. In such cases, the identification of redundant and 

irrelevant features is important to reduce the acquisition cost of data. 



99 
 

In current years, the usage of feature selection methods has increased in 

deep learning-based network intrusion detection applications. Because the attackers 

are using modern technology to launch malicious attacks and they are hard to 

detect. So, the detection of these attacks becomes easier and more effective with 

optimal features. As deep learning-based intrusion detection systems take a short 

time to analyze a large number of traffic time. Thus, the subset of optimal features 

can become an optimal solution to improve the performance and operations of the 

IDS in terms of accuracy, speed, response time, and simplicity. 

In the current research, CIC Flow Meter generates 83 statistical features for 

a flow which are described in Table 3.2. Although some of them are important for 

the detection of attack flows, some may have no or little effect on the prediction 

accuracy of the DL methods, they just upsurge the time and computational costs. 

So, we need to select the subset of optimal features that can help the DL methods 

to discriminate the attack and normal flows, also accurate, and boost the 

classification performance. In all our experiments, the optimal feature selection is 

performed using two different methods: (i) Feature Weighting and (ii) Threshold 

Tuning. This method selects the optimal features without changing the original 

features and then converts them into five different subsets. Let’s consider a given 

set of features can be represented as {𝐹1, 𝐹2, 𝐹3, … … … 𝐹𝑑} are 𝑑 features of 𝑋, 

where 𝑑 indicates the number of high-dimension features. First, we convert the 

high-dimension features 𝑑 to low-dimension features 𝑟(𝑟 < 𝑑) using the above-

mentioned methods and then make a subset of optimal features to recognize the 
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attack and normal flows. The complete procedure of feature selection is described 

in Algorithm 2. 

Algorithm 2: Procedure of feature selection 

Input: Feature Set F = {F1, F2, F3, F4, ………. Fd}, the threshold of weight α, 
and the number of selected features r; 

Output: Selected feature set F’ 

    // Calculate the weights of the features 

1:    F’             Ø 

2:    for (i = 0; i < d; i++) do 

3:         r(i)             compute weights (Fi) 

4:         if (|r(i)| < α) then 

5:             remove feature Fi; 

6:         else  

7:                FA [] = Fi  

8:         end if 

9:     end for 

10: F’             store (FA []) 

11: return F’ 

 

3.6.1 Feature’s Weighting 

In this research, we used iterative wrapper-based feature selection with 

Support Vector Machine (SVM). The whole dataset is converted into five different 

subsets with optimal features. SVM is a powerful classifier that assigns weights to 

all the features while predicting the output. The SVM allocates a weight that can be 
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used to rank the significance of the feature. It divides the various classes using a 

hyperplane and employs a kernel function to translate the Initially input feature 

space to a high-dimensional feature space. The following procedure is used to 

compute the weights for a binary soft margin SVM and rank the weights.   

Let’s consider {𝑋, 𝑌} is a training dataset with {1, −1} are labels, where 𝑋 

represents the input features and 𝑌 represents labels. The training dataset has 𝑘 

samples. ∅ Feature mapping is applied to the inputs, then the decision function can 

be formulated as follows: 

𝑓(𝑋) = (𝜔, ∅(𝑋)) + 𝑏       (3.3) 

In the above Equation 3.3 𝑏 and 𝜔 defined the properties of the SVM 

hyperplane. The training goal of SVM is to achieve the optimal values for 𝑏 and 𝜔 

that maximize the distance between the hyperplane and the mapped training 

samples  ∅(𝑋). The loss function (𝐿) can be minimized by applying the quadratic 

penalties to the misclassified examples.  

𝑚𝑖𝑛𝜔,𝛿 𝐿 = 1
2

||𝜔||2 + 𝐶 ∑ 𝛿𝑖
2𝑘

𝑖=1         (3.4) 

∀𝑖, 𝑦𝑖𝑓(𝑥𝑖) ≥ 1 − 𝛿𝑖         (3.5) 

Where 𝐶 represents the penalty factor and 𝛿𝑖 are slack variables 

representing the distances by which the soft margins are despoiled by the 

misclassified examples. 𝑥𝑖 are input variables and 𝑦𝑖 represents the labels of a 

single training sample. So, the weights are calculated as follows: 
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𝑊 = ∑ 𝑎𝑖
∗𝑦𝑖

𝑘
𝑖=1 ∅ (𝑥𝑖)         (3.6) 

Where 𝑎𝑖
∗ is the solution of: 

𝑚𝑖𝑛𝑎𝑖 𝑊(𝑎𝑖) = ∑ 𝑎𝑖 + 1
2

∑ 𝑎𝑖𝑎𝑗
𝑘
𝑖,𝑗=1

𝑘
𝑖=1 𝑦𝑖𝑦𝑗(𝐾(𝑥𝑖, 𝑥𝑗) + 1

𝐶
𝜗𝑖,𝑗)   (3.7) 

𝑠. 𝑡.        ∑ 𝑎𝑖𝑦𝑖 = 0𝑘
𝑖=1         (3.8) 

∀𝑖, 𝑎𝑖 ≥ 0 

Where 𝜗𝑖,𝑗is the Kronecker symbol and 𝐾(𝑥𝑖, 𝑥𝑗) = { ∅ (𝑥𝑖), ∅ (𝑥𝑗)} 

represents the Gram matrix of the training samples. So, the SVM weights 𝜔 can be 

used to score the feature’s importance. The feature with a higher weight is 

considered more important compared to the feature with a lower weight. It means 

that the features with higher weights are more important for detecting attack flows. 

Table 3.4. Described the SVM assigned absolute weights values for the distinct 

features. After obtaining the weight values for all the features, a threshold tuning 

method is used to derive an optimal threshold value. During each iteration, this 

optimal threshold value is used to evaluate the feature weight and select the optimal 

features. The features with weights equal to or greater than the threshold 

(𝐹𝑛(𝑤𝑛) ≥ 𝛼) were selected and placed into the corresponding subset. Then, the 

optimal feature subsets are given as input to the DL methods for classification. 

Table 3.4: List of features with assigned weights by SVM. 
 

Feature Code and Names Assigned Weights Feature Code and 
Names 

Assigned Weights 

F1. Flow ID - F43. Forward Packets/s 6.17 
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F2. Source IP - F44. Backward 
Packets/s 

5.25 

F3. Source Port - F45. Packet Len Min 1.17 

F4. Destination IP - F46. Packet Len Max 2.53 

F5. Destination Port - F47. Packet Len Mean 1.22 

F6. Protocol - F48. Packet Len 
Standard deviation  

5.12 

F7. Timestamp - F49. Packet Len Var 1.05 

F8. Flow Duration 4.51 F50. FIN Flag Cnt 2.75 

F9. Tot Forward Packets 2.05 F51. SYN Flag Cnt 6.23 

F10. Tot Backward 
Packets 

4.30 F52. RST Flag Cnt 1.94 

F11. Tot Len Forward 
Packets 

4.70 F53. PSH Flag Cnt 1.56 

F12. Tot Len Backward 
Packets 

9.48 F54. ACK Flag Cnt 2.07 

F13. Forward Packet Len 
Max 

1.58 F55. URG Flag Cnt 0.00 

F14. Forward Packet Len 
Min 

2.92 F56. CWE Flag Count 0.00 

F15. Forward Packet Len 
Mean 

2.13 F57. ECE Flag Cnt 0.00 

F16. Forward Packet Len 
Standard deviation  

5.70 F58. Down/Up Ratio 4.82 

F17. Backward Packet 
Len Max 

1.16 F59. Packet Size 
Average 

2.10 

F18. Backward Packet 
Len Min 

3.78 F60. Forward Segment 
Size Average 

2.13 

F19. Backward Packet 
Len Mean 

2.81 F61. Backward 
Segment Size Average 

2.81 

F20. Backward Packet 
Len Standard deviation  

3.38 F62. Forward Bytes/b 
Average 

0.00 

F21. Flow Bytes/s 1.01 F63. Forward Packets/b 
Average 

0.00 
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F22. Flow Packets/s 1.55 F64. Forward Blk Rate 
Average 

0.00 

F23. Flow IAT Mean 1.81  F65. Backward Bytes/b 
Average 

0.00 

F24. Flow IAT Standard 
deviation  

3.39 F66. Backward 
Packets/b Average 

0.00 

F25. Flow IAT Max 1.16 F67. Backward Blk 
Rate Average 

0.00 

F26. Flow IAT Min 1.82 F68. Subflow Forward 
Packets 

2.05  

F27. Forward IAT Tot 4.18 F69. Subflow Forward 
Bytes 

4.70 

F28. Forward IAT Mean 1.09 F70. Subflow 
Backward Packets 

4.30 

F29. Forward IAT 
Standard deviation  

1.30 F71. Subflow 
Backward Bytes 

9.48 

F30. Forward IAT Max 6.00 F72. Initial Forward 
Win Bytes 

0.00 

F31. Forward IAT Min 1.86 F73. Initial Backward 
Win Bytes 

1.16 

F32. Backward IAT Tot 5.72 F74. Forward Act Data 
Packets 

1.05 

F33. Backward IAT 
Mean 

9.59 F75. Forward Segment 
Size Minimum 

0.00 

F34. Backward IAT 
Standard deviation  

8.10 F76. Active Mean 1.48 

F35. Backward IAT 
Maximum 

9.67 F77. Active Standard 
deviation  

3.02 

F36. Backward IAT 
Minimum 

1.27 F78. Active Max 1.17 

F37. Forward PSH Flags 0.00 F79. Active Min 7.51 

F38. Backward PSH 
Flags 

1.56  F80. Idle Mean 6.81 

F39. Forward URG Flags 0.00 F81. Idle Standard 
deviation  

1.61 



105 
 

F40. Backward URG 
Flags 

0.00 F82. Idle Maximum 1.07 

F41. Forward Header 
Len 

2.52  F83. Idle Minimum 5.27 

F42. Backward Header 
Len 

2.09  

 

3.6.2 Threshold Tuning 

An optimal threshold value is calculated from feature weights using a 

simple threshold tuning method. This method takes absolute feature weight values 

from minimum to maximum and then returns an optimal value between the given 

range. The best threshold value is computed as the value which reduce the features 

dimensions. So, based on the optimal values we make the five different subsets of 

the features to evaluate the performance of the DL methods. 

 
3.7 Deep Learning Methods and Hyper-Parameters Settings 
 
3.7.1 Recurrent Neural Networks (RNNs) 

Generally, RNNs are used to deal the problems related to time series, 

because these methods have the capabilities to learn the features from the time-

series data compared to CNNs and other DL methods. For example, one sentence 

in the natural language is considered a type of time-series data. It means that each 

word in a sentence has a correlation with the other words so, the previous and 

current words can be used as input to predict the next word. Further, the feed-

forward methods cannot store or remember the previous input information, that’s 

why these methods are not suitable for tasks related to time-series data. RNNs can 
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learn from data sequentially. In a neural network, the information related to 

previous inputs can be stored in an internal state and the RNN methods can learn 

from time-series data. In intrusion detection, the malicious traffic may be hidden 

within the normal traffic, so, the RNNs can perform better than others for attack 

detection [214], [215]. Figure 3.5 shows a directed cell, which can be used to 

construct a connection among various neurons. 

 

Figure 3.5: General diagram of RNN architecture. 

