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ABSTRACT 
 
 

DETECTION AND PREVENTION SCHEMES FOR DDOS, ARP 
SPOOFING, AND IP FRAGMENTATION ATTACKS IN SMART 

FACTORY 
 
 

 Chai Tze Uei  
 
 
 
 
 
 

Industry Revolution 4.0 allows Internet of Things (IoT) resource constrained 

devices to be integrated into the technologies and systems to develop intelligent 

solutions that leverage the value of data and deliver insight. The network 

configuration can be complex due to the dynamic IoT environments, such as 

numerous diverse devices that interact to deliver an autonomous function. In 

this situation, the environments can produce a significant amount of data and 

expose vulnerabilities in the communication protocols. Once an attacker breaks 

into the network, the whole network infrastructure can be broken down.  

 

Therefore, this research selects three potential attacks with an evaluation of the 

protections, namely 1) Distributed Denial of Service (DDoS), 2) Address 

Resolution Protocol (ARP) spoofing, and 3) Internet Protocol (IP) 

Fragmentation attacks. In the DDoS protection, the F1-score (a.k.a. F-score), 

accuracy, precision, and recall of the four-feature Random Forest with Principal 

Component Analysis (RFPCA) model are 95.65%, 97%, 97.06%, and 94.29% 

respectively. In the ARP spoofing, a batch processing method adopts the entropy 

calculated in the 20s of time window with sensitivity to network abnormalities 
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detection of various ARP spoofing scenarios involving victims’ traffic. The 

detected attacker’s Media Access Control (MAC) address is inserted in the 

block list to filter malicious traffic. The proposed protection in the Internet 

Protocol (IP) fragmentation attack is to implement one-time code (OTC) and 

timestamp fields in the packet header. The simulation shows that the method 

can detect 160 fake fragments from attackers in 2040 fragments. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Motivation 

The Industry 4.0 revolution is leading towards a digitisation of the factory into 

a cyberspace. The efficiency and effectiveness of intelligent systems, machines, 

and algorithms are essential to support production operations running 24/7. As 

organisations continue investing in technology, the number of devices 

connected through the network increases and accelerates the convergence of 

Information technology (IT) and Operating Technology (OT) [1]. The security 

triads which enforce the basic requirements in the IT and OT environments are 

different [2]. In the context of Operational Technology (OT), a combination of 

hardware and software is employed to observe the environment and utilise 

sensor data to make necessary adjustments in response to changes. The Internet 

of Things (IoT) considered a resource constraint with limited computing power 

widely adopted in the environment, provides data to the Cloud to support 

analytics and prediction [3]. IoT needs firmware [4] to perform a specific 

function to meet the real-time processing deadline and fit into the manufacturing 

use case scenarios with limited capability in terms of Random Access Memory 

(RAM) and processing power [5]. The current machines use the legacy system 

to run the operation with minimal downtime are lack security considerations 

[6][7]. The system is connected locally, linked to the Cloud through the Internet, 

and exposed to various potential threats. 
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IoT is increasing while functional areas are widely adopted [8]. Research shows 

that organisations still need to focus on cybersecurity, and investments still need 

to be made to protect the functional area. The two main objectives for the 

industry to move into the Smart Factory are business objectives related to 

earning and security concerns which express a need for more detail and 

confidence in cybersecurity protection. 

 

In a Wireless Sensor Network (WSN), the sensor nodes are distributed and 

interact with each other to collect, process, and deliver the sensing details of the 

physical environment to the destination node. Data are aggregated at the node 

to reduce network congestion, where Internet access is an option through the 

gateway. For IoT, data are processed and transformed into information that 

supports decentralised decision making [9]. Internet is mandatory in this case. 

IoT and Industrial Internet of Things (IIoT) are similar, where IIoT is considered 

a subset of IoT. The IIoT is used in industrial processes, such as manufacturing, 

production, and supply chain, which monitor the processes. This device is 

required to handle the operation in critical infrastructure with complex 

instruments focused on reliability more than data security [10]. Typical IoT use 

cases are consumer or office. 

 

Adversaries no longer depend on individual actions to trigger the attack. Wide 

ranges of vulnerabilities in IoT [11] can be utilised to penetrate the network, 

inject the smart devices with malware to act as a botnet and launch the attack 

through remote commands with an Internet connection [12]. The software patch 

intending to recover vulnerable devices is faced with the complexity in the 
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patching process and trade off. In the firmware update, it is not only to consider 

the security need but also availability, as some patches may require a reboot, 

leading to a production outage. In this situation, the technician may delay or 

skip the patching, leaving the vulnerable devices to remain as the target [13]. 

All the devices connected and extracting information for further processing are 

exposed and vulnerable [14]. For example, a smartphone or handheld device is 

connected to IoT to retrieve production status. IoT usually connects to just a few 

applications through the Internet. In addition, mobility increases the possibility 

of the security breach spreading through the networks. Also, a technician or 

workers lack knowledge of the devices connected in the environment 

simultaneously, and the security vulnerability of the IoT allows grant access 

remotely or physically as simple as using a Universal Serial Bus (USB) plug-in 

[15]. The vulnerability allows attackers to break into the local network, intercept 

communication between legitimate nodes, such as the application server, and 

download the malware into the devices [16]. 

 

Incidents show the vulnerability of critical infrastructure in various industries, 

with manufacturing as one of the significant targets of attackers [17]. The 

attacker’s interest is more than the data, from revealing sensitive information to 

preparing for a severe attack, such as causing physical damage and shutting 

down the operations [18]. The IoT, the extension of the Industrial Control 

System (ICS), further exposes internal network vulnerability [19]. As in earlier, 

those critical infrastructures operated in isolation. The highly interconnected 

IoT devices lead to more complex and reliant on the network. Security breach 

from the IoT leads to the penetration of the network and disabling of the devices’ 
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functions, such as smart lock [20], with failure of firmware update causing the 

door to lock [21]. The thermostat, which has been hacked and fails to provide 

correct readings, increases the temperature in the environment [22]. The lessons 

have shown security in automation systems has become one of the weakest links 

[23]. Skilful attackers actively develop capabilities and deploy sophisticated 

attacks [24]. Therefore, the network must protect itself from attackers and 

recover at the earliest, if not immediately. 

 

The study of security in Industry 4.0 gives the awareness of the potential 

environmental threats, security issues, and challenges led by emerging 

technology and highly interconnected network and system. The assets, such as 

data, networks, and systems, must adhere to the guidelines and standards to 

provide sufficient protection. 

 

1.2 Problem Statements and Research Questions 

The fourth industrial revolution heavily relies on technology to operate. As a 

result, there has been a surge in the deployment of smart devices, known as the 

IoT, in the interconnected network of smart manufacturing. This integration of 

systems has enabled both horizontal and vertical integration on a large scale. 

IoT networks are highly interconnected in a heterogeneous environment and 

generate data in different formats and sometimes with missing values. The 

devices use Transmission Control Protocol/Internet Protocol (TCP/IP) and the 

custom design protocol in the connection and communication. There are 

vulnerabilities exhibited in the layers of the TCP/IP model, such as the access 

control in the network layer. IoT lacks resources and computing power for the 
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execution of complex algorithms to implement protection such as virus 

protection. Lack of advanced protection can lead to security issues such as the 

attack on the devices connected to the Internet, where IoT is a source of data 

collection, which grows exponentially and consequently becomes the source of 

information. The most significant concern in smart manufacturing is caused by 

a lack of data or false data and availability in the operation. 

 

Many of the complex IoT are already in operation and lack security measures. 

Distributed Denial of Service (DDoS) is much more dangerous for large scale 

appliances in safety-critical systems, and the timing of the attack can lead to 

disastrous events. IoT is easily infected by malware. The infection can quickly 

spread to a large number and create zombies controlled by the Command and 

Control (C&C) server. These IoT are unlike conventional Internet devices in 

which the attack can be resolved by turning on and off or restarting the devices. 

The highly intensive attack requires many infected or compromised devices that 

can turn into a botnet and are synchronised to launch the attack simultaneously 

from many networks, which is difficult to defend against. In the attack, data 

aggregate in the gateway can create tremendous data that floods and brings 

down critical infrastructure. 

 

Address Resolution Protocol (ARP) is a protocol that adopts a simple form by 

broadcasting an ARP message to acquire mapping for the dynamic Internet 

Protocol (IP) address to the physical address between the communication hosts 

or machines. The physical address is a Media Access Control (MAC) address. 

The ARP is a TCP/IP protocol that works between layers 2 and 3 of the Open 
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System Interconnection (OSI) model. The MAC address exists in layer 2, a data 

link layer and an IP address in layer 3, a network layer. This protocol has been 

proven efficient to work on IP networks and is widely utilised in IoT systems. 

However, it has come with security risks and being the target of attack due to 

the vulnerability of the ARP protocol, which is a lack of a proper authentication 

process. When a malicious node is present in the local network, it can easily 

acquire the address mapping of the local target host and intercept the 

communication. It becomes a security issue in the IoT, where the plain text in 

the transmission between nodes is due to a lack of security implementation in 

the first place. This situation can lead to exposure to sensitive details such as 

passwords. ARP spoofing can facilitate other malicious attacks, such as Man-

In-The-Middle (MITM) attack, session hijacking or denial-of-service attack. 

ARP follows the principle of adopting the last ARP message to update the ARP 

cache. Thus, an attack can continue to send a forged ARP packet to the target 

and hide its activity by sending a high volume of the message. 

 

In most cases, the IoT handles only a small amount of the data, such as sending 

or sharing data and receiving instructions. The process allows IoT to 

communicate efficiently. However, there is a situation where the IoT needs to 

receive more data size messages, such as firmware patches. In typical 

transmission, the data travels from different networks with different Maximum 

Transmission Unit (MTU) sizes and causes fragmentation, especially when a 

large amount of data is involved. IP fragmentation can happen in the Smart 

Factory and IoT. The packet header identifier is an essential detail in a fragment 

that the attacker can guess. Meanwhile, avoiding fragmentation vulnerabilities 
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by simply preventing fragmentation can cost more transmission sessions. The 

TCP protocol does not prevent an attack from adversaries that send a spoofed 

Internet Control Message Protocol (ICMP), and the source can be tricked into 

fragmenting TCP segments. When the packet is fragmented, and header 

identifiers exist in many transmissions, the attacker can carefully craft a 

fragment to attack, such as causing misassociation and leading to unsuccessful 

firmware updates or installing malicious code. 

 

Cybersecurity threats come from internal and external sources, and the attacks 

can be stealthy. These attacks are a common yet severe problem. In Cyber-

Physical Systems (CPSs), the intelligent systems control the machines through 

commands that work autonomously and link the physical components to 

cyberspace [25]. When the smart manufacturing system is attacked, production 

stops, and infrastructure breaks down. Thus, high detection and reliable 

protection schemes are required to protect the network and raise a timely 

warning when the attack occurs to prevent massive damage to the critical 

infrastructure and organization lost. 

 

Research questions: 

1. Based on the selected attack scenarios, how can DDoS, ARP spoofing, 

and IP fragmentation attacks be identified in Smart Factory? 

2. When the attacks occur, can the protections be implemented at the point 

of the network and filter the attackers from further destroying the 

operation in the Smart Factory? 
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3. How to evaluate and verify the effectiveness of the protection schemes 

based on the defined attack scenarios? 

1.3 Objectives 

The objectives of the research are : 

1. To present the detection methods adopted in the selected attack 

models. 

2. To implement the protection and evaluate the network before and after 

the recovery of the network after the protection is executed. 

3. To propose the protection scheme for the identified attacks based on the 

result of detection performance. 

 

In order to achieve the research objective, the network simulation method is 

crucial to study the attacks in the Smart Factory, each present in the network or 

infrastructure in the environment. OMNeT++ software simulation tool is a 

discrete event simulation that supports a hierarchical model with a graphical 

editor with GUI-based execution. Together with the INET framework, the 

simulator provides protocols, agents and models to work with communicating 

networks, passing the message and modelling their behaviours and interactions 

in normal conditions and when the attack occurs in Smart Factory. These 

mechanisms and functions suit the objective of the simulation to model the 

problem stated in all three attacks in the Smart Factory. The simulation includes 

modelling the topology of each attack and network activity, generating the 

network traffic data based on each situation and problems defined and used for 

data collection and analysis.   
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1.4 Main Contribution 

The contributions from the research are: 

1. To show the effect of different detections based on the models and the 

attack scenarios. 

2. To compare and evaluate the protection measures in the network traffic 

and show the effect of the recovery. 

3. To demonstrate attacks that can be protected by choosing the appropriate 

protection mechanisms and methods. 

 

1.5 Organisation of the Thesis 
 
The organisation of the thesis begins with the introduction in Chapter 1. This 

chapter explains the problem solved in work. Chapter 2 presents the literature 

review in the scope of Industry 4.0 evolution, emerging technologies, and issues 

and challenges in the Smart Factory that attacker launches attacks. In Chapters 

3 to 5, each chapter covers individual attacks and presents the details of works 

with the protection associated with each attack. The sections in these chapters 

include the detection, verification plan, protection, result, and conclusion 

remark. Those attacks include DDoS in Chapter 3, ARP spoofing in Chapter 4, 

and IP fragmentation attack in Chapter 5. Lastly, Chapter 6 concludes the 

research work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Security in Industry Revolution 4.0 

The first industrial revolution started through mechanisation at the end of the 

eighteenth century. In this century, the industry mainly used the power of water 

and steam in production. The second industrial revolution occurred during the 

late nineteenth century with the invention and use of electricity, gas, and oil as 

power sources. The third industrial revolution was caused by the invention of 

computers. The industry used IT, where the two significant inventions, the 

Programmable Logic Controllers (PLCs), and robots, ran the production, 

leading to the era of high-level automation. The fourth industrial revolution 

computerises production and develops the world's virtual reality [27]. 

 

Typical factories consist of IT, which handles the office's computer system that 

communicates in an IP-based network, and OT, which handles the operation of 

the machines in the plants with various proprietary protocols. The two systems 

were segregated and protected by their network practice and procedure in 

previous years. In Industry 4.0, the two systems are increasingly merging [28], 

and IT technologies threats can bring to the OT environment [29]. 

 

Implementing IT systems focuses on meeting integrity, confidentiality, and 

availability (CIA). OT follows the priority of availability, integrity, and 

confidentiality (AIC) [30]. The components run 24/7. However, there are 
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differences between the IT and OT systems. In an IT network, the architecture 

supports a single component's failure and ensures availability across different 

sections with technology to speed up the recovery process. IT network adopts 

standard communication protocols on the Internet, such as Hypertext Transfer 

Protocol (HTTP) and Secure Socket Shell (SSH). In OT, the system and 

software controlling the physical operations, that single point of device failure 

may cause the operation to pause or stop. These devices communicate with 

protocols different from IT, such as EtherNet/IP and Profinet. Reliability is vital 

that the machinery is designed with safety and reliability as a significant 

consideration. In the application of OT, Time-sensitive networking (TSN) is 

deployed in the Local Area Network (LAN) [31] to allow horizontal 

communication from machine to machine and controller to controller that places 

high performance of network requirements in terms of latency and certainty. 

 

In the OT, finding those machines from a different manufacturer in the machine-

to-machine direct communication, such as PLC, to a robotic arm is common. 

Those components need to support a longer operation lifetime with 

communication handled in their proprietary protocols, developed by the 

hardware manufacturer to achieve competitive advantages and solve specific 

problems in the industry application [32]. The adoption of multiple proprietary 

protocols that use by the devices shows the lack of interoperability in a situation 

where multiple vendors’ devices are used in operation across the network. 

 

IIoT refers to industrial sensors and instruments connected through a network 

controlled by an industry computer system in manufacturing. The leading 
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wireless communication protocol in an industrial environment, the Wireless 

Highway Addressable Remote Transducer (WirelessHART), is capable of 

monitoring, receiving commands from field devices and acting on the actuators 

[33]. The WirelessHART is compatible with existing Highway Addressable 

Remote Transducer (HART) devices and connects to the process control system 

through Modbus TCP/IP. The field devices sending data transmitted through the 

gateway supported Open Platform Communication Unified Architecture (OPC 

UA), a standard with platform independence and interoperability as a goal in 

the communication. They make those data available to the higher level system 

through the OPC UA server. In terms of the configuration, by default, all 

WirelessHART devices use a Join Key to connect to the network and exchange 

control packets with the network gateway. In this case, using a unique password 

is not recommended since this password is highly used in all broadcast 

communications. The devices connected through a gateway to the network 

become vulnerable when the penetration happens to the ICS network. The 

situation leads to a severe security breach that exposes the entire network to 

outsiders once the devices, such as routers or gateway, are compromised. 

