A Comparative Analysis of Anti-Phishing Website Techniques: Identifying Optimal Approaches to Enhance Cybersecurity

YAU JIA XIN

A project report submitted in partial fulfilment of the requirements for the award of Master of Data Management and Analytics

> Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman

> > December 2023

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature	:	from
Name	:	YAU JIA XIN
ID No.	:	2206813
Date	:	8/12/2023

APPROVAL FOR SUBMISSION

I certify that this project report entitled **"A COMPARATIVE ANALYSIS OF ANTI-PHISHING WEBSITE TECHNIQUES: IDENTIFYING OPTIMAL APPROACHES TO ENHANCE CYBERSECURITY"** was prepared by **YAU JIA XIN** has met the required standard for submission in partial fulfilment of the requirements for the award of Master of Data Management and Analytics at Universiti Tunku Abdul Rahman.

Approved by,

Signature	:	Hai
Supervisor	:	Dr Chia Kai Lin
Date	:	20 December 2023
Signature	:	
Co-Supervisor	:	
Date	:	

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© Year, Name of candidate. All right reserved.

ABSTRACT

Internet security is continuously threatened by phishing attacks; therefore, the ability to identify fraudulent websites is crucial in order to prevent users from being duped into divulging sensitive information. Consequently, it is critical to identify effective detection techniques for fraudulent websites. The research consists of analysing the characteristics of phishing websites, extracting their essential features using the wrapper method, and classifying websites as phishing or legitimate using supervised and unsupervised learning algorithms. The study evaluates and compares the efficacy of multiple machine learning algorithms, including the Autoencoder classifier, Extreme Gradient Boost (XGBoost), and Random Forest classifier, using metrics such as accuracy, precision, recall, and F1-score. Random Forest, with an impressive accuracy rate of 97.03%, demonstrates its exceptional capability in accurately categorising websites that are fraudulent or legitimate in nature. By integrating the Google Safe Browsing List and the Random Forest classifier, a web application is created. Upon receiving the user's URL, the web application utilises a pre-trained Random Forest classifier to ascertain the probability that the requested URL is a fraud site. As an additional layer of security, the Google Safe Browsing List is utilised to verify the output produced by the Random Forest classifier. It is expected the fact that the research will result in the development of phishing detection technologies that are more precise and efficient, thereby bolstering online security and protecting users against identity and financial deception.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF APPENDICES	х

CHAPTER

1 INTRO		RODUCT	1	
	1.1	Genera	al Introduction	1
	1.2	Import	ance of the Study	2
	1.3	Proble	m Statement	3
	1.4	Aims a	and Objectives	3
2	LITE	RATUR	E REVIEW	4
	2.1	Introdu	uction	4
	2.2	Literat	ure Review	4
3	MET	HODOL	OGY AND WORK PLAN	18
	3.1	Introdu	action	18
		3.1.1	Random Forest Classifier	18
		3.1.2	Extreme Gradient Booster	19
		3.1.3	Autoencoder	19
	3.2	Resear	rch Design	20
		3.2.1	Data Overview	23
		3.2.2	Feature Selection	24

	3.2.3	Detection Techniques Implementation	26
	3.2.4	Performance Evaluation and Comparison	32
	3.2.5	Webpage Development	36
3.3	Project	Timeline	38
3.4	Risk M	anagement	39
RESULTS AND	DISCU	SSIONS	40
4.1	Result and Discussion		
CONCLUSION	S AND F	RECOMMENDATIONS	42
5.1	Conclus	sion	42
5.2	Future V	Work and Recommendations	42
REFERENCES			43

APPENDICES	46

LIST OF TABLES

Table 1.1 Phishing Detection Method	
Table 2.1 Summary of Existing Phishing Websites Detection Research	7
Table 3.1 Hyperparameters Used for Each Classifier	32
Table 3.2 Performance Evaluation of the Classifiers	36
Table 3.3 Gantt Chart of Project Implementation	38

LIST OF FIGURES

Figure 3.1 Algorithm of the Research Design	21
Figure 3.2 Class Distribution of 'dataset_full.csv'	23
Figure 3.3 Change in Count of Feature After BDE	25
Figure 3.4 OLS Regression Coefficients of Selected Features	25
Figure 3.5 Confusion Matrix based on Selected Features	26
Figure 3.6 Class Distribution Before SMOTE	27
Figure 3.7 Class Distribution After SMOTE	27
Figure 3.8 ROC AUC Curve of Random Forest Classifier	28
Figure 3.9 Precision-Recall Curve of Random Forest Classifier	29
Figure 3.10 ROC Curve of XGBoost Classifier	30
Figure 3.11 Precision-Recall Curve of XGBoost Classifier	30
Figure 3.12 ROC Curve of Autoencoder	31
Figure 3.13 Precision-Recall Curve of Autoencoder	32
Figure 3.14 Confusion Matrix of Random Forest Classifier	35
Figure 3.15 Confusion Matrix of XGBoost Classifier	35
Figure 3.16 Confusion Matrix of Autoencoder	36
Figure 3.17 Web Application User Interface	37
Figure 3.18 Result of a Phishing Link Obtained from Phish Tank	38
Figure 3.19 Result of a Legitimate Link	38

LIST OF APPENDICES

Appendix A Feature Selected and its OLS Regression Coefficient	46
Appendix B Phishing Websites Tested on the Web Application and the I	Result 53
Appendix C Legitimate Websites Tested on Web Application and the Re	esult 55

LIST OF ABBREVIATIONS

AUC	Area Under the Curve
API	Application Programming Interface
APWG	Anti-Phishing Working Group
BDE	Bi-directional Elimination
CNN	Convolutional Neural Network
DDQN	Double Deep Q-Network
DNS	Domain Name System
DQN	Deep Q-Network
DT	Decision Tree
FN	False Negative
FP	False Positive
GSB	Google Safe Browsing
GRU	Gated Recurrent Unit
HTML	Hypertext Markup Language
HTTPS	Hypertext Transfer Protocol Secure
IBM	International Business Machines Corporation
KNN	K-Nearest Neighbour
LSTM	Long Short-Term Memory
MCC	Matthews Correlation Coefficient
NGROK	Ngrok (a tool for creating secure tunnels to localhost)
OLS	Ordinary Least Squares
ROC	Receiver Operating Characteristic
RNN	Recurrent Neural Network
SMS	Short Message Service
SMOTE	Synthetic Minority Over-sampling Technique
SVM	Supporting Vector Machine
TN	True Negative
TP	True Positive
URL	Uniform Resource Locator
WHOIS	Who Is
XGBoost	eXtreme Gradient Boosting

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Anti-Phishing Working Group (APWG) defines phishing as a crime using social engineering and technical deception to obtain personal identity information and financial account credentials (APWG, 2022). Social engineering methods use fake email addresses and communications to trick victims into believing they are interacting with a trusted, legitimate entity. They redirect consumers to fake websites that steal financial data including usernames and passwords. Technological subterfuge techniques install malware on computers to steal credentials directly, often by intercepting account usernames and passwords or redirecting consumers to fake websites.

Based on IBM's Cost of a Data Breach Report 2022, phishing is the second most prevalent and most expensive initial attack vector that leads to data breaches, costing firms an average of \$4.91 million per incident (IBM, 2022). Poor cybersecurity policies and frequent data breaches can cause a company to lose customers and investors, resulting in a loss in market value and economic effect. In 2022, APWG recorded a total of 1,270,883 phishing assaults (APWG, 2022). Since the start of 2021, ransomware has affected fewer businesses than at any other time. In addition to the obvious financial cost, phishing attempts can harm a company's reputation, which can have long-term effects on the economy. Hence, phishing attacks can result in huge financial losses for people, corporations, and even entire economies.

Protecting individuals, businesses, and the economy requires phishing website detection. It helps reduce financial losses and maintain client confidence, which are essential for an economy. Protecting clients from identity theft and financial harm by detecting phishing websites can prevent them from sharing sensitive information. Enterprises can avoid financial loss, reputation damage, and legal liability by identifying and preventing phishing. Identifying phishing websites helps law enforcement prosecute criminals and protect victims.

1.2 Importance of the Study

Phishing attacks come in different forms, including email phishing, phone phishing (vishing), and SMS phishing (smishing). A prevalent sort of phishing attack involves the creation of fraudulent websites that imitate legitimate platforms, such as online banking or e-commerce websites. Fraudulent websites can include design elements and branding that closely imitate those of real websites, hence presenting difficulties for consumers in differentiating between the two.

For phishing website detection, list-based, heuristic, machine learning, and deep learning methods have been developed and published. List-based phishing website detection detects and marks likely phishing websites by cross-referencing website URLs with a pre-established inventory of known URLs. Heuristic methods that use rules and algorithms to identify common website characteristics detect phishing websites. Training a classifier on a dataset of authentic and fraudulent websites can help machine learning algorithms detect phishing websites. Deep learning uses multilayered artificial neural networks to interpret data representations.

Table 1.1 Phishing Detection Method

Although there are many detection strategies available, there is always a need for more effective and precise methodologies to identify phishing websites. In addition, there is a lack of comparative research that evaluate the efficacy of various detection approaches, especially in real-life situations. Given this, the aim of this study is to evaluate and compare the effectiveness of several phishing detection algorithms using a large dataset that includes both legal websites and phishing websites. The evaluation of various methodologies will be conducted using a diverse set of performance indicators, encompassing accuracy, precision, recall, and F1-score.

1.3 Problem Statement

A growing number of sophisticated phishing attempts use user behaviour and technology infrastructures to threaten internet security. Traditional phishing detection systems are failing to combat attackers' changing strategies. Anti-phishing technologies vary in effectiveness, so Random Forest, XGBoost, and autoencoder must be evaluated and compared. This research fills the gap in knowing which method is more effective and adaptable to various phishing attacks. The lack of widely established user-friendly software with cutting-edge anti-phishing technologies makes these solutions difficult to apply. Thus, this project seeks to determine the best anti-phishing technique and create an efficient and accessible online application that uses it, thereby increasing users' resilience to digital phishing threats.