An RNN consists of input, hidden, and output units. Let’s consider the input 

units {𝑥0, 𝑥1, 𝑥2, … … … 𝑥𝑡 … … … 𝑥𝑡+1}, hidden units 

{ℎ0, ℎ1, ℎ2, … … … ℎ𝑡 … … … ℎ𝑡+1}, and output units 

{𝑦0, 𝑦1, 𝑦2, … … … 𝑦𝑡 … … … 𝑦𝑡+1} for an RNN. So, in Figure 3.5, it is shown that at 

time step 𝑡, RNN takes as input the current sample 𝑥𝑡 and the previously hidden 

representation ℎ𝑡−1 to obtain the currently hidden representation ℎ𝑡, and it is 

performed using the following mathematical formulation: 

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1)                (3.9) 
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Where 𝑓 represents an encoder function for an RNN. For time step 𝑡, the 

most commonly useable vanilla for the RNN can be formulated as follows:  

ℎ𝑡 = 𝑓(𝑊ℎ𝑥,𝑥𝑡 + 𝑊ℎ𝑦,ℎ𝑡−1 + 𝑏ℎ)        (3.10) 

𝑦𝑡 = 𝑔(𝑊ℎ𝑦,ℎ𝑡−1 + 𝑏𝑦)         (3.11) 

In the above Equations 3.10, 3.11 𝑓 and 𝑔 represent the encoder and 

decoder, respectively and 𝜃 = {𝑊ℎ𝑥, 𝑊ℎℎ, 𝑊ℎ𝑦, 𝑏ℎ, 𝑏𝑦} is a set of parameters. 

During a forward pass, RNN can capture the dependencies between the current 

sample 𝑥𝑡 and the previous sample 𝑥𝑡−1 by integrating the previously hidden 

representation ℎ𝑡−1. RNN also can capture arbitrary-length dependencies in the 

data. However, RNNs do not produce effective results while dealing with long-term 

dependencies in the data due to gradient vanishing problems. Other methods such 

as Long Short-Term Memory (LSTM) etc., have solved the gradient vanishing and 

gradient exploding problems of the RNNs. In recent years, the usage of RNN and 

its variants have increased in different applications such as machine translation, 

intrusion detection, etc. The parameter settings for the RNN which is used in this 

research are given in Table 3.5.
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3.7.2 Convolutional Neural Networks (CNNs) 

A convolutional neural network is a type of multi-layer ANN that is mostly 

used for intrusion detection. CNNs run a simple mathematical operation which is 

known as convolution. Convolution is a specialized type of linear operation. These 

networks have at least one convolutional layer rather than general matrix 

multiplication [216]. Generally, CNNs composed of a convolutional, pooling, and 

fully connected layer. CNNs can automatically learn and extract complex attributes. 

The convolutional layer provides an advanced representation of the attributes [217]. 

The CNN architecture with one layer is shown in Figure 3.6. 

Figure 3.6: Structural diagram of CNN architecture. 
 

 The convolutional operation for any CNN can be formulated as follows: 

𝑋𝑖
𝑎 = ∅[∑ 𝑋𝑗

𝑎−1 × 𝑊𝑖𝑗
𝑎 + 𝑏𝑗

𝑎
𝑖𝜖𝑘𝑖 ]       (3.12) 

Where 𝑋𝑖
𝑎 represents the attribute map 𝑖 of the convolutional layer 𝑎. The 

∅ demonstrate an activation function. 𝑘𝑖 represent the set of input features for the 
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layer (𝑎 − 1). 𝑊𝑖𝑗
𝑎 is the connection weight between the feature 𝑖  of the 

convolutional layer 𝑎 and feature j of the convolutional layer (𝑎 − 1). The 𝑏𝑗
𝑎 is 

used to show the deviation among the related layers.  

The pooling layer is next to the convolutional layer. This layer aims to 

reduce the size of the feature map. The operations of the pooling layer are 

responsible for the proper identification of important features, reducing the 

complexities in the data, and improving the network tolerance against 

environmental changes. The following mathematical equation demonstrates the 

operation in the pooling layer. 

𝑋𝑖
𝑎 = ∅[𝛽𝑖

𝑎𝑐(𝑋𝑗
𝑎−1 + 𝑏𝑗

𝑎)]       (3.13) 

In Equation 3.13, 𝛽 represents the weighting matrix while 𝑐 is the sub-

sampling function. In CNNs, the classification process is performed from 

convolutional layers to pooling layers through fully connected layers. The output 

function for the fully connected layers can be formulated as follows: 

𝑌𝑚 = ∅[𝑊𝑚𝑋𝑚−1 + 𝑏𝑚]        (3.14) 

In the above Equation 3.14, the layer index is represented by the 𝑚, 𝑌𝑚 

indicates the output of the fully connected layer, 𝑋𝑚−1 is the fully connected layer 

input, 𝑊𝑚 is the weighting coefficient, and 𝑏𝑚 term is deviation  [56]. The hyper-

parameter setting of the CNN which is used in this research is given in Table 3.5. 

 
 



110 
 

3.7.3 Multilayer Perceptron (MLP) 

It maps the input data to output in a feed-forward way [218]. The general 

architecture of the MLP is shown in Figure 3.2. Its architecture has multiple layers 

of interconnected neurons and each layer is fully connected with its previous and 

next layers [219]. Our research used one hidden layer for the MLP method to reduce 

its complexity and computing resources. We used the ReLu activation function in 

hidden layers and the sigmoid activation function at the output layer. Table 3.5 

shows the parameter settings of the used MLP method. The architecture of MLP is 

shown in Figure 3.7.The hit-and-trial method is used for all the DL classifiers to 

find the best parameters. 

Figure 3.7: The architecture of MLP. 

During the training of MLP, the connection weights are adapted to minimize 

the difference between the obtained and actual output. To achieve this, we used the 

backpropagation method. The output of each neuron is referred to as a weight unit, 

followed by an activation function to discriminate the linearly or nonlinearly 
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separable data [220]. The following mathematical equation can be used to calculate 

the output activation 𝛼𝑙+1 at layer 𝑙 + 1. 

𝛼𝑙+1 =  ∅(𝑊𝑙𝛼𝑙 + 𝑏𝑙)         (3.15) 

Where 𝑙 indicates the layer, ∅ is the activation function (i.e., rectified linear 

unit, hyperbolic tangent, sigmoid), 𝑊𝑙 represents the weights, and 𝑏𝑙 is biased at 

the particular layer. For example, if we have MLP with 𝑚 layers then the first and 

last layers can be formulated as follows: 

 𝛼𝑙 = 𝑥 

ℎ𝑊,𝑏(𝑥) = 𝛼𝑚          (3.16) 

The back-propagation method is used to decide the learning weights and 

bias and to get an approximation of unknown input and output relation. The 

objective function described below reduces the divergence between expected and 

actual outcomes. 

𝐽(𝑊, 𝑏; 𝑥, 𝑦) =  1
2

||ℎ𝑊,𝑏(𝑥) − 𝑦||2        (3.17) 

3.7.4 Deep Neural Networks (DNNs) 

Generally, a vector format is used in the neural networks for the inputs. 

These inputs then pass through numerous hidden layers. The network's output layer 

shows the output outcomes of processing from hidden layers finally. Each of the 

network's hidden layers contains several neurons linked to the previous neurons. 

Each layer's neurons function independently and have no connections to other 
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neurons. The final completely connected layer's output layer is in charge of 

determining a grade for each class. CNNs frequently aren't the best choice for 

regular data. So, DNNs [221], [222] take advantage of the inputs containing 

accurate examples and appropriately restrict the network's architecture. An ANN is 

a term that describes a subfield of machine learning known as deep learning. The 

term "deep learning" is exceedingly popular in artificial intelligence. The neural 

network's hidden layer count increases. On a large scale, ANNs learn from 

observational data. The original format of any neural network is shown in Figure 

3.8. 

 

 Figure 3.8: Diagram of DNN architecture. 

An ANN is typically created by embedding two sets of neurons in the input 

and output layers. The input layer receives the features 𝑋𝑖, and the output layer 
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responds with a view of the features. The output layer creates a bias and a set of 

weights for the input features. The results are then produced by applying non-linear 

or linear transfer functions, also called non-linear or linear transfer functions, also 

referred to as "activation functions." A building block of actual neural networks is 

the activation law for neurons. The following equation is used to calculate the total 

weight for the input feature 𝑋𝑖  and allocated weight to it 𝑊𝑖 from an N-dimensional 

features vector. 

𝑍 = ∑ (𝑋𝑖 . 𝑊𝑖) + 𝑏𝑛
𝑖=1          (3.18)   

Where 𝑊𝑖 is the weight for the input vector and 𝑏 represents the bias term. 

In neural networks, the bias term is a significant factor for arranging activator 

flexibility when calculating neurons’ output. The ANN architecture performance is 

specified using the activation function. The activation function terms the output of 

a neuron corresponding to given input features. Researchers have proposed several 

activation functions, and some specific parameters, and new functions have also 

been investigated in recent years. There are some commonly used activation 

functions such as Rectified Linear units (ReLu), Sigmoid (logistic), Hyperbolic 

Tangent (Tanh), etc. The range of a sigmoid function is between 0 and 1 and it can 

be easily understood and implemented. But, it has a few drawbacks: a) slow 

convergence, and b) vanishing gradient problems. The sigmoid activation function 

is mathematically formulated as follows: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1+exp (−𝑥)

        (3.19) 
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  The output of the Tanh activation function is zero-centered because it has 

a range between -1 to 1(e.g., -1 < output <1). Although this method simplifies 

optimization more than the sigmoid function, vanishing gradient issues still exist. 

The mathematical formula of the Tanh function is given in Equation 3.20. 

𝑇𝑎𝑛ℎ(𝑥) = 1−𝑒𝑥𝑝 (−2𝑥)
1+𝑒𝑥𝑝 (−2𝑥)

         (3.20) 

ReLu is known as a general activation function, easy to understand, 

efficient, and fast, and most widely used in different cases. ReLu is simple because 

it does not require any exponential computation and normalization and also has 

simple mathematical operations compared to Tanh or sigmoid activation functions. 

Furthermore, this function rectifies and avoids the vanishing gradient problems and 

also has improved in convergence. This function is mathematically formulated in 

Equation 3.21. 

𝑅𝑒𝐿𝑢 (𝑥) = max(0, 𝑥) =  {0          , 𝑥 < 0
𝑥          , 𝑥 ≥ 0}       (3.21)   

Furthermore, The Tanh or sigmoid activation functions are unsuitable for 

the hidden layers because if x is too small or too large that makes the gradient very 

small and slows down the gradient descent. For hidden layers, the ReLu activation 

function is the right choice, its derivative is 0 when x is negative and 1 when x is 

positive.  

For binary classification problems, given that the output value is either 1 or 

0, the sigmoid function, compared to Relu or Tanh, is appropriate for the output 

layer. In this research, a DNN which consists of three hidden layers shown in Figure 
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3.5 is used. The development of hidden layers with activation functions makes its 

architecture deeper to solve complicated problems. we used ReLu activation 

functions in hidden layers and sigmoid activation functions in the output layer. The 

hyper-parameters setting of DNN is given in Table 3.5.  

3.7.5 Long Short-Term Memory (LSTM) 

Another commonly useable Deep learning algorithm is Long Short-Term 

Memory (LSTM), which can learn the data's short-term dependencies. For some 

DL algorithms such as DNNs, the inputs can be considered as independent of each 

other. These algorithms produce fixed-sized outputs by accepting fixed-sized 

inputs. They cannot handle the inputs with varying sequence lengths or output data. 

Recurrent Neural Networks (RNNs) overcome these drawbacks by processing the 

sequences of variable or fixed lengths. Compared to DNNs, RNNs compute the 

next output by using all the information of the previous inputs (i.e., previous 

timestamp information effect on the prediction of current timestamp). So, RNNs 

can learn or capture short-term dependencies between input data and outputs. The 

architecture of LSTM with one hidden layer which is used in this research is given 

in Figure 3.9.  
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Figure 3.9. The architecture of LSTM. 

RNNs can perform better when they used past or recent information to 

predict the next output. However, with the large gaps between the relevant 

information, RNNs cannot produce good results. Because they have vanishing 

gradient problems, which arise with exponential decay in back-propagated error. 