 

When moving into Industry 4.0, the connected devices will have access to the 

Internet. Production robots and actuators receive the instruction and command 

remotely. An attacker can launch the attack without physically existing in the 

location. Although the production runs in a closed-loop environment, a single 

breach in the network or IoT can lead to a security issue and cause massive 

damage in production [34]. It is no longer possible or sufficient for security 

personnel to run the security assessment and tackle security breaches. 
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As for the existing ICS that remains supported by the legacy system, cyber 

security is sure to be a threat. In such cases, when considering more secure 

communication, existing customers running on the Modbus network leave them 

with several considerations in cost-effective measures [35]. Firstly, the Modbus 

lacks functionality that common support for master-slave architecture. Also, 

there may be devices in the network that currently in operation for a very long 

time and need to be updated to support the security in Modbus TCP. They can 

also adopt OPC UA, which is more secure and provides functionalities that 

prepare them for Industry 4.0. This protocol allows the support of a services-

oriented network. For example, a computer can run on the application or cross-

platform Simple Object Access Protocol (SOAP) with Hypertext Transfer 

Protocol Secure (HTTPS). 

 

With the emergence of technology, the industry adopts resource sharing to 

improve efficiency. The current intelligent devices in the industry are built with 

connectivity capability to support various protocols, such as web services 

running on SOAP and remote access. Nevertheless, due to the lack of an up-to-

date Operating System (OS) running the services, the vital assets and critical 

databases that hold valuable and essential data are easily infiltrated and 

penetrated by the attacker. 

 

With the intelligent sensors and IoT integrated into the system, these innovative 

products let manufacturers run the organisation more effectively and efficiently 

while at the same time maintaining the existing ICS that has been used comes 
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with security risks [36]. First, smart devices have excellent capability and 

connectivity, allowing data sharing across networks. Without security concerns 

and measures, these devices monitor the operation of various machines if 

malfunction and defects are only being identified when cause physical damage, 

loss of communication, product misconfiguration, or failed devices are lost. 

Secondly, in the ICS, attention is placed on the machine, sensors, and devices. 

However, a lack of consideration and attention to the network and infrastructure 

gives attackers a vast opportunity and interest to target the networks or 

connected network links to the system. Consequently, the critical infrastructure 

under attack will lead to considerable losses to the organisation. 

 

Moving into Industry 4.0, the ICS no longer stands for isolated network and 

system. CPS makes decentralised decisions in the virtual world where data are 

used in learning algorithms to support intelligent systems to run autonomously. 

A lack of knowledge or skill to handle the tasks and human error can expose a 

vulnerability in the IoT network environment [1]. This leave some of the 

organisation such as Small and Medium-sized enterprises (SME) which lack of 

resource to implement advanced defence system are vulnerable. 

 

The machine equipped with various sensors, controlled by the instruction sent 

from the server, is monitoring the condition and sending the data to the Cloud 

for analysis and evaluation. Cloud storage, CPS and IoT form a system linking 

the physical component and machine to cyberspace. It collects data from the 

sensors and actuators used by the intelligent system to adapt to the physical 

situation and improve resource efficiency [37] with a progressive method for 



 

15 
 

maintenance. Predictive and preventive maintenance are two core components 

that support the production operation of products running 24/7. Big Data 

Analytics (BDA) and Cloud predictive and preventive maintenance are 

designed and implemented in the Smart Factory to reduce the number of failure 

incidents and improve the reliability of the asset. Before introducing the 

technology, the factory operator must handle the maintenance task by manually 

overseeing the activity through a series of tasks, such as calculating the 

correlation information related to defective products based on the problem 

defined in the process. While in automated manufacturing, overhead is 

increased to analyse vast amounts of data collected [38]. Predictive maintenance 

is time-intensive to implement correctly. On the other hand, it can reduce the 

maximum downtime, while preventive maintenance is relatively easy to 

implement and better than reactive maintenance. However, this comes with the 

risk of possibly damaging the asset. Therefore, Smart Factory adopts promising 

tools such as machine learning methods that require effective data processing, 

such as accurate and valuable data that go through the Extract-Transform-Load 

(ETL) data transmission process. 

 

Automation in Industry 4.0 occurs in the machine and operation in handling the 

software and firmware that enable proper sensors and IoT functions. In Industry 

4.0, firmware updates become an essential aspect of security. The firmware 

update aims to patch vulnerabilities in the components, bug fixes, and even add 

features to meet the functional requirements. In the past, the firmware update 

was handled manually by skilful workers. Large scale IoT deployment with 

many devices is impractical to handle manually. Those devices can utilise the 
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connected network and automatically install the updated firmware version into 

the IoT. An automatic update process can avoid time-consuming, costly, and 

lack of proper procedure and supervision in the updating process. However, OT, 

the patch often delivers much slower than the IT environment, which often drags 

more than 60 days. On the World Wide Web (WWW), information can be easily 

acquired. If the old version of firmware with published vulnerability is not 

patched in time, this can potentially become the target of attackers. Manually 

updating can be adopted in malfunctioning devices requiring quick fixes to 

restore operation. 

 

There are constraints in the low-end devices and PLCs, such as limited 

processing capabilities and the need to ensure a long operation time. 

Manufacturers are not considered fundamental protection mechanisms such as 

software patches and updates through Over-the-air (OTA), and lack of 

encryption or authentication of the device used in the industrial process. Once 

broken by attackers, the devices become vulnerable. 

 

In addition to unexpected failure, many control systems and operations cannot 

be down without impacting production and safety. In those cases, the products 

produced are more critical than the information being relayed. IT practices to 

reboot a component would violate the adherence to requirements to meet the 

ICS's high availability, reliability, and maintainability. There needs to be more 

log data where there are necessary to program each PLC to save the history of 

a process. The lack of sufficient log history impacts the troubleshooting and 

investigation's effectiveness. Another challenge is the fragmentation in the 
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collaborating diverse technologies without systematic recipes for security 

standards and guidelines, which leads to the sector's practical systems and 

services security diversities. For example, Message Queuing Telemetry 

Transport (MQTT), being one of the options in IoT communication, which 

relies on the developer to implement a Transport Layer Security (TLS) 

mechanism for security purposes, may be ignored. The production is designed 

to be a fast reconfiguration and adaptability, producing a customised product 

and instant data sharing and processing that derive insight and facilitate 

decentralised decision making in a self-organised manner. The extensive 

quantity of IoT, a resource constraint with unsubstantial defence systems, uses 

diversified communication protocols that weaken the ability to protect 

themselves. The DDoS attack targets critical infrastructure and servers like CPS 

or Domain Name Systems (DNS) servers. It interrupts the continuity of 

communication of devices connected to the network and impacts the operation 

for hours. In this case, the physical component cannot communicate with the 

server and complete the command for the production process. An ARP spoofing 

can occur as simply as a USB plug-in method. When ARP spoofing occurs, the 

IoT interact with an intruder, which can cause unstable or intermittent access to 

the Internet or steal sensitive data as communication is conducted in plain text. 

The attacker can maliciously send a fraudulent message to a host and database 

or a false command to interact with the actuator that misleads with an abnormal 

operation or action. These can lead to the production of defective products. 

There are challenges to maintaining an up-to-date physical part of IoT. Some 

IoT solutions require a complex setup for firmware patches or face difficulty in 

maintaining a network connection to perform OTA updates. Patches are written 
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for the existing IoT devices, but the patching process can be complex and is 

ignored or skipped by the user, leaving the vulnerability open for the attacker. 

IP fragmentation occurs when a large packet is transmitted across the network 

and finally reassembled into the original datagram at the destination. The 

attacker sends a fake fragment that cannot be reassembled at the destination. In 

a transmission such as a firmware update, this not only impacts the update 

activities and delays the operation but can cause the failure of firmware update, 

which serves the purpose of a security patch, leaving the IoT vulnerable. 

 

2.2 Cyber Security Technology in the Smart Factory 

2.2.1 Cloud Computing 

Cloud is the server that is accessed remotely over the Internet. Cloud computing 

offers storage and processing power that can support the vast demands of 

various services where the information is accessed remotely in virtual spaces. 

The high performance programs and services that cannot run on the local 

computer can now relocate to the Cloud for processing [39]. Cloud and other 

enabling technologies, such as the IoT and Artificial Intelligence (AI), make the 

Smart Factory practices fully comprehensive. As for the Cloud to support a wide 

range of services and functionalities, the resource must group and share across 

the network. 

  

In a Smart Factory, the Cloud receives data from the IoT through 

communication, such as MQTT and uses it to train for an enterprise-wide 

predictive convergence model. While the Cloud has tremendous storage 

capacity, it is often not cost-effective to handle all IoT data generated in daily 
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activities to support daily operations. Those data require preprocessing, and 

only the meaningful data are valuable to serve the Cloud applications and 

services, such as reporting. Cloud needs to select the data processing method 

effectively [40] and execute complex data analytics algorithms to derive insight. 

In the implementation, some applications running on the Smart Factory, such as 

Digital Twin and Enterprise Resource Planning (ERP), utilise huge computing 

power and storage capability to support application requirements [41]. The data 

provide seamless factory operations integration and minimise infrastructure 

administration with a “pay as per go” pricing model. Integrating the IoT into the 

ERP helps to gain insightful decision making and triggers reactions such as re-

order, replenishment and out of stock inventories. 

 

Ontology modelling is used to improve data flow across automation solutions 

and utilised by applications across the Smart Factory, which different 

stakeholders may develop. The Service-Oriented Architecture (SOA) is 

implemented with ontology to model the Smart Factory, automating the data 

acquisitions and unification that support OT and IT applications like human-

machine interaction sessions with any IoT devices and reconfiguration on edge 

devices. The data are collected from the data stream using a tool such as Apache 

Kafka, which ensures the data are stored at the buffer and transmitted to the 

destination whenever the connection is available. When the transmission is 

complete, these data will only be processed in the Cloud. In other words, the 

processing logic decouples from the data collection [42] [43]. 
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Cloud processing power and storage capacities are scalable. They can handle 

the increased number of IoT deployments in the Smart Factory and react quickly 

to changing requirements through vertical or horizontal scaling. Vertical scaling 

is achieved by adding powerful computing units and resources to existing 

servers, while horizontal scaling provides additional servers for requirements. 

Utilising the huge capacity in the Cloud allows the convergence of models to 

represent the manufacturing process, optimisation, and continuous 

improvement of the models, allowing intelligent algorithms to deliver accurate 

prediction and decision making. The executable models can be downloaded and 

offloaded processing to the Fog or Edge computing nodes, improving the 

response time and ensuring operation that is time critical is handled close to the 

location of the device, such as the production area or LAN. Cloud-based 

microservices Digital Twin provides integration of Smart Factory 

functionalities with enhancements inserted at a minimal impact on the entire 

system. The end user can easily access these functionalities and services. Cloud 

provides better integration and efficient processes at a lower cost. 

  

Data are stored in distributed locations, while functions are assigned to the 

resources close to the data for processing. Data transition and service become 

difficult to move between Clouds, especially for migration [44]. As a result, the 

dependency of a customer on a single Cloud Service Provider (CSP) becomes a 

lock-in problem. Application is evolving to integrate with the enterprise's data 

and infrastructure or from different service providers. Therefore, the Cloud must 

enhance the ability of different platforms to communicate effectively over 

secure protocols. The data are the backbone of the Smart Factory operation and 
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various applications and services. Cloud interoperability requires shared 

processes, Application Programming Interfaces (APIs), and data models over 

multiple Cloud environments in reliable, performance, and secure manners [45]. 

The initiative for the CSP is essential to cope with the system's complexities 

while maintaining and offering the services to the customer by developing a 

universal API to support the virtualised applications. 

  

BDA uses the data to predict and prevent attacks in the Smart Factory that 

support customer requests. A multi-tenant Cloud is a software instance running 

on the same system architect and hardware supporting multiple customers. 

Although this strategy allows better utilisation of the Cloud resources with the 

ease of setting up the platform and low cost, it has drawbacks such as limited 

management and customisation. It is easier to serve as a target for attackers due 

to multiple Access points (APs) to expose system vulnerabilities [46]. Among 

the security threats are Cross-site scripting (XSS), Structured Query Language 

(SQL) injection attacks, and security misconfiguration caused by avoiding 

updating and changing the default password. On the other hand, a single-tenant 

Cloud runs on dedicated infrastructure and provides enhanced security and 

reliability of performance for an application at a higher cost. 

 

2.2.2 Fog Computing 

Fog computing is a subdivision of Cloud computing and decentralised 

computing structure that uses edge devices to perform computation locally 

while maintaining connectivity with the Cloud [47]. Fog inherits functionalities 

and offloads the tasks from the Cloud. With virtualisation, services and 
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applications are distributed closer to where data are produced [48]. Fog 

computing is formed from a group of Fog nodes which can be a router, network 

switch, local server, and the gateway connected to the edge network and devices. 

This layer is referring the LAN inside the factory with a database and server that 

offer limited computing, storage, and networking resources. Compared to the 

Cloud, Fog computing provides better coverage of the application in the area 

with real-time or close to real-time communication and handles critical 

infrastructure and system requests when there are many connected devices to 

the network [49]. In addition, Fog computing helps to process the data instantly 

or in batch processing based on the request requirements. This ability enhances 

the process of interest data and sends it to the Cloud, which can ease bandwidth.  

Also, the CPS application can support intelligent algorithms and machines 

simultaneously while offering fault tolerance and reconfiguring the system. 

Machines and devices such as PLC can communicate the instruction in close to 

real-time. When implementing IoT architectures, energy consumption should 

be considered as a battery powers the nodes. Examples of applications are 

energy or power consumption and scheduling management. Other applications 

and services under support are inventory management and intelligent 

maintenance management. 

 

Fog computing can provide functionalities locally that ensure critical functions 

are still operated in the local network when the Internet connection is unstable. 

The process in Fog computing is where all Fog nodes form the network, which 

facilitates the resource sharing of manufacturing equipment and tools. As the 

local network maintains an Internet connection to the Cloud, Fog computing is 
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exposed to various security threats and vulnerabilities. An Internet connection 

allows attackers to take vulnerabilities in the system, networks, or local devices 

and penetrate the network remotely. For example, the compromised node exists 

in the local network. The attacker can spoof the gateway, sending invalid data 

or instructions to the Manufacturing Execution Support (MES), ERP, or Digital 

Twin systems. 

 

With computing and shared resource, a hypervisor can pose a threat to memory 

overload and causes vulnerabilities in managing resources. Fog platform over 

web services prone to attackers. For Example, SQL code injection, insecure API, 

or XSS to target other applications. 

 

Dynamic provision of the computing resources is necessary to adapt to the 

changes in service load where unexpected service requests surge in complex 

IoT environments that support multiple applications and requests [50]. 

Correctly anticipating the request load and adequately handling the source in 

the virtualised environment can help to cater to threats that target resource 

depletion in the networks. 

 

2.2.3 Edge Computing 

Edge computing is located close to physical areas such as shop floor, production, 

or manufacturing. These intelligent edge devices or IoT integrate with CPSs 

simultaneously, running the services and operations closest to the data sources, 

and users enable processing at greater speeds. An IoT platform that manages the 

connectivity of devices to store, extract and analyse large volumes of data 
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through edge analytics in real-time enables a level of automation of processing 

the transaction [51]. Some edge devices are robot arms, IoT, and sensors. These 

edge devices are bridged and connected through network devices in the wired 

and wireless connection such as Industrial Ethernet, sensor network, WiFi, and 

5th generation (5G), which are vulnerable to attacks. 

 

The deployment of the IoT at the edge and the combination of actuators and 

sensors form an edge system that executes real-time tasks based on the sensitive 

and time-critical information existing in different data types [52]. With limited 

computation capability, they can perform restricted critical tasks such as 

monitoring the status of the devices or sensors and sending the update to the 

server to verify the condition and further action should it be required. Edge 

computing transforms the way to leverage data and improve operation 

efficiency. At the same time, those are non-time critical relevant data sent to the 

Cloud, which allows monitoring of the operation across the factory. 

