UNDERWATER SPECIES-CONSTRAINED FISH
DETECTION USING MULTI-FRAME IMAGE
INFORMATION

LING YI JUN

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY
UNIVERSITI TUNKU ABDUL RAHMAN
JANUARY 2024

ABSTRACT
UNDERWATER SPECIES-CONSTRAINED FISH DETECTION USING
MULTI-FRAME IMAGE INFORMATION

Ling Yi Jun

Underwater fish detection system has many use cases such as fish
biodiversity monitoring, aiding fish farming management, and providing data
for marine resource management. Computer vision has proved to be a suitable
tool for this fish detection task, as it is a low-cost, reliable, and most importantly,
non-intrusive method for fish detection compared to trawling and other
damaging methods. Detecting underwater objects introduces additional
challenges, especially in unconstrained environments. Deep learning method
has proved to be a powerful machine vision technique due to its deep
hierarchical structures. YOLOVS is used as an initial detector due to 1) its K-
means clustering to select anchor box size and 2) its PANet detection head.
Despite its strength, the result solely on YOLOVS can still be improved,

especially in decreasing the number of False Negative (FN).

We observed a research gap to improve detection performance when
there are domain differences between training and testing data. We propose a
method that aims to fill that gap. The proposed method integrates an auxiliary
system with the original YOLOVS, which is successful in decreasing the number

of FN, albeit introducing some False Positives (FP). The overall F1 score has

improved by 5.28%. This auxiliary system provides information to select low-
confidence bounding boxes produced by YOLOvVS, and thus it produces
additional candidates (bounding boxes) for reducing FN probability. The first
step in the auxiliary system is the Trail Image Formulation module, which
constructs trail images that are domain-agnostic. A trail image contains the
information of several image frames, which is derived from the concept of
Motion History Images (MHI). Next, the detector of the auxiliary system is a
modification of YOLOVS, and we name it YOLO-Ang. It takes in a trail image
and produces bounding box candidates for each object in every frame. YOLO-
Ang also produces angle information associated with the aforementioned
bounding boxes. The output from YOLO-Ang is then processed using a
Clustering-module and a simple Fusion module. To produce the final bounding
boxes. In our extensive experiments, we compared three types of trail images
(MHI), two types of YOLO-Ang, and two types of Clustering modules. The best

version of the above variants is able to achieve over a 5% F1 score improvement.

ACKNOWLEDGEMENTS

I would like to express huge appreciation towards my thesis advisors,
Prof. Hsueh-Ming Hang and Prof. Ching-Chun Huang, Prof. Kar-Hang Leung,
and Ts. Siew-Cheng Lai for their continuous guidance and detailed feedback so
that I can successfully finish the thesis.

Thank you to my family members as well for their encouragement and
support. Even when things get tough, their support and care never wavered.

Lastly, thank you to my friends, both near and far, for their

companionship and advice.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGIES

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _ 15th January 2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that _Ling ¥7Jun (ID No: _ 1905799) has completed this

final year project/ dissertation/ thesis* entitled “_Underwater Species-

’

Constrained Fish Detection using Multi-Frame Image Information __” under the

supervision of _Prof. Leung Kar Hang (Supervisor) from the Department of

Computer Science, Faculty of _ Information and Communication Technology ,

and _ Ts. Lai Siew Cheng (Co-Supervisor) from the Department of _Computer

Science , Faculty of _Information and Communication Technology, and Prof.

Hsueh-Ming Hang (External supervisor), from the Department of Electronics
Engineering, and Prof. Ching-Chun Huang (External supervisor), from the

Department of Computer Science.

I understand that University will upload softcopy of my final year project /
dissertation/ thesis* in pdf format into UTAR Institutional Repository, which may

be made accessible to UTAR community and public.

Yours truly,

Ling Yi Jun

(Student Name)

APPROVAL SHEET

This dissertation/thesis entitled

“Underwater

Species-Constrained Fish

Detection using Multi-Frame Image Information” was prepared by LING YI

JUN and submitted as partial fulfillment of the requirements for the degree of

Master of _Science (Computer Science) at Universiti Tunku Abdul Rahman.

Approved by:

~\ L

(Prof. Leuﬁg Kar“Hang)

Professor/Supervisor

Department of Computer Science
Faculty of Information and
Communication Technology
Universiti Tunku Abdul Rahman

o

(Ts. Lai Siew Cheng)

Professor/Co-supervisor
Department of Computer Science
Faculty of Information and
Communication Technology
Universiti Tunku Abdul Rahman

vi

ALL/S(WA\/

(Prof. Hsueh”K/hng Hangy” >
Date:gmh. { .2, : 2024‘
Professor/Co-supervisor
Department of
Engineering

National Yang Ming Chiao Tung
University

Electronics

CACA L

(Prof. Ching-Chun Huang)

Professor/Co-supervisor
Department of Computer Science
National Yang Ming Chiao Tung
University

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
SUBMISSION SHEET
APPROVAL SHEET
TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER

1.0

2.0

3.0

INTRODUCTION

1.1 Motivation and Problem Statement
1.2 Project Scope

1.3 Objectives

1.4 Contributions

1.5 Report Organization

LITERATURE REVIEW

2.1 General object detection

2.2 YOLOvS

2.3 Fish Detection
2.3.1 Traditional machine learning methods
2.3.2 DNN-based single frame object detection
2.3.3 DNN-based multiple frame object detection
2.3.4 Summary

2.4 Motion History Images
2.4.1 MHI basics
2.4.2 MHI and DNN

PROPOSED METHOD
3.1 Trail Image Formulation Module
3.1.1 Trail image construction
3.1.2 Ground truth for trail image
3.2 YOLOVvVS5 with Angle
3.3 Post-processing Module
3.3.1 Clustering module
3.3.2 Fusion module
3.3.3 Default parameters

vii

Page
ii
iv
vi
vii
ix

xiv

N QNN A=

16
20
21
22
25
27
33
33
40

47
48
51
56
58
61
61
70
72

4.0

5.0

ABLATION STUDY AND EVALUATIONS

4.1 Fish Dataset

4.2 Experimental Setup

4.3 YOLOVS Baseline Experiment

4.4 Parameter Optimization

4.5 Trail Image Formulation and YOLO-Ang Configuration
4.6 Omitting Angle Information in YOLO-Ang and Clustering
4.7 Replacing Trail Formulation by MHI

4.8 Computational Complexity

CONCLUSION

BIBLIOGRAPHY

APPENDIX

viii

74
75
78
79
81
85
90
98
103

107

109

121

Table

2.1

2.2

23

24

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF TABLES

Main improvements for each version of YOLO

Summary of selected works where enough
information is published to be summarize

Sample dataset images
Results of the proposed method [80]

Parameter values used for clustering and fusion
modules

Optimized parameter performance: trail image with
addition method, trained with angle data, cluster
module with angle data

Summary of best-performing models for different
trail formulation methods

Summary of the differences between trail image
formulation and general MHI

Summary of best-performing models of different
trail formulation methods and their corresponding
configurations

Selected works for comparison

Computational complexity of different variations

for trail formulation methods

Computational complexity of YOLOv5 and
proposed variants

Computational complexity of different clustering
and fusion methods

Page

29

31
43

82

84

90

99

101

102

103

104

104

Figures

1.1

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14
2.15
2.16

2.17

LIST OF FIGURES

Sample frames highlighting issues of underwater
environments

The architecture of AlexNet [19]

The architecture of R-CNN [21]

The architecture of Fast R-CNN [22]

An illustration of Faster R-CNN architecture [23]
lustration of SSD architecture [24]

Four composite styles for Dual-Backbone
architecture [29]

The architecture of CARAFE [30]

Left: Training box size and ratio distribution for
VOC2007; Right: Training box size and ratio
distribution for F4K dataset

Left: Feature Pyramid Network (FPN); Right: Path
Aggregation Network (PANet) [31]

Flowchart of the proposed system by Liu et al. [33]

Overall network structure of Composite FishNet
[46]

Flowchart for a fish detection algorithm using
motion information concepts [65]

Flowchart for another fish detection algorithm
using motion information concepts [64]

Frame by frame MHI development [71]
Effect of different values of T [71]
Actions with different & values

Effects of unsuitable threshold value
X

Page

11
12
12
13

14

15

18

18

22

25

25

26

34
34
34

35

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

3.1

3.2

33

3.4

3.5

3.6

3.7

3.8

3.9

Four different channels of optical flow are used to
generate directional MHI [75]

Motion overwrite issue for sitting down and
standing up motion (self-occlusion) [71]

HMHH Algorithm, extracted from [78]

Left image: MHI of a handwaving action. Right
image: D(;, :, ;) of the red line of the left image.

Samples of an HMHH

MHI is computed using an OpenCV library, and
DNN is used to produce action labels [79]

Flowchart of the creation of an RGB-MHI [80]

Proposed methods [80] - a) I3D with RGB-MHI
attention b) I3D + RGB-MHI fusion

Proposed methodology [81]
System flowchart of our proposed method

Trail image subjectively highlights the movement
of fairly still fishes better than frame difference

YOLOVS gives low confidence to flipping fish
Top: YOLOVS inability to assign high confidence
score to camouflaged fish. Bottom: Boxes from
YOLO-Ang output act as a complementary system
to support low-conf YOLOVS5 output

Trail image construction flowchart

Steps to encode time information for each frame
difference, before added together

[lustration of determining the same fish instance
from the previous frame

[ustration of a single layer of the detection head
Architecture of YOLOVS [83]

Xi

36

36

39

39

40

40

42

43

45

47

48

49

50

51

54

57

59

3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

The clustering module is responsible for processing
the YOLO-Ang output to generate support
bounding boxes, which are then used by the fusion
module.

Samples of the YOLO-Ang outputs. Multiple fish
objects are shown in this image. Four steps are
designed to generate the final support boxes.

Another sample of YOLO-Ang output. An instance
of a fish object is shown to illustrate the operation
of Step a.4. The original RGB frame is also shown
here for reference.

Sample of how the final supporting box is chosen in
the case where angle data is omitted in clustering
module

Fusion module flowchart: Low-confidence output
that overlaps with the support boxes (satisfying
certain criteria) is considered successful detection
that eliminates FN errors.

More detailed flowchart for fusion module
Successful cases picked up by the supporting boxes.
Left row: ground truth. Right row: pink boxes
represent high-confidence detections; yellow boxes

represent final support boxes

Six typical challenges that the FishCLEF-2015
dataset shows, extracted from [46]

Learning curves for training data

Learning curves for validation data

Learning curves on training data for model 4f4bb
Learning curve on validation data for model 4f4bb
Learning curves on training data for model 5f5bb
Learning curves on validation data for model 5f5bb
Learning curves on training data for model 6f6bb

Learning curves on validation data for model 6f6bb
Xii

62

62

63

70

71

71

73

77

79

80

86

86

86

87

87

87

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Comparison between the addition and overlap
methods

Comparison between different angle settings

Results of different models under default
parameters for the addition method

Results of different models under default
parameters for the overlap method

Difference in output between with and without
training with angle data for trail images

Relationship between different angle settings and
the average number of support boxes produced

Flowchart and visualization of constructing an MHI
image

Results of different models under default
parameters for the MHI method

Sample cases where an auxiliary system helps with
detecting previously undetected fish.

xiii

88

92

100

101

106

LIST OF ABBREVIATIONS

MHI - Motion History Images

RGB - Red Green Blue

HSYV — Hue Saturation Value

DNN - Deep Neural Network

HMHH - Hierarchical Motion History Histogram

YOLO - You Only Look Once

Xiv

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION AND PROBLEM STATEMENT

Underwater fish detection system has many use cases such as fish
biodiversity monitoring, aid in commercial fish farming management, and
provide important data for marine resource management [1]. According to
marine fishery resource surveys, fish detection proves to be a challenging
research problem [2][3]. Therefore, it is important to develop or improve
algorithms related to underwater fish detection. Thus, in recent years, it has

become a popular research topic.

CNN and combination models are often used for fish detection [4].
YOLOV3, SVM, Faster R-CNN, and BM are the models that were often used
and achieved good results. However, it is noted that the different algorithms
proposed by the reviewed papers are made to solve problems from different data
sets (such as [5][6][7]), and these different data sets all present different

problems.

The purpose of fish detection is to separate a desired object from its
background [8]. Over the years, camera equipment and technology have become
more accessible, coupled with wide active research in the computer vision field;

this enabled computer vision to be a suitable tool for this fish detection task, as
1

it is a low-cost, reliable, and most importantly, a non-intrusive method for fish
detection compared to trawling and other damaging methods. Traditional
techniques for computer vision focus on manually designed low-level features
(also known as handcrafted techniques) such as colour, texture, contour, and
shapes [3][9]. This introduces a generalization problem as it is tedious to
construct all the features responsible for detecting different types of fish in
different conditions. Moreover, the studies mentioned above that use
handcrafted techniques are conducted in restricted conditions (controlled
imaging environment with a calibrated stereo camera) that do not reflect real-

world environments.

Detecting underwater objects introduces additional challenges,
especially in an unconstraint environment where the backgrounds vary from site
to site and even during different times of the day or seasons. Some and not all
of the challenges for fish detection include: 1) unpredictable fish poses; 2)
colour cast and low contrast; 3) blurry images due to sedimentation; 4) rapid
changes in background due to light diffraction or moving aquatic plants; and 5)
similarities between fish and background objects in terms of colours and shape.

Some samples are shown in Figure 1.1.

20 H SIS T

Figure 1.1: Sample frames highlighting issues of underwater environments. a)
unpredictable fish poses. b) colour cast and low contrast, blurry images due to
sedimentation. c) rapid changes in background due to light diffraction or moving aquatic
plants. d) Similarities between fish and background objects in terms of colours and shape

In recent years, deep learning method has proved to be a powerful
computer vision technique due to its deep hierarchical structures, which enable
learning important features from training data and, thus, better generalization
capabilities. However, due to its reliance on training data, when there is a
difference in training and testing domains, there might be a drop in performance.
Recent works in unconstrained underwater fish detection mainly adopt a
complementary system approach, which is then integrated with the main DNN
framework to improve performance. However, there are some research gap
which leads to our problem statements:

1) There is little research work done to tackle the problem of domain
differences between training and testing data. It is difficult to prepare a training
set that covers every single underwater scenario (for example, some videos have
a complex coral background with low visibility due to sedimentation, while

another video will have a completely different background without corals but
3

with light refraction as noise). Therefore, this research aims to devise a method
to address the domain gap.

2) Most existing methods depend on the visual information of a single
frame. Due to the inconsistent visual conditions underwater, sometimes it is
difficult for a deep learning model to extract relevant features for robust
detection. Therefore, this research aims to leverage multi-frame information to
enhance deep learning model performance, so that the model has increased

opportunities to extract relevant info.

Our proposed method was able to create a data representation that is
domain-agnostic. Our proposed method’s modified DNN also makes use of
features from multiple sequential frames. Then, the non-temporal DNN-based
model is integrated with the temporal modified DNN model. General object
detection deep learning models learn visual information; integrating a
complementary system that learns another type of information can improve

detection accuracy.

A more detailed analysis of recent works will be described in Chapter

2.0, the Literature Review section.

1.2 PROJECT SCOPE

This project explores and designs a complementary system that
improves the species-specific fish detection accuracy of a deep learning model

(YOLOV)). The system mainly aims to detect fish that fall within a specific set

4

of fish species that is defined in the training ground truth set without classifying
each species. The dataset used in this project is called FishCLEF-2015 [10]. It
is the dataset used for the fish identification task in the LifeCLEF-2015
competition. FishCLEF-2015 is a subset extracted from the data collected by
the Fish4Knowledge project [11], which records and analyses 90 thousand
hours of video from camera locations on several tropical coral reefs off the coast

of Taiwan.

1.3 OBJECTIVES

As mentioned, in the field of computer vision, deep learning is one of
the more popular and accurate methods for object detection purposes. However,
deep learning has its own technical problems and limitations. Therefore, this
work aims to explore those limitations and solutions to improve detection
accuracy:

1) In order to solve the first problem statement (domain differences
between training and testing data), our objective is to generate training data
representations that is domain agnostic. Which is helpful to extract different
types of information that are not normally detectable in the original training data,
such as the direction the object is facing and the movement of the object. The
intuition is that this can help the model to learn better and achieve a higher
accuracy.

2) In order to solve the second problem statement (dependency on visual
information in a single frame), our objective is to integrate temporal (made out
of multiple sequential frames) with non-temporal deep learning models, to make

5

use of both types of information — spatial and temporal, thus, the proposed
method does not rely on information of only a single frame. This can help the
model use information from other frames thus decreasing the model’s False

Negative rate.

1.4 CONTRIBUTIONS

We modified the YOLOVS [12] architecture to learn the motion-based
features from a specific data representation called trail. Its output is then merged
with spatial features learned from the original YOLOVS architecture to take
advantage of using both spatial and temporal information. The main

contributions of this project include:

1) Pre-processing data to include temporal information: The fish “trail” is
formed by overlapping or adding the frame differences of multiple
frames. Because the camera is stationary, the frame differences contain
mostly moving objects. Then, the trail images are used in the subsequent
modules for further processing. This step is particularly useful to

differentiate between fish and underwater non-fish objects.

2) Modify the YOLOVS architecture to generate the angle information,
“YOLO with angle.”: This is useful to predict the direction the fish is

moving.

3) Fuse the temporal and spatial information by combining the YOLOVS5
outputs and the outputs from our modified YOLOV5 operating on the

trail images. The first step in this processing is a “Clustering module”

6

which condenses the outputs of “YOLO with angle” into a few selected
candidates. Then, the low-confidence outputs are merged with the
Cluster module outputs in the “Fusion module” to generate detected

objects in addition to the original YOLOVS.

1.5 REPORT ORGANIZATION

The rest of the chapters are organized as follows: Chapter 2 will describe
some project background and review previous work that the proposed system
is built upon; Chapter 3 details the proposed system; Chapter 4 includes
experiment results and ablation studies; and lastly, Chapter 5 concludes the

work and discusses future work.

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL OBJECT DETECTION

The purpose of object detection is to detect instances of visual objects
in digital images. Currently, object detection can be classified into two

categories: traditional handcrafted method and the deep learning method.

Before deep learning gained popularity, in order to localize objects in a
single image, the traditional object detection scheme usually used a sliding
window to locate the object. The possible location of the object is obtained
through scanning the whole image, and then the object region is identified.
Manually designed features are then extracted from this object region, and these
features are then classified using techniques such as the support vector machine
(SVM) [13]. Some feature extraction techniques include the General Hough
transform [14] for geometric feature extraction. Another technique is the Harris
corner detector [15] which extracts object features by detecting corners from
two images and calculating the degree of correlation between them to detect
objects. The above 2 methods are sensitive to changes in image size, rotation,
and gray value. A feature extraction technique that is robust against the problems
mentioned earlier is SIFT (Scale-Invariant Feature Transform) [16]. The SIFT
algorithm detects and describes local features of an image. It treats the feature

itself as an object, and thus, the image’s rotation and scale do not affect the result.
8

Another feature that can be used is the Haar-like feature, which is similar to the
Haar wavelet. The Haar-like features were used in the first real-time face
detector [17]. Another popular feature is the histogram of oriented gradients
(HOG), which uses the concept that local object shape and appearance in an
image can be described by the distribution of edge directions or intensity
gradients. An image is divided into cells, and these intensity gradients are
compiled into a histogram of gradient directions for each pixel within each cell

of the image [18].

Deep learning techniques gained popularity in 2012 when the AlexNet
[19] architecture was introduced, which won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012. The architecture achieved a top-5
error rate of 15.3%, a huge leap from the runner-up which had a top-5 error rate
of 26.2%. The architecture is made up of 5 convolutional layers. The 1%, 2",
and 5" layers have a max pooling layer for proper feature extraction. The 6
and 7" layers are fully connected layers, which are followed by a SoftMax layer.

