NETWORK INTRUSION DETECTION AND ALERT SYSTEM

BY

TO JIN YI

A REPORT SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

JUN 2024

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: Network I	ntrusion Detection
	and
<u>Al</u>	ert System_
Academic Ses	sion: <u>Y5/S3</u>
<u></u>	O JIN YI
	TAL LETTER)
declare that I allow this Final Year Projec	et Report to be kept in
Jniversiti Tunku Abdul Rahman Library	subject to the regulations as follows:
	11
The dissertation is a property of the I	Library.
	Liorary. es of this dissertation for academic purpose
2. The Library is allowed to make copic	
	es of this dissertation for academic purpose
2. The Library is allowed to make copie	es of this dissertation for academic purpose
Author's signature)	Verified by, GML
Author's signature)	Verified by, GML
Address:	Verified by, GML
2. The Library is allowed to make copie (Author's signature) Address: 152, JALAN TERAP 4,	Verified by, GML (Supervisor's signature)

Universiti Tunku Abdul Rahman			
Form Title: Sample of Submission Sheet for FYP/Dissertation/Thesis			
Form Number: FM-IAD-004	Rev No.: 0	Effective Date: 21 JUNE 2011	Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TUNKU ABDUL RAHMAN
Date: <u>12/09/2024</u>
SUBMISSION OF FINAL YEAR PROJECT
It is hereby certified that(ID No:(ID No:
has completed this final year project entitled "Network Intrusion Detection and Alert System" under
the supervision of Ts Dr Gan Ming Lee from the Department of Computer and Communication
Technology, Faculty of Information and Communication Technology.
I understand that University will upload softcopy of my final year project in pdf format into UTAR Institutional Repository, which may be made accessible to UTAR community and public.
Yours truly,
Mar.

TO JIN YI

DECLARATION OF ORIGINALITY

I declare that this report entitled "NETWORK INTRUSION DETECTION AND ALERT SYSTEM" is my own work except as cited in the references. The report has not been accepted for any degree and is not being submitted concurrently in candidature for any degree or other award.

Signature	:	Jan
_		

Name : <u>TO JIN YI</u>

Date : <u>01/09/2024</u>

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Dr. Gan Ming Lee who has given me this bright opportunity to engage in a NIDAS project. It is my first step to establish a career in cybersecurity field. A million thanks to you. Thank you also to Ts Wong Chee Siang and Miss Tan Lyk Yin for providing suggestions and ideas.

To a very special person in my life, Yang Qi, for her patience, unconditional support, and love, and for standing by my side during hard times. Finally, I must say thanks to my parents and my family for their love, support, and continuous encouragement throughout the course.

ABSTRACT

Network security has become a critical concern for organizations worldwide as traditional security measures struggle to keep pace with the rapidly evolving landscape of cyber threats. This project aims to develop an intelligent and comprehensive network intrusion detection and alert system (NIDAS) to enhance network security and provide real-time threat mitigation. NIDAS is security technology that enabling security administrators to identify any abnormal or malicious network traffic in real-time.

NIDAS will consist of several key components, including deep network traffic packet inspection, behavior analysis, a prevention rules intrusion detection engine, and an alert prioritization and visualization module. The system will be trained on labeled datasets to identify various types of network attacks and anomalies. By employing a multi-layered approach, NIDAS will be capable of detecting both known and unknown threats, ensuring comprehensive protection against various attack vectors.

The intrusion detection component will utilize a combination of signature-based and anomaly-based detection techniques. Signature-based detection compares network traffic packets with a real-time updated database of known attack patterns, while anomaly-based detection algorithms learn normal behavior patterns and identify deviations. This dual approach will enable the system to effectively detect and respond to both known and zero-day threats.

Upon detecting a potential intrusion, the alert system will generate real-time notifications with relevant details such as the nature of the threat, affected network segments, and recommended mitigation strategies. By integrate Zabbix with IDS capabilities system, the system can reduce false positives and improve the accuracy of threat detection.

This research project aims to create a comprehensive and robust network security solution that provides greater visibility, transparency, and protection against potential threats. By delivering real-time threat detection and actionable insights, the system will significantly enhance an organization's ability to protect its critical assets and maintain secure network infrastructure in the face of ever-changing network threats.

TABLE OF CONTENTS

TITLE P.	AGE	ì
REPORT	STATUS DECLARATION FORM	ii
FYP THE	CSIS SUBMISSION FORM	iii
DECLAR	AATION OF ORIGINALITY	iv
ACKNOV	VLEDGEMENTS	v
ABSTRA	CT	vi
TABLE (OF CONTENTS	vii
LIST OF	FIGURES	xi
LIST OF	TABLES	xiv
LIST OF	ABBREVIATIONS	XV
СНАРТЕ	R 1 INTRODUCTION	1
1.1	Problem Statement and Motivation	1
1.2	Objectives	2
1.3	Project Scope and Direction	3
1.4	Contributions	4
1.5	Report Organization	5
CHAPTE	R 2 LITERATURE REVIEW	7
2.1	Traditional Intrusion Detection Systems	7
	2.1.1 Signature-Based Detection	7
	2.1.2 Signature-Based Strengths and Weakness	8
2.2	Network-Based Intrusion Detection Systems (NIDS)	8
	2.2.1 Anomaly Detection	9
	2.2.2 Anomaly Detection Strengths and Weakness	10
2.3	Behaviour Analysis	10
	2.3.1 Behaviour Analysis Strengths and Weakness	11
2.4	Machine Learning-Based	11
	2.4.1 Machine Learning-Based Strengths and Weakness	11
2.5	Hybrid Approaches	12

	2.5.1	Hybrid Approaches Strengths and Weakness	13
2.6	Cloud	d-Based NIDAS	13
	2.6.1	Cloud-Based Strengths and Weakness	13
2.7	Revie	ew of Existing Systems	14
	2.7.1	Snort	14
	2.7.2	Graylog	15
	2.7.3	Pfsense	16
	2.7.4	Zenarmor	17
СНАРТ	ER 3 S	YSTEM METHODOLOGY	18
3.1	Syste	m Design Diagram	20
3.2	2 Activ	rity Diagram and Description	22
СНАРТ	ER 4 S	YSTEM DESIGN	26
4.	1 Syste	m Block Diagram	26
	4.1.1	SNMP services between Zabbix server and Switch	26
	4.1.2	OPNsense Zabbix Agent and SNMP services	27
	4.1.3	OPNsense Suricata IDS	28
	4.1.4	OPNsense Suricata Log Check Process	29
	4.1.5	Zabbix	30
	4.1.6	Zabbix Access MySQL Database	32
	4.1.7	Zabbix Trigger Alert with Recommendation	33
4.	2 Syste	em Components Specifications	34
	4.2.1	Hardware Specification	34
	4.2.2	Software Components	35
4.	3 Syste	em Components Interaction Operations	38
СНАРТ	ER 5 S	YSTEM IMPLEMENTATION	39
5.	1 Softw	vare and Hardware	39
	5.1.1	Software	39
	5.1.2	Hardware	39

5.2	Hardv	vare Setup	39
	5.2.1	Setup and Configure Network Devices	39
5.3	Softw	are Setup	41
	5.3.1	Install and Setup Zabbix Server	41
	5.3.2	Install and Setup OPNsense	44
5.4	Syster	m Setting	51
	5.4.1	Install and Setup Plugin in OPNsense	51
	5.4.2	Setup OPNsense Firewall TCP and UDP Rule	55
5.5	Syster	m Configuration	58
	5.5.1	Monitoring OPNsense by using Zabbix Agent and SNMP	58
	5.5.2	Monitoring switch by using Zabbix SNMP	60
	5.5.3	Monitoring OPNsense IDS by using Zabbix	61
	5.5.4	Virtualizing Data by using Zabbix	65
	5.5.5	Setup Trigger and Alert by using Zabbix	73
5.6	Syster	m Operation	89
5.7	Imple	mentation Issues and Challenges	92
5.8	Concl	uding Remark	93
СНАРТ	ER 6 SY	STEM EVALUATION AND DISCUSSION	94
6.1	Syster	m Testing and Performance Metrics	94
6.2	Testin	ng Setup and Result	97
	6.2.1	Web Application Attack	97
	6.2.2	Port Scanning	104
	6.2.3	Distributed Denial-of-Service	111
	6.2.4	Brute Force Attack	120
6.3	Projec	et Challenges	126
6.4	Objec	tives Evaluation	127
6.5	Concl	uding Remark	128
СНАРТ	ER 7 C	ONCLUSION AND RECOMMENDATION	129
7.1	Concl	usion	129
7.2	Recor	mmendation	130

REFERENCES	132
APPENDIX	134
WEEKLY LOG	140
POSTER	147
PLAGIARISM CHECK RESULT	148
FYP2 CHECKLIST	151

LIST OF FIGURES

Figure Number	Title	Page
Figure 1.1	Infographic Zabbix from Medium Blog	4
Figure 2.1	Signature-Based Detection	7
Figure 2.2	Anomaly Detection	10
Figure 3.1	Iterative Process Model	18
Figure 3.2	Network Diagram	20
Figure 3.3	Zabbix and IDS Activity Diagram	22
Figure 3.4	Zabbix Alert Activity Diagram	24
Figure 4.1	Switch Interface	38
Figure 4.2	CPU Interface	38
Figure 5.1.1	Switch Configuration	40
Figure 5.1.2	Switch VLAN	40
Figure 5.2.1	Zabbix Network Configuration	41
Figure 5.2.2	Zabbix MySQL	42
Figure 5.2.3	Zabbix MySQL Configuration	43
Figure 5.2.4	Zabbix Server Configuration	44
Figure 5.3.1	OPNsense Interface	48
Figure 5.3.2	OPNsense LAN	50
Figure 5.3.3	OPNsense Port Mirroring	51
Figure 5.4.1	OPNsense SNMP	52
Figure 5.4.2	OPNsense Zabbix Agent	52
Figure 5.4.3	OPNsense Intrusion Detection	53
Figure 5.4.4	OPNsense Rulesets	53
Figure 5.4.5	OPNsense Zabbix-DNS rule set	54
Figure 5.4.6	OPNsense Zabbix-Telegram rule set	55
Figure 5.4.7	OPNsense Firewall TCP and UDP rules	55
Figure 5.5.1	Create OPNsense Host in Zabbix	59
Figure 5.5.2	OPNsense Availability Status	59
Figure 5.5.3	Create Switch Host in Zabbix	60

Figure 5.5.4	Switch Availability Status	60
Figure 5.6.1	Dashboard Mapboard	89
Figure 5.6.2	Dashboard IDS Performance	90
Figure 5.6.3	Dashboard Network Performance	91
Figure 5.6.4	Dashboard System Performance	92
Figure 6.1.1	Xampp Server	94
Figure 6.1.2	Zabbix and OPNsense System Performance	94
Figure 6.1.3	OPNsense and Physical Device Setup	94
Figure 6.1.4	Zabbix Server Setup	95
Figure 6.1.5	Kali Linux Setup	95
Figure 6.1.6	Arch Linux Setup	96
Figure 6.2.1	ZAProxy	97
Figure 6.2.2	ZAProxy Intrusion Scan	99
Figure 6.2.3	Zabbix Alert Trigger	99
Figure 6.2.4	ZAProxy Number Threats Detected	100
Figure 6.2.5	ZAProxy Information Threats Detected	100
Figure 6.2.6	ZAProxy Intrusion Network Performance	101
Figure 6.2.7	ZAProxy Intrusion Alert	102
Figure 6.2.8	ZAProxy Intrusion Alert-Telegram	103
Figure 6.2.9	Nmap	104
Figure 6.2.10	Nmap TCP-SYN	104
Figure 6.2.11	TCP-SYN Network Performance	105
Figure 6.2.12	TCP-SYN Threats Detected	105
Figure 6.2.13	TCP-SYN Threats Information	106
Figure 6.2.14	TCP-SYN Intrusion Alert	106
Figure 6.2.15	TCP-SYN Intrusion Alert-Telegram	107
Figure 6.2.16	Nmap Xmas	108
Figure 6.2.17	Xmas Network Performance	108
Figure 6.2.18	Xmas Threats Detected	109
Figure 6.2.19	Xmas Threats Information	109
Figure 6.2.20	Xmas Intrusion Alert	110
Figure 6.2.21	Xmas Intrusion Alert-Telegram	110
Figure 6.2.22	ICMP Flood Script	111

Figure 6.2.23	ICMP DDoS	111
Figure 6.2.24	ICMP DDoS CPU Performance	112
Figure 6.2.25	ICMP DDoS Network Performance	112
Figure 6.2.26	ICMP DDoS Number Threats Detected	113
Figure 6.2.27	Information ICMP DDoS Threats	113
Figure 6.2.28	ICMP DDoS Alert	114
Figure 6.2.29	ICMP DDoS Alert-Telegram	114
Figure 6.2.30	TCP FIN/ACK Flood Script	115
Figure 6.2.31	TCP FIN/ACK DDoS	115
Figure 6.2.32	TCP FIN/ACK DDoS CPU Performance	116
Figure 6.2.33	TCP FIN/ACK DDoS Network Performance	116
Figure 6.2.34	TCP FIN/ACK DDoS Number Threats Detected	117
Figure 6.2.35	Information TCP FIN/ACK DDoS Threats	118
Figure 6.2.36	TCP FIN/ACK DDoS Alert	118
Figure 6.2.37	TCP FIN/ACK DDoS Alert-Telegram	119
Figure 6.2.38	Burp Suite	120
Figure 6.2.39	Burp Suite Data Capture	122
Figure 6.2.40	Hydra	123
Figure 6.2.41	Hydra Number Threats Detected	124
Figure 6.2.42	Hydra Brute Force Network Performance	124
Figure 6.2.43	Hydra Brute Force System Performance	125
Figure 6.2.44	Information Hydra Brute Force Threats	125
Figure 6.2.45	Hydra Brute Force Alert	125
Figure 6.2.46	Hydra Brute Force Alert-Telegram	126

LIST OF TABLES

Table Number	Title	Page
Table 4.1	System Design of Zabbix Monitoring Switch using SNMP	26
Table 4.2	System Design of Monitoring OPNsense using SNMP and Zabbix Agent	27
Table 4.3	System Process Design of OPNsense Intrusion Detection	28
Table 4.4	System Process Design of OPNsense Log Check	29
Table 4.5	System Design of Zabbix Monitoring	30
Table 4.6	System Process Design of Zabbix with MySQL	32
Table 4.7	System Design of Zabbix Trigger Alert	33
Table 4.8.1	Specifications of Laptop	34
Table 4.8.2	Specifications of Desktop PC	35
Table 4.8.3	Specification of Cisco Switch 2960	35
Table 4.9.1	Specification of OPNsense	36
Table 4.9.2	Specification of Kali Linux	36
Table 4.9.3	Specification of Zabbix Server	37
Table 4.9.4	Specification of Black-Arch Linux	37

LIST OF ABBREVIATIONS

NIDAS Network Intrusion Detection and Alert System

NIDS Network Intrusion Detection System

IDS Intrusion Detection System

Chapter 1

Introduction

In this chapter, we present the background and motivation of our research, our contributions to the field, and the outline of the thesis. This project proposes an integrated network monitoring and intrusion detection system that combines Zabbix and IDS techniques to address the challenges faced by traditional NIDS. By leveraging the information generated by IDS system, the system combines contextual information to prioritize alerts based on risk level and potential impact within the Zabbix configuration. This context-aware approach enables security analysts to focus on the most critical threats, optimizing resource allocation and accelerating incident response processes. The system provides automated mitigation recommendations and a user-friendly interface for visualizing network traffic, alerts, and recommendations. Alert notification mechanisms ensure timely communication of critical security events. By integrating these components into a unified platform, the project aims to enhance the accuracy and efficiency of intrusion detection, reduce false positives, and strengthen an organization's cybersecurity defenses. The successful implementation of this system will contribute to improving the effectiveness of network security monitoring and incident response processes.

1.1 Problem Statement and Motivation

In this rapidly evolving era of information technology, the challenges faced by network security are becoming increasingly formidable. Traditional network security measures are no longer sufficient to address the continuously evolving security threats, such as complex attacks, malware infections, unauthorized access, and even data breaches. Moreover, current intrusion detection systems often suffer from high false positive rates and limited scalability, unable to effectively detect unknown and novel threats. As a result, security teams struggle to accurately prioritize and respond to the vast number of alerts generated by these systems in a timely and effective manner. Therefore, there is a pressing need for a comprehensive, intelligent, and robust network security system that provides enhanced visibility, transparency, and protection against potential threats, while offering real-time threat detection and actionable insights to security personnel.

The motivation behind developing the Network Intrusion Detection and Alert System (NIDAS) lies in addressing the challenges posed by the rapidly evolving landscape of

network attacks. As network threats continue to evolve and become more sophisticated, the methods of network intrusion are becoming increasingly diverse and complex. Such intrusions can have devastating impacts on society, causing significant economic and reputational losses to businesses and nations, and even posing serious threats to national security. Thus, NIDAS aims to provide a powerful and proactive security system that utilizes technologies such as Intrusion Prevention system, deep network packet inspection, and behavioral analysis to accurately detect and classify both known and unknown security threats. The goal is to protect any organization or individual with computers connected to the internet or external networks from network threats, enabling security teams to respond swiftly and effectively to intrusions while minimizing the impact of network attacks. Furthermore, by significantly reducing false positive rates and providing prioritized alerts and actionable measures to security personnel, NIDAS allows them to focus on the most critical incidents in a timely manner. In summary, the motivation behind NIDAS is to develop a system that integrates with existing security infrastructure, promoting a unified and efficient approach to network security management. By providing organizations with a powerful, intelligent, and effective solution for real-time detection and mitigation of network intrusions, NIDAS ultimately aims to strengthen the overall cybersecurity posture of organizations worldwide.

1.2 Objectives

The primary objective of NIDAS is to develop an integrated network monitoring and intrusion detection system that enhances the organization has the ability to detect and respond to cyber threats effectively. Within combining the capabilities of Zabbix and IDS techniques, integrate become a system that can provide visualize network traffic, alerts and mitigation recommendations. By integrating Intrusion Detection system and Zabbix into NIDAS, can achieve comprehensive network security monitoring and event response. IDS focuses on detecting network-level intrusions and threats, while Zabbix provides flexible alerting, correlation analysis, and reporting functionalities. Configure IPS rules and Zabbix monitoring metrics to detect a wide range of network attacks and anomalies, including known and emerging threats. This combination helps you promptly detect and respond to network security incidents, enhancing overall security protection capabilities.

While in the task of alert prioritization and mitigation recommendations, by configuring Zabbix sets the alerts that the threat detected by IDS, incorporating preset rules, threat intelligence and historical data those variety contextual information to implement priority alerts, based on their

risk level and potential impact to the organization so that the security teams enable to focus on the most critical threats. With the detected intrusions and their severity, the system will automated provide the recommendations for mitigation actions, enhance the efficiency of network administrators in incident response processes.

By using Zabbix to design an integrated network traffic visualization, alarm monitoring, and mitigation recommendations, it is more advantageous for network security administrator to monitor the entire network. Zabbix's alarm notification mechanisms, such as email or SMS, can notify security administrator in a timely manner, ensuring that critical security events are promptly communicated to the network security team. This will greatly enhance the system's performance and efficiency in handling large amounts of network traffic and alerts without compromising accuracy or responsiveness. Compared to traditional intrusion detection systems, the goal is to reduce alert handling time by 15%, thereby achieving faster incident response. It is important to note that the project will focus on integrating Zabbix and IDS both component as a system, as well as creating user interface and visualization components to provide a comprehensive network security monitoring and intrusion detection solution. It will not cover the development of the core Zabbix and IDS components themselves, as they are mature open-source tools.

1.3 Project Scope and Direction

The aim of project is to develop NIDAS that can integrated network security monitoring, intrusion detection and automated alert and mitigation recommendations. Although now there are a lot of strong network security software and method, but once the intrusion successfully access into the network it is hard to analyze out the severity of the intrusion immediately. The data will exposed during analyze the intrusion, may cause huge impact to the organization. So in this thesis, NIDAS aims to provide a comprehensive network security monitoring and intrusion detection system that leverages the strengths of open-source tools like Zabbix, while using the techniques of Zabbix to enhance alert prioritization and set mitigation recommendations. By integrating these components, the system will enable real-time monitoring, intrusion detection, and automated response recommendations, ultimately improving an organization's ability to detect and respond to cyber threats effectively.

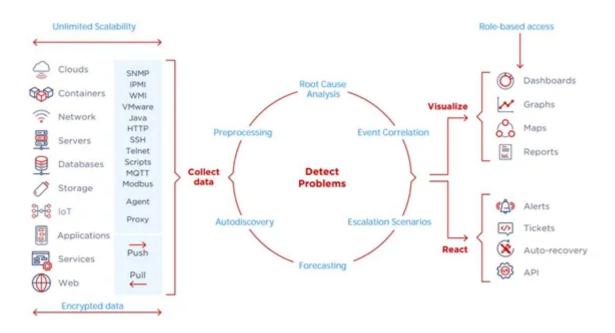


Figure 1.1 Infographic Zabbix from Medium Blog

1.4 Contributions

Network security has always been a critical issue in the rapid development of networks. The proposed integrated network monitoring and intrusion detection system can benefit organizations of various sizes and industries. By breaking through the limitations of traditional intrusion detection systems, this project aims to improve the overall effectiveness of cybersecurity measures in the field of network security, contributing to the establishment of a more secure and resilient digital ecosystem. The integration of Zabbix and OPNsense technologies can bring several key benefits, such as improving the accuracy of threat detection. Under OPNsense suricata detection and prevention rules, the system can compare from historical data and effectively detect known and unknown threats. This approach can significantly reduce false positive alerts, make the system more adaptable to evolving network threats, and decrease the risk of undetected intrusions. Furthermore, alert prioritization and incident response will also benefit overall network security, enabling security teams to focus their efforts on the most critical threats, quickly obtain information on key issues, and swiftly respond to incidents with appropriate measures. By providing automated recommendations for mitigation actions, security incidents can be contained and resolved more rapidly and effectively. The combination of network monitoring and intrusion detection and prevention features improves operational efficiency, reduces the workload of security teams, and enables them to manage security incidents more effectively. Moreover,

through continuous monitoring of network traffic, the network security team within an organization can analyze this data to identify potential security threats, not only effectively reducing risks by staying ahead of emerging threats but also fostering a culture of cybersecurity awareness and preparedness among the network security team.

The importance of this project extends beyond the direct benefits to individual organizations. By enhancing the ability to detect and respond to cyber threats, it can indirectly help protect sensitive data, intellectual property, and critical systems, safeguarding the interests of businesses, governments, and society as a whole. By advancing cybersecurity research and the application of intrusion prevention techniques in intrusion detection, the project has the potential to drive innovation and inspire further developments in the field, ultimately benefiting the broader cybersecurity community. In summary, the proposed integrated network monitoring and intrusion detection system has the potential to make a lasting impact in the field of network security by improving the accuracy of threat detection, enhancing alert prioritization, streamlining incident response, benefiting organizations, fostering cybersecurity awareness, and contributing to a more secure digital environment.

1.5 Report Organization

As the reliance on computer networks continues to grow, so does the need for effective security measures to prevent malicious activities and unauthorized access. Network Intrusion Detection Systems (IDS) have become a crucial component of network security, identifying and responding to intrusion threats caused by security vulnerabilities through real-time monitoring and analysis of network traffic.

Historically, early security measures primarily focused on access control and authentication mechanisms. However, as networks evolved, expanded, and became more complex, it became evident that additional layers of security were necessary. In the 1980s, James P. Anderson introduced the concept of intrusion detection, which aimed to monitor system logs to detect anomalies and suspicious activities [1]. This earliest and initial concept of intrusion detection laid the foundation for the development of future intrusion detection systems. Over the years, intrusion detection systems have evolved and made significant progress alongside the development of computer networks. Early systems heavily relied on rules and predefined signatures of known attacks to identify malicious activities, often leaving them very passive in defending against network threats. New or unknown attacks frequently left systems and organizations vulnerable to significant persecution. To address this issue, anomaly-based

detection techniques were introduced, which involved creating a baseline of normal network behavior and flagging any deviations as potential intrusions. In today's network security, even machine learning and artificial intelligence techniques have been incorporated, enabling them to adapt and learn from past events to enhance their detection capabilities.

The Network Intrusion Detection and Alerting System (NIDAS) is a project designed to enhance network security by providing advanced intrusion detection and monitoring alert capabilities. It builds upon the existing knowledge and techniques in the field of intrusion detection while incorporating novel approaches to improve the accuracy and efficiency of detecting and responding to security threats. NIDAS employs various techniques such as deep packet inspection, real-time network traffic monitoring, behavioral analysis, and machine learning algorithms to identify malicious activities and generate timely alerts for security personnel to take appropriate actions. The four key concepts involved are: Intrusion Detection System (IDS), which is a software or hardware system that monitors network traffic for suspicious activities and alerts administrators when potential security breaches are detected; Deep Packet Inspection (DPI), a technique used to examine the contents of network packets beyond the header information, enabling the analysis of application-level data for security purposes; Behavioral Analysis, the process of studying patterns and behaviors of network entities to identify anomalies and potential security threats, triggering anomaly-based detection and flagging any deviations from the established baseline as potential intrusions; and Signature-based Detection, a detection method that relies on predefined patterns or signatures of known attacks to identify malicious activities, which can significantly reduce false positive alerts. The details of this project are shown in the following chapters. This report is organised into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review, Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation, Chapter 6 System Evaluation and Discussion. The first chapter is the introduction of this project which includes problem statement, project background and motivation, project scope, project objectives, project contribution, highlights of project achievements, and report organisation. In Chapter 2, NIDAS backgrounds are reviewed. Chapter 3 and 4 show the system architecture and activity diagram. Chapter 5 will setup the system environment and Chapter 6 will be the penetration testing. Chapter 7 concluded the project and given some recommendation.

Chapter 2

Literature Review

2.1 Traditional Intrusion Detection System

Traditional Intrusion Detection Systems have been a vital component of network security for several decades. Early works, such as the seminal paper by Denning [3], laid the foundation for IDS research. Lunt [4] and Bace [5] further expanded on the concepts and architectures of IDS. IDS typically operate using Signature-Based Detection, it compares network traffic with a database of known attack patterns.

2.1.1 Signature-Based Detection

Signature-Based Detection was first implemented in 1987 from John McAfee an antivirus programme by providing a function called "VirusScan". It used a database of virus signatures to identify and remove known viruses from infected. This is a common intrusion detection and defense technique used in nowadays computer security to identify known malware by searching for specific patterns or signatures in files or network traffic. According of the signature characteristic that is unique from a specific piece of malware, it can derived by analyzing the code or behavior and identify during in the future instances of the same malware to do the blocking.

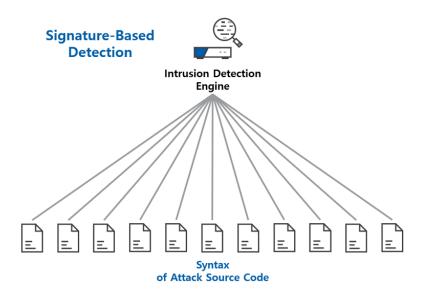


Figure 2.1 Signature-Based Detection

2.1.2 Signature-Based Strengths and Weakness

Strengths:

- High accuracy: Signature-based technology can accurately identify known attack behaviors with almost no false positives
- Efficiency: Signature-based technology is very efficient in detecting and defending against known attacks and can respond quickly and block attacks.
- Low Costing: Low computational overhead

Weakness:

- Unable to detect unknown attacks: Signature-based technology can only detect known attack behaviours, but ineffective against unknown attack, so it is vulnerable to zeroday threats.
- Easily bypassed by attackers: Attackers can evaded the detection of Signature-based technologies by modifying the characteristics or rules of attack behaviors using polymorphic malware or other techniques.
- Maintaining the attack signature database: Signature-based technology needs to
 establish and maintain a huge attack signature database and updated regularly so that
 can remain effective, which requires a lot of work and resources.

2.2 Network-Based Intrusion Detection Systems (NIDS)

NIDS ability is to monitor and analyze network traffic for suspicious activities, technique such as anomaly detection [16] and machine learning-based approaches [17], have improved the accuracy and efficiency of detecting network-based attacks. The essential of anomaly detection involves using various approaches such as statistical-based, machine learning-based, and knowledge-based techniques to identify network-based anomalies and intrusions. Effective anomaly detection in NIDS contributes to the overall security of computer networks by detecting and alerting on potential threats. Snort is most widely used open-source NIDS.