 

IoT gateway handles the protocols and data format conversion, enabling IT and 

OT convergence by sharing data between OT equipment and IT equipment. A 

standard protocol such as OPC UA and MQTT is adopted, allowing the edge 

devices and IoT to securely communicate with various services and applications 

running as Edge computing [53]. These protocols can run in interoperability and 

focus on security and sustainability to integrate the information across the 

network.  
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An example of the analysis that utilises real-time data collection from the IoT 

and sensors is verifying the devices' health status to ensure the equipment is in 

proper condition. Unlike conventional method that utilises correlation analysis, 

an intelligent algorithm improves the decision based on the generated model. 

This technique enhances accuracy and adaptability as the model can be updated 

based on the physical conditions and execution context. Hardware resources 

such as industrial Personal Computers, PLCs, gateways, and iHubs can handle 

the additional requirement to collect sensor data and send them to the control 

devices to run on the machine learning for application. As for proactive 

prognosis, an edge device such as an industrial Personal Computer is added 

close to the production. Through Multi-Access Edge Computing (MEC), the 

resource can be optimised at the edge while at the same time handling the IoT 

application and workload assignment effectively and securely [54]. The edge 

enhances the responsiveness of the communication between edge devices that 

allow decision making in an autonomous and self-organised manner.  

 

The edge gateway can handle a wide range of network connectivity protocols 

supporting scalability and monitoring activities in the Smart Factory. In [55], 

six important functionalities of edge IoT include IoT application, Edge rule 

engine involving notification and callout, connectivity to the Cloud, edge 

analytics, edge data normalisation and edge data storage. The edge device that 

acts as a control should be able to run in autonomous operation and adapt to the 

production. Data are enhanced and transformed into a shareable form. Although 

the standard of OPC UA is required to be met, legacy systems and old devices 

still exist and cannot support these protocols. Some of these protocols used by 
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the devices initially come with insecure communication without proper 

authentication. Traditionally, Modbus protocols send messages without security 

implementations and thrust the command entirely through the master-slave one-

way communication. This protocol allows the compromised mobile and 

Personal Computer to issue an invalid command through the Human machine 

interface (HMI) to the ICS. The local network can be exposed to vulnerabilities 

in an attack. On the other hand, because Edge computing provides services 

without sending data to the Cloud, it can help to resolve data privacy issues. 

 

2.2.4 Internet of Things (IoT) 

The IoT is a resource constraint device with specific characteristics. These 

devices are powered by wired cable or battery for months to ten years. It is 

powered by limited computing capabilities to support data sharing and decision 

making in the functional areas. The application areas range from production to 

warehouse logistics. The connectivity of IoT compared to a computer system is 

different. IoT runs on OS, which is limited to essential task scheduling 

functionality such as Real-Time Operating System (RTOS) [5]. These 

conditions allow the IoT to optimise the performance in communication by 

utilising different sleep times, wake up, and functionalities, which guarantees 

the quality of packet delivery rate and saves battery consumption. The Institute 

of Electrical and Electronics Engineers (IEEE) 802.15.4 is a prominent standard 

defining the requirements for IoT implementation [56]. Each IoT functions 

differently in the application area, and it can connect to different amounts of 

devices based on the scenario and application. The data formats vary from 

device to device and are categorised as event-based and control data sending in 
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a specific time interval. Integrating the IoT in the Smart Factory, such as in the 

product and scanning through Radio Frequency Identification (RFID), allows 

tracking of the movement and inventories. In IIoT, it refers to sensors, actuators, 

and robotics. The IoT requires firmware, a code in a non-volatile part of the 

device, to connect to the environment through the hardware interface. This 

device has several components, such as the kernel, bootloader, storage, and 

memory [57]. 

 

This firmware requires an update for bug fixes and enhancement that requires 

time allocation without impacting the operation of the function area. IoT OS 

manages the hardware and the applications that run on the devices by 

coordinating and allocating resources to execute the series of tasks efficiently 

[58]. IoT OS depends on the hardware board, memory, software installed, real-

time computing, and implementation environment that deals with storage, 

networking connectivity, interoperability, and security. The advanced OS can 

support the platform to run AI. The IoT application requires the developed OS 

that runs on the devices to meet standards such as energy efficiency and 

consumption, real-time computing, network connectivity, security, 

heterogeneous devices support, and intelligent IoT. 

 

The OS is optimised to support different hardware platforms in IoT to perform 

functional tasks. Recently, most OS has integrated with the IP networking stack 

by supporting network protocols such as Internet Protocol version 4 (IPv4) and 

Internet Protocol version 6 (IPv6). The network protocols are essential to allow 

the connectivity of IoT solutions. It is common for IoT OS to integrate the 
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complete IP stack to support network communication. Also, most OT systems 

that connect with IoT are switched to support the IP [5]. However, the 

consideration of an increased number of IoT leads to the adoption of IPv6. The 

advantage of IP support is scalability, which has existed for many years and 

allows the IoT solution to share and support the application through the Internet. 

The advantages include application protocols for file transfer, mobility, and 

access to the website. 

 

An additional consideration is the overhead of IP. As a result, adaptation 

through the gateway to map IP and non-IP networks is essential in the 

heterogeneity network. Deployment of IoT is on a large scale, and the 

interconnectivity of the devices exposes the vulnerability of IoT, especially 

since Internet connections are available [59]. 

 

The Table shows various connectivity standards used in IoT. The IoT handles 

the IEEE 802.11 WiFi network and Zigbee with standard IEEE 802.15. The 

difference between 802.11 is more power consumption with a range of coverage 

of around a few km. The encryption associated with the technology is available. 

However, its implementation relies on the IoT capacity. Due to various IoT, 

some do not come with encryption. 
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Table 2.1: Technology for IoT. 

 LPWAN 

Characteristic 802.11-

ah 

Zigbee BLE RFID 6LoWP-

AN 

Sigfox LoRa-

WAN 

Frequency 900MHz 2.4MHz 2.4MHz various 868-915 

MHz 

868-

902MHz 

867-

928MHz 

Power 

consumption 

Low-

medium 

Low Low Ultra-

Low 

Low Low Low 

Range Medium 

<1 km 

Short Short Short Short Long 

<40km 

Long 

20km 

 

 

Despite the above advantages, there exist challenges in the IoT solution. Based 

on the Open Web Application Security Project (OWASP) has highlighted the 

vulnerabilities of the IoT [60]. 

 

The top 10 IoT vulnerabilities stated in the OWASP are: 

1. Weak, Guessable, or hardcoded passwords 

IoT passwords are vulnerable and easily break through brute force. The use 

of weak passwords that can be easily remembered is common. Some 

devices' passwords are hardcoded by the manufacturer and must be 

configured for password changes. This practice eases the technician for 

remote maintenance and debugging. 

2. Insecure network services 

Insecure network services are often used by malicious malware before the 

attack, such as forming the botnet and receiving instructions from the C&C  

server. This unused open port and services should be restricted or turned off. 
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3. Insecure ecosystem interfaces 

IoT can connect a wide range of devices and application servers around the 

environment through network interfaces. The insecure interfaces include 

weak API and device connectivity authentication, such as Bluetooth Low 

Energy (BLE) pairing and lack of encryption. 

4. Lack of secure update mechanism 

The firmware of the IoT is vulnerable and consists of essential details such 

as configuration. Security in updating or patching process is vital to ensure 

the intended firmware is installed with the correct version. If the update fails, 

the device should be protected from anti-rollback to ensure that only the 

vendor-authorised firmware is supported and prevent those deemed out of 

date or insecure versions of firmware from exploiting. 

5. Use of insecure or outdated components 

6. Insufficient privacy protection 

Privacy protection highlights the importance of data privacy and the storage 

that needs to be encrypted. This practice prevents the disclosure of data 

without the user’s permission. 

7. Insecure data transfer and storage 

Data needed to be protected in storage and during transmission. The network 

nodes should be authenticated, and data transmission should be encrypted 

so that no others can read the content except the intended recipient. 

8. Lack of device management 

IoT is an asset that requires proper monitoring and management in various 

aspects, such as update management and handling of compromised devices. 

The device management includes verifying the connection and 
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configuration for onboard devices, understanding the operational status and 

diagnosis, and maintaining devices. 

9. Insecure default settings 

Default settings such as password and device configuration can introduce 

security vulnerabilities. Preparing alternatives for issues like allowing 

reconfigures of passwords and settings before being placed in the operation 

fields can prevent an attack. 

10. Lack of physical hardening 

Take preventive measures such as disabling debug port and secure boot to 

validate firmware, allowing only the correct program to execute in the 

devices. 

 

There are existing IoT exposed security issues, such as the thermostat or the 

camera that connects through the Cloud, which can handle the transaction and 

store necessary files which can be utilised and located afterwards, such as IP 

cam recording. 

 

IoT is vulnerable when exposed to unauthorised access. There are various 

methods to extract essential details from the firmware, such as configuration 

and relevant credentials to launch a target at the victim. The Google thermostat 

shows that the boot process has been interrupted to load the malicious code and 

take control of the devices [21]. [20] highlights that the firmware's sensitive 

information can be easily identified and extracted since open-source tools are 

available. The paper [4] discusses the steps in firmware analysis, comparing 

many diverse embedded devices in the IoT environment and proposes 
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improvements in the firmware analysis based on the challenges. The source 

code in smartphone and web applications can be extracted through reverse 

engineering. This technique can identify some hardcoded passwords and launch 

the attack. On the other hand, the IP of the interacted devices can be extracted 

from the Shodan search engine. 

 

Malware is a source code installed on the target devices to achieve a range of 

malicious activities. Mirai was the first to detect a severe occurrence during the 

Distributed Denial of Service (DDoS) that caused massive damage. It has the 

potential to penetrate the network and intercept the traffic for a sufficient 

duration of time to study the sensitive details. These devices show the 

communication in plain text and redirect the traffic from the server, allowing 

the direct data flow from the IP camera to the mobile devices. 

 

The IoT vulnerability depends not only on the devices themselves but also on 

the ones connected, such as smartphones and web application vulnerabilities. 

[21] shows that the telnet server’s passwords are removed, leading to 

unprotected access by unauthorised access and control of the field devices. The 

paper also highlights the vulnerabilities of the firmware once injected through 

malicious activities with the source code capable of revealing the weaknesses 

of the devices. 

 

In the update process, some procedures are to check on the firmware version or 

patch through the insecure transmission. Malpractices lead to security issues. 
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Another vulnerability from the web camera shows a lack of binary protection, 

weak server-side control, and improper use of network services [22]. 

 

2.3 The Security Issues and Challenges 

2.3.1 General  Issues and Challenges 

The revolution of Industry 4.0 comes with various issues and challenges during 

its implementation. The IoT offers efficient and intelligent capabilities to 

perform autonomous operations in production. Sensors and actuators are the 

edge devices that provide or serve as the data source, sharing the data to 

facilitate decision-making. These devices have small computing power and 

firmware to communicate in the environment using the IEEE 802.15.4 standard, 

which best fits the resource constraint network. 

  

The complex and highly interconnected environment requires an in-depth 

strategy to defend ICS in critical infrastructure [61]. Different manufacturers 

produce these sensors with their communication protocols without sufficient 

consideration of security measures and open vulnerability once implemented in 

the network [62][63]. In complicated cases, the IoT is manufactured by 

stakeholders, and another develops the firmware. Legacy devices can 

sometimes not support firmware updates due to limited Input/Output (I/O) 

capabilities [64]. In the higher capability of IoT, many stakeholders are involved 

in the process, including suppliers of the many parts that are put together to form 

intelligent devices. The sensors are implemented in a wide range and scale for 

the production and operation to execute normally. In [65], it highlights breaches 

that exist in the IoT with countermeasures. Nevertheless, this product is often 
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easily implemented in the environment without following the proper guidelines 

[66].  

  

The PLC, which runs on the Modbus protocol, conducts the one-way 

communication in the master-slave manner where the instruction is not 

authenticated and verified with the identity [67]. The existing legacy system 

needs additional consideration to handle or cope with the specifications and 

requirements, such as communication protocols with encryption. Previously, 

systems such as ICSs handled primary operations that received commands from 

sensors and actuators without the impact of the vulnerability of the Internet [68]. 

Also, similar to the IT system, these machines are susceptible to ARP spoofing 

attacks. In the OT environment, device logic is loosely related to the data, which 

lacks information and creates difficulty for an attacker to learn the network 

details. The ICS faces security challenges while moving into Industry 4.0, where 

the IoT network handles communication with the Internet connection [69]. 

Existing sensors and IoT that initially lack security measures are already in the 

market, and some are implemented in the industry. These products lack the 

infrastructure to support and implement the protective mechanism. Even some 

intelligent devices with some processing power cannot perform more advanced 

security such as encryption and authentication. It is essential to apply advanced 

cybersecurity, which offers considerable security advantages in the industry and 

can increase productivity [70]. 

  

There are security threats in IT networks, and the incidents are relatively 

frequent. Because the network links to the Internet, communication applies 
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across different geographical areas. Most systems run with similar software and 

OS, which give attackers more information and potential methods to manipulate 

the system behaviours. Conversely, the OT is more destructive if an attacker has 

penetrated the environment and launched an attack on the critical infrastructure. 

Through the digitalisation of Industry 4.0, digital systems connect to the ICS 

that links the physical operation to cyberspace, such as CPSs. As a result, the 

vulnerability in one environment can be easily propagated to others. Security 

patches, which fix the vulnerabilities of the existing running system, are 

frequent in the IT environment and are automatically conducted through the 

Internet while patching in OT is slow and probably handled manually. 

Unauthorised physical access places all network devices under security threat. 

 

Operators in the factory can issue the command from the HMI running multiple 

applications connected through the IT infrastructures [71]. Even if the system 

is not connected to the Internet, this device can expose security issues when the 

workers do not correctly handle the devices. 

 

2.3.2 General Attacks Type 

1. Denial of Service (DoS) 

A Denial-of-Service attacks the network of the system from operation. It is 

a malicious attempt to oversaturate the machine's capacity by flooding it 

with excess traffic or sending falsified packets that break the standard 

operating procedure.  

2. Sybil attack 

Sybil attack occurs when the network is manipulated, and an attacker takes 
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over the control through many fake identities and subverts the service’s 

reputation system. This attack takes the opportunity of the peer-to-peer 

network by producing multiple identities and sabotaging equal resource 

usage of IoT [72].  

3. Spoofing 

Spoofing is an attack in which the attacker misleads the node's address 

through a falsified packet sent by the attacker to the target network or 

machine. In an IP network, the local machine is identified through the local 

address, which is MAC and IP address. Through spoofing, an attack gains 

legitimate access into the network, which can prepare for a further attack, 

such as listening to the network, manipulating the target machine message, 

or simply dropping the packet received when it acts as the gateway. 

4. MITM attack 

In the MITM attack, the attacker acts as an intermediate node and intercepts 

communication between the sender and receiver. This attack is conducted 

by passively listening to the traffic, intercepting the connection, terminating, 

and setting up a new connection, making both parties believe they are 

directly communicating.  

5. Eavesdropping 

Eavesdropping is a passive attack where the attacker secretly listens to the 

network communication of the involved nodes to acquire interesting 

information. 

6. False data injection 

False data injection attacks data integrity and operation where the physical 

system’s state, sensor data, or control command is modified and deviates 
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from the original. This attack targeted the lack of tamper-resistance 

hardware and compromised the devices. Example such as [73] shows the 

false data injection in CPS by Gaussian noise to replace innovation with the 

optimal attack. 

7. Replay attack  

In a replay attack, an unauthorised node captures valid data and fraudulently 

resends it to the receiver, acting as if the data come from the original sender.  

8. Zero-day attack 

Zero-day means the vulnerability in the software and system that remains 

unknown by the developer or vendor. Zero-day attack targets an unknown 

vulnerability in the program by exploiting and leading to abnormal functions 

in the target machine. 

9. Covert-channel attack 

Covert channel attack evades by transferring information through a 

compromised device over a legitimate communication channel. Three types 

of covert channel attacks are i) storage-based covert, ii) timing-based covert, 

and iii) behaviour-based covert [74]. 

