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ABSTRACT

In this study, we applied a stochastic rainfall model which is capable in
generating synthetic daily rainfall sequences that exhibit similar
characteristics to observed data, thereby assessing the amount of rainfall
over a specific period. The model utilized for this purpose is the Markov
Chain Mixing Index (MCME). This model integrates both rainfall
occurrence, represented by a first-order two-state Markov chain, and
rainfall distribution, described by a mixture index distribution. The
feasibility of the MCME model was evaluated using daily rainfall data
collected from 15 stations in Hong Kong over a 20-year record period
(2003-2022). The evaluation revealed that the proposed MCME model
adequately captures both the occurrence and quantity of rainfall across all
stations. Various statistical analysis were implemented to analyze the
rainfall data. In conclusion, the validation results indicate that while the
model effectively describes the characteristics of rainfall and able to

simulate the rainfall based on the parameters estimated.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

Rainfall significantly impacts human life and affects activities in agriculture and the
economy. In urban areas, rainfall exceeding drainage capacity can cause urban
flooding, directly affecting the lives of residents and leading to property losses for both
the state and individuals. It also triggers secondary disasters, such as landslides and
mudslides, further increasing overall losses. In rural areas, rainfall greatly influences
the growth of various types of crops. Moderate rainfall promotes crop growth, while
both insufficient and excessive rainfall can result in crop losses.

The advantage of stochastic rainfall simulators is that they not only compensate
for the lack of historical data but also provide the ability to synthesize rainfall events
from different time periods. This is critical for modeling extreme rainfall events that
may occur under various meteorological conditions and for assessing the flood
resilience of urban sewer systems. Additionally, these generators are more flexible in
adapting to different spatial requirements, thereby offering a broader range of more
accurate simulation results. This flexibility is valuable for scientists and engineers in
their applications.

Due to the uncertainty of climate change and the stochastic nature of rainfall,
scientists have endeavored to predict rainfall using various methods. However, there
is currently no highly reliable and effective method for predicting rainfall in a timely
and accurate manner.

In recent years, many researchers have turned to applying Markov chains to
model rainfall, with a common approach involving two key steps. In the first step, a
Markov chain generates the time series of rainfall occurrence (i.e., wet day or dry day),
providing a simple and effective means of preserving wet and dry periods. In the
second step, the amount of rainfall on a wet day is typically estimated using various
probability distributions. A significant number of researchers continue to utilize this
approach in an ongoing effort to enhance the effectiveness of the model.

A Markov chain represents a network of concepts and propositions utilized to
organize, describe, and explain our experiences through mathematical analysis of

natural processes. In the early 20th century, Markov discovered, through numerous



observational experiments, that the state obtained by the nth transition in the process
of state transitions of a system is related to the state of the previous (n-1) transition.
After extensive experiments and generalizations, it was concluded that for a system,
there exists a transfer probability during the transition from one state to another. This
transfer probability can be deduced based on one of its previous states, independent of
the original state of the system and the Markov process before this transfer.

Predicting rainfall serves as a crucial foundation for government decision-
making and provides essential information for disaster prevention departments. This,
in turn, helps mitigate threats to people’s lives and properties, fostering social stability.
Additionally, it aids water conservancy departments in making informed decisions to
address flooding and manage water conservancy facilities effectively. The data
generated supports municipal construction departments in developing urban drainage
facilities. Social enterprises, including insurance companies, can enhance the accuracy
of insurance rate calculations by leveraging weather disaster compensation data.
Furthermore, accurate rainfall prediction contributes to facilitating daily activities,
such as commuting, thereby playing a vital role in promoting regional economic
prosperity and environmental protection.

Forecasting rainfall is essential for government decision-making, especially in
disaster prevention. It provides crucial information that helps in reducing risks to
people's lives and properties, thereby promoting stability in society. Additionally, it
supports water conservancy departments in managing floods by guiding the operation
of water facilities. This data also assists municipal construction departments in creating
effective urban drainage systems. Moreover, rainfall forecasts aid social enterprises
like insurance companies in improving their calculations for weather-related
compensation. These accurate forecasts also contribute to everyday activities such as
commuting, ultimately boosting regional economic growth and protecting the

environment.

1.2 Research Objective
The research objectives for this study are:
1.To investigate the rainfall characteristics in Hong Kong.
2.To apply Markov chain-mixed exponential to model the rainfall in Hong

Kong.



3. To assess the performance of the Markov chain-mixed exponential for its

rainfall.

1.3 Study Scope

Hong Kong, officially known as the Hong Kong Special Administrative Region, is a
special administrative region of the People's Republic of China. Situated in the
southern part of China, it is an integral part of the Guangdong-Hong Kong-Macao
Greater Bay Area and is internationally recognized as a global city. Positioned on the
north coast of the South China Sea and on the east side of the Pearl River Estuary,
Hong Kong experiences a subtropical climate characterized by four distinct seasons.
The period from May to November is considered the windy season, while July to
September is particularly vulnerable to tropical cyclones.

On average, about 30 tropical cyclones impact the western part of the North
Pacific Ocean and the South China Sea annually, with approximately 15 of them
reaching typhoon strength or above. Hong Kong serves as a crucial corridor for both
the summer southwest monsoon and winter northeast monsoon currents in Asia, and
the region's rainfall is significantly influenced by these two types of monsoon air
masses.

Adverse weather conditions affecting Hong Kong include tropical cyclones,
strong winter and summer monsoon winds, monsoon troughs, and severe
thunderstorms, which often occur between April and September. The rainfall data used
in this study were obtained from the Hong Kong Observatory, specifically from 15
rainfall stations spanning the years 1993 to 2022.

In this study, we aim to analyze Hong Kong's rainfall patterns and develop a
rainfall model using the Markov Chain-Mixed Exponential Distribution. This effort
seeks to create a more advanced and accurate method for simulating rainfall,
specifically designed for practical applications. The model's development is
anticipated to provide more dependable hydrological information, ultimately

supporting better decision-making and planning in relevant fields.

1.4 Problem Statement
Accurate rainfall prediction can significantly benefit human life by providing
sufficient time to minimize negative impacts through measures such as technical

interventions for artificial rainfall. It can also be leveraged to bring positive benefits to



people's lives. For instance, in the design and management of urban sewers, crucial
hydrological information—such as rainfall amount and hourly rate—is essential for
modeling and determining the design parameters of the sewer system. Typically, these
models rely on historical data, especially daily rainfall data, for accurate hydrologic
simulations. However, in practice, historical rainfall records often encounter various
issues, such as insufficient length, incomplete data, and inadequate spatial coverage,
making it challenging to obtain reliable simulation results.

To address these challenges, rainfall stochastic simulation or stochastic rainfall
simulators become essential. These tools are widely used to generate a large number
of synthetic rainfall time series capable of accurately characterizing the physical and
statistical properties of rainfall processes observed at a specific location. By employing
these generators, engineers and water resource professionals can create more
comprehensive and reliable hydrologic models to support the design and management

of urban sewer systems.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Rainfall modeling, a crucial research area in hydrology and meteorology, has
witnessed extensive development and evolution over the years. In recent decades,
researchers have made significant strides in enhancing the application and accuracy of
statistical methods and techniques. In this chapter, we review the various models in

rainfall modelling.

2.2 Analysis of time series data

The analysis of time series data serves as the cornerstone of rainfall modeling. This
data comprises three main components: trend, seasonality, and residuals or white noise.
The trend reflects the slow change or direction of the record over time, providing the
foundation for subsequent modeling. On the other hand, seasonality examines cyclical
patterns occurring over a fixed period, such as the frequency of events in a given month
or season. Finally, residuals or white noise represent random variations that cannot be
explained by trends or seasonal components.

Commonly used models in the statistical modeling of time series data include
autoregressive (AR) models, moving average (MA) models, autoregressive moving
average (ARMA) models, and autoregressive integrated moving average (ARIMA)
models.

Zhang and Xia (2012), Arumugam and Karthik (2018), and Jale et al. (2019)

utilized Markov chains to generate time series in their respective studies.

2.3 Rainfall fitting models
Fitting a distribution to rainfall is a challenge due to the complexity of atmospheric
processes and the hydrologic cycle.

The common probability distribution used by the researchers included the
exponential, Gamma, lognormal, Weibull, and Poisson distributions. The exponential
distribution is often employed to describe the time between equally spaced

independent events, while the Gamma distribution is suitable for characterizing the



duration and intensity distribution of rainfall events. The lognormal distribution
accommodates the right skewness observed in rainfall data, and the Weibull
distribution is commonly applied when studying extreme rainfall events. Additionally,
for larger rainfall events, the lognormal distribution is a frequent choice, while the
Poisson distribution is appropriate for describing the counts of rainfall events
occurring over a specific period.

In a study by Shibabaw et al. (2022), a stochastic daily rainfall model was
developed, focusing on the spatial and temporal distribution of rainfall in Ethiopia.
The research utilized the Markov chain along with a combination of the Weibull
distribution, lognormal distribution, mixed exponential distribution, and Gamma
distribution to construct the rainfall model.

In certain cases, opting for a mixture of distributions is a reasonable choice as
it enables the simultaneous consideration of the impacts of multiple probability
distributions on the rainfall process. The selection of an appropriate distribution
involves model testing and parameter fitting, ensuring that the probability density
function of the chosen distribution closely aligns with the observed rainfall data.

2.4 Stochastic Rainfall Simulator

A stochastic rainfall simulator is a tool that combines time series and rainfall
distributions to synthesize stochastic rainfall events with trends and characteristics
similar to the observed data. By assuming that the synthesized time series shares the
same trend as the observed series and that the rainfall distribution is a highly fitting
representation, the simulator can generate synthesized data closely resembling actual

rainfall events.

2.4.1  Markov Chain-Mixed Exponential Model (MCME)

The Markov Chain-Mixed Exponential Model (MCME) is a composite model that
integrates Markov chains and mixed exponential distributions to comprehensively
characterize two key aspects of the rainfall process: the occurrence of rainy days and
the distribution of daily rainfall. Through in-depth analysis of historical rainfall data,
the model reveals the state transfer law between dry and wet days using Markov chains.
Simultaneously, it more accurately portrays the probability density function of daily
rainfall by employing the mixed exponential distribution.



Successive studies by Hussain (2008), Yusof et al. (2015), Senthamarai
Kannan and Jawahar Farook (2015), El Outayek (2020), and Berhane et al. (2020)
have employed MCME models to simulate rainfall in distinct regions, all yielding

improved results.

2.4.2  Advantages of Stochastic Rainfall Simulator

The stochastic rainfall simulator, as a simulation tool, offers numerous advantages in
the fields of hydrology and meteorology. It not only generates a substantial amount of
rich data in a short period, thereby enhancing the estimation of the probability of
extreme events, but also proves useful in simulating scenarios with missing data.
Furthermore, the stochastic rainfall simulator can be applied for spatial interpolation,
enabling the simulation of rainfall events at various geographic locations with the
added flexibility of temporal downscaling. Owing to its capability to generate diverse
data, the stochastic rainfall simulator finds wide applications in areas such as water
resource management, flood risk assessment, urban planning, and meteorological
studies.

