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ABSTRACT 

 

In this study, we applied a stochastic rainfall model which is capable in 

generating synthetic daily rainfall sequences that exhibit similar 

characteristics to observed data, thereby assessing the amount of rainfall 

over a specific period. The model utilized for this purpose is the Markov 

Chain Mixing Index (MCME). This model integrates both rainfall 

occurrence, represented by a first-order two-state Markov chain, and 

rainfall distribution, described by a mixture index distribution. The 

feasibility of the MCME model was evaluated using daily rainfall data 

collected from 15 stations in Hong Kong over a 20-year record period 

(2003-2022). The evaluation revealed that the proposed MCME model 

adequately captures both the occurrence and quantity of rainfall across all 

stations. Various statistical analysis were implemented to analyze the 

rainfall data. In conclusion, the validation results indicate that while the 

model effectively describes the characteristics of rainfall and able to 

simulate the rainfall based on the parameters estimated. 
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CHAPTER 1  

 

1 INTRODUCTION 

 

1.1 Background of the study 

Rainfall significantly impacts human life and affects activities in agriculture and the 

economy. In urban areas, rainfall exceeding drainage capacity can cause urban 

flooding, directly affecting the lives of residents and leading to property losses for both 

the state and individuals. It also triggers secondary disasters, such as landslides and 

mudslides, further increasing overall losses. In rural areas, rainfall greatly influences 

the growth of various types of crops. Moderate rainfall promotes crop growth, while 

both insufficient and excessive rainfall can result in crop losses. 

The advantage of stochastic rainfall simulators is that they not only compensate 

for the lack of historical data but also provide the ability to synthesize rainfall events 

from different time periods. This is critical for modeling extreme rainfall events that 

may occur under various meteorological conditions and for assessing the flood 

resilience of urban sewer systems. Additionally, these generators are more flexible in 

adapting to different spatial requirements, thereby offering a broader range of more 

accurate simulation results. This flexibility is valuable for scientists and engineers in 

their applications. 

Due to the uncertainty of climate change and the stochastic nature of rainfall, 

scientists have endeavored to predict rainfall using various methods. However, there 

is currently no highly reliable and effective method for predicting rainfall in a timely 

and accurate manner. 

In recent years, many researchers have turned to applying Markov chains to 

model rainfall, with a common approach involving two key steps. In the first step, a 

Markov chain generates the time series of rainfall occurrence (i.e., wet day or dry day), 

providing a simple and effective means of preserving wet and dry periods. In the 

second step, the amount of rainfall on a wet day is typically estimated using various 

probability distributions. A significant number of researchers continue to utilize this 

approach in an ongoing effort to enhance the effectiveness of the model. 

A Markov chain represents a network of concepts and propositions utilized to 

organize, describe, and explain our experiences through mathematical analysis of 

natural processes. In the early 20th century, Markov discovered, through numerous 
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observational experiments, that the state obtained by the nth transition in the process 

of state transitions of a system is related to the state of the previous (n-1) transition. 

After extensive experiments and generalizations, it was concluded that for a system, 

there exists a transfer probability during the transition from one state to another. This 

transfer probability can be deduced based on one of its previous states, independent of 

the original state of the system and the Markov process before this transfer. 

Predicting rainfall serves as a crucial foundation for government decision-

making and provides essential information for disaster prevention departments. This, 

in turn, helps mitigate threats to people's lives and properties, fostering social stability. 

Additionally, it aids water conservancy departments in making informed decisions to 

address flooding and manage water conservancy facilities effectively. The data 

generated supports municipal construction departments in developing urban drainage 

facilities. Social enterprises, including insurance companies, can enhance the accuracy 

of insurance rate calculations by leveraging weather disaster compensation data. 

Furthermore, accurate rainfall prediction contributes to facilitating daily activities, 

such as commuting, thereby playing a vital role in promoting regional economic 

prosperity and environmental protection. 

Forecasting rainfall is essential for government decision-making, especially in 

disaster prevention. It provides crucial information that helps in reducing risks to 

people's lives and properties, thereby promoting stability in society. Additionally, it 

supports water conservancy departments in managing floods by guiding the operation 

of water facilities. This data also assists municipal construction departments in creating 

effective urban drainage systems. Moreover, rainfall forecasts aid social enterprises 

like insurance companies in improving their calculations for weather-related 

compensation. These accurate forecasts also contribute to everyday activities such as 

commuting, ultimately boosting regional economic growth and protecting the 

environment. 

 

1.2 Research Objective 

The research objectives for this study are: 

1.To investigate the rainfall characteristics in Hong Kong. 

2.To apply Markov chain-mixed exponential to model the rainfall in Hong 

Kong. 
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3. To assess the performance of the Markov chain-mixed exponential for its 

rainfall. 

  

1.3 Study Scope 

Hong Kong, officially known as the Hong Kong Special Administrative Region, is a 

special administrative region of the People's Republic of China. Situated in the 

southern part of China, it is an integral part of the Guangdong-Hong Kong-Macao 

Greater Bay Area and is internationally recognized as a global city. Positioned on the 

north coast of the South China Sea and on the east side of the Pearl River Estuary, 

Hong Kong experiences a subtropical climate characterized by four distinct seasons. 

The period from May to November is considered the windy season, while July to 

September is particularly vulnerable to tropical cyclones. 

On average, about 30 tropical cyclones impact the western part of the North 

Pacific Ocean and the South China Sea annually, with approximately 15 of them 

reaching typhoon strength or above. Hong Kong serves as a crucial corridor for both 

the summer southwest monsoon and winter northeast monsoon currents in Asia, and 

the region's rainfall is significantly influenced by these two types of monsoon air 

masses. 