LSTM is an advancement in the RNNs, that utilizes the inputs at the current 

timestamp and the previous timestamps information to produce outputs. In their 

architecture, they have layers of neurons that can capture data’s long-term 

dependencies and can remember selective information for long periods. They have 

the power to decide what previous information they can retain and what information 

they can discard from memory. LSTMs use three gates such as input, forget, and 

output while adding and discarding information, and producing outputs.  
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Input/Update Gate: It helps the LSTM to decide which information is 

going to store in the cell state. First, the input gate uses a sigmoid activation 

function to decide the updates in the information and then a new vector is added to 

the cell state through the Tanh activation function. After that, LSTM updates the 

cell state with new vector values and forgets the information that information who 

was decided to forget. It can be calculated using the following mathematical 

formulas:   

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 =  𝑖𝑡 = ∅(𝑊𝑖 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖)      (3.22) 

𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑑𝑎𝑡𝑒 𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒 =  𝐶𝑡
′ = 𝑇𝑎𝑛ℎ(𝑊𝐶 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝐶)   (3.23) 

Forget Gate: It looks at the input and previously received hidden layer data 

to decide which information needs to delete from the cell state using the sigmoid 

activation function (i.e., 0 means delete it, and 1 means keeps it). This gate is 

mathematically formulated as: 

𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒 =  𝑓𝑡 = ∅(𝑊𝑓 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓)     (3.24) 

𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒 =  𝐶𝑡 =  𝑓𝑡𝐶𝑡−1 +  𝑖𝑡𝐶𝑡
′       (3.25) 

Output Gate: It executes the sigmoid activation function to decide which 

part of LSTM cells is going to output. After that, the output results are calculated 

using Tanh (i.e., a value between 1 and -1) and also decide which output 

information is passed to the next neuron. The mathematical formulation of this gate 

is as follows: 
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𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 =  𝑜𝑡 = ∅(𝑊𝑜 × [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜)     (3.26) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 =  𝐻𝑡 = 𝑇𝑎𝑛ℎ(𝐶𝑡 × 𝑜𝑡)      (3.27) 

In the above Equations 3.22-3.27 𝐶 represents the state of the cell,  ∅ 

represent the sigmoid activation function, 𝑇𝑎𝑛ℎ is the hyperbolic Tangent 

activation function, 𝑋𝑡 indicates the inputs at the time 𝑡, 𝐻𝑡−1 are output, the 

weights are represented by 𝑊𝑖, 𝑊𝐶, 𝑊𝑓, 𝑊𝑜, and biases are represented using 𝑏𝑖, 𝑏𝐶, 

𝑏𝑓, 𝑏𝑜. The architecture of the LSTM can help to address the vanishing gradient 

problems in the RNNs. The hyper-parameter settings for LSTM architecture are 

given in Table 3.5.  

Table 3.5: Hyper-parameters settings of DL methods. 
 

Hyper-parameters 
settings  

MLP DNN CNN RNN LSTM 

Number of hidden 
layers 

1 3 1 1 1 

Hidden layer neurons 128 128 128 128 128 

Activation function in 
hidden layers 

ReLu ReLu ReLu Tanh 

 

Tanh 

Activation function at 
the output layer 

Sigmoid 

 

Sigmoid Sigmoid 

 

Sigmoid 

 

Sigmoid 

Learning rate (p) 0.1 0.1 0.1 0.1 0.1 

Optimizer adam adam adam adam adam 

Epochs 20 20 20 20 20 

Batch size 32 32 32 32 32 
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 Algorithm 1: Training of deep learning methods for attack detection 

Input: dataset: data-subsets, learning rate: learning rate (𝑝), optimizer: adam, 
training rounds: epochs  

Output: accuracy: acc 

1: Set the parameters of the DL classifiers according to TABLE 2. 

2: Initialize a parameter matrix using random values      

3:    for each training round, do 

4:       select a subset from the dataset to form a batch for the training   

5:       if the number of training rounds%100=0 then  

6:             return acc 

7:       end if  

8:       input batch and calculate predicted value y  

9:   Calculate the loss value between the actual value of the label 𝑦           and the 
predicted value 𝑦 

10: Calculate loss value for gradient descent direction with optimizer adam  

11:  Update the parameter matrix with the gradient descent direction and learning 
rate (𝑝) 

12:     if training rounds reach the epochs, then 

13:          stop training of DL classifier 

14:     end if 

15:   end for 

 

 

 

 



120 
 

3.8 Summary 

In this chapter, first, we give an overview of the proposed system for 

detecting botnet-based DDoS attacks in an SDN network. Second, explain the 

simulated dataset, virtual simulation setup and data collection, design of attack and 

normal traffic, data pre-processing, selection of optimal features. Finally we discuss 

the architectures of DL methods and their hyper-parameter settings.  
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CHAPTER 4 

 

SIMULATION RESULTS FOR ATTACK DETECTION 

This chapter provides a detailed analysis of the results achieved using DL 

methods. The performance of the methods is evaluated on the generated dataset and 

in real time by conducting a series of experiments.    

4.1 Evaluation Metrics 
 
 

Different metrics can be used to assess the performance and efficacy of 

machine learning- or deep learning-based intrusion detection techniques. These 

evaluation metrics are accuracy, Detection Rate (DR), precision, F1 score, and 

False Positive Rate (FPR). Furthermore, these evaluation metrics are computed 

using the confusion matrix of network anomaly classification. The confusion 

matrix has four different parameters as True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). These parameters for any deep 

learning-based IDS can be explained as follows: 

 True Positive (TP): indicates the number of attack records correctly 

identified as botnet-based DDoS attacks. 

 True Negative (TN): indicates the number of normal records accurately 

detected as normal. 

 False Positive (FP): indicates the inaccurately detected number of normal 

records as an attack traffic. 
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 False Negative (FN): indicates the number of attack records incorrectly 

identified as normal traffic.        

The following mathematical equations can be used to compute the 

evaluation mentioned above metrics: 

Accuracy: The accuracy evaluation metric is the proportion of the 

accurately identified number of attacks and normal records to the all-over records. 

This can be formulated as follows:     

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

           (4.1) 

Detection Rate (DR): DR is the proportion of correctly identified accurate 

attack records. It is also called True Positive Rate (TPR) and recall or sensitivity. 

This metric is mathematically computed using the following formula: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐷𝑅) 𝑜𝑟 𝑇𝑃𝑅 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

     (4.2) 

Precision: A proportion of correctly identified attack records are accurate 

attack records. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

            (4.3) 

F1 Score: This metric is computed through the harmonic means of recall 

and precision. This metric is considered more reliable than the accuracy when the 

DL methods are trained using imbalanced datasets. The following mathematical 

equation can be used to compute this metric: 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

          (4.4) 

False Positive Rate (FPR): The ratio of the incorrectly detected number of 

normal records as attack records. The following mathematical equation can be used 

to compute this metric: 

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

            (4.5) 

So, if the values of accuracy, detection rate, precision, and F1 score are high 

for any implemented DL/ML method the same way, the value of FPR is low. That 

method is considered best for botnet-based DDoS attack detection. 

4.2 Feature Selection Results 

The importance of each feature present in the dataset is calculated using 

features weighting and threshold tuning mechanism and then split the whole dataset 

into five different subsets. As discussed earlier, in this research, first, we used SVM 

to assign the weight to each feature, and then the weighted values were used by the 

tuning methods to determine an optimal threshold value for feature selection. The 

tuning method automatically compares the weight value of each feature with the 

threshold value. The features with equal and higher weight values than the threshold 

value are picked and placed in a subset of features. First, all features are placed in 

a set called Subset-1. Second, the tuning method returns an optimal value of “1.8”, 

resulting in 43 features being selected with weights {α ≥ 1.80 } and placed in 

subset-2. For subset-3, the tuning method returns a “2.70” optimal value, so the 

features with weights {α ≥ 2.70} are selected for this subset. Similarly, the features 
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with weights {α ≥ 3.15} are picked and placed in subset-4. Lastly, a threshold 

value of {α ≥ 4.90} is used to select features for subset-5. Table 4.1 shows the 

description of selected features for each subset. Figure 4.1 shows an example of 

selected features for subset-3. 

Table 4.1: Number of selected features for each subset based on optimal 
threshold value. 
 

Feature Sets Threshold value  Number of Selected Feature 

Subset-1 - 76 

Subset-2 1.80 43 

Subset-3 2.70 30 

Subset-4 3.15 23 

Subset-5 4.90 15 

 

Figure 4.1: List of optimal features in subset-3. 
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4.3 Effectiveness of the DL Methods for Attack Detection 

The effectiveness of the DL methods for detecting botnet-based DDoS 

attacks in an SDN environment is also verified in this research. We used identical 

structures with minimum values of the hyper-parameters for the DL methods to 

simulate and overserve their classification performances. As discussed in the above 

section, the confusion matrix is used to measure the performance evaluation metrics 

for each DL method for all subsets of features. The general structure of the 

confusion matrix is shown in Figure 4.2.         

        

 

 

 

 
 
 
Figure 4.2. The general structure of a confusion matrix for anomaly detection. 

 

4.4 Structural Performance of the DL Methods 

Five DL approaches (MLP, DNN, CNN, RNN, and LSTM) are tested for 

classification performance to detect botnet-based DDoS attacks. The five feature 

subsets are divided into training and testing sets individually. The DL method uses 

the same neural network architecture, including learning rates, optimizers, batch 
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sizes, hidden layer counts, hidden layer neuron counts, hidden and output layer 

activation functions, and hidden and output layer number of hidden layers. It is 

observed that on the same subset of features with the same network structure, the 

methods produced variable results. The main aim is to adopt the same structure for 

all the methods to find the best method without increasing the method’s 

complexities.  

4.5 Results of Subset-1 Features  

This section describes the results of the DL methods using a set of 76 

features collected in an SDN environment. 

4.5.1 Accuracy and Loss Trends of Methods 

Figure 4.3 shows the change in training and validation accuracy and loss 

across the total number of epochs for several DL algorithms using 76 features. After 

20 iterations, it is shown that the accuracy and loss trends for the training and 

validation sets suited to one another converge. The maximum training accuracies 

of DL methods, RNN, CNN, MLP, DNN, and LSTM using 76 features are 98.64%, 

98.91%, 97.47%, 98.94%, and 98.54%, respectively. The maximum achieved 

validation accuracies of methods are 98.68%, 98.85%, 98.01%, 99.00%, and 

98.94%, respectively. 

It is also observed that the accuracy curves of CNN and DNN are more 

stable than the other methods, and the accuracy curve of MLP continuously 

fluctuates during each epoch. Since more, the MLP method has more noise in the 
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loss curves. Because dropout layers are used when the techniques are being trained, 

it is also seen that the validation loss methods have more minor relative losses than 

the training loss methods. The noise that was not injected during the validation 

period is made more apparent by the dropout layers. As a result, the error is 

decreased during the validation phase due to greater generalization to address 

overfitting issues.      

4.5.2 Performance Evaluation Using Confusion Matrix 

The performance of the DL methods using a set of 76 features is also 

evaluated using the confusion matrix. It summarizes the false and correct 

predictions. The confusion matrix for all five methods is given in Figure 4.4. It is 

observed that the normal data recognition ability of RNN is 98.17%, CNN is 

98.18%, MLP is 92.17%, DNN is 97.71%, and LSTM is 98.56%. Similarly, RNN, 

CNN, MLP, DNN, and LSTM recognition abilities for attack data are 99.28%, 

99.37%, 99.94%, 99.75%, and 99.37%, respectively. It is also noticed that the 

identifying attacks underreporting rate (i.e., False Negative Rate (FNR) is 2.16%, 

2.16%, 11.11%, 2.77%, and 1.69%, respectively. MLP has a greater FNR of 

11.11% compared to the other methods. High sensitivity is needed for the DL-based 

detection methods because the attack traffic can harm the SDN controllers. Among 

all the methods, MLP could perform better using the full feature set.          
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(a) Training Accuracy Curves (b) Validation Accuracy Curves 

  

(c) Training Loss Curves (d) Validation Loss Curves 
 

Figure 4.3: Accuracy and Loss Curves of DL methods using 76 features. 
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(a) RNN (b) CNN 

  

(c) MLP (d) DNN 

 

(e) LSTM 
         

Figure 4.4: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 76 
features. 