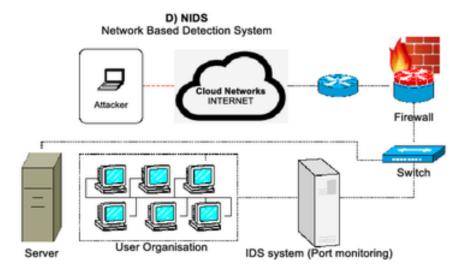


Figure 2.2 Network Intrusion Detection System

2.2.1 Anomaly Detection

Anomaly Detection typically detects anomalous behavior using machine learning algorithms that automatically learn patterns of normal behavior and identify anomalous behavior that can be applied to various data types, such as network traffic, system logs, user behaviour, financial transactions and sensor data. This is a technique used in computer security to identify unusual patterns or behavior that may indicate a security breach. The concept of anomaly detection can be traced back to various fields such as statistics, data mining and machine learning. This method was begin in 1990s by exploring more sophisticated methods for anomaly detection in network security. One of the earliest machine learning-based approaches was proposed by Mukkamala et al. in 2002 [10], which used a neural network to detect network intrusions. Since then, anomaly detection has become a widely used technique and an active area of research in network security, the new techniques and approaches are continually being developed to improve its effectiveness and reliability. Although it produces a high rate of false positives, it is still an important tool for detecting novel threats and identifying suspicious behaviour in various fields.

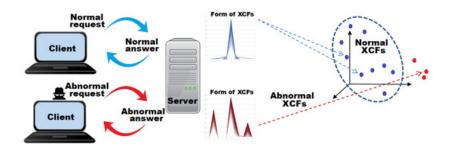


Figure 2.3 Anomaly Detection

2.2.2 Anomaly Detection Strengths and Weakness

Strengths:

- Effective Detection: Can detect unknown or anomalous data points or events, allowing for early detection of potential problems from zero-day threats
- Automation: Detection can be performed by the machine learning, doesn't require signatures or prior knowledge of the attack, reducing the work and manual intervention and improving efficiency and accuracy
- Monitoring: Can be used to detect insider threats or unusual user behaviour in various data types and fields, such as network security, finance, medical care

Weakness:

- High False Alarm Rate: May identify some normal behaviours as abnormal behaviours and resulting in false positives
- Large Amount Dataset for Machine Learning: Requires a large amount of data to train the algorithm in order to accurately identify abnormal behaviour
- High False Negative Rate: May be less effective against complicated attacks that mimic normal behaviour and mistakes some truly abnormal behaviours for normal behaviours, lead to under reporting

2.3 Behaviour Analysis

Behaviour analysis may have similar techniques and goals with Anomaly Detection in cybersecurity to identify potential threats and malicious activity but there are different in their approach and the type of data they analyze. Behaviour analysis more concentrate on users activities that are out of the ordinary or suspicious, based on a baseline of expected behaviour by analyzing historical behaviours and establishing behaviour models to detect abnormal behavious. It provides a more proactive and adaptive approach to network security

monitoring for security management, risk management and other fields, such as detecting employee leaks, illegal command and control activities, or network-based attacks, such as worm propagation and DDOS attacks, etc.

2.3.1 Behaviour Analysis Strengths and Weakness

Strengths:

- Effective Detection: Can analyze multiple indicators and comprehensively analyze the user behaviour and activities to provide more comprehensive analysis results than Anomaly Detection and detect unknown or zero-day threats
- Predict Behaviour: By analyzing historical data and trends can helps to provide insights into the motives and methods of attackers
- Automation: Analysis can be performed by the machine learning to achieve highly automated analysis and identification, greatly improving on efficiency and accuracy

Weakness:

- High False Alarm Rate (Refer 2.2.2)
- Large Amount Dataset for Machine Learning (Refer 2.2.2)
- Resources and Costing: Complex to implement and require significant computing resources and expert skills

2.4 Machine Learning-Based

Machine learning techniques have gained significant attention in the field of network security, particularly in the context of Network Intrusion Detection Systems (NIDS) and Network Intrusion Detection and Alert Systems (NIDAS). Traditional NIDS and NIDAS rely on signature-based and rule-based approaches, which have limitations in detecting novel and evolving threats. Machine learning algorithms have the potential to enhance the detection capabilities of these systems by learning patterns and anomalies from network traffic data [11],[17].

2.4.1 Machine Learning-Based Strengths and Weakness

Strengths:

Improved Detection Accuracy: Machine learning algorithms can learn complex
patterns and relationships in network traffic data, enabling them to detect intrusions
and anomalies with high accuracy

- Adaptability to Evolving Threats: Machine learning models can adapt to new and evolving threats by continuously learning from new data
- Reduced False Positives: Machine learning techniques can help reduce false positive rates in NIDS and NIDAS by learning to distinguish between normal and malicious network behavior accurately

Weakness:

- Dependency on Training Data Quality: The performance of machine learning-based NIDS and NIDAS heavily relies on the quality and representativeness of the training data. If the training data is biased, incomplete, or not representative of real-world network traffic, the models may fail to generalize well and detect intrusions accurately
- Need for Skilled Professionals: Developing, deploying, and maintaining machine learning-based NIDS and NIDAS require expertise in both machine learning and cybersecurity domains
- Resource Requirements: Training and deploying machine learning models for NIDS and NIDAS can be computationally intensive, requiring significant processing power and memory

2.5 Hybrid Approaches

Hybrid approaches refer to combine elements of signature-based detection, anomaly detection, behaviour analysis, machine learning and other techniques to provide an overall defense against cyber attacks. For example, Signature-based technology is used to detect known attack behaviours, Behaviour Analysis technology is used to detect unknown attack behaviours and zero-day attacks, and Machine Learning technology is used to train algorithms to improve accuracy. With the combining multiple method, hybrid approaches are getting important in recent years because of the cyber threats have become more sophisticated and difficult to detect by using traditional approaches. Within the multiple techniques and methods, hybrid approaches provide a more stronger and a wider range of cyber threats detection and prevention. This technique will keeps increasing it's important and continue to evolve and become more complex in the future of network security.

2.5.1 Hybrid Approaches Strengths and Weakness

Strengths:

- Increase Detection Accuracy and Reduce False Alarm Rate: By combining multiple techniques, accuracy of detection get improved and low false alarm rate so that more availability for the system
- Leverage: Due to the strength of multiple approaches, can upgrade a great level security protection and detection in cybersecurity and provide a more comprehensive network security

Weakness:

- Complexity: Combining multiple techniques require higher technical skill, significant computing resources and that would be more costly than a single approach
- Maintenance and Performance: Because of multiple techniques will require more times and resource to do tuning and optimization during the maintenance for achieving optimal performance

2.6 Cloud-Based NIDAS

Cloud-based NIDAS refers to deploying Network Intrusion Detection and Alerting System (NIDAS) in a cloud computing environment to leverage the scalability and flexibility so that can provide more efficient intrusion detection and cyber threats prevention services. As traditional NIDAS is usually deployed on a local or private network, requiring specialized hardware and software support, while Cloud-based NIDAS can be deployed and managed on the cloud through the virtualization technology provided by cloud service providers, without the need to purchase, install and maintain additional hardware and software equipment so that can be more flexible on organizations to handle large volumes of network traffic and scale their defences up or down as needed. According of the benefits from Cloud-Based NIDAS, there are more organizations move their IT infrastructure to the cloud and leverage their cloud-based machine learning algorithms and artificial intelligence to improve threat detection and prevention.

2.6.1 Cloud-Based Strengths and Weakness

Strengths:

• Scalability and Flexibility: Cloud resources can be dynamically adjusted as needed to adapt to changing network traffic and attacks

- Costless: No need to purchase, install and maintain additional hardware or software equipment, reducing costs and maintenance difficulties
- Reliability and Stability: The cloud computing platform has high availability and fault tolerance can provide real-time monitoring and analysis

Weakness:

- Network Latency: Require high-speed internet connections to ensure real-time performance
- Data Secure and Privacy: The data is stored outside of the organization's control, may concerns the security and privacy of data
- Manage and Control: Require specialized skills and knowledge, which increases the difficulty of cloud management

2.7 Review of Existing Systems

2.7.1 Snort

Snort is an open-source Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) used to monitor network traffic in real-time. It works by analyzing network packets and comparing them against predefined rules to identify and alert on potentially malicious activities, such as port scans, malware, and suspicious behavior. Snort can operate in several modes, including packet logging, network traffic analysis, and intrusion prevention, making it a versatile tool for network security.

Strengths and Weakness

Strengths:

- Signature-based Detection: Snort uses a rule-based system to detect known threats by matching network traffic patterns to a library of attack signatures
- Scalability: Snort is highly configurable and can be integrated into small or large network environments, offering a balance between security and performance
- Customizable Rules: Users can create custom rules to tailor Snort's detection capabilities to specific needs and environments

- Complexity: Require higher technical skill and understanding to pre setup rules
- Unfriendly Interface: All the detected traffic or threats, alerts and log data are output in the form of log files. These log files need to be processed, indexed and visualized with the help of external tools (such as Graylog, Splunk or ELK stack) to provide

administrators with a more intuitive chart and data analysis view. This is not intuitive for monitoring, analysis and management, especially in large-scale network environments, manual log analysis is very time-consuming

• Lack of monitoring functionality: Snort cannot monitor server resources, databases, or application status which the network down or overload it did not know

2.7.2 Graylog

Graylog is an open-source log management and analysis platform used for collecting, storing, and analyzing large amounts of machine data in real time. It helps organizations monitor their IT infrastructure by centralizing logs from various sources (such as servers, network devices, and applications) and enabling users to search, analyze, and visualize this data. is widely used for log aggregation, monitoring, troubleshooting, and security analysis, providing IT teams with insights into their systems' health and performance.

Strengths and Weakness

Strengths:

- Centralized Log Management: Graylog is designed for log collection, storage, and analysis, which means it excels at dealing with large volumes of unstructured data from various sources like servers, network devices, and applications
- Search & Filtering: allows to quickly filter through the alerts, helping isolate specific events or patterns. This helps reduce the time spent on identifying real threats among false positives

- Limited Real-Time Monitoring: Primarily designed to analyze historical data rather than providing real-time system health monitoring
- Complexity in Configuration and Scaling: Limited on handling large-scale monitoring environments. It will be complex to configure and scale in large environments. As the volume of logs grows, it requires robust infrastructure and careful tuning to handle the load efficiently
- Lack of Advanced Alerting: Alerts are typically triggered by specific log patterns or conditions but are not as advanced when it comes to monitoring complex performance metrics over time

2.7.3 Pfsense

PfSense is a firewall and router software distribution based on FreeBSD. It was highly popular for providing enterprise-level network security features at a low cost previously. PfSense is known for its flexibility, performance, and rich feature set, which makes it a comprehensive solution for managing network traffic and enhancing security. It is known for its robustness and reliability, making it a trusted solution for protecting and managing networks of all sizes. However, although Pfsense is closely similar with OPNsense but it needs to be pay now.

Strengths and Weakness

Strengths:

- Comprehensive Feature Set: The feature set is highly comprehensive, allowing administrators to build complex networks without requiring additional tools. It packed with a broad range of firewall, routing, and security features IDS/IPS that are typically found in expensive, proprietary firewall solutions
- Highly Configurable: Offers a high degree of customization, allowing network
 administrators to tweak and fine-tune firewall rules, NAT, VPN configurations, and
 routing to meet specific needs. Can control nearly every aspect of network's security
 and performance with detailed configuration options
- Extensive Plugin/Package System: Allows for the addition of extra features and tools, enhance the flexibility

- Compatibilty of IPv6: PfSense can be more difficult to configure for IPv6 in complex network environments particularly in combination with advanced features like VPNs and with regards to its configuration and functionality in dual-stack environments (IPv4 + IPv6)
- Costly: Previously is an open-source tools but now need to subscribe
- Lack of UI: Harder to navigate and find certain configuration options. It will overwhelming for new users to network management due to its complexity and lack of modernization

2.7.4 Zenarmor

Zenarmor (formerly known as Sensei) is a powerful, next-generation firewall plugin designed for enhancing security on network platforms like OPNsense and pfSense. It provides advanced network protection by offering deep packet inspection (DPI), application awareness, and cloud-based threat intelligence. Zenarmor focuses on delivering enterprise-grade security features without compromising performance, making it suitable for small to large-scale network environments.

Strengths and Weakness

Strengths:

- Deep Packet Inspection (DPI): allowing it to analyze network traffic at a granular level. This capability enables administrators to view, monitor, and control traffic at the application layer, identifying specific apps and protocols being used. This deep insight is useful for detecting and blocking unwanted applications or suspicious activity
- Layer 7 Visibility: Provides detailed insights into user activity, application usage, and potential security risks. Provides administrators Layer 7 visibility, meaning it can classify and monitor traffic at the application layer

- Limited Scale: Limited to environments that require network traffic monitoring. It is not designed to scale across large IT infrastructures that require monitoring of thousands of servers, network devices, and applications
- Historical Data: Lacks long-term trend analysis for system and network performance
- Limited Network Traffic Monitoring: Cannot directly monitor physical device, unable for gathering standard monitoring data or network traffic from network devices such as switches and routers. This makes it limited in managing network infrastructure

Chapter 3

System Methodology

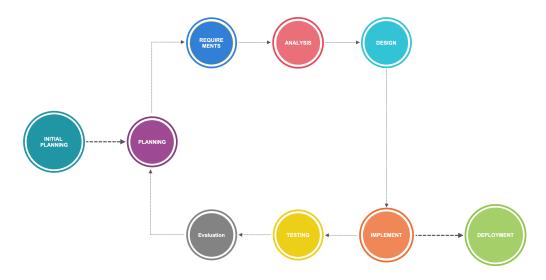


Figure 3.1 Iterative Process Model

Iterative process model represents the project system development lifecycle diagram. In this iterative model lifecycle of project development, each phase has clear tasks and objectives to ensure successful implementation. This article will discuss the various stages of a typical project lifecycle and their importance, covering aspects such as initial planning, detailed planning, requirements gathering, analysis, design, implementation, testing, deployment, and evaluation.

First, the preliminary planning phase is the starting point of the project. During this stage, the broad objectives, scope, and feasibility of the project are determined. The main tasks include preliminary discussions on the project's background, purpose, and expected outcomes, as well as assessing the necessity and potential impact of the project. Although specific technical details may not yet be clear at this stage, the overall framework and feasibility assessment of the project will provide a basis for subsequent in-depth planning. This is followed by the planning phase, which is crucial for developing a detailed project plan. This stage further refines the project schedule, resource allocation, and risk analysis. The project's development will be based on the results of the preliminary planning, establishing a detailed work plan and clarifying task priorities. The success or failure of this phase directly affects the orderly progression of the project.

Entering the requirements gathering phase, the focus shifts to collecting and documenting specific requirements for the project or system. This phase is particularly important as it determines whether the project's final deliverables will meet expectations. During the requirements gathering process, it's essential to ensure that all functional, performance, and user requirements are fully considered and translated into clear documentation. After completing requirements gathering, the analysis phase begins. In this stage, the collected requirements undergo in-depth analysis to ensure that all system functions and performance indicators are fully understood. During this phase, the feasibility and rationality of requirements for development and design need to be carefully examined to avoid significant deviations in subsequent design and implementation processes. Next is the design phase, which is the process of creating the project architecture and system blueprint. Based on the results of the analysis phase, this stage involves designing the system's structure and functional modules. The output of the design phase includes not only the system's technical architecture diagram but may also cover database design, interface design, and system interaction processes. The design work at this stage lays the foundation for the subsequent development.

Entering the implementation phase, the design outputs of the project are transformed into actual code and functionalities. During this stage, code is written and various module functions are implemented according to the technical solutions from the design phase. The implementation phase is typically the core part of the project and also the most time-consuming. Here, it's necessary to ensure that different parts of the system are seamlessly integrated according to design requirements. In the testing phase, the system undergoes comprehensive testing to ensure it meets requirements and functions properly. During the testing process, the system's functionality, performance, compatibility, and other aspects are verified, and potential defects are identified and fixed. The focus of this phase is to guarantee the stability and reliability of the system, avoiding major issues after deployment to the production environment.

Once testing is passed, the project enters the deployment phase. At this stage, the project outcomes are installed and configured in the actual operating environment for end-user use. The deployment process may involve system migration, data import, and infrastructure setup. Ensuring the smooth launch of the system is the core objective of this phase.

Finally, there's the evaluation phase. After the system has been deployed and running for a period, a comprehensive evaluation is conducted. If the system fails to meet business

requirements in certain aspects, adjustments or updates may be necessary. The evaluation work at this stage helps summarize the project's experiences and lessons, providing reference for future project outcomes.

3.1 System Design Diagram

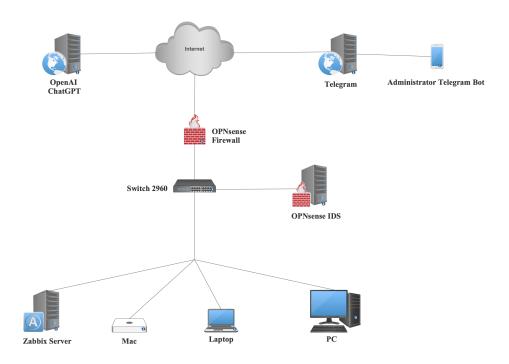


Figure 3.2 Network Diagram

The network topology diagram illustrates a network architecture design that employs multilayered security protection and monitoring mechanisms, aimed at ensuring secure communication and monitoring between internal devices and external services. This article will analyze the components and functions of this network architecture in detail from the perspectives of network device functionality, communication paths, and security measures.

Firstly, the network entry point is accessed through the Internet, with the network using OPNsense Firewall as the first line of defense for network security. OPNsense is an open-source firewall and routing platform that provides deep packet inspection, traffic filtering, and network security monitoring capabilities. It ensures that traffic from external networks undergoes strict inspection and filtering to prevent potential network attacks.

Connected to the firewall is a Switch 2960, responsible for managing data exchange between devices within the internal network. This switch is connected through multiple interfaces to different types of terminal devices, including Mac, PC, and Laptop workstations. The switch

ensures efficient and secure communication between these terminal devices while allowing different devices to access external networks through the firewall. On the other end of the switch, it is connected to the Zabbix Server and OPNsense IDS (Intrusion Detection System). Zabbix Server is an open-source monitoring tool mainly used for monitoring the performance and health status of network devices and servers.

By configuring OPNsense Intrusion Detection's rule set to detect potential intrusions and malicious activities, deploying OPNsense IDS at the network perimeter or critical nodes, and configuring it to monitor inbound and outbound traffic by using port mirroring method, the detected logs can be sent to Zabbix server for further processing by using zabbix sender. In this network architecture, the Zabbix server can collect real-time performance data from internal devices and generate alert notifications, helping administrators discover potential network issues or device failures. On the Zabbix server, create a item key to receive by using zabbix trapper and process the logs generated by OPNsense IDS. Create corresponding triggers in Zabbix based on the severity and priority of OPNsense IDS alerts, setting appropriate thresholds and conditions to trigger alarms. Configure alarm actions in Zabbix to determine the method of sending alerts and the recipients from the security team based on the trigger conditions and severity.

The OPNsense IDS serves as a second layer of security protection, responsible for monitoring internal network traffic and detecting possible intrusion behaviors. The intrusion detection system analyzes traffic patterns to identify abnormal behaviors and triggers security alerts, further enhancing network security. Utilize Zabbix's graphing and dashboard features to visually correlate OPNsense IDS alerts with other monitoring metrics, such as system performance and network traffic, in a template. Finally, use Zabbix's reporting functionality to generate statistical reports of OPNsense IDS alerts and events for periodic security audits and compliance assessments, providing insights into network security trends and areas for improvement. With this setup, whenever any abnormal network intrusion or threat occurs, the IDS will detect it, generate logs with priority, and promptly send them to Zabbix, triggering alerts to notify the security team members.

This network architecture also integrates OpenAI ChatGPT and Telegram services, including the use of API to input IDS logs into GPT-3.5 to obtain mitigation suggestions, and using Telegram as a communication method to inform network security administrators of current issues and provide the best recommended solutions, implementing automated interaction functions. Thus, communication between the Telegram Bot and administrators can achieve

system status reporting, alert notifications, and the issuance of automated operation and maintenance tasks, to obtain real-time security intrusion detection information and promptly address high-priority critical threads. Through this approach, network administrators can receive real-time system status updates anytime, anywhere, and take action when necessary.

The overall network design architecture demonstrated in this project combines firewall, intrusion detection system, performance monitoring tools, and automated management platforms to form a comprehensive security protection and management system. Each layer in the network has a clear role and function, ensuring secure, stable, and controllable communication between internal devices and external services. Through real-time monitoring and management of network traffic, administrators can quickly identify and address issues, thereby ensuring efficient network operation.

In summary, this network topology diagram shows a comprehensive security architecture that ensures network stability and security by integrating firewalls, intrusion detection systems, performance monitoring tools, and automated management platforms. This design is suitable for various network environments with high security requirements and can effectively address both internal and external security threats.

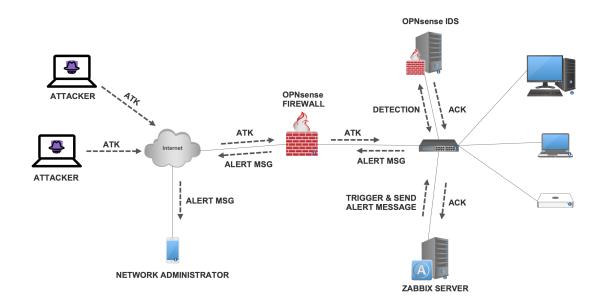


Figure 3.3 Zabbix and IDS Activity Diagram

The activity diagram illustrates the protection mechanisms and automated response processes that occur during a network attack, specifically describing a series of steps including attack detection, alert generation and transmission, administrator notification, and system

confirmation feedback. This article will analyze the workflow of the activity diagram and the function of each component in detail from four aspects: attack detection, alert transmission, administrator response, and system confirmation.

First, according to the activity diagram, it shows the process of an external attacker initiating an attack through the Internet. The attacker exploits network vulnerabilities or weaknesses to send malicious traffic or attempt unauthorized access to system resources. The attack request is transmitted through the Internet to the OPNsense Firewall. At this point, the firewall serves as the first line of defense for the network, responsible for filtering external traffic and blocking potential threats.

When the OPNsense Firewall is breached by attack traffic, the attack will enter the second line of defense and activate the OPNsense IDS (Intrusion Detection System) shown on the right side of the activity diagram, while the firewall continues to process attack traffic, preventing known attacks from further infiltrating the internal network.

The OPNsense IDS system, through in-depth analysis of network traffic, will identify anomalous behavior and further confirm whether it is a malicious attack. If the IDS system detects a threat, it generates an alert log and transmits the information to the Zabbix server via the switch using the Zabbix Sender method.

After receiving the alert log from the OPNsense IDS system, the Zabbix server triggers an automated alert mechanism. This server not only records these logs but can also send alert notifications to network administrators based on preset rules. For example, when the Zabbix server detects multiple attacks or certain types of attacks causing inbound or outbound traffic to become massive, it sends more urgent alert notifications to administrators. At this point, administrators may receive these alerts and suggested solutions on devices such as mobile phones, prompting them to check the network status immediately.

At the center of the activity diagram, the switch's role is to ensure efficient transmission of data and alert information between various network devices. When an attacker attempts to attack terminal devices, steal information, or perform other attacks, after receiving an alert, the OPNsense IDS will actively send logs (ACK) to the Zabbix server through the switch, ensuring the reliability of information transmission. This communication mechanism ensures that network administrators can respond promptly and take measures when necessary, such as isolating attacked devices, closing vulnerabilities, or updating protection rules.

Finally, throughout the entire attack handling process, the network administrator, as the ultimate decision-maker, will determine whether manual intervention or adjustment of the

system's automated response mechanism is needed based on the received alert messages. Administrators can view detailed attack logs, analyze attack patterns, and take countermeasures based on the actual situation by accessing the management interface or directly logging into the firewall and Zabbix server.

In summary, this activity diagram demonstrates a complete automated network security protection process, from attack detection to alert notification and provision of solution suggestions, to administrator response and confirmation. This architecture not only can timely detect and respond to network attacks but also provides administrators with comprehensive monitoring and management tools to ensure the security and controllability of the network system. By integrating firewalls, intrusion detection systems, and automated monitoring platforms, network administrators can effectively prevent various external threats and quickly take countermeasures to ensure stable network operation.

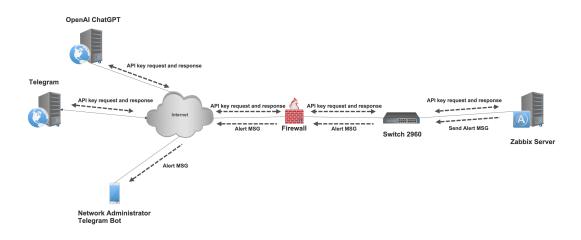


Figure 3.4 Zabbix Alert Activity Diagram

The activity diagram explains the workflow of an automated network monitoring and notification system that interacts between the Zabbix server, ChatGPT, and Telegram using API keys and tokens. The core functionality of this system is to utilize multiple components such as firewalls, switches, Zabbix servers, and Telegram Bots to monitor network conditions in real-time and send alert information to administrators through token requests and responses. First, the Zabbix Server identifies abnormal behavior, such as excessive traffic or device failures, or obtains logs through OPNsense IDS, and generates an alert message. In this diagram, when sending alert information to network security administrators, the Zabbix server uses API key requests and responses to communicate with ChatGPT. After the request message

is sent from the Zabbix server, it is transmitted through the switch to the firewall. The firewall is the first line of defense for the network, which can both filter external malicious traffic and receive and forward request messages through API requests. Before sending the alert information, the Zabbix server sends security threat log information to GPT-3.5 via API and requests a response, providing suggested solutions for the security threat logs. This integration can add more intelligent response capabilities to the system, providing analysis, suggestions, or automated processing solutions for alert events to administrators through natural language processing. Telegram service is used to notify network administrators. The Telegram Bot establishes communication with the Zabbix server through token key requests and responses. When abnormal behavior is detected in the network, alert messages are immediately sent from the Zabbix server to the Telegram server and then sent to the administrator's device through Telegram. Administrators can receive and view alert details in real-time on their mobile devices and take corresponding measures.

The communication mechanism of the entire system is based on API key requests and responses. Each component authenticates and communicates through secure API keys. This method ensures the security and accuracy of information transmission and avoids unauthorized access or tampering. At the same time, alert information is quickly transmitted from the monitoring server to administrators and related systems through these requests and responses, ensuring the system's immediate response capability. Finally, after receiving alerts through the Telegram Bot, network administrators can quickly take action. Therefore, administrators can remotely log into the network system, check the source and details of the alert, and take further measures such as adjusting firewall rules, updating system patches, or adding additional monitoring policies.

This model demonstrates an efficient automated network monitoring and alerting mechanism. Through API key interactions, various components can communicate and collaborate in real-time in a secure environment. The Zabbix server is responsible for generating and sending alert information, while the external platform OpenAI ChatGPT helps administrators quickly receive and analyze alerts. This design not only improves the security and reliability of the network but also provides more intelligent support for network management, significantly enhancing the response speed to network events.

Chapter 4

System Design

4.1 System Block Diagram

4.1.1 SNMP services between Zabbix server and Switch

Table 4.1 System Design of Zabbix Monitoring Switch using SNMP

From the table 4.1, Zabbix server will send SNMP request to the switch and waiting the respond. Once the switch received the request, it will reply the SNMP request to the Zabbix server. When Zabbix receive the SNMP from switch, it will start to process the SNMP data and virtualize the data in dashboards. According to the SNMP data, Zabbix server will trigger alert to the administrator if the data priority impact is high.

4.1.2 OPNsense Zabbix Agent and SNMP services

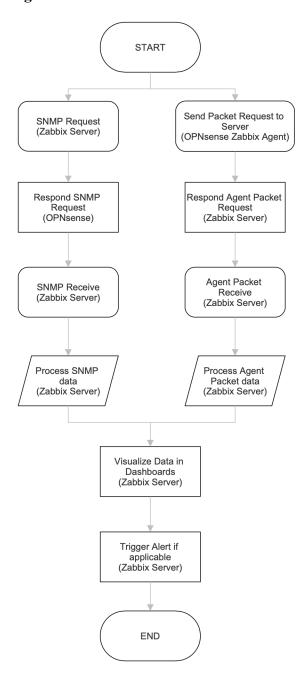


Table 4.2 System Design of Monitoring OPNsense using SNMP and Zabbix Agent

In table 4.2, Zabbix server will send SNMP request to the OPNsense while Zabbix Agent will send packet request to Zabbix server and both waiting the respond. OPNsense will reply SNMP request to the Zabbix server once receive the request while Zabbix server will respond Zabbix Agent packet request. When Zabbix receive the SNMP and Agent packet data from OPNsense, it will start to process the data and virtualize the data in dashboards. According to

the SNMP and Agent packet data, Zabbix server will trigger alert to the administrator if the data priority impact is high.