In summary, academic modeling of rainfall not only enhances the
comprehension of rainfall processes but also establishes a scientific foundation for the
fields of hydrology and meteorology. The selection and parameter estimation of these
models hold significant practical implications for water resource management, flood
risk assessment, and climate change impact studies. Thus, the interdisciplinary
application of statistics, probability theory, and hydrology remains particularly crucial

in this research domain.

2.5 Evaluation of models
In modeling daily and extreme rainfall events, researchers have extensively employed
various stochastic weather generators, comparing their performance. However, a
consistent consensus on the superior type of stochastic weather generator across
different locations is yet to be established. These variations may be influenced by the
meteorological and hydrological characteristics specific to each study site.

Many scholars often resort to mathematical methods to discern differences
between observed and model-generated data. Table 2.5.1 below outlines some of the

methods employed by researchers for model evaluation at different sites.



Table 2.5.1: Different assessment methods used by by past researchers

Author Mathematical methods Plot

Hussain, A. (2008). MAE (Mean Absolute Error) |Chart box plots
RMSE (Root Mean Squared  |Line plots
Error) Histograms

El Outayek, S. (2020). RMSE(Root Mean Squared Box plots
Error)

Berhane, T.. Shibabaw, N., |AE (Absolute Error) Bar charts

Awgichew, G., & Kebede,

T. (2020).

Shibabaw, N., Berhane, T.. |AE (Absolute Error) Line plots

Kebede, T., & Walelign,

A (2022).

The application of these methods at various locations has equipped researchers
with a diverse set of intuitive and comprehensive tools for assessing the simulation
effectiveness of stochastic weather generators across different geographic
environments. Future studies can explore more advanced assessment methods to

further enhance our understanding of the performance of random weather generators.



CHAPTER 3

METHODOLOGY

3.1 Rainfall data processing

In academic research, the dataset's quality is fundamental in shaping the reliability of
the final model and the validity of research outcomes. A dataset characterized by
reliability, validity, quality, and consistency serves as a cornerstone supporting
academic research endeavors and constructing robust models. This ensures that the
conclusions drawn from the research hold credibility both within academic realms and
practical applications. Before cleaning the data, it is essential to thoroughly understand
the dataset's context, structure, and features through extensive literature review and
dataset characterization. Handling missing values is a critical step in data
preprocessing, necessitating a thoughtful strategy to manage them, which may involve
removal, interpolation, or imputation with mean or median values. Eliminating
duplicate records from the dataset ensures data uniqueness, while addressing outliers
using statistical methods or domain knowledge maintains data consistency and quality.
Standardizing data formats and normalizing numerical values enhance data
consistency, making subsequent analysis and modeling more reliable. Error correction,
involving rectifying spelling mistakes, standardizing naming conventions, and
resolving other accuracy-affecting issues, is imperative for maintaining dataset
accuracy, particularly for scholarly research. Documenting each step of the data
cleaning process and its effects enables others to replicate and understand the
procedure. Visual analysis through visualization tools aids in comprehending data
distributions, relationships, and trends, providing additional support for academic

research endeavors.

3.1.1 Boxplot

Figure 3.1.1 provides a detailed characterization of the boxplot diagram, offering
insights into how it represents accuracy, robustness, and variability in estimating
parameters from the generated rainfall series. This intuitive representation enables a
swift understanding of central tendencies and potential outliers, allowing for a concise

assessment of the reliability of the parameter estimates.
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Figure 3.1.1: Characteristics of a Boxplot

3.2 The Markov Chain-Mixed Exponential Model

3.2.1  The Occurrence Process

In previous studies, researchers have often recommended the use of Markov chains for
modeling daily rainfall (Chin, 1977; Roldan and Woolhiser, 1982). These studies
simplify the observed rainfall data series as a sequence of two states: dry or wet. The
correlation between wet and dry days on consecutive days is modeled using a first-
order Markov Chain denoted by 0 or 1, representing dry and wet days, respectively.
We distinguish at 2.5 mm; when the rainfall in a day is less than 2.5 mm, it is defined
as a dry day (denoted by 0), and when it is greater than or equal to 2.5 mm, it is defined
as a wet day (denoted by 1). (Note: According to China's meteorological operations,

light rain is defined as rainfall less than or equal to 2.5 mm in 1 hour.)

v - 0if the n'® day is dry
" |1if the nt* day is wet (3.1)

Hence, the transition probabilities of the first-order Markov chain are defined

as follows:
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PXni1=j [Xn=1, Xn-1= in-1, ..., Xo=i0) = p (i, j) (3.2)

3.2.2  The Rainfall Amount
Mixed exponential distribution is commonly used to fit the rainfall data

(citation). The mixed exponential distribution is described as follows,

p =X 1-p =
(x) =—ek1 + ek
/ M1 U2 (3.3)

for
x>0,1>p>0,u0>0,u,>0.

Where u, and u, are the means of two exponential distributions, p represents
the mixing probability, dictating the allocation of weights to the two exponential

distributions.

3.2.2.1 Estimation of Parameters through the Method of Maximum Likelihood
The parameters of the mixed exponential distribution are determined using the
maximum likelihood method. To solve for these parameters, the log-likelihood

function is defined as follows:

= (3.4)

3.2.3  Parameter Optimization Techniques

Optimal solutions for maximizing the log-likelihood function can be achieved through
an iterative optimization technique. The parameter estimates are obtained by solving
the log-likelihood equation, as described by:

H Uz (3.5)
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The optimal solution for these iterative equations was obtained using a method
recommended by Nguyen and Mayabi (1990), known for its fast convergence rate.
Initial values can be assigned using the method of moments. However, to achieve a
fast convergence rate, seven initial estimates for the three parameters are selected. The
initial values for p and p, range from 0.01 to 0.99 at intervals of 0.01, and from 0.01

X to 0.99 x at intervals of 0.01 X, respectively. For a given pair of p and u,, the

corresponding u, is calculated as u, =%. The optimal solution for the

parameters is determined as the one providing the highest value among the iterations

of all likelihood functions.

3.3 Simulation: A Rainfall Generator

An R language program was developed to implement our rainfall simulation. The
simulation involves generating daily rainfall using the MCME model for each station
and each month of data. The rainfall simulation model operates as follows:

For a specific month at any site, the initial step of the model involves
constructing a Markov transfer matrix for dry and wet days within that month.
Subsequently, a time series of the same length is generated based on this matrix.

The second part of the model consists of constructing a mixed exponential
model for the rainfall data of the same month. The time series generated in the first

part is then input into the mixed exponential model to simulate rainfall data.
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J

Figure 3.3.1: Simulation process

34 MCME Model Evaluation

Monthly rainfall sequences from 15 sites were employed to assess the performance of
the MCME model. The complete 20-year daily rainfall series was utilized to calculate
MCME model parameters, while the existing model parameters were employed to
generate daily rainfall for the same 20-year duration. The observed rainfall will be
compared with the generated rainfall. This comparative analysis was conducted on
monthly basis. However, for the month of February, the analysis was not further
processed as the rainfall totals for February were found to be unaffected by leap year

versus non-leap year.

3.4.1 Relative Error
Relative Error (RE) is a metric widely employed in measurement science and

engineering to quantify the disparity between actual observations and theoretical or
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true values. It was introduced to address the inherent bias of absolute error for datasets
of varying magnitudes, offering a standardized method for evaluating accuracy in
diverse contexts.

The mathematical expression for the relative error is given below:
— A 0,

where § is actual relative error, usually given in percentage, A is absolute error, L is
true value.

Among other considerations, the use of absolute values ensures that the relative
error is non-negative and is expressed as a percentage, allowing for comparisons across
different problem domains. This metric serves not only to evaluate the accuracy of an
experiment or measurement but also to facilitate a quantitative analysis of whether the
measurement tends to overestimate or underestimate the true value.

Relative error holds significance in scientific research, laboratory testing, and
engineering design as it plays a crucial role in determining the reliability and accuracy
of measurements. In both academic and industrial research, assessing the confidence
and accuracy of results is paramount for ensuring experimental reproducibility and
robust engineering design. Therefore, as a standardized assessment tool, relative error
contributes to elevating confidence levels in the interpretation and application of

measured data.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Data Description
The rainfall data were obtained from the Hong Kong Observatory. Fifteen rainfall
observation sites with over 20 years of data were selected, and rainfall data spanning
a total of 20 years (from 2003 to 2022) were utilized. Table 4.1.1 shows the geographic
coordinates of the sites and Characteristics. All rainfall observation sites experienced
data loss within 5%, with 12 sites having data loss within 2%. Therefore, we
considered the data to have minimal impact on the results. Figure 4.1.1 shows the
location of each rainfall station from the map. Table 4.1.2 presents descriptive statistics
for data from all rainfall stations, providing a comprehensive overview of the dataset.
We defined a day with less than 2.5 mm of rainfall as a dry day. Given the
overall high percentage of dry days, we uniformly treated all days with missing data
as having 0 rainfall.

Table 4.1.1: List of Rainfall Stations with Geographical Coordinates and
Characteristics

Location Missing .
Automatic Weather Station Latitude Longitude data Missing  Wet Pry
data(%) day day
N E day)

1 |Cheung Chau 22°12'04" 114°01'36" 55 0.753% 1437 5867
2 |Ching Pak House(Tsing Yi) 22°20'53" 114°06'33" 10 0.137% 1582 5722
3 |King's Park 22°18'43" 114°10°22" 7 0.096% 1682 5622
4 |Lau Fau Shan 22°28'08" 113°59°'01" 33 0.452% 1479 5825
5 |Pak Tam Chung (Tsak Yue Wu) 22°24'10" 114°19°23" 75 1.027% 1698 5606
6 |ShaTin 22°24'09" 114°12°36" 48 0.657% 1712 5592
7 |Shek Kong 22°26'10" 114°05'05" 124 1.698% 1572 5732
8 |Ta Kwu Ling 22°31'43" 114°09°24" 21 0.288% 1629 5675
9 |Tai Mei Tuk 22°28'31" 114°14°15" 328 4.491% 1472 5832
10 |Tai Mo Shan 22°24'38" 114°07°28" 202 2.766% 1979 5323
11 |Tate's Cairn 22°21'28" 114°13'04" 117 1.602% 1910 5394
12 |Tseung Kwan O 22°18'57" 11471520 85 1.164% 1767 5537
13 |Waglan Island 22°10'56" 114°18'12" 235 3.217% 1236 6068
14 |Hong Kong Observatory 22°18'07" 114°10°27" 0 0.000% 1687 5617
15 |Hong Kong International Airport |22°18'34" [113°55'19" 0| 0.000% 1478 5826
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Figure 4.1.1: The location of the rainfall stations sites

Table 4.1.2: Descriptive statistics for data from all rainfall stations

Automatic Weather Station mean std max 01 median Q3
Cheung Chau 45918 15.5028 215 0] 0 0.5
Ching Pak House(Tsing Yi) 5.2769| 17.4925 362 0 0 1
King's Park 6.2783( 20.3638 324 0] 0 1.5
Lau Fau Shan 4.2885( 13.9991 226.5 0 0 1
Pak Tam Chung (Tsak Yue Wu) 6.1835( 20.2235 339 0 0 1.5
Sha Tin 6.3830( 20.7378 347 ] 0 1.5
Shek Kong 5.4140( 19.0490 414.5 0 0 1
Ta Kwu Ling 5.3723( 17.3029 340.5 0] 0 1.5
Tai Mei Tuk 4.6816( 16.2394 307.5 0 0 1
Tai Mo Shan 6.4370( 19.2266 375 0] 0.5 3
Tate's Cairn 6.8782( 209357 362 0 0 2.5
Tseung Kwan O 6.2073| 19.3270 329 0 0 2
Waglan Island 3.3102( 11.7302 198 0 0 0.5
Hong Kong Observatory 6.3912| 20.5920 329.7 0 0 1.7
Hong Kong International Airport 5.0803| 17.3044 337.5 0 0 0.8
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Figure 4.1.2: Box plots of annual rainfall at 15 rainfall stations
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Figure 4.1.3: Box plot of monthly rainfall at each rainfall station over the last 20
years (2003-2022)
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From the monthly rainfall box plots of the fifteen stations, it is evident that
Hong Kong experiences heavy rainfall from May to September, with less rainfall in
the remaining months. This pattern aligns well with the description of Hong Kong's

climate provided by the Hong Kong Observatory.