 



130 
 

4.6 Results of Subset-2 Features 

This section discusses the results of the DL methods using a set of 43 

optimal features collected through the feature selection method. 

4.6.1 Accuracy and Loss Trends of Methods 

The classification performance of the DL methods using a set of 43 optimal 

features is evaluated through training accuracy, training loss, validation accuracy, 

and validation loss curves shown in Figure 4.5. Similarly, it is observed that after 

the 20 epochs, the training and validation curves start to converge, and we stopped 

the training and validation processes on 20 epochs. For the 43 features set, the 

maximum achieved accuracy by the RNN is 99.22%, CNN is 99.40%, MLP is 

99.14%, DNN is 99.37%, and LSTM is 98.95%. Similarly, the validation 

accuracies of the methods are 99.33%, 99.43%, 99.24%, 99.53%, and 99%, 

respectively. For subset-2, the DNN method achieved maximum validation 

accuracy compared to others. The accuracy curves of the MLP are stable with 43 

features compared to the 76 features set. But the LSTM method does not produce 

good results using the 43 feature set and has more fluctuation in the curve than other 

methods. Compared to other algorithms, the loss ratio of MLP is more excellent. 

Although MLP achieved better results using the 43 features set compared to the 76 

features set due to its more excellent loss ratio, it is unsuitable for attack detection. 
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(a) Training Accuracy Curves (b) Validation Accuracy Curves 

  

(c) Training  Loss Curves (d) Validation Loss Curves 
Figure 4.5: Accuracy and Loss Curves of DL methods using 43 features 

4.6.2 Performance Evaluation Using Confusion Matrix 

Similarly, as in the above section, the confusion matrix is used to evaluate 

the DL methods using 43 features. The confusion matrix of all methods using 43 

features is shown in Figure 4.6. We can observe using Figure 4.6 that the 

recognition abilities for the normal data of methods RNN, CNN, MLP, DNN, and 
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LSTM are 99.32%, 99.58%, 99.52%, 99.57%, and 99.39%, respectively. The attack 

data recognition ability of RNN is 99.24%, CNN is 99.23%, MLP is 99.23%, DNN 

is 99.47%, and LSTM is 98.85%. The False Negative Rates (FNRs) of all the 

methods are 0.80%, 0.48%, 0.55%, 0.50%, and 0.69%, respectively. So, we can 

conclude that all the methods have over 99% recognition ability for normal and 

attack data using a set of 43 optimal features except LSTM. The FNR of CNN is 

lower than the other methods. Considering the sensitivity metric, we can conclude 

that CNN can detect the attack using 43 optimal features.  

4.7 Results of Subset-3 Features 

A set of 30 optimal features are selected and placed in subset-3. The 

classification performance of the DL techniques is assessed using 30 features in 

this section. The accuracy and loss curves and confusion matrix is used for 

evaluation.    

4.7.1 Accuracy and Loss Trends of Methods 

The training accuracy, validation accuracy, training loss, and validation loss 

of all the methods using a set of 30 features are shown in Figure 4.7. During the 

training and validation phase, it is also observed that these curves start to converge 

on 20 epochs. So, we stop the further training and validation of the DL methods 

using 30 features at epoch number 20. The maximum achieved training accuracies 

by the DL methods (i.e., RNN, CNN, MLP, DNN, LSTM) with 30 features are 

99.21%, 99.31%, 99.12%, 99.27%, 99%, and their validation accuracies are 
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99.25%, 99.37%, 99.33%, 99.30%, and 99.16%, respectively. For the subset-3 

features, it is observed that all the DL methods achieved over 99% training and    

  

(a) RNN (b) CNN 

  

(c) MLP (d) DNN 

 

(e) LSTM 
Figure 4.6: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 43 
features. 
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validation accuracies. CNN has become a top performer in training and 

validation accuracies using 30 features. The loss curve of the CNN is also more 

stable than the other methods. Although all the methods achieved maximum 

accuracies over 90%, MLP again has more fluctuation in its accuracy curves, 

indicating MLP is not suitable for attack detection in the adopted scenario. 

Furthermore, the DL methods achieved good accuracies, so we can conclude that 

the set with 30 features becomes an optimal set of features. 

4.7.2 Performance Evaluation Using Confusion Matrix 

Similarly, as in the above two sections, the performance of the DL methods 

using a set of 30 features is analyzed through a confusion matrix. Figure 4.8 shows 

the confusion matrixes of all the methods using 30 features. For the subset-3 

features, the recognition ability for normal data of RNN is 99.33%, CNN is 99.65%, 

MLP is 99.49%, DNN is 99.24%, and LSTM is 99.25%. It is also observed that the 

attack recognition ability of RNN is 99.14%, CNN is 99.04%, MLP is 99.05%, 

DNN is 99.29%, and LSTM is 99.05%. So, the recognition abilities of all the DL 

methods for the normal and attack data is over 99% using 30 features. Since more, 

the FNR of RNN is 0.78%, CNN is 0.40%, MLP is 0.59%, DNN is 0.89%, and 

LSTM is 0.87%. Here, we can conclude that the CNN method has more than 99% 

recognition abilities for normal and attack data and has lower FNR than other 

methods using 30 optimal features. Compared to previous methods employing 30 

features, the CNN method can successfully identify the botnet-based DDoS attack. 
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(a) Training Accuracy Curves (b) Validation Accuracy Curves 

  

(c) Training Loss Curves (d) Validation Loss Curves 
Figure 4.7: Accuracy and Loss Curves of DL methods using 30 features 
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(a) RNN (b) CNN 

  

(c) MLP (d) DNN 

 

(e) LSTM 
Figure 4.8: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 30 
features. 
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4.8 Results of Subset-4 Features 

A set of 23 features is used in this section to assess the classification 

performance of the DL approaches. Their performance is analyzed using accuracy, 

loss curves, and confusion matrix.  

4.8.1 Accuracy and Loss Trends of Methods 

Here, the DL methods are trained and validated using a set of 23 optimal 

features, and their training and validation accuracy curves and training and 

validation loss curves are depicted in Figure 4.9. The training and validation 

processes of all the methods are stopped on epoch 20 because, at 20 epochs, all the 

methods start to converge. It is observed in Figure 4.9 that the maximum achieved 

training accuracy by the RNN is 99.21%, CNN is 99.34%, MLP is 99.05%, DNN 

is 99.28%, and LSTM is 98.50%. Similarly, the maximum achieved validation 

accuracy by the RNN is 99.22%, CNN is 99.29%, MLP is 99.31%, DNN is 99.25%, 

and LSTM is 99.06%. The maximum training and validation accuracies achieved 

by all the methods using 23 features is over 99%, except for LSTM. So, among all 

the DL methods, the CNN method achieved the highest training accuracy using 23 

features, and the validation accuracy is also reasonable compared to RNN, DNN, 

and LSTM. Here, we also observed that the validation accuracies of the DL 

methods become lower than training accuracies, indicating that some important 

features may be dropped in subset-4. Furthermore, the loss curves of the CNN and 

DNN are more stable than other methods.  
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(a) Training Accuracy Curves (b) Validation Accuracy Curves 

 
 

(c) Training Loss Curves (d) Validation Loss Curves 
Figure 4.9: Accuracy and Loss Curves of DL methods using 23 features. 

In the case of MLP, it again fluctuates its accuracy curves and has the 

highest loss ratio compared to other methods. So, the MLP is not a suitable 

classifier for attack detection for the adopted scenarios of this research. 
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4.8.2 Performance Evaluation Using Confusion Matrix 

The DL methods’ performance through the confusion matrix is also 

observed using 23 features. The confusion matrix of all the methods using a set of 

23 features is depicted in Figure 4.10. It is observed that the normal data recognition 

ability using 23 features of RNN is 99.18%, CNN is 99.43%, MLP is 99.33%, DNN 

is 99.18%, and LSTM is 99.16%. Similarly, the attack data recognition ability of 

RNN is 99.26%, CNN is 99.04%, MLP is 99.20%, DNN is 99.24%, and LSTM is 

98.94%. All the methods' normal and attack data recognition abilities are more than 

99% instead of LSTM, which shows 98.94% recognition ability for attack data. 

Through the confusion matrix, we also observed that the FNR of RNN is 0.94%, 

CNN is 0.64%, MLP is 0.78%, DNN is 0.94%, and LSTM is 0.97%. By analyzing 

the performance of all the DL methods using a set of 23 features, we can conclude 

that CNN is the best method for the detection of botnet-based DDoS attacks in the 

adopted scenario because it achieved over 99% recognition abilities for both normal 

and attack data and also has lower False Negative Rate (FNR) compared to other 

methods. 

4.9 Results of Subset-5 Features 

In this section, the classification performance of the DL methods is 

evaluated using a set of 15 features. Their performance is analyzed using accuracy, 

loss curves, and confusion matrix.  
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(a) RNN (b) CNN 

  

(c) MLP (d) DNN 

 

(e) LSTM 
 

Figure 4.10: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 
23 features. 
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4.9.1 Accuracy and Loss Trends of Methods 

This section discusses the performance of the DL methods in terms of 

accuracy and loss using 15 optimal features. The curves of all the methods related 

to training accuracy, validation accuracy, training loss, and validation loss are given 

in Figure 4.11. 

The training and validation curves of all the methods using 15 features 

started to converge in 20 epochs, so we stooped further training and validation of 

the methods. The maximum achieved accuracies by the DL methods (i.e., RNN, 

CNN, MLP, DNN, and LSTM) are 99.06%, 99.21%, 99.06%, 99.24%, and 99.63%, 

respectively. The maximum achieved validation accuracy by the RNN is 99.15%, 

CNN is 99.26%, MLP is 98.91, DNN is 99.32%, and LSTM is 97.60%. Here, we 

observed that the training accuracies of all the methods are over 99%. But, during 

the validation phase, some methods drop their accuracies. For example, the drop in 

the validation accuracy of CNN is 0.05%, MLP is 0.15%, DNN is 0.08%, and 

LSTM is 2.03%. So, LSTM has more drop in the validation accuracies than the 

other methods. The decrease in the validation accuracies of the methods resulted in 

some important features being discarded from the subset-5. The training and testing 

accuracy of the CNN is over 99% using 15 features. In contrast, the training and 

validation curves of the MLP are not stable, and these curves are continuously 

variating with the change in epochs. The loss ratio of MLP is also high than the 

other methods. Similarly, due to continuous variations in accuracy curves, the 

LSTM method is also unsuitable for detecting botnet-based DDoS attacks with 15 
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features. RNN, CNN, and DNN are influential classifies in detecting botnet-based 

DDoS attacks using 15 features in the adopted scenario.  

  

(a) Training Accuracy Curves (b) Validation Accuracy Curves 

  

(c) Training Loss Curves (d) Validation Loss Curves 
Figure 4.11: Accuracy and Loss Curves of DL methods using 15 features. 
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4.9.2 Performance Evaluation Using Confusion Matrix 

The confusion matrix is also used to analyze the performance of the DL 

methods using 15 features. Figure 4.12 shows the confusion matrix of all the 

methods using 15 features. The recognition ability for the normal data of RNN is 

99.06%, CNN is 99.20%, MLP is 96.13%, DNN is 99.41%, and LSTM is 97.81%. 