4.1.3 OPNsense Suricata IDS

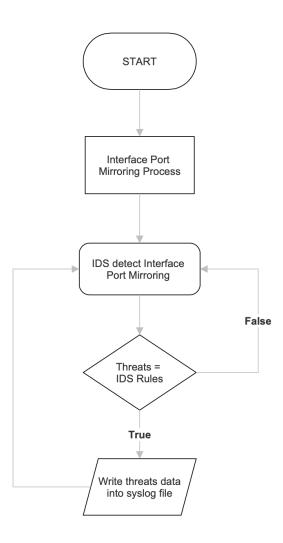


Table 4.3 System Process Design of OPNsense Intrusion Detection

Table 4.3 represents the process of intrusion detection detects threats with a port mirroring network interface. Interface port will be setting up port mirroring in a switch and the IDS monitors the mirrored traffic and detects any activity through the mirrored interface. If the detected traffic matches any predefined threat rules or signatures, the IDS will write the corresponding data into the syslog file for further analysis or alerting. If false the execution will repeat detect the port mirroring interface.

4.1.4 OPNsense Suricata Log Check Process

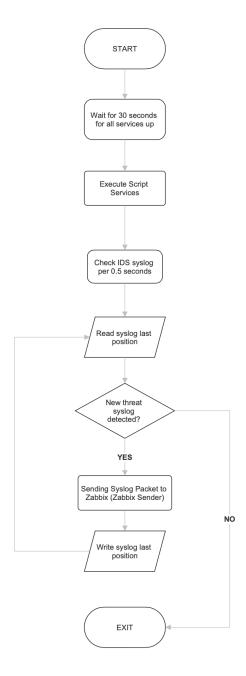


Table 4.4 System Process Design of OPNsense Log Check

The Table 4.4 flowchart describes the process of OPNsense's monitoring system detecting threats in system logs (syslog) and sending this threat information to Zabbix for processing. After OPNsense starts, this bash script waits for 30 seconds to ensure all services are started and the script service is executed. After the delay, a monitoring process begins every 0.5 seconds, where the system checks the Intrusion Detection System (IDS) syslog file every 0.5 seconds to detect any new log updates or changes. The system reads the last processed

position of the syslog file and checks for new threat logs. After detection, it records the last detected position of the syslog to ensure that only new log entries after this position are processed. The system then repeats the cycle, continuing to read the last processed position of the syslog file. If there are no new threats, the system process exits, waits for the next 0.5-second monitoring process, and continues to monitor and detect whether there are new syslog entries. If there are new threats, the newly detected threats will be sent to Zabbix for further processing or alerting through Zabbix Sender. After this, the system writes the last position of the syslog and continues the detection cycle. If there is no new threat information, the process exits. This process avoids repeated processing of threat information and tracks the latest log information in real-time.

4.1.5 Zabbix

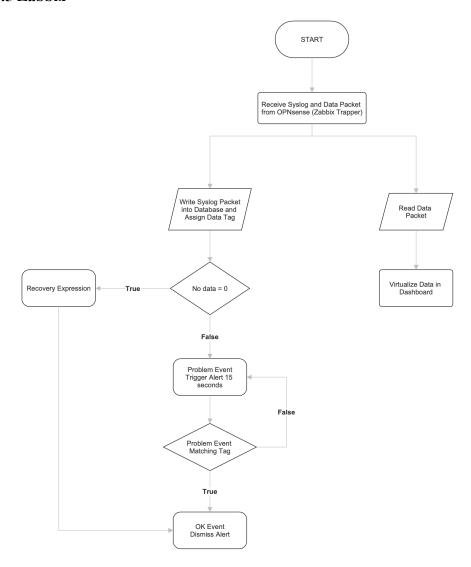


Table 4.5 System Design of Zabbix Monitoring

The Table 4.5 illustrates a Zabbix monitoring system process. After receiving syslog and data packets from OPNsense, the first step is to write the syslog data packet into the database and assign data tags, while simultaneously determining if valid data has been received. If there is no data (True), the process enters the Recovery Expression stage and proceeds to an OK event, canceling the previous event alert. If there is data (False), it triggers a problem event alert for 15 seconds. Typically, the alert signal continues for 15 seconds, after which it checks if the problem event matches the previously assigned data tag.

If there's no match (False), the alert signal continues. If there is a match (True), it enters an OK event to cancel the alert, marking the event status as "OK".

Concurrently, the second process when syslog data packets are received from OPNsense to the Zabbix system is to read the data packets for further data processing and analysis, and to visualize the data on a dashboard for system administrators to view and monitor.

In summary, syslog data packets from OPNsense are received by the Zabbix system, processed, and alerts are triggered based on problem events. Finally, the system checks whether the problem is resolved by matching tags or checking for new data, ultimately canceling the alert. At the same time, the data is visualized on a dashboard for real-time monitoring by administrators.

4.1.6 Zabbix Access MySQL Database

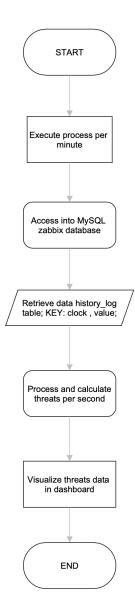


Table 4.6 System Process Design of Zabbix with MySQL

Table 4.6 flowchart illustrates an automated system that runs a process every minute to ensure data and threat calculations are updated in a timely manner. After the process is executing, the system connects to MySQL database associated with the Zabbix monitoring system, which is used to store various monitoring data.

The system retrieves data containing clock (timestamp) and value (log threats data) from the history log table (history_log) in the zabbix database. The clock is used to record the time when events occur, while the value represents specific monitoring data. The system then analyzes and processes the data extracted from the database. Using a specific algorithm, it calculates the threat level per second. Finally, the calculated threat data is visualized and

displayed on a monitoring dashboard for administrators to view and analyze the current security status of the system.

Through this system, historical log data is extracted from the Zabbix database every minute, the number of threats per second is calculated, and the results are displayed on the dashboard. This ensures that real-time data on system threats is available for convenient monitoring and analysis.

4.1.7 Zabbix Trigger Alert with Recommendation

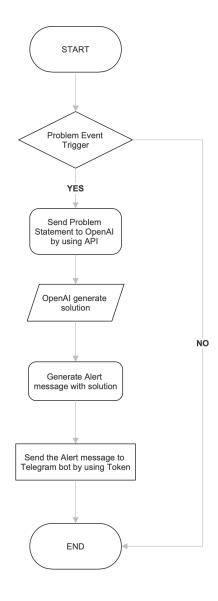


Table 4.7 System Design of Zabbix Trigger Alert

From the Table 4.7, the flowchart illustrates an automated system for handling problem events, integrating OpenAI's capabilities to generate solutions and using a Telegram Bot to

send alerts and solutions to administrators. This design enables the system to automatically generate solutions and quickly notify administrators when problems are detected, thereby improving the efficiency of problem handling.

When a problem event is triggered, there is a decision point where the system determines whether it meets the criteria to initiate this process. If it does not meet the criteria (NO), the process ends. If it does meet the criteria (YES), the system sends detailed information about the problem to OpenAI via API and requests a solution to be generated. After receiving the problem description, OpenAI provides an optimal solution for the issue. The system then combines the generated solution with the alert information to form a complete alert message. Finally, the alert message is sent to the Telegram Bot using a token to notify network administrators or relevant personnel. This allows for real-time understanding and receipt of information about critical issues, thereby improving the efficiency of prioritizing and handling problems.

This approach ensures that when the system detects a problem, it can automatically generate a solution and quickly notify administrators, thus enhancing the overall efficiency of problem management.

4.2 System Components Specification

4.2.1 Hardware Specification

i. Laptop

Table 4.8.1 Specifications of Laptop

Description	Specifications
Model	MacBook Pro 2018
Processor	2.6 GHz 6-Core Intel Core i7
Operating System	macOS Sonama 14.4
Graphic	Radeon Pro Vega 16 4GB
	Intel UHD Graphics 630 1536MB
Memory	32 GB 2400 MHz DDR4
Storage	Macintosh HD 500GB

ii. Desktop PC

Table 4.8.2 Specifications of Desktop PC

Description	Specifications
Model	Acer
Processor	Intel Core i5-4460 CPU @ 3.20GHz 3.20 GHz
Operating System	Windows 10 Pro
Graphic	Intel HD Graphics 4600
Memory	16,384 MB RAM

iii. Cisco Switch 2960

Table 4.8.3 Specification of Cisco Switch 2960

Description	Specifications
Model	2960-8TC-S
Forwarding Bandwidth	50Gbps
Flash Memory	64MB
Memory DRAM	128MB
Forwarding Rate	2.7 mpps
Fixed Lan Ports	8 Ethernet 10/100 ports and 1 dual-purpose uplink (dual-
	purpose uplink port has 1 10/100/1000 Ethernet port and
	1 SFP-based Gigabit Ethernet port, 1 port active)

4.2.2 Software Components

i. PuTTY: A popular open-source terminal emulator, serial console, and network file transfer application. It supports various network protocols, including SSH, Telnet, rlogin, and raw socket connection. PuTTY is widely used for remote access to servers, network devices, and other computing resources.

ii. SNMP: It is a widely used protocol for monitoring and managing network devices and services, also widely supported by network devices, including routers, switches, servers, printers, and more. Many network management systems and monitoring tools rely on SNMP to collect and analyze data from network devices so that enables network administrators can monitor device performance, traffic statistics, resource utilization, and other important metrics.

iii. OPNsense: An open-source firewall with network intrusion detection system (NIDS) and intrusion prevention system (IPS), is highly configurable and can be deployed in various network environments. It is widely used for real-time traffic analysis and packet logging to detect and prevent network security threats.

Table 4.9.1 Specification of OPNsense

Description	Specifications
Model	Virtual Machine
Processor	2 Processors
Operating System	FreeBSD
Memory	8192MB
Storage	30.00GB
Version	24.1.9_4

iv. Kali Linux: A popular open-source Linux distribution designed for digital forensics and penetration testing. It is widely used by security professionals, ethical hackers, and penetration testers for assessing the security of networks, systems, and applications. It provides a convenient and powerful platform for conducting security testing and identifying vulnerabilities.

Table 4.9.2 Specification of Kali Linux

Description	Specifications
Model	Virtual Machine
Processor	2 Processors
Operating System	Debian
Memory	2048MB
Storage	80.09GB
Version	2024.1

v. Zabbix Server: An open-source monitoring software designed for monitoring the availability and performance of IT infrastructure components, including servers, network devices, services, and applications. It is highly scalable and can monitor thousands of devices and metrics in real-time.

Table 4.9.3 Specification of Zabbix Server

Description	Specifications
Model	Virtual Machine
Processor	4 Processors
Operating System	Red Hat
Memory	4096MB
Storage	10.00GB
Version	6.4

vi. Black-Arch Linux: Black-Arch Linux is a highly specialized Linux distribution focused on penetration testing and security research. It provides a wide range of tools covering various aspects of cybersecurity, making it a valuable resource for offensive security tasks.

Table 4.9.4 Specification of Black-Arch Linux

Description	Specifications
Model	Virtual Machine
Processor	2 Processors
Operating System	Arch Linux
Memory	8192MB
Storage	98.05GB

4.3 System Components Design and Interaction

Figure 4.1 Switch Interface

From Figure 4.1, Interface Fa0/1 will connected to the internet, while interface Fa0/2 will set as port mirroring on interface Fa0/1

Figure 4.2 CPU Interface

In Figure 4.2, two network adapter interface need to be install physically. The top interface will connect to the switch interface Fa0/3 to access internet and the down interface will connect to the switch interface Fa0/2 to monitor the port mirroring.

Chapter 5

System Implementation

5.1 Software and Hardware

Before starting implement NIDAS, there are few software and hardware need to be install and setup

5.1.1 Software

- 1. PuTTY
- 2. Oracle VM Machine
- 3. OPNsense Firewall
- 4. Zabbix Server
- 5. Arch-Linux
- 6. Kali Linux
- 7. Telegram -Bot Father
- 8. Xampp

5.1.2 Hardware

- 1. Switch configuration and with SNMP services
- 2. Switch configuration with Port Mirroring

5.2 Hardware Setup

5.2.1 Setup and Configure Network Devices

- 1. Set Vlan1 IP address as 192.168.237.177/24, default-gateway as 192.168.237.254
- 2. Activate SNMP services with Read-Only community string

[snmp-server community 'Any Name' RO]

3. Enable SNMP traps by setting the host to which traps have to be sent

[snmp-server host 'Zabbix server ip addr' version 2c 'community name set on above']

4. Configure interface Fa0/2 as port mirroring of interface Fa0/1

[monitor session 1 source interface Fa0/1]

[monitor session 1 destination Fa0/2]

5. Exit the configuration mode and save the setting

[write memory]

```
COM1 - PuTTY
                                                                         Х
interface Vlanl
ip address 192.168.237.177 255.255.255.0
no ip route-cache
ip default-gateway 192.168.237.254
ip http server
snmp-server community starstar RO
snmp-server host 192.168.237.178 version 2c starstar
control-plane
line con 0
line vty 0 4
login
line vty 5 15
login
monitor session 1 source interface Fa0/1
monitor session 1 destination interface Fa0/2
end
Switch#
```

Figure 5.1.1 Switch Configuration

6. Ensure the port is in the same VLAN

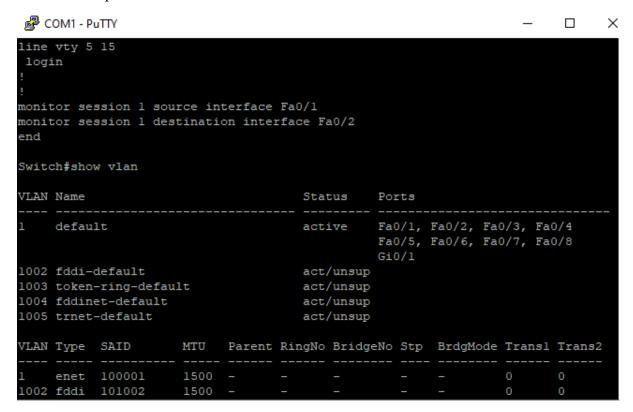


Figure 5.1.2 Switch VLAN

5.3 Software Setup

5.3.1 Install and Setup Zabbix Server

- 1. Go to the Zabbix website, choose Zabbix Appliance and select .ovf format download the Zabbix server.
- 2. Open Oracle VM VirtualBox manager, select add and find the Zabbix folder downloaded just now and select the 'zabbix' with format VirtualBox Machine.
- 3. Before turn on the Zabbix server, change the network adapter type to bridged network connection and start the machine.
- 4. Refer the Zabbix manual appliance, access into the Zabbix server as a root user.
- 5. Set a static IP address for Zabbix server, input command

[vi /etc/sysconfig/network-scripts/ifcfg-eth0] open file, press 'insert' key to change

Replace 'BOOTPROTO=dhcp' to 'BOOTPROTO=none'

Add the following lines into the file below the script:

[IPADDR=<IP address of the appliance>]

[PREFIX=<CIDR prefix>]

[GATEWAY=<gateway IP address>]

[DNS1=<DNS server IP address if no then remove this line>]

Press 'ESC' and input ':wq' to write and save the file.

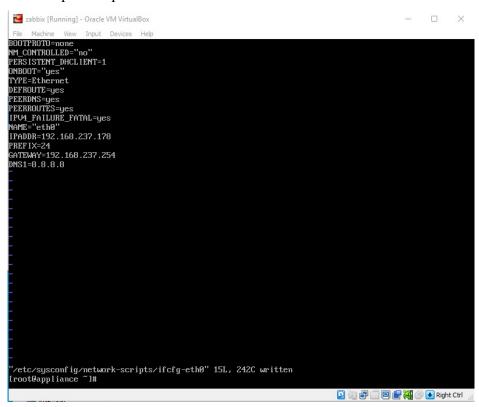


Figure 5.2.1 Zabbix Network Configuration

- 6. Run [systemetl restart network] to reboot the network.
- 7. Setup MySQL database user and password for Zabbix server, using the command [mysql u root -p] and root password is blank

Figure 5.2.2 Zabbix MySQL

8. Create the user and password for Zabbix server to access zabbix databases in MySQL

```
[create user 'zabbix'@'localhost' identified by '<password>']
```

[create user 'zabbix1'@'localhost' identified by '<password>']

9. Grant the full privileges access for 'zabbix' and 'zabbix1' in MySQL

```
[grant all privileges on zabbix.* to 'zabbix'@,'localhost';]
```

[grant all privileges on zabbix.* to 'zabbix1'@'127.0.0.1';]

10. Flush the privileges in MySQL

[flush privileges;]

```
Mathie Wew Propt Devices Heb

[rootRappliance "]H mysql - u root -p
Enter password:

& Congright (c) 2888, 2823, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql > create user 'zabbix'8'localhost' identified by 'starstar?7';
Query OK, 8 rows affected (8.82 sec)

mysql > grant all privileges on zabbix.* to 'zabbix'9'localhost';
Query OK, 8 rows affected (1 warning (8.62 sec)

mysql) create user 'zabbix'19'127.8.8.1' identified by 'starstar?7';
Query OK, 8 rows affected (9.82 sec)

mysql) create user 'zabbix'19'127.8.8.1' identified by 'starstar?7';
Query OK, 8 rows affected (9.82 sec)

mysql) create user 'zabbix'19'127.8.8.1' identified by 'starstar?7';
Query OK, 8 rows affected (8.82 sec)

mysql) grant all privileges on zabbix.* to 'zabbix'19'127.8.8.1';
Query OK, 8 rows affected (8.82 sec)

mysql) flush privileges:
Query OK, 8 rows affected (8.82 sec)

mysql) flush privileges:
Query OK, 8 rows affected (8.81 sec)

mysql) exit

Dys

mysql | satt | sat
```

Figure 5.2.3 Zabbix MySQL Configuration

11. Open Zabbix server .conf file

[vi /etc/zabbix/zabbix_server.conf]

```
[root@appliance ~]# vi /etc/zabbix/zabbix_server.conf
```

12. After open the Zabbix server .conf file, input '/ListenIP' to search ListenIP is activate and set as 0.0.0.0

[ListenIP=0.0.0.0]

```
### Option: ListenIP
# List of comma delimited IP addresses that the trapper should listen on.
# Trapper will listen on all network interfaces if this parameter is missing.
#
# Mandatory: no
# Default:
ListenIP=0.0.0.0
```

13. Press 'Esc' and input '/StartTrappers' to activate the StartTrappers in Zabbix server .conf file

[StartTrappers=5]

```
### Option: StartTrappers
# Number of pre-forked instances of trappers.
# Trappers accept incoming connections from Zabbix sender, active agents and active proxies.
# At least one trapper process must be running to display server availability and view queue
# in the frontend.
# Mandatory: no
# Range: 0-1000
# Default:
StartTrappers=5
```

14. Press 'Esc', input '/' and search the DBHost, DBName, DBUser and DBPassword locate

15. Ensure DBHost and DBName is correct and activate, set DBUser and DBPassword with the user and password set in MySQL previously

```
[DBHost=localhost]
[DBName=zabbix]
[DBUser=zabbix]
[DBPassword=<password>]
```

16. Press 'Esc', input ':wq' to write and save the file

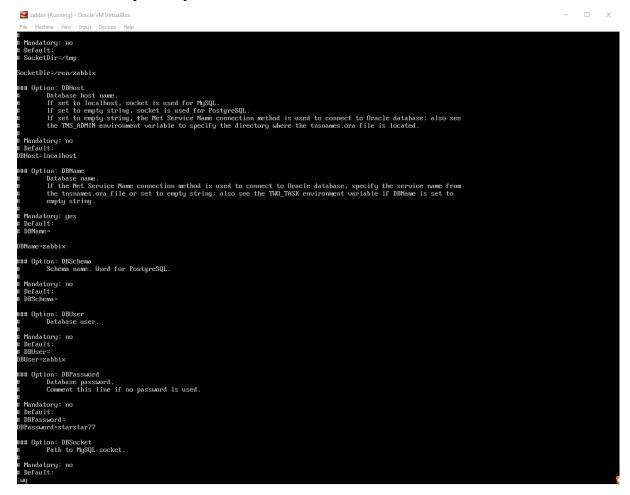
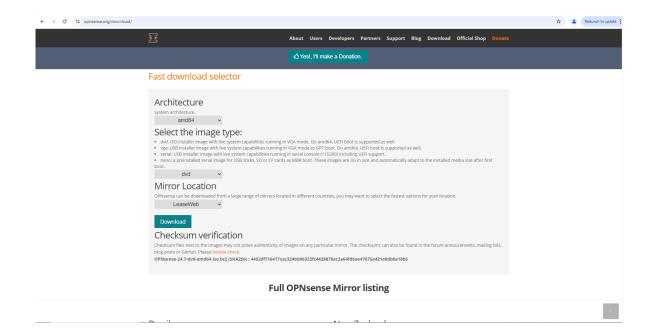
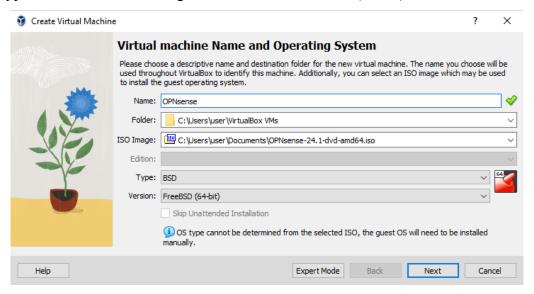
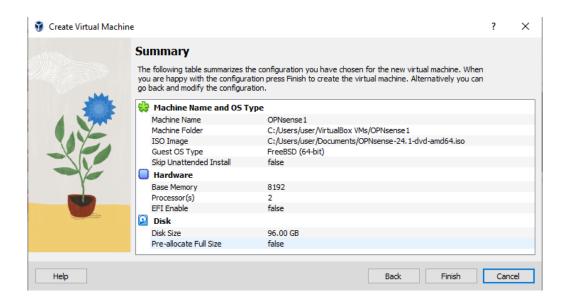
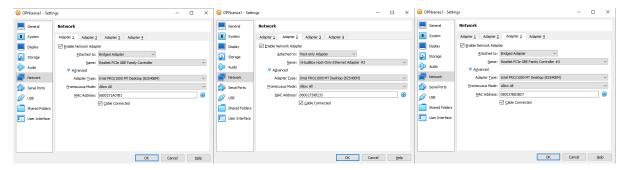



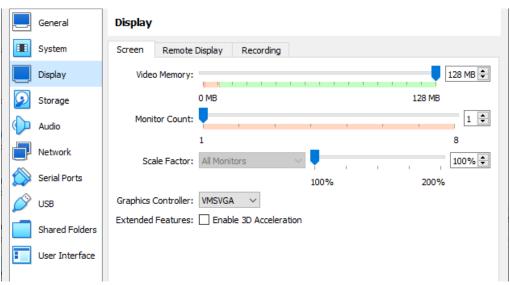
Figure 5.2.4 Zabbix Server Configuration

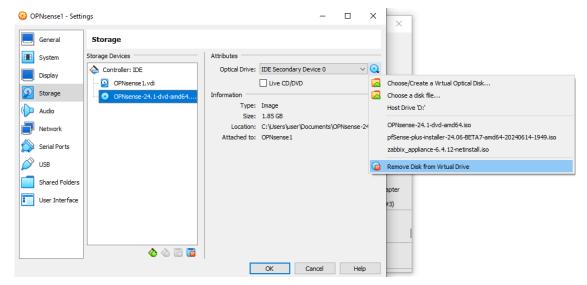

17. Input 'reboot' to reboot the zabbix server with the new configuration

5.3.2 Install and Setup OPNsense


1. Go to OPNsense website download the .iso file, System Architecture select 'amd64', image type 'dvd' and Mirror Location can be anyway.


2. Open Oracle VM VirtualBox manager, select new and select ISO image downloaded just now, type select 'BSD' and change the version to 'FreeBSD (64-bit)', click Next.


- 3. Base memory set on '8192 MB' and Processors set on '2 CPUs, click Next.
- 4. Select 'Create a Virtual Hard Disk Now' and must set disk size on '96.00 GB'.


- 5. Go to OPNsense virtual box setting and add 2 more adapter.
- 6. Adapter 1 set as Bridged Adapter, Adapter 2 set as Host-only Adapter and Adapter 3 set as Bridged Adapter. All adapter 'Promiscuous Mode' set as 'Allow All'.


7. Go to Display, slide the Video Memory to '128 MB'.

- 8. Start OPNSense VM and wait for the login prompt to display.
- 9. Login with the username 'installer' and password 'opnsense'
- 10. Select 'Continue with default keymap'
- 11. Select 'Install (UFS)' and click OK
- 12. Select 'ada0 < VBOX HARDDISK 10> (96GB)' as a disk to continue
- 13. UFS Configuration select 'Yes' to continue with a recommended swap partition of size 8GB
- 14. Select Yes to confirm to destroy the current contents of the following disks: ada0
- 15. Select 'Root Password' to change and confirm the new root password (Optional)
- 16. Select 'Complete Install' to exit the installer to reboot the machine
- 17. Before reboot the OPNsense, go to OPNsense virtual box setting 'Storage' and remove the disk from the virtual drive 'IDE Secondary Device 0: [Optical Drive] OPNsense.iso'

- 18. Login to the prompt with username root and root password set earlier
- 19. At the menu, enter 1 as the option to assign interfaces
- 20. Enter 'no' for 'Do you want to configure LAGGs now?' and 'Do you want to configure VLANs now?'