 

2.3.3. Simulation Attack 

The vulnerability in the protocol poses a security threat to the network. Many 

IoT exist and can quickly launch a DDoS attack. The attacker looks for IoT 

vulnerabilities and turns them into a bot to receive a synchronised command, 

which launches DDoS and commits a security attack. There is often 

unencrypted IoT communication in the network, which the attacker targets and 

launches the ARP spoofing and IP fragmentation attacks. 
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The attacker looks for vulnerabilities in the network to steal sensitive details 

and bring down the infrastructure and important systems. Unauthorised physical 

access allows malicious code to be installed in the device through USB. IoT is 

Internet-oriented, with many applications in the Smart Factory. To further 

enhance and prepare the attack, an attacker can target vulnerable protocols, 

mainly ARP and IP fragmentation, as those are IP-based and regularly invoke 

in the specific timing that an attacker can utilise. For example, ARP resolves IP 

addresses to physical addresses in the local network and fragmentation of large 

packets in the updating or patching processes. When the attacker launches the 

attack, they regularly choose the timing when the system is vulnerable. 

 

2.3.3.1 DDoS Attack 

A DDoS attack targets to bring down the infrastructure or make the server 

unable to respond to a legitimate request by flooding the server with excessive 

data. This attack utilises many compromised devices caused by malware like 

Mirai that turns the infected devices into a botnet and synchronises it to launch 

the attack. Due to various challenges, there needs to be more mitigation 

implemented. Examples of DDoS attacks are volume-based, protocol, and 

application layer attacks. 

 

Volume-based attacks - The volume-based attacks include User Datagram 

Protocol (UDP) flooding and ICMP flooding attacks. These attacks aim to cause 

bandwidth depletion at the target node. 
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Protocol attacks - Protocol attacks include HTTP Flood and Transmission 

Control Protocol Synchronized (TCP SYN). These attacks consume resources 

like a load balancer, firewall, or communication devices at the target node or 

servers. 

  

Application attacks - Examples of application attacks are GET/POST HTTP 

attacks. In the application layer attack, a hacker attempts to consume the same 

resources from the application server with the same requests repeatedly, such as 

Apache, Windows, or Linux-based server. This attack is brutal to stop a 

legitimate request within a specific application. 

 

The Mirai malware was first found on August 2016, and since then, several 

large scale incidents dealing with the malware have occurred. For example, an 

attack on the French web host (OVH) has been identified. The size of the DDoS 

attack on OVH’s server claims to be 1.5 Tbsp [75]. The trend shows that the 

DDoS attack volume has increased over the years. 

 

The DDoS attack could harm the system and become unresponsive to legitimate 

requests. Subsequently, the attack can sometimes adapt to the environment and 

manipulate the machines' behaviour, allowing attackers to steal classified 

information. DDoS is a network-based attack that targets Internet-based 

services and networks such as routers, servers such as DNS, web servers, and 

infrastructures. Moving into the revolution of Industry 4.0, this attack expands 

the target to various machines in the fields and operation areas. 
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Unlike the standard DoS attack, which directly attacks servers or devices, the 

DDoS distributed the source of the attack to form a botnet before giving a 

command to launch the attack to the target devices that provide services and 

connectivity. This source distribution gives enormous challenges for 

implementing security measures and protection. A single breach in a highly 

connected environment allows the infected devices to spread the malware across 

the networks. Industrial  Control System (ICS)  are vulnerable to this attack. 

Once attacked, the system resource is exhausted and interrupts the services until 

the server is manually shut down or turned off. The interruption impacts the 

operation severely, which often requires real-time communication and response 

to keep the operation running smoothly. 

 

Other than that, the attack spreads the source of the attack across different 

networks, and the source is often unable to trace back. Those attackers that 

employ this method can even enhance and modify the open-source code and 

make the malware stealthy, eventually leading to a stealthy DDoS. In the Smart 

Factory, an advanced attacker can use the tools, hiding the initial attack from a 

small bandwidth connection or a slight increase of the traffic from the edge 

network, which, when accumulated at some point, leads to gigabytes of traffics. 

 

2.3.3.2 ARP Spoofing 

ARP spoofing attacks the device due to a lack of authentication implemented in 

the protocol. Existing research has shown various methods to protect the local 

network that adopts the IPv4 protocol standard, such as a static ARP table. 
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ARP is a LAN communication protocol that operates in the network layer in the 

Open Systems Interconnection (OSI) model. The ARP protocol resolves a host's 

MAC address given its IP address through a broadcasted ARP request packet 

on the network [8]. ARP is a stateless protocol. The network host will cache 

ARP replies automatically, and there is no predefined authentication to identify 

the sender. As a result, ARP spoofing can happen.  

ARP stands for Address Resolution Protocol and is used in the LAN nodes to 

resolve address mapping in the data link layer before communication. ARP 

spoofing is a well-known attack employed by an attacker to interrupt 

communication in the local network nodes, possibly granting Internet access 

through the gateway to the server.  

In the ARP process, a node looks for the ARP cache or table, which consists of 

the Internet Protocol-Media Access Control (IP-MAC) mapping. Initially, the 

destination IP address is known. The host needs the MAC to address the 

destination and send the packet to the local network. Therefore, an ARP request 

is broadcast to the local network, waiting for the intended recipient to reply with 

its IP-MAC. The ARP protocols' weakness is that there is no proper verification 

of the sender's identity. It is a stateless protocol with weak authentication. As a 

result, the host receives the ARP reply result and inserts the record in the ARP 

cache. Moreover, the host only takes the last reply and updates the table to 

worsen the situation. The attacker can send multiple ARP replies to overwrite 

the legitimate ARP packet record. ARP is not a security protocol and can be 

attacked from various scenarios, making the attack difficult to detect. 
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2.3.3.3 IP Fragmentation Attack 

A fragmentation attack is an attack that targets the breakdown of an IP packet. 

In order to successfully reassemble fragments at the destination, all the 

fragments should have similar Identification, the correct offset of each fragment 

that follows the order, receive all the fragments with the last fragment indicating 

no more fragments follow this one, and the correct length of the data in the 

fragment. 

 

There are various methods and types of IP fragmentation attacks, as described 

in the paper [76]: 

Overlapping Fragment attack - The attack occurs when more than one fragment 

has offset, which indicates overlapping each other in the same packet. In this 

case, one data can be overwritten by another fragment. 

  

Resource exhaustion attack - This attack targets the reassembly process caused 

by missing or incomplete fragments received at a destination node. The memory 

filled up with those incomplete fragments and become overwhelmed. 

Ultimately, reassembly of the packet becomes impossible. 

  

Predictable fragment Identification - The fragment contains an ‘Identification’ 

field representing the fragments belonging to the same packet. The generation 

of this value depends on the implementation of the OS, which can be predictable. 

A forged fragment with similar Identification can interrupt the destination 

reassembly process to fail. 
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Evasion of Network intrusion detection systems (NIDS) - This attack attempts 

to mislead a NIDS and causes the target victim to reassemble the fragments sent 

by an attacker. 

 

IP fragmentation attack (misassociation) targets the protocol's vulnerability by 

correctly guessing the IP Identifier (IP-ID) or packet header identifier and 

interrupting the reassembly process [77]. OS controls IP-ID based on its specific 

implementation [78]. 

 

2.4 Protection Methods 

2.4.1 Protection for DDoS 

A DDoS can bring down the infrastructure or make the server unable to respond 

by flooding the destination server with excessive data. This attack achieves the 

objective by infecting many devices with Mirai malware, which turns them into 

a botnet and synchronises it to launch the attack. Detection that adopts an 

intelligent algorithm requires training the model from a dataset, often 

insufficient and unavailable in the IoT network. In addition, the model's quality 

relates to the selected features or data attributes that can impact the predictive 

power of a classifier. In [79], the KDD dataset with extracted features trains the 

model using a Support Vector Machine (SVM) and achieves higher detection 

results than the Decision Tree. However, the classifier is unsuitable for large 

datasets and when the dataset has more noise. In [80], K-Nearest Neighbors 

(KNN) is a lazy learning algorithm that classified detection successfully in 

various applications, including the DDoS with UDP data. Like many other 

classifiers, the imbalanced class distribution significantly impacts KNN,  
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especially when there is more outliers in the data point. In [81] shows that 

machine learning algorithms, such as Random Forest (RF) and SVM, are good 

at detecting the DDoS at the local attack, which supports multiple protocols 

such as TCP, UDP, and ICMP. The model was trained with extracted features. 

Although the detection rate is high, the above classifiers deliver different results 

and performances in DDoS detection. In particular, the RF adopts randomisation 

in splitting the nodes, which can generate noisy trees and impact the accuracy 

of a new sample. 

  

2.4.2 Protection for ARP Spoofing 

ARP spoofing attack the devices due lack of authentication of the protocol. 

Existing research has shown various methods to protect the local network that 

adopts the IPv4 protocol standard. A network segment is one of the mitigating 

approaches. However, this does not prevent the gateway from being attacked. 

Referring to paper [82], static ARP entries increase the administrative overhead, 

which burdens the dynamic network, which has many devices connected 

through a wireless connection. In [83], the method adopts packet filtering to 

filter and block attacker traffic. It is considered lightweight and reduces power 

consumption. The detection is required to set the parameter value of the window 

packet count and detect a vast similar ARP reply packet from the same source 

compared to the ARP request packet. This method detects the most IP addresses 

and makes hiding the attacker's real MAC through a massive volume of packets 

difficult. The method shown in [84] inspects each ARP packet. This method 

does not require storing the ARP packet's IP-MAC for validation. It detects the 

variant of spoofed ARP through a rule-based method by checking and 
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comparing data link and ARP header data in the ARP packet. However, this 

method is time-consuming and cannot detect spoofed ARP packets other than 

the gratuitous variant. An attacker can adopt various methods to launch ARP 

spoofing, either ARP request, ARP reply, or both. 

 

A flow-based time series entropy detection for abnormal traffic is shown in the 

paper [85][86], with the entropy (H) during ARP spoofing falling in 1.3 and 

regular traffic without attack above 2.0. A threshold can be set for ARP spoofing 

detection. ARP spoofing is detected using the entropy method. Generally, the 

effect of time series detection depends on the entropy calculation (H) shown in 

[87]. Entropy detection does not capture the identity of the potential attacker's 

address, which can be used to filter or block the network. 

 

Equation (1) shows the entropy formula to calculate Hfield of each window slot. 

𝐻(𝑋) =  − ∑ 𝑝 (𝑥) 𝑙𝑜𝑔𝑝(𝑥)
ୀଵ                                         (1)                              

 

An abnormality is detected based on the entropy, and further action to filter and 

block the attack traffic is implemented. In this case, the suspicious source MAC 

address identified in the ARP packet can represent an attacker. 

 

2.4.3 Protection for IP Fragmentation Attack 

IP fragmentation attack (misassociation) targets the protocol’s vulnerability in 

which the IP-ID can be guessed and spotted, and the attack can interrupt the 

reassembly process [77]. This attack becomes even more effective and 

efficiently conducted when considerable traffic is found unencrypted. The IP-
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ID is based on OS's specific implementation. Existing research proposes 

mitigation, such as adopting TCP to avoid fragmentation or even avoid 

fragmentation in the first place [88]. Based on the reference from the KDD 

dataset, the most relevant feature for detecting a teardrop is the ‘Wrong 

fragment’ field [89]. However, no declaration is found on how the wrong 

fragment fields are extracted [90]. 

 

Similarly, paper [91] stated that Path MTU Discovery (PMTUD) is vulnerable 

and can be exploited by an attacker. Low power consumption in the IoT network 

is needed for reliable communication and minimises retransmission's impact 

[92]. In case of fragmentation, it can reduce the delay latency in IoT 

communication links, increase the delivery rate of packets and ensure effective 

communication. Protection of the IP-ID is necessary to prevent the reassembly 

process interruption. 
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CHAPTER 3 

 

DISTRIBUTED DENIAL OF SERVICE 

 

3.1 Simulation Model 

In an IoT DDoS attack, the environment is exposed to a malware infection such 

as Mirai that can schedule and synchronise an attack. The interconnected 

networks and heterogeneity of the IoT environment lead to a quick spread of the 

malware. The number of infected devices increases and forms a botnet capable 

of triggering a DDoS attack. The IoT devices behave as usual when no attack 

command is received. A local network comprises vast numbers of IoT, which 

can be connected through a computer or gateway. Therefore, even though each 

IoT component sends a small amount of the data packet in a consistent time, the 

data aggregate at the gateway becomes large. The situation is escalated when a 

node that acts as an Internet gateway involved in the attack has a larger 

bandwidth to flood the server. 

 

The normality of IoT devices that send the data consistently can hide the earlier 

stages' attack phenomena. The outbound, periodic traffic dominates IoT 

communication consisting of TCP and UDP data. IoT devices often have limited 

power and resources for processing and storing data. Therefore, the infected 

devices are placed in sleep mode when not in the attack session, which could 

save energy and power for the time to launch the attacks. 
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Figure 3.1 shows the model of the UDP flood which is a type of DDoS triggered 

by the IoT devices from networks. The data aggregate at the nodes and send to 

the target server. The model is designed and implemented using OMNeT++. 

Due to the framework's design, the server has unlimited processing power and 

can handle all the incoming packets. The model implements DDoS with the 

incoming packet reaching the server side router, which serves as an entry point, 

and has a limited queue buffer to the server. The compromised IoT devices 

receive command with the time to attack, and the devices begin to trigger 

outbound UDP data synchronously and at a high rate. All the nodes aggregate 

and forward the data to flood the server. As time goes by, the queue on the 

server-side router increases. The attack continues and the buffer queue exceeds 

capacity. Flooding occurs in this situation, and the router must drop the 

remaining packets. Due to the incomplete packet received, the server cannot 

proceed with the correct processing of the application. When the server cannot 

receive complete packets, the flooding process exhausts the resources, which 

leads to unresponsiveness to the senders' requests. This situation may continue 

until the attack stops or the protection is implemented to recover the network. 
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Figure 3.1: DDoS model. 
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3.2 Detection 

Figure 3.2 compares the regular traffic simulated in 65 nodes and an attack 

simulated in 100 nodes, where 65 are regular nodes, and 35 are attack nodes. 

The server receives all incoming packets in the simulation with only regular 

traffic. This simulation shows that the bandwidth can cope with regular traffic. 

In the simulation, with 100 traffic nodes, the data sent to the server increased 

and reached 40000 packets. Figure 3.3 shows that the attack traffic flood the 

server in 0.5s-0.6s, which lead to an increase in the queue at the router. The 

router drops the incoming packets as they reach the queue limit, shown with 

total incoming packets higher than that outgoing from the server side router or 

received by the server. The high traffic volume during the attack session led to 

a drop of many packets quickly driven by the UDP traffic. Thus, the DDoS 

occurs during the attack session in 0.5s-0.6s. 

 
Figure 3.2: Two data flow scenarios from the server-side router to the server 
in 100s of simulation, one comprising 65 nodes and the other with 100 nodes. 
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Figure 3.3: DDoS traffic with 100 nodes presents in log10. 

 

3.3 Verification Plan 
 
The DDoS model with incoming data at the router is calculated by Shannon 

entropy, as shown in Figure 3.4. The entropy-based method relies on the packet's 

destination port distribution to show the network behaviour in the calculation. 

The verification of the model uses entropy to categorise the regular traffic, 

which shows a random distribution of the packet sent by each network node 

with a higher entropy value. In the attack, traffic often hides in the network and 

contributes to a high volume of flows or packets, which show a highly similar 

packet received by the server. A lower entropy value reflects this phenomenon. 

The regular traffic consists of UDP and TCP, which have different sending times. 

The sending interval for TCP traffic is 0.3s with different starting times, while 

UDP traffic is more frequent and occurs in 0.01s-0.02s. Equation (1) shows the 
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entropy value for the measurements of network activities. The (H) value is based 

on every 0.05s in the verification. For example, there are 43 unique destination 

ports in 0.05s-0.1s, each contributed 5 messages. Thus, the occurrences of each 

destination port are as follows: 

 𝑝(𝑥) = (
ହ

ଶଵହ
) logଶ(1/(

ହ

ଶଵହ
)  

For 43 destination ports, the n equals 43, and the H(X) entropy value is 5.42626. 

During the attack session, the entropy drops to a lower value in 0.5s-0.6s below 

5.25, caused by a high volume of UDP traffic flooding into the server. As for 

recovery, which is in 0.6s-0.9s, the entropy is 5.4-5.6. More unique addresses 

are found in the time slot, leading to a higher value. Thus, the changes in entropy 

values are used to indicate unusual events and reflect the network activities.  

