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ABSTRACT 

 

ENHANCED SELF-ORGANISING MAP MODEL FOR SURFACE 

RECONSTRUCTION OF UNSTRUCTURED DATA 

 

 

You Cheng Chun 

 

 

 

 

 

 

Surface reconstruction (SR) is a process of recovering the digital 

representation of an object in reverse engineering. When the unstructured data 

are applied in the SR process, incorrect surface is produced because the data 

do not have any connectivity information. Self-Organising Map (SOM) 

models were proposed to organise the unstructured data to regain the 

connectivity information, but incorrect surface with holes, internal neurons 

and different grid sizes problems were appeared. Although the SOM model 

can generate the correct surface, its output is not in the standard format of 

Computer Aided Geometric Design. So, Non-Uniform Rational B-Spline 

(NURBS) surface approximation approach was applied to the output using 

parameterisation methods. However, the surfaces generated still contain gaps 

and were not optimal. Hence, the surfaces can be optimised using optimisation 

techniques. Therefore, the objectives of this research are to propose a SOM 

model for organising the unstructured data and to present and optimise the 

NURBS surface approximation approach with Genetic Algorithm (GA), 

Differential Evolution (DE) and Particle Swarm Optimisation (PSO). The data 

set used includes four primitive objects and a medical image data. The codes 

were developed using Microsoft Visual Studio 2022 with C++ programming 
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and GNUPlot was used to visualise the results. The results shown that the 

Double Net SOM (DNSOM) model performed faster than 3-D SOM and Cube 

Kohonen SOM (CKSOM), achieved the lowest Topographic Error and 

generated the correct surface with fewer neurons compared to CKSOM. 

Additionally, the improved NURBS approach with Chord Length method was 

able to generate the correct surface with no gaps and the least surface error. 

DE can optimise the improved NURBS surface better compared to GA and 

PSO by achieving 243 out of 280 least optimised surface errors. The research 

outcomes can be utilised in reverse engineering to recover the surface of an 

object.
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CHAPTER 1 

 

INTRODUCTION 

1.1 Overview 

Surface reconstruction is defined as a process of rebuilding a surface based on 

different input data, such as triangular mesh, set of structured or unstructured 

point clouds and intersection lines, whereby the surface generated must 

represent the original object’s surface [1]. It is undeniably a very challenging 

task arising in various areas such as Computer-Aided Design (CAD) [2], 

medical imaging [3], [4], [5], geology [6], [7], [8], [9], [10], urban 

reconstruction [11] and reverse engineering [12], [13], [14], [15]. Thus, 

surface reconstruction in these areas is an ongoing and popular research that 

can be explored.  

The surface reconstruction pipeline begins with the acquisition of the 

point clouds representing the geometry of scanned objects and surroundings 

[16]. The point clouds are acquired from depth cameras [17] or Light 

Detection and Ranging (LiDAR) sensors [18]. The data acquired in surface 

reconstruction can either be structured or unstructured [16]. It is important to 

identify them before choosing which surface reconstruction techniques to be 

used to reconstruct the surface of the collected data [19]. Structured data 

contain connectivity information while the unstructured data do not have any 

connectivity information [20], [21], [22]. Since unstructured data do not have 

any connectivity information, it is challenging to reconstruct the surface of the 

unstructured data because the data should be organised correctly to regain the 
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correct connectivity information among the data. The surface generated would 

be incorrect if the correct connectivity information among the data is not 

regained. In addition, a correct and smooth surface with minimum surface 

error should also be generated when reconstructing the surface of the 

unstructured data. 

Various Self-Organising Map (SOM) models were utilised to organise 

the unstructured data. Structured data were produced when the SOM model 

organised the unstructured data correctly. However, the structured data are not 

in the standard format for Computer-Aided Geometric Design (CAGD) [23]. 

Parametric surface such as Non-Uniform Rational B-Spline (NURBS) is often 

used in CAGD due to its stability, flexibility and local modification properties. 

According to Knopf, Sangole and Archana [24], parametric surface fitting 

requires prior knowledge about the connectivity between the data. Since the 

connectivity information between the data is obtained after the data is 

organised, the parametric surface fitting can be applied on the organised data. 

Lim and Haron [25] proved that the NURBS surface approximation approach 

can be applied after the unstructured data was organised successfully. 

Although the NURBS surface approximation approach is proven to be 

applicable to structured data, the NURBS surface generated is not the most 

accurate. Previous works [26], [27], [28], [29], [30], [31], [32] have shown 

that parametric curves and surfaces such as Bézier, B-Spline and NURBS can 

be optimised by adjusting their parameters to generate better curves and 

surfaces of the data with various optimisation techniques [33], [34]. 

Optimisation techniques that were used to optimise the parametric curve and 
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surface include Genetic Algorithm (GA) [26], [27], [35], [36], [37], 

Differential Evolution (DE) [28], [29] and Particle Swarm Optimisation (PSO) 

[30], [31], [32]. 

1.2 Problem Background and Statements 

Previous works have shown that Self-Organising Map (SOM) models were 

used to regain the connectivity information of the unstructured data. The 2-D 

SOM model was utilised to organise the unstructured open surface data. 

Although the model can organise the unstructured open surface data, it fails to 

organise and generate the correct surface given the unstructured closed surface 

data. The surface generated contain holes [25], [42], [43]. To tackle this 

limitation, a SOM model was initialised as an icosahedron and undergone the 

subdivision process, is utilised to organise the unstructured closed surface data 

in [41]. Furthermore, a Deep Learning SOM (DLSOM) [42] model was 

introduced to organise the unstructured closed surface data. Apart from the 2-

D SOM model, the 3-D SOM model was not able to organise the unstructured 

data and generate the correct surface due to the existence of the internal 

neurons as highlighted in [25]. Hence, Cube Kohonen SOM (CKSOM) [25] 

was introduced to organise the unstructured closed surface data and to 

overcome the limitation of 2-D SOM and 3-D SOM models. Despite the 

strengths of the model, the length and width of its grid cannot be tuned with 

different values. 

 After the unstructured data was organised successfully by the SOM 

model, the data would be structured data. Several previous works [23], [28], 

[29], [32] represented the structured data with parametric surfaces via surface 
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approximation approach. In [32], B-Spline surface approximation was 

employed as the surface representation for the output of the growing grid 

SOM. Furthermore, NURBS surface approximation approach was employed 

in [28] on the output of the growing grid SOM. The NURBS surface 

approximation approach was also applied on the CKSOM model to represent 

the output of the model with the standard representation format for the CAGD 

[23]. However, the NURBS surfaces generated contain gaps at the boundary 

of the surface. Hence, the NURBS surface approximation approach should be 

improved to overcome the problem. 

 Although the surface approximation is applicable on the output of the 

SOM models as the surface representation, the surface generated may not 

represent the original data accurately. Hence, various optimisation techniques 

from the area of soft computing were utilised to optimise the parameters of the 

parametric curve or surface so that a curve or surface with minimum error can 

be generated. The parametric curve or surface can be utilised to optimise the 

parameters of the parametric curve or surface. GA was utilised in [26] to 

perform parameter optimisation for B-Spline curve fitting. Hierarchical GA 

was introduced in [27] to perform B-Spline surface approximation. 

Furthermore, parallel hierarchical GA [36] was constructed to approximate the 

B-Spline curve given the unstructured data by locating the optimal number 

and locations of the knots, and the control points of B-Spline simultaneously. 

Besides, DE was used to find the optimal control points for the Bézier curve 

[29]. DE was also applied on the growing grid SOM to optimise the NURBS 

surfaces [28]. In addition, PSO was employed in [32] to optimise the B-Spline 

surface representing the organised data of the growing grid SOM by finding 
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the optimal control points. In [30], PSO was utilised to obtain the optimal 

values for all the coefficients of NURBS given different 3-D data points.  

Although various SOM models such as the 2-D SOM and 3-D SOM 

were proposed to organise the unstructured data, they are still suffering from 

limitations as stated in [25]. The limitations include holes problem in 2-D 

SOM [43] and connectivity problems in 3-D SOM [25]. Besides, it was 

identified that the length and width of the grid in CKSOM cannot be tuned 

with different value. So, to generate a surface that is similar to the original 

object, the unstructured data should be organised appropriately. Additionally, 

representing the structured data with suitable surface approximation is 

important in surface reconstruction because the surface produced by the SOM 

models is not the standard format in CAGD. However, gaps appeared when it 

was applied on the SOM model as shown in [23] which might cause higher 

surface error. So, the surface error can be optimised with the optimisation 

techniques as shown in [28], [32]. Therefore, the surface represented should 

achieve minimum surface error and similar to the original object. 

1.3 Research Objectives 

The objectives of this research are: 

i. To propose a SOM model for organising unstructured data. 

ii. To propose a surface approximation approach based on the 

proposed SOM model in representing the surface. 

iii. To optimise the surface approximation approach through the 

implementation of GA, DE and PSO. 
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1.4 Research Scopes 

The scopes of the research are stated as follows: 

i) Data sets 

- Four primitive shape data such as cube, sphere, spindle and oiltank 

[44], and a medical data which is talus bone [45] are the data sets 

used in this research. The four primitive shape data are used to 

show that the proposed SOM model, known as Double Net SOM 

(DNSOM) model can organise unstructured data, regain their 

connectivity information and apply on the medical data. 

- The data sets are unstructured data in the form of coordinates (x, y, 

z). 

- Additional data set (Stanford bunny data [46]) is used in this 

research as an additional testing to further evaluate the model. 

ii) Parameterisation methods 

- The Uniform, Chord Length, Centripetal and Exponential are the 

only parameterisation methods considered to be applied in the 

improved NURBS surface approximation approach. 

- Various sizes of control net (CN) are utilised to examine the 

performance of the parameterisation method. 

iii) Optimisation 

- GA with Tournament Selection, Uniform Crossover, Random 

Mutation and Weak Parent Replacement, DE [33] and PSO with 

velocity clamping and constriction factor [34] are the optimisation 
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methods applied on the control points of the improved NURBS 

surface approximation approach to minimise the surface error. 

iv) Performance Measurements 

- Minimum and maximum errors, Quantisation Error (QE), 

Topographic Error (TE) and CPU time are used in the first 

objective to evaluate the performance of the 2-D SOM, 3-D SOM, 

CKSOM and DNSOM models. There is no ground truth available 

because SOM model is an unsupervised learning model [146]. 

- Surface error based on Euclidean distance [23] and the concept of 

the DNSOM model in second objective was utilised to measure the 

performance between the surface approximation approaches and 

parameterisation methods. 

- Optimised surface error based on Euclidean distance and concept 

of the DNSOM model was used in third objective to evaluate the 

performance between the optimisation techniques. 

v) Visualisation 

- GNUPlot is used to visualise the data sets and the results of the 

first, second and third objective. 

1.5 Dissertation Organisation 

This dissertation comprised of seven chapters. The organisation of this 

dissertation is as follows. Chapter 1 provides a general overview and the 

problem background and statements of this research. This chapter also 

highlights the objectives and the scope of this research. Chapter 2 reviews the 

related works. Various Self-Organising Map (SOM) models, parametric 
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curves and surfaces such as B-Spline and Non-Uniform Rational B-Spline 

(NURBS) are reviewed in Chapter 2. Apart from that, optimisation techniques 

such as GA, DE and PSO are also reviewed in Chapter 2. Chapter 3 

demonstrates the research methodology of this research. This chapter also 

includes the hardware and software used in this research.  

Meanwhile, Chapter 4 describes the system flow of DNSOM model, 

analyses and discusses the performance of the DNSOM model. Chapter 5 

explains the steps of the improved NURBS surface approximation approach. 

Besides, Chapter 6 describes the system flow of the optimisation techniques 

applied to optimise the improved NURBS surface approximation approach 

and this Chapter also analyses and discusses the performance of the 

optimisation techniques. Chapter 7 provides the conclusion of this research. 

The limitations, future works and contributions of this research are also 

presented in this chapter. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Overview 

This chapter discusses the process and data in surface reconstruction. The 

existing surface reconstruction techniques, surface representation and surface 

approximation in surface reconstruction are discussed thoroughly in this 

chapter. This chapter also reviewed the existing optimisation techniques. 

2.2 Surface Reconstruction 

Surface reconstruction is the process of retrieving the data through the 

scanning of objects and reconstructing the surface of the retrieved data [19]. 

The process and data involved in surface reconstruction are discussed in this 

section. 

2.2.1 Process 

The process in surface reconstruction consists of parameterisation and surface 

approximation [30], [32], [47]. Parameterisation is a process of generating the 

parameters that define the relationship among the surface data and surface 

approximation is the process of fitting the surfaces according to the parameter 

values of the parameterisation [32]. In [23], [32], data are organised initially 

and the data are presented with the free-form parametric surface through 

parameterisation and surface approximation after the data are organised. 

Besides, the free-form parametric surface in [32] was optimised with 

optimisation technique to produce a more accurate surface. In [30], 

optimisation technique is used to perform both parameterisation and surface 
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approximation on the data which are unstructured to generate a correct surface 

with high accuracy. Therefore, these previous works show that the data 

determine how the parameterisation and surface approximation is performed 

because structured data with rectangular topology can be applied with 

parametric surfaces by performing parameterisation and surface 

approximation as a linear problem but unstructured data would have to apply 

the parametric surfaces as a complex high-dimensional non-linear optimisation 

problem. 

2.2.2 Data 

Data in surface reconstruction are collected through the scanning of the 

existing objects with depth cameras [17] or Light Detection and Ranging 

(LiDAR) sensors [18]. The data collected can be in the form of structured or 

unstructured [48]. Data with connectivity information are known as structured 

data. Meanwhile, data without any connectivity information are known as 

unstructured data [49]. When both of the data are used in surface 

reconstruction, a correct surface would be produced for the structured data and 

an incorrect surface would be produced for the unstructured data because 

structured data have the connectivity information among the data but the 

unstructured data do not have any connectivity information among the data. 

Thus, the unstructured data need to be organised correctly so that the correct 

connectivity information among the data can be obtained and a correct surface 

can be produced. It is important to obtain the correct connectivity information 

for the unstructured data because the reconstructed surface relies on it [16]. 

The structured data can be presented with the parametric surface through 

parameterisation and surface approximation. Besides, other properties of the 
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data such as noise, sampling density, misalignment, outliers and missing data 

have the impact in surface reconstruction [50]. These data make the task of 

computing a surface representation that resembles the original object and 

retaining their critical surface features a very challenging task [51]. 

2.3 Surface Representation and Approximation  

Explicit and implicit are the two types of surface representation [52]. 

Triangulated and parametric surfaces are the two types of explicit surfaces 

[19]. Triangulated surface was generated with Voronoi diagram (VD) and its 

dual, Delaunay triangulation (DT) techniques such as Crust [68], Cocone [69], 

Power Crust [70], SuperCocone [71], Tight Cocone [72] and Localised 

Cocone [73]. However, most of the techniques are not robust towards noisy 

and non-uniform data. In contrast, implicit surface is generated by initially 

define an implicit function and extract the zero-level iso-surface. Then, the 

zero-level iso-surface can be visualised through ray casting and marching cube 

[53]. The implicit function can be a signed distance function [54], [55], [56], 

[57], [58], radial basis function (RBFs) [59], [60], [61], piecewise polynomial 

functions [62], indicator functions [63], [64], [65] or wavelets [66], [67]. 

Besides, parametric surface can be generated through surface interpolation or 

approximation. Surface approximation generates the surface better than the 

surface interpolation because surface approximation generates the surface that 

approximate the data points, minimising the surface error, whereas the surface 

interpolation generates the surface that passes through all the data points [74], 

[75]. This makes the surface approximation to be more robust towards data 

with noise and the surface interpolation to be sensitive to data with noise [76]. 

Surface approximation can minimise the influence of the noise in the data [76]. 
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Surface interpolation would generate a surface that interpolates the incorrect 

data point when the data has noise [76]. Surface approximation is performed 

after the parameter values of the data is computed through parameterisation. A 

good parameterisation is essential to determine the connectivity among the 

data in the surface parametric domain, and the topology and boundaries of the 

surface [30]. Data with rectangular topology is required for the parametric 

surface because parametric surface use such data as input [77]. Hence, the 

method used to organise the unstructured data must have the rectangular 

topology. The parametric surface is used primarily in the computer-aided 

geometric design (CAGD) [78] because they have a great flexibility and can 

represent any smooth shape well [74]. 

2.3.1 Parametric Representation on B-Spline and Non-Uniform Rational 

B-Spline 

The parametric representation is referred to the representation of the data with 

free-form parametric curves and surfaces such as B-Spline and Non-Uniform 

Rational B-Spline (NURBS). This section discusses the mathematical 

formulation of the B-Spline and NURBS curves and surfaces. B-Spline curves 

and surfaces were introduced due to the global influence of the control points 

in Bézier curve and surface [76], [79]. The entire curve or surface will be 

affected when a single control point was adjusted. The B-spline curve with n + 

1 control points Pi (i = 0, …, n) and degree p is defined as follows [80]: 

𝐶(𝑡) = ∑ 𝑁𝑖,𝑝(𝑡)𝑃𝑖

𝑛

𝑖=0

 (2.1) 

where Ni,p(t) are the normalised B-Spline basis function defined on a knot 

vector T = {t0 = … = tp = 0, tp+1, …, tn, tn+1 = … = tn+p+1 = 1}. The knot vector 
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T consists of non-decreasing real numbers knots on the interval [0, 1]. The 

first and last knots of T are usually repeated with multiplicity equal to degree p 

+ 1. Ni,p(t) can be defined as follows [81], [82]: 

𝑁𝑖,0(𝑡) = {
1 if 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1

0 otherwise
 

 
(2.2) 

𝑁𝑖,𝑝(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑝 − 𝑡𝑖
𝑁𝑖,𝑝−1(𝑡) +

𝑡𝑖+𝑝+1 − 𝑡

𝑡𝑖+𝑝+1 − 𝑡𝑖+1
𝑁𝑖+1,𝑝−1(𝑡) (2.3) 

The B-spline surface of degrees (p, q) with (m + 1) × (n + 1) control 

points is defined as follows: 

𝑆(𝑢, 𝑣) = ∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑖,𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 (2.4) 

where Pi,j is the control points, p and q are the degree of the surface in u- and 

v-direction, Ni,p(u) and Nj,q(v) are the normalised B-spline basis functions 

given the knot vectors U = {u0 = … = up = 0, up+1, …, un, un+1 = … = un+p+1 = 1} 

and V = {v0 = … = vq = 0, vq+1, …, vm, vm+1 = … = vm+q+1 = 1} in u- and v-

direction respectively.  

NURBS is also one of the most common surface representations in real 

world applications [30]. A NURBS curve of degree p is defined as follows 

[83], [84]: 

𝐶(𝑢) =
∑ 𝑁𝑖,𝑝(𝑢)𝑤𝑖𝑃𝑖

𝑛
𝑖=0

∑ 𝑁𝑖,𝑝(𝑢)𝑤𝑖
𝑛
𝑖=0

 (2.5) 

where C(u) represents a point on the NURBS curve at u, Pi are the control 

points, wi are the corresponding weights of the control points Pi, Ni,p(u) are the 

normalised B-Spline basis function and n + 1 is the number of control points.  
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A NURBS surface of degree (p, q) with (n + 1) × (m + 1) control 

points is defined as follows [83], [84]: 

𝑆(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝑃𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

 (2.6) 

where, u and v are the parameter, Pi,j is the (i, j)-th control points in 3-D space, 

wi,j is the corresponding weight of Pi,j, Ni,p(u) and Nj,q(v) are the i-th and j-th B-

Spline basis functions of degree p and degree q defined on knot vectors U and 

V in the u- and v-direction respectively which is computed recursively with 

Equation 2.3. 

One of the important properties of the NURBS surface is that the four 

corners of the NURBS surface data interpolates the four corner control points 

[147]. The difference between the NURBS and the B-Spline is the existence of 

weight associated to each control points. By setting the weight of all the 

control points in Equations 2.5 and 2.6 to 1.0, the NURBS curve and surface 

becomes a B-Spline curve and surface respectively [85]. The weight 

associated to each control point influences the NURBS curve or surface [86]. 

When the weight of a control point increases, the point on the NURBS curve 

or surface will move towards the corresponding control point or vice versa 

[81]. 

However, it is challenging to perform curve or surface approximation 

with NURBS because it is a non-linear problem as there are more than one 

unknown variable such as control points and their weight needed to be 

computed. Other than the control points and their weight, the parameters and 

knot vectors are also considered as unknown variables in [30]. Various 

previous works were proposed to perform curve and surface approximation 
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with NURBS. A two-step linear approach [85] was proposed in which the 

weights were initially identified with symmetric eigenvalue decomposition to 

solve the non-linear problem. After the weights were identified, the weights 

were used to compute the control points. Furthermore, a weights iterative 

optimisation technique for NURBS curve fitting was introduced in [81] to 

obtain the optimal weights with the least square method. In [23], [29], [37] 

SOM models with rectangular topology were used to organise the unstructured 

data and surface approximation was performed on the output of the models. 

The NURBS surfaces can be applied on the output of the SOM models with 

rectangular topology because the NURBS surfaces use such data as input [77]. 

Other than the influence of weight on the NURBS curve and surface, the 

parameterisation of the data points also influences the accuracy of NURBS 

curve and surface obtained [26]. 

2.3.2 Parameterisation and Surface Approximation 

Parameterisation is a process of defining the relationship among the data and 

surface approximation is the process of fitting the surfaces according to the 

parameter values of the parameterisation [29]. Parameterisation is an 

important process because it influences the performance of the NURBS curve 

and surface approximation as shown in [87], [23] as different parameterisation 

methods would produce different parameter values and the parameter values 

reflect the distribution of the data. Appropriate parameterisation is required to 

obtain a good surface approximation [47]. The most commonly used 

parameterisation methods are Uniform, Chord Length, Centripetal and 

Exponential parameterisation methods [84], [23], [87], [88]. Uniform method 

is the simplest method [87] because the parameter values are computed 
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without the data points. Parameter values are computed from the Uniform 

method by utilising the definition in 2.7 [89]: 

 𝑡𝑖 =
𝑖

𝑛
, 1 ≤ 𝑖 ≤ 𝑛 − 1 (2.7) 

where t0 = 0 and tn = 1 are the first and last parameters, tk is the middle 

parameters, n is the index of the last point. The Chord Length method 

produces better results compared to the Uniform method if the data point is 

distributed non-linearly [95]. Meanwhile, the Centripetal method is an 

extension of the Chord Length method. By replacing the power factor, α in 

Equation 2.8 from 1.0 to 0.5, the Chord Length method is extended to the 

Centripetal method. According to Iglesias et al. [148], the Centripetal method 

commonly yields better results than the Chord Length method for shapes with 

sharp turns.  Exponential method was proposed in [88] by setting the power 

factor, α in Equation 2.8 to 0.8. Parameter values are computed from the 

Centripetal, Exponential and Chord Length methods by applying  in 

Equation 2.8 with 0.5, 0.8 and 1.0 respectively [79], [89]: 

 𝑡𝑘 =
∑ |𝑄𝑖 − 𝑄𝑖−1|𝛼𝑘

𝑖=1

∑ |𝑄𝑖 − 𝑄𝑖−1|𝛼𝑛
𝑖=1

, 𝑘 = 1, ⋯ , 𝑛 − 1 (2.8) 

 

where n + 1 is the total number of data points or total number of parameters, t0 

= 0 and tn = 1 are the first and last parameters, tk is the middle parameters, 

1−− ii QQ is the distance between adjacent data points Qi and Qi-1, α is the 

power factor and L is the length of the data polygon. 

The knot vector is generated after the parameter values are computed. 

Knot values can be generated with averaging knot vector method and it is 

defined as follows [79]: 
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𝑇0 = 𝑇1 = ⋯ = 𝑇𝑝 = 0 (2.9) 

𝑇𝑗+𝑝 =
1

𝑝
∑ 𝑡𝑗

𝑗+𝑝−1

𝑖=𝑗

, 𝑗 = 1, 2, ⋯ , 𝑛 − 𝑝 (2.10) 

𝑇𝑚−𝑝 = 𝑇𝑚−𝑝+1 = ⋯ = 𝑇𝑚 = 1 (2.11) 

where t is the knot vector. There would be m + 1 knots, where m = n + p + 1 

for n + 1 parameters with t0, t1, …, tn with the degree p. This method was used 

in this research because it generates the knots according to parameter values. 

Different parameterisation methods were used to compute the 

parameter values of various curve data for the B-Spline curve in [87] and the 

results show that the parameterisation methods do affect the results. Hence, 

the selection of an appropriate parameterisation methods is important for 

surface approximation [34]. In 2008, Forkan and Shamsuddin [32] represented 

the 3-D structured data of the growing grid SOM with B-Spline surface using 

the Centripetal method. Additionally, Zhang, Feng and Cui [90] conducted 

NURBS surface approximation with Chord Length method. Lim and Haron 

[23] proposed the use of NURBS surface approximation approach with 

different number of control points and parameterisation methods (Uniform, 

Chord Length, Centripetal) to represent the closed surface data of the Cube 

Kohonen Self-Organising Map (CKSOM) model. This approach would be 

applied in this research since it was proposed to be applied on multiple SOMs. 

Besides, NURBS was applied in [91] to approximate the surface of the data 

after the corner, boundary and interior points of the data are identified and 

classified using a deep neural network. 

Based on the previous works [23], [32], parametric surface was applied 

on the unstructured data after the connectivity information among the data 
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were regained and the model used to organise the unstructured data in these 

previous works is Self-Organising Map (SOM) model. So, various SOM 

models were discussed in the next section. 

2.4 Self-Organising Map Model 

Self-Organising Map (SOM) [92] is an unsupervised learning neural network 

that performs dimensionality reduction by representing high-dimensional data 

with much lower dimensional space [93]. It was introduced by a Finnish 

professor Teuvo Kohonen [94]. The SOM contain neurons, arranged in 

triangular, rectangular or hexagonal topology [95], [96]. Each neuron is 

associated with a weight vector, which represents its location in the input 

space and has the same dimension as the input vectors [41]. Neurons with the 

smallest Euclidean distance between the weight and the input vectors is 

selected as the winning neuron [97]. Three main phases involved in the 

learning process of SOM are competition, cooperation and adaptation [98]. 

These phases will eventually update the weight vector of each neuron towards 

the input vectors. The common termination criterion employed in SOM is 

maximum number of iterations [99], [100], [101]. 

As shown in the previous works [41], [102], [103], [24], [42], [104], 

[105], [106], [22], [40], various SOM models were applied in surface 

reconstruction and the organisation of the unstructured data. Different SOM 

models were proposed to solve the problem of existing SOM models. In 

addition, improvements were made on the existing SOM models to increase 

their performance as shown in [103], [25]. In 1999, Hoffmann [103] made a 

modification on the SOM neighbourhood function by replacing the data type 
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of the return value from natural number to positive real number. The new 

function prevented the radius to decrease by 1 unexpectedly and gradually. 

The improvement helped to move the neurons closer to the input points. 

Consequently, a smoother surface was obtained. Furthermore, the 2-D SOM 

with rectangular structure, and a spherical SOM with the shape of an 

icosahedron and triangular mesh were used by Yu [41] to reconstruct the open 

and closed surface data respectively. Multiresolution learning and edge swap 

were suggested to learn the concave structures of an object. Although the 

suggested model can deal with the concave structures of the object, the use of 

edge swap is not user adaptive as it requires the user to shift the vertices of 

their incident triangles that are far away from the input data close to the input 

data. This action has to be repeated several times until the vertices reach a 

nearby input data. 

Conformal self-organising map (CSM) [105] was proposed to provide 

conformal mapping to achieve the conformality requirement in the mapping of 

geometrical surface. The CSM and SOM were used to perform geometrical 

surface mapping on several data sets such as the 2-D uniformly-distributed 

square and 3-D half sphere, and their performances were evaluated with 

distortion error. Distortion error was calculated from the dimensionality 

reduction and quantisation errors. The CSM achieved lower distortion error 

when the total number of iterations increased indicating that the neurons in the 

CSM were updated nearer to the input data. However, the SOM generates the 

results faster than the CSM. Moreover, a conformal spherical self-organising 

map (CSSM), an extension of CSM was proposed to perform surface 

reconstruction of closed surface [104]. However, the surface produced was not 
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smooth due to the use of flat triangles to represent the CSM. A method was 

proposed [106] to construct a piecewise smooth seamless surface with special 

correspondence based on the derived surface of the CSM to produce a smooth 

surface.  

The Kohonen learning rule was presented in [102] to perform the 

adaptation process. New neurons were added to increase the adaptation 

process at particular area. Besides, local subdivision task was on the identified 

problematic triangles and local adaptation process was applied on the 

subdivides area. With the approach, the issue of SOM in reconstructing 

concave regions is solved. Also, spherical SOM model was proposed in [24] to 

organise the unstructured data. The neurons in the spherical SOM were 

decorated with uniform triangles on a tessellated unit sphere. The Region-of-

Influence (ROI) procedure was adapted in the learning process of the model to 

generate a correct closed surface for object with concave areas and objects 

with holes. The procedure eliminates the need to refine the generated surface 

with mesh refinement transformations. However, this model was very 

vulnerable towards the density of the data [24]. Also, it might wrongly label 

the area of sparse data as intended holes and cause the model fit around it [24]. 

Furthermore, a multiresolution strategy for surface reconstruction of 

unstructured data was introduced in [98]. This method suggested the use of 

batch SOM, a set of mesh operators such as vertex removal, edge swap, 

triangle subdivision and vertex split, and simple constraints for selective mesh 

refinement to tackle the issue of SOM in reconstructing the surface at the 

concave regions of an object. This method can represent the surface of an 
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object with smaller number of triangles for the same resolution level compared 

to the surface reconstruction method proposed in [41]. It allows the user to set 

the threshold which controls the number of triangles in the meshes unlike the 

method proposed in [41] which subdivides every face in the mesh into four 

smaller faces at a certain resolution to get a higher resolution surface. In 

addition, a growing grid SOM with rectangular map was introduced in [32] to 

organise the unstructured data of open surfaces. The growing grid SOM can 

generate the open surfaces correctly. However, the map is not suitable to 

reconstruct the closed surface data and has the same problem as the 2-D SOM 

because the neurons at the edges of the maps are not connected to one another. 