21. Enter 'em0' as WAN and 'em1' as LAN, leave blank for Optional section and enter 'y' to proceed

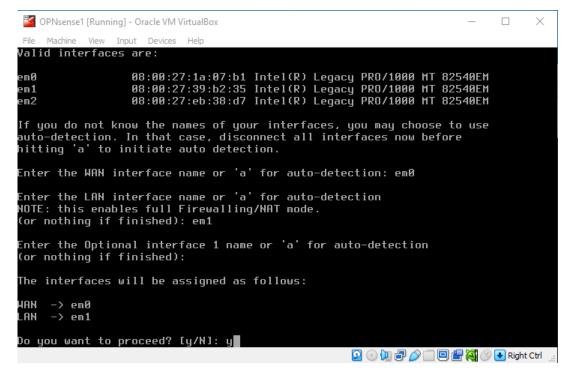


Figure 5.3.1 OPNsense Interface

- 22. At the menu, enter 2 as the option to set LAN interface IP address
- 23. Enter 1 to configure LAN interfaces
- 24. Enter 'n' in 'Configure IPv4 address LAN interface via DHCP?'
- 25. Enter '192.168.56.2' as new LAN IPv4 address and '24' as new LAN IPv4 subnet
- 26. Enter 'n' in 'Configure IPv6 address LAN interface via WAN tracking?'
- 27. Enter 'n' in 'Configure IPv6 LAN interface via DHCP6?'

```
OPNsensel [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

1 - LRN (em1 - static, track6)
2 - WRN (em8 - dhcp, dhcp6)

Enter the number of the interface to configure: 1

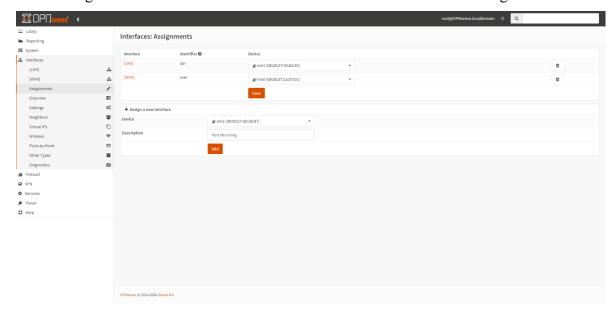
Configure IPv4 address LRN interface via DHCP? [y/N] n

Enter the new LRN IPv4 address. Press <ENTER> for none:
> 192.168.56.2

Subnet masks are entered as bit counts (like CIDR notation).
e.g. 255.255.8.8 = 24
255.255.8.8 = 16
255.0.8.9 = 8

Enter the new LRN IPv4 subnet bit count (1 to 32):
> 24

For a WRN, enter the new LRN IPv4 upstream gateway address.
For a LRN, press <ENTER> for none:
> Configure IPv6 address LRN interface via WRN tracking? [Y/n] n


Configure IPv6 address LRN interface via DHCP6? [y/N] n
```

- 28. 'Do you want to enable the DHCP server on LAN?' is optional choice, if 'y' input the start and the end of IPv4 client address range
- 29. Enter 'n' to not to change the web GUI protocol from HTTPS to HTTP
- 30. Enter 'y' to generate a new self-signed web GUI certificate and again 'y' to restore web GUI access defaults

```
OPNsense1 [Running] - Oracle VM VirtualBox
                                                                                                      \times
 File Machine View Input Devices Help
Configure IPv6 address LAN interface via DHCP6? [y/N] n
Enter the new LAN IPv6 address. Press <ENTER> for none:
Do you want to enable the DHCP server on LAN? [y/N] y
Enter the start address of the IPv4 client address range: 192.168.56.10
Enter the end address of the IPv4 client address range: 192.168.56.100
Do you want to change the web GUI protocol from HTTPS to HTTP? [y/N] n
Do you want to generate a new self-signed web GUI certificate? [y/N] y
Restore web GUI access defaults? [y/N] y
Writing configuration...done.
Generating /etc/resolv.conf...done.
Generating /etc/hosts...done.
Configuring LAN interface...done.
Setting up routes for lan...done.
Starting DHCPv4 service...done.
Starting Unbound DNS...done.
Configuring firewall.....done.
Starting DHCPv4 service...done.
Starting web GUI...done.
                                                                  Q (a) (b) Right Ctrl ...
```

Figure 5.3.2 OPNsense LAN

- 31. Open the browser, enter the IP address set for LAN and login with user 'root'
- 32. Go to the 'Interfaces; Assignments' in the menu bar
- 33. In 'Assign a new interface' section add 'em2' and name as Port Mirroring

34. Go to the [PortMirroring] section at Interfaces in menu bar, enable the interface and promiscuous mode then click save

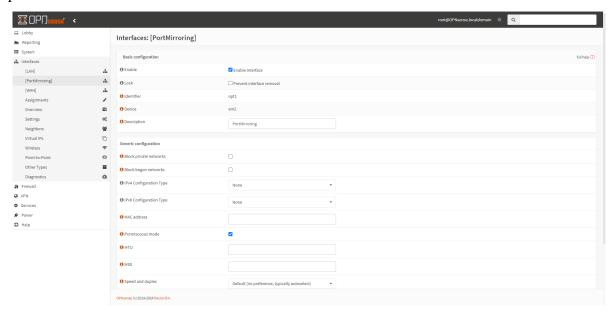


Figure 5.3.3 OPNsense Port Mirroring

34. Go to 'Power' and reboot the system

5.4 System Setting

5.4.1 Install and Setup Plugin in OPNsense

- 1. Go to the 'System; Firmware; Plugin' section
- 2. Search 'os-net-snmp' and 'os-zabbix64-agent', install them

- 3. Go to the 'Services; Net SNMP' section
- 4. Enable SNMP service and the SNMP community 'starstar'
- 5. Enable the Layer 3 Visibility and set the ListenIP as OPNsense 'WanIP address'
- 6. Click Save button

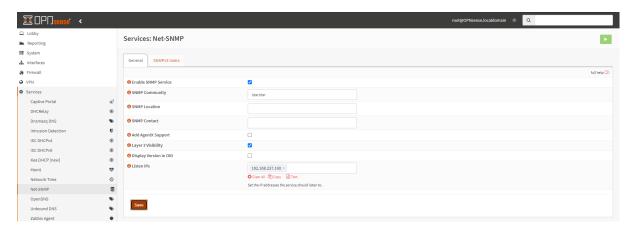


Figure 5.4.1 OPNsense SNMP

6. Go to the 'Service; Zabbix Agent' section

7. Enable Zabbix Agent service and setup the configuration

[Hostname: OPNsense]

[Listen Port: 10050]

[Listen IPs: 192.168.237.160]

[Source IP: 192.168.237.160]

[Zabbix Servers: 192.168.237.178]

Enable sudo root permissions

8. Click Apply

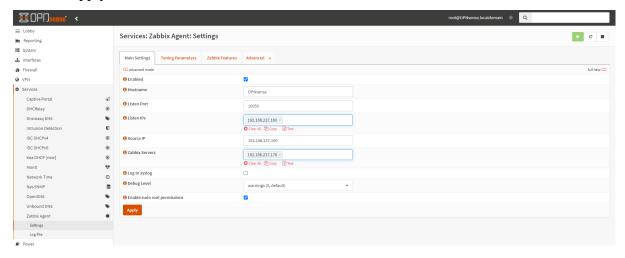


Figure 5.4.2 OPNsense Zabbix Agent

- 9. Go to 'Service; Intrusion Detection; Administration' section
- 10. In setting section enable Intrusion Detection service and syslog alerts
- 11. Pattern matcher set as default and Interfaces choose PortMirroring
- 12. Rotate log set as Daily and saves logs set as 4
- 13. Click Apply

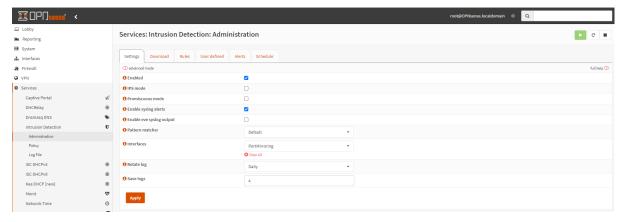


Figure 5.4.3 OPNsense Intrusion Detection

- 14. In download section, select all rulesets and download
- 15. After downloaded rulesets, select all rulesets and click 'Enable selected'

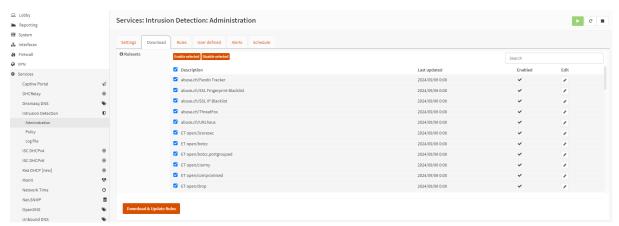
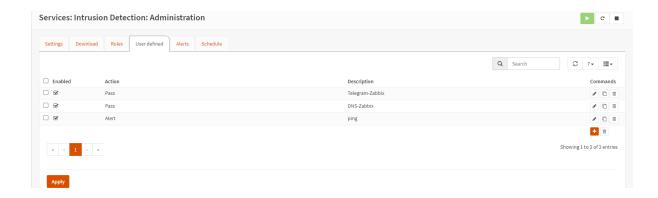



Figure 5.4.4 OPNsense Rulesets

16. Go to User defined section and select add rules action

17. Setup the action rules for Zabbix-DNS to pass through IDS

[Source IP: 192.168.237.178]

[Destination IP: 8.8.8.8]

[Action: Pass]

[Description: Zabbix-DNS]

18. Enable the rule set and click Save

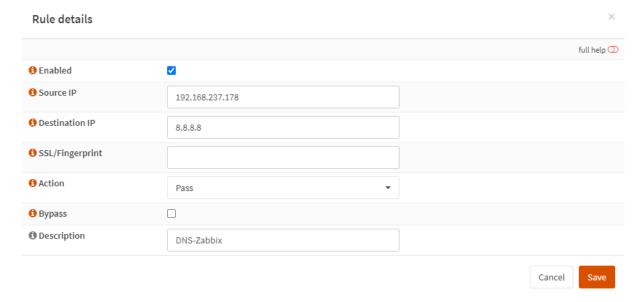


Figure 5.4.5 OPNsense Zabbix-DNS rule set

19. Setup the action rules for Zabbix-Telegram to pass through IDS

[Source IP: 192.168.237.178]

[Destination IP: 149.154.167.220]

[Action: Pass]

[Description: Zabbix-Telegram]

20. Enable the rule set and click Save

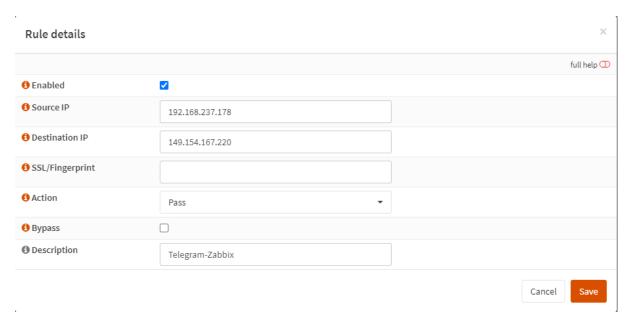


Figure 5.4.6 OPNsense Zabbix-Telegram rule set

5.4.2 Setup OPNsense Firewall TCP and UDP Rule

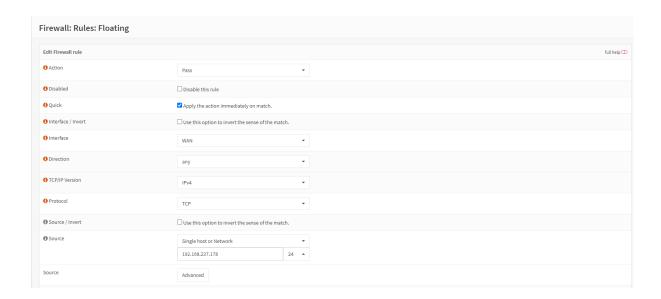
- 1. Go to the 'Firewall; Rules; Floating' section
- 2. Add new rules



Figure 5.4.7 OPNsense Firewall TCP and UDP rules

3. Preconfig the rules to establish connection between Zabbix server and OPNsense Zabbix Agent

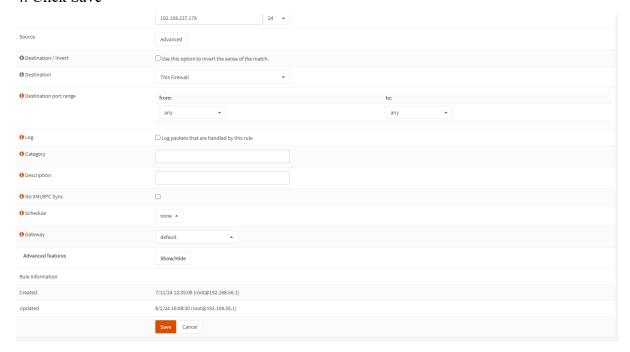
[Action: Pass]


[Quick: Apply the action immediately on match]

[Interface: WAN]
[Direction: any]

[TCP/IP Version: IPv4]

[Protocol: TCP]


[Source: Single host or Network, 192.168.237.178/24 (Zabbix Server IP address)]

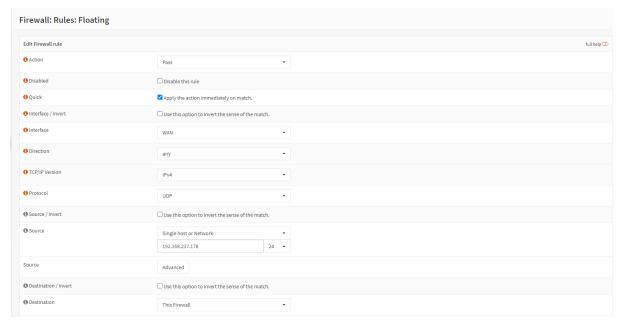
[Destination: This Firewall]

[Destination port range: from 'any' to 'any']

4. Click Save

5. Preconfig the rules to establish connection between Zabbix server and OPNsense SNMP service

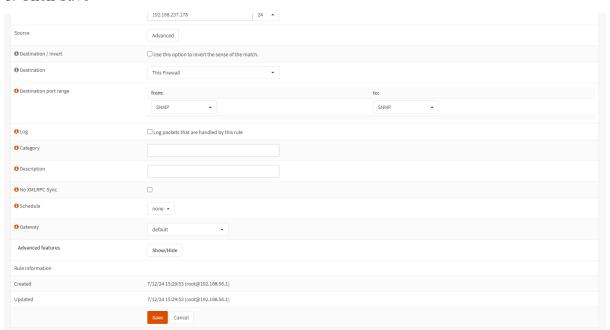
[Action: Pass]


[Quick: Apply the action immediately on match]

[Interface: WAN]
[Direction: any]

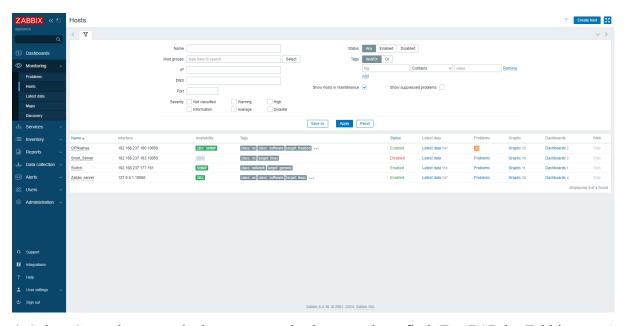
[TCP/IP Version: IPv4]

[Protocol: UDP]


[Source: Single host or Network, 192.168.237.178/24 (Zabbix Server IP address)]

[Destination: This Firewall]

[Destination port range: from 'SNMP' to 'SNMP']


6. Click Save

5.5 System Configuration

5.5.1 Monitoring OPNsense by using Zabbix Agent and SNMP

- 1. Open the browser and input the Zabbix server IP address that has been set in 5.3.1 to open the front end of Zabbix server
- 2. Login with Username 'Admin' and Password 'zabbix'
- 3. Once access in the front end, select Monitoring section in the menu and click on host

- 4. Select Create host, put the host name and select templates find 'FreeBSD by Zabbix agent' and 'OPNsense by SNMP', Host Groups select 'Virtual machines'
- 5. Add Agent as an interfaces, input OPNsense WAN IP address and make sure port is 10050
- 6. Add SNMP as an interfaces, input OPNsense WAN IP address and make sure port is 161. Select SNMP version 'SNMPv2' and input the SNMP community as 'starstar' set in 5.5 Install and Setup Plugin in OPNsense
- 7. Click add and the host is created, check the Availability of OPNsense server and if the status is available now the Zabbix can monitor the OPNsense

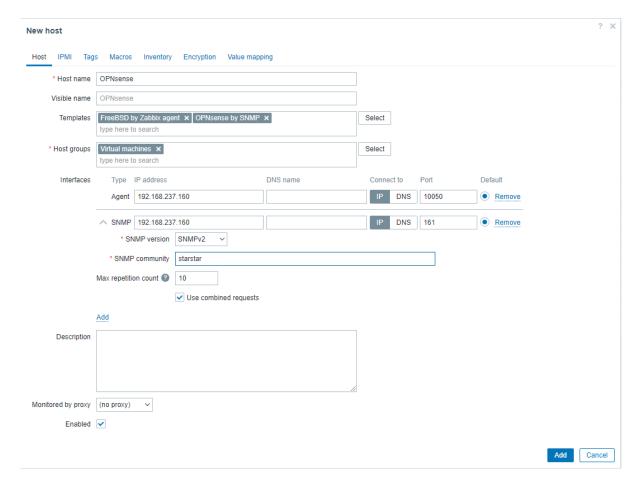


Figure 5.5.1 Create OPNsense Host in Zabbix

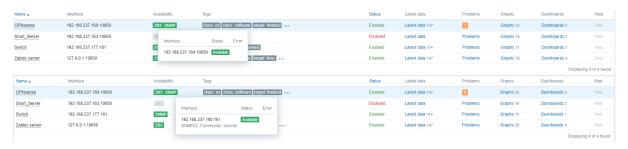


Figure 5.5.2 OPNsense Availablity Status

5.5.2 Monitoring switch by using Zabbix SNMP

- 1. Select 'Create Host' to create host 'Switch'
- 2. Put the host name and select templates find 'Network Generic Device by SNMP', Host Groups select 'Template/Network devices'.
- 3. Add SNMP as an interfaces, input switch IP address and make sure port is 161. Select SNMP version 'SNMPv2' and SNMP community input 'starstar' that configure in switch.
- 4. Click add and the host is created, check the Availability of switch and if the status is available now the Zabbix can monitor the switch.

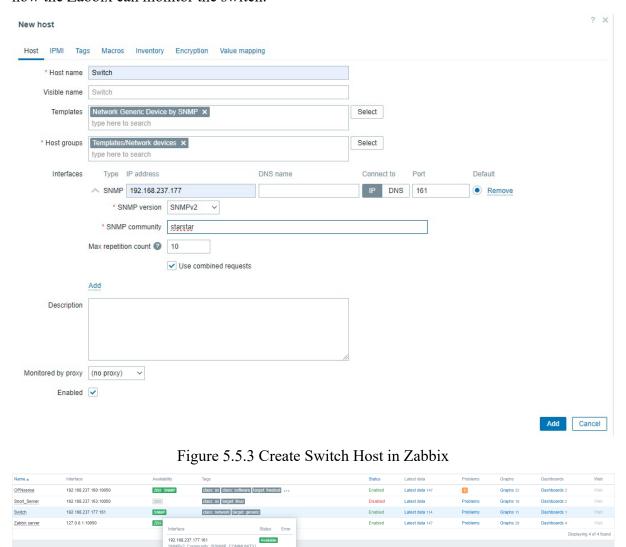


Figure 5.5.4 Switch Availability Status

5.5.3 Monitoring OPNsense IDS by using Zabbix

- 1. Login as root in OPNsense CLI and menu select 8 enter into Shell mode
- 2. Create a python script file in /usr/local/bin with using the command

[vim /usr/local/bin/ids.py]

```
///000
 Website:
                                                       000///
               https://opnsense.org/
 Handbook:
               https://docs.opnsense.org/
                                                     \alpha
               https://forum.opnsense.org/
                                                       000///
                                                                 ///000
 Forums:
               https://github.com/opnsense
 Code:
                                                      0000
                                                                    0000
 Twitter:
                                                       00000000000000000
               https://twitter.com/opnsense |
*** OPNsense.localdomain: OPNsense 24.1.9_4 ***
                -> v4: 192.168.56.2/24
LAN (em1)
PortMirroring (em2) ->
                -> v4/DHCP4: 192.168.237.160/24
WAN (em0)
 0) Logout
                                         7) Ping host
                                         8) Shell
 1) Assign interfaces
                                        9) pfTop
10) Firewall log
 2) Set interface IP address
 3) Reset the root password
 4) Reset to factory defaults
                                        11) Reload all services
 5) Power off system
                                        12) Update from console
 6) Reboot system
                                        13) Restore a backup
Enter an option: 8
oot@OPNsense:~ # vim /usr/local/bin/ids.py
```

- 3. Write the script to send the ids log file data to Zabbix server, refer from the Appendix A
- 4. After complete the scripts, press 'Esc' and input ':wq' to save the file

5. Create a bash script file in /usr/local/bin with using the command [vim /usr/local/bin/start idstimer.sh]

- 6. Write the script to automate run the python script 24 hours, refer from Appendix B
- 7. After complete the scripts, press 'Esc' and input ':wq' to save the file

8. Set the file full execute permission for both scripts in OPNsense by using the command [chmod +x /usr/local/bin/ids.py]

[chmod +x /usr/local/bin/start idstimer.sh]

9. Using crontab service to run the bash script when every time OPNsense is up, open the crontab file by using the command

[vim /etc/crontab]

root@OPNsense:/ # vim /etc/crontab

10. Add the command in crontab file

[@reboot root /usr/local/bin/start idstimer.sh]

11. Press 'Esc' and input ':wq' to save the file

```
1 # /etc/crontab - root's crontab for FreeBSD
2 #
3 #
4 SHELL=/bin/sh
5 PPRTH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin
6 #
7 #minute hour mday month wday who command
8 #
9 # Save some entropy so that /dev/random can re-seed on boot.
10 */11 * * * * operator /usr/libexec/save-entropy
11 #
12 # Rotate log files every hour, if necessary.
13 0 * * * root newsyslog
14 #
15 # Perform daily/weekly/monthly maintenance.
16 1 3 * * root periodic daily
17 15 4 * * 6 root periodic weekly
18 30 5 1 * root periodic monthly
19 #
20 # Adjust the time zone if the CMOS clock keeps local time, as opposed to
21 # UTC time. See adjkerntz(8) for details.
22 1.31 0-5 * * root adjkerntz -a
23 @reboot root /usr/local/bin/start_idstimer.sh
24
:wq
```

- 12. Input 'Reboot' to reboot the OPNsense server
- 13. Login as root in Zabbix server CLI
- 14. Create a python scripts file in /usr/lib/zabbix/externalscripts with the command [vi /usr/lib/zabbix/externalscripts/threats.py]

```
Zebbix [Running] - Oracle VM VirtualBox

— □ X

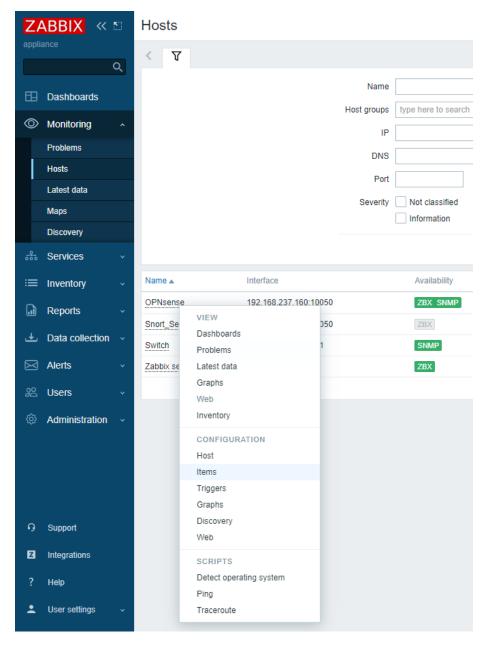
File Madwine View Input Devices Help

[root@appliance ~1# vi /usr/lib/zabbix/externalscripts/threats.py]
```

- 15. Refer from Appendix C, write the script to calculate the threats data per seconds from the TABLE 'history log' in MySQL zabbix database based on the key 'clock' and 'value'
- 16. Ensure the script 'db_config', user, password and the host is the second preset user in MySQL database at 5.3 Install and Setup zabbix server

```
['user' = 'zabbix1']
['password' = 'starstar77']
['host' = '127.0.0.1']
['database' = 'zabbix']
```

17. Press 'Esc' and input ':wq' write to save the file


18. Set the file full execute permission for python script in Zabbix server by using the command [sudo chmod +x /usr/lib/zabbix/externalscripts/threats.py]

[root@appliance ~]# sudo chmod +x /usr/lib/zabbix/externalscripts/threats.py

19. Input 'reboot' to reboot the zabbix server with the latest configuration

5.5.4 Virtualizing Data by using Zabbix

- 1. Back to zabbix front-end web, login with Username 'Admin' and Password 'zabbix'
- 2. Go to 'Monitoring; Hosts' section, click on host 'OPNsense' and select 'Items' in configuration section

3. Create new item in host 'OPNsense'

4. In item section set with the parameters

[Name: IDS log]

[Type: Zabbix Trapper]

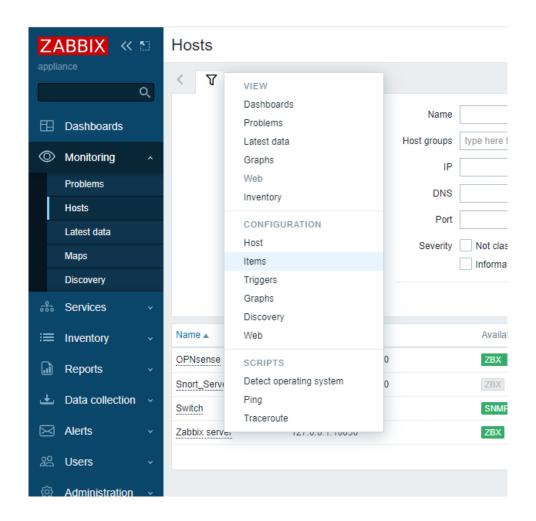

[Key: ids.detect]

[Type of information: Log]

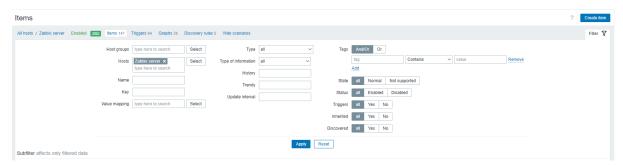
[History storage period: Storage period]

[Description: Detection]

5. Tick the 'Enabled'


6. In tags set with the parameters

[Name: IDS; Value: 0]


7. Click add to save and create the item

8. Go to 'Monitoring; Hosts' section, click on host 'Zabbix server' and select 'Items' in configuration section

9. Create new item in host 'Zabbix server'

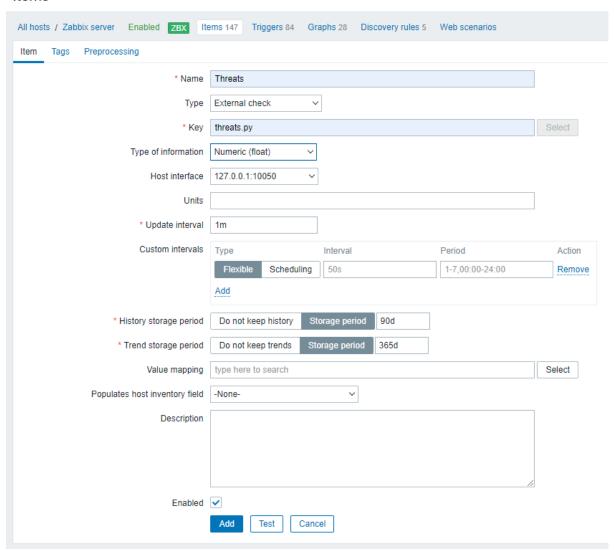
10. In item section set with the parameters

[Name: Threats]

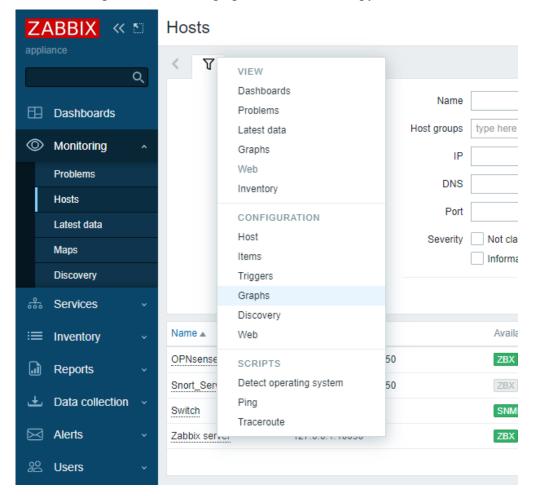
[Type: External check]

[Key: threats.py]

[Type of information: Numeric (float)]


[Host interface: 127.0.0.1: 10050]

[Update interval: 1m]


[History storage period: Storage period]
[Trend storage period: Storage period]

11. Tick the 'Enabled' and click Add to save and create the item

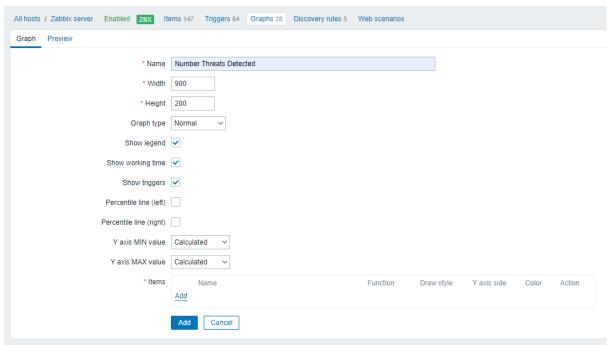
Items

- 12. Go to 'Monitoring; Hosts' section, click on host 'Zabbix server' and select 'Graphs' in configuration section
- 13. Select Create Graph to create new graph for item 'threats.py'

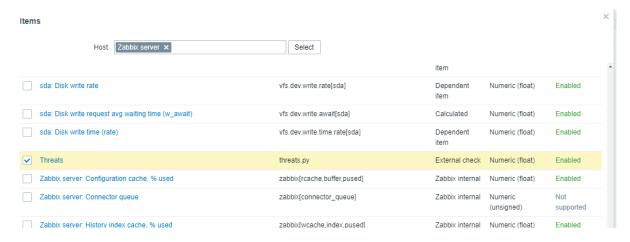
14. In Graph section set with the parameters

[Name: Number Threats Detected]

[Width: 900] [Height: 200]


[Graph type: Normal]

[Tick Show legend, Show working time and Show triggers]


[Y axis MIN value: Calculated][Y axis MAX value: Calculated]

