

Development of a Real-Time Gesture Recognition System for Human-Robot

Interaction

BY

Ong Niam Chi 20ACB05969

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Development of a Real-Time Gesture Recognition System for Human-Robot

 Interaction

Academic Session: JUNE 2024

I ONG NIAM CHI

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 No.1, Jalan Kurau Indah 1,

 Taman Kurau Indah 34350 _________________________

 Kuala Kurau , Perak. Supervisor’s name

 Date: 8/9/2024 Date: ____________________

Dr. Teoh Shen Khang

13 September 2024

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 8/9/2024

SUBMISSION OF FINAL YEAR PROJECT/DISSERTATION/THESIS

It is hereby certified that Ong Niam Chi (ID No: 2005969) has completed this final year project

entitled “Development of a Real-Time Gesture Recognition System for Human-Robot Interaction”

under the supervision of Dr Teoh Shen Khang (Supervisor) from the Department of Computer and

Communication Technology, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Ong Niam Chi)

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Development of a Real-Time Gesture Recognition System

for Human-Robot Interaction” is my own work except as cited in the references. The report

has not been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

Ong Niam Chi

13/9/2024

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Teoh Shen

Khang who has given me this golden opportunity to develop a partner robot project. It is my

first step to establish a career in partner robot development field. When I was facing problems

in this project, the advice and guidance from Dr Teoh always assists me in overcoming the

problems. A million thanks to you.

Finally, I must say thanks to my parents and my family for their love, support, and continuous

encouragement throughout the course.

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

In the quickly developing field of robotics and human-robot interaction (HRI), it is crucial for

robots enable to recognize and react to human gestures in real-time. This study describes the

creation and application of a real-time hand gesture detection system intended using TurtleBot3

Burger in Humble version to improve HRI's effectiveness and naturalness by leveraging recent

developments in Robot Operating System (ROS2), computer vision, sensing, machine/deep

learning, and Internet of Things (IoT). The system supports navigation and delivery tasks,

monitors environmental temperature and humidity, captures images or records videos for

surveillance and security, and integrates with Telegram for remote monitoring and alerts.

To capture the finer details of hand gestures and ensure its supported functionality, the

suggested system uses a multi-modal method that integrates data from laptop and raspberry pi

cameras, and sensors such as LiDAR and DHT22. Robots can now understand a variety of

gestures by detecting the number and sequence of open and closed fingers, thanks to the

system's robust and accurate gesture detection, which is made possible by a carefully curated

dataset and cutting-edge deep neural networks. Low latency between gesture input and robot

reaction is made possible by effective model optimization and parallel processing, which gives

the system its real-time characteristics. For fluid and interactive HRI situations including

collaborative activities, assistive robotics, and entertainment applications, this real-time

capacity is essential. The design architecture of the system, data pretreatment methods, and

deep learning models used are discussed in the study, with an emphasis on the model's

adaptation to various robot platforms and situations. Robots will be able to respond to human

cues more contextually if natural language processing (NLP) techniques are incorporated to

improve the contextual comprehension of gestures [2]. The system's great accuracy and

robustness have been demonstrated through thorough testing in a variety of HRI settings. It has

prospective applications in fields including home services, education, manufacturing, business,

and entertainment where human-robot interaction must be natural and intuitive.

In summary, the created real-time hand gesture detection system is a significant development

in the field of HRI, allowing efficient and smooth communication between people and robots

to bridge the gap between them. Its versatility and precision enable a wide range of real-world

applications, potentially transforming how humans and robots collaborate and interact.

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x-xi

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1-3

1.2 Objectives 3

1.3 Project Scope and Direction 4

1.4 Contributions 4-5

1.5 Report Organization 5-6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous Works on Introduction to Gesture Recognition 7

 2.1.1 Review of equipment 7-10

 2.1.2 Review of programming language 10-12

 2.1.3 Review of algorithms and techniques 12-16

 2.1.4 Review of application of Gesture Recognition 16-17

2.2 Review of challenges, issues, and limitations 17-18

2.3 Proposed Solutions 18

2.4 Autonomous Navigation Evaluation 19-20

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

21

3.1 System Design Diagram/Equation 22-23

3.2 System Architecture Diagram 23-24

3.3 Timeline 25

CHAPTER 4 SYSTEM DESIGN 26

 4.1 System Block Diagram 26

 4.2 System Components Specifications 27

 4.2.1 Hardware 27-32

 4.2.2 Firmware 33-34

 4.2.3 Software / API 34-39

 4.3 Circuits and Components Design 39

 4.4 System Components Interaction Operations (Flowcharts) 40-41

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

42

 5.1 Setting Up 42

 5.1.1 Software 42

 5.1.2 Connection between PC and TurtleBot 3 42-44

 5.1.3 Hardware Configuration /Firmware Setup 44-45

5.2 Bring Up & Teleoperation 46-47

5.3 SLAM & Navigation 48

 5.3.1 Run SLAM node 48-49

 5.3.2 Navigation using ROS2 tools 49-5

 5.3.3 Navigation using Python with Visual Studio Code 52

5.4 Raspberry Pi Camera Setup 53-56

5.5 DHT22 Sensor Setup 57-59

5.6 Telegram Setup 59

5.7 Overall System Setup 60-62

5.8 Implementation Issues and Challenges 63

5.9 Concluding Remark 63-64

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 65

6.1 System Testing and Performance Metrics

65-78

6.2 Testing Setup and Result 79-98

6.3 Project Challenges 99

6.4 Objectives Evaluation 100

6.5 Concluding Remark 100

CHAPTER 7 CONCLUSION AND RECOMMENDATION 101

7.1 Conclusion 101

7.2 Recommendation 102

REFERENCES 103-105

 WEEKLY LOG 106-112

 POSTER 113

 PLAGIARISM CHECK RESULT 114-115

 FYP2 CHECKLIST 116

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 2-1 Sample of overall results for autonomous navigation

evaluation

19

Figure 3-1 Embedded Development Life Cycle (EDLC) 21

Figure 3-2 System Design for Development of a Real-Time Gesture

Recognition System for Human-Robot Interaction

22

Figure 3-3 System Architecture Diagram for Development of a Real-

Time Gesture Recognition System for Human-Robot

Interaction

24

Figure 3-4 timeline of FYP1 25

Figure 3-5 timeline of FYP2 25

Figure 4-1 System Block Diagram 26

Figure 4-2 TurtleBot3 Burger 27

Figure 4-3 Raspberry Pi 29

Figure 4-4 OpenCR 1.0 30

Figure 4-5 Raspberry pi camera with flex cable 31

Figure 4-6 DHT22 32

Figure 4-7 Ubuntu 33

Figure 4-8 ROS 2 34

Figure 4-9 Open CV 34

Figure 4-10 Example of the image to do numerous operations 35

Figure 4-11 Visual Studio Code 35

Figure 4-12 User interface of Visual Studio Code 36

Figure 4-13 Hand Tracking Module 36

Figure 4-14 Simple Commander API 37

Figure 4-15 Telegram Bot API 39

Figure 4-16 Block Diagram of Circuits and Components Design 39

Figure 4-17 System Components Interaction Operations 40

Figure 4-18 Flowchart1 for System Components Interaction Operations 40

Figure 4-19 Flowchart2 for System Components Interaction Operations 41

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 5-1 Connection between PC and TurtleBot 3 is via the same

Wi-Fi

43

Figure 5-2 SSH is configured with the Cmd_Vel 43

Figure 5-3 ROS Domain ID matched between Remote PC and

TurtleBot3

44

Figure 5-4 Output when successful firmware upload 45

Figure 5-5 Output for Bring up command 46

Figure 5-6 Output for ROS2 topic 46

Figure 5-7 Output for service list 47

Figure 5-8 Output for Teleoperation command 47

Figure 5-9 Output for Teleoperation when node successfully launched 47

Figure 5-10

Figure 5-11

Cartographer

Map of FYP lab

48

48

Figure 5-12

Figure 5-13

Directory of saved map

Initial Pose Estimation

49

49

Figure 5-14

Figure 5-15

LDS sensor data

Navigation2 Goal

50

50

Figure 5-16

Figure 5-17

Navigation 2

Navigation Goal

51

51

Figure 5-18

Figure 5-19

Command for Navigation using Python

Result for Navigation using Python

52

52

Figure 5-20

Figure 5-21

Installations for raspberry pi configuration

Raspberry pi software configuration tool

53

53

Figure 5-22 Steps to enable raspberry pi camera 54

Figure 5-23 Steps to enable automatic loading of SPI and I2C kernel

modules

55

Figure 5-24

Figure 5-25

Command to check the availability of the raspberry pi

camera

Results of the raspberry pi setup

56

56

Figure 5-26 Creation of my_robot_controller package and

tempHumid.py

57

Figure 2-27 Codes for DHT22 sensor setup 58

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

Figure 5-28

Figure 5-29

Results of temperature and humidity collected by DHT22

sensor

Steps and results of Telegram setup

59

59

Figure 5-30

Figure 5-31

Hardware setup

ROS2 Topic List (Latest)

60

61

Figure 5-32

Figure 5-33

RVIZ and PC terminal for running the Python file

GUI of the robot system

62

62

Figure 5-34 Node graph from rqt 64

Figure 6-1 Results of the accuracy of the hand tracking module in “0” 67

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Results of the accuracy of the hand tracking module in “1”

Results of the accuracy of the hand tracking module in

“OK”

Results of the accuracy of the hand tracking module in

“Move forward”

Results of the accuracy of the hand tracking module in

“Turn left” at light environment

Results of the accuracy of the hand tracking module in

“Turn left” at darker environment

68
69

70

71

72

Figure 6-7

Figure 6-7

Results of the evaluation for the real time between hand

detection and navigation

Results of the path planning for navigation

75

78

Figure 6-8

Figure 6-9

Directory of the saving captured images and recorded

videos

Complete work for the robot system with GUI

80

80

Figure 6-10 python code to publish and subscribe to ros2 topics 81

Figure 6-11 -> 27 Robot system’s GUI (1-17) 82-95

Figure 6-28 -> 30 Results of Telegram (1-3) 96-98

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF TABLES

Table Number Title Page

Table 2-1 Specifications required for the webcam system. 8

Table 2-2 Specifications required for third project. 8-9

Table 2-3 Specifications required for the teleoperation system. 10

Table 2-4 Algorithm implemented in Muhammad Inayat Ullah Khan’s

project.

13-14

Table 2-5 Basic commands used in the project of Jerald Siby and

Hilwa Kader.

15

Table 4-1 Specifications of TurtleBot3 Burger. 28-29

Table 4-2 Specifications of Raspberry pi camera Module Jectse

OV5647

31

Table 4-3 Specifications of DHT22 32

Table 6-1 Hand Gestures with their corresponding actions 79

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

AI Artificial intelligence

API Application Programming Interface

AR Augmented Reality

CPU Central Processing Unit

CRNN Convolutional Recurrent Neural Network

IDE Integrated Development Environment

EMG Electromyography

GPIO General Purpose Input Output

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

GUI Graphical User Interface

HCI Human-Computer Interaction

HRI Human-Robot Interaction

IMU Inertial Measurement Unit

IOT Internet of Things

LCD Liquid Crystal Display

LDS LiDAR Sensor

NLP Natural Language Processing

NN Neural Network

RAM Random Access Memory

RGB Red, Green, Blue

ROS Robot Operating System

TPU Tensor Processing Unit

USB Universal Serial Bus

VR Virtual Reality

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

New opportunities for human-robot interaction (HRI) have emerged because of the integration

of robots into a variety of facets of our life, from manufacturing, business, and education to

entertainment and daily help. But to fully take advantage of these interactions, it is crucial to

create clear and effective channels of communication between humans and robots. In order to

meet this demand, real-time gesture recognition systems have emerged as a potential option,

allowing people to communicate with robots through simple hand gestures. The goal of this

project is to create a real-time gesture recognition system for human-robot interaction using

cutting-edge robotics, computer vision, IoT, and deep learning techniques. The system intends

to improve human-robot communication across a variety of disciplines in terms of simplicity,

security, and effectiveness.

1.1 Problem Statement and Motivation

Problem Statement

The issue at hand is on the necessity to develop a reliable and effective real-time gesture

detection system that can be easily included into scenarios of human-robot interaction.

The main difficulties and issues with this project are as below:

1. Recognition of gestures Accuracy

Creating and putting into practice a hand gesture recognition algorithm or model that

can reliably and accurately identify a variety of user-performed gestures. This covers

hand movements produced in various lighting environments, hand orientations, and

hand shapes.

2. Real-Time Performance

Making sure the gesture recognition system runs quickly and in real-time. For genuine

and responsive interactions between humans and robots, real-time performance is

essential.

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

3. User Interface and Feedback

Creating an intuitive user interface for gestural communication with the robot. Giving

people feedback to verify that the system comprehends their motions and the robot's

activities.

4. Gesture-to-Action Mapping

The creation of a sophisticated mapping system that converts recognized gestures into

useful robot actions or responses such as navigation and delivery tasks, monitoring

environmental temperature and humidity, capturing images or recording videos for

surveillance and security, and integrating with Telegram for remote monitoring and

alerts. This entails specifying the necessary responses for each motion recognized and

making sure the system is responsive.

Motivation

Several important variables and objectives are what spur the development of a real-time

gesture recognition system for human-robot interaction. Systems for human robot interaction

try to make human-robot interaction feel as natural and intuitive as feasible. Humans

communicate primarily through gestures and incorporating them into interactions with robots

enables users to express their intentions and directions more organically.

The user experience can be improved through gesture-based interaction since it makes

controlling and interacting with robots more enjoyable and user-friendly. Increased user

happiness and robotic technology acceptance may result from this. Robots can be more usable

for people who have physical limitations or have trouble utilizing conventional input methods

(such keyboards or touchscreens) thanks to gesture recognition. It makes it possible for those

who might have trouble speaking or moving around to communicate with robots efficiently.

