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ABSTRACT

GENERALISATION OF n-CENTRALISER RINGS AND

THEIR GRAPHS

Chan Tai Chong

Let Cent(R) denote the set of all distinct centralisers in a ring R. A ring R is

said to be an n-centraliser ring if |Cent(R)| = n, where n 2 N. The question

of how the number of distinct centralisers in a ring can influence its structure

and commutativity has recently captured the attention of several researchers.

Therefore, the study of the n-centraliser rings is a prospective research topic in

ring theory. In this dissertation, we first investigate the characterisation for all

n-centraliser finite rings for n 2 {6, 7, 8, 9, 10, 11} and compute their commuting

probabilities. Subsequently, we classify the structures for all finite rings in which

the cardinality of the maximal non-commuting set is 5.

To extend the study of n-centraliser rings, we introduce the notion of

(m,n)-centraliser rings, which is a generalisation of n-centraliser rings. For

any m distinct elements r1, r2, · · · , rm in a ring R, the m-element centraliser of

{r1, r2, · · · , rm} in R, denoted by CR({r1, r2, · · · , rm}), is defined as CR({r1, r2,

· · · , rm}) = {s 2 R | sr1 = r1s, sr2 = r2s, · · · , srm = rms}, where m 2 N

with m > 2. We denote the set of all distinct m-element centralisers in a ring R by

m�Cent(R), where m 2 N with m > 2. A ring R is called an (m,n)-centraliser

ring if |m� Cent(R)| = n, where n 2 N. Throughout this dissertation, we study

the characterisation for some (m,n)-centraliser finite rings for n 6 10.
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To establish an association between a graph and a ring, we introduce the

idea of the non-centraliser graph of rings. The non-centraliser graph of a ring

R, denoted by ⌥R, is a graph where the vertex set is R, and the edge set consists

of {x, y}, where x, y are two distinct elements in R such that CR(x) 6= CR(y).

In this dissertation, we discuss various graph theoretical properties of the non-

centraliser graph of finite rings.

Keywords: Finite ring, n-centraliser ring, (m,n)-centraliser ring, non-centraliser

graph of ring, non-commuting set, commuting probability.
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CHAPTER 1

BACKGROUNDS AND LITERATURE REVIEWS

1.1 Introduction

Let R be a ring. The centraliser of r in R, denoted by CR(r), is defined as

CR(r) = {s 2 R | sr = rs}. The centre of R, denoted by Z(R), is defined as

Z(R) = {s 2 R | sr = rs for any r 2 R}. For any subring S of R, we let R/S

to represent the factor group of (R,+) by (S,+) and let |R : S| to represent the

index of (S,+) in (R,+).

By determining the commutativity of a ring, we can investigate the com-

plexity of its structures. This is because as the commutativity of a ring decreases,

the complexity of its structure increases. The centraliser of a ring and the com-

mutativity of a ring are inextricably linked. If a ring has a smaller number of

distinct centralisers, then its commutativity is higher. Hence, its structure is lower

in complexity compared to other ring structures. For instance, if a ring has only

one centraliser, then it is a commutative ring.

In this dissertation, we primarily focus on topics related to the centraliser

of a ring. In the remainder of this chapter, we shall give some background and

literature reviews that are relevant to our study.
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1.2 n-Centraliser Rings

Let Cent(R) denote the set of all distinct centralisers in a ring R, and Cent(R) =

{CR(r) | r 2 R}. A ring R is said to be an n-centraliser ring if |Cent(R)| = n,

where n 2 N. The notion of n-centraliser rings first appeared in Dutta et al.

(2015). By the definition of n-centraliser rings, we note that for any ring R,

R is a 1-centraliser ring if and only if R is commutative. Nath et al. (2022)

have proven that there does not exist any 2-centraliser ring and 3-centraliser ring.

Motivated by this result, the following questions naturally arise: "Does there exist

an n-centraliser ring for any positive integer n 6= 2, 3? Can we characterise an

n-centraliser ring?". They have verified the existence of a (p + 2)-centraliser

ring for any prime p. At the same time, they have classified all 4-centraliser and

5-centraliser finite rings. Here, we state the results proven by Nath et al. (2022),

as follows:

[A1] For any non-commutative ring R, |Cent(R)| > 4.

[A2] If R is a ring with R/Z(R) ⇠= Zp⇥Zp for some prime p, then |Cent(R)| =

p+ 2.

[A3] For any finite ring R, R is a 4-centraliser finite ring if and only if R/Z(R) ⇠=

Z2 ⇥ Z2.

[A4] For any finite ring R, R is a 5-centraliser finite ring if and only if R/Z(R) ⇠=

Z3 ⇥ Z3.

Dutta et al. (2018a) determined the possible values of |R : Z(R)| for

any 6-centraliser and 7-centraliser finite rings. Also, they found the possible
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values of |Cent(R)| when R/Z(R) ⇠= Z2⇥Z2⇥Z2. Later on, Dutta et al. (2023)

further studied the characterisation of n-centraliser finite rings for n 6 7. In the

following, we list the results proven by Dutta et al. (2018a), as follows:

[A5] If R is a 6-centraliser finite ring, then |R : Z(R)| = 8, 12 or 16.

[A6] If R is a 7-centraliser finite ring, then |R : Z(R)| = 12, 18, 20, 24 or 25.

[A7] If R is a ring with R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2, then |Cent(R)| = 6 or 8.

1.3 Non-Commuting Set of Finite Rings

Dutta et al. (2018a) introduced the definition of non-commuting set of a finite

ring. Let X be a subset of a finite ring R. If ab 6= ba for any two distinct elements

a, b 2 X , then X is called non-commuting set of R. Moreover, X is said to be

the maximal non-commuting set of R if its cardinality is the largest one among

all such sets. In the same paper, Dutta et al. (2018a) obtained several results

regarding the relations between the centralisers and non-commuting sets of a finite

ring. Besides that, they completely determined the characterisation for all finite

rings with cardinality of the maximal non-commuting set is t, where t 2 {3, 4}.

In the following, we list the results proven by Dutta et al. (2018a). Among these

results is one that involves the concept of an irredundant cover. The definition of

this concept will be explained in Section 2.2.

Lemma 1.3.1. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a finite

ring R. Then the following statements hold.

(a) R =
t
[
i=1

CR(xi).

3



(b)
t
\
i=1

CR(xi) = Z(R).

(c) {CR(xi) | i = 1, 2, · · · , t} is an irredundant cover of R.

(d) t > 3.

(e) t+ 1 6 |Cent(R)|.

(f) t = 3 if and only if |Cent(R)| = 4.

(g) t = 4 if and only if |Cent(R)| = 5.

(h) If CR(r) is commutative for any r 2 R � Z(R), then for any r1, r2 2

R� Z(R), either CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R).

Proof. See Proposition 2.4, Proposition 2.5 and Theorem 2.8 in Dutta et al.

(2018a).

1.4 (m,n)-Centraliser Rings

In this part, we introduce the notion of (m,n)-centraliser rings, which is a gener-

alisation of n-centraliser rings.

For any m distinct elements r1, r2, · · · , rm in a ring R, the m-element

centraliser of {r1, r2, · · · , rm} in R, denoted by CR({r1, r2, · · · , rm}), is defined

as CR({r1, r2, · · · , rm}) = {s 2 R | sr1 = r1s, sr2 = r2s, · · · , srm = rms},

4



where m 2 N with m > 2. Note that CR({r1, r2, · · · , rm}) =
m
\
i=1

CR(ri). We

denote the set of all distinct m-element centralisers in a ring R by m� Cent(R),

where m 2 N with m > 2. A ring R is called an (m,n)-centraliser ring if

|m�Cent(R)| = n, where n 2 N. In the following, we give an elementary result

regarding the (m,n)-centraliser rings.

Proposition 1.4.1. Let m 2 N with m > 2 and let R be a ring. If R is commuta-

tive, then R is an (m, 1)-centraliser ring, and the converse holds when m = 2.

Proof. If R is commutative, then CR(r) = R for any r 2 R. This gives that

m
\
i=1

CR(ri) = R for any m distinct elements r1, r2, · · · , rm 2 R. Therefore,

m � Cent(R) = {R} and so, |m � Cent(R)| = 1. Consequently, R is an

(m, 1)-centraliser ring.

Next, we suppose to the contrary that R is non-commutative. Then, there

exist two distinct elements r1, r2 2 R such that r1r2 6= r2r1. This gives that

CR(r1) 6= CR(r2). Thus, we have CR(r1) \ CR(0) = CR(r1) \ R = CR(r1) 2

2�Cent(R) and CR(r2)\CR(0) = CR(r2)\R = CR(r2) 2 2�Cent(R). This

implies that {CR(r1), CR(r2)} ✓ 2 � Cent(R) and hence, |2 � Cent(R)| > 2,

which contradicts the fact that |2 � Cent(R)| = 1. So, the given statement is

true.

In general, the converse of Proposition 1.4.1 is not necessarily true for

m > 3. For example, R = { [ a b
0 0 ]| a, b 2 Z2} is a non-commutative ring and

Cent(R) = {R, {[ 0 0
0 0 ] , [

0 1
0 0 ]} , {[ 0 0

0 0 ] , [
1 0
0 0 ]} , {[ 0 0

0 0 ] , [
1 1
0 0 ]}}. It follows that 3�

5



Cent(R) = {{[ 0 0
0 0 ]}}. So, |3 � Cent(R)| = 1 and consequently, R is a (3, 1)-

centraliser ring.

1.5 Commuting Probability of Finite Rings

In order to obtain a systematic way to express the commutativity of a finite

ring, the idea of the commuting probability of a finite ring is first introduced by

MacHale (1976). In this dissertation, we denote the commuting probability of

a finite ring R as Prob(R). Prob(R) is the probability that a randomly selected

two elements (with replacement) from a finite ring R will commute with each

other. That is,

Prob(R) =
|{(r, s) 2 R⇥R | rs = sr}|

|R⇥R| . (1.1)

By (1.1), we have

Prob(R) =

P
r2R

|CR(r)|

|R|2 (1.2)

and hence

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2 . (1.3)

By the definition of Prob(R), we note that for any finite ring R, Prob(R) = 1

if and only if R is commutative. MacHale (1976) has shown that for any finite

non-commutative ring R, Prob(R) 6 5
8 . Moreover, the equality attains if and

6



only if R/Z(R) ⇠= Z2 ⇥ Z2. In other words, for any finite ring R, either all of the

elements commute or at most 5
8 of the elements commute.

From the above discussion, we observe that there are some interesting

relations between |Cent(R)| and Prob(R). For instance, for any finite ring R,

R is a 1-centraliser finite ring if and only if Prob(R) = 1. Besides that, for any

finite ring R, R is a 4-centraliser finite ring if and only if Prob(R) = 5
8 . Other

than that, in view of [A4] and (1.3), we can demonstrate the following result.

Proposition 1.5.1. For any finite ring R, if R is a 5-centraliser finite ring, then

Prob(R) = 11
27 .

Proof. By [A4], we have |R : Z(R)| = 9. Since R is a 5-centraliser finite ring,

then R is non-commutative. Hence, Z(R) ⇢ CR(r) ⇢ R for any r 2 R� Z(R).

Thus, we have |Z(R)| < |CR(r)| < |R| = 9|Z(R)| for any r 2 R � Z(R). For

any r 2 R � Z(R), since Z(R) is an additive subgroup of CR(r), and CR(r)

is an additive subgroup of R , then |CR(r)| is divisible by |Z(R)|, and |R| is

divisible by |CR(r)|. Hence, |CR(r)| = 3|Z(R)| = |R|
3 for any r 2 R � Z(R).

Consequently, by (1.3), it follows that

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

9
+

⇣
|R|� |R|

9

⌘⇣
|R|
3

⌘

|R|2

=
11

27
.
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1.6 Non-Centraliser Graph of Finite Rings

Recently, the study of ring structures by using the properties of graphs has grown

in popularity. Graph theory is able to offer visual aids that help us to understand

the ring structures more clearly. Moreover, associating a graph to a ring is an

interdisciplinary topic that aims to reveal the relations between ring theory and

graph theory, and is beneficial for these two branches of study.

There are various types of graphs associated with rings that have appeared

in academia. In 2015, Erfanian et al. (2015) introduced the non-commuting graph

of a ring. The non-commuting graph of a ring R, denoted by �R, is a simple graph

that considers R� Z(R) as the vertices of �R and connects two distinct vertices

x and y whenever xy 6= yx. The authors discussed various graph theoretical

properties of this graph. They affirmed that for any finite non-commutative ring

R, the diameter of �R is at most 2, the girth of �R is 3, and �R is Hamiltonian.

Dutta et al. (2018b) generalised the notion of the non-commuting graph of

a ring to the non-commuting graph of subrings S,K of a ring R, denoted as �S,K ,

is a simple graph whose vertex set is (S[K)� (( \
s2S

CK(s))[ ( \
k2K

CS(k))), and

two distinct vertices a, b are adjacent if and only if a 2 S or b 2 S and ab 6= ba.

The authors investigated the diameter, girth and some dominating sets of �S,K .

Besides that, they confirmed that there does not exist any finite non-commutative

ring R with subrings S,K and S ✓ K such that �S,K is a star graph or complete

bipartite graph.

8



In 2021, Nath et al. (2021) introduced another generalisation of the non-

commuting graph of rings, namely the r-non-commuting graph of a ring, where

r 2 R is a fixed element. The r-non-commuting graph of R, denoted by �r
R, is a

simple graph whose vertex set is R and two vertices x and y are adjacent if and

only if xy � yx 6= r and xy � yx 6= �r. The authors characterised some finite

non-commutative ring R such that �r
R is a tree or star graph. Additionally, Nath

et al. (2021) verified that for any finite non-commutative ring R, if r = ab� ba

for some a, b 2 R, then �r
R is not regular. They also demonstrated that there does

not exist any finite non-commutative ring R such that �r
R is a lollipop graph.

Inspired by the study of the non-commuting graph of rings, we introduce

the idea of the non-centraliser graph of rings in this dissertation. The non-

centraliser graph of a ring R, denoted by ⌥R, is a graph with the vertex set is R,

and the edge set consists of {x, y}, where x, y are two distinct elements in R such

that CR(x) 6= CR(y). Following the definition of ⌥R, we note that ⌥R is a simple

graph. By the definition of ⌥R, we can deduce that a ring R is commutative if

and only if ⌥R is an empty graph.

1.7 Objectives and Problem Statements

This dissertation embarks on the following objectives, namely:

[O1] To investigate how the number of distinct centralisers in a finite ring can

affect its structure and commutativity.

[O2] To obtain more relations between the centralisers and non-commuting sets

9



of a finite ring.

[O3] To generalise the notion of the n-centraliser ring.

[O4] To use the idea of centraliser to associate a graph to a finite ring.

In order to achieve the objective of this dissertation, there have four problem

statements that need to be solved, as follows:

[P1] Characterise all n-centraliser finite rings for n 2 {6, 7, 8, 9, 10, 11} and

compute their commuting probability.

[P2] Determine the structures for all finite rings with cardinality of the maximal

non-commuting set is 5.

[P3] Characterise some of the (m,n)-centraliser finite rings for n 6 10.

[P4] Investigate various graph theoretical properties of the non-centraliser graph

of a finite ring.

1.8 Thesis Organization

Here, we give a brief description of the succeeding chapters in this dissertation.

In Chapter 2, we investigate some relations between the centralisers and non-

commuting sets of a finite ring. We also establish some lemmas that are useful

for the construction of our main results. Next, we construct some results to

show the existence of n-centraliser rings for some n 2 N. We also study the

10



characterisation for all n-centraliser finite rings for n 2 {6, 7, 8, 9, 10, 11} and

compute their probabilities.

In Chapter 3, we provide some results for finite rings with |R : Z(R)| =

16. Subsequently, we classify the structures for all finite rings with cardinality of

the maximal non-commuting set is 5.

In Chapter 4, we state some requirements that will be applied in the proof

of our main theorems. We also compute |m� Cent(R)| for some classes of finite

rings. Next, we obtain the characterisation for some (m,n)-centraliser finite rings

for n 6 10.

In Chapter 5, we obtain various graph theoretical properties of the non-

centraliser graph of finite rings.

Finally, in the last chapter, we summarize our dissertation and identify

some future works on our topics.

11



CHAPTER 2

n-CENTRALISER FINITE RINGS AND THEIR COMMUTING

PROBABILITIES

2.1 Introduction

In this chapter, we attempt to describe the properties of n-centraliser finite rings.

In Section 2.2, we first determine some relations between the centralisers and

non-commuting sets of a finite ring. We also prove some lemmas which are

important in obtaining our main results. Next, we give some results to show the

existence of n-centraliser rings for some n 2 N. In Sections 2.3-2.7, we study the

characterisation for all n-centraliser finite rings for n 2 {6, 7, 8, 9, 10, 11} and

compute their commuting probabilities.

2.2 Preliminary Results

Following Abdollahi et al. (2007), a cover for a group G is a collection of proper

subgroups whose union is the whole G. Moreover, a cover is called irredundant

if no proper subcollection is also a cover. Let f(n) be the maximum value of

|G :
n
\
i=1

Xi|, where {X1, X2, · · · , Xn} is an irredundant cover of a group G.

Tomkinson (1987) has showed that f(3) = 4 and f(4) = 9. Furthermore, Bryce

et al. (1997), Abdollahi et al. (2005) and Abdollahi and Jafarian Amiri (2007)
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have proved that f(5) = 16, f(6) = 36 and f(7) = 81, respectively. We will use

these results in the sequel.

Before we proceed further, we state some useful lemmas regarding the

cover of a group. In this chapter, we will frequently use Lemma 2.2.1.

Lemma 2.2.1. Let H,X1, X2, · · · , Xt be the proper subgroups of a finite group

G with |G : Xi| = �i, where �1 6 �2 6 · · · 6 �t. If G = H[X1[X2[ · · ·[Xt,

then �1 6 t. Further, if �1 = t, then �1 = �2 = · · · = �t = t and Xi \ Xj is a

subgroup of H for any two distinct i, j 2 {1, 2, · · · , t}.

Proof. See Lemma 3.3 in Tomkinson (1987).

Lemma 2.2.2. Let {X1, X2, · · · , Xt} be an irredundant cover of a group G. Then

t
\

j=1,j 6=i
Xj =

t
\
j=1

Xj for any i 2 {1, 2, · · · , t}.

Proof. See Lemma 2.2(b) in Bryce et al. (1997).

In the following, we investigate some relations between the centralisers

and non-commuting sets of a finite ring, which are needed in the construction of

the main results.

Lemma 2.2.3. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a finite

ring R. Let |Cent(R)| 6 t+3 and let r 2 R�Z(R). Then CR(r) is commutative

if and only if CR(r) = CR(xi) for some i 2 {1, 2, · · · , t}.

Proof. First, we consider the sufficiency part. Suppose to the contrary that CR(xk)

is non-commutative for some k 2 {1, 2, · · · , t}. Without loss of generality, we

13



assume that k = 1. Let {d1, d2, · · · , du} be the maximal non-commuting set

of CR(x1). By Lemma 1.3.1(d), we have u > 3. For any i 2 {1, 2, 3}, since

there exists some j 2 {1, 2, 3} � {i} such that dj 62 CR(di) but dj 2 R and

dj 2 CR(x1), then CR(di) 6= R and CR(di) 6= CR(x1). For any i 2 {1, 2, 3}

and j 2 {2, · · · , t}, since x1 2 CR(di) but x1 62 CR(xj), then CR(di) 6= CR(xj).

This shows that {R,CR(x1), CR(x2), · · · , CR(xt), CR(d1), CR(d2), CR(d3)} ✓

Cent(R). So, we obtain |Cent(R)| > t + 4, which leads to a contradiction.

Conversely, let CR(r) is commutative, where r 2 R�Z(R). By Lemma 1.3.1(a),

r 2 CR(xi) for some i 2 {1, 2, · · · , t}. By sufficiency part, CR(xi) is com-

mutative. It follows that CR(xi) 6 CR(r). Since xi 2 CR(r) and CR(r) is

commutative, then CR(r) 6 CR(xi). Hence, CR(r) = CR(xi).

Lemma 2.2.4. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. Then |Cent(R)| = t + 1 if and only if CR(r) is commutative for

any r 2 R� Z(R).

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. We first

prove the necessity part. We note that {R,CR(x1), CR(x2), · · · , CR(xt)} ✓

Cent(R). Since |Cent(R)| = t + 1, then Cent(R) = {R,CR(x1), CR(x2), · · · ,

CR(xt)}. Therefore, for any r 2 R � Z(R), CR(r) = CR(xi) for some i 2

{1, 2, · · · , t}. By Lemma 2.2.3, it follows that CR(r) is commutative for any r 2

R�Z(R). Conversely, let w 2 R�Z(R), then by Lemma 1.3.1(a), w 2 CR(xi)

for some i 2 {1, 2, · · · , t}. By the hypothesis, CR(r) is commutative for any

r 2 R�Z(R). Since CR(xi) is commutative, then CR(xi) 6 CR(w). Since xi 2

CR(w) and CR(w) is commutative, then CR(w) 6 CR(xi). Therefore, CR(w) =

CR(xi). Hence, we obtain Cent(R) = {R,CR(x1), CR(x2), · · · , CR(xt)} and
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so, |Cent(R)| = t+ 1.

As a direct consequence of Lemma 2.2.4 and Lemma 1.3.1(h), we have

the following result.

Corollary 2.2.5. Let t be the cardinality of the maximal non-commuting set of

a finite ring R. If |Cent(R)| = t + 1, then for any r1, r2 2 R � Z(R), either

CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R).

Lemma 2.2.6. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a

finite ring R. If |Cent(R)| = t + 2 and CR(r) is non-commutative for some

r 2 R� Z(R), then CR(r) contains three distinct CR(xi)’s.

Proof. In view of Lemma 2.2.3, we have CR(xi) is commutative for any i 2

{1, 2, · · · , t}. Since CR(r) is non-commutative, then CR(r) 6= CR(xi) for any

i 2 {1, 2, · · · , t}. Thus, {R,CR(r), CR(x1), CR(x2), · · · , CR(xt)} ✓ Cent(R).

Since |Cent(R)| = t + 2, then Cent(R) = {R,CR(r), CR(x1), CR(x2), · · · ,

CR(xt)}. Let {d1, d2, · · · , du} be the maximal non-commuting set of CR(r). By

Lemma 1.3.1(d), we have u > 3. For any i 2 {1, 2, 3}, since there exists some j 2

{1, 2, 3}� {i} such that dj 62 CR(di) but dj 2 R and dj 2 CR(r), then CR(di) 6=

R and CR(di) 6= CR(r). It follows that {CR(d1), CR(d2), CR(d3)} ✓ Cent(R)�

{R,CR(r)} = {CR(x1), CR(x2), · · · , CR(xt)}. This gives that CR(d1) = CR(

xl1), CR(d2) = CR(xl2) and CR(d3) = CR(xl3) for three distinct l1, l2, l3 2

{1, 2, · · · , t}. For any i 2 {1, 2, 3}, since r 2 CR(di) = CR(xli) and CR(xli) is

commutative, then CR(xli) 6 CR(r). Consequently, CR(r) contains three distinct

CR(xi)’s.
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To obtain the following lemma, we can use similar arguments as in the

proof of Lemma 2.2.6.

Lemma 2.2.7. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a

finite ring R. If |Cent(R)| = t + 3 and CR(r) is non-commutative for some

r 2 R� Z(R), then CR(r) contains two distinct CR(xi)’s.

Proof. In view of Lemma 2.2.3, we have CR(xi) is commutative for any i 2

{1, 2, · · · , t}. Since CR(r) is non-commutative, then CR(r) 6= CR(xi) for any

i 2 {1, 2, · · · , t}. Thus, {R,CR(r), CR(x1), CR(x2), · · · , CR(xt)} ✓ Cent(R).

Since |Cent(R)| = t + 3, then Cent(R) = {R,CR(r), CR(x1), CR(x2), · · · ,

CR(xt), CR(a)} for some a 2 R � Z(R). Let {d1, d2, · · · , du} be the maxi-

mal non-commuting set of CR(r). By Lemma 1.3.1(d), we have u > 3. For any

i 2 {1, 2, 3}, since there exists some j 2 {1, 2, 3}�{i} such that dj 62 CR(di) but

dj 2 R and dj 2 CR(r), then CR(di) 6= R and CR(di) 6= CR(r). It follows that

{CR(d1), CR(d2), CR(d3)} ✓ Cent(R)� {R,CR(r)} = {CR(x1), CR(x2), · · · ,

CR(xt), CR(a)}. This implies that {CR(dk1), CR(dk2)} ✓ {CR(x1), CR(x2), · · · ,

CR(xt)} for two distinct k1, k2 2 {1, 2, 3}. This gives that CR(dk1) = CR(xl1)

and CR(dk2) = CR(xl2) for two distinct l1, l2 2 {1, 2, · · · , t}. For any i 2 {1, 2},

since r 2 CR(dki) = CR(xli) and CR(xli) is commutative, then CR(xli) 6 CR(r).

Consequently, CR(r) contains two distinct CR(xi)’s.

Lemma 2.2.8. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a finite

ring R. Let |Cent(R)| = t + 4. Let CR(a1), CR(a2), CR(a3) be three distinct

proper centralisers of R that are different from CR(xi) for any i 2 {1, 2, · · · , t}.

Then the following statements hold.
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(a) If CR(xi) is non-commutative for some i 2 {1, 2, · · · , t}, then a1, a2, a3 2

CR(xi) and a1, a2, a3 do not commute with each other.

(b) At most one CR(xi)’s is non-commutative.

(c) Let D 2 {CR(xi) | i = 1, 2, · · · , t} with D is non-commutative, let Q 2

{CR(a1), CR(a2), CR(a3)} with Q is non-commutative and let {q1, q2, · · · ,

qv} be the maximal non-commuting set of Q. Then 3 6 v 6 t � 2 and

{CR(qi) | i = 1, 2 · · · , v} ✓ {CR(xi) | i = 1, 2, · · · , t}. Moreover, if t = 5,

then D 2 {CR(q1), CR(q2), CR(q3)}.

Proof. (a) Let {d1, d2, · · · , du} be the maximal non-commuting set of CR(xi). By

Lemma 1.3.1(d), we have u > 3. For any j 2 {1, 2, 3}, since there exists some

k 2 {1, 2, 3} � {j} such that dk 62 CR(dj) but dk 2 R and dk 2 CR(xi),

then CR(dj) 6= R and CR(dj) 6= CR(xi). For any j 2 {1, 2, 3} and k 2

{1, 2, · · · , t}� {i}, since xi 2 CR(dj) but xi 62 CR(xk), then CR(dj) 6= CR(xk).

Therefore, we have {CR(d1), CR(d2), CR(d3)} ✓ Cent(R)�{R,CR(x1), CR(x2)

, · · · , CR(xt)} = {CR(a1), CR(a2), CR(a3)}, which gives that {CR(d1), CR(d2),

CR(d3)} = {CR(a1), CR(a2), CR(a3)}. Without loss of generality, we assume

that CR(dj) = CR(aj) for any j 2 {1, 2, 3}. Since xi 2 CR(dj) = CR(aj)

for any j 2 {1, 2, 3}, then we obtain a1, a2, a3 2 CR(xi). Next, we sup-

pose that ajak = akaj for two distinct j, k 2 {1, 2, 3}. Hence, we have

aj 2 CR(ak) = CR(dk) and thus, dk 2 CR(aj) = CR(dj), which is a con-

tradiction. Consequently, a1, a2, a3 do not commute with each other.