The attack data recognition ability of RNN is 99.11%, CNN is 99.31%, MLP is 

98.98%, DNN is 99.16%, and LSTM is 97.36%. Furthermore, the FNR for RNN is 

1.10%, CNN is 0.93%, MLP is 4.93%, DNN is 0.68%, and LSTM is 2.55%. It is 

observed that the normal and attack data recognition abilities of RNN, CNN, and 

DNN are over 99%, but MLP and LSTM methods have lower than 99%. The FNR 

of CNN and DNN is lower than 1%, indicating that CNN and DNN are effective 

methods for attack detection. In contrast, MLP has the highest FNR, which is 

4.93%. The FNR of MLP and LSTM using 15 features is also high compared to 

other subsets of features, indicating that this subset of features is unsuitable for 

detecting botnet-based DDoS attacks in the adopted scenarios. Furthermore, all the 

methods produce poor results using this subset of features than others. It means we 

can reduce the number of features at a certain level. 
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(a) RNN (b) CNN 

  

(c) MLP (d) DNN 

 

(e) LSTM 
Figure 4.12: Confusion Matrix of RNN, CNN, MLP, DNN, and LSTM using 
15 features. 
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4.10 Overall Analysis of the Performance of Methods 

This section discusses the overall performance in terms of training time, 

accuracy, detection rate, precision, F1 score, True Positive Rate (TPR), and False 

Positive Rate (FPR) of the methods for detecting botnet-based DDoS attacks in 

SDN. The performance comparison results of all the methods are shown in Table 

4.2. The overall classification performance of all the methods is improved by 

reducing the number of features at a certain level. Table 4.2 shows that CNN and 

DNN have a trend to achieve maximum accuracy of 99.43% and 99.53% using 

subset-2 features, respectively. 

The CNN method achieved the highest detection rate of 99.60% using 

subset-3 features. The CNN also performed the second highest detection rate of 

99.51% using subset-2 features. The training time of CNN is 185.92 seconds using 

subset-2 features and 181.88 seconds using subset-3 features. The training time of 

the CNN is reduced by 4.04 seconds while using subset-3 features. The decreased 

accuracy and detection rate and increased training time while using subset-4 and 

subset-5 features by the CNN indicate that some important features are removed by 

making these two subsets. In contrast, LSTM has achieved minimum accuracy of 

97.60% using subset-5 features. MLP has a minimum detection rate of 89.99% 

using subset-1 features, for example, by considering the results of all the methods 

using subset-3 features. The accuracy of the CNN is 0.12%, 0.04%, 0.07%, and 

0.21% is higher than the other four classifiers (i.e., RNN MLP, DNN, and LSTM), 

respectively. Also, the detection rate of CNN is 0.39% higher than that of RNN, 

0.19% higher than that of MLP, 0.49% higher than that of DNN, and 0.47% higher 
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than that of LSTM. In addition, the training time of the CNN is 39.51 seconds more 

heightened than that of MLP and 27.75 seconds more elevated than that of DNN, 

while 81.29 seconds lower than that of RNN and 29.85 seconds lower than LSTM. 

Furthermore, CNN has increased in accuracy by nearly 0.04% to 0.21%, and its 

detection rate is improved from 0.19% to 0.49%. Since all the methods are trained 

in an offline way and are not frequently updated, so, while ensuring the best 

accuracy and detection rate, a slightly higher training time could be accepted for 

any ML/DL method. Here, we can summarize that the ML/DL-based detection 

methods are trying to achieve maximum accuracy or detection rate with reasonable 

training time. It is observed that the CNN method achieved a maximum detection 

rate of 99.60% while using subset-3 features compared to other methods and other 

subsets. The accuracy of CNN is 99.29% using subset-4 features and 99.26% using 

subset-5 features. Similarly, the detection rate of CNN is 99.35% using subset-4 

features and 99.07% using subset-5 features. Although these subsets consist of 

minimum features compared to subset-3, the training time of the CNN using subset-

3 is 3.98 seconds and 20.53 seconds lower than that of subset-4 and subset-5 

features. The detection rate of CNN is 0.25% and 0.53% higher while using the 

other two subsets. 
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Table 4.2: Comparison of performance results with all five sets of features. 
                     

Feature Sets DL Models Computational Time 
(Seconds) 

Maximum 
Accuracy (%) 

Detection Rate (%) 

 

 

All feature Set-1 

 

 

RNN 

CNN 

MLP 

DNN 

LSTM 

264.43 

202.39 

142.94 

202.39 

323.46 

98.68 

98.85 

98.01 

99.00 

98.94 

97.86 

97.87 

89.99 

97.29 

98.32 

 

 

Subset-2 

RNN 

CNN 

MLP 

DNN 

LSTM 

256.78 

185.92 

117.76 

185.92 

223.06 

99.33 

99.43 

99.24 

99.53 

99.14 

99.20 

99.51 

99.45 

99.49 

99.31 

 

 

Subset-3 

RNN 

CNN 

MLP 

DNN 

LSTM 

263.17 

181.88 

142.37 

154.13 

211.73 

99.25 

99.37 

99.33 

99.30 

99.16 

99.21 

99.60 

99.41 

99.11 

99.13 

 

 

Subset-4 

RNN 

CNN 

MLP 

DNN 

LSTM 

278.09 

185.86 

119.37 

155.66 

231.18 

99.22 

99.29 

99.31 

99.25 

99.06 

99.06 

99.35 

99.21 

99.06 

99.02 

 

 

Subset-5 

RNN 

CNN 

MLP 

DNN 

259.45 

202.41 

117.40 

202.42 

99.15 

99.26 

98.91 

99.32 

98.90 

99.07 

95.24 

99.31 
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LSTM 203.40 97.60 97.44 

 

Furthermore, the performance of all the methods using all five subsets of 

the features in terms of precision is shown in Figure 4.13. For subset-1, the 

precision of RNN is 99.29%, CNN is 99.37%, MLP is 99.94%, DNN is 99.75%, 

and LSTM is 99.37%. The precision of all the methods (i.e., RNN, CNN, MLP, 

DNN, and LSTM) using subset-2 is 99.24%, 99.23%, 99.23%, 99.47%, and 

98.85%, respectively. For subset-3, the precision of RNN is 99.13%, CNN is 

99.03%, MLP is 99.05%, DNN is 99.29%, and LSTM is 99.05%. Similarly, the 

precision for subset-4 features is 99.26%, 99.04%, 99.20%, 99.24%, and 98.94%, 

respectively, for all methods. Lastly, the precision for subset-5 features is 99.11%, 

99.31%, 98.98%, 99.16%, and 97.36%, respectively. Based on Figure 4.13, we can 

analyze the highest precision percentage of MLP using subset-1 features compared 

to other methods and subsets. In contrast, the lowest precision rate is 97.36 of 

LSTM using features subset-5. With the reduction in the number of features, the 

precision percentage of the MLP decreases from 99.94 to 98.98. Similarly, for 

LSTM, it also reduced from 99.37% to 97.36%. The precision percentage ratio of 

RNN, CNN, and DNN methods remains over 99% for all subsets, which indicates 

that these methods’ precision performance is more stable than MLP and LSTM. 

Although MLP has the highest precision percentage compared to other ways, it may 

not be recommended for attack detection because of the continuous decrease. The 

DNN is more stable in terms of precision compared to RNN and CNN. 
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Figure 4.13: Comparison of performance results between all methods in terms 
of precision. 

The classification performance of all the methods is evaluated using the F1 

score parameter using all subsets. Figure 4.14 shows the performance of all the 

methods regarding the F1 score. The F1 score of RNN is 98.57%, CNN is 98.61%, 

MLP is 94.70%, DNN is 98.50%, and LSTM is 98.84% using subset-1 features. 

For subset-2, the F1 score of all the methods (i.e., RNN, CNN, MLP, DNN, and 

LSTM) is 99.22%, 99.37%, 99.34%, 99.48%, and 99.07%, respectively. The F1 

score for subset-3 features of RNN is 99.17%, CNN is 99.31%, MLP is 99.23%, 

DNN is 99.20%, and LSTM is 99.09%. Similarly, for subset-4 features, RNN is 

99.16%, CNN is 99.19%, MLP is 99.21%, DNN is 99.15%, and LSTM is 98.98%. 

Lastly, the F1 score using subset-5 features of RNN is 99%, CNN is 99.19%, MLP 

is 97.07%, DNN is 99.23%, and LSTM is 97.4%. The DNN method achieved the 

highest F1 score of 99.48% using subset-2 features, while MLP has the lowest of 
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94.70% using subset-1. The F1 score of RNN lies in the range of 98.57%-99.21%, 

CNN of 98.61%-99.37%, MLP of 94.70%- 99.34%, DNN of 98.50%-99.48%, and 

LSTM of 97.40% to 99.07% using different subsets. Here, the F1 score of MLP 

and LSTM is continuously variable, which indicates these methods are unsuitable 

for attack detection in the adopted scenarios. RNN, CNN, and DNN methods 

achieved over 99% F1 score using all subsets of features except subset-1, which 

indicates that these methods are effective in attack detection. 

Figure 4.14: Comparison of performance results between all methods in terms 
of F1 score. 

The True Positive Rate (TPR) evaluation metric is also used for the 

performance evaluation of all the methods using five different subsets of features. 

The TPR of the methods using all subsets of features is shown in Figure 4.15. It is 

observed in Figure 4.15, that the TPR of RNN is 97.86% CNN is 97.87%, MLP is 
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89.99%, DNN is 97.29%, and LSTM is 98.32% using subset-1 features. For subset-

2, the TPR of RNN is 99.20%, CNN is 99.51%, MLP is 99.45%, DNN is 99.49%, 

and LSTM is 99.31%. Similarly, the TPR of all methods (i.e., RNN, CNN, MLP, 

DNN, and LSTM) using subset-3 features is 99.21%, 99.60%, 99.41%, 99.11%, 

and 99.13%, respectively. For subset-4, the TPR of RNN is 99.06%, CNN is 

99.35%, MLP is 99.21%, DNN is 99.06%, and LSTM is 99.02%. Lastly, the TPR 

of RNN is 98.90%, CNN is 99.07%, MLP is 95.24%, DNN is 99.31%, and LSTM 

is 97.44% using subset-5 features. The TPR of RNN lies in the range of 97.86%-

99.21%, and it has the highest TPR using subset-3 features and the lowest using 

subset-1. The range of TPR for CNN is 97.87%-99.60, with the highest using 

subset-3 and the lowest using subset-1. The range of TPR for MLP is 89.99%-

99.45%, with the highest using subset-2 and the lowest using subset-1. Similarly, 

the range of TPR for DNN is 97.59%-99.49%, with the highest using subset-2 and 

the lowest using subset-1. The range of TPR for LSTM is 97.44%-99.31%, with 

the highest using subset-2 and the lowest using subset-5. CNN and DNN have over 

99% TPR for all subsets except subset-1, while RNN, MLP, and LSTM have over 

99% for 2,3 and 4 subsets. The ratio of TPR for CNN and DNN is more stable than 

other methods. Among all the methods, CNN achieved the highest TPR of 99.60%. 

We can conclude that CNN becomes an effective method for detecting attacks than 

other methods by evaluating the performance of the methods using this evaluation 

parameter.  
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Figure 4.15: Comparison of performance results between all methods in terms 
of True Positive Rate (TPR).  

