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ABSTRACT

OPTIMISING NEURAL NETWORK TRAINING EFFICIENCY
THROUGH SPECTRAL PARAMETER-BASED MULTIPLE

ADAPTIVE LEARNING RATES

Koay Yeong Lin

The process of training deep neural networks involves heavily solving

optimization problems. Finding optimal values for different

hyperparameters makes training neural networks challenging. A

hyperparameter called learning rate or step size is one of the most

crucial factors in optimization using gradient-based approaches. A

small learning rate might result in slow convergence and the loss

function will get stuck in the local minimum, whereas a large learning

rate might hinder convergence or cause divergence. Currently, most of

the common optimization algorithms use a fixed learning rate or a

simplified adaptive updating scheme in every iteration. In this project,

we propose a stochastic gradient descent method with multiple

adaptive learning rates (MAdaGrad) and Adam with multiple adaptive

learning rates (MAdaGrad Adam). In the derivation of the updating

formula, we aim to minimize the log-determinant norm and allow them

to satisfy the secant equation. We apply the Lagrange multiplier to the

minimization problem and the Lagrange multiplier can be

approximated by using the Newton-Raphson method. The proposed

algorithms update the learning rate in every iteration based on the

approximated spectrum of the Hessian of the loss function. The

methods were compared to the existing optimization methods in deep

learning, stochastic gradient descent method (SGD) and Adam. Some

datasets were used to observe the performance of the proposed
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methods. The numerical results show that the proposed methods

perform better than SGD and Adam. Hence, the proposed MAdaGrad

and MAdaGrad Adam can be alternative optimizer in machine learning.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Neural networks can be improved in a variety of ways, including by

enhancing the architecture, experimenting with data representation,

finding the optimal parameters, and selecting the best optimization

technique. There are currently no standards for constructing an optimal

machine learning architecture (Tato and Nkambou, 2018).

Training neural models involve optimizing the scalar-parameterized

objective function, aiming to minimize the loss function based on the

model parameters, thus, it can be considered a challenging optimization

problem (Krizhevsky et al., 2012). The key hyperparameter to adjust

when training neural networks is the learning rate, as is

well-established. A large learning rate could hinder convergence

and diverge, and the loss function might fluctuate in contrast to a

smaller learning rate could lead to slow convergence, and the loss

function might get stuck at a local minimum.

A wide variety of engineering and science areas rely heavily on

stochastic gradient-based optimization. In these areas, numerous

problems can be treated as the maximization or minimization of an

objective function with scalar parameters and concerning its parameters

(Kingma and Ba, 2014). The minimization involves determining the set

of parameters that yield the greatest results in tasks like classification,



regression, and clustering. First-order optimization techniques have

been utilized for training many machine learning models with good

performance and efficient computation, including neural networks (Bae

et al., 2019).

The minimization problem in the weights of a neural network occurs

in many machine learning problems. Consider the problem of

determining a neural network that learns the relationship between

inputs xi and outputs yi using training data (x1,y1), ..., (xn,yn). This

relates to a function y = F(θ, x) that minimizes the average loss function

and is parameterized by the parameters over the training data:

f (θ) =
1
N

N

∑
i=1

l(xi,yi,θ) =
1
N

N

∑
i=1

fi(θ) (1.1)

1.2 Objective

The project aims to propose stochastic gradient descent with multiple

adaptive learning rates for neural network. The proposed algorithm will

be compared with the standard conventional method, by comparing their

efficiency and performance in terms of the number of iterations and loss

values. The standard conventional algorithm applies a fixed learning rate

or a simplified adaptive updating scheme in every iteration.

The project’s specific goals include:

1. Deriving an updating formula for multiple learning rates to be

incorporated with the stochastic gradient descent method for

machine learning.

2. Establish the convergence properties of the proposed algorithm.

3. Develop a program to validate the efficiency of the proposed

algorithm.
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1.3 Problem Statement

The process of training neural networks involves heavily in solving

optimization problems. Finding optimal values for different

hyperparameters makes training neural networks challenging. When

implementing gradient-based techniques, one of the most important

hyperparameters is the learning rate, also known as step size.

Due to its simplicity, stochastic gradient descent (SGD) is currently

one of the most common methods and is relatively efficient. SGD has the

limitation of scaling the gradient uniformly in all directions due to the

fixed learning rate utilized throughout the simulation. As a result, the

initial learning rate requires to be manually adjusted. The convergence

speed will be reduced, and the training algorithm may even diverge if

an inappropriate learning rate is chosen. Changes in the learning rate

will also affect the model performance or the classification accuracy. As a

result, the main difficulties in the training process for SGD include fine-

tuning the learning rate and figuring out the optimum learning rate.

A proper selection of the learning rate determines how well SGD

performs, and it is currently the most popular research topic. To

improve learning performance, adaptive optimization techniques like

AdaGrad, Adam, and RMSProp have been developed. These techniques

may adjust the learning rate during the optimization process. Although

different adjusted learning rates are utilized for training in each iteration

of these adaptive learning rate approaches, the same learning rate is

used for every weight component and bias component.

Currently, the common existing learning rate algorithms are either

using a fixed learning rate in the whole simulation or adapting the

learning rate in every iteration. We suggest developing a stochastic

gradient descent with multiple adaptive learning rates for machine

learning in this project.
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The proposed algorithm will adapt the learning rate in every iteration

as well as in every single equation, i.e. every weight component and

bias component. The proposed method will be compared to the existing

optimization methods in machine learning, such as Adam and SGD.

1.4 Structure of the Thesis

An introduction to optimization and neural networks are discussed

in the first chapter. This chapter also includes the project’s objective and

problem statements.

The literature is reviewed in Chapter 2. The reviews have covered

some reviews on mathematical optimization, gradient-based

optimization techniques and some learning rate schedules.

Chapter 3 involves the derivation of multiple adaptive learning rate

algorithms and its convergence analysis. Multiple adaptive learning rates

incorporated into SGD and Adam will also be discussed in this chapter.

Chapter 4 shows numerical results and discussion by making

comparisons between the proposed methods and the existing methods

while the conclusion of the entire work and the possible future work

will be involved in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

2.1 Mathematical Optimization

In both optimization theory and algorithm design, large-scale

optimization is a key research area. For instance, efficient approaches for

solving optimization problems include the conjugate gradient method,

spectral gradient method, and quasi-Newton method. Consider the

subsequent unconstrained optimization problem:

min f (x), x ∈ Rn (2.1)

where f : Rn → R is a continuously differentiable function.

To guarantee the consistent improvement of the objective function f ,

these algorithms are typically combined with the line search method (Le

et al., 2011). The model is gradually enhanced using an optimization

method until it can no longer be improved or until the estimated cost or

time has been met.

Cauchy et al. (1847) first introduced the steepest descent method. It

is straightforward to implement, has little storage, and requires low

computational resources. The steepest descent method, however, is

known to yield poor performance. The method’s oscillatory

characteristic and slow convergence rate are the main reason for its

inefficiency. It is significantly affected by ill-conditioning problems. The
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theory and construction of optimization techniques still rely on an

understanding of the characteristics of the steepest descent method.

Conjugate gradient algorithms perform well in addressing

optimization problems. Because of their simplicity, speedy convergence,

and minimal memory requirements, they are particularly well-liked.

The computation and storage of several matrices related to the Hessian

of objective functions can be avoided using this method, similar to the

steepest descent technique. A strategy for dealing with positive definite

and symmetric linear systems is the conjugate gradient method

(Hestenes and Stiefel, 1952).

The Newton approach is one of the best ways to solve unconstrained

optimization problems. It usually needs needs only a few function

evaluations and is effective in dealing with ill-conditioning problems.

(Xiao et al., 2008).Nevertheless, the method’s effectiveness depends

heavily on the method’s ability to solve a linear problem effectively,

which happens while determining the search direction for each iteration

(Xiao et al., 2008).

For solving minimization problems, numerous techniques are the

modifications of the Newton approach, that necessitate defining the

second derivative of an objective function, the Hessian matrix.

Unconstrained optimization problems can be addressed effectively with

quasi-Newton methods since they have been demonstrated to be robust

and has inexpensive computation. The application in plenty of

numerical optimization fields has been heavily encouraged by their

superior characteristics (Morales, 2002). This method works by

removing the previous information and replacing it with the latest

information (Nocedal, 1980). When the computation of the Hessian

matrix is challenging or expensive, quasi-Newton methods will be an

alternative algorithm.
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The shortcoming of the quasi-Newton method is that in every

iteration, it requires computing and storing a full rank matrix. A series

of matrices are generated to approximate the hessian or its inverse.

These matrices require n(n+1)
2 storage because they are symmetric

matrices (Nocedal, 1980), where n is the length of the corresponding

matrix. Therefore, it requires high computational costs when dealing

with large-scale problems.