Figure 2.1 shows the structure of the architecture.

110 X! I
[\ \ ? \\ \ of \\ VAR
e e 192 128 \/ 209 \ / zo8 \Jense
5 T N / ANTT
AN\ |\ \ |\ / /\
: \ 3\ /N \
%l | o 613 3 15 i 13 dense’| [densg]
N i, \]
N T N \
N s l . 4 1000
\ 192 192 128 Max | |
N (P ing 204 2048
24\|l<trig e 128 Max pooling
\ofll \ pooling pooling

| i
Figure 2.1: The architecture of AlexNet[19]. The architecture is split into 2 branches to
run 2 GPUs in parallel. The input image is subsampled to a 224 x 224 pixel tensor with a
stride of 11 x 11 pixels.

After AlexNet was proposed, there have been many variants of deep
learning image classification architecture. Initially, for object localization in the
object detection task, an inefficient and computationally expensive sliding
window approach was used, and then object classification was done in each
location. Nowadays, the DNN-based object detection architectures can be

further split into 2 categories: Two-stage and one-stage detectors.

The two-stage detector’s architecture contains 2 stages. The first stage
mainly uses region proposals technique to generate region of interests (Rols),
and then these Rols are sent through the pipeline to the second stage, object
classification and bounding-box regression. A widely used two-stage object
detection architecture is the Region-based Convolutional Neural Network (R-
CNN) family [20]. Single-stage detectors treat object detection as a simple
regression problem. Usually, single-stage detectors have a lower accuracy rate
but are much faster than two-stage object detectors. The popular single-stage

detectors are the SSD (Single Shot MultiBox Detector) and the YOLO family.

The architecture of R-CNN [21] can be summarized in Figure 2.2. The
first stage of R-CNN uses selective search to extract approximately 2000
candidate region proposals. These region proposals are then warped to a fixed
size. Then, these warped region proposals are propagated through a CNN to
generate a feature vector. The feature vector is then classified with a trained
binary SVM. The binary SVM was independently trained for each class. Using
CNN features, a trained regression model is used to correct the predicted
detection window to reduce localization error.

10

i aeroplane" no.
% > person" yes.

ey S CNNN4
1. Input images 2. Extract region 3. Compute CNN features 4. Classify regions

proposals (~2k)

Figure 2.2: The architecture of R-CNN [21].

The R-CNN architecture has a bottleneck, which is the first stage where
selective search is used to extract approximately 2000 candidate region
proposals. Then, for every single region proposal, CNN feature vectors need to
be generated. This process involves 3 models that do not share any computation.
Therefore, Fast R-CNN [22] is proposed to make computation more efficient.
Instead of extracting CNN features for each region proposal independently, the
entire image is propagated through a CNN to get a feature vector. Then, a
selective search will be performed on that feature matrix, extracting 2000 region
proposals. The same feature matrix is used for both learning the object classifier
and bounding-box regressor. The sharing of computation speeds up training and
inference in the previous version of R-CNN. However, the region proposals are
still extracted by another model, which Faster R-CNN [23] is able to further

speed up.

11

e bbox
softmax regressor

Rol feature
vecto r For each Rol

Figure 2.3: The architecture of Fast R-CNN [22].

Faster R-CNN further streamlines efficiency by integrating the region

proposal algorithm into the CNN model. The region proposal network (RPN)

shares a convolutional feature layer with Fast R-CNN to make Faster R-CNN.

The RPN and CNN can be trained end-to end.

classifier

Rol pooling

I 2k scores ‘ [4k coordinates <mm kanchor boxes
cls layer reg layer *
Region Proposal Networl ‘ ’ iR
’calurc maps ‘L - ’
t intermediate layer

A / sliding window

i — = 4 conv feature map

Figure 2.4: An illustration of Faster R-CNN architecture [23].

Single Shot MultiBox Detector (SSD) [24] is a one-stage object detector.

It uses an anchor mechanism and an end-to-end, one-step structure where object
classification and location regression happen directly in the convolution stage.

SSD uses the VGG-16 network as the backbone, but the last two fully connected

12

layers are replaced with convolutional layers, and another four convolutional

layers are also added to form the feature extraction network.

Extra Feature Layers
VGG-16 A

f
= _ through Canv5_3 layer Classifier : Gonv: Sx3x(4x(Classes+)) o 2]
N Classifier - Conv: Jx3x{Bx(Classes+4)) @ o
NN S8
w (|1 N al &
| | N\ =
o 1 ! \ N g;:> @ |74 3mAP
Bl e I 1 N @ E| 59FPS
! | b 5 \ N Conv- 3ud(dxiClasses+a)) | & =
I I K =1
P ! : ez Coo 2 N -+ % é |
\ N | " Ao \{ | confro 2 com g 5'
NE| [L\ % i
= \: N s == ENE| =

— tnz4| st |28 |
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Comv: 1x1xi28 Conv: ixfxi28 Conw: 1x1x128
Conv: 3x3x512-52 Conv: 3x3x256-52 Conv: x3x25-51 Cony: 3x3x256-s1

Figure 2.5: lllustration of SSD architecture. Several convolutional layers are added to
the end of the base network [24].

The You Only Look Once (YOLO) family is also a family of one-stage
detectors. The first YOLO model [25] was introduced to perform object
detection in just a single stage, thus increasing inference speed. The model
divides an image into grid cells. Then, for all the grid cells, the probability of an
object residing in that grid cell is calculated. The algorithm then groups nearby
high-probability cells as a single object. YOLOV2 [26] is an improvement over
YOLOVI, as it is capable of detecting 9000 categories of objects. Some of the
technical improvements include introducing anchor boxes. Anchor boxes are
predefined areas for an image. Instead of setting the size and aspect ratio of the
anchor box randomly, the dimensions of clusters are preselected to make sure
that the anchor boxes fit the training data best. This seems to help enhance the
accuracy. YOLOV2 also goes through random resizing throughout the training
process (multi-scale training). YOLOV3 [27] further improves YOLOv2 by not
using fully connected or pooling layers, which reduces the model size and

number of weights. Instead, it uses residual models for multiple feature learning

13

with a feature pyramid network. YOLOv4 [28] further improves YOLOV3 with
technical improvements that can be categorized into 2 parts: a bag of freebies
(techniques that enhance model performance without increasing computational
cost) and a bag of specials (techniques that increase accuracy but also increase
computation cost). The bag of freebies includes techniques like mosaic data
augmentation, bounding box regression loss, different types of regularization,
and normalization. The bag of specials includes skip connections like cross-
stage partial connections, spatial attention modules, and non-linear activation

functions.

Other DNN models that are based on some standard DNN models
include: Cbnet + Dual ResNet50 [29], which use a novel strategy where
multiple identical backbone networks are assembled with composite
connections between the adjacent backbones. Composite connections are made
up of a I X q convolutional layer and batch normalization layer; this is to reduce
the number of channels. Then, there is an up-sample operation. There are
multiple versions of composite style, as shown in Figure 2.6. AHCL seems to

perform the best out of the versions.

.

N

Figure 2.6: Four composite styles for Dual-Backbone architecture [29]. From left to
right: Adjacent Higher-Level Composition (AHCL), Same Level Composition (SLC),
Adjacent Lower-Level Composition (ALLC) and Dense Higher-Level Composition
(DHLC)

14

Kernel c—— 8

Prediction Module P — @ example Location

" Q Reassemble Operation
Content = o5 1 ®

t Kernel
| Srchde) Normalizer

H

g o

w] (23

Channel
Compressor

Content-aware b,
Reassembly Module - ; 8
- /G
-)
«, IS
[
-

B EEEEE)
[Cim[E] | _

AN @ BOOCE = =
EECEE
EECEN

N kup) wy

Figure 2.7: The architecture of CARAFE [30]. CARAFE is made up of two components:
1) kernel prediction module, and 2) content-aware reassembly module.

The concept behind Cascade R-CNN + ResNeSt101 + Carafe [30], is
that the up-sampling kernel usually only exploits the spatial position of a pixel,
which overlooks the semantic information of the feature map. Therefore,
CARAFE consists of two steps: a reassembly kernel prediction for each target
location according to its content, and the second step, which is to reassemble
features with predicted kernels. The first step has 3 sub-steps: 1) channel
compressor- reduces model parameters by reducing the channel of the input
feature map; 2) the content encoder — takes the compressed feature map and
encodes its content to generate the reassembly kernel; and 3) kernel normalizer

— which is to apply the Softmax function to each reassembly kernel.

2.2 YOLOVS

During the start of this project, YOLOvS5 was the most popular and
stable open-source code base on GitHub, over the years; YOLOv6 [34],
YOLOV7 [35] and v8 [36] were published. Due to it being recently published,
there are a lack of published papers that utilize YOLOv5,6,7 and 8 to make a

formal comparison. However, initial reports from renowned forums, discussion
15

pages, and blogs claim better speed and accuracy improvements for each
iteration of YOLO [37] [38] [39] [40] [41]. In terms of research with fish
detection, there is little literature using YOLOvS. Most papers that use the
YOLO family are mostly using YOLOV3, such as [42] [6] [33]. Papers such as
[32] and [43] use YOLOVI. To the best of our knowledge, for the purpose of
fish detection, there is very little literature that employs the YOLO version
above v5. A quick analysis is done to see what changed between YOLOVS, 6, 7
and 8 according to multiple sources on the internet. The latest version, YOLOVS,
was published by the same YOLOVS5 GitHub authors. Table 2.1 shows the main
improvements each version of YOLO made after YOLOVS, according to the
published paper for each YOLO version.

Table 2.1: Main improvements for each version of YOLO

Model Changes from the previous version
YOLOv6 e Different scales architecture varies, where small models
[34] use a plain single path backbone and larger models use

efficient multi-branch blocks.

e Self-distillation strategy is used with dynamically
adjusted knowledge from the teacher and labels to help
the student model learn knowledge more efficiently.

e Quantization scheme is reformed with RepOptimizer
and channel-wise-distillation for faster and more
accurate detector.

YOLOV7 e Proposed compound scaling method: The depth of

[35] computational block is scaled up by 1.5 times, and the
transition block’s width is scaled up to 1.25 times.

e Proposed planned re-parameterized model: The 1x1 and
3x3 convolutional layers in the dark block’s position are
reversed to fit their re-parameterized model design
strategy.

e Proposed assistant loss for auxiliary head: Before
merging cardinality, the auxiliary head is connected
after one of the sets of feature maps. This design allows
the weights of the newly generated feature map to not
be updated directly by assistant loss; thus, the pyramid

16

of the lead head can get information from objects of
different sizes.

YOLOvV8 | Authors of YOLOvVS have yet to write a paper about their

[36] findings, but they did a summary on their websites of the
updates that are made for YOLOVS as follows: a new backbone
network, a new anchor-free split head, and new loss functions.

YOLOVS has gained popularity in the past two years due to its accuracy
and speed. Moreover, the open source easy to use GitHub repo [12] made it
accessible to a large audience. The architecture’s Path Aggregation Network
[31], coupled with its anchor box’s implementation, allows the YOLO family
architectures to detect objects of various aspect ratio and sizes, with emphasis
on small objects. Thus, this makes the YOLO family architectures suitable for
fish detection especially in unconstrained environments, as can be seen in
previous subchapter where work that uses YOLO [6] [32] [33] were mentioned.
Therefore, our proposed system mainly evolves around the YOLOvS
architecture. Details on parts that make YOLOVS a suitable choice for fish
detection are as follows:

1) K-means clustering to select anchor box size and ratio:

Running k-means clustering on the dimensions of the training set’s
bounding boxes allows YOLO to start with better anchor priors without having
to hand-pick them. One note regarding the k-mean’s default distance metric,
which is the Euclidean distance, is that it generates more error for larger boxes;
therefore, a distance metric that reflects the objective, which is good IOU scores,
looks like d(box, centroid) = 1 — I0U (box, centroid). “Box” represents the
ground truth; “centroid” represents anchor box priors. Good anchor box priors

that represent the dataset improve the YOLO algorithm by 5% with the
17

VOC2007 dataset [44] compared with handpicked priors.

Below are samples of the differences in bounding box size and aspect
ratio between the VOC2007 and F4K datasets. VOC2007 boxes favor thinner,

taller boxes, whereas F4K’s boxes are smaller and longer in length.

0.6 ¥ %
2 .‘é". 205
g . £ 04
2 20

0.4 B

0.3

0.2 0.2

"

0.1 0.2 0.3 0.4 0.5
width

0.0 0.2 0.4 0.6 0.8 1.0
width

Figure 2.8: Lefi: Training box size and ratio distribution for VOC2007, Right: Training

box size and ratio distribution for F4K dataset

2) PANet detection head [31]:

(a) (b) H

1
1
|
I
i
|
L

Figure 2.9: Left: F eaﬁt_l;e Pyram;';é_]\fetwork?l_";PN); Right: Path Aggr_egation Network
(PANet) [31].

18

What helps PANet localize small objects at high accuracy is its emphasis
on both semantically and spatially strong feature map representation made
possible by lateral connections. To begin, FPN’s top-down pathway (the right
branch of FPN) is able to attain higher resolution by up-sampling spatially
coarser but semantically stronger feature maps from higher pyramid levels. The
bottom-up feature map (the left branch of FPN) is of lower-level semantics, but
its activations are more accurately localized as it was subsampled fewer times.
Lateral connections combine the strengths of both spatial and semantic features
by performing concatenation of layers from the left and right branches

according to their level.

PANet is an extension of FPN by introducing another bottom-up
structure. Low-level features are known for having a high response to low-level
patterns (edges and instance parts), which is a strong indicator of accurately
localized instances. Therefore, the authors of PANet implemented a clean lateral
connection bridging low levels to the top levels. The “shortcut” (green dashed
line in Figure 2.9) propagates strong responses of low-level patterns of FPN to
the top levels of PANet. This enables PANet to produce semantically strong and

spatially detailed feature maps.

Despite its strength, our preliminary experiments show a high number

of False Negative. Our proposed system aims to improve that with concepts

explained in Chapter 1.

19

2.3 FISH DETECTION

There are some research interests in image processing techniques for
fish detection. For our review, the reviewed works are briefly categorized into
traditional handcrafted methods; there are more to elaborate on in traditional
machine learning methods; the more recent deep learning methods. For deep
learning methods, it can be further categorized into single-frame, or multi-frame

(including temporal information) object detection.

Some work has been done for traditional handcrafted fish detection. A
review paper [45] summarizes the handcrafted methods into 3 categories: 1)
Colour feature, which refers to the colour channel histogram features of an
image; 2) textural feature, which denotes the feature extracted from an image,
such as histogram of grey difterence, and grayscale co-occurrence matrix; and
3) geometric features, such as shape contour feature, shape region features, and
position feature of an object in an image. An example of a paper using colour
feature is by [14], which employs the boundary effect between the background
and foreground peak of the H-component of the HSV colour space. This

technique is robust against different illumination conditions.

One drawback of traditional handcrafted methods is that image feature
extraction relies on manually designed features. This requires relevant
professional knowledge, and many different feature sets are required to cater to
the many different underwater environments presented in offshore situations,

which tend to be unfeasible. Machine learning and deep learning methods help

20

automate feature learning, making object detection features more robust.

2.3.1 TRADITIONAL MACHINE LEARNING METHODS

Before DNNGs, there were some traditional machine learning methods
that did not rely on convolutional neural networks. For methods that do not use
temporal information, Tahnim et al [47] proposed using a Histogram of Oriented
Gradient (HOG) descriptor with Support Vector Machines (SVM) to detect fish.
Le and Xu [48] proposed an improved OTSU algorithm that combines class
probability and grey level histogram interval. Yan and Xiang [49] optimized a
kernel function and partitioned it to map the data set into a high-dimensional

space with a kernel-based K-nearest neighbor algorithm.

One image property that can be exploited in the fish detection task is the
assumption that fish rarely stay stationary for long periods of time; therefore,
pixels of moving objects can be regarded as potential fish objects. Hsiao et al.
[50] extracted motion information by using adaptive background subtraction.
Gaussian Mixture Models (GMM) are used to model background pixels. Then,
a fish category database is created. It is made up of various features from
different fish species that are taken at various angles and illumination conditions.
A sparse representation-based classification is then proposed for fish
recognition and identification, with features extracted using Eigenfaces and
Fisherfaces. Palazzo and Murabito [51] proposed a method where covariance
modeling is used to model the background and foreground in the video frames

using colour and scale texture features.

21

2.3.2 DNN-BASED SINGLE FRAME OBJECT DETECTION

There are some works that use DNN for single frame object detection,

such as [6] and [32] which use YOLO directly. Liu et al. [33] use YOLO with a

parallel correlation filter. The proposed algorithm first does image enhancement

with a haze removal algorithm. Each channel of the image is stretched pixel by

pixel using two thresholds that can be backpropagated. Then, YOLOv3 does the

object detection. Lastly, a correlation filter-based tracker is used to improve

speed and performance.

4

YOLO v3 for Fish Detection

Parallel Correlation Filter for Fish Tracking

work in parallel |

—— o - - - - o

Figure 2.10: Flowchart of the proposed system by Liu et al [33].

22

Jager et al. [43] use multi-class SVM to process features extracted from
the AlexNet architecture to perform classification. The region proposals for
classification are generated through background subtraction. Zhuang et al. [52]
first use the SSD architecture to separate background and foreground objects.
Then, another detection architecture, PVANET, is used to detect foreground fish,
and a bounding box is generated. Lastly, a background image is computed by
selecting the median value at each pixel position for every video; background
subtraction and erosion are done to create a mask for each frame. If the
previously generated bounding box’s background area is larger than a threshold,

then that bounding box is eliminated. The rest of the boxes are detected as fish.

Some efforts in improving deep learning models to detect fish include
the method proposed by Li et al. [53], where they adopted a region proposal
network from Faster R-CNN and shared it with the Zeiler and Fergus (ZF)
model to produce better detection performance. Xue and Ju [54] optimized an
AlexNet model by removing part of a redundant convolution layer and then
combined it with a flexible attention algorithm. Abinaya et al. [55] proposed a
naive Bayesian fusion deep learning network layer. Shi et al. [56] proposed
FDDet, which added a feature fusion module in SSD to enhance feature
representation by aggregating adjacent prediction layers. Wu et al. [57] use
stereo images since stereo means there’s 2 frames at a time. The “left” image is
to detect fish using SSD, and the “right” image’s detected fish act as a
complementary detection to the left one. To reduce the FP rate, a histogram of
gradients is used as a feature for SVM to verify correct matches within an image
pair. Li et al. [58] used Ghost convolution to replace the convolutions in

23

YOLOVS. A new attention mechanism is also added to the feature extraction
network. Hu et al. [59] modified the connection between the FPN network and
PANet and replaced feature mapping in the YOLOV4 architecture to be more
fine-grained. Prasetyo et al. [60] fuse low-level and high-level features across
the depth of the CNN using “depth-wise separable convolution” (DSC) to
improve the performance of the VGG architecture. Zhang et al. [61] solve the
noisy background problem by adding a new term in the loss function of the
ResNet50 model; this term allows the network to discriminate between fish
regions and noisy background, so the network pays more attention to the fish
regions. Villon et al. [62] used the GoogleNet architecture to extract fish
features and the soft-max classification method to detect coral fishes; in order

to optimize the model, the authors added a decision rule.

Zhao et al. [46] proposed a method called Composite FishNet. Frames
without fish instances are used to train the source domain backbone, which is
an auxiliary backbone to adaptively learn the scene information of each source
domain. Thus, the interference of underwater environment information on

object characteristics is reduced.

24

CBresnet EPANet

ISource Domain

I

: Backbone |
.

T

PAN_conv
>

Detection Result

Figure 2.11: Overall network structure of Composite FishNet [46]

2.3.3 DNN-BASED MULTIPLE FRAME OBJECT DETECTION

There are a number of works that utilize motion information for the fish
detection task. One way to extract motion information is to calculate optical

flow. Examples are [63], [64], and [65]. Below is the flowchart for [65].