Table 4.1.3: Comparison of total values for February with and without leap years

Cheung Chau Ching Pak House(Tsing Yi) King's Park
ALL Excluding Relative ALL Excluding Relative ALL Excluding Relative
leap years  Error leap years  Error leap years  Error
mean | 38.8000 39.4667 1.72% | 35.3250 34.0667 3.56% | 41.8300 41.3333 1.19%
std | 40.6950 44.7882 33.6598 37.2773 39.8426 44.7120
Lau Fau Shan Pak Tam Chung (Tsak Yue Wu) Sha Tin
ALL Excluding Relative ALL Excluding Relative ALL Excluding Relative
leap years  Error leap years  Error leap years Error
mean | 38.8750 38.3000 1.48% | 39.8100 36.5800 8.11% | 41.2500 39.6333 3.92%
std 37.7177 43.0855 42.2463 47.3814 42.3658 48.3964
Shek Kong Ta Kwu Ling Tai Mei Tuk
ALL Excluding Relative ALL Excluding Relative ALL Excluding Relative
leap years  Error leap years  Error leap years Error
mean | 38.2250 37.9667 0.68% | 37.3250 36.2667 2.84% | 29.1500 27.6667 = 5.09%
std | 37.1398 42.2589 36.2823  41.5238 39.0391 43.2646
Tai Mo Shan Tate's Cairn Tseung Kwan O
ALL Excluding Relative ALL Excluding Relative ALL Excluding Relative
leap years Error leap years Error leap years Error
mean | 50.2000 48.4000 3.59% | 47.4500 47.0333 0.88% | 44.0000 43.7667 0.53%
std 34.9723  38.5557 37.6400 42.0632 40.5370  45.8828
Waglan Island Hong Kong Observatory Hong Kong International Airport
ALL Excluding Relative ALL Excluding Relative ALL Excluding Relative
leap years  Error leap years  Error leap years Error
mean | 29.1250 30.8333 5.87% | 41.3450 40.9000 1.08% | 43.7500 44.0400 = 0.66%
std 26.3063  29.6775 40.3087  44.9437 42.2036  48.0013

In Table 4.1.3, when comparing the totals for February in leap years to
February in non-leap years, the difference is not significant, and therefore, no special
treatment is applied.

Overall, the bins are relatively long, signifying a substantial interquartile range
(IQR). A lengthy box indicates a large variation in the middle 50% of the range,
suggesting that the data is widely spread.

Similarly, the whiskers are relatively long, depicting the overall spread of the
data. Longer whiskers, reaching the maximum and minimum values, suggest increased

dispersion and a wider range of numerical variation.
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The presence of outlier in a box plot refers to data points that significantly
deviate from the box and whiskers. If outlier are observed, it indicates the presence of

extreme values in the data, contributing to an overall increase in dispersion.

4.2 Performance of mixed exponential distributions

After parameter fitting, we employed Relative Error (RE) to assess the consistency of
the fitted parameters with the observed parameters of the mixed exponential
distribution model. This assessment aims to compare the relative difference between
the fitted parameters and the actual observed parameters, and is quantified by the RE.
The calculation of RE is presented as a percentage, and fitting results are deemed
excellent when the RE is less than 10%, highlighted in bold to emphasize this
superiority.

Referring to the Table 4.2.1, the p-value, u; and u, in the fitted parameters
represent the percentage of rainfall and the mean of the rainfall sizes, respectively. The
results indicate that the fitted model satisfactorily describes the proportion of rainfall
(p-value). However, there is a degree of underfitting in revealing the mean values of
large and small rainfalls (u; and u,). Specifically, the mixed exponential distribution
model exhibits relatively low fit in terms of rainfall size, suggesting limitations in
modeling the rainfall characteristics of the study area.

This finding poses challenges to the applicability of the model, especially in
accurately simulating rainfall intensity. It provides valuable insights for future model
improvements or consideration of alternative distribution forms to better capture the
observed data characteristics. This academic assessment serves as useful guidance for

further model refinement and optimization.
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Table 4.2.1: Comparison of the parameters of the mixing exponential distribution

(@) Cheung Chau
Month op
Jan 0.9435
Feb 0.9062
Mar 0.8677
Apr 0.8217
May 0.7161
Jun 0.5917
Jul 0.6694
Aug 0.6177
Sep 0.7500
Oct 0.9016
MNov 0.9167
Dec 0.9419

0.38
0.98
0.96
0.92
0.81
0.63
0.73
0.68
0.85
0.98
0.98
0.12

re_p
59.73%

8.14%
10.63%
11.97%
13.11%

6.48%

9.06%
10.08%
13.33%

8.69%

6.91%
87.26%

(b) Ching Pak House (Tsing Yi)

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9306
0.9062
0.8758
0.8133
0.6968
0.5567
0.6161
0.5597
0.7100
0.8935
0.9217
0.9274

(c) King's Park

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9258
0.8991
0.8661
0.8150
0.6726
0.5350
0.5968
0.5452
0.6750
0.8823
0.9050
0.9258

P

0.99
0.98
0.96
0.92
0.76
0.58
0.66

0.6
0.79
0.98
0.48
0.19

0.99
0.97
0.95
0.91
0.73
0.55
0.64

0.6
0.74
0.96
0.98

0.3

re_p
6.38%

8.14%
9.61%
13.11%
9.07%
4.19%
7.12%
7.20%
11.27%
9.68%
47.92%
79.51%

re_op
6.93%
7.88%
9.68%
11.66%
8.54%
2.80%
7.24%
10.06%
9.63%
8.81%
8.29%
67.60%

ol

0.0701
0.1104
0.1403
0.1379
0.1351
0.2113
0.1819
0.1841
0.1389
0.0680
0.0618
0.0591

oy

0.0676
0.1113
0.1335
0.1393
0.2153
0.2560
0.2212
0.1758
0.1491
0.0442
0.0669
0.0539

ol

0.0740
0.1368
0.1538
0.1798
0.2182
0.2673
0.2414
0.1828
0.2007
0.1247
0.1013
0.0676

Ha re_fl

0.8144 1061.95%
0.7966 621.88%
0.6277 347.32%
0.3453 150.31%
0.1674  23.90%
0.2412 14.18%
0.2343 28.81%
0.1868 1.49%
0.2303 65.84%
0.4312 534.27%
0.9957 1510.68%
0.5229 785.21%

Hq re_[

1.0059 1388.26%
0.8753 686.24%
0.5737 329.67%
0.3457 148.07%
0.1928 10.42%
0.2866 11.95%
0.268%8 21.50%
0.2238 27.31%
0.2135 43.20%
0.4190 847.38%
0.8753 1208.26%
0.6283 1065.45%

Ha re_fl

1.0034 1255.20%
0.7552 451.97%
0.5346 247.53%
0.3326 85.02%
0.1973 9.57%
0.3179 18.93%
0.2101 12.95%
0.1405 23.18%
0.1928 3.94%
0.2686 115.44%
0.6817 573.02%
0.7475 1005.76%

o Hz
13.4000
13.5755
12.6402
18.7243
29.1506
29.2327
23.2561
24,1392
22.6167
25.1557
12.4500

8.1389

ol
14.3605
12.2547
14.9870
17.9107
31.3032
31.9981
22.9832
25.1905
24.1695
24.2273
10.5000

8.0556

o Hz
12.7370
13.4579
14.9771
19.1829
29.6882
33.8738
25.6944
30.6599
29.2503
37.0890
15.7228

9.3326

Ha
0.5741
7.1613
6.6064
9.8471
18.6005
25.5408
17.3931
17.8166
13.7869
13.1701

5.4963

0.3395

Ha
7.4705
6.5419
7.6209
9.9393
23.7534
29.2961
19.1271
21.2736
16.2567
13.9733

0.6458

0.4102

Ha
2.6916
6.5405
7.2210
10.6572
22.8450
31.4759
20.7178
24.4325
22.3246
22.5766

7.3868

0.5052

re_Hz
95.72%
47.25%
47.73%
47.41%
36.19%
12.63%
25.21%
26.19%
39.04%
47.65%
55.85%
95.83%

re_[Hz

47.98%
46.62%
49,15%
44.51%
24.12%

8.44%
16.78%
15.55%
32.74%
42.32%
93.85%
94.91%

re_Hz

78.87%
51.40%
51.79%
44 44%
23.05%

7.08%
19.37%
20.31%
23.68%
39.13%
53.02%
94.59%



(d) Lau Fau Shan

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

(e) Pak Tam Chung (Tsak Yue Wu)

op
0.9274
0.8885
0.8694
0.8100
0.7129
0.5950
0.6694
0.6097
0.7367
0.9129
0.9100
0.9323

Month op
Jan 0.9210
Feb 0.8850
Mar 0.8403
Apr 0.7800
May 0.6258
Jun 0.5300
Jul 0.6048
Aug 0.6065
Sep 0.7067
Oct 0.8855
MNov 0.9000
Dec 0.9306