In terms of computation, the standard

Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach has been

demonstrated to be the most successful quasi-Newton method. The

BFGS approach has been shown to be trustworthy and robust. The

outstanding convergence characteristics of Newton’s method are

preserved by the BFGS method. Only the gradient information is

utilized by the BFGS update, whereas the available function values are

ignored (Xiao et al., 2008). However, Quasi-Newton techniques can be

utilized for dealing with medium- and small-scale optimization

problems where the approximate inverse Hessian matrix exists.

Nocedal (1980) presented a limited memory BFGS approach

(L-BFGS) for unconstrained optimization problems to address the

weakness of BFGS. A modification of the BFGS approach for solving

large-scale problems is known as L-BFGS. It was suggested as a method

to avoid storing the matrix instead of reconstructing them by using

knowledge of the most m recent steps (Nocedal, 1980). The difference

between the BFGS approach and the L-BFGS is the implementation part.

In L-BFGS, the inverse Hessian approximation is formed by using a few

BFGS updates rather than being formed explicitly. L-BFGS preserves a

compact approximation of the Hessian with a low storage requirement

(Xiao et al., 2008).

The L-BFGS approach is similar to the BFGS approach for the first m
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iterations, but it retains BFGS corrections independently until the

maximum m reaches. The most recent corrections are then added in

replacement of the previous ones. Performing m BFGS updates on the

user-provided sparse symmetric and positive definite matrix H0 gives

the approximation of the inverse Hessian of f at iteration k, Hk. Due to

its minimal storage requirements and rapid rate of linear convergence,

the L-BFGS approach is indeed very efficient, according to numerical

studies (Liu and Nocedal, 1989). L-BFGS has drawn a lot of attention in

recent years (Liu et al., 2022);(Berahas et al., 2022).

Andrei (2018) has introduced a quasi-Newton approach using the

diagonal updates matrices. The measure function of Byrd and Nocedal

is minimized to produce the diagonal matrix’s component parts. A

novel diagonal quasi-Newton updating algorithm based on the prior

technique has been proposed by Andrei (2019). The elements of the

diagonal matrix are obtained from the gradient component’s scaled

directional derivatives forward finite difference. The updating method

for accelerated diagonal quasi-Newton is also established for

unconstrained optimization. The directional derivatives for the forward

finite difference of the gradient elements are scaled to produce the

diagonal matrix elements that approximate the Hessian (Andrei, 2021).

Besides, Barzilai-Borwein is the origin of spectral gradient (SG)

approaches for minimization. A technique known as the two-point step

size gradient approach was proposed by Barzilai and Borwein (1988).

The spectral gradient method’s quadratic convergence has been created

by Raydan (1993). The spectral gradient approach is one of the most

prominent techniques for large-scale problems. To address the

shortcomings of the Cauchy method, this strategy uses a nonmonotone

step length connected to the gradient technique. Since there are

numerous options for selecting an appropriate step size in the negative
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gradient direction, many different strategies have been suggested

(Biglari and Solimanpur, 2013). This approach is created by

approximating the secant equation for the SD method. The objective

function for the SG technique doesn’t guarantee a descent at each

iteration, but in practice, it works better than the standard SD approach

(Raydan, 1997). Given that it only requires a few storage locations, this

method outperforms the standard SD method in terms of computation

efficiency and cost. The efficiency of the technique can be significantly

improved by combining the traditional SG approach with superior

nonmonotone line search techniques (Xiao et al., 2010).

The gradient approaches will be ineffective if the objective function’s

Hessian matrix is poorly constrained. The gradient methods have a set

requirement in the choice of step length, which reduces the function

value. Sim et al. (2019) has improved the SG approach in order to

address the issue of inefficiency. The slow convergence concerns are

resolved using this technique. Both the objective function and the norm

of the gradient vector are simultaneously managed independently.

Additionally, various line search techniques are coupled with this

strategy. While a single adaptive parameter dampens the gradient

vector, and the line search is employed to reduce the evaluation of the

function. The proposed strategy is generated using nonmonotone line

search and backtracking line search. Given that CG-based methods have

outstanding convergence characteristics, a comparison is conducted

between the proposed method and a few well-known CG-based

techniques. The proposed spectral gradient technique is demonstrated

to be a competitive alternative for handling large-scale problems by Sim

et al. (2019).
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2.2 Deep Learning

A subset of machine learning called "deep learning" uses hierarchical

designs to extract high-level abstractions from data. It is a novel

technique that has been widely applied in well-established artificial

intelligence domains, such as computer vision (Bhargava and Bansal,

2021), natural language processing (Chen et al., 2021), healthcare (Lee

and Yoon, 2021) and many others. Deep learning consists of multiple

layers to separate higher-level features from the input’s raw data. For

instance, an image is composed of a set of pixel values and is processed

through the deep neural network. In the first layer representation, the

learned features indicate the number of edges present in the image.

Considering slight changes in the edge placements, the second layer

finds patterns by identifying specific combinations of edges. The third

layer combines patterns into bigger combinations that relate to parts of

some well-known objects. The following layers identify items as

combinations of the pieces in the third layer. Instead of being generated

by human professionals, these layers of attributes are learned through

data using a general-purpose learning strategy. (LeCun et al., 2015)

Deep learning is currently growing for three primary reasons: the

tremendous developments in machine learning techniques, the

significantly enhanced abilities of chip processing, and the substantially

reduced cost of computing hardware (Guo et al., 2016). Concerning

problems that have long resisted the best efforts of the artificial

intelligence sector, deep learning is making tremendous progress. It can

be applied in a variety of scientific, commercial, and governmental

domains since it is efficient at finding complicated structures in

high-dimensional data. Many deep learning algorithms have been

extensively examined and investigated in recent years.
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2.3 Gradient-Based Optimization Techniques in Deep Learning

Gradient descent is one of the most traditional techniques introduced

by Cauchy. It was significant in the area of optimization. Gradient

descent starts with an initial vector θ0 and updates it as follows:

θk+1 = θk − αk ·∇ f (θk), for k = 0,1, ..., N − 1 (2.2)

where ∇ f (θk) is the gradient of loss function at θk and αk is the learning

rate.

The process of learning in deep learning can be optimized by using

some optimization approaches based on the gradient descent method.

Gradient descent for deterministic optimization (Cartis et al.,

2010);(Nesterov, 2003) and stochastic gradient descent for stochastic

optimization (Ghadimi and Lan, 2013);(Zinkevich, 2003) are the two

most well-known first-order techniques. Gradient descent determines

△t using the full batch gradient of the objective function and stochastic

gradient descent uses a stochastic gradient estimate, which is simpler

but more computationally efficient.

Most practical deep neural network optimization approaches are

based on the stochastic gradient descent (SGD) method (Zhang, 2018).

The simplicity of stochastic gradient descent (SGD) (Robbins and

Monro, 1951) makes it effective in a wide range of application sectors. It

is one of the most powerful first-order optimization methods. SGD uses

linear iteration to approximate optimal solutions, which is a

straightforward process for each iteration.

SGD updates its parameters for every training example xi and label yi

:

θk+1 = θk − α ·∇θ J(θk; xi;yi). (2.3)
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where ∇θ J represent the gradient of the loss function.

When dealing with very large datasets, the computational

complexity of learning methods becomes an important limiting factor.

SGD can be simply applied even to problems with complex structures

and high-dimensional parameters. As a result, SGD has become a

widely used optimization approach for large-scale optimization

problems.(Zhang et al., 2020)

However, SGD has a main weakness which is the slow convergence

rate. Many researchers have aimed to improve SGD by accelerating the

convergence rate in different ways, such as improving the parameters of

the update method or making adjustments to the learning rate. Roux

et al. (2012) introduced a novel stochastic gradient approach for the

optimization of the strongly convex sum of a finite set of smooth

functions. To determine a linear convergence rate, the new method

leverages a recollection of historical gradient values. They have

performed some numerical tests compared with some existing methods,

such as the stochastic gradient method, stochastic average gradient and

the full gradient method. The results revealed that the new approach

can significantly outperform traditional machine learning methods, both

concerning minimizing the test error efficiently and optimizing the

training loss.

A method for explicitly reducing variance in stochastic gradient

descent algorithms referred to as stochastic variance reduced gradient

(SVRG), was suggested by Johnson and Zhang (2013). The reason of the

proposing is that stochastic gradient descent has a slow convergence

rate as a result of the inherent variance. They demonstrated this method

has a rapid convergence rate, similar to the methods that improve SGD

by reducing the variance, such as stochastic average gradient (SAG) and

stochastic dual coordinate ascent (SDCA). Since the novel approach

12



does not rely on gradient storage, it can be used to solve a variety of

challenging issues, including some structured prediction problems and

training neural.