The difference between them is that the grid size of the growing grid SOM 

increases from time to time but the grid size of the 2-D SOM remains the same 

throughout the learning process after initialisation.  

Due to the fixed topology of SOM, the models based on SOM may 

generate a reconstructed surface with vertices or triangles dangling around the 

regions of dense data that does not belong to the original object [40]. 

Nevertheless, methods in [41], [102], [24], [40], [22] can be used to solve this 

problem. However, growing self-organising surface map [22] cannot generate 

the surface correctly if the point cloud is not uniformly-sampled and it requires 

some post-processing steps. In addition, a method in which the map can grow 

incrementally to produce meshes with various resolutions was introduced in 

[40] to solve this problem. The method can produce models that fit the shape 

of an object, including its concave regions and holes. However, this method 

may not preserve the topology of the map. The method will keep on changing, 
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inserting and removing the structural information of the map during the 

learning process. 

Cube Kohonen SOM (CKSOM) [25] was introduced to address the 

holes problem of 2-D SOM in the reconstruction of closed surface and the 

connectivity problem of the 3-D SOM. The model was created through the 

merging of six 2-D SOMs. As shown in [25], the CKSOM model performs 

better than the 2-D SOM and 3-D SOM models and the model was also tested 

with different types of data sets. Despite its ability to deal with the problems 

of both 2-D and 3-D SOMs, it restricts the user to set different width and 

length of the grid. Hence, objects with longer widths or lengths may fail to 

reconstruct efficiently [25]. The model would use a larger grid size to 

reconstruct the objects. Furthermore, DL SOM [42] is also introduced to 

reconstruct the closed surface data. Although it could deal with closed surface, 

it failed to produce the correct connectivity for the concave area of the object. 

Therefore, DL SOM is not considered in this research. 

Based on the previous works, SOM models were able to organise the 

unstructured data and generate the correct surface. However, previous works 

show that the SOM models are still suffering from limitation that needs to be 

addressed and the surface generated is not the standard representation in 

CAGD. Therefore, NURBS surface was often used to represent the output of 

the SOM models. Previous works [23], [28] have shown that the output of the 

SOM model with rectangular topology can be applied with NURBS surfaces. 

In addition. the NURBS surfaces can be optimised using optimisation 
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techniques to generate surface with higher accuracy. Hence, the optimisation 

techniques related to surface reconstruction are discussed in the next section. 

2.5 Optimisation Techniques 

Optimisation techniques such as Genetic Algorithm (GA), Differential 

Evolution (DE) and Particle Swarm Optimisation (PSO) are often 

implemented to optimise the free-form parametric curve and surface such as 

B-Spline and NURBS in surface reconstruction. 

GA was proposed by John Holland based on the survival of the fittest 

and it is a population-based optimisation technique. GA has four main 

operators and selection, crossover, mutation and replacement. Each individual 

or chromosome is a single possible solution in GA and each individual and 

chromosome is subdivided into genes. Each gene is represented according to 

an encoding scheme and the encoding scheme is determined according to the 

optimisation problem. 

Encoding is a process of representing the chromosomes [107]. Value 

encoding scheme is mainly used in neural networks to find their optimal 

weights as the chromosome is represented with string of values and the values 

can be real, integer number or character. Selection is performed after the 

chromosomes are encoded. Selection is a process of choosing two or more 

individuals to perform crossover and mutation. Tournament Selection is the 

most popular selection scheme in GA because it is easy to implement [108], 

[109]. However, the tournament size set for the Tournament Selection cannot 

be too large. When the tournament size is large, the probability of loss 

diversity is also greater [110]. The individual selected to perform crossover is 
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known as parent. Crossover operator is performed after the parents are 

selected with the selection operator. Crossover allows genes in the selected 

individuals to be exchanged to produce new solutions [111]. One of the 

common crossover schemes is Uniform Crossover. In Uniform Crossover, 

every gene is exchanged between the pair of randomly selected chromosomes 

with the swapping probability, pe and it is typically set to 0.5 [113]. The 

crossover operator is used to prevent the duplication of the parents from the 

old population in the offspring. After the offspring are generated by crossover, 

the mutation is performed on the offspring. The mutation operator helps to 

maintain the diversity of the population by introducing new elements into the 

chromosomes [114] and prevents the algorithm from being trapped in a local 

minimum [107]. One of the mutation operators is Uniform Mutation [115]. In 

Uniform Mutation, a predefined number of genes are selected randomly and 

each of the gene is assigned with a value that is randomly generated within a 

certain range. It is used in value encoded GA. The replacement operator is 

executed after the mutation operator. The replacement operator includes 

Weak-Parent Replacement [107]. In Weak-Parent Replacement, the parents 

with lower fitness value than the offspring are replaced with their offspring in 

the next generation. The GA continues with selection, crossover, mutation and 

replacement operators until a stopping criterion is achieved which can be the 

achievement of certain number of generation or certain fitness value in which 

the fitness value is calculated with a fitness function.  

Two important parameters used in GA are crossover probability, Pc 

and mutation probability, Pm. Pc and Pm are used to control the crossover and 

mutation respectively. Pc is in the range of [0, 1] in which 0 indicates that the 
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completely new generation of individuals would be the same as the older 

population except those resulted from the mutation operator and 1 indicates 

that all the offspring are generated by crossover [112]. Pm is set in the range of 

[0, 1]. If the mutation probability is 1, the whole chromosome is altered, 

otherwise nothing is altered. The mutation probability should not be set too 

high as it will change the GA into a random search [107]. 

Differential Evolution (DE) was a population-based optimisation 

technique proposed by Storn and Price [33] in 1997 and its main operations 

are initialisation, mutation, crossover and selection. During initialisation, a 

population of N individuals are encoded as D-dimensional vectors of real 

numbers is generated and D elements of each vector are randomly initialised 

within [xmin, xmax] where xmax is the maximum value of the search space, xmin is 

the minimum value of the search space. The population with N individuals can 

be expressed as X = (x1, x2, …, xN). Each individual can be expressed as xi(t) = 

(xi1(t), xi2(t), …, xiD(t)) where xi(t) is the i-th individual, xiD(t) is the D elements 

of the i-th individual at t and t is the current generation. Each individual is the 

possible solution to the optimisation problem. 

Mutation operation is performed after the initialisation of the 

individuals. In mutation operation, a mutant vector is generated with a 

mutation strategy for each target vector. A mutant vector in the original DE is 

generated by adding the weighted difference between two vectors to a third 

vector and it is represented as follows [29]: 

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) (2.12) 
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where r1, r2, r3 are randomly chosen integers, mutually exclusive from one 

another and they are also different from the index i. Since r1, r2, r3, and i are 

distinct, N must be greater or equal to four to abide this condition. F is a 

scaling factor which controls the amplification of the differential variations 

(xr2,G – xr3,G) and its value is within [0, 2]. 

The crossover was performed after the mutant vector was generated 

through the mutation strategy to increase the diversity of the population [116]. 

During the crossover, a trial vector uji,G+ 1 is developed from the elements of 

the target vector, xi,G, and the elements of the mutant vector, vi,G+1. Binomial 

crossover is the commonly-used crossover and it is defined as follow [117]: 

𝑢𝑗𝑖,𝐺+1 = {
𝑣𝑗𝑖,𝐺+1

𝑥𝑗𝑖,𝐺

if 𝑟𝑎𝑛𝑑𝑗𝑖 ≤ 𝐶𝑅 or 𝑗 = 𝑟𝑛𝑏𝑟𝑖

if 𝑟𝑎𝑛𝑑𝑗𝑖 > 𝐶𝑅 and 𝑗 ≠ 𝑟𝑛𝑏𝑟𝑖
, 𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝐷 (2.13) 

where randji is the uniform random number generator in the range [0, 1] for j-

th dimension of the i-th individual, CR is the predefined crossover probability, 

chosen from the range [0, 1], rnbri is a randomly selected integer is an element 

of 1, 2, …, D and it is to ensure that ui,G+1 has at least one parameter from 

vi,G+1. 

The fitness value of the trial vector is evaluated with a fitness function 

and the selection operation is performed after the crossover operation. In 

selection operation, the fitness value of the trial vector is compared with that 

of the target vector in the current population. If the fitness value of the trial 

vector is less than or equal to that of the target vector, the target vector is 

replaced by the trial vector in the next generation. Otherwise, the target vector 

is remained for the next generation. The selection operation described above 

can be expressed as follows [118]: 
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𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1

𝑥𝑖,𝐺
 
if 𝑓(𝑢𝑖,𝐺+1) ≤ 𝑓(𝑥𝑖,𝐺)

otherwise
 𝑖 = 1,2, … , 𝑁 (2.14) 

where xi,G is the target vector of i-th individual, ui,G+1 is the trial vector, f(ui,G+1) 

is the fitness value of the trial vector, f(xi,G) is the fitness value of the target 

vector, N is the total number of individuals. 

Particle Swarm Optimisation (PSO) was developed by Eberhart and 

Kennedy [119] in 1995 and it was inspired by the social behaviour of bird 

flocking and fish schooling in food searching [119]. Various variants of PSO 

were introduced to solve different kinds of optimisation problems. The 

original PSO was defined in Equation 2.18. Each particle has velocity and 

position. The position of each particle corresponds to a possible solution of the 

problem. The position of each particle is initialised randomly within the lower 

and upper bound of the optimisation problem. The Equations 2.15 and 2.16 are 

used to update the particles positions. 

𝑥𝑖𝑗
(𝑡+1)

= 𝑥𝑖𝑗
(𝑡)

+ 𝑣𝑖𝑗
(𝑡+1)

 (2.15) 

𝑣𝑖𝑗
(𝑡+1)

= 𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1 (𝑥𝑖𝑗
𝑝(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2 (𝑥𝑗
𝑔(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) (2.16) 

where i is the number of particle, t is the current generation, xij and vij are the i-

th position and velocity of the particle in the j-th dimension, c1 and c2 are the 

cognitive and social acceleration constants respectively, r1 and r2 are the 

random number which are uniformly distributed between 0 and 1, 𝑥𝑖𝑗
𝑝(𝑡)

 is the 

best previous position of particle i in j-th dimension, 𝑥𝑗
𝑔(𝑡)

 is the global best 

position in j-th dimension. 

Other than the original PSO, various variants of PSO were introduced 

through the modification of Equation 2.16. One of the variants of PSO is the 

PSO with inertia weight and it is defined as follows:  
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𝑣𝑖𝑗
(𝑡+1)

= 𝑤𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1 (𝑥𝑖𝑗
𝑝(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2 (𝑥𝑗
𝑔(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) (2.17) 

The inertia weight, w is one of the PSO parameters originally proposed in [120] 

to balance the exploration and exploitation characteristics of PSO by 

controlling the velocity of the particles. Constant inertia weight within the 

range [0.9, 1.2] was preferred in [120]. Besides, PSO with constriction factor, 

K is also another variant of PSO and it was introduced by [121] to analyse the 

convergence behaviour [122]. It can be incorporated by modifying the 

Equation 2.16 to Equation 2.18 [123]. 

𝑣𝑖𝑗
(𝑡+1)

= 𝐾 [𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1 (𝑥𝑖𝑗
𝑝(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2 (𝑥𝑗
𝑔(𝑡)

− 𝑥𝑖𝑗
(𝑡)

)] (2.18) 

where 

𝐾 =
2

|2 − 𝜌 − √𝜌2 − 4𝜌|
, where 𝜌 = 𝑐1 + 𝑐2, 𝜌 > 4 (2.19) 

 

The constriction factor, K is set to 0.729 based on Equation 2.20. 

𝜌 = 𝑐1 + 𝑐2 = 4.1 (2.20) 

where c1 and c2 are both set to 2.05. 

Eberhart and Shi [123] compared the performance between the PSO 

with inertia weights and constriction factors and it was found that the 

performance of the PSO with constriction factor and velocity clamping is on 

par with the PSO with inertia weights. Velocity clamping was introduced to 

control the global exploration of the particle by keeping the particles within 

the search space [124]. 

GA, DE and PSO were applied in the optimisation of parametric 

curves and surfaces. In 2007, GA was applied in [78] to perform Bézier curve 
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and surface parameterisation. Furthermore, GA is applied in [125] to fit the 

data points with B-Spline surface. GA was first used to find the parameter 

values of the data points. Then the GA was applied again to find the knot 

vectors. In addition, DE is also another optimisation method that are being 

applied widely to optimise the parametric curves and surfaces. DE was applied 

in [29] to find the optimised control points of the Bézier curve. DE was 

applied to optimise the control points of the NURBS surfaces in [28]. Besides, 

PSO was applied to obtain a suitable parameterisation of the data points for 

Bézier surface reconstruction in [31]. PSO was applied to determine the 

optimal location of knots in B-Spline curve [80]. PSO was used in the surface 

fitting of NURBS to obtain the control points and their weights, parametric 

values of the data points and knot vectors without any pre- or post-processing 

[30]. Hence, GA, DE and PSO can be applied in solving surface 

reconstruction case studies. 

2.6 Summary 

Based on the discussions in the previous sections, it is noticed that the process 

in surface reconstruction begins with the acquisition of the data in which the 

data can be in the form of structured or unstructured and ends with the 

generation of a surface that represent the data. When the data is in 

unstructured form, reorganisation of the data is required to regain the 

connectivity information among the data so that the original shape of the 

object can be recovered. Reorganisation of the data can be performed with 

self-organising map (SOM) models. However, the models have their own 

limitations. 
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It is also noticed that the explicit surface tends to represent the data 

incorrectly when the data has noise. In addition, the implicit surface tends to 

overfit the data and the deep learning methods are also suffering with 

limitation such as fails to generate the correct surface. Parametric surface is 

commonly-used in the real-world applications due to its flexibility and ability 

to represent the shape of an object well. It is discovered that the output of the 

SOM model can be represented with the parametric surface and this would 

make the SOM model to be useful in the field of computer aided geometric 

design (CAGD). Although the parametric surface can be used to represent the 

output of the SOM model using the mathematical formula, the accuracy of the 

parametric surface is not optimal because it is generated with control points, 

weights, parameters or knot vectors that are not optimal. To overcome the 

problem, the free-form parametric surfaces can be optimised with GA, DE and 

PSO either through the optimisation of control points, weights, parameters and 

knot vectors. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

3.1 Overview 

This chapter discusses the methodology of the research and provides a general 

flow of the research beginning with the literature review and problem 

definition, data collection and definition, organise the unstructured data using 

Double Net Self-Organising Map (DNSOM) model, integrate the improved 

NURBS surface approximation approach on the DNSOM model, optimise the 

improved NURBS surface approximation approach with optimisation 

techniques, and documentation. 

3.2 Research Framework 

This section discusses the research framework and provide a general 

information about the tasks involved in this research. Figure 3.1 illustrates the 

research framework of this research. 

3.2.1 Literature Review and Problem Definition 

Initially, a thorough literature review was conducted to gain a good 

understanding on the existing research and to identify the unexplored areas 

related to the research title. Literature review also helps to build the 

knowledge on the research title. The theories, concepts and previous works of 

SOM, free-form parametric curves and surfaces such as B-Spline and NURBS, 

and optimisation techniques such as Genetic Algorithm (GA), Differential 

Evolution (DE) and Particle Swarm Optimisation (PSO) related to surface 

reconstruction were studied. The problem statement of this research was 
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defined based on the findings of the literature review. Upon the definition of 

the problem statement, three objectives were determined to overcome the 

defined problems. 

  

Figure 3.1: Research Framework 
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3.2.2 Data Collection and Definition 

After performing a thorough literature review, identifying the problem and 

determining the objectives of the research, data collection was performed. The 

data required are collected and their properties were defined. For the data to be 

applicable in this research, the data collected must be in coordinate (x, y, z) 

and unstructured form. The data collected includes four primitive shapes [25] 

and a medical data [45]. The four primitive shapes were the cube, sphere, 

spindle and oiltank data, and the medical data was the talus bone data. The 

general information about the data and the visualisation of the data were 

provided in Table 3.1 and Table 3.2 respectively. The cube, sphere, spindle, 

oiltank and talus bone have 7352, 7082, 7552, 5942 and 5253 data points 

respectively. The data were visualised with GNUPlot and they were 

demonstrated in Table 3.1. The data show that they are in unstructured form. 

The data were normalised and the first five coordinates of each data were 

included in Table 3.1. Figure 3.2 is the superior view of the talus bone and it 

was adapted from [126]. The figure was included to demonstrate the structure 

of the talus bone. Additional data which is the Stanford bunny data with 35947 

data points were used to test the performance of the DNSOM model and the 

visualisation of the data was shown in Table 3.2. 

3.2.3 Organise the Unstructured Data using the DNSOM Model 

Organise the unstructured data using the DNSOM model was the first 

objective of this research. The motivation of this objective was to develop a 

model using two 2-D Self-Organising Map (SOM) to form the DNSOM model 

in which the model was able to overcome the limitation of the 2-D SOM and 

3-D SOM in organising the unstructured data. At the same time, the model 
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was able to organise the unstructured data with fewer number of neurons 

compared to the Cube Kohonen SOM (CKSOM) model proposed in [25]. This 

was achievable because only two 2-D SOMs were used to develop the 

DNSOM model and the model allows the setting of different grid size. Data 

reduction is one of the important properties of the SOM. 

Table 3.1: Data information 

Data No. of data points x y z 

Cube 7352 

0.000000 0.000000 1.000000 

0.000000 0.000000 0.971430 

0.028580 0.000000 0.971430 

0.028580 0.000000 1.000000 

0.057150 0.000000 0.971430 

Sphere 7082 

0.500000 1.000000 0.500000 

0.500000 0.999315 0.473830 

0.498630 0.999315 0.473865 

0.497265 0.999315 0.473975 

0.495905 0.999315 0.474155 

Spindle 7552 

0.500000 1.000000 0.500000 

0.500167 1.000000 0.500000 

0.500165 1.000000 0.499978 

0.500162 1.000000 0.499958 

0.500155 1.000000 0.499938 

Oiltank 5942 

0.500000 1.000000 0.500000 

0.528970 0.999462 0.500000 

0.528810 0.999462 0.496973 

0.528335 0.999462 0.493978 

0.527550 0.999462 0.491050 

Talus bone 5253 

0.868386 0.673464 0.000000 

0.830361 0.637315 0.000600 

0.883370 0.678238 0.000817 

0.862615 0.658639 0.001184 

0.830930 0.653490 0.001922 

Stanford 

bunny 
35947 

0.365193 0.615243 0.549817 

0.320558 0.621379 0.528523 

0.171359 0.766240 0.820968 

0.593469 0.629562 0.705158 

0.462973 0.607046 0.572036 
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Table 3.2: Y-X projection view of all data collected 

Data Points Lines 

Cube 

  

Sphere 

  

Spindle 

  

Oiltank 

  

Talus Bone 

  

Stanford 

bunny 
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Figure 3.2: Superior view of talus bone. Adapted from [126]  

Five performance measurements were used to compare the performance 

among the models, which are minimum and maximum error, Quantisation 

Error (QE), Topographic Error (TE) and CPU time. Minimum error, 

maximum error and CPU time were recommended in [25]. Meanwhile, the QE 

was applied in [25], [127]. The TE was used in [127]. The output of the 

DNSOM model was structured and it is known as the DNSOM surfaces data. 

The output of the model was used as the input of the second objective. 

3.2.4 Integrate the Improved NURBS Surface Approximation Approach 

on the DNSOM Model 

Integrate the DNSOM model with improved NURBS surface approximation 

approach is the second objective of this research. The output of the DNSOM 

model was used as the input of this objective and they include the output of 

the model for the cube, sphere, talus bone, oiltank and spindle data. All 

outputs were structured 3-D data points. Although the data are structured, it is 

not the standard representation in Computer-Aided Geometry Design (CAGD) 

industries [23]. Therefore, the model cannot be applied in CAGD directly. To 

overcome this challenge, free-form parametric surfaces such as NURBS are 

used to represent the output of a model and they are the common standard 
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representation in CAGD. Hence, NURBS surfaces were used to represent the 

DNSOM surface data. The conventional NURBS surface approximation 

approach from [23] was applied on each 2-D SOM separately with different 

parameterisation methods and sizes of control net (CN). Consequently, the 

NURBS surfaces were generated. Besides, improvements were made to the 

conventional NURBS surface approximation approach and it is known as 

improved NURBS surface approximation approach. The improved approach 

was applied on all the output of the model with different parameterisation 

methods and sizes of CN. The performance measurement involved in this 

objective is known as surface error and it was derived based on the DNSOM 

model and Euclidean distance. The outputs of both approaches for each of the 

data include the basis function, NURBS surfaces data and surface error. 

3.2.5 Optimisation on the Improved NURBS Surface Approximation 

Approach 

Optimisation techniques were proposed to optimise the improved NURBS 

surface approximation approach aiming to achieve smaller surface error 

between the improved NURBS surface data and the DNSOM surface data, 

which is the third objective of this research. It can be achieved by optimising 

the control points of the improved approach. The quantitative and qualitative 

performance measurement used in this objective were optimised surface error 

between the optimised improved NURBS surfaces data and the DNSOM 

surface data, and visualisation respectively. The surface error was utilised to 

evaluate the performance between the optimisation techniques and it was 

computed based on Euclidean distance and the DNSOM surface data.  Besides, 

visualisation was used to evaluate and to compare the optimised improved 
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NURBS surfaces with the improved NURBS surfaces from the second 

objective, aiming to identify the differences between the improved NURBS 

surfaces before and after optimisation. The inputs for this objective include the 

DNSOM surface data, the basis functions, control points and NURBS surface 

data of the improved NURBS surface approximation approach. Each of the 

optimisation technique was applied on various parameterisation methods, sizes 

of CN and data. The outputs of this objective were the optimised control 

points, optimised surface error, CPU time and optimised improved NURBS 

surfaces data. 

3.2.6 Documentation 

Documentation is the final and important step in this research. The system 

flow of each objective was documented accordingly alongside with their 

outcomes and findings. 

3.3 Hardware and Software Requirements 

The hardware used in this research is a desktop with Intel ® Core ™ i7-7700K 

CPU @ 4.20GHz, NVIDIA GeForce GTX 1050 2GB and 32 GB RAM. 

Meanwhile, the software used in this research were Microsoft Visual Studio 

2022 with C++ programming and GNUPlot. Microsoft Visual Studio 2022 

with C++ programming was used to code the models in first objective, the 

surface approximation approaches in second objective and the optimisation 

techniques in the third objective, and to perform every experiment in this 

research. Besides, visualisation was conducted with GNUPlot. 
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3.4 Summary 

The theories and concepts of SOM models, B-Spline and NURBS curves and 

surfaces as well as GA, DE and PSO were studied when conducting the 

literature review. After conducting the literature review, it was noticed that the 

2-D SOM, 3-D SOM and CKSOM models are still suffering from limitation 

and the output of the models are not a standard representation in CAGD. The 

output of the model can be represented with NURBS surfaces but gaps were 

identified when the output of the model were represented with the NURBS 

surfaces separately. Additionally, the NURBS surfaces generated may not 

have a high accuracy. After defining the problems, data were collected and 

defined. The data collected were in coordinates (x, y, z) and unstructured form. 

The unstructured data were organised with the DNSOM model. The improved 

NURBS surface approximation approach was applied on the output of the 

DNSOM model to generate the NURBS surfaces without gaps and 

optimisation techniques were used to optimise the improved NURBS surfaces. 

Lastly, the system flow, findings and discussions involved were documented.



40 

 

CHAPTER 4 

 

THE DOUBLE NET SELF-ORGANISING MAP (DNSOM) MODEL 

4.1 Overview 

As mentioned before, 2-D SOM model has holes problem, 3-D SOM model 

has connectivity problem and CKSOM model has problem settings its grid 

size with different length and width. Hence, this chapter proposes a model to 

organise the unstructured data and addresses the limitations of the models. The 

model was formed through the merging of two 2-D SOMs and it was inspired 

by Lim and Haron [25]. The proposed model is known as Double Net Self-

Organising Map (DNSOM). Acquiring Data, Initialising Parameters, Merging 

Neurons, Detecting Neighbours, Generating Weights, Learning Process and 

Producing Output are the processes involved in organising the unstructured 

data with the model. Class Number was used to group the neurons on the 

border of two views in DNSOM model during Merging Neurons and this 

would solve the issues of holes because neurons grouped in the same class 

number were assigned with the same weight vector to perform the learning 

process. The neuron with the same class number will be updated if it was 

selected as the winning or neighbouring neurons during the learning process. 

This chapter also presents the performance of the DNSOM model. 

4.2 System Flow of the DNSOM Model 

Figure 4.1 shows the steps included in the DNSOM model to overcome the 

holes problem in 2-D SOM, the connectivity problem in 3-D SOM and the 

inability to set different grid size in Cube Kohonen SOM (CKSOM). The 
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model was inspired based on the work of Lim and Haron [25] and it was 

proposed to organise the unstructured data. Three new equations were derived 

to construct the model. 

 

Figure 4.1: Flowchart of the DNSOM model 
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4.2.1 Acquiring Data 

The data applied in this research were described in Research Methodology 

(Chapter 3) and they include four sets of primitive data (cube, sphere, spindle 

and oiltank), one set of medical image data (talus bone) and a complex data 

(Stanford bunny). Generally, all the data are in 3-D coordinates (x, y, z) and 

unstructured form. The data were inserted into the DNSOM model and they 

were randomly chosen as the input vector of the DNSOM model in Learning 

Process (Section 4.1.6). 

4.2.2 Initialising Parameters 

Table 4.1 shows the parameters initialised for the DNSOM model and they 

were referred from [25], [98]. The same values of parameters in Table 4.1 

were initialised for the 2-D SOM, 3-D SOM and CKSOM models for 

comparison purposes. Rectangular topology was used for the DNSOM model 

because the NURBS surfaces uses such topology as input data [77]. Every 

neuron in the model has a weight vector in which its dimension is identical to 

that of the input vector or data. Since the data are in 3-D, the dimension of the 

weight vector was set to 3. Furthermore, this step includes the initialisation of 

grid size, n, initial learning rate, α0, initial radius, σ0 and maximum iterations, 

T for the model. The time constant, τ was also calculated in this step. The 

learning rate was used to control the weight of the neurons during the 

Learning Process (Section 4.2.6) [128] and the initial learning rate was 

referred from [25]. The radius was used to determine the neighbourhood 

distance for each winning neuron. The initial radius was set to half of the n 

and it was referred from [25]. The learning rate and radius would eventually 

reduce to 0.01 and 1 during the learning process [25]. Maximum iteration, T 
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was the total number of iterations for the model in learning towards the input 

vector [25]. The time constant, τ was applied to handle the decay rate of the 

learning rate and the radius. Its value was derived with the maximum 

iterations and the logarithm of initial radius, log(σ0), and it was recommended 

by [98]. The value of n was assigned to the width, nx and length, ny of the grid 

for the DNSOM model. When different values of nx and ny were used to set 

the grid size, the initial radius was set to the half of the minimum value 

between nx and ny and it was proposed in [129]. 

Table 4.1: Parameters and their respective values 

Parameter Value 

Dimension of weight vector 3 

Grid size, n 10, 20, 30 

Initial Learning Rate, α0 0.9 

Initial Radius, σ0 Half of the grid size 

Maximum iteration, T 30000 

Time constant, τ Derived with Maximum iteration and the 

Logarithm of the Initial Radius 

 

As mentioned in [25], Index Vector was assigned to each neuron to 

form the structure of the CKSOM model and to identify the neighbours for 

each neuron. It was adapted in this research to form the structure of the 

DNSOM model. The Index Vector consists of three index values (i, j and k). 

The index values, i and j, start with 0 and increase by 1 until nx − 1 and ny − 1 

respectively. Similar to CKSOM model, Index Vector was set from bottom to 

top and left to right. k for neurons with i = 0, i = nx – 1, j = 0 and j = ny −1 was 

set to 1 as k = 1 refers to neurons in both maps that are merged to create a 

connection between the two maps. The k of the remaining bottom and top 

neurons was set to 0 and 2 respectively and k = 0 refers to the neurons at the 
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bottom view while k = 2 refers to the neurons at the top view. This is to 

indicate the neurons that are not merged while forming the structure of the 

DNSOM model and to create a space between the two views for organising 

the closed surface data. Figure 4.2 shows an example the Index Vectors 

allocated for the bottom view with the grid size of nx = 4 and ny = 5. The 

bottom and top views were referred to the two 2-D SOMs. 

 

Figure 4.2: Allocation of Index Vectors for the bottom view with grid size, 

nx = 4 and ny = 5 

4.2.3 Merging Neurons 

Two 2-D SOMs were merged in Merging Neurons (Section 4.2.3) to 

overcome the issues of 2-D SOM and 3-D SOM models. However, neurons 

with the same Index Vector would cause redundancy problem during learning 

process after SOMs were merged. Hence, Class Number was used to group the 

same neurons and update the weight of the neurons to overcome the 

redundancy problem. The grid size of the DNSOM model is determined with 

two parameters which are the width, nx and length, ny. Due to different grid 

sizes, three new equations were derived in this research. Equation 4.1 was 

formed to compute the total number of neurons (NON) of the DNSOM model. 



45 

 

NON = 2𝑛𝑥𝑛𝑦 (4.1) 

Equation 4.2 was formed to compute the total number of output neurons 

(NOV) involved in the learning process. 

NOV=2[𝑛𝑥𝑛𝑦 − 𝑛𝑥 − 𝑛𝑦 + 2] (4.2) 

The NOV represents the total number of Class Number allocated to group the 

neurons with similar Index Vector together. It also refers to the number of 

vertices used to represent the surface of the data. Equation 4.3 was formed to 

compute the total number of redundancies (NOR) for any grid size. 

NOR = 2𝑛𝑥 + 2(𝑛𝑦 − 2)     

or 

    NOR = 2𝑛𝑦 + 2(𝑛𝑥 − 2)  

or 

 NOR = NON − NOV 

(4.3) 

Neurons from the bottom and top views with the same Index Vector 

were grouped with the same Class Number. The allocation of Class Number 

based on the Index Vector of each neuron for the DNSOM model with the grid 

size, nx = 4 and ny = 5 and NON = 40 was tabulated in Table 4.2. 