Optical
flow

Combined

input image CNN RPN output Final output

GMM

Resnet-152

Raw image

Figure 2.12: Flowchart for a fish detection algorithm using motion information concepts

[65].

The authors of [65] proposed a hybrid system combining motion-based
features, optical flow, and GMM (Gaussian Mixture Modeling), which are

then further combined with a raw greyscale image and fed to the CNN for
25

training. The other algorithms [63] [64], with concepts following the same
structure as Salman et al. [65], Jalal et al. [63] similarly combined optical flow
and GMM, but it went through CNN processing before going through a

combination algorithm with another CNN-processed raw RGB image.

ey
L
RGB

Appearance stream

Decision

Motion

Figure 2.13: Flowchart for another fish detection algorithm using motion information
concepts [64]

For Tamao et al. proposed method [64], motion images and raw RGB
images have two points of combination: concatenation is performed before
going through an RPN network, and another one after RPN and before a
classifier; fusion is then performed to get the final result. However, one major
drawback of using optical flow is the high computational complexity of its

implementation.

Just a quick note: for works such as [63] [64] [65] [50] [51], where their
common characteristic is using motion information to help with detection, a
static background without moving objects is needed to model source domain
information. In cases where backgrounds are not constant, or if there are other
non-fish moving objects that act as noise, which is the case in an unconstraint

underwater environment, there might be a need to manually pick out non-fish

26

frames for every domain change.

Shen and Nguyen [66] proposed a framework that is based on RetinaNet;
n continuous frames go through ResNet to form 3 x n feature maps. These
feature maps then pass through a feature pyramid network to get pyramid
features. Then, these features are combined to form a 3D feature, and then
bounding box regression is performed by a 3D regression subnet: Labao and
Naval [67] use Faster R-CNN with an LSTM model cascade structure to

optimize detection accuracy.

2.3.4 SUMMARY

This paragraph will observe some of the works mentioned above and
state some possible improvements to the methods described above. The authors

of [6] and [32] solely use the YOLO architecture without other support systems.

When the appearance of a fish is dissimilar to the training set, which
often happens due to the complex underwater environment, it will be falsely
undetected. Liu et al. [33] use a correlation filter, which might fail for fast-
moving fish, and it is difficult to correlate between frames where there is heavy
sedimentation, as it could correlate noise instead of the fish itself. One of the
solutions to this problem is to include information from multiple frames and
have a CNN learn its correlation. Jéger et al. [43] extracted features from
AlexNet that do not take different object sizes into consideration. YOLO’s
PANet skip connection helps to pull spatial information from earlier layers to

27

later layers. Zhuang’s et al. [52] background modelling technique makes it
difficult to detect fish under camouflaged conditions, especially for complicated
backgrounds such as moving corals and illumination changes. Learning
movement behaviour lowers the chances of fish being missed out due to
camouflage. This is because it is easier to detect patterns in multiple frames.
The method proposed by Liang et al. [29] greatly increases parameters since
whole backbones are added. A problem with adding such backbones is that the
features learned might be redundant, which wastes computational resources.
One possible solution is to have the supporting model learn the features that are

different from the original RGB frames (such as MHI).

According to the work mentioned above, most standalone DNN
frameworks are insufficient for fish detection tasks. Usually, complementary
systems or modifications are integrated with the main DNN framework to
improve performance. In order to further increase robustness, temporal

information should also be exploited. Our proposed method aims to do that.

28

Table 2.2: Summary of selected works where enough information is published to be
summarize

Method Standard Dataset and | Metric Baseline Amount
baseline description used; Accuracy of
model Accuracy(improve

%) ment

Cascade Mask Cascade COCO test-dev = mAP@50; 67.00% 2.80%

R-CNN + Mask R- [68] (non fish) 69.80

ResNeXtl152 + CNN +

Triple ResNeXt

Backbone [29] _157

Mask R-CNN Mask R- COCO test-dev mAP@50; 55.70% 0.50%
+ CARAFE CNN + [68] (non fish) 56.20
[30] GUM
YOLO YOLO Self-made mAP@50; - -
(without e High 53.92
changes) [6] turbidity
e Part
grayscale
Fish AlexNet AlexNet QUT _fish Accuracy = 93.35% 4.08%
[54] TP+ TN
e Variable TP+ FP +
light TN + FN
condition ;
e Controlled,
steady 97.43
condition
e White
background
FFDet [56] SSD LCF-15 mAP@50; 57.63% 3.77%
e Complex 61.40
background
e Blurry
scenes
e Varying
illumination
Ghost- YOLOV5 Undefined mAP@50; 72.20% 3.90%
YOLOVS [58] e Close ups 76.10
e Complex
background
e Large
number of
fish
SSD + Stereo+ SSD Self-made mAP@50; 76.41% 1.29%
SVM [49] e Stereo 77.70
e Fish tank
scene

29

Table 2.2 continued

Method Standard Dataset and | Metric Baseline Amount
baseline description used; Accuracy of
model Accuracy(improve

%) ment

PVANET + SSD SeaCLEF 2017 Counting 87.00% 1.00%

SSD [52] o Complex score; 88.00

background
e Blurry
scenes
e Varying
illumination
YOLO + YOLO LCE-15 [with F-score; 90.67% 4.80%
GMM [63] extra ROI images 95.47
included]
e Complex
background
e Blurry
scenes
e Varying
illumination

Faster R- Faster R- LCF-15 [with mAP@50; 67.49% 3.01%

CNN + CNN extra ROI images 70.50 78.78% 1.44%

Shared RPN included] F-score;

fusion [64] e Complex 80.22

background
e Blurry
scenes
e Varying
illumination

Hybrid R-CNN LCEF-15 [with F-score; 77.30% 2.72%

System [65] extra ROI images 80.02

included]

e Complex
background

e Blurry
scenes

e Varying
illumination

2RPN + Faster Self-made F-Score; 28.43% 15.78%

LSTM [67] RCNN e Varying 4421

illumination
e Small sized
fishes
e Large
number of
fish (20-
200)

3D Retina-Net Self-made mAP@50; 69.30% 4.00%

RetinaNet e Large 73.30

[66] number of

fish
e Complex
background

30

Table 2.3: Sample dataset imag
Dataset name Sample frames

Description
Papers that use it
Self-made

e High turbidity
e Part grayscale

[56]

QUT-Fish

e Variable light
condition

e Some in
controlled, steady
condition

e Some have white
background

e Cropped

[54]

Undefined
Close ups
Complex
background

e Large number of
fish

[58]

Self -made

e Stereo
e Fish tank scene

[49]

31

Table 2.3 continued
Dataset name Sample frames
Description

Papers that use it .
Self -made E—

e Varying
illumination
Small sized fishes

Large number of
fish (20-200)

[67]

Self-made

e Large number of
fish
e Complex

background
[66]
LCF-15 [with extra a
ROI images included]
e Complex

background

Blurry scenes

Varying

illumination
[56][52][63][64][65]

32

2.4 MOTION HISTORY IMAGES

2.4.1 MHI BASICS

Motion History Images (MHI) is a concept where multiple sequential
frames extracted from a video can be represented in a single image, encoding
moving parts and motion flow into a single frame [69]. MHI is useful in low-
illumination conditions due to its inherent algorithm [70]. Thus, it is suitable to
implement in cases where illumination is not consistent, such as underwater
videos. MHI are mostly used in human action recognition before the use of the
CNN model. In the advent of convolutional neural networks, MHI is used as

either a combination or a complement to CNN models.

The MHI H:(x, y, 1), can be represented by the equation below.

T ifP(x,yt)=1

Hz (x,y,t) = {max (0,Ht (x,y,t — 1) — &) otherwise

(2-1)
(x,¥) and t represents position and time. ¥(x, y, t) is the update function;
it also represents the moving pixels of an object in the current frame.
7 represents the duration, which determines the temporal extent of the
movement (frames), and § is the decay parameter. The MHI definition results in
a scalar-valued image, where brighter pixels are the more recently moving
pixels and vice versa. Figure 2.14 [71] shows the frame-by-frame development
of MHI frames. This shows that MHI records the temporal history of motion.
Usually, MHI is made up of a binarized image obtained from background

subtraction using a set threshold. Figure 2.15 [71] shows how 7 affects the final

33

MHI. If the T value is smaller than the number of frames used to construct the
MHI frame, then prior motion information is lost. Figure 2.16 [71] shows the
effect of the 6 decay parameter on MHI. If there is no motion in a specific pixel

when there used to be motion in the previous frame, the pixel value will be

reduced by 9.

nmlﬁu.l ',&hlﬁil“ml

Figure 2.14: Frame by frame MHI development [71].

Figure 2.15: Effect of different values of T [71]

- --
o m mn

Figure 2.16: Actions with different § values. Top row — bending action with different §
values, from left to right, the values are 1, 3, 5, and 10 respectively. Bottom row —
running action where the first left 2 images are § = 1, whereas the latter two are § = 3

[71].

34

The update function can be generated by methods based on background
subtraction, frame-to-frame differencing methods, and optical flow. Some
works that generate MHI from background subtraction, such as [72] and [73].
Some issues with background subtraction are the need for the background to be

static, and factors such as the outdoors and clutter should be absent.

Some works use frame-to-frame differencing methods, such as [74].
However, poor extraction of motion pixels can be seen in Figure 2.17 [71]. One
caveat for the frame-to-frame differencing method is the importance of

choosing a threshold for binarization.

(02, S PR
Figure 2.17: Effects of unsuitable threshold value. An inappropriate threshold value will
cause noise in the frame difference, which would cause noise in the final MHI. The
threshold value is set at 30, 50, 74, and 150 from left to right, respectively. A noisy
background is noted with a threshold value of 30, yet some motion information is missing
with a higher value [71].

Some works that use optical flow for the generation of MHI include [75],
[74], and [76]. Particularly, Ahad et al. [75] use optical flow’s four channels to
generate MHI. A gradient-based optical flow vector is calculated between 2
frames and split into four channels, as can be seen in Figure 2.18 [75]. Although
optical flow is more robust with camera motion and variable background, it is
computationally expensive and sensitive to noise and texture. Another problem

is that optical flow is not robust with very low-resolution frame sequences.

35

: 4

Figure 2.18: Four different channels of optical flow are used to generate directional MHI
[75].

One of the key limitations of the MHI method is its inability to perform
well in the presence of motion overwriting due to self-occlusion, as can be seen

in Figure 2.19 [71].

B --.—i—

™

Figure 2.19: Motion overwrite issue for sitting down and standing up motion (self-
occlusion) [71].

36

Valstar et al. [77] proposed a method that would help overcome the
motion overwrite issue. They used a multiple-level MHI (MMHI), which
records motion history at several time intervals. The number of history levels is

represented as n. Therefore, a sequence of images has (n + 1) frames.

Then, to encode the motion that occurs at different times in instances
that are at the same location, so that it can be uniquely decoded later, a simple
bit-wise coding scheme is used. If motion happens at time ¢ at position (x,y), 2"
D is added to the old value of MMHI. The equation of MMHI can be represented

by the equation below:

MMHI (x,y,t) = MMHI (x,y,t — 1) + ¥(x,y,t) * 27!

with MMHI(x,y,t) =0 fort =0 (2-2)

Although MMHI produces lower recognition rates than conventional
MHIs, the authors believe that MMHI offers benefits in conditions where

motion self-occlusion is common.

Another proposed method that helps with the motion overwriting
problem is the one proposed by [75] that was explained before. Optical flow is

split into four channels to get four-directional motion templates.

Meng et al. [78] solve the overwriting problem using a method called
the hierarchical motion history histogram (HMHH). If motion occurs at frame
k at pixel (u, v), then D (u, v, k) = 1, else D (u, v, k) = 0. For pixel (u, v), the

37

motion mask D (u, v,) of the particular pixel is a binary sequence, which can

be expressed as the equation below, where N + [is the total number of frames:

D (u, v, :) = (bll bz, "'le)l bi,e {O, 1} (2-3)

Patterns P; is defined in the motion mask (D (x, y, :)) sequences, based on

the number of connected components “1°. That is,

P1 =010, P2= 0110, P3 = 01110,, PM= 01 ... 10 (2-4)
Then, a sub-sequence is defined as Ci = b1, bn2, ..., bui, and the set of all
sub-sequences of D (u, v, ;) is denoted as QD (i, v, ;). Then, the number of

occurrences of each specific pattern P; in the sequence D (u, v, ;) is counted for

each pixel (u, v), as shown in equations 2-5. Refer to Figure 2.21 and Figure

2.22, and in the equation below, 1 refers to the indicator function.

HMHH(U.,U,PL') = Z] 1{C] = PL|C] € Q{D(u, U,;)}}

(2-5)

A greyscale image can be built from each pattern P;. This is the Motion
History Histogram (MHH). With all the patterns P; i = 1...M together,
collectively, they make the “Hierarchical Motion History Histogram” (HMHH)

representation. Figure 2.20 presents the whole algorithm.

38

Algorithm (HMHH)
Input: Video clip f (u,v.k), u=1,....U, v=1,....V, frame k=0,1,....N
Initialisation: Pattern M, HMHH¢/:U, 1V, 1:M)=0, {(1:U.1:V)=1
For k=!I to N (For 1)
Compute: D¢, k)
For u=1 to U (For 2)
For v=1to V (For 3)

If Subsequence C;={D(u,v.).....Du,v,k)}=P;
Update: HMHH(u,v,P)=HMHH(u,v,P,)+!
End If

Update: I(u,v)
End (For 3)
End (For 2)
End (For 1)
Output: HMHH(1: U, 1:V,1:M)

Figure 2.20: HMHH Algorithm, extracted from [78].

(60,11)

(60,20)

(60,30)

(60,40)

Pixels

(60,50)

(60,60)

(60,70)

(60,80)

1 10 20 30 40
No. of frames

Figure 2.21: Left image: MHI of a handwaving action. Right image. is D(:, :, :) of the red
line of the left image. Each row is D(u, v, :) represented as a fixed pixel (u, v). The green
line is the motion mask of pixel (60, 50), through time, denoted as D(60, 50, :) [78].

39

Figure 2.22: Samples of an HMHH. From left to right, there are four patterns -
HMHH(.,:,P;), HMHH(:,:,P;), HMHH(:,:,P3), HMHH(:,:,Py) [78].

However, despite the HMHH solving the motion overwrite problem, in

terms of usability, it is not more robust than the usual MHI methods.

2.4.2 MHI AND DNN

Recent works integrating MHI with CNN models are done by
Chandragiri and Ijjina [79], where they combined the spatial and temporal
information across video frames by training a DNN (VGG16 or ResNet152)
classifier to recognize actions from MHI representation. Techniques such as
transfer learning of pre-trained models are also used. The proposed flowchart in

[79] is simple and can be seen in Figure 2.23.

) Compute DNN .
Video 4)[MHI H Classthiar]—>Actlon Label

Figure 2.23: MHI is computed using an OpenCV library, and DNN is used to produce
either one of the 4 action labels (None, Taking Money, Picking Up Receipt, Giving
Receipt) [79].

Sincan and Keles’s [80] work is for sign language recognition. The
authors proposed an RGB-MHI image, which represents a summary of each
video in a single frame. Then, a model (RGB-MHI model) is proposed that

learns from these single frames a representation of relevant spatial and motion

40

patterns. Then, two different approaches using the RGB-MHI model are
proposed. The first: RGB-MHI model is used as a motion-based spatial attention
module that is integrated into a 3D-CNN architecture. The second: Late fusion

technique with RGB-MHI and 3D-CNN features.

The RGB-MHI image is made by splitting a video stream into 3 equal
portions, motion histories are then calculated for each portion independently. To
construct motion histories, a motion history image (MHI) needs to be created
first. MHI is generated by summing the absolute values of consecutive frame

differences — (2-6)

M(l!]) = {EV=2 I It—1(i'j) - It(ll])IW (2'6)

N denotes the number of frames in a video, ; denotes the #” video frame,
(i, j) represents the image pixel coordinates, and 7 denotes the weight for the

absolute difference, where W = t/N.

After the motion histories are generated, a 3-channel colored MHI
image (called star RGB [80]), is created — Figure 2.24. In this representation,
the B-channel contains the motion history information from the first temporal
region, the G-channel has the motion history information from the central one,

and the R-channel is from the last part.

41

S

IL M,)

v

Hy

»

Figure 2.24: Flowchart of the creation of an RGB-MHI [80].

The RGB-MHI model can be used in 2 proposed ways, 1) RGB-MHI
model is used as a motion-based spatial attention module that is integrated into
a 3D-CNN architecture; and 2) Late fusion technique with RGB-MHI and 3D-
CNN features. A flowchart summary is shown in Figure 2.25, and a summary
of their results is shown in Table 2.4. The metric they used to measure
performance is accuracy — (2-7), the results show that RGB-MHI helps with an

improvement in accuracy by ~ 1% compared to when it is not used.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

2-7)

42

Fretrained RGE-MHI model

RGB-MHI Reshiat-50 HesNetsn 1[G _
Image 1- 3*"910:—k“|’ a5 Biggk [" P g - Bretstion
H |-> and n-1
ormalze,

512x28x28

13D

RGB

video '
frames M" ﬁzz 1K1xl

g
‘r-niu :

NG

[com E
| xixt

fugP
hu?

[Jen DFlaLU
(@
e i
frames — w‘
On
[+ —Prediction
/\.__/
el
=y {}J
(®)
Figure 2.25: Proposed methods [80]. a) 13D with RGB-MHI attention; b) I3D + RGB-
MHI fusion

Table 2.4: Results of the proposed method [80]

Method Test Accuracy (%)

13D 89.30
I3D with self attention 89.94
I3D with RGB-MHI attention 90.18
13D + RGB-MHI fusion 91.13

13D with RGB-MHI attention + fusion 91.55

43

One caveat of the proposed method [80] is that if motion overwrite exists
within any three parts of the video sequence, information will still be lost.
Moreover, if the motion occurrence’s time is not known, it is difficult to set the

length and number of frames, or how many parts a video should be split into.

Toudjeu and Tapamo [81] proposed a method that can be summarized
into the flowchart in Figure 2.26. Their innovation lies in the first step, the
preprocessing step, where the MHI is generated. After that, when the MHI is
formed, the recognition stage, which involves a 2-D CNN and a Fully
Connected Network, is used to classify the action. To elaborate on the first step,
the video sequence is processed to a single image, known as the MHI template.
This template keeps a history of the temporal changes at each pixel location,
which decay over time. The equation can be seen in (2-8) — (2-10), where (2-9)
is the update function and (6-3) is the difference of frames. Parameters
7,A,6 and € denote the duration of frames, decay parameter, interframe

distance, and difference threshold, respectively.

(t ifU(x,y,t) =1

_ (1 ifAxyt)<e -
Ulx,y.t) {0 otherwise (&)
ACry,t) = [I(y,0) = I(x,y,t F6))] (2-10)

44

Input Video

|

Pre-processing Stage i

Motion History Image

Recognition Stage l

2D-Convolution Neural Network

:

Fully-Connected Network

|

Action

2D-Convolution Neural Network for HAR

Figure 2.26: Proposed methodology [81].

There are a few variants of MHI that try to solve the overwriting problem
that is detailed above. However, the solutions have issues. In summary, [75] and
[76] are both computationally expensive; Valstar et al. [76] and Meng et al. [78]
solve the overwriting problem. The overwriting problem is usually present in
general MHI, where movement information is lost due to overlapping in the
same pixel location. However, it is reported that [77] [78] does not improve
recognition results more than the general MHI; additional design, in addition to
the proposed method in [77] [78], is needed to improve recognition results.
Objectively, compared to the algorithms, the proposed method should be
computationally inexpensive and be able to fully encode without information

loss the whole history of a designated time span.