Real-time gesture recognition can increase safety in situations where humans and robots

interact closely, like in home services or manufacturing, business, and education facilities.

Accident risk can be decreased by users being able to quickly issue commands or warnings to

robots. Particularly in circumstances when verbal communication is difficult or impracticable,

gestures can be an effective means of communicating instructions or giving robots feedback.

This may result in increased task productivity and efficiency.

Gesture recognition offers a level of immersion and interaction to entertainment and

gaming apps. In virtual settings, players can manipulate items or characters by using their own

hands or bodies. With applications in computer vision, deep learning, robotics, IoT, and

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

human-computer interaction, gesture recognition technology is a vibrant area of research and

innovation. Real-time system development fosters development in these areas.

1.2 Research Objectives

The project's main objective is to develop a real-time gesture recognition system for

human-robot interaction (HRI), which enables intuitive and effective communication

between humans and robots using natural hand signals.

The project can be divided into several sub-objectives, each addressing a specific aspect of the

development and deployment of the gesture recognition system, helping to achieve the main

objective:

Accuracy of Gesture Recognition:

1. To develop and implement a deep learning-based gesture recognition model that can

properly identify a variety of hand gestures.

2. To collect and prepare a broad collection of gestures for training and validation.

Real-Time Performance:

3. To reduce processing and response times by optimizing the gesture recognition system

for real-time performance.

User Interface and Feedback:

4. To create and build a user-friendly interface that enables people to communicate with

the robot using gestures.

5. To implement feedback methods to give users confirmation and feedback on their

gestures and the activities the robot takes.

Gesture-to-Action Mapping:

6. To develop an intelligent mapping system that translates recognized gestures into useful

robot actions or reactions.

7. To define and put into practice the relevant actions for each gesture that has been

identified.

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.3 Project Scope and Direction

This project's goal is to design, develop, and implement a real-time gesture detection system

for human-robot interaction (HRI) employing cutting-edge robotics, computer vision, IoT, and

deep learning techniques. The system attempts to make it possible for people and robots to

communicate naturally and effectively through hand and body gestures. The following crucial

elements are included in the project:

1. Gesture Recognition

The precise identification of a wide range of hand gestures and signals. The system

ought to be able to recognize gestures reliably in a variety of locations and lighting

situations.

2. Real-Time Performance

Ensure responsive interactions between users and robots, the gesture recognition

system will run in real-time with little latency.

3. User Interface and Feedback

Enable interaction with the robot through gestures, a user-friendly interface will be

created. Users will receive feedback from the system to confirm that the robot has

understood their motions and activities.

4. Gesture-to-Action Mapping

Convert recognized gestures into useful robot actions or reactions, a sophisticated

mapping system will be created. This entails determining the proper course of action

and making sure the system is responsive.

1.4 Contributions

Our investigation and evaluation validate the viability of the proposed methodologies and

features for real-time gesture recognition in human-robot interaction (HRI). Firstly, the

integration of multi-modal data sources, including laptop and raspberry pi cameras, and sensors

such as LiDAR and DHT22, proves effective in capturing nuanced hand gestures, laying a

foundation for robust gesture recognition system that supports navigation and delivery tasks,

monitors environmental temperature and humidity, captures images or records videos for

surveillance and security, and integrates with Telegram for remote monitoring and alerts.

Secondly, the implementation of cutting-edge deep learning models enables accurate and real-

time gesture detection, enhancing the responsiveness and effectiveness of HRI systems.

Thirdly, the development of an intuitive user interface and feedback mechanisms fosters

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

seamless communication between humans and robots, further enhancing the user experience

and usability of the system.

The experiment and analysis confirm the improvements in Human-Robot Interaction. It

improved connection between humans and robots through the use of instinctive and natural

gestures. By improving the entire user experience by making it more accessible and user-

friendly, particularly in situations where users might lack technical expertise. Secondly, it

expanded robotic versatility. By allowing robots to recognize gestures and understand and

respond to non-verbal cues, the variety of jobs and applications where robots can be used

efficiently is being increased. Thirdly, its inclusivity and accessibility are enhancing how

people with physical limitations or those unable to communicate using conventional methods

connect with robotics and technology. Fourthly, its efficiency and security. By enabling real-

time gesture-based instructions and cautions to be sent from humans to robots in collaborative

contexts, safety is increased. It is also enhancing the effectiveness of collaboration between

humans and robots in fields like manufacturing, business, and education. Fifthly, it contributed

to games and entertainment too. It is enhancing interactive entertainment and gaming by giving

users the ability to manipulate real-world or virtual robots with gestures. It is also designing

engrossing virtual reality (VR) and augmented reality (AR) experiences. Lastly, developmental

and Research. Supporting study in the fields of robotics, deep learning, computer vision, IoT,

and human-computer interaction (HCI) and giving algorithms and models for gesture

recognition useful datasets and benchmarking opportunities.

1.5 Report Organization

The details of this research are shown in the following chapters. The introduction segment

offers a broad perspective of the project's aims, outlining the objectives and scope in chapter

1. Following this, Chapter 2 reviews some related backgrounds delve into existing research and

technologies relevant to gesture recognition systems, providing a foundation for the proposed

approaches. Then, In Chapter 3, the proposed methodology and approach are detailed,

encompassing project phases and the utilization of the Embedded Development Life Cycle

(EDLC) model. System design, architecture, and various diagrammatic representations like use

case and activity diagrams are also discussed. Furthermore, Chapter 4 presents the detailed

design of the gesture recognition system, including system block diagrams, and the design of

circuits and their interactions. Specifications of hardware such as TurtleBot3 Burger, raspberry

pi, and OpenCR, firmware like Ubuntu and Robot Operating System 2 (ROS2), and software

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

components such as visual studio codes, OpenCV, and Nav2 Simple Commander are also

outlined. Chapter 5 describes the practical setup and integration of the system, including

hardware and software setup, connections between the PC and TurtleBot3, SLAM, navigation,

and system operations, along with challenges faced during implementation. Chapter 6 evaluates

the system's performance through testing, discusses the challenges encountered, and assesses

whether the project's objectives have been achieved. Lastly, Chapter 7 is concluding the report

which delineates the development process, including data pre-processing, model training

architecture building, and data training phases. It also synthesizes the project's findings,

proposes future directions, and offers closing remarks. Through this structured approach, the

report aims to provide a clear understanding of the project's progression, methodologies

employed, and outcomes achieved.

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

2.1 Previous Works on Introduction to Gesture Recognition

In recent times, the utilization of human movements, especially hand gestures, has become

increasingly prominent in the realm of Human-Computer Interaction (HCI). This advancement

has spurred extensive research efforts focused on modelling, analyzing, and identifying hand

gestures. The techniques developed within HCI have wide-ranging applications in areas such

as surveillance, robot control, and teleconferencing.

Detecting gestures is a complex undertaking involving various aspects like motion

modelling, motion analysis, pattern recognition, and machine learning. It even incorporates

studies from the field of psycholinguistics. Within the discipline of studying and interpreting

human motion, there are already numerous comprehensive survey papers accessible. In this

literature review, there will be some developed projects being reviewed. The first developed

project is a degree project “Hand Gesture Detection and Recognition System [19]” which

completed by a Master student of computer engineering, Muhammd Inayat Ullah Khan and the

second project “Hand Gesture Recognition [20]” also completed by students which are Jerald

Siby and Hilwa Kader. The third project is “EMG-Based Dynamic Hand Gesture

Recognition Using Edge AI for Human–Robot Interaction [17]” by E. Kim, J. Shin, Y.

Kwon, and B. Park. While the fourth project is “Virtual Reality-Based Interface for

Advanced Assisted Mobile Robot Teleoperation [18]” by J. E. Solanes, A. Muñoz, L. Gracia,

and J. Tornero.

2.1.1 Review of equipment

Review of hardware platform

In the project of Muhammd Inayat Ullah Khan, the hardware used is a webcam system

and a 2.8 GHz processor Computer system.

As a summary for the webcam system, the specifications required for this project are listed

below:

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Table 2-1 Specifications required for the webcam system.

Specifications Descriptions

Resolution 640 x 480

Video frame rate 30fps @ 640 x 480

Pixel depth Minimum 1,3 Mega pixels

Connection port USB

 The webcam was attached to the computer through a USB connection and was set to

continually capture frames. Users just needed to pick the correct algorithm technique button on

the interface to record a certain frame, and the system would then recognize the hand in that

specific frame. The webcam collected color photos, which were then converted to grayscale

format. The decision to work in grayscale was inspired largely by the increased computing load

associated with processing color photographs.

 In the project of E. Kim, J. Shin, Y. Kwon, and B. Park, the hardware used is a critical

component of the system designed for dynamic hand gesture recognition in human-robot

interaction (HRI).

As a summary for the system designed, the specifications required for this project are listed

below:

Table 2-2 Specifications required for third project.

Specifications Descriptions

Industrial Robot Arm (UR3) Six-axis joint robot arm, Maximum

payload as 3 kg and the maximum

working radius as 500 mm.

Gripper (Robotiq 2F-140) Two fingers to grasp and manipulate

objects, each 140 mm wide.

EMG Sensor (Myo Armband) Eight surface EMG electrodes, Nine-

axis inertial measurement unit (IMU)

composed of a three-axis accelerometer,

three-axis gyroscope, and three-axis

magnetometer.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Embedded Environment (NVIDIA Jetson

Nano)

Designed for edge AI applications and

capable of running Ubuntu 18.04, Have

GPU acceleration capabilities, which are

beneficial for deep learning and AI tasks.

 The Universal Robot UR3, a small robotic arm created for collaborative purposes, is

used in the investigation. The selection of this hardware demonstrates how useful the system

is for actual industrial applications. A commercially accessible EMG sensor called the Myo

armband is used to record surface electromyography signals from the user's forearm. The Myo

armband supports the ROS package, which makes system integration easier, and is lightweight,

making it suited for wearable applications. The embedded environment for the suggested

system is the NVIDIA Jetson Nano developer kit. The selection of the Jetson Nano fits with

the paper's focus on edge AI for in-the-moment EMG signal processing.

 Overall, the hardware platform used for the research article is appropriate for the

study's objectives. It combines an edge AI platform, a wearable EMG sensor, and a powerful

industrial robot arm and gripper. Data integration is made simpler by the Myo armband's

interoperability with the ROS package, while the NVIDIA Jetson Nano offers the necessary

processing power for real-time gesture detection.

 In order to design a system for dynamic hand gesture detection in human-robot

interaction, practical and functional considerations were taken into account when choosing the

hardware. It guarantees that the system can be put to use in actual situations, especially in

industrial settings where accuracy, efficiency, and real-time control are crucial.

 In the project of J. E. Solanes, A. Muñoz, L. Gracia, and J. Tornero, the following

hardware specifications and components are mentioned or implied as being required for the

teleoperation system.

As a summary for the teleoperation system, the specifications required for this project are listed

below:

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Table 2-3 Specifications required for the teleoperation system.

Specifications Descriptions

Oculus Quest 2 VR Headset 6 GB of RAM, a Quadcomm

Snapdragon XR2 processor, an LCD

screen with a resolution of 1832 × 1920

pixels per eye, and standalone

capabilities.

Xbox Wireless Controller (Gamepad) Utilized for virtual and actual robot

control. The VR headset and gamepad

pair together to create Bluetooth

connection.

Turtlebot3 Burger (Mobile Robot) Featuring two servos. The 360º LiDAR

sensor (LDS) for environmental sensing,

the Raspberry Pi-3 for high-level

control, the OpenCR (32-bit ARM

Cortex-M7) embedded controller for

robot control, and the Dynamixel

XL430-W250-T for the wheels.

 While these are the hardware elements specifically listed, other hardware elements,

such as power supplies, communication cables, and any required adapters to assure

compatibility between the components, can also be needed for the configuration. Additionally,

the precise versions of the VR headgear (Oculus Quest 2) and gamepad (Xbox Wireless

Controller) are specified, so it's crucial to use these models—or suitable substitutes—for the

system to function as intended.

2.1.2 Review of programming language

 In the project of Muhammd Inayat Ullah Khan, the programming language used is C++.

C++ was used to develop this project is because the given the time limits and complexities

associated with creating a system in C++ will be shorter. Besides, This prototype prioritized

detection performance optimization. The system was built to accept a broad variety of inputs

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

with varied sizes and picture resolutions. The emphasis was on building a rigorously

programmed and extensively documented system to ease future growth.

C++ is a flexible middle-level programming language that was established in 1979 by

Danish computer scientist Bjarne Stroustrup while working at Bell Laboratories USA. A

middle-level programming language, for those unfamiliar, incorporates characteristics of both

low-level and high-level programming languages. C++'s origins may be traced back to the C

programming language, which was widely used in system programming and Unix-based

operating systems. C++ has developed as one of the most widely used programming languages

during the course of its existence. Its applications are many, spanning gaming, robotics,

finance, and scientific computing [4].

 In the project of Jerald Siby and Hilwa Kader, the algorithm was implemented in

MATLAB programming language [5]. MATLAB is a high-level programming language for

engineers and scientists that allows them to easily express matrix and array mathematics.

MATLAB may be used for every aspect, from basic interactive instructions to constructing

large-scale systems. Benefits using MATLAB develop project are vectorized operations, user

friendly, expandable functionality, simple math annotations [6].

 The system's implementation language is not stated directly in the research article titled

“EMG-Based Dynamic Hand Gesture Recognition Using Edge AI for Human-Robot

Interaction”. However, it is likely that the authors utilized a combination of the following

programming languages and libraries given the context and accepted procedures in the fields

of machine learning, robotics, and edge AI. Python is a popular programming language for

applications involving deep learning and machine learning. It provides a huge ecosystem of

tools and packages, including scikit-learn, pytorch, and tensorflow, which are frequently used

to build neural networks and analyze EMG data. Google created the open-source deep learning

framework known as TensorFlow. It is a popular alternative for implementing deep learning

models, particularly convolutional recurrent neural networks (CRNNs), because it offers tools

for creating and training neural networks.