(b) Suppose that there have at least two CR(xi)’s are non-commutative.
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Without any loss, we assume that CR(x1), CR(x2) are non-commutative. By

Lemma 2.2.8(a), we have a1, a2, a3 2 CR(xi) for any i 2 {1, 2} and a1, a2, a3 do

not commute with each other. Now, we consider for CR(a1 + x1). Since a2 62

CR(a1 + x1) but a2 2 R and a2 2 CR(x1), then CR(a1 + x1) 6= R and CR(a1 +

x1) 6= CR(x1). Since x1 2 CR(a1 + x1) but x1 62 CR(xi) for any i 2 {2, · · · , t},

then CR(a1 + x1) 6= CR(xi) for any i 2 {2, · · · , t}. Since x2 62 CR(a1 + x1)

but x2 2 CR(ai) for any i 2 {1, 2, 3}, then CR(a1 + x1) 6= CR(ai) for any

i 2 {1, 2, 3}. This gives that {R,CR(x1), CR(x2), · · · , CR(xt), CR(a1), CR(a2),

CR(a3), CR(a1 + x1)} ✓ Cent(R). Consequently, we obtain |Cent(R)| > t+ 5,

which leads to a contradiction.

(c) Without loss of generality, we assume that Q = CR(a1). For any

i 2 {1, 2, · · · , v}, since there exists some j 2 {1, 2, · · · , v} � {i} such that

qj 62 CR(qi) but qj 2 R and qj 2 CR(a1), then CR(qi) 6= R and CR(qi) 6=

CR(a1). By Lemma 2.2.8(a), a1, a2, a3 do not commute with each other. For any

i 2 {1, 2, · · · , v}, since a1 2 CR(qi) but a1 62 CR(a2) and a1 62 CR(a3), then

CR(qi) 6= CR(a2) and CR(qi) 6= CR(a3). Consequently, we obtain {CR(qi) |

i = 1, 2, · · · , v} ✓ Cent(R) � {R,CR(a1), CR(a2), CR(a3)} = {CR(xi) | i =

1, 2, · · · , t}. By Lemma 1.3.1(d), we have v > 3. Now, we claim that v 6 t� 2.

Suppose to the contrary that v > t� 1, then a1 2
t�1
\
i=1

CR(qi) =
t
\

i=1,i 6=j
CR(xi) for

some j 2 {1, 2, · · · , t}. Hence, by Lemma 1.3.1(b), (c) and Lemma 2.2.2, we

obtain a1 2 Z(R); a contradiction. Thus, we have v 6 t�2, as claimed. It follows

that 3 6 v 6 t� 2 and {CR(qi) | i = 1, 2, · · · , v} ✓ {CR(xi) | i = 1, 2, · · · , t}.

Next, we consider t = 5. Thus, we have v = 3 and {CR(q1), CR(q2), CR(q3)} ✓
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{CR(xi) | i = 1, 2, · · · , 5}. Assume that D 62 {CR(q1), CR(q2), CR(q3)}. By

Lemma 2.2.8(a), a1 2 D. Hence, a1 2 D \ CR(q1) \ CR(q2) \ CR(q3). This

implies that a1 2
5
\

i=1,i 6=j
CR(xi) for some j 2 {1, 2, · · · , 5}. Therefore, it follows

from Lemma 1.3.1(b), (c) and Lemma 2.2.2 that a1 2 Z(R), which is impossible.

The following two results can be proved in a manner similar to that used

to prove Lemma 2.2.8.

Lemma 2.2.9. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a

finite ring R. Let |Cent(R)| = t + 5. Let CR(a1), CR(a2), CR(a3), CR(a4) be

four distinct proper centralisers of R that are different from CR(xi) for any

i 2 {1, 2, · · · , t}. Then the following statements hold.

(a) If CR(xi) is non-commutative for some i 2 {1, 2, · · · , t}, then there exist

three distinct l1, l2, l3 2 {1, 2, 3, 4} such that al1 , al2 , al3 2 CR(xi) and

al1 , al2 , al3 do not commute with each other.

(b) At most one CR(xi)’s is non-commutative.

Proof. (a) Let {d1, d2, · · · , du} be the maximal non-commuting set of CR(xi). By

Lemma 1.3.1(d), we have u > 3. For any j 2 {1, 2, 3}, since there exists some

k 2 {1, 2, 3} � {j} such that dk 62 CR(dj) but dk 2 R and dk 2 CR(xi),

then CR(dj) 6= R and CR(dj) 6= CR(xi). For any j 2 {1, 2, 3} and k 2

{1, 2, · · · , t}� {i}, since xi 2 CR(dj) but xi 62 CR(xk), then CR(dj) 6= CR(xk).

Therefore, we have {CR(d1), CR(d2), CR(d3)} ✓ Cent(R)�{R,CR(x1), CR(x2),

· · · , CR(xt)} = {CR(a1), CR(a2), CR(a3), CR(a4)}. This gives that CR(d1) =
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CR(al1), CR(d2) = CR(al2) and CR(d3) = CR(al3) for three distinct l1, l2, l3 2

{1, 2, 3, 4}. Since xi 2 CR(dj) = CR(alj) for any j 2 {1, 2, 3}, then we

obtain al1 , al2 , al3 2 CR(xi). Next, we suppose that aljalk = alkalj for two

distinct j, k 2 {1, 2, 3}. Hence, we have alj 2 CR(alk) = CR(dk) and thus,

dk 2 CR(alj) = CR(dj), which is a contradiction. Consequently, al1 , al2 , al3 do

not commute with each other.

(b) Suppose that there have at least two CR(xi)’s are non-commutative.

Without any loss, we assume that CR(x1), CR(x2) are non-commutative. By

Lemma 2.2.9(a), there exist three distinct l1, l2, l3 2 {1, 2, 3, 4} such that al1 , al2 ,

al3 2 CR(x1) and al1 , al2 , al3 do not commute with each other. Also, by Lemma

2.2.9(a), there exist three distinct k1, k2, k3 2 {1, 2, 3, 4} such that ak1 , ak2 , ak3 2

CR(x2). Since |{l1, l2, l3} \ {k1, k2, k3}| > 2, then without any loss, we have

k1 = l1 and k2 = l2. Now, we consider for CR(al1 + x1) and CR(al2 + x1). Since

al2 62 CR(al1 + x1) but al2 2 R and al2 2 CR(x1), then CR(al1 + x1) 6= R

and CR(al1 + x1) 6= CR(x1). Since al1 62 CR(al2 + x1) but al1 2 R and

al1 2 CR(x1), then CR(al2 + x1) 6= R and CR(al2 + x1) 6= CR(x1). For any

i 2 {1, 2} and j 2 {2, · · · , t}, since x1 2 CR(ali + x1) but x1 62 CR(xj),

then CR(ali + x1) 6= CR(xj). For any i 2 {1, 2}, since x2 62 CR(ali +

x1) but x2 2 CR(al1) and x2 2 CR(al2), then CR(ali + x1) 6= CR(al1) and

CR(ali + x1) 6= CR(al2). For any i 2 {1, 2}, since al3 62 CR(ali + x1) but

al3 2 CR(al3), then CR(ali + x1) 6= CR(al3). Since al1 2 CR(al1 + x1)

but al1 62 CR(al2 + x1), then CR(al1 + x1) 6= CR(al2 + x1). This yields

that {R,CR(x1), CR(x2), · · · , CR(xt), CR(al1), CR(al2), CR(al3), CR(al1 + x1),
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CR(al2 + x1)} ✓ Cent(R). Consequently, we obtain |Cent(R)| > t+ 6, which

leads to a contradiction.

Lemma 2.2.10. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a

finite ring R. Let |Cent(R)| = t + 6. Let CR(a1), CR(a2), · · · , CR(a5) be

five distinct proper centralisers of R that are different from CR(xi) for any i 2

{1, 2, · · · , t}. Then the following statements hold.

(a) If CR(xi) is non-commutative for some i 2 {1, 2, · · · , t}, then there exist

three distinct l1, l2, l3 2 {1, 2, · · · , 5} such that al1 , al2 , al3 2 CR(xi) and

al1 , al2 , al3 do not commute with each other.

(b) At most one CR(xi)’s is non-commutative.

Proof. (a) Let {d1, d2, · · · , du} be the maximal non-commuting set of CR(xi). By

Lemma 1.3.1(d), we have u > 3. For any j 2 {1, 2, 3}, since there exists some

k 2 {1, 2, 3} � {j} such that dk 62 CR(dj) but dk 2 R and dk 2 CR(xi),

then CR(dj) 6= R and CR(dj) 6= CR(xi). For any j 2 {1, 2, 3} and k 2

{1, 2, · · · , t}� {i}, since xi 2 CR(dj) but xi 62 CR(xk), then CR(dj) 6= CR(xk).

Therefore, we have {CR(d1), CR(d2), CR(d3)} ✓ Cent(R)�{R,CR(x1), CR(x2),

· · · , CR(xt)} = {CR(a1), CR(a2), · · · , CR(a5)}. This gives that CR(d1) =

CR(al1), CR(d2) = CR(al2) and CR(d3) = CR(al3) for three distinct l1, l2, l3 2

{1, 2, · · · , 5}. Since xi 2 CR(dj) = CR(alj) for any j 2 {1, 2, 3}, then we

obtain al1 , al2 , al3 2 CR(xi). Next, we suppose that aljalk = alkalj for two

distinct j, k 2 {1, 2, 3}. Hence, we have alj 2 CR(alk) = CR(dk) and thus,

dk 2 CR(alj) = CR(dj), which is a contradiction. Consequently, al1 , al2 , al3 do

not commute with each other.

21



(b) Suppose that there have at least two CR(xi)’s are non-commutative.

Without any loss, we assume that CR(x1), CR(x2) are non-commutative. By

Lemma 2.2.10(a), there exist three distinct l1, l2, l3 2 {1, 2, · · · , 5} such that

al1 , al2 , al3 2 CR(x1) and al1 , al2 , al3 do not commute with each other. Also, by

Lemma 2.2.10(a), there exist three distinct k1, k2, k3 2 {1, 2, · · · 5} such that

ak1 , ak2 , ak3 2 CR(x2). Since |{l1, l2, l3} \ {k1, k2, k3}| > 1, then without any

loss, we have k1 = l1. Now, we consider for CR(al1 + x1), CR(al2 + x1) and

CR(al3 + x1). For any i 2 {1, 2, 3}, since there exists some j 2 {1, 2, 3}� {i}

such that alj 62 CR(ali+x1) but alj 2 R and alj 2 CR(x1), then CR(ali+x1) 6= R

and CR(ali + x1) 6= CR(x1). For any i 2 {1, 2, 3} and j 2 {2, · · · , t}, since

x1 2 CR(ali + x1) but x1 62 CR(xj), then CR(ali + x1) 6= CR(xj). Since

x2 62 CR(al1 + x1) but x2 2 CR(al1), then CR(al1 + x1) 6= CR(al1). For any

two distinct i, j 2 {1, 2, 3}, since alj 62 CR(ali + x1) but alj 2 CR(alj), then

CR(ali + x1) 6= CR(alj). Here, we distinguish our proof into the following three

cases.

Case 1: |{l2, l3} \ {k2, k3}| = 0. Since x2 62 CR(al1 + x1) but x2 2

CR(ak2) and x2 2 CR(ak3), then CR(al1 + x1) 6= CR(ak2) and CR(al1 + x1) 6=

CR(ak3). This gives that {R,CR(x1), CR(x2), · · · , CR(xt), CR(al1), CR(al2),

CR(al3), CR(ak2), CR(ak3), CR(al1+x1)} ✓ Cent(R). So, we obtain |Cent(R)| >

t+ 7, which is a contradiction.

Case 2: |{l2, l3}\ {k2, k3}| = 1. Thus, without any loss, we have k2 = l2.

Since x2 62 CR(al2 + x1) but x2 2 CR(al2), then CR(al2 + x1) 6= CR(al2). For
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any i 2 {1, 2}, since x2 62 CR(ali + x1) but x2 2 CR(ak3), then CR(ali + x1) 6=

CR(ak3). Since al2 62 CR(al1 + x1) but al2 2 CR(al2 + x1), then CR(al1 + x1) 6=

CR(al2+x1). This gives that {R,CR(x1), CR(x2), · · · , CR(xt), CR(al1), CR(al2),

CR(al3), CR(ak3), CR(al1 + x1), CR(al2 + x1)} ✓ Cent(R). So, we obtain

|Cent(R)| > t+ 7, which is a contradiction.

Case 3: |{l2, l3} \ {k2, k3}| = 2. Thus, without any loss, we have k2 = l2

and k3 = l3. For any i 2 {2, 3}, since x2 62 CR(ali + x1) but x2 2 CR(ali),

then CR(ali + x1) 6= CR(ali). For any two distinct i, j 2 {1, 2, 3}, since alj 62

CR(ali+x1) but alj 2 CR(alj+x1), then CR(ali+x1) 6= CR(alj+x1). This gives

that {R,CR(x1), CR(x2), · · · , CR(xt), CR(al1), CR(al2), CR(al3), CR(al1 + x1),

CR(al2 + x1), CR(al3 + x1)} ✓ Cent(R). So, we obtain |Cent(R)| > t + 7,

which is a contradiction.

Next, we establish some lemmas that are useful for subsequent results.

Lemma 2.2.11. Let R be a finite ring and let r1, r2 2 R � Z(R). Then |R :

Z(R)| 6 |R : CR(r1)||R : CR(r2)||CR(r1) \ CR(r2) : Z(R)|. In particular, if

CR(r1) \ CR(r2) = Z(R), then |R : Z(R)| 6 |R : CR(r1)||R : CR(r2)|.

Proof. Since CR(r1) + CR(r2) ✓ R, then |CR(r1) + CR(r2)| 6 |R|. Hence,

we have |CR(r1)||CR(r2)|
|CR(r1)\CR(r2)| 6 |R|. So, we obtain |R : Z(R)| 6 |R : CR(r1)||R :

CR(r2)||CR(r1) \ CR(r2) : Z(R)|. Furthermore, if CR(r1) \ CR(r2) = Z(R),

then we obtain |R : Z(R)| 6 |R : CR(r1)||R : CR(r2)| directly.

Lemma 2.2.12. Let R be a finite ring and let r1, r2 2 R � Z(R) with r1r2 6=
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r2r1. If CR(r1) is commutative with |R : CR(r1)| = p for some prime p, then

CR(r1) \ CR(r2) = Z(R) and |R : Z(R)| 6 p|R : CR(r2)|.

Proof. Let a 2 CR(r1) \ CR(r2). Since a 2 CR(r1) and CR(r1) is commutative,

then CR(r1) 6 CR(a). Since r2 62 CR(r1) but r2 2 CR(a), then CR(r1) < CR(a).

This gives that |CR(r1)| < |CR(a)|. Since |CR(r1)|
�� |CR(a)|, then we conclude

that |CR(a)| = |R|. This implies that CR(a) = R. This yields that a 2 Z(R),

which follows that CR(r1)\CR(r2) 6 Z(R). On the other hand, it is obvious that

Z(R) 6 CR(r1) \ CR(r2). Consequently, we obtain CR(r1) \ CR(r2) = Z(R).

Furthermore, by Lemma 2.2.11, we have |R : Z(R)| 6 p|R : CR(r2)|.

The following result follows immediately from Lemma 2.2.3 and Lemma

2.2.12.

Corollary 2.2.13. Let {x1, x2, · · · , xt} be the maximal non-commuting set of

a finite ring R. If |Cent(R)| 6 t + 3 and |R : CR(xi)| = p for some i 2

{1, 2, · · · , t} and prime p, then CR(xi) \ CR(xj) = Z(R) and |R : Z(R)| 6

p|R : CR(xj)| for any j 2 {1, 2, · · · , t}� {i}.

Lemma 2.2.14. Let {x1, x2, · · · , xt} be the maximal non-commuting set of a

finite ring R. Let |Cent(R)| 6 t + 3 and |R : CR(xi)| = �i, where �1 6

�2 6 · · · 6 �t. If �2 = 2, then |Cent(R)| = 4. Furthermore, if �2 = 3, then

|Cent(R)| = 5.

Proof. If R/Z(R) is cyclic, then R is commutative; a contradiction. So, we have

R/Z(R) is not cyclic. Suppose that �2 = 2. In view of Corollary 2.2.13, we

have |R : Z(R)| 6 2(2) = 4. Since �2
�� |R : Z(R)|, then |R : Z(R)| = 2 or 4.
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If |R : Z(R)| = 2, then R/Z(R) ⇠= Z2, which is impossible because R/Z(R)

is not cyclic. Thus, |R : Z(R)| = 4. This gives that R/Z(R) ⇠= Z2 ⇥ Z2 as

R/Z(R) is not cyclic. By [A2], we obtain |Cent(R)| = 4. Next, we assume

that �2 = 3. It follows from Corollary 2.2.13 that |R : Z(R)| 6 3(3) = 9.

Since �2
�� |R : Z(R)|, then |R : Z(R)| = 3, 6 or 9. If |R : Z(R)| = 3 or 6,

then R/Z(R) ⇠= Z3 or Z6, which contradicts the fact that R/Z(R) is not cyclic.

Therefore, |R : Z(R)| = 9. This implies that R/Z(R) ⇠= Z3 ⇥ Z3 as R/Z(R) is

not cyclic. So, we have |Cent(R)| = 5 by [A2].

Lemma 2.2.15. Let R be a finite ring. Let r 2 R�Z(R) with |CR(r) : Z(R)| =

m. Let M be the set of all non-trivial positive divisors of m. If m is square-free,

or m is not square-free with m
t is square-free for any t 2 M , then CR(r) is

commutative.

Proof. If m is square-free, then CR(r)/Z(R) ⇠= Zm. Thus, CR(r)/Z(R) is

cyclic and hence, CR(r) is commutative. Next, we consider for m is not square-

free. Suppose to the contrary that CR(r) is non-commutative, then CR(r) sat-

isfies Z(R) < Z(CR(r)) < CR(r). So, we have |CR(r) : Z(CR(r))| = m
t for

some t 2 M . From the given assumption, m
t is square-free. This implies that

CR(r)/Z(CR(r)) ⇠= Zm
t

and so, CR(r)/Z(CR(r)) is cyclic. This yields that

CR(r) is commutative; a contradiction.

Lemma 2.2.16. If R is a finite ring with |R : Z(R)| = p
2
q for some primes p, q,

then CR(r) is commutative for any r 2 R� Z(R).

Proof. Since |R : Z(R)| = p
2
q, then for any r 2 R � Z(R), |CR(r) : Z(R)| =

p, q, p
2 or pq. Therefore, by Lemma 2.2.15, it follows that CR(r) is commutative

for any r 2 R� Z(R).
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Lemma 2.2.17. If R is a finite ring, then |R : Z(R)| 6= p
2
q for any two distinct

primes p, q.

Proof. Clearly, the result holds when R is commutative. Now, we consider for

R is non-commutative. Suppose to the contrary that |R : Z(R)| = p
2
q for two

distinct primes p, q. Let {x1, x2, · · · , xt} be the maximal non-commuting set of

R. Without loss of generality, we assume that |R : CR(xi)| = �i, where �1 6

�2 6 · · · 6 �t. By Lemma 2.2.16 and Lemma 2.2.4, we have |Cent(R)| = t+ 1.

Since R/Z(R) is not cyclic, then R/Z(R) ⇠= Zp⇥Zpq. Here, we let |A1| and |A2|

be the total number of elements with order pq in Zpq and R/Z(R), respectively.

It is obvious that |A1| < |A2|.

If �1 = p
2 or pq, then �i 6= p for any i 2 {2, · · · , t}. If �1 = p or q,

then by Corollary 2.2.13, we have �i 6= p for any i 2 {2, · · · , t}. Therefore,

|CR(xi) : Z(R)| 6= pq for any i 2 {2, · · · , t}. From Lemma 1.3.1(a), R/Z(R) =

t
[
i=1

[CR(xi)/Z(R)]. This implies that R/Z(R) has at most |A1| elements of order

pq. This gives that |A2| 6 |A1|; a contradiction. So, we can conclude that

|R : Z(R)| 6= p
2
q for any two distinct primes p, q.

In the following, we give some results regarding the existence of n-

centraliser rings for some n 2 N.

Proposition 2.2.18. There exists a (pk + 2)-centraliser ring for any prime p and

k 2 N.

Proof. Let p be a prime and let n 2 N with n > 2. Let M(a1, a2, · · · , an)
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be defined by M(a1, a2, · · · , an) =

 a1 a2 ··· an
0 0 ··· 0
...

...
...

...
0 0 ··· 0

�
for any a1, a2, · · · , an 2 Zp,

where M(a1, a2, · · · , an) is a square matrix of order n. Consider the ring R =

{M(a1, a2, · · · , an) | a1, a2, · · · , an 2 Zp}. Let M(a1, a2, · · · , an) 2 R and let

M(b1, b2, · · · , bn) 2 CR(M(a1, a2, · · · , an)). Therefore, we have a1bi = b1ai for

any i 2 {2, · · · , n}. Here, we consider the following three cases.

Case 1: a1 = a2 = · · · = an = 0. It is clear that CR(M(a1, a2, · · · , an)) =

R.

Case 2: a1 = 0 and au 6= 0 for some u 2 {2, · · · , n}. Therefore, we

have b1 = 0 and b2, · · · , bn 2 Zp. So, we obtain CR(M(a1, a2, · · · , an)) =

{M(0, b2, · · · , bn) | b2, · · · , bn 2 Zp}.

Case 3: a1 6= 0. Hence, we have bi = a
�1
1 aib1 for any i 2 {2, · · · , n} and

b1 2 Zp. Let li = a
�1
1 ai for any i 2 {2, · · · , n}. So, we obtain CR(M(a1, a2, · · · ,

an)) = {M(b1, l2b1, · · · , lnb1) | b1 2 Zp}.

By combining all the cases, we obtain |Cent(R)| = 1 + 1 + p
n�1 =

p
n�1 + 2. Consequently, by letting k = n� 1, we obtain the desired result.

Proposition 2.2.19. There exists a (p2 + p+ 2)-centraliser ring for any prime p.

Proof. Let p be a prime. Let M(a1, a2, a3) be defined by M(a1, a2, a3) = [ a1 a2
a3 0 ]

for any a1, a2, a3 2 Zp. Consider the ring R = {M(a1, a2, a3) | a1, a2, a3 2 Zp},

where the multiplication operation of R is defined as M(a1, a2, a3)M(b1, b2, b3) =

M(a1b1 + a2b3, a1b2, a3b1) for any M(a1, a2, a3),M(b1, b2, b3) 2 R. Let M(a1,
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a2, a3) 2 R and let M(b1, b2, b3) 2 CR(M(a1, a2, a3)). Therefore, we have

a1b2 = b1a2, a1b3 = b1a3 and a2b3 = b2a3. Here, we consider the following four

cases.

Case 1: a1 = a2 = a3 = 0. It is clear that CR(M(a1, a2, a3)) = R.

Case 2: a1 = 0 and a2 6= 0. Hence, we have b1 = 0, b3 = a
�1
2 a3b2 and

b2 2 Zp. Let l = a
�1
2 a3. Thus, we obtain CR(M(a1, a2, a3)) = {M(0, b2, lb2) |

b2 2 Zp}.

Case 3: a1 = a2 = 0 and a3 6= 0. So, we have b1 = b2 = 0 and b3 2 Zp.

Therefore, we obtain CR(M(a1, a2, a3)) = {M(0, 0, b3) | b3 2 Zp}.

Case 4: a1 6= 0. Hence, we have b2 = a
�1
1 a2b1, b3 = a

�1
1 a3b1 and

b1 2 Zp. Let l2 = a
�1
1 a2 and l3 = a

�1
1 a3. Thus, we obtain CR(M(a1, a2, a3)) =

{M(b1, l2b1, l3b1) | b1 2 Zp}.

By combining all the cases, we obtain |Cent(R)| = 1 + p + 1 + p
2 =

p
2 + p+ 2.

Proposition 2.2.20. There exists a (pk + p+ 3)-centraliser ring for any prime p

and k 2 N with k > 3.

Proof. Let p be a prime and let n 2 N with n > 4. Let M(a1, a2, a3, a4, · · · , an)

be defined by M(a1, a2, a3, a4, · · · , an) =

" a1 a2 ··· 0
a3 0 ··· 0
a4 0 ··· 0
...

...
...

...
an 0 ··· 0

#
for any a1, a2, a3, a4,

· · · , an 2 Zp, where M(a1, a2, a3, a4 · · · , an) is a square matrix of order n.
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Consider the ring R = {M(a1, a2, a3, a4 · · · , an) | a1, a2, a3, a4 · · · , an 2 Zp},

where the multiplication operation of R is defined as M(a1, a2, a3, a4 · · · , an)

M(b1, b2, b3, b4 · · · , bn) = M(a1b1 + a2b3, a1b2, a3b1, a4b1, · · · , anb1) for any

M(a1, a2, a3, a4 · · · , an),M(b1, b2, b3, b4 · · · , bn) 2 R. Let M(a1, a2, a3, a4, · · ·

, an) 2 R and let M(b1, b2, b3, b4, · · · , bn) 2 CR(M(a1, a2, a3, a4 · · · , an)). There-

fore, we have a2b3 = b2a3 and a1bi = b1ai for any i 2 {2, 3, 4, · · · , n}. Here, we

consider the following five cases.

Case 1: a1 = a2 = a3 = a4 = · · · = an = 0. It is clear that

CR(M(a1, a2, a3, a4, · · · , an)) = R.

Case 2: a1 = 0, a2 6= 0. Thus, we have b1 = 0, b3 = a
�1
2 a3b2 and

b2, b4, · · · , bn 2 Zp. Let l = a
�1
2 a3. So, we obtain CR(M(a1, a2, a3, a4, · · · , an))

= {M(0, b2, lb2, b4, · · · , bn) | b2, b4 · · · , bn 2 Zp}.

Case 3: a1 = a2 = 0 and a3 6= 0. Hence, we have b1 = b2 = 0

and b3, b4, · · · , bn 2 Zp. Therefore, we obtain CR(M(a1, a2, a3, a4, · · · , an)) =

{M(0, 0, b3, b4, · · · , bn) | b2, b4 · · · , bn 2 Zp}.

Case 4: a1 = a2a3 = 0 and au 6= 0 for some u 2 {4, · · · , n}. Hence, we

have b1 = 0 and b2, b3, b4, · · · , bn 2 Zp. So, we obtain CR(M(a1, a2, a3, a4, · · · ,

an)) = {M(0, b2, b3, b4, · · · , bn) | b2, b3, b4 · · · , bn 2 Zp}.

Case 5: a1 6= 0. So, we have bi = a
�1
1 aib1 for any i 2 {2, 3, · · · , n}
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and b1 2 Zp. Let li = a
�1
1 ai for any i 2 {2, 3, 4, · · · , n}. Hence, we obtain

CR(M(a1, a2, a3, a4, · · · , an)) = {M(b1, l2b1, l3b1, l4b1, · · · , lnb1) | b1 2 Zp}.

By combining all the cases, we obtain |Cent(R)| = 1+p+1+1+p
n�1 =

p
n�1+p+3. Consequently, by letting k = n�1, we obtain the desired result.

Proposition 2.2.21. If R is a finite non-commutative ring with |R : Z(R)| = p
3,

then |Cent(R)| = p
2 + p+ 2 or p2 + 2.

Proof. Let k = |Cent(R)| � 1. Let CR(r1), CR(r2), · · · , CR(rk) be k distinct

proper centralisers of R, where r1, r2, · · · , rk 2 R � Z(R). By Lemma 2.2.16,

CR(r) is commutative for any r 2 R� Z(R). Therefore, by Lemma 1.3.1(h), we

have CR(ri) \ CR(rj) = Z(R) for any i 2 {1, 2, · · · , k}. From Lemma 1.3.1(a),

R =
k
[
i=1

CR(ri). By using the principle of inclusion-exclusion, we get |R| =
kP

i=1
|CR(ri)| + (1 � k)|Z(R)| and so, p3|Z(R)| =

kP
i=1

|CR(ri)| + (1 � k)|Z(R)|.

We consider two cases in this proof.

Case 1: |R : CR(ri)| = p
2 for any i 2 {1, 2, · · · , k}. Then, we have

p
3|Z(R)| = k(p|Z(R))+(1�k)|Z(R)|, which yields that k = p3�1

p�1 = p
2+p+1.