Lastly, the False Positive Rate (FPR) is also used to analyze the 

performance of all the DL methods using five different subsets of features. The FPR 

of all the methods using different subsets of features is shown in Figure 4.16. Here, 

the ML/ DL methods with the lowest FPR are considered effective for attack 

detection. For subset-1, the FPR of RNN is 0.61%, CNN is 0.53%, MLP is 0.04%, 

DNN is 0.21%, and LSTM is 0.53%. Similarly, for subset-2, the FPR of RNN is 

0.63%, CNN is 0.64%, MLP is 0.65%, DNN is 0.44%, and LSTM is 0.99%. the 

FPR of RNN is 0.74%, CNN is 0.83%, MLP is 0.81%, DNN is 0.6%, and LSTM 

is 0.81% using subset-3 features. For subset-4, the FPR of RNN is 0.64%, CNN is 

0.83%, MLP is 0.68%, DNN is 0.66%, and LSTM is 0.91. Lastly, the FPR of RNN 

is 0.75%, CNN is 0.57%, MLP is 0.82%, DNN is 0.71%, and LSTM is 2.24%. The 
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range of the FPR for RNN is 0.61%-0.75%, CNN is 0.53%-0.83, MLP is 0.04%-

0.82%, DNN is 0.21%-0.71%, and LSTM is 0.53%-2.24%. RNN has the lowest 

FPR using subset-1 and the highest using subset-5, CNN has the lowest using 

subset-1 and the highest using 3 and 4 subsets features, MLP has the lowest using 

subset-1 and the highest using subset-5, DNN has the lowest using subset-1 and the 

highest using subset-5, and LSTM has the lowest using subset-1 and the highest 

using subset-5. By analyzing the overall performance of all the methods in terms of 

FPR, we can conclude that the MLP has the lowest of 0.04% using subset-1 

features, and LSTM has the highest of 2.24% using subset-5 features. RNN, CNN, 

and DNN seem more stable for all the subsets than MLP and LSTM. 

Figure 4.16: Comparison of performance results between all algorithms in 
terms of False Positive Rate (FPR).       
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In summary, based on the above-discussed and evaluating the classification 

performance results in terms of accuracy and loss curves, confusion matrix, training 

time, accuracy, detection rate, precision, F1 score, TPR, and FPR of all the methods 

using five different subsets of features, we can conclude that the all the methods 

produced good results using subset-2 and subset-3 features. Subset-1 has many 

features, and some of the features need to be participating in improving the 

classification performance. At the same time, subset-4 and subset-5 may be lost 

some important features, which causes a decrease in the performance of the 

classifiers. Although the performance of all the methods using subset-2 and subset-

3 is good, the number of features in subset-2 is more than in subset-3. After the 

overall analysis, we select and recommend the subset-3 features for detecting 

botnet-based DDoS attacks in the SDN environment. We also observed that the 

CNN method became a top performer with more effective and stable performance 

than other classifiers in the adopted network scenarios of this research. Thus, there 

are some advantages of this outcome: (i) the training sets are collected easily 

without knowing the details of traffic flows; (ii) with optimal features, the training 

phase becomes simple; (iii) the resource consumption and complexity of the 

methods is reduced due to training set with optimal features. 

4.11 Implementation and Evaluation in Real Testbed 
 

4.11.1 Performance of the DL Methods  
 

This section discusses the performance of the DL methods on the real 

testbed. As we overserved and concluded in the above sections, the DL methods 
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achieved the best results using a subset of 30 features. So, to evaluate and validate 

the performance of the methods on the real testbed, we have selected the methods 

trained using subset-3 features of the self-generated dataset. The same network 

topology shown in Figure 3.2 is used for the real testbed analysis. To generate and 

collect the attack and normal flow statistics, the same process explained in section 

3.8 has been followed. All DL methods trained using a subset of 30 features are 

individually implemented in the controller. The implemented methods inside the 

SDN controller classify the incoming flows with “0” or “1” labels (i.e., as we used 

a binary classes data set in our experiments, so, the DL methods have only two 

options, and each method labels the attack flows with “1” and normal flows with 

label “0”). Furthermore, we used “50” consecutive decisions made by any method 

under two network states (attack flow or normal flow) to validate the overall 

performance of the methods during real-time network traffic. Figure 4.17 shows the 

rate of correct detections of each method during real-time traffic. We observed that 

the ratio of output prediction for normal flows is superior to the attack flows by all 

the methods. The prediction rate of RNN for normal flows is 93%, CNN is 99%, 

MLP is 87%, DNN is 95%, and LSTM is 92%. Similarly, the prediction rate of 

RNN for attack flows is 87%, CNN is 97%, MLP is 85%, DNN is 93%, and LSTM 

is 85%. Here we observed that all the methods have more than a 90% detection rate 

for normal flows instead of MLP, while the CNN method achieves a 99% detection 

rate. The performance of the CNN method in detecting the attack flows is superior 

to the other methods. So, we can conclude that the performance of the CNN for 

both normal and attack flows is better than the other methods.  A graphical 
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comparison of the training time (i.e., seconds) for all methods using subset-3 

features is shown in Figure 4.18. Here we have observed that the RNN method took 

longer to train than other methods. The training time of the CNN using subset-3 

features is reasonable. The detection time (in microseconds (µs)) per flow is shown 

in Figure 4.19. The detection time per flow of RNN is 6.7µs, CNN is 1.4µs, MLP 

is 4.5µs, DNN is 1.7µs, and LSTM is 8.4µs. The detection time of CNN is slightly 

lower than the other methods. In comparison, LSTM is a significantly higher 

detection time, indicating that during attack traffic, LSTM can handle a few flows 

per second. We may conclude that CNN becomes a practical approach for detecting 

botnet-based attacks by considering the various characteristics, such as detection 

rate, training time, and detection time, for evaluating the DL methods during the 

real-time testbed. 

Figure 4.17: The correct detection rate of each algorithm during real-time 
traffic. 
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Figure 4.18: Comparison of training time of DL methods using subset-3 
features. 

Figure 4.19: Comparison of detection time during real traffic. 
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4.12 Summary 

This chapter addresses the security issues in SDN networks by analyzing 

the performance of deep learning methods. Especially the focus of this chapter is 

to detect the botnet-based DDoS attacks in SDN using different deep learning 

methods. This chapter analyzes and describes the simulation results on detecting 

botnet-based DDoS attacks in SDN. First, we discuss the results of the selection of 

optimal features. Second, the structural performance of the DL methods is 

analyzed. Then the classification performance of the DL methods is described in 

detail.  

The performance of the DL methods is evaluated using different evaluation 

metrics (i.e., accuracy, detection rate, precision, F1 score, True Positive Rate 

(TPR), False Positive Rate (FPR), training time, and detection time). The efficiency 

of the DL or ML methods can be enhanced using a set of optimal features. So, we 

only replay a portion of the dataset with a few features. The whole dataset is 

converted into five different subsets of features based on their importance (i.e., 

subset-1 consists of 76 features, subset-2 consists of 43 features, subset-3 consists 

of 30 features, subset-4 consists of 23 features, and subset-5 consists of 15 features) 

using features weighting and threshold tuning methods. Then, these subsets of 

features are individually used to measure the impact of optimal features on the 

method’s performance while detecting botnet-based DDoS attacks. Simulation 

results show that DL methods with the same hyper-parameter settings produced 

different results using different feature subsets. We also observed that each DL 

method's performance differs on the same feature subset. It means that the DL 
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method trained with optimal features could improve the detection rate and detect 

the attack flows more effectively and quickly. Based on the above discussion and 

experimental performance results of the DL methods, we found that the CNN 

produced effective performance results compared to other methods (i.e., RNN, 

MLP, DNN, and LSTM) in the adopted network experimental scenarios. It 

achieved a maximum detection rate of 99.60% and an accuracy of 99.37% using a 

subset of 30 features during offline training. We also considered timing metrics 

(i.e., training and real-time detection time) for evaluating DL methods. We 

observed that the CNN method took reasonable time during training and real-time 

detection of flows. As a result, the CNN method shows a respectable accuracy or 

detection rate for detecting botnet-based DDoS attacks in an SDN environment 

during real-time testbed evaluation. 
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CHAPTER 5 

 

MITIGATION STRATEGY AND PERFORMANCE ANALYSIS 

This chapter discusses the proposed defense method and then analyze the 

effectiveness of the defense method on the real testbed. We observed and measured 

our mitigation strategy's effectiveness during normal and attack traffic. 

5.1 Mitigation Strategy Implementation 

The SDN controllers are responsible for regularly analyzing the network 

traffic flows to protect them from several types of malicious attacks. For example, 

if the deep learning classifier inside the controller detects any type of malicious 

activity or attack, then it needs to speedily activate the defense shield to diminish 

the conceivable impact of the attack and ensure that normal network operations 

remain continue. In the existing studies [6], [11] the concepts of block or modify 

attack flows are commonly used by the authors in their mitigation methods. There 

is a chance the OpenFlow switches may contain many malicious flow entries after 

blocking the attack flows, which influence the network’s normal forwarding 

process and quickly consume switches and controller resources. To effectively 

protect the SDN controller from botnet-based DDoS attacks and overcome the 

above-mentioned problems, a graph theory and dynamic flow deletion-based 
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mitigation strategy are adopted in this research. The same network topology which 

is discussed in chapter 3 used for the implementation of mitigation strategy. 

In our mitigation strategy, Initially, the controller sends in every 𝛥𝑇 (e.g., 5 

sec) a request to the connected corresponding switches for the flow statistics. After 

collecting the flow statistics, the features extractor module inside the controller 

extracts the flow features according to the subset-3, and then the controller passes 

these features’ information to the already trained DL classifier (e.g., CNN) to detect 

the flows whether the attack or normal. Once, any flow is detected as an attack flow 

by the DL classifier, then it sharply starts to alert the controller.        

Once the classifier inside the controller detects any attack flow, it informs 

the controller. After that, a gray list Sg is created in the database by the controller 

to put the incoming flows of the switches to the controller for further analysis. It 

helps to reduce the mistakenly killing of normal packets and continue the normal 

operation of the residual network. After successfully placing the attack flows in the 

Sg list, the controller redirects the flows of the Sg list to the DL classifier (CNN) to 

classify the normal flows with the label “0” and attack flows with the label “1”. 

Here we create a counter variable 𝐶 that starts to calculate those flows which are 

labeled as attack flows by the classifier and set a limit for attack flows (i.e., C≥10). 

At the same time, the controller creates other two new lists; the Sd delete list and 

the Sb block list in the database. The Sd list stored the attack flows that need to be 

deleted from the OpenFlow switches and the Sb list stored the information of hosts 

which are involved in the attack to block these hosts and for further future use. The 

controller has a host tracker feature that can extract the attacking hosts' information 
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(e.g., IP or MAC address, UDP or TCP port number, entry port, etc.) When the 

counter 𝐶 research to its set limit (i.., C≥10), then we used the concept of graph 

theory derived to trace out the attacking path in the network. 

5.1.1 Attack Path Identification 

 Here finding the path from where the attack flows to pass and locating the 

switches through where the attack flows enter the network is more important. The 

attacking path between more than two switches can be formulated as:    

𝐸𝑖,𝑗 = ∑(𝑠𝑖, 𝑟𝑖) → (𝑠𝑗, 𝑟𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖, 𝑠𝑗𝜀 𝑆𝑎𝑡𝑡𝑎𝑐𝑘                     (5.1)   

Where 𝐸𝑖,𝑗 is the edge (i.e., the path for attack), and 𝑆𝑎𝑡𝑡𝑎𝑐𝑘 represents the 

set of switches from where the botnet-based DDoS attack is passed. When the 

attack flows pass through both 𝑠𝑖 and 𝑠𝑗 OpenFlow switches and the forwarding 

rules are meet. Then we can predict that the edge between the (𝑠𝑖, 𝑠𝑗) switches is a 

close hop in the attacking path. So, our mitigation strategy is based on two 

principles: 1) use a dynamic flow deletion mechanism to delete or shield as many 

as possible attack flows, and 2) avoid the by-mistake killing of the normal flows. 

Hence, by finding the attacking edge or path 𝐸(𝑖, 𝑗), We can implement a more 

targeted flow deletion strategy to mitigate botnet-based DDoS attacks in an SDN 

environment. 