However, backpropagation using SGD requires manual adjustment

of the initial learning rate. Since the magnitudes of various parameters

vary widely and adjustment is needed throughout the training process,

the learning rate of SGD can be challenging to tune. The convergence

speed will be reduced by an inappropriate learning rate and result in the

divergence of the training method (Montavon et al., 2012). Variations in

the learning rate have a direct impact on how well the model performs.

The main challenges in SGD training revolve around optimizing and

modifying the learning rate. Numerous accelerated SGD variations have

so been introduced in the recent past as a result.

Recent studies have presented a number of accelerated variations of

gradient descent and stochastic gradient descent. Such variants can be

divided into three types, which include momentum methods that design

the descent direction carefully, adaptive learning rate methods that

decide good learning rates, and adaptive gradient methods that

combine the strengths of the first and second types of variants. (Chen

et al., 2018)

The momentum method (Liu et al., 2020);(Ghadimi et al., 2015);

(Nesterov, 1983);(Polyak, 1964) has accelerated the descent in pertinent

directions while slowing it down in irrelevant ones.

vk = γvk−1 − α ·∇θ J(θ) (2.4)

where γvk−1 is the momentum term. However, SGD with momentum

tends to get stuck on data with unequally distributed data points.

Therefore, Nesterov Accelerated Gradient (NAG) is proposed to

overcome the weakness of the method SGD with momentum. NAG is a

13



hyper-parameter that indicates where the global optimal value is

located. The formula of NAG is shown below:

vk = γvk−1 + α ·∇θ J(θ − γ · vk−1) (2.5)

θk+1 = θk − vk (2.6)

where θ − γ · vk−1 is determined, and provides an estimate of the

parameters’ next approximate position. Momentum determines the

current gradient before leaping the updated accumulated gradient’s

direction. Contrarily, NAG performs jumps in the previously

accumulated gradient’s direction, before measuring and adjusting the

gradient. This type of predictive update prevents faster convergence in

the wrong direction while also improving the performance (Lydia and

Francis, 2019).

Adaptive methods have been presented as SGD variations that can

use different learning rates for each parameter. Duchi et al. (2011)

introduced the Adaptive Gradient Descent Algorithm (AdaGrad). By

dividing the learning rate for each parameter by the square root of the

gradient vector’s sum of squares, AdaGrad effectively adapts each

parameter’s learning rate. AdaGrad maintains small learning rates for

frequently occurring features while large learning rates for less

frequently occurring features, making it suited for sparse data ((Dean

et al., 2012) and (Pennington et al., 2014)).

At each step t, AdaGrad modifies the general fixed learning rate for

every parameter θk based on the previous gradients computed for θk. The

updating formula of AdaGrad is

θk+1 = θk −
α√

Gk + ϵ
·∇θ J(θk; xi,yi) (2.7)
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where ∇θ J(θk; xi,yi) = gk is the loss function gradient with respect to the

parameter θk at time step t and ϵ is a value added to avoid division by

zero. Each diagonal element i in the diagonal matrix Gk is equal to the

sum of the squares of the gradients with respect to θk. However, this

method has its main weakness. Since the squared gradients are all

positive values, as the time step t increases, the learning rate decreases

until it becomes infinitely small as the squared gradients in the

denominator accumulate. (Ruder, 2016)

RMSprop is proposed by Tieleman et al. (2012). This well-known

method is an unpublished gradient-based optimization method used in

training neural networks. RMSProp improves AdaGrad to prevent the

problem of monotonically decreasing the learning rate. RMSprop fixed

the problem by using an average scale rather than a cumulative scale

(Bock and Weiß, 2019). The gradient is normalized by dividing the

learning rate by an exponentially decaying average of squared gradients

(Kochenderfer and Wheeler, 2019). It increases the small gradient’s

learning rate to prevent vanishing and decreases the large gradient’s

learning rate to prevent exploding.

AdaDelta (Zeiler, 2012), is a powerful methodology for learning

rates, and it can be implemented in a range of circumstances. The

concept originates from AdaGrad (Duchi et al., 2011) and the method is

introduced to deal with the issues of learning rates that continuously

decay and the selection of hyperparameters. Instead of summing up all

the preceding gradients, AdaDelta (Zeiler, 2012) adjusts the learning

rates depending on a moving window of gradient updates. The learning

rate does not need to be tuned manually and without the need to assign

the initial learning rate like AdaGrad (Duchi et al., 2011), since it was

removed from the update rule.

Adam (Adaptive Moment Estimation) was first introduced by
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Kingma and Ba (2014). It is simple to implement and does not need a

large amount of memory. It is a stochastic optimization approach that

uses only first-order gradients and is computationally efficient. The

concept of momentum is used in this method, which multiplies the

gradient values by the weights computed previously (Yi et al., 2020).

This method combines the strength of two famous optimization

approaches, which are AdaGrad (Duchi et al., 2011) and RMSProp

(Tieleman et al., 2012). Thus, Adam is well suited to non-stationary

objectives and problems with sparse gradients. Adam has the advantage

of performing a form of step size annealing naturally. Adam generates

unique adaptive learning rates for distinct parameters using estimates of

the first and second moments of the gradients. Due to its adaptive

learning rate and good performance, Adam has been widely used in

training deep neural networks. In the field of machine learning, A large

variety of non-convex optimization problems are well-suited for Adam.

Adam uses an iterative learning approach to update the variables.

The learning rate is adaptive due to the use of first-order momentum,

and it uses second-order momentum to preserve a portion of the past

gradient direction. The first-order estimate is described as

mt = β1mt−1 + (1 − β1)gt (2.8)

where mt is the gradient’s exponential moving average, β1 is the

exponential decay rate for the first moment estimate and gt is the loss

function gradient. The estimate of second-order moment is defined as

vt = β2vt−1 + (1 − β2)gt
2 (2.9)

where vt is the exponential moving average of the gradient squared and

β2 is the exponential decay rate for the second moment estimate.
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Initially, the first-order and second-order moment estimates are set to

be 0, and the β1 and β2 are close to 1, therefore the first-order estimate mt

and second-order estimate vt are biased towards zero.

The bias correction of the first-moment and second-moment estimates

are shown

m̂t =
mt

1 − β1
t (2.10)

v̂t =
vt

1 − β2
t (2.11)

The updating formula is thus given as:

θt = θt−1 − α · m̂t√
v̂t + ϵ

(2.12)

where α is the learning rate and ϵ is set to be 10−8, which is recommended

from the sckit-learn package.

However, some studies have highlighted the limitations of the Adam

method (Reddi et al., 2019);(Luo et al., 2019);(Zhou et al., 2018). They

demonstrated that Adam cannot converge to the optimal point in

counterexamples and proposed revised adaptive approaches.

Unfortunately, Reddi et al. (2019) discovered that several of Adam’s

lemmas could not be proven. Furthermore, Kingma and Ba addressed

the problems raised and proposed a method called AMSGrad, a variant

of Adam. The max operator is used for second momentum estimations

in AMSGrad (Reddi et al., 2019).

Tran et al. (2019) demonstrated that AMSGrad’s convergence proof

also has a shortcoming and that Adam’s convergence proof has a similar

problem that has been overlooked. The handling of the

hyper-parameters, which assumes them to be equal when they are not,
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is the specific issue with AMSGrad’s convergence proof. To illustrate the

overlooked problem, they gave an explicit counterexample of a simple

convex optimization scenario. Several solutions to this problem relying

on the manipulation of hyper-parameters have been provided. They

presented a new convergence proof for AMSGrad and a modified

version of AMSGrad, named AdamX.

AdaGrad, RMSProp, and Adam are some common adaptive

optimization techniques that have been suggested to achieve a quick

training process. Despite their popularity, they are shown to have a

poorer generalization than SGD. Due to the extreme and unstable

learning rate, these adaptive optimization methods may result in poor

performance or even fail to converge. Therefore, new variations of

AMSGrad and Adam, known as AMSBound and AdaBound,

respectively, are presented by Luo et al. (2019). They utilized dynamic

restrictions on the learning rates to establish a smooth and gradual

switch from adaptive techniques to SGD. According to experimental

outcomes, the new methods can maintain better learning speed early in

training while also reducing the generalization difference between SGD

and adaptive strategies. Additionally, they can perform much better on

their prototypes, particularly for complex deep neural networks. The

new methods demonstrated great performances on some common

benchmarks while preserving beneficial aspects of adaptive methods

like speedy initial progress and insensitivity of the hyperparameter.

2.4 Learning Rate Schedules in Deep Learning

The learning rate has been scheduled using various approaches to

address this problem, including time-based (Park et al., 2020),

step-based (Ge et al., 2019) and exponential-based (Li and Arora, 2019)

learning rate schedule. Generally, these methods involve additional
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hyperparameters to manage speed for the decay of the learning rate. To

prove the SGD convergence, reducing the step size is notable as a crucial

element and assists in practical implementations of SGD. Throughout

the training process, a successful schedule can adjust the learning rate

over time. This will lead to better convergence and converges to a

satisfactory minimum.