Figure 4.3 shows the bottom and top view of the DNSOM model using 

the Class Number to represent the position of the neurons and the allocation of 

Class Number in the DNSOM model starts with the bottom view, followed by 

the top view. Each of the Class Number was allocated sequentially from the 

bottom to top and left to right. Figure 4.4 shows the bottom and top views of 

the model in Figure 4.3. Figure 4.5 shows the DNSOM model with the grid 

size, nx = 4 and ny = 5. 
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Table 4.2: Class Number allocation based on Index Vector for the 

DNSOM model with grid size, nx = 4 and ny = 5, and NON = 40 

NON 
Index Vector Class 

Number 
View 

 
NON 

Index Vector Class 

Number 
View 

i j k  i j k 

1 0 0 1 1 

Bottom 

 21 0 0 1 1 

Top 

2 0 1 1 2  22 0 1 1 2 

3 0 2 1 3  23 0 2 1 3 

4 0 3 1 4  24 0 3 1 4 

5 0 4 1 5  25 0 4 1 5 

6 1 0 1 6  26 1 0 1 6 

7 1 1 0 7  27 1 1 2 21 

8 1 2 0 8  28 1 2 2 22 

9 1 3 0 9  29 1 3 2 23 

10 1 4 1 10  30 1 4 1 10 

11 2 0 1 11  31 2 0 1 11 

12 2 1 0 12  32 2 1 2 24 

13 2 2 0 13  33 2 2 2 25 

14 2 3 0 14  34 2 3 2 26 

15 2 4 1 15  35 2 4 1 15 

16 3 0 1 16  36 3 0 1 16 

17 3 1 1 17  37 3 1 1 17 

18 3 2 1 18  38 3 2 1 18 

19 3 3 1 19  39 3 3 1 19 

20 3 4 1 20  40 3 4 1 20 

 

 

Figure 4.3: Bottom and top views of the DNSOM model with Class 

Number for grid size, nx = 4 and ny = 5 

After the process was completed, the Class Numbers and their 

respective Index Vector were extracted as shown in Table 4.3. Based on the 
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information in Table 4.3, 26 neurons were used in the Learning Process 

(Section 4.2.6) and they represent the output layer of the model. Nevertheless, 

all the 40 neurons were used for the Producing Output (Section 4.2.7). 

 

Figure 4.4: Bottom and top views of the DNSOM model with grid size, nx 

= 4 and ny = 5 

 

Figure 4.5: The DNSOM model with grid size, nx = 4 and ny = 5 after 

merging both views from Figure 4.4 

4.2.4 Detecting Neighbours 

Detecting Neighbours determines the neighbours for each Class Number. 

Redundant neurons were grouped and represented with a Class Number after 

Merging Neurons (Section 4.2.3). Due to the use of Class Number to represent 

the structure of the DNSOM model, the model would have different 

neighbourhood from the 2-D SOM model. Index Vector was used to identify 

the neighbouring neurons of each Class Number. 

 



48 

 

Table 4.3: Extracted Class Number with Index Vector 

Class 

Number 

Index Vector  
Class 

Number 

Index Vector 

i j k  i j k 

1 0 0 1  14 2 3 0 

2 0 1 1  15 2 4 1 

3 0 2 1  16 3 0 1 

4 0 3 1  17 3 1 1 

5 0 4 1  18 3 2 1 

6 1 0 1  19 3 3 1 

7 1 1 0  20 3 4 1 

8 1 2 0  21 1 1 2 

9 1 3 0  22 1 2 2 

10 1 4 1  23 1 3 2 

11 2 0 1  24 2 1 2 

12 2 1 0  25 2 2 2 

13 2 2 0  26 2 3 2 

 

Equation 4.4 – 14 were used to detect the neighbouring neurons and they are 

referred from [25], [93], [98]. 

𝐼 = |𝑖WCN − 𝑖NCN| (4.4) 

𝐽 = |𝑗WCN − 𝑗NCN| (4.5) 

𝐾 = |𝑘WCN − 𝑘NCN| (4.6) 

dist2 = (√𝐼2 + 𝐽2 + 𝐾2)2  (4.7) 

dist = √𝐼2 + 𝐽2 + 𝐾2 (4.8) 

where iWCN, jWCN and kWCN are the Index Vector of the winning neuron, iNCN, 

jNCN and kNCN are the Index Vector of the neighbouring neuron, I, J and K are 

the distance of index i, j and k between the winning neuron and the 

neighbouring neuron, dist2 is the distance used in the learning process of SOM, 

dist is the Euclidean distance between the winning neuron and neighbouring 

neuron computed using their respective Index Vector. 
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Additional condition was added to determine the neighbours of each 

Class Number. After the winning neuron was identified, the distance between 

the winning neuron and a neighbouring neuron was computed with Equation 

4.8. The weight of the neighbouring neuron was updated if the dist for the 

neuron is smaller than the radius decay and its value of K is not equal to 2 and 

the value of the dist2 was substituted into Equation 4.11, Section 4.2.6 for that 

specific neuron. Neighbouring neuron with dist smaller than the radius decay 

indicates that the neurons is a valid neighbour of the winning neuron since it is 

inside the neighbourhood radius of the winning neuron [93]. Meanwhile, the 

valid neighbouring neuron of the winning neuron must have the value of K not 

equal to 2 in order to update its weight. This is to ensure that the neighbouring 

neuron is not located at the opposite view. If the weight of the neurons located 

at opposite view of the winning neuron was updated, the surface generated 

will contain gaps. Table 4.4 shows an example of a winning neuron, Class 

Number 7 was used to calculate its distances to each Class Number using 

Equations 4.4 – 4.7. When the Class Number 7 is selected as the winning 

neuron, the weight of the neighbouring neurons with Class Number 21 – 26 

will not be updated although the dist for the neurons is smaller than the radius 

decay because the value of K is equal to 2. This condition is applied to avoid 

the weight of the neurons from the top view to be updated when the winning 

neuron is from the bottom view. Conversely, when the winning neuron is from 

the top view, the weights of the neurons from the bottom view will not be 

updated. With this condition, the correct surface can be generated. 
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Table 4.4: Distances between Class Number 7 and each Class Number 

Class 

Number 

Class Number 7  

Class 

Number 

Class Number 7 

i = 1, j = 1, k = 0  i = 1, j = 1, k = 0 

I J K dist2  I J K dist2 

1 1 1 1 3  14 1 2 0 5 

2 1 0 1 2  15 1 3 1 11 

3 1 1 1 3  16 2 1 1 6 

4 1 2 1 6  17 2 0 1 5 

5 1 3 1 11  18 2 1 1 6 

6 0 1 1 2  19 2 2 1 9 

7 0 0 0 0  20 2 3 1 14 

8 0 1 0 1  21 0 0 2 4 

9 0 2 0 4  22 0 1 2 5 

10 0 3 1 10  23 0 2 2 8 

11 1 1 1 3  24 1 0 2 5 

12 1 0 0 1  25 1 1 2 6 

13 1 1 0 2  26 1 2 2 9 

 

4.2.5 Generating Weights 

Weights for each neuron, W, were generated with the random values ranging 

from 0 to 1. Same weights were assigned to the neurons with the same Class 

Number. The neurons represent the vertices of the model and the Index Vector 

represents the position of each the neurons. Meanwhile, the weights were 

depicted as 3-D coordinates (x, y, z). The weights were utilised to fit the input 

vector and produce the final output after the Learning Process (Section 4.2.6). 

4.2.6 Learning Process 

Learning process begins after the generation of weights and completes with 

the production of output. Figure 4.6 shows a flowchart summarising the 

learning process. 
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Figure 4.6: Learning Process flowchart 

The phases included in the learning process are competition, 

cooperation and adaptation. One input vector X was chosen randomly from the 

data at the competition phase. The neuron with the least Euclidean distance to 
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X was chosen as the winning neuron and the Euclidean distance was calculated 

with Equation 4.9. 

𝑑𝑗 = √∑(𝑋𝑖(𝑡) − 𝑊𝑖𝑗(𝑡))
2

𝑖=2

𝑖=0

 (4.9) 

where Wij is the weight connecting the ith element in the input vector and jth 

neuron, Xi is the input vector, dj is the Euclidean distance and t is the iteration. 

The weights of the winning neuron and its neighbouring neurons were updated 

with the Gaussian function (Equations 4.10 – 4.14) at the cooperation and 

adaptation phases. 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝐺𝑓(𝑋(𝑡) − 𝑊(𝑡)) (4.10) 

𝐺𝑓 = 𝛼(𝑡)exp (−
dist2

2𝜎2(𝑡)
) , 𝑡 = 1,2,3, ⋯ , 𝑇 (4.11) 

𝛼(𝑡) = 𝛼0exp (−
𝑡

𝜏
) , 𝑡 = 1, 2, 3, ⋯ , 𝑇 (4.12) 

𝜎(𝑡) = 𝜎0exp (−
𝑡

𝜏
) , 𝑡 = 1, 2, 3, ⋯ , 𝑇 (4.13) 

𝜏 =
𝑇

log(𝜎0)
 (4.14) 

where W is the neuron weights, X is the input vector, Gf is the Gaussian 

function, dist2 is the distance between winning neuron and the neighbouring 

neuron defined in Equation 4.7, α is the learning rate at t iteration, α0 is the 

initial radius, T is the total number of iterations, t is the current iteration, and τ 

is the time constant. 

 When the weight of a neurons was updated, the weight of the neurons 

with the same Class Number was assigned with the same weight. However, 
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the dist for the neuron must be smaller than the radius decay or the 

neighbourhood radius of the winning neurons at t iteration, and the value of K 

is not equal to 2 in order to update its weight. The first condition was applied 

in the learning process of SOM to filter the invalid neighbouring neurons and 

to find the neighbouring neurons of the winning neuron [93]. Invalid 

neighbouring neurons are neurons having larger dist than the radius decay. 

The weight of the invalid neighbouring neurons would not be updated since 

they were outside the radius of the winning neuron. Generally, the weight of 

the valid neighbouring neurons was updated once the condition was fulfilled 

since they fall inside the neighbourhood radius of the winning neuron [93]. 

But the condition was insufficient to update the weight of the valid 

neighbouring neurons in the DNSOM model. The second condition was 

applied uniquely in the DNSOM model to prevent the weight of the neurons 

from the top view to be updated when a neuron from the bottom view was 

chosen as the winning neurons or vice versa. This is to prevent the neurons 

from the top view from learning towards the winning neuron of the bottom 

view or vice versa. The surface generated would be incorrect if the second 

condition is not applied. The learning process terminated when the maximum 

iteration was achieved. Then the process was continued with Producing 

Output (Section 4.2.7). 

4.2.7 Producing Output 

The final output was generated after the Learning Process (Section 4.2.6) was 

completed. The final output of the DNSOM model is 3-D structured data and 

it was the weight of every neuron (x, y, z) which was outputted based on the 

Class Number. 
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4.3 Analysis and Discussion 

This section analyses and discusses the performance between the 2-D SOM, 3-

D SOM, CKSOM and the DNSOM models based on the results obtained. 

Table 4.5 shows the minimum and maximum Euclidean distance for the 

spindle data and SOM models. Table 4.6 shows the Quantisation Error (QE) 

and Topographic Error (TE) for the spindle data and SOM models. Meanwhile, 

Table 4.7 shows the CPU time for spindle data and SOM models. Table 4.8 

shows the visualisation for spindle data and SOM models. The evaluation 

metrics and visualisation for the remaining data and SOM models were 

included in Appendix A and Appendix B respectively. 

Table 4.5: Minimum and maximum Euclidean distance for spindle data 

and SOM models 

Grid 

Size, 

n 

Min Error Max Error 

2-D 

SOM 

3-D 

SOM 
CKSOM DNSOM 

2-D 

SOM 

3-D 

SOM 
CKSOM DNSOM 

10 0.004991 0.001225 0.001017 0.002142 0.750138 0.459577 0.453888 0.612911 

20 0.001050 0.000085 0.000030 0.001004 0.651950 0.436344 0.425152 0.528028 

30 0.000675 0.000025 0.000024 0.000059 0.636605 0.402486 0.401306 0.505220 

 

Table 4.6: QE and TE for spindle data and SOM models 

Grid 

Size, 

n 

QE TE 

2-D 

SOM 

3-D 

SOM 
CKSOM DNSOM 

2-D 

SOM 

3-D 

SOM 
CKSOM DNSOM 

10 0.142370 0.057148 0.061301 0.104913 0.239433 0.598300 0.257233 0.232033 

20 0.096793 0.032491 0.037149 0.065414 0.239167 0.623033 0.244967 0.218333 

30 0.079069 0.025129 0.029380 0.052135 0.225433 0.674800 0.240133 0.214100 

 

Table 4.7: CPU time for spindle data and SOM models 

Grid 

Size, 

n 

CPU Time (s) 

2-D 

SOM 
3-D SOM CKSOM DNSOM 

10 0.062082 2.822090 1.747945 0.505617 

20 1.329022 26.724297 7.936086 2.241000 

30 3.365511 189.238892 19.378843 5.309147 
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Table 4.8: Visualisation for spindle data and SOM models 

Grid 
Size, 

n 

2-D SOM 3-D SOM CKSOM DNSOM 

10 

    

20 

    

30 

    

 

Five evaluation metrics such as minimum and maximum errors, QE, 

TE and CPU time were used to measure the performance of the SOM models. 

The QE is an evaluation metric utilised to evaluate the accuracy of the SOM 

models and it was applied in [25], [130]. QE measures the average distance 

between the winning neuron and the input vector [131]. As for the TE, it is 

used to measure how good the structure of the inputs is modelled by the model 

[95]. This metric was used in [95], [131]. QE and TE are derived in Equation 

4.15 and Equation 4.16: 

𝑄𝐸 =
1

𝑇
∑‖𝑋(𝑡) − 𝑊𝑐(𝑡)‖

𝑇

𝑡=1

 (4.15) 

where X(t) is the input data at the iteration t, Wc(t) is the winning neuron’s 

weight vector of input data X(t) and T is the maximum number of iterations. 

𝑇𝐸 =
1

𝑇
∑ 𝑑(𝑋(𝑡))

𝑇

𝑡=1

 (4.16) 
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where X(t) is the input data at iteration t, if the first winning neuron and the 

second winning neuron of x(t) is not adjacent, d(X(t)) = 1 and vice versa, 

d(X(t)) = 0, T is maximum number of iterations. 

Besides, CPU time is used to demonstrate the speed of the models in 

generating the output and it was suggested in [25]. Meanwhile, visualisation 

was used to visualise the surface of the models and it was also utilised in [25]. 

Table 4.9 shows the number of neurons involved in every SOM model and the 

total number of neurons or vertices used to represent the surface for the 

respective models and the grid sizes are highlighted in bold. 

Table 4.9: Total output neurons representing the surface 

Grid 

Size, 

n 

2-D 

SOM 

3-D SOM CKSOM DNSOM 

 n × n n × n × n NON NOR NOV NON NOR NOV 

10 100 1000 600 112 488 200 36 164 

20 400 8000 2400 232 2168 800 76 724 

30 900 27000 5400 352 5048 1800 116 1684 

 

The minimum errors in Table 4.5 decrease when the grid size increases 

shows that the winning neurons can move closer towards the input data. As 

shown from the results in Table 4.6 and Table 4.7, the QE was reduced and the 

CPU time increased for every data set when the grid size was increased. The 

findings are aligned with the findings in [25]. Furthermore, the TE of the 

model decreases as the grid size increases. The higher the TE, the weaker the 

model in preserving the topology of the data. Besides, more vertices were used 

to represent the surface when the grid size increased. When the number of 

vertices representing the surface increases, the surface becomes smoother. 
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According to Table 4.6 and Table 4.7, 2-D SOM model had the highest 

QE and shortest CPU time. The high QE value shows that it had a low 

accuracy as the winning neuron is less fitted towards the input vector. The 2-D 

SOM model obtained the shortest CPU time because it used the least number 

of vertices to represent the surface as shown in Table 4.7 and Table 4.9. The 

model used the least number of vertices to represent the surface because it is a 

single map unlike the 3-D SOM, CKSOM models and the DNSOM model 

which are made up of n, six and two 2-D SOMs respectively and each of the 

map has the identical grid size of n × n. Despite the ability of the 2-D SOM 

model to generate the outputs faster, it failed to reconstruct the surface of the 

closed surface data due to the absence of connectivity information between the 

neurons at the boundary [25], [42], [43] and the surface generated still 

contains holes as marked by the square in Figure 4.7. Thus, the 2-D SOM is 

the most underperforming SOM model when compared to others. 

 

Figure 4.7: Visualisation for the 2-D SOM model with grid size, n = 30 

and spindle data retrieved from Appendix B. The surface generated 

contains holes as marked by the square. 
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As for the 3-D SOM model, it had the lowest QE, highest TE and CPU 

time. As shown in Table 4.9, the 3-D SOM model used the highest number of 

vertices to represent the surface. This is because it used n × n × n neurons to 

represent the surface unlike the CKSOM model and the DNSOM model. The 

CKSOM model and the DNSOM model used six and two n × n 2-D SOMs for 

their structure respectively and not all the neurons were used to represent the 

surface for both models. Meanwhile, they used the Class Number where only 

the distinct neurons the Class Number where only the distinct neurons were 

used to represent the surface. Therefore, the 3-D SOM model represented the 

surface with the greatest number of vertices. In addition, the model took the 

longest time to generate the output because there were more neurons involved 

in the training process. As marked by the circle in Figure 4.8, the output of the 

model remained in unstructured form and incorrect surface was produced 

because the weights of both the internal neurons were updated during the 

learning process. Thus, the 3-D SOM model is not suitable for the surface 

reconstruction of closed surface data. 

 

Figure 4.8: Visualisation for the 3-D SOM model with grid size, n = 10 

and spindle data retrieved from Appendix B. The surface generated 

contains internal neurons as marked by the circle. 
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As for the CKSOM model, it had a lower QE compared to the 2-D 

SOM model, a slightly higher QE compared to the 3-D SOM model and a 

moderate CPU time. The CKSOM model had a higher accuracy than the 2-D 

SOM model as it had a lower QE compared to the 2-D SOM model. But it had 

a lower accuracy than the 3-D SOM model because it had a slightly higher QE 

compared to the 3-D SOM model. Although the CKSOM model achieved a 

lower accuracy than the model, it can generate the correct surface as shown in 

Table 4.8. Hence, the CKSOM model can reconstruct the surface of the closed 

surface data without holes and without connectivity problem between its 

neurons which eventually solves the problem of 2-D SOM and 3-D SOM 

models respectively. However, the model fails to organise the unstructured 

data and generate the correct surface with different grid sizes because the 

length and width of its grid are set with the same fixed value, n. The 

discussion can be referred to the additional experiment for CKSOM model 

with different grid size using the same data set. Furthermore, the results 

tabulated in Table 4.9 show that the CKSOM model used fewer number of 

vertices than 3-D SOM model to represent the surface. 

As for the DNSOM model, it achieved the lowest TE among the 

models for all the data and grid sizes. This shows that the DNSOM model can 

preserve the topology of the data better than the other models. The results 

presented in Table 4.9 show that the DNSOM model used fewer number of 

vertices to represent the surface compared to the 3-D SOM and CKSOM 

models because it uses only two 2-D SOMs as compared to others. 

Additionally, it could generate output faster than 3-D SOM and CKSOM 

models since the number of neurons involved in the learning process was 
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fewer than the models. Similar to the CKSOM model, the DNSOM model can 

solve the problem of 2-D SOM and 3-D SOM models. It can represent the 

surface without holes and without any connectivity problem among the 

neurons as shown in Table 4.8. Besides, the DNSOM model was able to 

organise the unstructured data and generate the correct surface with different 

grid sizes. 

 Additional experiment was performed on the CKSOM and DNSOM 

models to examine their performance. Table 4.10 and Table 4.11 show the 

metric evaluation of the CKSOM and DNSOM models when different grid 

sizes were used given the spindle data. The metric evaluation for CKSOM and 

DNSOM models for the remaining data sets can be found in Appendix C. In 

contrast, Table 4.12 shows the visualisation of the CKSOM and DNSOM 

models when different grid sizes were used given the spindle data. The 

visualisation of CKSOM and DNSOM models for the remaining data sets can 

be found in Appendix D. 

Table 4.10: Minimum and maximum Euclidean distance of CKSOM and 

DNSOM models with various sizes of width and length of grid given the 

spindle data 

nx ny 
Min Error Max Error 

CKSOM DNSOM CKSOM DNSOM 

10 8 0.001051 0.003025 0.575847 0.556720 

20 12 0.000602 0.001107 0.493366 0.534296 

18 30 0.000078 0.000270 0.450791 0.463108 

 

Table 4.13 shows the NON, NOV and NOR of the CKSOM and 

DNSOM models respectively with different width, nx and length, ny of the grid. 
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The bold font shown in Table 4.13 is the total number of vertices used by the 

CKSOM and DNSOM models to represent the surface for various nx and ny.  

Table 4.11: QE, TE and CPU time of CKSOM and DNSOM models with 

various sizes of width and length of grid given the spindle data 

nx ny 
QE TE CPU Time 

CKSOM DNSOM CKSOM DNSOM CKSOM DNSOM 

10 8 0.068216 0.103635 0.354700 0.239133 1.807986 0.428606 

20 12 0.043618 0.063878 0.350600 0.227667 5.579232 1.391338 

18 30 0.034528 0.048394 0.350400 0.222067 13.621258 3.096171 

 

Table 4.12: Visualisation of CKSOM and DNSOM model for spindle data 

with different width and length of grid 

Data CKSOM DNSOM 

10 × 8 

  

20 × 12 

  

18 × 30 

  

 

The DNSOM model was applied on the primitive and medical image data 

using 10 × 8, 20 × 12 and 18 × 30 grid sizes respectively. Besides, Table 4.13 

shows the total number of output neurons used to represent the surface for 
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both CKSOM and DNSOM models given different nx and ny. According to the 

results in Table 4.10 and Table 4.11, the findings of the CKSOM and DNSOM 

models are aligned to the findings of the models with the same grid size. 

Therefore, both models contain the same performance although different grid 

size was applied.  

Table 4.13: Total output neurons of the CKSOM and DNSOM model 

representing the surface for various nx and ny 

nx ny 
CKSOM DNSOM 

NON NOV NOR NON NOV NOR 

10 8 480 400 80 160 128 32 

20 12 1440 1308 132 480 420 60 

18 30 3240 3040 200 1080 988 92 

 

Based on the visualisation in Table 4.12, the DNSOM model can 

represent the surface with different width, nx and length, ny of the grid. 

Meanwhile, the CKSOM model fails to generate the correct surface when 

different grid sizes were used as shown in Table 4.12 although it achieved 

lower QE compared to DNSOM model. Figure 4.9 illustrates the surface 

generated by the CKSOM model contains holes and the holes are highlighted 

with the rectangles. The holes appeared because the structure of the CKSOM 

model contains holes at the boundary as highlighted by the rectangle in Figure 

4.10. Holes appeared on the CKSOM model because the length and width of 

the bottom, left and back views were assigned with different values. 

In contrast, Figure 4.11 illustrates the surface generated by the 

DNSOM model without holes. 
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Figure 4.9: Visualisation for the CKSOM model with grid size, nx = 18 

and ny = 30 given the spindle data 

 

Figure 4.10: The CKSOM model with grid size, nx = 18 and ny = 30 

This is because the boundary of the 2-D SOMs used to build the structure of 

the DNSOM model are connected as shown in Figure 4.12. Thus, the DNSOM 

model has overcome the limitation of the CKSOM model. Besides, smoother 

surface was generated when the number of vertices used to represent the 

surface increases. 

Apart from testing and validating the DNSOM model in organising the 

data with different nx and ny on primitive shapes, additional experiment was 

performed to further explore the capability of the DNSOM model in 

organising complex data such as the Stanford bunny data [46]. The DNSOM 

model with the grid size, n = 30 was used to organise the Stanford bunny data. 
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The same initial learning rate, initial radius and maximum iteration from Table 

4.1 were applied. The initial radius was set to the half of the minimum value 

between nx and ny and it was proposed in [129]. 

 

Figure 4.11: Visualisation for the DNSOM model with grid size, nx = 18 

and ny = 30 given the spindle data 

 

Figure 4.12: The DNSOM model with grid size, nx = 18 and ny = 30 

Figure 4.13 shows that the DNSOM model failed to generate the ear of the 

Stanford bunny data correctly as marked by the circle because the winner 

neurons and their neighbouring neurons were not updated during the learning 

process. The QE and TE of the experiment were 0.049694 and 0.225400 

respectively. The CPU time of the experiment was 5.386289 seconds. It is 

noticed that the Deep Learning (DL) SOM in [42] also faced the same 
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problem while reconstructing the Stanford bunny data. Nevertheless, both 

models can reconstruct the overall shape of the Stanford bunny. 

 

Figure 4.13: Visualisation of Stanford bunny data for DNSOM model 

with grid size, n = 30 showing the incorrect representation of the ear as 

marked by the circle 

 Besides, equations were derived to compute the NON, NOV and NOR 

of the DNSOM model. They were used to generate the model. Different grid 

sizes were used to verify and validate the equations. As suggested in [25], the 

area formula (Area = a × b) can be used to calculate the total number of 

neurons for each map in which a is the length and b is the width of the grid. In 

this experiment, a was represented as ny and b was represented as nx. Thus, 

when a = 5 and b = 4, then the area of a map would be Area = a × b = 5 × 4 = 

20. Since, two maps were used to create the model, the total number of 

neurons used to create the model would be 2 × 5 × 4 = 40. 

Furthermore, manual calculation can be performed on Figure 4.3 to 

calculate the NON, NOV and NOR. Each box in Figure 4.3 indicates a neuron 

and the number in each box indicates the Class Number of each neuron. By 



66 

 

counting all the boxes without considering the Class Number, the total number 

of neurons, NON was obtained. Meanwhile, the total number of output 

neurons, NOV or the neurons used to represent the surface can be obtained by 

counting the boxes with distinct Class Number. By counting the redundant 

Class Number once, the total number of redundancies, NOR was obtained. 

The redundant neurons would not be used to represent the surface. With the 

use of the manual calculation, the model in Figure 4.3 obtained the results of 

NON = 40, NOV = 26 and NOR = 14. The same way was used to calculate the 

NON, NOV and NOR manually for various nx and ny, and the results were 

tabulated in Table 4.14. Additionally, the NON, NOV and NOR equations 

were derived using Arithmetic Progression and the derivation is shown in 

Table 4.15. The equation of NON, NOV and NOR can be proved and 

validated by comparing the results from Table 4.14 and Table 4.15. The 

results show that the equations derived are valid and can be used to calculate 

the NON, NOV and NOR of the DNSOM model when different width, nx and 

length, ny of the grid are set for the model. 

Table 4.14: NON, NOV and NOR for various nx and ny based on manual 

calculation 

nx ny NON NOV NOR 

2 3 12 6 6 

3 4 24 14 10 

4 5 40 26 14 

5 6 60 42 18 

6 7 84 62 22 

7 8 112 86 26 
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Table 4.15: Generation of equation of NON, NOV and NOR with 

Arithmetic Progression 

nx ny A B C D = B – C E = B + D 

2 3 6 + 6 6 6 + 0 0 6 

3 4 12 + 12 12 6 + 4 2 14 

4 5 20 + 20 20 8 + 6 6 26 

5 6 30 + 30 30 10 + 8 12 42 

6 7 42 + 42 42 12 + 10 20 62 

7 8 56 + 56 56 14 + 12 30 86 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

   
 

   

  2𝑛𝑥𝑛𝑦 𝑛𝑥𝑛𝑦 2𝑛𝑥 + 2(𝑛𝑦 − 2) 𝑛𝑥𝑛𝑦 − 2(𝑛𝑥 + 𝑛𝑦 − 2) 2[𝑛𝑥𝑛𝑦 − 𝑛𝑥 − 𝑛𝑦 + 2] 

    or   

    2𝑛𝑦 + 2(𝑛𝑥 − 2)   

where, 

nx - Width of the grid  ny - Length of the grid 

A - NON  D - Total distinct neurons at top 

map 

B - Total distinct neurons at 

bottom map 

 E - NOV 

C - NOR     

 

4.4 Summary 

A new SOM model was proposed through the merging of two 2-D SOMs. The 

DNSOM model can organise unstructured data and generate closed surface 

without holes. It overcomes the holes problem in 2-D SOM, the connectivity 

problem in 3-D SOM and the grid size problem in CKSOM. As mentioned 

previously, the output of the DNSOM model cannot be used directly as the 

standard representation in the field of computer-aided geometric design 

(CAGD). Previous works have applied the NURBS surface approximation 

approach on the output of the SOM models, so that the SOM models can be 

used in the field of CAGD. Previous works have also shown that gaps would 

appear when the approach was applied on multiple SOM. Hence, Chapter 5 
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focuses in overcoming the limitation of the NURBS surface approximation 

approach. 
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CHAPTER 5 

 

 

THE IMPROVED NURBS SURFACE APPROXIMATION APPROACH 

5.1 Overview  

This chapter proposes a NURBS surface approximation approach to overcome 

the limitations of the NURBS surface approximation approach on the Double 

Net Self-Organising Map (DNSOM) model. In [23], the NURBS surface 

approximation approach was applied on the output of the Cube Kohonen Self-

Organising Map (CKSOM), a model formed through the merging of six 2-D 

SOMs. The approach applied NURBS on each of the CKSOM surfaces data 

separately. It is named as the conventional approach here. Six surfaces data 

were involved because CKSOM is made up of six 2-D SOMs. Consequently, 

gaps were discovered when NURBS surface approximation approach was 

applied on the outputs of CKSOM because the surface data at the edges of 

both surfaces do not have the same value. When the conventional approach 

was applied on the DNSOM surfaces data, the same problem occurred. 

Therefore, an improved surface approximation approach was proposed to 

overcome the problem. This chapter also compares the performance between 

the conventional and improved approaches. 

5.2 System Flow of the Improved Surface Approximation Approach 

The system flow of the improved NURBS surfaces approximation approach is 

illustrated in Figure 5.1. The system flow of the improved surface 

approximation approach was adapted from [23] because it was applied on 

multiple SOMs. Improvements were made to the perform parameterisation, 

perform control points calculation and perform surfaces error calculation steps 
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as shown in the dashed boxes in Figure 5.1 in order to generate the NURBS 

surfaces without gaps. 