 Robot Operating System (ROS) is a versatile platform for developing robot software.

Although not a programming language in and of itself, developing robot control and

communication modules frequently entails using Python and C++. Python and C++ were

probably used for ROS-related programming, as the publication references ROS for controlling

the robot. NVIDIA GPUs may have been utilized for deep learning projects if GPU acceleration

was used (which is typical for computationally heavy workloads). CUDA is a parallel

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

computing platform and API. Linux Shell scripts, such as Bash scripts, are frequently used

when working with embedded systems like the NVIDIA Jetson Nano for setting up and

configuring the system, managing dependencies, and automating activities [1].

 The system's implementation language is not stated directly in the research article

titled “Virtual Reality-Based Interface for Advanced Assisted Mobile Robot Teleoperation”.

Typically, in robotics and virtual reality applications, a combination of programming languages

and frameworks is used to achieve the desired functionality. Thus, the programming languages

used in this project will be quite similar to the previous projects which are Python, C++ and

ROS. However, there are some different programming languages should be used such as

Unity3D and Unreal Engine, Java, and Web Technologies. The creation of VR worlds and

simulations frequently makes use of these game development engines. They offer scripting and

development support for C# (Unity3D) and C++ (Unreal Engine). Due to its prominence as the

primary programming language for Android app development, Java may be utilized for VR

applications that run on Android. HTML5, JavaScript, and WebGL can be used to build web-

based VR applications that enable users to interact with VR content in web browsers [3].

2.1.3 Review of algorithms and techniques

In the project of Muhammd Inayat Ullah Khan, the hand gesture recognition system

was divided into 3 modules which are Preprocessing, Feature extraction of the processed image

and Real time classification. Preprocessing mainly consists of 4 steps which are Skin

Modelling, Removal of Background, Conversion of RGB to binary and Hand Detection. After

these steps were prepared, then diagonal Sum and other algorithms only can be calculated.

RGB: The basic colors of the RGB color paradigm are represented by RGB, which stands for

red, green, and blue. This model works on an additive concept, combining various quantities

of red, green, and blue light to produce a broad range of colors. It is critical to understand in

RGB image processing that an RGB image is basically a composite of three independent

grayscale images, each corresponding to the intensity of red, green, and blue light [7].

 After Preprocessing, the algorithm implemented in Muhammd Inayat Ullah

Khan’s project is:

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Table 2-4 Algorithm implemented in Muhammd Inayat Ullah Khan’s project.

Names Description

Row vector algorithm A row vector is defined as a single row of

numerical values with a resolution of 1*Y,

where Y is the total number of columns in the

picture matrix. Each element in this row vector

represents the sum of the corresponding

column elements in the matrix. It essentially

condenses the data from each column into a

one-dimensional representation.

Edging and row vector passing After converting a picture from RGB to

grayscale format, where each pixel is

represented by a brightness or darkness value.

There are two techniques for defining pixel

brightness: the "Double" class, which uses

floating-point values between 0 and 1, and the

"unit8" class, which uses integers from 0 to

255. The "unit8" class uses less storage space.

The text mentions edge extraction with a

threshold of 0.5 to reduce noise after grayscale

conversion. The bordered picture generates a

row vector, which is utilized as input for

training a neural network (NN) to categorize

movements. To express this algorithm in

mathematics,

Input to NN= Row vector [Edge

(Grayscale image)]

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Mean and standard deviation of edged

image

The mean, denoted as μ (mu), is calculated by

summing up all the pixel values within a matrix

and then dividing this sum by the total number

of values in the matrix. Mathematically, this can

be expressed as:

Mathematically, the input provided to the

neural network is defined as follows: Input to

NN= Mean (Edge (Binary image)) + S.D (Edge

(Binary Image))

Diagonal sum algorithm The binary picture format saves image data as a

matrix but only permits two unique colors:

black and white, with no intermediate shades. It

assigns the value 0 to black pixels and the value

1 to white pixels. The system then computes

the sum of all the elements in the matrix along

each diagonal in the following stage. The real-

time input delivered to the system may be

described mathematically as follows:

 In the project of Jerald Siby and Hilwa Kader, coding approaches was used to read,

display, convert the image. The image was captured using the Image Processing Toolbox in

MATLAB. Before begin programming, must first acquire information about the attached

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

camera. The 'imaqhwinfo' command (which stands for image acquisition hardware

information) is used to do this. It should be noted that one adapter may be connected to several

devices. To correctly recognize the camera, the device's ID must be obtained. In the MATLAB

command window, use 'imaqhwinfo('winvideo')' to do this. The programme defines the number

of frames per trigger and the frame capture intervals. When the specified frame is obtained, the

image is recorded using the webcam. Some examples of basic commands used was listed

below:

Table 2-5 Basic commands used in the project of Jerald Siby and Hilwa Kader.

Commands Description

Imread Read an image

Imshow Display an image

Imaqreset Reset the camera

rgb2gray Convert a color image to

gray2rgb Convert a gray scale image to color

image

 Electromyography (EMG) signals and edge AI approaches are proposed in the research

paper titled "EMG-Based Dynamic Hand Gesture Recognition Using Edge AI for Human-

Robot Interaction" to create a system for dynamic hand gesture identification. In this study, the

Convolutional Recurrent Neural Network (CRNN) is the main approach employed.

Convolutional Recurrent Neural Networks (CRNNs) are a class of deep learning models that

combine the sequential modelling capabilities of RNNs with the feature extraction capabilities

of CNNs. In this study, hand gesture recognition using EMG signal processing using CRNNs.

Convolutional layers, activation functions, pooling layers, fully linked layers, a gated recurrent

unit (GRU) layer, and a Softmax output layer make up the CRNN architecture.

 The Myo armband's EMG data are pre-processed before being sent into the CRNN model.

The EMG data are normalized using min-max normalization, according to the paper, which

adjusts the data to a range between 0 and 1. Following that, the EMG data are reorganized into

a two-dimensional format with dimensions of 50 x 8. The CRNN model is trained using this

pre-processed data as input features. The research focuses on edge AI, which employs an

embedded board (NVIDIA Jetson Nano) to process AI rather than using standalone personal

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

computers. An embedded system is the best option when need processing that is lightweight,

reliable, and quick, especially in the context of smart factories and real-time robot control.

 In summary, for dynamic hand gesture detection utilizing EMG signals, the paper uses

cutting-edge deep learning techniques, notably CRNN. The authors use examples of live

human-robot interaction to show the efficacy of this method. They also stress the significance

of edge AI for applications in smart manufacturing and robotics since it enables lightweight,

real-time processing. The transferability of the trained model to new users is also highlighted

in the research, demonstrating its potential for expanded application in human-robot interaction

systems.

 The journal article “Virtual Reality-Based Interface for Advanced Assisted Mobile

Robot Teleoperation” does mention the use of a potential field-based navigation method for

mobile robot control, which is a significant algorithmic component in this context. It is

renowned for being both straightforward and successful at avoiding obstacles. It might,

however, be constrained in complicated situations that contain tight spaces or moving

obstructions. More information regarding the precise settings and tweaking applied to this

algorithm in their system may have been supplied in the article. Since the article's main focus

is on the VR interface and usability study, it doesn't provide a thorough examination of cutting-

edge robotics or VR-related algorithms or methodologies. The particular application and the

hardware capabilities of the robot are frequently taken into consideration while choosing an

algorithm.

2.1.4 Review of application of Gesture Recognition

1. Hand gesture recognition technology is used to operate robotic arms and other gear,

allowing for natural human-machine interaction.

2. This technology may be linked into security systems, where unique hand gestures can

be used to access lockers or safes, so improving security.

3. Hand gesture-controlled phones, such as dumb assistance phones, can be deployed in

public areas and offices, allowing both people with disabilities and the general public

to use them.

4. The system's capabilities can be expanded to help deaf people communicate. Voice-to-

text translation allows a deaf or mute person to connect with those who can hear and

speak, bridging communication gaps.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

 As explained in the research paper "EMG-Based Dynamic Hand Gesture Recognition

Using Edge AI for Human-Robot Interaction," the use of gesture recognition is an essential

part of human-robot interaction (HRI) technology in a variety of fields, particularly in industrial

settings and smart factories. For examples, Smart Factories and Industrial Automation, Robotic

Control, Gripper Control, Human Work Augmentation, Rehabilitation and Assistance, Edge

AI Implementation, and Universal Gesture Classification. Gesture recognition has several uses

in scenarios including human-robot interaction, smart manufacturing, and industrial

automation. Control systems are made easier to use, human-robot interaction is improved, and

manufacturing processes are more productive and safer as a result. Additionally, the adoption

of edge AI for gesture detection fits with the need for quick, reliable, and portable solutions in

robotics and industrial applications.

2.2 Review of challenges, issues, and limitations

 The research paper "EMG-Based Dynamic Hand Gesture Recognition Using Edge AI

for Human–Robot Interaction" presents an innovative approach to gesture recognition, but it

also acknowledges several challenges, issues, and limitations. Even for the same person doing

the identical motion, EMG signals might differ greatly from person to person. The development

of a reliable and comprehensive system for gesture recognition is complicated by this

variability. The paper uses a single Myo armband sensor, which limits the number of muscles

and data points that can be monitored. Using multiple sensors could enhance the system's

ability to capture complex gestures accurately.

 The one of the limitations for the journal article discuss the development of a virtual

reality (VR)-based interface for the teleoperation of mobile robots is the usage of a LiDAR

sensor on the robot for obstacle detection. The fact that the quality of the teleoperation

experience is highly dependent on the accuracy and field of view of the sensors presents one

of the obstacles in VR-based teleoperation. LiDAR sensors might not be able to detect

transparent or reflecting objects in some settings.

 The common challenges, issues, and limitations are Gesture Recognition Reliability,

Latency and Real-Time Control, Hardware Requirements and Limited Real-World Testing.

Although it is not covered in detail in the article, if gesture recognition were to be added to the

VR interface, it would run into problems with accurately recognizing user gestures. Accurate

recognition can be impacted by a variety of factors, including lighting, occlusions, and human

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

variation in gesture execution. Real-time processing and control are essential for industrial and

robotic applications. Safety and efficiency issues could arise from slow gesture detection.

Although appropriate for lightweight processing, edge AI platforms may have hardware

restrictions that slow down and impair identification performance. The choice and optimization

of hardware are crucial. The performance assessment of the recognition model in a carefully

monitored experimental setting is the main emphasis of the research. Real-world industrial

environments could present extra complexities and difficulties.

2.3 Proposed Solutions

 This project aims to propose solutions for the above challenges, issues, and limitations.

Future study could investigate the integration of numerous sensors, possibly positioned on

various areas of the arm, to capture a more thorough set of muscle actions to alleviate the

constraints associated with a single EMG sensor. The robot's perception abilities can be

improved by combining data from various sensors, including depth sensors, cameras, and

LiDAR. By enabling a more thorough awareness of the surroundings, sensor fusion approaches

can enhance navigation and obstacle identification in challenging situations.

 To improve the reliability of gesture detection, machine learning models can be trained

on a wide dataset of user gestures, accounting for differences in lighting conditions and user

behaviors. Accuracy can also be increased by using more sophisticated computer vision

algorithms, including 3D gesture recognition. To accomplish real-time processing of EMG

signals and reduce processing times for gesture identification, optimize the edge AI platform

and algorithms. The advantage is in industrial environments, lower latency guarantees that the

system reacts quickly to user gestures, increasing safety and effectiveness.

 It is possible to work on creating VR accessories and headsets that are more affordable

to address the pricing issue. Additionally, users' hardware requirements may be reduced via

cloud-based VR solutions that delegate certain processing to distant servers. A more thorough

evaluation of the system's viability would result from extensive testing in actual industrial

settings with a range of environmental factors and user demographics. Conduct thorough

system testing and validation in actual industrial settings. The Advantage is Real-world testing

ensures the system's viability by identifying and addressing problems unique to industrial

applications.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

2.3 Autonomous Navigation Evaluation

Autonomous navigation is an essential component of mobile robotics, particularly in

applications that require precision and agility in dynamic surroundings. “Development of an

automated benchmark for the analysis of Nav2 controllers” by Federica Schena gives a detailed

analysis of the performance of various Nav2 controllers in the context of smart wheelchair

navigation using the ROS 2 framework. This work is especially important to projects requiring

mobile robot navigation and path planning since it compares the performance of four distinct

controllers in a range of real-world scenarios [8].

The study focuses on the Dynamic Window Approach (DWB), Regulated Pure Pursuit

(RPP), Time Elastic Band (TEB), and Model Predictive Path Integral (MPPI) controllers. Each

controller has various benefits for particular navigation assignments, such as basic environment

traverse, sophisticated obstacle avoidance, and sharp turning. The primary technical focus of

this thesis is on simulation-based evaluation using ROS 2's Gazebo environment, which

measures parameters such as kinematic performance, route consistency, and avoiding

collisions across five different scenarios: empty surroundings, stationary obstacles, single

obstacles, and restricted spaces [8].

The findings of this test reveal that, while each controller shines in specific situations,

none provides a universally superior answer. For example, the DWB controller performed well

in smooth path following but suffered in intricate obstacle avoidance. In contrast, MPPI and

TEB displayed more adaptability in dynamic situations, particularly in scenarios featuring

rapid turns or thick obstacle fields. However, these controllers tend to demand more computing

resources, which may be an issue for real-time systems with limited processing capacity. The

overall results are shown in figure below [8]:

Figure 2-1 Sample of overall results for autonomous navigation evaluation [8]

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Schena's advice to investigate a hybrid system that combines the capabilities of each

controller is very notable. This is consistent with the necessity for adaptable solutions in real-

world robotic systems, where navigation issues vary greatly depending on ambient complexity

and robot characteristics. The thesis also emphasizes the need of creating modular systems with

ROS 2 and Nav2, which enable the easy integration of additional controllers or modifications

to current ones based on unique use cases [8].