 

 
Figure 3.4: DDoS verification model using entropy. 
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3.4 Protection 

RF is a machine learning algorithm that uses a bagging technique that relies on 

many decision trees and merges them for an accurate prediction. Each of the 

trees is called a forest, uncorrelated to each other. It can randomly select 

attributes to split the nodes in the decision tree without pruning. The bootstrap 

method uses a resampling technique with a replacement that estimates a 

population and copes with insufficient data to train the model. The average 

result of all the forests represents the final prediction, and with the maximum 

vote techniques, there is a high chance of getting the correct answers, as shown 

in Figure 3.5. 

 

 

Figure 3.5: RF algorithm. 
 

Principal Component Analysis (PCA) is the technique used in dimensionality 

reduction. This method converts the original data into uncorrelated PCs. The 

PCs are arranged from highest variance to lowest variance or in descending 

order. The result for PCA is to transform the dataset into PCs by maintaining 

the highest possible variances. 
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The eigenvector of matrix A and the  which is scalar eigenvalue for matrix A 

(square matrix) as in Equation (2): 

AU=U                                                                              (2) 

Equation (3) is the root of the characteristic equation, which is solved to obtain 

the value of : 

det( − )=0,                                                                    (3) 

As for the PCA calculation, the PCs are arranged from the largest eigenvalue to 

the lowest. Thus, the first selected Principal Component (PC) contributes the 

highest variance of the data. 

 

To evaluate the performance of each classifier, some evaluation indicators were 

introduced. Some predefined definitions are as below. 

TP = True positive, TN = True Negative, FP = False Positive, FN = False 

Negative 

 

The formulas adopted in the evaluation of classifiers are shown below. 

Precision = TP / (TP + FP),                                                           (4)    

Recall=TP / (TP+FN),                                                                   (5)    

Accuracy = (TP + TN) / (TP + TN + FP + FN),                            (6)  

F1-score = 2 × (Precision × Recall) / (Precision + Recall),           (7)  
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3.5 Result 

 
Table 3.1: Dataset attributes. 
 

No. Field name Field name (dataset) Data type Description 
1 Protocol Protocol  Numerical Protocol id represent 

TCP/UDP 
2  Source port srcport Numerical Source port from 

sender (incoming) 
3 Destination port destport Numerical Destination port  

(incoming) 
4 Byte byte Numerical Data bytes  

(incoming) 
 
 
 
Table 3.2: Papers refer in DDoS. 
 
Method Authors Reference 
SVM 
 

K.M. Sudar, M. Beulah, P. 
Deepalakshmi, P. Nagaraj and P. 
Chinnasamy 

[79] 

KNN S. Dong, and M. Sarem [80] 
RF J. Pei, Y. Chen,  and W. Ji [81] 

 
Table 3.3: DDoS simulation parameter. 
 

Parameter Value 
No. of Legitimate Nodes 
(Sender/Gateway) 

65 

No. of Attacker (Gateway) 35 
No. of Router (Server side) 1 
No. of Server 1 
Attacker target Server side 
Simulation time 1s 
Attack duration 0.5s – 0.6s 
Sending Interval (Attack) 0.0001s 
Sending Interval (Regular) UDP=0.01s – 0.02s; TCP=0.3s 

 
 
 
The dataset comprises 35% attack traffic and 65% benign traffic generated from 

100 nodes. Source port, destination port, protocol, and byte are four features 

shown in Table 3.1. All of them are from numerical data type. Table 3.2 lists 

the comparing classifiers. The simulation configuration applied in the dataset is 
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set based on Table 3.3. Based on the correlation matrix in Figure 3.6, all the 

features used for the classifier to train the model do not have a high correlation. 

The correlation between the protocol and byte is 0.326, the highest among 

independent attributes. Maintaining a low correlation among attributes and 

removing those highly correlated, higher than 0.8, can prevent the curse of 

dimensionality when the features apply in a model's training. 

 

In the Scikit-learn library, the model_selection module imports the 

train_test_split function, and the preprocessing module imports the 

StandardScaler function. After the software configuration, the dataset is split 

into 75 percent to a training set and 25 percent to a testing set. After splitting, 

each set goes through preprocessing by applying a standard scaler to standardize 

the data value. This process can avoid the different scales in each attribute, 

which can impact the learning of the model with a bias. The convergence model 

impacts the performance in a DDoS classification. The protection relies on a 

high recall rate in the classification model to accurately identify the attacker. 

 
 

Figure 3.6: Correlation matrix (Pearson) of the dataset attributes. 
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Table 3.4: Classifiers’ configuration. 
 

Classifier Library (import) Configuration 
Random Forest with 
Principal Component 
Analysis (RFPCA) 

sklearn.decomposition (PCA) n_components = {number 
of features. E.g. 2,3,4} 
 

sklearn.ensemble 
(RandomForestClassifier) 

n_estimators = 10, criterion 
= 'entropy'. 
 

RF sklearn.ensemble 
(RandomForestClassifier) 

n_estimators = 10, criterion 
= 'entropy'. 
 

KNN sklearn.neighbors 
(KNeighborsClassifier) 

n_neighbors = 5, metric = 
'minkowski', p = 2. 
 

SVM sklearn.svm (SCV) kernel = 'rbf'. 

 
 
In the protection, Table 3.4 shows the configuration of each classifier that runs 

on the dataset to generate the convergence model adopted in the later 

classification problem to identify the standard and benign traffic. Python 

software implements the configuration as stated in each classifier with the 

imports of the library stated. In PCA, the attribute n_components represents a 

number of features used in the model. In RF, the attribute n_estimators is set to 

10, representing the number of trees in the forest. In KNN, the attribute 

n_neighbours is set to 5, representing the number of neighbours and the 

Minkowski metric with the power parameter is set to 2. Lastly, the SVM 

classifier is configured with a Radial Basis Function kernel. 

 
 
Table 3.5: Comparison result of classifiers. 

 RFPCA RF KNN SVM 

2-Feature 

F1 91.43 83.33 69.7 74.67 
Accuracy 94 88 80 81 
Precision 91.43 81.08 74.2 70 

Recall 91.43 85.71 65.71 80 

3-Feature 

F1 91.18 89.55 81.01 79.02 
Accuracy 94 93 85 83 
Precision 93.94 93.75 72.72 69.57 

Recall 88.57 85.71 91.43 91.43 

4-Feature 

F1 95.65 91.18 82.67 80.52 
Accuracy 97 94 87 85 
Precision 97.06 93.94 77.5 73.81 

Recall 94.29 88.57 88.57 88.57 



 

58 
 

Precision and recall calculations are shown in Equation (4) and Equation (5), 

respectively. Based on Table 3.5, the proposed method of RFPCA has the 

highest accuracy as in Equation (6). The prediction of RF, KNN, and SVM by 

two features, three features, and four features are improving in terms of the F1-

score, as in Equation (7). Prediction in the four-feature model of RFPCA 

achieved a 95.65% F1-score and 97% for accuracy. Figure 3.7 shows the 

prediction of each classifier based on a different number of features. RF, KNN, 

and SVM started with a lower F1-score in the two features model, which 

adopted protocol and source port to train a model, and the score increased in the 

three features training process of a model, which included the destination port. 

 

The same models in Figure 3.7 are applied to the DDoS classification problem 

presented in the simulation. The entropy and Log10 results highlight the different 

detection rates by the classifiers in the network analyses. In general, more 

features in training lead to higher accuracy and take more computation time. 

The traffic analyses are shown in Figure 3.8 in a two-feature model, Figure 3.10 

in a three-feature model, and Figure 3.12 in a four-feature model. Before the 

attack, entropy was maintained between 5.43-5.57 in 0s-0.5s. A huge entropy 

dropped, showing the high volume of attack concentrated in 0.5s-0.6s. In Figure 

3.8, entropy for KNN achieved 3.81 at 0.6s, with a 65.71% recall value, the 

highest entropy value compared to the other classifiers. Entropy for RFPCA 

achieved 2.55 at 0.6s with the same recall value, and precision achieved 91.43%, 

becoming the best model in this category. In Figure 3.10, entropy for SVM 

dropped to 2.3 at 0.6s, with a high recall value of 91.43% and achieved 69.57% 

precision. This shows the high concentration of attack traffic in 0.5s-0.6s. In 
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Figure 3.12, the entropy for RFPCA dropped to 2.43 at 0.6s and maintained at 

5.39-5.53 after 0.6s, closest to normal. Traffic analyses adopt Log10 with the 

two-feature model shown in Figure 3.9, the three-feature model shown in Figure 

3.11, and the four-feature model shown in Figure 3.13. In Figures 3.9, 3.11, and 

3.13, traffic maintained between 2.15-2.35 in 0s-0.5s. In Figure 3.9, the log10 

value for RFPCA dropped to 3.23 at 0.6s and maintained between 2.3-2.32 at 

0.6s-0.9s. In Figure 3.11, SVM dropped to 3.21 at 0.6s and maintained between 

2.16-2.18. KNN dropped to 3.23 and maintained between 2.19-2.21 after 0.6s. 

In Figure 3.13, the log10 value for RFPCA dropped to 3.08 at 0.6s. It maintained 

between 2.32-2.34 in 0.6s-0.9s. The log10 graphs show the effectiveness of the 

RFPCA to block and filter out the attack traffic in 0.5s-0.6s and quick recovery 

of the network traffic back to normal stage. 

 

Figure 3.7: F1-score comparison of classifiers. 
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Figure 3.8: Traffic analysis of two-feature models calculates in entropy. 

 
 
 

 
 

Figure 3.9: Traffic analysis of two-feature models calculates in Log10. 
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Figure 3.10:  Traffic analysis of three-feature models calculates in entropy. 

 
 
 

 
Figure 3.11: Traffic analysis of three-feature models calculates in Log10. 
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Figure 3.12: Traffic analysis of four-feature models calculates in entropy. 

 
 
 

 
Figure 3.13: Traffic analysis of four-feature models calculates in Log10. 
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3.6 Concluding Remarks 

In a DDoS, the attacker looks for the vulnerability in an IoT, quickly infects 

many devices with malware, and forms a botnet capable of launching an attack 

targeting critical infrastructure. In this model, a massive number of attacking 

nodes consisting of 35 out of 100 nodes are modelled in the simulation, sending 

vast amounts of data continuously during the attack session in 0.5s-0.6s. This 

attack caused the target server to be unable to respond to a legitimate request 

and dropped the packets at the server entry point, which is represented as a 

router in the model. In the volumetric attack, this often requires enormous 

resources to handle the attack and recover the server with a high recall rate. The 

protection depends on the effectiveness and efficiency of correctly classifying 

the traffic and blocking the DDoS attack. Thus, the convergence of a model is 

related to the classifiers' performance. The selected classifiers use a dataset of 

100 samples split into 75 per cent for the training set and 25 percent for the 

testing set. The trained model is evaluated with F1-score, accuracy, recall, and 

precision, showing the impact of the performance to detect the attack and 

recover the network. The four-feature model of RFPCA had an overall 

prediction performance with a recall of 94.29%, detecting most of the attack 

traffic and precision of 97.06%, showing good recovery. RF has also improved 

for the four-feature model compared to the two-feature and three-feature models. 

It had a similar recall of 88.57% with KNN and SVM in four-feature models. 

RF shows good classification performances with minimal computation. When 

a DDoS has been detected, the classifiers with a run on the packet data flood to 

the server to filter and block all the matches attack traffic patterns based on the 

model trained in the dataset. 



 

64 
 

CHAPTER 4 

 

ADDRESS RESOLUTION PROTOCOL SPOOFING 

 

4.1 Simulation Model 

ARP spoofing occurs when the attacker attempts to participate in the 

communication as a legitimate node, as shown in Figure 4.1. The model 

connects local nodes through a switch or AP to the router. The link from the 

local nodes to the switch or AP can be wired or wireless. A node in the 

simulation can be a mobile device or IoT, and the switch can also represent a 

wireless AP. ARP spoofing can further attacks, such as DoS, DDoS, and MITM 

attacks. ARP spoofing starts by gaining the trust of the local network. The 

attacker screens the local network by sending bulk ARP packets with a range of 

destination IPs. This process allows the attacker to gain knowledge of the 

network topology and all the valid IP-MAC addresses currently active. This 

process continues until the attacker gains sufficient network knowledge and is 

ready to launch the ARP spoofing attack. In this case, the attacker targets are the 

router and Node03. 

 

ARP protocol is a principle to acquire a physical address, a MAC address where 

the sender only knows the IP address of the receiving host. Therefore, in an ARP 

spoofing, the attacker sends the target a forged MAC address and IP address. 

The destination host updates its ARP table. It follows the steps for the attacker 

to commit an ARP spoofing attack. 1) The attacker initiates the attack based on 

the attack mode. This can either issue an ARP packet to destination hosts or 
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reply to the host ARP request. In either case, the ARP packet consists of forged 

IP-MAC mapping. 2) The destination host receives the ARP packet from the 

attacker and updates its ARP table without verification of the attacker's identity. 

3) At this point, ARP spoofing is complete. The attacker’s MAC is linked with 

the compromised nodes, and traffic sent to these nodes will head to the attacker 

instead. The attacker listens to the traffic between the two compromised nodes. 

ARP cache has the timeout set in each host, representing the validity duration 

of each address mapping. In this model, if the record is expired, the host must 

update the status before the following communication occurs. Thus, the attacker 

must send an ARP packet again to acquire the mapping, and an ARP request is 

broadcast into the network. In typical cases, once the attacker takes over the 

traffic of compromised nodes, this is followed by sending the spoofed ARP 

packet to the targets continuously or intermittently throughout the attack session. 

This action enables the attacker to maintain the connection with the target and 

learn the sufficient details of participated nodes without being interrupted by 

any other causes, such as legitimate nodes’ ARP packets or ARP cache 

expiration. The attacker forwarded all the messages to the destination node and 

acted as a forwarding. Also, the attacker activity shows an increase in ARP 

packets sent to the local network. The reasons for the previously mentioned 

situation are 1) screening activity consists of a wide range of possible IP 

addresses that can be utilised in the local network, and 2) In the attack session, 

an attacker sends redundant ARP packets to intercept the communication. Any 

ARP packet from a legitimate node will not successfully insert at the target host, 

as multiple packets or the last packet from the attacker will overwrite the address 

mapping. All participants who have passed through the ARP process can 
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communicate directly with each other. The router can handle communication 

outside the network. The model applies to all three modes of attack. 

 
 

Figure 4.1: ARP spoofing model. 
 
 

4.2 Detection 

The attacker begins by scanning the network with its real IP-MAC to learn the 

network and acquire active IP addresses. This process involves many ARP 

packets sent into the local network. Then, the attack session occurs in 0.2s-0.7s 

after sufficient preparation by the attacker. The original IP for the router is 

10.0.0.17, and the Node03 IP is 10.0.0.20. The attacker issues spoofed ARP, 

which contains forged IP-MAC mapping of the attacker's address to the 

intended target. When Node03 receives an ARP packet, it updates with the 

attacker's address instead of the router. Similarly, the router updates the MAC 

of Node03 to the attacker's address. Table 4.1 shows the changes of address in 

the ARP entries. The attacker acts as a forwarding node. Once the ARP spoofing 
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occurs, the data will go through the attacker and route to the destination. Figures 

4.2-4.4 show that the high volumes of ARP packets occur in the screening 

activities in 0.0s-20s, followed by the attack. ARP packets are sent 

intermittently to maintain a connection with the targets in the 20s-70s. Network 

traffic of ARP packets in the 20s-70s shows that a MAC address occurs in 

multiple IP addresses. A MAC address should not link to multiple IP addresses 

in a local network, which occurs in a relatively high volume of ARP traffic. Thus, 

ARP spoofing occurs and is detected. 

  

 
 

Figure 4.2: Mode-1 traffic for ARP packets comparison. 
 
 



 

68 
 

 
 

Figure 4.3: Mode-2 traffic for ARP packets comparison. 
 
 
 

 
 

Figure 4.4: Mode-3 traffic for ARP packets comparison. 
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Table 4.1: ARP cache entries. 
 

 Before After 
Node03 0A-AA-00-00-00-11 0A-AA-00-00-00-0F 
Router 0A-AA-00-00-00-0C 0A-AA-00-00-00-0F 

 
 
 
4.3 Verification Plan 

 
Table 4.2: ARP spoofing attack mode. 
 