Adverse weather conditions affecting Hong Kong include tropical cyclones, 

strong winter and summer monsoon winds, monsoon troughs, and severe 

thunderstorms, which often occur between April and September. The rainfall data used 

in this study were obtained from the Hong Kong Observatory, specifically from 15 

rainfall stations spanning the years 1993 to 2022. 

In this study, we aim to analyze Hong Kong's rainfall patterns and develop a 

rainfall model using the Markov Chain-Mixed Exponential Distribution. This effort 

seeks to create a more advanced and accurate method for simulating rainfall, 

specifically designed for practical applications. The model's development is 

anticipated to provide more dependable hydrological information, ultimately 

supporting better decision-making and planning in relevant fields. 

 

1.4 Problem Statement 

Accurate rainfall prediction can significantly benefit human life by providing 

sufficient time to minimize negative impacts through measures such as technical 

interventions for artificial rainfall. It can also be leveraged to bring positive benefits to 
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people's lives. For instance, in the design and management of urban sewers, crucial 

hydrological information—such as rainfall amount and hourly rate—is essential for 

modeling and determining the design parameters of the sewer system. Typically, these 

models rely on historical data, especially daily rainfall data, for accurate hydrologic 

simulations. However, in practice, historical rainfall records often encounter various 

issues, such as insufficient length, incomplete data, and inadequate spatial coverage, 

making it challenging to obtain reliable simulation results. 

To address these challenges, rainfall stochastic simulation or stochastic rainfall 

simulators become essential. These tools are widely used to generate a large number 

of synthetic rainfall time series capable of accurately characterizing the physical and 

statistical properties of rainfall processes observed at a specific location. By employing 

these generators, engineers and water resource professionals can create more 

comprehensive and reliable hydrologic models to support the design and management 

of urban sewer systems. 
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CHAPTER 2  

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Rainfall modeling, a crucial research area in hydrology and meteorology, has 

witnessed extensive development and evolution over the years. In recent decades, 

researchers have made significant strides in enhancing the application and accuracy of 

statistical methods and techniques. In this chapter, we review the various models in 

rainfall modelling. 

 

2.2 Analysis of time series data 

The analysis of time series data serves as the cornerstone of rainfall modeling. This 

data comprises three main components: trend, seasonality, and residuals or white noise. 

The trend reflects the slow change or direction of the record over time, providing the 

foundation for subsequent modeling. On the other hand, seasonality examines cyclical 

patterns occurring over a fixed period, such as the frequency of events in a given month 

or season. Finally, residuals or white noise represent random variations that cannot be 

explained by trends or seasonal components. 

Commonly used models in the statistical modeling of time series data include 

autoregressive (AR) models, moving average (MA) models, autoregressive moving 

average (ARMA) models, and autoregressive integrated moving average (ARIMA) 

models. 

Zhang and Xia (2012), Arumugam and Karthik (2018), and Jale et al. (2019) 

utilized Markov chains to generate time series in their respective studies. 

 

2.3 Rainfall fitting models 

Fitting a distribution to rainfall is a challenge due to the complexity of atmospheric 

processes and the hydrologic cycle.  

The common probability distribution used by the researchers included the 

exponential, Gamma, lognormal, Weibull, and Poisson distributions. The exponential 

distribution is often employed to describe the time between equally spaced 

independent events, while the Gamma distribution is suitable for characterizing the 



6 

 

duration and intensity distribution of rainfall events. The lognormal distribution 

accommodates the right skewness observed in rainfall data, and the Weibull 

distribution is commonly applied when studying extreme rainfall events. Additionally, 

for larger rainfall events, the lognormal distribution is a frequent choice, while the 

Poisson distribution is appropriate for describing the counts of rainfall events 

occurring over a specific period. 

In a study by Shibabaw et al. (2022), a stochastic daily rainfall model was 

developed, focusing on the spatial and temporal distribution of rainfall in Ethiopia. 

The research utilized the Markov chain along with a combination of the Weibull 

distribution, lognormal distribution, mixed exponential distribution, and Gamma 

distribution to construct the rainfall model. 

In certain cases, opting for a mixture of distributions is a reasonable choice as 

it enables the simultaneous consideration of the impacts of multiple probability 

distributions on the rainfall process. The selection of an appropriate distribution 

involves model testing and parameter fitting, ensuring that the probability density 

function of the chosen distribution closely aligns with the observed rainfall data. 

 

2.4 Stochastic Rainfall Simulator 

A stochastic rainfall simulator is a tool that combines time series and rainfall 

distributions to synthesize stochastic rainfall events with trends and characteristics 

similar to the observed data. By assuming that the synthesized time series shares the 

same trend as the observed series and that the rainfall distribution is a highly fitting 

representation, the simulator can generate synthesized data closely resembling actual 

rainfall events. 

 

2.4.1 Markov Chain-Mixed Exponential Model (MCME) 

The Markov Chain-Mixed Exponential Model (MCME) is a composite model that 

integrates Markov chains and mixed exponential distributions to comprehensively 

characterize two key aspects of the rainfall process: the occurrence of rainy days and 

the distribution of daily rainfall. Through in-depth analysis of historical rainfall data, 

the model reveals the state transfer law between dry and wet days using Markov chains. 