1.4 Aims and Objectives

This study compares Random Forest, XGBoost, and autoencoder, three popular antiphishing methods. This involves evaluating their accuracy, precision, recall, and other performance factors. To evaluate each strategy's ability to detect phishing websites, the study will use existing research, datasets, and tests. Based on comparative analysis, the research seeks to determine the best anti-phishing website strategy among Random Forest, XGBoost, and autoencoder. The "best" strategy may have excellent accuracy, robustness against diverse phishing assaults, scalability, and computational economy. Performance metrics will be thoroughly assessed during identification. After identifying the optimal anti-phishing strategy, the research purpose is to use it. The goal is to create a user-friendly web app that uses the best phishing website detection method. A real-time phishing defence web application should analyse URLs or web content.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This literature review summarises anti-phishing and cybersecurity research and knowledge. In the digital age, phishing assaults can have devastating effects on individuals and businesses. Understanding phishing methods helps protect sensitive data and enhance online defences. The review examines anti-phishing research and scholarly literature. It evaluates different methods and prepares for a comparative review of anti-phishing website tactics by examining their pros and cons. Throughout the review, gaps in the literature and topics for further investigation are highlighted. The literature review contextualises the current study's aims, guides its methodology, and adds to cybersecurity knowledge by critically synthesising and assessing earlier studies.

2.2 Literature Review

Most of the time, the activities of notorious cybercriminals are effective due to the absence of a proven method that might provide folks with accurately predicted information at the appropriate time or as required. Research and models based on machine learning and deep learning can play a significant role in the development of such technologies.

Numerous research utilise list-based techniques for the detection of phishing websites. In this case, (Cao, et al., 2008) has presented a novel automated allowlist system that effectively maintains and updates a collection of IP addresses associated with login-page websites. The system has shown remarkable performance in terms of its functionality and efficiency. However, the effectiveness of this method may be compromised if it relies on the active participation of users and fails to detect newly discovered fraudulent websites. (Jain & Gupta, 2016) conducted a study wherein they utilised URL and DNS matching techniques in conjunction with a white-list strategy. The implementation of this integration resulted in enhanced operational efficiency and a diminished occurrence of false negatives. However, valid domains not included in the approved list may be inadvertently omitted by this methodology, leading to a few instances of erroneous identification. A combination of list-based, visual similarity,

heuristic, and machine learning methodologies were utilised by Maroofi and colleagues. The Random Forest classifier yielded a notable accuracy rate of 97.00% (Maroofi, et al., 2020). However, the dependence on external features impeded the pace of the procedure.

The application of machine learning methodologies has been widely implemented in order to identify fraudulent websites. Abusaimeh's research employed a range of classification algorithms, such as Supporting Vector Machine (SVM), Random Forest, and Decision Tree. The results demonstrated a high accuracy rate of 98.52% (Abusaimeh, 2021). However, as a consequence of incorporating these classifiers, the computational complexity increased. Gupta et al. utilised the ISCXURL-2016 dataset and implemented four machine learning classifiers in their research. Among these classifiers, Random Forest exhibited the greatest accuracy rate of 99.57% (Gupta, et al., 2021). An inherent drawback of the research was the insufficiency of varied training and evaluation datasets. The research conducted by Butnaru et al. involved the training of classifiers with a dataset comprising one hundred thousand URLs. The researchers reported a notable achievement of 99.29% accuracy while employing the optimised Random Forest algorithm (Butnaru, et al., 2021). This performance surpassed the accuracy of Google Safe Browsing. In a study conducted by Stobbs, a Random Forest model was employed with feature selection and hyperparameter optimisation, resulting in an accuracy rate of 99.33% (Stobbs, et al., 2020). The precise division ratio between the training and testing datasets was withheld. Kumar et al. conducted their research utilising the UCI ML Repository as their data source and the Random Forest classifier to detect phishing and spam emails with an exceptional degree of precision (Kumar, et al., 2018).

Considerable attention has been directed towards the application of deep learning algorithms in the domain of fraudulent website detection. Feng and Yue conducted a study in which they utilised heuristic methods and deep learning techniques to construct RNN models that incorporated LSTM and GRU architectures. Their objective was to detect phishing attacks, and their approach yielded a detection accuracy of 99.50% (Feng & Yue, 2020). In their study, Seok and Sung employed a hybrid methodology that integrated deep learning techniques with heuristic approaches, resulting in a notable enhancement of sensitivity by 3.98% (Seok & Sung, 2021). Yang et al. classified URLs in their research utilising a convolutional neural network (CNN) in conjunction with a long short-term memory (LSTM) model. The researchers successfully attained a remarkable accuracy rate of 98.99% (Yang, et al., 2018). Nevertheless, it is important to acknowledge that the incorporation of WHOIS data into the URL functionalities may potentially result in disruptions to operations. Saha et al. achieved noteworthy outcomes in their research by employing the Multilayer Perceptron Neural Network (MPN) architecture. Specifically, they achieved a training accuracy of 95.0% and a testing accuracy of 93.00% (Saha, et al., 2020). In their study, Maci and his team introduced a classifier based on a double deep Q-Network (DDQN) approach, which demonstrated superior performance compared to alternative deep learning techniques in the context of web phishing detection.

The significance of visual similarity is substantial in specific scholarly inquiries. Dooremaal utilised a methodology in which textual and visual components of web pages were extracted, along with the corresponding screenshots. The primary aim of this strategy was to efficiently identify fraud websites, which was accomplished with a significant degree of precision. Azeez utilised a visual similarity technique in combination with a whitelist to effectively detect fraudulent websites, attaining a noteworthy accuracy rate of 95.0 percent (Azeez, et al., 2021). However, the scope of Azeez's research was limited to a mere 200 websites, of which 60 were genuine and 140 were fraudulent sites. Abdelnabi conducted a study in which he evaluated numerous visual similarity approaches; the LBET model achieved a detection accuracy surpassing 97.5% (Abdelnabi, et al., 2020). However, the dataset utilised in their study consisted of only 11,055 incidents.

In 2019, Nathezhtha proposed a tripartite approach for detecting phishing attacks, which incorporates DNS blacklists, heuristics, and web crawlers (Nathezhtha, et al., 2019). The implemented technique involved the extraction of web URLs, which were subsequently matched against the DNS blacklist. Additionally, the strategy included the crawling of website pages and the extraction of heuristic analysis characteristics. This comprehensive approach resulted in successful identification. Nevertheless, this approach was dependent on the functionalities of search engines, which might potentially result in a decrease in the speed of the procedure.

The aforementioned methodologies exemplify the range of techniques employed in the identification of phishing websites, each possessing distinct advantages and drawbacks. Scholars persist in refining and advancing these methodologies to enhance the precision and efficacy in detecting phishing hazards. Table 2.1 provides a summary of existing techniques for detecting phishing websites, along with their respective explanations and limitations.

Author &	Techniques	Dataset	Explanation	Limitation
Year	Used	Used		
(Feng &	Deep	The study	The study	In the
Yue, 2020)	learning &	uses 1.5	suggested four	investigation, a
	heuristic	million	RNN models	single algorithm
		URLs, 51%	which were RNN	was examined.
		legal and	and bi-directional	Only 17 features
		49%	RNN with Long	were retrieved
		phishing.	Short-Term	from a data
		Phishing	Memory (LSTM)	collection of 1.5
		URLs come	and Gated	million URLs.
		from	Recurrent Unit	
		PhishTank,	(GRU)	
		whereas real	architectures for	
		URLs come	phishing attack	
		from	detection that	
		Common	simply use lexical	
		Crawl.	aspects of URLs. It	
			demonstrated that	
			RNN models were	
			capable of 99.50%	
			detection accuracy.	
(Abusaime	Machine	N/A	The research	The proposed
h, 2021)	learning		utilised Decision	approach
			Tree (DT),	increases the
			Supporting Vector	model's
			Machine (SVM),	computational
			and Random Forest	expense and
			classification	complexity.

Table 2.1 Summary of Existing Phishing Websites Detection Research

			algorithms. The	
			accuracy of the	
			combination of	
			three classifiers has	
			achieved 98.52%.	
(Gupta, et	Machine	ISCXURL-	Nine phishing	To determine the
al., 2021)	learning	2016 dataset	websites features	robustness of the
		where 11964	are evaluated	suggested
		instances of	against four	method, the
		legitimate	different machine	study has not yet
		and phishing	learning classifiers,	employed the
		URLs are	namely Random	various training
		used.	Forest, K-Nearest	and test datasets.
			Neighbour (KNN),	
			SVM, and Logical	
			Regression. The	
			Random Forest	
			algorithm achieved	
			the maximum	
			accuracy of	
			99.57 %.	
(Seok &	Deep	A total of	The suggested	Among the
Sung, 2021)	learning &	222,541	model coupled a	various
	heuristic	URLs were	convolution	components of
		gathered	operation with a	URLs, only the
		from	deep convolutional	character-level
		Phishstorm	autoencoder to	characteristics
		and	consider the nature	were optimised.
		Phishtank,	of zero-day	Given the
		which are	attacks. According	structure of the
		sources of	to the study, the	web address,
		phishing	sensitivity	which comprises
		URLs.	increased by	of domains and

		Conversely,	3.98 % compared	subdomains, it is
		valid URLs	to earlier research.	possible to
		were		foresee
		obtained via		additional
		the Open		performance
		Directory		increases.
		Project.		
(Rao, et al.,	Machine		The research	Unfortunately,
2022)	learning		employed domain-	the proposed
			specific HTML	approach is
			source code text	dependent
			and word	exclusively on
			embedding	plain text and
			extracted from	domain-specific
			plain text. Utilizing	terminology,
			ensemble and	and it may fail if
			multimodal	images are
			techniques, they	replaced for text.
			developed several	
			word embeddings	
			to evaluate their	
			model.	
(Dooremaa	Visual	Phishing	The approach	The strategy
l, et al.,	similarity &	web pages	extracted textual	relies on third-
2021)	machine	were	and visual features	party search
	learning	obtained	from a web page	engine-based
		from	and its screenshot	filtering, which
		100,000	as search terms to	may yield
		URLs	find comparable	varying results
		submitted in	websites through	for the same
		feeds like	search engines.	query over time.
		OpenPhish,	The system under	
		PhishTank,	consideration	

		and	demonstrates a	
		PhishStats	high level of	
		T monotato.	accuracy.	
			achieving a rate of	
			99.20% for target	
			identification and	
			00.66% for	
			99.00% 101	
			pmsning	
			categorization	
			using logistic	
			regression when	
			evaluated on a	
			specific dataset.	
(Maroofi	List based	LIRI & from	The classification	The study
(11a10011, at al. 2020)	vieual	phishing	methods are	utilised only two
ct al., 2020)	similarity	blacklists	Logistic	machine
	bouristic &		Degrassion and	looming
	machina	(AI WO,	Regression and	algorithms
		ChanDhich)	Kalluolli Folest.	Evenu 5 minutes
	learning	OpenPhish)	Each approach was	Every 5 minutes
		and malware	applied to malware	to 1 nour, the
			and phisning	system
		blacklists	datasets	downloaded
		(URLhaus).	independently. The	updated URL
			system achieved	blacklists. The
			97.00% accuracy	inclusion of
			with the Random	third-party
			Forest classifier.	features slowed
				down the
				procedure.
(Azeez, et	White-list-	140 phishing	The study handled	The study only
al., 2021)	based &	URLs were	phishing with an	analysed 200
		obtained	automatic white-	sites, including

	visual	from	list. This technique	140 phishing
	similarity	PhishTank	effectively	and 60
		whereas 60	detected phishing	legitimate
		legitimate	sites with 95.0%	websites.
		URLs from	accuracy by	
		Alexa	verifying the	
			correctness and	
			legality of a	
			webpage using	
			specific hyperlink	
			or URL attributes.	
(Nathezhth	DNS	Datasets	Researchers	The strategy
a, et al.,	blacklist,	were	introduced three-	relies on search
2019)	heuristic &	collected	phase phishing	engine features,
	visual	from real	attack detection.	which can slow
	similarity	phishing	WC-PAD uses	down the
		cases.	DNS blacklists,	process.
			heuristics, and web	
			crawlers. This	
			method extracted	
			the web URL and	
			matched it to the	
			DNS blacklist,	
			then web crawlers	
			crawled each	
			website page and	
			extracted features.	
			Web crawlers	
			extract three	
			heuristic analysis	
			features: web	
			content, URL, and	
			web traffic.	