45

In order to cope with the complexity of an unconstrained underwater
environment and to make use of temporal information from the underwater
videos, similar to the previous works, we adopt an extension of the motion
history images (MHI) concept to complement the YOLOvVS architecture. This
project proposes 2 types of motion history representation, which explore
blending and overlapping hue values to create motion history patterns. Color
information helps distinguish motion overlap. Then, the first type of motion
history representation uses addition on the frame differences, while the second
type uses the overwriting concept. In order to prove the effectiveness of the
proposed trail formulation method, further experiments are done by replacing
the proposed method with the traditional MHI method in Chapter 4. Currently,
to the best of our knowledge, no MHI method is used with fish detection or the
detection of multiple separate objects. Therefore, this project explores the

possibility of using MHI in conjunction with DNNs for this fish detection task.

46

CHAPTER 3

PROPOSED METHOD

High confidence
output
J L. Low confidence
T output /

/ Raw data o
Auxiliary system
F1

&6 calculation
=" Trail =

image

formulation| [| YOLO-Ang -
modue

Figure 3.1: System flowchart of our proposed method

The proposed method in Figure 3.1 introduces an auxiliary system that
generates additional bounding boxes and increases the recall rate. This auxiliary
system provides information to select low-confidence bounding boxes produced
by YOLOVS, and thus it produces additional candidates (bounding boxes) for
reducing FN probability. The auxiliary system is trained on a dataset produced
by the Trail Image Formulation module (labelled as 1). The detector of the
auxiliary system is a modification of YOLOvS, and we name it YOLO-Ang
(label 2); the “Ang” represents Angle, as YOLO-Ang is trained to predict angles
associated with the output bounding box. The output from YOLO-Ang is then
merged using a clustering module (label 3.1) and a simple fusion module (label
3.2). The following sections detail each part of the system and the motivation

behind the design.

47

3.1 TRAIL IMAGE FORMULATION MODULE

From observation, fishes usually swim in a simple and straight
trajectory; however, there are occasions when fishes sometimes swim in erratic
movements. Based on this observation, using frame differences between only
two frames is sometimes not sufficient to determine the movement of a fish.
Some of the circumstances are: (a) when fish take a short break and are kept
still in between frames; this is shown in Figure 3.2; (b) when they flip around,
thus making it visually rare for YOLOvS to learn its features; this is
demonstrated in Figure 3.3; or (¢) when they swim to a background that is
similar to their colour, as shown in Figure 3.4. Instance (a) can usually be
detected by YOLOVS except for some rare occasions; however, it would be

more difficult for instances (b) and (c).

L

J&IT: -

Frame difference

Trail Image

Figure 3.2: Trail image subjectively highlights the movement of fairly still fishes better
than frame difference.

For Figure 3.2, we can see the target fish does not move much from
frame ¢ to t+1. Subjectively, trail images are able to highlight the movement of
the target fish better since more frames (information) are used to generate the

result. The construction of the trail image is to be elaborated on in Section 3.1.1.

Ground truth High + low conf High conf YOLOVS
YOLOVS output output

Figure 3.3: YOLOVS gives low confidence to flipping fish.

In Figure 3.3, the left picture shows the ground truth, and the red arrow
is pointing at the target fish instance that demonstrates the flipping fish issue.
The middle frame shows both low and high confidence YOLOvV5 outputs, and
the right column shows only the high confidence ones. As can be seen here, the
fish is at an angle to the camera, which is rare in the training set, and thus

YOLOVS does not consider this prediction highly confident.

49

High + low conf High conf YOLOVS
YOLOVS output output

01 O3 TRETET (R \ q‘ 201 TRV R \ | 201 O3 TRRTST] ‘
i . y g

Ground truth

Trail image YOLO-Ang output using trail image

Figure 3.4: Top: YOLOVS inability to assign a high confidence score to camouflaged fish.
Bottom: Boxes from YOLO-Ang output act as a complementary system to support low-
conf YOLOvS output.

Therefore, one concept that helps in solving this problem is collecting
information from multiple frames. One example is Motion History Image (MHI).
According to [16], MHI is useful in low illumination conditions; such a
condition can also be applied to objects that have a similar appearance to their
background. The MHI representation encodes the time information (moving
parts and motion flow) of multiple frames into a single frame. The proposed
Trail Image Formulation module is based on the concept of MHI, where time
information from multiple frames is encoded into a single frame; however, there
are some major differences. One of the differences is that, MHI uses binarization
to determine the pixels with motion vs. pixels without motion; information
about the pixel values of the frame differences is ignored. Trail images keep the

pixel values of the frame difference. This property of trail images helps preserve
50

information that would otherwise be lost using MHI. Retaining the pixel values

of the frame difference can retain some information about fish textures.

Here, we propose 2 types of trail image formulation: subchapter 3.1.1.1
uses addition to combine multiple numbers of frame differences, while
subchapter 3.1.1.2 uses overlapping concepts to combine multiple numbers of

frame differences.

3.1.1 TRAIL IMAGE CONSTRUCTION

3.1.1.1 CONSTRUCTED WITH ADDITION

(--1)

Current frame (1)

Interframe
difference

Encode
time
information
with hue

Figure 3.5: Trail image construction flowchart

51

Figure 3.5 shows how the trail image of the current frame ¢ is created.
Firstly, the frame differences are calculated by finding the difference between
two consecutive frames. Clipping to 0 is made for any pixel that is lower than
0. For example, 4 original frames produce 3 frame differences. The frame
difference (FD), initially in RGB format, is then converted to the HSV colour
space. The conversion formula to convert RGB to HSV is in Equation (3-1),
while the conversion formula from HSV to RGB is in Equation (3—-2) [74]. Note
that in the subsequent equations, the S and V values are normalized to 255, that

is, the range of both S and V is between 0 and 255.

V =max(R,G,B)

V —min (R, G, B)

6 - ifV #0
0 otherwise

43(G — B) oy p
V —min(R, G, B) ifv=
85 + 43(B — R)
V —min(R, G, B) ifv=a G-D
170 + 43(R — G) _

ifV=B

V —min(R, G, B)

If H<0,then H < H + 255.Onoutput<V<1,0<S<1,0<H<255.

Given 0 < H<255,0<S<land0<V<I:

X—Cx(l |<H) d?2 1|)
= 13) ™0

m=V-C

52

(C,X,0),0 <H< 43
(X,C,0),43 <H< 85
(0,C,X),85 <H<128
(0,X,C),128 <H < 170
(X,0,C),170 < H < 213
(€,0,X),213 <H < 255

(R',G",B") = (3-2)

(R,G,B) = ((R"+m) x 255,(G" + m) x 255, (B' + m) x 255)

Then, for each FD frame, the S (saturation) is set to 255. According to
the number of FDs (indicated by ») encoded in the final trail representation, the
H (hue) part of the frame is set to (255/n) * d, where d represents the local index
of FD frames counted backwards from the current FD frame with time index .
For example, if we want to detect the number of fish at FD frame 7 and we use
3 FD frames, f(t — 2), fp(t — 1), fp(t), to generate a trail image. In this case,
the local index value d € {0,1,2}. The current FD index is d = 0. The frame that
is two frames before frame ¢ has a time index as (t — d) with d = 2. Note that
the FD frame time index is derived from the original image frame index because
fo(t) = max (0, (f(t —1) — f(t)), where f(t) is the original frame with time
index 7.

The V (value) of the FD frames is preserved. Then, these processed FDs
are converted back to the RGB colour space and added together to produce a
single representation frame, with clipping from 0 to 255 values, the range of an
8-bit pixel. Figure 3.6 show the processing steps. The trail image now encodes

the object trajectories of several frames into a single image.

53

I ER KN
S Coniert o RV

:

=(255/n) * d =255 = preserved
Convert back to RGB

LR R KR

Figure 3.6: Steps to encode time information for each frame difference, before added
together

3.1.1.2 CONSTRUCTED WITH OVERLAP

For trail formulation using overlap concepts, the first step is similar to
trail formulation with addition, where frame differences (FDs) are calculated by
finding the difference between two consecutive frames, and the pixel values are
clipped to 0. Then, the RGB frame differences are converted into the HSV

domain using Equation (3-1).

From here, the H and V channels go through a different type of
processing than the trail formulation with addition. The S channel stays the same
with a value of 255. For the H channel, the conventional MHI formula is used,
Equation (3-4). Where D(x, y, d) represents the frame difference (FD) that has
been converted to grayscale, # represents the number of frame differences used

to form a single trail image, and d is the local index defined earlier.

54

D'(x,y,d) = OTSUpyesn(D(x,y,d)), where d = {n — 1, ...,1,0}
OTSUpresn(-) is the binary Otsu's thresholding method

(Kurita, Otsu and Abdelmalek, 1992)

0, if D'(x,y,d)=0

H(x,y,d) ={255 .
(x,7,d) {T*d' otherwise

Hy(x,y) = max ({H(x,y,d),d

€ n—1,..,1,0}) 3-4)

The V channel also use the overlapping concept; however, instead of
assigning a time-coded magnitude, the original value of the V channel is
preserved, Equation (3-5). Note that the recursion of Equation (3-5) starts from

d=n, and then d=n-1, ...

, _(V(x,y,d) ifD'(x,y,d) =1 ,
Vixny,d) = {V’(x, y,d + 1) otherwise’ = n=1..,10
where initial values: V'(x,y,d =n) =0
(e, y) =V'(x,y,d =0) (3-5)

In the end, the Hy, S (=255), and V, channels are merged and converted
back to the RGB domain with clipping. Chapter 4 will detail the performance

difference between trail formulations with addition and overlap.

55

3.1.2 GROUND TRUTH FOR TRAIL IMAGE

In addition to the “trail” representation, the angle information is also
calculated to improve detection. Inference output with angle is to be used in the
post-processing phase, which consists of the clustering module and the fusion

module.

Similar to [13], [14], and [15], where MHIs are used in conjunction with
CNNes, the trail image is to be used by YOLO-Ang. However, MHI is typically
used to recognize “action”, and often there is only one object per frame.
Compared to our proposed method, trail images have multiple objects per frame,
and the purpose of constructing trails is to improve object detection rates. In
other words, we first detect the trail of an object, and then we are able to track
the object. This is the “track to detect” concept discussed in several detect-and-

track papers.

For training YOLO-Ang, the ground-truth of the angle needs to be
created. The ground-truth set includes not only the bounding box coordinates
but also the angle of fish direction for every box. The angle is derived from the
ground-truth bounding boxes of two successive original frames. Different
classes are assigned to the bounding box according to the index of frames
counted from the current frame. So, if 4 original RGB frames are used, the
ground truth boxes and angles of all 4 original RGB frames are included in the
ground truth of the trail image. The current frame’s boxes are class 0, and the

boxes of the previous 3 frames are classes 1, 2, and 3. Therefore, for example,

56

the previous frame is class 1. Radians are used as the unit of angle.

Ground-truth angles are created by measuring the angle of the vector,
which is defined by the center of the bounding box of a fish in the current frame
and the center of the bounding box of the same fish instance in the previous
frame. We find the previous frame’s same fish instance by calculating the
distance between all the fish instances from the previous frame and the current
frame fish instance, and then choose the one with the shortest distance.
Referring to Figure 3.7, the arrow (with an angle) points to the previous frame
fish instance, which is the same fish instance as the current frame. Manual
checking shows that it is able to correctly find the same fish instance from the
previous frames; no cases of incorrect matching have been found so far. If there
is no ground truth data available for the previous frame, there will be no angle
for the bounding boxes of that frame. The trail image and its ground truth with
angle will then be used to train and test the modified YOLOVS5 called YOLO-

Ang in Section 3.2.

[]

Current focus
fish instance

[]

Previous frame
fish instance

Figure 3.7: Illustration of determining the same fish instance from the previous frame

57

3.2 YOLOVS WITH ANGLE

~
N
.
=
=
%

« x-offset

« y-offset

« width-offset

* height-offset

* class score

* object-ness score
« angle

- e sy o —

No. of anchors

PANet [35]
detection head

\--—---——’

,f
r

B ——— ’,

Figure 3.8: lllustration of a single layer of the detection head

The original YOLOvVS5 produces bounding boxes and its confidence
scores as output. We modify YOLOVS to generate the angle information and call

it “YOLO-Ang” (YOLOVS5 with Angle).

As mentioned in Section 2.2, YOLOVS uses PANet [31] as its detection
neck. An illustration of PANet and one of its feature maps are shown in Figure
3.8. Its 3-level feature map is called the detection head and is responsible for 3
different spatial resolutions; these feature maps will each undergo further
convolution, which is part of the detection process. Detection will then be
performed directly on these three levels of detection heads. For each level of the
detection head, there are 3 dimensions: width, height, and depth. The width and
height represent spatial resolution, and each pixel has a certain receptive field
in the original image. Each pixel has its own depth. The original YOLOVS depth
is (a * (5 + neis)) layers deep, where a represents the number of anchors per pixel,

and the 5 values represent: x-offset, y-offset, width-offset, height-offset, and

58

object-ness score. Ngis is the number of classes, and each class will have its own

score. For the proposed method, YOLO-Ang, we added an additional layer for

the depth; this layer will be in charge of learning angle data. Therefore, YOLO-

Ang depth is (a * (6 + neis)) layers deep. This is illustrated in Figure 3.8: yellow

layers represent layers that existed in YOLOVS, while the highlighted red layers

are added for the proposed method. In total, there are 3 extra layers that are in

charge of learning angle information if the number of anchors is set to 3. The

red letters in Figure 3.9 below show the changes the proposed method made.

Backbone: CSPDarknet Neck: PANet Head

Yolo Layer

- = | | =7

BottleNeckCSP
Conv3x3 S2

BottleNeckCSP

Conv3x3 S2

c=

|
(
|
I
l

[i

(o) |
c= l

|(a*(5+l+nds))|

I

a*(5+1+nds))|

(“spP BottleNeckCSP | [BottieNeckCSP - |
| | I — o |E*Gr1)

CSP Cross Stage Partial Network Convolutional Layer

Spatial Pyramid Pooling Concatenate Function

Figure 3.9: Architecture of YOLOVS, figure extracted from a paper by Dima and Ahmed

[83]

YOLOVS5 originally uses 3 types of loss: box loss, object-ness loss, and

class loss. Bounding box loss is in the form of an IOU between the prediction

box and the target box. The IOU can be defined as IoU (Bp,Bgt) =

59

area(Bp ntt)

area(BpU Bgt) ’

where B, represents bounding box prediction, and By, represents ground truth
bounding box. Object-ness loss uses the binary cross entropy with logits loss
using the ground truth bounding box as its target. Class loss also uses binary
cross entropy with logits loss using ground truth class as the target. Binary cross
entropy loss can be defined as: loss = —p - log(p) — (1 —p)log (1 — p),

where p is the true probability and P is the predicted probability.

YOLO-Ang has an additional loss, which is the angle loss. It uses the
mean square error loss: (67 - 9)2 to calculate the difference between the target

angle, 6, and the predicted angle, 8 (in normalized radians). The ground truth
bounding box that does not have an angle will be omitted from the angle loss
calculations. Mean square error is used due to the fact that it is the simplest loss

to measure a target that has a continuous value (non-discrete value).

The weighting parameters for the losses are as follows: box loss = 0.05,
object-ness loss = 1.0, class loss = 0.5, and angle loss = 0.5. These parameters
have been set as default by the authors of YOLOVS, and these parameters are
generally used. The reason why box loss has such a low contribution is because
it considers every single box’s anchor box. Object-ness loss represents box loss
for matching boxes with targets; therefore, it needs more weight. Therefore, it
is reasonable to assign angle loss weigh similarly to class loss, which is half of

object-ness loss.

The inference outputs of YOLO-Ang are bounding box coordinates that

mark the existence of trails in an overlapping manner. For each bounding box,
60

there is an angle value assigned to it, which represents the trajectory of the trails.

These outputs will then be processed by the modules below.

3.3 POST-PROCESSING MODULES

The outputs from YOLO-Ang act as a support for filtering the low-
confidence YOLOVS outputs; however, further processing is needed to make
them useful. The post-processing modules take the outputs from YOLO-Ang
and merge them with the original YOLOvVS output. These modules are

handcrafted and have some manual parameters that can be adjusted.

The post-processing modules are designed based on the concept of
“majority voting” since there are a large number of bounding boxes and their
corresponding angles. Therefore, the error rate (compared to the ground truth)
per inference box can be high. The post-processing modules can be separated
into 2 modules, the clustering module, and the fusion module. Below are the

details of these mechanisms.

3.3.1 CLUSTERING MODULE

As shown in Figure 3.10 below, the clustering module generates a few
“support boxes”, which will then later be used for the next module, which is the
fusion module. The fusion module matches the support boxes with the low-

confidence boxes produced by the original YOLOVS.

61

The YOLO-Ang outputs (bounding boxes) indicate the existence of
“trails” in the trail image, as shown on the left of Figure 3.11. However, the
output bounding boxes and angle data contain errors because they cannot
distinguish well between noise and fish. Therefore, some extra post-processing
steps are needed to produce the desirable support boxes. We develop a

clustering-like algorithm to extract meaningful information.

YOLO-RGB output
[1 []

:l I:l High conf Low conf
l—':i |—|':' l:l box box
Fusion
module

Support Successful

i Clustering box detection
module

YOLO-Ang
output

Figure 3.10: The clustering module is responsible for processing the YOLO-Ang output to
generate support bounding boxes, which are then used by the fusion module

Further
refinement of
clusters

Not all angle is reliable
Non-agreeable angles are omitted

Figure 3.11. Samples of the YOLO-Ang outputs. Multiple fish objects are shown in this
image. Four steps are designed to generate the final support boxes.

62

Find 2 points
furthest from each
other

Figure 3.12: Another sample of YOLO-Ang output. An instance of a fish object is shown
to illustrate the operation of Step a.4. The original RGB frame is also shown here for
reference.

Figures 3.11 and 3.12 show the steps in the clustering module; not all
details are included to simplify the figures. Images R-1 and R-2 show two
YOLO-Ang output trail images, which highlight different issues that the
clustering module is able to overcome. The purpose of clustering module is to
produce final clusters (of bounding boxes) that correspond to the trails or traces
of fish. We will describe the detailed steps of the clustering module in the

following paragraphs.

Set B is the YOLO-Ang output after removing boxes that have a width
or height lower or higher than the set threshold parameters a_1, a_2 respectively.
Set C is the set of clusters, and set C; is a single cluster made up of elements
from B. Bseea represents a randomly selected element in set B, which will be

used to initialize a cluster.

63

A more detailed explanation of each sub-module of the clustering
module and its 8 parameters (a I, a 2, a 3, a 4, a 5, a_6, and I0Ucutoff,
Confcutoff) will be explained here. The output of YOLO-Ang consists of
bounding box coordinates for multiple classes with an angle associated with
each box. In Algorithm a.1 below, boxes are first omitted if their length or
width are above and below the selected lower (parameter a_1I) and lower limits
(parameter a_2). (The default values are 0.05 and 0.5 of the frame size). This is
to first filter out boxes that are unlikely to contain any useful information. Then,
the distance between the centers of the bounding boxes is calculated. Boxes
within a set distance range (parameter a_3, default value 40 pixels) are assigned
to the same cluster as shown in Algorithm a.1 below. A simple set distance
range is used instead of the more popular K-means clustering method because
we do not know the value of clusters we would end up with. Having a set
distance range allows flexibility in determining the number of clusters. Clusters
that are less than 3 boxes are ignored in the next processes since they are most
likely noise. This decision was made after observing a few frames during the

construction of this algorithm.

64

Algorithm a.1 (clusters construction)

The i*" bounding boxis represented by (xywh;),
which means its center coordinates are (x;, y;)
and its width and height are w;and h;, respectively.