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Chapter 3

Proposed Method/Approach

The processes of the project were categorized into different phases in the development, which

were project pre-development, data pre-processing, model training architecture building and

data training, and prediction on test dataset. The design methodology used in this project is

prototyping model of embedded development life cycle (EDLC) approaches. Prototyping

model is developed in multiple cycles. Produces a more refined prototype at the end of each

cycle instead of functionality.

Figure 3-1 Embedded Development Life Cycle (EDLC)

In previous FYP1, the progress is still at the 1st phase of the Embedded Development Life

Cycle (EDLC). While FYP2 is progressing the 2nd approaches phase of the Embedded

Development Life Cycle (EDLC). The maintenance will be continued in the future when the

system product is launched in the market.

2nd phase 1st phase

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

3.1 System Design Diagram/Equation

Figure 3-2 System Design for Development of a Real-Time Gesture Recognition System

for Human-Robot Interaction

The following are the suggested techniques and technologies for attaining the main and sub-

objectives of the real-time gesture detection system for human-robot interaction:

1. Gesture Recognition Model:

Technique/Technology: Deep Learning (Convolutional Neural Networks).

Justification: Deep learning models, particularly CNNs, have shown exceptional success in

identifying the presence and location of hands within a video frame and determining the

positions of key points (e.g., fingertips, joints) on the detected hands, which qualifies them for

the recognition of intricate gestures. They can accurately recognize gestures by learning

hierarchical features from gesture data.

2. Real-time performance improvement:

Technique/Technology: Model quantization and parallel processing are all optimization

strategies.

Justification: To attain real-time performance, shorten inference times, and ensure rapid user-

robot interactions, optimization strategies are essential.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

3. User Interface and Feedback:

Technique/Technology: Designing a graphical user interface (GUI) for gesture interaction and

feedback mechanisms (such as visual cues).

Justification: A user-friendly interface makes it easier for users to interact, and feedback

mechanisms confirm robot operations and gesture detection, improving the user experience.

4. Gesture-to-Action Mapping:

Technique/Technology: The development of a mapping algorithm or rule-based system to

convert recognized gestures into robot actions.

Justification: By defining the robot's behavior based on recognized gestures, mapping

algorithms make sure the system responds appropriately to user commands.

 The equation represents the mathematical model or algorithm used within the system for

gesture recognition or data processing. A general placeholder equation:

Gesture Recognition Algorithm: G(x) = f(input data)

Where:

• G(x) represents the recognized gesture.

• f() is the function representing the gesture recognition algorithm.

• "input data" refers to the data collected from input devices, such as images or sensor

readings.

This equation outlines the basic structure of the gesture recognition algorithm within the

system. Specific details about the algorithm and its implementation would be provided in

further sections or documentation.

3.2 System Architecture Diagram

The system architecture diagram illustrates the flow of data and interaction between various

components of the real-time gesture recognition system for human-robot interaction.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Figure 3-3 System Architecture Diagram for Development of a Real-Time Gesture

Recognition System for Human-Robot Interaction

In the diagram, the components are represented as follows:

Gesture Recognition Model: This component comprises deep learning devices such as

Convolutional Neural Networks (CNNs) which analyze input data to recognize gestures.

Cloud Functions: These functions act as subscribers to receive data from the deep learning

devices. They may perform additional processing or trigger actions based on the recognized

gestures.

Input Devices: These devices capture input data, such as images or sensor readings, which are

then processed by the gesture recognition model.

Robot Controller: The controller receives instructions or commands based on the recognized

gestures and controls the actions of the robot accordingly.

Feedback Mechanisms: These mechanisms provide feedback to users, confirming gesture

recognition or indicating the robot's response.

IoT: Telegram is integrated for IoT monitoring and alerting purpose. Telegram will receive

input data, such as images or sensor readings and send output data to control some functions

of the robot system through the Internet.

The arrows indicate the flow of data and control signals between the components, illustrating

the system's operation in real-time human-robot interaction scenarios.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

3.3 Timeline

3.3.1 FYP 1 timeline

Figure 3-4 timeline of FYP1

3.3.2 FYP 2 timeline

Figure 3-5 timeline of FYP2

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Chapter 4

SYSTEM DESIGN

4.1 System Block Diagram

Figure 4-1 System Block Diagram

1. Input Section

Laptop/Web Camera captures live video, sent to the Remote PC for processing.

2. Application Section

GUI & Hand Detection Module: Detects hand gestures from the video feed and

provides a user interface. It can also send control commands or notifications via

Telegram.

3. Input/Output Section

TurtleBot3 Burger: Receives control commands and integrates sensor data.

Raspberry Pi Model 3 B+: Central processing unit for handling data from sensors like

the Raspberry Pi Camera, LIDAR (for obstacle detection), and DHT22 Sensor (for

temperature and humidity).

Open CR: Control board that drives the robot's wheels.

 In summary, the Camera captures video, which the Remote PC uses for gesture

recognition. Then, the recognized gestures are sent as commands to the TurtleBot3 for action.

Thus, the raspberry pi processes sensor data and sends instructions to the Open CR for

movement control. The system enables hand gesture-based control of the TurtleBot3 robot,

integrating camera input, gesture recognition, and various sensors for interactive operation.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

4.2 System Components Specifications

4.2.1 Hardware

The hardware involved in this project is TurtleBot (Burger). A TurtleBot is equipped with

appropriate sensors, such as a camera (e.g., Intel RealSense) and a LiDAR sensor.

Figure 4-1 TurtleBot3 Burger [9]

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Table 4-1 Specifications of TurtleBot3 Burger [9].

Description Specifications

Maximum translational velocity 0.22 m/s

Maximum rotational velocity 2.84 rad/s (162.72 deg/s)

Maximum payload 15kg

Size (L x W x H) 138mm x 178mm x 192mm

Weight (+ SBC + Battery +

Sensors)

1kg

Threshold of climbing 10 mm or lower

Expected operating time 2h 30m

Expected charging time 2h 30m

SBC (Single Board Computers) Raspberry Pi

MCU 32-bit ARM Cortex®-M7 with FPU (216 MHz,

462 DMIPS)

Remote Controller -

Actuator XL430-W250

LDS (Laser Distance Sensor) 360 Laser Distance Sensor LDS-01 or LDS-02

Camera -

IMU Gyroscope 3 Axis

Accelerometer 3 Axis

Power connectors 3.3V / 800mA

5V / 4A

12V / 1A

Expansion pins GPIO 18 pins Arduino

32 pin

Peripheral UART x3, CAN x1, SPI x1, I2C x1, ADC x5,

5pin OLLO x4

DYNAMIXEL ports RS485 x 3, TTL x 3

Audio Several programmable beep sequences

Programmable LEDs User LED x 4

CHAPTER 4

https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_02/

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Status LEDs Board status LED x 1

Arduino LED x 1 Power

LED x 1

Buttons and Switches Push buttons x 2, Reset button x 1, Dip switch x 2

Battery Lithium polymer 11.1V 1800mAh / 19.98Wh 5C

PC connection USB

Firmware upgrade via USB / via JTAG

Power adapter (SMPS) Input: 100-240V, AC 50/60Hz, 1.5A @max

Output: 12V DC, 5A

Figure 4-3 Raspberry Pi [10]

 The Raspberry Pi single-board computer line is made by the UK nonprofit Raspberry Pi

Foundation, whose goals are to increase computer literacy and make computer science

education more accessible. Numerous iterations and versions of the Raspberry Pi have been

released since its launch in 2012. The first Pi model has a single-core 700MHz CPU and just

256MB RAM, whereas the most recent Pi model had a quad-core CPU clocked at over 1.5GHz

and 4GB RAM. The Raspberry Pi Zero is the most economical variant, costing only $5, while

the others have traditionally been priced at roughly $100 (typically $35 USD) [10].

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

 Worldwide, people use the Raspberry Pi to learn to programme, build hardware projects,

automate their homes, use Edge computing and Kubernetes clusters, and even for industrial

purposes. The Raspberry Pi is a reasonably priced Linux computer with a set of GPIO (general

purpose input/output) pins that enable control over electronic components for physical

computing and exploration of the Internet of Things [10]. Raspberry pi 3 model B+ is used for

this project.

Figure 4-4 OpenCR 1.0 [21]

 For ROS embedded devices, OpenCR1.0 is being developed to offer fully open-source

hardware and software. The schematics, PCB Gerber, BOM, and firmware source code for the

TurtleBot3 and OP3 are all freely distributable to users and the ROS community under open-

source licenses. The OpenCR1.0 board's STM32F7 series CPU is built around an ARM Cortex-

M7 with a floating-point unit, which is an extremely potent processor. OpenCR1.0's

development environment is quite flexible, allowing experts to create traditional firmware or

use the Arduino IDE and Scratch for younger pupils [21].

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

Figure 4-5 Raspberry pi camera with flex cable

 This is a high-quality 5-megapixel Raspberry Pi Camera Module, specifically the Jectse

OV5647 model, which comes with a flexible cable. To capture images and high-definition

video of the surrounding environment, the end of the flex cable should be inserted into the

connector marked "CAMERA" on the Raspberry Pi attached to the TurtleBot3 Burger [11].

The specifications of this Raspberry Pi camera module are as follows:

Table 4-2 Specifications of Raspberry pi camera Module Jectse OV5647 [11].

Description Specifications

Name camera module

Brand Jectse

Chip OV5647

Video capture resolution 2592P x 1944P

Screen Size 1 Inches

Lens type Wide Angle

Angle 175°

Weight 0.02 Kilograms

Applications Fully compatible with Raspberry Pi B 3/2

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Figure 4-6 DHT22

 The DHT22 is an affordable digital sensor designed to measure temperature and

humidity. It is connected to GPIO pin 4, 5V pin and Ground pin on the Raspberry Pi, which is

mounted on the TurtleBot3 Burger. The sensor uses a thermistor to measure air temperature

and a capacitive humidity sensor to determine the surrounding moisture levels, outputting a

digital signal on its data pin, which eliminates the need for analog input pins. While the DHT22

is straightforward to use, precise timing is essential for accurate data capture. The specifications

of the DHT22 are listed below:

Table 4-3 Specifications of DHT22 [12].

Description Specifications

Model DHT22

Pins Output pin (DAT), Power pin (VCC), Ground pin (GND)

Power supply 3.3-6V DC

Output signal digital signal via single bus

Sensing element Polymer capacitor

Operating range humidity 0-100%RH; temperature -40~80Celsius

Accuracy humidity +-2%RH (Max +-5%RH); temperature <+-

0.5Celsius

Resolution or sensitivity humidity 0.1%RH; temperature 0.1Celsius

Repeatability humidity +-1%RH; temperature +-0.2Celsius

Humidity hysteresis +-0.3%RH

Long-term Stability +-0.5%RH/year

Sensing period Average: 2s

Interchangeability fully interchangeable

Dimensions small size 14*18*5.5mm; big size 22*28*5mm

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

4.2.2 Firmware

The software involved in this project is Ubuntu and Robot Operating System 2 (ROS2).

Ubuntu is a popular free, open-source Linux-based operating system that can use on computer

or virtual private server. While a collection of software libraries and tools called the Robot

Operating System (ROS) are used to create robot applications [13].

Figure 4-7 Ubuntu [11]

In 2004, the British company Canonical unveiled Ubuntu. It was built on Debian, a popular

distribution at the time that required a lot of installation work. Ubuntu was consequently

suggested as a user-friendly substitute. The advantages of using Ubuntu are its user-

friendliness, strong security, more software options, enhanced privacy, lightweight

performance and free of charge. The lists of Ubuntu library packages [14]:

• focal (20.04LTS)

• focal-updates

• focal-backports

• jammy (22.04LTS)

• jammy-updates

• jammy-backports

• kinetic (22.10)

• kinetic-updates

• kinetic-backports

• lunar (23.04)

• lunar-updates

• lunar-backports

• mantic

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Figure 4-8 ROS 2 [12]

ROS contains the open-source resources needed for upcoming robotics project, including

drivers, cutting-edge algorithms, and robust development tools. The robotics and ROS

communities have undergone significant development since the founding of ROS in 2007. By

utilizing what is excellent about ROS 1 and enhancing what isn't, the ROS 2 project hopes to

adjust to these developments [15]. There are two supported client libraries which are the C++

client library (rclcpp) and the Python client library (rclpy). Both client libraries utilize common

functionality in rcl [16]. Several ROS2 topics are published or subscribed to control the robot

system.

4.2.3 Software/API

Figure 4-9 Open CV [22]

OpenCV is a comprehensive open-source library for computer vision, machine

learning, and image processing. It has become a significant part in real-time operation, which

is critical in modern systems. It allows to process photos and movies to recognize items, faces,

and even human handwriting.

 Python, when combined with other libraries such as NumPy, can parse the OpenCV

array structure for analysis purposes. Vector space and apply mathematical operations were

applied to identify an image pattern and its many aspects with the help of Python. OpenCV

offers users to do numerous operations on an image. Let take an example of the image below:

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Figure 4-10 Example of the image to do numerous operations [22]

Descriptions below are the operation done by OpenCV.

1. Read the Image: OpenCV allows users to retrieve images from a file or straight

from a camera, making them available for further processing.

2. Image Enhancement: Users can enhance an image by altering its brightness,

sharpness, or contraction. This helps to visualize the image's quality.

3. Object detection: As shown in the image above, objects may also be detected using

OpenCV. Bracelet, watch, patterns, and faces can be identified. This can include

recognizing people, shapes, or even objects.

4. Image Filtering: Users can adjust the image by using filters like blurring or

sharpening.

Draw the Image: OpenCV lets users to draw text, lines, and other forms in images.

5. Saving Changed photos: After processing, users can store the photos that have been

edited for future study [19].

Figure 4-11 Visual Studio Code [23]

 Visual Studio Code (also known as VS Code) is a free open-source text editor developed

by Microsoft. VS Code is accessible for Windows, Linux, and Mac. Although the editor is very

portable, it contains some impressive features that have helped VS Code become one of the

most popular software development tools in recent years.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

 VS Code offers a wide range of programming languages, including Java, C++, Python,

CSS, Go, and Dockerfiles. Furthermore, VS Code lets users to add and even create additional

extensions, such as code linters, debuggers, and cloud and web development capabilities.