The existing learning rate schedules used are just reducing the

learning rate, which might be a reason that resulted in the learning not

proceeding further at a local minimum ((Becker and Le Cun, 1988);

(Kelley, 1995)). When using these strategies, the outcome is frequently

unpredictable and won’t be close to zero for the cost function created

from learning data. Therefore, by utilizing cost functions, Park et al.

(2020) proposed a new schedule for learning rates. The cost function

value is used to decide the adjustment of the learning rate, the approach

can only stop learning at the cost function’s global minimum, which

indicates that the given cost reaches zero.

The learning rate range test (LR range test) and cyclical learning rates

(CLR) were initially suggested by Smith (2015) and then revised by

Smith (2017). CLR is a method for deciding the global learning rates

when neural networks are being trained. It avoids the need to conduct

multiple experiments and no additional computation is required when

determining the best learning rates and schedule. Rather than just

reducing the learning rate monotonically, this approach enables the

learning rate to be adjusted between appropriate range values cyclically.

Instead of using fixed learning rates, training by using cyclical learning

rates will produce better accuracy. It requires fewer iterations and

eliminates the necessity of adjusting the learning rate. The LR range test

is used to begin training with a small learning rate. The learning rate

gradually increased linearly over the pre-training process. This provides
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relevant knowledge about the network’s effect on training throughout

various learning rates as well as information on the maximum learning

rate.

One Cycle Policy (Smith, 2018), is a slight modification of CLR. It is a

technique for determining the optimum learning rate during the neural

network training. In the first half of the cycle, the learning rate gradually

rises along with the simultaneous reduction in momentum, whereas in

the second half of the cycle, the learning rate gradually falls along with

the corresponding rise in momentum. Besides, Loshchilov and Hutter

(2016) suggested a similar approach to CLR to speed up deep neural

network training, which is stochastic gradient descent with restarts

(SGDR), also known as Cosine Annealing. The learning rates decay

along a cosine curve and then the learning rates will restart to their

initial value at the end of the decay.

Xu et al. (2019) suggested a reinforcement learning-based

framework, depending on the previous training histories. It has the

ability to learn an adaptive learning rate schedule automatically. With

this approach, the learning rate will adjust dynamically to recent

training dynamics. Furthermore, Chandra and Sharma (2016)

incorporated the principle of the Laplacian score with an adaptive

learning rate; such updates involve algorithms that change the weights

in mini-batches.

Moreover, Schaul et al. (2013) presented an approach to

automatically adjust multiple learning rates. At each update and

probably for every parameter, it determines an optimal learning rate,

which optimizes the expected loss after the next update. This technique

depends on local variations of gradients through samples. The learning

rate will increase as well as decrease, making it an appropriate choice for

non-stationary problems. The adaptive learning rate approach fully
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removes the need to adjust the learning rate manually, or for its best

value to be systematically searched.

2.5 Summary

In summary, the currently available strategies are either applying a

fixed learning rate or a simplified adaptive updating scheme in every

iteration. To address the research gap, i.e. manually search on the

learning rate or fixed learning rate for all the components, we propose to

develop a multiple adaptive learning rate strategy in order to achieve

better performance and converge faster. The algorithm will adjust the

learning rate in every iteration based on the approximated spectrum of

the Hessian of the loss function.
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CHAPTER 3

METHODOLOGY

3.1 Mathematical Formulation of Multiple Adaptive Learning Rate

Algorithms

To derive an updated scheme for the tuning parameter Bk, a

restriction for components of Bk under some measures is imposed by

minimizing the log-determinant norm and allowing them to satisfy the

secant equation. Hence, for any positive diagonal matrix Bk, the solution

is given by the updated Bk+1:

min tr(Bk+1)− ln (det(Bk+1)) (3.1)

s.t. sk
TBk+1sk = sk

Tyk (3.2)

where tr is the trace of a square matrix, it is defined to be the sum of

elements on the main diagonal of the matrix; det is the determinant of a

matrix and

sk = xk − xk−1 (3.3)

yk = gk − gk−1. (3.4)

Let Bk+1 = diag(B(1)
k+1, . . . , B(n)

k+1) and sk = (s(1)k , . . . , s(n)k ), the minimization

problem (3.1) and (3.2) becomes
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min(
n

∑
i=1

B(i)
k+1 − ln(

n

∏
i=1

B(i)
k+1) (3.5)

s.t.
n

∑
i=1

(s(i)k )
2
B(i)

k+1 − sT
k yk = 0 (3.6)

Next, we apply the Lagrange multiplier to the minimization problem

(3.5) and (3.6) to get:

L(ρ) = (
n

∑
i=1

B(i)
k+1)− ln(

n

∏
i=1

B(i)
k+1 + ρ[(

n

∑
i=1

(s(i)k )
2
B(i)

k+1)− sT
k yk] (3.7)

where ρ is the Lagrange multiplier and can be approximated by using

Newton-Raphson method.

Differentiate (3.7) with respect to Bk+1
(i) and set the derivatives to zero:

∂L
∂Bk+1

(i)
= 1 − 1

Bk+1
(i)

+ ρ(sk
(i))

2
, , i = 1,2, ...,n (3.8)

then gives

Bk+1
(i) =

1

1 + ρ(sk
(i))

2 , i = 1,2, ...,n (3.9)

By substituting (3.9) into constraint (3.6) gives:

F(ρ) =
n

∑
i=1

(s(i)k )2

1 + ρ(sk
(i))

2 − sk
Tyk (3.10)

where the Lagrange multiplier ρ can be obtained by solving the objective

function. This can be approximated by applying only one iteration of

Newton-Raphson, with initial value of ρ = 0. When sT
k sk > sT

k yk, equation

(3.10) has a unique positive solution and hence, the Lagrange multiplier

ρk can be approximated by:

ρ ≈ sk
Tsk − sk

Tyk
n
∑

i=1
(s(i)k )

4 (3.11)
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Lastly, the updating formula for Bk+1 is

Bk+1 = diag(Bk+1
(1), ..., Bk+1

(n)) for sk
Tsk > sk

Tyk (3.12)

In this project, since the diagonal matrix is used as the tuning parameter,

therefore it is reasonable to use the log determinant norm. If the

full-rank dense matrix is used, the log determinant norm becomes not

practical due to the excessive computational operation of calculating the

determinant of a full rank matrix. Additionally, the secant equation

should be satisfied to ensure the boundedness of the updating formula.

There are three types of choices to update the case sk
Tsk ≤ sk

Tyk in (3.12):

Restoring

Bk+1 =





diag(B(1)
k+1, B(2)

k+1, ..., B(n)
k+1) if sT

k sk > sT
k yk

Bk otherwise.
(3.13)

Restarting

Bk+1 =





diag(B(1)
k+1, B(2)

k+1, ..., B(n)
k+1) if sT

k sk > sT
k yk

I otherwise.
(3.14)

Rescaling

Bk+1 =





diag(B(1)
k+1, B(2)

k+1, ..., B(n)
k+1) if sT

k sk > sT
k yk

sT
k yk

sT
k sk

· I otherwise.
(3.15)
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Restoring, restarting and rescaling are the options to preserve the positive

definiteness of the updating formula Bk, to ensure every component in

Bk is positive. All of the options have been tested in several datasets to

analyze the dataset accordingly.

3.1.1 Multiple Adaptive Learning Rate Incorporated to SGD

The spectral parameter served as the multiple adaptive learning rate

updating formula is incorporated to SGD, which was adapted from the

approach suggested by Sim et al. (2019).

In order to preserve the positive definiteness of Bk+1 whenever

sT
k sk > sT

k yk, we will focus on using the restoring method. The restoring

method will update the Bk+1 to the previous Bk to preserve the positive

definiteness of Bk+1.

The proposed method will adapt the learning rate in every iteration

as well as in every single equation, i.e. every weight component and

bias component. The proposed method adjusts the learning rate based

on the approximated loss function’s Hessian’s spectrum. It uses the

approximated inverse Hessian matrix of the loss function B−1 as the

tuning parameter. The learning rate µ in MAdaGrad is adapted by

multiplying the inverse of B, which is µB−1. µB−1 is a diagonal matrix

that encapsulate the different learning rates in the algorithm. Since B is a

diagonal matrix, it can be viewed as a vector with the same length l as

parameters (weights and biases).

The algorithm of MAdaGrad is shown in algorithm 1.

3.1.2 Multiple Adaptive Learning Rate Incorporated to Adam

The Adam method has incorporated with the described updating

formula of the multiple learning rate method to form a method named

MAdaGrad Adam. The algorithm of MAdaGrad Adam is presented in
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Algorithm 1: MAdaGrad Algorithm
Step 0: Set k = 0. Given initial learning rate µ = 0.001 and B0 is a
vector with all ’1’, velocity α0 is a zero vector and momentum ρ = 0.9
Step 1: Compute yk = gk − gk−1 and sk = θk − θk−1 for k ≥ 1.