Consequently, we obtain |Cent(R)| = p
2 + p+ 2.

Case 2: |R : CR(ri)| = p for some i 2 {1, 2, · · · , k}. By Lemma 2.2.11,

it follows that |R : CR(rj)| = p
2 for any j 2 {1, 2, · · · , k}� {i}. Then, we have

p
3|Z(R)| = p

2|Z(R)| + (k � 1)(p|Z(R)) + (1 � k)|Z(R)|, which yields that

k = p3�p2

p�1 + 1 = p
2 + 1. Consequently, we obtain |Cent(R)| = p

2 + 2.
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The following proposition is a particular case of [A2] and Proposition

2.2.21.

Proposition 2.2.22. If R is a non-commutative ring with order p3, then |Cent(R)| =

p+ 2, p2 + p+ 2 or p2 + 2.

Proof. Since Z(R) < R, then |Z(R)| = 1, p or p2. If R/Z(R) is cyclic, then

R is commutative, which is a contradiction. So, we have R/Z(R) is not cyclic.

If |Z(R)| = p
2, then |R : Z(R)| = p, which follows that R/Z(R) ⇠= Zp. This

shows that R/Z(R) is cyclic, which is a contradiction. If |Z(R)| = p, then

|R : Z(R)| = p
2, which implies that R/Z(R) ⇠= Zp ⇥ Zp as R/Z(R) is not

cyclic. Therefore, we obtain |Cent(R)| = p + 2 by [A2]. If |Z(R)| = 1, then

|R : Z(R)| = p
3. So, by Proposition 2.2.21, we obtain |Cent(R)| = p

2 + p+ 2

or p2 + 2. Consequently, we have |Cent(R)| = p+ 2, p2 + p+ 2 or p2 + 2.

We conclude this section by giving a preliminary characterisation for all

n-centraliser finite rings with n > 6.

Theorem 2.2.23. If R is an n-centraliser finite ring with n > 6, then R/Z(R) ⇠=

Z2 ⇥ Z2 ⇥ Z2, or |R : Z(R)| > 16 with |R : Z(R)| is not square-free and

|R : Z(R)| 6= p
2
q for any two distinct primes p, q. Furthermore, if n 6= 6

and 8, then R/Z(R) 6⇠= Z2 ⇥ Z2 ⇥ Z2. Moreover, if n � 2 is not prime, then

|R : Z(R)| 6= p
2

for any prime p.

Proof. If |R : Z(R)| is square-free, then R/Z(R) ⇠= Z|R:Z(R)|. It follows

that R/Z(R) is cyclic, which is impossible because R/Z(R) is not cyclic. If

|R : Z(R)| = 4 or 9, then R/Z(R) ⇠= Z2 ⇥ Z2 or Z3 ⇥ Z3 as R/Z(R) is not
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cyclic. By [A2], we obtain |Cent(R)| = 4 or 5, which leads to a contradiction.

Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without loss of

generality, we suppose that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �t. If

|R : Z(R)| = 8, then R/Z(R) ⇠= Z2⇥Z4 or Z2⇥Z2⇥Z2 as R/Z(R) is not cyclic.

By Lemma 2.2.16 and Lemma 2.2.4, |Cent(R)| = t + 1. Hence, by Lemma

2.2.14, �2 = 4. Therefore, |CR(x1) : Z(R)| 6 4 and |CR(xi) : Z(R)| = 2 for

any i 2 {2, · · · , t}. By Lemma 1.3.1(a), R/Z(R) =
t
[
i=1

[CR(xi)/Z(R)]. Hence,

R/Z(R) has at most 2 elements of order 4. Since Z2 ⇥ Z4 has 4 elements of

order 4, then R/Z(R) 6⇠= Z2 ⇥ Z4. Consequently, by Lemma 2.2.17, we have

R/Z(R) ⇠= Z2⇥Z2⇥Z2, or |R : Z(R)| > 16 with |R : Z(R)| is not square-free

and |R : Z(R)| 6= p
2
q for any two distinct primes p, q. By [A7], it follows that

R/Z(R) 6⇠= Z2⇥Z2⇥Z2 when n 6= 6 and 8. We next assume that |R : Z(R)| = p
2

for some prime p. Thus, R/Z(R) ⇠= Zp ⇥Zp as R/Z(R) is not cyclic. Therefore,

we obtain |Cent(R)| = p + 2 by [A2] and so, n � 2 = p, a contradiction is

reached.

2.3 6-Centraliser Finite Rings

In this section, we classify the structure for all 6-centraliser finite rings and

compute their commuting probabilities.

Theorem 2.3.1. Let R be a 6-centraliser finite ring. Let X1, X2, · · · , X5 be the

5 distinct proper centralisers of R with |R : X1| 6 |R : X2| 6 · · · 6 |R : X5|.

Then the cardinality of the maximal non-commuting set of R is 5. Furthermore,

R satisfies one of the following structures:
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(a) |R : X1| = 2, |R : Xi| = 4 for any i 2 {2, 3, 4, 5}, R/Z(R) ⇠= Z2⇥Z2⇥Z2

and Prob(R) = 7
16 .

(b) |R : Xi| = 4 for any i 2 {1, 2, 3, 4, 5}, R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 and

Prob(R) = 19
64 .

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without

loss of generality, we assume that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �t.

By Lemma 1.3.1(a), we have R =
t
[
i=1

CR(xi). From Lemma 1.3.1(d)-(g), we

obtain t = 5. By Corollary 2.2.5, we have CR(xi) \ CR(xj) = Z(R) for any

two distinct i, j 2 {1, 2, 3, 4, 5}. By Lemma 2.2.14, �2 > 4. So, we obtain

�2 = �3 = �4 = �5 = 4 by Lemma 2.2.1. By using the principle of inclusion-

exclusion, we get |R| =
5P

i=1
|CR(xi)| � 4|Z(R)|. Thus, we have �1 = |R:Z(R)|

4 .

By Lemma 2.2.11, it follows that |R : Z(R)| 6 4(4) = 16. Therefore, we have

R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or |R : Z(R)| = 16 by Theorem 2.2.23. Suppose that

R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2, then �1 = 2. By Corollary 2.2.5, it follows that for

any r1, r2 2 R � Z(R), either CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R).

Consequently, by (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

8
+

⇣
|R|
2 � |R|

8

⌘⇣
|R|
2

⌘
+ 4

⇣
|R|
4 � |R|

8

⌘⇣
|R|
4

⌘

|R|2

=
7

16
.

Next, we assume that |R : Z(R)| = 16. Thus, R/Z(R) ⇠= Z2 ⇥ Z8,Z2 ⇥
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Z2⇥Z4,Z2⇥Z2⇥Z2⇥Z2 or Z4⇥Z4 as R/Z(R) is not cyclic. Also, we have �1 =

4. Therefore, |CR(xi) : Z(R)| = 4 for any i 2 {1, 2, 3, 4, 5}. This shows that

R/Z(R) has at least 5 elements of order 2. Since Z2⇥Z8 and Z4⇥Z4 have exactly

3 elements of order 2, then R/Z(R) 6⇠= Z2⇥Z8 and Z4⇥Z4. Here, we suppose that

R/Z(R) ⇠= Z2⇥Z2⇥Z4. To simplify writing, we let r = r+Z(R) for any r 2 R.

Since Z2 ⇥ Z2 ⇥ Z4 has 7 elements of order 2 and 8 elements of order 4, then

CR(xj)/Z(R) ⇠= Z2⇥Z2 for some j 2 {1, 2, 3, 4, 5} and CR(xi)/Z(R) ⇠= Z4 for

any i 2 {1, 2, 3, 4, 5}�{j}. Hence, we have CR(xk1)/Z(R) ⇠= CR(xk2)/Z(R) ⇠=

Z4 for two distinct k1, k2 2 {1, 2, 3, 4, 5} � {j}. Thus, there exist some a 2

CR(xk1)�Z(R), b 2 CR(xk2)�Z(R) such that CR(xk1)/Z(R) = {0, a, 2a, 3a}

and CR(xk2)/Z(R) = {0, b, 2b, 3b}. This implies that R/Z(R) = {ma+ nb |

m,n 2 Z4} ⇠= Z4 ⇥ Z4, which is a contradiction. Consequently, R/Z(R) ⇠=

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. Lastly, from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

16
+

⇣
|R|� |R|

16

⌘⇣
|R|
4

⌘

|R|2

=
19

64
.

From [A7], we know that the converse of structure (a) in Theorem 2.3.1

is not necessarily true. Apart from this, the converse of structure (b) in Theo-

rem 2.3.1 is also not necessarily true. For example, R = { [ a b
0 0 ]| a, b 2 Z2} ⇥

{ [ a b
0 0 ]| a, b 2 Z2} is a 16-centraliser finite ring with R/Z(R) ⇠= Z2⇥Z2⇥Z2⇥Z2.

In the following, we provide an example of a 6-centraliser finite ring, which is
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appeared in the proof of Proposition 2.2.18.

Example 2.3.2. R =
nh

a b c
0 0 0
0 0 0

i��� a, b, c 2 Z2

o
is a 6-centraliser finite ring with

R = CR

⇣h
0 0 0
0 0 0
0 0 0

i⌘
,

X1 = CR

⇣h
0 1 0
0 0 0
0 0 0

i⌘
= CR

⇣h
0 0 1
0 0 0
0 0 0

i⌘
= CR

⇣h
0 1 1
0 0 0
0 0 0

i⌘

=
nh

0 0 0
0 0 0
0 0 0

i
,

h
0 1 0
0 0 0
0 0 0

i
,

h
0 0 1
0 0 0
0 0 0

i
,

h
0 1 1
0 0 0
0 0 0

io
,

X2 = CR

⇣h
1 0 0
0 0 0
0 0 0

i⌘
=
nh

0 0 0
0 0 0
0 0 0

i
,

h
1 0 0
0 0 0
0 0 0

io
,

X3 = CR

⇣h
1 1 0
0 0 0
0 0 0

i⌘
=
nh

0 0 0
0 0 0
0 0 0

i
,

h
1 1 0
0 0 0
0 0 0

io
,

X4 = CR

⇣h
1 0 1
0 0 0
0 0 0

i⌘
=
nh

0 0 0
0 0 0
0 0 0

i
,

h
1 0 1
0 0 0
0 0 0

io
,

X5 = CR

⇣h
1 1 1
0 0 0
0 0 0

i⌘
=
nh

0 0 0
0 0 0
0 0 0

i
,

h
1 1 1
0 0 0
0 0 0

io
.

We note that
nh

0 1 0
0 0 0
0 0 0

i
,

h
1 0 0
0 0 0
0 0 0

i
,

h
1 1 0
0 0 0
0 0 0

i
,

h
1 0 1
0 0 0
0 0 0

i
,

h
1 1 1
0 0 0
0 0 0

io
is a non-commuting

set of R with cardinality 5. Also, we note that there does not exist a non-

commuting set of R with cardinality 6. Thus, the cardinality of the maximal non-

commuting set of R is 5. Besides that, we have |R : X1| = 2, |R : Xi| = 4 for any

i 2 {2, 3, 4, 5}. Since Z(R) =
nh

0 0 0
0 0 0
0 0 0

io
, then we have R/Z(R) ⇠= Z2⇥Z2⇥Z2.

Lastly, from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

8
+

3(4) + 4(2)

82

=
7

16
.
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2.4 7-Centraliser Finite Rings

In this section, we characterise all 7-centraliser finite rings and compute their

commuting probabilities.

Theorem 2.4.1. Let R be a 7-centraliser finite ring. Then the cardinality of

the maximal non-commuting set of R is 6. Moreover, R/Z(R) ⇠= Z5 ⇥ Z5 and

Prob(R) = 29
125 .

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without

loss of generality, we suppose that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �t.

By Lemma 1.3.1(a), we have R =
t
[
i=1

CR(xi). In view of Lemma 1.3.1(d)-(g), we

have t = 5 or 6. By Lemma 2.2.14, we have �2 > 4. From Theorem 2.2.23, we

have |R : Z(R)| > 16 with |R : Z(R)| is not square-free and |R : Z(R)| 6= p
2
q

for any two distinct primes p, q.

For t = 5, by Lemma 2.2.1, it follows that �2 = �3 = �4 = �5 = 4. In

view of Lemma 2.2.4, there exists some r 2 R � Z(R) such that CR(r) is non-

commutative. By Lemma 2.2.6, CR(r) contains CR(xl1), CR(xl2), CR(xl3) for

three distinct l1, l2, l3 2 {1, 2, 3, 4, 5}. Thus, we have R = CR(r)[
✓

[
i2A

CR(xi)

◆

for some A ⇢ {1, 2, 3, 4, 5} with |A| 6 2. Obviously, |A| 6= 0. If |A| = 1, then

by Lemma 2.2.1, it follows that �i = 1 for some i 2 A, which is impossible.

Therefore, |A| = 2. From Lemma 2.2.1, it follows that �i = 2 for some i 2 A.

Since �2 = 4, then i = 1. By Corollary 2.2.13, it follows that |R : Z(R)| 6

2(4) = 8, which leads to a contradiction. Consequently, we obtain t = 6.
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By Corollary 2.2.5, we have CR(xi) \ CR(xj) = Z(R) for any two

distinct i, j 2 {1, 2, · · · , 6}. By Lemma 2.2.1, we obtain �2 6 5. Suppose

that �2 = 4, then |R : Z(R)| 6 4(4) = 16 by Lemma 2.2.11. This yields

that |R : Z(R)| = 16. By using the principle of inclusion-exclusion, we have

|R| =
6P

i=1
|CR(xi)| � 5|Z(R)|, which yields that

6P
i=1

16
�i

= 21. This contradicts

with the fact that
6P

i=1

16
�i

is even. So, we have �2 = 5. By Lemma 2.2.11, it follows

that |R : Z(R)| 6 5(5) = 25, which implies that |R : Z(R)| = 25. Consequently,

R/Z(R) ⇠= Z5 ⇥ Z5 as R/Z(R) is not cyclic. Lastly, by (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

25
+

⇣
|R|� |R|

25

⌘⇣
|R|
5

⌘

|R|2

=
29

125
.

As an immediate consequence of Theorem 2.4.1 and [A2], we obtain a

complete characterisation for all 7-centraliser finite rings.

Theorem 2.4.2. For any finite ring R, R is a 7-centraliser finite ring if and only

if R/Z(R) ⇠= Z5 ⇥ Z5.

In the following, we provide an example of a 7-centraliser finite ring,

which is appeared in the proof of Proposition 2.2.18.

Example 2.4.3. R = { [ a b
0 0 ]| a, b 2 Z5} is a 7-centraliser finite ring with

CR ([ 0 0
0 0 ]) = R,
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CR ([ 0 a
0 0 ]) = { [ 0 x

0 0 ]| x 2 Z5} ,

CR ([ a la
0 0 ]) = { [ x lx

0 0 ]| x 2 Z5}

for any a 2 Z5 with a 6= 0 and l 2 Z5. We note that {[ 0 1
0 0 ] , [

1 0
0 0 ] , [

1 1
0 0 ] , [

1 2
0 0 ] ,

[ 1 3
0 0 ] , [

1 4
0 0 ]} is a non-commuting set of R with cardinality 6. Also, we note that

there does not exist a non-commuting set of R with cardinality 7. Thus, the

cardinality of the maximal non-commuting set of R is 6. Since Z(R) = {[ 0 0
0 0 ]},

then we have R/Z(R) ⇠= Z5 ⇥ Z5. Lastly, from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

25
+

24(5)

252

=
29

125
.

2.5 8-Centraliser Finite Rings

In this section, we investigate the structure for all 8-centraliser finite rings and

compute their commuting probabilities.

Theorem 2.5.1. Let R be an 8-centraliser finite ring. Then the cardinality of

the maximal non-commuting set of R is 7. Further, |R : CR(r)| = 4 for any

r 2 R� Z(R), R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 and Prob(R) = 11
32 .

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without

loss of generality, we assume that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �t.

By Lemma 1.3.1(a), we have R =
t
[
i=1

CR(xi). In view of Lemma 1.3.1(d)-(g), we
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have t = 5, 6 or 7. By Lemma 2.2.14, we have �2 > 4. By Theorem 2.2.23, we

have R/Z(R) ⇠= Z2⇥Z2⇥Z2, or |R : Z(R)| > 16 with |R : Z(R)| is not square-

free, |R : Z(R)| 6= p
2
q for any two distinct primes p, q, and |R : Z(R)| 6= p

2 for

any prime p.

First, we suppose that t = 5 (respectively, t = 6). By Lemma 2.2.4, there

exists some r 2 R�Z(R) such that CR(r) is non-commutative. By Lemma 2.2.7

(respectively, Lemma 2.2.6), CR(r) contains CR(xl1), CR(xl2) for two distinct

l1, l2 2 {1, 2, · · · , 5} (respectively, CR(xl1), CR(xl2), CR(xl3) for three distinct

l1, l2, l3 2 {1, 2, · · · , 6}). Therefore, we have R = CR(r) [
✓

[
i2A

CR(xi)

◆
for

some A ⇢ {1, 2, · · · , 5} (respectively, A ⇢ {1, 2, · · · , 6}) with |A| 6 3. Clearly,

|A| 6= 0. If |A| = 1, then by Lemma 2.2.1, it follows that �i = 1 for some i 2 A,

which is impossible. So, |A| = 2 or 3. In view of Lemma 2.2.1, �i = 2 or 3 for

some i 2 A. Since �2 > 4, then i = 1. Hence, we obtain |R : Z(R)| 6 3�2 by

Corollary 2.2.13. From Lemma 2.2.1, �2 6 5. So, |R : Z(R)| 6 15. This yields

that |R : Z(R)| = 8, which contradicts with Lemma 2.2.16. Consequently, we

obtain t = 7.

By Corollary 2.2.5, we have CR(xi) \ CR(xj) = Z(R) for any two

distinct i, j 2 {1, 2, · · · , 7}. By Lemma 2.2.11, we have |R : Z(R)| 6 �
2
2

and |CR(x1) : Z(R)| 6 �2. By Lemma 2.2.1, we obtain �2 6 6. Now, we

assume that �2 = 6. Then, |R : Z(R)| 6 36. If |R : Z(R)| = 24, then

R/Z(R) ⇠= Z2 ⇥ Z12 or Z2 ⇥ Z2 ⇥ Z6 as R/Z(R) is not cyclic. Therefore,

|CR(x1) : Z(R)| 6 6 and |CR(xi) : Z(R)| 6 4 for any i 2 {2, 3, · · · , 7}. This
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implies that R/Z(R) has at most 2 elements of order 6. Also, there does not

exist any element of order 12 in R/Z(R). We have reached a contradiction as

Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6 and Z2 ⇥ Z12 has an element of order

12. If |R : Z(R)| = 36, then R/Z(R) ⇠= Z2 ⇥ Z18,Z3 ⇥ Z12 or Z6 ⇥ Z6 as

R/Z(R) is not cyclic. Hence, |CR(xi) : Z(R)| 6 6 for any i 2 {1, 2, · · · , 7}.

This shows that R/Z(R) has at most 14 elements of order 6. Also, there does not

exist any element of order 12 and order 18 in R/Z(R). This contradicts with the

fact that Z6 ⇥Z6 has 24 elements of order 6, Z3 ⇥Z12 has an element of order 12

and Z2 ⇥ Z18 has an element of order 18. Next, we suppose that �2 = 5. Thus,

|R : Z(R)| 6 25, which is a contradiction. Consequently, �2 = 4. Therefore,

|R : Z(R)| 6 16. By using the principle of inclusion-exclusion, we obtain

|R| =
7P

i=1
|CR(xi)|� 6|Z(R)|, which gives that

7P
i=1

|R:Z(R)|
�i

= |R : Z(R)|+ 6. If

|R : Z(R)| = 16, then R/Z(R) ⇠= Z2 ⇥ Z8,Z2 ⇥ Z2 ⇥ Z4,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2

or Z4 ⇥ Z4 as R/Z(R) is not cyclic. By Lemma 2.2.11, we obtain �1 = 4.

Since
7P

i=3

16
�i

= 14, then it can be easily seen that �3 = �4 = 4 and �5 =

�6 = �7 = 8. Therefore, |CR(xi) : Z(R)| = 4 for any i 2 {1, 2, 3, 4} and

|CR(xi) : Z(R)| = 2 for any i 2 {5, 6, 7}. This shows that R/Z(R) has at

least 7 elements of order 2. Since Z2 ⇥ Z8 and Z4 ⇥ Z4 have exactly 3 elements

of order 2, then R/Z(R) 6⇠= Z2 ⇥ Z8 and Z4 ⇥ Z4. For the sake of simplicity,

we let r = r + Z(R) for any r 2 R. Suppose that R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z4.

Since Z2 ⇥ Z2 ⇥ Z4 has 7 elements of order 2 and 8 elements of order 4, then

CR(xi)/Z(R) ⇠= Z4 for any i 2 {1, 2, 3, 4} and CR(xj)/Z(R) ⇠= Z2 for any

j 2 {5, 6, 7}. Thus, there exist some a 2 CR(x1) � Z(R), b 2 CR(x2) � Z(R)

such that CR(x1)/Z(R) = {0, a, 2a, 3a} and CR(x2)/Z(R) = {0, b, 2b, 3b}.
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This implies that R/Z(R) = {ma+ nb | m,n 2 Z4} ⇠= Z4 ⇥ Z4, which is

a contradiction. Consequently, R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. Here, we let

A = {CR(xi)/Z(R) | i = 1, 2, · · · , 7}. Without loss of generality, CR(x1)/Z(R)

and CR(x2)/Z(R) can be written as B1 = CR(x1)/Z(R) = {0, x1, a, x1 + a}

and B2 = CR(x2)/Z(R) = {0, x2, b, x2 + b} for some a 2 CR(x1)� Z(R), b 2

CR(x2)� Z(R). Hence, we note that there have 6 possibilities for A, that is,

A1 = {B1, B2, {0, x1 + x2, a+ b, x1 + x2 + a+ b}, {0, x1 + b, x2 + a+ b,

x1 + x2 + a}, {0, x1 + x2 + b}, {0, x2 + a}, {0, x1 + a+ b}},

A2 = {B1, B2, {0, x1 + x2 + b, x2 + a, x1 + a+ b}, {0, x1 + x2, a+ b,

x1 + x2 + a+ b}, {0, x1 + b}, {0, x2 + a+ b}, {0, x1 + x2 + a}},

A3 = {B1, B2, {0, x1 + x2 + b, x2 + a, x1 + a+ b}, {0, x1 + b, x2 + a+ b,

x1 + x2 + a}, {0, x1 + x2}, {0, a+ b}, {0, x1 + x2 + a+ b}},

A4 = {B1, B2, {0, x1 + x2, x2 + a+ b, x1 + a+ b}, {0, x1 + b, x2 + a,

x1 + x2 + a+ b}, {0, x1 + x2 + b}, {0, a+ b}, {0, x1 + x2 + a}},

A5 = {B1, B2, {0, x1 + x2 + b, a+ b, x1 + x2 + a}, {0, x1 + x2, x2 + a+ b,

x1 + a+ b}, {0, x1 + b}, {0, x2 + a}, {0, x1 + x2 + a+ b}},

A6 = {B1, B2, {0, x1 + x2 + b, a+ b, x1 + x2 + a}, {0, x1 + b, x2 + a,

x1 + x2 + a+ b}, {0, x1 + x2}, {0, x2 + a+ b}, {0, x1 + a+ b}}.

By Corollary 2.2.5, it follows that for any r1, r2 2 R � Z(R), either CR(r1) =

CR(r2) or CR(r1)\CR(r2) = Z(R). Therefore, it can be easily seen that for any

u 2 CR(xi)�Z(R), v 2 CR(xj)�Z(R), if i, j 2 {1, 2, · · · , 7} with i 6= j, then

uv 6= vu. On the other hand, by Lemma 2.2.4, we have CR(xi) is commutative
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for any i 2 {1, 2, · · · , 7}. If A = A1 or A3, then

(x1 + b)(x1 + x2 + a) = (x1 + x2 + a)(x1 + b)

) (x1x2 � x2x1) + (bx1 � x1b) + (ba� ab) = 0. (2.1)

Simultaneously, when A = A1 (respectively, A = A3), we have

(x1 + x2)(a+ b) = (a+ b)(x1 + x2)

) (x1b� bx1) + (x2a� ax2) = 0 (2.2)

and

(x1 + x2 + b)(x2 + a) 6= (x2 + a)(x1 + x2 + b)

) (x1x2 � x2x1) + (x2a� ax2) + (ba� ab) 6= 0 (2.3)

(respectively,

(x1 + x2)(a+ b) 6= (a+ b)(x1 + x2)

) (x1b� bx1) + (x2a� ax2) 6= 0 (2.4)

and

(x1 + x2 + b)(x2 + a) = (x2 + a)(x1 + x2 + b)

) (x1x2 � x2x1) + (x2a� ax2) + (ba� ab) = 0). (2.5)

By taking (2.1)+ (2.2)� (2.3) (respectively, (2.1)+ (2.4)� (2.5)), it shows that
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0 6= 0; a contradiction. If A = A2, then

(x2 + a)(x1 + a+ b) = (x1 + a+ b)(x2 + a)

) (x2x1 � x1x2) + (x2a� ax2) + (ab� ba) = 0, (2.6)

(x1 + x2)(a+ b) = (a+ b)(x1 + x2)

) (x1b� bx1) + (x2a� ax2) = 0 (2.7)

and

(x1 + b)(x2 + a+ b) 6= (x2 + a+ b)(x1 + b)

) (x1x2 � x2x1) + (x1b� bx1) + (ba� ab) 6= 0. (2.8)

By taking (2.6)� (2.7) + (2.8), it shows that 0 6= 0; a contradiction. If A = A4

or A5, then

(x1 + x2)(x1 + a+ b) = (x1 + a+ b)(x1 + x2)

) (x1b� bx1) + (x2x1 � x1x2) + (x2a� ax2) = 0. (2.9)

Simultaneously, when A = A4 (respectively, A = A5), we have

(x1 + b)(x2 + a) = (x2 + a)(x1 + b)

) (x1x2 � x2x1) + (ba� ab) = 0 (2.10)
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and

(x1 + x2 + b)(a+ b) 6= (a+ b)(x1 + x2 + b)

) (x1b� bx1) + (x2a� ax2) + (ba� ab) 6= 0 (2.11)

(respectively,

(x1 + b)(x2 + a) 6= (x2 + a)(x1 + b)

) (x1x2 � x2x1) + (ba� ab) 6= 0 (2.12)

and

(x1 + x2 + b)(a+ b) = (a+ b)(x1 + x2 + b)

) (x1b� bx1) + (x2a� ax2) + (ba� ab) = 0). (2.13)

By taking (2.9)+(2.10)� (2.11) (respectively, (2.9)+(2.12)� (2.13)), it shows

that 0 6= 0; a contradiction. If A = A6, then

(x1 + x2 + b)(a+ b) = (a+ b)(x1 + x2 + b)

) (x1b� bx1) + (x2a� ax2) + (ba� ab) = 0, (2.14)

(x1 + b)(x2 + a) = (x2 + a)(x1 + b)

) (x1x2 � x2x1) + (ba� ab) = 0 (2.15)
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and

(x1 + x2)(x1 + a+ b) 6= (x1 + a+ b)(x1 + x2)

) (x1b� bx1) + (x2x1 � x1x2) + (x2a� ax2) 6= 0. (2.16)

By taking (2.14) � (2.15) � (2.16), it shows that 0 6= 0; a contradiction. So,

we can conclude that R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2. Thus, we have �i = 4 for any

i 2 {2, 3, · · · , 7}. Also, we have �1 = 4. Lastly, by (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

8
+

⇣
|R|� |R|

8

⌘⇣
|R|
4

⌘

|R|2

=
11

32
.

This completes the proof.

Note that [A7] has shown that the converse of Theorem 2.5.1 is not

necessarily true. In the following, we provide an example of an 8-centraliser finite

ring, which is appeared in the proof of Proposition 2.2.19.