Attack mode Description 
Mode-1 The attacker sends spoofed ARP requests to the router and Node03. 
Mode-2 The attacker sends spoofed ARP replies, mimicking a gratuitous ARP 

variant to the router and Node03. 
Mode-3 The attacker replies to a legitimate ARP request with spoofed ARP  

messages to Node03 and then sends spoofed ARP requests to the router. 
*Note : Attacker sends the spoofed ARP packets continuously during the attack session to 
maintain the connection between target nodes. 
 
 
 
The traffic data are collected at the point of AP and used to verify the model of 

ARP spoofing with the entropy method. The simulation presents three attack 

modes, which are shown in Table 4.2. The model describes the ARP process that 

occurs in 0s-100s. Besides the local communication from normal nodes, the 

attacker performs screening activity by sending the bulk of ARP packets to the 

network before the attack session. For the Mode-3 attack, the attacker continues 

with ARP requests to the targets from the 20s-45s. Node03 initiates another 

legitimate ARP request when the timeout of the ARP entries. The entropy shows 

a lower value when the attack occurs. On the other hand, the benign traffic is 

distributed. In Modes 1 and 3, the entropy values are higher than in Mode-2, 

where target nodes are involved in the ARP process during attack sessions in 

the 20s-70s. 
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Figure 4.5: ARP spoofing verification model. 
 

4.4 Protection 

Algorithm 1 uses entropy (H), as shown in Equation (1), to protect the local 

network. The entropy in the ARP spoofing mainly falls to 1.3 [85]. The entropy 

in an ARP spoofing can achieve a high value but not too high compared to the 

normal ARP process. The threshold shows the gaps between normal and 

abnormal in ARP traffic, which triggers detection and protection. In this case, a 

threshold of 1.35 is set. 

 

Let S be a set of all ARP packets collected at the time window. The xi is the 

number of packets sent from a source. To calculate p(xi), xi is divided by a 

denominator of the total number of ARP packets at the time window or timeslot 

i. The b is the base of a log which is set to 2. 
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The ARP traffic is collected at each time window and compared with the 

predefined threshold to detect anomalies in the network traffic flow. The 

entropy calculates with the sender's MAC address, shows the underlying 

probability distribution of the ARP packet, and describes the randomness of the 

flows in the observation, in this case, at the switch or an AP. The MAC address 

is selected to calculate the entropy of each time window. This feature shows the 

robustness to identify the attacker's behaviours correctly. In the usual case, local 

nodes communicate regularly, involving active IP addresses. Suppose the 

attacker begins to screen and learn the topology of the local network by looking 

for all active IP addresses in the local network. In that case, this can involve all 

possible IP addresses. The attacker generates significant ARP packets during 

the screening of the local network or launch of the attack. In such a case, the 

high volume of attack traffic leads to a drop in the entropy value. 

 

Algorithm 1 : proposed ARP spoofing detect and protect based on entropy 
log_monitor_ip_mac: dictionary to keep IP-MAC mapping 
Input : Time Window slot (W1. . . Wn) = S, 
curEntropyAttr1 as sender MAC  
Output :  
Set Entropy threshold ← 1.35  
Set log_monitor_ip_mac ← []  
for all Wi ∈ S do  
   // get entropy of the ARP traffic in current window 
slot  
   curEntropyAttr1 ← COMPUTE entropy of sender MAC 
   if (APi(MAC) in capture MAC address)  
   then  
      filterAttackerTraffic()  
   endif  
   // raise alarm  
   if (curEntropyAttr1 < Entropy threshold)  
   then  
      ARP List ← UNIQUE IP, MAC for high volume of ARP
packet’s in Wi  
      // get the Sender IP, MAC in ARP  
      MAC ← MAC in ARP List  
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      IP ← IP in ARP List  
      length ← COUNT ARP List  
      if (length > 1) // duplicate address found  
      then  
         detect spoofing ← True  
      else  
         match ← matchMacToIp (IP, MAC, 
log_monitor_ip_mac) 
      if(!match) then  
         detect spoofing ← True  
      end if  
   end if  
   if (detect spoofing = True)  
   then  
      // keep the mac address in a list  
      UPDATE MAC in capture mac address  
   else  
      // keep the IP-MAC in dictionary for further 
validation  
      UPDATE IP, MAC in log_monitor_ip_mac 
   end if  
end if 
 
 
 
4.5 Result 
      
Table 4.3: Comparison of detection and protection. 
 
Method Description 
Propose method ARP packets are grouped by time window. Entropy triggers 

the protection algorithm to check for any IP-MAC mapping 
mismatch or duplicate IP showing the attacker's address. 

Method-1 [83] Each window consists of a maximum of 260 packets. In the 
separate window, if less than 1/3 of the ARP requests 
belong to the ARP replies triggered in bulk, then the source 
address in the ARP reply is the attacker’s address. 

Method-2 [84] Spoofed ARP, a variant of gratuitous ARP, is detected if 
the destination address specifies the destination node. 

 
Table 4.4: ARP spoofing simulation parameters. 
 

Parameter Value 
No. of Attacker 1
No. of Router 1
No. of Server 1
Attacker target 2 nodes (Router and Node03)
Simulation time 100s
Attack duration 20s–70s
ARP cache timeout 30s
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The setting in the proposed method is entropy threshold H < 1.35 and 20 seconds 

per slot of a time window. The simulation generates a csv file. The file contains 

ARP packet details and frame details with the protocol. The entropy drop is 

caused by excessive ARP packets from a single source during the attack. 

 

In Figures 4.6, 4.8, and 4.10, entropy dropped below the threshold in 0s-20s. In 

this session, the attacker screens the local network, which is the general case 

where the attacker attempts to identify the active IP in the local network. The 

screening process continues until the reach of the attack session. The entropy 

value dropped due to the significant amount of ARP packets from the attacker 

in the 20s-80s. In comparing the detection and protection, the entropy shows the 

effectiveness of detecting abnormality in the traffic. The entropy values were 

relatively high in the 20s-70s, as shown in Figures 4.6 and 4.10, when the 

victims were involved in the ARP process. During the attack session, when 

cache timeout occurred in the 40s-60s, local nodes initiated the ARP process, 

which led to an increase in entropy that achieved 1.22 in Figures 4.6 and 1.27 

in Figure 4.10. Based on the proposed method reaction to this abnormal traffic, 

Algorithm 1 reads and processes traffic in each time window and inserts rules 

to filter the ARP packet based on the attacker’s MAC. The entropy value equals 

or exceeds the threshold value for benign traffic, and the ARP packet 

distribution is random. 

 

In Figure 4.7, the proposed method detected ARP spoofing and blocked the 

malicious traffic in the 40s. There was no action from Method-1 and Method-2, 

and total traffic remained the same. 
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In Figure 4.9, Method-2 detected the attack at the 20s. This is a variant of 

gratuitous ARP to forge the target's IP-MAC mapping. The proposed method 

detected ARP spoofing in the 40s. Method-1 blocked the attacker at the 46s. 

  

In Figure 4.11, the attacker MAC can only be identified after ARP cache timeout 

and the Node03 initiated the ARP request at the 45s. Method-1 blocked the 

attacker at 51s. The proposed method blocked the attacker in the 60s. There 

were no responses or measures taken for Method-2 in this case. 

 
 

 

Figure 4.6: Entropy (H) of proposed method for Mode-1 scenario. 
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Figure 4.7: Comparison result of Mode-1 scenario. 
 
 
 

 

Figure 4.8: Entropy (H) of proposed method for Mode-2 scenario. 
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Figure 4.9: Comparison result of Mode-2 scenario. 
 
 
 

 

Figure 4.10: Entropy (H) of proposed method for Mode-3 scenario. 
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Figure 4.11: Comparison result of Mode-3 scenario. 

 

4.6 Concluding Remarks 

ARP spoofing can occur when an attacker presents itself as a legitimate node in 

a local network and starts to learn the topology. The ARP protocol lacks 

authentication, and the destination node updates its ARP cache table from any 

ARP packet received without verification of sender identity. This vulnerability 

allows the attacker to adopt different ARP packets to launch an attack. In this 

model, the attacker sends ARP packets into the local network. An entropy value 

below the threshold of 1.35 shows an abnormal surge in ARP activity and is 

classified as a critical timeslot. In this model, there are three modes of attack, 

each representing the different use of an ARP packet to attack the destination 

node's ARP cache, either sending a request packet or replying to a legitimate 

request with a spoofed packet. In the scenarios where victims participated in the 

ARP process, this can lead to a higher entropy with a high volume of ARP 
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packets from the attacker. On the other hand, benign or normal traffic from 

multiple local nodes was highly distributed, and entropy reached above the 

predefined value. The gap shows the difference in the attack compared to the 

regular traffic. In the critical timeslot, the algorithm stored the suspicious MAC 

and identified duplicate IP or a mismatch of IP-MAC mapping in the previous 

or adjacent critical time window. The protection filtered and blocked the 

attacker's MAC in the local network traffic. The proposed method allows the 

detection of ARP spoofing with scalability and timely warming and is relatively 

easy to implement. The disadvantages of implementing other methods, such as 

a Cisco security port to confront ARP spoofing, are high installation cost, some 

ports may be extended beyond capacity and need more resources to implement 

and difficulty in the configuration process to cope with cybersecurity threats. 
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CHAPTER 5 

 

IP FRAGMENTATION ATTACK 

 

5.1 Simulation Model 

The fragmented IPv4 and IPv6 traffic are vulnerable to attacks such as DoS. 

Nevertheless, fragmentation cannot be avoided even in the IPv6 environment. 

Commonly, IoT sends small data in communication. The data must be 

fragmented to pass from a source to a destination. IoT traffic usually consists of 

outbound data transmission consisting of a few bytes per packet. There are 

situations where the server's communication has larger data, such as firmware 

updates, upgrades, or patches. 

 

The scenario describes a firmware update process that pushes from the server 

to the IoT device. The IoT has been reprogrammed OTA to allow firmware 

updates or bug fixes. 

 

Firmware update on IoT with OTA programming possesses many challenges 

that can impact the quality of the patching process. Based on Figure 5.1, 

fragmentation happens when the server sends 4kB of firmware in the network 

to the destination sensor or IoT device. The data pass through a gateway before 

reaching the destination IoT. The communication is transmitted in a WiFi signal 

in an IoT network. In the simulation of an IoT network, the data are sent in small 

data sizes, commonly found in IoT communication. A sensor node can represent 

an IoT node. It assumes that the attacker is adjacent to the IoT network sensor 
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and has acquired all the details necessary to conduct an IP fragmentation attack. 

The details include Identification ID, source IP address, destination IP address, 

and transport protocol. 

 

Regarding the timing to launch the attack, the attacker is assumed to know when 

the server will push the firmware update to the victim's IoT device. The server 

initially sends a copy of the firmware to update the destination IoT. The data 

undergo fragmentation before reaching the destination IoT. Meanwhile, the 

attacker creates a fake IP fragment representing a similar firmware packet. With 

this fragment, the attacker sets the ‘More Fragment’ (MF) flag equal to false. 

The victim node receives this fragment before any original firmware fragments 

from the server. The fake fragment is treated as incomplete at the victim node 

and stored in a buffer. The fragments represent the original firmware that 

reaches the gateway and is ready to transmit in the IoT network. Once the first 

fragment is received, it immediately integrates with the one currently stored at 

the victim node because they have similar ID and details representing a similar 

packet. Both the sender and receiver IP addresses are the same. However, 

because the fragment is fake and manipulated by the attacker, it cannot represent 

the correct firmware. As a result, the victim IoT cannot pass the complete packet 

up to the application level, and the updating process fails. The remaining 

incoming fragments continue to be received by the victim node. These 

fragments are stored in the buffer due to the missing first fragment. These 

fragments are considered incomplete and fill the victim buffer long enough 

before expiration. 
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Figure 5.1: Fragmentation attack model (predictable packet header identifier). 
 

 

5.2 Detection 

In fragmentation, the packet is split into multiple fragments at the network layer 

before being sent into the network. The receiving node reassembled those 

fragments with similar Identification. Attackers perform the fragmentation 

attack by sending fragments with same Identification. Figure 5.2 shows that the 

server sends the original firmware data to the destination. At the destination, the 

attacker’s fragment is reassembled with the original fragments, forming a packet 

containing 1580 bytes at the transport layer. These fragments are dropped and 

show 0 bytes received at the application layer of the victim in Figure 5.2. As a 

result, the fragments' validity can only be verified after the reassembly process 

and the fragmentation attack is detected. 
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Figure 5.2: Comparison of data reassembly for victim and server. 
 

 
 
5.3 Verification Plan 

In the simulation run for 100s, where four attackers send a total of 40 fragments, 

and the server sends 10 times of firmware packets. Figure 5.3 shows the victim 

IoT received all the fragments sent from gateway2 and attackers. In Figure 5.4, 

victim IoT does not complete the reassembly process, and no data are received 

at the application layer. Thus, this model explains the fragmentation attack 

based on the misassociation of fragmentation caused by a predictable packet 

header identifier. 
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Figure 5.3: Fragments involves in each node (send/receive). 
 
 
 

 

Figure 5.4: (Duplicate) Comparison of data reassembly for victim and server. 
 
 
 
5.4 Protection 

Fragments are vulnerable. When the firmware is fragmented and transmitted to 

a low-power network of IoT, it is subject to limited computation and memory. 

Packet header identifier can be guessed by carefully formatting fake fragments 

and flooding the target host. Once an Identifier is exposed, an attacker can 
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launch a further attack on the target victim. The fake fragment should not exist 

in normal traffic. The attackers send fake fragments with the same packet header 

identifier but with incorrect offset or other validation fields. When the attacker’s 

fragments merged with some of the fragments, this led to the wrong reassembly, 

and therefore the correct packet could not be formed and passed to the 

application layer at the destination node. The process is interrupted, and no 

complete data are received at the node. 

 

The proposed mechanism is adding a One-time code (OTC) and timestamp in 

the fragment to prevent a predictable packet header identifier and protect against 

the IP fragmentation attack. The OTC and timestamp consume a maximum of 

40 bytes in the option fields. The OTC is a randomly generated number parallel 

to the timestamp. When extensive data are sent into the networks with different 

MTUs to deliver to the destination IoT, the packet is split into smaller data 

called fragments. The first fragment will consist of a high layer of packet 

information, such as protocol. With the protection implemented, OTC and 

timestamp with the Identification uniquely represent fragments from a packet, 

increasing the difficulty for attackers to spot the correct values. In this case, the 

attacker cannot force the reassembly of the fragments with a lack of complete 

details that only depend on the source IP, destination IP, packet header 

identifier, and protocols. Figure 5.5 shows the implementation of OTC and 

timestamp. 

 

Type of service (TOS) or Differentiated Service Code Point (DSCP) specifies 

the different services like Voice over IP (VOIP). If the Explicit Congestion 
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Notification (ECN) is set, it allows notification of network congestion between 

endpoints to prevent packet drop. The Don’t Fragment (DF) field allows the 

discovery of path MTU and prevents fragmentation between communication 

nodes. In fragmentation, all the fragments except the last one will have the MF 

field set to true, indicating more fragments are coming. 

 

Figure 5.5 shows the implementation of OTC and timestamp. 
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Figure 5.5: Proposed IPv4 header to include timestamp and OTC as 
enhancement for IP fragmentation attack (misassociation) protection. 

 
 
5.5 Result 

Table 5.1: IP fragmentation attack parameters in the simulation. 
 
Parameter Value 
No. target IoT 1 
No. of attacker  4 
Total Cycle of 
simulation/length 

40 cycle/400s 

Data/cycle  
(Firmware size) 

4kB 

Protection OTC and timestamp  

 
 
 
The simulation with configuration in Table 5.1 with the enhanced protection 

implemented using timestamp and OTC to confront the fragmentation attack 

caused by fragment misassociation with predictable packet header ID. 
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Fragments with similar IP-ID, source IP, destination IP, and protocol belong to 

the same packet. The attacker launches the attack by sending the fragment with 

the same identity. As protection, the timestamp represents a log message 

marking the time of the occurrence of an event, and the OTC is a random 

number. Both attributes are attached to the packet header. Throughout the 

simulation, attackers attempt to cause the misassociation of fragments from the 

original packet initiated from the server and routes from the gateway to the IoT 

target. The attackers target the IoT by sending the formulated and crafted second 

fragment in each cycle to reassemble with the original first fragment routes from 

the gateway. 