Step 2: Compute ω = sk
Tsk−sk

Tyk
n
∑

i=1
(s(i)k )

4 for k ≥ 1.

Step 3: Compute Bk given by (3.13) for k ≥ 1.
Step 4: Compute αk+1 = (ρ ∗ αk)− µk ∗ Bk

−1 ∗ gk
Step 5: Compute θk+1 = θk − ((ρ ∗ αk+1)− µk ∗ Bk

−1 ∗ gk)
Step 6: If k = maximum iteration, stop. Else, set k = k + 1 and go to
step 1.

Algorithm 2. The proposed method adjusts the learning rate based on

the approximated inverse Hessian matrix of the loss function B−1 as the

tuning parameter. The fixed learning rate in Adam is replaced by

component-wise learning rate given by B−1 in this MAdaGrad Adam

algorithm.

Algorithm 2: MAdaGrad Adam Algorithm
Step 0: Set k = 0. Given initial learning rate µ = 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 10−8, first moment vector m0 and second moment
vector v0 are initialized to 0 and time step t = 0.
Step 1: Set t = t + 1
Step 2: Compute mt = β1mt−1 + (1 − β1)gt and
vt = β2vt−1 + (1 − β2)gt

2

Step 3: Compute m̂t =
mt

1−β1
t and v̂t =

vt
1−β2

t

Step 4: Compute yt = gt − gt−1 and st = θt − θt−1
Step 5: Compute Bk given by (3.13).
Step 6: if t = 1, µt = µ0, else µt = µ0Bt

−1

Step 7: θt+1 = θt − (µt × m̂t√
v̂t+ϵ

)

Step 8: If k = maximum iteration, stop. Else, set k = k + 1 and go to
step 1.

3.1.3 Convergence Analysis

In this section, we will show the convergence analysis of the proposed

method according to the Assumption 1.

Assumption 1.
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i The objective function f is twice continuously differentiable.

ii The level set D = {x ∈ Rn : f (x) ≤ f (x0)} is convex.

iii There exist positive constants M1 and M2 such that

M1∥z∥2 ≤ zTG(x)z ≤ M2∥z∥2 (3.16)

for ∀z ∈ Rn and ∀z ∈ D. This implies that the objective function f has a

unique minimize x∗ in D.

Lemma 3.1. To satisfy Assumption 1, assume that B0 = I, where I is the n × n

identity matrix, and x0 is the starting point, so that f meets Assumption 1. The

sequence {∥Bk∥} is then bounded by some positive constants c1 and c2, where

the Bk+1 defined by (3.13).

Proof. Since ∥B0∥ is bounded, we define Ḡ as

Ḡ =
Z 1

0
∇2 f (xk + τsk) dτ. (3.17)

According to the mean value theorem,

yk = Ḡsk (3.18)

By replacing z by sk in Assumption 1iii gives

M1∥sk∥2 ≤ sk
Tyk ≤ M2∥sk∥2. (3.19)

There are two cases in the updating formula of Bk+1:

Case 1: If sT
k yk < sT

k sk, for some k ≥ 0

B(i)
k+1 =

1

1 + sk
Tsk−sk

Tyk

∑n
i=1(sk

(i))
4

�
sk

(i)
�2 (3.20)
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Let
�

s(M)
k

�2
= max{

�
s(1)k

�2
, ...,

�
s(n)k

�2
}. ∥sk∥2 ≤ n

�
s(M)

k

�2
is derived

from the assumption that sT
k sk = ∑n

i=1

�
sk

(i)
�2

. Thus,

sk
Tsk − sk

Tyk

∑n
i=1

�
sk

(i)
�4

�
sk

(i)
�2

≤ 1 − M1

∑n
i=1

�
sk

(i)
�4 n

�
s(M)

�4
≤ n(1 − M1). (3.21)

It implies that
1

1 + n(1 − M1)
≤ B(i)

k+1 ≤ 1. (3.22)

where the bounds would also apply for B0 = I, as sk
Tsk−sk

Tyk

∑n
i=1(sk

(i))
4

�
sk

(i)
�2

is

nonnegative.

Case 2: If sT
k yk ≥ sT

k sk, from Assumption 1iii gives

M1 ≤ B(i)
k+1 =

sT
k yk

sT
k sk

≤ M2. (3.23)

We combine equations (3.22) and (3.23) gives

c1 = min{ 1
1 + n(1 − M1)

, M1} ≤ B(i)
k ≤ max{1, M2} = c2,∀k ≥ 0. (3.24)

3.2 Implementation

3.2.1 Implementation of sklearn

Scikit-learn (sklearn) is the one of the most effective and robust

library for machine learning in Python. Through a Python consistency

interface, it offers a variety of effective tools for statistical modelling and

machine learning, including clustering, classification, regression and

dimensionality reduction. This library is based on NumPy, Matplotlib

and SciPy, and it was written primarily in Python.
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The algorithms have been implemented into Scikit-learn (sklearn) by

modifying the source code of SGD and Adam. MAdaGrad and

MAdaGrad Adam are added into the sklearn file

_multilayer_perceptron.py.

1 from ._stochastic_optimizers import SGDOptimizer, AdamOptimizer,

MAdaGrad, MAdaGrad_Adam

2

3 _STOCHASTIC_SOLVERS = [’sgd’, ’adam’, ’madagrad’,

4 ’madagrad_adam’]

Listing 3.1: _multilayer_perceptron.py

MAdaGrad and MAdaGrad Adam are added into _fit_stochastic

function in _multilayer_perceptron.py.

1 if not incremental or not hasattr(self, ’_optimizer’):

2 params = self.coefs_ + self.intercepts_

3

4 if self.solver == ’sgd’:

5 self._optimizer = SGDOptimizer(params,

6 self.learning_rate_init, self.learning_rate, self.momentum, self

.nesterovs_momentum, self.power_t)

7 elif self.solver == ’adam’:

8 self._optimizer = AdamOptimizer(params,

9 self.learning_rate_init, self.beta_1, self.beta_2,

10 self.epsilon)

11 elif self.solver == ’madagrad’:

12 self._optimizer = MAdaGrad(params,

13 self.learning_rate_init, self.learning_rate, self.momentum, self

.nesterovs_momentum, self.power_t)

14 elif self.solver == ’madagrad_adam’:

15 self._optimizer = MAdaGrad_Adam(params,

16 self.learning_rate_init, self.beta_1, self.beta_2,

17 self.epsilon)

Listing 3.2: _fit_stochastic function
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The sklearn code is also modified in the file _stochastic_optimizers.py.

3.2.2 SGD

In the python machine learning module, sklearn with version 0.24.2,

the stochastic gradient descent method consists of three types of learning

rate schedules:

Constant

The constant learning rate schedule is the default learning rate schedule

for the SGD method. The same learning rate is used throughout the

training:

µ(t) = µ0. (3.25)

Invscaling

The inverse scaling updating formula is given by:

µ(t) =
µ0

tpower_t . (3.26)

where µ0 is the initial learning rate and the default value of power_t is

0.5.

Adaptive

Like the constant learning rate case, first, let the learning rate to be a

constant

µ(t) = µ0. (3.27)
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Then for every two consecutive epochs that fail to show the reduction in

the training loss by a fixed tolerance tol = 10−3 or fail to increase the

validation score by tol, the current learning rate is divided by 5, and the

algorithm does not stop. The algorithm stops when the learning rate

goes below 10−6 and when the learning rate has no improvement for 10

executive times.

Listing 3.3 is the updating formula for SGD in sklearn.

1 updates = [self.momentum * velocity - self.learning_rate * grad

for velocity, grad in zip(self.velocities, grads)]

Listing 3.3: SGD Updating Formula

The learning rate α in MAdaGrad is adapted by multiplying the

inverse of B, which is αB−1. B−1 is a vector with the same length q as

parameters (weights and biases). The maximum and minimum values

of αB−1 has captured in every iteration. The values have collected from

30 random states of data in 10 iterations. The average of the maximum

and minimum values have been used as the default learning rate in

SGD, which are the SGD(max) and SGD(min).

3.2.3 MAdaGrad

A new class MAdaGrad is added to sklearn documentation.

Some new initial parameters are added to the MAdaGrad optimizer.

1 # previous parameters

2 self.prev_params = None

3 # previous gradient

4 self.prev_gradient = None

5 # initial B

6 self.B = []

7 for i in range(len(self.params)):

8 self.B.append(np.ones_like(self.params[i]))

9 # initial omega

10 self.omega = [None] * (len(self.params))
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11 # number of hidden layers

12 self.no_hlayers = len(self.params) // 2

Listing 3.4: Initial parameters

Listing 3.5 is the function to compute s.