(f) Sha Tin

Month op
Jan 0.9242
Feb 0.8885
Mar 0.8516
Apr 0.7983
May 0.6468
Jun 0.5250
Jul 0.6016
Aug 0.5823
Sep 0.6950
Oct 0.8710
MNov 0.8883
Dec 0.9210

p

0.99
0.97
0.96
0.92
0.78
0.64
0.73
0.65
0.82
0.98
0.98
0.33

0.98
0.97
0.93
0.87
0.66
0.55
0.65
0.64
0.81
0.96
0.98
0.39

0.99
0.97
0.94
0.88
0.69
0.54
0.64
0.61
0.78
0.96
0.97

0.4

re_op
6.75%
9.17%
10.43%
13.58%
9.41%
7.56%
9.06%
6.61%
11.31%
7.35%
7.69%
64.60%

re_op
6.41%
9.61%
10.67%
11.54%
5.46%
3.77%
7.47%
5.53%
14.62%
8.42%
8.89%
58.09%

re_op
7.12%
9.17%
10.38%
10.23%
6.68%
2.86%
6.38%
4.76%
12.23%
10.22%
9.19%
56.57%

ol

0.0696
0.1155
0.1429
0.1389
0.1561
0.1751
0.2024
0.2103
0.1697
0.0424
0.0723
0.0554

ol

0.0841
0.1230
0.2054
0.1774
0.2075
0.2248
0.1747
0.2194
0.1509
0.1084
0.0796
0.0849

ol

0.0785
0.1404
0.1742
0.1962
0.2244
0.3206
0.2520
0.2299
0.1667
0.0880
0.1107
0.0674

251
0.9968
0.8119
0.5431
0.3773
0.2267
0.2192
0.2686
0.2713
0.2655
0.5256
0.9478
0.7776

K
0.9126
0.7892
0.4799
0.3285
0.2343
0.3226
0.2141
0.2343
0.1607
0.3103
0.6457
0.8191

251
0.9769
0.7593
0.4850
0.3266
0.2206
0.3215
0.2271
0.2670
0.1711
0.2606
0.6527
0.8287

re_f1
1332.83%
602.72%
280.15%
171.66%
45.25%
25.21%
32.72%
29.01%
56.49%
1139.55%
1210.10%
1304.59%

re_H1
985.63%
541.59%
133.67%
85.25%
12.93%
43,49%
22.58%
6.79%
6.43%
186.27%
710.86%
864.59%

re_f{l
1143.96%
440.66%
178.35%
66.43%
1.70%
0.26%
9.87%
16.14%
2.63%
196.28%
489.60%
1129.10%

o Hz
13.8778
11.4206
15.0370
15.9561
25.9382
26.8045
19.9024
22.8430
19.6930
23.6944
12.1111
10.8333

ol
14.2143
11.3031
14,7374
18.0379
30.9591
34.0674
26.8245
29.4324
27.0199
33.0282
16.2750
10.7907

o Hz
13.3617
11.9762
15.3424
19.4669
30.8196
33.4860
28.1275
31.6390
27.6612
33.0688
14.5000

9.8061

Ha
7.8546
6.0461
8.0241
8.8224
18.7183
22.3341
14.8103
18.9964
12.3489
11.8950

6.0921

0.5390

Ha
6.3483
6.0013
8.3988
11.2195
26.1691
32.0578
21.9139
24.9579
15.7394
19.6007

9.0697

0.5759

Ha
7.2111
6.0880
8.1143
11.5673
25.4969
31.2923
23.7213
28.3751
18.1474
16.4981

7.7084

0.5907

28

re_Hz
43.40%
47.06%
46.64%
44.71%
27.83%
16.68%
25.59%
16.84%
37.29%
49.80%
49.70%
95.02%

re_Hz

55.34%
46.91%
43.01%
37.80%
15.47%

5.90%
18.31%
15.20%
41.75%
40.65%
A44.27%
94.66%

re_Hz

46.03%
49.16%
47.11%
40.58%
17.27%

6.55%
15.67%
10.32%
34.39%
50.11%
46.84%
93.98%



(9) Shek Kong
Month op
Jan 0.9242
Feb 0.9027
Mar 0.8677
Apr 0.8150
May 0.6758
Jun 0.5467
Jul 0.6097
Aug 0.6306
Sep 0.7167
Oct 0.8952
MNov 0.9083
Dec 0.9306

(h) Ta Kwu Ling

Month op
Jan 0.9306
Feb 0.8991
Mar 0.8677
Apr 0.8117
May 0.6645
Jun 0.5633
Jul 0.5887
Aug 0.5758
Sep 0.7100
Oct 0.8919
MNov 0.9017
Dec 0.9258

(i) Tai Mei Tuk

Month op
Jan 0.9419
Feb 0.9221
Mar 0.8839
Apr 0.8083
May 0.6903
Jun 0.5817
Jul 0.6500
Aug 0.6323
Sep 0.7350
Oct 0.8935
MNov 0.9050
Dec 0.9435

0.99
0.98
0.96
0.91
0.74
0.57
0.66
0.68
0.77
0.97
0.98
0.38

0.99
0.97
0.96
0.91
0.74
0.59
0.64
0.61
0.79
0.98
0.98
0.33

0.37
0.99
0.97

0.9
0.78
0.62
0.72
0.69
0.85
0.97
0.98

0.1

re_op
7.12%
8.57%
10.63%
11.66%
9.50%
4.27%
8.25%
7.83%
7.44%
8.36%
7.89%
59.17%

re_op
6.38%
7.88%
10.63%
12.11%
11.36%
4.73%
8.71%
5.94%
11.27%
9.87%
8.69%
64.36%

re_op
60.72%
7.36%
9.74%
11.34%
12.99%
6.59%
10.77%
9.13%
15.65%
8.56%
8.29%
89.40%

ol

0.0663
0.1176
0.1487
0.1892
0.1874
0.2561
0.2063
0.1829
0.1512
0.0613
0.0596
0.0537

ol

0.0763
0.1309
0.1524
0.1674
0.1699
0.2944
0.2151
0.2045
0.1491
0.0778
0.0804
0.0497

ol

0.0745
0.1468
0.1679
0.1629
0.1717
0.1777
0.1935
0.2143
0.1156
0.0749
0.0783
0.0650

251
0.9769
0.8119
0.5220
0.3293
0.1909
0.2673
0.1976
0.2108
0.2397
0.3554
0.9857
0.8144

K
1.0146
0.8456
0.5802
0.3323
0.1744
0.2622
0.1938
0.2430
0.2107
0.3109
0.8357
0.7760

251
0.8056
1.0215
0.6241
0.4024
0.1704
0.2335
0.1780
0.1976
0.2222
0.3723
0.9849
0.4790

re_f1
1373.12%
590.08%
251.05%
74.10%
1.91%
4.37%
4.25%
15.26%
58.54%
480.09%
1552.90%
1415.75%

re_H1
1230.49%
545.96%
280.64%
98.58%
2.63%
10.94%
9.87%
18.81%
41.32%
299.78%
939.38%
1462.96%

re_f{l
981.50%
595.72%
271.73%
147.01%
0.76%
31.41%
8.05%
7.80%
92.17%
396.99%
1158.40%
637.46%

o Hz
13.51006
12.8091
15.4695
18.9459
29.0572
29.1728
24.9876
28.2205
27.8118
30.2923
11.4909
11.1395

ol
14.0581
11.9298
13.6220
18.8850
25.6514
29.6412
23.2569
28.3593
23.8477
31.3209
12.5424

9.9457

o Hz
12.8056
11.5114
14.0764
15.4609
27.1328
27.6554
25.0645
20.4934
20.6447
28.5152
10.9035

7.4857

Ha
7.2111
7.2995
8.3980
9.9549
21.8120
26.1222
19.2312
22.8516
20.7622
16.7034

5.6629

0.5741

Ha
7.0203
5.8038
6.9790
10.6024
17.2105
26.4850
17.7506
24.7097
15.5780
15.0759

6.6605

0.5353

Ha
0.5626
6.2733
7.6253
8.5814
17.9274
23.7281
17.3311
20.5990
11.5402
16.5642

5.5838

0.3057

29

re_Hz
46.63%
43.01%
45.71%
47.46%
24.93%
10.46%
23.04%
19.02%
25.35%
44.86%
50.72%
94.85%

re_Hz
50.06%
51.35%
48.77%
43.86%
32.91%
10.65%
23.68%
12.87%
34.68%
51.87%
46.90%
94.62%

re_Hz
95.61%
45.50%
45.83%
44.50%
33.93%
14.20%
30.85%
22.25%
44.10%
41.91%
48.79%
95.92%



(j) Tai Mo Shan

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.0048
0.8177
0.7774
0.7083
0.5919
0.5300
0.5629
0.5419
0.6583
0.8661
0.8767
0.9161

(k) Tate's Cairn

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

(I) Tseung Kwan O

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9210
0.8531
0.8113
0.7500
0.5952
0.5200
0.5661
0.5565
0.6783
0.8403
0.8617
0.9145

op
0.9226
0.8903
0.8242
0.7683
0.6419
0.5117
0.6065
0.5581
0.6983
0.8613
0.8933
0.9274

0.97
0.89
0.82
0.74

0.6
0.54
0.58
0.56

0.7
0.94
0.95

0.4

0.98
0.93
0.89
0.81
0.62
0.53
0.59
0.58
0.74
0.94
0.95
0.47

0.75
0.97
0.91
0.85
0.69
0.53
0.65
0.59
0.77
0.95
0.97
0.24

re_op
7.20%
8.84%
5.48%
4.47%
1.36%
1.89%
3.04%
3.33%
6.33%
8.53%
8.37%
56.34%

re_op
6.41%
9.01%
9.70%
8.00%
4.17%
1.92%
4.22%
4.23%
9.09%
11.86%
10.25%
48.61%

re_op
18.71%
8.96%
10.41%
10.63%
7.49%
3.58%
7.18%
5.72%
10.26%
10.30%
8.58%
74.12%

ol

0.2959
0.4491
0.5290
0.4894
0.5054
0.4796
0.4040
0.3720
0.2987
0.2477
0.2795
0.1831

ol

0.1848
0.3122
0.3559
0.2811
0.2995
0.3205
0.2650
0.2290
0.1978
0.1296
0.1615
0.1243

ol

0.0857
0.2018
0.2270
0.1855
0.2073
0.2524
0.2194
0.1734
0.1635
0.0946
0.0849
0.0748

251
0.8852
0.7108
0.5806
0.5198
0.5496
0.5557
0.3619
0.4179
0.2715
0.3194
0.8332
0.8199

K
0.9042
0.7055
0.5335
0.3634
0.3419
0.3518
0.2546
0.2713
0.1887
0.2422
0.5759
0.8663

251
0.9716
0.7165
0.4738
0.3335
0.2070
0.3248
0.2215
0.2420
0.1799
0.3225
0.5895
0.6898

re_f1
199.14%
58.26%
9.74%
6.22%
8.73%
15.88%
10.42%
12.34%
9.12%
28.94%
198.12%
347.82%

re_H1
389.40%
125.93%
49.92%
29.27%
14.16%
9.77%
3.89%
18.46%
4.61%
86.96%
256.57%
596.69%

re_f{l
1034.24%
255.05%
108.72%
79.83%
0.12%
28.67%
0.97%
39.53%
10.05%
240.99%
594.46%
822.42%

o Hz
10.4746
7.7330
11.8804
15.0143
26.2016
29.0195
27.0793
29.9718
25.9098
28.2169
9.0878
7.8750

ol
13.1020

9.6205
11.3205
17.3267
27.7072
36.3003
29.0000
30.2909
28.9093
29.6560
13.3494

8.9057

o Hz
11.6563
12.5565
13.9083
17.3813
28.5383
32.9932
27.8074
27.1551
29.4420
25.2442
17.1172