(Butnaru,	Machine	The	The proposed	The
et al., 2021)	learning &	classifiers	phishing detection	performance of
	heuristic	were trained	engine utilised	Google Safe
		on 100,000	supervised	Browsing (GSB)
		URLs,	machine learning	is fairly low
		including	algorithms such as	compared to the
		40,000	Naive Bayes,	proposed
		benign and	Decision Tree,	phishing
		60,315	Random Forest,	detection
		PhishTank	Support Vector	engine.
		phishing	Machine, and	
		URLs. The	Multi-Layer	
		phishing	Perceptron.	
		detection	Common metrics	
		engine was	are used to	
		tested on	compare machine	
		380,000	learning model	
		benign and	performance and	
		phishing	the results were	
		URLs. This	compared with	
		dataset had	GSB. Highest	
		305,737	accuracy achieved	
		benign and	by optimized	
		74,436	Random Forest is	
		phishing	99.29%.	
		URLs.		
(Rao &	List based,	A total of	The researchers	Overall, the
Pais, 2020)	visual	4097	developed an	system has a
	similarity,	instances	ensemble model	high response
	heuristic &	was obtained	comprising	time due to the
	machine	from	Random Forest	complexity of
	learning	PhishTank	(RF), Extra-Tree,	the system.
		and a total of	and XGBoost to	

		5429	avaluate blacklist	
		3438		
		instances	and heuristic filters	
		was obtained	jointly. The model	
		from	achieved 98.72%	
		Google.	accuracy and	
			97.39% MCC.	
(Cao, et al.,	List based &	PhishTank	An automated	The research
2008)	machine	picked 18 of	allowlist that	tested a limited
	learning	34 phishing	updates itself with	number of
		websites and	IP addresses of	websites that a
		the	login-page	common user
		remaining 16	websites. The	would log in.
		websites are	proposed approach	This method
		legitimate	displayed excellent	relies on user
		for training	performance, with	participation and
		process. 10	100% true	cannot detect
		phishing	positives and 0%	new phishing
		URLs were	false negatives	websites
		selected	using Naive	
		from	Bayesian classifier	
		DhichTonk	Dayesian classifier.	
		r IIISII I alik		
		allu %		
		websites		
		were		
		selected for		
		testing		
		process.		
(Jain &	List based &	The	The URL and DNS	It extensively
Gupta,	heuristic	collection	matching module,	compares URL
2016)		includes	with a white-list,	parent domains
		1525	improves running	to specified
		webpages	performance and	whitelists. This

	(1120	raduces false	mathad may
	(1120	reduces faise	
	phisning and	negatives. The	miss legitimate
	405	second module,	domains not on
	legitimate).	phishing	the whitelist,
	PhishTank	identification,	resulting in false
	collects	detects phishing	positives.
	phishing	websites. Extract	
	sites.	hyperlinks from	
	Legitimate	the webpage using	
	websites are	Jsoup and	
	identified	identifies the	
	using Alexa,	parent domains of	
	Stuffgate,	these links with	
	and online	Guava libraries.	
	payment	The proposed	
	providers.	approach	
		effectively	
		prevents phishing	
		attempts with an	
		86.02 % true	
		positive rate and	
		lesser than 1.48 %	
		false negative rate,	
		according to	
		testing results.	
Deep	From	The study uses	The approach
learning,	PhishTank,	CNN-LSTM.	screened out
heuristic &	1021758	Local	similar phishing
machine	phishing	characteristics are	websites and
learning	URLs were	extracted by CNN	those without
C	analysed,	and context	login forms, then
	while	dependency by	retrieved 15
		I J J	
	Deep learning, heuristic & machine learning	(1120 phishing and 405 legitimate). PhishTank collects phishing sites. Legitimate websites are identified using Alexa, Stuffgate, and online payment providers. Deep From learning, PhishTank, heuristic & 1021758 machine phishing learning URLs were analysed, while	(1120reducesfalsephishing andnegatives.The405second module,legitimate).phishingPhishTankidentification,collectsdetectsphishingwebsites.Extracthyperlinkssites.hyperlinksLegitimatethe webpage usingwebsites areJsoupidentifiedidentifiesusing Alexa,parent domains ofStuffgate,these links withand onlineGuavapaymentTheproviders.approachproviders.approachgattempts with an86.02% truepositive rate andlesser than 1.48 %false negative rate,accordingtotesting results.DeepFromFromThe study useslearning,PhishTank,QuartiesLocalmachinephishingcharacteristics arelearningURLs wereextracted by CNNanalysed,andwhiledependencywhiledependency

		et provided	LSTM results are	from URL
		989021	used by XGBoost	vocabulary,
		legitimate	for categorization.	HTML DOM,
		URLs as	The accuracy is	WHOIS, and
		negative	98.99%, with a	search engine
		samples.	false positive rate	data. Using
			of 0.59%.	WHOIS
				information in
				URL features
				may slow down
				the operation.
(Saha, et	Deep	The dataset,	The Multilayer	A limited
al., 2020)	learning,	gathered	Perceptron Neural	number of
	heuristic &	through	Network (MPN)	features is
	machine	Kaggle,	model achieved	extracted from
	learning	includes	95.0% accuracy	the instances.
		10,000	during training and	
		webpages.	93.00% during	
			testing.	
(Maci, et	Deep	Mendeley	The research	The DRL
al., 2023)	learning	dataset with	proposed double	framework has
		30,647	deep Q-Network	not been studied
		phishing	(DDQN) based	for web phishing
		URLs and	classifier and	detection and its
		58,000	compared the	training period is
		Legitimate	performance of	lengthy.
		URLs.	model with	
			different deep	
			learning methods	
			such as DNN,	
			CNN, LSTM and	
			BiLSTM. the	
			proposed approach	

			outperforms best-	
			precision and best-	
			recall in five out of	
			six measures for	
			web phishing	
			imbalanced	
			classifiers.	
(Stobbs, et	Machine	Phish tank	With 99.33%	The study
al., 2020)	learning,	and Alexa	accuracy, Random	utilised various
	heuristic &		Forest with PSO	ML algorithms
	list based		for feature	but did not
			selection and TPE	disclose the
			for hyperparameter	training/testing
			optimisation is the	split ratio. Only
			most effective	recall and
			combo.	accuracy
				outperform
				other methods.
(Abdelnabi	Visual	11,055	The research	The phishing
, et al.,	similarity,	instances	compared different	website data set
2020)	machine	were	methods including	used in this
2020)	machine learning	were obtained	methods including LBET, RoFBET,	used in this study has just
2020)	machine learning	were obtained from UCI	methods including LBET, RoFBET, ABET and BET.	used in this study has just 11,055
2020)	machine learning	were obtained from UCI Machine	methods including LBET, RoFBET, ABET and BET. The LBET model	used in this study has just 11,055
2020)	machine learning	were obtained from UCI Machine learning	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection	used in this study has just 11,055 instances.
2020)	machine learning	were obtained from UCI Machine learning Repository	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection accuracy above	used in this study has just 11,055 instances.
2020)	machine learning	were obtained from UCI Machine learning Repository and Kaggle	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection accuracy above 97.5%.	used in this study has just 11,055 instances.
2020) (Kumar, et	machine learning Heuristic,	wereobtainedfromUCIMachinelearningRepositoryand KagleThe UCI ML	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection accuracy above 97.5%. The Random	used in this study has just 11,055 · · · · · · · · · · · · · · · · · ·
2020) (Kumar, et al., 2018)	machine learning Heuristic, Machine	wereobtainedfromUCIMachinelearningRepositoryand KagleThe UCI MLLRepository	methodsincludingLBET,RoFBET,ABETBET.TheLBET modelattaineddetectionaccuracyabove97.5%.TheTheRandomForestclassifier	used in this study has just 11,055 · · · · · · · · · · · · · · · · · ·
2020) (Kumar, et al., 2018)	machine learning Heuristic, Machine learning,	were obtained from UCI Machine learning Repository and Kaggle The UCI ML Repository contains	methods includingLBET, RoFBET,ABET and BET.The LBF modelattained detectionaccuracy above97.5%.The RandomForest classifieraccuratey detects	used in this study has just 11,055 - - instances. - - The study - utilised - - classifiers - -
2020) (Kumar, et al., 2018)	machine learning Heuristic, Machine learning, Deep	wereobtainedfromUCIMachinelearningRepositoryand KaggleThe UCI MLRepositorycontains2949valid	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection accuracy above 97.5%. The Random Forest classifier accurately detects phishing and spam	used in this study has just 11,055
2020) (Kumar, et al., 2018)	machine learning Heuristic, Machine learning, Deep learning	wereobtainedfromUCIfromUCIMachinelearningand Kagleand KagleThe UCI MLReposityContains2949validemails, 1378	methods including LBET, RoFBET, ABET and BET. The LBET model attained detection accuracy above 97.5%. The Random Forest classifier accurately detects phishing and spam emails with 97.7%	used in this study has just 11,055 - - instances - - The study - The - - classifiers - - are rand - forest - -

		11,000 URL	accuracy,	perceptron.
		occurrences,	respectively.	Training and
		and 30		testing use the
		characteristi		same dataset.
		CS.		
(Azeez, et	List based,	140 phishing	The system	The study used a
al., 2021)	Visual	URLs were	attained an average	dataset with only
	similarity	obtained	accuracy of	200 instances.
		from	96.17% after six	
		PhishTank	experiments.	
		and 60		
		legitimate		
		URLs were		
		obtained		
		from Alexa.		