 

Figure 5.1: Flowchart for the improved NURBS surfaces approximation 

approach 

5.2.1 Acquiring Data 

The data used in this approach were the 3-D structured closed surface data of 

the cube, sphere, spindle, oiltank and talus bone generated by the DNSOM 

model with the grid size, nx = ny = 20 and nx = 18, ny = 30. The DNSOM 

surfaces data with these grid sizes were used because they were large enough 

to generate a set of control nets (CNs) and they achieved the lowest QE as 

shown in Table 4.6. The model was constructed using two 2-D Self-

Organising Maps (SOMs) to organise the unstructured closed surface data. 

The data were used in the conventional and the improved NURBS surface 

approximation approaches. To avoid non-linear problem, the weights, wi,j, 
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were set to 1 when applying the conventional and the improved NURBS 

surface approximation approaches [133]. When wi,j are set to 1, the NURBS 

surface is reduced to B-Spline surface [134]. As suggested by Kumar, Kalra 

and Dhande [26], a curve or surface must have at least cubic degree (order 4) 

to represent generic 3-D entities. Iglesias, Gálvez and Collantes [135] also 

suggested the use of cubic degree (order 4) because low-degree curve or 

surface has limited flexibility in controlling its shape while the high-degree 

curve or surface can cause unwanted wiggles and require more computation. 

Therefore, cubic degree is used in this research based on these suggestions. 

5.2.2 Parameterisation and Knot Vector Generation 

Parameterisation and knot vector generation is required in NURBS surface 

approximation approach to generate the NURBS surface and it was performed 

on each of the surface data separately to obtain the control points used to 

generate the NURBS surfaces for each of the data. The steps included in this 

process are perform parameterisation and generate knot vectors. 

5.2.2.1 Perform Parameterisation 

Given the DNSOM surface data, parameterisation methods were used to 

obtain the parameters (u and v) for each surface. Let Usi and Vsj be the vectors 

containing the parameter u in horizontal direction with n + 1 columns of the 

DNSOM surface data and parameter v in vertical direction with m + 1 rows of 

the DNSOM surface data respectively, where n and m are the column and row 

indexes. Equation 5.1 and Equation 5.2 were adapted from [23], which were 

the modifications of the equations proposed by Shene [136] by adding the 

surface number. Two surface numbers were allocated because the DNSOM 
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model is comprised of two 2-D SOMs. The bottom surface was represented 

with surface number, 1 and the top surface was represented with surface 

number, 2 because the SOMs are arranged from bottom to top. 

Parameterisation methods such as Uniform, Chord Length, Centripetal and 

Exponential methods were used to evaluate their performances. After the 

parameters (Usi and Vsj) for each surface were obtained, the average 

parameters of each row and column for each surface were used to compute the 

knot vectors. 

𝑠𝑠𝑖 =
𝑢𝑠𝑖,0 + 𝑢𝑠𝑖,1 + 𝑢𝑠𝑖,2 + ⋯ + 𝑢𝑠𝑖,𝑛

𝑛 + 1
 (5.1) 

𝑟𝑠𝑗 =
𝑣𝑠0,𝑗 + 𝑣𝑠1,𝑗 + 𝑣𝑠2,𝑗 + ⋯ + 𝑣𝑠𝑚,𝑗

𝑚 + 1
 (5.2) 

where ssi are the average parameters in the u direction, rsj are average 

parameters in the v direction, s is the surface number, i is the row and j is the 

column. 

However, the use of average parameters to generate the knot vectors 

would cause the generation of the NURBS surfaces with gaps at the edges of 

each surface. The parameters for both surfaces in the u and v directions were 

standardised with Equation 5.3 and Equation 5.4 so that the control points at 

the edges of the CNs has the same value. When the control points at the edges 

of the CNs has the same value, the surface data located at the edges of both 

surfaces would have the same value too. 
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𝑆𝑖 =
𝑠1𝑖 + 𝑠2𝑖

2
 

(5.3) 

𝑅𝑗 =
𝑟1𝑗 + 𝑟2𝑗

2
 

(5.4) 

where Si is the standardised parameters for both surfaces in the u direction, Rj 

is the standardised parameters for both surfaces in the v direction. Si were 

assigned to s1i and s2i, and Ri was assigned to r1j and r2j. The standardised 

parameters would be used to generate the knot vectors instead of the average 

parameter for the improved approach in this research. 

5.2.2.2 Generate Knot Vectors 

After the parameter values were obtained via the parameterisation methods, 

the averaging knot vector method was used to generate the knot values of each 

surface. The method was suggested by Jiang and Wang [134], Forkan and 

Shamsuddin [32], Lim and Haron [23], Makhlouf, Elloumi, Louhichi and 

Deneux [137] and adapted from Shene [136]. The method was used in this 

research because the knot vector can be generated with Equations 2.9 – 2.11 in 

Section 2.3.2. The equations were applied to the standardised parameters, S 

and R to generate the knot vectors for each surface. Since the standardised 

parameters were used in the generation of knot vectors for both surfaces, both 

surfaces would have same knot vectors. 

5.2.3 Calculation of Basis Functions, Control Points and Surfaces Data 

5.2.3.1 Perform Basis Function Calculation 

The basis function (Nu and Nv) for each surface was calculated after the 

generation of knot vectors. The basis function is required to obtain the control 
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points in the next step. The basis function of each surface was computed with 

Equation 2.3 from Chapter 2, Section 2.3.2. 

5.2.3.2 Perform Control Points Calculation 

The calculation of control points for each surface was performed according to 

their basis function (Nu and Nv). The equation is referred from Sarfraz and 

Riyazuddin [138], and Zhang, Feng and Cui [90], and adapted from Lim and 

Haron [23]. 

𝑁𝑢𝑃𝑁𝑣 = 𝐷 (5.5) 

𝑁𝑢
𝑇𝑁𝑢𝑃𝑁𝑣𝑁𝑣

𝑇 = 𝑁𝑢
𝑇𝐷𝑁𝑣

𝑇  

𝑁𝑢
′ 𝑃𝑁𝑣

′ = 𝑁𝑢
𝑇𝐷𝑁𝑣

𝑇  

𝑁𝑢
′−1𝑁𝑢

′ 𝑃𝑁𝑣
′𝑁𝑣

′−1 = 𝑁𝑢
′−1𝑁𝑢

𝑇𝐷𝑁𝑣
𝑇𝑁𝑣

′−1  

𝑃 = 𝑁𝑢
′−1𝑁𝑢

𝑇𝐷𝑁𝑣
𝑇𝑁𝑣

′−1 (5.6) 

where Nu and Nv are the basis function for each surface, P is the control point, 

D is the DNSOM model closed surface data, Nu
T and Nv

T is the transpose basis 

function, Nu’ is the product of Nu
T and Nu, Nv

’ is the product of Nv and Nv
T, Nu

’-

1 is the inverse of Nu’ and Nv
’-1 is the inverse of Nv

’. 

Equation 5.5 was used in the improved approach to compute the 

control points of each surface. The computation of control points for each 

surface was conducted separately because two DNSOM surfaces data were 

involved. After the computation of the control points for both surface, 

different coordinates were produced. Hence, the concept of Index Vector and 

Class Number from Chapter 4 were applied to group the control points at the 

edges of the CNs before the standardisation of the control points. Index Vector 

are allocated to both CNs. Figure 5.2 shows the Index Vector and Class 
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Number of each control point for the bottom and top CNs given the CNx = 3 

and CNy = 4 where CNx and CNy are the column and row of the CN 

respectively. The Index Vector of each control point is comprised of the index 

values, i and j. Class Number was allocated from bottom to top, left to right of 

each surface. Each Class Number followed the sequence from bottom to top 

surface. If i = 0 or i = CNx – 1 or j = 0 or j = CNy – 1 for the Index Vector of 

each control point in the top CN, the control point would be grouped into the 

same Class Number as shown in Figure 5.2. The index values, i and j of the 

control points that fulfilled the condition is bold in Figure 5.2. 

 

Figure 5.2: Index Vector and Class Number for the control points in the 

bottom and top CNs given the CNx = 3 and CNy = 4 

After computing the control points for each of the surfaces and 

grouping the control points into their respective Class Number, the control 

points with the same Class Number are standardised by summing and 

averaging them accordingly. The standardised control points, 𝑃𝑎𝑣𝑔
𝑒  were 

assigned and replaced the control points having the same Class Number to 

close the gaps after computed using Equation 5.7. 
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1 5 9 1 5 9

(0, 0) (1, 0) (2, 0) (0, 0) (1, 0) (2, 0)

i i

# Class Number

#

(i , j )

(a) Bottom (b) Top

C1

C4

C3

3×4 NURBS control net

j

C2

C1

C4

C3

j

C2

Control point with Class 

Number



76 

 

 𝑃𝑎𝑣𝑔
𝑒 =

𝑃1
𝑒 + 𝑃2

𝑒

2
 (5.7) 

where 𝑃1
𝑒 and 𝑃2

𝑒 are the control point at the edge of the bottom and top CNs 

respectively, 𝑃𝑎𝑣𝑔
𝑒  is the standardised control point for the control point at the 

edge of the bottom and top CNs. 

Similar to the conventional approach, the control points located at the 

four corners of bottom and top CNs of the improved approach must pass 

through the points positioned at the four corners of the bottom and top 

surfaces of the DNSOM model respectively. Class Number from the previous 

chapter was utilised to obtain the corners of the bottom and top CNs, and the 

corners of the bottom and top surfaces of the DNSOM surface data. Figure 5.2 

shows the bottom and top surfaces of the DNSOM model, and the top and 

bottom CNs of the improved approach respectively. The red boxes in the 

figure are the corners of the bottom and top surfaces of the DNSOM surface 

data and CNs. Meanwhile, the grey and yellow boxes in the figure are the 

coordinates and control points at the edges of the DNSOM data and CNs 

respectively. The number in each box in the figure is the Class Number of the 

coordinates and control points. The D1, D2, D3 and D4 in Figure 5.3 are the 

points located at the four corners of the bottom and top surfaces data of the 

DNSOM model. Besides, C1, C2, C3 and C4 in Figure 5.3 are the control points 

located at the four corners of the bottom and top CNs. 
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Figure 5.3: Bottom and top surfaces and CN of the DNSOM model and 

NURBS 

Equations 5.8 – 5.11 were the general equations derived to compute 

the Class Number of each control points at the corner of the CN. 

𝑐1 = (𝑛𝑥)0 (5.8) 

𝑐2 = 𝑛𝑦 (5.9) 

𝑐3 = 𝑛𝑦(𝑛𝑥 − 1) (5.10) 

𝑐4 = 𝑛𝑥𝑛𝑦 (5.11) 

where ci are the corners of the CN and DNSOM surfaces data, nx and ny are 

the width and length of the CN or the DNSOM surfaces data respectively. 

Manual calculation was performed on the bottom and top CNs as 

demonstrated in Figure 5.4 to obtain the Class Number of each control points. 

Each number in the boxes represents the Class Number of the control points 

from the CNs of different width, CNx and length, CNy. 
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Figure 5.4: Manual calculation of Class Number performed on the bottom 

and top CNs with CNx = 3 and CNy = 4 

The Class Number for the control points located at the corners of the CNs 

were tabulated in Table 5.1 and Arithmetic Progression was used to derive the 

equations for the improved approach to compute the Class Number of the 

control points located at the corners of the CNs. 

Table 5.1: Derivation of equations used to compute the Class Number of 

the corners of CNs using Arithmetic Progression 

CNx CNy C1 C2 C3 C4 

3 4 1 4 9 12 

4 5 1 5 16 20 

5 6 1 6 25 30 

6 7 1 7 35 42 

7 8 1 8 49 56 

… … … … … … 

      

  (𝑛𝑥)0 𝑛𝑦 𝑛𝑦(𝑛𝑥 − 1) + 1 𝑛𝑥𝑛𝑦 

 

5.2.3.3 Perform Surfaces Data Calculation 

The surfaces data was calculated after the basis functions, control points and 

surfaces data were calculated. Equation 5.12 was used to compute the NURBS 

surfaces data. 
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 𝑁𝑢𝑃𝑁𝑣 = 𝐷 (5.12) 

where Nu and Nv are the basis functions in u and v directions respectively, P is 

the control points and DG is the NURBS surfaces data. 

5.2.4 Calculation of Surfaces Error 

The surface error for the improved approach was calculated with Equation 

5.13 and the equation was based on the Class Number and Euclidean distance 

formula. The use of Euclidean distance as the evaluation metric was suggested 

by Piegl and Tiller [139], Adi, Shamsuddin and Ali [140] and Lim and Haron 

[23]. The total Class Number is the total number of vertices used by the 

improved approach to represent the surface of the data. The total number of 

output neurons of the DNSOM model, NOV is used in Equation 5.13 because 

it is noticed that the equation used to compute the NOV of the DNSOM model 

can be used to calculate the total number of vertices used by the improved 

approach to represent the surface of the data. Hence, the total Class Number is 

equal to NOV. 

 
=

−=
NOV

1i

G

ii DDE  (5.13) 

where Di and Di
G are the DNSOM surface data and improved NURBS surface 

data for Class Number respectively and the NOV is calculated with Equation 

4.2 in Chapter 4, Section 4.2.3. 

5.3 Analysis and Discussion 

This section analyses and discusses the results of the research. Various sizes of 

control net (CN) and parameterisation methods were used to examine their 



80 

 

performance on the conventional and improved NURBS surface 

approximation approach. 

The visualisation of DNSOM model data using the conventional (A) 

and improved (B) NURBS surface approximation approaches with various 

sizes of CN and parameterisation methods for the nx = 20 and ny = 20, and for 

the nx = 18 and ny = 30 are shown in Appendix G and Appendix H respectively. 

Based on the results in Appendix G and Appendix H, better surface is 

generated when the size of CN increases. Table 5.2 and Table 5.3 show the 

visualisation of the spindle data for the conventional and improved NURBS 

surface approximation approach in Appendix G and Appendix H respectively 

given the same and different grid size. 

As shown from the visualisation in Table 5.2 and Table 5.3, various 

parameterisation methods were successfully implemented in conventional and 

improved NURBS surface approximation approach. Based on the visualisation 

in Table 5.2 and Table 5.3, the surfaces generated are quite similar to the 

output of the DNSOM model although different grid size and different 

parameterisation were used. No gaps were noticed after applying the improved 

approach and the shape of the data was not affected. Therefore, 

parameterisation methods can be applied on the improved NURBS surface 

approximation approach. In addition, to further test the performance of the 

parameterisation methods, quantitative measurement was used. 
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Table 5.2: Visualisation of the spindle data for the conventional NURBS 

surface approximation approach given the same and different grid size 

CN 18 × 18 16 × 28 

Uniform 

  
Chord Length 

  
Centripetal 

  
Exponential 

  
 

Appendix E show the surface error of the conventional and improved 

approaches for 7 CN (6 × 6, 8 × 8, 10 × 10, 12 × 12, 14 × 14, 16 × 16, 18 × 18) 

and data when the nx and ny are equal to 20. Appendix F show the surface 

error of the conventional and improved approaches for 7 CN (4 × 16, 6 × 18, 8 

× 20, 10 × 22, 12 × 24, 14 × 26, 16 × 28) and data when the nx is equal to 18 

and ny is equal to 30 respectively.  
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Table 5.3: Visualisation of the spindle data for the improved NURBS 

surface approximation approach given the same and different grid size 

CN 18 × 18 16 × 28 

Uniform 

  
Chord 

Length 

  
Centripetal 

  
Exponential 

  
 

Table 5.4 shows the summarised results of the methods in Appendix E 

that achieved the least surface error in conventional approach for each data 

when the nx and ny is 20. Since there were 7 CNs (6 × 6, 8 × 8, 10 × 10, 12 × 

12, 14 × 14, 16 × 16, 18 × 18) for each data and parameterisation method 

when the nx and ny is 20, the method that achieved the least surface error for 6 

CNs is recorded as 6/7. When the surface error is small, the NURBS surfaces 

data are approximated more towards the DNSOM surface data. The 

Exponential method performed better than the other methods given the cube, 
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sphere and oiltank data because it achieved the lowest surface error for 3/7, 

4/7 and 4/7 CNs respectively. Apart from that, the Chord Length method 

performed better than the other methods because it obtained the least surface 

error for most of the CNs which is 4/7 for both spindle and talus bone data. 

Exponential method was the most suitable method for conventional approach 

because it achieved the highest number of minimum surface error which is 

15/35. 

Table 5.4: Summarised results of the methods that achieved the least 

surface error in conventional approach for each data given the nx = 20 

and ny = 20  

Data Uniform Chord Length Centripetal Exponential 

Cube 2/7 0/7 2/7 3/7 

Sphere 0/7 3/7 0/7 4/7 

Spindle 0/7 4/7 0/7 3/7 

Oiltank 0/7 3/7 0/7 4/7 

Talus 

Bone 
0/7 4/7 2/7 1/7 

Total 2/35 14/35 4/35 15/35 

 

Table 5.5 shows the summarised results of the methods in Appendix E 

that achieved the least surface error in improved approach for each CN and 

data when the nx and ny are 20. The Centripetal and Exponential methods 

performed better than the other methods because they achieved the least 

surface error for 3/7 CNs given the cube data. The Exponential method also 

performed better compared to other methods as it achieved the least surface 

error for 4/7 CNs given the oiltank data. Besides, the Chord Length method 

achieved better results than the other methods given the sphere, spindle and 
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talus bone data because they achieved the least surface error for 4/7, 5/7 and 

5/7 CNs. Based on the results in Table 5.5, the Chord Length method 

outperformed the other methods for improved approach as it achieved the 

highest number of least surface error which is 18/35. 

Table 5.5: Summarised results of the methods that achieved the least 

surface error in improved approach for each data given the nx = 20 and ny 

= 20 

Data Uniform Chord Length Centripetal Exponential 

Cube 0/7 1/7 3/7 3/7 

Sphere 0/7 4/7 0/7 3/7 

Spindle 0/7 5/7 0/7 2/7 

Oiltank 0/7 3/7 0/7 4/7 

Talus 

Bone 
0/7 5/7 1/7 1/7 

Total 0/35 18/35 4/35 13/35 

 

Table 5.6 shows the summarised results for conventional and improved 

approaches when the nx and ny are 20 in Appendix E. Table 5.6 records the 

total number of least surface error achieved by the approaches for the 7 CNs of 

each data and parameterisation methods. Since there are 7 CNs for each 

parameterisation method, the approach that achieved the least surface error for 

6 CNs is recorded as 6/7 in Table 5.6. Based on the results in Table 5.6, the 

improved approach performed better than the conventional approach as it 

achieved the highest number of minimum surface error which is 126/140. 
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Table 5.6: Summarised results for conventional (A) and improved (B) 

approaches given the nx = 20 and ny = 20 

Data Parameterisation Method A B 

C
u
b
e 

Uniform 1/7 6/7 

Chord Length 0/7 7/7 

Centripetal 0/7 7/7 

Exponential 0/7 7/7 

S
p
h
er

e 

Uniform 2/7 5/7 

Chord Length 2/7 5/7 

Centripetal 2/7 5/7 

Exponential 2/7 5/7 

S
p
in

d
le

 Uniform 0/7 7/7 

Chord Length 0/7 7/7 

Centripetal 0/7 7/7 

Exponential 0/7 7/7 

O
il

ta
n
k

 Uniform 3/7 4/7 

Chord Length 0/7 7/7 

Centripetal 1/7 6/7 

Exponential 1/7 6/7 

T
al

u
s 

B
o
n
e 

Uniform 0/7 7/7 

Chord Length 0/7 7/7 

Centripetal 0/7 7/7 

Exponential 0/7 7/7 

 14/140 126/140 

 

Table 5.7 shows the summarised results of the methods in Appendix F 

that achieved the least surface error in conventional approach for various data 

when the nx and ny are 18 and 30 respectively. Since there are 7 CNs (4 × 16, 6 

× 18, 8× 20, 10 × 22, 12 × 24, 14 × 26, 16 × 28) for each data and 

parameterisation method when the nx and ny are 18 and 30 respectively, the 

method that achieved the least surface error for 6 CNs is recorded as 6/7. The 

Uniform method outperformed the other methods given the cube data as it 

achieved the least surface error for 3/7 CNs. Meanwhile, the Chord Length 

method performed better than the other methods for the sphere data as it 

achieved the least surface error for 3/7 CNs. For the spindle and oiltank data, 
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the Exponential method outperformed the other methods because it achieved 

the least surface error for 4/7 and 4/7 CNs respectively. For the talus bone data, 

the Centripetal method performed better than the other method because it 

acquired the least surface error for 3/7 CNs. Based on the results in Table 5.7, 

the Exponential method outperformed the other methods for conventional 

approach as it achieved the highest number of minimum surface error which is 

13/35. 

Table 5.7: Summarised results of the methods that achieved the least 

surface error in conventional approach for various data and sizes of CN 

given the nx = 18 and ny = 30 

Data Uniform Chord Length Centripetal Exponential 

Cube 3/7 1/7 2/7 1/7 

Sphere 0/7 3/7 2/7 2/7 

Spindle 0/7 3/7 0/7 4/7 

Oiltank 0/7 3/7 0/7 4/7 

Talus 

Bone 
1/7 1/7 3/7 2/7 

Total 4/35 12/35 7/35 13/35 

 

Table 5.8 is the summarised results of the methods in Appendix F that 

achieved the least surface error in the improved approach for various data and 

sizes of CN when the nx and ny are 18 and 30 respectively. Apart from that, the 

Uniform, Chord Length and Centripetal methods performed better than the 

Exponential method as they acquired the least surface error for most of the CN 

given the cube data which is 2/7. For the sphere data, the Chord Length and 

Centripetal methods performed the best because they achieved the least 

surface error for 3/7 CNs. For the spindle data, the Chord Length method also 
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performed better than the other method because it obtained the least surface 

error for 6/7 CNs. Besides, the Chord Length method achieved better results 

compared to other methods for the oiltank data because it acquired the least 

surface error for 4/7 CNs. Furthermore, the Centripetal method performed 

better than the other methods for the talus bone data as it obtained the least 

surface error for 3/7 CNs. According to the results shown in Table 5.8, Chord 

Length method is the most suitable method for the improved approach when 

the nx and ny are 18 and 30 because it achieved the highest number of least 

surface error which is 17/35. 

Table 5.8: Summarised results of the methods that achieved the least 

surface error in the improved (B) approach for various data and sizes of 

CN given the nx = 18 and ny = 30 

Data Uniform Chord Length Centripetal Exponential 

Cube 2/7 2/7 2/7 1/7 

Sphere 0/7 3/7 3/7 1/7 

Spindle 0/7 6/7 0/7 1/7 

Oiltank 0/7 4/7 0/7 3/7 

Talus Bone 0/7 2/7 3/7 2/7 

Total 2/35 17/35 8/35 8/35 

 

Table 5.9 shows the summarised results of conventional and improved 

approaches when the nx and ny are 18 and 30 respectively in Appendix F. 

Based on the results in Table 5.9, the improved approach outperformed the 

conventional approach as it achieved the highest number of minimum surface 

error which is 118/140. 
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Table 5.9: Summarised results of the conventional (A) and improved (B) 

approaches given the nx = 18 and ny = 30 

Data Parameterisation Method A B 

C
u
b
e 

Uniform 2/7 5/7 

Chord Length 1/7 6/7 

Centripetal 1/7 6/7 

Exponential 1/7 6/7 

S
p
h
er

e 

Uniform 1/7 6/7 

Chord Length 1/7 6/7 

Centripetal 0/7 7/7 

Exponential 1/7 6/7 

S
p
in

d
le

 Uniform 2/7 5/7 

Chord Length 1/7 6/7 

Centripetal 1/7 6/7 

Exponential 1/7 6/7 

O
il

ta
n
k

 Uniform 3/7 4/7 

Chord Length 1/7 6/7 

Centripetal 2/7 5/7 

Exponential 1/7 6/7 

T
al

u
s 

B
o
n
e 

Uniform 1/7 6/7 

Chord Length 0/7 7/7 

Centripetal 1/7 6/7 

Exponential 0/7 7/7 

 22/140 118/140 

 

According to the results in Table 5.4 and Table 5.7, the Exponential 

method was the best method for the conventional approach as it achieved the 

least surface error for most of the experiments given the same and different 

grid size. Based on the results in Table 5.5 and Table 5.8, the Chord Length 

method was the best method for the improved approach because it obtained 

the highest number of minimum surface error given the same and different 

grid size. The surface error of both approaches also decreases when the size of 

CN increases because there were more control points available to adjust the 

shapes. This proves that surfaces of the approaches were approximated more 

towards the output of the DNSOM model when the size of the CN increases 
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and better surfaces were generated. Uniform method performed the worst 

because it was not suitable for data that were not distributed linearly [89]. 

Meanwhile, the Centripetal method was better than the Chord Length method 

in handling sharp turns [88] whereas the Exponential method has the property 

of Centripetal and Chord Length methods since the value of its α in Equation 

2.8, Chapter 2 is 0.8, which is between the value of α set for the Centripetal 

and Chord Length methods. So, the Chord Length method performed better 

than the Exponential method for most of the experiments because most of the 

data in this experiment do not have sharp turn. Therefore, based on the results 

in Table 5.5 and Table 5.8, Chord Length method was considered the best 

method in the improved approach because it achieved the least surface error 

for 35/70 results. 

The NURBS surface approximation approach with improvements were 

proposed to overcome the problem faced by the conventional NURBS surface 

approximation approach [23] when it was applied on the DNSOM surfaces 

data. Gaps were observed at the edges of both surfaces after the approach was 

applied on the output of the model as shown in Figure 5.5. 

It was observed that when the size of the CN increases, the size of the 

gaps reduces and better surfaces were generated. Improvements were made to 

the perform parameterisation and perform control points calculation processes 

of the conventional approach to avoid the gaps from appearing. No gaps were 

found after the implementation of the improved approach as shown in Figure 

5.6 because the boundaries between the NURBS surfaces are merged during 

the perform parameterisation and perform control points calculation steps.  
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Figure 5.5: Image of NURBS surfaces generated with conventional 

approach for 18 × 18 CN and uniform parameterisation method given the 

cube data 

Hence, lower surfaces error was obtained for the improved approach 

compared to the conventional approach. 

 

Figure 5.6: Image of NURBS surfaces generated with improved approach 

for 18 × 18 CN and uniform parameterisation method given the cube data 
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5.4 Summary 

The conventional NURBS surface approximation approach was proven 

applicable on the output of the DNSOM model. Exponential method was the 

best method for the conventional approach. But gaps were observed at the 

edges of both surfaces when the approach was applied on the output of the 

model. The size of the gaps was reduced and better surfaces were generated 

when the size of CN increases for the conventional approach. Improvements 

were made to the perform parameterisation and perform control points 

calculation processes of the conventional approach to close the gaps. No gaps 

were found after the implementation of the improved NURBS surface 

approximation approach. The Chord Length method is the best method for the 

improved approach. Besides, the improved approach also performed better 

than the conventional approach because it achieved the least surface error for 

most of the experiments. Therefore, the improved approach performed better 

than the conventional approach. The surface error of both approaches 

decreases when the size of CN increases. This demonstrates that the surfaces 

generated is better when the size of the CN increases. However, more accurate 

surface can be generated by tuning the control points of NURBS with 

optimisation technique as shown in [28]. 
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CHAPTER 6 

 

OPTIMISATION OF THE IMPROVED NURBS SURFACE 

APPROXIMATION APPROACH 

6.1 Overview 

This chapter demonstrates the system flow, analyses and discusses the 

optimisation of control points of the improved NURBS surface approximation 

approach using optimisation techniques such as Genetic Algorithm (GA), 

Differential Evolution (DE) and Particle Swarm Optimisation (PSO). 

Optimisation techniques were applied because the NURBS surfaces generated 

were not the optimum as they were generated mathematically. Thus, 

optimisation techniques were applied to generate the improved NURBS 

surfaces with higher accuracy by optimising the control points of the improved 

NURBS surface approximation approach. 

6.2 System Flow for the Optimisation of the Improved NURBS 

Surface Approximation Approach 

This section discusses the system flow of GA, DE and PSO in optimising the 

control points. GA with Value Encoding, Tournament Selection, Uniform 

Crossover, Uniform Mutation and Weak Parent Replacement, DE and PSO 

with constriction factor and velocity clamping are used to optimise the control 

points. Based on the work in [141], GA with Tournament Selection, Uniform 

Crossover, flip mutation and Weak Parent Replacement achieved the highest 

number of minimum average fitness values. Therefore, the Tournament 

Selection and Uniform Crossover were used for the GA. The flip mutation was 

replaced with Uniform Mutation because flip mutation is not suitable for value 
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encoding GA. Besides, GA with the abovementioned operations was used 

because this research focuses in proving that GA can be used to optimise the 

control points of the improved approach. DE [33] was employed for the same 

purpose. The PSO with constriction factor and velocity clamping was used in 

this research because it achieved the best result in the work of Lim, Hoon and 

Song [34]. 

6.2.1 Data Acquisition 

The data used in this research were the control points, basis function, surface 

data from improved NURBS surface approximation approach and DNSOM 

surface data. These data were needed to optimise the control points. Figure 6.1 

is an example of the bottom and top 3 × 4 CN with several chosen control 

points. 1-D array was used to represent the control points and it was used as an 

input for the GA, DE and PSO. The representation of the control points in a 1-

D array is shown in Figure 6.2. The representation is based on Figure 6.1. 