 VS Code's layout enables a lot of customization than other text editors. To enhance the

user experience, VS Code is organized into five major regions which are Activity Bar, Side

Bar, Editor's groups, Panel and Status Bar as shown in figure below [23].

Figure 4-12 User interface of Visual Studio Code [23]

Figure 4-13 Hand Tracking Module

 The hand tracking module allows for real-time detection and tracking of hands. OpenCV

will be used to develop or import a hand tracking module capable of detecting and tracking

landmarks of up to two hands within the camera's view. To install the module, run the command

“pip install HandTrackingModule” in the terminal. In Visual Studio Code, the module can be

imported using the Python statement “from cvzone.HandTrackingModule import

HandDetector”.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Figure 4-14 Simple Commander API [24]

The Nav2 Simple Commander provides Python-based ways for interacting with the

Navigation 2 system. The Nav2 Simple (Python3) Commander aims to give Python3 users with

"navigation as a library" capabilities. Nav2 Simple Commander provide an API that handles

all ROS 2 and Action Server chores for users, allowing users to focus on developing an

application that takes advantage of Nav2's features.

 A simple illustration of the main structure is provided below. Note that goToPose(),

goThroughPoses(), followWaypoints(), and related methods are non-blocking, allowing users

to obtain and handle feedback in a single threaded program. As a result, while waiting for an

assignment to be completed, the while not nav.isTaskComplete() design is required to poll for

adjustments to navigating completion and, if necessary, carry out certain duties of interest to

user's application (such as analysing feedback, performing something with the data collected

by the robot, or verifying for errors) [24].

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

from nav2_simple_commander.robot_navigator import BasicNavigator

import rclpy

rclpy.init()

nav = BasicNavigator()

...

nav.setInitialPose(init_pose)

nav.waitUntilNav2Active() # if autostarted, else use lifecycleStartup()

...

path = nav.getPath(init_pose, goal_pose)

smoothed_path = nav.smoothPath(path)

...

nav.goToPose(goal_pose)

while not nav.isTaskComplete():

 feedback = nav.getFeedback()

 if feedback.navigation_duration > 600:

 nav.cancelTask()

...

result = nav.getResult()

if result == TaskResult.SUCCEEDED:

 print('Goal succeeded!')

elif result == TaskResult.CANCELED:

 print('Goal was canceled!')

elif result == TaskResult.FAILED:

 print('Goal failed!')

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Figure 4-15 Telegram Bot API [26]

 Telegram released the Bot API on June 24, 2015, allowing robots to communicate with

Telegram. This innovation allowed not only humans but also machines to communicate via

Telegram. Telegram bots can be configured for IoT applications, such as sending messages to

a Raspberry Pi or receiving data from a Raspberry Pi back to Telegram [26].

4.3 Circuits and Components Design

Figure 4-16 Block Diagram of Circuits and Components Design

 The block diagram above illustrates the circuit and component design for this project.

The central component is the Raspberry Pi 3 Model B+ attached to the TurtleBor3, to which

three subcomponents are connected: the DHT22 sensor, the Raspberry Pi camera, and the

microSD card. Together, these elements form the overall circuit design.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

4.4 System Components Interaction Operations (Flowcharts)

Figure 4-17 System Components Interaction Operations

Figure 4-18 Flowchart1 for System Components Interaction Operations

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Figure 4-19 Flowchart2 for System Components Interaction Operations

 The figure 4-17 shows the system components interaction operations between user and

GUI of the project system. The flowcharts outline a gesture recognition system that monitors

and controls a TurtleBot3 robot. It starts by initializing the GUI components and monitoring

the system's status (battery, temperature, and humidity). The system continuously detects

gestures and based on recognition results, updates the GUI then sends commands to the robot,

or sends notifications to/via Telegram. The hand gesture numbers, and their corresponding

actions can be viewed in the results section of Chapter 6. It also manages user interactions,

such as displaying images or videos and handling input to restart or cancel tasks. The process

concludes by closing the program when the user decides to exit. Overall, the system integrates

real-time gesture detection, robot control, and user interaction.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Chapter 5

SYSTEM IMPLEMENTATION

The System Implementation conducted in this project aimed to lay the groundwork for the

implementation of the proposed method outlined in Chapter 3. This involved setting up the

necessary software and conducting initial experiments to access the feasibility of the approach.

The preliminary work can be divided into two main sections: software setup and

visualization/segmentation.

5.1 Setting up

5.1.1 Software

Before starting to develop this project, there are two OS needed to be installed and downloaded

into PC and SD card for TurtleBot respectively:

1. Ubuntu 22.04 LTS Desktop (64-bit)

2. Ubuntu Server 22.04.5 LTS (64-bit)

Before delving into the development process, it was essential to set up the required software

tools. Visual Studio Code was identified as the primary Integrated Development Environment

(IDE) for coding and project management. Additionally, other software dependencies, such as

TurtleBot3 via Debian Packages, libraries, nav 2 simple commander API and frameworks, were

installed to support the development environment. Some dependent ROS 2 Packages installed

such as Gazebo, Cartographer, Navigation 2 for mapping and navigation used. This setup

process ensured that the project had a stable and efficient coding environment to facilitate

smooth development.

5.1.2 Connection between PC and TurtleBot 3

The connection between PC and TurtleBot 3 is via the same Wi-Fi by edit the WIFI_SSID and

WIFI_PASSWORD in the network configuration file. Then get the IP address of WLAN0 of

the TurtleBot. With that, work can be done from the Remote PC using SSH. This SSH is

configured with the Cmd_Vel (PC terminal). After that, Cmd_Vel will turn into Ubuntu

terminal and can continue work for installation inside TurtleBot3. Besides, ROS Domain ID

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Setting in ROS2 DDS communication, ROS_DOMAIN_ID must be matched between Remote

PC and TurtleBot3 for communication under the same network environment. A default ID of

TurtleBot3 is 30 [25].

Figure 5-1 Connection between PC and TurtleBot 3 is via the same Wi-Fi

Figure 5-2 SSH is configured with the Cmd_Vel

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Figure 5-3 ROS Domain ID matched between Remote PC and TurtleBot3

5.1.3 Hardware Configuration /Firmware Setup

1. LDS Configuration

Add LDS model inside the ‘~/.bashrc’ file. With the commands below:

$ echo 'export LDS_MODEL=LDS-02' >> ~/.bashrc

$ source ~/.bashrc
 The LDS model for this project is LDS-01.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

2. OpenCR Setup

Connect the OpenCR to the Raspberri Pi using micro-USB cable. Install required

Packages on Raspberry Pi to upload the OpenCR firmware. Add the

OPENCR_MODEL which is ‘Burger’. Download the fiemware and loader then upload

it to the OpenCR [25]. A successful firmware upload for TurtleBot3 Burger will look

like below:

Figure 5-4 Output when successful firmware upload

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

5.2 Bring Up & Teleoperation

1. Bring Up TurtleBot3

Connect to Raspberry Pi with its IP address using terminal from PC. Bring up basic

packages to start TurtleBot3 applications with correct parameter which is ‘Burger’ [25].

The terminal output will look like below:

Figure 5-5 Output for Bring up command

Topic list with commands below:

Figure 5-6 Output for ROS2 topic

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Service list with commands below:

Figure 5-7 Output for service list

1. Teleoperation

Connect to Raspberry Pi with its IP address using terminal from PC [25]. Run

teleoperation node with command below:

Figure 5-8 Output for Teleoperation command

If node successfully launched, the instruction appeared to the terminal window will be

as below:

Figure 5-9 Output for Teleoperation when node successfully launched

Thus, the TurtleBot3 can now be controlled using keyboard of PC.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

5.3 SLAM & Navigation

5.3.1 Run SLAM node

Firstly, run the bring up with command. Then, open a new terminal from Remote PC and

launch the SLAM node using Cartographer as default SLAM method as command below:

Figure 5-10 Cartographer

Next, run teleoperation node so that the TurtleBot3 can be controlled by keyboard to start

exploring and drawing the map [22].

Figure 5-11 Map of FYP lab

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Lastly, the map drawn need to be saved using the command below:

$ ros2 run nav2_map_server map_saver_cli -f ~/map

Figure 5-12 Directory of saved map

5.3.2 Navigation using ROS2 tools

Firstly, run the bring up with command. Then, open a new terminal from Remote PC and

launch the Navigation node. ROS2 uses Navigation2. Initial Pose Estimation must be

performed by clicking the ‘2D Pose Estimate’ button in the RVIZ2 menu before running the

Navigation as this process initializes the AMCL parameters that are critical in Navigation.

TurtleBot3 must be correctly located on the map with LDS sensor data that neatly overlaps the

displayed map [22].

Figure 5-13 Initial Pose Estimation

2

3

4

1

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure 5-14 LDS sensor data

Launch keyboard teleoperation node to precisely locate the robot on the map. Lastly, click the

‘Navigation2 Goal’ button in the RVIZ2 menu to set Navigation Goal. Click on the map to

set the destination of the robot and drag the green arrow toward the direction where the robot

will be facing [22].

Figure 5-15 Navigation2 Goal

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Figure 5-16 Navigation 2

Figure 5-17 Navigation Goal

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

5.3.2 Navigation using Python with Visual Studio Code

Firstly, run the bring up with command. Then, open a new terminal from Remote PC and

launch the Navigation node. ROS2 uses Navigation2. Next, open a new terminal again to

Navigate to my_robot_controlled package with Nav2 Simple Commander API. Install the node

that make it run in “ros 2 run” Modify the “setup.py” then navigate to ros_ws folder to build

the source code and source new built package [21]. Lastly, run the executable as the command

below:

Figure 5-18 Command for Navigation using Python

Figure 5-19 Result for Navigation using Python

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

5.4 Raspberry Pi Camera Setup

Firstly, connect raspberry pi camera to the camera connector at raspberry pi attached to the

TurtleBot3. Next, configure and setup the camera via Ubuntu terminal.

Figure 5-20 Installations for raspberry pi configuration [27]

Install the necessary packages which are libraspberrypi-bin, ros-humble-v4l2-camera and

raspi-config to configure the raspberry pi. Then the Ubuntu terminal will turn into the raspberry

pi software configuration tool. After that, choose Interface options and enter then select legacy

camera to enable it by following the figures below.

Figure 5-21 Raspberry pi software configuration tool

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Figure 5-22 Steps to enable raspberry pi camera

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Furthermore, enable automatic loading of SPI and I2C kernel modules through the same steps

as above. Lastly, enter the finish button to exit the raspi-config tool.

Figure 5-23 Steps to enable automatic loading of SPI and I2C kernel modules

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Figure 5-24 Command to check the availability of the raspberry pi camera

The availability of the raspberry pi camera can be checked with the command “vcgencnd

get_camera”. If supported and detected camera are equal to 1 means that there is one available

camera to be used. Thus, “tmux” as a terminal multiplexer is used to enable other terminals

that can run a separate program, to be created, accessed, and controlled from a single screen.

Finally, run v4l2_camera_node to run the raspberry pi camera as “/image_raw” [28] in the ros2

topic list.

Figure 5-25 Results of the raspberry pi setup

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

5.5 DHT22 Sensor Setup

Firstly, connect DHT22 to GPIO 4, 5V and Ground pins of the raspberry pi attached to

TurtleBot3. Then set up the DHT22 sensor by using Ubuntu terminal.

1. Create a package named “my_robot_controller” in /ros2_ws/src folder:

• cd ~/ros2_ws/src

• ros2 pkg create my_robot_controller --build-type ament_Python –dependencies

rclpy

2. Navigate to the “my_robot_controller” package:

• cd ~/ros2_ws/src/ my_robot_controller / my_robot_controller

3. Create and write a new Python file named as tempHumid.py with provided Python

codes to the “my_robot_controller” folder:

• nano tempHumid.py

Figure 5-26 Creation of my_robot_controller package and tempHumid.py

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Figure 2-27 Codes for DHT22 sensor setup

After saving the tempHumid Python file, use colcon build and source the install/setup.bash.

Then run the script as navi1. Finally, “/temperature” and “/humidity” topics is published in the

ros2 topic list, and the values of temperature and humidity will be shown every 5 seconds as

the figure below.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Figure 5-28 Results of temperature and humidity collected by DHT22 sensor

5.6 Telegram Setup

Firstly, create a new Telegram bot via BotFather of the Telegram and get an API token. Then

set a list of commands so that users can know the Telegram bot’s functionalities on receiving

data and controlling the TurtleBot3 of the robot system. The steps and results of Telegram

setup are shown as below:

Figure 5-29 Steps and results of Telegram setup

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

5.7 Overall System Setup

Hardware setup: Raspberry pi camera and DHT22 are connected to the raspberry pi attached

to the TurtleBot3 Burger. Battery is also be connected to supply power to the TurtleBot3.

Figure 5-30 Hardware setup

Software setup: Firstly, Open the drawn map with RVIZ2 and configure the TurtleBot3’s

initial pose estimation by clicking the ‘2D Pose Estimate’ button in the RVIZ2 menu to enable

the navigation function. Next, a GUI is created and the ros2 topics such as /battery_state,

/temperature, /humidity, /cmd_vel, /image_raw and /amcl_pose from the ros2 topic list are

subscribed or published by writing in the Python file using visual studio code to access with

the TurtleBot3. This enables the GUI to receive and show the values of battery percentage,

temperature, humidity, current position of the TurtleBot3 and the stream video captured by the

raspberry pi camera frame by frame. Besides, the /cmd_vel topic enables users to control the

speed and movement of the TurtleBot3. Other than that, Telegram bot is also accessed by

writing the API token for the in the Python file to enable remote interaction. After the Python

file with the fully functional Python codes is created, use colcon build and source the

install/setup.bash then run the script as navi. Finally, a GUI will launch and pop up. The system

is now ready for users to control the TurtleBot3 using hand gestures.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 5-31 ROS2 Topic List (Latest)

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Figure 5-32 RVIZ and PC terminal for running the Python file

Figure 5-33 GUI of the robot system

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

5.8 Implementation Issues and Challenges

 Several difficulties and problems arose during the project's execution that needed to be

carefully considered and resolved. One major obstacle was integrating various hardware parts,

like the TurtleBot and sensors, with the ROS2 and Ubuntu software environments. Technical

challenges had to be overcome to guarantee these components' smooth compatibility and

communication. Another issue was to optimize deep learning model performance for real-time

gesture recognition on platforms with limited resources. To obtain sufficient performance in

real-world circumstances, it was imperative to strike a balance between computational

efficiency and precision.