To conclude, this literature analysis highlights the ongoing endeavours of researchers to enhance and progress phishing detection systems. Each of the solutions mentioned has distinct advantages and disadvantages, highlighting the importance of a comprehensive and flexible strategy to combat the ever-changing methods employed by cybercriminals. Continued research and development are crucial to improve the accuracy, effectiveness, and real-time responsiveness of identifying and preventing phishing threats as the field advances.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

For phishing website detection, Random Forest, XGBoost, and Autoencoder are recommended. The research uses Random Forest, XGBoost, and Autoencoder because of their complementing characteristics. The Random Forest and XGBoost algorithms provide ensemble-based accuracy and resilience, while the Autoencoder method detects unsupervised anomalies. Comparing phishing website detection systems might help one comprehend their pros and cons. This technique might help find the best web application solution.

3.1.1 Random Forest Classifier

The Random Forest method creates decision trees for ensemble learning. A random sample of training data is used to build each ensemble tree. The predictions from each tree are then voted on or averaged. Ensemble approaches increase prediction accuracy, reduce overfitting, and aid feature significance determination. (Liaw & Wiener, 2002).

The Random Forest algorithm excels at classification and regression. This method has been successful in cybersecurity and phishing detection (Breiman, 2001). The efficacy of Random Forest as a robust method in the detection of phishing attacks has been well-established. In Phua's study, it demonstrated the superior performance of Random Forest in comparison to conventional methods (Phua, et al., 2010). The Random Forest system distinguished phishing from legal websites with exceptional accuracy. This technology is useful in cybersecurity because it can handle complex and non-linear data structures. Dhiman Sarma et al.'s comparison investigation shows the Random Forest algorithm's outstanding phishing detection. The classifier performed well with 97.7% accuracy, 98.4% precision, 98.0% recall, and 98.0% F1 score (Sarma, et al., 2021). These results indicate superior performance compared to alternative classifiers, including logistic regression, decision trees, and support vector machines.

3.1.2 Extreme Gradient Booster

Extreme Gradient Booster (XGBoost) iteratively builds decision trees to accurately categorise mislabeled input points. (Chen & Guestrin, 2016) optimise a loss function with trees to improve prediction performance. XGBoost excels at gathering complex patterns, making it a popular categorization tool. Unlike logistic regression, XGBoost often achieves superior accuracy and is widely used in data contests and practical applications.

Sadaf found that XGBoost outperforms existing machine learning algorithms in phishing website detection. XGBoost identified phishing URLs in Dataset 1 with 96.79% accuracy, surpassing prior methods. XGBoost had 90.83% accuracy in Dataset 2 (Sadaf, 2023). These findings demonstrate XGBoost's phishing detection effectiveness. It is preferred for difficult projects because it captures complex patterns without overfitting.

3.1.3 Autoencoder

Autoencoder neural networks are used in unsupervised learning. The model learns to encode incoming data into a reduced-dimensional representation and decode it again. This method is great for capturing complex data patterns and anomalies. In phishing detection, Autoencoders excel at detecting small differences in web page structure or content. They reduce human feature engineering with feature learning (Goodfellow, et al., 2016).

(Sweers, 2018) describes autoencoders as efficient neural networks that can encode and decode input. This method trains autoencoders with non-anomalous data. Next, these trained Autoencoders are subjected to anomalous data points to classify them as 'fraud' or 'no fraud' based on reconstruction error. Anomalies the system has not been trained on are expected to have larger reconstruction errors. Figures above the upper bound or threshold may represent anomalies. In their autoencoder model network anomaly detection investigation, Z. Chen et al. used the same approach. Chen found that stacked Autoencoders performed better in anomaly identification than single-hidden layer Autoencoders (Chen, et al., 2018).The single hidden layer Autoencoder outperformed the stacked multilayered one. However, when the number of instances increased, the stacked model outperformed the single-layer model.

3.2 Research Design

The research develops and analyses machine learning-based and deep learning-based detection, two distinct phishing strategies. The selection of the most effective phishing approach will inform the development of a web application for detecting phishing attempts, which will incorporate a list-based approach. Figure 3.1 outlines the step-by-step process for the research design. The research design encompasses five primary components, including data overview, feature selection, detection techniques implementation, performance evaluation and comparison, as well as web application development.

Figure 3.1 Algorithm of the Research Design

The incorporation of machine learning or deep learning techniques into the Google Safe Browsing list provides a two-tier security approach to overcome the constraints of list-based and heuristic methods. The Google Safe Browsing list serves as a vital foundation for the identification of established phishing websites; yet it possesses inherent vulnerabilities. Some of the weaknesses that can be identified are lag in detection, limited coverage and heuristic-based false positives. The utilisation of list-based approaches is predicated upon the creation and regular maintenance of established lists containing known phishing websites. The above situation may delay the detection of new phishing threats, leaving consumers vulnerable to zero-day assaults. These lists may not cover the entire internet, especially new and lesser-known phishing websites, limiting their ability to identify all hazards. Heuristic rules often misidentify legitimate websites as dangers (Dhamija, et al., 2016). This phenomenon has the potential to result in user dissatisfaction and diminished confidence in the system.

Combining machine learning or deep learning models with a list-based solution like Google Safe Browsing may reduce its drawbacks. Dynamic adaptation allows machine learning and deep learning models to adapt to new phishing methods and threats (Sountharrajan, et al., 2020). List-based methods use preset lists of phishing websites. Integrating both components improves the system's ability to detect new phishing websites. List-based techniques may also struggle to identify new phishing websites. Machine learning models can use trends and anomalies to prevent zero-day phishing attacks (Ali, et al., 2022). Polymorphic phishing websites change their URL or appearance to avoid detection. Machine learning algorithms may recognise phishing sites' common traits and behaviours despite their deceitful appearance (Kaur & Singh, 2014). List-based approaches may be limited as the number of websites on the internet grows, but machine learning models can analyse and categorise a large number of websites, making them ideal for real-time and large-scale processing applications (Gupta, et al., 2021). Machine learning models can constantly learn and adapt to new threats. List-based solutions may be delayed in reflecting the threat landscape due to constant revisions.

3.2.1 Data Overview

In order to perform a thorough analysis, a dataset specifically named 'dataset_full.csv' is employed, sourced from Mendeley Data (Vrbančič, 2020). The dataset consists of a total of 88,647 instances. Among these examples, there are 58,000 instances that represent legitimate websites, labelled as 0. Additionally, there are 30,647 instances that represent phishing websites, labelled as 1. The dataset consists of 111 features and demonstrates an imbalanced distribution, where phishing websites account for 65.43%. The aspects of the dataset can be categorised into six classes, namely URL properties, domain properties, URL directory properties, URL file properties, URL parameter properties, and URL resolving data and external metrics. In order to assess the significance of various features, the website URL strings are partitioned into four distinct sub-strings, namely domain, directory, file, and parameter. Additionally, other services are taken into account as part of the evaluation process. The dataset does not contain any null or missing values, guaranteeing the integrity of the data for rigorous analysis. Figure 3.2 show the distribution of classes in the dataset."

Figure 3.2 Class Distribution of 'dataset_full.csv'

3.2.2 Feature Selection

The research begins with a thorough feature selection procedure employing the Bidirectional Elimination (BDE) wrapper method on the dataset named 'dataset full.csv'. In order to ensure reproducibility, the dataset is imported and divided into training and testing sets in an 80:20 ratio. An initial Ordinary Least Squares (OLS) model is constructed to include all features. Subsequently, features with p-values surpassing a predetermined threshold which is 0.05 are systematically eliminated via stepwise elimination utilising the BDE wrapper method. At each iteration, the OLS model is refitting. The original collection of 111 features is judiciously reduced to a more practical subset of 59 features, as depicted in Figure 3.3. The following stage entails providing a summary of the OLS model's statistics, such as R-squared, Fstatistic, and coefficients accompanied by their corresponding p-values. The R-squared value of 0.688 indicates that the model has considerable explanatory power. The interpretation of coefficients involves determining how a one-unit modification in a particular property affects the probability of detecting phish, assuming all other parameters remain constant. In the concluding stage, the test data is prepared, the chosen features are implemented, and the model's performance is assessed by employing critical classification metrics. The confusion matrix as shown in Figure 3.5 is then calculated by comparing the predicted labels with the true labels in the test set. In aggregate, the model's remarkable accuracy (91.83%), precision (83.41%), recall (95.28%), F1 Score (88.95%), and ROC AUC Score (97.67%) demonstrate that the selected features are effective in predicting phishing activities with precision and recall, respectively. The "url_shortened" coefficient is 0.512. It suggests that phishing is more likely with abbreviated URLs. Phishers often employ URL shorteners to create short, look-alike URLs that link to phishing websites. Shortened URLs are used to obscure the actual destination, making it difficult for users and conventional security procedures to determine the authenticity of the connection. Consequently, an increased frequency of abbreviated URLs in a dataset can suggest possible phishing endeavours. Conversely, the negative coefficient of -0.2353 attributed to the "qty_at_params" characteristic indicates a correlation between the existence of '@' symbols in parameters and a reduction in the probability of phishing. Regarding URLs and parameters, the '@' symbol may not conform to conventional phishing tactics. Phishers frequently evade conspicuous patterns or symbols that may cause suspicion.

Consequently, a reduced number of '@' symbols in parameters is correlated with an increased probability of phishing in the provided model. Each coefficient (see Appendix A) represents the impact on the probability of detecting phishing when a specific property is modified by one unit, while keeping all other parameters unchanged. Figure 3.4 presents a graphical depiction of the aforementioned impacts, illustrating the OLS Regression Coefficients for the chosen features and providing significant insights into their significance within the domain of detecting phishing websites.