Each control point, Pi is in their coordinate form (xi, yi, zi), where i is the Class 

Number. The concept of Class Number was used in this research to group the 

redundant control points accordingly. In GA and DE, the 1-D array 

representing the control points is generally known as chromosome. Meanwhile, 

the array is known as particle in PSO. To optimise the control points, 

individuals or particles was generated initially by summing the value of x, y 

and z coordinates of each control point with their respective randomly 

generated value within the range of [-5 × 10-6, 5 × 10-6]. 
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Figure 6.1: The bottom and top 3 × 4 CN 

 

Figure 6.2: Representation of the control points in Figure 6.1 in 

chromosome or particle 

6.2.2 Parameter Settings 

Table 6.1 presents the common parameter settings for GA, DE and PSO, and 

their respective parameter settings except the Number of Dimension, d and the 

Control Point Coordinate Range are referred from [34], [141], [142]. The 

Number of Generation is the maximum generation and it was the termination 

criterion used in this research. The Population Size, n is set to 40. The Number 

of Dimension for the chromosome and particle is NOV, where NOV is the 

number of control point used to generate the surface data by the improved 

NURBS surface approximation approach. The concept of Class Number is 

utilised to group the redundant control points at the edges of the control net 

(CN) of the approach. Thus, the NOV would be the total number of Class 

Number. The equation used to compute the NOV can be referred from 

Equation 4.2 in Chapter 4, Section 4.2.3 by substituting the width, nx and 
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length, ny of the grid for DNSOM model with the width, CNx and length, CNy 

of the CN respectively. For GA, the Crossover Probability, Pc and Mutation 

Probability, Pm used are 0.7 and 0.01. Meanwhile, the Crossover Probability 

and Differential Weight, F of DE is 0.01 and 0.8. The acceleration constants, 

c1 and c2 of the PSO was set to 2.05. The maximum velocity and position of 

the PSO was set to half of the range of the data set and the range of the data 

set respectively. Maximum velocity was used as the velocity clamping and 

maximum position is set to prevent the particle from moving beyond the 

boundaries of the search space. The velocity of each particle was initialised to 

0. The Constriction Factor, K of the PSO was set to 0.729. The GA, DE and 

PSO were run 10 times for each experiment to show that different fitness 

value is acquired at each run. Average fitness value and CPU time were 

computed from the fitness value of all the run for each of the experiment. A 

small range was set as the control point coordinate range because there would 

be lesser combination of control points. Consequently, it would be easier to 

find the best control points. 

6.2.3 Fitness Function 

The DNSOM surfaces data, DO is computed with Equation 6.1 and it is also 

defined by rewriting the Equation 5.12 in Chapter 5, Section 5.2.3.3. 

O

v

O

u DNPN =  (6.1) 

where Nu and Nv are the basis function in u and v direction respectively, PO is 

the control points, and DO is the optimised NURBS surface data of the 

improved NURBS surface approximation approach. 
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Table 6.1: Parameter settings 

No. Parameter Value 

1. Number of Generation 2000 

2. Population Size, n 40 

3. Number of Dimension, d NOV 

4. Control Point Coordinate Range [-5 × 10-6, 5 × 10-6] 

5. GA Crossover Probability, Pc 0.7 

6. GA Mutation Probability, Pm 0.01 

7. DE Crossover Probability 0.8 

8. DE Differential Weight, F 0.3 

9. PSO Constriction Factor, k 0.729 

10. PSO Random Number (r1, r2) [0, 1] 

11. PSO Maximum Velocity Half of the range of the 

dataset 

12. PSO Maximum Position The range of the dataset 

13. PSO Acceleration Constant (c1 and c2) 2.05 

14. Number of Testing 10 

 

The fitness value in this research is calculated with the fitness function 

defined in Equation 6.2. The equation is based on Euclidean distance and 

Class Number and it is defined by rewriting the Equation 5.13 in Chapter 5, 

Section 5.2.4. 

( ) 
=

−=
NOV

1i

O

ii DDxf  (6.2) 

where Di and Di
O are the DNSOM surfaces data and optimised NURBS 

surface data from the improved NURBS surface approximation approach 

respectively. 

6.2.4 Optimisation of Control Points 

Optimisation of control points was performed with GA, DE and PSO. This 

section describes the system flow of GA, DE and PSO in optimising the 

control points. 
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6.2.4.1 Genetic Algorithm 

The optimisation of control points with GA is described as follow: 

1. A population of n chromosomes are generated by summing the value of x, 

y and z coordinates of the control points with their respective randomly 

generated value within the range of [-5 × 10-6, 5 × 10-6]. 

2. The fitness of each chromosome is evaluated with the fitness function, f(x) 

in Equation 6.2. 

3. Tournament Selection: 4 chromosomes are randomly selected and their 

fitness value are compared. Chromosome with the least fitness value is 

selected as the parent. Another round of tournament is conducted to find 

the next parent.  

4. Uniform Crossover: A random number is generated and crossover will be 

executed if the random number is less than the Crossover Probability, Pc. 

5. Uniform Mutation: A random number is generated and mutation will be 

executed if the random number is less than the Mutation Probability, Pm. 

6. The fitness of the new offspring is evaluated with the fitness function, f(x) 

in Equation 6.2. 

7. Weak Parent Replacement: The fitness value of the parent will be 

compared with the fitness value of the offspring. If the fitness value of the 

offspring is smaller than that of its parent, the offspring will be included in 

the next generation. Else, the parent will be included. 

8. If the termination criterion is not met, the algorithm continues with 3. Else, 

the algorithm is terminated and the chromosome with the least fitness 



98 

 

value was produced. The fitness value of the best chromosome and the 

optimised surface data calculated from the chromosome were also 

produced. 

6.2.4.2 Differential Evolution 

The optimisation of control points with DE is described as follow: 

1. A population of n chromosomes are generated by summing the value of x, 

y and z coordinates of the control points with their respective randomly 

generated value within the range of [-5 × 10-6, 5 × 10-6]. 

2. The fitness of chromosomes is evaluated using the fitness function, f(x) in 

Equation 6.2. 

3. Choose the target vector with index, i = 1. Target vector with index, i = 1 

is the first chromosome in the population. 

4. Mutation: For each target vector, a mutant vector is generated. Three 

indices r1, r2 and r3 are randomly chosen from the population to form the 

mutant vector. The indices are integer and they are mutually different from 

one another. The indices are also different from the index, i. 

5. Crossover: A random number is generated. If the random number is at 

least less than the DE Crossover Probability or equal to the randomly 

chosen index, the value at the current dimension of the mutant vector will 

be donated to the same dimension of the trial vector. Else, the value from 

the target vector will be donated to the trial vector. The crossover 

operation continues until the trial vector is constructed.  

6. The fitness of trial vector is evaluated by using f(x) in Equation 6.2. 
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7. Selection: If the fitness value of the trial vector is less than the target 

vector, the trial vector will be included in the next generation. Otherwise, 

the target vector is included. 

8. If the index of the current target vector is at least less than n, choose the 

next target vector by incrementing the index by 1 and proceed with 4. 

Otherwise, proceed to 9. 

9. If the termination criterion is not met, the algorithm continues with 3. 

Otherwise, the algorithm is terminated and the chromosome with the least 

fitness value was produced. The fitness value of the best chromosome and 

the optimised surface data calculated from the chromosome were also 

produced. 

6.2.4.3 Particle Swarm Optimisation 

The optimisation of control points with PSO is described as follow: 

1. n particles are generated by summing the value of x, y and z coordinates of 

the control points with their respective randomly generated value within 

the range of [-5 × 10-6, 5 × 10-6]. 

2. The fitness of the particles is evaluated with the fitness function, f(x) in 

Equation 6.2. 

3. The position of each particle is set as their best position. The particle with 

the smallest fitness value among n particles is selected as the global best 

particle. 

4. The velocity and position of the n particles are computed and updated 

according to their best position and the position of the global best particle. 
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5. The fitness of the particles is evaluated with the fitness function, f(x) in 

Equation 6.2. 

6. The best position of each particle and the position of the best particle 

among the n particles are updated. 

7. If the termination criterion is not met, the algorithm continues with 3. 

Otherwise, the algorithm will be terminated and the particle with the least 

fitness value was produced. The fitness value of the best particle and the 

optimised surface data calculated from the particle were also produced. 

6.3 Analysis and Discussion 

The outcome of the optimisation of control points using GA, DE and PSO 

were analysed and discussed in this section. The GA with Tournament 

Selection, Uniform Crossover, Uniform Mutation and Weak Parent 

Replacement, DE and PSO with constriction factor and velocity clamping 

were used to optimise the control points of the improved NURBS surface 

approximation approach. 

Appendix I shows the visualisation of optimised surface data with the 

minimum (MIN) and maximum (MAX) optimised surface error obtained from 

the GA, DE and PSO and the visualisation of improved NURBS surface data 

(B) for the remaining data and parameterisation methods given the CNs of the 

same size. Table 6.2 shows the visualisation of optimised surface data with the 

minimum (MIN) optimised surface error obtained from the GA, DE and PSO 

and the visualisation of improved NURBS surface data (B) for the spindle data, 

CN with the size of 18 × 18 and Chord Length method, where each of the CN 

are of the same length and width. 
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Table 6.2: Visualisation of MIN optimised surface data of GA, DE and 

PSO with the same length and width 

CN 18 × 18 

GA 

 
DE 

 
PSO 

 
B 
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Appendix J shows the visualisation of optimised surface data with the 

minimum (MIN) and maximum (MAX) optimised surface error obtained from 

the GA, DE and PSO and the visualisation of improved NURBS surface data 

(B) for the remaining data and parameterisation methods given the CNs of 

different size. Table 6.3 shows the visualisation of optimised surface data with 

the minimum (MIN) optimised surface error obtained from the GA, DE and 

PSO and the visualisation of improved NURBS surface data (B) for the 

spindle data, CN with the size of 16 × 28 and Chord Length method, where 

each of the CN are of the same length and width. 

As shown from the visualisation in Table 6.2 and Table 6.3, GA, DE 

and PSO was successfully implemented on the improved approach. When the 

size of CN increases, better improved NURBS surfaces were generated. Based 

on the visualisation in Table 6.2 and Table 6.3, correct surfaces were 

generated and they were quite similar to the improved NURBS surfaces. 

Besides, the correct surfaces can be generated although different grid size, 

different parameterisation, different optimisation methods were used. No gaps 

were noticed after optimisation and the shape of the data was not affected. 

Therefore, optimisation techniques can be applied on the improved NURBS 

surface approximation approach. In addition, to further test the performance of 

the optimisation methods, quantitative measurement was used. 

Appendix K and Appendix L show the experimental results for GA, 

DE and PSO via the optimisation of CN with same and different grid size.  
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Table 6.3: Visualisation of MIN optimised surface data of GA, DE and 

PSO with different length and width 

CN 16 × 28 

GA 

 
DE 

 
PSO 

 
B 
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The experimental results provide information on average (AVG), minimum 

(MIN) and maximum (MAX) optimised surface error obtained for various 

parameterisation methods and data sets. Table 6.4 shows the summarised 

results of the techniques in Appendix K that achieved the least average (AVG) 

optimised surface error for various data, methods and sizes of CN when the nx 

and ny are 20. As shown in the Table 6.4, 7 is referring to the various sizes of 

CN (6 × 6, 8 × 8, 10 × 10, 12 × 12, 14 × 14, 16 × 16, 18 × 18) of each 

parameterisation method. Therefore, the total number of summarised results is 

140. 

Table 6.4: Summarised results of the techniques that achieved the least 

average (AVG) optimised surface error for various data, methods and 

sizes of CN given the nx = 20 and ny = 20 

Data 
Parameterisation 

Method 
GA DE PSO 

Cube 

Uniform 0/7 7/7 0/7 

Chord Length 0/7 7/7 0/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 7/7 0/7 

Sphere 

Uniform 0/7 7/7 0/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Spindle 

Uniform 0/7 7/7 0/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Oiltank 

Uniform 0/7 7/7 0/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Talus Bone 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Total - 0/140 126/140 14/140 
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Besides, Table 6.5 shows the summarised results of the techniques in 

Appendix L that achieved the least average (AVG) optimised surface error for 

various data, methods and sizes of CN when nx and ny were 18 and 30 

respectively. 

Table 6.5: Summarised results of the techniques that achieved the least 

average (AVG) optimised surface error for various data, methods and 

sizes of CN given the nx = 18 and ny = 30 

Data 
Parameterisation 

Method 
GA DE PSO 

Cube 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Sphere 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 5/7 2/7 

Centripetal 0/7 5/7 2/7 

Exponential 0/7 6/7 1/7 

Spindle 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 5/7 2/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Oiltank 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Talus Bone 

Uniform 0/7 6/7 1/7 

Chord Length 0/7 6/7 1/7 

Centripetal 0/7 6/7 1/7 

Exponential 0/7 6/7 1/7 

Total - 0/140 117/140 23/140 

 

Appendix M and Appendix N show the average (AVG), minimum 

(MIN) and maximum (MAX) CPU time obtained using GA, DE and PSO via 

the optimisation of CN and the surface error of improved (B) NURBS surface 

approximation approach for various parameterisation methods and data sets 
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where each of the CN involved are of the same length and width, and different 

length and width respectively. Table 6.6 is the summarised results of the 

techniques in Appendix M that achieved the least average (AVG) CPU time 

for various data, methods and sizes of CN given the nx and ny are 20.  

Table 6.6: Summarised results of the techniques that achieved the least 

average (AVG) CPU time for various data, methods and sizes of CN given 

the nx = 20 and ny = 20 

Data 
Parameterisation 

Method 
GA DE PSO 

Cube 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Sphere 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Spindle 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Oiltank 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Talus Bone 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Total - 140/140 0/140 0/140 

 

Furthermore, Table 6.7 shows the summarised results of the techniques 

in Appendix N that achieved the least average (AVG) CPU time for various 

data, methods and sizes of CN given the nx and ny are 18 and 30 respectively.  
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Table 6.7: Summarised results of the techniques that achieved the least 

average (AVG) CPU time for various data, methods and sizes of CN given 

the nx = 18 and ny = 30 

Data 
Parameterisation 

Method 
GA DE PSO 

Cube 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Sphere 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Spindle 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Oiltank 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Talus Bone 

Uniform 7/7 0/7 0/7 

Chord Length 7/7 0/7 0/7 

Centripetal 7/7 0/7 0/7 

Exponential 7/7 0/7 0/7 

Total - 140/140 0/140 0/140 

 

Thus, the overall results for optimised surface errors of GA, DE and 

PSO are reflected in Table 6.8. The overall number of results given the Table 

6.4 and Table 6.5 is 280.  

Table 6.8: Overall results for optimised surface errors of GA, DE and 

PSO 

Result GA DE PSO 
Table 6.4 0/140 126/140 14/140 
Table 6.5 0/140 117/140 23/140 

Overall Total 0/280 243/280 37/280 
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Thus, the overall results for CPU time of GA, DE and PSO are 

reflected in Table 6.9. The overall number of results given the Table 6.6 and 

Table 6.7 is also 280. 

Table 6.9: Overall results for CPU time of GA, DE and PSO 

Result GA DE PSO 
Table 6.6 140/140 0/140 0/140 
Table 6.7 140/140 0/140 0/140 

Overall Total 280/280 0/280 0/280 

 

Based on the results in Table 6.8, DE obtained the least average 

optimised surface error for most of the experiments which is 243/280 (126/140 

for the same grid size, 117/140 for different grid size). Meanwhile, PSO 

achieved the second-most total number of least average optimised surface 

error which is 37/280 (14/140 for the same grid size, 23/140 for different grid 

size) as shown in Table 6.8. In contrast, GA achieved 0/280 least surface error 

(0/140 for the same grid size, 0/140 for different grid size). 

Based on the results in Table 6.9, GA achieved 280/280 least average 

CPU time (140/140 for the same grid size, 140/140 for different grid size). 

Meanwhile, both DE and PSO achieved 0/280 least average CPU time (0/140 

for the same grid size, 0/140 for different grid size). 

In terms of the average optimised surface error, DE performed better 

than GA and PSO because the individuals in DE can easily explore the new 

region in the search space [149] and converged to the optimal solution better 

than GA and PSO. Besides, DE performed better than GA because mutation 

operation in DE was performed on the target vector at every iteration while the 
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mutation operation in GA was performed according to the mutation 

probability applied [113]. Thus, DE can maintain the population diversity 

better than GA. Furthermore, the difference between the mutation operation in 

DE and GA is that the mutation operation in DE is the outcome of arithmetic 

combinations of individuals while the mutation operation in GA is the 

outcome of small perturbations to the genes of an individual [151]. In terms of 

the CPU time, DE performed slower than GA because each target vector in 

DE was compared with the trial vector to produce a new target vector at each 

iteration. 

The PSO can perform better than DE for certain cases because 

technique with better exploration property such as DE is more efficient in 

finding the optimal solution when the size of CN is small. As the size of the 

CN increases, technique with a good balance between exploration and 

exploitation property such as PSO with velocity clamping is better in finding 

the optimal solution. PSO with velocity clamping can control the position and 

velocity of each particle and it was developed to make a good balance between 

exploration and exploitation [152]. The PSO has better accuracy for high-

dimensional problems [150]. The PSO performed slower than DE because the 

particles in PSO must update their position and velocity both locally and 

globally at each iteration [142].  

GA performed the worst because there are only two new individuals 

that can be introduced at each iteration [142]. Two new individuals are 

introduced when both selected parents achieved a higher optimised surface 

error than their offspring [153]. Meanwhile, n new individuals and particles 
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are introduced in DE and PSO at every iteration. Thus, DE and PSO are better 

than GA in finding the optimal solution. GA performed the fastest despite 

having a greater number of operations involved such as selection, crossover, 

mutation and replacement [141] because not every individual was updated at 

each iteration unlike the DE and PSO in which every individual in DE and 

particle in PSO were updated at each iteration. Thus, GA performed the best in 

terms of the CPU time followed by the DE and PSO. The information can be 

referred in Appendix M and Appendix N. 

In short, DE is the best optimisation technique because it can achieve 

the least optimised surface error for most of the experiment and generate the 

output at a moderate CPU time. 

6.4 Summary 

Optimisation methods such as GA, DE and PSO can be implemented to 

optimise the control points of the improved NURBS surface approximation 

approach. The DE performed the best followed by PSO and GA. However, the 

PSO can perform better than DE for certain cases. When the size of CN is 

small, optimisation method with exploration property such as DE is more 

efficient in finding the optimal solution, whereas optimisation method with 

both exploration and exploitation property is better in finding the optimal 

solution when the size of the CN is large. The GA took the shortest CPU time 

among the techniques, followed by DE and PSO. Therefore, the results show 

that the optimisation methods can optimise the surface produced by the 

improved approach and be used in surface reconstruction. 
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORKS 

7.1 Conclusion 

A model inspired by Lim and Haron [25] dubbed Double Net Self-Organising 

Map (DNSOM), was proposed through the merging of two 2-D Self-

Organising Map (SOM). The model was designed to organise the unstructured 

data and to regain the connectivity information of the data.  The model 

overcomes the drawbacks of 2-D SOM, 3-D SOM and Cube Kohonen SOM 

(CKSOM). Besides, the model organised the unstructured data successfully. It 

was able to preserve the topology of the data as it achieved the lowest 

Topographic Error (TE) compared to all the SOM models. Additionally, the 

DNSOM model can produce the correct surface with fewer neurons compared 

to the CKSOM model and the length and width of its grid can be tuned with 

different values. Besides, the improved NURBS surface approximation 

approach was integrated successfully on the DNSOM surfaces data and four 

equations were derived to identify the four corners of the CNs and DNSOM 

surfaces data.  The improved NURBS surface approximation approach can 

generate the improved NURBS surfaces without gaps. The Chord Length 

method is the best method because it achieved the least surface error for most 

of the experiments. GA performed the best in term of CPU time although it 

has more operations compared to DE and PSO. Meanwhile, PSO achieved the 

highest CPU time among the optimisation methods.  
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7.2 Contributions 

The ability of the DNSOM model to organise the unstructured data of talus 

bone would contribute to the field of medical imaging in a way that the model 

can help the medical practitioner to create an artificial talus bone for patients 

whom their talus bone is damaged. The model can also be utilised in reverse 

engineering to recover the digital file of an object. Hence, the designers can 

save their time from redesigning the object from scratch. In addition, it does 

not require huge amount of data for training. Thus, it can reconstruct the 

surface of an object faster. Besides, three equations were derived based on the 

model so that the researcher can identify the NON, NOV and NOR for the 

model and can construct the model based on the equations. Furthermore, the 

improved NURBS surface approximation approach can generate multiple 

surfaces without gaps and four equations were derived to identify the four 

corners of the DNSOM surfaces data and CN. Besides, this research proves 

that the concept of applying the GA, DE and PSO to optimise the control 

points of the improved NURBS surface approximation approach is applicable. 

7.3 Limitations 

Although the DNSOM model can organise the unstructured data, it suffers 

from several limitations. It has higher QE than 3-D SOM and CKSOM models 

and it fails to reconstruct the ear of the Stanford bunny data correctly. Besides, 

the height of the DNSOM model is fixed. The lack of flexibility in setting the 

height of the model may cause the model to be inappropriate to present longer 

objects.  
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7.4 Future works 

Future work can consider minimising the QE with optimisation methods and 

enhancing the Detecting Neighbours (Section 4.2.4) for the adaptation process 

as demonstrated in [24] to overcome the limitations mentioned previously. 

Besides, more complex data such as the happy Buddha, dragon and armadillo 

from can be used to test the performance of the model. Other parameterisation 

methods such as the hybrid method [87], deep learning method [143] and 

dynamic centripetal method [89] can also be applied to further examine their 

influence on the improved NURBS surface approximation approach. The 

optimisation techniques can also be used to optimise the weights of the 

improved approach. Furthermore, optimisation techniques such as Bat 

algorithm [144] and Firefly algorithm [145] can also be used to optimise the 

control points of the improved approach and examine the performance 

between the techniques. 
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APPENDIX A: VISUALISATION FOR DIFFERENT SOM MODEL AND DATA 

SETS 

Data 

Grid 

Size, 

n 

2-D SOM 3-D SOM CKSOM DNSOM 

Cube 
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20 
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Oiltank 
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APPENDIX B: METRIC EVALUATION FOR DIFFERENT SOM MODEL AND DATA SETS 

Data 

Grid 

Size, 

n 

Min Error Max Error 

2-D SOM 3-D SOM CKSOM DNSOM 2-D SOM 3-D SOM CKSOM DNSOM 

Cube 

10 0.002339 0.000932 0.000331 0.001206 0.946736 0.645208 0.613486 0.870413 

20 0.001412 0.000242 0.000132 0.000274 0.924689 0.619527 0.540496 0.805349 

30 0.000972 0.000106 0.000061 0.000255 0.904238 0.584974 0.459987 0.777626 

Sphere 

10 0.005445 0.001349 0.000958 0.001943 0.714700 0.426053 0.416009 0.636790 

20 0.001970 0.000581 0.000461 0.001223 0.669834 0.406771 0.382448 0.533180 

30 0.001024 0.000293 0.000111 0.000841 0.636785 0.404172 0.356824 0.520385 

Spindle 

10 0.004991 0.001225 0.001017 0.002142 0.750138 0.459577 0.453888 0.612911 

20 0.001050 0.000085 0.000030 0.001004 0.651950 0.436344 0.425152 0.528028 

30 0.000675 0.000025 0.000024 0.000059 0.636605 0.402486 0.401306 0.505220 

Oiltank 

10 0.006479 0.001904 0.000978 0.004432 0.731639 0.478516 0.441673 0.675554 

20 0.002691 0.000728 0.000683 0.001942 0.702260 0.465476 0.392644 0.557512 

30 0.001833 0.000464 0.000352 0.001115 0.615532 0.463063 0.393145 0.533917 

Talus 

Bone 

10 0.004374 0.001312 0.001264 0.001556 0.808128 0.526657 0.468956 0.668278 

20 0.002214 0.000589 0.000580 0.001173 0.769459 0.449088 0.441589 0.608013 

30 0.001159 0.000274 0.000265 0.000650 0.750302 0.411097 0.405427 0.582180 

 

Data 

Grid 

Size, 

n 

QE TE CPU Time (s) 

2-D SOM 3-D SOM CKSOM DNSOM 2-D SOM 3-D SOM CKSOM DNSOM 2-D SOM 3-D SOM CKSOM DNSOM 

Cube 

10 0.187931 0.074207 0.079324 0.138079 0.243033 0.568433 0.220400 0.218967 0.335528 2.913710 1.729668 0.489413 

20 0.126418 0.042222 0.047466 0.085877 0.229133 0.611367 0.213267 0.205167 1.493339 27.812584 8.467364 2.323140 

30 0.104045 0.032381 0.036973 0.067436 0.225167 0.623900 0.208967 0.197733 3.321563 134.344833 21.170973 4.972094 

Sphere 

10 0.135517 0.052833 0.055651 0.098825 0.242033 0.633200 0.255000 0.235833 0.413248 2.811455 1.680223 0.581725 

20 0.090704 0.029862 0.033220 0.061035 0.225733 0.679267 0.238733 0.212000 1.387953 26.838444 8.428613 2.284522 

30 0.074211 0.023113 0.026132 0.047605 0.225200 0.718933 0.236967 0.211433 3.182952 151.613586 19.346643 5.405772 

Spindle 

10 0.134581 0.053078 0.056098 0.099202 0.238033 0.634333 0.257967 0.231400 0.062082 2.822090 1.747945 0.505617 

20 0.090243 0.030270 0.033947 0.060576 0.222100 0.678600 0.251267 0.221100 1.329022 26.724297 7.936086 2.241000 

30 0.074296 0.023467 0.026625 0.047371 0.220600 0.707933 0.253800 0.218300 3.365511 189.238892 19.378843 5.309147 

Oiltank 
10 0.150892 0.058629 0.061965 0.109936 0.244400 0.651467 0.235933 0.219400 0.380674 2.810697 1.700103 0.538561 

20 0.101191 0.033420 0.036973 0.067115 0.241367 0.693233 0.230733 0.203767 1.541303 27.456812 8.537663 2.200606 
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30 0.082984 0.025624 0.028992 0.052517 0.240433 0.716633 0.222767 0.193733 3.267899 193.515076 20.582836 5.293958 

Talus 

Bone 

10 0.142370 0.057148 0.061301 0.104913 0.239433 0.598300 0.257233 0.232033 0.329207 3.050086 1.687947 0.496557 

20 0.096793 0.032491 0.037149 0.065414 0.239167 0.623033 0.244967 0.218333 1.439106 28.803869 7.594567 2.297114 

30 0.079069 0.025129 0.029380 0.052135 0.225433 0.674800 0.240133 0.214100 3.295924 186.662079 21.240513 5.264114 
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APPENDIX C: METRIC EVALUATION FOR CKSOM AND DNSOM MODEL WITH VARIOUS SIZES OF WIDTH (nx) AND 

LENGTH (ny) OF GRID AND DATA SETS 

Data nx ny 
Min Error Max Error QE TE CPU Time 

CKSOM DNSOM CKSOM DNSOM CKSOM DNSOM CKSOM DNSOM CKSOM DNSOM 

Cube 

10 8 0.000849 0.001217 0.829653 0.748264 0.094651 0.145361 0.351967 0.236300 1.750415 0.419171 

20 12 0.000658 0.000536 0.657015 0.698404 0.061053 0.091301 0.348533 0.231400 5.056553 1.330686 

18 30 0.000253 0.000443 0.630518 0.616849 0.048754 0.069085 0.348433 0.220867 12.350095 3.027687 

Sphere 

10 8 0.001571 0.003588 0.569852 0.588397 0.067360 0.103998 0.342167 0.242533 1.659040 0.455780 

20 12 0.000757 0.001082 0.477261 0.520727 0.043373 0.063982 0.341700 0.225967 5.094960 1.334136 

18 30 0.000466 0.000819 0.400630 0.474567 0.033999 0.047869 0.339367 0.208333 13.210606 3.153576 

Spindle 

10 8 0.001051 0.003025 0.575847 0.556720 0.068216 0.103635 0.354700 0.239133 1.807986 0.428606 

20 12 0.000602 0.001107 0.493366 0.534296 0.043618 0.063878 0.350600 0.227667 5.579232 1.391338 

18 30 0.000078 0.000270 0.450791 0.463108 0.034528 0.048394 0.350400 0.222067 13.621258 3.096171 

Oiltank 

10 8 0.001449 0.004716 0.585763 0.602103 0.075364 0.115772 0.348967 0.232967 1.552437 0.434447 

20 12 0.000995 0.001430 0.490223 0.597031 0.048225 0.072605 0.342900 0.232800 5.071808 1.291023 

18 30 0.000685 0.000740 0.426784 0.543275 0.037788 0.054163 0.342667 0.219600 12.610228 3.073069 

Talus 

Bone 

10 8 0.002246 0.001825 0.743837 0.591497 0.073348 0.111010 0.360433 0.248467 1.684480 0.421401 

20 12 0.001059 0.000885 0.460263 0.505954 0.047542 0.068569 0.359667 0.247133 5.629281 1.299775 

18 30 0.000447 0.000753 0.447727 0.421743 0.037655 0.052197 0.357467 0.244133 13.947246 3.186108 
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APPENDIX D: VISUALISATION OF CKSOM AND DNSOM MODELS FOR 

VARIOUS DATA SETS USING DIFFERENT WIDTH AND LENGTH OF GRID 

Data Grid Size CKSOM DNSOM 

Cube 

10 × 8 

  

20 × 12 

  

18 × 30 

  

Sphere 

10 × 8 

  

20 × 12 

  

18 × 30 

  

Spindle 

10 × 8 

  

20 × 12 
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18 × 30 

 
 

Oiltank 

10 × 8 

  

20 × 12 

  

18 × 30 

  

Talus 
Bone 

10 × 8 

  

20 × 12 

  

18 × 30 

  



140 

 

APPENDIX E: SURFACE ERROR OF CONVENTIONAL (A) AND IMPROVED 

(B) APPROACH FOR THE CN WITH THE SAME WIDTH AND LENGTH 

Data CN 
Uniform Chord Length Centripetal Exponential 

A B A B A B A B 

C
u
b

e 

6 × 6 30.965167 32.847252 30.636514 28.750110 30.373630 29.935218 30.402689 28.952805 

8 × 8 23.997210 23.989527 25.349100 23.294933 24.107798 22.707770 24.699217 22.833759 

10 × 10 19.257970 18.809090 20.439738 19.142886 19.280049 18.199131 19.840364 18.608152 

12 × 12 15.359828 14.743104 15.599429 14.770796 14.993467 14.135343 15.243678 14.375113 

14 × 14 10.887558 10.320493 10.267518 9.495545 10.147066 9.429036 10.129432 9.372678 

16 × 16 7.187893 6.762235 6.319849 5.790958 6.310254 5.873534 6.218519 5.735893 

18 × 18 3.713430 3.489357 3.086438 2.818562 3.054088 2.844669 3.016986 2.781822 

S
p

h
er

e 

6 × 6 18.577789 20.204454 14.486324 15.357078 15.432899 16.432150 14.525555 15.386218 