1 def compute_s(self):

2 # difference between current parameters and previous

parameters

3 s = [a1 - a2 for a1, a2 in zip(self.params,

4 self.prev_params)]

5 return s

Listing 3.5: Compute s

Listing 3.6 is the function to compute y.

1 def compute_y_diff(self, grads):

2 # difference between current gradient and previous gradient

3 y_diff = [a1 - a2 for a1, a2 in zip(grads,

4 self.prev_gradient)]

5 return y_diff

Listing 3.6: Compute y

Listing 3.7 is the function to compute ω.

1 def compute_omega(self, s, y_diff):

2 for i in range(self.no_hlayers * 2):

3 if np.sum([a ** 4 for a in s[i]]) == 0:

4 self.omega[i] = 0

5 else:

6 self.omega[i] = (np.sum([a1 * a2 for a1,a2 in zip(s[

i], s[i])]) - np.sum([a1 * a2 for a1,a2

7 in zip(s[i], y_diff[i])])) / np.sum([a ** 4 for a in s[i]])

Listing 3.7: Compute ω

Listing 3.8 is the function to compute B.

32



1 def compute_B(self, grads):

2 prev_params = self.prev_params

3 prev_gradient = self.prev_gradient

4 B = self.B

5

6 if prev_params is None and prev_gradient is None:

7 # gradient descent

8 pass

9 else:

10 # compute s and y

11 s = self.compute_s()

12 y_diff = self.compute_y_diff(grads)

13

14 # compute omega

15 self.compute_omega(s, y_diff)

16

17 # compute B

18 for i in range(self.no_hlayers * 2):

19 c1 = np.sum([a1 * a2 for a1,a2

20 in zip(s[i], s[i])])

21 c2 = np.sum([a1 * a2 for a1,a2

22 in zip(s[i], y_diff[i])])

23

24 if c1 > c2:

25 B[i] = 1 / (1 + self.omega[i] * (s[i] ** 2))

26 else:

27 B[i] = B[i]

Listing 3.8: Compute B

B−1 has been computed and incorporated into SGD to form the updating

formula for MAdaGrad.

1 self.compute_B(grads)

2 inverse_B = [1.0 / _B for _B in self.B]

3

4 updates = [self.momentum * velocity - lr * inv_B * grad
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5 for velocity, grad, inv_B in zip(self.velocities

6 , grads, inverse_B)]

Listing 3.9: MAdaGrad Updating Formula

A deepcopy is made on the current parameters and gradients for the next

iteration.

1 self.prev_params = copy.deepcopy(self.params)

2 self.prev_gradient = copy.deepcopy(grads)

3.2.4 MAdaGrad Adam

Listing 3.10 is the updating formula for Adam.

1 self.t += 1

2 self.ms = [self.beta_1 * m + (1 - self.beta_1) * grad

3 for m, grad in zip(self.ms, grads)]

4 self.vs = [self.beta_2 * v + (1 - self.beta_2) * (grad ** 2)

5 for v, grad in zip(self.vs, grads)]

6 self.learning_rate = (self.learning_rate_init *

7 np.sqrt(1 - self.beta_2 ** self.t) /

8 (1 - self.beta_1 ** self.t))

9 updates = [-self.learning_rate * m / (np.sqrt(v)

10 + self.epsilon)

11 for m, v in zip(self.ms, self.vs)]

Listing 3.10: Adam Updating Formula

B−1 has been computed and incorporated into Adam to form the

updating formula for MAdaGrad Adam.

1 if self.t == 1:

2 self.learning_rate = (self.learning_rate_init

3 * np.sqrt(1 - self.beta_2 ** self.t) / (1 - self.beta_1 ** self.

t))

4 updates = [-self.learning_rate * m / (np.sqrt(v)

5 + self.epsilon) for m, v in zip(self.ms, self.vs)]

6 else:

34



7 self.learning_rate = [self.learning_rate_init * inv_B

8 for inv_B in inverse_B]

9

10 updates = [-lr * m / (np.sqrt(v) + self.epsilon)

11 for m, v, lr in zip(self.ms, self.vs

12 , self.learning_rate)]

Listing 3.11: MAdaGrad Adam Updating Formula

A deepcopy is made on the current parameters and gradients forthe next

iteration.

1 self.prev_params = copy.deepcopy(self.params)

2 self.prev_gradient = copy.deepcopy(grads)

Listing 3.12: Storing previous parameters and gradients

3.3 Benchmark

The software Python 3.8.5 is downloaded on MSI GL62M 7RDX with

processor core i7 and RAM 8GB. By using the performance profile of

Dolan and Moré (2002), the performance of the methods MAdaGrad,

SGD(constant), SGD(adaptive) and SGD(adaptive) can be evaluated

clearly. The performance on problem P by solver ŝ is defined as:

P(t̂ ≤ τ) =
1
|P|size{ p̂ ∈ P : t̂ p̂,ŝ ≤ τ},

where the function P(t̂ ≤ τ) is the cumulative distribution function for

the performance ratio, P is a set of test problems, |P| denotes the

cardinality of P and t̂ p̂,ŝ represents the performance ratio within a factor

τ which is a real number

t̂ p̂,ŝ =
mp̂,ŝ

minmp̂,ŝ : ŝ ∈ S
,
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where mp̂,ŝ represents the performance measure of interest. It is obtained

for each pair ( p̂, ŝ) of solver s in a set S of optimization solvers and

problem P in a set P of test problems. The values of P(t̂ ≤ τ) are

bounded between 0 and 1. The higher the value of P(t̂ ≤ τ) indicates

better performance. We perform the comparisons on SGD family and

Adam family, and discuss separately.
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS

4.1 Datasets

To illustrate the performance of the proposed method, we apply the

proposed method to the following datasets:

1. MNIST handwritten digits datasets: divided into 60000 training

and 10000 testing images. Each image consists of 28x28 pixels (i.e.

784 features) gray scale images of handwritten single digits

between 0 and 9. Each feature represents only one pixel’s intensity

i.e. from 0(white) to 255(black).

2. Breast Cancer datasets: consists of 2 classes (’malignant’ and

’benign’), 30 attributes and 569 instances.

3. Wine datasets: consists of three types of wine (’class 0’, ’class 1’,

’class 2’), 13 attributes and represented in the 178 samples.

4. Abalone datasets: consists of 29 classes, 8 attributes and 4177

samples.

The datasets have been split as follows: 25% of the actual data

becomes the testing set and 75% of the actual data becomes the training

set.
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Table 4.1: Attribute Information of Breast Cancer Datasets

Attribute Name Data Type Mean Standard Deviation
Radius Mean Continuous 14.127 3.521
Texture Mean Continuous 19.290 4.297

Perimeter Mean Continuous 91.970 24.278
Area Mean Continuous 654.900 351.605

Smoothness Mean Continuous 0.096 0.014
Compactness Mean Continuous 0.104 0.053

Concavity Mean Continuous 0.089 0.080
Concave Points Mean Continuous 0.049 0.039

Symmetry Mean Continuous 0.181 0.027
Fractal Dimension Mean Continuous 0.063 0.007

Radius Error Continuous 0.405 0.277
Texture Error Continuous 1.217 0.551

Perimeter Error Continuous 2.866 2.020
Area Error Continuous 40.337 45.451

Smoothness Error Continuous 0.007 0.003
Compactness Error Continuous 0.025 0.018

Concavity Error Continuous 0.032 0.030
Concave Points Error Continuous 0.012 0.006

Symmetry Error Continuous 0.021 0.008
Fractal Dimension Error Continuous 0.004 0.003

Worst Radius Continuous 16.270 4.829
Worst Texture Continuous 25.680 6.141

Worst Perimeter Continuous 107.260 33.573
Worst Area Continuous 880.600 568.856

Worst Smoothness Continuous 0.132 0.023
Worst Compactness Continuous 0.254 0.157

Worst Concavity Continuous 0.272 0.208
Worst Concave Points Continuous 0.115 0.066

Worst Symmetry Continuous 0.290 0.062
Worst Fractal Dimension Continuous 0.084 0.018

4.2 Experimental Setup

We apply the MAdaGrad and MAdaGrad Adam methods as the

optimization methods to train the neural network. The comparison is

made between the MAdaGrad method and the three other methods.