15. Select Add for import items key

Graphs

16. Select host 'Zabbix server' and tick 'Threats'

17. Click add to save and create the graph

Graphs

All hosts / Zabbix server Enabled ZBX Items 147 Triggers 84 Graphs 28 Discovery rules 5 Web scenarios Graph Preview * Name Number Threats Detected * Width * Height 200 Graph type Normal Show legend 🗸 Show working time Show triggers 🗸 Percentile line (left) Percentile line (right) Y axis MIN value Calculated Name Draw style Y axis side Action

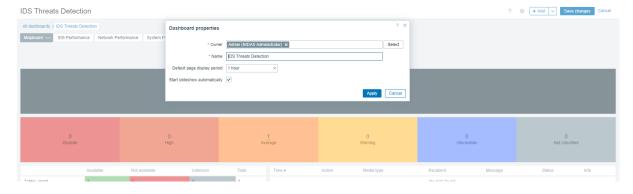
∨ Left

Remove

Line

18. Go to Dashboard section in the menu, and click the 'All dashboards'

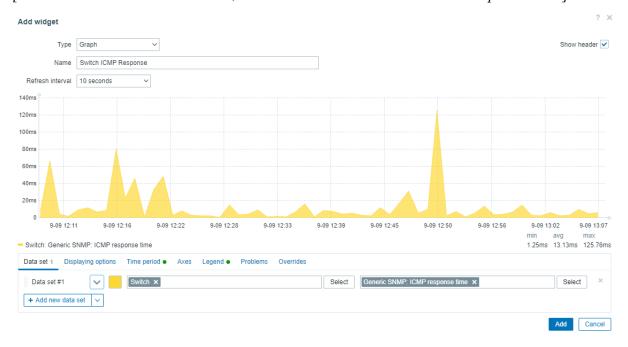
1: Zabbix server: Threats


Cancel

Add

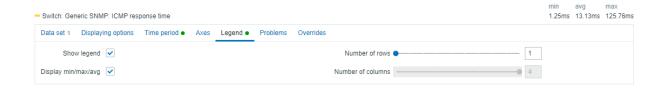
19. Click Create dashboard

20. Select the 'Admin' as the Owner and name the dashboard then click Apply

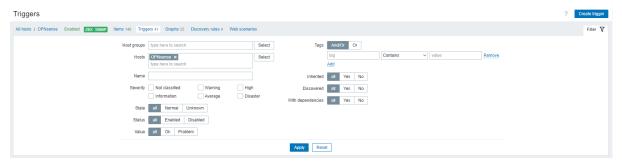

- 21. Click '+Add' in the dashboard and select 'Add widget' to create the graph
- 22. Create the widget with the following parameters

[Type: Graph]


[Name: Switch ICMP Response]


[Refresh interval: 10 seconds]

[Data set #1: Select host 'Switch', Select item 'Generic SNMP: ICMP response time']


23. In Data set #1, design the dashboard with following information

5.5.5 Setup Trigger and Alert by using Zabbix

1. Go to the Trigger section on host 'OPNsense' and select Create trigger

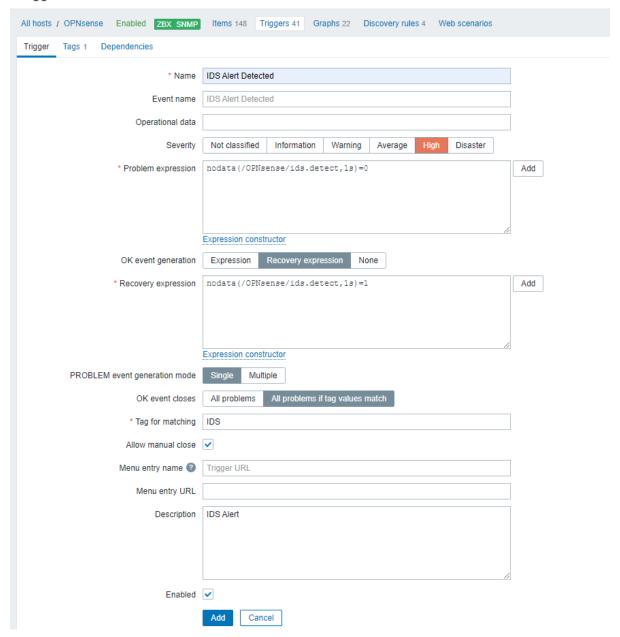
2. In trigger section set with the parameters and Enabled

[Name: IDS Alert Detected]

[Severity: High]

[Problem expression: nodata(/OPNsense/ids.detect,1s)=1]

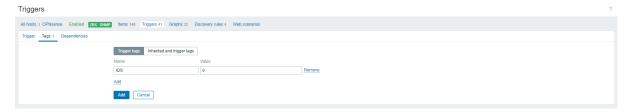
[PROBLEM event generation mode: Single]


[OK event closes: All problems if tag values match]

[Tag for matching: IDS]

[Enable Allow manual close]

[Description: IDS Alert]


Triggers

3. In Tags section set with parameters

[Name: IDS; Value:0]

4. Click add to save and create the trigger

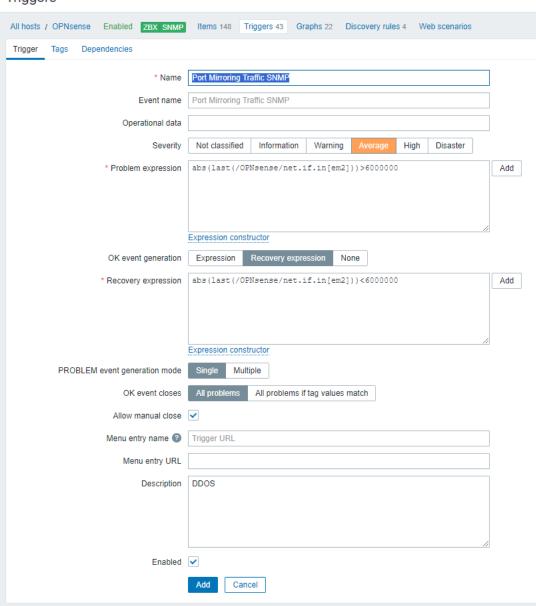
5. Create another 2 triggers, 'Port Mirroring Traffic SNMP' and 'Pflog Outgoing Traffic' with the following parameters

[Name: Port Mirroring Traffic SNMP]

[Severity: Average]

[Problem expression: abs(last(/OPNsense/net.if.in[em2]))>6000000]

[OK event generation: Recovery expression]


[Recovery expression: abs(last(/OPNsense/net.if.in[em2]))<6000000]

[PROBLEM event generation mode: Single]

[Enable Allow manual close]

[Description: DDOS]

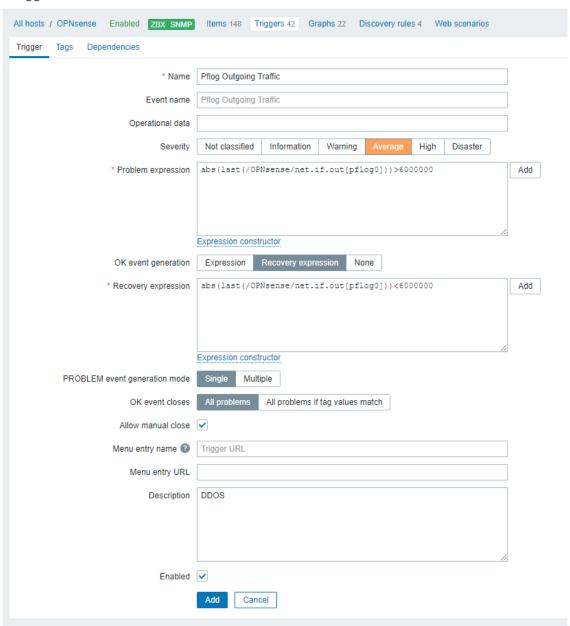
Triggers

[Name: Pflog Outgoing Traffic]

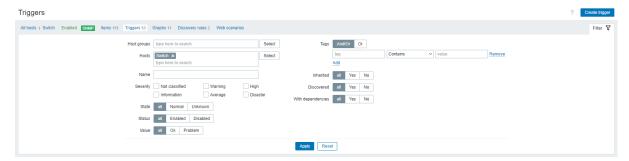
[Severity: Average]

[Problem expression: abs(last(/OPNsense/net.if.in[pflog0]))>6000000]

[OK event generation: Recovery expression]


[Recovery expression: abs(last(/OPNsense/net.if.in[pflog0]))<60000000]

[PROBLEM event generation mode: Single]


[Enable Allow manual close]

[Description: DDOS]

Triggers

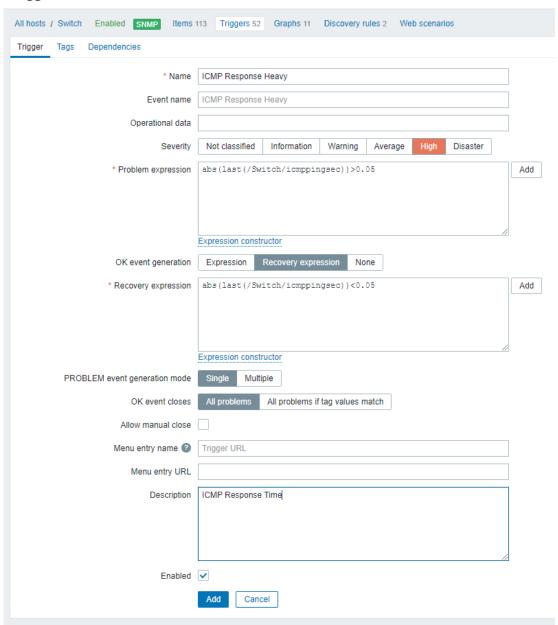
6. Select host 'Switch' in Triggers section and create trigger

7. Set with the following parameters and enable the trigger

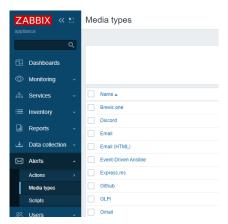
[Name: ICMP Response Heavy]

[Severity: High]

[Problem expression: abs(last(/Switch/icmppingsec))>0.05]


[OK event generation: Recovery expression]

[Recovery expression: abs(last(/Switch/icmppingsec))<0.05]

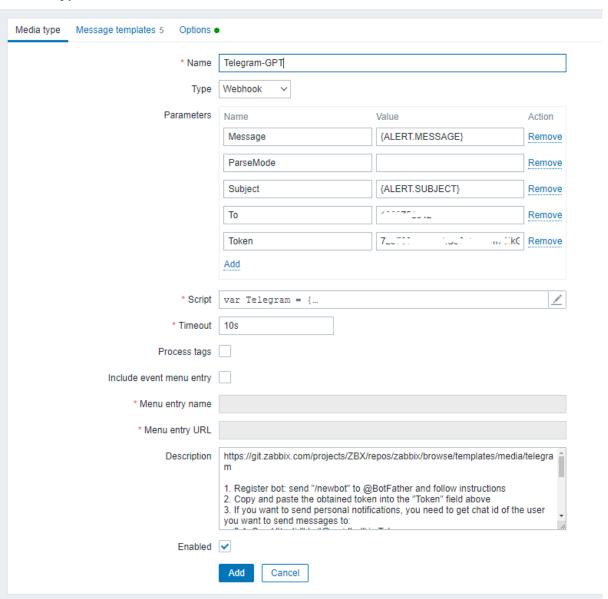

[PROBLEM event generation mode: Single]

[Description: ICMP Response Time]

Triggers

5. Go to 'Alerts; Media types' section in the menu and select 'Telegram'

- 8. Click clone to clone a new Telegram media types
- 9. Set the parameters and edit Script then click add


[Name: Telegram-GPT]

[Message: {ALERT.MESSAGE}]

[ParseMode:]

[Subject: {ALERT.SUBJECT}]
[To: <Telegram bot chatID>]
[Token: <Telegram bot token>]

Media types

10. Select the 'Telegram-GPT' media types just created, rewrite the script access with GPT-

3.5 by using API key and click Apply, refer to Appendix D

```
Media type

Message templates S Options

*Name

Type

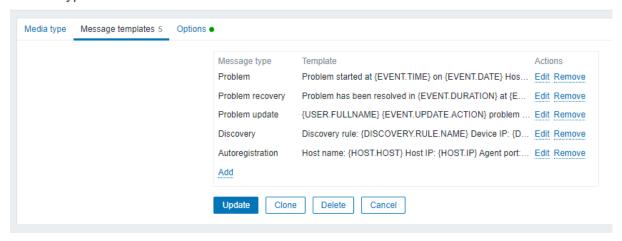
Tokens mult,

Parameters

Parameters

Parameters

*Name


Parameters

*Parameters

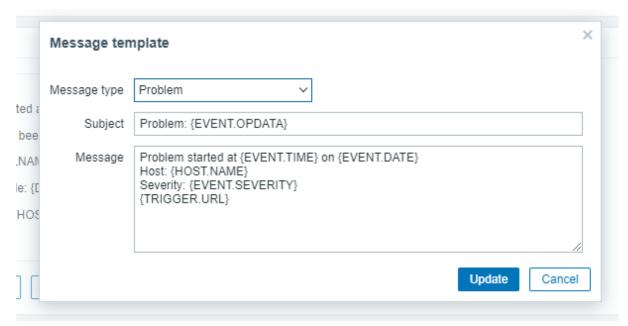
*Parameters
```

11. In Message templates section edit 'Problem' message type

Media types

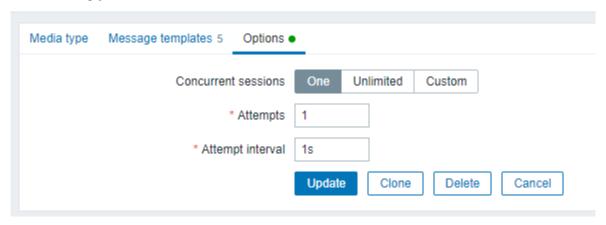
12. Edit the Message template with the parameters and click Update

[Message type: Problem]

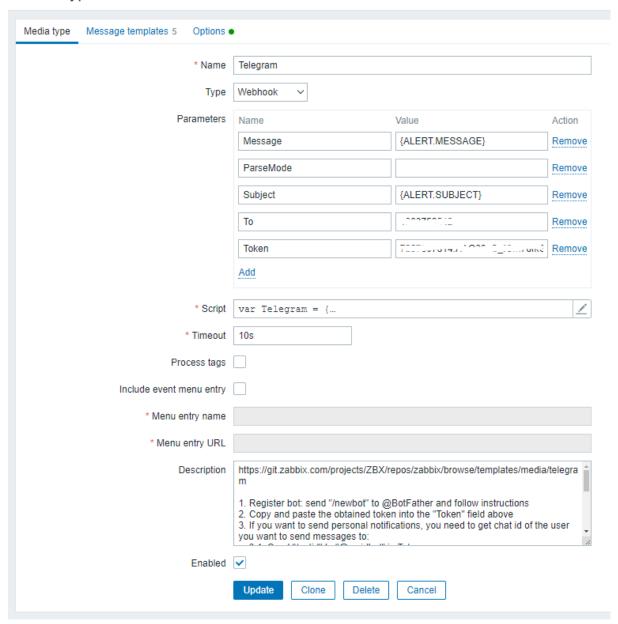

[Subject: Problem: {EVENT.OPDATA}]

[Message: Problem started at {EVENT.TIME} on {EVENT.DATE}

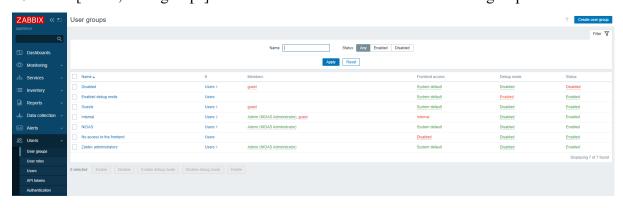
Host: {HOST.NAME}


Severity: {EVENT.SEVERITY}

{TRIGGER.URL}]


13. Go to Options, set the Attempts as 1 and Attempt interval as 1s, click Update

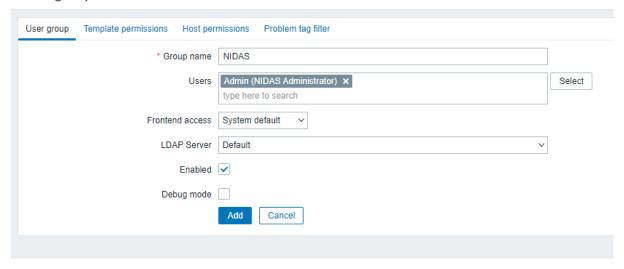
Media types



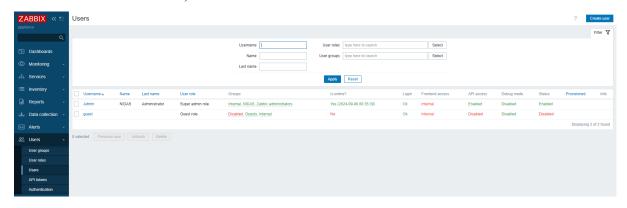
- 14. Go to the media types, select the default Telegram and enable
- 15. Set the Bot ChatID and the Token then click Update

Media types

16. Go to [Users; User groups] section in the menu and select Create user group


17. In User group section set the parameters and enabled

[Group name: NIDAS]

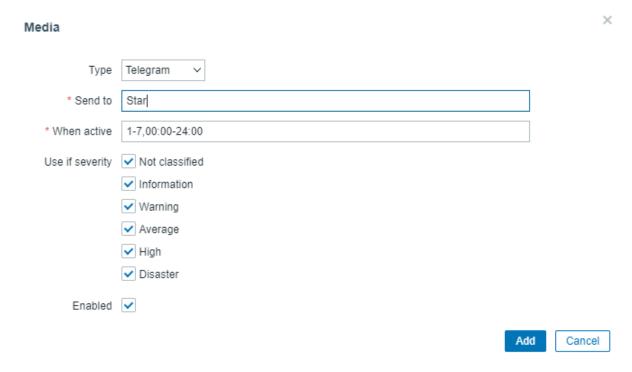

[Users: Admin (NIDAS Administrator)]

18. Click Add to save and create the new user group

User groups

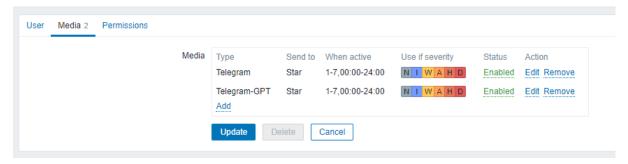
19. Go to the users section, select Admin

20. In Media section, add media

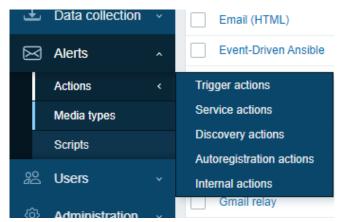


21. Set the new media type as Telegram and parameters with

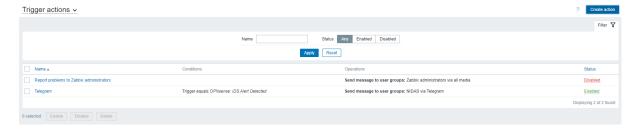
[Send to: Star]

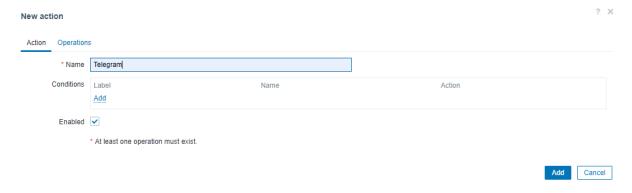

[When active: 1-7,00:00-24:00]

- 22. Enable all severity in Use if severity
- 23. Click add to save new media



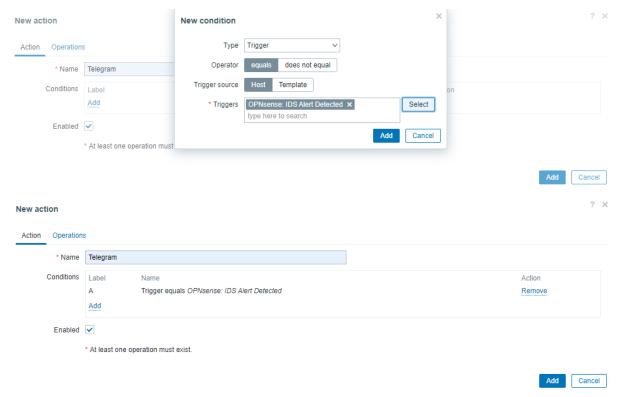
24. Add another media and ensure both of the media Telegram and Telegram-GPT status is Enabled


Users

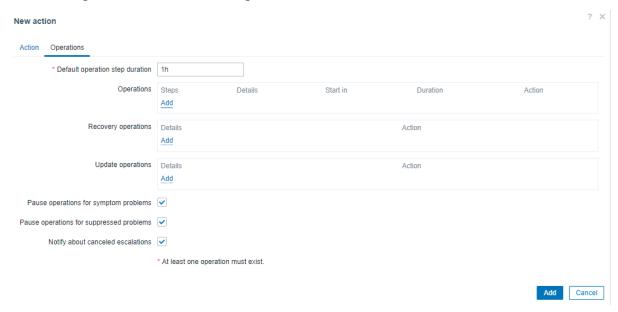

25. Go to Trigger actions in the menu 'Alerts; Actions' section

26. Create new action

27. Name the Telegram and add new conditions


28. Set new condition parameters and click add

[Type: Trigger]

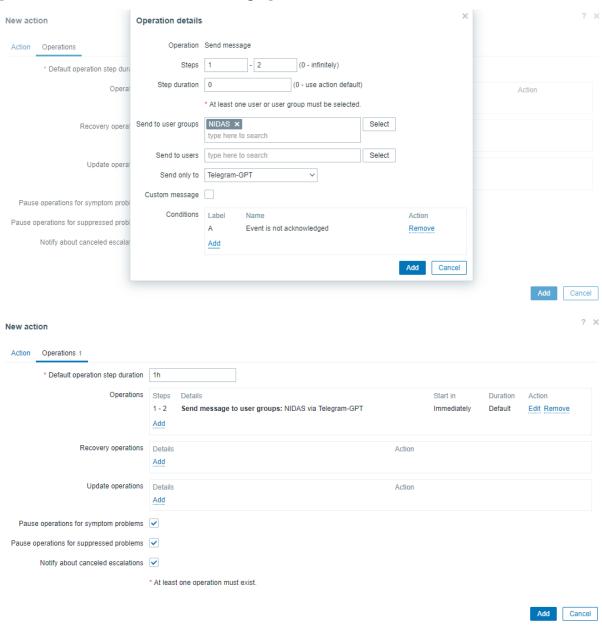

[Operator: equals]

[Trigger source: Host]

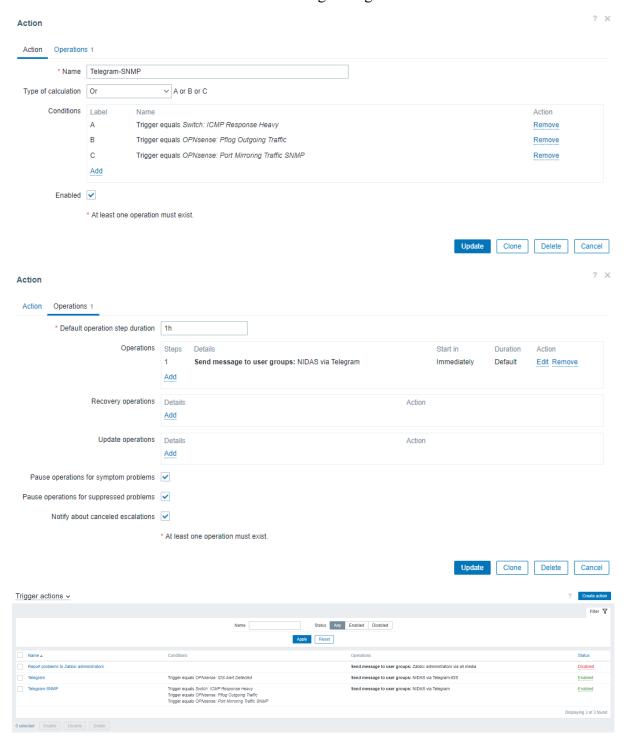
[Triggers: OPNsense IDS Alert Detected]

29. Go to Operations site, add new Operations

30. Set Operation details with the conditions and click add


[Steps: 1-2]

[Step duration: 0]


[Send to user groups: NIDAS]

[Send only to: Telegram-GPT]


[Conditions: A Event is not acknowledged]

31. Create another new action with the following setting

5.6 System Operation

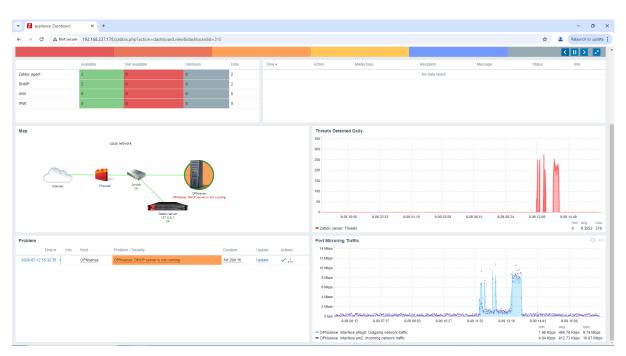
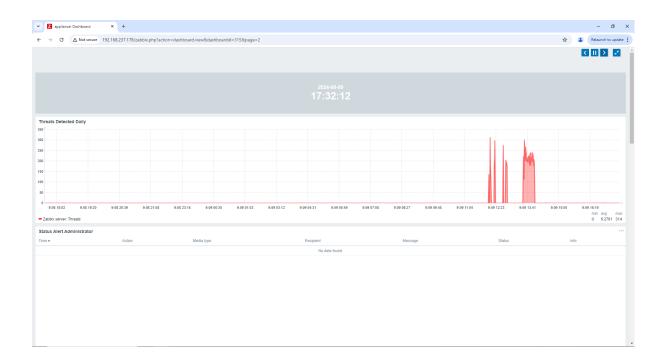



Figure 5.6.1 Dashboard Mapboard

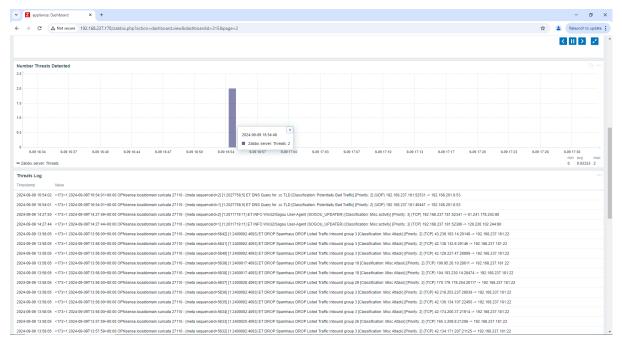


Figure 5.6.2 Dashboard IDS Performance

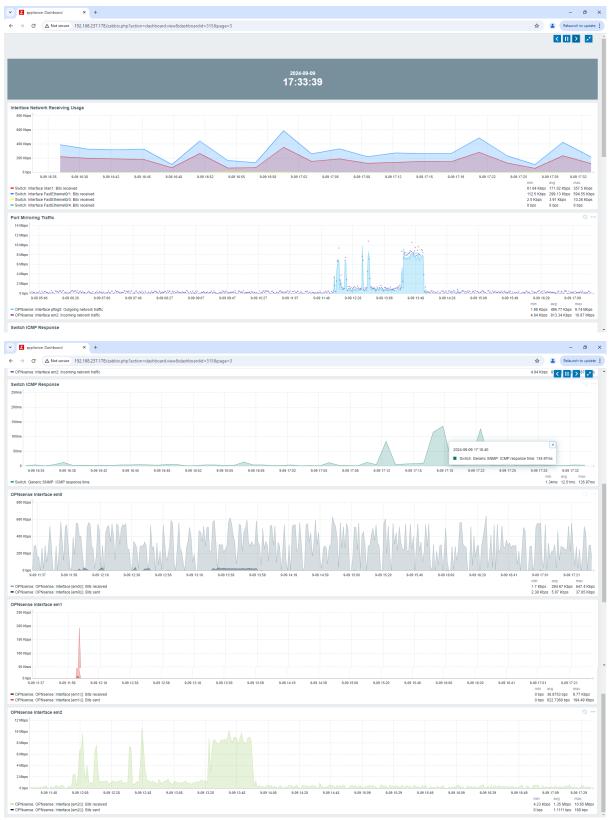


Figure 5.6.3 Dashboard Network Performance

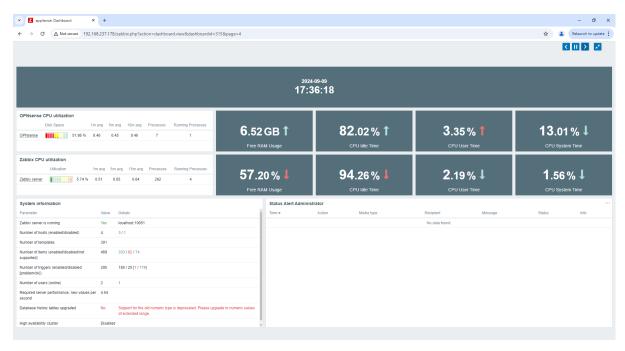


Figure 5.6.4 Dashboard System Performance

5.7 Implementation Issues and Challenges

The project presents several technical challenges that require expertise across various IT domains, making the implementation both time-consuming and demanding. The open-source nature of the tools involved necessitates substantial independent research and configuration, especially when integrating systems like Zabbix and OPNsense.