 

In order to implement the protection, some files with extension .h and .cc in the 

INET framework have been modified to generate the values of random number 

OTC and timestamp, passing these values as parameters in each of the functions 

and, finally, verification of the OTC and timestamp before reassembly of the 

fragments. The file named Ipv4FragBuf.h, which consists of a Boolean operator 

to match the key for a datagram in the reassembly buffer, is modified to accept 

timestamp and OTC and used in the verification. 

 

Based on Figure 5.6, the destination IoT (target) received all the fragments sent 

from gateway2 and attackers. Figure 5.7 shows all the 160 forge fragments from 

the attacker were captured at the target without impacting the reassembly 

process. The OTC and timestamp create difficulty for attackers to guess the 

correct value of each field and protect the reassembly process at a destination 

node. 
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Figure 5.6: Data shown in the application layer is sent from the server to the 

victim. 
 
 
      

 
 

Figure 5.7: Fragment count and statuses. 
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5.6 Concluding Remarks 

Fragmentation can be vulnerable. The huge size of a fragmented packet sent to 

the destination node allows IoT, which usually handles a few bytes of data, to 

receive the patching automatically and minimise human intervention. In the 

fragmentation attack model, the vulnerability depends on the predictability of 

the packet header identifier, which the OS implements in a simpler way. 

 

In the case of firmware update, once an attacker successfully interrupts the 

process and if there is no proper handling of the firmware rollback, it can lead 

to a security breach. The predefined packet header identifier needs protection to 

prevent an attacker from being easily spotted and interrupting the reassembly 

process with a similar fragment. Two additional fields are attached to the packet 

header to protect packet header identifier. A randomly generated number of 

OTC, which the attacker does not easily spot. A timestamp attached with OTC 

provides additional detail of protection of the same group of fragments that, if 

a similar code is generated out of the time scope, is considered expiry, and will 

be rejected and treated as forged fragments. A protection simulation runs in the 

400s where four attackers sent fake fragments out of 40 cycles. The test serves 

the objective that the protection can work on a high volume of the fragments 

sent into the network, such as firmware updates. None successfully interrupted 

the reassembly process at the destination node. Firmware was sent out a total of 

40 times and was all received correctly at the destination node. 
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Conclusion 

In this work, the Smart Factory security is studied and focuses on the selected 

yet common attacks that target critical infrastructure such as CPS. Those attacks 

are DDoS, ARP spoofing, and IP fragmentation attacks. This work highlights 

the problems faced by the Smart Factory with IoT implementation. There exists 

a security threat in the current network and Internet environment. In the IoT 

network, which is highly interconnected in the heterogeneous environment, the 

number is still increasing, creating an even more complex situation. IoT is 

classified as a resource constraint with specific characteristics unsuitable for 

implementing complex protection that targets the network. The data collected 

from the IoT are presented in a different format and often require control devices 

or gateway to perform inaccurate conversions with missing values. Data 

inconsistency can lead to difficulty in identifying the potential attack traffics 

and cause inaccurate prediction if a huge portion of corrupted data exist with 

irrelevant attributes in the datasets. The communication of the IoT with various 

network devices such as servers or industrial Personal Computer adopts 

standard communication protocols, and the IP network continues to dominate 

the networking. Standard communication protocol vulnerabilities allow the 

attackers to adopt different methods to penetrate the Smart Factory system. 
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Based on the problem defined, this work aims to present the detection methods 

currently used to identify the selected attack. Secondly, protection is 

implemented in the system to recover the network from the attack situation. 

Third, the protection scheme can handle the network requirements and 

application by blocking the attack traffic and restoring the network to a normal 

state. 

 

To meet the objectives, the research questions are answered in this work. 

1. The selected attacks are models in the OMNeT++ with the INET framework. 

This tool simulates the network traffics consisting of the benign and attack 

followed by implementation of the detection. First, in DDoS, the classifiers 

are trained with a dataset split into 75 percent of the training set and 35 

percent of the testing set. The convergence model solves the DDoS 

classification problem. Second, for ARP spoofing, the IP-MAC mismatch 

can detect the attacker’s ARP packet with the entropy flow-based batch 

processing. Third, a fragmentation attack is detected when the reassembly 

process of the attack fragment and normal fragment happens in the context. 

The corrupted packet is dropped and will not be received at higher layers, 

such as the application layer at the destination. 

2. The protection for DDoS and ARP spoofing is to filter and block the attack 

traffic when the detection shows a positive signal. The changes reflect in the 

network traffic and restore the network after recovery. In a fragmentation 

attack, the additional fields are encapsulated in the packet header, thus 

preventing the packet header identifier from being spotted. As a result, all 
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the fragments successfully reassembly to the application layer at the 

destination node. 

3. In the evaluation of effectiveness, DDoS is evaluated with the benchmark 

of predefined variables of F1-score, accuracy, recall and precision. The 

proposed RFPCA achieves the highest F1 and accuracy with a high recall 

rate to capture the attack traffic. In ARP spoofing, the proposed method 

recovers the network traffic by capturing attack traffic based on three 

scenarios. In this case, the entropy shows the ability to scale and identify the 

abnormality in the traffic due to the surge of the traffic volume in a particular 

time window. In protecting fragmentation, the model is simulated in 40 

cycles with four attackers sending fake fragments to attack IP fragmentation 

and the reassembly process. All the packets are successfully reassembly, and 

thus none of the attackers is successful in the attack. 

 

The research highlights potential vulnerabilities in the network, either the 

vulnerability of IoT or the one that exists in common communication protocols. 

Further study in each of the selected attack and contributed to the effect of each 

detection. The detections are shown, and the protections are implemented in the 

network. The effect of the protections are evaluated and presented in the 

recovery of the network traffic. Lastly, based on the proposed protections are 

implemented in the network. Based on the identified vulnerability in the 

network and protocols, the protection can then look for enhancements to solve 

the security issue that exists in the Smart Factory environment. 
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6.2 Future Work 

This paper presents the detections and protections for the selected attacks: 

DDoS, ARP spoofing and IP fragmentation attacks. All the models are 

developed and run on the simulation tool, which is OMNeT++ with the INET 

framework. The data collected are constrained and tested on simulation. 

Currently, a limited number of datasets related to IoT communication are 

available as open source. Secondly, the data collected are limited, with limited 

scenarios covering attacks. 

 

In the future, an experiment can be conducted for the attack. The experiment 

includes setting up the components representing the IoT network and collecting 

the data while executing the components for a long time. More scenarios and 

attributes in IoT communication can be covered and a significant dataset can be 

collected. As the dataset grows, this leads to further challenges, such as data 

requiring a compelling pre-processing method. Also, the IoT may contain 

considerable noise and irrelevant data that must be handled effectively. In terms 

of detection and protection, the research uses a limited number of classifiers 

involved in the performance of comparison prediction. With more significant 

and more attributes present in a dataset, an intelligent algorithm can be 

considered for developing more reliable, adaptable and scalable protection. 

 

The selected security aspect has been studied based on models generated in 

simulation. This work can serve as a reference for implementing the security 

protection measure for the identified attacks. 

 



 

93 
 

REFERENCES 

 
[1] D. Sinha and R. Roy, “Reviewing cyber-physical system as a part of 

smart factory in industry 4.0,” IEEE Engineering Management Review, 
vol. 48, no. 2, pp. 103–117, 2020, doi: 10.1109/EMR.2020.2992606. 

[2] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,” 
Journal of Manufacturing Systems, vol. 47, pp. 93–106, 2018, doi: 
10.1016/j.jmsy.2018.04.007. 

[3] M. Lohstroh, H. Kim, J. C. Eidson, C. Jerad, and B. Osyk et al., “On 
enabling technologies for the internet of important things,” IEEE Access, 
vol. 7, pp. 27244–27256, 2019, doi: 10.1109/ACCESS.2019.2901509. 

[4] G. Hernandez, F. Fowze, D. J. Tang, T. Yavuz, P. Traynor, and K. R. B. 
Butler, “Toward automated firmware analysis in the IoT era,” IEEE 
Security and Privacy, vol. 17, no. 5, pp. 38–46, Sep. 2019, doi: 
10.1109/MSEC.2019.2926462. 

[5] Y. bin Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M. Y. Aalsalem, 
“Internet of things (IoT) operating systems management: Opportunities, 
challenges, and solution,” Sensors, vol. 19, no. 8, Apr. 2019, doi: 
10.3390/s19081793. 

[6] T. Nguyen, R. G. Gosine, and P. Warrian, “A systematic review of big 
data analytics for oil and gas industry 4.0,” IEEE Access, vol. 8, pp. 
61183–61201, 2020. doi: 10.1109/ACCESS.2020.2979678. 

[7] P. Mahesh, A. Tiwari, C. Jin, P. R. Kumar, A. L. N. Reddy et al., “A 
survey of cybersecurity of digital manufacturing,” in Proceedings of the 
IEEE, vol. 109, no. 4, pp. 495–516, Apr. 2021. doi: 
10.1109/JPROC.2020.3032074. 

[8] K. D. Thoben, S. A. Wiesner, and T. Wuest, “‘Industrie 4.0’ and smart 
manufacturing-A review of research issues and application examples,” 
International Journal of Automation Technology, vol. 11, no. 1, pp. 4–
16, 2017. doi: 10.20965/ijat.2017.p0004. 

[9] M. Kocakulak and I. Butun, “An overview of wireless sensor networks 
towards internet of things,” in Proceedings IEEE 7th Annual Computing 
and Communication. Workshop and Conference (CCWC), Jan. 2017,pp. 
1-6. doi: 10.1109/CCWC.2017.7868374. 

[10] Canadian Centre for Cyber Security, “Cyber threat bulletin the cyber 
threat to operational technology.” Government of Canada, Dec. 2021. 
[Online]. Available: https://cyber.gc.ca/en/guidance/cyber-threat-
bulletin-cyber-threat-operational-technology. 

[11] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “IoT: 
Internet of threats? a survey of practical security vulnerabilities in real 
IoT devices,” IEEE Internet Things Journal, vol. 6, no. 5, pp. 8182–8201, 
Oct. 2019, doi: 10.1109/JIOT.2019.2935189. 

[12] B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, 
“A survey of intrusion detection in internet of things,” Journal of 
Network and Computer Applications, vol. 84, pp. 25–37, Apr. 2017, doi: 
10.1016/j.jnca.2017.02.009. 

[13] B. Wang, X. Li, L. P. de Aguiar, D. S. Menasche, and Z. Shafiq, 
“Characterizing and modeling patching practices of industrial control 
systems,” in Proceedings of the ACM Measurement and Analysis of 



 

94 
 

Computing Systems, Jun. 2017, vol. 1, no. 1, pp. 1–23, doi: 
10.1145/3084455. 

[14] N. Tuptuk, P. Hazell, J. Watson, and S. Hailes, “A systematic review of 
the state of cyber-security in water systems,” Water, vol. 13, no. 1, Jan. 
01, 2021. doi: 10.3390/w13010081. 

[15] D. Sakhawat, A. N. Khan, M. Aslam, and A. T. Chronopoulos, “Agent-
based ARP cache poisoning detection in switched LAN environments,” 
IET Networks, vol. 8, no. 1, pp. 67–73, Jan. 2019, doi: 10.1049/iet-
net.2018.5084. 

[16] S. Mantravadi, R. Schnyder, C. Moller, and T. D. Brunoe, “Securing 
IT/OT links for low power IIoT devices: Design considerations for 
industry 4.0,” IEEE Access, vol. 8, pp. 200305–200321, 2020, doi: 
10.1109/ACCESS.2020.3035963. 

[17] K. Patel and H. Upadhyay, “A rule based approach to mitigate DDoS 
attack in IoT environment,” vol. 4, no. 3, p. 2018. [Online]. Available: 
http://ijariie.com/AdminUploadPdf/A_Rule_based_Approach_to_Mitig
ate_DDoS_attack_in_IoT_Environment_ijariie8383.pdf. 

[18] A. J. Lathrop and J. M. Stanisz, “Hackers are after more than just data: 
will your company’s property policies respond when cyber attacks cause 
physical damage and shut down operations?,” Environmental Claims 
Journal, vol. 28, no. 4, pp. 286–303, Oct. 2016, doi: 
10.1080/10406026.2016.1197653. 

[19] E. Staddon, V. Loscri, and N. Mitton, “Attack categorisation for IoT 
applications in critical infrastructures, a survey,” Applied Science, vol. 
11, no. 16, 2021, doi: 10.3390/app11167228. 

[20] L. Costa, J. P. Barros, and M. Tavares, “Vulnerabilities in IoT devices 
for smart home environment,” in Proceedings of the 5th International 
Conference on Information Systems Security and Privacy (ICISSP), 
2019, pp. 615–622. doi: 10.5220/0007583306150622. 

[21] T. Alladi, V. Chamola, B. Sikdar, and K. R. Choo, “Consumer IoT: 
Security vulnerability case studies and solutions.” IEEE Comsumer 
Electronics Magazine, vol. 9, no. 2, pp. 17-25, Mar. 2020. 

[22] Y. Seralathan, T. T. Oh, S. Jadhav, J. Myers, J. P. Jeong et al., “IoT 
security vulnerability: A case study of a web camera,” in 2018 20th 
International Conference on Advanced Communication Technology 
(ICACT). 2018, pp. 172–177. doi: 10.23919/ICACT.2018.8323686. 

[23] B. Bajic, A. Rikalovic, N. Suzic, and V. Piuri, “Industry 4.0 
implementation challenges and opportunities: a managerial perspective,” 
IEEE Systems Journal, vol. 15, no. 1, pp. 546–559, Mar. 2021, doi: 
10.1109/JSYST.2020.3023041. 

[24] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, 
“Demystifying IoT security: An exhaustive survey on IoT vulnerabilities 
and a first empirical look on internet-scale IoT exploitations,” IEEE 
Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2702–2733, 
3rd Quart., 2019, doi: 10.1109/COMST.2019.2910750. 

[25] X. Yao, J. Zhou, Y. Lin, Y. Li, H. Yu, and Y. Liu, “Smart manufacturing 
based on cyber-physical systems and beyond,” Journal of Intelligent 
Manufacturing, vol. 30, pp. 2805–2817, 2019, doi: 10.1007/s10845-017-
1384-5. 

[26] M. Antonakakis, T. April, M. Bailey, M. Barnhard, E. Bursztein et al., 



 

95 
 

“Understanding the mirai botnet,” in Proceedings of the 26th USENIX 
on Security Symposium, Aug. 2017, pp. 1093–1110. 

[27] V. Alcacer and V. Cruz-Machado, “Scanning the industry 4.0: A 
literature review on technologies for manufacturing systems,” 
Engineering Science and Technology, an International Journal, vol. 22, 
no. 3, pp. 899–919, 2019, doi: 10.1016/j.jestch.2019.01.006. 

[28] V. Mullet, P. Sondi, and E. Ramat, “A review of cybersecurity guidelines 
for manufacturing factories in industry 4.0,” IEEE Access, vol. 9. 
Institute of Electrical and Electronics Engineers Inc., pp. 23235–23263, 
2021. doi: 10.1109/ACCESS.2021.3056650. 

[29] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee et al., “Smart factory of 
industry 4.0: Key technologies, application case, and challenges,” IEEE 
Access, vol. 6, pp. 6505–6519, 2017, doi: 
10.1109/ACCESS.2017.2783682. 

[30] G. Murray, M. N. Johnstone, and C. Valli, “The convergence of IT and 
OT in critical infrastructure,” in Proceedings of the 15th Australian 
Information Security Management Conference (AISM), 2017, pp. 149–
155, doi: 10.4225/75/5A84F7B595B4E.   

[31]  J. Sachs and K. Landernas, “Review of 5G capabilities for smart 
manufacturing,” in 2021 17th International Symposium on Wireless 
Communication Systems (ISWCS), 2021, pp. 1-6. doi: 
10.1109/ISWCS49558.2021.9562173. 

[32] A. U. Mentsiev, E. R. Guzueva, and T. R. Magomaev, “Security 
challenges of the industry 4.0,” in Journal of Physics: Conference Series, 
Apr. 2020, vol. 1515, no. 3, doi: 10.1088/1742-6596/1515/3/032074. 

[33] J. D. Adriano, E. C. do Rosario, and J. J. P. C. Rodrigues, “Wireless 
sensor networks in industry 4.0: WirelessHART and ISA100.11a,” in 
Proceedings 13th IEEE International Conference on Industry 
Applications (INDUSCON),  Nov. 2018, pp. 924–929. doi: 
10.1109/INDUSCON.2018.8627177. 