Example 2.5.2. Consider the ring R = { [ a b
c 0 ]| a, b, c 2 Z2}, where the multiplica-

tion operation of R is defined as [ a b
c 0 ] [

x y
z 0 ] =

⇥
ax+bz ay
cx 0

⇤
for any [ a b

c 0 ] , [
x y
z 0 ] 2 R.

By the proof of Proposition 2.2.19, R is an 8-centraliser finite ring with

CR ([ 0 0
0 0 ]) = R,

CR ([ 1 0
0 0 ]) = {[ 0 0

0 0 ] , [
1 0
0 0 ]} ,
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CR ([ 0 1
0 0 ]) = {[ 0 0

0 0 ] , [
0 1
0 0 ]} ,

CR ([ 0 0
1 0 ]) = {[ 0 0

0 0 ] , [
0 0
1 0 ]} ,

CR ([ 1 1
0 0 ]) = {[ 0 0

0 0 ] , [
1 1
0 0 ]} ,

CR ([ 1 0
1 0 ]) = {[ 0 0

0 0 ] , [
1 0
1 0 ]} ,

CR ([ 0 1
1 0 ]) = {[ 0 0

0 0 ] , [
0 1
1 0 ]} ,

CR ([ 1 1
1 0 ]) = {[ 0 0

0 0 ] , [
1 1
1 0 ]} .

We notice that {[ 1 0
0 0 ] , [

0 1
0 0 ] , [

0 0
1 0 ] , [

1 1
0 0 ] , [

1 0
1 0 ] , [

0 1
1 0 ] , [

1 1
1 0 ]} is a maximal non-

commuting set of R. Thus, the cardinality of the maximal non-commuting set

of R is 7. Besides that, we have |R : CR(r)| = 4 for any r 2 R � Z(R). Since

Z(R) = {[ 0 0
0 0 ]}, then we have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2. Lastly, from (1.3), we

obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

8
+

7(2)

82

=
11

32
.

2.6 9-Centraliser Finite Rings

In this section, we characterise all 9-centraliser finite rings and compute their

commuting probabilities. To this end, we apply similar techniques as in Qu and

Chen (2010) to construct the main results in this section.

Lemma 2.6.1. Let {x1, x2, · · · , x5} be the maximal non-commuting set of R.
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Let |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �5. If |R : Z(R)| = 16 and

�1 = 4, then |Cent(R)| 6= 9, 10 and 11.

Proof. Suppose to the contrary that |Cent(R)| = 9, 10 or 11. By Lemma

1.3.1(a), we have R =
5
[
i=1

CR(xi). By Lemma 2.2.1, we obtain �2 = �3 =

�4 = �5 = 4. Since R/Z(R) =
5
[
i=1

[CR(xi)/Z(R)], then it can be easily

seen that CR(xi)/Z(R) \ CR(xj)/Z(R) = {Z(R)} for any two distinct i, j 2

{1, 2, · · · , 5}. From Lemma 2.2.15, we have CR(xi) is commutative for any

i 2 {1, 2, · · · , 5}. For the sake of simplicity, we let r = r + Z(R) for any r 2 R

and let S = S/Z(R) for any S 6 R.

By Lemma 2.2.4, there exists some a1 2 R� Z(R) such that CR(a1) is

non-commutative with |CR(a1)| = 8. Without loss of generality, we let a1 2

CR(x1) and let A = CR(a1)� CR(x1) = {a2, a3, a4, a5}, where a2, a3, a4, a5 2

R � Z(R). Now, we claim that |CR(xi) \ A| = 1 for any i 2 {2, 3, 4, 5}. Sup-

pose to the contrary that |CR(xi) \ A| > 2 for some i 2 {2, 3, 4, 5}. Without

loss of generality, we let a2, a3 2 CR(xi). If |CR(a2) \ CR(a3)| = 4|Z(R)|,

then a1 2 CR(x1) \ CR(a2) \ CR(a3) = CR(x1) \ CR(xi) = Z(R), which is

a contradiction. If |CR(a2) \ CR(a3)| = 8|Z(R)|, then CR(a2) = CR(a3) with

|CR(a2)| = 8. Since CR(a2) is non-commutative and 0, a2, a3 2 Z(CR(a2)),

then |Z(CR(a2))| = 4. It follows that |CR(a2) : Z(CR(a2))| = 2, which

gives that CR(a2)/Z(CR(a2)) is cyclic. This leads to CR(a2) is commutative;

a contradiction. So, |CR(xi) \ A| = 1 for any i 2 {2, 3, 4, 5}, as claimed.

Without loss of generality, we let ai 2 CR(xi) for any i 2 {2, 3, 4, 5}. Re-

call that, CR(x1) < CR(a1). For any i 2 {2, 3, 4, 5}, since a1 62 CR(xi) but
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a1 2 CR(ai), then CR(xi) < CR(ai). For any two distinct i, j 2 {1, 2, · · · , 5},

since xi 2 CR(ai) but xi 62 CR(aj), then CR(ai) 6= CR(aj). Consequently,

we obtain |Cent(R)| > 1 + 5 + 5 = 11, which gives that |Cent(R)| = 11.

We claim that CR(xi + ai) = CR(xi) for any i 2 {3, 4, 5}. Let i 2 {3, 4, 5}.

Since xi + ai 2 CR(xi), then CR(xi) 6 CR(xi + ai). Thus, CR(xi + ai) 6=

CR(xj), CR(aj) for any j 2 {1, 2, · · · , 5} � {i}. Since a1 62 CR(xi + ai) but

a1 2 R,CR(ai), then CR(xi + ai) 6= R,CR(ai). Since |Cent(R)| = 11, then we

obtain CR(xi + ai) = CR(xi), as claimed. This shows that a2 62 CR(xi + ai)

for any i 2 {3, 4, 5}. So, we have CR(a2) = {0, x2, a2, x2 + a2, a1, a3, a4, a5}.

This gives that |CR(a1) \ CR(a2)| = 6, which contradicts the fact that |CR(a1) \

CR(a2)| is divide |R|. Consequently, |Cent(R)| 6= 9, 10 and 11.

Lemma 2.6.2. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is a 9-centraliser finite ring, then t 6= 5.

Proof. Assume that t = 5. Let {x1, x2, x3, x4, x5} be the maximal non-commuting

set of R. Without loss of generality, we assume that |R : CR(xi)| = �i,

where �1 6 �2 6 �3 6 �4 6 �5. By Lemma 1.3.1(b) and (c), we have

{CR(xi) | i = 1, 2, 3, 4, 5} is an irredundant cover of R with intersection Z(R).

Thus, |R : Z(R)| 6 f(5) = 16 and therefore, by Theorem 2.2.23, we obtain

|R : Z(R)| = 16. By Lemma 2.2.1, we have �2 6 4. In view of Lemma 2.6.1,

it follows that �1 = 2. If CR(x1) is commutative, then by Lemma 2.2.12, we

obtain |R : Z(R)| 6 2(4) = 8, which is impossible. Consequently, CR(x1) is

non-commutative. Let CR(a1), CR(a2), CR(a3) be three distinct proper centralis-

ers of R that are different from CR(xi) for any i 2 {1, 2, 3, 4, 5}. Assume that

�2 = 2. From Lemma 2.2.8(b), CR(x2) is commutative. Therefore, by Lemma
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2.2.12, we obtain |R : Z(R)| 6 2(2) = 4; a contradiction. So, �2 = 4. Hence, it

follows from Lemma 2.2.1 that �2 = �3 = �4 = �5 = 4. From Lemma 2.2.15,

we have CR(xi) is commutative for any i 2 {2, 3, 4, 5}. We continue the proof

by considering three cases.

Case 1: CR(a1), CR(a2), CR(a3) are commutative. Now, we claim that

CR(x1) \ CR(x2) = Z(R). If w 2 CR(x1) \ CR(x2), then x1, x2 2 CR(w).

Obviously, CR(w) 6= CR(xi) for any i 2 {1, 2, 3, 4, 5}. If CR(w) = CR(ai) for

some i 2 {1, 2, 3}, then x1x2 = x2x1 as CR(ai) is commutative; a contradiction.

Hence, CR(w) = R and it follows that w 2 Z(R). This leads to CR(x1) \

CR(x2) 6 Z(R). On the other hand, it is clear that Z(R) 6 CR(x1) \ CR(x2).

It follows that CR(x1) \ CR(x2) = Z(R). Hence, |R : Z(R)| 6 2(4) = 8 by

Lemma 2.2.11, which is a contradiction.

Case 2: Some of the CR(a1), CR(a2), CR(a3) are commutative but not all

of them. Without loss of generality, we let P,Q 2 {CR(a1), CR(a2), CR(a3)}

with P is commutative and Q is non-commutative. By Lemma 2.2.8(c), CR(x1) 2

{CR(q1), CR(q2), CR(q3)} ✓ {CR(xi) | i = 1, 2, 3, 4, 5}, where {q1, q2, q3} is a

maximal non-commuting set of Q. Thus, there exists some j 2 {2, 3, 4, 5} such

that CR(xj) 2 {CR(xi) | i = 1, 2, 3, 4, 5} � {CR(q1), CR(q2), CR(q3)}. Here,

we claim that CR(x1)\CR(xj) = Z(R). If w 2 CR(x1)\CR(xj), then x1, xj 2

CR(w). Clearly, CR(w) 6= CR(xi) for any i 2 {1, 2, 3, 4, 5}. If CR(w) = P ,

then x1xj = xjx1 as P is commutative; a contradiction. If CR(w) = Q, then

ak 2 CR(q1) \ CR(q2) \ CR(q3) \ CR(xj) for some k 2 {1, 2, 3} and hence,
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ak 2
5
\

i=1,i 6=l
CR(xi) for some l 2 {2, 3, 4, 5} � {j}. It follows by Lemma 2.2.2

that ak 2 Z(R), which is a contradiction. So, CR(w) = R, which yields that

w 2 Z(R). This shows that CR(x1) \ CR(xj) 6 Z(R). On the other hand, it is

clear that Z(R) 6 CR(x1) \ CR(xj). Therefore, CR(x1) \ CR(xj) = Z(R). By

Lemma 2.2.11, it follows that |R : Z(R)| 6 2(4) = 8, which is a contradiction.

Case 3: CR(a1), CR(a2), CR(a3) are non-commutative. By Lemma 2.2.8(c),

for any i 2 {1, 2, 3}, CR(x1) 2 Ai = {CR(ui1), CR(ui2), CR(ui3)} ✓ {CR(xj) |

j = 1, 2, 3, 4, 5}, where {ui1 , ui2 , ui3} is a maximal non-commuting set of CR(ai).

Thus, there exists some k 2 {2, 3, 4, 5} such that CR(xk) 2 Ai \ Aj for two

distinct i, j 2 {1, 2, 3}. This implies that ai, aj 2 CR(xk). Since CR(xk) is com-

mutative, then aiaj = ajai, which contradicts with Lemma 2.2.8(a). Therefore,

t 6= 5. This completes the proof.

Lemma 2.6.3. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is a 9-centraliser finite ring, then t 6= 6.

Proof. Assume that t = 6. Let {x1, x2, · · · , x6} be the maximal non-commuting

set of R. Without loss of generality, we assume that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �6. By Lemma 1.3.1(c), we have {CR(xi) | i = 1, 2, · · · , 6}

is an irredundant cover of R. By Lemma 2.2.3, CR(xi) is commutative for any

i 2 {1, 2, · · · , 6} and there exist some a, b 2 R � Z(R) such that CR(a) and

CR(b) are two distinct non-commutative proper centralisers of R.

By Lemma 2.2.7, CR(a) contains CR(xl1), CR(xl2) for two distinct l1, l2 2

{1, 2, · · · , 6}. Therefore, {CR(a)} [
✓

[
i2A

{CR(xi)}
◆

is an irredundant cover of
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R for some A ⇢ {1, 2, · · · , 6} with |A| 6 4. Obviously, |A| 6= 0. If |A| = 1,

then by Lemma 2.2.1, it follows that �i = 1 for some i 2 A, which is impossible.

Thus, |A| = 2, 3 or 4. Now, we assume that |A| = 2 or 3. This implies that

�i = 2 or 3 for some i 2 A by Lemma 2.2.1. In view of Lemma 2.2.14, �2 > 4.

Therefore, i = 1. By Corollary 2.2.13, it follows that |R : Z(R)| 6 3�2. By

Lemma 2.2.1, �2 6 5. It follows that |R : Z(R)| 6 15, which contradicts

with Theorem 2.2.23. Hence, |A| = 4. Let {↵1,↵2, · · · ,↵u} be the maximal

non-commuting set of CR(a). For any i 2 {1, 2, · · · , u}, since there exists

some j 2 {1, 2, · · · , u} � {i} such that ↵j 62 CR(↵i) but ↵j 2 R,CR(a), then

CR(↵i) 6= R,CR(a). Therefore, we have {CR(↵1), CR(↵2), · · · , CR(↵u)} ✓

Cent(R)� {R,CR(a)} = {CR(x1), CR(x2), · · · , CR(x6), CR(b)}. Hence, there

have at least u � 1 distinct centralisers in {CR(↵1), CR(↵2), · · · , CR(↵u)} are

commutative. If CR(↵i) is commutative for some i 2 {1, 2, · · · , u}, then

CR(↵i) < CR(a) as a 2 CR(↵i). This implies that there have at least u� 1 dis-

tinct commutative proper centralisers of R are contained in CR(a). Since |A| = 4,

then there have exactly two distinct centralisers in {CR(xi) | i = 1, 2, · · · , 6}

are contained in CR(a). Hence, there have exactly two distinct commutative

proper centralisers of R are contained in CR(a). Thus, we have 2 > u � 1,

and hence, u 6 3. So, we get u = 3 by Lemma 1.3.1(d). Without loss of

generality, we let CR(↵1), CR(↵2) be the two distinct commutative proper cen-

tralisers of R which contains in CR(a). Let {�1, �2, · · · , �v} be the maximal

non-commuting set of CR(b). By using similar arguments, we have v = 3 and

CR(�1), CR(�2) are the two distinct commutative proper centralisers of R which

contains in CR(b). Hence, CR(↵3) = CR(b) and CR(�3) = CR(a). Now, we

51



claim that CR(↵i) 6= CR(�j) for any i, j 2 {1, 2}. Assume to the contrary that

CR(↵i) = CR(�j) for some i, j 2 {1, 2}. Since ↵i 2 CR(a) = CR(�3), then

�3 2 CR(↵i) = CR(�j). This yields that �3�j = �j�3, which is a contradic-

tion. Therefore, our claim is true. So, we have {CR(xi1), CR(xi2), CR(a), CR(b)}

is an irredundant cover of R for two distinct i1, i2 2 {1, 2, · · · , 6}. Next, we

claim that CR(xi1) \ CR(xi2) = Z(R). Let w 2 CR(xi1) \ CR(xi2). Since

CR(xi1), CR(xi2) are commutative, then CR(xi1), CR(xi2) 6 CR(w). Obviously,

CR(w) 6= CR(xi) for any i 2 {1, 2, · · · , 6}. If CR(w) = CR(a) or CR(b),

then CR(xi1), CR(xi2) 6 CR(a) or CR(b), which contradicts the definition of

irredundant cover of R. So, CR(w) = R, which yields that w 2 Z(R). Con-

sequently, CR(xi1) \ CR(xi2) 6 Z(R). On the other hand, it is obvious that

Z(R) 6 CR(xi1) \ CR(xi2). Therefore, CR(xi1) \ CR(xi2) = Z(R), as de-

sired. So, we have CR(xi1) \ CR(xi2) \ CR(a) \ CR(b) = Z(R). It follows that

|R : Z(R)| 6 f(4) = 9, which contradicts with Theorem 2.2.23. Consequently,

t 6= 6.

Lemma 2.6.4. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is a 9-centraliser finite ring, then t 6= 7.

Proof. Assume that t = 7. Let {x1, x2, · · · , x7} be the maximal non-commuting

set of R. Without loss of generality, we assume that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �7. By Lemma 1.3.1(c), we have {CR(xi) | i = 1, 2, · · · , 7}

is an irredundant cover of R. By Lemma 2.2.3, CR(xi) is commutative for any

i 2 {1, 2, · · · , 7} and there exists some a 2 R � Z(R) such that CR(a) is a

non-commutative proper centraliser of R.
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In view of Lemma 2.2.6, CR(a) contains CR(xl1), CR(xl2), CR(xl3) for

three distinct l1, l2, l3 2 {1, 2, · · · , 7}. Therefore, {CR(a)} [
✓

[
i2A

{CR(xi)}
◆

is

an irredundant cover of R for some A ⇢ {1, 2, · · · , 7} with |A| 6 4. Clearly,

|A| 6= 0. If |A| = 1, then by Lemma 2.2.1, it follows that �i = 1 for some i 2 A,

which is impossible. Hence, |A| = 2, 3 or 4. Now, we claim that if CR(xi) ⌦

CR(a) for some i 2 {1, 2, · · · , 7}, then CR(xi) \ CR(a) = Z(R). Let w 2

CR(xi) \ CR(a). Since CR(xi) is commutative, then CR(xi) 6 CR(w). Clearly,

CR(w) 6= CR(a), CR(xj) for any j 2 {1, 2 · · · , 7} � {i}. If CR(w) = CR(xi),

then CR(w) is commutative. This implies that CR(w) 6 CR(a). Therefore,

CR(xi) 6 CR(a), which is a contradiction. So, CR(w) = R and it follows that

w 2 Z(R). Hence, we obtain CR(xi) \ CR(a) 6 Z(R). On the other hand, it

is clear that Z(R) 6 CR(xi) \ CR(a). Consequently, CR(xi) \ CR(a) = Z(R),

as desired. Since CR(xi) ⌦ CR(a) for any i 2 A, then \
i2A

CR(xi) \ CR(a) =

Z(R). Thus, we obtain |R : Z(R)| 6 max{f(3), f(4), f(5)} = 16. Therefore,

by Theorem 2.2.23, it follows that |R : Z(R)| = 16. Since CR(a) is non-

commutative, then by Lemma 2.2.15, we have |R : CR(a)| = 2. Since CR(xi) ⌦

CR(a) for any i 2 A, then CR(xi) \ CR(a) = Z(R) for any i 2 A and hence, by

Lemma 2.2.11, we get |R : CR(xi)| = 8 for any i 2 A, which contradicts with

Lemma 2.2.1. So, t 6= 7.

Theorem 2.6.5. Let R be a 9-centraliser finite ring. Then the cardinality of

the maximal non-commuting set of R is 8. Moreover, R/Z(R) ⇠= Z7 ⇥ Z7 and

Prob(R) = 55
343 .

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without

loss of generality, we assume that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6
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�t. By Lemma 1.3.1(d)-(g) and Lemmas 2.6.2-2.6.4, we obtain t = 8. By

Lemma 1.3.1(a), we have R =
8
[
i=1

CR(xi). By Corollary 2.2.5, we have CR(xi)\

CR(xj) = Z(R) for any two distinct i, j 2 {1, 2, · · · , 8}. By Theorem 2.2.23,

we obtain |R : Z(R)| > 16 with |R : Z(R)| is not square-free, |R : Z(R)| 6= p
2
q

for any two distinct primes p, q, and |R : Z(R)| 6= p
2 for any prime p with p 6= 7.

From Lemma 2.2.11, we have |R : Z(R)| 6 �
2
2 and |CR(x1) : Z(R)| 6

�2. In view of Lemma 2.2.1 and Lemma 2.2.14, it follows that 4 6 �2 6 7.

Now, we suppose that �2 = 4. Then, |R : Z(R)| 6 16, which implies that

|R : Z(R)| = 16. By using the principle of inclusion-exclusion, we obtain

|R| =
8P

i=1
|CR(xi)| � 7|Z(R)|. Thus, we get

8P
i=1

16
�i

= 23, which is impossible

because
8P

i=1

16
�i

is even. Next, we assume that �2 = 5. Thus, |R : Z(R)| 6 25, a

contradiction is reached. Here, we assume that �2 = 6. Hence, |R : Z(R)| 6 36.

If |R : Z(R)| = 24, then R/Z(R) ⇠= Z2 ⇥ Z12 or Z2 ⇥ Z2 ⇥ Z6 as R/Z(R) is

not cyclic. Therefore, |CR(x1) : Z(R)| 6 6 and |CR(xi) : Z(R)| 6 4 for any

i 2 {2, 3, · · · , 8}. Consequently, R/Z(R) has at most 2 elements of order 6. Also,

there does not exist any element of order 12 in R/Z(R). This contradicts with the

fact that Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6 and Z2 ⇥ Z12 has an element

of order 12. If |R : Z(R)| = 36, then R/Z(R) ⇠= Z2 ⇥Z18,Z3 ⇥Z12 or Z6 ⇥Z6

as R/Z(R) is not cyclic. Thus, |CR(xi) : Z(R)| 6 6 for any i 2 {1, 2, · · · , 8}.

This implies that R/Z(R) has at most 16 elements of order 6. Also, there does

not exist any element of order 12 and order 18 in R/Z(R). We have reached a

contradiction as Z6 ⇥ Z6 has 24 elements of order 6, Z3 ⇥ Z12 has an element of

order 12 and Z2 ⇥ Z18 has an element of order 18. So, �2 = 7. Consequently, we
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have |R : Z(R)| 6 49, which follows that |R : Z(R)| = 49. Finally, we obtain

R/Z(R) ⇠= Z7 ⇥ Z7 as R/Z(R) is not cyclic. Lastly, by (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

49
+

⇣
|R|� |R|

49

⌘⇣
|R|
7

⌘

|R|2

=
55

343
.

This completes the proof.

As an immediate consequence of Theorem 2.6.5 and [A2], we obtain a

complete characterisation for all 9-centraliser finite rings.

Theorem 2.6.6. For any finite ring R, R is a 9-centraliser finite ring if and only

if R/Z(R) ⇠= Z7 ⇥ Z7.

In the following, we provide an example of a 9-centraliser finite ring,

which is appeared in the proof of Proposition 2.2.18.

Example 2.6.7. R = { [ a b
0 0 ]| a, b 2 Z7} is a 9-centraliser finite ring with

CR ([ 0 0
0 0 ]) = R,

CR ([ 0 a
0 0 ]) = { [ 0 x

0 0 ]| x 2 Z7} ,

CR ([ a la
0 0 ]) = { [ x lx

0 0 ]| x 2 Z7}

for any a 2 Z7 with a 6= 0 and l 2 Z7. We note that {[ 0 1
0 0 ] , [

1 0
0 0 ] , [

1 1
0 0 ] , [

1 2
0 0 ] ,
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[ 1 3
0 0 ] , [

1 4
0 0 ] , [

1 5
0 0 ] , [

1 6
0 0 ]} is a non-commuting set of R with cardinality 8. Also,

we note that there does not exist a non-commuting set of R with cardinality

9. Thus, the cardinality of the maximal non-commuting set of R is 8. Since

Z(R) = {[ 0 0
0 0 ]}, then we have R/Z(R) ⇠= Z7⇥Z7. Lastly, from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

49
+

48(7)

492

=
55

343
.

2.7 10-Centraliser Finite Rings

In this section, we determine the structure for all 10-centraliser finite rings and

compute their commuting probabilities.

Lemma 2.7.1. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is an n-centraliser finite ring with n 2 {10, 11}, then t 6= 5.

Proof. Assume that t = 5. Let {x1, x2, · · · , x5} be the maximal non-commuting

set of R. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �5. By Lemma 1.3.1(b) and (c), we have {CR(xi) | i =

1, 2, · · · , 5} is an irredundant cover of R with intersection Z(R). Hence, we have

|R : Z(R)| 6 f(5) = 16 and so, by Theorem 2.2.23, we obtain |R : Z(R)| = 16.

By Lemma 2.2.1, we have �2 6 4. From Lemma 2.6.1, we have �1 = 2. For the

sake of simplicity, we write r = r + Z(R) for any r 2 R and S = S/Z(R) for

any S 6 R.
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If CR(x1) is commutative, then by Lemma 2.2.12, we obtain |R| 6 2(4) =

8; a contradiction. So, we have CR(x1) is non-commutative. By Lemma 2.2.9(b)

and Lemma 2.2.10(b), we have CR(xi) is commutative for any i 2 {2, 3, 4, 5}.

If �2 6 3, then by Lemma 2.2.12, we obtain |R| 6 3(2) = 6; a contradiction.

Therefore, �2 = 4. In view of Lemma 2.2.1, we obtain �2 = �3 = �4 = �5 = 4.

Since CR(x1) = 8, then R � CR(x1) = {x2, x3, x4, x5, r2, r3, r4, r5} for some

r2, r3, r4, r5 2 R�CR(x1). By Lemma 2.2.11, we obtain |CR(xi)\CR(x1)| = 2

for any i 2 {2, 3, 4, 5}. Likewise, we obtain |CR(xi) \ (R � CR(x1))| = 2 for

any i 2 {2, 3, 4, 5}. Without loss of generality, we have

CR(x2) = {0, d2, x2, r2},

CR(x3) = {0, d3, x3, r3},

CR(x4) = {0, d4, x4, r4},

CR(x5) = {0, d5, x5, r5}

for some d2, d3, d4, d5 2 CR(x1).

Assume that di 6= dj for any two distinct i, j 2 {2, 3, 4, 5}. Then, we have

CR(d2) � {0, d2, x2, r2, x1} with |CR(d2)| = 8,

CR(d3) � {0, d3, x3, r3, x1} with |CR(d3)| = 8,

CR(d4) � {0, d4, x4, r4, x1} with |CR(d4)| = 8,

CR(d5) � {0, d5, x5, r5, x1} with |CR(d5)| = 8.
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Also, we have CR(x1) = {0, x1, d2, d3, d4, d5, h1, h2} for some h1, h2 2 CR(x1)�

Z(R). For any i 2 {1, 2} and j 2 {2, 3, 4, 5}, since xj 62 CR(hi) but xj 2

R,CR(xj), CR(dj), then CR(hi) 6= R,CR(xj), CR(dj). We claim that CR(hi) 6=

CR(x1) for any i 2 {1, 2}. Suppose that CR(hi) = CR(x1) for some i 2 {1, 2}.

It follows that 0, x1, hi 2 Z(CR(x1)) and thus, |Z(CR(x1))| = 4. This leads

to |CR(x1) : Z(CR(x1))| = 2 and so, CR(x1)/Z(CR(x1)) is cyclic. This yields

that CR(x1) is commutative, which is a contradiction. So, CR(hi) 6= CR(x1)

for any i 2 {1, 2}. This gives that |Cent(R)| > 11 and so, |Cent(R)| = 11.

Since |Cent(R)| = 11, then CR(h1) = CR(h2). Since |CR(d2) \ CR(x1)| > 3,

then we have |CR(d2) \ CR(x1)| = 4. If hi 2 CR(d2) for some i 2 {1, 2},

then 0, x1, h1, h2, d2 2 CR(h1). This implies |CR(x1) \ CR(h1)| > 5 and it

follows that CR(x1) = CR(h1); a contradiction. So, dk 2 CR(d2) for some

k 2 {3, 4, 5}. Without loss of generality, we assume that k = 3. By Lemma

2.2.11, we have |CR(di) \ CR(x4)| = 2 for any i 2 {2, 3}. Since d2, d3 62

CR(x4), then x4 62 CR(d2), CR(d3). If d4 2 CR(di) for some i 2 {2, 3}, then

|CR(di) \ CR(x1)| > 5 and it follows that CR(di) = CR(x1), which is a contra-

diction. Thus, d4 62 CR(d2), CR(d3) and therefore, r4 2 CR(d2), CR(d3). So, we

have

CR(d2) � {0, d2, d3, x1, r4, x2, r2} with |CR(d2)| = 8,

CR(d3) � {0, d2, d3, x1, r4, x3, r3} with |CR(d3)| = 8.