Figure 3.3 Change in Count of Feature After BDE

Figure 3.4 OLS Regression Coefficients of Selected Features

Figure 3.5 Confusion Matrix based on Selected Features

3.2.3 Detection Techniques Implementation

In the section related to the implementation of detection approaches, the dataset is initially divided into two subsets: an 80% training set and a 20% testing set. Following that, both sets are standardised the values of the features. Before conducting the training of Random Forest, XGBoost and Autoencoder models, the Synthetic Minority Over-sampling Technique (SMOTE) is exclusively applied to the training dataset. The rationale for including this step is based in the utilisation of SMOTE, a technique that efficiently addresses the issue of imbalanced dataset distribution by oversampling the minority class. Before applying SMOTE, the class distribution demonstrates a notable imbalance, with 46,388 instances representing legitimate websites and 24,529 instances representing phishing websites as shown in Figure 3.6. After applying SMOTE, the class distribution has been balanced, resulting in both classes containing 46,388 instances each as shown in Figure 3.7. The Python module imbalanced-learn provides the capability to implement SMOTE. When SMOTE is applied to a dataset, it detects instances belonging to the minority class and, for each of these instances, it chooses k nearest neighbours from the same class. Subsequently, synthetic samples are generated by a process that involves the random selection of one of the k neighbours, followed by the creation of a new instance along the line that connects the original instance with the selected neighbour. It improves the model's capability to identify patterns within the minority class. Consequently, this enhancement leads to a

higher level of generalisation and accuracy in the model's predictions for both categories.

Figure 3.6 Class Distribution Before SMOTE

Figure 3.7 Class Distribution After SMOTE

In order to enhance the performance of the Random Forest classifier, a process of hyperparameter tuning is undertaken. The main library utilised for this work is scikit-learn. The RandomizedSearchCV function from the scikit-learn library is employed. The approach employs a parameter grid, which is a predefined set of hyperparameter values, in order to investigate various configurations for the Random Forest classifier. The hyperparameters encompass various factors that influence the performance of the model. These factors include the number of estimators (trees) in the forest, the maximum number of features considered for splitting a node, the maximum depth of the trees, the minimum number of samples required to split an internal node, the minimum number of samples required to be at a leaf node, and the utilisation of bootstrap samples during training. 5-fold cross validation then systematically samples and assess different hyperparameter configurations. This process aids in the identification of an optimal collection of hyperparameters that effectively improves the performance of the Random Forest classifier. The optimal hyperparameters for Random Forest are presented in Table 3.1 in this particular scenario. Figure 3.8 shows the balance between successfully identified positive instances and mistakenly identified negative cases at various categorization levels using a Receiver Operating Characteristic (ROC) curve. The classifier's AUC-ROC assesses class differentiation. The investigation shows excellent discrimination with an AUC-ROC of 0.9953. To visualise the precision-recall trade-off, a curve is created. Figure 3.9 shows the classifier's performance, especially with imbalanced class distributions.

Figure 3.8 ROC AUC Curve of Random Forest Classifier

Figure 3.9 Precision-Recall Curve of Random Forest Classifier

The process involves modifying the hyperparameters of the XGBoost classifier through the utilisation of RandomizedSearchCV. The hyperparameters encompass various factors, such as the number of trees, the step size shrinkage, the maximum depth of each tree, the minimum sum of instance weight required in a child, the fraction of features used in each tree, the minimum loss reduction necessary to further partition a leaf node, the L1 regularisation term on weights, the L2 regularisation term on weights, and the control over the balance of positive and negative weights. The exploration of hyperparameters is conducted using RandomizedSearchCV, which involves sampling from the designated parameter grid. The evaluation of each combination is conducted using a 5-fold cross-validation (cv=5) and accuracy as the criteria for scoring. The procedure comprises the utilisation of the XGBoost model in conjunction with SMOTE during the process of cross-validation, so effectively addressing the issue of class imbalance. The optimal hyperparameters are found by selecting the configuration that produces the highest accuracy score during the search process. The optimal hyperparameters for XGBoost are presented in Table 3.1 in this particular scenario. The XGBoost model's ROC curve and AUC value of 0.9945 reveal its classification performance. The ROC curve in Figure 3.10 shows the trade-off between true positive rate (sensitivity) and false positive rate (1-specificity) at different thresholds. XGBoost's curve hugs the plot's upper-left corner, suggesting outstanding differentiation. The AUC value of 0.9949 shows near-perfect categorization, with a score close to 1.0. The PR curve in Figure 3.11 shows precision-recall trade-offs at different probability thresholds.

Figure 3.11 Precision-Recall Curve of XGBoost Classifier

Autoencoders are designed to acquire a condensed representation of the input data, independent of any class labels. The hyperparameters of the autoencoder are optimised by the utilisation of RandomSearchCV. Hyperparameters encompass several components such as the optimizer, activation function, hidden layer size, batch size, number of epochs, and learning rate. The functioning of the system involves iteratively training the model using various sets of hyperparameters. The performance of the model is evaluated for each combination, with the loss serving as the metric of measurement. The selection of the optimal set is obtained by identifying the combination that results in the lowest loss or highest performance, as indicated by the specified scoring criteria. The autoencoder has achieved AUC value of 0.9619 as shown in Figure 3.12. The autoencoder curve is smooth in Figure 3.13. This indicates great precision across recall levels, demonstrating the model's accuracy and positive instance identification. Interestingly, the curve gracefully bends at the top-right corner, demonstrating the autoencoder's precision and recall. The optimal hyperparameters for Autoencoder are presented in Table 3.1 in this particular scenario.

Figure 3.12 ROC Curve of Autoencoder

Figure 3.13 Precision-Recall Curve of Autoencoder

Table 3.1	Hyperparameters	Used for Each	Classifier

• •

Classifier	Hyperparameter Used			
Random	number of estimators: 300, minimum samples split: 5, minimum			
forest	samples leaf: 1, maximum features: sqrt, maximum depth: 40,			
	bootstrap: False			
XGBoost	number of estimators: 200, learning rate: 0.1, maximum depth: 7,			
	minimum child weight: 3, column subsampling by tree: 0.6,			
	gamma: 0.2, L1 regularization: 0.4, L2 regularization: 0.3, scale			
	positive weight: 3			
Autoencoder	activation function: relu, batch size: 64, number of epochs: 100,			
	size of hidden layer: 128, learning rate: 0.001, optimizer: adam			

3.2.4 Performance Evaluation and Comparison

.

4 11

A classifier's ability to identify phishing sites must be assessed using evaluation metrics such as accuracy, precision, recall, and F1-score. These metrics are critical for providing a comprehensive evaluation of the classifiers' effectiveness. Performance

metrics such as accuracy, precision, recall, and F1-score can be calculated utilising Python and the scikit-learn library. The accuracy metric measures the overall credibility of the predictions and it can be expressed mathematically as Equation 3.1. Precision as expressed by Equation 3.2 measures the proportion of legitimate phishing websites compared to those that were predicted to be such. The metric used to quantify recall as shown in Equation 3.3 is the proportion of legitimate phishing websites that the technique accurately detected. By calculating the harmonic mean of recall and precision, the F1-score provides a valuable metric for evaluating a technique's overall performance and it can be expressed by Equation 3.4. This approach strikes a balance between recall and precision, particularly when asymmetrical datasets are involved.

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$
(3.1)

$$Precision = \frac{TP}{TP + FP}$$
(3.2)

$$Recall = \frac{TP}{TP + FP}$$
(3.3)

$$F1-Score = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$
(3.4)

where

TP = true positive TN = true negative FP = false positive FN = false negative

The performance evaluation outcome is summarised in Table 3.2. Figures 3.14, 3.15, and 3.16 display the confusion matrix of three classifiers, which will be utilised in calculating the performance evaluation metrics. The evaluation of three classifiers— Random Forest, XGBoost, and Autoencoder—demonstrates unique performance attributes in identifying phishing websites. The Random Forest algorithm exhibits exceptional performance, attaining a noteworthy accuracy rate of 97.03%. This underscores its remarkable capability of accurately categorising legitimate and fraudulent websites. Demonstrating a precision rate of 94.74%, it optimises accuracy through the reduction of false positives. Furthermore, it sustains an equilibrium recall rate of 96.76%. The outstanding performance is further emphasised by attaining the maximum F1-Score of 95.74%. XGBoost demonstrates a commendable level of performance, specifically excelling in recall at 97.24%. But it exhibits a slight deficiency in terms of precision and F1-Score. The Autoencoder attains a remarkable aggregate accuracy rate of 95.95%. Nevertheless, its precision and recall are marginally inferior at 94.99% and 93.18%, respectively, culminating in an F1-Score of 94.08%.

Random Forest distinguishes itself as the most practicable and dependable alternative among all classifiers for the detection of phishing websites on account of its well-balanced accuracy, precision, and recall. A thorough assessment of Random Forest, XGBoost, and Autoencoder indicates that Random Forest exhibits superior performance in the identification of fraudulent websites. It is the preferable option due to its superior precision and recall, as evidenced by its highest F1-Score of 95.74%. Ensemble learning offers the advantages of mitigating overfitting and facilitating generalisation across diverse datasets. Feature importance analysis optimises transparency and interpretability, which are critical for comprehending the factors involved in phishing detection. Phishing datasets are well-suited to the asymmetrical data handling capabilities of Random Forest. Scalability for extensive applications is facilitated by its computational efficiency, which further enhances its widespread usage. The algorithm's ability to withstand chaotic data and outliers significantly improves its dependability in practical situations. It is straightforward to implement and interpret for cybersecurity professionals, and its interpretability facilitates threat assessment and decision-making. Random Forest demonstrates its numerous strengths by emerging as the most effective classifier for fraudulent website detection.

Figure 3.14 Confusion Matrix of Random Forest Classifier

Figure 3.15 Confusion Matrix of XGBoost Classifier

Figure 3.16 Confusion Matrix of Autoencoder

Metric		Random	XGBoost	Autoencoder
		Forest		
Accuracy	0	0.9779	0.9708	0.9482
	1	0.9589	0.9479	0.8985
Precision	0	0.9840	0.9882	0.9375
	1	0.9479	0.9173	0.9183
Recall	0	0.9719	0.9535	0.9588
	1	0.9699	0.9784	0.8787
F1-Score	0	0.9779	0.9705	0.9481
	1	0.9588	0.9469	0.8981

Table 3.2 Performance Evaluation of the Classifiers

3.2.5 Webpage Development

The development of the phishing website detection web application requires integrating the most effective classifier, as decided by the evaluation and comparison of performance, with the Google Safe Browsing list. The purpose of the application is to offer users a dependable tool for evaluating the authenticity of websites and safeguarding against phishing risks. The subsequent delineates the fundamental aspects of web application development. The web application operates by receiving a URL entered by the user. After receiving the necessary input, the application employs the pre-trained Random Forest classifier to analyse the characteristics of the website and determine the likelihood of it being a phishing site. If the classifier detects a high probability of phishing, the application will then confirm this prediction by comparing the URL with the Google Safe Browsing list. Following that, the user is provided with a comprehensive evaluation that clearly indicates if the website is identified as possibly harmful or considered trustworthy.