[34] X. Zhou, Z. Xu, L. Wang, K. Chen, C. Chen et al., “APT attack analysis 
in SCADA systems,” in MATEC Web of Conferences, 2018, vol. 173, 
no. 3, pp. 1–5, doi: 10.1051/matecconf/201817301010. 

[35] D. H. Shin, G. Y. Kim, and I. C. Euom, “Vulnerabilities of the open 
platform communication unified architecture protocol in industrial 
internet of things operation,” Sensors, vol. 22, no. 17, Sep. 2022, doi: 
10.3390/s22176575.  

[36] J. Prinsloo, S. Sinha, and B. V. Solms, “A review of industry 4.0 
manufacturing process security risks,” Applied Sciences, vol. 9, no. 23, 
Nov. 2019, doi: 10.3390/app9235105. 

[37] M. Tavana, V. Hajipour, and S. Oveisi, “IoT-based enterprise resource 
planning: Challenges, open issues, applications, architecture, and future 
research directions,” Internet of Things, vol. 11, Sep. 2020, doi: 
10.1016/j.iot.2020.100262. 

[38] F.-N. Yang and H.-Y. Lin, “Development of a predictive maintenance 
platform for cyber-physical systems,” in 2019 IEEE International 
Conference on Industrial Cyber Physical Systems (ICPS), 2019, pp. 331-
335. 

[39] S. A. Bello, L. O. Oyedele, O. O. Akinade, M. Bilal, J. N. D. Delgado et 
al., “Cloud computing in construction industry: Use cases, benefits and 



 

96 
 

challenges,” Automation in Construction, vol. 122, Feb. 2021, doi: 
10.1016/j.autcon.2020.103441. 

[40] D. J. Ahn and J. Jeong, “A bigdata search engine based cloud computing 
network architecture in smart factory environment,” in Proceedings - 
2019 2nd International Conference on Intelligent Autonomous Systems 
(ICoIAS), 2019, pp. 91–95, doi: 10.1109/ICoIAS.2019.00023. 

[41] M. Vidosav, S. Stojadinovic, B. Lalic and U. Marjanovic, “ERP in 
industry 4.0 context,” in IFIP Advances in Information and 
Communication Technology, 2020, vol. 591 pp. 287–294. doi: 
10.1007/978-3-030-57993-7_33. 

[42] F. Tao, Q. Qi, L. Wang, and A. Y. C. Nee, “Digital twins and cyber–
physical systems toward smart manufacturing and industry 4.0: 
Correlation and comparison,” Engineering, vol. 5, no. 4, pp. 653–661, 
Aug. 2019, doi: 10.1016/j.eng.2019.01.014.  

[43] D. A. Zakoldaev, A. v. Gurjanov, A. v. Shukalov, I. O. Zharinov, and O. 
O. Zharinov, “Cyber and physical systems topology for the industry 4.0 
smart factory,” in IOP Conference Series: Materials Science and 
Engineering, 2019, vol. 582, doi: 10.1088/1757-899X/582/1/012010. 

[44] N. A. Shinwari, Nasrullah, A. Saxena, and N. Sharma, “Vendor lock-in 
situation in cloud computing,” International Journal of Creative 
Research Thoughts (IJCRT), 2018. [Online]. Available:   
https://www.ijcrt.org/papers/IJCRT1813411.pdf. 

[45] A. Munsch and P. Munsch, “The future of API (application programming 
interface) security: The adoption of APIs for digital communications and 
the implications for  cyber security vulnerabilities,” Journal of 
International Technology and Information Management, vol. 29, no. 3, 
pp. 24–45, Jan. 2021, doi: 10.58729/1941-6679.1454. 

[46] J. Hassan, D. Shehzad, U. Habib,  M. U. Aftab, M. Ahmad et al., “The 
Rise of cloud computing: Data protection, privacy, and open research 
challenges - A systematic literature review (SLR),” Computational 
Intelligence and Neuroscience, 2022, doi: 10.1155/2022/8303504. 

[47] S. Parikh, D. Dave, R. Patel, and N. Doshi, “Security and privacy issues 
in cloud, fog and edge computing,” Procedia Computer Science, 2019, 
vol. 160, pp. 734–739. doi: 10.1016/j.procs.2019.11.018. 

[48] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: A review 
of current applications and security solutions,” Journal of Cloud 
Computing, vol. 6, 2017. doi: 10.1186/s13677-017-0090-3. 

[49] D. Roca, J. v. Quiroga, M. Valero, and M. Nemirovsky, “Fog function 
virtualization: A flexible solution for IoT applications,” in 2017 2nd 
International Conference on Fog and Mobile Edge Computing (FMEC), 
May. 2017, pp. 74–80. doi: 10.1109/FMEC.2017.7946411. 

[50] Z. Xu, Y. Zhang, H. Li, W. Yang, and Q. Qi, “Dynamic resource 
provisioning for cyber-physical systems in cloud-fog-edge computing,” 
Journal of Cloud Computing, vol. 9, 2020, doi: 10.1186/s13677-020-
00181-y. 

[51]  P. K. Illa and N. Padhi, “Practical guide to smart factory transition using 
IoT, big data and edge analytics,” IEEE Access, vol. 6, pp. 55162–55170, 
2018, doi: 10.1109/ACCESS.2018.2872799. 

[52]  J. Protner, M. Pipan, H. Zupan, M. Resman, M. Simic et al., “Edge 
computing and digital twin based smart manufacturing,” IFAC-



 

97 
 

PapersOnLine, 2021, vol. 54, pp. 831–836. doi: 
10.1016/j.ifacol.2021.08.098. 

[53] R.-H. Hsu, J. Lee, T. Q. S. Quek, and J.-C. Chen, “Reconfigurable 
security: Edge computing-based framework for IoT,” IEEE Network, vol. 
32, no. 5, pp. 92-95, Sep. 2018. 

[54] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and A. 
Ghrayeb, “Optimized provisioning of edge computing resources with 
heterogeneous workload in IoT networks,” IEEE Transactions on 
Network and Service Management, vol. 16, no. 2, pp. 459–474, Jun. 
2019, doi: 10.1109/TNSM.2019.2894955. 

[55] P. P. Ray, D. Dash, and D. De, “Edge computing for internet of Things: 
A survey, e-healthcare case study and future direction,” Journal of 
Network and Computer Applications, vol. 140, pp. 1–22, Aug. 2019, doi: 
10.1016/j.jnca.2019.05.005. 

[56] S. Millar, “IoT security challenges and mitigations: An introduction,”, 
arXiv:2112.14618 [cs.CR], Dec. 2021. 

[57] M. Yu, J. Zhuge, M. Cao, Z. Shi, and L. Jiang, “A survey of security 
vulnerability analysis, discovery, detection, and mitigation on IoT 
devices,” Future Internet, vol. 12, no. 2, Feb. 2020, doi: 
10.3390/fi12020027. 

[58] A. Antony and S. S., “A review on IoT operating systems,” International 
Journal of Computer Applications, vol. 176, no. 24, pp. 33–40, May. 
2020, doi: 10.5120/ijca2020920245. 

[59] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “IoT 
privacy and security: challenges and solutions,” Applied Sciences, vol. 
10, no. 12, pp. 1–17, 2020, doi: 10.3390/APP10124102. 

[60] K. Vikas, “IoT security-challenges & best practices,” 2020. Accessed: 
Feb. 26, 2023. [Online]. Available: https://www.happiestminds.com/wp-
content/uploads/2020/12/IoT-Security-Challenges-and-Best-
Practices.pdf. 

[61] T. Abdelghani, “Implementation of defense in depth strategy to secure 
industrial control system in critical infrastructures,” American Journal 
of Artificial Intelligence, vol. 3, no. 2, p. 17, 2019, doi: 
10.11648/j.ajai.20190302.11. 

[62] IoT Security Foundation, Router and IoT Vulnerabilitiesࣟ: Insecure by 
Design, Aug. 2021, [Online]. Available: 
https://www.iotsecurityfoundation.org/wp-
content/uploads/2021/08/ManySecured-SUIB-White-Paper.pdf. 

[63] B. Cusack and F. Zhuang, “Vulnerability analysis : Protecting 
information in the IoT,” in Proceedings of the 16th Australian 
Information Security Management Conference (AISM), 2017, pp. 74–82, 
2018, doi: 10.25958/5c526da166689. 

[64] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “Blueshield: Detecting 
spoofing attacks in bluetooth low energy networks.” in 23rd 
International Symposium on Research in Attacks, Instrusions and 
Defences (RAID 2020), Oct. 2020, pp. 397-411, USENIX Association. 

[65] I. Butun, P. Osterberg, and H. Song, “Security of the internet of things: 
vulnerabilities, attacks, and countermeasures,” IEEE Communications 
Surveys and Tutorials, vol. 22, no. 1, pp. 616–644, 2020, doi: 
10.1109/COMST.2019.2953364. 



 

98 
 

[66] G. Nebbione and M. C. Calzarossa, “Security of IoT application layer 
protocols: Challenges and findings,” Future Internet, vol. 12, no. 3, pp. 
1–20, 2020, doi: 10.3390/fi12030055. 

[67] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan et al., 
“Cybersecurity for industrial control systems: A survey.” Computer and 
security, 2019, doi: 10.1016/j.cose.2019.101677. 

[68] F. Maggi, M. Balduzzi, R. Vosseler, M. Rosler, W. Quadrini et al., “Smart 
factory security: A case study on a modular smart manufacturing system,” 
Procedia Computer Science, 2021, vol. 180, pp. 666–675. doi: 
10.1016/j.procs.2021.01.289. 

[69] M. Azrour, J. Mabrouki, A. Guezzaz, and A. Kanwal, “Internet of Things 
Security: Challenges and key Issues,” Security and Communication 
Networks, vol. 2021. Hindawi Limited, 2021. doi: 
10.1155/2021/5533843. 

[70] A. Chehri, I. Fofana, and X. Yang, “Security risk modeling in smart grid 
critical infrastructures in the era of big data and artificial intelligence,” 
Sustainability (Switzerland), vol. 13, no. 6. MDPI AG, Mar. 02, 2021. 
doi: 10.3390/su13063196. 

[71] T. Lojka, M. Bundzel, and I. Zolotová, “Service-oriented architecture 
and cloud manufacturing.” Acta Polytechnica Hungariaca, 2016, vol. 13, 
no. 6, pp. 25-44, doi: 10.12700/aph.13.6.2016.6.2, 

[72] A. Arshad, M. H. Zurina, S. Subramaniam, and R. Latip, “A survey of 
Sybil attack countermeasures in IoT-based wireless sensor networks,” 
PeerJ Computer Science, vol. 7, pp. 1–33, 2021, doi: 10.7717/peerj-
cs.673. 

[73] F. Li and Y. Tang, “False data injection attack for cyber-physical systems 
with resource constraint,” IEEE Transactions on Cybernetics, vol. 50, no. 
2, pp. 729–738, 2020, doi: 10.1109/TCYB.2018.2871951. 

[74] C. Alcaraz, G. Bernieri, F. Pascucci, J. Lopez, and R. Setola, “Covert 
channels-based stealth attacks in industry 4.0,” IEEE Systems Journal, 
vol. 13, no. 4, pp. 3980–3988, 2019, doi: 10.1109/JSYST.2019.2912308. 

[75] J. Li, M. Liu, Z. Xue, X. Fan, and X. He, “Rtvd: A real-time volumetric 
detection scheme for DDoS in the internet of things,” IEEE Access, vol. 
8, pp. 36191–36201, 2020, doi: 10.1109/ACCESS.2020.2974293.  

[76] R. Bonica, F. Baker, G. Huston, R. Hinden, and O. Troan et al., “IP 
fragmentation considered fragile,” BCP 230, RFC 8900, pp. 1–23, Sep. 
2020, [Online]. Available: https://www.rfc-editor.org/rfc/rfc8900.pdf. 

[77] R. V. Rijswijk-Deij, C. Strotmann, and P. B. Koetter, “IP Fragmentation 
and measures against DNS cache poisoning (Frag-DNS),” 2022. 
[Online]. Available: 
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikatione
n/Studien/Frag-DNS/Frag-DNS-
Studie.pdf?__blob=publicationFile&v=3. 

[78] F. Salutari, D. Cicalese, and D. J. Rossi, “A closer look at IP-ID behavior 
in the Wild,” Internation Conference on Passive and Active Network 
Measurement,  Springer, 2018, pp. 243-254. doi: 10.1007/978-3-319-
76481-8_18. 

[79] K. M. Sudar, M. Beulah, P. Deepalakshmi, P. Nagaraj, and P. 
Chinnasamy, “Detection of distributed denial of service attacks in SDN 
using machine learning techniques,” in 2021 International Conference 



 

99 
 

on Computer Communication and Informatics, (ICCCI), 2021, pp. 1-5, 
doi: 10.1109/ICCCI50826.2021.9402517. 

[80] S. Dong and M. Sarem, “DDoS attack detection method based on 
improved KNN with the degree of DDoS attack in software-defined 
networks,” IEEE Access, vol. 8, pp. 5039–5048, 2020, doi: 
10.1109/ACCESS.2019.2963077. 

[81] J. Pei, Y. Chen, and W. Ji, “A DDoS attack detection method based on 
machine learning,” in Journal of Physics: Conference Series, 2019, vol. 
1237, no. 3. doi: 10.1088/1742-6596/1237/3/032040. 

[82] Z. Shah and S. Cosgrove, “Mitigating ARP cache poisoning attack in 
Software-Defined Networking (SDN): A Survey,” Electronics 
(Switzerland), vol. 8, no. 10, Oct. 2019, doi: 
10.3390/electronics8101095. 

[83] W. Gao, Y. Sun, Q. Fu, Z. Wu, X. Ma et al., “ARP poisoning prevention 
in internet of things,” in Proceedings - 9th International Conference on 
Information Technology in Medicine and Education (ITME), Oct. 2018, 
pp. 733–736, 2018, doi: 10.1109/ITME.2018.00166. 

[84] M. Abid and A. Singh, “ARP spoofing detection via wireshark and 
veracode,” International Journal of New Technology and Research 
(IJNTR), vol. 4, no. 5, pp. 27-30, 2018. 

[85] A. S. Alghawli, “Complex methods detect anomalies in real time based 
on time series analysis,” Alexandria Engineering Journal, vol. 61, no. 1, 
pp. 549–561, 2022, doi: 10.1016/j.aej.2021.06.033. 

[86] T. Komazec and S. Gajin, “Analysis of flow-based anomaly detection 
using shannon’s entropy,” 2019 27th Telecommunications Forum 
(TELFOR), 2019, pp. 1–4, 2019, doi: 
10.1109/TELFOR48224.2019.8971036. 

[87]  P. Bereziński, B. Jasiul, and M. Szpyrka, “An entropy-based network 
anomaly detection method,” Entropy, vol. 17, no. 4, pp. 2367–2408, 
2015, doi: 10.3390/e17042367. 

[88] T. Dai, H. Shulman, and M. Waidner, “DNS-over-TCP considered 
vulnerable.” In Proceedings of the Applied Networking Research 
Workshop (ANRW) , 2021, pp. 76-81, doi: 
doi.org/10.1145/3472305.3472884. 

[89] N. A. Noureldien and I. M. Yousif, “Accuracy of machine learning 
algorithms in detecting DoS attacks types,” Science and Technology, vol. 
6, no. 4, pp. 89–92, 2016, doi: 10.5923/j.scit.20160604.01. 

[90] A. M. Al Tobi, and I. Duncan, “KDD 1999 generation faults: A review 
and analysis,” Journal of Cyber Security Technology, vol. 2, no. 3–4, pp. 
164–200, 2018, doi: 10.1080/23742917.2018.1518061. 

[91] X. Feng, Q. Li, K. Sun, K. Xu, B. Liu et al., “PMTUD is not panacea: 
Revisiting IP fragmentation attacks against TCP,” in Proceedings of the 
Network & Distributed System Security Symposium (NDSS), 2022, doi: 
10.14722/ndss.2022.24381. 

[92] I. Suciu, X. Vilajosana, and F. Adelantado, “An analysis of packet 
fragmentation impact in LPWAN,” IEEE Wireless Communications and 
Networking Conference (WCNC), 2018, pp. 1–6, 2018, doi: 
10.1109/WCNC.2018.8377440. 

 
 



 

100 
 

 
 
 