Simultaneously, it more accurately portrays the probability density function of daily 

rainfall by employing the mixed exponential distribution. 
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Successive studies by Hussain (2008), Yusof et al. (2015), Senthamarai 

Kannan and Jawahar Farook (2015), El Outayek (2020), and Berhane et al. (2020) 

have employed MCME models to simulate rainfall in distinct regions, all yielding 

improved results. 

 

2.4.2 Advantages of Stochastic Rainfall Simulator 

The stochastic rainfall simulator, as a simulation tool, offers numerous advantages in 

the fields of hydrology and meteorology. It not only generates a substantial amount of 

rich data in a short period, thereby enhancing the estimation of the probability of 

extreme events, but also proves useful in simulating scenarios with missing data. 

Furthermore, the stochastic rainfall simulator can be applied for spatial interpolation, 

enabling the simulation of rainfall events at various geographic locations with the 

added flexibility of temporal downscaling. Owing to its capability to generate diverse 

data, the stochastic rainfall simulator finds wide applications in areas such as water 

resource management, flood risk assessment, urban planning, and meteorological 

studies.  

In summary, academic modeling of rainfall not only enhances the 

comprehension of rainfall processes but also establishes a scientific foundation for the 

fields of hydrology and meteorology. The selection and parameter estimation of these 

models hold significant practical implications for water resource management, flood 

risk assessment, and climate change impact studies. Thus, the interdisciplinary 

application of statistics, probability theory, and hydrology remains particularly crucial 

in this research domain. 

 

2.5 Evaluation of models 

In modeling daily and extreme rainfall events, researchers have extensively employed 

various stochastic weather generators, comparing their performance. However, a 

consistent consensus on the superior type of stochastic weather generator across 

different locations is yet to be established. These variations may be influenced by the 

meteorological and hydrological characteristics specific to each study site. 

Many scholars often resort to mathematical methods to discern differences 

between observed and model-generated data. Table 2.5.1 below outlines some of the 

methods employed by researchers for model evaluation at different sites. 
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Table 2.5.1: Different assessment methods used by by past researchers 

 

 

The application of these methods at various locations has equipped researchers 

with a diverse set of intuitive and comprehensive tools for assessing the simulation 

effectiveness of stochastic weather generators across different geographic 

environments. Future studies can explore more advanced assessment methods to 

further enhance our understanding of the performance of random weather generators. 
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CHAPTER 3  

 

3 METHODOLOGY 

 

3.1 Rainfall data processing 

In academic research, the dataset's quality is fundamental in shaping the reliability of 

the final model and the validity of research outcomes. A dataset characterized by 

reliability, validity, quality, and consistency serves as a cornerstone supporting 

academic research endeavors and constructing robust models. This ensures that the 

conclusions drawn from the research hold credibility both within academic realms and 

practical applications. Before cleaning the data, it is essential to thoroughly understand 

the dataset's context, structure, and features through extensive literature review and 

dataset characterization. Handling missing values is a critical step in data 

preprocessing, necessitating a thoughtful strategy to manage them, which may involve 

removal, interpolation, or imputation with mean or median values. Eliminating 

duplicate records from the dataset ensures data uniqueness, while addressing outliers 

using statistical methods or domain knowledge maintains data consistency and quality. 

Standardizing data formats and normalizing numerical values enhance data 

consistency, making subsequent analysis and modeling more reliable. Error correction, 

involving rectifying spelling mistakes, standardizing naming conventions, and 

resolving other accuracy-affecting issues, is imperative for maintaining dataset 

accuracy, particularly for scholarly research. Documenting each step of the data 

cleaning process and its effects enables others to replicate and understand the 

procedure. Visual analysis through visualization tools aids in comprehending data 

distributions, relationships, and trends, providing additional support for academic 

research endeavors. 

 

3.1.1 Boxplot 

Figure 3.1.1 provides a detailed characterization of the boxplot diagram, offering 

insights into how it represents accuracy, robustness, and variability in estimating 

parameters from the generated rainfall series. This intuitive representation enables a 

swift understanding of central tendencies and potential outliers, allowing for a concise 

assessment of the reliability of the parameter estimates. 
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Figure 3.1.1:  Characteristics of a Boxplot 

 

3.2 The Markov Chain-Mixed Exponential Model 

3.2.1 The Occurrence Process 

In previous studies, researchers have often recommended the use of Markov chains for 

modeling daily rainfall (Chin, 1977; Roldan and Woolhiser, 1982). These studies 

simplify the observed rainfall data series as a sequence of two states: dry or wet. The 

correlation between wet and dry days on consecutive days is modeled using a first-

order Markov Chain denoted by 0 or 1, representing dry and wet days, respectively. 

We distinguish at 2.5 mm; when the rainfall in a day is less than 2.5 mm, it is defined 

as a dry day (denoted by 0), and when it is greater than or equal to 2.5 mm, it is defined 

as a wet day (denoted by 1). (Note: According to China's meteorological operations, 

light rain is defined as rainfall less than or equal to 2.5 mm in 1 hour.) 

 

𝑋𝑛 = {
0 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑑𝑎𝑦 𝑖𝑠 𝑑𝑟𝑦

1 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ  𝑑𝑎𝑦 𝑖𝑠 𝑤𝑒𝑡
 

(3.1) 

 

Hence, the transition probabilities of the first-order Markov chain are defined 

as follows: 
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𝑃 (𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, …, 𝑋0 = 𝑖0) = 𝑝 (𝑖, 𝑗) (3.2) 

 

3.2.2 The Rainfall Amount 

Mixed exponential distribution is commonly used to fit the rainfall data 

(citation). The mixed exponential distribution is described as follows, 

 

𝑓(𝑥) =
𝑝

𝜇1
𝑒

−𝑥
𝜇1 +

1 − 𝑝

𝜇2
𝑒

−𝑥
𝜇2  

(3.3) 

 

for 

𝑥 >  0 ,1 >   𝑝 >  0 , 𝜇1 >  0  , 𝜇2 >  0. 