Euclidean distance between 2 boxes:

distance,(i,j) = \/(xi - xj)2 + (v — yj)2
|A|] = number of elements in set A
Input: B = {(xywh))|a_1 <w; <a_2anda_l<h; <a_2)}
j=1
Step 1
Bseeq = the set containing a randomly selected box inside B
C; = {(xywhy) € B |(xywhs) € Bseeq, distance,(s, k) < a_3}
Step 2
Ce = {(xywhy) € B |3(xywh;) € Cj,distance,(i,k) < a_3}
If(|C| #0), C; « GUC,
Step 3
B « (B —(;) = {(xywh,) € B and (xywh,) & C;}
If (|B|] = 0), Stop; goto Output
Elseif (|C;| > 0), goto Step 2
Else if (|;| < 3), Cjisnota valid cluster. Remove C;, goto Step 1
Else C;jis completed. j < j + 1.go to Step 1
Output: C = collection of Cy, C, ..., G = {C1,C5, ..., Cj}

Algorithm a.2, refines clusters by splitting them based on their features
(width-height ratio of a single bounding box, r, and area of the bounding box,
s) using Frobenius norm to calculate their feature distance between any two
boxes, Equation (3-6). This is because distance range alone is not enough to

sufficiently split the clusters to correctly represent fish trials.

W.
width heght ratio = r; = h—l
i
distance,(i,j) = /|, — 1|2 + |s; — 512 (3-6)

The reason why the Frobenius norm is used is because of its simplicity:

the square root of the sum of the squared magnitude of all entries, which has the

65

same form as the Euclidean vector norm. If the distance of a bounding box
center is greater than a set threshold (parameter a_4, default 1000) from all the
other bounding box centers, then that bounding box is omitted from further
processing since it is most likely not going to help in further processing. If some
boxes are further away from all boxes but their number is higher than a specific
number (default threshold 3), then these boxes are considered a new cluster. The
resulting clusters are further refined by splitting clusters where their bounding
boxes do not intersect, using the concept of connected components. This is
because clusters that do not intersect most likely represent 2 separate fish trials,
according to preliminary observation during the development of this algorithm.
Connected components mean if there are boxes whose pixels do not overlap
with the other boxes within the same cluster, then those boxes will be segregated
from the cluster and form another cluster. The boxes that have less than 3 points
within the same cluster are omitted from further processes. Redundant boxes

that take up the same space (IOU = 100%) are also omitted.

66

Algorithm a.2 (refinement of cluster)
Input C = {C]J Cz, ey Clcl}

j=1

Step 1

Calculate A(i, k) = distance, (i, k) for all pairs of (xywh,) and (xywh,,)
€, andi < k

5C, = {Grywhy), (xywhy) € |4, k) < a_4}

SC, = C;— S,

If(ISC;| < 3),C; « C; — SC;,goto Step 2 [Remove SC, |

Else Cicj+1 = SCs,C « CU{Cicj41}, G « C; — SC; [Split ;]

Step 2

IfG<ICl), j«<j+1gotoStep1

j=1

Step 3

Connected bounding boxes: Two boxes are said connected if they overlap.
(Their intersection contains at lease one pixel).

Partition C; into [sets (clusters) of connected boxes, {P;, ..., P }.
(Any box in P; is connected with, at least, another box in P;.

Any two boxes belonging to two separate clusters are not connected.)
If(l = 2),C] = PlJC|C|+1 =P,, ""C|C|+l—1 =P, C<CU {C|C|+1' ey C|C|+l—1}
Elseif (j < |C]),j « j+ 1, goto Step 3
Remove any box in C; that is completely contianed (10U

= 100%) by another box in C;.
Remove any cluster C; in C if its size (nubmber of boxes) is less than 3.
Renumber the cluster indices in C
Output: C = {C;,C5, ..., C|C|}

Algorithm a.3, shown below, refines clusters by examining the angle

data. Not all angles are reliable; therefore, only a certain percentage (parameter

a_5, default 0.7) of the most similar angles are used. Similar angles are obtained

by sorting the angle difference (in radians) of all pairs and the top a_5% are

selected and their angles are used. Then, the standard deviation of those selected

angles in a single cluster is calculated. If it is more than a specific threshold

(parameter a_6, default 0.1), it is omitted from further processes; otherwise, it

goes to the next stage, Algorithm a.4. The reason for such a design is because

objects such as corals usually produce angles that are erratic, as shown in Step

a.3.2 in Figure.3.11. Often the mis-detected fish angles also have divergent

67

angles. Hence, omitting such clusters improves the final accuracy result. In a
variation of our scheme, the original YOLO (not YOLO-Ang) is used to predict
bounding boxes in a trail image; thus, the angle estimate associated with the box

is not available. In this case, Algorithm a.3 is skipped.

Algorithm a.3 (angle allignment)

lnput: C= {Cl, Cz, ey C|C|}

j=1

Step 1

0; = Estimated angle of (xywh;) [Angle estimated by YOLO-Ang]

Calculate angle difference 40(i, k)
= |0; — 6| for all pairs of (xywh;) and (xywh,) € C;, with i
<k

Sort {46(i, k)} and select the top a_5% pairs with smallest 40(i, k) to form a se

Calculate the standard deviation of all §; in D - a(D)

If (6(D) > a_6), C < C — C; [Ignore this cluster ;]

Elseif j < |C])j «j+1, gotoStep1 [Keep this C;]

Renumber the cluster indices in C

Output: C = {Cl, C,, ...,C|C|} [Clusters with consistent angles]

The purpose of Algorithm a.4, shown below, is to produce the final box
that will be assigned as a support box for future processing. Essentially, a final
support bounding box is derived from each cluster. Often, the current frame fish
is at the two ends of a fish trail (trajectory). Therefore, we pick up the furthest
two bounding boxes in a cluster. Then, we use the angle information derived
from these two bounding box centers to find the final target box location. As
shown in the original frame in Figure 3.12, there is a fish whose colour is very
similar to the background. The detected trail is able to highlight the existence of
a fish in that location. Therefore, it is very likely that the current frame has a
fish at the end of the “trail”. In order to decide which direction of the trail the

fish will be on, the angle information is used to predict which direction the fish
68

is heading. The final result is a support box that will be used in the next module,

the Fusion module.

Algorithm a.4 (final supporting box)
Input: C = {C;,C,, ..., C|C|}
Initial: S = ¢ [Support bounding box set; initial value = empty set]
=1
{S‘tep 1
Calculate 6(i, k) = distance, (i, k) for all pairs of (xywh;) and (xywh,) € C;, i
<k
Select the maximum {6 (i, k) } and call this pair (xywh;) and (xywh,)
61, = angle((xywh,), (xywh,))
0,1 = angle((xywh,), (xywh,))
where angle((xywhy), (xywhg)) = arctan(yg — Y, Xg — Xa)
Step 2
©p = Average of all §; in set D in Cj; D was derived in Algorithm a. 3.
If (|61, — ©p|> 1621 — Op 1), final support box b; = (xywh,)
Else final supportbox b; = (xywh,)
S« 5Ssu{b}
If(j <|Cl),j «j+1, gotoStep 1.

Renumber the bounding box indices in S
Output: S

In the case where angle information is omitted in the clustering module,
no refinement of clusters will occur. Angle data is also responsible for
determining the final bounding box within a cluster. This is done by querying
the furthest 2 points within a cluster, and then, depending on the angle direction,
one of the 2 points is chosen as the final box. To replace this mechanism with
the absence of angle, bounding boxes representing the current frame (which is
class 0; if class 0 is absent, the lowest class is used) are used as candidates for
the final support boxes. Since there are multiple class 0 boxes, boxes with the
highest confidence are chosen as the final supporting box. Thus, the clustering

module without angle is simpler than the original proposed clustering procedure.

69

The original proposed clustering and fusion module has a total of 8 parameters,

while the without-angle procedures have 6 (a_5 and a_6 are omitted).

Figure 3.13 (left) shows a general bounding box. The integer in the box
label represents class. The floating-point number in the label represents box
confidence. Figure 3.13 (right) is a sample of a cluster. The box that is pointed
by an arrow will be chosen as the final support box. It has the lowest class

number (0), and also the highest confidence score among class 0.

1 0.0014

—
0 0.002i

0 0.0023

e

Figure 3.13: Sample of how the final supporting box is chosen in the case where angle
data is omitted in clustering module

3.3.2 FUSION MODULE

Fusion module is a simple algorithm that helps merge support boxes
with the low-confidence outputs generated by the original YOLOVS, as
visualized in Figure 3.14. The fact that the support box exists suggests the
possibility of a fish object being in that area. If it is supported with a low
confidence threshold output from the original YOLOVS, then it is considered a
detection. There are some steps and criteria that need to be met before low-

confidence boxes are considered a correct detection.

70

Final Result

L1
[]

High conf Low conf
box box
Support Successtul
box detection

Figure 3.14: Fusion module flowchart: Low-confidence output that overlaps with the
support boxes (satisfying certain criteria) is considered successful detection that

eliminates FN errors.

High confset HC

.

F = {(xywhy) € LC|3(xywh;) € HC such thatIOU(i, k) > O
LLC « LC — F [Removed LC boxes overlapped with HC]

Low conf set LC

T

Support box set S

-

Fori=1to|S|
LCS; = {(xywh) € LC

and (I0U(i, k) > 10Ucutof)
and (Confidence of (xywh;) > Confcutof f)for (xywh;) € 5}

(Initial: E = ¢)

If (|LCS;| = 1) b; = box with maximum confidence in LCS;,

E < E U {b}

v

Figure 3.15: More detailed flowchart for fusion module

In Figure 3.15, let set HC be high confidence bounding boxes from

YOLOVS output. Let set LC be low confidence bounding boxes from YOLOvVS

output. Let set S be the support boxes from the clustering module output. Let

set £ be the final extra box for the whole system. The confidence threshold is

defined by the best validation confidence threshold when training the YOLOvS

model, which returns the best F1 score. In this case, it is 0.541. Bounding boxes

lower than this threshold are considered low-confidence boxes (LC), and

anything higher is considered high-confidence bounding boxes (HC). The

71

confidence lower bound for the low confidence boxes is set by the parameter
Confcutoff, with the default value set at 0.001. First, the low-confidence boxes
of YOLOVS that overlap with high-confidence boxes, or do not overlap with
support boxes, are omitted. Then, if there are multiple low confidence boxes
overlapping with support boxes with IOU > JIOUcutoff (default 0.1), the higher
confidence box out of the multiple overlapped boxes is chosen and the rest are
omitted. Finally, the corresponding low-confidence boxes that overlap with

support boxes are considered valid detections.

3.3.3 DEFAULT PARAMETERS

There are a few adjustable parameters, and their default is set at: a 1 =
0.05,a 2=0.5,a 3=20,a 4=1000,a 5=0.7,a 6 =0.1, IOUcutoff = 0.1

and Confcutoff = 0.001.

The design of the cluster output and fusion module of the system is based
on a few difficult image samples. Image difficulty is subjectively judged mainly
based on misdetections from the original YOLOVS output in the training set.
The YOLOvVS model is trained on the training set, and detection is done on the
training set again. The images where the model missed out on some fish
instances are chosen as “hard samples”. Focusing on these frames, the proposed
method is designed. The default parameters are manually adjusted, so

previously undetected fish instances are detected.

72

The left row of Figure 3.16 is the sample images; the red bounding box
represents the ground truth boxes. The right row pink bounding boxes represent
high-confidence boxes, and the yellow boxes are the final support boxes

generated by the proposed method.

Figure 3.16: Successful cases picked up by the supporting boxes. Left row: ground truth.
Right row: pink boxes represent high-confidence detections; yellow boxes represent final
support boxes.

73

CHAPTER 4

ABLATION STUDY AND EVALUTIONS

The goal of the simulations in this chapter is to 1) confirm parameters
set during the design of the proposed algorithm are optimum by running
parameter optimization procedures, and 2) find out the effectiveness of the

proposed method and its components.

We first introduce the dataset and its ground truth labels definition used
in the experiments in Section 4.1. Experimental setup and brief metric
explanation will be detailed in Section 4.2. YOLOV5 baseline experiment will
be described in Section 4.3. Parameters from the post-processing modules will
undergo parameter optimization in Section 4.4. Various system (component)
variants are examined in the ablation studies in Sections 4.5 to 4.7. The
simulations include running multiple tests on variations of the proposed method.
This is to prove the effectiveness of some components and design choices in the
proposed method. Specifically, Section 4.5 test out different trail formulation
method and different number of frames to construct a trail image. In Section 4.6,
we would test the effectiveness of angle data in both the YOLO-Ang and
clustering module. Section 4.7 will do a brief test using MHI for the trail
formulation method. Lastly, Section 4.8 describes the computational complexity

of the proposed system.

74

4.1 FISH DATASET

The dataset used in this project is called FishCLEF-2015 [10]. It is the
dataset used for the fish identification task in the LifeCLEF-2015 competition.
The dataset consists of 93 videos, with bounding box annotations that represent
species-constrained-fish locations. The training set of the dataset consists of a
total of 9163 annotations, while the testing set contains 14199 annotations. The
video resolution ranges from 320 x 240 to 640 x 480, with a frame rate of 25

fps.

The dataset also provides 20000 sample images of fish species.
However, since this project does not do species classification, the sample
images were not used. It is worth noting that temporal information is not
exploited during the annotation process. This means annotators will not label a
fish that is not clearly identifiable, despite the same fish being clearly
identifiable in the previous frame. FishCLEF-2015 is a subset extracted from
the data collected by the Fish4Knowledge project (Fisher, Shao and Chen, 2016),
which records and analyses 90 thousand hours of video from camera locations

on several tropical coral reefs off the coast of Taiwan.

This dataset has 15 fish species for the training set, and 23 species for

their testing set. However, it did not define a specific validation set. We split the

training data into training and validation set by 6:1.

75

The definition of ground-truth labels for training and testing is the same,
and they include 15 species of fish, despite the fact that the testing set has 23
species. This is to make sure that our experiments conducted are fair, since the
training set only has 15 species, therefore we only consider fishes within the 15
species as ground-truth in the testing set. For our experiments, we consider all

15 species as a single class, instead of classifying each species.

The challenges of underwater fish detection are described in many
papers, such as [46]. These challenges include: 1) Low-resolution underwater
fish video. Fish texture information may be lost. 2) Motion blur. For fast moving
fishes, when there is insufficient light, it is difficult to detect weather it is a fish
or other moving objects. 3) Complex seabed background, complicated coral reef
backgrounds, and moving plants can cause detection algorithms to mistake
some visual features. 4) Camouflage color. Fish objects may sometimes blend
in with the background. 5) Occlusion. When the density of fish is high, the fish
may overlap. Or the fish may simply be hiding behind rocks or other coral
objects. 6) Small objects. Sometimes, the fish are far away and appear small. 7)
Complex and varied underwater environment. Since the underwater data is
collected at different times with different background scenes, there might be

changes with different light intensities; this can be seen in Figure 4.1.

76

-~

(a) Low-resolution (b) Motion blur (c) Complex seabed
underwater videos background
b E p 5 i 107 1-AVEINS Wy -

- -~

(d) Camouflage color (e) Ousio and low (Fih bjecls re

contrast diverse and small
Figure 4.1: Six typical challenges that the FishCLEF-2015 dataset shows, extracted from
[46].

The goal of the creator of this dataset (which was used for a challenge)
is to detect fish belonging to 15 selected species. That is, a fish not belonging to
one of these 15 species is not included in the ground truth labels. This would
cause a serious problem if our goal is to detect the instance of any species of
fish. For example, the binary YOLOVS (trained for fish and non-fish only)

detects quite a number of fish that do not belong to these 15 species.

One solution to this problem is using an extra class verifier that checks
the fish class in the detected bounding box at the end of the detection process.
It eliminates fish outside the specified 15 species. Another solution to the

problem is modifying the ground truth labels to include fish of all kinds.

77

However, these aforementioned solutions are resource-intensive, and
there is difficulty in determining which instances can be considered fish.
Therefore, our proposed method is designed to perform well using the original

ground-truth labels in the experiments.

4.2 EXPERIMENTAL SETUP

The metric used for the experiments is the F1 score. This is because our
design includes a set confidence threshold and has an optimal operating point,
where the F1 score is calculated. Whereas using mAP50, the results are
computed across all possible confidence scores. This does not reflect the
performance of the system, which was designed using a set confidence threshold
(to separate low and high confidence boxes, and supporting boxes also have a

set confidence value assigned).

The confidence threshold is defined by the best validation confidence
threshold when training the YOLOvS model, which returns the best F1 score.
In this case, it is 0.541 (the experiment is explained in Section 4.2). Bounding
boxes lower than this threshold is considered low confidence boxes, and
anything higher is considered high confidence bounding boxes. A detection is
considered successful when the IOU of the prediction box and ground truth is

more than 0.5.

78

The simulations are run with Intel® Xeon® CPU E5-2620 v5 @
2.10GHz. The experiment models for both the original YOLOvS5 and YOLO-
Ang are trained on the NVIDIA GeForce GTX 1080 GPU, which has 2560
CUDA Cores, CUDA version 10.1, 1607 MHz Graphics Clock, 1733 Processor
Clock and 10 Gbps Memory Clock. Stochastic gradient descent with an Adam
optimizer with a learning rate of 0.01 is used, with a momentum of 0.937 and
0.0005 weight decay. 3 warmup epochs are used with 0.8 warmup momentum.
The augmentations used are the default setup from the authors of YOLOVS, with
0.015,0.7,0.4,0.1, 0.5, 0.5, 1.0 probability for hue, saturation, value, translation,
scale, left-right flip and mosaic augmentation, respectively. All the models are
trained on 4 images per batch, with a pretrained YOLOvVS model that was trained

on the ImageNet dataset. The pretrained model can be found in [12].

4.3 YOLOVS BASELINE EXPERIMENT

We trained a baseline model using the original YOLOvVS. Figure 4.2
shows the learning curve for training data and Figure 4.3 for validation data.

These learning curves are to simply show that the model is converging.

train_boxloss train_objloss train_mAP50

0.06 0.6

o 2 os
2 0.04 i@ 0.02 &
2] I

Figure 4.2: Learning curves for training data

79

val_boxloss val_objloss

0.013 4
0.035

0.012 4

loss

i W
0.030 £ 0011

0.025 4 0.010 4

0.009 4

T T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 4.3: Learning curves for validation data

The learning curve for the YOLOVS baseline experiment seems
reasonable, indicating the model is learning properly. The best loss for

lth

validation data was achieved at the 11" epoch. According to how validation loss

increases around the 11t

epoch, it can be said that the training converges around
the 11" epoch. After the 11" epoch, there are signs of overfitting as the training
loss keeps decreasing for validation data while object loss keeps increasing for
validation data. The box loss calculates the IOU of only the prediction boxes
that fall within the target box index; the rest of the boxes are ignored. The
objectness loss predicts the IOU of all prediction boxes. Observing the different
learning curve behaviors of validation box loss and validation objectness loss,
it seems like the model is able to encapsulate the fish object well (if the

prediction box is within the target index) despite having an overfitting issue at

later epochs.

The result of the YOLOVS5 baseline experiment is as follow. The F1 score
for training data is 96% at its best confidence of 0.532 (TP: 7921, FN: 245, FP:
339), and for validation, it is 85% at its best confidence of 0.541 (TP: 832, FN:
155, FP: 136). For testing, a validation best confidence of 0.541 is used, and the
model was able to reach a 59.02% F1 score (TP: 6574, FN: 5115, FP: 4013).

80

4.4 PARAMETER OPTIMIZATION

There are a few adjustable parameters in the post-processing module.
The parameters are set in a way that produces the best result while designing
the algorithm with a few hard sample frames, as mentioned in Section 3.3.3. In

order to make sure these parameters are truly optimal, optimization is conducted.

There are several parameter optimization methods [84]; three will be
explained: grid search, random search, and Bayesian optimization. The first and
one of the most traditional ways is grid search. Grid search is an exhaustive
search that goes through the parameter space. Grid search will ultimately reach
the optimum parameters. However, it suffers from the curse of dimensionality.
Since there are a total of a combination of 8 parameters, with unbounded value
spaces for some parameters, it is computationally unreasonable to perform a

grid search.