8.6444

Ha
5.6224
4.7716
9.1291
12.7012
24,7483
28.0905
24.9074
28.6152
21.5689
17.4750

4.5119

0.5673

Ha
6.0927
5.1620
6.8797
12.1766
25.2145
34.2221
25.4032
27.2017
21.1964
16.0592

6.7244

0.6272

Ha
0.8382
6.7881
7.9071
10.8046
22.6413
31.0833
23.2643
23.5587
20.5047
12.7421

8.5417

0.4590

30

re_Hz
46.32%
38.30%
23.16%
15.41%
5.55%
3.20%
8.02%
4.53%
16.75%
38.07%
50.35%
92.80%

re_Hz

53.50%
46.34%
39.23%
29.72%

9.00%

5.73%
12.40%
10.20%
26.68%
45.85%
49.63%
92.96%

re_Hz

92.81%
45.94%
43.15%
37.84%
20.66%

5.79%
16.34%
13.24%
30.36%
49.52%
50.10%
94.69%



(m) Waglan Island

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9500
0.9062
0.8790
0.8350
0.7419
0.6817
0.7371
0.6581
0.7917
0.9129
0.9283
0.9516

0.21
0.99
0.96
0.93
0.82
0.77
0.84
0.74
0.89
0.98
0.99
0.11

re_op
77.89%
9.25%
9.21%
11.38%
10.52%
12.96%
13.96%
12.45%
12.42%
7.35%
6.64%
88.44%

(n) Hong Kong Observatory

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9323
0.9097
0.8629
0.8150
0.6758
0.5283
0.5903
0.5419
0.6800
0.8726
0.8967
0.9306

p

0.99
0.98
0.95

0.9
0.73
0.54
0.62
0.56
0.74
0.97
0.97

0.3

re_op
6.19%
7.72%
10.09%
10.43%
8.02%
2.21%
5.03%
3.33%
8.82%
11.16%
8.18%
67.76%

ol

0.0662
0.1299
0.1844
0.1397
0.1696
0.1369
0.1740
0.1961
0.1368
0.0680
0.0548
0.0746

ol

0.0882
0.1307
0.1521
0.1859
0.2198
0.2845
0.2549
0.1964
0.1900
0.1092
0.0950
0.0773

(0) Hong Kong International Airport

Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
MNov
Dec

op
0.9387
0.9080
0.8710
0.8100
0.7097
0.5917
0.6419
0.5984
0.7567
0.9177
0.9133
0.9210

p

0.99
0.98
0.96

0.9
0.79
0.62
0.69
0.64
0.85
0.99
0.98
0.57

re_op
5.46%
7.93%
10.22%
11.11%
11.32%
4.79%
7.49%
6.95%
12.33%
7.87%
7.30%
38.11%

ol

0.0780
0.1193
0.1583
0.1381
0.1682
0.2620
0.2324
0.1814
0.1667
0.0673
0.0639
0.0347

251
0.6531
1.0207
0.7944
0.4201
0.2499
0.2055
0.2515
0.2079
0.2538
0.5613
0.9464
0.4950

K
1.0148
0.7464
0.5037
0.3214
0.2012
0.3278
0.3243
0.2817
0.1930
0.2568
0.6840
0.7465

251
0.9425
0.7124
0.5034
0.3170
0.1713
0.2537
0.2515
0.2124
0.2038
0.3990
0.8258

re_f1
886.32%
685.83%
330.79%
200.69%
47.40%
50.11%
44.55%
6.01%
85.43%
725.17%
1628.34%
563.75%

re_H1
1050.05%
470.91%
231.03%
72.92%
8.45%
15.21%
27.20%
43.39%
1.62%
135.03%
620.11%
865.75%

re_f{l
1108.16%
497.15%
217.92%
129.62%
1.87%
3.18%
8.20%
17.10%
22.25%
492 .84%
1193.03%

0.9169 2544.10%

o Hz
11.9355

9.7358
10.3867
16.2677
23.7250
21.2277
18.6411
19.8868
23.8400
21.5093
15.0116

8.8667

ol
13.9167
14.8961
15.7412
20.9000
30.5791
34.4332
26.0161
30.5116
29.7583
32.8354
14.9355

9.8349

o Hz
17.3316
15.6500
16.6638
20.2684
29.0956
30.6796
22.9928
26.1759
27.4048
31.5902
14.6962
11.3143

Ha
0.4280
6.1016
5.2517
8.3887

16.4863
13.4971
10.5527
12.9582
14.2510
9.4753
8.0597
0.3121

Ha
4.9390
7.5290
8.0631
12.1810
23.8319
32.0524
23.4123
27.4875
22.3783
16.7074

7.0103

0.5031

Ha
8.5032
8.6510
9.5234
11.2396
18.8354
26.9426
18.1876
21.1341
17.4982
17.9420

7.2665

0.7080

31

re_Hz
96.41%
37.33%
49.44%
48.43%
30.51%
36.42%
43.39%
34.84%
40.22%
55.95%
46.31%
96.48%

re_Hz

64.51%
49,.46%
48.78%
41.72%
22.06%

6.91%
10.01%

9.91%
24.80%
49.12%
53.06%
94.88%

re_Hz
50.94%
A44.72%
42.85%
44,55%
35.26%
12.18%
20.90%
19.26%
36.15%
43.20%
50.56%
93.74%

Note: Those with o represent those of observed data, those without o are fitted,

and re is relative error.
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From the Figure 4.2.1, we can see that during the monsoon season (May-
September), the comparison between the observed data (blue line) and the model fitted
data (red line) shows a high degree of fit, which suggests that the model has a better
performance in simulating the rainfall events during the monsoon. However, during
the non-monsoon season, there is a large discrepancy between the observed data and
the model-fitted data, revealing a relatively poor fit of the model during these periods.

For the combined results from 15 rainfall stations, this trend is validated across

the region, further emphasizing the sensitivity of model performance to seasonal

variations.
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Figure 4.2.1:Comparison of observed and modeled rainfall fits for each rainfall
station
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4.3 Performance of the Month MCME Model in Calibration Period (2003-
2022)
In evaluating the descriptive capability of the MCME model, the calibration process
utilized daily rainfall series from 2003-2022. Based on these historical records, two
Markov chain transition probabilities (py; and p;;) were obtained. The Maximum
Likelihood Estimation (MLE) was then applied to estimate the monthly calibration
cycle MCME parameters, totaling 60 for a 12-month rainfall process at one site and a
cumulative total of 900 parameters for 15 sites. The parameter results are presented in
Table 4.3.1. Using these calibrated parameters, a synthetic time series of the same

length (20 years) was simulated.

Table 4.3.1: Summary of MCME parameters estimation for all rainfall stations

Station Param Manth
eters Jan Feb Mar Apr May Jun
p 0.38 0.98 0.96 0.92 0.81 0.63
Hq 0.8144 0.7966 0.6277 0.3453 0.1674 0.2412
K 0.5741 7.1613 6.6064 0.8471 18.6005 25.5408
Po1 0.0411 0.0665 0.0968 0.1443 0.2005 0.2704
Pi1 0.3143 0.3585 0.3659 0.3364 0.4971 0.6107
Cheung
Chau Jul Aug Sep Oct Nov Dec
p 0.73 0.68 0.85 0.98 0.98 0.12
Hq 0.2343 0.1868 0.2303 0.4312 0.9957 0.5229
Ha 17.3931 17.8166 13.7869 13.1701 5.4963 0.3395
Pox 0.2174 0.2461 0.1556 0.0663 0.0583 0.0360
P11 0.5610 0.6034 0.5369 0.3934 0.3600 0.4167
Station Param Month
eters Jan Feb Mar Apr May Jun
p 0.99 0.98 0.96 0.92 0.76 0.58
Hq 1.0059 0.8753 0.5737 0.3457 0.1928 0.2866
Ha 7.4705 6.5419 7.6209 0.9393 23.7534 29.2961
Po1 0.0486 0.0626 0.0941 0.1499 0.2088 0.2575
Ching Pak P14 0.3488 0.3962 0.3377 0.3482 0.5213 0.6792
House(Tsi Jul Aug Sep Oct Nov Dec
ng Yi) p 0.66 0.6 0.79 0.98 0.48 0.19
Hq 0.2688 0.2238 0.2135 0.4190 0.8753 0.6283
Ha 19.1271 21.2736 16.2567 13.9733 0.6458 0.4102
Po1 0.2388 0.2890 0.2042 0.0633 0.0562 0.0470

P11 0.6176 0.6337 0.4971 0.4697 0.3404 0.4000




Table 4.3.1 (Continued)

. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.99 0.97 0.95 0.91 0.73 0.55
Hy 1.0034 0.7552 0.5346 0.3326 0.1973 0.3179
s 2.6916 6.5405 7.2210 10.6572 22.8450 31.4759
Po1 0.0524 0.0710 0.1026 0.1455 0.2115 0.2960
King's P11 0.3478 0.3684 0.3373 0.3604 0.5665 0.6619
Park Jul Aug Sep Oct Nov Dec
P 0.04 0.6 0.74 0.96 0.98 0.3
My 0.2101 0.1405 0.1928 0.2686 0.6817 0.7475
Ha 20.7178 24,4325 22.3246 22.5766 7.3868 0.5052
Po1 0.2493 0.2722 0.2222 0.0751 0.0664 0.0471
P11 0.6280 0.6762 0.5412 0.4384 0.3684 0.4130
Station Param Month
eters lan Feb Mar Apr May Jun
P 0.99 0.97 0.96 0.92 0.78 0.64
My 0.9968 0.8119 0.5431 0.3773 0.2267 0.2192
Ha 7.8546 6.0461 8.0241 8.8224 18.7183 22.3341
Po1 0.0540 0.0878 0.0929 0.1485 0.2059 0.2633
Lau Fau P11 0.3111 0.3016 0.3827 0.3684 0.4915 0.6157
Shan Jul Aug Sep Oct Nov Dec
P 0.73 0.65 0.82 0.98 0.98 0.33
Hq 0.2686 0.2713 0.2655 0.5256 0.9478 0.7776
Ha 14.8103 18.9964 12.3489 11.8950 6.0921 0.5390
Po1 0.2367 0.2831 0.1968 0.0655 0.0587 0.0451
P11 0.5220 0.5602 0.4522 0.3148 0.4074 0.3810
Station Param Month
eters Jan Feb Mar Apr May Jun
P 0.98 0.97 0.93 0.87 0.66 0.55
Hy 0.9126 0.7892 0.4799 0.3285 0.2343 0.3226
s 6.3483 6.0013 8.3988 11.2195 26.1691 32.0578
pak Tam Po1 0.0596 0.0842 0.1267 0.1670 0.2294 0.2987
Chung 11 0.3061 0.3538 0.3367 0.4091 0.6147 0.6655
(Tsak Yue Jul Aug Sep Oct Nov Dec
Wu) P 0.65 0.64 0.81 0.96 0.98 0.39
Hy 0.2141 0.2343 0.1607 0.3103 0.6457 0.8191
s 21.9139 24,9579 15.7394 19.6007 9.0697 0.5759
Po1 0.2567 0.2633 0.2075 0.0730 0.0649 0.0399
P11 0.6082 0.5967 0.5029 0.4366 0.4167 0.4651
Station Param Month
eters Jan Feb Mar Apr May Jun
P 0.99 0.97 0.94 0.88 0.69 0.54
My 0.9769 0.7593 0.4850 0.3266 0.2200 0.3215
Ha 7.2111 6.0890 8.1143 11.5673 25.4969 31.2923
Po1 0.0559 0.0758 0.1120 0.1545 0.2195 0.3143
P11 0.3191 0.3968 0.3587 0.3917 0.6009 0.6549
Sha Tin Jul Aug Sep Oct Nov Dec
P 0.64 0.61 0.78 0.96 0.97 0.4
My 0.2271 0.2670 0.1711 0.2606 0.6527 0.8287
Ha 23.7213 28.3751 18.1474 16.4981 7.7084 0.5907
Po1 0.2601 0.2611 0.2110 0.0872 0.0714 0.0474
P11 0.6098 0.6371 0.5220 0.4125 0.4328 0.4490
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Table 4.3.1 (Continued)