The following methods are taken into consideration:

1. Multiple Adaptive Learning Rate Method (MAdaGrad)

2. SGD with constant learning rate schedule (SGD(constant))
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Table 4.2: Attribute Information of Wine Datasets

Attribute Name Data Type Mean Standard Deviation
Alcohol Continuous 13.000 0.800

Malic acid Continuous 2.340 1.120
Ash Continuous 2.360 0.270

Alcalinity of ash Continuous 19.500 3.300
Magnesium Continuous 99.700 14.300

Total phenols Continuous 2.290 0.630
Flavanoids Continuous 2.030 1.000

Nonflavanoid phenols Continuous 0.360 0.120
Proanthocyanins Continuous 1.590 0.570
Color intensity Continuous 5.100 2.300

Hue Continuous 0.960 0.230
OD280/OD315 Continuous 2.610 0.710

Proline Continuous 746.000 315.000

Table 4.3: Attribute Information of Abalone Datasets

Attribute Name Data Type Mean Standard Deviation
Sex Nominal - -

Length Continuous 0.524 0.120
Diameter Continuous 0.408 0.099

Height Continuous 0.140 0.042
Whole Weight Continuous 0.829 0.490

Shucked Weight Continuous 0.359 0.222
Viscera Weight Continuous 0.181 0.110

Shell Weight Continuous 0.239 0.139
Rings Integer - -

3. SGD with invscaling learning rate schedule (SGD(invscaling))

4. SGD with adaptive learning rate schedule (SGD(adaptive))

The default learning rate µ is 0.001. The vector B0 is initialized to a vector

with all ’1’ with length l. Thirty different random states with different

hidden layer sizes have been used to plot the profiling graphs.

The loss function used is the cross entropy loss:

−
N

∑
i=1

yi · log ŷi

where N is the size of output layer, i.e. the number of classes in the

datasets. y is the actual value and ŷ is the predicted value of the
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classification problems. The datasets listed in section 4.1will be applied

into machine learning prediction. Different datasets give different value

of y:

1. MNIST handwritten digits datasets: handwritten single digits

between 0 and 9.

2. Breast cancer datasets: prognosis ’malignant’ or prognosis ’benign’.

3. Wine datasets: wine type ’1’, ’2’ and ’3’.

4. Abalone datasets: class number of rings.

There are two termination criteria used to observe the performance

of the method, which are the loss values and number of iterations. The

maximum number of iterations has been set to 500 and the loss values

are used to profile the performance of the method. The hidden layer

sizes used for the profiling graphs are (1,100), (2,100), (3,100), (4,100),

(1,1000) and (1,2000), where (p,q) denotes the hidden layer sizes of the

neural network, with p denoting the number of layer in the neural

network and q denoting the number of neurons in each layer. For

example, (3,100) is a neural network containing 3 layers with 100

neurons in each layer. The second termination condition is the number

of iterations. If the number of iterations reaches the upper limit of 10000,

then it will be considered as fail to converge. The hidden layer sizes

used for the profiling graphs are (1,100), (2,100), (1,1000), (1,2000) and

(1,5000).

4.3 Comparison between MAdaGrad and SGD - Loss values

4.3.1 MNIST handwritten digits datasets

Figures 4.1 and 4.2 are the profiling graphs of loss value in different

hidden layer sizes for the methods MAdaGrad, SGD(adaptive) and
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SGD(invscaling). The profiling graphs for batch sizes 200 and 500 are

shown. From the figures, MAdaGrad performs the best among these

methods, followed by SGD(Adaptive). MAdaGrad gives the best results

for every random state, thus the P(t ≤ τ) for MAdaGrad increases to 1

at the beginning stage for every hidden layer size. SGD(invscaling)

method shows poor performances among these methods. The loss

values decrease slowly and it has the largest loss value in the 500th

iterations among these methods. As the number of neurons increases,

i.e., hidden layer sizes = (1, 100), (1,1000), (1,2000), the value of P(t ≤ τ)

grows faster as τ increases.

MAdaGrad performs better than SGD(adaptive) but does not

outperform it as the number of neurons increases. The training weights

are interdependent in a neural network, however, in MAdaGrad, the

weight components are optimized separately. As the number of neurons

increases, more weight components are interconnected and thus lead to

little difference in cumulative probability in the optimization of

MAdaGrad. On the other hand, as the number of layers increases,

MAdaGrad still shows the best performance among these methods.

SGD(constant) is not included in the profiling graph since the results of

SGD(constant) and SGD(adaptive) are almost the same, the line of these

two methods are overlapping due to the small difference in loss values.

The other datasets, which are the breast cancer dataset, wine dataset and

abalone dataset, exhibit similar patterns as MNIST digit datasets.

SGD(constant) and SGD(adaptive) give similar results because both are

the same when there are no two consecutive epochs that fail to show a

reduction or fail to increase the validation score, as mentioned in section

3.2.2.
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.1: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (MNIST Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.2: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 500 (MNIST Dataset).
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4.3.2 Abalones datasets

Profiling graphs for the batch sizes of 200 and 500 are shown in

figures 4.3 and 4.4. From the figures, although MAdaGrad and

SGD(adaptive) gives a similar results, MAdaGrad still performs slightly

better than SGD(adaptive). SGD(invscaling) performs the worst among

these methods.

(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.3: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (Abalone Dataset).

4.3.3 Breast cancer datasets

Figures 4.5 and 4.6 are the profiling graphs of loss value for batch

sizes 200 and 500. As the batch size increase from 200 to 500, the
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.4: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 500 (Abalone Dataset).
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distinction between MAdaGrad and adaptive SGD diminishes when

using large batch sizes, as such batch sizes can cause models to become

trapped in local minima.

(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.5: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (Breast Dataset).

4.3.4 Wine datasets

Figures 4.7 and 4.8 are the profiling graphs of loss value in different

batch sizes and hidden layer sizes. Wine dataset exhibits similar patterns

as MNIST digit datasets.
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.6: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 500 (Breast Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.7: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (Wine Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.8: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 500 (Wine Dataset).

49



4.3.5 Combined Datasets

Figures 4.9 and 4.10 are the profiling graphs of loss value for the

methods MAdaGrad, SGD(constant), SGD(adaptive) and

SGD(invscaling). The results are performed in batch sizes 200 and 500

for different hidden layer sizes. From the figures, MAdaGrad performs

the best among these methods, followed by SGD(Constant) and

SGD(Adaptive). MAdaGrad gives the best results for every random

state, thus the P(t̂ ≤ τ) for MAdaGrad increases to 1 at the beginning

stage for every hidden layer size. SGD(invscaling) method shows poor

performances among these methods. The loss values decrease slowly

and it has the largest loss value in the 500th iterations among these

methods.

MAdaGrad gives the best results for every random state, thus the

P(t̂ ≤ τ) for MAdaGrad increases to 1 at the beginning stage for every

hidden layer size. The performance of the SGD(constant) method is

improved as the number of neurons increases, i.e., hidden layer sizes =

(100,), (1000,), (2000,). MAdaGrad performs better than SGD(constant)

but does not outperform it as the number of neurons increases. The

training weights are interdependent in a neural network, however, in

MAdaGrad, the weight components are optimized separately. As the

number of neurons increases, more weight components are

interconnected and show similar results for the optimization of

MAdaGrad and SGD. On the other hand, as the number of layers

increases, MAdaGrad gives the best performance among these methods.
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.9: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (Combined Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.10: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 500 (Combined Dataset).
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4.4 Comparison between MAdaGrad Adam and Adam - Loss values

4.4.1 MNIST handwritten digits datasets

Figures 4.11 and 4.12 are the performance profiling graphs for the

methods MAdaGrad Adam and Adam in terms of loss values for the

batch sizes of 200 and 500. They give a similar pattern according to

different hidden layer sizes. In the hidden layer sizes (100,), (100,100),

(100,100,100) and (100,100,100,100), MAdaGrad Adam performs better

than Adam. The performances of MAdaGrad Adam are not affected as

the number of layers increases. In the hidden layer sizes (1000,) and

(2000,), MAdaGrad Adam gives poorer performances than Adam. As

the number of neurons increased, MAdaGrad Adam shows no

significant improvement compared to Adam. As mentioned before, the

weight components are interconnected, and when the number of

neurons increases, will result in little cumulative probability difference

in the optimization of MAdaGrad Adam.

4.4.2 Abalone datasets

Figures 4.13 and 4.14 are the performance profiling graphs for

different hidden layer sizes. As the number of neurons increases,

MAdaGrad Adam still performs slightly better than Adam. On the other

hand, when the number of layers increases, the performance of

MAdaGrad Adam remains, and the performance of Adam declines, thus

MAdaGrad Adam provides a better result than Adam.

4.4.3 Breast cancer datasets

Figures 4.15 and 4.16 indicate that although the difference of P(τ)

between these two methods decrease as number of neurons and layers

increase, MAdaGrad Adam still outperforms Adam.
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.11: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (MNIST Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.12: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 500 (MNIST Dataset).

55



(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.13: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (Abalone Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.14: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 500 (Abalone Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.15: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (Breast Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.16: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 500 (Breast Dataset).
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4.4.4 Wine datasets

The performance for the wine datasets show the similar patterns

compared to breast cancer datasets.

(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.17: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (Wine Dataset).