Random search replaces exhaustive search with grid search by selecting
the parameters randomly. It can computationally outperform grid search;
however, it risks falling into a local minimum. Despite its simplicity, random
search is generally used as a baseline to compare the performance of new

parameter optimization methods.

Bayesian optimization iteratively evaluates parameter combinations and
performs updates to those parameters so that the parameter configuration can

achieve the best value for an algorithm according to an objective function.

81

According to the papers discussing optimization procedures [85], [86], [87], and
[88], Bayesian optimization achieves better results in fewer iterations compared
to grid and random searches. This is because Bayesian optimization has the
ability to evaluate the quality of experiments before going to the next iteration.
Therefore, Bayesian optimization is used for the parameter optimization.
Particularly, we use the hyperopt library [89], using the F1 score as the objective

function.

Here, in Table 4.1, we describe the adjustable parameters used, their
description, their default values, their range, and the sampling space. Note that
the sampling space uses a normally-distributed range with a mean and standard
deviation. The mean uses the default values, and the standard deviation is shown
in the table. For the clustering module without angle, the parameters are the
same except for parameters a 5 and a 6, which are related to the angle

information and are omitted.

Table 4.1: Parameter values used for clustering and fusion modules

Parameter | Description Default Range Standard
values/mean deviation

Threshold to remove small boxes 0.05 0.001
a_2 Threshold to remove big boxes 0.5 0-1 0.1
al Distance threshold between 2 boxes 20 No limit 10
a4 Linalg distance between boxes withina 1000 No limit 100
cluster
as Threshold for the most similar angle 0.7 0-1 0.1
a6 Standard deviation accepted for group of 0.1 0-1 0.05
angle
IOU cutoff IOU cutoff threshold 0.1 0-1 0.025
Conf cutoff Confidence cutoff threshold 0.001 0-1 0.0001

82

In order to make a fair assessment by avoiding optimizing the testing
data, the optimization algorithm optimizes the parameters in the training and
validation data. Firstly, training and validation data are processed using the
trained YOLOVS and YOLO-Ang models. The outputs are then stored. Then,
with a set of initial parameters, we adjust the parameters by applying the
clustering and fusion modules to the stored output data. The F1 scores are then
calculated based on the final output of the system. Each iteration of the
optimization procedures goes through the whole system, from YOLOVS,
YOLO-Angle, clustering, and fusion modules, and calculates the F1 score of
the final output. The parameters for the first iteration use the default parameters.
Then, during the next iteration, the optimization algorithm will update the
parameters according to the previous iterations’ F1 score, with the goal of

improving the F1 score. We set the maximum number of iterations to 300.

In order to avoid reaching a local optimum, the parameters are
periodically deviated from the usual update direction for certain iterations. If no

improvements are made, the updates will continue in the usual direction.

The optimized parameters belong to the iteration with the highest F1
score. Then, the whole proposed system will use the optimized parameters to
perform tests on the testing data. The results of the tests are shown in Table 4.2.
Parameter optimizations are done on the most basic setting, which is 5/5bb (trail
Sformulation using 5 frames and bounding boxes from 5 frames), with trail
addition using YOLO-Ang trained with angle, and with clustering module using
angle.

83

Table 4.2: Optimized parameter performance: trail image with addition method, trained
with angle data, cluster module with angle data

IOU_ |conf cut{F1 (improvement)
model 1 b2 3 it o3 b6 Laly Tl poie e

5f5bb 0.050 0.37 0.00 1123.19 0.60 0.01 0.09 0.0009 59.02 (+0)

It seems there were barely any improvements. This might be because
optimization procedures are done to set the parameters of the clustering and

fusion modules.

Optimizing the training and validation data would mean optimizing the
output of the YOLOvVS5 model on the training and validation data. Since the
model is trained on the training data, its original YOLOvVS output’s F1 score
already reached 96% on training data and 85% for validation data, which leaves

little space for further improvements.

Therefore, the assumption is that when the addition support box is
introduced, it is unlikely to be an extra True Positive and most likely to introduce
a False Positive which brings down the F1 score. The optimization procedure
then sets the parameters in such a way that no additional support boxes are
introduced to preserve the already high F1 score for the training and validation
data. At the end of optimization, the auxiliary system parameter values are
selected to produce no extra support bounding boxes, which practically disables
the functionality of the auxiliary system. Therefore, clearly, we can predict that
this optimization procedure is not able to produce “improvement” since no extra

support boxes are generated.

84

Since optimizing parameters results in almost no improvements, we use
the default parameters throughout the rest of the experiments. Since the default
parameters were manually set based on a few hard samples. It can be said that
the optimization process proved that the manually set parameters performed

best.

4.5 TRAIL IMAGE FORMULATION AND YOLO-ANG
CONFIGURATION

There are 2 types of trail image formulation, as explained in Sections
3.1.1.1 and 3.1.1.2. The first type is to use the addition method to merge frame
differences into a single frame, and the second type is to use the overlapping
method. For each type of trail image formulation, there are 2 types of
configurations of YOLO-Ang. It can be specified by two numbers denoted by £,
the number of frames to construct trail images, and bb, the number of bounding
boxes’ frames. The first number is the number of frames that make up a trail
image in the trail formulation module. The second number is the number of
frames that contain the predicted bounding boxes (objects). Let frame #1 be the
current frame, and frame #4 be the frame 3 frames before the current frame. For
example, frames #1 to #4 are used to construct a trail image, but the detector
predicts the bounding boxes belonging to only frames #1 to #3. Thus, in this
example, the first number is 4, and the second number is 3, 4/3bb. The first
configuration of YOLO-Ang is nf{n-1)bb, and the second is nfnbb. The rest of
the parameters used in the auxiliary system are at their default values, which

were set during the design of the algorithm. The improvement refers to the

85

percentage improvement from the original YOLOVS.

Figures 4.4 and 4.5 show the learning curves of training and validation
data, respectively, for model 4/4bb, while Figures 4.6 and 4.7 show the learning
curves of training and validation data, respectively, for model 5/5hb, and
Figures 4.8 and 4.9 show the learning curves of training and validation data,

respectively, for model 6f6bb.

train_boxloss train_objloss train_agloss train_mAP50
0.05 1 0.30 0.25
0.07 . i
5
]
gr:ma 2004. 2 D oas
200 = =
= 020 0.10
0034
0.04 015 0.05
0 50 100 0 50 100 o 50 100 0 50 100
epach epoch epoch epock

Figure 4.4: Learning curves on training data for model 4f4bb

val_boxloss val_agloss val_objloss
0.0350

0.055 - 012 6558
% 0.050 1 g 9107 | % 0.0300
= < 0.08 =

0.045 - 0.0275

0.06 4
0.040 4 : ; ; 0.0250 1, J
0 50 100 0 50 100 0 50 100
epoch epoch epoch
Figure 4.5: Learning curve on validation data for model 4f4bb
train_boxloss train_objloss train_agloss train_mAPS50
007 0.30 025
0.05 4
o " § o g0
£ 005 £ o004 g % 015
0.20 B
0.04 0.104
53 003 | 015
o 50 100 [+] 50 100 6 5’0 ‘AD'O L] 50 160
epoch epoech epoch epoch

Figure 4.6: Learning curves on training data for model 5f5bb

86

val_boxloss val_agloss val_objloss
0.0500 0.14
0.0475 0.12
0.035
2 0.0450 n 010 2
2 2 2
0.0425 - 0.08 1
0.030 4
0.0400 L
0 50 100 0 50 100 0 50 100
epoch epoch epoch

Figure 4.7: Learning curves on validation data for model 5f5bb

train_boxloss train_objloss train_agloss train_mAP50
0.07 0.06 0.30
0.15
, 00 2 005 025 2
< 0.05 = =] £ 010
0.04 0.20
0.04
aE 0.15 0.05
1) 50 100 o 50 100 0 50 100 [} 50 100
epoch epach epoch epoch
Figure 4.8: Learning curves on training data for model 6f6bb
val_boxloss val_agloss val_objloss
0.055 4 0.14 A 0.0425 4
0.12 A
“ o a 0.0400
2 0.050 1 2 0.10 A 2
0-10 0.0375
081 0.0350
Q0S| T T T 0.06 T T T T T T
0 50 100 0 50 100 0 50 100
epoch epoch epoch

Figure 4.9: Learning curves on validation data for model 6f6bb

Some insights that can be derived from the learning curve are that, the
models are trained correctly, which means they are learning properly, with loss
values gradually decreasing after every epoch in the training phase. It can also
be observed that model overfitting usually occurs after the 50" epoch (except
for 6/6bb, where it happens at epoch 29) as loss values start to increase in the

validation set.

The best loss for validation data reached for model 4/4bb is at epoch 64;

for model 5f5bb, it is at epoch 57; for model 6f6bb, it is even lower at epoch 29.
87

According to the training data for all the models, the loss for all models
gradually lowers; however, overfitting might occur as the validation curve saw
a gradual increase in object-ness loss after the best loss epoch, and as for angle
loss, after the initial decline in loss, the decline is not stable with frequent spikes.
For box loss, the decline is more consistent. For each model using 4/4bb, 5/5bb,
and 6f6bb, the F1 score for training data is 87%, 87%, and 82%, respectively;
however, for validation data, there is quite a gap, at 63%, 64%, and 54%,

respectively.

Comparison between result of Addition vs
Overlap Method
0.55
—&— Overlap
0.5 Method
T 0.45 | . —e— Addition
o e Method
=
o 04
0.35
0.3
2000 2500 3000 3500 4000 4500
No. Extra Boxes

Figure 4.10: Comparison between the addition and overlap methods

The figure above (Figure 4.10) are trends derived from the ablation
study between the addition and overlap trail formulation methods. The raw data
can be found in the Appendix chapter. The above figure’s y-axis shows the ratio
between extra TP boxes and total extra boxes generated by the auxiliary system.

Naturally, a higher value indicates a better F1 score. The x-axis shows the

88

number of extra boxes generated.

From the figure, it is easy to see that the addition trail formulation
method consistently performs better than the overlap trail formulation method.
A hypothesis of such phenomena is that, despite addition suffering from mixed
signals, the neural network was able to cope with them. An insight into this
observation is that “subjective neatness” (overlap image trail formulation results

are “cleaner” subjectively) does not translate to better CNN performance.

We can conclude that overall, despite the number of FP cases increasing,
the overall TP cases increase as well, and the overall FN cases decrease.
Therefore, in the end, the overall F1 score increases. In the 5/5bb trail image
with the addition method, the auxiliary system reduces 1485 FN samples, which
achieves the target of our design. That is, the auxiliary system provides an
additional 1485 TP samples, although it also introduces an additional 1435 FP
samples. Thus, the number of total TP samples is increased to 8059, the total FP
samples are increased to 5448, and the total FN samples are reduced to 3660. In
the end, the F1 score is 63.97%, 4.95% higher than the original YOLOVS

without the proposed auxiliary system.

However, the more boxes generated does not translate to a better TP over

the total box ratio. If there are more than 3.5k extra boxes generated, the TP over

total box ratio starts to decline rapidly for both trail formulation methods.

89

The highest F1 score improvement is at 4.95% with model 5/5bb using
the addition method. Therefore, the addition method seems to give better
performance for default parameters, although the overlap method is not far off,
with a difference in improvement scores of about 0.3%. It is interesting to see
that the F1 score has a larger variation for the addition trail images compared to
the overlap trail images. In summary, Table 4.3 shows a summary of the best-

performing model for addition and overlap methods.

Table 4.3: Summary of best-performing models for different trail formulation methods.

Trail Formulation | Best F1 score Extra TP | Extra
Method model (improvement) FP
Addition 5f5bb 63.97 (+4.95) 1485 1435
Overlap 5f5Sbb 63.66 (+4.64) 1642 1894

4.6 OMITTING ANGLE INFORMATION IN YOLO-ANG AND
CLUSTERING

Angle information is used in 2 parts of the proposed scheme. One is in
training the YOLO model; another one is in the clustering module. In order to
test the contribution of angle information to the improvement of overall
accuracy, angle information is omitted in each of the above two parts, and the

results are compared with when it is included.

Essentially, we have two types of YOLO models for two types of
auxiliary systems that reduce false positives. For the first model, we construct

ground-truth with the angle information to train the proposed YOLO-Angle.

90

YOLO-Angle outputs the predicted angles in the inference phase. For the
second model, the ground-truth does not include the angle information in
training; that is, we use the trail images to train the original YOLOvVS
architecture with multiple classes (classes are the frame indexes of bounding
boxes) instead of the proposed YOLO-Angle. The output of the second model
does not include any angle information. In the inference phase, both models

accept the same trail image as input.

Two types of clustering module variations are designed to test the
contribution of angle information. The first one is a combination of a no-angle
YOLO detector with a no-angle clustering module. The second is YOLO-Angle
with a no-angle clustering module. It is not possible to test the no-angle YOLO
detector together with the with-angle clustering module. Raw data of the
comparison of the original proposed method and the above two variations,
which include the angle in the YOLO detector and clustering module, with both
nf(n-1)bb and nfnbb trail image formulations, respectively, can be found in the
Appendix. As explained before, the total value of TP and FP adds extra TP and
extra FP (from the auxiliary system) to the results from the original YOLOv5
RGB output. While the total FN is the original YOLOvS RGB output FN,

subtract the extra TP produced by the auxiliary system.

91

4.8
4.6
€ 44
@
£
Y42
2
Q.
£ 4
e
§ 3.8
— m Addition
'-; 3.6
iy M Overlap
S 3.4
3.2
3
AA AX XX
Angle Setting:
AA(Angle training, with angle clustering),
AX(Angle training, without angle clustering),
XX(without angle training, without angle clustering)

Figure 4.11: Comparison between different angle settings

Figure 4.11 shows a bar chart that compare different angle settings with
the mean F1 score achieved. Essentially, all ablation results using the same angle
setting are averaged to produce the final mean F1 score. For example, F1 scores
of ablation studies from 7 different numbers of frames (3/-9f), with 2 types of
numbers of bounding boxes (nfnbb and nf(n-1)bb), from a single trail
formulation method (exp: Addition), are added together and divided by 14, to

produce a single bar.

From observation, generally, when there is no angle involved in both
the YOLO detector and clustering module, there is the least amount of F1 score
improvement compared to the other 2 settings that have angle involvement.

However, when YOLO-Angle replaces the ordinary YOLO to detect train trail

92

images, but the output angle information is not used in the clustering module,
there is a slight improvement in accuracy compared to using angle for both
modules. One possible reason as to why omitting angle information in the
clustering module produces better result is that: choosing a potential box from
a cluster based on confidence scores is more reliable than picking 2 boxes that
are furthest away from each other within a cluster, and picking the box based on
angle direction. Therefore, the best setting is to use angle information while

training YOLO-Angle and omit angle information in the clustering module.

The figures below (Figure 4.12, Figure 4.13) are graphs of different
models using different trail formulation methods under default parameters.
The y axis represents the value of F1 score improvement, and the x axis
represents the number of frames used to construct a single trail image. The
brackets within each series in the legend show if angle information is used
during trail image training and also if angle is used in the clustering module.
“withag” means angle is used during the training of trail images, while
“NOag” means angle is not used. “withagcl” means angle is used in the

clustering module, while “NOagcl” means it is not used.

93

Trail Formulation: Addition

i
c 7

£)

L B e S
[e] _-”! - L v ' =
g3 &&= &

° - .

£ i

(&)

[¥5]

i 3 4 5 6 7 8 9

Number of frames to make one representation frame

@ nf(n-1)bb (withag, withagcl) =@ nf(n-1)bb (withag, NOagcl)
@ nf(n-1)bb (NOag, NOagcl) nfbb (withag, withagcl)
- -@ - nfbb (withag, NOagcl) - @ - nfbb (NOag, NOagcl)

Figure 4.12: Results of different models under default parameters for the addition

method.

Trail Formulation: Overlap

=
QEJ7
B eme
[Sl -® -

5 v —y— g e e S
3 $ e —"
o W =9
£ 3
o
O 1
A
o -1 3 4 5 6 7 8 9

Number of frames to make one representation frame

@ nf(n-1)bb (withag, withagcl) =@ nf(n-1)bb (withag, NOagcl)
@ nf(n-1)bb (NOag, NOagcl) nfbb (withag, withagcl)
- @ - nfbb (withag, NOagcl) - -@& - nfbb (NOag, NOagcl)

Figure 4.13: Results of different models under default parameters for the overlap method.

The above 2 line-graphs plots the relationship between the number of

frames and the improvement of the F1 score at different angle settings. It shows
that the absence of angle information seems to amplify the effects of f'and bb,

where the difference of extra bounding boxes between 3f and 5f is the largest

94

when there is no angle information involved in both components for the addition
method; it is less obvious in the overlap method. Also, the peak performance
moves to slightly higher frame numbers in trails. For trails formed by the

addition method, the best F1 scores appear at 8f7bb and 6f6bb.

Angle information in training might affect the detection accuracy of trail
images; therefore, some visualization, as shown in Figure 4.14, is presented to
see the difference in the output between with angle training and without angle
training for detecting the trail images. Generally, the settings that achieve the
best result are trail formulation using the addition method and nfnbb trained
with YOLO-Ang, where the clustering module does not use angle. The best
number of frames that achieve the highest F1 score improvement is 6/6bb at
5.28%. It is also observed that using trail formulation training with angle, the
clustering module without angle works better than the one with angle
information. Also, the results start deteriorating around 77, where results for 97
consistently have obvious deterioration for all types of settings. The results also
show that the auxiliary system is able to detect difficult samples of fish, that the

original YOLOVS was not able to detect.

95

Ground
truth

With
angle

No angle

With
angle

No angle

Figure 4.14: Difference in output between with and without training with angle data for
trail images

Figure 4.14 shows that, subjectively, the trained trail image detector with
angle is able to detect less obvious frame differences (pixels with lower
brightness). This might be the reason why training with angle trail images is
able to produce more supporting boxes; thus, increasing the chances of
overlapping with a correct low confidence box, which leads to an increase in TP

and ultimately, F1 score.

96

Different Angle setting vs Avg No. of Support Boxes

o]

8

S5 3400
el

2 3200
o

£ 3000
o

S 2800
+

5 2600
8

S 2400
w

g 2000
@ AA AX XX
z

Angle Setting:

AA(Angle training, with angle clustering),

AX(Angle training, without angle clustering),
XX(without angle training, without angle clustering)

Figure 4.15. Relationship between different angle settings and the average number of

support boxes produced

Figure 4.15 above shows that fewer supporting bounding boxes are
generated when the YOLO detector is trained without an angle ground-truth.
Another possible reason is that simply having extra information enables the
model to learn better features. Ultimately, through the results shown in later
subsections, despite not having a subjectively significant difference between
training with and without angle, the observation that performance is better using

images trained with angle is consistent.

97

4.7 REPLACING TRAIL FORMULATION BY MHI

The main difference between general MHI and the proposed trail image
formulation module can be explained in the HSV color space. For MHI, the
frame differences are expressed in a one-channel grayscale; thus, only the V
channel is providing information. Time encoding is represented in terms of a
decay function, which is updated solely on the V channel. To further explain,
the V channel provides both time information and the location of movement.
The MHI, expressed as Hz(x, y, f), defined by equation (4-1) (which is based on
[16]), where (x,y) and ¢t represents position and time ¥(x,y,t) is the update
function; it represents the moving pixels of an object in the current frame.
T represents the temporal extent, which can also be explained as the number of

frames used to form a single MHI, and § is the decay parameter:

. 255 if¥xyt)=1 1
T(x, Y, t) = { max (0’ HT(X, y,t— 1) - 5) otherwise (-1

To begin, the frame differences of the whole temporal extent of RGB
frames are converted to grayscale. Then, the OTSU threshold is used to binarize

the grayscale images. Then, the decay parameter is subtracted from the pixels

255
of the binarized image (& = T) The result is a one-channel MHI frame,

where the brighter pixels are the more recently moving pixels and vice versa.