To effectively implement the graph theory concept to find out the attacking 

path, we need to consider the characteristics of the network traffic. Let’s assume 

(e.g., “the closer the hop is to the attack sources on an attacking path, the proportion 
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of the botnet-based DDoS attack is greater in the link traffic”). It can be 

mathematically formulated as follows: 

𝑈(ℎ(𝑠𝑖,𝑠𝑖+1)) < 𝑈 (ℎ(𝑠𝑗,𝑠𝑗+1)) ,     𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗        (5.2) 

By considering our network topology, let us consider two attack paths 

(𝑠1, 𝑠5, 𝑠7)and (𝑠2, 𝑠5, 𝑠7) are detected in the network, and they are overlapped to 

each other on the link (𝑠5, 𝑠7) as shown in Figure 5.1. For the links (𝑠1, 𝑠5) and 

(𝑠2, 𝑠5), the proportions of the attacks are 𝑈(ℎ(𝑠1,𝑠5)) and 𝑈(ℎ(𝑠2,𝑠5)), are 

respectively. Then the proportion of the botnet-based DDoS attack on the link 

(𝑠5, 𝑠7) can be represented as 𝑈(ℎ(𝑠5,𝑠7)) =

(𝐵(𝑠1,𝑠5)
𝑑 + 𝐵(𝑠2,𝑠5)

𝑑 + 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑑 )

(𝐵(𝑠1,𝑠5)
𝑡 + 𝐵(𝑠2,𝑠5)

𝑡 + 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑡 )⁄ , so it can be pointed 

that the link (𝑠5, 𝑠7) may contain the traffic from the other links such as (𝑠3, 𝑠5) 

beside then (𝑠1, 𝑠5) and (𝑠2, 𝑠5) links. Since these links do not have the attack 

traffic, 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑑 = 0 and 𝐵𝑜𝑡ℎ𝑒𝑟𝑠

𝑡 ≥ 0. If the links (𝑠5, 𝑠7) do not contain the traffic 

from the other links except (𝑠1, 𝑠5,) and (𝑠2, 𝑠5), then 𝐵𝑜𝑡ℎ𝑒𝑟𝑠
𝑡 = 0. Therefore, 

𝑈(ℎ(𝑠5,𝑠7)) 𝑈(ℎ(𝑠1,𝑠5))⁄ ≤ 1and 𝑈(ℎ(𝑠5,𝑠7)) 𝑈(ℎ(𝑠2,𝑠5))⁄ ≤ 1. An attacking path 

𝑃𝑠,𝑑 = (𝑠𝑠, 𝑠𝑠+1, … … … , 𝑠𝑑),     𝑤ℎ𝑒𝑟𝑒𝑁𝑠𝑖,𝑑 = 𝑠𝑖+1, 𝑈(ℎ(𝑠𝑖−1,𝑠𝑖)) ≥  𝑈(ℎ(𝑠𝑖+1,𝑠𝑖+2)) 

holds presume that they hold for each link in the path. So, according to  Figure 5.1, 

the links (𝑠1, 𝑠5,) and (𝑠2, 𝑠5), contain much larger attack traffic instead of normal 

business traffic due to botnet-based DDoS attack (i.e., 𝑈(ℎ(𝑠1,𝑠5)) >> 1 −

𝑈(ℎ(𝑠1,𝑠5)) and 𝑈(ℎ(𝑠2,𝑠5)) >> 1 − 𝑈(ℎ(𝑠2,𝑠5)). The flow dropping rate should be 

increased to minimize the attack at switches and controllers since the switches from 
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which the attack traffic enters the network typically contain more attack flows than 

other switches. For convenience, the switches which are closer to the attack hop 

can be called edge switches 𝑆𝑒 while the other switches in the path 𝑃𝑖,𝑗 are called 

intermediate switches 𝑆𝑚 letter on. So, the dropping rate on the intermediate 

switches should be smaller compared to the edge switches to shrink the impact on 

the normal requests. Hence the significant issues are: to find the proper attacking 

path 𝑃𝑖,𝑗 and trace out the edge switches 𝑆𝑒 form where the attack enters, and set 

the appropriate dropping rate on the switches which are present in the attacking 

path. And, there is no need to set the dropping rate on that switches only contain 

normal traffic. 

Figure 5.1: An example of finding the attack path in adopted network 
topology. 
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5.1.2 Dropping Strategy 

After successfully finding the attack path, there is a need to implement an 

effective dropping strategy against the attack flows. To avoid the chance of by-

mistake dropping the normal flows, the dropping rate at the intermediate switches 

𝑆𝑚 should be smaller than the edge switches 𝑆𝑒. So, by considering the 

characteristics of botnet-based DDoS attacks, we can use the entropy 𝐻 of source 

IP address packets and change the number of passing packets 𝑁 through an edge 

switch 𝑠𝑒 per unit of time. So, the dropping rate for the edge switch can be 

calculated using the following formula. 

𝐷𝑟𝑒𝑑𝑔𝑒 = 𝑘(𝛥𝐻, 𝛥𝑁)           (5.3) 

Where in the above Equation 3.30,  𝛥𝐻 represents the difference in entropy 

of source IP addresses of packets per unit of time, and 𝛥𝑁 is the difference in the 

number of packets passing through a switch per unit of time, and 𝐷𝑟𝑒𝑑𝑔𝑒 𝜖 (0,1). 

The values of the 𝐻 and 𝑁 start to rapidly increase in some switches when there is 

a botnet-based DDoS attack, so, to mitigate the attack traffic there is an increase 

expected in the dropping rate of that switches. However, a continuous increase in 

the dropping rate can affect normal network traffic. Additionally, we must indicate 

the upper bound for dropping rates much less than 1. Therefore, the dropping rate 

𝐷𝑟𝑒𝑑𝑔𝑒 can be calculated as follows: 

𝜑(𝑤) = 1
(1+𝑒𝑤)

− (1 − 𝑙)           (5.4) 
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In the above Equation 5.4, 𝑤 represents the weighted sum of 𝛥𝐻 and 𝛥𝑁 

values and 𝑤 > 0. 𝑙 represents the upper limit for the dropping rate during the 

attack, thus, 𝐷𝑟𝑒𝑑𝑔𝑒𝜖 [𝑙 − 0.5, 𝑙] 

The intermediate switches 𝑆𝑚 may be connected with the edge or other 

switches. There is a chance the intermediate switches have fewer attack flows or 

only normal flows. It means that the dropping rate 𝐷𝑟𝑚𝑖𝑛 at the intermediate 

switches keeps smaller than the edge switches. So, the edge switches have a 

dropping rate relatively smaller than the upper limit 𝑙, which indicates that is attack 

is not severe and can be easily mitigated at the edge switches. Otherwise, there is 

also need to set an appropriate dropping rate 𝐷𝑟𝑚𝑖𝑛 at the intermediate switches. 

The dropping rate for the intermediate switches may be computed by including 

edge switches to prevent the attack as 𝐷𝑟𝑚𝑖𝑛 = 𝑘 × 𝐷𝑟𝑒𝑑𝑔𝑒, where 𝑘 𝜖 (0,1) The 

shortest hops in the attack path from the edge to the intermediate switches, and 𝑘 is 

a coefficient whose value depends on the distance between the edge and 

intermediate switches. If the edge and intermediate switches are far away, then the 

intermediate switches perform dropping at a smaller dropping rate. Hence we can 

get: 

      𝐷𝑟𝑚𝑖𝑛 = {
0,                           𝑙 − 𝐷𝑟𝑒𝑑𝑔𝑒 > 𝜖
𝑘 × 𝐷𝑟𝑒𝑑𝑔𝑒,        𝑙 − 𝐷𝑟𝑒𝑑𝑔𝑒 ≤ 𝜖 }       (5.5) 

Where 𝜖 is the smallest constant that determines the difference between 𝑙 

and 𝐷𝑟𝑒𝑑𝑔𝑒.The following formula can be used to obtain the value of  𝑘. 
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𝑘 = 𝑁ℎ𝑜𝑝𝑠−𝑛ℎ𝑜𝑝𝑠

𝑁ℎ𝑜𝑝𝑠
           (5.6) 

Where 𝑁ℎ𝑜𝑝𝑠 is the distance in the attack path 𝑃𝑖,𝑗 from the edge switch to 

the destination switch, and 𝑛ℎ𝑜𝑝𝑠 is the distance from the edge to intermediate 

switch.  

 Finally, after successfully finding the attack path, and the switch near the 

attacking source, and calculating the dropping rates for edge and intermediate 

switches, the controller sends the “OFPFC_ADD” messages to the corresponding 

switches to insert new flow entries in the flow tables of the switches. After receiving 

the intrusion by the controller, the corresponding edge and intermediate switches 

start to dynamically delete or drop the incoming attack flows according to the delete 

list Sd using the calculated dropping rates. Here, if the dropping rate for any host 

reaches 100%, then, first, the corresponding host is blocked, and the information of 

that host is placed in the block list Sb for future use. In short, this mitigation strategy 

successfully protects the SDN controller from botnet-based DDoS attacks and 

reduces the by-mistake killing of normal flows, and also helps the controller to 

continue its normal services.  

5.2 Performance Analysis and Discussion 

 The performance of the mitigation strategy is evaluated through flow table 

utilization and the computational resources utilization. We also evaluated how 

effectively our suggested defence method performed against those already used. 

Southbound links are frequently utilized to transmit the packet headers to the 
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control plane. The packet headers are examined to classify the normal or attack 

traffic on the controller plane. Generally, the transfer of instructions and 

communication between the control and data planes typically take place across the 

southbound interfaces. The increased traffic load on the southbound interfaces will 

hamper the normal connection between the control and data planes. 

5.2.1 Flow Table Utilization 

The flow table utilization is measured in terms of generation of flow rules 

in both network states (i.e., normal traffic and attack traffic). The number of flow 

rules generated by the SDN controller under two different network states (i.e., 

normal and attack) are shown in Figure 5.2. Here the storage limit for the flow rules 

on the various switches is set to a maximum of “1500”. Furthermore, the number 

of flow rules generated by the controller under the attack network traffic and normal 

network traffic are calculated separately, as shown in Figure 5.2. The experimental 

network is kept in a relatively network-stable condition with only background 

traffic that is typical for networks, and the number of flow rules is always 

maintained at 180 per second. On the other hand, the botnet-based DDoS attack 

started in the 20th second, and we noticed that the number of flow rules 

dramatically rose. The amount of flow rules exceeded the OpenFlow switches' 

maximum storage capacity in less than 5 seconds. Therefore, installing new flow 

rules for normal network users won't be possible if the switches' flow rules storage 

is full. 
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Figure 5.2: The Number of flow rules generated in different network states. 

We start the defense method after the 40th seconds when both normal and 

attack traffic is running in the network. Here we can observe that after activating 

the defense method, the number of flow rules starts to decrease gradually and 

maintain the flow rules limit for the attack flows around 250 within 15 seconds as 

shown in Figure 5.3. So, our defense methods kept generating flow rules below 250 

per second. 
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Figure 5.3: Shows the change in the generated flow rules after activating the 
proposed defense method.  

A comparison of the proposed defense methods with some existing methods 

is shown in Figure 5.4. We individually implemented different defense methods in 

the SDN controller to evaluate their performance in our adopted network scenarios. 

Figure 5.3 shows that the number of flow rules remains stable in the first 10 seconds 

for all methods without attack traffic. Gradually more flow rules are added to the 

network due to the botnet-based DDoS attack. When the attack is launched after 10 
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them around 250 per second. The growth of flow rules is unaffected by the SIFT 

approach, and they quickly reach the maximum rate of 1500 per second. The 

defense strategy based on dynamic flow deletion slows the rate of flow rule growth 

to about 350 per second. Similarly, the SD-Anti DDoS defense approach 

consistently limits the expansion of the flow rules at around 400 per second. Last 

but not least, when the Load-Aware technique is activated, the flow rules expand 

at a rate of 1000 per second, and after 60 seconds, they continue to grow at a rate 

of about 800 per second. 