Where 𝜇1 and  𝜇2 are the means of two exponential distributions, 𝑝  represents 

the mixing probability, dictating the allocation of weights to the two exponential 

distributions. 

 

3.2.2.1 Estimation of Parameters through the Method of Maximum Likelihood 

The parameters of the mixed exponential distribution are determined using the 

maximum likelihood method. To solve for these parameters, the log-likelihood 

function is defined as follows: 

 

𝑙𝑜𝑔𝐿 = ∑ 𝑙𝑜𝑔 (
𝑝

𝜇1
𝑒

−𝑥𝑖
𝜇1 +

1 − 𝑝

𝜇2
𝑒

−𝑥𝑖
𝜇2 )

𝑛

𝑖=1

 
(3.4) 

 

3.2.3 Parameter Optimization Techniques 

Optimal solutions for maximizing the log-likelihood function can be achieved through 

an iterative optimization technique. The parameter estimates are obtained by solving 

the log-likelihood equation, as described by: 

 

�̂� =
1

𝑛
∑

𝑝
𝜇1

𝑒
−𝑥𝑖
𝜇1

𝑝
𝜇1

𝑒
−𝑥𝑖
𝜇1 +

1 − 𝑝
𝜇2

𝑒
−𝑥𝑖
𝜇2

𝑛

𝑖=1

 

(3.5) 
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𝜇1̂ =
1

𝑛�̂�
∑(

𝑝
𝜇1

𝑒
−𝑥𝑖
𝜇1

𝑝
𝜇1

𝑒
−𝑥𝑖
𝜇1 +

1 − 𝑝
𝜇2

𝑒
−𝑥𝑖
𝜇2

)𝑥𝑖

𝑛

𝑖=1

 

(3.6) 

 

𝜇2̂ =
1

𝑛(1 − �̂�)
∑(

1 − 𝑝
𝜇2

𝑒
−𝑥𝑖
𝜇2

𝑝
𝜇1

𝑒
−𝑥𝑖
𝜇1 +

1 − 𝑝
𝜇2

𝑒
−𝑥𝑖
𝜇2

)𝑥𝑖

𝑛

𝑖=1

 

(3.7) 

 

The optimal solution for these iterative equations was obtained using a method 

recommended by Nguyen and Mayabi (1990), known for its fast convergence rate. 

Initial values can be assigned using the method of moments. However, to achieve a 

fast convergence rate, seven initial estimates for the three parameters are selected. The 

initial values for 𝑝 and 𝜇1 range from 0.01 to 0.99 at intervals of 0.01, and from 0.01 

�̂�  to 0.99 �̂� at intervals of 0.01 �̂� , respectively. For a given pair of 𝑝  and 𝜇1 , the 

corresponding 𝜇2  is calculated as 𝜇2 =
(�̂�−𝑝/𝜇1)

(1−𝑝)
. The optimal solution for the 

parameters is determined as the one providing the highest value among the iterations 

of all likelihood functions. 

 

3.3 Simulation: A Rainfall Generator 

An R language program was developed to implement our rainfall simulation. The 

simulation involves generating daily rainfall using the MCME model for each station 

and each month of data. The rainfall simulation model operates as follows: 

For a specific month at any site, the initial step of the model involves 

constructing a Markov transfer matrix for dry and wet days within that month. 

Subsequently, a time series of the same length is generated based on this matrix. 

The second part of the model consists of constructing a mixed exponential 

model for the rainfall data of the same month. The time series generated in the first 

part is then input into the mixed exponential model to simulate rainfall data. 
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Figure 3.3.1: Simulation process 

 

3.4 MCME Model Evaluation 

Monthly rainfall sequences from 15 sites were employed to assess the performance of 

the MCME model. The complete 20-year daily rainfall series was utilized to calculate 

MCME model parameters, while the existing model parameters were employed to 

generate daily rainfall for the same 20-year duration. The observed rainfall will be 

compared with the generated rainfall. This comparative analysis was conducted on 

monthly basis. However, for the month of February, the analysis was not further 

processed as the rainfall totals for February were found to be unaffected by leap year 

versus non-leap year. 

 

3.4.1 Relative Error  

Relative Error (RE) is a metric widely employed in measurement science and 

engineering to quantify the disparity between actual observations and theoretical or 
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true values. It was introduced to address the inherent bias of absolute error for datasets 

of varying magnitudes, offering a standardized method for evaluating accuracy in 

diverse contexts. 

The mathematical expression for the relative error is given below: 

 

𝛿 =
Δ

𝐿
 × 100% 

(3.8) 

 

where 𝛿 is actual relative error, usually given in percentage, Δ is absolute error, L is 

true value.  

Among other considerations, the use of absolute values ensures that the relative 

error is non-negative and is expressed as a percentage, allowing for comparisons across 

different problem domains. This metric serves not only to evaluate the accuracy of an 

experiment or measurement but also to facilitate a quantitative analysis of whether the 

measurement tends to overestimate or underestimate the true value. 