98

For the trail image formulation module, since there is no binarization,
both H and V channels are providing information; time encoding is represented
as a change in hue values. To further explain, the H channel provides time
information, while the V channel provides both the location of movement and
the magnitude of the difference of a single pixel, which can be interpreted as
preserving the representation of fish texture. In short, trail image formulation
provides 3 types of information, whereas MHI only provides 2 types. Table 4.4

below summarizes the differences.

Table 4.4: Summary of the differences between trail image formulation and general MHI

Method Types of information

Trail image Time (H), movement location (V), magnitude of
formulation [proposed | pixel difference (V)

method]

General MHI Time (V), movement location (V)

In order to test the effectiveness of providing intensity of movement
information, the MHI method replaces the trail formulation module in this
experiment. Figure 4.16 illustrates the creation of MHI. The OTSU
binarization method is chosen due to its ability to dynamically set a different
threshold depending on the conditions of the frame. This is useful for offshore
underwater conditions, which have constant changes throughout the whole
frame. Since MHI only has one channel, the first layer of YOLO-Ang can be
changed to accept one channel input, thus lowering computational complexity.
Steps to generate MHI used by the auxiliary system are shown in Figure 4.16.
In this figure, the binarized values of the support function (image) are 0 and

255 (“255” indicates value “1” in binarization) for display purposes.

99

(t-n)

Frame difference

|

Binarization with
OTSU threshold

|

Apply decay

For each pixel, choose the frame with max pixel value

|

Final MHI sample image

Figure 4.16: Flowchart and visualization of constructing an MHI image

The experiments that test the effectiveness of angle information are also
tested with the MHI method to make a fair comparison. Raw results of MHI
ablation studies can be found in the Appendix chapter. A line graph is plotted
(Figure 4.17) to summarize the results of the trail formulation method using

MHI.

100

Trail Formulation: MHI

=

s 7

=

25

24 S ® I -
S e 3
©

s 1

(9]

v

N | 3 4 5 6

Number of frames to make one representation frame

®— nf(n-1)bb (withag, withagcl) =—®— nf(n-1)bb (withag, NOagcl)
®— nf(n-1)bb (NOag, NOagcl) nfbb (withag, withagcl)

- -®& - nfbb (withag, NOagcl) - -® - nfbb (NOag, NOagcl)

Figure 4.17: Results of different models under default parameters for the MHI method

It seems that generally, using MHI lowers the improvement on the F1
score. The accuracy starts deteriorating around 5f. The maximum F1 score
improvement using MHI under the default parameter values is around 3.78%,
which is 1.5% lower than the proposed trail image formulation using the
addition method. Using MHI seems to increase the number of FP to the point
where they are greater than TP, generating up to 3696, as compared to 2560 for
trail image formulation using the overlap method. Table 4.5 shows the summary
of the best-performing models of different trail formulation methods and their

corresponding configurations.

Table 4.5: Summary of best-performing models of different trail formulation methods and
their corresponding configurations

Trail Best Trail image | Cluster F1 score CS NCS
angle module (improvement) | e(P*FP)-NetNet) | (CS x
status angle status Pr)

No

64.3 (+5.28) 0.561 0.393

formulation | model
method

Addition 6f6bb
Overlap 5fSbb Yes No 64.09 (+5.07) 0.567 0.397
MHI 4f3bb No No 62.61 (+3.59) 0.542 0.369

101

Table 4.6 shows a summary of other fish detection models’ performance.
These works were selected because the dataset and performance metrics used
are similar to ours (LCF-15 and F1 score). There are other fish detection models
that are not mentioned here and have been summarized in Table 2.2 in Section

2.3.5.

Similar to our proposed method, most state-of-the-art fish detection
models are developed on existing baseline models. A comparison is made using
the amount of improvement each state-of-the-art method achieved in relation to
their respective baseline model. As can be seen in the table below, our proposed

method achieved the highest amount of F1 score improvement at 5.28%.

Table 4.6: Selected works for comparison

Method Standard Dataset and description F1 Baseline Amount of
baseline model Accuracy | Accuracy | improvement|

Hybrid R-CNN LCF-15 [with extra ROI images 80.02% 77.30% 2.72%
System [28] included]

* Complex background

* Blurry scenes

* Varying illumination

Faster R- Faster R-CNN LCF-15 [with extra ROI images 80.22% 78.78% 1.44%
CNN + included]
Shared RPN * Complex background
fusion [27] * Blurry scenes

* Varying illumination
YOLO + YOLO LCF-15 [with extra ROI images 95.47% 90.67% 4.80%
GMM [26] included]

* Complex background

* Blurry scenes

* Varying illumination
Our proposed YOLOvVS LCF-15 [without extra ROI 64.30% 59.02% 5.28%%
method images included]

* Complex background
* Blurry scenes
* Varying illumination

102

4.8 COMPUTATIONAL COMPLEXITY

A set of randomly picked sequences of 50 frames is used to calculate a
comparison of the time-space complexity of different variations; it is recorded
in Tables 4.7 to 4.9. The 5/5bb tframe setting for trail image construction is used
throughout all methods for a fair comparison. Using the “tracemalloc” library

for allocated memory size and the “timeit” library for run time measurement.

There is a trade-off between computational cost and accuracy
improvement. Further work can be done to optimize code to reduce the trade-
off gap. We use the library thops by L.Zhu [90] to compute the GFLOPs of the
model. Note that for every YOLOVS version, the GLOPs vary slightly; for
example, in the v3 commit [91], the GFLOPs are at 39.4, while for another
version in v4 [92], the GFLOP is at 51.3. The commit that is used in this project
is within the many commits in v4 [93], and the GLOP is at 51.3. Note that the
trail formulation module, clustering module, and fusion module are all run on

the CPU, while variants of the YOLO model are run on the GPU.

Table 4.7: Computational complexity of different variations for trail formulation methods

Trail Formulation | Addition Overlap MHI
Method (on CPU)

Time (average of 50) 0.005 0.008 0.002
Memory size (MB) 4.7 13.9 3.08

103

Table 4.8:

Computational complexity of YOLOvS and proposed variants

YOLO
Type
(on
GPU)

YOLOv5

YOLOv5

YOLO_
Ang

YOLOvV5_single

channel (For MHI)

YOLO_Ang s
ingle channel
(for MHI)

For RGB

For trail image

No. of
param
eters
(M)

21.0

21.0

211

21.0

21.0

GFLO
PS

51.3

51.3

51.5

49.6

49.8

Memo
ry size

(MB)

737

802

802

739

739

Infere
nce
time
(avera
ge of

50)

0.021 (s)

0.023 (s)

0.024 (s)

0.022(s)

0.025(s)

Table 4.9: Computational complexity of different clustering and fusion methods

Clustering type (on CPU) With angle | Without angle
Inference time (average of 50) 0.020 0.016
Memory size (MB) 0.2 0.5

Fusion (on CPU)

Inference time (average of 50) 0.004

Memory size (MB) 0.2

The proposed system introduces some additional complexity and an

increase in inference time, with YOLO_Ang, trail formulation using the overlap

method, and with-angle clustering time taking up the most resources. The best-

performing model, which is to use YOLO_Ang with addition trail formulation,

and without-angle clustering, can reach up to 20 fps (frames per second). While

the original YOLOVS can reach up to 47 fps. The best-performing model can

offer an F1 score improvement of 5.28% compared with the original YOLOVS.

Future work may further improve efficiency.

104

Figure 4.18 shows some samples of successful cases where the auxiliary
system helps detect fish that the original YOLOVS fails to detect. We use the
best model, which is the trail image with addition method, using angle training

without an angle clustering module, with a 6f6bb model with default parameters.

The first column shows the ground truth, the second column shows the
trail image bounding boxes with different colored boxes representing different
frames’ boxes, the third column shows the clustering result after the clustering
module, and the last column of blue bounding boxes shows the original
YOLOVS high confidence boxes, while the yellow box shows the supporting
boxes that were produced by the auxiliary system. As can be seen in the figure,
the auxiliary system is able to detect previously undetected fish; however, it also

introduces a few false positives.

105

Figure 4.18: Sample cases where an auxiliary system helps with detecting previously
undetected fish. From left row to right, ground truth boxes, trail image YOLO-Ang
output; clustering module output, final output (the green box is from the auxiliary system;
the blue box is the high-confidence detection from the original YOLOVS)

106

CHAPTER 5

CONCLUSION

For the task of underwater fish detection, the YOLOvVS architecture is
able to detect fish; however, there is some room for improvement, especially
on the number of FNs. The proposed method integrates an auxiliary system
with the original YOLOVS. The auxiliary system is successful in decreasing
the number of FN, albeit introducing some FP. The overall F1 score has

improved by 5.28%.

This auxiliary system provides information to select low-confidence
bounding boxes produced by YOLOVS, and thus it produces additional
candidates (bounding boxes) for reducing FN probability. The proposed
auxiliary system consists of three modules: Trail Image Formulation module,
YOLO-Ang detector, and Clustering-module (with Fusion module). The Trail
Image Formulation module borrows some concepts from MHI, where the
frame differences of a sequence of frames are merged into a single frame, and
thus the temporal information is exploited. There are a few variations of the
Trail Image Formulation module: 1) Addition method, 2) Overlap method and
3) MHI. After some thorough testing, it was concluded that the addition

method generally gives better performance.

107

The auxiliary system is trained on a dataset produced by the Trail
Image Formulation module. The detector of the auxiliary system is a
modification of YOLOVS and is called YOLO-Ang. The YOLO-Ang accepts a
trail image as input and produces bounding boxes of the same object in
different frames. In addition, the proposed YOLO-Ang can produce angle
information associated with the aforementioned bounding boxes. The outputs
from YOLO-Ang often contain redundant bounding box candidates. Hence, a
clustering-module is designed to merge redundant boxes and generate the
supporting bounding boxes. A simple Fusion module uses the supporting
boxes to pick up the low-confidence bounding boxes generated by the original
YOLOVS. There are various settings with the clustering-module that are tested
as well. It was found that training YOLO-Ang with angle and using
confidence scores to select the final support box for the clustering-module

performed the best.

In the future, code optimization for the Trail Image Formulation

module, clustering-module and fusion module can be done to increase the

inference speed and reduce the computational complexity.

108

BIBLIOGRAPHY

[1] A. A. dos Santos and W. N. Gongalves, ‘Improving Pantanal fish
species recognition through taxonomic ranks in convolutional neural

networks’, Ecological Informatics, vol. 53, p. 100977, 2019.

[2] N. Jayachandra and A. R. Kamal, ‘A novel framework for automated
image set preparation for moving objects in under water videos’, International

Journal of Applied Engineering Research, vol. 12, pp. 5137-5145, 01 2017.

[3] G. Cutter, K. Stierhoff and J. Zeng, "Automated Detection of Rockfish
in Unconstrained Underwater Videos Using Haar Cascades and a New Image
Dataset: Labeled Fishes in the Wild," 2015 IEEE Winter Applications and
Computer Vision Workshops, Waikoloa, HI, USA, 2015, pp. 57-62, doi:
10.1109/WACVW.2015.11.

[4] S. Zhao et al., ‘Application of machine learning in intelligent fish

aquaculture: A review’, Aquaculture, vol. 540, p. 736724, 04 2021.

[5] S. Siddiqui et al., ‘Automatic fish species classification in underwater
videos: Exploiting pretrained deep neural network models to compensate for

limited labelled data’, ICES Journal of Marine Science, vol. 75, 05 2017.

[6] W. Xu and S. Matzner, “‘Underwater Fish Detection Using Deep
Learning for Water Power Applications,” MTS/IEEE OCEANS 2018
Charleston, Charleston, SC, USA, 2018, Dec. 01, 2018.

[7] V. Shevchenko, T. Eerola and A. Kaarna, "Fish Detection from Low
Visibility Underwater Videos," 2018 24th International Conference on Pattern
Recognition (ICPR), Beijing, China, 2018, pp. 1971-1976, doi:
10.1109/ICPR.2018.8546183.

[8] A. B. Tamou, A. Benzinou, K. Nasreddine, and L. Ballihi, ‘Underwater
Live Fish Recognition by Deep Learning’, in Image and Signal Processing,

2018, pp. 275-283
109

[9] M. -C. Chuang, J. -N. Hwang and K. Williams, "A Feature Learning
and Object Recognition Framework for Underwater Fish Images," in IEEE

Transactions on Image Processing, vol. 25, no. 4, pp. 1862-1872, April 2016,
doi: 10.1109/TIP.2016.2535342.

[10] A.Jolyetal., ‘LifeCLEF 2015: Multimedia Life Species Identification
Challenges’, in Experimental IR Meets Multilinguality, Multimodality, and
Interaction, 2015, pp. 462—4383.

[11] R.B. Fisher, K.-T. Shao, and Y.-H. Chen-Burger, ‘Overview of the
Fish4Knowledge Project’, in Fish4Knowledge: Collecting and Analyzing

Massive Coral Reef Fish Video Data, R. B. Fisher, Y.-H. Chen-Burger, D.

Giordano, L. Hardman, and F.-P. Lin, Eds. Cham: Springer International

Publishing, 2016, pp. 1-17.

[12] G. Jocher, “ultralytics/yolov5,” GitHub, Aug. 21, 2020.
https://github.com/ultralytics/yolov5

[13] C. Cortes and V. N. Vapnik, ‘Support-Vector Networks’, Machine
Learning, vol. 20, pp. 273-297, 1995.

[14] D. H. Ballard, ‘Generalizing the Hough transform to detect arbitrary
shapes’, Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981.

[15] C. G. Harris and M. J. Stephens, “A Combined Corner and Edge Detector,”
in Proceedings of the Alvey Vision Conference 1988, Manchester, UK, 1988,
doi: https://doi.org/10.5244/c.2.23.

[16] D. Lowe, ‘Distinctive Image Features from Scale-Invariant Keypoints’,

International Journal of Computer Vision, vol. 60, pp. 91-110, 11 2004.

[17] P. Violaand M. Jones, "Rapid object detection using a boosted cascade
of simple features," Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai,

HI, USA, 2001, pp. I-1, doi: 10.1109/CVPR.2001.990517.

110

[18] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886-893 vol.
1, doi: 10.1109/CVPR.2005.177.

[19] A.Krizhevsky, I. Sutskever, and G. E. Hinton, ‘ImageNet
Classification with Deep Convolutional Neural Networks’, Commun. ACM,
vol. 60, no. 6, pp. 84-90, May 2017.

[20] P. Soviany and R. T. Ionescu, "Optimizing the Trade-Off between
Single-Stage and Two-Stage Deep Object Detectors using Image Difficulty
Prediction," 2018 20th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 2018,
pp. 209-214, doi: 10.1109/SYNASC.2018.00041.

[21] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”" 2014
IEEE Conference on Computer Vision and Pattern Recognition, Columbus,

OH, USA, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

[22] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448, doi:
10.1109/ICCV.2015.169.

[23] S.Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," in IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1
June 2017, doi:

[24] W. Liu et al., ‘SSD: Single Shot MultiBox Detector’, in Computer
Vision -- ECCV 2016, Amsterdam, The Netherlands, 2016, pp. 21-37, doi:
10.1007/978-3-319-46448-0 2

111

[25] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[26] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger,"
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 2017, pp. 6517-6525, doi: 10.1109/CVPR.2017.690.

[27] J. Redmon and A. Farhadi, “YOLOvV3: An Incremental Improvement’,
arXiv e-prints, p. arXiv:1804.02767, Apr. 2018.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘YOLOv4: Optimal
Speed and Accuracy of Object Detection’, ArXiv, vol. abs/2004.10934, 2020.

[29] T. Liang et al., "CBNet: A Composite Backbone Network Architecture
for Object Detection," in IEEE Transactions on Image Processing, vol. 31, pp.

6893-6906, 2022, doi: 10.1109/TIP.2022.3216771.

[30] J. Wang, K. Chen, R. Xu, Z. Liu, C. C. Loy and D. Lin, "CARAFE:
Content-Aware ReAssembly of FEatures," 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp.
3007-3016, doi: 10.1109/ICCV.2019.00310.

[31] S.Liu, L. Qi, H. Qin, J. Shi and J. Jia, "Path Aggregation Network for
Instance Segmentation," 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759-8768, doi:
10.1109/CVPR.2018.00913.

[32] M. Sung, S. -C. Yu and Y. Girdhar, "Vision based real-time fish
detection using convolutional neural network," OCEANS 2017 - Aberdeen,

Aberdeen, UK, 2017, pp. 1-6, doi: 10.1109/OCEANSE.2017.8084889.

[33] S.Liuetal., "Embedded Online Fish Detection and Tracking System
via YOLOV3 and Parallel Correlation Filter," OCEANS 2018 MTS/IEEE

112

Charleston, Charleston, SC, USA, 2018, pp. 1-6, doi:
10.1109/0CEANS.2018.8604658.

[34] C.Lietal., ‘YOLOv6: A Single-Stage Object Detection Framework
for Industrial Applications’, ArXiv, vol. abs/2209.02976, 2022.

[35] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOvV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors’, arXiv

[cs.CV]. 2022.

[36] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” GitHub,
Jan. 01, 2023. https://github.com/ultralytics/ultralytics

[37] J. Terven and D. Cordova-Esparza, ‘A Comprehensive Review of

YOLO: From YOLOvV1 and Beyond’, arXiv [cs.CV]. 2023.

[38] S. Goled, “How does YOLOvV6 compare against YOLOv5?,” Analytics
India Magazine, Jul. 01, 2022. https://analyticsindiamag.com/how-does-
yolov6-compare-against-yolov5/ (accessed Apr. 18, 2023).

[39] T. Davies, “MT-YOLOV6: A YOLO-Inspired Object Detection Model
Released,” W&B, Jun. 27, 2022. https://wandb.ai/telidavies/ml-
news/reports/MT-Y OLOvV6-A-YOLO-Inspired-Object-Detection-Model-
Released--VmlldzoyMjMzMzI5 (accessed Apr. 18, 2023).

[40] S.Rath and V. Gupta, “YOLOVS vs YOLOvV6 vs YOLOV7:
Comparison of YOLO Models on Speed and Accuracy | CPU & GPU,”
learnopencv.com, Nov. 29, 2022. https://learnopencv.com/performance-
comparison-of-yolo-models/#Performance-Comparison-of-Y OLO-Models-

for-mAP-vs-FPS (accessed Apr. 18, 2023).

[41] S. Rath, “YOLOvV6 Object Detection — Paper Explanation and
Inference,” learnopencv.com, Oct. 11, 2022. https://learnopencv.com/yolov6-
object-detection/#What%E2%80%99s-New-in-YOLOv6? (accessed Apr. 18,
2023).

113

[42] A.A.Muksit, F. Hasan, M. F. Hasan Bhuiyan Emon, M. R. Haque, A.
R. Anwary, and S. Shatabda, ‘YOLO-Fish: A robust fish detection model to
detect fish in realistic underwater environment’, Ecological Informatics, vol.

72, p. 101847, 2022.

[43] J.Jager, E. Rodner, J. Denzler, V. Wolff, and K. Fricke-Neuderth,
‘SeaCLEF 2016: Object Proposal Classification for Fish Detection in
Underwater Videos’, in Conference and Labs of the Evaluation Forum, Evora,

Portugal, 2016.

[44] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The Pascal Visual Object Classes (VOC) Challenge’, Int. J. Comput. Vision,
vol. 88, no. 2, pp. 303-338, Jun. 2010.

[45] Y. Wang, Q. Wang, S. Jin, W. Long, and L. Hu, ‘A Literature Review
of Underwater Image Detection’, 02 2022.