One key challenge lies in understanding the intergration pathways between Zabbix and OPNsense, particularly how existing sample data is transmitted and what is self-customizable for monitoring. Zabbix utilizes a webhook mechanism to send alert notifications via Telegram, which transmits messages to external servers (such as 8.8.8.8 DNS and Telegram's 149.154.167.220). However, this triggers OPNsense's IDS (Intrusion Detection System), creating a loop of non-stop alerts. To mitigate this, OPNsense's IDS must be configured to allow alerts from Zabbix through these routes.

Additionally, the use of Zabbix agent with an active item key type has led to high CPU performance, which is not conducive to the project's objectives. To resolve this, a shift to using Zabbix sender and trapper is required to reduce the system load and prevent overloading.

Lastly, a crucial goal of the project is to integrate Zabbix with ChatGPT via API to enhance the alerting system by providing recommendations to users. This requires a deeper understanding of Zabbix's current alerting communication methods and improving them for seamless integration with ChatGPT.

5.8 Concluding Remark

This integrated network security system demonstrates a comprehensive approach to threat detection and response. At its core, the OPNsense Intrusion Detection System (IDS) monitors port mirroring, promptly detecting and relaying threat information to Zabbix. Zabbix then processes this data, providing visualized statistics on its dashboard.

The system's capabilities extend beyond mere threat detection. Zabbix employs SNMP to monitor network traffic across switches and the OPNsense firewall, offering a holistic view of network traffic performance. This data is also visualized on the dashboard, providing network administrators with real-time insights into the network's status. A key strength of this system lies in its automated response mechanism. When Zabbix receives security logs from OPNsense, it triggers an alert process. This process integrates with GPT via API to generate recommended solutions. Both the alert and the AI-generated recommendations are then sent to the network administrator through Telegram, enabling swift, informed responses to potential threats.

Furthermore, the system is designed to detect and alert on abnormal network traffic patterns, providing an additional layer of security awareness.

This multi-faceted approach combines real-time monitoring, AI-assisted threat analysis, and instant communication to create a robust, intelligent, and responsive network monitoring and alerting system.

This setup not only ensures efficient real-time threat detection and network traffic analysis but also empowers network administrators with instant alerts and tailored recommendations. By leveraging various technologies and integrating them seamlessly, this system offers a powerful tool for network administrators to maintain network integrity and respond rapidly to potential security threats.

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

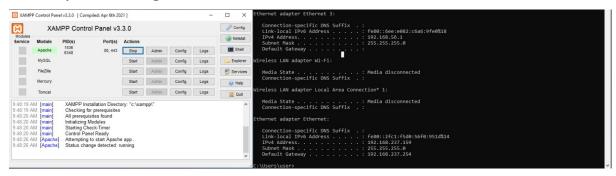


Figure 6.1.1 Xampp Server

Figure 6.1.2 Zabbix and OPNsense System Performance

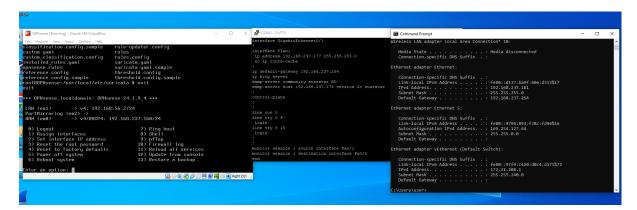


Figure 6.1.3 OPNsense and Physical Device Setup

```
| State | Parting | Code | March | Code | March | Code | March | March
```

Figure 6.1.4 Zabbix Server Setup



Figure 6.1.5 Kali Linux Setup

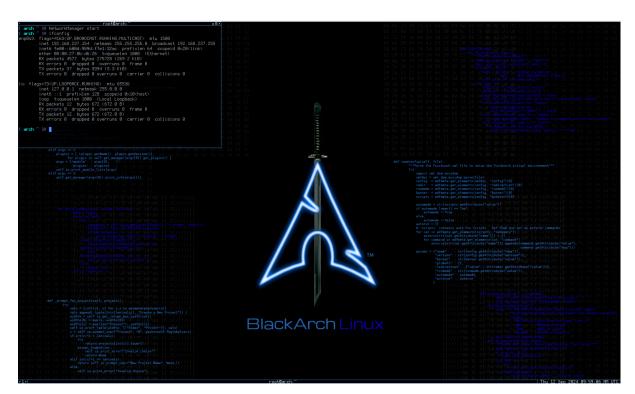


Figure 6.1.6 Arch Linux Setup

6.2 Testing Setup and Result

6.2.1 Web Application Attack

ZAProxy

An open-source security tool designed to intrusion and detect vulnerabilities in web applications, part of the OWASP.

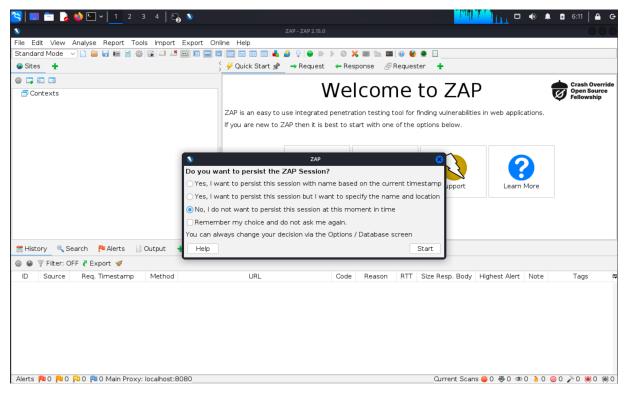
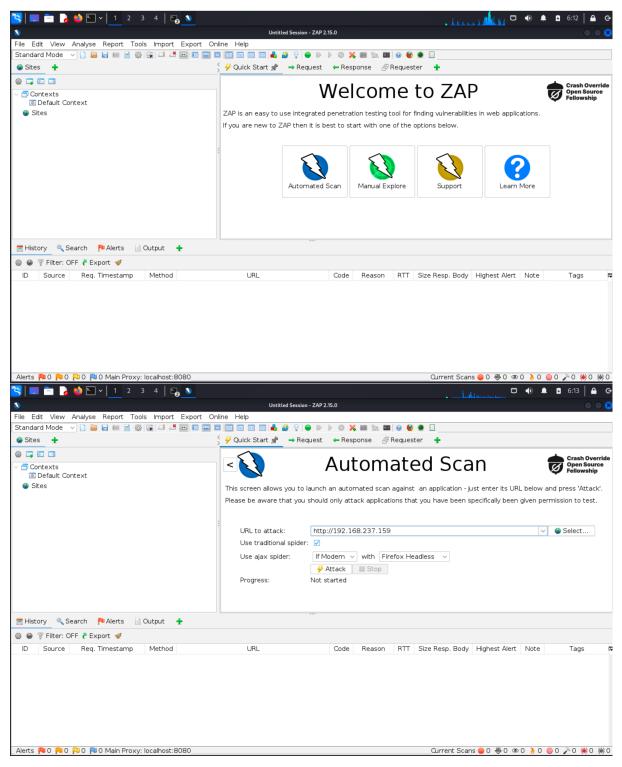



Figure 6.2.1 ZAProxy

Open ZAProxy tools in the kali linux, select with 'No, I do not want to persist the session at this moment in time.

Go with the Automated Scan and input the URL with the ip address 'http://192.168.237.159' and direct click on attack to do the vulnerabilities scan.

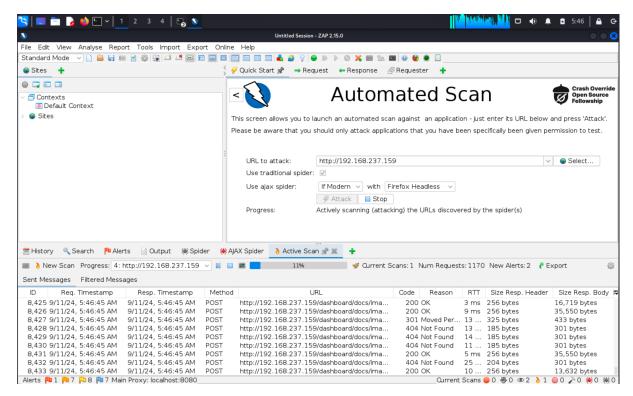


Figure 6.2.2 ZAProxy Intrusion Scan

ZAProxy provide an automation framework support with a series of intrusion scanning, included Spidering, Active Scan and Passive Scan to get the information and resource. Figure 6.2.2, ZAProxy is doing the intrusion scanning.

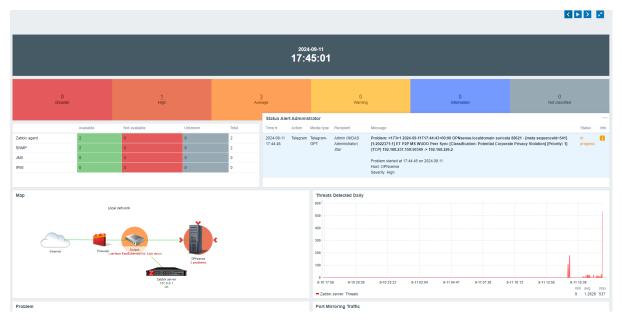


Figure 6.2.3 Zabbix Alert Trigger

While ZAProxy is doing the intrusion scanning, Zabbix receives the intrusion log and triggering the alert to network administrator that detected by OPNsense.

Figure 6.2.4 ZAProxy Number Threats Detected

The Figure 6.2.4 the Number Threats Detected graph shows the 537 maximum number of threats intrusion detected per minute on 2024-09-11 17:44:44.

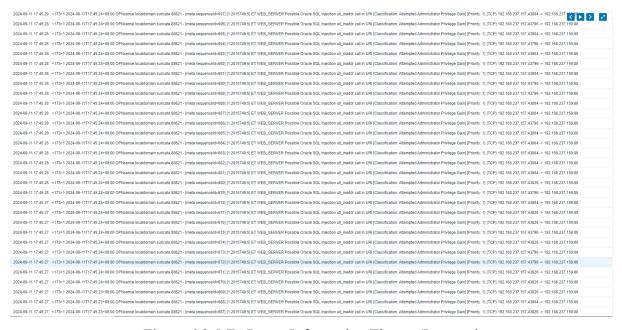


Figure 6.2.5 ZAProxy Information Threats Detected

Threats Log shows in the Figure 6.2.4 and 6.2.5 provide the information of the threads, with time, type of attack, protocols, source IP and destination IP.

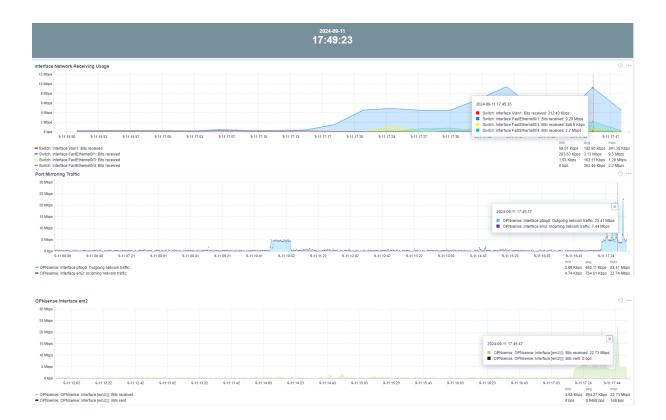


Figure 6.2.6 ZAProxy Intrusion Network Performance

During the ZAProxy intrusion, the switch interface Fa0/1 bits receiving hit to 9.29 Mbps is abnormal compare with normal performance of the interface. Port Mirroring Traffic interface pflog0 Outgoing network traffic also hit with high usage 23.41 Mbps means that the network is having an intrusion, it represent to the intrusion traffic when OPNsense is operating in conjunction with an IDS. The OPNsense interface [em2()] Bits received hits to 22.73 Mbps, means there is a big intrusion packet data.

2024-09-11 17:44:39	Telegram- SNMP	Telegram	Admin (NIDAS Administrator) Star	Subject: Problem: 7.44 Mbps Message: Problem started at 17.44.37 on 2024.09.11 Hot: OPklemes Seventry, Average Operational data: 7.44 Mbps Organal problem 10. \$876	Sent
2024-09-11 17:44:30	Telegram	Telegram- GPT	Admin (NIDAS Administrator) Star	Subject: Problem: +173-1 2024-09-11T17-44-24+00 00 OPNsense localdomain suricata 88621 - [meta sequenceld:537] [1:2031123:2] ET HUNTING Suspicious PHP Code in HTTP POST (Outbound) [Classification: Attempted Administrator Privilege Gain] [Priority: 1] [TCP] 192-168 Message: Problem started at 17-44-27 on 2024 09.11 Host. OPNsense Severify, High	Sent
2024-09-11 17:44:24	Telegram	Telegram- GPT	Admin (NIDAS Administrator) Star	Subject: Problem: **(17):1-1204-09-1117-44.20-00.00 OPNsense localdomain suricata 88621 - [meta sequenceId=432] [1:2031123:2] ET HUNTING Suspicious PHP Code in HTTP POST (Outbound) [Classification: Attempted Administrator Privilege Gain] [Priority: 1] [TCP] 192:188 Message: Problem started at 17:44:23 on 2024.09.11 Hott: OPNsense Seventy: High	Sent
2024-09-11 17:44:15	Telegram	Telegram- GPT	Admin (NIDAS Administrator) Star	Subject: Problem: 417-91-12024-09-1117-44.11-00:00 OPNsense localdomain suricata 88921 - [meta sequenceld=221] [1:2031123:2] ET HUNTING Suspicious PHP Code in HTTP POST (Outbound) [Classification: Attempted Administrator Privilege Gaint] (Priority: 1] (TCP) 192-168 Message: Problem standard at 17-44.11 on 2024-09.11 Hott: OPNsense Severify: High	Sent
2024-09-11 17:44:06	Telegram	Telegram- GPT	Admin (NIDAS Administrator) Star	Subject: Problem: *17.91 ± 2024.09-1117.44.05-00 00 OPhsense localdomain suricata 88621 - [meta sequenceld=81] [1.2031123.2] ET HUNTING Suspicious PHP Code in HTTP POST (Outbound) [Classification: Attempted Administrator Privilege Gaint] (Priority: 1] (TCP) 192.168. Message: Problem standard at 17.44.02 on 2024.09.11 Hott: OPhsense Severify: High	Sent
2024-09-11 17:44:03	Telegram	Telegram- GPT	Admin (NIDAS Administrator)	Subject: Problem: +173-1 2024-09-1117; 44:00-00 00 OPNsense localdomain suricata 88621 - [meta sequenceId=18] [1:2031123:2] ET HUNTING Suspicious PHP Code in HTTP POST (Outbound) [Classification: Attempted Administrator Enthinson States (Biologie, 11:17CE): 193-148	Sent

Figure 6.2.7 ZAProxy Intrusion Alert

According to Figures 6.2.5 and 6.2.7, two types of attacks were detected. One shows the possibility of SQL Injection, while the other indicates Suspicious PHP code in HTTP POST. These two detections are core features of Deep Packet Inspection (DPI). When analyzing network traffic, Suricata deeply inspects application layer data in the packets. For instance, the content of the HTTP POST request was judged to contain suspicious PHP code and SQL code 'utl_inaddr' that was flagged as a potential attack. This type of SQL code attempts to embed function calls within the URI of HTTP requests to perform SQL injection attacks. This deep inspection of packet contents, particularly at the application layer, demonstrates the power of DPI in detecting sophisticated attacks that might otherwise go unnoticed. By analyzing the specific content of HTTP requests and identifying suspicious patterns or known attack signatures, the system can provide early warning of potential security threats, allowing for rapid response and mitigation.

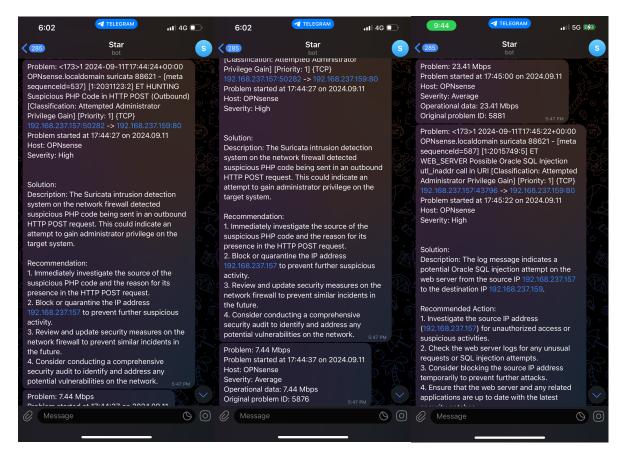


Figure 6.2.8 ZAProxy Intrusion Alert-Telegram

Both of these attacks triggered alert messages, which were then notified to network administrator personnel via Telegram. In Figure 6.2.8, we can see two types of alert messages, one type carries attack information along with recommended solutions, and its severity is marked as high. The other type shows abnormally frequent messages about network traffic status is in high bandwidth, with an average severity level.

6.2.2 Port Scanning

NMAP

Network Mapper is an open source network scanning and security tool, widely used for network discovery and security assessment. It can scan the network and identify connected devices, operating systems, services, open ports and other information.

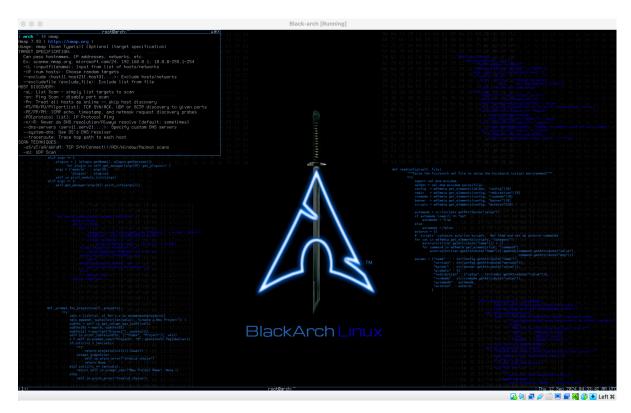


Figure 6.2.9 Nmap

Open Nmap in the Arch Linux, enter the target device ip or network range to scan.

Figure 6.2.10 Nmap TCP-SYN

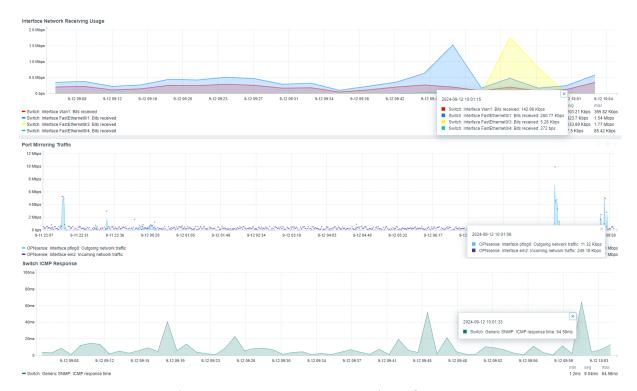


Figure 6.2.11 TCP-SYN Network Performance

Based on the network data shown in Figure 6.2.11, it appears that the Nmap scan did not cause significant stress on the network overall. Specifically the traffic for interface Fa0/1 Bits received and interface pflog outgoing traffic did not show a significant increase. However, during the same time period, the ICMP response time was noticeably affected. The ICMP response value increased to 64.58ms, which is considered an abnormal state. This data suggests that while the Nmap scan didn't cause a substantial increase in overall network traffic, it did have a specific impact on ICMP responses. The increase in ICMP response time to 64.58ms indicates that the system was experiencing some level of strain in processing ICMP packets during the scan.

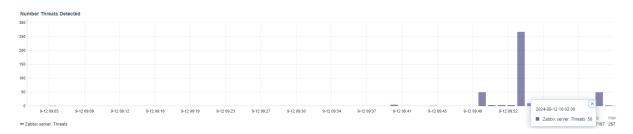


Figure 6.2.12 TCP-SYN Threats Detected

Figure 6.2.12 shows that Nmap scanning caused 50 threats within one minute.



Figure 6.2.13 TCP-SYN Threats Information

From Figure 6.2.13, it can be seen that most of the 50 Nmap threats triggered detections are related to TCP attempted information leak. The IDS based on DPI analysis have too many similar information leak triggers, subsequently triggered a second detection of 'network Trojan was detected'. The Nmap attack source all came from the IP 192.168.237.157, and these Nmap attack attempted to obtain information from the device with IP 192.168.237.159.

Figure 6.2.14 TCP-SYN Intrusion Alert

From Figure 6.2.14, the Nmap detection information and network traffic alerts were triggered, and the alert information was successfully sent to the network administrator.

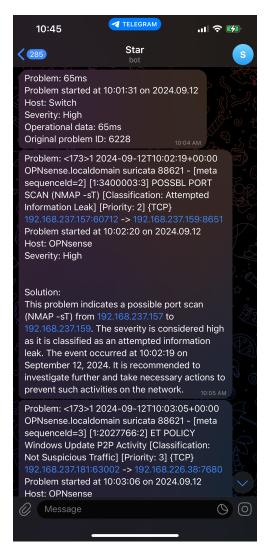


Figure 6.2.15 TCP-SYN Intrusion Alert-Telegram

In Figure 6.2.15, the network administrator receives an intrusion detection alert via Telegram. This alert provides information and severity about the intrusion as well as recommended solutions to help relevant personnel quickly understand the issue. This approach demonstrates an effective use of automated alert systems in cybersecurity. By sending alerts through Telegram, a widely used messaging platform, the system ensures that network administrators can receive critical information in real-time, regardless of their location.

NMAP Xmas

SEE THE MAN PAGE (https://nmap.org/book/man.html) FUR MURE UPITUNS AND EXAMPLES [arch ~]# nmap -sX 192.168.237.159

Figure 6.2.16 Nmap Xmas

Nmap Xmas scans use special flags (FIN, PSH, URG) to send non-standard TCP packets that may bypass certain firewall rules and rely on the target system's processing of abnormal TCP packets to determine the port status.

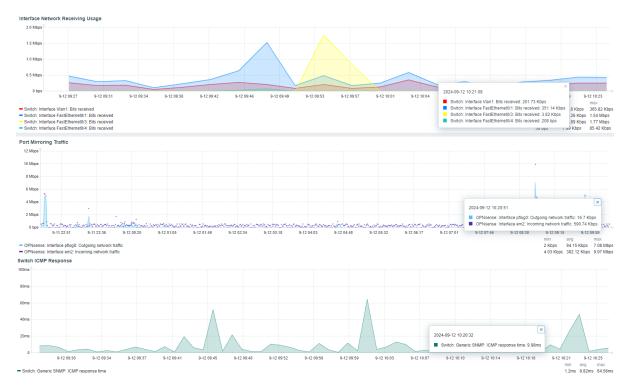


Figure 6.2.17 Xmas Network Performance

Based on the network flow shown in Figure 6.2.17, it appears that the Nmap -sX (Xmas scan) did not cause significant stress on the network overall. Specifically, the traffic for interface Fa0/1 Bits received and interface pflog outgoing traffic did not show a significant increase. However, during the same time period, the ICMP response time was noticeably affected. The ICMP response value increased to 9.98ms, which is considered an abnormal state.

This flow data suggests that while the Nmap Xmas scan didn't cause a substantial increase in overall network traffic, it did have a specific impact on ICMP responses. The increase in ICMP response time to 9.98ms indicates that the system was experiencing some level of strain in processing packets during the scan.

However, due to the unique nature of the Xmas scan, systems processing these abnormal packets may not respond as frequently as they would to a SYN scan. This results in a lower

overall burden on the network, making it easier to overlook and more difficult to detect. The Xmas scan's ability to cause subtle changes in network behavior without significantly increasing overall traffic highlights its stealthy nature. This characteristic makes it a potentially dangerous tool for attackers, as it can probe network defenses without triggering many traditional traffic-based alarms.

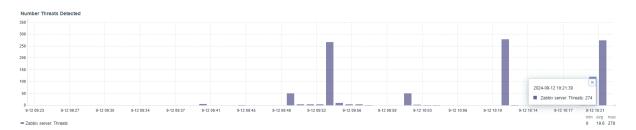


Figure 6.2.18 Xmas Threats Detected

Figure 6.2.18 shows that Nmap -sX scanning caused 274 threats within one minute.



Figure 6.2.19 Xmas Threats Information

From Figure 6.2.19, it can be seen that most of the 274 Nmap -sX threats triggered detections are related to TCP attempted information leak. The IDS based on DPI analysis have too many similar information leak triggers, subsequently triggered a second detection of 'network Trojan was detected'. The Nmap -sX attack source all came from the IP 192.168.237.157, and these Nmap -sX attack attempted to obtain information from the device with IP 192.168.237.159.

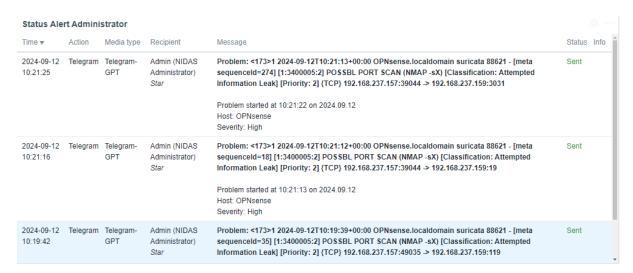


Figure 6.2.20 Xmas Intrusion Alert

From Figure 6.2.20, the Nmap -sX detection information and network traffic alerts were triggered, and the alert information was successfully sent to the network administrator.

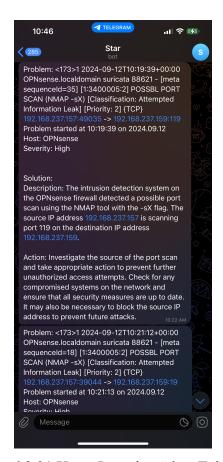


Figure 6.2.21 Xmas Intrusion Alert-Telegram

In figure 6.2.21 shows the Xmas Intrusion Alert message received by the network administrator.

6.2.3 Distributed Denial of Service

ICMP Flood

An ICMP flood attack, also known as a "Ping Flood," involves sending a large number of ICMP Echo requests (pings) to overwhelm the network bandwidth. This can result in slowed or interrupted network communications, and may also exhaust the system's CPU resources.

Figure 6.2.22 ICMP Flood Script

Hping3 is a tool, -icmp means ICMP packets, commonly known as "ping" packets, -c 10000 represents sending 10,000 packets, -d 120 specifies a packet size of 120 bytes, --flood means sending packets at the fastest rate, forming a flood attack and --rand-source means using a random source IP address target destination IP address '192.168.237.181'. Execute the script in kali linux.

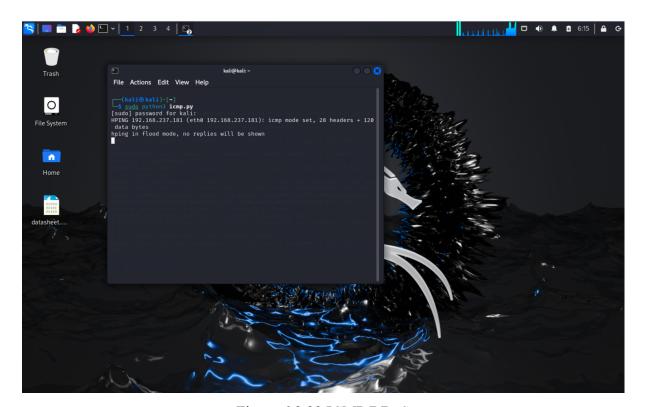


Figure 6.2.23 ICMP DDoS

Figure 6.2.24 ICMP DDoS CPU Performance

On Figure 6.2.24 shows after being subjected to an ICMP Flood attack, the CPU's Idle Performance shows a sharp decline. A large portion of the CPU Performance is ineffectively occupied with detecting and processing the ICMP Flood attack.