The web application leverages multiple essential libraries to improve its capabilities. The Flask framework is utilised for web development, offering a sturdy basis for managing HTTP requests and producing templates. The application utilises Flask-Ngrok to expose the local Flask web server to the internet over Ngrok, allowing for external accessibility. Joblib simplifies the process of loading a pre-trained Random Forest model for the purpose of detecting phishing, queries are utilised to send HTTP queries to the Google Safe Browsing API for the purpose of verifying websites. The urllib.parse module facilitates the process of parsing and extracting various components from URLs. Figure 3.17 shows the user interface, which is intentionally designed to be intuitive, facilitating users to effortlessly submit URLs for analysis. The integrated classifier generates clear and useful results, providing the probability of phishing. These findings are supplemented with additional information obtained from the Google Safe Browsing list. Figure 3.18 depicts the user interface of the web application, displaying the outcome that the link provided by the user is indeed a phishing website. The user's link is sourced from the Phish Tank. While the phishing URL is not included in the Google Safe browsing blacklist, it is still a confirmed phishing link. Figure 3.19 depicts the outcome of a valid link. The UTAR portal login page is a secure and harmless website.

Phishing Websites Detector

Enter URL: Detect Phishing

Figure 3.17 Web Application User Interface

Phishing Detector Result

URL: https://brisy.com/nm/z/?o=ZGllbbmFAc2RqYmNzdGVlbC5jb20=&WhuZ1eekbW9sxyl2dDwRPNUxqHRt3oGKv35yp8CycRdfuaiO4PC9HmOqnamwvreouXUiRC6ZOnJ7tudb4vjhGISIe5BOZ.7G34J Result: Phishing **Safe Browsing Result** This URL is not on the Safe Browsing blacklist. <u>Go back to home</u>

Figure 3.18 Result of a Phishing Link Obtained from Phish Tank

Phishing Detector Result

```
URL: https://portal.utar.edu.my/loginPageV2.jsp?catid=00
Result: Legitimate
Safe Browsing Result
This URL is not on the Safe Browsing blacklist.
Gio back to home
```

Figure 3.19 Result of a Legitimate Link

3.3 **Project Timeline**

The project is anticipated to be finished within a span of six months. The initial quarter is dedicated to the project proposal. Over the next three months, our primary attention will be on the research design, which encompasses data overview, feature selection, classifiers algorithm, and web application construction. The final report contains a comprehensive documentation of all the findings and results. Table 3.3 show the Gantt chart of the project implementation.

Table 3.3 Gantt Chart of Project Implementation

Task	Duration (Month)					
	1	2	3	4	5	6
Literature Review						
Development of Methodology						
Writing of Research Proposal						
Data Overview						
Feature Selection						
Detection Techniques						
Implementation						
Performance Evaluation &						
Comparison						
Webpage Development						

Writing of Research Report

Review & Revision

3.4 Risk Management

Develop solutions to address any potential risks and difficulties that may arise during the project. Potential risks include:

- (i) Inadequate or low-quality data: Consider additional data sources or make plans for data augmentation.
- (ii) Model performance: To solve potential performance difficulties, experiment with various feature sets and methods.
- (iii)Technical difficulties: Be ready to manage difficulties with the hardware or software.

The precise project duration and cost will rely on several parameters, including the size of the research team, resources available, project complexity, and unanticipated challenges. Maintaining the project's direction will be made easier by regularly monitoring its progress and adjusting in light of current information.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Result and Discussion

The web application that was created as part of this research is a formidable instrument for fraud detection; its random forest classifier distinguishes it from alternative classifiers, XGBoost and Autoencoder. The astute incorporation of the Google Safe Browsing list functions as a substantial enhancement, thereby augmenting the accuracy of phishing attempt detection. Performing a test on the application using a group of 50 phishing URLs and 50 legitimate URLs exhibited a significant degree of accuracy and precision. The phishing URLs are sourced from Phish Tank, while legitimate URLs are gathered from various sources. The classifier's robustness is indicated by its high accuracy. Nonetheless, the act of misclassifying 3 phishing URLs as legal gives rise to issues (see Appendix B and Appendix C). Nevertheless, the subtle difficulty arises when a limited number of phishing URLs are erroneously identified as authentic, thereby illuminating the ever-changing characteristics of cyber threats.

The ever-evolving nature of cyber threats, particularly in the realm of truncated URLs, presents an ongoing obstacle. Sophisticated obfuscation techniques are utilised by cybercriminals to modify the attributes of URLs in order to imitate authentic ones; thus, the endeavour of ensuring flawless accuracy for detection models is complicated. To address this intrinsic difficulty, a proactive strategy is suggested: the establishment of a mechanism that automates the feature extraction process with periodic updates. By utilising this mechanism, the classifier is able to rapidly adjust to newly identified phishing patterns, thereby fortifying its ability to withstand ever-changing cyber threats. In order to enhance the robustness of the application, it is advisable to integrate external threat intelligence into the strategy. By incorporating real-time data from threat intelligence inputs regarding emerging phishing techniques, the model can be endowed with timely and relevant insights. Additionally, user feedback mechanisms can enhance the efficacy of the application. By serving as valuable sensors, users have the ability to provide insights and report misclassifications, thereby establishing a dynamic feedback cycle that facilitates ongoing learning and enhancement. As the web application progresses, it becomes crucial to investigate more sophisticated techniques. Engaging in collaborative efforts with cybersecurity communities and actively consulting with domain experts can yield significant insights and facilitate the advancement of detection algorithms that are more sophisticated in nature. By adopting this collaborative approach, a collective defence is strengthened against the constantly evolving strategies utilised by cyber adversaries. Furthermore, the importance of advocating for testing on a more extensive dataset becomes evident. Although the preliminary assessment, which consisted of 50 phishing URLs and 50 legitimate URLs, yielded valuable insights, a more extensive evaluation could be achieved with a larger dataset. An expanded dataset comprises a wide array of phishing scenarios, thereby more closely simulating real-world circumstances and enhancing the application's resilience and applicability.

In summary, the web application signifies a substantial advancement in the realm of cybersecurity; however, the process does not culminate with its completion. Cyber threats are inherently dynamic, which calls for a proactive and adaptable strategy. Through the consistent integration of external threat intelligence, the adoption of user feedback, the investigation of advanced techniques, and the promotion of testing on a more extensive dataset, the application can sustain its development as an effective safeguard against the perpetually evolving domain of phishing threats.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, this research investigated various strategies for detecting phishing websites, including deep learning and machine learning-based techniques. Through the comparison among phishing detection techniques, it helps in developing improved phishing detection mechanisms that can effectively prevent phishing attacks. The online application that has been developed demonstrates encouraging outcomes, nevertheless, continuous endeavours are necessary to accommodate the dynamic characteristics of phishing URLs. To improve the model's effectiveness in real-world circumstances, it is necessary to regularly update the feature extraction function, explore ensemble techniques, and increase testing efforts on a larger scale. Subsequent efforts should prioritise tackling evolving phishing methods and consistently enhancing the model's functionalities.

5.2 Future Work and Recommendations

Regarding future work, the initiative reveals a number of promising avenues for future research. Exploring the application of advanced machine learning techniques, such as deep learning and neural networks, could substantially improve the precision and performance of anti-phishing detection systems. In addition, the development of real-time phishing detection systems that proactively identify and block phishing websites as they arise would be a significant step forward in reducing response times to emerging threats. In addition, investigating behavior-based analysis, which focuses on user interactions with websites to identify suspicious patterns, has the potential to improve phishing detection capabilities.

REFERENCES

Abdelnabi, S., Krombholz, K. & Fritz, M., 2020. VisualPhishNet: Zero-Day Phishing Website Detection by Visual Similarity. *Proceedings of the ACM Conference on Computer and Communications Security*, pp. 1681-1698.

Abusaimeh, H., 2021. Detecting the Phishing Website with the Highest Accuracy. *TEM Journal*, p. 947–953.

Ali, S. et al., 2022. *Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection*, s.l.: Electronics.

APWG, 2022. *Phishing Activity Trends Report 3rd Quarter 2022*. [Online] Available at: <u>https://docs.apwg.org/reports/apwg_trends_report_q3_2022.pdf</u> [Accessed 25 February 2023].

Azeez, N. et al., 2021. Adopting automated whitelist approach for detecting phishing attacks. *Computers & Security*, Volume 108.

Breiman, L., 2001. Random Forests. Machine Learning, 45(1), pp. 5-32.

Butnaru, A., Mylonas, A. & Pitropakis, N., 2021. Towards lightweight url-based phishing detection. *Future Internet*, 13(6), pp. 1-15.

Cao, Y., Han, W. & Le, Y., 2008. Anti-Phishing Based on Automated Individual White-List. Virginia, Association for Computing Machinery.

Chen, T. & Guestrin, C., 2016. *XGBoost: A scalable tree boosting system*. s.l., s.n., pp. 785-794.

Chen, Z., Yeo, C. K., Lee, B. S. & Lau., C. T., 2018. Autoencoder based network anomaly detection. *Wireless Telecommunications Symposium*, pp. 1-5. Dhamija, R., Tygar, J. D. & Hearst, M., 2016. Why Phishing Works. *Proceedings of Conference on Human Factors in Computing Systems*, pp. 581-590.

Dooremaal, B. v., Burda, P., Allodi, L. & Zannone., N., 2021. *Combining text and visual features to improve the identification of cloned web pages for early phishing detection.* Vienna, Association for Computing Machinery.

Feng, T. & Yue, C., 2020. Visualising and interpreting RNN Models in URL-based phishing detection. Barcelona, ACM Symposium on Access Control Models and Technologies.

Fifield, D. et al., 2015. *Blocking-resistant communication through domain fronting*. s.l., s.n.

Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y., 2016. *Deep Learning*. Cambridge: MIT Press.

Gupta, B. et al., 2021. A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment. *Computer Communications*, Volume 1175, pp. 47-57.

IBM,2022.Costofadatabreach.[Online]Availableat:https://www.ibm.com/reports/data-breach[Accessed 25 February 2023].

Jain, A. K. & Gupta, B. B., 2016. A novel approach to protect against phishing attacks at client side using auto-updated white-list. *Information Security*, Volume 9, pp. 1-11.