8 × 8 14.137940 14.560331 11.361610 11.483114 11.856062 11.901011 11.295439 11.358364 

10 × 10 11.319547 11.072429 9.588623 9.260175 9.717226 9.326677 9.437529 9.097750 

12 × 12 9.249949 8.769725 7.824251 7.401567 7.915990 7.451317 7.696266 7.272313 

14 × 14 7.370246 6.826963 5.653392 5.380782 6.030013 5.667360 5.677499 5.387289 

16 × 16 5.562201 5.121749 3.774779 3.548917 4.252580 3.975747 3.863775 3.627790 

18 × 18 2.972712 2.803381 2.033189 1.934270 2.241047 2.126338 2.067013 1.966122 

S
p

in
d
le

 

6 × 6 17.236641 16.618302 15.567186 15.317307 15.949442 15.585659 15.626590 15.344327 

8 × 8 14.547514 14.029662 13.576166 13.190979 13.733906 13.317136 13.560586 13.173216 

10 × 10 11.810122 11.427097 11.072895 10.650167 11.174899 10.780897 11.040477 10.637621 

12 × 12 9.486557 9.053436 8.754341 8.318483 8.894491 8.474809 8.749209 8.323326 

14 × 14 7.103165 6.704238 6.267812 5.905985 6.484181 6.126793 6.302085 5.946391 

16 × 16 4.886699 4.583246 3.969280 3.768353 4.191150 3.971729 3.998704 3.797467 

18 × 18 2.658669 2.514656 1.985376 1.916830 2.141893 2.050128 2.008200 1.936817 

O
il

ta
n
k
 

6 × 6 21.373959 22.129226 19.722526 19.660172 20.003289 20.215953 19.646872 19.651440 

8 × 8 17.242362 17.706700 15.737389 15.407933 15.965394 15.906888 15.656382 15.392426 

10 × 10 13.097058 13.164787 11.660973 11.206745 11.877594 11.575495 11.584774 11.151213 

12 × 12 9.945930 9.669914 8.620465 8.182572 8.811125 8.406920 8.560507 8.123378 

14 × 14 7.424647 7.025431 5.959859 5.659485 6.300094 5.980997 5.989466 5.689804 

16 × 16 4.917906 4.602955 3.546750 3.368280 3.888654 3.673360 3.602344 3.412576 

18 × 18 2.853839 2.702826 1.964867 1.892390 2.172211 2.069978 2.003908 1.921040 

T
al

u
s 

B
o
n

e 

6 × 6 28.117199 27.184267 26.532124 25.675751 27.057877 26.202397 26.662685 25.831448 

8 × 8 20.313741 19.791257 19.416785 18.593093 19.473586 18.876482 19.335066 18.626535 

10 × 10 14.853240 14.466086 15.041301 14.150769 14.560862 13.965549 14.758073 13.996782 

12 × 12 11.665266 11.274231 11.540746 10.854089 11.262056 10.768179 11.348336 10.754879 

14 × 14 8.072549 7.631480 6.988868 6.618030 7.256829 6.920247 7.021873 6.676524 

16 × 16 5.570709 5.218926 4.477426 4.252484 4.820020 4.560049 4.561460 4.326967 

18 × 18 2.989422 2.833904 2.142126 2.045113 2.382017 2.273533 2.197927 2.099644 
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APPENDIX F: SURFACE ERROR OF CONVENTIONAL (A) AND IMRPOVED 

(B) APPROACH FOR THE CN WITH DIFFERENT WIDTH AND LENGTH 

 

Data CN 
Uniform Chord Length Centripetal Exponential 

A B A B A B A B 

C
u
b

e 

4 × 16 40.230698 45.796012 38.255321 38.416722 38.687754 41.098115 38.251124 39.102375 

6 × 18 29.265079 29.282095 29.634424 28.368689 28.872274 28.055285 29.180071 28.038141 

8 × 20 20.094533 19.656191 21.668636 20.598706 20.161769 19.360944 20.895639 19.932207 

10 × 22 15.865542 15.254454 17.951800 16.926239 16.273906 15.469367 17.155825 16.221275 

12 × 24 11.516729 10.924310 12.479170 11.865611 11.557332 10.978313 12.030080 11.437806 

14 × 26 7.701103 7.262420 7.283711 6.947204 7.165188 6.827783 7.174372 6.843952 

16 × 28 4.130263 3.874686 3.040097 2.906806 3.345493 3.173775 3.116590 2.970490 

S
p

h
er

e 

4 × 16 14.426392 14.903185 14.962448 15.469229 13.906297 13.902640 14.314098 14.539610 

6 × 18 11.415998 11.262854 11.274682 11.148058 10.954939 10.732737 11.040056 10.864263 

8 × 20 9.612656 9.378245 9.229240 9.058099 9.133723 8.908904 9.117493 8.923461 

10 × 22 7.823158 7.544603 7.329037 7.138703 7.368741 7.138793 7.295527 7.089783 

12 × 24 6.071819 5.801424 5.417908 5.243158 5.583794 5.380170 5.443785 5.258722 

14 × 26 4.349236 4.142489 3.641002 3.534287 3.846675 3.703292 3.689829 3.571697 

16 × 28 2.472867 2.364249 1.826803 1.762445 2.024669 1.946529 1.877888 1.809801 

S
p

in
d
le

 

4 × 16 19.845835 20.303638 18.724757 19.170128 18.699755 19.024116 18.548353 18.873429 

6 × 18 15.404810 15.444657 14.417751 14.050667 14.606325 14.433540 14.406941 14.087943 

8 × 20 11.967224 11.905378 11.055362 10.725676 11.222107 11.027065 11.032031 10.743960 

10 × 22 9.177770 8.973447 8.280211 8.003751 8.476576 8.254017 8.278814 8.024803 

12 × 24 6.737922 6.464457 5.860567 5.649897 6.088677 5.869683 5.892565 5.683107 

14 × 26 4.507876 4.250889 3.825630 3.649081 3.973669 3.776540 3.847059 3.665819 

16 × 28 2.469162 2.351708 2.037711 1.954901 2.124319 2.027645 2.053448 1.965280 

O
il

ta
n
k
 

4 × 16 25.846648 29.149654 24.510704 26.909804 24.394025 26.933113 24.209219 26.566622 

6 × 18 19.224721 19.829836 18.007970 17.811067 18.134828 18.275420 17.922452 17.829253 

8 × 20 14.682994 14.744166 13.680633 13.121388 13.726034 13.398294 13.565043 13.070835 

10 × 22 11.226418 10.948206 10.104141 9.595360 10.265219 9.848888 10.052864 9.580364 

12 × 24 8.359407 7.936696 7.088412 6.754982 7.349947 6.999715 7.093771 6.760065 

14 × 26 5.964788 5.592089 4.731021 4.535360 5.022123 4.765088 4.776450 4.561951 

16 × 28 3.364587 3.190289 2.481551 2.367612 2.685663 2.555727 2.516029 2.400655 

T
al

u
s 

B
o
n

e 

4 × 16 26.057345 28.027628 26.366348 26.198621 25.242394 25.535604 25.638985 25.449586 

6 × 18 18.478712 18.234296 19.795644 18.895910 18.468515 17.760659 19.105159 18.268279 

8 × 20 14.538241 14.132923 15.662584 14.782553 14.632952 13.875225 15.149266 14.300186 

10 × 22 11.377503 10.995319 11.171745 10.601987 10.912597 10.358928 10.987395 10.416476 

12 × 24 8.337822 7.964382 7.270235 6.996009 7.470290 7.170618 7.269268 6.993589 

14 × 26 5.628576 5.262074 4.661210 4.346587 4.815578 4.535553 4.653507 4.367835 

16 × 28 3.255125 3.080396 2.341418 2.253805 2.562756 2.450417 2.388454 2.295462 
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APPENDIX G: IMAGE RESULTS OF CONVENTIONAL (A) AND IMPROVED (B) SURFACE APPROXIMATION 

APPROACHES FOR CN WITH THE SAME WIDTH AND LENGTH 

D
at

a 

C
N

 Uniform Chord Length Centripetal Exponential 

A B A B A B A B 

C
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b
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APPENDIX H: IMAGE RESULTS OF THE CONVENTIONAL (A) AND IMPROVED (B) NURBS SURFACE APPROXIMATION 

APPROACHES FOR THE CN WITH DIFFERENT WIDTH AND LENGTH 

D
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APPENDIX I: VISUALISATION OF OPTIMISED SURFACE DATA AND IMAGE RESULTS OF THE IMPROVED (B) 

SURFACE APPROXIMATION APPROACH FOR CN WITH THE SAME WIDTH AND LENGTH 

D
at

a 

P
ar

am
et

er
is

at
io

n
 

M
et

h
o
d
 

CN 

GA DE PSO 

B 

MIN MAX MIN MAX MIN MAX 

C
u
b

e 

U
n

if
o

rm
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 
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8 × 8 
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10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

S
p

in
d
le

 

U
n

if
o

rm
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 
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14 × 14 

       

16 × 16 

       

18 × 18 

       

C
h
o

rd
 L

en
g

th
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 
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18 × 18 

       
C

en
tr

ip
et

al
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

E
x
p

o
n

en
ti

al
 

6 × 6 
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8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

O
il

ta
n
k
 

U
n

if
o

rm
 

6 × 6 

       

8 × 8 

       

10 × 10 
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12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

C
h
o

rd
 L

en
g

th
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 
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16 × 16 

       

18 × 18 

       

C
en

tr
ip

et
al

 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 
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E
x
p

o
n

en
ti

al
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

T
al

u
s 

B
o
n

e 

U
n

if
o

rm
 

6 × 6 

       

8 × 8 
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10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 

       

C
h
o

rd
 L

en
g

th
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 
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14 × 14 

       

16 × 16 

       

18 × 18 

       

C
en

tr
ip

et
al

 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 
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4.  

18 × 18 

       
E

x
p

o
n

en
ti

al
 

6 × 6 

       

8 × 8 

       

10 × 10 

       

12 × 12 

       

14 × 14 

       

16 × 16 

       

18 × 18 
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APPENDIX J: VISUALISATION OF OPTIMISED SURFACE DATA AND IMAGE RESULTS OF THE IMPROVED (B) 

SURFACE APPROXIMATION APPROACH FOR CN WITH DIFFERENT WIDTH AND LENGTH 

D
at

a 

P
ar

am
et

er
is

at
io

n
 

M
et

h
o
d
 

CN 

GA DE PSO 

B 

MIN MAX MIN MAX MIN MAX 

C
u
b

e 

U
n

if
o

rm
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 
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16 × 28 

       
C

h
o

rd
 L

en
g

th
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

C
en

tr
ip

et
a

l 4 × 16 

       



172 

 

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

E
x
p

o
n

en
ti

al
 

4 × 16 

       

6 × 18 

       

8 × 20 
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10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

S
p

h
er

e 

U
n

if
o

rm
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       



174 

 

14 × 26 

       

16 × 28 

       

C
h
o

rd
 L

en
g

th
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       



175 

 

C
en

tr
ip

et
al

 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

E
x
p

o
n

en
ti

al
 4 × 16 

       

6 × 18 

       



176 

 

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

S
p

in
d
le

 

U
n

if
o

rm
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       



177 

 

12 × 24 

       

14 × 26 

       

16 × 28 

       

C
h
o

rd
 L

en
g

th
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       



178 

 

16 × 28 

       
C

en
tr

ip
et

al
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

E
x
p

o
n

en
ti

al
 

4 × 16 

       



179 

 

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

O
il

ta
n
k
 

U
n

if
o

rm
 

4 × 16 

       

6 × 18 

       

8 × 20 

       



180 

 

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

C
h
o

rd
 L

en
g

th
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       



181 

 

14 × 26 

       

16 × 28 

       

C
en

tr
ip

et
al

 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       



182 

 

E
x
p

o
n

en
ti

al
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

T
al

u
s 

B
o
n

e 

U
n

if
o

rm
 

4 × 16 

       

6 × 18 

       



183 

 

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 

       

C
h
o

rd
 L

en
g

th
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       



184 

 

12 × 24 

       

14 × 26 

       

16 × 28 

       

C
en

tr
ip

et
al

 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       



185 

 

16 × 28 

       
E

x
p

o
n

en
ti

al
 

4 × 16 

       

6 × 18 

       

8 × 20 

       

10 × 22 

       

12 × 24 

       

14 × 26 

       

16 × 28 
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APPENDIX K: OPTIMISED SURFACE ERROR OF VARIOUS OPTIMISATION TECHNIQUES AND THE IMPROVED (B) 

SURFCE APPROXIMATION APPROACH FOR CN WITH THE SAME WIDTH AND LENGTH 

D
at

a 

P
ar

am
et

er
is

at
io

n
 

M
et

h
o
d
 

CN 

GA DE PSO 

B 
AVG MIN MAX AVG MIN MAX AVG MIN MAX 

C
u
b

e 

U
n

if
o

rm
 

6 × 6 32.846866 32.846843 32.846876 32.846646 32.846632 32.846663 32.846762 32.846692 32.846793 32.847252 

8 × 8 23.989220 23.989189 23.989240 23.988962 23.988949 23.988988 23.989138 23.989105 23.989168 23.989527 

10 × 10 18.808819 18.808800 18.808849 18.808504 18.808493 18.808513 18.808745 18.808727 18.808774 18.809090 

12 × 12 14.742849 14.742835 14.742869 14.742474 14.742461 14.742488 14.742781 14.742729 14.742808 14.743104 

14 × 14 10.320278 10.320251 10.320298 10.319862 10.319842 10.319885 10.320217 10.320198 10.320254 10.320493 

16 × 16 6.762083 6.762058 6.762114 6.761639 6.761612 6.761660 6.761955 6.761912 6.761991 6.762235 

18 × 18 3.489358 3.489331 3.489393 3.488944 3.488917 3.488963 3.489013 3.488982 3.489076 3.489357 

C
h
o

rd
 L

en
g

th
 

6 × 6 28.749832 28.749815 28.749852 28.749650 28.749642 28.749667 28.749750 28.749714 28.749800 28.750110 

8 × 8 23.294701 23.294680 23.294736 23.294443 23.294433 23.294469 23.294622 23.294551 23.294665 23.294933 

10 × 10 19.142558 19.142541 19.142576 19.142238 19.142218 19.142257 19.142487 19.142443 19.142551 19.142886 

12 × 12 14.770520 14.770500 14.770532 14.770146 14.770128 14.770156 14.770467 14.770431 14.770503 14.770796 

14 × 14 9.495319 9.495307 9.495348 9.494910 9.494886 9.494933 9.495255 9.495234 9.495289 9.495545 

16 × 16 5.790814 5.790794 5.790844 5.790399 5.790377 5.790419 5.790651 5.790562 5.790720 5.790958 

18 × 18 2.818582 2.818552 2.818609 2.818202 2.818187 2.818221 2.818221 2.818189 2.818246 2.818562 

C
en

tr
ip

et
al

 

6 × 6 29.934908 29.934880 29.934938 29.934694 29.934682 29.934706 29.934794 29.934758 29.934836 29.935218 

8 × 8 22.707509 22.707492 22.707525 22.707265 22.707258 22.707274 22.707426 22.707383 22.707493 22.707770 

10 × 10 18.198870 18.198861 18.198883 18.198568 18.198561 18.198585 18.198798 18.198773 18.198814 18.199131 

12 × 12 14.135104 14.135094 14.135121 14.134728 14.134702 14.134767 14.135051 14.135033 14.135068 14.135343 

14 × 14 9.428827 9.428789 9.428848 9.428442 9.428420 9.428461 9.428772 9.428743 9.428804 9.429036 

16 × 16 5.873371 5.873337 5.873393 5.872949 5.872927 5.872994 5.873227 5.873205 5.873259 5.873534 

18 × 18 2.844693 2.844662 2.844730 2.844338 2.844320 2.844359 2.844335 2.844308 2.844355 2.844669 
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E
x
p

o
n

en
ti

al
 

6 × 6 28.952570 28.952544 28.952595 28.952373 28.952356 28.952398 28.952477 28.952431 28.952514 28.952805 

8 × 8 22.833524 22.833508 22.833540 22.833265 22.833255 22.833274 22.833433 22.833379 22.833471 22.833759 

10 × 10 18.607875 18.607847 18.607901 18.607551 18.607543 18.607565 18.607799 18.607759 18.607843 18.608152 

12 × 12 14.374870 14.374843 14.374892 14.374496 14.374481 14.374516 14.374792 14.374753 14.374834 14.375113 

14 × 14 9.372489 9.372464 9.372500 9.372089 9.372066 9.372102 9.372445 9.372427 9.372469 9.372678 

16 × 16 5.735778 5.735751 5.735795 5.735364 5.735332 5.735414 5.735610 5.735562 5.735656 5.735893 

18 × 18 2.781826 2.781800 2.781853 2.781459 2.781428 2.781497 2.781465 2.781435 2.781491 2.781822 

S
p

h
er

e 

U
n

if
o

rm
 

6 × 6 20.203988 20.203943 20.204027 20.203678 20.203659 20.203705 20.203826 20.203726 20.203935 20.204454 

8 × 8 14.559935 14.559895 14.559971 14.559559 14.559539 14.559591 14.559808 14.559763 14.559857 14.560331 

10 × 10 11.072083 11.072046 11.072125 11.071714 11.071694 11.071739 11.071989 11.071918 11.072056 11.072429 

12 × 12 8.769416 8.769388 8.769432 8.769025 8.769009 8.769055 8.769333 8.769292 8.769385 8.769725 

14 × 14 6.826730 6.826706 6.826750 6.826313 6.826287 6.826340 6.826666 6.826640 6.826698 6.826963 

16 × 16 5.121608 5.121573 5.121627 5.121185 5.121153 5.121212 5.121449 5.121399 5.121496 5.121749 

18 × 18 2.803388 2.803359 2.803414 2.802966 2.802942 2.803006 2.803012 2.802961 2.803063 2.803381 

C
h
o

rd
 L

en
g

th
 

6 × 6 15.356843 15.356829 15.356857 15.356685 15.356668 15.356704 15.356771 15.356743 15.356797 15.357078 

8 × 8 11.482902 11.482895 11.482908 11.482706 11.482694 11.482714 11.482845 11.482816 11.482879 11.483114 

10 × 10 9.259928 9.259908 9.259946 9.259655 9.259641 9.259670 9.259870 9.259815 9.259929 9.260175 

12 × 12 7.401337 7.401317 7.401352 7.401014 7.400996 7.401034 7.401271 7.401231 7.401313 7.401567 

14 × 14 5.380608 5.380594 5.380625 5.380235 5.380206 5.380263 5.380531 5.380489 5.380575 5.380782 

16 × 16 3.548803 3.548779 3.548820 3.548395 3.548365 3.548433 3.548601 3.548525 3.548649 3.548917 

18 × 18 1.934292 1.934274 1.934315 1.933937 1.933910 1.933960 1.933923 1.933905 1.933932 1.934270 

C
en

tr
ip

et
al

 

6 × 6 16.431733 16.431711 16.431771 16.431480 16.431466 16.431499 16.431613 16.431538 16.431666 16.432150 

8 × 8 11.900710 11.900678 11.900730 11.900437 11.900425 11.900452 11.900622 11.900581 11.900678 11.901011 

10 × 10 9.326431 9.326410 9.326454 9.326139 9.326125 9.326157 9.326365 9.326337 9.326405 9.326677 

12 × 12 7.451093 7.451072 7.451107 7.450761 7.450746 7.450774 7.451030 7.451010 7.451050 7.451317 

14 × 14 5.667160 5.667133 5.667202 5.666789 5.666769 5.666801 5.667077 5.667024 5.667115 5.667360 

16 × 16 3.975629 3.975603 3.975650 3.975227 3.975209 3.975251 3.975429 3.975366 3.975501 3.975747 

18 × 18 2.126364 2.126351 2.126376 2.125997 2.125955 2.126039 2.125963 2.125915 2.126003 2.126338 

E
x
p

o
n

en
ti

al
 

6 × 6 15.385868 15.385846 15.385885 15.385662 15.385648 15.385684 15.385780 15.385741 15.385824 15.386218 

8 × 8 11.358126 11.358101 11.358139 11.357903 11.357892 11.357918 11.358058 11.358023 11.358080 11.358364 

10 × 10 9.097511 9.097492 9.097532 9.097234 9.097221 9.097246 9.097441 9.097414 9.097486 9.097750 
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12 × 12 7.272099 7.272081 7.272120 7.271764 7.271749 7.271781 7.272038 7.271999 7.272061 7.272313 

14 × 14 5.387106 5.387088 5.387121 5.386737 5.386723 5.386756 5.387032 5.386996 5.387062 5.387289 

16 × 16 3.627674 3.627665 3.627691 3.627268 3.627247 3.627301 3.627472 3.627419 3.627541 3.627790 

18 × 18 1.966146 1.966123 1.966164 1.965785 1.965737 1.965812 1.965768 1.965735 1.965791 1.966122 

S
p

in
d
le

 

U
n

if
o

rm
 

6 × 6 16.618088 16.618063 16.618100 16.617935 16.617921 16.617952 16.618018 16.617956 16.618075 16.618302 

8 × 8 14.029460 14.029448 14.029480 14.029236 14.029220 14.029254 14.029394 14.029363 14.029419 14.029662 

10 × 10 11.426878 11.426857 11.426892 11.426593 11.426580 11.426620 11.426807 11.426790 11.426833 11.427097 

12 × 12 9.053164 9.053143 9.053186 9.052816 9.052796 9.052844 9.053110 9.053089 9.053144 9.053436 

14 × 14 6.704022 6.703993 6.704038 6.703612 6.703592 6.703628 6.703967 6.703923 6.703998 6.704238 

16 × 16 4.583129 4.583114 4.583161 4.582716 4.582688 4.582728 4.582961 4.582896 4.583003 4.583246 

18 × 18 2.514672 2.514641 2.514695 2.514279 2.514257 2.514307 2.514313 2.514295 2.514331 2.514656 

C
h
o

rd
 L

en
g

th
 

6 × 6 15.317080 15.317061 15.317091 15.316917 15.316907 15.316933 15.317006 15.316973 15.317042 15.317307 

8 × 8 13.190718 13.190699 13.190737 13.190518 13.190507 13.190527 13.190657 13.190622 13.190680 13.190979 

10 × 10 10.649905 10.649892 10.649932 10.649638 10.649623 10.649656 10.649837 10.649813 10.649861 10.650167 

12 × 12 8.318244 8.318226 8.318269 8.317902 8.317889 8.317915 8.318196 8.318173 8.318216 8.318483 

14 × 14 5.905771 5.905748 5.905784 5.905408 5.905392 5.905422 5.905713 5.905680 5.905739 5.905985 

16 × 16 3.768221 3.768197 3.768241 3.767844 3.767809 3.767879 3.768011 3.767966 3.768069 3.768353 

18 × 18 1.916861 1.916833 1.916884 1.916495 1.916466 1.916529 1.916481 1.916449 1.916515 1.916830 

C
en

tr
ip

et
al

 

6 × 6 15.585459 15.585445 15.585475 15.585299 15.585291 15.585316 15.585384 15.585354 15.585434 15.585659 

8 × 8 13.316914 13.316900 13.316931 13.316710 13.316705 13.316722 13.316860 13.316811 13.316898 13.317136 

10 × 10 10.780726 10.780708 10.780747 10.780447 10.780435 10.780464 10.780653 10.780626 10.780669 10.780897 

12 × 12 8.474587 8.474577 8.474606 8.474232 8.474214 8.474249 8.474533 8.474461 8.474572 8.474809 

14 × 14 6.126589 6.126571 6.126607 6.126192 6.126174 6.126218 6.126527 6.126470 6.126561 6.126793 

16 × 16 3.971608 3.971582 3.971624 3.971230 3.971208 3.971263 3.971416 3.971383 3.971463 3.971729 

18 × 18 2.050172 2.050156 2.050202 2.049828 2.049817 2.049847 2.049791 2.049769 2.049836 2.050128 

E
x
p

o
n

en
ti

al
 

6 × 6 15.344122 15.344103 15.344140 15.343960 15.343948 15.343968 15.344039 15.344024 15.344081 15.344327 

8 × 8 13.172991 13.172967 13.173009 13.172799 13.172787 13.172813 13.172939 13.172910 13.172973 13.173216 

10 × 10 10.637423 10.637403 10.637437 10.637157 10.637144 10.637179 10.637364 10.637319 10.637402 10.637621 

12 × 12 8.323099 8.323087 8.323112 8.322762 8.322748 8.322789 8.323043 8.323024 8.323069 8.323326 

14 × 14 5.946208 5.946189 5.946228 5.945827 5.945800 5.945840 5.946144 5.946111 5.946178 5.946391 

16 × 16 3.797351 3.797336 3.797372 3.796966 3.796931 3.797007 3.797138 3.797087 3.797194 3.797467 
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18 × 18 1.936860 1.936827 1.936902 1.936503 1.936483 1.936517 1.936487 1.936468 1.936501 1.936817 
O

il
ta

n
k
 

U
n

if
o

rm
 

6 × 6 22.128927 22.128883 22.128966 22.128687 22.128667 22.128726 22.128816 22.128760 22.128898 22.129226 

8 × 8 17.706385 17.706363 17.706396 17.706090 17.706078 17.706102 17.706267 17.706226 17.706305 17.706700 

10 × 10 13.164475 13.164465 13.164499 13.164144 13.164127 13.164158 13.164385 13.164369 13.164404 13.164787 

12 × 12 9.669612 9.669588 9.669633 9.669230 9.669214 9.669254 9.669557 9.669528 9.669599 9.669914 

14 × 14 7.025197 7.025174 7.025224 7.024766 7.024747 7.024800 7.025123 7.025092 7.025159 7.025431 

16 × 16 4.602799 4.602779 4.602829 4.602374 4.602351 4.602402 4.602617 4.602558 4.602665 4.602955 

18 × 18 2.702855 2.702826 2.702892 2.702458 2.702431 2.702497 2.702468 2.702441 2.702489 2.702826 

C
h
o

rd
 L

en
g

th
 

6 × 6 19.659938 19.659923 19.659956 19.659774 19.659755 19.659799 19.659845 19.659780 19.659871 19.660172 

8 × 8 15.407697 15.407672 15.407721 15.407472 15.407455 15.407500 15.407627 15.407580 15.407661 15.407933 

10 × 10 11.206485 11.206474 11.206505 11.206199 11.206188 11.206215 11.206423 11.206386 11.206463 11.206745 

12 × 12 8.182350 8.182324 8.182364 8.182003 8.181992 8.182015 8.182281 8.182249 8.182304 8.182572 

14 × 14 5.659288 5.659266 5.659304 5.658900 5.658877 5.658914 5.659233 5.659201 5.659260 5.659485 

16 × 16 3.368184 3.368160 3.368197 3.367790 3.367768 3.367816 3.367938 3.367897 3.367984 3.368280 

18 × 18 1.892461 1.892422 1.892485 1.892096 1.892073 1.892115 1.892063 1.892046 1.892091 1.892390 

C
en

tr
ip

et
al

 

6 × 6 20.215643 20.215611 20.215671 20.215441 20.215429 20.215452 20.215547 20.215478 20.215596 20.215953 

8 × 8 15.906606 15.906591 15.906619 15.906355 15.906335 15.906373 15.906526 15.906489 15.906544 15.906888 

10 × 10 11.575247 11.575224 11.575264 11.574943 11.574933 11.574961 11.575178 11.575156 11.575197 11.575495 

12 × 12 8.406694 8.406676 8.406707 8.406337 8.406325 8.406350 8.406626 8.406604 8.406643 8.406920 

14 × 14 5.980795 5.980779 5.980818 5.980400 5.980384 5.980412 5.980721 5.980681 5.980764 5.980997 

16 × 16 3.673238 3.673210 3.673282 3.672846 3.672827 3.672860 3.673003 3.672974 3.673041 3.673360 

18 × 18 2.070024 2.069999 2.070050 2.069673 2.069651 2.069703 2.069643 2.069621 2.069677 2.069978 

E
x
p

o
n

en
ti

al
 

6 × 6 19.651202 19.651176 19.651214 19.651028 19.651009 19.651054 19.651120 19.651071 19.651189 19.651440 

8 × 8 15.392180 15.392165 15.392193 15.391956 15.391944 15.391972 15.392115 15.392057 15.392145 15.392426 

10 × 10 11.150978 11.150959 11.151001 11.150699 11.150689 11.150711 11.150917 11.150871 11.150975 11.151213 

12 × 12 8.123162 8.123134 8.123188 8.122826 8.122810 8.122856 8.123094 8.123070 8.123109 8.123378 

14 × 14 5.689606 5.689573 5.689627 5.689210 5.689189 5.689228 5.689537 5.689503 5.689563 5.689804 

16 × 16 3.412465 3.412444 3.412487 3.412073 3.412060 3.412100 3.412226 3.412174 3.412282 3.412576 

18 × 18 1.921121 1.921103 1.921135 1.920772 1.920751 1.920797 1.920740 1.920703 1.920772 1.921040 

T
al

u
s 

B
o
n

e 

U
n

if
o

r

m
 6 × 6 27.183877 27.183848 27.183922 27.183623 27.183611 27.183648 27.183761 27.183698 27.183821 27.184267 

8 × 8 19.790979 19.790957 19.791002 19.790710 19.790696 19.790722 19.790893 19.790849 19.790946 19.791257 
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10 × 10 14.465811 14.465779 14.465842 14.465488 14.465478 14.465499 14.465732 14.465697 14.465777 14.466086 

12 × 12 11.273971 11.273964 11.273979 11.273607 11.273592 11.273622 11.273913 11.273891 11.273943 11.274231 

14 × 14 7.631272 7.631250 7.631290 7.630872 7.630857 7.630888 7.631205 7.631165 7.631253 7.631480 

16 × 16 5.218803 5.218775 5.218826 5.218412 5.218382 5.218439 5.218611 5.218566 5.218660 5.218926 

18 × 18 2.833902 2.833882 2.833930 2.833502 2.833458 2.833525 2.833501 2.833437 2.833533 2.833904 

C
h
o

rd
 L

en
g

th
 

6 × 6 25.675380 25.675353 25.675410 25.675169 25.675153 25.675183 25.675294 25.675260 25.675355 25.675751 