Relative error holds significance in scientific research, laboratory testing, and 

engineering design as it plays a crucial role in determining the reliability and accuracy 

of measurements. In both academic and industrial research, assessing the confidence 

and accuracy of results is paramount for ensuring experimental reproducibility and 

robust engineering design. Therefore, as a standardized assessment tool, relative error 

contributes to elevating confidence levels in the interpretation and application of 

measured data. 
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CHAPTER 4  

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Data Description 

The rainfall data were obtained from the Hong Kong Observatory. Fifteen rainfall 

observation sites with over 20 years of data were selected, and rainfall data spanning 

a total of 20 years (from 2003 to 2022) were utilized. Table 4.1.1 shows the geographic 

coordinates of the sites and Characteristics. All rainfall observation sites experienced 

data loss within 5%, with 12 sites having data loss within 2%. Therefore, we 

considered the data to have minimal impact on the results. Figure 4.1.1 shows the 

location of each rainfall station from the map. Table 4.1.2 presents descriptive statistics 

for data from all rainfall stations, providing a comprehensive overview of the dataset. 

We defined a day with less than 2.5 mm of rainfall as a dry day. Given the 

overall high percentage of dry days, we uniformly treated all days with missing data 

as having 0 rainfall. 

 

Table 4.1.1: List of Rainfall Stations with Geographical Coordinates and 

Characteristics 
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Figure 4.1.1: The location of the rainfall stations sites 

 

Table 4.1.2: Descriptive statistics for data from all rainfall stations 
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Figure 4.1.2: Box plots of annual rainfall at 15 rainfall stations 

 

 

(a) Cheung Chau 
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(b) Ching Pak House (Tsing Yi) 

 

 

(c) King's Park 
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(d) Lau Fau Shan 

 

 

(e) Pak Tam Chung (Tsak Yue Wu) 

 



20 

 

 

(f) Sha Tin 

 

 

(g) Shek Kong 
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(h) Ta Kwu Ling 

 

 

(i) Tai Mei Tuk 
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(j) Tai Mo Shan 

 

 

(k) Tate's Cairn 
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(l) Tseung Kwan O 

 

 

(m) Waglan Island 

 



24 

 

 

(n) Hong Kong Observatory 

 

 

(o) Hong Kong International Airport 

Figure 4.1.3: Box plot of monthly rainfall at each rainfall station over the last 20 

years (2003-2022) 

 

 

. 
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From the monthly rainfall box plots of the fifteen stations, it is evident that 

Hong Kong experiences heavy rainfall from May to September, with less rainfall in 

the remaining months. This pattern aligns well with the description of Hong Kong's 

climate provided by the Hong Kong Observatory. 

 

Table 4.1.3: Comparison of total values for February with and without leap years 

 

 

In Table 4.1.3, when comparing the totals for February in leap years to 

February in non-leap years, the difference is not significant, and therefore, no special 

treatment is applied. 

Overall, the bins are relatively long, signifying a substantial interquartile range 

(IQR). A lengthy box indicates a large variation in the middle 50% of the range, 

suggesting that the data is widely spread. 

Similarly, the whiskers are relatively long, depicting the overall spread of the 

data. Longer whiskers, reaching the maximum and minimum values, suggest increased 

dispersion and a wider range of numerical variation. 
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The presence of outlier in a box plot refers to data points that significantly 

deviate from the box and whiskers. If outlier are observed, it indicates the presence of 

extreme values in the data, contributing to an overall increase in dispersion. 

 

4.2 Performance of mixed exponential distributions 

After parameter fitting, we employed Relative Error (RE) to assess the consistency of 

the fitted parameters with the observed parameters of the mixed exponential 

distribution model. This assessment aims to compare the relative difference between 

the fitted parameters and the actual observed parameters, and is quantified by the RE. 

The calculation of RE is presented as a percentage, and fitting results are deemed 

excellent when the RE is less than 10%, highlighted in bold to emphasize this 

superiority. 

Referring to the Table 4.2.1, the p-value, 𝜇1 and 𝜇2 in the fitted parameters 

represent the percentage of rainfall and the mean of the rainfall sizes, respectively. The 

results indicate that the fitted model satisfactorily describes the proportion of rainfall 

(p-value). However, there is a degree of underfitting in revealing the mean values of 

large and small rainfalls (𝜇1 and 𝜇2). Specifically, the mixed exponential distribution 

model exhibits relatively low fit in terms of rainfall size, suggesting limitations in 

modeling the rainfall characteristics of the study area. 

This finding poses challenges to the applicability of the model, especially in 

accurately simulating rainfall intensity. It provides valuable insights for future model 

improvements or consideration of alternative distribution forms to better capture the 

observed data characteristics. This academic assessment serves as useful guidance for 

further model refinement and optimization. 
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Table 4.2.1: Comparison of the parameters of the mixing exponential distribution 

(a) Cheung Chau 

 

 

(b) Ching Pak House (Tsing Yi) 

 

 

(c) King's Park 
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(d) Lau Fau Shan 

 

 

(e) Pak Tam Chung (Tsak Yue Wu) 

 

 

(f) Sha Tin 
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(g) Shek Kong 

 

 

(h) Ta Kwu Ling 

 

 

(i) Tai Mei Tuk 
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(j)  Tai Mo Shan 

 

 

(k) Tate's Cairn 

 

 

(l) Tseung Kwan O 
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(m) Waglan Island 

 

 

(n) Hong Kong Observatory 

 

 

(o) Hong Kong International Airport 

 

Note: Those with o represent those of observed data, those without o are fitted, 

and re is relative error. 
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From the Figure 4.2.1, we can see that during the monsoon season (May-

September), the comparison between the observed data (blue line) and the model fitted 

data (red line) shows a high degree of fit, which suggests that the model has a better 

performance in simulating the rainfall events during the monsoon. However, during 

the non-monsoon season, there is a large discrepancy between the observed data and 

the model-fitted data, revealing a relatively poor fit of the model during these periods. 