Kaur, R. & Singh, M., 2014. A Survey on Zero-Day Polymorphic Worm Detection Techniques. *IEEE Communications Surveys & Tutorials*, 16(3), pp. 1520-1549.

Kumar, S., Faizan, A., Viinikainen, A. & Hamalainen, T., 2018. *Machine learning based spam and phishing detection*, s.l.: Springer International Publishing. Liaw, A. & Wiener, M., 2002. Classification and regression by randomForest. *R News*, 2(3), pp. 18-22.

Maci, A., Santorsola, A., Coscia, A. & Iannacone, A., 2023. Unbalanced Web Phishing Classification through Deep Reinforcement Learning. *Computers*, 12(6).

Maroofi, S. et al., 2020. *COMAR: Classification of compromised versus Maliciously Registered Domains.* s.l., IEEE European Symposium on Security and Privacy.

Nathezhtha, T., Sangeetha, D. & Vaidehi, V., 2019. WC-PAD: Web crawling based phishing attack detection. s.l., IEEE Xplore.

Phua, C., Lee, V., Smith, K. & Gayler, R., 2010. A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119, s.l.: s.n.

Rami, M. & McCluskey, L., 2015. *UCI Machine Learning Repository*. [Online] Available at: <u>https://archive.ics.uci.edu/dataset/327/phishing+websites</u> [Accessed 1 August 2023].

Rao, R. & Pais, A., 2020. Two level filtering mechanism to detect phishing sites using lightweight visual similarity approach. .. *J Ambient Intell Human Comput*, Volume 11, p. 3853–3872.

Rao, R. S., Umarekar, A. & Pais, A. R., 2022. Application of word embedding and machine learning in detecting phishing websites. *Telecommunication Systems*, Volume 79, pp. 33-45.

Sadaf, K., 2023. *Phishing Website Detection using XGBoost and Catboost Classifiers*. Al Majmaah, s.n.

Saha, I. et al., 2020. Phishing Attacks Detection using Deep Learning Approach. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli: IEEE, pp. 1180-1185.

Sarma, D. et al., 2021. Comparative Analysis of Machine Learning Algorithms for Phishing Website Detection. *Inventive Computation and Information Technologies*, Volume 173, pp. 883-896.

Seok, J. B. & Sung, B. C., 2021. *Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection*, Seoul: Multidisciplinary Digital Publishing Institute.

Sountharrajan, S. et al., 2020. Dynamic Recognition of Phishing URLs Using Deep Learning Techniques. *Advances in Cyber Security Analytics and Decision Systems*, pp. 27-56.

Stobbs, B., I. & Jacob, S. M., 2020. Phishing Web Page Detection Using Optimised Machine Learning. *IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)*, pp. 483-490. Sweers, T., 2018. *Autoencoding Credit Card Fraud*, s.l.: s.n.

Tao, F. & Chuan, Y., 2020. Visualizing and Interpreting RNN Models in URL-based Phishing Detection. *Assessment and Detection of Security Threats*, pp. 13-24.

Vrbančič, G., 2020. *Mendeley Data*. [Online] Available at: doi: 10.17632/72ptz43s9v.1

Yang, P., Zhao, G. & Zeng, P., 2018. Phishing website detection based on multidimensional features driven by deep learning. *IEEE Access*, Volume 7, pp. 15196-15209.

APPENDICES

Feature	Description	Coefficient	Explanation
qty_hyphen_url	count (-) in URL	0.0056	URL hyphens can be
			used for obfuscation.
qty_underline_url	count (_) in URL	-0.0184	Legitimate URLs may
			have fewer underscores.
qty_slash_url	count (/) in URL	0.0380	A larger count of slashes
			may indicate a slightly
			increased phishing risk.
qty_equal_url	Count (=) in URL	-0.0136	Legitimate URLs may
			have fewer equals.
qty_at_url	count (@) in URL	0.1447	Phishing may be more
			likely with more at
			symbols, suggesting
			dishonesty.
qty_and_url	count (&) in URL	0.0081	A larger count of and
			symbols may indicate a
			slightly increased
			phishing risk.
qty_exclamation_	count (!) in URL	-0.2027	Exclamation marks may
url			be rare in genuine URLs.
qty_plus_url	count (+) in URL	-0.0507	Phishing may be more
			likely with fewer plus
			symbols.
qty_asterisk_url	Count (*) in URL	-0.0617	Phishing may be more
			likely with fewer asterisk
			symbols.
qty_tld_url	Top-level-domain	0.0256	Phishing may be
	length		marginally more likely
			with longer TLDs.

Appendix A Feature Selected and its OLS Regression Coefficient

qty_dot_domain	count (.) in domain	-0.0876	This may suggest that
			phishing URLs have
			fewer dots in the domain.
qty_hyphen_doma	count (-) in domain	0.0382	Hyphens in domains can
in			be used for obfuscation.
qty_vowels_domai	count of vowels in	-0.0040	This may suggest that a
n	the domain		lower count of vowels in
			the domain is associated
			with a higher likelihood
			of the phishing website.
domain_length	domain length	0.0064	Phishers could employ
			subdomains or extended
			domain names to create
			the illusion of
			authenticity.
domain_in_ip	URL domain in IP	0.3386	URLs containing
	address format		domains as IP addresses
			are more likely to be
			phishing.
server_c	domain contains	-0.0796	Phishers can avoid using
lient_do	the keywords		domain names with
main	"server" or "client"		obvious terms like
			"server" or "client" to
			escape detection.
qty_hyphen_direct	count (-) in	-0.0499	Higher directory hyphen
ory	directory		counts reduce phishing
			risk.
qty_slash_dir	count (/) in	0.0294	Phishers might employ
ectory	directory		such structures to build
			URLs that look similar to
			real sites.
L		l	l

qty_e	count (=)	in	0.0609	Phishers may use this
qual_	directory			tactic to make the URL
direct				appear more authentic.
ory				
qty_at_directory	count (@)	in	-0.1153	It may suggest '@'
	directory			symbols in the directory
				structure to evade
				detection and appear
				more legitimate
qty_and_dire	count (&)	in	-0.0630	Phishers may avoid using
ctory	directory			ampersands to prevent
				suspicion or to make the
				URL look less
				sophisticated.
qty_exclamation_	count (!)	in	0.2554	Phishers might exploit
directory	directory			this to deceive people
				into clicking on the link.
qty_space_director	count ()	in	0.0335	The presence of spaces in
У	directory			the directory structure,
				might be indicative of
				phishing attempts.
qty_tilde_director	count (~)	in	-0.0393	Phishers may avoid using
У	directory			tildes to retain a more
				conventional URL
				structure.
qty_comma_direct	count (,)	in	-0.2157	An attempt to construct
ory	directory			URLs that mimic
				financial or payment-
				related pages. Phishers
				could use this method to
				trick users into disclosing
				sensitive information.

qty_asterisk_direct	count (*) in	0.0886	A higher count of
ory	directory		asterisk characters in the
			directory is associated
			with a higher likelihood
			of the phishing website
qty_dollar_directo	count (\$) in	0.0691	A higher count of dollar
ry	directory		sign characters in the
			directory is associated
			with a higher likelihood
			of the phshing website
qty_percent_direct	count (%) in	-0.0141	To preserve a standard
ory	directory		URL structure, phishers
			may avoid percentage
			marks.
directory_length	directory length	0.0014	Phishers may employ
			longer directory paths to
			construct complex URLs
			that resemble authentic
			sites.
qty_dot_file	count (.) in file	0.1097	It recommends file
			extensions. Phishers may
			use this to construct
			URLs that look like file
			paths.
qty_underline_file	count (_) in file	-0.0328	Phishers may avoid
			underscores to maintain
			proper URL structure.
qty_at_file	count (@) in file	0.1391	Phishers could exploit
			this to trick users into
			clicking the link.
qty_and_file	count (&) in file	0.1151	Phishers can build file
			path-like URLs with
			ampersands.

qty_exclamation_f	count (!) in file	0.2405	Make URLs stand out to
ile			get users to click.
qty_tilde_file	count (~) in file	-0.2545	To preserve a standard
			URL structure, phishers
			may avoid tildes.
file_length	file length	0.0005	Phishers can utilise
			longer file names to
			construct complex URLs
			that resemble valid file
			paths.
qty_underline_par	count (_) in	0.0272	To mimic data patterns,
ams	parameters		phishers may utilise
			underscores in URLs.
qty_slash_params	count (/) in	-0.0354	For a more normal URL,
	parameters		phishers may avoid
			slashes.
qty_at_params	count (@) in	-0.2353	Phishers may avoid at
	parameters		symbols to retain proper
			URL structure.
qty_exclamation_	count (!) in	0.2061	Phishers may employ
params	parameters		exclamation marks or
			URLs that stand out.
qty_tilde_params	count (~) in	0.2564	Phishers may employ
	parameters		tilde marks or URLs that
			stand out.
qty_comma_para	count (,) in	-0.0535	Official URLs may have
ms	parameters		fewer commas.
qty_hashtag_para	count (#) in	-0.2613	Phishers may avoid
ms	parameters		hashtag symbols to retain
			proper URL structure.
qty_percent_para	count (%) in	-0.0072	This may be connected to
ms	parameters		parameter obfuscation or
			encoding.

params_length	parameters length	0.0002	Longer parameters may
			be used to include extra
			information or disguise
			the URL's purpose.
tld_present_param	TLD presence in	0.1878	TLD-like strings in
8	arguments		parameters may be used
			to fool users.
email_in_url	email present in	-0.0818	Legitimate URLs are less
	URL		likely to contain email
			addresses.
time_response	search time	0.0041	Phishing websites may
	(response) domain		have sluggish response
	(lookup)		times owing to shared or
			unreliable hosting.
asn_ip	AS Number (or	3.309e-07	Sharing IP addresses
	ASN)		with other domains can
			host phishing websites.
time_domain_acti	time (in days) of	-2.501e-05	Some phishing websites
vation	domain activation		are new and used for
			short-term crimes.
time_domain_expi	time (in days) of	-2.432e-05	Phishers may prefer
ration	domain expiration		short-lived domains to
			avoid discovery.
qty_ip_resolved	number of resolved	0.0034	Phishers may divide their
	IPs		infrastructure across
			numerous IP addresses.
qty_nameservers	number of resolved	-0.0193	Phishers may use
	name servers		different name servers
	(NameServers -		than legal domains.
	NS)		
ttl_hostname	time-to-live (TTL)	1.378e-06	A larger TTL value may
	value associated		suggest an attempt to
	with hostname		

			keep the phishing site up
			longer and confuse users.
tls_ssl_certificate	valid TLS / SSL	-0.0303	SSL certificates encrypt
	Certificate		communication on
			legitimate websites, so a
			missing certificate may
			indicate phishing.
qty_redirects	number of	0.0091	Phishing sites may utilise
	redirects		several redirection to
			hide their URLs' true
			destinations, making
			them harder to identify.
url_google_index	check if URL is	0.0367	A lack of Google
	indexed on Google		indexing may indicate
			phishing. Legitimate
			websites are more likely
			to get indexed.
url_shortened	check if URL is	0.4844	URL shorteners are used
	shortened		by phishers to hide
			harmful URLs.