Figure 6.2.25 ICMP DDoS Network Performance

According to Figure 6.2.25, in response to the ICMP Flood attack based on the Interface Fa0/1 bits received, Interface pflog0 Outgoing network traffic, and interface [em2] bandwidth usage show a noticeable increase. However, this increase is not particularly high, generally fluctuating between 5.8Mbps and 7Mbps.In contrast, the ICMP response time shows a direct and significant increase, reaching up to 443ms.

This data illustrates that while the ICMP Flood attack does increase overall network traffic, its most significant impact is on the ICMP response time. The system is forced to process a large number of ICMP Echo requests, which heavily occupies the ICMP response time and consequently slows down network communications.



Figure 6.2.26 ICMP DDoS Number Threats Detected

From the Figure 6.2.26, the ICMP DDoS hits 1,716 total of attack in 5 minutes.

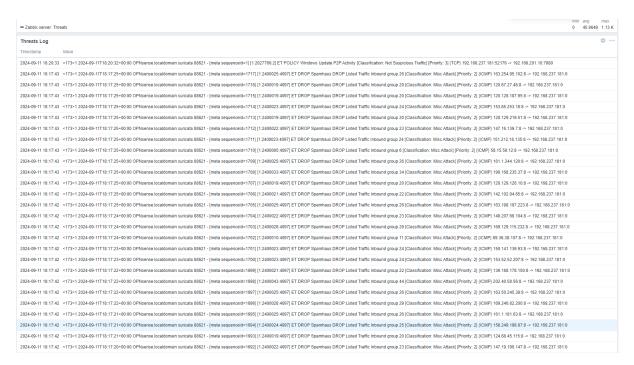


Figure 6.2.27 Information ICMP DDoS Threats

Figure 6.2.27 shows the host 192.168.237.181 is under type of ICMP 'Misc Attack' attack from different source IP address and the priority is 2.

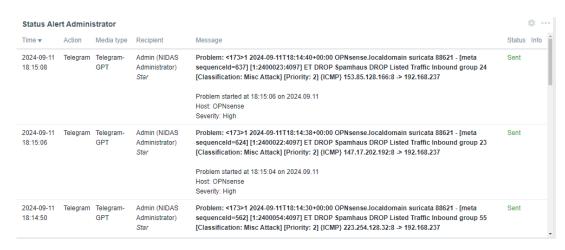


Figure 6.2.28 ICMP DDoS Alert

Figure 6.2.28 shows the status of alert message contain with recommendation has been success sent to the Network Administrator Star.

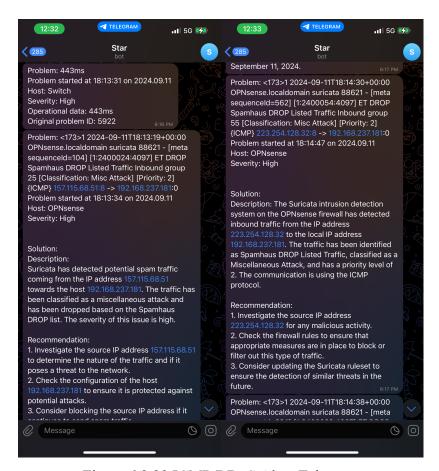


Figure 6.2.29 ICMP DDoS Alert-Telegram

In Figure 6.2.29 shows the alert messages that carries DDoS attack information along with recommended solutions. One of the other type shows abnormally frequent messages about switch ICMP response time status is in high 443ms. Both severity are marked as high.

TCP FIN/ACK Flood

An attack that floods the target server with fake FIN and ACK packets, consuming resources and causing service disruptions. By processing these packets, the server will in order to exhaust its resources, rendering it unable to process legitimate requests and becomes overwhelmed becomes overwhelmed, potentially leading to a denial of service.

Figure 6.2.30 TCP FIN/ACK Flood Script

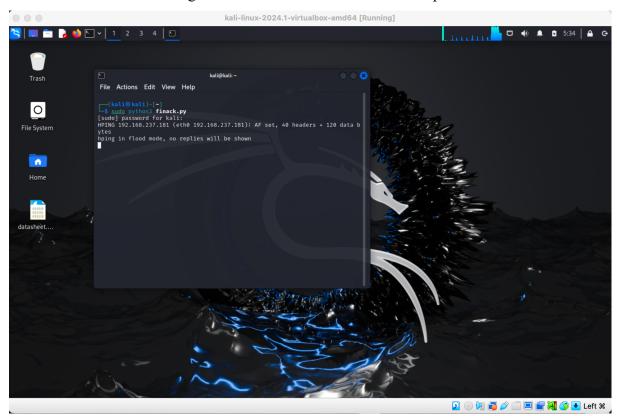


Figure 6.2.31 TCP FIN/ACK DDoS

From the Figure 6.2.30, represent the attack will use of flood mode sending 10,000 TCP packets carried with FIN flag or ACK flag forcing the target server to handle what appears to be many connection termination requests and acknowledgments from random source IP. Execute the script in kali linux.

Figure 6.2.32 TCP FIN/ACK DDoS CPU Performance

From Figure 6.2.32, it can be seen that due to the IDS detecting a large number of TCP FIN/ACK DDoS attacks, the CPU idle time of the OPNsense server dropped to zero, with most of the CPU resources being consumed to handle the attack detection. Since the detected attack logs are continuously sent to Zabbix, the CPU usage on Zabbix also shows a significant increase as it processes the attack logs and triggers alert messages.

Figure 6.2.33 TCP FIN/ACK DDoS Network Performance

In Figure 6.2.33, when under a TCP FIN/ACK attack, the Interface Fa0/1 bits received, Interface pflog0 outgoing network traffic, and Interface [em2] bandwidth usage are roughly the same as during an ICMP attack, ranging generally between 4.5 Mbps and 8 Mbps. However, the ICMP response time spikes directly to 370.7 ms, and the graph shows that as

each network flow reaches its peak value, it then sharply drops to zero, indicating that data transmission connections have been cut off. Since the Zabbix server is installed on a virtual machine at the endpoint 192.168.237.181, this endpoint entered a crashed state due to the overwhelming number of TCP FIN/ACK attacks, rendering it unable to respond to legitimate network requests in a timely manner, ultimately leading to service interruption.

Figure 6.2.34 TCP FIN/ACK DDoS Number Threats Detected

In Figure 6.2.34, 1,427 TCP attacks were detected by IDS within 3 minutes, this attack causing the endpoint to become overloaded and unable to respond to legitimate network requests in a timely manner.

Figure 6.2.35 Information TCP FIN/ACK DDoS Threats

Figure 6.2.35 shows the host 192.168.237.181 is under type of TCP 'Unknown Classtype' attack from random source IP address and the priority is 3.

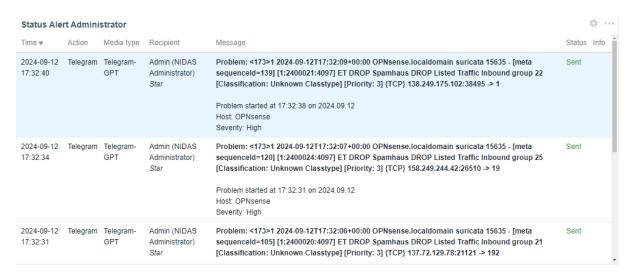


Figure 6.2.36 TCP FIN/ACK DDoS Alert

Figure 6.2.36 shows the status of alert message contain with recommendation has been success sent to the Network Administrator Star.

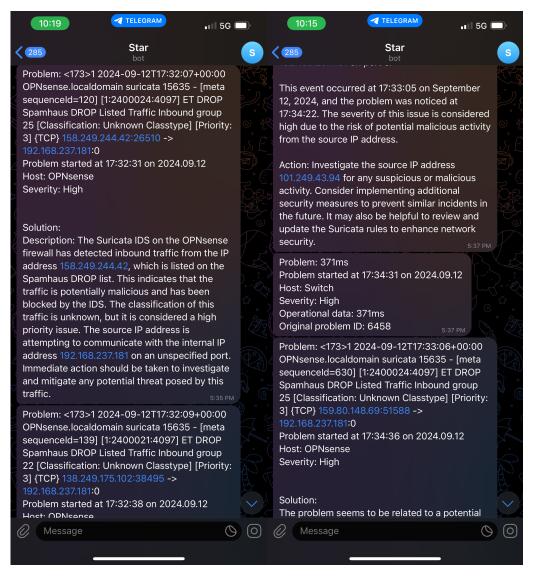


Figure 6.2.37 TCP FIN/ACK DDoS Alert-Telegram

In Figure 6.2.37 represent the alert messages that carries DDoS attack information along with recommended solutions, severity is marked as high. The other type shows abnormally frequent messages about switch ICMP response time status is in high 371ms and also a high severity level.

6.2.4 Brute Force Attack

Hydra

A powerful and widely used brute force password-cracking tool designed to test the security of login credentials on various network protocols and services. It supports multiple protocols and authentication methods, making it highly versatile on penetration testing.

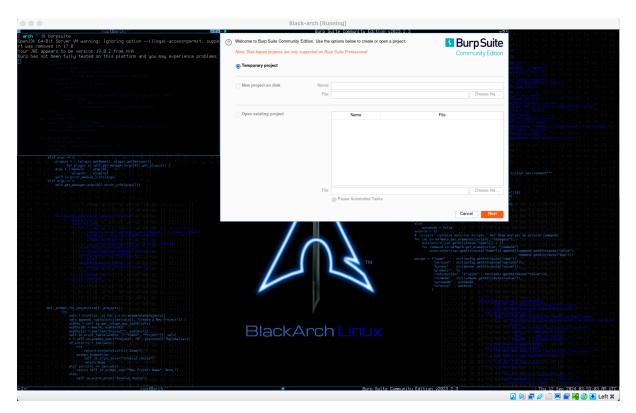
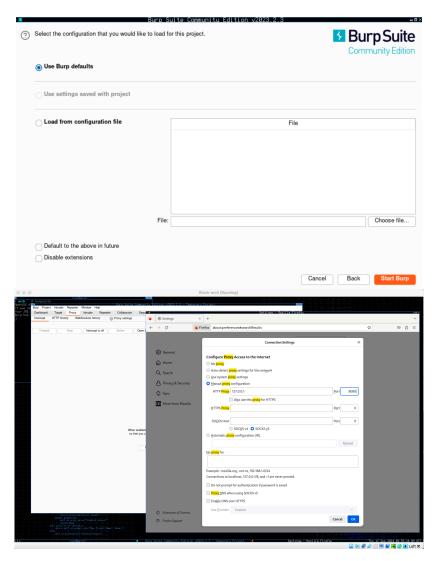
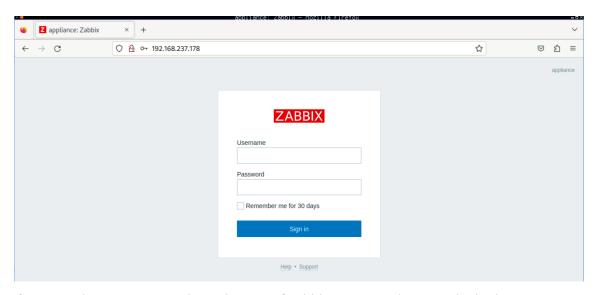
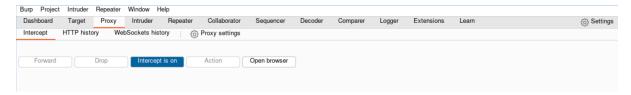




Figure 6.2.38 Burp Suite


Using Hydra to brute force attack zabbix server password, before that start up Burp Suite in the Arch Linux using proxy to capture the web information. Using 'temporary project' to create the task.

Start Burp the Burp Suite, open the firefox browser in arch linux and set the http proxy in local IP address and port 8080 so that the Burp Suite proxy can capture the information.

Before start the proxy, go to the web page of zabbix server and stay at the login page.

Go to proxy, turn on the Intercept and back to zabbix login page. Input any username and password to sign in.

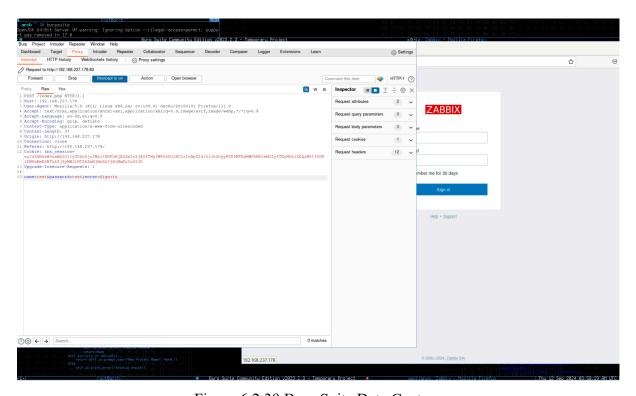


Figure 6.2.39 Burp Suite Data Capture

From the Figure 6.2.39, the key parameter of username and password is 'name' and 'password'. The cookie session is with the long key.

```
root@arch:
 arch ~ ]# hydra -l Admin -P attackZabbix.txt 192.168.237.178 http-post-form
index.php:name=^USER^&password=^PASS^&enter=Sign in:H=Cookie\:zbx session=eyJzZ>
NzaW9uaWQiOiJkMmU5NWE2ZjA4YjRhMDJlOTA4Y2EzZTcyZWM2YTUwYiIsInNpZ24iOiIxM2IxOWJiMj
QlYmU5M2E4OGE3MTc2OTUxMGQ5YTFiMTUwYjY2MDBkMGU4ZThhY2Q2MmZmNTVjNzBmZDhmMDM4In0%3D
:F=Incorrect user name or password or account is temporarily blocked." -v -I
Hydra v9.4 (c) 2022 by van Hauser/THC & David Maciejak – Please do not use in mi
litary or secret service organizations, or for illegal purposes (this is non-bin
ding, these *** ignore laws and ethics anyway).
Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-09-12 04:12:
[INFORMATION] escape sequence \: detected in module option, no parameter verific
ation is performed.
[DATA] max 10 tasks per 1 server, overall 10 tasks, 10 login tries (l:1/p:10),
1 try per task
[DATA] attacking http-post-form://192.168.237.178:80/index.php:name=^USER^&passw
<mark>ord=^PASS^&enter=Sign</mark> in:H=Cookie\:zbx_session=eyJzZXNzaW9uaWQiOiJkMmU5NWE2ZjA4Y
jRhMDJlOTA4Y2EzZTcyZWM2YTUwYiIsInNpZ24iOiIxM2IxOWJiMjQlYmU5M2E4OGE3MTc2OTUxMĞQ5Y
TFiMTUwYjY2MDBkMGU4ZThhY2Q2MmZmNTVjNzBmZDhmMDM4In0%3D:F=Incorrect user name or p
assword or account is temporarily blocked.
[VERBOSE] Resolving addresses ... [VERBOSE] resolving done
[STATUS] attack finished for 192.168.237.178 (waiting for children to complete t
ests)
[VERBOSE] Page redirected to http[s]://192.168.237.178:80/zabbix.php?action=dash
                                  root⊍arch:
ost-form "/index.php:name=^USER^&password=^PASS^&enter=Sign in:H=Cookie\:zbx_se
sion=eyJzZXNzaW9uaWQiOiJkMmU5NWE2ZjAYjRhMDJlOTA4Y2EzZTcyZWM2YTUwYiIsInNpZ24iOil
xM2IxOWJiMjQlYmU5M2E4OGE3MTc2OTUxMGQ5YTFiMTUwYjY2MDBkMGU4ZThhY2Q2MmZmNTVjNzBmZDH
mMDM4In0%3D:F=Incorrect user name or password or account is temporarily blocked.
Hydra v9.4 (c) 2022 by van Hauser/THC & David Maciejak – Please do not use in mi
litary or secret service organizations, or for illegal purposes (this is non-bin
ding, these *** ignore laws and ethics anyway).
Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-09-12 08:25:
[INFORMATION] escape sequence \: detected in module option, no parameter verific
ation is performed.
[WARNING] Restorefile (ignored ...) from a previous session found, to prevent ov
erwriting, ./hydra.restore
[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344398 login tries (1:1/p:
14344398), ~896525 tries per task
[DATA] attacking http-post-form://192.168.237.178:80/index.php:name=^USER^&passe
ord=^PRSS^&enter=Sign in:H=Cookie\:zbx_session=eyJzZXNzaW9uaWQiOiJkMmU5NWE2ZjA4\
jRhMDJlOTA4Y2EzZTcyZWM2YTUwYiIsInNpZ24iOiIxM2IxOWJiMjQlYmU5M2E4OGE3MTc2OTUxMGQ5\
TFiMTUwYjY2MDBkMGU4ZThhY2Q2MmZmNTVjNzBmZDhmMDM4In0%3D:F=Incorrect user name or p
assword or account is temporarily blocked.
[VERBOSE] Resolving addresses ... [VERBOSE] resolving done
```

Figure 6.2.40 Hydra

Open the terminal in arch linux, brute force attack the zabbix server with the information capture by Burp Suite and doing 2 version of the hydra brute force attack. One is using 10 words wordlist and second is using rockyou.txt wordlist to do the brute-force on zabbix server.

Figure 6.2.41 Hydra Number Threats Detected

From figure 6.2.41, it can be observed that although Hydra only performed 10 brute-force attempts, 20 attacks were detected. The number of detected attacks is twice the actual number of attempts because the IDS not only detects authentication requests but also the process of connection establishment and closure, thereby increasing the number of recorded events. In heavy brute force attack, 614 attacks were detected in a minute.

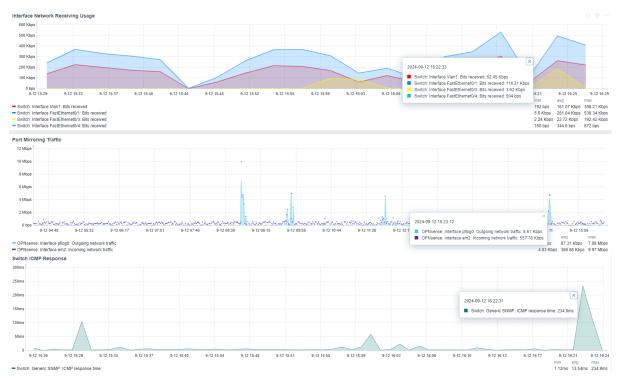


Figure 6.2.42 Hydra Brute Force Network Performance

According to figure 6.2.42, while Hydra conducts a large number of brute-force attacks, the network traffic is not affected in anyway. However, although Hydra does not directly generate ICMP packets, due to the overload caused by a large number of brute-force requests,

it may increase ICMP traffic, leading to high latency or packet loss. As a result, when Zabbix is monitoring ICMP, it will show longer response times.

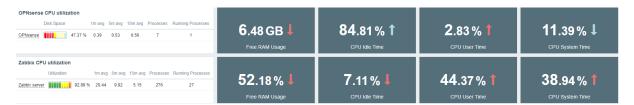


Figure 6.2.43 Hydra Brute Force System Performance

In figure 6.2.43, due to the large number of brute-force attacks by Hydra, the Zabbix server's CPU performance is at its limit, because the CPU is being heavily utilized to process and respond to Hydra's login attempts.

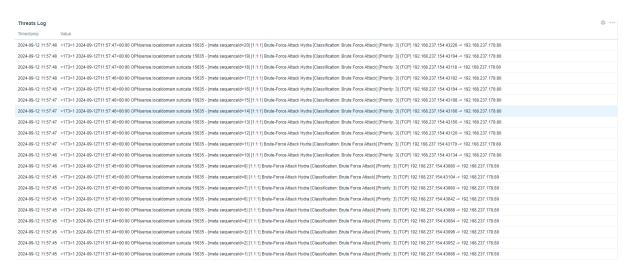


Figure 6.2.44 Information Hydra Brute Force Threats

Figure 6.2.44 shows the host 192.168.237.178 is under type of TCP 'Brute Force Attack' attack from source 192.168.237.154 and the priority is 3.

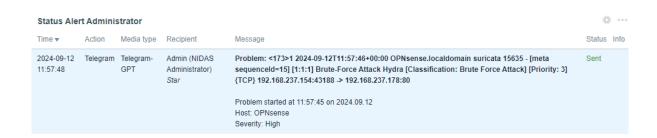


Figure 6.2.45 Hydra Brute Force Alert

Figure 6.2.45 shows the status of alert message contain with recommendation has been success sent to the Network Administrator Star.

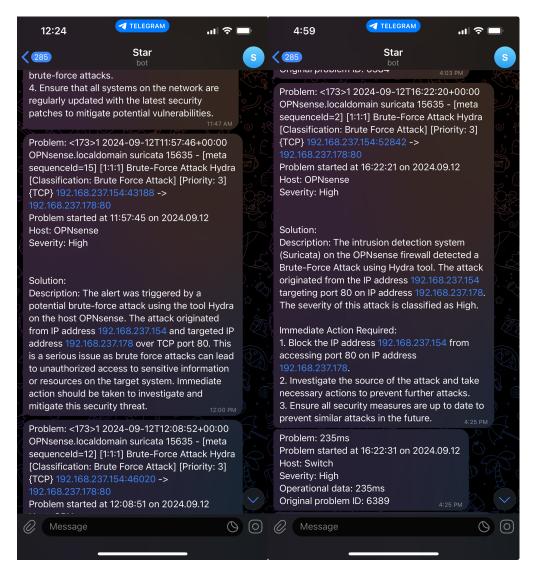


Figure 6.2.46 Hydra Brute Force Alert-Telegram

In Figure 6.2.46 shows the brute force attack alert message that carries with recommended solutions, and its severity is marked as high. The other type shows abnormally frequent messages about switch ICMP response time status is in high 235ms and also a high severity level.

6.3 Project Challenges

From the rusult of this NIDAS project has powerful detection capabilities and advantages, as Zabbix itself can integrate with many external plugins. This brings many security tools integration possibilities to this research to achieve high-security network protection. Although this research can provide many integration functions, it also sets a high threshold for device requirements. The device requirements will vary depending on the integration and deployment

with Zabbix; in other words, the device determines the upper limit of integration and deployment. There is also a hard requirement, since those are open-source tools, rich experience and certain technical skills in IT are necessary. A significant concern is the security of the monitoring system itself. In terms of deployment, because the IDS detection has pre set up 2 rules for Zabbix establish outgoing traffic to the paths 8.8.8.8 and 149.154.167.220, if an attack comes from the DNS server, there is a potential serious risk of information monitored by Zabbix being leaked. The use of public DNS servers (8.8.8.8) and specific IP addresses (149.154.167.220) in the IDS setup could potentially expose the system to attacks originating from compromised DNS servers. This configuration could lead to a serious vulnerability where the very information Zabbix is monitoring could be leaked, compromising the entire security infrastructure. Therefore, figure a good deployment plan is also that needs to be considered on this project so that to achieve high level security protection. This highlights the importance of carefully considering not just the capabilities of such a system, but also its own security measures and potential vulnerabilities in its deployment.

The project's flexibility in integration opens up numerous possibilities for enhancing network security. However, this flexibility comes with increased complexity in terms of hardware requirements and technical expertise needed for implementation. The scalability of the system is also directly tied to the capabilities of the hardware it's deployed on, which means that the potential for integration and deployment is limited by the devices used. While the NIDAS project offers powerful tools for network security, it also requires careful implementation and ongoing management large environment to ensure that it doesn't introduce new vulnerabilities while attempting to protect against existing ones.

6.4 Objective Evaluation

Based on the results, using Zabbix for network monitoring has proven quite successful in environments facing web-application attacks, distributed denial of service (DDoS), port scanning, and brute force attacks. Zabbix itself provides four integration methods, and this project utilized SNMP service and Zabbix agent to achieve effective monitoring of networks and servers. During DDoS attacks, Zabbix's monitoring of the switch's ICMP response time through SNMP successfully captured high ICMP latency issues, promptly alerting network security advisors. Additionally, the Zabbix agent monitoring the server's CPU usage indirectly reflected OPNsense's intensive work in intrusion prevention.

The integration with OPNsense successfully monitored and visualized intrusion detection data, presenting threats and their quantities in a clear, real-time manner, enhancing Zabbix's overall network monitoring capabilities. While Zabbix's network monitoring couldn't directly capture brute force attacks, the integration with IDS allowed for real-time acquisition of intrusion detection information through logs sent to Zabbix, which then informed network administrator. Finally, the optimized alert messages carrying recommended solutions and specific network attack information enabled network administrator to respond efficiently to attacks, significantly reducing the impact of network attacks.

This comprehensive approach demonstrates the power of integrating various security tools and monitoring systems. By combining real-time network monitoring, intrusion detection, and intelligent alerting systems, the project has created a robust security infrastructure capable of detecting, analyzing, and responding to a wide range of network threats quickly and effectively.

6.5 Concluding Remark

The NIDAS project has demonstrated the powerful potential of integrating Zabbix with various security tools to provide a comprehensive and adaptable network security solution. The combination of real-time monitoring, intrusion detection, and intelligent alerting systems significantly enhances the capability to detect, analyze, and respond to various network threats such as DDoS, brute-force attacks, and port scanning. However, while this project offers a high level of security and flexibility, it also introduces complexity in terms of device requirements, technical expertise, and the need for robust deployment plans to avoid creating new vulnerabilities, particularly regarding the security of the monitoring system itself. Overall, the project's success lies in its ability to provide high-level security protections, though it requires careful planning and ongoing management to maximize its potential and maintain network integrity.

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

In today's interconnected world, ensuring the security and reliability of computer networks is critical for various industries. This project demonstrates the substantial benefits of integrating Zabbix's monitoring capabilities with OPNsense's intrusion detection system to create a comprehensive and robust Network Intrusion Detection and Alerting System (NIDAS). By addressing the limitations of traditional IDS, such as excessive false positives, lack of contextual insights, and dependence on predefined rules, this integrated solution provides more accurate and efficient network security monitoring.

To overcome the limitations of traditional IDS, which often suffer from excessive false alarms, a lack of contextual information, and a heavy reliance on predefined rules and signatures. The combined capabilities of Zabbix and OPNsense enable deeper visibility into network traffic and system performance, significantly enhancing threat detection. Zabbix's data collection and performance analysis, combined with OPNsense's traffic inspection based on customizable rules, deliver a more holistic view of potential security incidents. This correlation of data across both systems allows network administrators to respond more effectively by identifying the root causes of issues and prioritizing their mitigation efforts. Zabbix serves as the backbone of this system, providing robust capabilities for collecting and analyzing network metrics, performance data, and system logs. This forms a solid foundation for monitoring the overall health and performance of the network infrastructure. Meanwhile, OPNsense inspects network traffic and detects potential intrusions based on customizable rules and signatures. A key strength of the NIDAS project is its ability to prioritize alerts and offer mitigation recommendations, allowing security teams to focus on the most critical threats. By considering risk levels and leveraging combined network monitoring and intrusion detection data, this system provides an optimized approach to incident response. Moreover, the contextual intelligence it offers helps allocate resources more efficiently, ensuring that high-risk threats are addressed promptly. Mitigation recommendations guide teams in taking appropriate actions to contain and resolve incidents, minimizing damage and ensuring business continuity, thereby reducing the impact of potential harm to a minimum. Although the integration of Zabbix and OPNsense does not incorporate advanced machine learning techniques, it still offers substantial improvements over traditional IDS methods,

especially through the use of Deep Packet Inspection (DPI). Overall, this project successfully demonstrates the potential of integrating network monitoring and intrusion detection tools to strengthen an organization's network security posture. By addressing the limitations of traditional intrusion detection methods, providing intelligent alert prioritization, and offering actionable mitigation strategies, the proposed solution enhances intrusion detection accuracy, reduces false positives, and improves resource allocation for managing high-risk threats. These advancements make NIDAS a powerful tool for protecting network infrastructures in an increasingly interconnected world.