For the combined results from 15 rainfall stations, this trend is validated across 

the region, further emphasizing the sensitivity of model performance to seasonal 

variations. 

 

 

 

(a) Cheung Chau 
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(b) Ching Pak House (Tsing Yi) 

 

 

(c) King's Park 
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(d) Lau Fau Shan 

 

 

 

(e) Pak Tam Chung (Tsak Yue Wu) 
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(f) Sha Tin 

 

 

(g) Shek Kong 
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(h) Ta Kwu Ling 

 

 

(i) Tai Mei Tuk 
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(k) Tai Mo Shan 

 

 

(l) Tate's Cairn 
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(m) Tseung Kwan O 

 

 

(n) Waglan Island 
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(n) Hong Kong Observatory 

 

(o) Hong Kong International Airport 

Figure 4.2.1:Comparison of observed and modeled rainfall fits for each rainfall 

station 
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4.3 Performance of the Month MCME Model in Calibration Period (2003-

2022) 

In evaluating the descriptive capability of the MCME model, the calibration process 

utilized daily rainfall series from 2003-2022. Based on these historical records, two 

Markov chain transition probabilities (𝑝01  and 𝑝11) were obtained. The Maximum 

Likelihood Estimation (MLE) was then applied to estimate the monthly calibration 

cycle MCME parameters, totaling 60 for a 12-month rainfall process at one site and a 

cumulative total of 900 parameters for 15 sites. The parameter results are presented in 

Table 4.3.1. Using these calibrated parameters, a synthetic time series of the same 

length (20 years) was simulated. 

 

Table 4.3.1: Summary of MCME parameters estimation for all rainfall stations 

 

 

 

 

 



41 

 

Table 4.3.1 (Continued) 
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Table 4.3.1 (Continued) 
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Table 4.3.1 (Continued) 
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Table 4.3.1 (Continued) 

 

 

Table 4.3.2: Mean and Standard deviation of all MCME parameters estimation  

 

 

The conditional transition probability, 𝑝01, for dry-day rainfall signifies the 

likelihood of a conversion from a daily dry day to a wet day event. Conversely, the 
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conditional transition probability, 𝑝11, for wet-day rainfall indicates the persistence of 

daily rainfall events. 

It is evident from the data that the values of 𝑝11 for all stations during the 

monsoon period (May-September) are consistently in the range of 50% to 65%. This 

suggests that the probability of continuous rainfall is more than half during this period. 

In contrast, during the non-monsoon season (January to April), the mean value of 𝑝01 

ranges from approximately 0.05, 0.07, 0.11 to 0.15. For October to December, it is 

about 0.07 to 0.04. These values imply that the probability of transitioning from dry to 

wet days is much less than the probability of transitioning from wet to dry days. The 

analysis highlights the likelihood of successive periods of no rainfall, especially in 

January, February, October, November, and December when 𝑝01 is in the range of 

0.04 to 0.07. 

Furthermore, the conditional transition probability from wet to wet days 

consistently surpasses the conditional transition probability from dry to wet days in 

every month at all sites. 

The low standard deviations, both below 0.05, indicate that the variability of 

𝑝01 and 𝑝11 among different stations is very low. Therefore, we can assume that the 

trends of rainfall and non-rainfall are more or less the same among different stations 

within the Hong Kong region. 

 

 

Figure 4.3.1: Line chart of p for different rainfall Stations across Months 
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The parameter 𝜇1 represents the average rainfall on dry days (less than 2.5 mm). 

Upon analyzing the data and referring to Figure 4.3.2, a subtle pattern emerges: the 

average rainfall on dry days is slightly higher during the non-monsoon season 

compared to the monsoon season. In the monsoon season, data is notably concentrated 

around 0.2 at rainfall stations. This empirical observation suggests that daily rainfall 

on dry days (below 2.5 mm) tends to be minimal during the monsoon season, empirical 

observations show that daily rainfall below 2.5mm is considered a dry day and vice 

versa during the monsoon season. 

 

 

Figure 4.3.2: Line chart of 𝜇1 for different rainfall stations across months 

 

The parameter 𝜇2  represents the average rainfall exceeding 2.5 mm. Upon 

examining the study data and referring to Figure 4.3.3, a distinct trend becomes 

apparent: rainfall values during the monsoon season are significantly higher than those 

during the non-monsoon season. This finding aligns with the expected pattern of 

increased rainfall during the monsoon season. Furthermore, a detailed monthly 

analysis reveals a positive correlation between higher rainfall months and elevated μ₂ 

values. This supports the notion that months with increased rainfall exhibit 

correspondingly higher 𝜇2 values. 
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Figure 4.3.3: Line chart of 𝜇2 for different rainfall stations across months 

 

 

Figure 4.3.4: Line chart of 𝑝01 for different rainfall stations across months 

 