[46] Z.Zhao, Y. Liu, X. Sun, J. Liu, X. Yang and C. Zhou, "Composited
FishNet: Fish Detection and Species Recognition From Low-Quality
Underwater Videos," in IEEE Transactions on Image Processing, vol. 30, pp.

4719-4734, 2021, doi: 10.1109/T1P.2021.3074738.

[47] T. Tahnim, M. M. Uddin Munna and S. M. M. Ahsan, "HOG and Color
Texture Salience: An Expedient Descriptor for Bangladeshi Fish Recognition,"
2022 International Conference on Advancement in Electrical and Electronic
Engineering (ICAEEE), Gazipur, Bangladesh, 2022, pp. 1-4, doi:
10.1109/ICAEEE54957.2022.9836353.

[48] J.Leand L. Xu, ‘An Automated Fish Counting Algorithm in
Aquaculture Based on Image Processing’, in Proceedings of the 2016
International Forum on Mechanical, Control and Automation (IFMCA 2016),
2017, pp. 358-366..

[49] L. Yanand X. Xiang, “Application of k-NN based on Kernel in
underwater target recognition,” Journal of Applied Acoustics, vol. 38, no. 3,

pp. 448-451, 2019.
114

[50] Y.-H. Hsiao, C.-C. Chen, S.-I. Lin, and F.-P. Lin, ‘Real-world
underwater fish recognition and identification, using sparse representation’,

Ecol. Informatics, vol. 23, pp. 13-21, 2014.

[51] S.Palazzo and F. Murabito, ‘Fish Species Identification in Real-Life
Underwater Images’, in Proceedings of the 3rd ACM International Workshop
on Multimedia Analysis for Ecological Data, Orlando, Florida, USA, 2014, pp.
13-18.

[52] P.Zhuang, L. Xing, Y. Liu, S. Guo, and Y. Qiao, ‘Marine Animal
Detection and Recognition with Advanced Deep Learning Models’, in

Conference and Labs of the Evaluation Forum, Dublin, Ireland, 2017.

[53] X.Li, M. Shang, J. Hao, and Z. Yang, “Accelerating fish detection and
recognition by sharing CNNs with objectness learning,” OCEANS 2016 -
Shanghai, Apr. 2016, doi: https://doi.org/10.1109/oceansap.2016.7485476.

[54] Y. Xue and Z. Ju, “Fish Recognition Algorithm Based on Improved
AlexNet,” Electron. Sci. Technol., vol. 34, pp. 12—17, 2021.

[55] N.S. Abinaya, D. Susan, and S. Rakesh Kumar, “Naive Bayesian
fusion based deep learning networks for multisegmented classification of

fishes in aquaculture industries,” Ecological Informatics, vol. 61, p. 101248,

Mar. 2021, doi: https://doi.org/10.1016/j.ecoint.2021.101248.

[56] C.Shi, C. Jia and Z. Chen, "FFDet: a Fully Convolutional Network for
Coral Reef Fish Detection by Layer Fusion," 2018 IEEE Visual
Communications and Image Processing (VCIP), Taichung, Taiwan, 2018, pp.

1-4, doi: 10.1109/VCIP.2018.8698738.

[57] Z.-Y.Wu, S. -L. Tseng, H. -Y. Lin, H. -Y. Chen and T. V. Luan,
"Incorporating Stereo with Convolutional Neural Networks for Real-Time
Fish Detection and Classification," 2019 IEEE International Conference on
Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics,
Automation and Mechatronics (RAM), Bangkok, Thailand, 2019, pp. 83-88,

doi: 10.1109/CIS-RAM47153.2019.9095805.
115

[58] S.Li, B.Pan,Y. Cheng, X. Yan, C. Wang, and C. Yang, “Underwater
Fish Object Detection based on Attention Mechanism improved Ghost-
YOLOVS5,” 2022 7th International Conference on Intelligent Computing and
Signal Processing (ICSP), Xi’an, China, Apr. 2022, doi:
https://doi.org/10.1109/icsp54964.2022.9778582.

[59] X.Huetal., ‘Real-time detection of uneaten feed pellets in underwater
images for aquaculture using an improved YOLO-V4 network’, Computers

and Electronics in Agriculture, vol. 185, p. 106135, 2021.

[60] E. Prasetyo, N. Suciati, and C. Fatichah, ‘Multi-level residual network
VGGNet for fish species classification’, Journal of King Saud University —
Computer and Information Sciences, vol. 34, no. 8, Part A, pp. 52865295,
2022.

[61] Z.Zhang, X. Du, L. Jin, S. Wang, L. Wang, and X. Liu, ‘Large-scale
underwater fish recognition via deep adversarial learning’, Knowledge and

Information Systems, vol. 64, pp. 353-379, 2022.

[62] S. Villon et al., ‘A Deep learning method for accurate and fast
identification of coral reef fishes in underwater images’, Ecological

Informatics, vol. 48, pp. 238-244, 2018.

[63] A.Jalal, A. Salman, A. Mian, M. Shortis, and F. Shafait, ‘Fish
detection and species classification in underwater environments using deep
learning with temporal information’, Ecological Informatics, vol. 57, p.

101088, 2020.

[64] A.Ben Tamou, A. Benzinou, and K. Nasreddine, ‘Multi-Stream Fish
Detection in Unconstrained Underwater Videos by the Fusion of Two
Convolutional Neural Network Detectors’, Applied Intelligence, vol. 51, no. 8,
pp. 5809-5821, Aug. 2021.

[65] A. Salman et al., ‘Automatic fish detection in underwater videos by a
deep neural network-based hybrid motion learning system’, ICES Journal of

Marine Science: journal du conseil, vol. 77, no. 4, pp. 1295-1307, Jul. 2020.
116

[66] Z. Shen and C. Nguyen, "Temporal 3D RetinaNet for fish detection,"
2020 Digital Image Computing: Techniques and Applications (DICTA),
Melbourne, Australia, 2020, pp. 1-5, doi:
10.1109/DICTAS51227.2020.9363372.

[67] A.B.Labao and P. C. Naval, ‘Cascaded deep network systems with
linked ensemble components for underwater fish detection in the wild’,

Ecological Informatics, vol. 52, pp. 103—121, 2019.

[68] T.-Y.Lin et al., ‘Microsoft COCO: Common Objects in Context’, in
Computer Vision -- ECCV 2014, 2014, pp. 740-755.

[69] M. A.R.Ahad, ‘Motion History Images for Action Recognition and

Understanding’, in SpringerBriefs in Computer Science, 2012.

[70] J. W. Davis, A. M. Morison and D. D. Woods, "Building Adaptive
Camera Models for Video Surveillance," 2007 IEEE Workshop on
Applications of Computer Vision (WACYV '07), Austin, TX, USA, 2007, pp.
34-34, doi: 10.1109/WACV.2007.16.

[71] M.A.R.Ahad, J. K. Tan, H. Kim, and S. Ishikawa, ‘Motion History
Image: Its Variants and Applications’, Mach. Vision Appl., vol. 23, no. 2, pp.
255-281, Mar. 2012

[72] A.F.Bobick and J. W. Davis, "The recognition of human movement
using temporal templates," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 3, pp. 257-267, March 2001, doi:
10.1109/34.910878.

[73] J. W. Davis, “Appearance-based motion recognition of human actions,”

Doctoral dissertation, Massachusetts Institute of Technology, 1996.

[74] J. R. Bergen, P. J. Burt, R. Hingorani and S. Peleg, "A three-frame
algorithm for estimating two-component image motion," in IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 886-896,

Sept. 1992, doi: 10.1109/34.161348.
117

[75] M.A.R.Ahad, J. K. Tan, H. S. Kim, and S. Ishikawa, ‘Temporal
Motion Recognition and Segmentation Approach’, Int. J. Imaging Syst.
Technol., vol. 19, no. 2, pp. 91-99, Jun. 2009.

[76] ACCV'07 Workshop on Multi-dimensional and Multi-view Image

Processing

[77] M. Valstar, M. Pantic and 1. Patras, "Motion history for facial action
detection in video," 2004 IEEE International Conference on Systems, Man and
Cybernetics (IEEE Cat. No.04CH37583), The Hague, Netherlands, 2004, pp.
635-640 vol.1, doi: 10.1109/ICSMC.2004.1398371.

[78] H. Meng, N. Pears and C. Bailey, "A Human Action Recognition
System for Embedded Computer Vision Application," 2007 IEEE Conference
on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007,
pp. 1-6, doi: 10.1109/CVPR.2007.383420.

[79] P.S.Chandragiri and E. Paul Ijjina, "Recognizing Human Actions in
Video using Motion History Image and Deep Learning," 2021 12th
International Conference on Computing Communication and Networking
Technologies (ICCCNT), Kharagpur, India, 2021, pp. 01-05, doi:
10.1109/ICCCNT51525.2021.9579817.

[80] O. Mercanoglu Sincan and H. Y. Keles, "Using Motion History Images
With 3D Convolutional Networks in Isolated Sign Language Recognition," in
IEEE Access, vol. 10, pp. 18608-18618, 2022, doi:
10.1109/ACCESS.2022.3151362.

[81] L. T.Toudjeu and J. -R. Tapamo, "A 2D Convolutional Neural Network
Approach for Human Action Recognition," 2019 IEEE AFRICON, Accra,
Ghana, 2019, pp. 1-5, doi: 10.1109/AFRICON46755.2019.9133840.

[82] T. Kurita, N. Otsu, and N. Abdelmalek, ‘Maximum likelihood
thresholding based on population mixture models’, Pattern Recognition, vol.

25, no. 10, pp. 1231-1240, 1992

118

[83] T.F.Dimaand M. E. Ahmed, "Using YOLOv5 Algorithm to Detect
and Recognize American Sign Language," 2021 International Conference on
Information Technology (ICIT), Amman, Jordan, 2021, pp. 603-607, doi:
10.1109/ICIT52682.2021.9491672.

[84] M. Feurer and F. Hutter, ‘Hyperparameter Optimization’, in Automated
Machine Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and
J. Vanschoren, Eds. Cham: Springer International Publishing, 2019, pp. 3-33.

[85] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Sequential Model-Based
Optimization for General Algorithm Configuration’, in Proceedings of the 5th
International Conference on Learning and Intelligent Optimization, Rome,

Italy, 2011, pp. 507-523.

[86] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘Algorithms for
Hyper-Parameter Optimization’, in Proceedings of the 24th International

Conference on Neural Information Processing Systems, Granada, Spain, 2011,

pp. 2546-2554.

[87] J. Snoek, H. Larochelle, and R. P. Adams, ‘Practical Bayesian
Optimization of Machine Learning Algorithms’, in Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume

2, Lake Tahoe, Nevada, 2012, pp. 2951-2959.

[88] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-
WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms’, in Proc. of KDD-2013, 2013, pp. 847-855

[89] J. Bergstra, D. Yamins, and D. D. Cox, “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures’, in Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, 2013, Atlanta,

GA, USA, p. I-115-1-123

[90] “Thop,” [Library description] PyPI, https://pypi.org/project/thop/

(accessed Jul. 18, 2023).
119

[91] Ultralytics, “Release v3.0 - ultralytics/yolov5,” GitHub,
https://github.com/ultralytics/yolov5/releases/tag/v3.0 (accessed Jul. 18,
2023).

[92] Ultralytics, “Release v4.0 - nn.silu() activations, weights & biases
logging, pytorch hub integration - ultralytics/yolov5,” GitHub,
https://github.com/ultralytics/yolov5/releases/tag/v4.0 (accessed Jul. 18,
2023).

[93] Ultralytics, “Ultralytics/Yolov5 at
73a066993051339f6adfe5095a7852a2b9184¢16,” GitHub,
https://github.com/ultralytics/yolov5/tree/73a066993051339f6adfe5095a7852a
2b9184c16 (accessed Jul. 18, 2023).

120

APPENDIX

Tables A2 to A5 show the results for the system using trail formulation
with addition method and overlap method, respectively for 15 species. The
“Total TP” and “Total FP” columns in the tables simply represent the total
number of TP and FP output produced by the whole system. The calculation
includes adding extra TP and extra FP (from the auxiliary system) with the
results from the original YOLOvS RGB output. The original TP, FP and FN is
6574, 4014, and 5115, respectively and the F1 score is 59.02. All of the results

shown in the tables below use the default parameters.

Table Al: Description and respective table number for referencing convenience

Trail formulation method Model type Table number
Addition nf(n-1)bb A2

nfnbb A3
Overlap nf(n-1)bb A4

nfnbb A5

121

Table A2: Variations with angle information using nf(n-1)bb trail image with addition
method.

Nftn-1)bb | Model Clustering | F1score ‘Ii\tm | Extra
angle status | module (improvement) | TP | ¥P

3f2bb 61.85(+2.83) 1003 1222 7577
4f3bb 62.55(+3.53) 1183 1342 7757
Sfabb 63.38(+436) 1320 1313 7894
6f5bb ng‘l‘; :fg[“; 631 (+4.08) 1640 2117 8214
7i6bb 63.56(+4.54) 1457 1537 8031
8f7bb 63.67 (+4.65) 1884 2410 8458

9f8bb 63.15 (+4.13)

302bb 60.53(+151) 410 389 6984 4402 4705 799 5131
4f3bb 60.28(+126) 345 336 6919 4349 4770 681 50.66
5fabb 63.24(+422) 1286 1297 7860 5310 3829 2583 49.79
6fSbb Noangle :‘n:le 63.84(+4.82) 1292 1075 7866 5088 3823 2367 5458
Tfiobb 63.94(+4.92) 1484 1445 8058 5458 3631 2929 5067
8f7bb 6345(+443) 1411 1483 7985 5496 3704 2894 4876
9f8bb 6295(+393) 1227 1281 7801 5294 3888 2508 4892

Table A3: Variations with angle information using nfnbb trail image with addition
method.

Nfnbb Model Clastering | F1 score Extra Extra Total TP Total FP Total FN Total no. of
angle status | module (improvement) 113 FP (ExtraTP + 6574) | (Extra FP+4013) | (5115- Extra TP) | exira boxes

33bb 6203 (+3.01) 1022 1193 7596 5206
463bb 6345(+443) 1389 1435 7963 5448
stsbh | 6397(+495) 1485 1435 8059 5448
6t6bb :‘;:E x‘;‘e 63.81 (+4.79) 1658 1868 8232 5881
7f7bb 63.62(+4.6) 1360 1304 7934 5317
8f8bb 63.95(+4.93) 1605 1698 8179 5711

63.03 (+4.01) 1285 1375 7859 5388

59.92(+0.9) 236 220 6810 4233 4879 456 51.75

62.06 (+3.04) 770 620 7344 4633 4345 1390 554
5f5bb 63.11 (+4.09) 1137 1022 7711 5035 3978 2159 52.66
6fébb No angle :Inogle 64.14 (+5.12) 1745 1919 8319 5932 3370 3664 47.63
7f7bb 63.24(+4.22) 1130 958 7704 4971 3985 2088 54.12
8f8bb 63.84 (+4.82) 1474 1462 8048 5475 3641 2936 50.2
9f9bb 63.1(+4.08) 1298 1377 7872 5390 3817 2675 48.52

122

Table A4: Variations with angle information using nf(n-1)bb trail image with overlap
method.

Nftn-1)bb | Model Clustering | F1 score
angle status | modile (improvement)

Exta | Extra | Totl TP Total FP Total FIN Total no. of | Extra TP out
P P | (ExtraTP + 6574) | (Extra FP+ 4013) | (S115- Extra TP) | extra boxes | of extras %

3f2bb 6272(+37) 1664
4f3bb 6292(+39) 1526
Stibb 6288(+336) 1519
6f5bb ::‘g‘t :’nﬁ’e 629 (+388) 1352
7f6bb 63.0 (+408) 1271
8f7bb 63.19(+4.17) 1326

9f8bb 1349

63.21 (+4.19)

62.39 (+3.37) ;
4£3bb 62.14(+3.12) 935 956 7509 4969 4180 1891 49.44
5fabb 63.21(+4.19) 1570 1923 8144 5936 3545 3493 4495
6fsbb Noangle :'n"gie 6332(+43) 1390 1489 7964 5502 3725 2879 4828
716bb 63.68 (+4.66) 1613 1822 8187 5835 3502 3435 46.96
8£7bb 63.36(+4.34) 1291 1260 7865 5273 3824 2551 50.61
9f8bb 6213 (+3.11) 933 955 7507 4968 4182 1888 4942

Table AS5: Variations with angle information using nfnbb trail image with overlap
method.

Nfibb Model Clustering | F1 scors Extra Extra Total TP Total FP Total FN Total no. of | Extra TP out
x angle status | module i FOVemel FP (ExtraTP + 6574) | (Extra FP+ 4013) | (5115- Extra TP) | extra boxes | of extras %

3f3bb 62,76 (+3.74) 1575 2117 8149 6130 3540 3692 42,66

4f4bb 62.54 (+3.52) 1367 1752 7941 5765 3748 3119 43.83

5f5bb) 63.66(+4.64) 1642 1894 8216 5907 3473 3536 46.44

6f6bb Witl e 63.33(+4.31) 1515 1754 8089 5767 3600 3269 46.34
angle angle

7f7bb 63.15(+4.13) 1382 1541 7956 5554 3733 2923 47.28

8f8bb 63.04(+4.02) 1362 1538 7936 5551 3753 2900 46.97

6299 (+3.97) 1290 1402 5415 2692 47.92

LA

3f3bb 63.13 (+4.11) 1623 2069 8197 3492 3692 43.96
4f4bb 63.23(+4.21) 1403 1552 7977 5565 3712 2955 47.48
5f5bb 62.67(+3.65) 1076 1062 7650 5075 4039 2138 50.33
6f6bb No angle :Jogle 62.61(+3.59) 1099 1134 7673 5147 4016 2233 49.22
7f7bb 62.58 (+3.56) 1055 1051 7629 5064 4060 2106 50.09
8f8bb 62.81(+3.79) 1217 1315 7791 5328 3898 2532 48.06
9f9bb 62,18 (+3.16) 1009 1106 7583 5119 4106 2115 47.71

Tables A6 and 4.A7 show the results with trail formulation using the
MHI method. The post-processing module parameters use the default values.

123

Table A6: Variations with angle information using nf(n-1)bb MHI.

Extra | Exira Total TP

FP CxtraTP + 6574) ‘ (

3f2bb With With 61.16(+i.14) 1669 3010 8243 7023 3446 4679 35:67
4y angle angle 61 8(+278) 1186 1653 7760 5666 3929 2839 41.78
5fabb 61.96(+2.94) 1591 2490 8165 6503 3524 4081 38.99

6f5bb 6238(+3.36) 1447 1994 8021 42.05

3f2bb Noangle No 62.42(+3.4) 1473 2036 8047 3642 3509 41.98
413bb enct 628 (+3.78) 1703 2380 8277 6393 3412 4083 41.71
5f4bb 61.59(+2.57) 2057 3696 8631 7709 3058 5753 35.76
6f5bb 61.84(+2.82) 1036 1300 7610 5313 4079 2336 44.35

Table A7: Variations with angle information using nfnbb MHI.

Clustering | F1 score | Ex Exira 3 Total FP N

module (improvement) o L 74) | (Extra FP+ 4013) Extra TP)
3B3bb With With 62.23(+3.21) 1303 1736 7877 5749 3812 3039 42.88
appy Angle angle 6 oicosoy 1135 1643 7709 5656 3980 2778 4086
5f5bb 62.03(+3.01) 1602 2482 8176 6495 3513 4084 39.23
6f6bb 61.94(+292) 1178 1578 7752 5591 3937 2756 42.74

3@3bb Noangle No 62.07(+3.05) 1198 1568 7772 5581 3917 2766 4331
4f4bb angle ¢r23(+321) 1313 1760 7887 5773 3802 3073 4273
5f5bb 62.91(+2,9'9) 1127 1435 7701 5448 3988 2562 43.99
616bb 61.8(+278) 907 1028 7481 5041 4208 1935 46.87

124