 Despite these difficulties, the project also included several cutting-edge elements that

enhanced its originality. A fresh approach to human-robot interaction was represented using

deep learning techniques, specifically Convolutional Neural Networks (CNNs), for gesture

detection. These methods made it possible for the robot to reliably comprehend complicated

motions, enabling smooth communication between people and robots. Additionally, the use of

GUI and IoT in this project also let users feel convenient when using the robot system. In

summary, resolving implementation obstacles and utilizing cutting-edge technologies were

critical to the project's success.

5.9 Concluding Remark

 In conclusion, there are 3 Ubuntu terminals and 2 PC terminals required for the robot

system implementation. Three Ubuntu terminals are used to bring up the TurtleBot3, run the

v4l2_camera_node and execute the tempHumid.py script (navi1) for the DHT22 sensor. Two

PC terminals are used to open map in RVIZ2 for navigation and run the main Python script

(navi) to launch the system. All the steps for all the setups are stated above.

 Furthermore, there are still some implementation issues and challenges. For examples,

the imperfection of the hardware and software. However, these implementation obstacles can

be addressed by leveraging cutting-edge technologies.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

Figure 5-34 Node graph from rqt

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Chapter 6

SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

Evaluation of the accuracy of the hand tracking module

Pseudocode:

import necessary libraries

Path to the log file

Open the log file in append mode

gesture_number = {

 (0, 0, 0, 0, 0): 0, (0, 1, 0, 0, 0): 1, (0, 1, 1, 0, 0): 2, (0, 1, 1, 1, 0): 3, (0, 0, 1, 1, 1): "OK", (0, 1, 1, 1, 1): 4,

 (1, 1, 1, 1, 1): 5, (1, 0, 0, 0, 1): 6, (1, 1, 0, 0, 0): 7, (1, 1, 1, 0, 0): 8, (1, 1, 1, 1, 0): 9, (1, 0, 0, 0, 0): 10,

 (0, 0, 0, 0, 1): 11, (0, 0, 0, 1, 1): 12, (1, 0, 0, 1, 1): 13, (1, 1, 0, 1, 1): 14

}

Set gesture_count to 0

Define MAX_GESTURES as 20

Function detect_hand_gesture:

 If gesture_count >= MAX_GESTURES:

 Print "Max gestures reached. Stopping system."

 Call close_system

 Return

 Read frame from video capture

 If frame is read successfully:

 Display image on canvas

 Detect hands in the frame

 If hands are detected:

 If two hands are detected:

 Get finger positions for both hands

 # Determine detected gesture based on finger positions

 if fingers1 == [1, 0, 0, 0, 0] and fingers2 == [1, 0, 0, 0, 0]:

 detected_gesture1 = "Move forward"

 elif fingers1 == [0, 0, 0, 0, 1] and fingers2 == [0, 0, 0, 0, 1]:

 detected_gesture1 = "Move backward"

 elif fingers1 == [0, 1, 0, 0, 0] and fingers2 == [0, 0, 0, 0, 0]:

 detected_gesture1 = "Turn left"

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

 elif fingers1 == [0, 0, 0, 0, 0] and fingers2 == [0, 1, 0, 0, 0]:

 detected_gesture1 = "Turn right"

 elif fingers1 == [0, 0, 0, 0, 0] and fingers2 == [0, 0, 0, 0, 0]:

 detected_gesture1 = "Stop"

 elif fingers1 == [0, 0, 0, 0, 1] and fingers2 == [0, 0, 0, 0, 0]:

 detected_gesture1 = "Speed up"

 elif fingers1 == [0, 0, 0, 0, 0] and fingers2 == [0, 0, 0, 0, 1]:

 detected_gesture1 = "Speed down"

 If a gesture is detected:

 Increment gesture_count

 Print detected gesture

 Call log_detected_gesture with fingers and detected gesture

 Else:

 Get finger positions for the single hand

 Check if the finger positions match any gesture in gesture_number

 If a gesture is matched:

 Increment gesture_count

 Print detected gesture number

 Call log_detected_gesture with finger positions and detected gesture number

 Set a timer to call detect_hand_gesture again in 10 milliseconds

Function log_detected_gesture(fingers, detected_gesture):

 Get current timestamp

 Write timestamp, fingers, and detected gesture to log file

Function close_system:

 Close log file

 Release video capture

 Destroy all OpenCV windows

 Quit the Tkinter application

Function main:

 Initialize Tkinter

 Create a canvas for video display

 Call detect_hand_gesture to start gesture detection

 Start Tkinter main loop

If script is run directly:

 Call main

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

The percentage of accurate predictions generated based on the test data is known as accuracy.

By dividing the total number of guesses by the number of accurate predictions, it is simple to

calculate [29].

Accuracy =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Figure 6-1 Results of the accuracy of the hand tracking module in “0”

Accuracy =
14

20
 × 100%

 = 70%

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 6-2 Results of the accuracy of the hand tracking module in “1”

Accuracy =
20

20
 × 100%

 = 100%

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 6-3 Results of the accuracy of the hand tracking module in “OK”

Accuracy =
20

20
 × 100%

 = 100%

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Figure 6-4 Results of the accuracy of the hand tracking module in “Move forward”

Accuracy =
14

20
 × 100%

 = 70%

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Figure 6-5 Results of the accuracy of the hand tracking module in “Turn left” at light

environment

Accuracy =
19

20
 × 100%

 = 95%

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 6-6 Results of the accuracy of the hand tracking module in “Turn left” at darker

environment

Accuracy =
13

20
 × 100%

 = 65%

Hand gesture recognition achieves 100% accuracy when each pattern for one hand is uniquely

defined. Accuracy decreases to 95% when unique patterns involve both hands, and further

drops to 70% when hand patterns are not distinct, such as recognizing "0" with both hands

versus one hand. In darker environments, the accuracy reduces to 65%.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Evaluation of the real time between hand detection and navigation

Pseudocode:

Import necessary libraries

Path to the log file

Open the log file in append mode

.

.

.

Define gesture_number as a dictionary mapping finger tuples to gestures

gesture_number = { (0, 1, 0, 0, 0): 1, (0, 1, 1, 0, 0): 2, (0, 0, 0, 0, 0): 0, (0, 0, 1, 1, 1): 3, (0, 1, 1, 1, 1): 4 }

Define goal_positions as a dictionary mapping gestures to goal coordinates

goal_positions = { 1: (0.0, 0.0), # Goal for gesture 1 2: (3.00, 1.00), # Goal for gesture 2 }

Define test_gestures as a list of 5 sample gestures

Define true_labels as the same list as test_gestures

Function handle_gesture(gesture):

 Record current time as detection_time

 Record current time as action_time

 Compute latency as the difference between action_time and detection_time

 Log the detected gesture, action, and latency

 Return gesture, gesture_number, latency

Function evaluate_model_performance(true_labels, predicted_labels):

 Compute accuracy, precision, recall, and F1-score

 Print performance metrics

 Compute and display confusion matrix using true and predicted labels

Function main():

 Initialize ROS (Robot Operating System) components

 Initialize GUI window with labels for sensor data and video feeds

 Define detect_hand_gesture function:

 Capture a frame from the camera

 Convert the frame to RGB

 Display the frame on the GUI canvas

 Detect hands in the frame

 If hands are detected:

 Extract finger states and convert to a tuple

 If the finger tuple is in gesture_number:

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

 Record start time

 Identify gesture from gesture_number

 If the gesture has a goal position:

 Update remaining distance label and navigate to goal

 Otherwise, handle movement based on gesture where gesture = 0 is stop, 3 is moving forward and 4

is moving backward

 Record end time and log time taken

 Schedule the next frame capture

 Define update_status function:

 Spin ROS node to receive updates

 If battery status is available:

 Update battery status label

 If battery is low, navigate to the charging station

 Monitor task completion and update remaining distance label

 Check task result and handle accordingly

 Schedule the next status update

 Start GUI event loop and background threads for sensor and camera updates

 In the main function:

 Simulate gesture detection and handle gestures

 Evaluate model performance based on simulated results

 Analyze gesture action log for latency and navigation success

 Define analyze_logs function:

 Read and parse the gesture action log file

 Extract and compute latency metrics

 Calculate and print navigation success rate

 Optionally print the full log DataFrame

Execute main function

Based on the results below, the calculation:

Average time taken =
11(0.03)+2(0.02)+104(0.00)

117

= 0.003162 seconds

The robot system operates in near real-time, with an average response time of 0.003162

seconds from hand gesture recognition to the TurtleBot2's response. This extremely short delay

is nearly imperceptible, making the system highly responsive.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Figure 6-7 Results of the evaluation for the real time between hand detection and

navigation

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Evaluation of the deviation and time taken for path planning of navigation

Pseudocode:

Import necessary libraries

Path to the log file

Open the log file in append mode

…

DEFINE gesture_number AS {

 (0, 1, 0, 0, 0): 1, (0, 1, 1, 0, 0): 2, (0, 0, 0, 0, 0): 0, (0, 0, 1, 1, 1): 3, (0, 1, 1, 1, 1): 4

}

DEFINE goal_positions AS {

 1: (0.0, 0.0), # Goal for gesture 1

 2: (3.00, 1.00), # Goal for gesture 2

}

DEFINE test_gestures AS [1, 2]

DEFINE true_labels AS test_gestures

FUNCTION handle_gesture(gesture):

 DETERMINE detection_time AS current time

 DETERMINE action_time AS current time

 CALCULATE latency AS action_time - detection_time

 LOG gesture, gesture_number, latency

 RETURN gesture, gesture_number, latency

FUNCTION evaluate_model_performance(true_labels, predicted_labels):

 CALCULATE accuracy, precision, recall, f1 from true_labels and predicted_labels

 PRINT accuracy, precision, recall, f1

 COMPUTE confusion_matrix from true_labels and predicted_labels

 DISPLAY confusion_matrix as heatmap

FUNCTION main():

 INITIALIZE ROS nodes and navigator

 SETUP GUI with labels and canvases

 FUNCTION detect_hand_gesture():

 READ frame from camera

 CONVERT frame to RGB

 DISPLAY frame on laptop_canvas

 DETECT hands in frame

 IF hands detected:

 GET fingers' state

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

 CREATE tuple from fingers' state

 IF tuple in gesture_number:

 SET gesture_number1 from gesture_number

 IF gesture_number1 in goal_positions:

 UPDATE remaining_distance_label

 SET speed to "Controlled by TurtleBot"

 GET goal position (x, y) from goal_positions

 NAVIGATE to goal position (x, y)

 RESET camera

 CALL detect_hand_gesture() again in 10 milliseconds

 FUNCTION update_status():

 SPIN ROS node

 IF battery_status is available:

 PRINT battery level

 IF battery level < 30%:

 CANCEL any current task

 STOP robot

 SET goal_pose to (0.0, 0.0)

 NAVIGATE to goal_pose

 MONITOR task completion and UPDATE remaining_distance_label

 HANDLE task result (SUCCEEDED, CANCELED, FAILED)

 CALL update_status() again in 1 second

 CALL detect_hand_gesture() to start gesture detection

 CALL update_status() to start status updates

 FUNCTION analyze_logs():

 READ log file

 EXTRACT and CALCULATE latency from log

 PRINT average, minimum, maximum latency

 EXTRACT and CALCULATE navigation success rate from log

 PRINT success rate

 EXECUTE main()

 SIMULATE gesture detection

 EVALUATE performance with true_labels and predicted_labels

 ANALYZE logs

IF __name__ == "__main__":

 CALL main()

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figure 6-7 Results of the path planning for navigation

Average time taken =
2.51+11.76+4.55+5.55+0.05+2.13+6.68+8.79+0.69+6.91+0.09+6.71+0.06+0.06

13.41+18.88+24.93+0.07+2.13+13.55+14.59+0.05+12.43+0.07+2.13

25

= 6.351 seconds

Average deviation =
3.16+3.16+3.17+3.17+3.24+3.24+3.19+3.19+3.14+3.14+0.12+3.27

+4.38+3.58+3.84+4.19+4.19+2.54+2.54+2.54+2.54+3.28+3.28+3.22+3.22

25

= 3.141 centimeters

The robot system using nav2 for navigation can be considered as smart, accurate and responsive

as the path planning taking less than 7 seconds of the average time taken and an average

deviation of under 4 centimeters. However, its performance may decline in environments with

significant noise, such as human activity or obstacles.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