7.2 Recommendation

In today's complex network environment, ensuring system security and efficient operation is crucial. First and foremost, improving deployment security is a pressing matter. Given the potential security risks associated with using public DNS servers (such as 8.8.8.8) and specific IP addresses, it is recommended to use private DNS servers or more secure alternatives to minimize the risk of data exposure. Simultaneously, deploying additional security measures like firewalls or traffic filtering for outgoing connections can further protect against potential attacks. Secondly, planning for scalability to meet future needs is essential. Careful planning of hardware and network resources, along with considering investments in more powerful hardware, can fully support the integration potential of Zabbix and its plugins without overwhelming system performance. This ensures that the system can scale smoothly as demands grow. Thirdly, continuous exploration of automation and optimization avenues is vital. By automating routine tasks and alerts, system performance can be further enhanced. This may include automated load balancing, adaptive threshold setting for alerts, and more sophisticated AI-driven insights through GPT integration. These measures not only improve efficiency but also reduce the human error. Lastly, regular audits and updates should not be overlooked. Implementing regular security audits and software updates ensures that the system remains secure and efficient. This is particularly important for open-source projects like Zabbix and OPNsense, where updates bring both new features and critical security patches. By implementing these strategies, organizations can significantly improve the security, performance, and reliability of their IT infrastructure. This not only addresses current challenges but also lays a solid foundation for future technological developments and business growth. Continuous focus on these aspects will help build a

system environment that is both secure and efficient, providing strong support for an organization's digital transformation.

REFERENCES

- [1] J. P. Anderson, "Computer Security Threat Monitoring and Surveillance," James P. Anderson Co., Fort Washington, PA, USA, Tech. Rep., 1980.
- [2] Mert, I. S., and T. Çavuşoğlu. "A Novel Approach for Detection of Fake News Based on Behavioral Modeling." Neural Networks, vol. 107, 2018, pp. 192-201. doi: 10.1016/j.neunet.2018.07.006.
- [3] D. E. Denning, "An Intrusion-Detection Model," IEEE Transactions on Software Engineering, vol. SE-13, no. 2, pp. 222-232, Feb. 1987, doi: 10.1109/TSE.1987.232894.
- [4] T. F. Lunt, "A Survey of Intrusion Detection Techniques," Computers & Security, vol. 12, no. 4, 1993, doi: 10.1016/0167-4048(93)90033-B.
- [5] R. G. Bace, Intrusion Detection, Macmillan Technical Publishing, 2000, doi: 10.5555/518389.
- [6] A. Halimaa A. and K. Sundarakantham, "Machine Learning Based Intrusion Detection System," 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019, pp. 916-920, doi: 10.1109/ICOEI.2019.8862784.
- [7] N. Khamphakdee, N. Benjamas and S. Saiyod, "Improving Intrusion Detection System based on Snort rules for network probe attack detection," 2014 2nd International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia, 2014, pp. 69-74, doi: 10.1109/ICoICT.2014.6914042.
- [8] S. Kumar and R. C. Joshi, "Design and implementation of IDS using Snort, Entropy and alert ranking system," 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies, Thuckalay, India, 2011, pp. 264-268, doi: 10.1109/ICSCCN.2011.6024556.
- [9] M. H. Bhuyan, D. K. Bhattacharyya and J. K. Kalita, "Network Anomaly Detection: Methods, Systems and Tools," in IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 303-336, First Quarter 2014, doi: 10.1109/SURV.2013.052213.00046.
- [10] S. Mukkamala, A. Sung, and B. Ribeiro, "Intrusion detection using neural networks and support vector machine," Proceedings of the 2002 IEEE International Joint Conference on Neural Networks, 2002, doi: 10.1109/IJCNN.2002.1007774.
- [11] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, "Machine Learning and Deep Learning Methods for Cybersecurity," IEEE Access, vol. 6, pp. 35365–35381, 2018, doi: 10.1109/ACCESS.2018.2836950
- [12] Debar, H., Curry, D., & Feinstein, B. (2007). The intrusion detection message exchange format (IDMEF). RFC 4765, IETF.
- [13] Milenkoski, Aleksandar & Vieira, Marco & Kounev, Samuel & Avritzer, Alberto & Payne, Bryan. (2015). Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices. ACM Computing Surveys. 48. 12:1-. 10.1145/2808691.

- [14] Patel, Ahmed & Taghavi, Mona & Bakhtiyari, Kaveh & Jr, Joaquim. (2012). An Intrusion Detection And Prevention System In Cloud Computing: A Systematic Review. Journal of Network and Computer Applications. 36. 10.1016/j.jnca.2012.08.007.
- [15] Kumar, Vinod. (2012). Signature Based Intrusion Detection System Using SNORT. International Journal of Computer Applications & Information Technology. 1. 7.
- [16] A. Patcha and J.-M. Park, "An overview of anomaly detection techniques: Existing solutions and latest trends," Computer Networks, vol. 51, no. 12, pp. 3448-3470, 2007, doi: 10.1016/j.comnet.2007.02.001.
- [17] A. L. Buczak and E. Guven, "A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection," in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, Secondquarter 2016, doi: 10.1109/COMST.2015.2494502.
- [18] Navaz, A. S. Syed & Sangeetha, V. & Prabhadevi, C.. (2013). Entropy based Anomaly Detection System to Prevent DDoS Attacks in Cloud. International Journal of Computer Applications. 62. 42-47. 10.5120/10160-5084.
- [19] Veeramreddy, Jyothsna & Prasad, V. & Prasad, Koneti. (2011). A Review of Anomaly based Intrusion Detection Systems. International Journal of Computer Applications. 28. 26-35. 10.5120/3399-4730.
- [20] G. Martinez, A. P. Rios, and J. D. Martinez, "Zenarmor: Enhancing Network Security with Deep Packet Inspection and Application-Aware Firewalls," Journal of Network Security, vol. 15, no. 2, pp. 120-135, 2023. doi: 10.1109/JNS.2023.7891234.
- [21] S. Jones and M. Peterson, "Comprehensive Comparison of pfSense and OPNsense in Modern Network Environments," International Journal of Network Security, vol. 17, no. 3, pp. 101-115, 2022. doi: 10.1016/j.ijns.2022.03.001.
- [22] P. Smith, H. Chang, and A. Gupta, "Evaluating Network Traffic Monitoring Tools: A Case Study of Zabbix and Zenarmor," Proceedings of the IEEE Symposium on Network Monitoring and Analysis, vol. 22, no. 4, pp. 75-89, 2023. doi: 10.1109/NSMA.2023.1112548.
- [23] A. Patel, K. Zhao, and M. Lee, "Real-Time Network Performance Monitoring Using Zabbix: A Detailed Review and Implementation Guide," Journal of IT Systems Monitoring, vol. 13, no. 1, pp. 45-57, 2023. doi: 10.1002/itsm.4567.
- [24] R. Taylor and D. Wilson, "Intrusion Detection and Prevention: A Review of Zenarmor and its Integration with pfSense and OPNsense," Cybersecurity Journal, vol. 20, no. 3, pp. 201-214, 2022. doi: 10.1049/cyb.2022.0859.
- [25] G. Luo, Z.Y. Chen and B. Omar Mohammed "A systematic literature review of intrusion detection systems in cloud-based IoT environment,", 2022, pp. 1-13, doi: 10.1002/cpe.6822

Appendix A

#!/usr/bin/env python3

```
import os
import time
from datetime import datetime
position file = '/etc/last read position.txt'
current date = datetime.now().strftime('%Y%m%d')
log file = f/var/log/suricata/suricata {current date}.log'
zabbix server='192.168.237.178'
hostname='OPNsense'
key='ids.detect'
if os.path.exists(log_file):
   last_read_position = 0
   last read date = ""
   if os.path.exists(position file):
       with open(position file, 'r') as pos file:
           position data = pos file.read().strip().split(',')
           if len(position data) == 2 and position data[0].isdigit():
               last read position = int(position data[0])
               last read date = position data[1]
   if last read date != current date;
       last read position = 0
   with open(log file, 'r') as file:
       file.seek(last read position)
       new lines = file.readlines()
       if new lines:
           for line in new lines:
               print(line.strip())
               os.system(f"/usr/local/bin/zabbix sender -z {zabbix server} -s {hostname} -k
{key} -o \"{line.strip()}\"")
           with open(position file, 'w') as pos file:
               pos file.write(f"{file.tell()},{current date}")
       else:
           exit(0)
else:
   print("Log file does not exist")
```

Appendix B

```
#!/bin/sh
# Sleep for 30 seconds to ensure all services are up
sleep 30

PIDFILE="/tmp/ids.pid"

while true; do
    if[ -f $PIDFILE ] && kill -0 $(cat $PIDFILE) 2>/dev/null; then
        sleep 0.5
        continue
    fi
    /usr/local/bin/python3 /usr/local/bin/ids.py &
    echo $! > $PIDFILE
    sleep 0.5
    done
```

Appendix C

```
import mysql.connector
import json
def load last processed clock():
  try:
    with open('last processed clock.json', 'r') as file:
       data = json.load(file)
       return data.get('last clock', 0)
  except FileNotFoundError:
    return 0
def save last processed clock(last clock):
  with open('last processed clock.json', 'w') as file:
    json.dump({'last clock': last clock}, file)
db config = {
  'user': 'zabbix1',
  'password': 'starstar77',
  'host': '127.0.0.1',
  'database': 'zabbix'
}
conn = mysql.connector.connect(**db config)
cursor = conn.cursor()
last processed clock = load last processed clock()
query = "SELECT clock, value FROM history log WHERE clock > %s"
cursor.execute(query, (last_processed_clock,))
new records = cursor.fetchall()
new value count = len(new records)
if new records:
  last processed clock = new records[-1][0]
  save last processed clock(last processed clock)
print(f"'value': {new value count}")
cursor.close()
conn.close()
```

Appendix D

```
var Telegram = {
  token: null,
  to: null,
  message: null,
  proxy: null,
  parse mode: null,
  escapeMarkup: function (str, mode) {
     switch (mode) {
       case 'markdown':
          return str.replace(/([ *\])/g, '\');
       case 'markdownv2':
          return str.replace(/([_*\[\]()~>#+\-=|{}.!])/g, '\\$&');
       case 'html':
          return str.replace(<(\langle s|[^a-z\vee])/g, '\&lt;\$1');
       default:
          return str;
  },
  callChatGPT: function (prompt) {
     var apiKey = '<API key>';
     var apiUrl = 'https://api.openai.com/v1/chat/completions';
     var data = {
       model: 'gpt-3.5-turbo',
       messages: [{"role": "user", "content": prompt}],
       max tokens: 200
     };
     var request = new HttpRequest();
     request.addHeader('Content-Type: application/json');
     request.addHeader('Authorization: Bearer ' + apiKey);
     var response = request.post(apiUrl, JSON.stringify(data));
     try {
       response = JSON.parse(response);
       if (response.choices && response.choices.length > 0) {
          return response.choices[0].message.content.trim();
       } else {
          throw 'Invalid response from ChatGPT';
     } catch (error) {
       throw 'ChatGPT API call failed: ' + error;
  },
  sendMessage: function () {
```

```
var params = {
       chat id: Telegram.to,
       text: Telegram.message,
       disable web page preview: true,
       disable notification: false
     },
    data,
    response,
    request = new HttpRequest(),
    url = 'https://api.telegram.org/bot' + Telegram.token + '/sendMessage';
    if (Telegram.parse mode !== null) {
       params['parse mode'] = Telegram.parse mode;
    if (Telegram.proxy) {
       request.setProxy(Telegram.proxy);
    request.addHeader('Content-Type: application/json');
    data = JSON.stringify(params);
    // Remove replace() function if you want to see the exposed token in the log file.
    Zabbix.log(4, '[Telegram Webhook] URL: ' + url.replace(Telegram.token,
'<TOKEN>'));
    Zabbix.log(4, '[Telegram Webhook] params: ' + data);
    response = request.post(url, data);
    Zabbix.log(4, '[Telegram Webhook] HTTP code: ' + request.getStatus());
    try {
       response = JSON.parse(response);
    catch (error) {
       response = null;
    if (request.getStatus() !== 200 || typeof response.ok !== 'boolean' || response.ok !== true)
{
       if (typeof response.description === 'string') {
         throw response.description;
       }
       else {
         throw 'Unknown error. Check debug log for more information.';
};
try {
```

```
var params = JSON.parse(value);
  if (typeof params. Token === 'undefined') {
    throw 'Incorrect value is given for parameter "Token": parameter is missing';
  }
  Telegram.token = params.Token;
  if (params.HTTPProxy) {
    Telegram.proxy = params.HTTPProxy;
  params.ParseMode = params.ParseMode.toLowerCase();
  if (['markdown', 'html', 'markdownv2'].indexOf(params.ParseMode) !== -1) {
    Telegram.parse mode = params.ParseMode;
  Telegram.to = params.To;
  Telegram.message = params.Subject + '\n' + params.Message;
  if (['markdown', 'html', 'markdownv2'].indexOf(params.ParseMode) !== -1) {
    Telegram.message = Telegram.escapeMarkup(Telegram.message, params.ParseMode);
  }
  var chatGPTPrompt = 'Problem: ' + params.Subject + '\nDetails: ' + params.Message;
  var chatGPTSolution = Telegram.callChatGPT(chatGPTPrompt);
  Telegram.message += '\n\nSolution:\n' + chatGPTSolution;
  Telegram.sendMessage();
  return 'OK';
catch (error) {
  Zabbix.log(4, '[Telegram Webhook] notification failed: ' + error);
  throw 'Sending failed: ' + error + '.';
```

}

(Project II)

Trimester, Year: S3Y5	Study week no.: 2	
Student Name & ID: To Jin Yi 1900176	-	
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection and Alert System		
1. WORK DONE		
[Please write the details of the work done in the last for	ortnight.]	
Finish study Zabbix documentation		
Timish study Zuoola documentation		
2. WORK TO BE DONE		
2. WORK TO BE BOILE		
Integration Zabbix with IDS		
3. PROBLEMS ENCOUNTERED		
3. PROBLEMS ENCOUNTERED		
Snort is not really suitable		
,		
4. SELF EVALUATION OF THE PROGRAM	RESS	
The progress is working fine.		
	/.	
	// k e	
GML		
	\mathcal{M}	
Supervisor's signature	Student's signature	

(Project II)

Trimester, Year: S3Y5	Study week no.: 4	
Student Name & ID: To Jin Yi 1900176		
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection	and Alert System	
1. WORK DONE		
[Please write the details of the work done in the last for	ortnight.]	
Define the suitable IDS tools for zabbix		
2. WORK TO BE DONE		
Integration with IDS tools		
3. PROBLEMS ENCOUNTERED		
5. PROBLEMS ENCOUNTERED		
Pfsense or OPNsense?		
4. SELF EVALUATION OF THE PROGI	RESS	
The progress is working fine.		
	1	
	// 1-	
GML	// /8	
gins	\mathcal{U}	
Supervisor's signature	Student's signature	

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: S3Y5	Study week no.: 5	
Student Name & ID: To Jin Yi 1900176		
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection and Alert System		
1. WORK DONE		
[Please write the details of the work done in the last for	ortnight.]	
Study decommentation of Discourse and ODNicor	200	
Study documentation of Pfsense and OPNser	ise	
2. WORK TO BE DONE		
2. WORK TO BE DONE		
Integrating Zabbix with OPNsense		
- -		
A DRODLENG ENGOVEREDES		
3. PROBLEMS ENCOUNTERED		
Some configuration always get erase when I	reboot OPNsense	
4. SELF EVALUATION OF THE PROGI	RESS	
SEEF EVALUATION OF THE I ROOF	ALIOS .	
The progress is working fine.		
	1	
	//1	
BM D	///8	
GML		
Supervisor's signature	Student's signature	
Supervisor s signature	Student's signature	

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: S3Y5	Study week no.: 7	
Student Name & ID: To Jin Yi 1900176		
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection and Alert System		
1. WORK DONE		
[Please write the details of the work done in the last for	ortnight.]	
C 1 1 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Success Integrate Zabbix and OPNsense		
2. WORK TO BE DONE		
Tuis con alast and sand alast massages with mas	sommon dotion	
Trigger alert and send alert message with rec	commendation	
3. PROBLEMS ENCOUNTERED		
How GPT can get achieve the problem event	t, where is the problem event storing	
4. SELF EVALUATION OF THE PROG	RESS	
The progress is working fine.		
	1	
	// 1~	
am o	// /8	
GIIIL	\mathcal{U}	
Supervisor's signature	Student's signature	
Super visor s signature	Stadent 5 Signature	

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: S3Y5	Study week no.: 9
Student Name & ID: To Jin Yi 1900176	
Supervisor: Dr. Gan Ming Lee	
Project Title: Network Intrusion Detection	on and Alert System
1. WORK DONE	Control of the Contro
[Please write the details of the work done in the last	forunght.]
Success setup the trigger alert and dashboar	rd
2. WORK TO BE DONE	
Achieve integrate API with GPT to get reco	ommendation
Tremeve integrate All I with GI I to get reed	Anniendation
3. PROBLEMS ENCOUNTERED	
5. PROBLEMS ENCOUNTERED	
To find the path of problem event, is in mys	sql database but need to figure out how to
access into it	
4 SELE EVALUATION OF THE DOOR	NDECC
4. SELF EVALUATION OF THE PROC	JRESS
The progress is working fine.	
	1
	//م
GML	
	\mathcal{H}

Student's signature

Supervisor's signature

(Project II)

Trimester, Year: S3Y5	Study week no.: 10	
Student Name & ID: To Jin Yi 1900176	·	
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection and Alert System		
1. WORK DONE		
[Please write the details of the work done in the last fort	might.]	
Achieve integrate API with GPT to get recom	mendation	
Achieve integrate Ar I with Gr I to get recom	nendation	
2. WORK TO BE DONE		
2. WORK TO BE BOTTE		
Implementation and system testing finish		
3. PROBLEMS ENCOUNTERED		
3. FROBLEMS ENCOUNTERED		
Define and self evaluate rules		
4. SELF EVALUATION OF THE PROGRE	ESS	
The progress is working fine.		
	•	
	/.	
	// le	
GML		
	\mathcal{M}	
Supervisor's signature	Student's signature	

(Project II)

Trimester, Year: S3Y5	Study week no.: 12	
Student Name & ID: To Jin Yi 1900176		
Supervisor: Dr. Gan Ming Lee		
Project Title: Network Intrusion Detection and Alert System		
1. WORK DONE		
[Please write the details of the work done in the last for	ortnight.]	
Implementation and system testing finish		
Implementation and system testing limish		
2. WORK TO BE DONE		
2. WORKE TO BE BOLLE		
Report need to finish		
3. PROBLEMS ENCOUNTERED		
3. PROBLEMS ENCOUNTERED		
Try to do the brute borce attack environment		
4. SELF EVALUATION OF THE PROGRAM	RESS	
Too much report, is unexpected		
	ـ جا //	
BM D		
GML	\mathcal{H}	
Supervisor's signature	Student's signature	

POSTER

Network Intrusion Detection & Alert System

AUTHORS
TO JIN YI
SUPERVISOR: Dr. GAN MING LEE

AFFILIATIONS
UNIVERSITY TUNKU ABDUL
RAHMAN (UTAR)

1

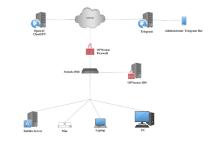
INTRODUCTION

This thesis proposes an integrated network monitoring and intrusion detection system. It combines Zabbix and IDS techniques to address limitations of traditional NIDS. It provides automated mitigation recommendations and a userfriendly interface for visualizing network traffic, alerts, and recommendations.

2

OBJECTIVE

To Setup a network monitoring system using Zabbix


To integrate into the system with network intrusion detection capabilities

To provide alert and mitigation recommendations in the event of an intrusion occurs

3

METHODOLOGY

The seamless integration of OPNsense IDS, Zabbix, and GPT through API creates a robust, intelligent, and responsive network monitoring and alerting system. This setup not only ensures efficient real-time threat detection and network traffic analysis but also empowers network administrators with instant alerts and tailored recommendations. By leveraging advanced tools and automation, the system optimizes network security management, providing a forward-thinking solution for proactive defense and decision-making in dynamic network environments.

4

RESULTS

The integrated platform aims to enhance intrusion detection accuracy, reduce false positives, and strengthen an organization's cybersecurity defenses. The successful implementation of this system will improve the effectiveness of network security monitoring and incident response processes.

5

CONCLUSION

By addressing the limitations of traditional approaches and providing intelligent alert prioritization and mitigation recommendations, the proposed solution contributes to improving the accuracy and efficiency of intrusion detection, reducing false positives, and enabling more effective resource allocation to address high-risk threats.

PLAGIARISM CHECK RESULT

	Match Overviev	W	×	Match Overview		×
	2%			2%		
<			> <			>
1	Zichang Wang. "A new Publication	1%	^{>} 14	Abebe Tesfahun, D. Lali Publication	<1%	>
2	Inam Ullah Khan, Salm Publication	<1%	^{>} 15	Prashant Pranav, Archa Publication	<1%	>
3	Zouheir Trabelsi, Kadhi Publication	<1%	^{>} 16	Chad Russell. "Chapter Publication	<1%	>
4	Sabah Alzahrani, Liang Publication	<1%	^{>} 17	Dhruba Kumar Bhattac Publication	<1%	>
5	Masahiko Higashino, S Publication	<1%	> 18	Frank Melendez, Nancy	<1%	>
6	Mohamed Ali EL-Omair Publication	<1%	> 19	Georgios Kambourakis,	<1%	>
7	Arvind Dagur, Dhirendr Publication	<1%	> 20	Harold F. Tipton, Micki Publication	<1%	>
8	Rajeev Agrawal, Arun P Publication	<1%	→ 2 1	IEA-RETD. "Renewable	<1%	>
9	Sasho Kalajdzievski. " Publication	<1%	>	Publication Lulu Liang, Kai Zheng,	<1%	>
10	Vandana Mohindru Soo Publication	<1%	>	Publication		
11	Amit Kumar Tyagi, Nila Publication	<1%	> 23	Payal Khurana Batra, P Publication	<1%	>
12	O. P. Verma, Seema Ver Publication	<1%	> 24	Putu Adi Guna Perman Publication	<1%	>
13	Jessey Bullock. "Wires Publication	<1%	> 25	Ryin Rouzbehani, Scott Publication	<1%	>
14	Abebe Tesfahun, D. Lali Publication	<1%	> 26	Yun Zhang, Yu Xia Yao, Publication	<1%	>
15	Prashant Pranav, Archa Publication	<1%	> 27	Guangjian Huang, Xingt Publication	<1%	>
16	Chad Russell. "Chapter Publication	<1%	> 28	Inam Ullah Khan, Mariy Publication	<1%	>

Turnitin Originality Report

Processed on: 13-Sep-2024 04:13 +08 ID: 2451956383 Word Count: 20743 Submitted: 2

FYP2_To Jin Yi_1900176.docx By To Jin Yi

Z	ichang Wang, "A new formalized model for motivation", Open Science Framework, 2024
	1% match (publications) am Ullah Khan, Salma El Hajjami, Mariya Quaissa, Salwa Belagziz, Tarandeep Kaur Bhatia. "Cognitive Machine Intelligence - Applications, Challenges, and Related Technologies", CRC Press, 2024
	1% match (publications) outleir Trabelsi, Kadhim Hayawi, Arwa Al Braiki, Sujith Samuel Mathew, "Network Attacks and Defenses - A Hands-on Approach", Auerbach Publications, 2019
	1% match (Sabah Alzahrani, Liang Hong, "A Survey of Cloud Computing Detection Techniques against DDoS Attacks", Journal of Information Security, 2018) abah Alzahrani, Liang Hong, "A Survey of Cloud Computing Detection Techniques against DDoS Attacks", Journal of Information Security, 2018
	1% match (publications) asahiko Higashino, Shin Okamoto. "Response Control and Seismic Isolation of Buildings", Taylor & Francis, 2006
	1% match (Mohamed Ali EL-Omairi, Abdelkader El Garouani. "A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data", Heliyon, 2023) ohamed Ali EL-Omairi, Abdelkader El Garouani. "A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data", Heliyon, 2023
	1% match (publications) rvind Dagur, Dhirendra Kumar Shukla, Nazarov Fayzullo Makhmadiyarovich, Akhatov Akmal Rustamovich, Jabborov Jamol Sindorovich. "Artificial Intelligence and Information Technologies". CRC Press, 2024
	1% match (publications) ajeev Agrawal, Arun Pratap Srivastava, Akihiko Sugiyama. "International Conference on Sustainability in Digital Transformation Era: Driving Innovative & Growth - (Sidte 2023) 16 – 17 September 2023", CRC Press, 202-
	1% match (publications) asho Kalajdzievski. "Math and Art - Math and Art", CRC Press, 2021
	1% match (publications) andana Mohindru Sood, Yashwant Singh, Bharat Bhargava, Sushil Kumar Narang, "Intelligent Security Solutions for Cyber-Physical Systems", CRC Press, 2024
	1% match (publications) mlt Kumar Tyagi, Niladhuri Sreenath. "Handbook of Research of Internet of Things and Cyber-Physical Systems - An Integrative Approach to an Interconnected Future", CRC Press, 2022
0	1% match (publications) P. Verma. Seema Verma. Thinagaran Perumal. "Advancement of Intelligent Computational Methods and Technologies - Proceedings of I International Conference on Advancement of Intelligent Computational Methods are chinologies (IACMT2023). CRC Press. 2024
	1% match (Jessey Bullock. "Wireshark® for Security Professionals", Wiley, 2017) ssey Bullock. "Wireshark® for Security Professionals", Wiley, 2017
	1% match (Abebe Tesfahun, D. Lalitha Bhaskari. "Effective Hybrid Intrusion Detection System: A Layered Approach", International Journal of Computer Network and Information Security, 2015) bebe Tesfahun, D. Lalitha Bhaskari. "Effective Hybrid Intrusion Detection System: A Layered Approach", International Journal of Computer Network and Information Security, 2015
	1% match (publications) rashant Pranav, Archana Patel, Sarika Jain, "Machine Learning in Healthcare and Security - Advances, Obstacles, and Solutions", CRC Press, 2024
	1% match (Chad Russell. "Chapter 5 Frameworks", Springer Science and Business Media LLC, 2016) had Russell. "Chapter 5 Frameworks", Springer Science and Business Media LLC, 2016
	1% match (publications) hruba Kumar Bhattachanyya. "DDoS Attacks - Evolution, Detection, Prevention, Reaction, and Tolerance", Chapman and Hall/CRC, 2019

Universiti Tunku Abdul Rahman			
Form Title: Supervisor's Comments on Originality Report Generated by Turnitin			
for Submission of Final Year Project Report (for Undergraduate Programmes)			
Form Number: FM-IAD-005	Rev No.: 0	Effective Date: 01/10/2013	Page No.: 1of 1

FACULY FACULY	TY OF INFO	ORMATION AND COMMUNICATION CHNOLOGY
Full Name(s) of Candidate(s)	TO JIN YI	
ID Number(s)	1900176	
Programme / Course	CN	
Title of Final Year Project	Network In	trusion Detection and Alert System
Similarity		Supervisor's Comments (Compulsory if parameters of originality exceeds the limits approved by UTAR)
Overall similarity index: Similarity by source Internet Sources: 0 Publications: 2 Student Papers: 0	2 % % % % % %	
Number of individual source more than 3% similarity: 0	es listed of	
(i) Overall similarity inde (ii) Matching of individua (iii) Matching texts in con Note: Parameters (i) – (ii) shall	ex is 20% and all sources liste tinuous block exclude quotes,	ed must be less than 3% each, and must not exceed 8 words, bibliography and text matches which are less than 8 words.
Note Supervisor/Candidate(s) to Faculty/Institute	is/are required	I to provide softcopy of full set of the originality report

Based on the above results, I hereby declare that I am satisfied with the originality of the Final Year Project Report submitted by my student(s) as named above.

GML	
Signature of Supervisor	Signature of Co-Supervisor
Name: <u>Gan Ming Lee</u>	Name:
Date: <u>13/9/2023</u>	Date:

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id	1900176
Student Name	TO JIN YI
Supervisor Name	DR. GAN MING LEE

TICK (√)	DOCUMENT ITEMS
	Your report must include all the items below. Put a tick on the left column after you have
	checked your report with respect to the corresponding item.
V	Title Page
$\sqrt{}$	Signed Report Status Declaration Form
$\sqrt{}$	Signed FYP Thesis Submission Form
	Signed form of the Declaration of Originality
$\sqrt{}$	Acknowledgement
$\sqrt{}$	Abstract
	Table of Contents
	List of Figures (if applicable)
	List of Tables (if applicable)
	List of Symbols (if applicable)
	List of Abbreviations (if applicable)
	Chapters / Content
	Bibliography (or References)
	All references in bibliography are cited in the thesis, especially in the chapter
	of literature review
	Appendices (if applicable)
	Weekly Log
	Poster
	Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
	I agree 5 marks will be deducted due to incorrect format, declare wrongly the
	ticked of these items, and/or any dispute happening for these items in this
	report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my report.

(Signature of Student)
Date:13/09/2024