This shows that |CR(d2) \ CR(d3)| = 5 or 6. We have reached a contradiction as

|CR(d2) \ CR(d3)| is divide |R|.
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Consequently, di = dj for two distinct i, j 2 {2, 3, 4, 5}. Without loss

of generality, we assume that i = 2 and j = 3. Then, we have CR(d2) �

{0, d2, x2, r2, x3, r3, x1} with |CR(d2)| = 8. By Lemma 2.2.11, it follows that

|CR(d2) \ CR(x1)| = 4 and so, |CR(d2) \ (R � CR(x1))| = 4. This shows that

xk, rk 62 CR(d2) for any k 2 {4, 5}. This implies that |CR(d2)\CR(xk)| 6 2 for

any k 2 {4, 5}. Therefore, by Lemma 2.2.11, we obtain |CR(d2) \ CR(xk)| = 2

for any k 2 {4, 5}. So, we have dk 2 CR(d2) for any k 2 {4, 5}. If dk = d2 for

some k 2 {4, 5}, then xk, rk 2 CR(d2); a contradiction. Hence, dk 6= d2 for any

k 2 {4, 5}. Since |CR(d2)| = 8, then d4 = d5. Therefore, we have CR(x1) =

{0, x1, d2, d4, h1, h2, h3, h4} for some h1, h2, h3, h4 2 CR(x1) � Z(R). Since

{h1, hi, x2, x3, x4, x5} is not a non-commuting set of R for any i 2 {2, 3, 4}, then

h1hi = hih1 for any i 2 {2, 3, 4}. It follows that CR(h1) � {0, h1, h2, h3, h4, x1}

with |CR(h1)| = 8. This gives that |CR(x1) \ CR(h1)| > 6. Consequently, we

obtain CR(x1) = CR(h1). This contradicts with the fact that d2 62 CR(h1).

Lemma 2.7.2. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a

finite ring R. If R is an n-centraliser finite ring with n 2 {10, 11}, then |R :

Z(R)| = 16, 24, 32 or 36. Furthermore, if |R : CR(x1)| 6 |R : CR(x2)| 6 · · · 6

|R : CR(x6)|, then |R : CR(x2)| = 4.

Proof. From Lemma 1.3.1(b) and (c), we have {CR(xi) | i = 1, 2, · · · , 6} is an

irredundant cover of R with intersection Z(R). Thus, we have |R : Z(R)| 6

f(6) = 36. Therefore, by Theorem 2.2.23, we obtain |R : Z(R)| = 16, 24, 27, 32

or 36. If |R : Z(R)| = 27, then by Lemma 2.2.16 and Lemma 2.2.4, we obtain

|Cent(R)| = 7, which is a contradiction. So, |R : Z(R)| = 16, 24, 32 or 36.
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By Lemma 2.2.1, it follows that |R : CR(x2)| 6 5 and hence, |R :

CR(x2)| 6 4. Assume that |R : CR(x2)| 6 3. If CR(x2) is commutative, then

by Lemma 2.2.12, we obtain |R : Z(R)| 6 3(3) = 9, which is a contradiction.

If CR(x2) is non-commutative, then by Lemma 2.2.8(b) and Lemma 2.2.9(b),

CR(x1) is commutative. Thus, it follows from Lemma 2.2.12 that |R : Z(R)| 6

3(3) = 9, which is a contradiction again. Consequently, |R : CR(x2)| = 4, as

desired.

The following lemma is required before we proceed further.

Lemma 2.7.3. Let H1, H2, · · · , Ht be the proper subgroups of a group (G,+)

with |G : H1| 6 |G : H2| 6 · · · 6 |G : Ht|. If G = H1 [H2 [ · · · [Ht, then

|G| 6
tP

i=2
|Hi|. Moreover, the equality attains if and only if H1 +Hr = G for any

r 2 {2, · · · , t} and Hr \Hs ⇢ H1 for any two distinct r, s 2 {1, 2, · · · , t}.

Proof. See Theorem 1 in Cohn (1994).

Lemma 2.7.4. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a

finite ring R. If R is a 10-centraliser finite ring with |R : Z(R)| = 16, then

|R : CR(xi)| = 4 for any i 2 {1, 2, · · · , 6}, and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2

or Z4 ⇥ Z4.

Proof. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �6. From Lemma 1.3.1(a), we have R =
6
[
i=1

CR(xi). By

Lemma 2.7.2, we have �2 = 4. If �4 6= 4, then by Lemma 2.7.3, we obtain

|R| 6 2( |R|
4 ) + 3( |R|

8 ) = 7
8 |R|, which is impossible. So, we have �3 = �4 = 4.
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For the sake of simplicity, we write r = r + Z(R) for any r 2 R and let

S = S/Z(R) for any S 6 R.

We claim that �1 = 4. Suppose to the contrary that �1 = 2. By Lemma

2.2.11, we obtain |CR(x1)\CR(x2)| = 2. Hence, CR(x1)\CR(x2) = {0, a} for

some a 2 R� Z(R). So, we have

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b},

CR(x2) = {0, x2, a, x2 + a}

for some b 2 R � Z(R). If ab = ba, then CR(x1) is commutative. Therefore,

by Lemma 2.2.12, it follows that |R| 6 2(4) = 8; a contradiction. So, ab 6= ba.

Thus, we have

CR(a) ◆ {0, x1, x2, a},

CR(b) ◆ {0, x1, b, x1 + b},

CR(a+ b) ◆ {0, x1, a+ b, x1 + a+ b},

CR(x1 + a) ◆ {0, x1, a, x1 + a}.

It can be easily checked that R,CR(x1), CR(x2), · · · , CR(x6), CR(a), CR(b), CR(

a+ b), CR(x1 + a) are 11 distinct centralisers of R. We have reached a contradic-

tion. Consequently, �1 = 4.

By Lemma 2.2.15, we have CR(xi) is commutative for any i 2 {1, 2, · · · ,

6}. Next, we claim that �5 = �6 = 4. If �5 = 8, then �6 = 8 and so,
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|R| 6
6P

i=1
|CR(xi)| � 5 = 15, which is impossible. So, �5 = 4. Assume

that �6 = 8. Thus, |CR(x6)| = 2 and hence, CR(xi) \ CR(x6) = Z(R) for

any i 2 {1, 2, · · · , 5}. If CR(xi) \ CR(xj) = Z(R) for any two distinct i, j 2

{1, 2, · · · , 5}, then |R| =
6P

i=1
|CR(xi)|� 5 = 17, which is impossible. Therefore,

CR(xi) \ CR(xj) 6= Z(R) for two distinct i, j 2 {1, 2, · · · , 5}. So, there exists

some w 2 (CR(xi) \ CR(xj)) � Z(R), which gives that CR(xi) [ CR(xj) ✓

CR(w). This shows that R = CR(w) [
✓

6
[

k=1,k 6=i,j
CR(xk)

◆
. Therefore, from

Lemma 2.2.1, we obtain �6 = 4, which is a contradiction. Consequently, �6 = 4.

Since |R| = 16, then R ⇠= Z2 ⇥Z8,Z2 ⇥Z2 ⇥Z4,Z2 ⇥Z2 ⇥Z2 ⇥Z2 or

Z4 ⇥ Z4 as R is not cyclic. Since |CR(xi)| = 4 for any i 2 {1, 2, · · · , 6}, then

there does not exist any element of order 8 in R and consequently, R 6⇠= Z2 ⇥ Z8.

Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z4. Since Z2 ⇥ Z2 ⇥ Z4 has 8 elements of order 4,

then there exist four distinct l1, l2, l3, l4 2 {1, 2, · · · , 6} such that CR(xli) ⇠= Z4

for any i 2 {1, 2, 3, 4}. Without loss of generality, we assume that l1 = 1, l2 =

2, l3 = 3, l4 = 4. If CR(x1) \ CR(xi) 6= Z(R) for any i 2 {2, 3, 4}, then there

exists some wi 2 (CR(x1)\CR(xi))�Z(R) for any i 2 {2, 3, 4}. This gives that

0, x1, w2, w3, w4 2 CR(x1). Since wi 6= 0, x1 for any i 2 {2, 3, 4}, then wi = wj

for two distinct i, j 2 {2, 3, 4}. So, we obtain wi 2 CR(x1) \ CR(xi) \ CR(xj)

and therefore, CR(x1) [ CR(xi) [ CR(xj) ✓ CR(wi). It follows that R =

CR(wi) [
✓

6
[

k=2,k 6=i,j
CR(xk)

◆
. In view of Lemma 2.2.1, we obtain �k 6 3 for

some k 2 {2, · · · , 6} � {i, j}, which leads to a contradiction. Consequently,

CR(x1) \ CR(xi) = Z(R) for some i 2 {2, 3, 4}. Since CR(x1) ⇠= Z4 and

CR(xi) ⇠= Z4, then there exist some a 2 CR(x1) � Z(R), b 2 CR(xi) � Z(R)
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such that CR(x1) = {0, a, 2a, 3a} and CR(xi) = {0, b, 2b, 3b}. This implies that

R = {ma+ nb | m,n 2 Z4} ⇠= Z4 ⇥ Z4, which is a contradiction. Therefore,

R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 or Z4 ⇥ Z4.

Lemma 2.7.5. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a finite

ring R. If R is an n-centraliser finite ring with n 2 {10, 11}, then |R : Z(R)| 6=

24 and 36.

Proof. Assume that |R : Z(R)| = 24 or 36. Without loss of generality, we

suppose that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �6. From Lemma

1.3.1(a), we have R/Z(R) =
6
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.7.2, we have

�2 = 4. Let m|G| denote the total number of elements with order m in an additive

group G. For the sake of simplicity, we write r = r + Z(R) for any r 2 R and

S = S/Z(R) for any S 6 R.

If |R| = 24, then R ⇠= Z2 ⇥Z12 or Z2 ⇥Z2 ⇥Z6 as R is not cyclic. Thus,

|CR(x1)| 6 12 and |CR(xi)| 6 6 for any i 2 {2, 3, · · · , 6}. This yields that R

has at most 12|Z12| elements of order 12. Since 12|Z12| < 12|Z2 ⇥ Z12|, then

R 6⇠= Z2 ⇥ Z12 and so, R ⇠= Z2 ⇥ Z2 ⇥ Z6. If |CR(x1)| = 8, then R has at most

5(6|Z6|) = 10 elements of order 6, which contradicts the fact that Z2 ⇥ Z2 ⇥ Z6

has 14 elements of order 6. Therefore, |CR(x1)| = 6 or 12. It follows that

CR(x1) ⇠= Z6 or Z2 ⇥ Z6. Here, we claim that �5 6= 4. Assume that �5 = 4,

then CR(xi) ⇠= Z6 for any i 2 {2, 3, 4, 5}. This gives that CR(xi) has exactly

2 elements of order 3 for any i 2 {1, 2, · · · , 5}. By the fact that Z2 ⇥ Z2 ⇥ Z6

has exactly 2 elements of order 3, then there exists some a 2 R � Z(R) with

order 3 such that a 2
5
\
i=1

CR(xi). So, by Lemma 1.3.1(b), (c) and Lemma 2.2.2,
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we obtain a 2 Z(R), which leads to a contradiction. Consequently, �5 6= 4

and so, |CR(xi)| 6 4 for any i 2 {5, 6}. This implies that R has at most

6|Z2 ⇥Z6|+ 3(6|Z6|) = 12 elements of order 6. We have reached a contradiction

as Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6.

If |R| = 36, then R ⇠= Z2 ⇥ Z18,Z3 ⇥ Z12 or Z6 ⇥ Z6 as R is not cyclic.

Hence, |CR(x1)| 6 18, |CR(x2)| = 9 and |CR(xi)| 6 9 for any i 2 {3, 4, 5, 6}.

This leads to R has at most 12|Z12| elements of order 12 and 18|Z18| elements

of order 18. Since 12|Z12| < 12|Z3 ⇥ Z12| and 18|Z18| < 18|Z2 ⇥ Z18|, then

R/Z(R) 6⇠= Z2 ⇥ Z18 and Z3 ⇥ Z12. It follows that R ⇠= Z6 ⇥ Z6. Therefore, we

have |CR(x1)| = 9, CR(x1) ⇠= Z2 ⇥ Z6 or CR(x1) ⇠= Z3 ⇥ Z6. This implies that

R has at most 6|Z3 ⇥ Z6|+ 4(6|Z6|) = 16 elements of order 6. This contradicts

with the fact that Z6 ⇥ Z6 has 24 elements of order 6.

Lemma 2.7.6. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a

finite ring R. If R is a 10-centraliser finite ring, then |R : Z(R)| 6= 32.

Proof. Assume that |R : Z(R)| = 32. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �6. From Lemma 1.3.1(a), we have

R =
6
[
i=1

CR(xi). By Lemma 2.7.2, we have �2 = 4. If �4 6= 4, then by Lemma

2.7.3, we obtain |R| 6 2( |R|
4 ) + 3( |R|

8 ) = 7
8 |R|, which is impossible. So, we have

�3 = �4 = 4. For the sake of simplicity, we write r = r + Z(R) for any r 2 R

and S = S/Z(R) for any S 6 R. Here, we break the proof into the following

two cases.

Case 1: �1 = 2. If CR(x1) is commutative, then by Lemma 2.2.12, we
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obtain |R| 6 2(4) = 8; a contradiction. Therefore, CR(x1) is non-commutative.

By Lemma 2.2.8(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 6}.

Since |CR(x1)| = 16, then R� CR(x1) = {x2, x3, x4, x5, x6, r1, r2, · · · , r11} for

some r1, r2, · · · , r11 2 R�CR(x1). We claim that ri 62 CR(xj)\CR(xk) for any

i 2 {1, 2, · · · , 11} and j, k 2 {2, 3, · · · , 6} with j 6= k. If ri 2 CR(xj)\CR(xk)

for some i 2 {1, 2, · · · , 11} and j, k 2 {2, 3, · · · , 6} with j 6= k, then CR(xj) [

CR(xk) ✓ CR(ri). It is clear that CR(ri) 6= R,CR(xl) for any l 2 {1, 2, · · · , 6}.

Therefore, by Lemma 2.2.8(a), we obtain ri 2 CR(x1); a contradiction. So,

our claim is true. By Lemma 2.2.11, we have |CR(xi) \ CR(x1)| = 4 for

any i 2 {2, 3, 4}. Likewise, we have |CR(xi) \ (R � CR(x1))| = 4 for any

i 2 {2, 3, 4}. By applying Lemma 2.2.11 again, we have |CR(xi) \ CR(xj)| > 2

for any two distinct i, j 2 {2, 3, 4}. If |CR(x2) \ CR(x3) \ CR(x4)| > 2, then

without loss of generality, we have

CR(x2) � {0, d1, x2, r1, r2, r3},

CR(x3) � {0, d1, x3, r4, r5, r6},

CR(x4) � {0, d1, x4, r7, r8, r9}

for some d1 2 CR(x1) � Z(R). It follows that CR(x2) [ CR(x3) [ CR(x4) ✓

CR(d1). This shows that x2, x3, x4, r1, r2, · · · , r9 2 CR(d1) and hence, |CR(d1)| =

16. Therefore, we have |CR(d1) \ CR(x1)| 6 4. Hence, by Lemma 2.2.11, we

obtain |R| 6 2(2)(4) = 16, which is a contradiction. Consequently, |CR(x2) \

CR(x3) \ CR(x4)| = 1. So, without loss of generality, we have

CR(x2) = {0, d1, d2, d4, x2, r1, r2, r3},
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CR(x3) = {0, d1, d3, d5, x3, r4, r5, r6},

CR(x4) = {0, d2, d3, d6, x4, r7, r8, r9}

for some d1, d2, · · · , d6 2 CR(x1) � Z(R). It follows that CR(x2) [ CR(x3) ✓

CR(d1), CR(x2) [ CR(x4) ✓ CR(d2) and CR(x3) [ CR(x4) ✓ CR(d3). It is

obvious that CR(di) 6= R,CR(xl) for any i 2 {1, 2, 3} and l 2 {1, 2, · · · , 6}.

Since |CR(x2) \ CR(x3) \ CR(x4)| = 1, then CR(di) 6= CR(dj) for any two

distinct i, j 2 {1, 2, 3}. Therefore, by Lemma 2.2.8(a), we have d1, d2, d3 do

not commute with each other. Now, we consider for CR(d1 + x1). Since d2 62

CR(d1 + x1) but d2 2 R,CR(x1), then CR(d1 + x1) 6= R,CR(x1). For any

i 2 {2, 3, · · · , 6}, since x1 2 CR(d1 + x1) but x1 62 CR(xi), then CR(d1 + x1) 6=

CR(xi). Since x2 62 CR(d1 + x1) but x2 2 CR(d1), then CR(d1 + x1) 6= CR(d1).

Since d2, d3 62 CR(d1 + x1) but d2 2 CR(d2) and d3 2 CR(d3), then CR(d1 +

x1) 6= CR(d2), CR(d3). Consequently, we obtain |Cent(R)| > 11, which is a

contradiction.

Case 2: �1 = 4. Now, we want to show that �5 = �6 = 4. By

Lemma 2.2.8(b), we have CR(xi), CR(xj) are commutative for two distinct

i, j 2 {1, 2, 3, 4}. By Lemma 2.2.11, it follows that CR(xi) \ CR(xj) 6= Z(R)

and hence, there exists some r 2 (CR(xi) \ CR(xj))� Z(R), which gives that

CR(xi) [ CR(xj) ✓ CR(r). This yields that R = CR(r) [
✓

6
[

k=1,k 6=i,j
CR(xk)

◆
.

Therefore, by Lemma 2.2.1, we obtain �5 = �6 = 4, as desired. By Lemma

2.2.8(b), there exist five distinct k1, k2, · · · , k5 2 {1, 2, · · · , 6} such that CR(xki)

is commutative for any i 2 {1, 2, · · · , 5}. Without loss of generality, we as-
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sume that k1 = 1, k2 = 2, · · · , k5 = 5. Let k 2 {2, 3, 4, 5}. By Lemma

2.2.11, we have CR(x1) \ CR(xk) 6= Z(R). Thus, there exists some wk 2

(CR(x1) \ CR(xk)) � Z(R), which gives that CR(x1) [ CR(xk) ✓ CR(wk).

Clearly, CR(wk) 6= R,CR(xi) for any i 2 {1, 2, · · · , 6}. Since |Cent(R)| = 10,

then we have CR(wu) = CR(wv) for two distinct u, v 2 {2, 3, 4, 5}. It fol-

lows that CR(x1) [ CR(xu) [ CR(xv) ✓ CR(wu). This implies that R =

CR(wu) [
✓

6
[

i=2,i 6=u,v
CR(xi)

◆
. Consequently, by Lemma 2.2.1, we obtain �i 6 3

for some i 2 {2, 3, · · · , 6}� {u, v}, which leads to a contradiction.

Lemma 2.7.7. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is a 10-centraliser finite ring, then t 6= 7.

Proof. Assume that t = 7. Let {x1, x2, · · · , x7} be the maximal non-commuting

set of R. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we have R =
7
[
i=1

CR(xi). By

Lemma 2.2.3, we have CR(xi) is commutative for any i 2 {1, 2, · · · , 7}, and

CR(a), CR(b) are two distinct non-commutative proper centralisers of R for some

a, b 2 R�Z(R). By Theorem 2.2.23, we have |R : Z(R)| > 16 with |R : Z(R)|

is not square-free, |R : Z(R)| 6= p
2
q for any two distinct primes p, q, and

|R : Z(R)| 6= p
2 for any prime p.

First, we claim that �i > 4 for any i 2 {1, 2, · · · , 7}. Assume that �1 6 3,

then by Corollary 2.2.13, we obtain |R : Z(R)| 6 3�2. By Lemma 2.2.1, we have

�2 6 6. If �2 6 5, then |R : Z(R)| 6 15, which is a contradiction. If �2 = 6,

then |R : Z(R)| 6 18, which is a contradiction again. Therefore, �1 > 4 and so,

�i > 4 for any i 2 {1, 2, · · · , 7}, as claimed.
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Next, we want to show that CR(a) contains exactly two distinct CR(xi)’s.

From Lemma 2.2.7, we have R = CR(a) [
✓

[
i2A

CR(xi)

◆
for some A ⇢

{1, 2, · · · , 7} with |A| 6 5. Obviously, |A| 6= 0. Suppose that |A| 6 3,

then by Lemma 2.2.1, it follows that �i 6 |A| 6 3 for some i 2 A. This

contradicts with the fact that �i > 4. Assume that |A| = 4. Thus, we have

R = CR(a) [
✓

4
[
i=1

CR(xki)

◆
for four distinct k1, k2, k3, k4 2 {1, 2, · · · , 7}.

By Lemma 2.2.1, we obtain �k1 = �k2 = �k3 = �k4 = 4. Here, we claim

that CR(xk1) \ CR(xk2) 6= Z(R). Suppose to the contrary that CR(xk1) \

CR(xk2) = Z(R). By Lemma 2.2.11, we obtain |R : Z(R)| 6 16. There-

fore, we have |R : Z(R)| = 16. Since CR(a) is non-commutative, then by

Lemma 2.2.15, we obtain |R : CR(a)| = 2. Thus, by Lemma 2.2.11, we have

CR(a) \ CR(xki) 6= Z(R) for any i 2 {1, 2, 3, 4}. Let i 2 {1, 2, 3, 4}. Then,

there exists some wi 2 (CR(a) \ CR(xki)) � Z(R). Since CR(xki) is com-

mutative, then CR(xki) 6 CR(wi). Obviously, CR(wi) 6= R,CR(xj) for any

j 2 {1, 2, · · · , 7} � {ki}. If CR(wi) = CR(a), then CR(xki) 6 CR(a). On

the other hand, if CR(wi) = CR(xki), then CR(wi) is commutative and hence,

CR(wi) 6 CR(a) and so, CR(xki) 6 CR(a). In both situations, we obtain

a contradiction because CR(xki) ⌦ CR(a). So, we obtain CR(wi) = CR(b)

and therefore, CR(xki) 6 CR(b). It follows that R = CR(a) [ CR(b). So,

by Lemma 2.2.1, we obtain |R : CR(b)| = 1, which is a contradiction. Con-

sequently, CR(xk1) \ CR(xk2) 6= Z(R), as claimed. Thus, there exists some

r 2 (CR(xk1) \ CR(xk2)) � Z(R), which implies that CR(xk1) [ CR(xk2) ✓

CR(r). Obviously, CR(r) 6= R,CR(xi) for any i 2 {1, 2, · · · , 7}. Since

CR(xk1), CR(xk2) ⌦ CR(a), then CR(r) 6= CR(a). So, we obtain CR(r) =
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CR(b). This gives that R = CR(a) [ CR(b) [ CR(xk3) [ CR(xk4). Since

|CR(b)| > |CR(xk1)|, then |R : CR(b)| 6 3. So, by Lemma 2.2.11, we

have CR(b) \ CR(xki) 6= Z(R) for any i 2 {3, 4}. Let i 2 {3, 4}. Then,

there exists some wi 2 (CR(b) \ CR(xki)) � Z(R). Since CR(xki) is com-

mutative, then CR(xki) 6 CR(wi). Clearly, CR(wi) 6= R,CR(xj) for any

j 2 {1, 2, · · · , 7} � {ki}. Since CR(xki) ⌦ CR(a), then CR(wi) 6= CR(a).

So, we can conclude that CR(wi) = CR(b) or CR(xki). If CR(wi) = CR(b), then

CR(xki) 6 CR(b). On the other hand, if CR(wi) = CR(xki), then CR(wi) is

commutative and hence, CR(wi) 6 CR(b) and so, CR(xki) 6 CR(b). In both

situations, we have R = CR(a) [ CR(b). Therefore, by Lemma 2.2.1, we obtain

|R : CR(b)| = 1, which is a contradiction. Consequently, |A| 6= 4 and so, |A| = 5.

It follows that CR(a) contains exactly two distinct CR(xi)’s, as claimed. By using

a manner entirely similar to that used to prove CR(a) contains exactly two distinct

CR(xi)’s, we will obtain CR(b) is also contains exactly two distinct CR(xi)’s.

In view of Lemma 1.3.1(c), we have {CR(a), CR(xk1), CR(xk2), · · · ,

CR(xk5)} is an irredundant cover of R for five distinct k1, k2, · · · , k5 2 {1, 2, · · · ,

7} with k1 < k2 < · · · < k5. Here, we claim that |R : Z(R)| = 16. We distin-

guish our proof into the following two cases.

Case 1: CR(xk1) \ CR(xk2) = Z(R). By Lemma 2.7.3, we have |R| 6

|R|
4 + 4|CR(xk2)|, which gives that �k2 6 5. Therefore, it follows from Lemma

2.2.11 that |R : Z(R)| 6 �
2
k2 . If �k2 = 5, then |R : Z(R)| 6 25, which leads

to a contradiction. Therefore, �k2 = 4. It follows that |R : Z(R)| 6 16 and
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consequently, |R : Z(R)| = 16.

Case 2: CR(xk1) \ CR(xk2) 6= Z(R). This implies that there exists some

r 2 (CR(xk1)\CR(xk2))�Z(R), which follows that CR(xk1)[CR(xk2) ✓ CR(r).

Clearly, CR(r) 6= R,CR(xi) for any i 2 {1, 2, · · · , 7}. If CR(r) = CR(a),

then CR(xk1) [ CR(xk2) ✓ CR(a), which contradicts the definition of irredun-

dant cover of R. So, we obtain CR(r) = CR(b), which gives that CR(xk1) [

CR(xk2) ✓ CR(b). Since CR(b) contains exactly two distinct CR(xi)’s, then we

have {CR(a), CR(b), CR(xk3), CR(xk4), CR(xk5)} is an irredundant cover of R.

We claim that CR(xk3) \ CR(xk4) = Z(R). Let w 2 CR(xk3) \ CR(xk4). Thus,

we have CR(xk3)[CR(xk4) ✓ CR(w). It is obvious that CR(w) 6= CR(xi) for any

i 2 {1, 2, · · · , 7}. If CR(w) = CR(a) or CR(b), then CR(xk1)[CR(xk2) ✓ CR(a)

or CR(b), which contradicts the definition of irredundant cover of R. So, we obtain

CR(w) = R, which implies that w 2 Z(R). This gives that CR(xk3)\CR(xk4) 6

Z(R). On the other hand, it is clear that Z(R) 6 CR(xk3) \ CR(xk4). Hence,

CR(xk3) \ CR(xk4) = Z(R), as claimed. So, we have |R : Z(R)| 6 f(5) = 16

and consequently, |R : Z(R)| = 16.

By these two cases, we obtain |R : Z(R)| = 16, as desired. Since CR(a)

is non-commutative, then by Lemma 2.2.15, we have |R : CR(a)| = 2. If �k3 6= 4,

then by Lemma 2.7.3, we have |R| 6 2( |R|
4 )+3( |R|

8 ) = 7
8 |R|, which is impossible.

So, we have �k1 = �k2 = �k3 = 4. Let i 2 {1, 2, 3}. By Lemma 2.2.11, it follows

that CR(a)\CR(xki) 6= Z(R). So, there exists some wi 2 (CR(a)\CR(xki))�

Z(R). Since CR(xki) is commutative, then CR(xki) 6 CR(wi). It is obvious
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that CR(wi) 6= R,CR(xj) for any j 2 {1, 2, · · · , 7}� {ki}. If CR(wi) = CR(a),

then CR(xki) 6 CR(a). On the other hand, if CR(wi) = CR(xki), then CR(wi) is

commutative and hence, CR(wi) 6 CR(a) and therefore, CR(xki) 6 CR(a). In

both situations, we have reached a contradiction as CR(xki) ⌦ CR(a). So, we

obtain CR(wi) = CR(b), which gives that CR(xki) 6 CR(b). This implies that

CR(b) contains three distinct CR(xi)’s. This contradicts with the fact that CR(b)

contains exactly two distinct CR(xi)’s. Consequently, t 6= 7.

Lemma 2.7.8. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is a 10-centraliser finite ring, then t 6= 8.

Proof. Assume that t = 8. Let {x1, x2, · · · , x8} be the maximal non-commuting

set of R. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �8. From Lemma 1.3.1(c), we have {CR(xi) | i = 1, 2, · · · , 8}

is an irredundant cover of R. By Lemma 2.2.3, we have CR(xi) is commutative

for any i 2 {1, 2, · · · , 8}, and CR(a) is non-commutative for some a 2 R�Z(R).