No.	Website	Result
1	https://allegrolokalnie.pl-oferta-	Phishing
	sprzedazy24699.pl/pay?id=fbd85pl7944z23r88uqjtocjzk9ui7ro	
	&fbclid=iwar24h5cf5cghinuox0lejp-	
	u9cwcuhjxihlsaxsiswfhrdmuqb9zg6bxlb0	
2	https://www.versatilestructures.com.au/sp.php	Legitimate
3	https://abricy.com/nm/z/?o=ZGlhbmFAc2RqYmNzdGVlbC5j	Phishing
	b20=&WhuZ1cckbW9sxyl2dDwRPNUxqHRt3oGKv35yp8Cy	
	cRdfuaiO4PC9HmOqnamwvreouXUiRC6ZOnJ7tudb4vjhGISI	
	e5BOZ.7G34J	
4	https://allegrolokalnie.expresspayu-24.pl/oferta/play-station-5-	Phishing
	z-napedem-+-2-pady-i-stacja-ladujaca	
5	https://uscarmovers.com/wp-loginss/areautenti/info.php	Phishing
6	https://boilerdiner.online/4c6bd3b4b5d0aa665c28c3a6984ceef	Phishing
	3	
7	https://he-thong-tu-dong.pages.net.br/he-thong-tu-dong	Phishing
8	https://new.express.adobe.com/webpage/8st3mrjo6yuxy	Phishing
9	https://docs.google.com/presentation/d/e/2PACX-	Phishing
	1vSEFMvnk6xrzbidU3IIOnn0H2-	
	d23qz0yqwOK9Nrb1KIPqpc7D8rjnl1sTnz0UEHzKfBaIHsF2	
	CQJzl/pub?start=true&loop=true&delayms=3000	
10	https://pub-53b48d6937c140a098e729a28b167ee0.r2.dev/gen-	Phishing
	bg-out.html#reg003.asistente@banrural.com.gt	
11	https://diosofficevaranasi.com/gt-reen/fosil/aruba-RD72/	Phishing
12	https://jbellarealty.com/qexto2/index/config/login.php	Phishing
13	https://info.neu.planen.document.51-103-222-	Phishing
	98.cprapid.com/brt	
14	https://vdtqybgb2q.withinkins.sbs/?email=lauren.grace@lmcu.	Phishing
	org	
15	http://cgd-adesaopt.com/login.php	Phishing
16	http://cgd-adesaopt.com	Phishing
17	https://antaiservicetelepaiementapp.vercel.app/	Phishing

Appendix B Phishing Websites Tested on the Web Application and the Result

18	https://ministeriohaciendaformulario-3.webnode.es	Phishing
19	https://immrave-bcv-secur.site/auth/	Phishing
20	https://dezembrodosdescontos.site/blackfriday-desconto-	Phishing
	produto-maga-lu/checkout.php?comprar=534	
21	https://immrave-bcv-secur.site/auth/	Phishing
22	https://bellsouth-service-activation-32e5f9.webflow.io/	Phishing
23	https://validatorionos.green00033.repl.co/#redacted@abuse.io	Phishing
	nos.com	
24	https://ionosvalidator.green54326.repl.co/#redacted@abuse.io	Phishing
	nos.com	
25	https://swiss-daten-ch-2023.norticalelevators.com/f/signin.php	Phishing
26	http://zhxcjasd712a7s8.isteingeek.de/	Legitimate
27	http://sicoob.com.br.admin-mcas-df.ms/cartao-sicoobcard-	Phishing
	visa-platinum/	
28	http://sicoob.com.br.admin-mcas-df.ms	Phishing
29	http://sicoob.com.br.admin-mcas	Phishing
	df.ms/acesso/loginDocument.php	
30	https://32care.co/auth/portal/clients/login.php	Phishing
31	https://ajobime4532.wixsite.com/my-site-2	Phishing
32	https://uscarmovers.com/wp-loginss/areautenti/info.php	Phishing
33	https://pub-	Phishing
	3f7e513b2d754cfe8bfdbd90c3a48c19.r2.dev/hgft.html	
34	https://mobileuser-support-	Phishing
	web.com/fb93f4185aea5b548f0fe812e90678c4/login.php?user	
	=true	
35	http://mkwwdinwsx.duckdns.org	Phishing
36	https://accedi-step.guzzardoarredi.it/pro-	Phishing
	pannl/Sirawdi/managerhosting.php	
37	https://www.lacasa.occonseil.com/media/cms/css/ch/	Phishing
38	https://jumsedfj.weebly.com/	Phishing
39	https://bafybeicsh24mclei54x2jbhov6jowq2z2k6z2hfrxf755xiy	Phishing
	v76c4kut5m.ipfs.dweb.link	

40	https://dev-4d3e-bff0-	Phishing
	e0e80eff9012and.pantheonsite.io/login.htm	
41	https://disabled-user-notify-2d829.firebaseapp.com/	Phishing
42	https://e-navi.wnfcabn.cn/pc/login.php	Phishing
43	https://service4t-108124.weeblysite.com/	Legitimate
44	https://pay-parcel-	Phishing
	global.engaust.com.au/en/home.php?newtoken=	
45	https://bancavirtual-banrurals.web.app/email.html	Phishing
46	https://cloudflare-	Phishing
	ipfs.com/ipfs/bafybeid5n67djafre5ozpyg67dlwt6fzy2akjhal6kx	
	7sr2m3r24hubkt4/dhlcmphtml.html	
47	https://ewt.bli.mybluehost.me/SWISSPASS/informatie/index.p	Phishing
	hp?id=e4fdaa4459d16a08109dd0245a85b454e4fdaa4459d16a	
	08109dd0245a85b454&act=e4fdaa4459d16a08109dd0245a85	
	b454e4fdaa4459d16a08109dd0245a85b454	
48	https://smbc-card.world/index/indexinfore.html	Phishing
49	https://masterfoods.mn/perf/Auto%20file/8475657rgdgdgvet4	Phishing
	6473t362gddvd3t.php	
50	https://kotlyspa.eu/DeutshNew/accnt.php?movv_656deb491ae	Phishing
	fcservices=1C5CHFA_enCI1031CI1031&oq=sass&aqs=ensur	
	e.0.69i59j46i67i199i433i465j69i57j69i60l5.939j0j7&sourceid	
	=chrome&ie=UTF-8	
1		1

Appendix C Legitimate Websites Tested on Web Application and the Result

No.	Website	Result
1	https://apply.uniten.edu.my/uniapps/LoginApplicant.aspx	Legitimate
2	https://www.canva.com/create/websites/	Legitimate
3	https://www.myeg.com.my/	Legitimate
4	https://www.jpj.gov.my/	Legitimate
5	https://bjak.my/en	Legitimate
6	https://bukitbesi.blogspot.com/2021/01/semakan-harga-	Legitimate
	insurans-motosikal-online.html	
7	https://web.wechat.com/	Legitimate

8	https://www.oto.my/	Legitimate
9	https://www.mudah.my/malaysia/cars-for-sale	Legitimate
10	https://www.carlist.my/	Legitimate
11	https://www.britannica.com/topic/Christmas	Legitimate
12	https://www.7eleven.com.my/	Legitimate
13	https://www.afa-group.com.my/	Legitimate
14	https://www.comparehero.my/credit-card/partners/hsbc	Legitimate
15	https://www.imoney.my/credit-card/hsbc	Legitimate
16	https://www.hsbc.com.my/credit-cards/	Legitimate
17	https://library.utar.edu.my/Databases2-0.php	Legitimate
18	https://www.khanacademy.org/	Legitimate
19	https://www.lonelyplanet.com/	Legitimate
20	https://www.scamvoid.net/	Legitimate
21	https://englishfornoobs.com/english-grammar-exercises-pdf/	Legitimate
22	https://web.whatsapp.com/	Legitimate
23	https://id.blooket.com/login	Legitimate
24	https://www.wix.com/	Legitimate
25	https://wble.utar.edu.my/	Legitimate
26	https://play.google.com/store/apps/details?id=com.whatsapp	Legitimate
27	https://www.dictionary.com/browse/login	Legitimate
28	https://dictionary.cambridge.org/dictionary/english/login	Legitimate
29	https://techterms.com/definition/login	Legitimate
30	https://www.facebook.com/	Legitimate
31	https://secure.kwsp.gov.my/member/member/login	Legitimate
32	https://account.microsoft.com/account	Legitimate
33	https://www.maybank2u.com.my/home/m2u/common/login.do	Legitimate
34	https://www.howtogeek.com/676621/how-to-use-whatsapp-	Legitimate
	on-your-computer-and-web/	
35	https://www.propertyguru.com.my/	Legitimate
36	https://www.iproperty.com.my/	Legitimate
37	https://www.thestar.com.my/news/nation/2023/09/17/public-	Legitimate
	can-now-apply-to-be-spm-2023-exam-invigilators	

38	https://sppat2.moe.gov.my/cp/index.asp	Legitimate
39	https://ecentral.my/tarikh-spm-2023/	Legitimate
40	https://admission.utar.edu.my/Apply_Now.php	Legitimate
41	https://towardsdatascience.com/demystifying-roc-curves- df809474529a	Legitimate
42	https://www.sharpsightlabs.com/blog/scikit-learn-roc-curve/	Legitimate
43	https://consumer.huawei.com/my/phones/	Legitimate
44	https://www.merriam-webster.com/dictionary/center	Legitimate
45	https://www.grammarly.com/blog/center-centre/	Legitimate
46	https://www.lazada.com.my/customer/account/index/	Legitimate
47	https://shopee.com.my/	Legitimate
48	https://www.bbc.co.uk/bitesize/topics/ztkxpv4/articles/zdjjf4j	Legitimate
49	https://www.history.com/topics/christmas/history-of-christmas	Legitimate
50	https://publicholidays.com.my/christmas/	Legitimate