. Param Month
Station
eters Jan Feb Mar Apr May Jun
p 0.99 0.98 0.96 0.91 0.74 0.57
Hy 0.9769 0.8119 0.5220 0.3293 0.1909 0.2673
s 7.2111 7.2995 8.3980 9.9549 21.8120 26.1222
Po1 0.0559 0.0668 0.1006 0.1516 0.2368 0.3140
P11 0.3191 0.3818 0.3415 0.3333 0.5075 0.6236
Shek Kong Jul Aug Sep Oct Nov Dec
P 0.66 0.68 0.77 0.97 0.98 0.38
H1 0.1976 0.2108 0.2397 0.3554 0.9857 0.8144
U 19.2312 22.8516 20.7622 16.7034 5.6629 0.5741
Po1 0.2599 0.2410 0.1977 0.0650 0.0607 0.0451
P11 0.5950 0.5895 0.5030 0.4462 0.4000 0.3953
Station Param Month
eters Jan Feb Mar Apr May Jun
p 0.99 0.97 0.96 0.91 0.74 0.59
Hq 1.0146 0.8456 0.5802 0.3323 0.1744 0.2622
s 7.0203 5.8038 6.9790 10.6024 17.2105 26.4850
Po1 0.0486 0.0710 0.0987 0.1502 0.2190 0.3018
Ta Kwu P11 0.3488 0.3684 0.3537 0.3540 0.5673 0.6130
Ling Jul Aug Sep Oct Nov Dec
p 0.64 0.61 0.79 0.98 0.98 0.33
Ha 0.1938 0.2430 0.2107 0.3109 0.8357 0.7760
s 17.7506 24.7097 15.5780 15.0759 6.6605 0.5353
Po1 0.2500 0.2837 0.2019 0.0707 0.0667 0.0489
P11 0.6431 0.6160 0.5087 0.4179 0.3898 0.3913
Station Param Maonth
eters Jan Feb Mar Apr May Jun
p 0.37 0.99 0.97 0.9 0.78 0.62
Hq 0.8056 1.0215 0.6241 0.4024 0.1704 0.2335
s 0.5626 6.2733 7.6253 8.5814 17.9274 23.7281
Po1 0.0480 0.0615 0.0914 0.1508 0.1963 0.2607
Tai Mei P11 0.2222 0.2727 0.3056 0.3652 0.5654 0.6400
Tuk Jul Aug Sep Oct Nov Dec
p 0.72 0.69 0.85 0.97 0.98 0.1
Hq 0.1780 0.1976 0.2222 0.3723 0.9849 0.4790
s 17.3311 20.5990 11.5402 16.5642 5.5838 0.3057
Po1 0.1990 0.2404 0.1927 0.0651 0.0664 0.0360
P11 0.6313 0.5877 0.4684 0.4545 0.3684 0.4000
station Param Month
eters Jan Feb Mar Apr May Jun
P 0.97 0.89 0.82 0.74 0.6 0.54
Hi 0.8852 0.7108 0.5806 0.5198 0.5496 0.5557
s 5.6224 4.7716 9.1291 12.7012 24,7483 28.0005
Po1 0.0679 0.1302 0.1642 0.1934 0.2534 0.2767
Tai Mo P11 0.3559 0.4175 0.4275 0.5257 0.6349 0.6904
Shan Jul Aug Sep Oct Nov Dec
P 0.58 0.56 0.7 0.94 0.95 0.4
He 0.3619 0.4179 0.2715 0.3194 0.8332 0.8199
s 24,9074 28.6152 21.5689 17.4750 4.5119 0.5673
Po1 0.2615 0.3015 0.2177 0.0765 0.0686 0.0476
P11 0.6642 0.6444 0.5833 0.5060 0.5135 0.4808
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Table 4.3.1 (Continued)

. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.98 0.93 0.89 0.81 0.62 0.53
My 0.9042 0.7055 0.5335 0.3634 0.3419 0.3518
Ha 6.0927 5.1620 6.8797 12.1766 25.2145 34.2221
Po1 0.0579 0.1102 0.1375 0.1911 0.2547 0.2981
Tate's P11 0.3265 0.3614 0.4103 0.4295 0.6240 0.6794
. Jul Aug Sep Oct Nov Dec
Cairn
P 0.59 0.58 0.74 0.94 0.95 0.47
Hq 0.2546 0.2713 0.1887 0.2422 0.5759 0.8663
Ha 25.4032 27.2017 21.1964 16.0592 6.7244 0.6272
Po1 0.2686 0.2703 0.2260 0.1096 0.0833 0.0495
P11 0.6506 0.6618 0.5260 0.4242 0.4819 0.4717
. Param Month
Station
eters lan Feb Mar Apr May Jun
P 0.75 0.97 0.91 0.85 0.69 0.53
Hq 0.9716 0.7165 0.4738 0.3335 0.2070 0.3248
Ha 0.8382 6.7881 7.9071 10.8046 22.6413 31.0833
Po1 0.0560 0.0777 0.1255 0.1822 0.2312 0.3192
P11 0.3333 0.3710 0.4128 0.3986 0.5837 0.6678
Tseung Jul Al S Oct N D
Kwan O u ug ep C ov ec
P 0.65 0.59 0.77 0.95 0.97 0.24
Hq 0.2215 0.2420 0.1799 0.3225 0.5895 0.6898
Ha 23.2643 23.5587 20.5047 12.7421 8.5417 0.4590
Po1 0.2560 0.2754 0.2291 0.0882 0.0748 0.0453
P11 0.6066 0.6533 0.4722 0.4535 0.3750 0.4222
. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.21 0.99 0.96 0.93 0.82 0.77
Hq 0.6531 1.0207 0.7944 0.4201 0.2499 0.2055
Ha 0.4280 6.1016 5.2517 8.3887 16.4863 13.4971
Po1 0.0357 0.0685 0.0974 0.1360 0.1739 0.1956
P11 0.3226 0.3396 0.2933 0.3131 0.5031 0.5842
Waglan Jul A S Oct N D
sland u ug ep c ov ec
P 0.84 0.74 0.89 0.98 0.99 0.11
My 0.2515 0.2079 0.2538 0.5613 0.9464 0.4950
Ha 10.5527 12.9582 14.2510 9.4753 8.0597 0.3121
Po1 0.1776 0.2285 0.1326 0.0513 0.0468 0.0424
P11 0.5031 0.5613 0.5000 0.4630 0.3953 0.1667
. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.99 0.98 0.95 0.9 0.73 0.54
My 1.0148 0.7464 0.5037 0.3214 0.2012 0.3278
Ha 4.9390 7.5290 8.0631 12.1810 23.8319 32.0524
H Po1 0.0503 0.0663 0.1049 0.1475 0.2177 0.3123
on
Kong P11 0.3095 0.3333 0.3412 0.3514 0.5473 0.6525
Observato Jul Aug Sep Oct Nov Dec
ry P 0.62 0.56 0.74 0.97 0.97 0.3
Hq 0.3243 0.2817 0.1930 0.2568 0.6840 0.7465
Ha 23.4123 27.4875 22.3783 16.7074 7.0103 0.5031
Po1 0.2630 0.2768 0.2083 0.0815 0.0670 0.0451
P11 0.6181 0.6749 0.5602 0.4430 0.4194 0.3953
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Table 4.3.1 (Continued)

Station Param Month
eters Jan Feb Mar Apr May Jun
P 0.99 0.98 0.96 0.9 0.79 0.62
My 0.9425 0.7124 0.5034 0.3170 0.1713 0.2537
Ho 8.5032 8.6510 9.5234 11.2396 18.8354 26.9426
Hong Po1 0.0430 0.0723 0.1020 0.1567 0.1955 0.2648
Kong P11 0.3421 0.2885 0.3125 0.3333 0.5251 0.6189
Internatio Jul Aug Sep Oct Nov Dec
nal P 0.69 0.64 0.85 0.99 0.98 0.57
Airport Hy 0.2515 0.2124 0.2038 0.3990 0.8258 0.9169
Ho 18.1876 21.1341 17.4982 17.9420 7.2665 0.7080
Po1 0.2443 0.2730 0.1718 0.0563 0.0530 0.0491
P11 0.5631 0.5944 0.4690 0.3725 0.4423 0.4286

Table 4.3.2: Mean and Standard deviation of all MCME parameters estimation

. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.8373 0.9680 0.9387 0.8847 0.7293 0.5867
Hy 0.9252 0.8052 0.5573 0.3597 0.2331 0.2994
Ha 4.8912 6.4507 7.7161  10.5789 21.6194 27.6147
Po1 0.0517 0.0782 0.1098 0.1580 0.2169 0.2829
P11 0.3218 0.3540 0.3545 0.3746 0.5567 0.6438
Mean Jul Aug Sep Oct Nov Dec
P 0.6693 0.6287 0.7927 0.9673 0.9413 0.3087
Hy 0.2439 0.2405 0.2131 0.3570 0.8040 0.7285
Ha 19.8483 22,9979 17.5921 15.7639 6.4280 0.5035
Po1 0.2426 0.2670 0.1984 0.0730 0.0642 0.0448
P11 0.e014 0.6194 0.5095 0.4298 0.4074 0.4051
. Param Month
Station
eters Jan Feb Mar Apr May Jun
P 0.2675 0.0248 0.0381 0.0492 0.0639 0.0614
Hy 0.0981 0.0978 0.0789 0.0518 0.0946 0.0812
Ha 2.9033 0.9277 1.0137 1.2835 3.2164 5.0144
Po1 0.0078 0.0183 0.0197 0.0169 0.0212 0.0314
P11 0.0310 0.0396 0.0382 0.0507 0.0465 0.0302
Standard
L Jul Aug Sep Oct MNov Dec
deviation
P 0.0631 0.0502 0.0507 0.0148 0.1238 0.1320
Hy 0.0474 0.0598 0.0327 0.0926 0.1475 0.1328
Ha 3.9417 4.1898 3.5776 3.1187 1.9534 0.1139
Po1 0.0250 0.0197 0.0257 0.0140 0.0087 0.0042
P11 0.0444 0.0370 0.0352 0.0436 0.0449 0.0705

The conditional transition probability, py,, for dry-day rainfall signifies the

likelihood of a conversion from a daily dry day to a wet day event. Conversely, the
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conditional transition probability, p,,, for wet-day rainfall indicates the persistence of
daily rainfall events.