From the data and Figure 4.3.4, it's evident that during the monsoon season, 

the probability of transitioning from dry to wet days consistently exceeds 20%, while 

in the non-monsoon season, these probabilities generally remain below 10%. Notably, 

the probability of transitioning from dry to wet days in the monsoon season is 

approximately twice as high as in the non-monsoon season. Moreover, in the non-

monsoon season, the probability of continued dryness on the following day is 

significantly more than 85% if it is also dry on that day. This nuanced analysis sheds 

light on the seasonal variation in transition probabilities, emphasizing distinct patterns 

between the monsoon and non-monsoon seasons. 
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A closer examination of the data and Figure 4.3.5 reveals a noteworthy 

difference: during the monsoon season, the probability of transitioning from a wet day 

to a continuously wet day is about 60%, whereas during the non-monsoon season, 

these transition probabilities typically range between 30% and 50%. This complexity 

of observations suggests that the probability of continuous wet days is higher in the 

monsoon season. On the contrary, in the non-monsoon season, the probability of 

transitioning from wet to dry days exceeds the probability of transitioning to 

consecutive wet days. This nuanced analysis enriches our understanding of the 

seasonal dynamics of transition probabilities and provides valuable data support for a 

deeper understanding of the interactions between wet and dry days during monsoon 

and non-monsoon periods. 

 

 

Figure 4.3.5: Line chart of 𝑝11 for different rainfall stations across months 

 

4.4 Assessment of the MCME Model 

Monthly total rainfall data for 20 years were generated and compared with the 

observed data. The observed and simulated monthly total rainfall intensities are 

presented in Table 4.4.1. The Relative Error (RE) values for different months across 

all our stations were averaged, and the results are detailed in Table 4.4.2. We found 

that the observed monthly total rainfall data differed from the simulated monthly total 

rainfall data by approximately 20%. 
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Table 4.4.1: Observed and simulated monthly rainfall intensities 

 

 

 

 

Table 4.4.2: Monthly RE average 

 

 

By integrating the relative error (RE) with the boxplot, we gain valuable 

insights into how measurements deviate from true values. A lower relative error 

signifies a more precise measurement, indicating higher measurement accuracy. When 

the corresponding boxplot shows a larger interquartile range (IQR), it suggests that the 

data are broadly spread, with outliers positioned notably far from the median. 
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Conversely, a higher relative error implies a greater measurement bias. A 

smaller interquartile range in the corresponding boxplot suggests that outliers are 

closer to the median, indicating a more concentrated dataset. 

The joint assessment of IQR and relative error in the box-and-whisker plot 

enables us to evaluate data concentration and accuracy. A smaller IQR and shorter box 

whiskers in the boxplots indicate greater data concentration, reflecting a more 

dependable estimation of the observed data. Conversely, larger IQR and longer box 

whiskers indicate a substantial disparity between the estimated and observed data. This 

comprehensive analysis provides insights into model performance and strongly 

supports the credibility of data estimates. 

 

 

 

(a) January 
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(b) February 

 

 

(c) March 
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(d) April 

 

 

(e) May 
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(f) June 

 

 

(g) July 

 



54 

 

 

(h) August 

 

 

 

(i) September 
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(j) October 

 

 

 

 

(k) November 
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(l) December 

Figure 4.4.1: Box plot illustrating monthly rainfall at each rainfall stations 
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CHAPTER 5  

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this study, we employed a Markov Chain Mixed Exponential Model (MCME model) 

to characterize rainfall patterns in Hong Kong. This model, combining a first-order 

two-state Markov chain and a mixed exponential distribution, effectively captures the 

spatial and temporal variability of rainfall in the region. Parameter estimates, obtained 

through maximum likelihood estimation for different months, reveal notable variations 

in daily rainfall. The analysis demonstrates that the MCME model proficiently reflects 

the diverse characteristics of rainfall in Hong Kong. 

The study's findings underscore the significant advantages of the MCME 

model in describing complex rainfall processes. Notably, it effectively simulates the 

probability of event occurrences while capturing the diversity of intensities. The model 

has proven valuable in the absence of historical data and enales the synthesis of rainfall 

events over different time periods. In conclusion, the MCME model emerges as a 

robust stochastic simulation tool, offering a more comprehensive and accurate 

depiction of rainfall processes. Its application provides a powerful means for gaining 

a deeper understanding and modeling of rainfall dynamics. 

 

5.2 Recommendations for future work 

Several recommendations for future work can enhance the MCME model. Consider 

exploring a 2nd or 3rd order Markov chain, especially during the non-monsoon season 

where the probability of a dry day transitioning to another dry day is notably high. This 

adjustment might offer a better fit to the observed reality. Experimenting with various 

statistical distributions to model the distribution of monthly rainfall could provide 

insights into finding the most suitable fit. Given the substantial variability in same-

month rainfall across different years in Hong Kong, introducing an annual rainfall 

indicator could be beneficial for correcting rainfall parameters for different years. 

Additionally, it's advisable to estimate and compare rainfall distribution parameters 

using different methods to identify the best fit. 
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APPENDICES 

 

APPENDIX A: Computer Programme Core Code 

 

# Loop over B_column from 1 to 12 

for (b_value in 1:12) { 

  selected_datarain <- D_column[B_column == b_value] # Select the corresponding 

month data 

   

  # Add each month's results to the vector 

  all_total_rainfall <- c(all_total_rainfall, total_rainfall) 

  all_total_obrainfall <- c(all_total_obrainfall, total_obrainfall) 

   

  # Log-likelihood function for the mixed exponential distribution 

  mcme_likelihood <- function(params, data) { 

    p <- params[1] 

    beta1 <- params[2] 

    beta2 <- params[3] 

     

    if (p <= 0 || beta1 <= 0 || beta2 <= 0) { 

      return(-Inf) # Returns a very negative number to avoid calculation errors 

    } 

     

    log_likelihood1 <- sum(log(p / beta1 * exp(-data[data < 2.5] / beta1))) 

    log_likelihood2 <- sum(log((1 - p) / beta2 * exp(-data[data >= 2.5] / beta2))) 