6.2 Testing Setup and Result

Gestures detection with their corresponding actions and GUI functionalities

Table 6-1 Hand Gestures with their corresponding actions

Hand(s) Hand Gesture Action

1 (0,0,0,0,0): 0 Stop

1 (0,1,0,0,0): 1 Go to (0.0, 0.0) then capture image when arrived

1 (0,1,1,0,0): 2 Go to (3.00, 1.00) then capture image when arrived

1 (0,1,1,1,0): 3 Go to (-1.20, 1.10) then capture image when arrived

1 (0,0,1,1,1): OK Go to (0.0, 0.0) then capture image when arrived

1 (0,1,1,1,1): 4 Go to (-2.70, -0.40) then capture image when arrived

1 (1,1,1,1,1): 5 Draw circle

1 (1,0,0,0,1): 6 Surveillance mode

1 (1,1,0,0,0): 7 Start recording on the raspi_canvas and go to (-2.70, -

0.40) then stop recoding when arrived

1 (1,1,1,0,0): 8 Start recording on the raspi_canvas and go to (0.0, 0.0)

then stop recoding when arrived

1 (1,1,1,1,0): 9 Start recording on the raspi_canvas and go to (3.00,

1.00) then stop recoding when arrived

1 (1,0,0,0,0): 10 Start recording on the raspi_canvas and go to (-1.20,

1.10) then stop recoding when arrived

1 (0,0,0,0,1): 11 Capture image

1 (0,0,0,1,1): 12 Record video on the raspi_canvas by drawing one circle

then stop recording

1 (1,0,0,1,1): 13 Start recording on the raspi_canvas

1 (1,1,0,1,1): 14 Stop recording

2 (0,0,0,0,0), (0,0,0,0,0) Stop

2 (1,0,0,0,0), (1,0,0,0,0) Move forward

2 (0,0,0,0,1), (0,0,0,0,1) Move backward

2 (0,0,0,0,1), (0,0,0,0,0) Speed up

2 (0,0,0,0,0), (0,0,0,0,1) Slow down

2 (0,1,0,0,0), (0,0,0,0,0) Turn left

2 (0,0,0,0,0), (0,1,0,0,0) Turn right

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

All the captured images and recorded videos will be saved in the directory as shown below:

Figure 6-8 Directory of the saving captured images and recorded videos

Figure 6-9 Complete work for the robot system with GUI

After running the Python script, a GUI appears with various components, including

laptop_canvas, raspi_canvas, and several buttons (Restart, Cancel All Tasks, Display Latest

Video, Display Latest Image). It displays information such as the robot's current and next

location, remaining distance, speed, battery status, robot status, temperature, and humidity. The

starting point is (0.0, 0.0). Most values on the GUI are updated in real-time through ROS 2

topics by publishing or subscribing to the relevant data.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Figure 6-10 python code to publish and subscribe to ros2 topics

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Figure 6-11 Robot system’s GUI (1)

When the hand gesture "0" is detected from the laptop canvas, the robot will stop immediately,

and the GUI will update the next action to "stop." Upon detecting gesture "1," the robot will

navigate to the coordinates (0.0, 0.0), update the next location, status, and remaining distance,

then capture an image upon arrival and mark the location as "done." The same process of

capturing an image and updating the next location to "done" applies to gestures "2," "3," "4,"

and "OK."

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

Figure 6-12 Robot system’s GUI (2)

Figure 6-13 Robot system’s GUI (3)

When gesture number 5 is detected, the TurtleBot3 will move in a circular path once and then

stop. Simultaneously, the GUI will update to reflect this action.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Figure 6-14 Robot system’s GUI (4)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

Figure 6-15 Robot system’s GUI (5)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

Figure 6-16 Robot system’s GUI (6)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

Figure 6-17 Robot system’s GUI (7)

When gesture number 6 is detected, the TurtleBot3 activates surveillance mode. It begins

recording and captures an initial image, then navigates through a series of waypoints: (0.0, 0.0)

to (3.00, 1.00), followed by (-1.20, 1.10), then (-2.70, -0.4), and finally returns to the initial

point (0.0, 0.0). An image is captured at each waypoint, and the recording stops upon returning

to the initial point. The GUI updates after each action.

Figure 6-18 Robot system’s GUI (8)

When gesture numbers 7, 8, 9, or 10 are detected, the robot will start recording and “7” will

move to the location (0.0, 0.0). It will update its next location, status, and remaining distance

during the movement. Once it arrives, the robot stops recording and updates the next location

status to “done.” The recording and status update functions are consistent across all four

gestures.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Figure 6-19 Robot system’s GUI (9)

Figure 6-20 Robot system’s GUI (10)

When gesture number 11 is detected, an image is immediately captured and saved to a

designated directory. The GUI then updates to display the next action as "done" once the image

capture is completed.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Figure 6-21 Robot system’s GUI (11)

When gesture number 12 is detected, the TurtleBot3 will start recording and begin moving in

a circular path. Recording will stop once the TurtleBot3 halts. Additionally, the GUI will

update to show "Done" on the next action.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

Figure 6-22 Robot system’s GUI (12)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

In this system, gesture number 13 initiates recording, while gesture number 14 halts it. The

"OK" gesture, detected by the Raspi_canvas, commands the TurtleBot3 to return to its starting

point (0.0, 0.0). This functionality is beneficial for business applications, such as in restaurants,

where a robot can deliver food to tables. Customers can signal the robot with the "OK" gesture

to prompt it to return to the counter for further tasks.

Figure 6-23 Robot system’s GUI (13)

When two hands are detected, the system will respond according to Table 16-1 with commands

to stop, move forward, move backward, turn left, turn right, speed up, or slow down.

Additionally, the speed displayed on the GUI will be updated accordingly.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

Figure 6-24 Robot system’s GUI (14)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

Other GUI functionalities

Figure 6-25 Robot system’s GUI (15)

When an internet issue prevents accessing the remaining distance during navigation, users can

either wait for the TurtleBot3 to reach its goal and then click the “restart system” button to

resume normal operations, or they can directly click the “cancel task/emergency stop” button

to immediately halt all tasks and stop the TurtleBot3 if an error occurs.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

Figure 6-26 Robot system’s GUI (16)

The system allows users to view the most recent captured image or recorded video by clicking

the “latest image” or “latest video” buttons. If no image or video has been captured or recorded

since the system started, a window will display a “no video/image found” message.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

Figure 6-27 Robot system’s GUI (17)

When the TurtleBot3's battery is low, it will automatically return to its charging station located

at coordinates (0.0, 0.0). Additionally, it will notify users to charge the robot via the GUI.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

Telegram functionalities

Figure 6-28 Results of Telegram (1)

When users select data command from the Telegram command menu, they receive information

from the robot system or can control the TurtleBot3.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

Figure 6-29 Results of Telegram (2)

When the DHT22 detects an overheat environment, the system will notify users or their

contacts via a Telegram bot. Initially, an image along with data values will be sent, followed

by continuous alert messages until the user issues the /reset command. After resetting, the

alerts will pause for 10 seconds and resume the same steps if the overheat condition persists

again; otherwise, they will stop sending alert messages.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

Figure 6-30 Results of Telegram (3)

The TurtleBot3 will capture images or record videos whenever a hand gesture is detected.

These images or videos will be sent to a Telegram bot for further processing or review.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

6.3 Project Challenges

The main challenges encountered in this project were related to the integration of multiple

technologies and the development of a highly responsive system. Specific challenges include:

1. Gesture Recognition Accuracy: It found difficult to achieve consistently high

accuracy in gesture detection across a wide range of locations, lighting situations, and

human variances. To ensure that the system could recognize gestures consistently in

real time, the deep learning model needed to be optimized and fine-tuned for varied

inputs.

2. Real-Time Performance: Real-time performance was important for effective human-

robot interactions. Reducing latency when processing hand gestures proved difficult,

especially on resource-constrained platforms such as Raspberry Pi. To minimize delays,

the system requires thorough optimization of both hardware and software components.

3. Hardware and Software Integration: Combining hardware components like

TurtleBot3, Raspberry Pi, DHT22 sensor, and a camera module with software (ROS2

and custom gesture recognition models) created compatibility concerns that had to be

addressed through debugging and adjustments.

4. Environmental Sensitivity: Environmental factors such as lighting and background

noise influenced the system's effectiveness, affecting gesture detection and robot

navigation. Robustness under different situations necessitated periodic system

adjustment.

5. Internet Connectivity Issues: Delays were also caused by inconsistent or slow internet

connections, especially when receiving the stream video from raspberry pi camera and

the system employed IoT and cloud-based services for remote monitoring and control.

This impacted real-time performance and responsiveness, demanding increases in

network stability and connection speed to ensure smooth operations.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

6.4 Objectives Evaluation

The objectives of the project were successfully evaluated through extensive testing. Below is

a summary of the results:

1. Accuracy of Gesture Recognition: The gesture recognition system achieved an

average accuracy of 70-100%, depending on the gesture and the surrounding

conditions. For simple movements like "Move forward," accuracy was rather high, but

it fell for more complex gestures or in darker situations.

2. Real-Time Performance: The system's response time from gesture recognition to

robot action was calculated to be an average of 0.003162 seconds, making the

interactions practically real-time. This performance level fulfils the criteria for a smooth

human-robot interaction.

3. User Interface and Feedback: The GUI gave real-time updates on system status, such

as temperature, humidity, and robot operations. Users could simply control the robot

with hand gestures, and feedback mechanisms such as GUI and IoT contributed to a

user-friendly experience.

4. Gesture-to-Action Mapping: All defined gestures were successfully mapped to their

corresponding robot movements. The technology accurately converted hand signals

into navigation and other commands, allowing for efficient interaction with the robot.

6.5 Concluding Remark

In conclusion, the research met its primary goal of creating a real-time gesture detection system

for human-robot interaction. Despite technological hurdles, the system was successfully

installed, with acceptable levels of accuracy and responsiveness. The combination of deep

learning, IoT, and robotics resulted in an easy framework for commanding the robot via natural

gestures. Future enhancements should focus on improving system robustness in a variety of

situations and optimizing hardware for broader applications.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

Chapter 7

CONCLUSION AND RECOMMENDATION

7.1 Conclusion

 In conclusion, by creating a real-time gesture detection system, this project has addressed

the urgent demand for improved human-robot interaction. The first issue arose from the

shortcomings of conventional human-robot interfaces, which frequently depend on laborious

input techniques and obstruct smooth communication between humans and robots. Driven by

the opportunity to optimize and enhance this communication, the project aimed to develop a

solution utilizing cutting-edge technologies and techniques.

 Convolutional neural networks (CNNs) [30], the deep learning models, was the main

component of the suggested solution for gesture identification challenges. The system aims to

enable natural communication between people and robots by utilizing deep learning to

accurately understand and respond to human gestures in real-time. By leveraging cutting-edge

technologies such as deep learning, computer vision, and IoT, the system allowed for intuitive,

non-verbal communication with a robot, enhancing the user experience.

 Many original concepts were developed during the project, mostly in the fields of model

optimization and data pre-processing. Methods like model quantization and data augmentation

were investigated in order to improve the robustness and effectiveness of the gesture detection

system. Furthermore, enhancing the overall user experience and system performance was

greatly aided by the integration of feedback systems and user interface design. The successful

implementation of gesture-to-action mapping and a user-friendly interface facilitated smooth

and efficient interactions.

 In summary, by creating a real-time gesture detection system, the project has advanced

human-robot interaction significantly. Through tackling the stated issue and utilizing creative

solutions, the project has established the groundwork for further investigation and advancement

in this fascinating domain. The future of human-robot interaction holds great promise due to

the immense possibility for additional invention and improvement of gesture recognition

systems as technology progresses. Overall, the project’s objectives were met, contributing to

advancements in human-robot interaction.

CHAPTER 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

7.2 Recommendation

For future improvements, the following recommendations are made:

1. Enhancing Accuracy in Diverse Conditions: The system's accuracy can be increased

by increasing the training dataset to cover a wider range of hand gestures and

surrounding variables. Implementing adaptive learning models may enable the system

to self-improve over time.

2. Optimizing Hardware for Real-Time Performance: Using more powerful hardware

platforms with more processing capacity, such as GPUs, could reduce latency and speed

up gesture detection and robot reaction.

3. Improving Environmental Robustness: The system should be strengthened by

including sensors that adapt for environmental factors such as lighting and background

noise. Noise reduction and multi-modal sensor integration techniques have the potential

to boost dependability even more.

4. Expanding System Applications: The gesture recognition system can be used to other

fields, such as healthcare, education, and entertainment, where intuitive, hands-free

interaction with robots is extremely advantageous.

5. Enhancing Internet Connectivity: To overcome delays caused by internet

connectivity concerns, it is advised to invest in more robust and quicker internet

connections, particularly when employing IoT and cloud-based services. Edge

computing, which processes data locally, can also help reduce reliance on internet

bandwidth while maintaining real-time responsiveness in the system.

These recommendations aim to further enhance the usability, scalability, and performance of

the system for real-world applications.

CHAPTER 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

REFERENCES

[1] D. Translations, “Is Video Game Development Different by Country?,” Day Translations

Blog, May 17, 2019. https://www.daytranslations.com/blog/gamedevelopment-country/

[2] IBM, “What is Natural Language Processing? | IBM,” www.ibm.com, 2023.

https://www.ibm.com/topics/natural-language-processing

[3] “Top 45 Artificial Intelligence (AI) Interview Questions & Answers,” Edureka.

https://www.edureka.co/blog/interview-questions/artificialintelligence-interview-questions/

[4] S. Goyal, “The History of C++ (With Timeline Infographic) // Unstop (formerly

Dare2Compete),” unstop.com. https://unstop.com/blog/history-ofcpp

[5] “Programming with MATLAB,” www.mathworks.com.

https://www.mathworks.com/products/matlab/programming-

withmatlab.html#:~:text=MATLAB%20is%20a%20high%2Dlevel

[6] “Why should we use MATLAB (Matrix Laboratory),” Yorku.ca, 2019.

https://www.yorku.ca/jdc/Matlab/Lesson1.html

[7] R. Keim, “Understanding Colour Models Used in Digital Image Processing,” ALL ABOUT

 CIRCUITS, Aug. 17, 2018. https://www.allaboutcircuits.com/technical-

articles/understanding-colormodels-used-in-digital-

imageprocessing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20

green%2C%20and%20blue%20light.

[8] C. Marcello, A. Eng, and Marangi, “POLITECNICO DI TORINO Development of an

automated benchmark for the analysis of Nav2 controllers Candidate Federica SCHENA,”

2024. Accessed: Sep. 09, 2024. [Online]. Available:

https://webthesis.biblio.polito.it/30975/1/tesi.pdf

[9] Y. Name, “ROBOTIS e-Manual,” ROBOTIS e-Manual.