8 × 8 18.592853 18.592840 18.592869 18.592625 18.592609 18.592631 18.592774 18.592728 18.592840 18.593093 

10 × 10 14.150553 14.150529 14.150573 14.150275 14.150267 14.150290 14.150490 14.150455 14.150522 14.150769 

12 × 12 10.853885 10.853869 10.853903 10.853539 10.853531 10.853549 10.853824 10.853810 10.853843 10.854089 

14 × 14 6.617837 6.617818 6.617858 6.617476 6.617462 6.617505 6.617774 6.617749 6.617802 6.618030 

16 × 16 4.252371 4.252341 4.252387 4.252002 4.251982 4.252027 4.252145 4.252113 4.252181 4.252484 

18 × 18 2.045126 2.045099 2.045172 2.044746 2.044722 2.044779 2.044726 2.044684 2.044764 2.045113 

C
en

tr
ip

et
al

 

6 × 6 26.202041 26.202003 26.202071 26.201808 26.201787 26.201836 26.201946 26.201891 26.202037 26.202397 

8 × 8 18.876213 18.876189 18.876243 18.875977 18.875961 18.875990 18.876145 18.876110 18.876177 18.876482 

10 × 10 13.965323 13.965310 13.965344 13.965035 13.965024 13.965044 13.965259 13.965220 13.965297 13.965549 

12 × 12 10.767965 10.767953 10.767976 10.767632 10.767612 10.767646 10.767898 10.767877 10.767917 10.768179 

14 × 14 6.920044 6.920011 6.920060 6.919671 6.919652 6.919695 6.919987 6.919954 6.920017 6.920247 

16 × 16 4.559952 4.559940 4.559968 4.559594 4.559570 4.559610 4.559721 4.559664 4.559772 4.560049 

18 × 18 2.273549 2.273525 2.273564 2.273172 2.273151 2.273201 2.273138 2.273108 2.273180 2.273533 

E
x
p

o
n

en
ti

al
 

6 × 6 25.831085 25.831049 25.831118 25.830859 25.830848 25.830867 25.831003 25.830969 25.831023 25.831448 

8 × 8 18.626292 18.626269 18.626316 18.626055 18.626042 18.626070 18.626217 18.626180 18.626250 18.626535 

10 × 10 13.996566 13.996549 13.996589 13.996298 13.996290 13.996308 13.996495 13.996480 13.996514 13.996782 

12 × 12 10.754648 10.754629 10.754665 10.754310 10.754300 10.754321 10.754585 10.754562 10.754626 10.754879 

14 × 14 6.676344 6.676328 6.676356 6.675982 6.675960 6.675991 6.676285 6.676260 6.676332 6.676524 

16 × 16 4.326860 4.326826 4.326892 4.326499 4.326483 4.326530 4.326641 4.326596 4.326693 4.326967 

18 × 18 2.099645 2.099619 2.099670 2.099273 2.099256 2.099290 2.099241 2.099214 2.099279 2.099644 
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APPENDIX L: OPTIMISED SURFACE ERROR OF VARIOUS OPTIMISATION TECHNIQUES AND THE IMPROVED (B) 

SURFCE APPROXIMATION APPROACH FOR CN WITH DIFFERENT WIDTH AND LENGTH 

D
at

a 

P
ar

am
et

er
is

at
io

n
 

M
et

h
o
d
 

CN 

GA DE PSO 

B 
AVG MIN MAX AVG MIN MAX AVG MIN MAX 

C
u
b

e 

U
n

if
o

rm
 

4 × 16 45.795469 45.795430 45.795512 45.794933 45.794910 45.794954 45.795303 45.795241 45.795398 45.796012 

6 × 18 29.281720 29.281704 29.281747 29.281289 29.281270 29.281306 29.281598 29.281558 29.281632 29.282095 

8 × 20 19.655804 19.655775 19.655825 19.655324 19.655311 19.655340 19.655716 19.655666 19.655767 19.656191 

10 × 22 15.254146 15.254115 15.254174 15.253625 15.253593 15.253645 15.254079 15.254026 15.254119 15.254454 

12 × 24 10.924108 10.924061 10.924143 10.923597 10.923571 10.923629 10.923998 10.923975 10.924032 10.924310 

14 × 26 7.262369 7.262345 7.262407 7.261853 7.261821 7.261887 7.261972 7.261913 7.262030 7.262420 

16 × 28 3.874813 3.874776 3.874854 3.874307 3.874267 3.874366 3.874269 3.874232 3.874342 3.874686 

C
h
o

rd
 L

en
g

th
 

4 × 16 38.416339 38.416308 38.416396 38.415920 38.415899 38.415947 38.416196 38.416142 38.416249 38.416722 

6 × 18 28.368302 28.368260 28.368338 28.367879 28.367853 28.367894 28.368195 28.368122 28.368251 28.368689 

8 × 20 20.598419 20.598402 20.598445 20.597969 20.597942 20.597987 20.598345 20.598295 20.598391 20.598706 

10 × 22 16.925949 16.925927 16.925987 16.925407 16.925385 16.925448 16.925881 16.925816 16.925946 16.926239 

12 × 24 11.865427 11.865377 11.865459 11.864881 11.864850 11.864908 11.865332 11.865266 11.865371 11.865611 

14 × 26 6.946973 6.946942 6.947008 6.946444 6.946399 6.946470 6.946644 6.946590 6.946708 6.947204 

16 × 28 2.906980 2.906955 2.907011 2.906523 2.906487 2.906589 2.906451 2.906394 2.906476 2.906806 

C
en

tr
ip

et
al

 

4 × 16 41.097548 41.097516 41.097595 41.097078 41.097043 41.097103 41.097409 41.097351 41.097502 41.098115 

6 × 18 28.054884 28.054856 28.054927 28.054462 28.054445 28.054495 28.054782 28.054731 28.054832 28.055285 

8 × 20 19.360705 19.360682 19.360734 19.360250 19.360234 19.360266 19.360626 19.360563 19.360671 19.360944 

10 × 22 15.469135 15.469099 15.469164 15.468631 15.468603 15.468650 15.469063 15.469028 15.469093 15.469367 

12 × 24 10.978080 10.978044 10.978123 10.977568 10.977549 10.977608 10.977954 10.977911 10.977998 10.978313 

14 × 26 6.827747 6.827722 6.827760 6.827236 6.827213 6.827261 6.827324 6.827295 6.827400 6.827783 

16 × 28 3.173905 3.173854 3.173940 3.173451 3.173401 3.173479 3.173389 3.173342 3.173408 3.173775 
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E
x
p

o
n

en
ti

al
 

4 × 16 39.101872 39.101841 39.101888 39.101410 39.101387 39.101422 39.101707 39.101638 39.101794 39.102375 

6 × 18 28.037824 28.037811 28.037843 28.037397 28.037377 28.037426 28.037706 28.037665 28.037765 28.038141 

8 × 20 19.931909 19.931889 19.931946 19.931456 19.931438 19.931469 19.931814 19.931784 19.931872 19.932207 

10 × 22 16.220973 16.220957 16.220996 16.220454 16.220428 16.220489 16.220903 16.220868 16.220961 16.221275 

12 × 24 11.437603 11.437565 11.437636 11.437082 11.437056 11.437123 11.437482 11.437425 11.437543 11.437806 

14 × 26 6.843880 6.843828 6.843918 6.843357 6.843319 6.843403 6.843497 6.843451 6.843533 6.843952 

16 × 28 2.970620 2.970591 2.970671 2.970184 2.970159 2.970215 2.970091 2.970040 2.970131 2.970490 

S
p

h
er

e 

U
n

if
o

rm
 

4 × 16 14.902661 14.902636 14.902686 14.902148 14.902131 14.902180 14.902526 14.902463 14.902578 14.903185 

6 × 18 11.262480 11.262431 11.262515 11.262002 11.261990 11.262018 11.262368 11.262328 11.262411 11.262854 

8 × 20 9.377889 9.377857 9.377920 9.377409 9.377401 9.377421 9.377801 9.377757 9.377846 9.378245 

10 × 22 7.544304 7.544282 7.544338 7.543805 7.543778 7.543835 7.544237 7.544210 7.544288 7.544603 

12 × 24 5.801236 5.801213 5.801278 5.800757 5.800712 5.800784 5.801076 5.801034 5.801122 5.801424 

14 × 26 4.142463 4.142443 4.142479 4.141992 4.141950 4.142035 4.142055 4.141984 4.142078 4.142489 

16 × 28 2.364438 2.364407 2.364463 2.363941 2.363871 2.363986 2.363915 2.363900 2.363935 2.364249 

C
h
o

rd
 L

en
g

th
 

4 × 16 15.468706 15.468659 15.468741 15.468244 15.468226 15.468270 15.468572 15.468502 15.468644 15.469229 

6 × 18 11.147795 11.147784 11.147819 11.147459 11.147441 11.147480 11.147716 11.147677 11.147752 11.148058 

8 × 20 9.057850 9.057832 9.057867 9.057489 9.057474 9.057500 9.057787 9.057745 9.057834 9.058099 

10 × 22 7.138467 7.138436 7.138478 7.138019 7.137994 7.138037 7.138407 7.138366 7.138475 7.138703 

12 × 24 5.243005 5.242969 5.243034 5.242563 5.242541 5.242620 5.242811 5.242760 5.242869 5.243158 

14 × 26 3.534250 3.534236 3.534279 3.533816 3.533780 3.533852 3.533811 3.533790 3.533833 3.534287 

16 × 28 1.762630 1.762580 1.762662 1.762201 1.762167 1.762224 1.762099 1.762051 1.762132 1.762445 

C
en

tr
ip

et
al

 

4 × 16 13.902208 13.902179 13.902262 13.901781 13.901762 13.901811 13.902073 13.902030 13.902139 13.902640 

6 × 18 10.732429 10.732413 10.732467 10.732082 10.732073 10.732096 10.732360 10.732312 10.732390 10.732737 

8 × 20 8.908633 8.908615 8.908648 8.908222 8.908216 8.908230 8.908557 8.908527 8.908595 8.908904 

10 × 22 7.138571 7.138554 7.138606 7.138106 7.138086 7.138128 7.138487 7.138434 7.138528 7.138793 

12 × 24 5.379987 5.379969 5.380006 5.379528 5.379495 5.379560 5.379814 5.379740 5.379860 5.380170 

14 × 26 3.703290 3.703273 3.703307 3.702853 3.702807 3.702888 3.702850 3.702821 3.702878 3.703292 

16 × 28 1.946766 1.946741 1.946796 1.946309 1.946284 1.946351 1.946213 1.946176 1.946243 1.946529 

E
x
p

o
n

en
ti

al
 

4 × 16 14.539139 14.539113 14.539175 14.538659 14.538638 14.538691 14.538962 14.538865 14.539086 14.539610 

6 × 18 10.864020 10.863997 10.864046 10.863678 10.863669 10.863683 10.863938 10.863910 10.863957 10.864263 

8 × 20 8.923226 8.923200 8.923260 8.922852 8.922842 8.922869 8.923177 8.923139 8.923212 8.923461 
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10 × 22 7.089532 7.089515 7.089549 7.089083 7.089057 7.089115 7.089469 7.089432 7.089522 7.089783 

12 × 24 5.258545 5.258532 5.258569 5.258086 5.258050 5.258109 5.258363 5.258329 5.258411 5.258722 

14 × 26 3.571711 3.571670 3.571744 3.571259 3.571233 3.571280 3.571262 3.571211 3.571309 3.571697 

16 × 28 1.810042 1.810016 1.810069 1.809602 1.809558 1.809638 1.809520 1.809469 1.809550 1.809801 

S
p

in
d
le

 

U
n

if
o

rm
 

4 × 16 20.303136 20.303094 20.303178 20.302735 20.302718 20.302752 20.303027 20.302953 20.303078 20.303638 

6 × 18 15.444257 15.444216 15.444286 15.443798 15.443780 15.443814 15.444149 15.444115 15.444184 15.444657 

8 × 20 11.904988 11.904958 11.905007 11.904472 11.904460 11.904493 11.904913 11.904860 11.904950 11.905378 

10 × 22 8.973139 8.973107 8.973164 8.972601 8.972581 8.972631 8.973074 8.973038 8.973123 8.973447 

12 × 24 6.464246 6.464227 6.464286 6.463724 6.463712 6.463750 6.464101 6.464058 6.464137 6.464457 

14 × 26 4.250832 4.250798 4.250867 4.250345 4.250309 4.250403 4.250403 4.250300 4.250450 4.250889 

16 × 28 2.351893 2.351862 2.351919 2.351417 2.351372 2.351452 2.351374 2.351344 2.351421 2.351708 

C
h
o

rd
 L

en
g

th
 

4 × 16 19.169619 19.169556 19.169668 19.169169 19.169142 19.169189 19.169490 19.169452 19.169583 19.170128 

6 × 18 14.050294 14.050276 14.050318 14.049869 14.049854 14.049886 14.050193 14.050109 14.050259 14.050667 

8 × 20 10.725351 10.725334 10.725371 10.724896 10.724868 10.724912 10.725263 10.725226 10.725327 10.725676 

10 × 22 8.003482 8.003458 8.003506 8.002999 8.002984 8.003026 8.003394 8.003370 8.003415 8.003751 

12 × 24 5.649720 5.649682 5.649749 5.649234 5.649207 5.649261 5.649563 5.649537 5.649602 5.649897 

14 × 26 3.649062 3.649018 3.649105 3.648610 3.648560 3.648639 3.648600 3.648548 3.648637 3.649081 

16 × 28 1.955129 1.955089 1.955163 1.954713 1.954662 1.954740 1.954630 1.954605 1.954658 1.954901 

C
en

tr
ip

et
al

 

4 × 16 19.023646 19.023594 19.023667 19.023261 19.023236 19.023291 19.023539 19.023491 19.023585 19.024116 

6 × 18 14.433147 14.433109 14.433169 14.432691 14.432664 14.432709 14.433038 14.432965 14.433103 14.433540 

8 × 20 11.026715 11.026675 11.026744 11.026202 11.026185 11.026218 11.026613 11.026575 11.026642 11.027065 

10 × 22 8.253758 8.253738 8.253793 8.253257 8.253237 8.253272 8.253676 8.253633 8.253731 8.254017 

12 × 24 5.869515 5.869495 5.869538 5.869014 5.868990 5.869043 5.869352 5.869303 5.869416 5.869683 

14 × 26 3.776505 3.776475 3.776523 3.776039 3.776007 3.776080 3.776049 3.776012 3.776093 3.776540 

16 × 28 2.027849 2.027805 2.027900 2.027404 2.027384 2.027430 2.027321 2.027304 2.027348 2.027645 

E
x
p

o
n

en
ti

al
 

4 × 16 18.872991 18.872946 18.873022 18.872568 18.872540 18.872602 18.872859 18.872796 18.872953 18.873429 

6 × 18 14.087564 14.087550 14.087579 14.087121 14.087107 14.087139 14.087464 14.087445 14.087487 14.087943 

8 × 20 10.743640 10.743623 10.743659 10.743172 10.743143 10.743193 10.743554 10.743521 10.743599 10.743960 

10 × 22 8.024542 8.024519 8.024563 8.024060 8.024026 8.024085 8.024476 8.024448 8.024548 8.024803 

12 × 24 5.682923 5.682906 5.682942 5.682438 5.682424 5.682460 5.682757 5.682713 5.682817 5.683107 

14 × 26 3.665795 3.665757 3.665863 3.665348 3.665304 3.665380 3.665350 3.665321 3.665394 3.665819 
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16 × 28 1.965493 1.965444 1.965529 1.965071 1.965043 1.965097 1.964985 1.964954 1.965023 1.965280 
O

il
ta

n
k
 

U
n

if
o

rm
 

4 × 16 29.149124 29.149090 29.149150 29.148657 29.148621 29.148694 29.148979 29.148903 29.149062 29.149654 

6 × 18 19.829457 19.829426 19.829490 19.829005 19.828999 19.829016 19.829354 19.829305 19.829398 19.829836 

8 × 20 14.743819 14.743786 14.743843 14.743318 14.743299 14.743349 14.743733 14.743690 14.743765 14.744166 

10 × 22 10.947890 10.947874 10.947919 10.947344 10.947324 10.947363 10.947794 10.947749 10.947851 10.948206 

12 × 24 7.936495 7.936477 7.936522 7.935954 7.935929 7.935981 7.936368 7.936346 7.936418 7.936696 

14 × 26 5.592036 5.592016 5.592063 5.591531 5.591505 5.591575 5.591636 5.591579 5.591711 5.592089 

16 × 28 3.190484 3.190456 3.190528 3.189989 3.189948 3.190042 3.189967 3.189902 3.190000 3.190289 

C
h
o

rd
 L

en
g

th
 

4 × 16 26.909319 26.909278 26.909353 26.908865 26.908852 26.908885 26.909177 26.909132 26.909225 26.909804 

6 × 18 17.810741 17.810718 17.810769 17.810338 17.810321 17.810349 17.810626 17.810584 17.810675 17.811067 

8 × 20 13.121151 13.121134 13.121164 13.120788 13.120771 13.120799 13.121097 13.121069 13.121111 13.121388 

10 × 22 9.595158 9.595136 9.595193 9.594721 9.594709 9.594730 9.595106 9.595056 9.595150 9.595360 

12 × 24 6.754789 6.754765 6.754809 6.754323 6.754281 6.754354 6.754647 6.754595 6.754685 6.754982 

14 × 26 4.535308 4.535280 4.535340 4.534833 4.534812 4.534870 4.534890 4.534848 4.534929 4.535360 

16 × 28 2.367793 2.367772 2.367826 2.367375 2.367358 2.367401 2.367273 2.367231 2.367302 2.367612 

C
en

tr
ip

et
al

 

4 × 16 26.932710 26.932658 26.932743 26.932306 26.932292 26.932333 26.932575 26.932481 26.932622 26.933113 

6 × 18 18.275082 18.275065 18.275111 18.274678 18.274658 18.274693 18.274994 18.274973 18.275021 18.275420 

8 × 20 13.397975 13.397952 13.397995 13.397558 13.397546 13.397578 13.397899 13.397865 13.397928 13.398294 

10 × 22 9.848638 9.848627 9.848658 9.848166 9.848150 9.848187 9.848576 9.848549 9.848615 9.848888 

12 × 24 6.999554 6.999526 6.999569 6.999056 6.999029 6.999092 6.999420 6.999360 6.999472 6.999715 

14 × 26 4.765031 4.765000 4.765058 4.764570 4.764543 4.764603 4.764618 4.764555 4.764688 4.765088 

16 × 28 2.555902 2.555882 2.555923 2.555478 2.555446 2.555507 2.555373 2.555330 2.555395 2.555727 

E
x
p

o
n

en
ti

al
 

4 × 16 26.566191 26.566171 26.566219 26.565762 26.565736 26.565779 26.566058 26.566019 26.566140 26.566622 

6 × 18 17.828909 17.828896 17.828939 17.828509 17.828490 17.828522 17.828826 17.828794 17.828871 17.829253 

8 × 20 13.070579 13.070560 13.070599 13.070196 13.070193 13.070202 13.070517 13.070473 13.070554 13.070835 

10 × 22 9.580123 9.580110 9.580136 9.579678 9.579662 9.579691 9.580075 9.580027 9.580105 9.580364 

12 × 24 6.759860 6.759844 6.759891 6.759369 6.759343 6.759387 6.759735 6.759701 6.759773 6.760065 

14 × 26 4.561900 4.561873 4.561925 4.561434 4.561403 4.561463 4.561488 4.561439 4.561547 4.561951 

16 × 28 2.400860 2.400798 2.400898 2.400406 2.400350 2.400429 2.400311 2.400273 2.400352 2.400655 

T
al

u
s 

B
o
n

e 

U
n

if
o

r

m
 4 × 16 28.027069 28.027050 28.027104 28.026621 28.026596 28.026642 28.026939 28.026880 28.027048 28.027628 

6 × 18 18.233947 18.233928 18.233973 18.233578 18.233558 18.233596 18.233870 18.233797 18.233904 18.234296 
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8 × 20 14.132581 14.132557 14.132601 14.132142 14.132134 14.132154 14.132501 14.132458 14.132541 14.132923 

10 × 22 10.994991 10.994969 10.995010 10.994449 10.994430 10.994472 10.994916 10.994883 10.994947 10.995319 

12 × 24 7.964153 7.964130 7.964171 7.963597 7.963576 7.963635 7.964043 7.963946 7.964073 7.964382 

14 × 26 5.262009 5.261993 5.262035 5.261510 5.261474 5.261548 5.261624 5.261570 5.261687 5.262074 

16 × 28 3.080541 3.080520 3.080573 3.080065 3.080038 3.080105 3.080024 3.079982 3.080099 3.080396 

C
h
o

rd
 L

en
g

th
 

4 × 16 26.198166 26.198138 26.198206 26.197742 26.197719 26.197758 26.198010 26.197952 26.198092 26.198621 

6 × 18 18.895572 18.895543 18.895590 18.895120 18.895103 18.895143 18.895457 18.895392 18.895525 18.895910 

8 × 20 14.782232 14.782223 14.782255 14.781795 14.781776 14.781811 14.782152 14.782086 14.782193 14.782553 

10 × 22 10.601724 10.601709 10.601748 10.601234 10.601223 10.601246 10.601669 10.601648 10.601699 10.601987 

12 × 24 6.995798 6.995775 6.995834 6.995299 6.995277 6.995316 6.995696 6.995651 6.995736 6.996009 

14 × 26 4.346560 4.346527 4.346609 4.346098 4.346057 4.346140 4.346109 4.346056 4.346162 4.346587 

16 × 28 2.253989 2.253923 2.254027 2.253542 2.253510 2.253588 2.253469 2.253443 2.253504 2.253805 

C
en

tr
ip

et
al

 

4 × 16 25.535169 25.535117 25.535207 25.534743 25.534726 25.534768 25.535034 25.534970 25.535110 25.535604 

6 × 18 17.760337 17.760296 17.760373 17.759951 17.759939 17.759964 17.760264 17.760226 17.760299 17.760659 

8 × 20 13.874937 13.874906 13.874960 13.874509 13.874487 13.874544 13.874855 13.874804 13.874882 13.875225 

10 × 22 10.358636 10.358621 10.358661 10.358123 10.358091 10.358140 10.358560 10.358535 10.358586 10.358928 

12 × 24 7.170420 7.170398 7.170432 7.169889 7.169855 7.169922 7.170298 7.170249 7.170368 7.170618 

14 × 26 4.535505 4.535475 4.535545 4.535041 4.535022 4.535057 4.535061 4.535003 4.535085 4.535553 

16 × 28 2.450582 2.450553 2.450603 2.450147 2.450128 2.450171 2.450059 2.450016 2.450094 2.450417 

E
x
p

o
n

en
ti

al
 

4 × 16 25.449204 25.449181 25.449221 25.448796 25.448784 25.448813 25.449090 25.449007 25.449164 25.449586 

6 × 18 18.267931 18.267906 18.267961 18.267524 18.267490 18.267541 18.267856 18.267825 18.267883 18.268279 

8 × 20 14.299876 14.299863 14.299887 14.299442 14.299419 14.299478 14.299810 14.299759 14.299852 14.300186 

10 × 22 10.416240 10.416227 10.416264 10.415749 10.415727 10.415763 10.416172 10.416121 10.416210 10.416476 

12 × 24 6.993393 6.993369 6.993409 6.992867 6.992832 6.992897 6.993261 6.993226 6.993291 6.993589 

14 × 26 4.367806 4.367774 4.367840 4.367351 4.367302 4.367381 4.367380 4.367354 4.367434 4.367835 

16 × 28 2.295647 2.295613 2.295674 2.295196 2.295175 2.295247 2.295112 2.295080 2.295149 2.295462 
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APPENDIX M: CPU TIME OF VARIOUS OPTIMISATION TECHNIQUES FOR THE CN WITH THE SAME WIDTH AND 

LENGTH 

Data Parameterisation Method CN 
GA DE PSO 

AVG MIN MAX AVG MIN MAX AVG MIN MAX 

Cube 

Uniform 

6 × 6 0.388101 0.371044 0.406877 9.784655 9.500566 10.188149 13.412222 12.878369 14.075492 

8 × 8 0.456279 0.442464 0.515516 13.370592 12.561866 15.425672 20.213740 19.911071 21.026734 

10 × 10 0.551661 0.533666 0.611869 18.032840 17.221446 19.057133 29.153866 28.656376 29.684410 

12 × 12 0.665674 0.650137 0.709199 23.796476 23.414966 24.242876 39.804323 39.059117 40.696977 

14 × 14 0.804641 0.789030 0.829599 30.745474 29.882509 31.664061 52.813786 52.200012 53.957296 

16 × 16 0.955298 0.935253 1.004452 40.282178 38.497361 42.327701 68.724385 67.832329 69.812903 

18 × 18 1.150151 1.120507 1.179987 48.646868 46.647540 50.141018 86.705628 85.693464 89.265211 

Chord Length 

6 × 6 0.385994 0.376709 0.408491 10.583109 10.117027 10.888563 13.045490 12.793874 13.364637 

8 × 8 0.457684 0.442497 0.552923 14.206907 13.519582 15.094221 19.692966 19.392474 20.063678 

10 × 10 0.596087 0.554687 0.639495 19.231021 18.882349 19.664623 28.593408 28.334574 28.927130 

12 × 12 0.662576 0.638658 0.716030 25.401821 24.957085 26.199232 39.661321 39.156056 40.193459 

14 × 14 0.827267 0.797521 0.888658 32.193756 30.294066 33.778259 53.466995 52.115401 56.176835 

16 × 16 0.953373 0.924163 1.004376 39.197594 37.914932 40.954557 66.720190 65.715962 68.126311 

18 × 18 1.165943 1.131108 1.199119 48.180109 47.169969 49.553052 82.798292 82.525231 83.094313 

Centripetal 

6 × 6 0.393043 0.372152 0.414902 10.051726 9.725838 10.620063 12.436757 12.362741 12.498526 

8 × 8 0.460381 0.447248 0.491504 13.601745 13.138909 14.231219 18.801053 18.761502 18.915378 

10 × 10 0.544158 0.532821 0.568167 17.918663 17.460769 18.910314 27.390550 27.311756 27.445044 

12 × 12 0.666268 0.644102 0.695273 24.226109 23.015319 25.931873 37.997220 37.918152 38.149257 

14 × 14 0.799284 0.784212 0.819481 31.696470 30.023788 34.281164 50.731034 50.531158 50.898128 

16 × 16 0.945357 0.920410 0.979257 38.559256 37.695267 39.792695 65.700416 65.569848 65.831555 

18 × 18 1.127152 1.093820 1.206800 48.310609 46.562376 50.343837 82.710592 82.553832 83.008144 

Exponential 

6 × 6 0.387000 0.371558 0.417289 10.018397 9.774976 11.158660 12.401173 12.322330 12.514337 

8 × 8 0.453686 0.440665 0.487918 13.671929 13.250608 14.045888 18.761589 18.711072 18.834599 

10 × 10 0.538981 0.526420 0.565994 18.250996 17.199006 20.187655 27.394120 27.295364 27.590390 
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12 × 12 0.652221 0.635979 0.710220 23.560597 22.648198 24.665452 37.975608 37.874426 38.076041 

14 × 14 0.797540 0.781307 0.830393 30.041849 29.373025 30.943339 50.743191 50.663095 50.826910 

16 × 16 0.959945 0.918628 1.049326 38.449124 36.838217 39.618502 65.699977 65.553912 65.902556 

18 × 18 1.161302 1.110376 1.271916 48.021365 46.902010 49.413085 82.633427 82.463817 82.816525 

Sphere 

Uniform 

6 × 6 0.399241 0.371659 0.437014 9.837910 9.632968 10.080606 12.375842 12.324711 12.511008 

8 × 8 0.456525 0.443967 0.489051 13.242299 13.095354 13.568987 18.823946 18.747302 18.930457 

10 × 10 0.566311 0.535029 0.606290 18.079608 17.626956 18.519668 27.504707 27.329324 28.316209 

12 × 12 0.674988 0.646524 0.754229 24.082228 23.883318 24.240623 38.012077 37.887302 38.204602 

14 × 14 0.805602 0.789703 0.836870 30.731407 30.323911 31.352745 50.821895 50.680041 50.940250 

16 × 16 0.954310 0.927872 1.067282 39.204757 38.286835 40.277052 65.762586 65.643237 65.912855 

18 × 18 1.139046 1.099528 1.220061 47.478593 47.218318 47.792107 82.644310 82.422966 82.792910 

Chord Length 

6 × 6 0.382363 0.371708 0.400797 9.779920 9.621759 10.211354 12.402161 12.358626 12.462243 

8 × 8 0.456673 0.441530 0.487623 13.280685 13.038715 13.546661 18.813936 18.752790 18.865985 

10 × 10 0.571990 0.538487 0.682671 18.050691 17.345046 19.400738 27.434574 27.378796 27.506148 

12 × 12 0.682423 0.650598 0.738676 23.949270 23.237717 25.120936 37.998155 37.908061 38.197108 

14 × 14 0.806284 0.771440 0.832470 30.797081 29.545134 31.892253 50.815077 50.658859 50.983579 

16 × 16 0.954144 0.927805 0.995089 38.331058 37.765191 39.216843 65.681214 65.543598 65.798160 

18 × 18 1.163995 1.121544 1.245875 47.180600 46.251938 48.552511 82.656766 82.503648 82.739091 

Centripetal 

6 × 6 0.390231 0.372077 0.454510 9.435519 9.337962 9.601770 12.404148 12.356542 12.514893 

8 × 8 0.451730 0.439732 0.508523 12.799772 12.747817 12.887440 18.854089 18.794894 18.984032 

10 × 10 0.556134 0.535137 0.588780 17.427896 17.252213 17.736386 27.451083 27.357400 27.520412 

12 × 12 0.661353 0.641322 0.710930 22.747423 22.616844 22.833141 38.021734 37.918866 38.109729 

14 × 14 0.787827 0.767485 0.819854 29.428674 29.289432 29.549356 50.896017 50.642499 51.172291 

16 × 16 0.946622 0.923220 1.002346 36.976405 36.783689 37.181790 65.790389 65.598421 66.202952 