     

    return(log_likelihood1 + log_likelihood2) 

  } 

   

  # parametric estimating function 

  estimate_parameters <- function(data, p_range, beta1_range, x_bar) { 

    best_likelihood <- -Inf 
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    best_params <- c(p = 0, beta1 = 0, beta2 = 0) 

     

    for (p_est in p_range) { 

      for (beta1_est in beta1_range) { 

        beta2_est <- (x_bar - (p_est / beta1_est)) / (1 - p_est) 

        params <- c(p = p_est, beta1 = beta1_est, beta2 = beta2_est) 

         

        likelihood <- mcme_likelihood(params, data) 

         

        if (likelihood > best_likelihood) { 

          best_params <- params 

          best_likelihood <- likelihood 

        } 

      } 

    } 

     

    return(best_params) 

  } 

   

  #  Initialize parameter ranges and intervals 

  initial_p_range <- seq(0.01, 0.99, by = 0.01) 

  initial_beta1_range <- seq(0.01 * x_bar, 0.99 * x_bar, by = 0.01 * x_bar) 

   

  #  Estimation of optimal parameters 

  best_params <- estimate_parameters(selected_datarain, initial_p_range, 

initial_beta1_range, x_bar) 

   

  # Discretize historical data 

  rain_discrete <- ifelse(selected_datarain < 2.5, 0, 1) 

   

  # Estimating the transfer probability matrix 

  transition_matrix <- matrix(0, nrow = 2, ncol = 2, dimnames = list(c(0, 1), c(0, 1))) 
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  for (i in 1:(length(rain_discrete) - 1)) { 

    from_state <- rain_discrete[i] 

    to_state <- rain_discrete[i + 1] 

    transition_matrix[from_state + 1, to_state + 1] <- transition_matrix[from_state + 1, 

to_state + 1] + 1 

  } 

   

  # Converting counts to probabilities 

  transition_matrix <- transition_matrix / rowSums(transition_matrix) 

   

  # Generate Markov chain time series 

  set.seed(123)  # Setting random seeds to ensure reproducibility 

  num_steps <- length(selected_datarain)  # Use the length of selected_datarain as the 

time step 

  rainfall_sequence <- numeric(num_steps) 

   

  current_state <- 0  # Initial state is non-rainfall 

   

  for (i in 1:num_steps) { 

    current_state <- sample(c(0, 1), 1, prob = transition_matrix[current_state + 1, ]) 

    rainfall_sequence[i] <- current_state 

  } 

   

  lambda1 <- best_params[2]  

  lambda2 <- best_params[3] 

   

  p <- best_params[1] 

   

  # Define a function to generate rainfall data 

  generate_rainfall <- function(rainfall_sequence, lambda1, lambda2, p) { 

    simulated_rainfall <- numeric(length(rainfall_sequence)) 

     

    for (i in seq_along(rainfall_sequence)) { 
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      if (rainfall_sequence[i] == 1) { 

        simulated_rainfall[i] <- rexp(1, rate = 1/lambda2) 

      } else { 

        simulated_rainfall[i] <- rexp(1, rate = 1/lambda1) 

      } 

    } 

     

    return(simulated_rainfall) 

  } 

   

  # Call function to generate simulated rainfall data 

  rainfall_sequence_data <- generate_rainfall(rainfall_sequence, lambda1, lambda2, p) 

   

  # Summation of rainfall_sequence_data 

  total_rainfall <- sum(rainfall_sequence_data) 

   

  # Summation of selected_datarain 

  total_obrainfall <- sum(selected_datarain) 

      

    sum_rainfall_sequence_data[i] <- 

sum(rainfall_sequence_data[start_index:end_index]) 

    sum_selected_datarain[i] <- sum(selected_datarain[start_index:end_index]) 

  } 

   

  # Calculating Relative Error 

  re_op <- abs(op - p) / op 

  re_mu1 <- abs(average_below_2.5 - lambda1) / average_below_2.5 

  re_mu2 <- abs(mean(selected_datarain[selected_datarain >= 2.5]) - lambda2) / 

mean(selected_datarain[selected_datarain >= 2.5]) 

   

  # Storing parameters and sums in lists 

  monthly_data[[b_value]] <- list( 

    month = b_value, 
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    x_bar = x_bar, 

    best_params = best_params, 

    total_rainfall = total_rainfall, 

    total_obrainfall = total_obrainfall, 

    transition_matrix = transition_matrix, 

    rmse = rmse, 

    mae = mae, 

    op = op, 

    mu1 = average_below_2.5, 

    mu2 = mean(selected_datarain[selected_datarain >= 2.5]), 

    re_op = re_op, 

    re_mu1 = re_mu1, 

    re_mu2 = re_mu2 

  ) 

 

# Output parameters, sums, transfer matrices, and RMSE for each month 

for (month_data in monthly_data) { 

  cat(paste("Month", month_data$month, ":\n")) 

  cat("Best Parameters:", month_data$best_params, "\n") 

  cat("Total Rainfall:", month_data$total_rainfall, "\n") 

  cat("Total_obrainfall:", month_data$total_obrainfall, "\n") 

  cat("Transition Matrix:\n") 

  print(month_data$transition_matrix) 

  cat("op:", month_data$op, "\n") 

  cat("mu1:", month_data$mu1, "\n") 

  cat("mu2:", month_data$mu2, "\n") 

  cat("\n") 

} 