By Lemma 2.2.6, we have {CR(a)} [
✓

[
i2A

{CR(xi)}
◆

is an irredundant

cover of R for some A ⇢ {1, 2, · · · , 8} with |A| 6 5. Clearly, |A| 6= 0. If

|A| = 1, then by Lemma 2.2.1, it follows that �i = 1 for some i 2 A, which

is a contradiction. Therefore, |A| = 2, 3, 4 or 5. Now, we claim that if i 2 A,

then CR(xi) \ CR(a) = Z(R). This claim can be proved by using a manner

entirely similar to that used to prove Lemma 2.6.4. Thus, we have |R : Z(R)| 6

max{f(3), f(4), f(5), f(6)} = 36. Therefore, by Theorem 2.2.23, we obtain

|R : Z(R)| = 16, 24, 27, 32 or 36. If |R : Z(R)| = 27, then by Lemma 2.2.16

and Lemma 2.2.4, we obtain |Cent(R)| = 9, which is a contradiction. So,
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|R : Z(R)| = 16, 24, 32 or 36. Since CR(a) is non-commutative, then by Lemma

2.2.15, we have

|R : CR(a)|

8
>>>>>>>><

>>>>>>>>:

= 2 if |R : Z(R)| = 16,

6 3 if |R : Z(R)| = 24 or 36,

6 4 if |R : Z(R)| = 32.

Since CR(xi) \ CR(a) = Z(R) for any i 2 A, then by Lemma 2.2.11, we obtain

�i > 8 for any i 2 A. But, by Lemma 2.2.1, we have �i 6 |A| 6 5 for some

i 2 A. We have reached a contradiction. Consequently, t 6= 8.

Lemma 2.7.9. Let {x1, x2, · · · , x9} be the maximal non-commuting set of a

finite ring R. Let |R : CR(x1)| 6 |R : CR(x2)| 6 · · · 6 |R : CR(x9)|. If R is a

10-centraliser finite ring, then R satisfies one of the following structures:

(a) |R : CR(xi)| = 4 for any i 2 {1, 2, 3}, |R : CR(xi)| = 8 for any i 2

{4, 5, · · · , 9} and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(b) |R : CR(x1)| = 2µ�3, |R : CR(xi)| = 8 for any i 2 {2, 3, · · · , 9} and

R/Z(R) ⇠= Zµ
2 for some µ 2 {4, 5, 6}.

Proof. From Lemma 1.3.1(a), we have R =
9
[
i=1

CR(xi). By Corollary 2.2.5, we

have CR(xi) \ CR(xj) = Z(R) for any two distinct i, j 2 {1, 2, · · · , 9}. Let

|R : CR(xi)| = �i for any i 2 {1, 2, · · · , 9}. By Lemma 2.2.11, we have |R :

Z(R)| 6 �
2
2 . In view of Lemma 2.2.1 and Lemma 2.2.14, we have 4 6 �2 6 8.

By Theorem 2.2.23, we have |R : Z(R)| > 16 with |R : Z(R)| is not square-free,

|R : Z(R)| 6= p
2
q for any two distinct primes p, q, and |R : Z(R)| 6= p

2 for any
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prime p. For the sake of simplicity, we write r = r + Z(R) for any r 2 R and

S = S/Z(R) for any S 6 R.

If �2 = 5, then |R| 6 25, which is a contradiction. If �2 = 7, then

|R| 6 49, which is a contradiction again. Assume that �2 = 6. Therefore,

|R| 6 36. By Lemma 2.2.11, we have |CR(x1)| 6 6. If |R| = 24, then

R ⇠= Z2 ⇥ Z12 or Z2 ⇥ Z2 ⇥ Z6 as R is not cyclic. Thus, |CR(x1)| 6 6 and

|CR(xi)| 6 4 for any i 2 {2, 3, · · · , 9}. This leads to R has at most 2 elements of

order 6. Also, there does not exist any element of order 12 in R. We have reached

a contradiction as Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6 and Z2 ⇥ Z12 has an

element of order 12. If |R| = 36, then R ⇠= Z2⇥Z18,Z3⇥Z12 or Z6⇥Z6 as R is

not cyclic. Thus, |CR(xi)| 6 6 for any i 2 {1, 2, · · · , 9}. This shows that R has

at most 18 elements of order 6. Also, there does not exist any element of order

12 and order 18 in R. This leads to a contradiction as Z6 ⇥ Z6 has 24 elements

of order 6, Z3 ⇥ Z12 has an element of order 12 and Z2 ⇥ Z18 has an element of

order 18.

Here, we consider for |R| = 16. It follows that R ⇠= Z2 ⇥ Z8,Z2 ⇥

Z2 ⇥ Z4,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 or Z4 ⇥ Z4 as R is not cyclic. Since |CR(xi)| is

even for any i 2 {1, 2, · · · , 9}, then R has at least 9 elements of order 2. Since

Z2 ⇥ Z8,Z2 ⇥ Z2 ⇥ Z4 and Z4 ⇥ Z4 does not have 9 elements of order 2, then

R 6⇠= Z2 ⇥ Z8,Z2 ⇥ Z2 ⇥ Z4 and Z4 ⇥ Z4. Therefore, R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

If �2 = 4, then |R| 6 16, which gives that |R| = 16. So, we have
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R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. By Lemma 2.2.11, we have �1 = 4. Since |R| =
9P

i=1
|CR(xi)|� 8, then we have

9P
i=3

|CR(xi)| = 16. Thus, it can be easily seen that

�3 = 4, �4 = �5 = · · · = �9 = 8.

If �2 = 8, then |R| 6 64. In view of Lemma 2.2.1, we have �2 = �3 =

· · · = �9 = 8. Since |R| =
9P

i=1
|CR(xi)|� 8, then we have �1 = |R|

8 . If |R| = 16,

then we have R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. If |R| = 24, then R ⇠= Z2 ⇥ Z12 or

Z2 ⇥ Z2 ⇥ Z6 as R is not cyclic. It follows that |CR(x1)| = 8 and |CR(xi)| = 3

for any i 2 {2, 3, · · · , 9}. This shows that there does not exist any element of

order 6 and order 12 in R. This contradicts with the fact that Z2 ⇥ Z2 ⇥ Z6 has

an element of order 6 and Z2 ⇥ Z12 has an element of order 12. Here, we let

m|G| denote the total number of elements with order m in an additive group G.

If |R| = 32, then R ⇠= Z2 ⇥ Z16,Z2 ⇥ Z2 ⇥ Z8,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4,Z2 ⇥ Z4 ⇥

Z4,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 or Z4 ⇥ Z8 as R is not cyclic. Thus, |CR(x1)| = 8

and |CR(xi)| = 4 for any i 2 {2, 3, · · · , 9}. Consequently, R has at least 9

elements of order 2 and R has at most 8|Z8| elements of order 8. Also, R does

not have any element of order 16. Since Z2 ⇥ Z4 ⇥ Z4 does not have 9 elements

of order 2, then R 6⇠= Z2 ⇥ Z4 ⇥ Z4. Since 8|Z8| < 8|Z2 ⇥ Z2 ⇥ Z8| and

8|Z8| < 8|Z4 ⇥Z8|, then R 6⇠= Z2 ⇥Z2 ⇥Z8 and Z4 ⇥Z8. Since Z2 ⇥Z16 has an

element of order 16, then R 6⇠= Z2 ⇥ Z16. Suppose that R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4.

Since Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4 has 16 elements of order 4, then there exist two

distinct l1, l2 2 {2, 3, · · · , 9} such that CR(xl1) ⇠= CR(xl2) ⇠= Z4. It follows that

CR(xl1) = hai = {0, a, 2a, 3a} and CR(xl2) =
⌦
b
↵
= {0, b, 2b, 3b} for some

a 2 CR(xl1) � Z(R) and b 2 CR(xl2) � Z(R). Thus, we have CR(2a+ b) ◆
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⌦
2a+ b

↵
= {0, 2a+ b, 2b, 2a+ 3b}. Since CR(2a+ b) \CR(xl2) 6= Z(R), then

by Corollary 2.2.5, we obtain CR(2a+ b) = CR(xl2). This gives that 2a+ b = b

or 3b. So, we obtain 2a = 0 or 2b, which is a contradiction. Consequently,

we have R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. If |R| = 40, then R ⇠= Z2 ⇥ Z20 or

Z2 ⇥ Z2 ⇥ Z10 as R is not cyclic. Therefore, |CR(x1)| = 8 and |CR(xi)| = 5

for any i 2 {2, 3, · · · , 9}. This leads to there does not exist any element of

order 10 and order 20 in R, which contradicts the fact that Z2 ⇥ Z2 ⇥ Z10 has an

element of order 10 and Z2 ⇥ Z20 has an element of order 20. If |R| = 48, then

R ⇠= Z2 ⇥Z24,Z2 ⇥Z2 ⇥Z12,Z2 ⇥Z2 ⇥Z2 ⇥Z6 or Z4 ⇥Z12 as R is not cyclic.

Thus, |CR(x1)| = 8 and |CR(xi)| = 6 for any i 2 {2, 3, · · · , 9}. It follows that R

has at most 16 elements of order 6. Also, there does not exist any element of order

12 and order 24 in R. We have reached a contradiction as Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6

has 30 elements of order 6, Z2 ⇥ Z2 ⇥ Z12,Z4 ⇥ Z12 have an element of order

12 and Z2 ⇥ Z24 has an element of order 24. If |R| = 56, then R ⇠= Z2 ⇥ Z28

or Z2 ⇥ Z2 ⇥ Z14 as R is not cyclic. Hence, |CR(x1)| = 8 and |CR(xi)| = 7 for

any i 2 {2, 3, · · · , 9}. It follows that there does not exist any element of order

14 and order 28 in R, which leads to a contradiction as Z2 ⇥ Z2 ⇥ Z14 has an

element of order 14 and Z2 ⇥ Z28 has an element of order 28. If |R| = 64, then

R ⇠= Z2⇥Z32,Z2⇥Z2⇥Z16,Z2⇥Z2⇥Z2⇥Z8,Z2⇥Z2⇥Z4⇥Z4,Z2⇥Z2⇥Z2⇥

Z2⇥Z4,Z2⇥Z2⇥Z2⇥Z2⇥Z2⇥Z2,Z2⇥Z4⇥Z8,Z4⇥Z16,Z4⇥Z4⇥Z4 or Z8⇥Z8

as R is not cyclic. Thus, |CR(xi)| = 8 for any i 2 {1, 2, · · · , 9}. This implies that

R has at least 9 elements of order 2 and R has at most 9(4|Z2⇥Z4|) = 36 elements

of order 4. Also, there does not exist any element of order 16 and order 32 in R.

Since Z2⇥Z4⇥Z8,Z4⇥Z4⇥Z4 and Z8⇥Z8 does not have 9 elements of order
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2, then R 6⇠= Z2 ⇥Z4 ⇥Z8,Z4 ⇥Z4 ⇥Z4 and Z8 ⇥Z8. Since Z2 ⇥Z2 ⇥Z4 ⇥Z4

has 48 elements of order 4, then R 6⇠= Z2 ⇥ Z2 ⇥ Z4 ⇥ Z4. Since Z2 ⇥ Z2 ⇥ Z16

and Z4⇥Z16 have an element of order 16, then R 6⇠= Z2⇥Z2⇥Z16 and Z4⇥Z16.

Since Z2 ⇥ Z32 has an element of order 32, then R 6⇠= Z2 ⇥ Z32. Suppose that

R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z8. Since Z2 ⇥ Z2 ⇥ Z2 ⇥ Z8 has 32 elements of order

8, then there exist two distinct l1, l2 2 {1, 2, · · · , 9} such that CR(xl1) ⇠= Z8 and

CR(xl2) ⇠= Z8. Thus, there exist some a 2 CR(xl1)�Z(R), b 2 CR(xl2)�Z(R)

such that CR(xl1) = {0, a, 2a, · · · , 7a} and CR(xl2) = {0, b, 2b, · · · , 7b}. This

implies that R = {ma+ nb | m,n 2 Z8} ⇠= Z8 ⇥ Z8, which is a contradiction.

Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4. Since Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4 has

32 elements of order 4, then there exist two distinct l1, l2 2 {1, 2, · · · , 9} such

that CR(xl1) ⇠= Z2 ⇥ Z4 and CR(xl2) ⇠= Z2 ⇥ Z4. Since |CR(xl1) + CR(xl2)| =

|CR(xl1
)||CR(xl2

)|
|CR(xl1

)\CR(xl2
)| = 64, then we have R = CR(xl1) + CR(xl2). It can be easily

checked that if a 2 CR(xl1), b 2 CR(xl2) with order of a is 4 or order of b is

4 but not both, then the order of a+ b is 4. This implies that R has at least 32

elements of order 4. Since Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4 has exactly 32 elements of

order 4, then there exist some u 2 CR(xl1), v 2 CR(xl2) with order of u and v

are 4 such that the order of u+ v is not 4. Thus, the order of u+ v is 1 or 2. It

follows that mu+mv = 0 for some m 2 {1, 2}, which gives that mu = �mv.

Since mu 2 CR(xl1),�mv 2 CR(xl2), then mu 2 CR(xl1) \ CR(xl2) = Z(R).

This yields that the order of u is 1 or 2, which is a contradiction. Consequently,

we have R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Theorem 2.7.10. Let R be a 10-centraliser finite ring. Let X1, X2, · · · , X9 be the

9 distinct proper centralisers of R with |R : X1| 6 |R : X2| 6 · · · 6 |R : X9|.
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Let t be the cardinality of the maximal non-commuting set of R. Then R satisfies

one of the following structures:

(a) t = 6, |R : Xi| = 2 for any i 2 {1, 2, 3}, |R : Xi| = 4 for any i 2

{4, 5, · · · , 9}, R/Z(R) ⇠= Z2⇥Z2⇥Z2⇥Z2 or Z4⇥Z4, and Prob(R) = 11
32 .

(b) t = 9, |R : Xi| = 4 for any i 2 {1, 2, 3}, |R : Xi| = 8 for any i 2

{4, 5, · · · , 9}, R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 and Prob(R) = 1
4 .

(c) t = 9, |R : X1| = 2µ�3
, |R : Xi| = 8 for any i 2 {2, 3, · · · , 9}, R/Z(R) ⇠=

Zµ
2 and Prob(R) = 1

8 +
7

22µ�3 for some µ 2 {4, 5, 6}.

Proof. In view of Lemma 1.3.1(d)-(g), Lemma 2.7.1, Lemma 2.7.7 and Lemma

2.7.8, we have t = 6 or 9. First, we consider for t = 6. Let {x1, x2, · · · , x6} be the

maximal non-commuting set of R. By Lemma 2.7.2 and Lemmas 2.7.4-2.7.6, we

have |R : CR(xi)| = 4 for any i 2 {1, 2, · · · , 6}, and R/Z(R) ⇠= Z2⇥Z2⇥Z2⇥

Z2 or Z4⇥Z4. From Lemma 1.3.1(a), we have R =
6
[
i=1

CR(xi). By Lemma 2.2.15,

we have CR(xi) is commutative for any i 2 {1, 2, · · · , 6}. We claim that CR(xi)\

CR(xj) \ CR(xk) = Z(R) for any three distinct i, j, k 2 {1, 2, · · · , 6}. If not,

then there exists some r 2 (CR(xi)\CR(xj)\CR(xk))�Z(R) for three distinct

i, j, k 2 {1, 2, · · · , 6}, which follows that CR(xi) [ CR(xj) [ CR(xk) ✓ CR(r).

Therefore, R = CR(r) [
✓

6
[

l=1,l 6=i,j,k
CR(xl)

◆
. By Lemma 2.2.1, it follows that

�l 6 3 for some l 2 {1, 2, · · · , 6}� {i, j, k}, which leads to a contradiction. So,

our claim is true. For the sake of simplicity, we write r = r+Z(R) for any r 2 R

and S = S/Z(R) for any S 6 R. If CR(xi)\CR(xj) = Z(R) for any two distinct

i, j 2 {1, 2, · · · , 6}, then |R| =
6P

i=1
|CR(xi)|� 5 = 19, which is impossible. So,

CR(xk1)\CR(xk2) 6= Z(R) for two distinct k1, k2 2 {1, 2, · · · , 6}. Without loss
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of generality, we assume that k1 = 1, k2 = 4. It follows that there exists some

b1 2 (CR(x1)\CR(x4))�Z(R), which implies that CR(x1)[CR(x4) ✓ CR(b1).

Since |CR(b1)| > |CR(x1)|, then |R : CR(b1)| = 2. Therefore, by Lemma 2.2.11,

we have CR(b1) \ CR(xu) 6= Z(R) for any u 2 {2, 3, 5, 6}. Let u 2 {2, 3, 5, 6}.

Thus, there exists some bu 2 (CR(b1) \ CR(xu)) � Z(R). Since CR(xu) is

commutative, then CR(xu) 6 CR(bu). Clearly, CR(bu) 6= R,CR(xi) for any

i 2 {1, 2, · · · , 6} � {u}. If CR(bu) = CR(b1), then CR(xu) 6 CR(b1). On

the other hand, if CR(bu) = CR(xu), then CR(bu) is commutative and hence,

CR(bu) 6 CR(b1) and so, CR(xu) 6 CR(b1). In both situations, we obtain

b1 2 CR(x1) \ CR(x4) \ CR(xu) = Z(R), which is a contradiction. Since

|Cent(R)| = 10, then CR(bl1) = CR(bl2) for two distinct l1, l2 2 {2, 3, 5, 6}. If

CR(bl1) = CR(bl3) for some l3 2 {2, 3, 5, 6} � {l1, l2}, then we obtain bl1 2

CR(xl1) \ CR(xl2) \ CR(xl3) = Z(R), which is a contradiction. Thus, we

have CR(bl1) = CR(bl2) 6= CR(bl3), CR(bl4), where l3, l4 2 {2, 3, 5, 6}� {l1, l2}

with l3 6= l4. Since |Cent(R)| = 10, then CR(bl3) = CR(bl4). Without loss

of generality, we assume that l1 = 2, l2 = 5, l3 = 3, l4 = 6. Thus, we have

b2 2 CR(x2) \ CR(x5) and b3 2 CR(x3) \ CR(x6). This gives that

CR(x1) = {0, x1, b1, x1 + b1},

CR(x2) = {0, x2, b2, x2 + b2},

CR(x3) = {0, x3, b3, x3 + b3},

CR(x4) = {0, x4, b1, x4 + b1},

CR(x5) = {0, x5, b2, x5 + b2},

CR(x6) = {0, x6, b3, x6 + b3},
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CR(b1) � {0, x1, b1, x1 + b1, x4, x4 + b1} with |CR(b1)| = 8,

CR(b2) � {0, x2, b2, x2 + b2, x5, x5 + b2} with |CR(b2)| = 8,

CR(b3) � {0, x3, b3, x3 + b3, x6, x6 + b3} with |CR(b3)| = 8.

Here, we claim that CR(xi+bj) = CR(xi) for any i 2 {j, j+3} and j 2 {1, 2, 3}.

Let i 2 {j, j+3} and j 2 {1, 2, 3}. Since CR(xi) is commutative, then CR(xi) 6

CR(xi+bj). Obviously, CR(xi+bj) 6= R,CR(xk) for any k 2 {1, 2, · · · , 6}�{i}.

Since xj, xj+3 2 CR(bj) but xj 62 CR(xj+3 + bj) and xj+3 62 CR(xj + bj), then

CR(xi + bj) 6= CR(bj). If CR(xi + bj) = CR(bu) for some u 2 {1, 2, 3} � {j},

then xi + bj 2 CR(xi) \ CR(xu) \ CR(xu+3) = Z(R), which is a contradiction.

This implies that CR(xi + bj) = CR(xi). For any r 2 R�Z(R), since r = a+ z

for some a 2 {x1, x2, x3, x4, x5, x6, b1, b2, b3, x1+b1, x2+b2, x3+b3, x4+b1, x5+

b2, x6 + b3} and z 2 Z(R), then we have CR(r) = CR(a). Consequently, by

(1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

16
+

(3|Z(R)|)
⇣

|R|
2

⌘
+ (12|Z(R)|)

⇣
|R|
4

⌘

|R|2

=
1

16
+

⇣
3|R|
16

⌘⇣
|R|
2

⌘
+
⇣

12|R|
16

⌘⇣
|R|
4

⌘

|R|2

=
11

32
.

Next, for t = 9, by Lemma 2.7.9, it follows that R satisfies one of the

following structures:
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(i) |R : Xi| = 4 for any i 2 {1, 2, 3}, |R : Xi| = 8 for any i 2 {4, 5, · · · , 9}

and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(ii) |R : X1| = 2µ�3, |R : Xi| = 8 for any i 2 {2, 3, · · · , 9} and R/Z(R) ⇠=

Zµ
2 for some µ 2 {4, 5, 6}.

By Corollary 2.2.5, it follows that for any r1, r2 2 R � Z(R), either

CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R). Consequently, by (1.3), the

Prob(R) of structures (i) and (ii) are

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

16
+

3
⇣

|R|
4 � |R|

16

⌘⇣
|R|
4

⌘
+ 6

⇣
|R|
8 � |R|

16

⌘⇣
|R|
8

⌘

|R|2

=
1

4

and

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

2µ
+

⇣
|R|
2µ�3 � |R|

2µ

⌘⇣
|R|
2µ�3

⌘
+ 8

⇣
|R|
8 � |R|

2µ

⌘⇣
|R|
8

⌘

|R|2

=
1

8
+

7

22µ�3
,

respectively. This completes the proof.

We obtain a partial converse of Theorem 2.7.10, as follows:
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Theorem 2.7.11. If R is a finite ring with R/Z(R) ⇠= Z4⇥Z4, then |Cent(R)| =

10.

Proof. Let {x1, x2, · · · , xt} be the maximal non-commuting set of R. Without

loss of generality, we suppose that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �t.

By Lemma 1.3.1(a), we have R =
t
[
i=1

CR(xi). For the sake of simplicity, we

write r = r + Z(R) for any r 2 R and S = S/Z(R) for any S 6 R.

By the fact that Z4⇥Z4 has exactly 12 elements of order 4 and 3 elements

of order 2, then R has exactly 6 cyclic subgroups of order 4 and 3 cyclic subgroups

of order 2. Since every cyclic subgroup of order 4 contains an element of order 2,

then for any cyclic subgroup of order 2, there exists some cyclic subgroup of order

4 such that the cyclic subgroup of order 2 is contained in the cyclic subgroup of

order 4. Since every group is a union of cyclic subgroups, then R is a union of

exactly 6 cyclic subgroups of order 4. This shows that there does not exist any 7

distinct elements in R such that they do not commute with each other. Therefore,

we have t 6 6. In view of Lemma 1.3.1(d), (f), (g), [A3] and [A4], we obtain

t = 5 or 6.

First, we claim that if �i = 2 for some i 2 {1, 2, · · · , t}, then CR(xi) ⇠=

Z2 ⇥ Z4. If �i = 2 for some i 2 {1, 2, · · · , t}, then |CR(xi)| = 8. Therefore,

CR(xi) ⇠= Z2⇥Z2⇥Z2,Z2⇥Z4 or Z8. If CR(xi) ⇠= Z2⇥Z2⇥Z2 or Z8, then R has

at least 7 elements of order 2 or R has an element of order 8, which contradicts the

fact that Z4⇥Z4 has exactly 3 elements of order 2 and Z4⇥Z4 does not exist any

element of order 8. We now claim that �i 6 4 for any i 2 {1, 2, · · · , t}. Assume
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that �i = 8 for some i 2 {1, 2, · · · , t}. Thus, |CR(xi)| = 2 and so, the order

of xi is 2. If �j = 2 for some j 2 {1, 2, · · · , t} � {i}, then CR(xj) ⇠= Z2 ⇥ Z4

and it follows that CR(xj) has exactly 3 elements of order 2. Since Z4 ⇥ Z4 has

exactly 3 elements of order 2, then xi 2 CR(xj), which is impossible. Therefore,

�j > 4 for any j 2 {1, 2, · · · , t} � {i}. Hence, we have |CR(xj)| 6 4 for any

j 2 {1, 2, · · · , t}� {i}. This shows that R has at most (t� 1)(2) = 2t� 2 6 10

elements of order 4, which leads to a contradiction as Z4 ⇥ Z4 has 12 elements

of order 4. Next, we claim that if �i = 2 for some i 2 {1, 2, · · · , t}, then

the order of xi is 2. Assume that the order of xi is 4 or 8. Since CR(xi) ⇠=

Z2 ⇥ Z4, then the order of xi is 4. It follows that 0, xi, 2xi, 3xi 2 Z(CR(xi))

and hence, |Z(CR(xi))| > 4. This implies that |CR(xi) : Z(CR(xi))| 6 2. If

|CR(xi) : Z(CR(xi))| = 1, then CR(xi) is commutative. On the other hand, if

|CR(xi) : Z(CR(xi))| = 2, then CR(xi)/Z(CR(xi)) is cyclic, which follows that

CR(xi) is commutative. In both situations, we obtain CR(xi) is commutative.

Therefore, by Lemma 2.2.12, we obtain |R| 6 2(4) = 8, which is a contradiction.

Here, we claim that �i = 4 for any i 2 {1, 2, · · · , t}. We first assume that �i =

�j = 2 for two distinct i, j 2 {1, 2, · · · , t}. Thus, we have CR(xi) ⇠= Z2 ⇥ Z4.

This shows that CR(xi) has exactly 3 elements of order 2. Note that, the order

of xj is 2. Since Z4 ⇥ Z4 has exactly 3 elements of order 2, it follows that

xj 2 CR(xi), which is impossible. Next, we assume that �1 = 2 and �i = 4 for

any i 2 {2, 3, · · · , t}. Hence, we have CR(x1) ⇠= Z2 ⇥ Z4 and |CR(xi)| = 4

for any i 2 {2, 3, · · · , t}. Let w1, w2, w3 be three distinct elements of order 4 in

CR(x1). If for any j 2 {1, 2, 3}, wj 2 CR(xi) for some i 2 {2, 3, · · · , t}, then

R has at most [4 + (t � 1)(2)] � 3 = 2t � 1 6 11 elements of order 4, which
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contradicts the fact that Z4⇥Z4 has 12 elements of order 4. Therefore, there exists

some j 2 {1, 2, 3} such that wj 62 CR(xi) for any i 2 {2, 3, · · · , t}. Note that,

the orders of x1 and wj are 2 and 4, respectively. Thus, CR(x1) can be written as

CR(x1) = {0, x1, wj, 2wj, 3wj, x1 + wj, x1 + 2wj, x1 + 3wj}. If x1wj = wjx1,

then CR(x1) is commutative. Therefore, in view of Lemma 2.2.12, we obtain

|R| 6 2(4) = 8, which leads to a contradiction. Therefore, x1wj 6= wjx1. This

gives that {wj, x1, x2, · · · , xt} is a non-commuting set of R with cardinality t+1,

which contradicts the fact that the cardinality of the maximal non-commuting set

of R is t. Consequently, �i = 4 for any i 2 {1, 2, · · · , t}, as claimed.