It is evident from the data that the values of p,; for all stations during the
monsoon period (May-September) are consistently in the range of 50% to 65%. This
suggests that the probability of continuous rainfall is more than half during this period.
In contrast, during the non-monsoon season (January to April), the mean value of p,;
ranges from approximately 0.05, 0.07, 0.11 to 0.15. For October to December, it is
about 0.07 to 0.04. These values imply that the probability of transitioning from dry to
wet days is much less than the probability of transitioning from wet to dry days. The
analysis highlights the likelihood of successive periods of no rainfall, especially in
January, February, October, November, and December when p,; is in the range of
0.04 to 0.07.

Furthermore, the conditional transition probability from wet to wet days
consistently surpasses the conditional transition probability from dry to wet days in
every month at all sites.

The low standard deviations, both below 0.05, indicate that the variability of
Po1 and p;; among different stations is very low. Therefore, we can assume that the
trends of rainfall and non-rainfall are more or less the same among different stations

within the Hong Kong region.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNaov Dec
= Cheung Chau Ching Pak House{Tsing i) King's Park Lau Fau Shan
s Pk Tam Chung (Tsak Yue Wu) s Sha Tin — 5 ek Kong — T3 Kvwu Ling
T el Tuk s Ta1 Mo Shan —TaEte's Cairn — TseUNg Kwan O

e Wag lan Island Hong Kong Observatory Hong Kong International Airport Mean

Figure 4.3.1: Line chart of p for different rainfall Stations across Months
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The parameter p, represents the average rainfall on dry days (less than 2.5 mm).
Upon analyzing the data and referring to Figure 4.3.2, a subtle pattern emerges: the
average rainfall on dry days is slightly higher during the non-monsoon season
compared to the monsoon season. In the monsoon season, data is notably concentrated
around 0.2 at rainfall stations. This empirical observation suggests that daily rainfall
on dry days (below 2.5 mm) tends to be minimal during the monsoon season, empirical
observations show that daily rainfall below 2.5mm is considered a dry day and vice

versa during the monsoon season.

lan Feb Mar Apr May Jun Jui Aug Sep Oct MNow Dec
e CHEUNG Chau Ching Pak House{Tsing Y1) King's Park Lau Fau Shan
e Pk Tam Chung (Tsak Yue WuU) s Sha Tin — ek Kong e T3 Kl LiNg
e T2 V21 TUK s T3l Mo Shan —TEtE's CairN —Tzeung Kwan O

e W 2 12N I5lENd Hong Kong Observatory Hong Kong International Airport Mean

Figure 4.3.2: Line chart of u, for different rainfall stations across months

The parameter u, represents the average rainfall exceeding 2.5 mm. Upon
examining the study data and referring to Figure 4.3.3, a distinct trend becomes
apparent: rainfall values during the monsoon season are significantly higher than those
during the non-monsoon season. This finding aligns with the expected pattern of
increased rainfall during the monsoon season. Furthermore, a detailed monthly
analysis reveals a positive correlation between higher rainfall months and elevated .
values. This supports the notion that months with increased rainfall exhibit

correspondingly higher u, values.
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2 la0 Island Hong Kong Observatory Hong Kong International Airport Mean

Figure 4.3.3: Line chart of u, for different rainfall stations across months
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Figure 4.3.4: Line chart of p,, for different rainfall stations across months

From the data and Figure 4.3.4, it's evident that during the monsoon season,
the probability of transitioning from dry to wet days consistently exceeds 20%, while
in the non-monsoon season, these probabilities generally remain below 10%. Notably,
the probability of transitioning from dry to wet days in the monsoon season is
approximately twice as high as in the non-monsoon season. Moreover, in the non-
monsoon season, the probability of continued dryness on the following day is
significantly more than 85% if it is also dry on that day. This nuanced analysis sheds
light on the seasonal variation in transition probabilities, emphasizing distinct patterns

between the monsoon and non-monsoon seasons.
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A closer examination of the data and Figure 4.3.5 reveals a noteworthy
difference: during the monsoon season, the probability of transitioning from a wet day
to a continuously wet day is about 60%, whereas during the non-monsoon season,
these transition probabilities typically range between 30% and 50%. This complexity
of observations suggests that the probability of continuous wet days is higher in the
monsoon season. On the contrary, in the non-monsoon season, the probability of
transitioning from wet to dry days exceeds the probability of transitioning to
consecutive wet days. This nuanced analysis enriches our understanding of the
seasonal dynamics of transition probabilities and provides valuable data support for a
deeper understanding of the interactions between wet and dry days during monsoon

and non-monsoon periods.

.....
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Figure 4.3.5: Line chart of p,, for different rainfall stations across months

4.4 Assessment of the MCME Model

Monthly total rainfall data for 20 years were generated and compared with the
observed data. The observed and simulated monthly total rainfall intensities are
presented in Table 4.4.1. The Relative Error (RE) values for different months across
all our stations were averaged, and the results are detailed in Table 4.4.2. We found
that the observed monthly total rainfall data differed from the simulated monthly total

rainfall data by approximately 20%.
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Table 4.4.1: Observed and simulated monthly rainfall intensities

Cheung Chau Ching Pak House(Tsing Yi) King's Park Lau Fau Shan Pak Tam Chung (Tsak Yue Wu)
Month | Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE
Jan 656.5 521.9759 20.49% | 656.5 1006.967 53.38% | 628.4 758.7328 20.74% | 664.5 1043.569 57.05% | 744.5 896.0851 20.36%
Feb 706.5 845.8555 19.72% 706.5 853.1951 20.76% 836.6  812.3398 2.90% 777.5 809.9622 4.18% 796.2 805.0418 1.11%
Mar 1226.5 921.0721 24.90% 1226.5 921.5708 24.86% 1325.7 911.5145 31.24% 1295 958.6022 25.98% 1566 1144.319 26.93%
Apr 2074 1252.15 39.63% 2074 1288.359 37.88% 2217.2  1361.945 38.57% 1886.5 1187.253 37.07% 2464 1609.692 34.67%
May 5978 3941.448 34.07% 5978 4908.19 17.90% 6117.7 4834.63 20.97% 4686 4010.06  14.42% 7263 7108.856 2.12%
Jun 8597 6364.662 25.97% 8597 8087.939 5.92% 9536.6 8908.302 6.59% 6576 5866.059 10.80% 9678.5 9301.029 3.90%
Jul 5554.5 4085.645 26.44% 5554.5 5102.855 8.13% 6512.9 5518.685 15.27% 4164  3353.968 19.45% 6637.5 5555.045 16.31%
Aug 6938 4770.052 31.25% 6938 5597.852 19.32% 8707.9 6906.233 20.69% 5607.5 4607.446 17.83% 7264 6360.046 12.44%
Sep 4269 2244.018 47.43% 4269 3190.491 25.26% 5785.1 4854.202 16.09% 3186.5 2151.817 32.47% 4819.5 2750.882 42.92%
Oct 1623.5 1137.412 29.94% 1623.5 1284.768 20.86% 2775.7 1956.584 29.51% 1303.5 1066.051 18.22% 2404.5 1705.985 29.05%
Nowv 530.5 875.1282 64.96% 530.5 548.0056 3.30% 951.2 809.1474 14.93% 693.5 896.5019 29.27% 1019.5 927.1404 9.06%
Dec 393.5 334.9831 14.87% 393.5 399.1303 1.43% 468.1  475.7885 1.64% 487 496.9458  2.04% 513 522.2719  1.81%
Mean(RE) 31.64% Mean(RE) 19.92% Mean(RE) 18.26% Mean(RE) 22.40% Mean(RE) 16.72%
ShaTin Shek Kong Ta Kwu Ling Tai Mei Tuk Tai Mo Shan
Month | Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE
Jan 673 1011.345 50.27% 673 1011.345 50.27% 648.5 987.9536 52.34% 504.5 517.3195 2.54% 784 893.0717 13.91%
Feb 825 800.4839 2.97% 7645 872.2773 14.10% 746.5 811.8214 8.75% 583 849.0112 45.63% 1004 813.5104 18.97%
Mar 1503.5 1036.323 31.07% 1348.5 1003.134 25.61% 1199 922.6868 23.05% 1105.5 888.101 19.67% 1894.5 1610.476 14.99%
Apr 2449.5 1588.932 35.13% 2195.5 1262.193 42.51% 2215.5 1355.094 38.84% 1857 1173.468 36.81% 2835.5 2405.764 15.16%
May 6839.5 6727.649 1.64% 5919  4745.471 19.83% 5405.5 4055.747 24.97% 5283 3745.108 29.11% 6814.5 6436.885 5.54%
Jun 9644.5 8362.111 13.30% 8019 7409.496  7.60% 7865.5 7480.085 4.90% 7003.5 6283.655 10.28% 8336 8353.866 0.21%
Jul 7041.5 6083.11 13.61% 6125  4924.741 19.60% 6009  4764.706 20.71% 5517  4255.716 22.86% 7479.5 6636.652 11.27%
Aug 8277.5 7430.292 10.24% 6534 5877.79 10.04% 7531.5 6401.136 15.01% 6124.5 5301.433 13.44% 8637 8330.177 3.55%
Sep 5131.5 3244.541 36.77% 4793 3561.941 25.68% 4213 2730.54 35.19% 3333.5 2062.086 38.14% 5429.5 4988.136 8.13%
Oct 2693 1577.215 41.43% 2003 1443.502 27.93% 2141.5 1352.23  36.86% 1923.5 1443.024 24.98% 2475 1730.898 30.06%
Nowv 1030.5 879.5194 14.65% 664.5 901.6137 35.68% 783.5 860.5535 9.83% 664 885.6983 33.39% 819.5 843.4779 2.93%
Dec 519 527.9477 1.72% 510 520.9261 2.14% 486 494.9193  1.84% 300 307.4101  2.47% 513.5 520.6212 1.39%
Mean(RE) 21.07% Mean(RE) 23.42% 22.69% 23.28% 10.51%
Tate's Cairn Tseung Kwan O Waglan Island Hong Kong Observatory Hong Kong International Airport
Month | Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE Observed Simulated RE
Jan 747.5 901.4437 20.59% 608.5 628.6293 3.31% 409 420.4006  2.79% 635.5 867.6951 36.54% 704 987.5117 40.27%
Feb 949 779.6822 17.84% 880 825.3028 6.22% 582.5 889.4372 52.69% 826.9 826.6933 0.02% 875 860.803 1.62%
Mar 1503.5 1187.57 21.01% 1632 1167.871 28.44% 879.5 853.7462 2.93% 1419.4 965.1194 32.01% 1418.6 1055.146 25.62%
Apr 2725.5 2108.916 22.62% 2501.5 1641.335 34.39% 1680.5 1046.408 37.73% 2410.8 1524.982 36.74% 2377.7 1449.595 39.03%
May 7065 6675.11 5.52% 6418 5361.388 16.46% 3874  2933.239 24.28% 6238.5 5547.06 11.08% 5311.2 3820.778 28.06%
Jun 10554.5 10159.04 3.75% 9744.5 9410.475 3.43% 4110.5 2667.936 35.09% 9834.8 8531.65 13.25% 7609.5 7182.585 5.61%
Jul 7894  6344.789 19.63% 6867.5 5895.02 14.16% 3118 2002.095 35.79% 6701.4 6237.432 6.92% 5196.9 4410.194 15.14%
Aug 8409 6829.57 18.78% 7500.5 5919.026 21.08% 4296 3086.885 28.15% 8731.3 8310.809 4.82% 6585.1 5251.409 20.25%
Sep 5660 4581.784 19.05% 5397.5 4135.584 23.38% 3045 1964.832 35.47% 5791.1 4151.769 28.31% 4076.8 2691.957 33.97%
Oct 3003.5 1807.007 39.84% 2221.5 1356.993 38.92% 1200 962.3309 19.81% 2653.1 1493.975 43.69% 1649.4 1343.839 18.53%
Now 1191.5 818.8389 31.28% 1141 883.2085 22.59% 676 930.3567 37.63% 977.1  828.7836 15.18% 799.2 909.7204 13.83%
Dec 542.5 551.9689 1.75% 432 438.4174  1.49% 310 317.0541  2.28% 467.5  476.2922 1.88% 574.2  587.5697 2.33%
18.47% Mean(RE) 17.82% Mean(RE) 26.22% Mean(RE) 19.20% Mean(RE) 20.36%
Table 4.4.2: Monthly RE average
Meonth Jan Feb Mar Apr May Jun
RE(mean)| 29.66%  14.50% 23.89% 35.12% 17.07% 10.04%
Maonth Jul Aug Sep Oct MNov Dec
RE(mean)| 17.69% 16.46%  29.89%  29.97% 22.57% 2.74%