18 × 18 1.122970 1.097627 1.168021 48.909632 46.115113 51.908745 82.709865 82.600571 82.808898 

Exponential 

6 × 6 0.377316 0.370529 0.387918 10.081694 9.563371 10.778017 12.413235 12.327561 12.511627 

8 × 8 0.450349 0.439457 0.487766 13.356826 13.063144 13.850290 18.850946 18.750676 18.926576 

10 × 10 0.545249 0.531150 0.573502 18.170022 17.991084 18.601480 27.442088 27.388248 27.502685 

12 × 12 0.657924 0.639698 0.684147 23.717066 23.039606 24.671102 38.051404 37.948127 38.141998 

14 × 14 0.790362 0.773243 0.808492 31.880794 30.916892 33.211994 50.839484 50.715683 50.919316 

16 × 16 0.940916 0.923455 0.999397 39.129381 37.471900 42.077283 65.789201 65.628422 65.970328 
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18 × 18 1.118685 1.096539 1.158663 48.999313 46.574008 53.640809 82.797716 82.505856 83.243306 

Spindle 

Uniform 

6 × 6 0.379258 0.369114 0.409242 10.111463 10.012816 10.213570 13.231119 12.717621 13.602176 

8 × 8 0.445928 0.440933 0.461389 13.755714 13.602216 14.047185 20.001718 19.738210 20.283845 

10 × 10 0.544139 0.529514 0.570193 18.746636 18.374219 19.350392 29.084728 28.762763 29.327696 

12 × 12 0.650751 0.638101 0.683812 25.210712 24.740848 25.702103 40.349682 39.717528 41.174531 

14 × 14 0.789964 0.766224 0.860277 32.000360 31.388828 32.671752 53.838631 53.332424 54.313190 

16 × 16 0.941639 0.927372 0.979413 39.927558 39.620927 40.778361 69.667273 68.928420 70.164931 

18 × 18 1.128398 1.098144 1.214000 46.812299 45.688033 48.824579 87.974729 87.065816 88.961361 

Chord Length 

6 × 6 0.377691 0.368230 0.402624 9.611294 9.370712 9.818911 13.201724 12.897148 13.437537 

8 × 8 0.445688 0.437332 0.470018 12.918674 12.734442 13.183087 20.117308 19.754905 20.668642 

10 × 10 0.539381 0.531177 0.570812 17.473189 17.194199 17.903944 29.073715 28.709815 29.453660 

12 × 12 0.652302 0.643810 0.683973 23.285116 22.934653 23.499799 40.364613 40.030871 40.629624 

14 × 14 0.788496 0.767081 0.818211 30.134502 29.447079 30.912911 53.894736 53.438681 54.371645 

16 × 16 0.946962 0.917081 1.013430 37.794691 36.893959 38.950116 69.917374 68.916749 70.606390 

18 × 18 1.115344 1.089350 1.139273 47.000401 46.447177 47.568784 87.509664 86.521463 88.361061 

Centripetal 

6 × 6 0.373296 0.369889 0.380376 9.589677 9.297864 9.899340 13.190936 12.904458 13.623859 

8 × 8 0.454025 0.436501 0.515193 13.223757 12.895499 13.918906 20.076197 19.617591 21.601034 

10 × 10 0.548788 0.534351 0.624160 17.626077 17.351623 17.959225 29.567346 27.872062 31.512917 

12 × 12 0.657203 0.641013 0.687204 23.320100 23.119570 23.672435 39.693426 38.565783 40.739972 

14 × 14 0.791055 0.767819 0.813855 29.835309 29.144067 31.011191 53.219940 52.212673 56.104017 

16 × 16 0.952834 0.937404 1.012233 38.026783 37.176081 38.962237 69.889700 66.312771 75.851413 

18 × 18 1.131629 1.086124 1.171234 47.074720 46.740787 47.993800 87.529694 84.112711 89.725112 

Exponential 

6 × 6 0.380723 0.370353 0.423879 9.752976 9.487419 10.137441 12.997209 12.461254 13.398008 

8 × 8 0.445054 0.437207 0.474083 13.189576 12.859570 13.560253 19.784321 18.915567 20.383535 

10 × 10 0.541281 0.530026 0.592089 17.826801 17.592418 18.098436 28.859579 27.688770 29.801726 

12 × 12 0.647844 0.639278 0.656232 23.483841 22.983889 23.900709 38.496548 38.149737 39.459727 

14 × 14 0.791579 0.780431 0.828424 30.389172 29.772166 31.002731 51.895685 50.972045 56.037723 

16 × 16 0.940724 0.917528 0.964503 38.155543 37.749463 39.023225 69.715254 65.884600 72.678988 

18 × 18 1.112614 1.095986 1.158213 47.529165 46.821345 51.176938 86.719616 83.589167 88.901618 

Oiltank Uniform 
6 × 6 0.383457 0.368813 0.437762 9.657258 9.307733 10.095216 13.457315 12.598560 14.486503 

8 × 8 0.448783 0.437523 0.465374 13.241409 12.899018 13.472907 20.138849 19.445407 21.304659 
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10 × 10 0.541388 0.531265 0.575395 17.936720 17.296382 18.456767 29.881269 29.134411 30.853477 

12 × 12 0.650556 0.636798 0.690738 23.293606 22.961287 23.814253 39.797772 38.113750 41.605893 

14 × 14 0.798580 0.777113 0.910539 30.396819 29.893125 31.085297 53.769599 51.123556 57.005131 

16 × 16 0.927812 0.913791 0.941325 38.004596 37.318261 38.536710 71.022142 69.472487 76.433765 

18 × 18 1.120774 1.092686 1.172348 47.090571 46.303718 48.317754 83.675955 82.867531 87.849739 

Chord Length 

6 × 6 0.382264 0.369978 0.417084 9.540042 9.355105 9.724281 12.513908 12.408529 12.619443 

8 × 8 0.445035 0.435606 0.457500 13.014391 12.564725 14.222392 18.929773 18.844583 19.035367 

10 × 10 0.542582 0.528731 0.584714 17.286791 17.076009 17.529636 27.639102 27.452717 28.035353 

12 × 12 0.659364 0.639205 0.701657 23.552750 22.632497 24.998487 38.312022 38.137983 38.505550 

14 × 14 0.789343 0.773945 0.817781 29.181132 29.080497 29.240823 51.026243 50.823603 51.201508 

16 × 16 0.942646 0.925224 0.968144 36.806673 36.707924 36.940324 66.079259 65.805412 66.418680 

18 × 18 1.130738 1.097409 1.179630 45.556324 45.394947 45.819603 83.165122 82.804180 83.448326 

Centripetal 

6 × 6 0.378871 0.371697 0.391895 9.370537 9.288292 9.513158 12.977551 12.445149 13.447357 

8 × 8 0.480010 0.447468 0.599101 12.718234 12.640397 12.819807 20.129622 20.034743 20.200431 

10 × 10 0.548274 0.534557 0.597429 17.180196 17.108562 17.330511 27.962233 27.412089 29.336449 

12 × 12 0.650493 0.644022 0.660896 22.647536 22.525543 22.822693 38.204772 38.070603 38.381336 

14 × 14 0.798193 0.768713 0.901073 29.234019 29.128744 29.333935 51.061032 50.864291 51.477944 

16 × 16 0.947105 0.922093 1.022737 36.869832 36.640663 37.317778 65.936009 65.729993 66.099511 

18 × 18 1.123499 1.090928 1.160942 45.514452 45.339071 45.673303 82.981224 82.854433 83.137481 

Exponential 

6 × 6 0.388870 0.371023 0.422425 9.345657 9.288890 9.439652 12.483001 12.391823 12.600919 

8 × 8 0.441662 0.437852 0.445717 12.866340 12.668555 13.025436 18.934489 18.800341 19.107814 

10 × 10 0.541167 0.528992 0.586010 17.284900 17.094770 17.597833 27.563800 27.485670 27.646007 

12 × 12 0.654709 0.641236 0.686330 22.654800 22.521348 22.780945 38.250206 38.101173 38.540756 

14 × 14 0.791874 0.772621 0.823968 29.291644 29.175299 29.378927 51.051257 50.828553 51.215794 

16 × 16 0.933139 0.917837 0.957118 36.779961 36.679767 36.900729 66.025633 65.897802 66.243874 

18 × 18 1.137284 1.104066 1.189842 45.530106 45.426719 45.628240 83.007036 82.920627 83.142998 

Talus Bone Uniform 

6 × 6 0.382757 0.371273 0.427274 10.980600 10.193953 12.723333 12.398625 12.330603 12.466558 

8 × 8 0.452801 0.438280 0.470623 13.962384 13.379414 15.199974 18.818016 18.761294 18.890138 

10 × 10 0.552571 0.535885 0.576235 18.463178 18.360257 18.585206 27.373460 27.294143 27.467798 

12 × 12 0.653408 0.640513 0.667463 24.649889 23.690236 26.739567 38.042318 37.850333 38.213254 

14 × 14 0.786714 0.776167 0.804259 31.077642 30.561439 32.915513 50.833940 50.720695 50.998356 
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16 × 16 0.955642 0.928613 1.031993 40.273041 38.756273 42.288990 65.697530 65.558422 65.867277 

18 × 18 1.122556 1.091483 1.177887 47.584336 45.760376 51.411048 82.715262 82.591350 82.876159 

Chord Length 

6 × 6 0.377258 0.370326 0.400317 9.613801 9.397844 9.977116 12.466967 12.349091 12.900097 

8 × 8 0.456755 0.440500 0.504955 12.944817 12.771450 13.338056 18.845375 18.753519 19.142979 

10 × 10 0.548374 0.530609 0.574447 17.559637 17.155349 17.956261 27.402057 27.289941 27.576436 

12 × 12 0.654465 0.640790 0.680016 22.934500 22.677445 23.160848 38.003041 37.855539 38.159569 

14 × 14 0.790604 0.773964 0.822196 29.657888 29.295887 30.054841 50.776327 50.638070 51.002820 

16 × 16 0.955194 0.921739 1.031204 38.617635 37.491469 39.325440 65.692400 65.601154 65.824135 

18 × 18 1.169423 1.123157 1.392300 47.962100 46.596477 51.609079 82.650353 82.464608 82.897220 

Centripetal 

6 × 6 0.390660 0.375472 0.430215 9.787143 9.592203 10.053250 12.441628 12.365017 12.564697 

8 × 8 0.447817 0.443023 0.457022 13.082653 12.989034 13.276949 18.821418 18.757341 18.923995 

10 × 10 0.553251 0.531909 0.609344 17.957685 17.362027 18.377387 27.415558 27.337321 27.484031 

12 × 12 0.680065 0.648095 0.826572 23.277543 22.999903 23.618524 40.136898 37.946488 41.851388 

14 × 14 0.787972 0.774992 0.813692 30.143077 29.837447 30.443598 56.389968 53.733926 59.938439 

16 × 16 0.949749 0.920407 1.031577 37.465811 36.763701 38.004666 69.661093 68.624276 71.684634 

18 × 18 1.122199 1.092062 1.193610 47.700055 46.854601 48.786031 88.997905 87.347960 91.912181 

Exponential 

6 × 6 0.384612 0.372054 0.421802 9.787312 9.478289 10.115349 13.509589 13.242207 14.144161 

8 × 8 0.458964 0.443112 0.499785 12.915920 12.691664 13.085092 20.245841 19.841358 21.232193 

10 × 10 0.538080 0.529707 0.554080 17.614419 17.151033 18.552175 29.479141 28.502910 31.689328 

12 × 12 0.651129 0.638270 0.676715 23.509673 22.724579 25.084944 40.131778 39.508256 40.891120 

14 × 14 0.794032 0.772861 0.867894 31.334783 29.809458 33.759972 54.142484 53.624439 54.704796 

16 × 16 0.941438 0.914567 0.979636 40.274351 39.633289 42.321743 69.699028 69.094768 70.258235 

18 × 18 1.126533 1.088050 1.180825 49.573273 48.886464 50.902446 87.906294 87.431624 88.739037 
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APPENDIX N: CPU TIME OF VARIOUS OPTIMISATION TECHNIQUES FOR CN WITH DIFFERENT WIDTH AND 

LENGTH 

Data Parameterisation Method CN 
GA DE PSO 

AVG MIN MAX AVG MIN MAX AVG MIN MAX 

Cube 

Uniform 

4 × 16 0.591043 0.563247 0.627139 15.651911 15.146953 15.900295 20.341968 19.905598 21.612305 

6 × 18 0.739647 0.684899 0.858069 22.608026 21.730103 23.581059 30.828541 30.543928 31.423699 

8 × 20 0.848386 0.816134 0.915082 29.809014 28.726197 30.491131 43.208668 42.934889 43.319473 

10 × 22 1.004346 0.966378 1.118221 38.118036 36.450864 41.140287 58.288716 58.178429 58.390016 

12 × 24 1.150396 1.131633 1.172620 48.299701 47.225966 51.553303 74.955542 74.589211 75.328012 

14 × 26 1.403912 1.341344 1.543191 58.074676 57.869720 58.338188 93.793985 93.232008 94.159070 

16 × 28 1.595199 1.549344 1.693442 69.684311 67.611260 75.348082 114.815637 114.708564 114.972957 

Chord Length 

4 × 16 0.586852 0.562976 0.626034 15.906646 15.515463 16.248191 19.997045 19.921802 20.055761 

6 × 18 0.692003 0.675845 0.719280 22.366626 21.844897 23.193834 30.606698 30.484934 30.664336 

8 × 20 0.820347 0.802698 0.854111 30.312199 29.319936 31.614619 43.145565 42.963480 43.247215 

10 × 22 1.003053 0.984724 1.031228 38.185215 37.181548 39.149391 58.132617 58.037277 58.196552 

12 × 24 1.177196 1.144881 1.212242 48.080122 45.103756 51.840441 74.772719 74.318658 74.922771 

14 × 26 1.395062 1.346595 1.471354 58.314024 57.530856 61.822197 94.024402 93.775893 95.038272 

16 × 28 1.595161 1.541156 1.662904 69.575520 68.149731 74.097105 114.753861 114.618758 115.062855 

Centripetal 

4 × 16 0.596135 0.572755 0.636654 16.050339 15.069983 17.308587 20.020958 19.973979 20.092280 

6 × 18 0.719649 0.677840 0.765636 22.548029 21.146208 23.662818 30.616195 30.503794 30.796898 

8 × 20 0.858035 0.813498 0.968608 29.368038 27.294956 31.674424 43.178927 42.993202 43.251931 

10 × 22 1.039117 0.977386 1.163726 36.147582 35.449274 37.757092 58.115463 57.810826 58.287148 

12 × 24 1.268411 1.136404 1.516420 48.439792 46.295820 53.667798 74.944777 74.505619 75.149217 

14 × 26 1.453443 1.387438 1.594899 57.788239 55.575871 61.655967 93.865229 93.305670 94.051859 

16 × 28 1.609991 1.577280 1.700811 71.637581 66.473938 80.009985 114.775157 114.595971 115.063068 

Exponential 

4 × 16 0.591156 0.572007 0.639764 16.742784 16.104852 17.349766 20.003828 19.945071 20.075743 

6 × 18 0.693831 0.682983 0.718253 23.380553 22.333529 25.066284 30.628056 30.530850 30.723241 

8 × 20 0.835661 0.823974 0.858746 32.631433 29.892702 36.842591 43.276836 43.115338 43.577870 
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10 × 22 0.997230 0.969420 1.035753 40.037628 38.289862 43.464525 58.151406 58.083568 58.220393 

12 × 24 1.168312 1.135082 1.207637 50.138069 48.369598 54.072068 74.843972 74.402293 75.047434 

14 × 26 1.395134 1.345207 1.566686 61.768943 58.251633 68.591728 93.909152 93.297875 94.306267 

16 × 28 1.697715 1.608249 1.867496 74.347790 70.220396 80.399789 114.565720 113.902655 114.850199 

Sphere 

Uniform 

4 × 16 0.612037 0.574766 0.654357 17.356065 15.547736 19.395754 20.112414 20.049629 20.342152 

6 × 18 0.730030 0.700064 0.756300 23.867446 23.611099 24.107781 30.746902 30.697877 30.781601 

8 × 20 0.865364 0.838576 0.912586 28.243108 28.025792 28.620513 43.301569 43.234621 43.403717 

10 × 22 1.109512 0.999368 1.287794 36.160680 35.969323 36.317603 58.239345 58.160402 58.317952 

12 × 24 1.185662 1.143028 1.261248 45.153967 44.926380 45.462773 75.009262 74.568783 75.141129 

14 × 26 1.399523 1.332207 1.463546 55.379885 55.121846 55.561048 93.907316 93.304903 94.281968 

16 × 28 1.599161 1.526571 1.700846 66.611092 66.408165 66.840593 114.751095 113.870109 115.727930 

Chord Length 

4 × 16 0.579279 0.563624 0.606861 15.503513 15.364843 15.637961 20.041783 19.993896 20.080735 

6 × 18 0.701360 0.684760 0.771361 21.325386 21.194819 21.432662 30.722097 30.619289 30.761191 

8 × 20 0.845528 0.813179 0.881447 28.097600 27.803029 28.326106 43.247603 42.883567 43.390083 

10 × 22 0.979687 0.963833 1.024433 36.259180 35.968497 36.945132 58.258856 58.175954 58.378689 

12 × 24 1.184211 1.143290 1.238936 48.288054 47.637118 48.597335 75.022456 74.953341 75.142240 

14 × 26 1.368187 1.334417 1.436768 59.702928 59.327667 60.006821 93.928757 93.508758 94.374403 

16 × 28 1.575794 1.550982 1.609686 69.348078 66.150620 71.678535 114.656833 113.952084 114.893018 

Centripetal 

4 × 16 0.588594 0.562068 0.629174 15.462552 15.302797 15.679351 20.430530 20.061134 21.213174 

6 × 18 0.696334 0.682528 0.723860 21.297464 21.187621 21.419268 32.659442 31.606808 33.578256 

8 × 20 0.847657 0.822385 0.878182 27.880329 27.704803 28.068755 45.934237 43.341133 50.922151 

10 × 22 0.985310 0.968863 1.006166 36.006901 35.808787 36.211474 60.345490 58.111254 63.103667 

12 × 24 1.162694 1.139436 1.208534 44.894281 44.682565 45.114358 78.436884 75.924419 81.880155 

14 × 26 1.364125 1.328295 1.423229 55.179087 54.992523 55.472841 98.440177 94.363129 100.449915 

16 × 28 1.564942 1.541750 1.605204 66.183926 65.934240 66.381341 122.244476 118.617185 125.597890 

Exponential 

4 × 16 0.578964 0.562042 0.620798 15.381274 15.233415 15.498959 21.589128 21.142736 22.731525 

6 × 18 0.698661 0.685717 0.731004 21.256341 21.106464 21.387941 33.251748 32.321225 34.333319 

8 × 20 0.831722 0.803529 0.877351 27.983573 27.831595 28.281182 47.822016 47.337418 48.647393 

10 × 22 0.985188 0.967767 1.005582 35.983820 35.862522 36.173330 62.463962 61.031141 63.797108 

12 × 24 1.152317 1.127692 1.173363 44.891201 44.609671 45.061581 79.550363 78.911531 80.015241 

14 × 26 1.362001 1.338063 1.383127 55.118841 55.045249 55.194527 99.111574 98.440600 99.659962 
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16 × 28 1.574906 1.537212 1.632797 66.317884 66.136395 66.641761 121.395298 120.363804 122.418268 

Spindle 

Uniform 

4 × 16 0.586838 0.561059 0.729726 15.320410 15.146636 15.492929 21.247223 21.011839 21.667630 

6 × 18 0.694750 0.667737 0.750800 21.136968 21.044857 21.260252 31.617925 31.001073 32.661324 

8 × 20 0.836279 0.801783 0.899233 27.954431 27.784321 28.123190 43.842669 43.611679 44.131528 

10 × 22 0.976094 0.955801 1.004767 35.983486 35.886674 36.078018 58.836626 58.724988 58.982474 

12 × 24 1.148239 1.117850 1.187160 44.802148 44.524665 44.902920 75.707250 75.484728 75.887721 

14 × 26 1.393541 1.329868 1.541141 54.884767 54.682529 55.077740 97.635846 94.666879 103.187729 

16 × 28 1.579839 1.541370 1.632134 65.915996 65.706715 66.116695 123.497214 119.669187 129.900431 

Chord Length 

4 × 16 0.567494 0.553567 0.591081 15.364037 15.269317 15.422795 21.285791 21.027713 21.552254 

6 × 18 0.700759 0.677480 0.744270 21.171089 21.063722 21.375393 33.195891 31.907020 34.639082 

8 × 20 0.828756 0.801222 0.889053 27.924374 27.755257 28.013886 46.052688 45.578826 47.252158 

10 × 22 0.980832 0.964903 1.023973 35.905873 35.551847 36.343905 61.976504 60.642064 64.082573 

12 × 24 1.179041 1.134775 1.397371 44.839801 44.725211 45.042589 80.030816 78.763262 81.863866 

14 × 26 1.428508 1.336190 1.621330 54.881317 54.715436 54.977966 101.096280 99.036040 103.060893 

16 × 28 1.564394 1.535936 1.645911 65.994695 65.717291 66.320030 122.643763 121.453400 124.152609 

Centripetal 

4 × 16 0.582793 0.556297 0.627398 15.353616 15.264652 15.562145 21.513359 21.038754 22.314871 

6 × 18 0.689854 0.675301 0.732897 21.121571 20.970719 21.257299 32.607861 32.171506 32.927922 

8 × 20 0.835003 0.807335 0.900578 27.855852 27.763438 27.948660 45.938474 45.409568 46.361467 

10 × 22 0.981428 0.957876 0.992468 35.887680 35.644112 36.046450 61.813699 61.307750 62.394765 

12 × 24 1.144271 1.122219 1.161745 44.849557 44.592495 45.132374 79.314098 78.557655 81.346112 

14 × 26 1.354391 1.334254 1.389894 55.072843 54.769977 55.589696 99.205564 98.054732 100.883410 

16 × 28 1.577983 1.537646 1.617448 70.740586 65.728494 74.495328 121.844101 120.240770 123.230783 

Exponential 

4 × 16 0.570725 0.556716 0.636562 17.332781 15.485129 19.182170 21.152731 20.839127 21.364081 

6 × 18 0.703629 0.674907 0.819648 23.796082 22.300152 26.427910 32.346015 32.004818 33.215194 

8 × 20 0.854620 0.825496 0.884548 30.799544 29.055816 34.242564 45.461345 45.272974 45.647774 

10 × 22 1.031150 0.984631 1.076106 38.930154 37.482012 40.453657 61.016196 60.669912 61.745735 

12 × 24 1.187182 1.154661 1.261273 47.250221 45.760485 49.934564 78.622841 78.158778 79.955906 

14 × 26 1.387675 1.355736 1.442383 56.679949 55.869948 60.189400 100.047564 98.494069 102.146919 

16 × 28 1.619726 1.536456 1.741546 73.022933 69.451070 77.374287 123.066624 120.605328 130.466430 

Oiltank Uniform 
4 × 16 0.597757 0.573778 0.620973 17.959995 17.152539 19.665036 21.493118 21.016233 21.862320 

6 × 18 0.722108 0.690122 0.772995 25.048991 23.823848 26.320465 32.930282 32.500726 33.900374 
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8 × 20 0.843287 0.815232 0.880089 30.745225 29.111051 33.470097 45.845590 45.170128 46.595521 

10 × 22 1.007278 0.983544 1.033547 38.506784 38.012806 40.236376 61.500207 60.758329 62.268408 

12 × 24 1.173844 1.143008 1.208256 47.628593 47.358842 47.844646 78.821835 77.834549 79.866086 

14 × 26 1.384324 1.330275 1.438173 55.072192 54.344717 55.532536 99.724451 98.266908 101.531211 

16 × 28 1.649300 1.541569 1.782169 65.132682 64.004813 65.991436 122.175443 121.111021 123.345317 

Chord Length 

4 × 16 0.608104 0.556610 0.817141 15.283098 15.152386 15.339689 21.528301 20.999459 22.276042 

6 × 18 0.704597 0.670145 0.785597 20.994082 20.921649 21.053370 32.862304 32.049560 33.352012 

8 × 20 0.829118 0.804201 0.905826 27.761828 27.598896 28.094516 46.208198 45.378588 46.852399 

10 × 22 0.991557 0.959747 1.081490 35.635930 35.517460 35.789401 62.590806 61.185396 64.450570 

12 × 24 1.145701 1.132211 1.186624 44.496126 44.276250 44.790530 79.872424 78.344727 82.890987 

14 × 26 1.354315 1.338341 1.393342 53.815391 53.397770 54.693792 99.541969 98.141881 101.003364 

16 × 28 1.580236 1.538629 1.626827 64.215986 64.025538 64.379131 121.600708 120.499340 122.638988 

Centripetal 

4 × 16 0.579556 0.559627 0.609467 14.766338 14.623469 14.866158 21.986736 21.238878 23.322195 

6 × 18 0.695507 0.672668 0.745236 20.458448 20.302497 20.577630 32.666693 32.200807 33.186179 

8 × 20 0.829590 0.797621 0.914912 27.053456 26.874470 27.286766 44.210332 43.809581 45.592680 

10 × 22 0.989596 0.959219 1.046571 34.934592 34.784505 35.100661 59.195845 59.076195 59.325704 

12 × 24 1.156482 1.122337 1.270826 43.431872 43.217008 43.660599 76.076932 75.854023 76.370047 

14 × 26 1.358330 1.310792 1.418749 53.832041 53.224696 56.958809 95.092137 94.926030 95.283912 

16 × 28 1.578843 1.505062 1.618789 66.539634 64.719433 71.387395 116.199254 115.775157 116.647066 

Exponential 

4 × 16 0.571319 0.554977 0.611887 17.954970 15.823586 20.253592 20.379396 20.263620 20.510987 

6 × 18 0.699100 0.674768 0.732843 21.971292 21.000761 22.518794 31.117579 31.039099 31.251819 

8 × 20 0.807051 0.803131 0.811122 28.420064 27.328188 29.560117 43.781133 43.696046 43.950700 

10 × 22 0.974598 0.956432 1.007020 37.262492 35.855965 42.670554 58.951059 58.802402 59.116571 

12 × 24 1.152988 1.138987 1.190482 44.442686 43.284482 47.148838 75.922674 75.689655 76.200879 

14 × 26 1.348849 1.317229 1.376976 53.428822 53.265831 53.733119 95.167119 94.921512 95.366325 

16 × 28 1.579280 1.540623 1.632245 64.308708 63.990682 64.608528 116.153811 115.892720 116.509148 

Talus Bone Uniform 

4 × 16 0.582972 0.560772 0.627148 15.338758 15.227124 15.476213 21.392736 21.253802 21.615722 

6 × 18 0.699524 0.670006 0.740356 21.246188 21.082751 21.414455 32.555960 32.235261 32.997860 

8 × 20 0.823445 0.806806 0.869064 27.997091 27.822928 28.123913 45.757175 45.303353 46.268205 

10 × 22 1.002877 0.967773 1.043573 35.976624 35.849144 36.109206 61.331010 60.627592 62.013174 

12 × 24 1.198770 1.131366 1.276745 44.797103 44.578205 44.936692 79.161395 78.119295 80.007334 
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14 × 26 1.432079 1.380499 1.541253 55.058486 54.907971 55.193927 99.696830 98.581196 101.022965 

16 × 28 1.618976 1.576506 1.643556 66.024178 65.903845 66.251617 119.872332 117.911322 123.433480 

Chord Length 

4 × 16 0.601641 0.574760 0.635899 15.363030 15.278962 15.426382 21.457830 20.668099 23.542191 

6 × 18 0.736153 0.710934 0.755390 21.152336 21.034670 21.230449 32.107965 31.271108 33.896088 

8 × 20 0.850623 0.804370 0.943007 27.996059 27.771412 28.186760 44.658469 43.533643 46.625292 

10 × 22 1.035432 0.986297 1.133769 35.992872 35.795570 36.128133 64.239653 61.969577 67.136808 

12 × 24 1.212042 1.169196 1.266342 44.924694 44.579401 45.306874 80.541610 78.959892 82.613791 

14 × 26 1.415929 1.360527 1.539558 55.194733 54.883534 55.601465 106.600190 98.847061 119.660066 

16 × 28 1.629846 1.570080 1.688119 66.299630 66.133131 66.548294 121.249795 117.152039 123.912160 

Centripetal 

4 × 16 0.595157 0.572452 0.640051 15.333088 15.240493 15.462058 20.932335 20.324772 21.786376 

6 × 18 0.694591 0.677487 0.725880 21.243836 21.131520 21.408165 32.768159 32.129229 33.448146 

8 × 20 0.877759 0.852318 0.933134 27.954149 27.858363 28.080114 46.331572 44.455403 47.235624 

10 × 22 1.005028 0.978860 1.049733 35.991403 35.709762 36.193022 62.665989 61.702224 65.399604 

12 × 24 1.200296 1.172342 1.244569 44.863516 44.650974 45.043227 80.052226 78.913571 81.258296 

14 × 26 1.409535 1.369410 1.481505 55.896879 55.417512 56.489742 101.040905 98.668089 102.391556 

16 × 28 1.634736 1.590654 1.727737 66.285483 65.861819 67.089882 123.162866 121.714159 124.864274 

Exponential 

4 × 16 0.600442 0.571914 0.648361 15.327364 15.219504 15.457988 21.760800 21.479171 22.117842 

6 × 18 0.718811 0.690909 0.785943 21.121236 20.949237 21.253455 32.856950 32.493056 33.372366 

8 × 20 0.870529 0.810426 0.944757 27.873086 27.761087 28.027101 46.564739 45.853313 47.291339 

10 × 22 0.985965 0.964950 1.020940 35.887284 35.731813 36.032178 61.605738 59.040130 64.246078 

12 × 24 1.162945 1.137208 1.219805 44.724974 44.565575 44.929640 79.052903 75.605387 81.131413 

14 × 26 1.361896 1.333274 1.404147 55.073223 54.851671 55.305032 98.211603 97.507992 99.238201 

16 × 28 1.604932 1.549650 1.694426 66.024043 65.807445 66.346289 120.713160 118.810603 124.736262 

 