If t = 5, then |CR(xi)| = 4 for any i 2 {1, 2, · · · , 5}. This leads to R

has at most 10 elements of order 4. This contradicts with the fact that Z4 ⇥ Z4

has 12 elements of order 4. So, t = 6. Since R has 12 elements of order 4,

then CR(xi) ⇠= Z4 for any i 2 {1, 2, · · · , 6}. Since CR(xi) is cyclic for any

i 2 {1, 2, · · · , 6}, then CR(xi) is commutative for any i 2 {1, 2, · · · , 6}. Let

b1, b2, b3 be three distinct elements of order 2 in R. We claim that CR(xi) \

CR(xj) \ CR(xk) = Z(R) for any three distinct i, j, k 2 {1, 2, · · · , 6}. This

claim can be proved in a manner entirely similar to that used to prove Theorem

2.7.10. Thus, without loss of generality, we have b1 2 CR(x1) \ CR(x4), b2 2

CR(x2) \ CR(x5), b3 2 CR(x3) \ CR(x6). Hence, we have

CR(x1) = {0, x1, b1, x1 + b1},

CR(x2) = {0, x2, b2, x2 + b2},

CR(x3) = {0, x3, b3, x3 + b3},
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CR(x4) = {0, x4, b1, x4 + b1},

CR(x5) = {0, x5, b2, x5 + b2},

CR(x6) = {0, x6, b3, x6 + b3},

CR(b1) � {0, x1, b1, x1 + b1, x4, x4 + b1} with |CR(b1)| = 8,

CR(b2) � {0, x2, b2, x2 + b2, x5, x5 + b2} with |CR(b2)| = 8,

CR(b3) � {0, x3, b3, x3 + b3, x6, x6 + b3} with |CR(b3)| = 8.

By using a manner entirely similar to that used to prove Theorem 2.7.10, we will

obtain CR(xi + bj) = CR(xi) for any i 2 {j, j + 3} and j 2 {1, 2, 3}. For any

r 2 R�Z(R), since r = a+z for some a 2 {x1, x2, x3, x4, x5, x6, b1, b2, b3, x1+

b1, x2 + b2, x3 + b3, x4 + b1, x5 + b2, x6 + b3} and z 2 Z(R), then we have

CR(r) = CR(a). Consequently, we obtain |Cent(R)| = 10, as required.

In general, the converse of Theorem 2.7.10 is not necessarily true. For

example, R1 = { [ a b
0 0 ]| a, b 2 Z2} ⇥ { [ a b

0 0 ]| a, b 2 Z2} is a 16-centraliser finite

ring with R/Z(R) ⇠= Z2⇥Z2⇥Z2⇥Z2, R2 =

("
a b c d e
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

#����� a, b, c, d, e 2 Z2

)

is a 18-centraliser finite ring with R2/Z(R2) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 and

R3 =

8
<

:

2

4
a b c d e f
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

5

������
a, b, c, d, e, f 2 Z2

9
=

; is a 34-centraliser finite ring with

R3/Z(R3) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. In the following, we provide

an example of a 10-centraliser finite ring, which is appeared in the proof of

Proposition 2.2.18.

Example 2.7.12. Let M(a, b, c, d) be defined by M(a, b, c, d) =


a b c d
0 0 0 0
0 0 0 0
0 0 0 0

�
for any

a, b, c, d 2 Z2. The ring R = {M(a, b, c, d) | a, b, c, d 2 Z2} is a 10-centraliser
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finite ring with

R = CR(M(0, 0, 0, 0)),

X1 = CR(M(0, 1, 0, 0)) = CR(M(0, 0, 1, 0)) = CR(M(0, 0, 0, 1))

= CR(M(0, 1, 1, 0)) = CR(M(0, 1, 0, 1)) = CR(M(0, 0, 1, 1))

= CR(M(0, 1, 1, 1))

= {M(0, 0, 0, 0),M(0, 1, 0, 0)),M(0, 0, 1, 0),M(0, 0, 0, 1),

M(0, 1, 1, 0),M(0, 1, 0, 1),M(0, 0, 1, 1),M(0, 1, 1, 1)},

X2 = CR(M(1, 0, 0, 0)) = {M(0, 0, 0, 0),M(1, 0, 0, 0)},

X3 = CR(M(1, 1, 0, 0)) = {M(0, 0, 0, 0),M(1, 1, 0, 0)},

X4 = CR(M(1, 0, 1, 0)) = {M(0, 0, 0, 0),M(1, 0, 1, 0)},

X5 = CR(M(1, 0, 0, 1)) = {M(0, 0, 0, 0),M(1, 0, 0, 1)},

X6 = CR(M(1, 1, 1, 0)) = {M(0, 0, 0, 0),M(1, 1, 1, 0)},

X7 = CR(M(1, 1, 0, 1)) = {M(0, 0, 0, 0),M(1, 1, 0, 1)},

X8 = CR(M(1, 0, 1, 1)) = {M(0, 0, 0, 0),M(1, 0, 1, 1)},

X9 = CR(M(1, 1, 1, 1)) = {M(0, 0, 0, 0),M(1, 1, 1, 1)}.

We note that {M(0, 1, 0, 0),M(1, 0, 0, 0),M(1, 1, 0, 0),M(1, 0, 1, 0),M(1, 0, 0,

1),M(1, 1, 1, 0),M(1, 1, 0, 1),M(1, 0, 1, 1),M(1, 1, 1, 1)} is a non-commuting

set of R with cardinality 9. Also, we note that there does not exist a non-

commuting set of R with cardinality 10. Thus, the cardinality of the max-

imal non-commuting set of R is 9. Besides that, we have |R : X1| = 2,

|R : Xi| = 8 for any i 2 {2, 3, · · · , 9}. Since Z(R) = {M(0, 0, 0, 0)}, then we
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have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. Lastly, from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

16
+

7(8) + 8(2)

162

=
11

32
.

2.8 11-Centraliser Finite Rings

In this section, we investigate the structure for all 11-centraliser finite rings and

compute their commuting probabilities.

Lemma 2.8.1. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 16.

Proof. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �6. From Lemma 1.3.1(a), we have R =
6
[
i=1

CR(xi). By

Lemma 2.7.2, we have �2 = 4. If �4 6= 4, then by Lemma 2.7.3, we obtain

|R| 6 2( |R|
4 ) + 3( |R|

8 ) = 7|R|
8 , which is impossible. So, we have �3 = �4 = 4. For

the sake of simplicity, we write r = r + Z(R) and S = S/Z(R) for any S 6 R.

We claim that �1 = 4. Suppose to the contrary that �1 = 2. By Lemma

2.2.11, we obtain |CR(x1)\CR(x2)| = 2. Hence, CR(x1)\CR(x2) = {0, a} for

some a 2 R� Z(R). So, we have

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b},
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CR(x2) = {0, x2, a, x2 + a}

for some b 2 R � Z(R). If ab = ba, then CR(x1) is commutative. Therefore,

by Lemma 2.2.12, it follows that |R| 6 2(4) = 8; a contradiction. So, ab 6= ba.

Thus, we have

CR(a) ◆ {0, x1, x2, a},

CR(x1 + a) ◆ {0, x1, a, x1 + a},

CR(b) ◆ {0, x1, b, x1 + b},

CR(x1 + b) ◆ {0, x1, b, x1 + b},

CR(a+ b) ◆ {0, x1, a+ b, x1 + a+ b},

CR(x1 + a+ b) ◆ {0, x1, a+ b, x1 + a+ b}.

It can be easily checked that R,CR(x1), CR(x2), · · · , CR(x6), CR(a), CR(x1 +

a), A,B are 11 distinct centralisers of R for any A 2 {CR(b), CR(x1 + b)} and

B 2 {CR(a + b), CR(x1 + a + b)}. Since |Cent(R)| = 11, then we obtain

CR(b) = CR(x1 + b) and CR(a + b) = CR(x1 + a + b). Assume that CR(u) is

non-commutative for some u 2 {b, a+ b}. By Lemma 2.2.15, |R : CR(u)| = 2.

Therefore, by Lemma 2.2.11, it follows that |CR(u) \ CR(x2)| = 2. Since

u 62 CR(x2), then x2 62 CR(u). Since a 62 CR(u), then we have x2 + a 2 CR(u).

This gives that

CR(x2 + a) ◆ {0, x2, a, x2 + a, u}.
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It can be easily checked that R,CR(x1), CR(x2), · · · , CR(x6), CR(a), CR(x1 +

a), CR(b), CR(a + b), CR(x2 + a) are 12 distinct centralisers of R. We have

reached a contradiction. Consequently, CR(b), CR(a + b) are commutative. In

view of Lemma 2.2.15, we have CR(xi) is commutative for any i 2 {2, 3, · · · , 6}.

Suppose that uxi = xiu for some u 2 {b, a + b} and i 2 {2, 3, · · · , 6}. Since

CR(u) and CR(xi) are commutative, then CR(u) 6 CR(xi) and CR(xi) 6

CR(u). This yields that CR(u) = CR(xi), which is a contradiction. There-

fore, uxi 6= xiu for any u 2 {b, a + b} and i 2 {2, 3, · · · , 6}. This implies that

{x2, x3, · · · , x6, b, a+ b} is a non-commuting set of R with cardinality 7, which

leads to a contradiction. Consequently, we obtain �1 = 4, as claimed.

By Lemma 2.2.15, we have CR(xi) is commutative for any i 2 {1, 2, · · · ,

6}. We claim that �5 = �6 = 4. This claim can be proved by using a manner

entirely similar to that used to prove Lemma 2.7.4. Now, we claim that CR(xi) \

CR(xj) \ CR(xk) = Z(R) for any three distinct i, j, k 2 {1, 2, · · · , 6}. If not,

then there exists some r 2 (CR(xi) \ CR(xj) \ CR(xk)) � Z(R) for three

distinct i, j, k 2 {1, 2, · · · , 6} such that CR(xi) [ CR(xj) [ CR(xk) ✓ CR(r).

Therefore, R = CR(r) [
✓

6
[

l=1,l 6=i,j,k
CR(xl)

◆
. By Lemma 2.2.1, it follows that

�l 6 3 for some l 2 {1, 2, · · · , 6}� {i, j, k}, which leads to a contradiction. So,

our claim is true. Let CR(a1), CR(a2), CR(a3), CR(a4) be four distinct proper

centralisers of R that are different from CR(xi) for any i 2 {1, 2, · · · , 6}. We

next claim that there exists some u 2 {1, 2, 3, 4} such that au 62 CR(xj)\CR(xk)

for any two distinct j, k 2 {1, 2, · · · , 6}. Suppose to the contrary that for any

u 2 {1, 2, 3, 4}, au 2 CR(xku) \ CR(xlu) for two distinct ku, lu 2 {1, 2, · · · , 6},
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then |R| 6
6P

i=1
|CR(xi)|� 5� 4 = 15, which is impossible. Consequently, there

exists some u 2 {1, 2, 3, 4} such that au 62 CR(xj) \ CR(xk) for any two distinct

j, k 2 {1, 2, · · · , 6}. Without loss of generality, we assume that u = 1 and

let a1 2 CR(x1). Let i 2 {2, 3, · · · , 6}. In view of Lemma 2.2.11, we obtain

|CR(a1)\CR(xi)| = 2. Thus, there exists exactly one wi 2 (CR(a1)\CR(xi))�

Z(R). Since CR(xi) is commutative, then CR(xi) 6 CR(wi). Clearly, CR(wi) 6=

R,CR(xj) for any j 2 {1, 2, · · · , 6}� {i}. If CR(wi) = CR(a1), then CR(xi) 6

CR(a1). On the other hand, if CR(wi) = CR(xi), then CR(wi) is commutative and

hence, CR(wi) 6 CR(a1) and so, CR(xi) 6 CR(a1). In both situations, we obtain

a1 2 CR(xi), which is a contradiction. If CR(wl1) = CR(wl2) = CR(wl3) for

three distinct l1, l2, l3 2 {2, 3, · · · , 6}, then we obtain wl1 2 CR(xl1)\CR(xl2)\

CR(xl3) = Z(R), which is a contradiction. Therefore, CR(wl1) = CR(wl2) =

CR(wl3) does not exist for any l1, l2, l3 2 {2, 3, · · · , 6}. Since |Cent(R)| = 11,

then without any loss, we have CR(w2) = CR(w3) and CR(w4) = CR(w5) with

CR(w2) 6= CR(w4) 6= CR(w6). Thus, we have w2 2 CR(x2) \ CR(x3) and

w4 2 CR(x4) \ CR(x5). So, we obtain CR(a1) = CR(a1) \ R = CR(a1) \

(
6
[
i=1

CR(xi)) =
6
[
i=1

(CR(a1) \ CR(xi)) = {0, x1, a1, x1 + a1, w2, w4, w6}, which

contradicts the fact that |CR(a1)| is divide |R|.

Lemma 2.8.2. Let {x1, x2, · · · , x6} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 32.

Proof. Assume that |R : Z(R)| = 32. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �6. From Lemma 1.3.1(a), we have

R =
6
[
i=1

CR(xi). By Lemma 2.7.2, we have �2 = 4. If �4 6= 4, then by Lemma

2.7.3, we obtain |R| 6 2( |R|
4 ) + 3( |R|

8 ) = 7|R|
8 , which is impossible. So, we have
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�3 = �4 = 4. For the sake of simplicity, we write r = r + Z(R) for any r 2 R

and S = S/Z(R) for any S 6 R. We consider two cases in this proof.

Case 1: �1 = 2. If CR(x1) is commutative, then by Lemma 2.2.12, we

obtain |R| 6 2(4) = 8; a contradiction. Therefore, CR(x1) is non-commutative.

By Lemma 2.2.9(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 6}.

We claim that CR(x2) \ CR(x3) \ CR(x4) 6= Z(R). Suppose that CR(x2) \

CR(x3) \ CR(x4) = Z(R). By Lemma 2.2.11, we have |CR(xi) \ CR(xj)| > 2

for any two distinct i, j 2 {2, 3, 4}. So, we have

CR(x2) � {0, w1, w2},

CR(x3) � {0, w1, w3},

CR(x4) � {0, w2, w3}

for some w1, w2, w3 2 R � Z(R). It follows that CR(x2) [ CR(x3) ✓ CR(w1),

CR(x2) [ CR(x4) ✓ CR(w2) and CR(x3) [ CR(x4) ✓ CR(w3). Obviously,

CR(wi) 6= R,CR(xj) for any i 2 {1, 2, 3} and j 2 {1, 2, · · · , 6}. Since CR(x1)\

CR(x2) \ CR(x3) = Z(R), then CR(wi) 6= CR(wj) for any two distinct i, j 2

{1, 2, 3}. In view of Lemma 2.2.9(a), it follows that wiwj 6= wjwi for two distinct

i, j 2 {1, 2, 3}. This contradicts with the fact that CR(xk) is commutative for any

k 2 {2, 3, 4}. So, CR(x2) \ CR(x3) \ CR(x4) 6= Z(R). Therefore, there exists

some r 2 (CR(x2) \ CR(x3) \ CR(x4)) � Z(R) such that CR(x2) [ CR(x3) [

CR(x4) ✓ CR(r). Thus, we have R = CR(r)[CR(x1)[CR(x5)[CR(x6). Since

|CR(r)| > |CR(x2)|, then |R : CR(r)| = 2. If �6 6= 4, then by Lemma 2.7.3, we

90



obtain |R| 6 |CR(x1)|+ |CR(x5)|+ |CR(x6)| 6 |R|
2 + |R|

4 + |R|
8 = 7|R|

8 , which is

impossible. So, we have �5 = �6 = 4. Since |CR(x1)| = 16, then R� CR(x1) =

{x2, x3, x4, x5, x6, r1, r2, · · · , r11} for some r1, r2, · · · , r11 2 R � CR(x1). By

Lemma 2.2.11, we have |CR(r)\CR(x1)| = 8 and |CR(xi)\CR(x1)| = 4 for any

i 2 {4, 5, 6}. We claim that ri 62 CR(xj)\CR(xk) for any i 2 {1, 2, · · · , 11} and

j, k 2 {4, 5, 6} with j 6= k. If ri 2 CR(xj)\CR(xk) for some i 2 {1, 2, · · · , 11}

and j, k 2 {4, 5, 6} with j 6= k, then we obtain |R � CR(x1)| 6 |CR(r) �

CR(x1)| + |CR(x5) � CR(x1)| + |CR(x6) � CR(x1)| � 1 = 15, which is a

contradiction. So, our claim is true. If |CR(x4) \ CR(x5) \ CR(x6)| > 2, then

without loss of generality, we have

CR(x4) � {0, d1, x4, r1, r2, r3},

CR(x5) � {0, d1, x5, r4, r5, r6},

CR(x6) � {0, d1, x6, r7, r8, r9}

for some d1 2 CR(x1) � Z(R). It follows that CR(x4) [ CR(x5) [ CR(x6) ✓

CR(d1). This shows that x4, x5, x6, r1, r2, · · · , r9 2 CR(d1) and hence, |CR(d1)| =

16. Therefore, we have |CR(d1) \ CR(x1)| 6 4. Hence, by Lemma 2.2.11,

we obtain |R : Z(R)| 6 2(2)(4) = 16, which is a contradiction. Conse-

quently, |CR(x4) \ CR(x5) \ CR(x6)| = 1. By Lemma 2.2.11, it follows that

|CR(xi) \ CR(xj)| > 2 for any two distinct i, j 2 {4, 5, 6}. So, we have

CR(x4) � {0, w1, w2},

CR(x5) � {0, w1, w3},
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CR(x6) � {0, w2, w3}

for some w1, w2, w3 2 R�Z(R). Hence, by using similar arguments as in above,

we will obtain wiwj 6= wjwi for two distinct i, j 2 {1, 2, 3}. This contradicts

with the fact that CR(xk) is commutative for any k 2 {4, 5, 6}.

Case 2: �1 = 4. Now, we want to show that �5 = �6 = 4. By

Lemma 2.2.9(b), we have CR(xi), CR(xj) are commutative for two distinct

i, j 2 {1, 2, 3, 4}. By Lemma 2.2.11, it follows that CR(xi) \ CR(xj) 6=

Z(R) and hence, there exists some r 2 (CR(xi) \ CR(xj)) � Z(R) such that

CR(xi) [ CR(xj) ✓ CR(r). This yields that R = CR(r) [
✓

6
[

k=1,k 6=i,j
CR(xk)

◆
.

Therefore, by Lemma 2.2.1, we obtain �5 = �6 = 4, as desired. By Lemma

2.2.9(b), there have at least five CR(xi)’s are commutative. Without loss of gen-

erality, we assume that CR(xi) is commutative for any i 2 {1, 2, · · · , 5}. Let

k 2 {2, 3, · · · , 6} with CR(xk) is commutative. By Lemma 2.2.11, we have

CR(x1) \ CR(xk) 6= Z(R). Thus, there exists some wk 2 (CR(x1) \ CR(xk))�

Z(R) such that CR(x1) [ CR(xk) ✓ CR(wk). Clearly, CR(wk) 6= R,CR(xi) for

any i 2 {1, 2, · · · , 6}. We claim that if CR(xu), CR(xv) are commutative for two

distinct u, v 2 {2, 3, · · · , 6}, then CR(wu) 6= CR(wv). Suppose that CR(wu) =

CR(wv). It follows that CR(x1) [ CR(xu) [ CR(xv) ✓ CR(wu). This implies

that R = CR(wu) [
✓

6
[

i=2,i 6=u,v
CR(xi)

◆
. Consequently, by Lemma 2.2.1, we

obtain �i 6 3 for some i 2 {2, 3, · · · , 6}� {u, v}, which leads to a contradiction.

Hence, our claim is proved. If CR(x6) is commutative, then since |Cent(R)| =

11, it follows that CR(wu) = CR(wv) for two distinct u, v 2 {2, 3, · · · , 6},
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which leads to a contradiction. So, CR(x6) is non-commutative. In view of

Lemma 2.2.9(a), we have x6 2 CR(wl1), CR(wl2), CR(wl3) and wl1 , wl2 , wl3 do

not commute with each other for three distinct l1, l2, l3 2 {2, 3, 4, 5}. Now,

we consider for CR(wl1 + x6) and CR(wl2 + x6). For any i 2 {1, 2}, since

wl3 62 CR(wli + x6) but wl3 2 R,CR(x6), CR(wl3), then CR(wli + x6) 6=

R,CR(x6), CR(wl3). For any i 2 {1, 2} and j 2 {1, 2, · · · , 5}, since x6 2

CR(wli + x6) but x6 62 CR(xj), then CR(wli + x6) 6= CR(xj). For any two

distinct i, j 2 {1, 2}, since wlj 62 CR(wli + x6) but wlj 2 CR(wlj), then

CR(wli + x6) 6= CR(wlj). For any i 2 {1, 2}, since xli 62 CR(wli + x6) but

xli 2 CR(wli), then CR(wli + x6) 6= CR(wli). Since wl1 2 CR(wl1 + x6)

but wl1 62 CR(wl2 + x6), then CR(wl1 + x6) 6= CR(wl2 + x6). This gives that

{R,CR(x1), CR(x2), · · · , CR(x6), CR(wl1), CR(wl2), CR(wl3), CR(wl1+x6), CR

(wl2 + x6)} ✓ Cent(R). Consequently, we obtain |Cent(R)| > 12, which leads

to a contradiction.

Lemma 2.8.3. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a finite

ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| = 16, 24, 32, 36, 40,

48, 54, 56, 60, 64, 72 or 80. Furthermore, if |R : CR(x1)| 6 |R : CR(x2)| 6

· · · 6 |R : CR(x7)|, then 4 6 |R : CR(x2)| 6 6.

Proof. From Lemma 1.3.1(b) and (c), we have {CR(xi) | i = 1, 2, · · · , 7}

is an irredundant cover of R with intersection Z(R). Thus, we have |R :

Z(R)| 6 f(7) = 81. Therefore, by Theorem 2.2.23, we obtain |R : Z(R)| =

16, 24, 27, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80 or 81. If |R : Z(R)| = 27, then it

follows from Lemma 2.2.16 and Lemma 2.2.4 that |Cent(R)| = 8, which is a

contradiction. Hence, |R : Z(R)| = 16, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80 or
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81.

By Lemma 2.2.1, we have |R : CR(x2)| 6 6. Assume that |R : CR(x2)| 6

3. If CR(x2) is commutative, then by Lemma 2.2.12, we obtain |R : Z(R)| 6

3(3) = 9, which is a contradiction. If CR(x2) is non-commutative, then by

Lemma 2.2.8(b), CR(x1) is commutative. It follows from Lemma 2.2.12 that

|R : Z(R)| 6 3(3) = 9, which is a contradiction again. Consequently, 4 6 |R :

CR(x2)| 6 6. Since |R : CR(x2)| is not divide 81, then |R : Z(R)| 6= 81.

Lemma 2.8.4. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 16.

Proof. Assume that |R : Z(R)| = 16. Without loss of generality, we suppose

that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we

have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have �2 = 4. If �3 6= 4,

then by Lemma 2.7.3, we obtain |R| 6 |R|
4 + 5( |R|

8 ) = 7|R|
8 , which is impossible.

So, we have �3 = 4. For the sake of simplicity, we write r = r + Z(R) for any

r 2 R and S = S/Z(R) for any S 6 R.

We claim that �1 = 4. Suppose to the contrary that �1 = 2. By Lemma

2.2.11, we obtain |CR(x1)\CR(x2)| = 2. Hence, CR(x1)\CR(x2) = {0, a} for

some a 2 R� Z(R). So, we have

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b},

CR(x2) = {0, x2, a, x2 + a}
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for some b 2 R � Z(R). If ab = ba, then CR(x1) is commutative. Therefore,

by Lemma 2.2.12, it follows that |R| 6 2(4) = 8; a contradiction. So, ab 6= ba.

Thus, we have

CR(a) ◆ {0, x1, x2, a},

CR(x1 + a) ◆ {0, x1, a, x1 + a},

CR(b) ◆ {0, x1, b, x1 + b},

CR(a+ b) ◆ {0, x1, a+ b, x1 + a+ b}.

It can be easily checked that R,CR(x1), CR(x2), · · · , CR(x7), CR(a), CR(x1 +

a), CR(b), CR(a + b) are 12 distinct centralisers of R. We have reached a con-

tradiction. Thus, �1 = 4. By Lemma 2.2.15, we have CR(xi) is commutative

for any i 2 {1, 2, · · · , 7}. If �4 = 8, then by Lemma 2.7.3, it follows that

�5 = �6 = �7 = 8. Hence, we obtain |R| 6
7P

i=1
|CR(xi)| � 6 = 14, which is

impossible. So, �4 = 4.

Next, we want to show that �6 = 8. Suppose to the contrary that �6 = 4.

Thus,
7P

i=1
|CR(xi)| � 6 > 20. Therefore, there exist 4 distinct r1, r2, r3, r4 2

R�Z(R) such that for any i 2 {1, 2, 3, 4}, ri 2 CR(xki)\CR(xli) for two distinct

ki, li 2 {1, 2, · · · , 7}. It is clear that for any i 2 {1, 2, 3, 4} and j 2 {1, 2, · · · , 7},

CR(ri) 6= R,CR(xj). Since |Cent(R)| = 11, then CR(ri) = CR(rj) for two

distinct i, j 2 {1, 2, 3, 4}. Thus, we have 0, ri, rj 2 CR(xki) \ CR(xli). This

shows that |CR(xki)\CR(xli)| > 3, which follows that |CR(xki)\CR(xli)| = 4.

Hence, we obtain CR(xki) = CR(xli), which is a contradiction. So, �6 = 8.
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Let CR(a1), CR(a2), CR(a3) be three distinct proper centralisers of R that

are different from CR(xi) for any i 2 {1, 2, · · · , 7}. We claim that there exists

some u 2 {1, 2, 3} such that au 62 CR(xj) \ CR(xk) for any two distinct j, k 2

{1, 2, · · · , 7}. Suppose to the contrary that for any u 2 {1, 2, 3}, au 2 CR(xku)\

CR(xlu) for two distinct ku, lu 2 {1, 2, · · · , 7}, then |R| 6
7P

i=1
|CR(xi)|�6�3 =

15, which is impossible. Consequently, there exists some u 2 {1, 2, 3} such that

au 62 CR(xj) \ CR(xk) for any two distinct j, k 2 {1, 2, · · · , 7}. Without loss of

generality, we assume that u = 1. Hence, a1 2 CR(xi) for some i 2 {1, 2, · · · , 7}

with |CR(xi)| = 4. Without any loss, we assume that a1 2 CR(x1). If CR(a1)

is commutative, then CR(a1) = CR(x1), which is a contradiction. Thus, CR(a1)

is non-commutative. Since CR(x1) < CR(a1), we have |R : CR(a1)| = 2. Let

i 2 {2, 3, 4}. In view of Lemma 2.2.11, we obtain |CR(a1) \ CR(xi)| = 2.

Thus, there exists exactly one wi 2 (CR(a1) \ CR(xi)) � Z(R). Since CR(xi)

is commutative, then CR(xi) 6 CR(wi). Clearly, CR(wi) 6= R,CR(xj) for any

j 2 {1, 2, · · · , 7} � {i}. If CR(wi) = CR(a1), then CR(xi) 6 CR(a1). On

the other hand, if CR(wi) = CR(xi), then CR(wi) is commutative and hence,

CR(wi) 6 CR(a1) and so, CR(xi) 6 CR(a1). In both situations, we obtain

a1 2 CR(xi), which is a contradiction. Since |Cent(R)| = 11, then without any

loss, we have CR(w2) = CR(w3). Thus, we have w2 2 CR(x2)\CR(x3). So, we

obtain CR(a1) = CR(a1)\R = CR(a1)\ (
7
[
i=1

CR(xi)) =
7
[
i=1

(CR(a1)\CR(xi)).

Since CR(a1)\CR(xi) = {0} for any i 2 {6, 7}, we have CR(a1) =
5
[
i=1

(CR(a1)\

CR(xi)) ◆ {0, x1, a1, x1 + a1, w2, w4}. This shows that |CR(a1)| = 6 or 7, which

contradicts the fact that |CR(a1)| is divide |R|.

Lemma 2.8.5. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a
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finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 24, 40 and

56 .

Proof. Assume that |R : Z(R)| = 24, 40 or 56. Thus, we have |R : Z(R)| = 8p

for some prime p 2 {3, 5, 7}. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we

have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have 4 6 �2 6 6. Let

m|G| denote the total number of elements with order m in an additive group G.

For the sake of simplicity, we write r = r+Z(R) for any r 2 R and S = S/Z(R)

for any S 6 R.