By integrating the relative error (RE) with the boxplot, we gain valuable

insights into how measurements deviate from true values. A lower relative error

signifies a more precise measurement, indicating higher measurement accuracy. When

the corresponding boxplot shows a larger interquartile range (IQR), it suggests that the

data are broadly spread, with outliers positioned notably far from the median.
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Conversely, a higher relative error implies a greater measurement bias. A
smaller interquartile range in the corresponding boxplot suggests that outliers are
closer to the median, indicating a more concentrated dataset.

The joint assessment of IQR and relative error in the box-and-whisker plot
enables us to evaluate data concentration and accuracy. A smaller IQR and shorter box
whiskers in the boxplots indicate greater data concentration, reflecting a more
dependable estimation of the observed data. Conversely, larger IQR and longer box
whiskers indicate a substantial disparity between the estimated and observed data. This
comprehensive analysis provides insights into model performance and strongly

supports the credibility of data estimates.
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Figure 4.4.1: Box plot illustrating monthly rainfall at each rainfall stations
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this study, we employed a Markov Chain Mixed Exponential Model (MCME model)
to characterize rainfall patterns in Hong Kong. This model, combining a first-order

two-state Markov chain and a mixed exponential distribution, effectively captures the

spatial and temporal variability of rainfall in the region. Parameter estimates, obtained

through maximum likelihood estimation for different months, reveal notable variations

in daily rainfall. The analysis demonstrates that the MCME model proficiently reflects

the diverse characteristics of rainfall in Hong Kong.

The study's findings underscore the significant advantages of the MCME
model in describing complex rainfall processes. Notably, it effectively simulates the
probability of event occurrences while capturing the diversity of intensities. The model
has proven valuable in the absence of historical data and enales the synthesis of rainfall
events over different time periods. In conclusion, the MCME model emerges as a
robust stochastic simulation tool, offering a more comprehensive and accurate
depiction of rainfall processes. Its application provides a powerful means for gaining
a deeper understanding and modeling of rainfall dynamics.

5.2 Recommendations for future work

Several recommendations for future work can enhance the MCME model. Consider
exploring a 2nd or 3rd order Markov chain, especially during the non-monsoon season
where the probability of a dry day transitioning to another dry day is notably high. This
adjustment might offer a better fit to the observed reality. Experimenting with various
statistical distributions to model the distribution of monthly rainfall could provide
insights into finding the most suitable fit. Given the substantial variability in same-
month rainfall across different years in Hong Kong, introducing an annual rainfall
indicator could be beneficial for correcting rainfall parameters for different years.
Additionally, it's advisable to estimate and compare rainfall distribution parameters
using different methods to identify the best fit.
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APPENDICES

APPENDIX A: Computer Programme Core Code

# Loop over B_column from 1 to 12
for (b_value in 1:12) {
selected_datarain <- D_column[B_column == b_value] # Select the corresponding

month data

# Add each month's results to the vector
all_total_rainfall <- c(all_total_rainfall, total_rainfall)

all_total_obrainfall <- c(all_total obrainfall, total obrainfall)

# Log-likelihood function for the mixed exponential distribution
mcme_likelihood <- function(params, data) {

p <- params[1]

betal <- params[2]

beta2 <- params[3]

if (p <=0]| betal <=0 || beta2 <=0) {
return(-Inf) # Returns a very negative number to avoid calculation errors

}

log_likelihood1 <- sum(log(p / betal * exp(-data[data < 2.5] / betal)))
log_likelihood2 <- sum(log((1 - p) / beta2 * exp(-data[data >= 2.5] / beta2)))

return(log_likelihoodl + log_likelihood2)
b

# parametric estimating function
estimate_parameters <- function(data, p_range, betal_range, x_bar) {
best_likelihood <- -Inf
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best_params <- ¢(p = 0, betal =0, beta2 = 0)

for (p_est in p_range) {
for (betal_est in betal range) {
beta2_est <- (x_bar - (p_est/ betal est))/ (1 - p_est)
params <- c(p = p_est, betal = betal est, beta2 = beta2_est)

likelihood <- mcme_likelihood(params, data)

if (likelihood > best_likelihood) {
best_params <- params
best_likelihood <- likelihood
}
}
¥

return(best_params)

}

# Initialize parameter ranges and intervals
initial_p_range <- seq(0.01, 0.99, by = 0.01)
initial_betal range <- seq(0.01 * x_bar, 0.99 * x_bar, by = 0.01 * x_bar)

# Estimation of optimal parameters

best_params <- estimate_parameters(selected_datarain, initial_p_range,
initial_betal range, x_bar)

# Discretize historical data

rain_discrete <- ifelse(selected_datarain < 2.5, 0, 1)

# Estimating the transfer probability matrix

transition_matrix <- matrix(0, nrow = 2, ncol = 2, dimnames = list(c(0, 1), c(0, 1)))
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for (i in 1:(length(rain_discrete) - 1)) {
from_state <- rain_discrete[i]
to_state <- rain_discrete[i + 1]
transition_matrix[from_state + 1, to_state + 1] <- transition_matrix[from_state + 1,

to state+ 1] +1

}

# Converting counts to probabilities

transition_matrix <- transition_matrix / rowSums(transition_matrix)

# Generate Markov chain time series

set.seed(123) # Setting random seeds to ensure reproducibility

num_steps <- length(selected_datarain) # Use the length of selected_datarain as the
time step

rainfall_sequence <- numeric(num_steps)
current_state <- 0 # Initial state is non-rainfall
for (i in 1:num_steps) {
current_state <- sample(c(0, 1), 1, prob = transition_matrix[current_state + 1, ])

rainfall_sequence[i] <- current_state

}

lambdal <- best_params[2]

lambda2 <- best_params[3]

p <- best_params[1]

# Define a function to generate rainfall data

generate_rainfall <- function(rainfall_sequence, lambdal, lambda2, p) {

simulated_rainfall <- numeric(length(rainfall_sequence))

for (i in seq_along(rainfall_sequence)) {
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if (rainfall_sequence[i] ==1) {
simulated_rainfall[i] <- rexp(1, rate = 1/lambda2)
}else {
simulated_rainfall[i] <- rexp(1, rate = 1/lambdal)
}
}

return(simulated_rainfall)

}

# Call function to generate simulated rainfall data

rainfall_sequence_data <- generate_rainfall(rainfall_sequence, lambdal, lambda2, p)

# Summation of rainfall_sequence_data

total_rainfall <- sum(rainfall_sequence_data)

# Summation of selected datarain

total_obrainfall <- sum(selected_datarain)

sum_rainfall_sequence_data[i] <-
sum(rainfall_sequence_data[start_index:end_index])

sum_selected_datarain[i] <- sum(selected_datarain[start_index:end_index])

}

# Calculating Relative Error

re_op <- abs(op - p) / op

re_mul <- abs(average_below_2.5 - lambdal) / average_below_2.5

re_ mu2 <- abs(mean(selected_datarain[selected_datarain >= 2.5]) - lambda2) /

mean(selected_datarain[selected_datarain >= 2.5])

# Storing parameters and sums in lists
monthly_data[[b_value]] <- list(

month = b_value,
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X_bar = x_bar,

best_params = best_params,
total_rainfall = total_rainfall,
total_obrainfall = total_obrainfall,

transition_matrix = transition_matrix,

rmse = rmse,
mae = mae,
op = op,

mul = average_below 2.5,

mu2 = mean(selected_datarain[selected_datarain >= 2.5]),
re_op =re_op,

re_mul =re_mul,

re_mu2 =re_mu2

# Output parameters, sums, transfer matrices, and RMSE for each month
for (month_data in monthly_data) {
cat(paste("Month", month_data$month, ":\n"))
cat(""Best Parameters:", month_data$best_params, "\n")
cat("Total Rainfall:", month_data$total_rainfall, "\n")
cat("Total_obrainfall:", month_data$total obrainfall, "\n")
cat("Transition Matrix:\n")
print(month_data$transition_matrix)
cat("op:", month_data$op, "\n")
cat("mul:", month_data$mul, "\n")
cat("mu2:", month_data$mu2, "\n")
cat("\n")