Figure 5.4: Comparison of the proposed defense method with existing methods 
in terms of flow rules. 
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5.2.2 Computational Resources Utilization 

The effectiveness of the proposed defense method is also validated through 

the evaluation of the consumption of CPU usage by the controller during normal 

and attack network states. Because the controller is responsible for managing and 

configuring every OpenFlow switch in the network, assessing the controller's CPU 

resource use is crucial. Therefore, we need to verify that the controller is not 

excessively consuming the CPU resources during the attack and after activating the 

defense method. Figure 5.5 compares the CPU utilization under two network states 

(i.e., normal or attack).  We observed that the CPU utilization remains controlled 

when only the background traffic runs in the network (i.e., at around 20%). After 

10 seconds, when we inject the attack traffic into the network, the CPU utilization 

gradually increases and reaches about 70%-90%. After 15 seconds of the attack, we 

activate the defense methods, which gradually decrease the CPU utilization by 

dynamically deleting the attack flows. After 40 seconds, it controls the utilization 

of the CPU and maintains it at around 40%. A graphical representation of CPU 

utilization after activating the defense methods is shown in Figure 5.6. 
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Figure 5.5: Comparison of controller CPU resource consumption in different 
network states. 

 
Figure 5.6: Comparison of controller CPU resource consumption in different 
network states after activating the defense method. 
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In addition, a CPU utilization comparison between the proposed method 

and those that are currently in use is shown in Figure 5.7. As discussed above, we 

implemented different defense methods (i.e., SIFT, dynamic flow deletion method, 

SD-Anti DDoS, and Load-Aware) in the controller to observe their performance 

while controlling the CPU utilization. Figure 5.7 shows that for the first 10 seconds, 

when only the background traffic runs in the network, the CPU utilization remains 

stable at around 20%-25%. When the botnet-based DDoS attack traffic is injected 

into the network, the CPU utilization increases in a gradient way. After 10 seconds 

of the attack, when the CPU utilization increases gradually, we activate the defense 

methods to observe their performance in controlling the CPU utilization. Our 

proposed method does not increase the workload of the controller and also controls 

the CPU utilization and always keeps it around 40%. After activating the SIFT 

method, we observed that it does not help to control the CPU utilization and reaches 

90%-95%. The dynamic flow deletion method controls the CPU utilization within 

the range of 45%-50% in our adopted network scenarios. Similarly, the SD-Anti 

DDoS method keeps CPU utilization at around 55%. Lastly, the Load-Aware 

method maintains CPU utilization at around 70% during the attack. 
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Figure 5.7: Comparison of the proposed defense method with existing methods 
in terms of CPU utilization. 

In short, our proposed defense method proved effective in controlling the 
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5.3 Summary 

This chapter discusses the proposed defense method’s effectiveness in 

protecting SDN networks from botnet-based DDoS attacks. The proposed defense 

method has two main principles (a) find the attacking path in the network, (b) adopt 

a more systematic dropping strategy to prevent accidentally killing normal flows. 

First, graph theory is used to find the switches in the attack path. Second, dropping 

rates for the different OpenFlow switches are calculated based on the switch 

position in the attack path, and then dynamically, attack flows are deleted using 

estimated dropping rates.  Furthermore, we studied different defense approaches to 

provide more scalable and effective countermeasures against these attacks without 

changing the SDN network design or adding new network devices. We validate the 

effectiveness of our defense methods using two different metrics (i.e., Rate of 

generated flow rules and CPU utilization). Our proposed method maintains the 

Flow rate at around 250 per second and CPU Utilization at approximately 40% 

during the attack. We also compared our defense method with the existing methods. 

Based on the reported results, we can conclude that the proposed defense method 

in this research can protect the SDN controllers from botnet-based DDoS attacks 

without increasing the overhead of the SDN controller. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

SDN redefines the network’s organization and management, which leads to 

network reforms. However, SDN resolves emerging problems, such as 

flexibility, security, scalability, etc., in traditional networks. Simultaneously, 

the emerging architecture of the SDN introduced a new array of privacy and 

security challenges that needs great attention from the research and network 

community. Because malicious attacks against computer networks and SDN are 

potentially growing, intelligent intrusion detection systems are required to 

detect and mitigate these attacks. The botnet attacks are considered more 

dangerous in the modern era of networking technologies. Attacks from botnets 

can target controllers in the control plane or network devices in the data plane 

(such as routers, OpenFlow switches, etc.) in an SDN environment. The 

sophistication of network flow features makes the detection of botnets and 

DDoS attacks in SDNs more challenging than in traditional networks. The 

decoupled architecture of the SDN allows to develop and deploy the intrusion 

detection models in the architecture to detect and mitigate botnet-based DDoS 

attacks. Nevertheless, secure SDN networks shall be adopted by providing a 

reliable definition of the behavior of botnet-based DDoS attacks. Recently, deep 

learning-based networking applications have been in trading and become a 
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viable option for network intrusion detection systems. DL methods use large 

historical training datasets for learning intrusion patterns. They can predict the 

real-time network state (i.e., normal traffic flows or attack traffic flows) and 

update the controller(s). This research proposed an IDS based on deep learning 

methods named “DepBot” to detect and mitigate botnet-based DDoS in an SDN 

environment. First, we generate a simulation-based dataset in a pure SDN-

supported environment. Then the attack detection is performed using various 

DL methods such as RNN, CNN, MLP, DNN, and LSTM. We implemented 

and tested the DL methods using a simulated dataset to detect the attack flows. 

The simulated dataset consists of two classes (i.e., normal and attack). We also 

used pre-processing techniques such as feature elimination and selection to 

select a set of best features and improve the performance of the DL methods 

while detecting attacks. The dataset with 83 features is converted into five 

different subsets of features based on their importance, where 30 optimal 

features were selected out of 83. We also performed min-max normalization at 

the preprocessing stage to give equal weightage to all features and observe their 

effect on the method’s performance. The whole system model, from the dataset 

collection to attack detection and mitigation, is implemented over a single 

controller and gratitude to the centralized control of the SDNs. 
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 RQ1: Are the publically available intrusion detection datasets can use for 

SDN? 

Aa core contributing factor of this research is to develop a dataset in a pure 

SDN environment to train DL methods instead of relying on traditional or old 

datasets. Because, in most of the existing studies [17] [20], the authors are using 

old or traditional datasets (i.e., NSL-KDD, DARPA, Na-BaIoT, CIC-DoS-2017, 

etc.) for the training of machine learning or deep learning methods. These datasets 

are unsuitable for SDN environments because they are developed in traditional 

network environments and suffer imbalanced problems. The power and efficiency 

of the DL methods are evaluated by adopting baseline hyper-parameters in their 

architectures. 

RQ2: Is Deep Learning methods can effectively detect botnet attacks in SDN? 

 According to the results on the simulation dataset, the CNN method 

achieved superior accuracy and detection rate results. CNN achieved a maximum 

accuracy of 99.37% and a detection rate of 99.60% using 30 optimal features. In 

addition, the performance of the DL methods training using a set of 30 optimal 

features was also evaluated in real-time testbed settings where the CNN method 

achieved a higher real-time detection rate compared to RNN, MLP, DNN, and 

LSTM. The real-time detection rate of CNN reaches 97% for attack flows and 99% 

for normal flows. The performance of the CNN method proved that the DL methods 

can effectively detect the botnet-based DDoS attacks in SDN. 

 



180 
 

      RQ3: How can we protect the SDN from botnet attacks? 

 After successfully detecting botnet-based DDoS attacks, we deployed that 

graph theory and dynamic flow deletion-based mitigation strategy to protect the 

SDN controller against these attacks. The effectiveness of our defense methods is 

measured using two parameters: rate of flow rules generation by controller and 

CPU utilization. The proposed method maintains a flow generation rate of around 

250 per second and CPU utilization at about 40% during the attack, which is better 

than the existing work. 

The limitations of this research are: This research focuses on detecting 

botnet-based flooding attacks in SDN environments. This produced dataset cannot 

be used for detecting non-volumetric attacks (i.e., slow-rate DDoS attacks). This 

research also did not help to detect other types of malicious attacks (i.e., saturation, 

ransomware, other types of DDoS attacks, etc.) In this research, we used around 

89000 records to train and test DL methods, so the number of records for the dataset 

can be enhanced for better training of machine learning or deep learning methods. 

Lastly, we just used a single SDN controller in our experimental network, it may 

not be effective in a distributed or multi-controller network architecture.   

 
6.2 Future Work  

Our current research focuses on detecting and mitigating botnet-based 

DDoS attacks in a single-controller SDN architecture. For future work, we intend 

to extend this research to investigate other security issues of SDN. For example, 
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detection and mitigation of other malicious attacks such as slow-rate DDoS, DDoS-

web, other types of DDoS attacks, saturation attacks, ransomware attacks, etc.  

This research can be extended to detecting other types of malicious attacks, 

such as spoofed, low-rate, botnet-based low-rate DDoS, etc., in the SDN 

environment. 

This research can extend the development of new optimization solutions to 

reduce the false positive rate and improve the true positive rate for detecting botnet-

based DDoS attacks in SDN-based networks. 

In the future, a score reporting scale can be introduced by using this research 

to measure the performance of the machine learning or deep learning methods for 

the SDN environments (i.e., selection of datasets, features selections with advanced 

methods, overfitting problems). 

A fair comparison scale can be implemented to assess the effectiveness of 

deep learning methods in identifying various attacks in SDN systems. 

Furthermore, in the future, this research will help researchers to apply more 

advanced deep learning and machine learning algorithms with optimized feature 

selection methods for intrusion detection in SDN as other domains such as IoT, 

smart grid, cloud computing, etc. 

In the future, hybrid or ensemble deep learning approaches can be 

introduced for the SDN networks for intrusion detection. 
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Furthermore, deep learning or machine learning methods can be trained in 

real-time to keep the DL/ML-based systems updated.   

This research can be extended to detect malicious attacks in other SDN-

based environments such as cloud computing, IoT, and ISP networks. 

Recently, researchers are trying to adapt SDN multi-controller networks to 

solve the security problems of a single-controller architecture (i.e., “single point of 

failure”). In the future, this research may be extended to the investigation of security 

issues of the multi-controller SDN architecture. A multi-controller architecture has 

a positive aspect because it can be divided into a hierarchal or flat architecture. The 

flat SDN architecture can consist of multiple domains in different locations, and 

each domain can be controlled by a single controller, so the controllers can use east-

bound interfaces to communicate with each other. The hierarchal SDN architecture 

maybe consists of multiple layers, the top layer is referred to as the master layer, 

where the master controller can work and control the whole network, and the rest 

of the layer is referred to as the slave layers that have multiple controllers, and these 

controllers can control multiple domains.  

Although multi-controller SDN architecture has several advantages over 

single-controller architecture, it may face a set of major challenges. For example, 

high availability and reliability cannot be assured for multi-controller architecture 

because the attackers can target the connection links between the multiple 

controllers or send many malicious packets to overwhelm the controllers' 

processing. Thus, the connected switches or targeted controllers will be isolated 
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from the other part of the network. Therefore, it is crucial to design defense methods 

for the multi-controller that can detect incoming flows, monitor the multiple 

controllers in different domains, and countermeasure them without affecting the 

other network. 

The proposed defense method is tested in a single-controller network 

architecture that can protect the SDN controller against botnet-based DDoS attacks. 

In future research, we will focus to develop a defense method that can protect the 

controller(s) in a multi-controller architecture.   
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