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specificatio ns

[10] opensource.com, “What is a Raspberry Pi?,” Opensource.com, 2012.

https://opensource.com/resources/raspberry-pi

[11] “5MP Camera Module Jectse OV5647 5MP (Resolution 2592 x 1944) High Definition

Camera Module Board Wide Angle 175° for Raspberry Pi B 3/2 : Amazon.de: Business,

Industry & Science,” Amazon.de, 2024. https://www.amazon.de/-/en/Camera-Module-

Resolution-Definition-Raspberry/dp/B07SXT1H8K (accessed Sep. 10, 2024).

REFERENCES

https://www.daytranslations.com/blog/gamedevelopment-country/
https://www.ibm.com/topics/natural-language-processing
https://www.edureka.co/blog/interview-questions/artificialintelligence-interview-questions/
https://unstop.com/blog/history-ofcpp
https://www.mathworks.com/products/matlab/programming-withmatlab.html#:~:text=MATLAB%20is%20a%20high%2Dlevel
https://www.mathworks.com/products/matlab/programming-withmatlab.html#:~:text=MATLAB%20is%20a%20high%2Dlevel
https://www.yorku.ca/jdc/Matlab/Lesson1.html
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/#:~:text=The%20key%20to%20understanding%20RGB,%2C%20green%2C%20and%20blue%20light
https://webthesis.biblio.polito.it/30975/1/tesi.pdf
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
https://opensource.com/resources/raspberry-pi
https://opensource.com/resources/raspberry-pi
https://opensource.com/resources/raspberry-pi
https://opensource.com/resources/raspberry-pi
https://www.amazon.de/-/en/Camera-Module-Resolution-Definition-Raspberry/dp/B07SXT1H8K
https://www.amazon.de/-/en/Camera-Module-Resolution-Definition-Raspberry/dp/B07SXT1H8K

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

[12] Available: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

 [13] N. Gita, “What Is Ubuntu? A Quick Beginner’s Guide,” Hostinger Tutorials, Apr. 01,

2022. https://www.hostinger.com/tutorials/what-is-ubuntu

[14] “Ubuntu – Ubuntu Packages Search,” packages.ubuntu.com.

https://packages.ubuntu.com/

[15] “ROS 2 Documentation — ROS 2 Documentation: Foxy documentation,” docs.ros.org.

https://docs.ros.org/en/foxy/index.html

[16] “Client libraries — ROS 2 Documentation: Rolling documentation,” docs.ros.org.

https://docs.ros.org/en/rolling/Concepts/Basic/About-ClientLibraries.html

[17] E. Kim, J. Shin, Y. Kwon, and B. Park, “EMG-Based Dynamic Hand Gesture Recognition

Using Edge AI for Human–Robot Interaction,” Electronics, vol. 12, no. 7, p. 1541, Mar. 2023,

doi: https://doi.org/10.3390/electronics12071541.

[18] J. E. Solanes, A. Muñoz, L. Gracia, and J. Tornero, “Virtual Reality-Based Interface for

Advanced Assisted Mobile Robot Teleoperation,” Applied Sciences, vol. 12, no. 12,

 p. 6071, Jun. 2022, doi: https://doi.org/10.3390/app12126071.

[19] M. Inayat and U. Khan, “Hand Gesture Detection & Recognition System.” Available:

https://www.diva-portal.org/smash/get/diva2:519237/FULLTEXT01.pdf

[20] J. Siby, “Hand Gesture Recognition,” IJITR) INTERNATIONAL JOURNAL OF

INNOVATIVE TECHNOLOGY AND RESEARCH, vol. 3, no. 2, pp. 1946–1949, 2015,

Available: https://core.ac.uk/download/pdf/228547068.pdf

[21] Robotis e (no date) Manual. Available at:

https://emanual.robotis.com/docs/en/parts/controller/opencr10/ (Accessed: 18 April 2024).

[22] GfG (2024) What is opencv library?, GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/opencv-overview/ (Accessed: 18 April 2024).

[23] What is visual studio code? (no date) Educative. Available at:

https://www.educative.io/answers/what-is-visual-studio-code (Accessed: 18 April 2024).

[24] Simple commander API¶ (no date b) Simple Commander API - Nav2 1.0.0

documentation. Available at: https://navigation.ros.org/commander_api/index.html (Accessed:

18 April 2024).

[25] Robotis e (no date) Manual. Available at:

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/ (Accessed: 18 April

2024).

REFERENCES

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://packages.ubuntu.com/
https://packages.ubuntu.com/
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/rolling/Concepts/Basic/About-Client-Libraries.html
https://doi.org/10.3390/electronics12071541
https://doi.org/10.3390/electronics12071541
https://doi.org/10.3390/app12126071
https://doi.org/10.3390/app12126071
https://www.diva-portal.org/smash/get/diva2:519237/FULLTEXT01.pdf
https://core.ac.uk/download/pdf/228547068.pdf
https://emanual.robotis.com/docs/en/parts/controller/opencr10/
https://www.geeksforgeeks.org/opencv-overview/
https://www.educative.io/answers/what-is-visual-studio-code
https://navigation.ros.org/commander_api/index.html
https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

[26] Instructables, “Set Up Telegram Bot on Raspberry Pi,” Instructables, Aug. 19, 2015.

https://www.instructables.com/Set-up-Telegram-Bot-on-Raspberry-Pi/ (accessed Sep. 10,

2024).

[27] “- YouTube,” Youtu.be, 2024. https://youtu.be/va7o7wzhEE4?si=MxLgAZ8Bkb6oDIv3

(accessed Sep. 12, 2024).

[28] learning_topic/learning_topic/topic_webcam_sub.py ·GuYueHome/ros2_21_tutorials -

Gitee.com, “ learning_topic/learning_topic/topic_webcam_sub.py ·

GuYueHome/ros2_21_tutorials - Gitee.com, ” Gitee, 2022.

https://gitee.com/guyuehome/ros2_21_tutorials/blob/master/learning_topic/learning_topic/top

ic_webcam_sub.py (accessed Sep. 12, 2024).

[29] J. Jordan, “Evaluating a machine learning model.,” Jeremy Jordan, Jul. 21, 2017.

https://www.jeremyjordan.me/evaluating-a-machine-learning-model/

[30] L. Craig, “CNN vs. RNN: How are they different?,” SearchEnterpriseAI, Aug. 08, 2023.

https://www.techtarget.com/searchenterpriseai/feature/CNN-vs-RNN-How-they-differ-and-

where-they-overlap

REFERENCES

https://www.instructables.com/Set-up-Telegram-Bot-on-Raspberry-Pi/
https://youtu.be/va7o7wzhEE4?si=MxLgAZ8Bkb6oDIv3
https://gitee.com/guyuehome/ros2_21_tutorials/blob/master/learning_topic/learning_topic/topic_webcam_sub.py
https://gitee.com/guyuehome/ros2_21_tutorials/blob/master/learning_topic/learning_topic/topic_webcam_sub.py
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://www.techtarget.com/searchenterpriseai/feature/CNN-vs-RNN-How-they-differ-and-where-they-overlap
https://www.techtarget.com/searchenterpriseai/feature/CNN-vs-RNN-How-they-differ-and-where-they-overlap

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 2

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

This week's primary goal was to explore and better understand the technological

requirements for constructing a real-time gesture detection system for human-robot

interaction. Several internet resources, including tutorials and research articles, were used

to gain information on programming approaches and machine learning algorithms suited

for gesture recognition. In addition, instructional films from outlets such as YouTube were

evaluated to help with TurtleBot3 configuration and knowledge of its sophisticated

functionalities.

2. WORK TO BE DONE

Begin writing the basic code for the gesture detection system in Python, and then

experiment with several algorithms to see which ones work best for the desired application.

Prepare to create a rudimentary GUI to interact with the TurtleBot 3.

3. PROBLEMS ENCOUNTERED

Encountered difficulties in assessing the reliability of the online resources consulted, as

there were inconsistencies in the information found. There was also uncertainty regarding

the applicability of certain algorithms to the project’s specific requirements.

4. SELF EVALUATION OF THE PROGRESS

The research phase was productive, providing a broad understanding of the requirements

and challenges associated with gesture recognition systems. However, the need for more

reliable and vetted resources became apparent, and further guidance from experienced

professionals will be sought in the upcoming weeks to ensure the chosen approach is sound

and applicable to the project.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 4

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

This week's focus was on getting started developing the graphical user interface (GUI)

for the gesture recognition system. Efforts were focused on mapping hand gestures to

navigation commands for the TurtleBot3. In order to efficiently implement the GUI,

various libraries and programming frameworks were studied. Initial tests were carried out

to determine the system's ability to read gestures and regulate the robot's motions.

2. WORK TO BE DONE

Continue to refine the GUI and improve the accuracy of gesture mapping with navigation

commands. Plan to include more control features such as speed modification and robot

status monitoring.

3. PROBLEMS ENCOUNTERED

The challenges were choosing the right tools and libraries for GUI development and

guaranteeing interoperability with existing gesture detection techniques.

4. SELF EVALUATION OF THE PROGRESS

Good progress was achieved in building the GUI's core features. However, additional

work is required to improve gesture recognition accuracy and ensure seamless connection

with the TurtleBot3 control system.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 6

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Gestures have been successfully translated to the TurtleBot3 navigation commands. The

system can now manage the robot's movement in all directions (forward, backward, left,

and right), as well as its speed. New functions were introduced, such as displaying the

robot's battery status, current stance, and speed through ros2 topic list. This represented a

big step towards completing the gesture control system's fundamental functionalities.

2. WORK TO BE DONE

Begin integrating new sensors and improving system performance to ensure smoother

functioning. Plan to add environmental sensors to the system's capabilities.

3. PROBLEMS ENCOUNTERED

Minor issues with synchronization between gesture commands and robot responses were

observed, requiring adjustments in the code.

4. SELF EVALUATION OF THE PROGRESS

Overall, this week was successful as core functionalities were achieved. Future work will

focus on optimizing performance and adding more features to enhance system

capabilities.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 109

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 8

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

This week's setback was caused by a corrupted microSD card, which required a system

rebuild. The memory swap is still needed to make the system rebuild smoothly. Despite

the delay, the system was successfully recovered, and work began to integrate the

Raspberry Pi camera as a topic /image_raw in the ROS2 environment to record visual

data for gesture detection and surrounding environment monitoring.

2. WORK TO BE DONE

Continue to refine camera integration and expand image processing capabilities to

improve gesture detection accuracy from both laptop and raspberry pi cameras.

3. PROBLEMS ENCOUNTERED

The corruption of the microSD card resulted in downtime and a temporary halt in

development. There were also minor issues with configuring the camera topic in ROS2.

4. SELF EVALUATION OF THE PROGRESS

Despite the unexpected delay, the ability to quickly rebuild the system and continue with

the camera integration showed resilience. The progress is on track to complete further

implementation tasks.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 110

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 10

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

All capabilities, including gesture control, camera integration, and the GUI, were

successfully implemented and tested. Threads were introduced to enable the system to

work smoothly and without lag. In addition, a DHT22 sensor was added as /temperature

and /humidity ros2 topics so that can be subscribed to monitor ambient conditions,

increasing the system's capabilities.

2. WORK TO BE DONE

Connect the DHT22 sensor data to a remote monitoring platform like Telegram and make

final refinements to the code.

3. PROBLEMS ENCOUNTERED

Some challenges were faced with optimizing the system for multi-threading, but these

were resolved by adjusting the thread management strategy.

4. SELF EVALUATION OF THE PROGRESS

The project is progressing well, with all key functionalities now in place. The system is

performing reliably, and the addition of multi-threading has improved overall

performance.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 111

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 12

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

We successfully linked the DHT22 sensor to Telegram for remote monitoring and

finished the last coding adjustments. The system is now fully operational, with all

expected functions such as gesture control, camera feed, and environmental monitoring.

2. WORK TO BE DONE

Conduct extensive testing to ensure that all capabilities work as intended under a variety

of scenarios. Prepare for the final system evaluation.

3. PROBLEMS ENCOUNTERED

Minor issues arose in integrating the DHT22 sensor data with the Telegram platform, but

these were resolved through debugging.

4. SELF EVALUATION OF THE PROGRESS

This week marked the completion of the development phase, with all objectives met. The

system is ready for final testing and evaluation.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 112

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 13

Student Name & ID: ONG NIAM CHI 20ACB05969

Supervisor: DR TEOH SHEN KHANG

Project Title: DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION

SYSTEM FOR HUMAN-ROBOT

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Focused on determining the system's correctness and reliability throughout various

scenarios. The performance of gesture detection and robot control was thoroughly tested.

The final report was created, describing every aspect of the project, from development to

implementation.

2. WORK TO BE DONE

Complete the final report, considering input from testing, and prepare for any final

presentations or demonstrations.

3. PROBLEMS ENCOUNTERED

Minor discrepancies were observed during testing, particularly under low-light

conditions, which required some last-minute adjustments to the camera settings.

4. SELF EVALUATION OF THE PROGRESS

The project has reached its final stages successfully. The testing results were satisfactory,

and the final report is nearing completion. The system is ready for deployment or further

enhancements as needed.

_________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 113

POSTER

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 114

PLAGIARISM CHECK RESULT

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 115

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

ONG NIAM CHI

ID Number(s)

2005969

Programme / Course BACHELOR OF INFORMATION TECHNOLOGY (HONOURS)

COMPUTER ENGINEERING

Title of Final Year Project DEVELOPMENT OF A REAL-TIME GESTURE RECOGNITION
SYSTEM FOR HUMAN-ROBOT

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceed the
limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: %
Student Papers: %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

14

11
5

0

ok

ok
0

Dr. Teoh Shen Khang

13 September 2024

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 116

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB05969

Student Name ONG NIAM CHI
Supervisor Name DR TEOH SHEN KHANG

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-

005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this

report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my

report.

(Signature of Student)

Date: 13/9/2024