4.4.5 Combined Datasets

Figures 4.19 and 4.20 are the performance profiling graphs for the

methods MAdaGrad Adam and Adam in terms of loss values for the

batch sizes of 200 and 500. As the numbers of neurons and layers

increase, the performance of Adam is improved. Although the

difference in the value of P(τ) between MAdaGrad Adam and Adam
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.18: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 500 (Wine Dataset).
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decreases, MAdaGrad Adam still performs better than Adam. The

weight components in MAdaGrad Adam are optimized separately. As

the number of neurons increases, more weight components are

interconnected and show a little difference between optimization of

MAdaGrad Adam and Adam. As the number of layers increases, it will

lead to degradation of the performance of MAdaGrad Adam. Different

batch sizes also give a similar pattern according to different hidden layer

sizes.

(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.19: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (Combined Dataset).
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(a) Hidden layer size (100,) (b) Hidden layer size (1000,)

(c) Hidden layer size (2000,) (d) Hidden layer size (100,100)

(e) Hidden layer size (100,100,100)
(f) Hidden layer size
(100,100,100,100)

Figure 4.20: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 500 (Combined Dataset).
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4.5 Comparison between MAdaGrad and SGD - Number of Iterations

Figure 4.21 shows the performance profiling graphs of the methods,

MAdaGrad, SGD(constant)(min), SGD(constant)(max), SGD(adaptive)

and SGD(invscaling) for a batch size of 200. Based on the number of

iterations required to converge, MAdaGrad gives the best performance

among these methods for different hidden layer sizes. SGD(adaptive)

and SGD(invscaling) produce the same results, both of them reach the

maximum iterations. Besides, MAdaGrad performs better than SGD

with minimum and maximum learning rates. From figure 4.21,

SGD(min) gives comparable results to MAdaGrad for the hidden layer

size (100,). As the number of neurons and number of hidden layers

increase, MAdaGrad delivers better results than SGD(min). MAdaGrad

produces outperforming results than SGD(max).

4.6 Comparison between MAdaGrad Adam and Adam - Number of

Iterations

Figure 4.22 is the profiling graphs of MAdaGrad Adam and Adam in

terms of number of iterations. In the hidden layer sizes (100,), (100,100)

and (2000,), MAdaGrad Adam performs better than Adam in the first

half, but not better than Adam in the second half. MAdaGrad Adam

shows a better result than Adam for the hidden layer size (1000,) since

the P(t ≤ τ) directly increases to 1 at the beginning stage. For the hidden

layer size (5000,), Adam indicates a better result than MAdaGrad Adam.

4.6.1 Loss values for MAdaGrad and SGD(constant)

Figure 4.23 shows the loss values over 200 iterations for MAdaGrad

and SGD(constant). In this training, the default batch size of 200 and the

default hidden layer size (100, ) are used. Figure 4.23 shows that the
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(a) Hidden layer size (100,) (b) Hidden layer size (100,100)

(c) Hidden layer size (1000,) (d) Hidden layer size (2000,)

(e) Hidden layer size (5000,)

Figure 4.21: Profiling graphs of MAdaGrad and SGD for various layer
sizes with a batch size of 200 (MNIST Dataset - Number of Iterations).
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(a) Hidden layer size (100,) (b) Hidden layer size (100,100)

(c) Hidden layer size (1000,) (d) Hidden layer size (2000,)

(e) Hidden layer size (5000,)

Figure 4.22: Profiling graphs of MAdaGrad Adam and Adam for
various layer sizes with a batch size of 200 (MNIST Dataset - Number
of Iterations).
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MAdaGrad method performs better than SGD(constant). MAdaGrad

performs better since the learning rate in MAdaGrad adapts for every

component, instead of a fixed learning rate used throughout the

training. SGD(Constant) and SGD(Adaptive) exhibit a similar pattern

and they are overlapping, thus SGD(Adaptive) is not included in the

figure. They show a similar pattern since they are the same if there are

no two consecutive epochs that fail to decrease the learning rate by tol as

mentioned in section 3.2.2.

4.6.2 Loss values for MAdaGrad Adam and Adam

Figure 4.23 shows the loss values over 200 iterations for MAdaGrad

Adam and Adam. The default batch size of 200 and the default hidden

layer size (100,) are used. Although MAdaGrad Adam does not show

better performance than Adam according to profiling graphs in term of

number of iterations, MAdaGrad Adam still performs better and

converges faster at the beginning stage of the training.

4.7 Restoring, Restarting and Rescaling

Three types of choices are used for updating the cases sk
Tsk ≤ sk

Tyk

in 3.12. Figure 4.24 shows the loss value of the choices restoring,

restarting and rescaling for MNIST digits datasets. Figure 4.24 shows

that the rescaling method performs the worst among these methods.

Restarting method shows a similar pattern but poorer performance than

restoring method. The restarting method set B to identity matrix I,

which goes back to the initial step, thus it does not give the best result.

The restoring method performs the best among these methods, hence,

restoring method is used in the updating formula of Bk.

Figure 4.25a and 4.25b is the counts of the cases sT
k sk > sT

k yk and sT
k sk ≤

sT
k yk in restoring and rescaling methods. The rescaling method is not
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Figure 4.23: Loss over iterations with hidden layer size (100,). (Top)
MAdaGrad and SGD(constant). (Bottom) MAdaGrad Adam and Adam

Figure 4.24: Restoring, Restarting and Rescaling
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(a) Count in Restoring

(b) Count in Restarting

Figure 4.25: Count in Restoring and Restarting.

involved in the histograms, since it gives the worst performance among

these three methods. The value counts for a neural network with 4 layers

separately. Most of the time, the learning rate follows the branch sT
k sk ≤

sT
k yk among the restoring and restarting methods, therefore, the diagonal

part in the updating formula of the MAdaGrad method is rarely used.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

Optimization problems are a significant part of the neural network

training process. One of the most important aspects of optimization is

the learning rate. Finding optimal values for different hyperparameters

yields training neural networks challenging. Nowadays, the common

learning rate algorithms are either using a fixed learning rate in the

whole simulation or adapting the learning rate in every iteration. In this

project, a modified stochastic gradient descent (MAdaGrad) method and

a modified adaptive moment estimation (MAdaGrad Adam) method are

proposed. The proposed methods update the learning rate in every

iteration based on the approximated spectrum of the Hessian of the loss

function. Multiple adaptive learning rates are used for every single

component. The MNIST handwritten digits datasets, Breast Cancer

datasets, Wine datasets, and Abalone datasets are used to illustrate the

performance of the proposed algorithms. There are two termination

criteria used to observe the performance of the method, which are loss

values and the number of iterations. Different hidden layer sizes are

used to profile the performance of the proposed algorithms. The

proposed algorithms are compared with the common existing methods

SGD and Adam in terms of loss values. The proposed algorithm

MAdaGrad is compared to the SGD method with the existing adaptive
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learning rate schedule, invscaling learning rate schedule, and the

constant learning rate schedule in scikit-learn. Besides, the proposed

MAdaGrad Adam algorithm is compared with the well-known method

Adam. Different batch sizes of 200 and 500 give a similar pattern

according to different hidden layer sizes. The numerical results show

that the proposed methods are comparable with SGD and Adam. To

illustrate the performance of the proposed methods, the loss values over

200 iterations with the default batch size of 200 and hidden layer size

(100,) are plotted. MAdaGrad performs better than SGD(constant) and

SGD(invscaling) since the learning rate in MAdaGrad adapts for every

component, instead of a fixed learning rate used throughout the

training. MAdaGrad Adam performs better and converges faster than

Adam at the beginning stage of the training. However, Adam performs

slightly better than MAdaGrad Adam when it reached iteration 200, the

loss value of Adam is lower than MAdaGrad Adam. Therefore,

MAdaGrad and MAdaGrad Adam can be alternatives optimizer in

machine learning.

5.2 Future Work

The selection of the learning rate will affect the performance of the

methods. Instead of using 0.001 for the initial value of the learning rate

µ, future work may consider using different initial values to improve the

efficiency of the methods. In the specific scenario that the Adam

performs better than the MAdaGrad Adam method, a more appropriate

initial value will deliver better performance of the proposed method. In

addition, it is suggested to incorporate the nonmonotone line search

strategy into the proposed method. Non-monotone line search

techniques are essential components in optimization. It works with

some combined conditions and provides the possibility to achieve better
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performance. The non-monotone line search methods offer flexibility

and adaptability in dealing with complex objective functions. The

strategy assists in the exploration of a larger variety of solutions, the

avoidance of local minima, and the efficient convergence of optimization

algorithms in the presence of noise, ill-conditioning, and non-convexity.

The proposed method combined with the non-monotone line search

strategy will accelerate the convergence rate. It may speed up the

proposed algorithm towards the optimum, especially when the initial

step size estimates might be conservative.
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