Since R is not cyclic, then R ⇠= Z2 ⇥ Z4p or Z2 ⇥ Z2 ⇥ Z2p. Thus,

|CR(x1)| 6 4p and |CR(xi)| 6 2p for any i 2 {2, 3, · · · , 7}. This yields that

R has at most 4p|Z4p| elements of order 4p. Since 4p|Z4p| < 4p|Z2 ⇥ Z4p|, then

R 6⇠= Z2 ⇥ Z4p and so, R ⇠= Z2 ⇥ Z2 ⇥ Z2p. We now claim that |CR(x1)| = 2p or

4p. If |R| = 24 with |CR(x1)| = 4, then |CR(xi)| 6 4 for any i 2 {2, 3, · · · , 7}.

This implies that there does not exist any element of order 6 in R. We have

reached a contradiction as Z2 ⇥ Z2 ⇥ Z6 has an element of order 6. If |R| = 24

with |CR(x1)| = 8, then |CR(xi)| 6 8 for any i 2 {2, 3, · · · , 7}. Therefore,

R has at most 6(6|Z6|) = 12 elements of order 6, which contradicts the fact

that Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6. If |R| = 40 with |CR(x1)| = 8,

then |CR(xi)| 6 8 for any i 2 {2, 3, · · · , 7}. This leads to there does not exist

any element of order 10 in R, which contradicts the fact that Z2 ⇥ Z2 ⇥ Z10

has an element of order 10. Therefore, |CR(x1)| = 2p or 4p. It follows that

CR(x1) ⇠= Z2p or Z2 ⇥ Z2p. Here, we claim that �6 6= 4. Assume that �6 = 4,
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then CR(xi) ⇠= Z2p for any i 2 {2, 3, · · · , 6}. This gives that CR(xi) has exactly

p�1 elements of order p for any i 2 {1, 2, · · · , 6}. By the fact that Z2⇥Z2⇥Z2p

has exactly p� 1 elements of order p, then there exists some a 2 R� Z(R) with

order p such that a 2
6
\
i=1

CR(xi). So, by Lemma 1.3.1(b), (c) and Lemma 2.2.2,

we obtain a 2 Z(R), which leads to a contradiction. Consequently, �6 6= 4 and so,

|CR(xi)| < 2p for any i 2 {6, 7}. Since Z2 ⇥Z2 ⇥Z6 has 14 elements of order 6,

Z2 ⇥ Z2 ⇥ Z10 has 28 elements of order 10, and Z2 ⇥ Z2 ⇥ Z14 has 42 elements

of order 14, then it follows that CR(x1) ⇠= Z2 ⇥ Z2p and CR(xi) ⇠= Z2p for any

i 2 {2, 3, 4, 5}. Since Z2 ⇥ Z2 ⇥ Z2p has exactly p� 1 elements of order p, then

there exists some a 2 R� Z(R) with order p such that a 2
5
\
i=2

CR(xi). For any

i 2 {2, 3, 4, 5}, since CR(xi) is cyclic, then CR(xi) is commutative. Therefore,

we have
5
[
i=2

CR(xi) ✓ CR(a). This gives that R = CR(a) [ CR(x1) [ CR(x6) [

CR(x7). By Lemma 2.7.3, we have |R| 6 |CR(x1)|+ |CR(x6)|+ |CR(x7)|. So,

we obtain |R| < |R|
2 + 2( |R|

4 ) = |R|, which is a contradiction.

Lemma 2.8.6. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a finite

ring R. Let |Cent(R)| = 11. Let |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7.

If |R : Z(R)| = 32 or 64, then �1 = 2.

Proof. Assume that �1 6= 2. By Lemma 2.8.3, we have �2 = 4. Hence, �1 = 4.

From Lemma 1.3.1(a), we have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. If �3 6= 4, then

by Lemma 2.7.3, we obtain |R| 6 |R|
4 + 5( |R|

8 ) = 7|R|
8 , which is impossible. So,

we have �3 = 4. Now, we want to show that �5 = 4. Suppose that �5 > 8.

By Lemma 2.2.8(b), we have CR(xi), CR(xj) are commutative for two distinct

i, j 2 {1, 2, 3}. By Lemma 2.2.11, it follows that CR(xi) \ CR(xj) 6= Z(R)

and hence, there exists some r 2 (CR(xi) \ CR(xj))� Z(R), which gives that
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CR(xi) [ CR(xj) ✓ CR(r). This yields that R = CR(r) [
✓

7
[

k=1,k 6=i,j
CR(xk)

◆
.

Therefore, by Lemma 2.7.3, we obtain |R| 6 2( |R|
4 ) + 3( |R|

8 ) = 7|R|
8 , which

is a contradiction. Thus, �5 = 4. Next, we want to prove that �7 = 4. By

Lemma 2.2.8(b), we have CR(xl1), CR(xl2), CR(xl3), CR(xl4) are commutative

for four distinct l1, l2, l3, l4 2 {1, 2, · · · , 5}. Without loss of generality, we

assume that l1 = 1, l2 = 2, l3 = 3, l4 = 4. Let i, j 2 {1, 2, 3, 4} with i 6= j.

By Lemma 2.2.11, it follows that CR(xi) \ CR(xj) 6= Z(R) and hence, there

exists some wi,j 2 (CR(xi) \ CR(xj)) � Z(R), which gives that CR(xi) [

CR(xj) ✓ CR(wi,j). Clearly, CR(wi,j) 6= R,CR(xk) for any k 2 {1, 2, · · · , 7}.

Now, we choosing w1,2, w1,3, w1,4, w2,3. Since |Cent(R)| = 11, then there exist

two distinct b1, b2 2 {w1,2, w1,3, w1,4, w2,3} such that CR(b1) = CR(b2). Thus,

R = CR(b1) [ CR(xk) [ CR(x5) [ CR(x6) [ CR(x7) for some k 2 {1, 2, 3, 4}.

If �7 > 8, then by Lemma 2.7.3, we have |R| 6 3(R4 ) +
|R|
8 = 7|R|

8 , which is

impossible. So, �7 = 4.

Here, we claim that CR(xl1) \ CR(xl2) \ CR(xl3) \ CR(xl4) = Z(R)

for any four distinct l1, l2, l3, l4 2 {1, 2, · · · , 7}. If not, then there exists some

r 2 (CR(xl1)\CR(xl2)\CR(xl3)\CR(xl4))�Z(R), which gives that CR(xl1)[

CR(xl2) [ CR(xl3) [ CR(xl4) ✓ CR(r). Therefore, we have R = CR(r) [

CR(xl5)[CR(xl6)[CR(xl7) for three distinct l5, l6, l7 2 {1, 2, · · · , 7}�{l1, l2, l3,

l4}. So, we obtain |R| 6 3|R|
4 by Lemma 2.7.3, which is impossible. Therefore,

our claim is true. In view of Lemma 2.2.8(b), there have at least six CR(xi)’s are

commutative. Without loss of generality, we assume that CR(xi) is commutative

for any i 2 {1, 2, · · · , 6}. Let i, j 2 {1, 2, · · · , 6} with i 6= j. By Lemma 2.2.11,
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it follows that CR(xi) \ CR(xj) 6= Z(R) and hence, there exists some wi,j 2

(CR(xi) \CR(xj))� Z(R), which gives that CR(xi) [CR(xj) ✓ CR(wi,j). It is

obvious that CR(wi,j) 6= R,CR(xk) for any k 2 {1, 2, · · · , 7}. Now, we choos-

ing w1,2, w1,3, w4,5, w4,6, w5,6. Since |Cent(R)| = 11 and CR(xl1) \ CR(xl2) \

CR(xl3)\CR(xl4) = Z(R) for any four distinct l1, l2, l3, l4 2 {1, 2, · · · , 7}, then

we have CR(w1,2) = CR(w1,3), CR(b1) = CR(b2) and CR(b3) 6= CR(w1,2) 6=

CR(b1) for three distinct b1, b2, b3 2 {w4,5, w4,6, w5,6}. Therefore, R = CR(w1,2)[

CR(b1)[CR(x7). In view of Lemma 2.7.3, we obtain |R| 6 |R|
2 + |R|

4 = 3|R|
4 . We

have reached a contradiction.

Lemma 2.8.7. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 32.

Proof. Assume that |R : Z(R)| = 32. Without loss of generality, we suppose

that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a),

we have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3 and Lemma 2.8.6,

we have �1 = 2 and �2 = 4. If �3 6= 4, then by Lemma 2.7.3, we obtain

|R| 6 |R|
4 + 5( |R|

8 ) = 7|R|
8 , which is impossible. So, we have �3 = 4. If �4 > 16,

then by Lemma 2.7.3, we obtain |R| 6 2( |R|
4 )+4( |R|

16 ) =
3|R|
4 , which is impossible.

So, we have �4 6 8. For the sake of simplicity, we write r = r + Z(R) for any

r 2 R and S = S/Z(R) for any S 6 R.

If CR(x1) is commutative, then by Lemma 2.2.12, we obtain |R| 6

2(4) = 8; a contradiction. Therefore, CR(x1) is non-commutative. By Lemma

2.2.8(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 7}. Since

|CR(x1)| = 16, then R � CR(x1) = {x2, x3, x4, x5, x6, x7, r1, r2, · · · , r10} for
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some r1, r2, · · · , r10 2 R � CR(x1). We claim that ri 62 CR(xj) \ CR(xk)

for any i 2 {1, 2, · · · , 10} and j, k 2 {2, 3, · · · , 7} with j 6= k. If ri 2

CR(xj) \ CR(xk) for some i 2 {1, 2, · · · , 10} and j, k 2 {2, 3, · · · , 7} with

j 6= k, then CR(xj) [ CR(xk) ✓ CR(ri). It is clear that CR(ri) 6= R,CR(xl) for

any l 2 {1, 2, · · · , 7}. Therefore, by Lemma 2.2.8(a), we obtain ri 2 CR(x1); a

contradiction. So, our claim is true. By Lemma 2.2.11, we have

|CR(xi) \ CR(x1)| =

8
>>><

>>>:

4 if �i = 4,

2 if �i = 8,

where i 2 {1, 2, · · · , 7}. Likewise, we have

|CR(xi) \ (R� CR(x1))| =

8
>>><

>>>:

4 if �i = 4,

2 if �i = 8,

where i 2 {1, 2, · · · , 7}. If |CR(x2) \ CR(x3) \ CR(x4)| > 2, then without loss

of generality, we have

CR(x2) � {0, d1, x2, r1, r2, r3},

CR(x3) � {0, d1, x3, r4, r5, r6},

CR(x4) ◆ {0, d1, x4, r7}

for some d1 2 CR(x1) � Z(R). It follows that CR(x2) [ CR(x3) [ CR(x4) ✓

CR(d1). This shows that x2, x3, x4, r1, r2, · · · , r7 2 CR(d1) and hence, |CR(d1)| =

16. Therefore, we have |CR(d1) \ CR(x1)| 6 4. Hence, by Lemma 2.2.11, we
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obtain |R| 6 2(2)(4) = 16, which is a contradiction. Consequently, |CR(x2) \

CR(x3) \ CR(x4)| = 1. If �4 = 4, then by using a manner entirely similar to

that used to prove Lemma 2.7.6, we will obtain |Cent(R)| > 12, which leads

to a contradiction. Therefore, �4 = 8. In view of Lemma 2.7.3, it follows

�5 = �6 = �7 = 8. By Lemma 2.2.11, we have |CR(x2) \ CR(x3)| = 2 or 4.

Thus, without any loss, we have

CR(x2) = {0, d1, x2, r1, r2, r3, d2, d3},

CR(x3) = {0, d1, x3, r4, r5, r6, d4, d5}.

for some d1, d2, d3, d4, d5 2 CR(x1) � Z(R). We first consider |{d2, d3} \

{d4, d5}| = 0. Hence, we have

CR(d1) � CR(x2) [ CR(x3) [ {x1},

CR(d2) � CR(x2) [ {x1},

CR(d3) � CR(x2) [ {x1},

CR(d4) � CR(x3) [ {x1},

CR(d5) � CR(x3) [ {x1}.

Since |CR(d1) \ CR(di)| > 9 for any i 2 {2, 3, 4, 5}, then |CR(d1) \ CR(di)| =

16 for any i 2 {2, 3, 4, 5}. This yields that CR(d1) = CR(d2) = CR(d3) =

CR(d4) = CR(d5). So, we have 0, d1, d2, d3, d4, d5 2 Z(CR(d1)), which gives

that |Z(CR(d1))| > 8. If |CR(d1) : Z(CR(d1))| = 1, then CR(d1) is commutative.

On the other hand, if |CR(d1) : Z(CR(d1))| = 2, then CR(d1)/Z(CR(d1)) is
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cyclic, which follows that CR(d1) is commutative. In both situations, we obtain

CR(d1) is commutative. This leads to x1x2 = x2x1, which is a contradiction. So,

we have

CR(x2) = {0, d1, x2, r1, r2, r3, d2, d3},

CR(x3) = {0, d1, x3, r4, r5, r6, d2, d3},

CR(d1) � {0, x2, x3, r1, r2, r3, r4, r5, r6, x1, d1, d2, d3}.

Next, without loss of generality, we have

CR(x4) = {0, x4, r7, w4},

CR(x5) = {0, x5, r8, w5},

CR(x6) = {0, x6, r9, w6},

CR(x7) = {0, x7, r10, w7}

for some w4, w5, w6, w7 2 CR(x1) � Z(R). If CR(d1) = CR(wi) for some

i 2 {4, 5, 6, 7}, then xi 2 CR(d1). This leads to |CR(d1) \ CR(x1)| < 8. Hence,

it follows from Lemma 2.2.11 that |R| < 2(2)(8) = 32; a contradiction. So,

CR(d1) 6= CR(wi) for any i 2 {4, 5, 6, 7}. We claim that wu 6= wv for two distinct

u, v 2 {4, 5, 6, 7}. Suppose that wu = wv for any two distinct u, v 2 {4, 5, 6, 7},

then we have

CR(w4) � {0, x4, x5, x6, x7, r7, r8, r9, r10, w4, x1}.

Since |R : CR(d1)| = |R : CR(w4)| = 2, then by Lemma 2.2.11, it follows that
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|CR(d1) \ CR(w4)| = 8. Thus, we have d1 2 CR(w4). It is obvious that CR(d1)

and CR(w4) are not equal to R,CR(xi) for any i 2 {1, 2, · · · , 7}. Therefore,

from Lemma 2.2.8(a), we obtain d1w4 6= w4d1, which is a contradiction. So, we

have wu 6= wv for two distinct u, v 2 {4, 5, 6, 7}. Without loss of generality, we

assume that u = 4 and v = 5. Thus, we have

CR(w4) � {0, x4, r7, w4, x1},

CR(w5) � {0, x5, r8, w5, x1}.

Since x4 2 CR(w4) but x4 62 CR(w5), then CR(w4) 6= CR(w5). Clearly,

CR(d1), CR(w4) and CR(w5) are not equal to R,CR(xi) for any i 2 {1, 2, · · · , 7}.

Hence, we have Cent(R) = {R,CR(x1), CR(x2), · · · , CR(x7), CR(d1), CR(w4),

CR(w5)}. Note that, there exist at least 8 distinct h1, h2, · · · , h8 2 CR(x1)�Z(R)

such that for any i 2 {1, 2, · · · , 8}, hi 62 CR(xj) for any j 2 {2, 3, · · · , 7}.

So, we are forced to conclude that CR(h1) = CR(h2) = · · · = CR(h8) =

CR(x1). This implies that 0, x1, h1, h2, · · · , h8 2 Z(CR(x1)), which gives

that |Z(CR(x1))| > 10 and it follows that |Z(CR(x1))| = 16. So, we obtain

|CR(x1) : Z(CR(x1))| = 1, which yields that CR(x1) is commutative. We have

reached a contradiction.

Lemma 2.8.8. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 36, 54 and

60.

Proof. Assume that |R : Z(R)| = 36, 54 or 60. Without loss of generality, we

suppose that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma
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1.3.1(a), we have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have

4 6 �2 6 6. Let m|G| denote the total number of elements with order m in an

additive group G. For the sake of simplicity, we write r = r + Z(R) for any

r 2 R and S = S/Z(R) for any S 6 R.

If |R| = 36, then R ⇠= Z2 ⇥ Z18,Z3 ⇥ Z12 or Z6 ⇥ Z6 as R is not

cyclic. Hence, |CR(x1)| 6 18 and |CR(xi)| 6 9 for any i 2 {2, 3, · · · , 7}.

This leads to R has at most 12|Z12| elements of order 12 and 18|Z18| elements

of order 18. Since 12|Z12| < 12|Z3 ⇥ Z12| and 18|Z18| < 18|Z2 ⇥ Z18|, then

R/Z(R) 6⇠= Z2 ⇥ Z18 and Z3 ⇥ Z12. It follows that R ⇠= Z6 ⇥ Z6. Therefore,

we have CR(x1) ⇠= Z6, |CR(x1)| = 9, CR(x1) ⇠= Z2 ⇥ Z6 or CR(x1) ⇠= Z3 ⇥ Z6.

This implies that R has at most 6|Z3 ⇥ Z6|+ 6(6|Z6|) = 20 elements of order 6.

This contradicts with the fact that Z6 ⇥ Z6 has 24 elements of order 6.

If |R| = 54, then R ⇠= Z3 ⇥ Z18,Z3 ⇥ Z3 ⇥ Z6 as R is not cyclic. Since

�2 = 6, then by Lemma 2.2.1, we obtain �2 = �3 = · · · = �7 = 6. Therefore,

|CR(x1)| 6 27 and |CR(xi)| = 9 for any i 2 {2, 3, · · · , 7}. This shows that

R has at most 18|Z18| elements of order 18. Since 18|Z18| < 18|Z2 ⇥ Z18|, then

R/Z(R) 6⇠= Z3 ⇥ Z18. So, R ⇠= Z3 ⇥ Z3 ⇥ Z6. If |CR(x1)| = 9 or 27, then

R does not exist any element of order 2. We have reached a contradiction as

Z3 ⇥ Z3 ⇥ Z6 has an elements of order 2. Hence, |CR(x1)| = 18 and it follows

that CR(x1) ⇠= Z3 ⇥ Z6. This implies that R has at most 6|Z3 ⇥ Z6| elements of

order 6. Consequently, we obtain 6|R| = 6|Z3 ⇥ Z3 ⇥ Z6| 6 6|Z3 ⇥ Z6|, which

is a contradiction.
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If |R| = 60, then R ⇠= Z2 ⇥ Z30 as R is not cyclic. Thus, |CR(x1)| 6 30

and |CR(xi)| 6 15 for any i 2 {2, 3, · · · , 7}. It follows that R has at most

30|Z30| elements of order 30. This leads to 30|R| = 30|Z2 ⇥ Z30| 6 30|Z30|, a

contradiction is reached.

Lemma 2.8.9. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 48.

Proof. Assume that |R : Z(R)| = 48. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we have

R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have �2 = 4 or 6. Let m|G|

denote the total number of elements with order m in an additive group G. For the

sake of simplicity, we write r = r + Z(R) for any r 2 R and S = S/Z(R) for

any S 6 R.

Since R is not cyclic, then R ⇠= Z2⇥Z24,Z2⇥Z2⇥Z12,Z2⇥Z2⇥Z2⇥Z6

or Z4 ⇥ Z12. Hence, |CR(x1)| 6 24 and |CR(xi)| 6 12 for any i 2 {2, 3, · · · , 7}.

This shows that R has at most 24|Z24| elements of order 24. Since 24|Z24| <

24|Z2 ⇥ Z24|, then R 6⇠= Z2 ⇥ Z24. We first claim that �1 6= 6. If �1 = 6, then

�2 = 6 and hence, we obtain �2 = �3 = · · · = �7 = 6 by Lemma 2.2.1. It

follows that |CR(xi)| = 8 for any i 2 {1, 2, · · · , 7}. This leads to there does not

exist any element of order 6 and order 12 in R. This contradicts with the fact

that Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6 has an element of order 6, Z2 ⇥ Z2 ⇥ Z12 and Z4 ⇥ Z12

have an element of order 12. Next, we claim that �6 6= 4. Suppose that �6 = 4,

then CR(xi) ⇠= Z2 ⇥ Z6 or Z12 for any i 2 {2, 3, · · · , 6}. This gives that CR(xi)

has exactly 2 elements of order 3 for any i 2 {2, 3, · · · , 6}. Since 3 is divide
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|CR(x1)|, then there exists an element of order 3 in CR(x1). By the fact that

Z2⇥Z2⇥Z12,Z2⇥Z2⇥Z2⇥Z6 and Z4⇥Z12 have exactly 2 elements of order

3, then there exists some a 2 R � Z(R) with order 3 such that a 2
6
\
i=1

CR(xi).

So, by Lemma 1.3.1(b), (c) and Lemma 2.2.2, we obtain a 2 Z(R), which leads

to a contradiction. Consequently, �6 6= 4.

We claim that �5 6= 4. Suppose that �5 = 4, then CR(xi) ⇠= Z2 ⇥ Z6 or

Z12 for any i 2 {2, 3, 4, 5}. This gives that CR(xi) has exactly 2 elements of order

3 for any i 2 {2, 3, 4, 5}. Since 3 is divide |CR(x1)|, then there exists an element

of order 3 in CR(x1). By the fact that Z2 ⇥ Z2 ⇥ Z12,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6 and

Z4⇥Z12 have exactly 2 elements of order 3, then there exists some a 2 R�Z(R)

with order 3 such that a 2
5
\
i=1

CR(xi). In view of Lemma 2.2.8(b), there exist four

distinct l1, l2, l3, l4 2 {1, 2, 3, 4, 5} such that CR(xl1), CR(xl2), CR(xl3), CR(xl4)

are commutative. Therefore, we have
4
[
i=1

CR(xli) ✓ CR(a). It follows that

R = CR(a)[CR(xl5)[CR(x6)[CR(x7), where l5 2 {1, 2, 3, 4, 5}�{l1, l2, l3, l4}.

So, by Lemma 2.7.3, we obtain |R| 6 |R|
2 + 2( |R|

6 ) = 5|R|
6 , which is impossible.

So, �5 6= 4. Therefore, we have |CR(x1)| 6 24, |CR(xi)| 6 12 for any i 2

{2, 3, 4} and |CR(xj)| 6 8 for any j 2 {5, 6, 7}. This gives that R has at most

12|Z2 ⇥ Z12|+ 3(12|Z12|) = 8 + 3(4) = 20 elements of order 12. Since Z4 ⇥ Z12

has 24 elements of order 12, then R 6⇠= Z4 ⇥ Z12.

Next, we want to show that �4 6= 4. Suppose that �4 = 4, then CR(xi) ⇠=

Z2 ⇥ Z6 or Z12 for any i 2 {2, 3, 4}. This gives that CR(xi) has exactly 2

elements of order 3 for any i 2 {2, 3, 4}. Since 3 is divide |CR(x1)|, then there
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exists an element of order 3 in CR(x1). By the fact that Z2 ⇥ Z2 ⇥ Z12 and

Z2⇥Z2⇥Z2⇥Z6 have exactly 2 elements of order 3, then there exists some a 2

R�Z(R) with order 3 such that a 2
4
\
i=1

CR(xi). In view of Lemma 2.2.8(b), there

exist three distinct l1, l2, l3 2 {1, 2, 3, 4} such that CR(xl1), CR(xl2), CR(xl3) are

commutative. Therefore, we have
3
[
i=1

CR(xli) ✓ CR(a). It follows that R =

CR(a)[CR(xl4)[CR(x5)[CR(x6)[CR(x7), where l4 2 {1, 2, 3, 4}�{l1, l2, l3}.

If �7 6= 6, then by Lemma 2.7.3, we obtain |R| 6 |R|
2 + 2( |R|

6 ) + |R|
8 = 23|R|

24 ;

a contradiction. So, �7 = 6 and hence, �5 = �6 = 6. From Lemma 2.7.3

again, we have |R : CR(a)| = 2 and |R : CR(xl4)| = 2. Since �2 > 4, then

l4 = 1. Hence, we have |CR(a)| = |CR(x1)| = 24 and |CR(x5)| = |CR(x6)| =

|CR(x7)| = 8. Note that, R = CR(a) [ CR(x1) [ CR(x5) [ CR(x6) [ CR(x7).

Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z12. Since Z2 ⇥ Z2 ⇥ Z12 has 16 elements of

order 12, then it follows that CR(a), CR(x1) ⇠= Z2 ⇥ Z12. This implies that R

has at most 2(6|Z2 ⇥ Z12|) = 2(6) = 12 elements of order 6. We have reached a

contradiction as Z2 ⇥Z2 ⇥Z12 has 14 elements of order 6. Next, we suppose that

R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6. Hence, CR(a), CR(x1) ⇠= Z2 ⇥ Z2 ⇥ Z6. This yields

that R has at most 2(6|Z2 ⇥ Z2 ⇥ Z6|) = 2(14) = 28 elements of order 6, which

leads to a contradiction as Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6 has 30 elements of order 6.

Therefore, we have |CR(x1)| 6 24, |CR(xi)| 6 12 for any i 2 {2, 3} and

|CR(xj)| 6 8 for any j 2 {4, 5, 6, 7}. Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6.

Since Z2⇥Z2⇥Z2⇥Z6 has 30 elements of order 6, then it follows that CR(x1) ⇠=

Z2 ⇥ Z2 ⇥ Z6, CR(x2), CR(x3) ⇠= Z2 ⇥ Z6 and CR(xu), CR(xv) ⇠= Z6 for two

distinct u, v 2 {4, 5, 6, 7}. This gives that CR(xi) has exactly 2 elements of
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order 3 for any i 2 {1, 2, 3, u, v}. By the fact that Z2 ⇥ Z2 ⇥ Z2 ⇥ Z6 has

exactly 2 elements of order 3, then there exists some a 2 R� Z(R) with order

3 such that a 2 \
i2{1,2,3,u,v}

CR(xi). In view of Lemma 2.2.8(b), there exist four

distinct l1, l2, l3, l4 2 {1, 2, 3, u, v} such that CR(xl1), CR(xl2), CR(xl3), CR(xl4)

are commutative. Therefore, we have
4
[
i=1

CR(xli) ✓ CR(a). It follows that R =

CR(a) [ CR(xl5) [ CR(xl6) [ CR(xl7), where l5 2 {1, 2, 3, u, v}� {l1, l2, l3, l4}

and l6, l7 2 {4, 5, 6, 7} � {u, v} with l6 6= l7. Hence, we obtain |R| 6 |R|
2 +

2( |R|
6 ) = 5|R|

6 by Lemma 2.7.3, a contradiction is reached. Consequently, we have

R ⇠= Z2 ⇥ Z2 ⇥ Z12. Since Z2 ⇥ Z2 ⇥ Z12 has 16 elements of order 12, then it

follows that CR(x1) ⇠= Z2⇥Z12 and CR(x2), CR(x3) ⇠= Z12. Since Z2⇥Z2⇥Z12

has 14 elements of order 6, then we have CR(xu), CR(xv) ⇠= Z6 for two distinct

u, v 2 {4, 5, 6, 7}. This gives that CR(xi) has exactly 2 elements of order 3 for

any i 2 {1, 2, 3, u, v}. By using similar arguments as in above, we will obtain

|R| 6 |R|
2 + 2( |R|

6 ) = 5|R|
6 , which leads to a contradiction.

Lemma 2.8.10. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 64.

Proof. Assume that |R : Z(R)| = 64. Without loss of generality, we suppose

that |R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a),

we have R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3 and Lemma 2.8.6,

we have �1 = 2 and �2 = 4. If �3 6= 4, then by Lemma 2.7.3, we obtain

|R| 6 |R|
4 + 5( |R|

8 ) = 7|R|
8 , which is impossible. So, we have �3 = 4. If �4 > 16,

then by Lemma 2.7.3, we obtain |R| 6 2( |R|
4 )+4( |R|

16 ) =
3|R|
4 , which is impossible.

So, we have �4 6 8. For the sake of simplicity, we write r = r + Z(R) for any

r 2 R and S = S/Z(R) for any S 6 R.
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If CR(x1) is commutative, then by Lemma 2.2.12, we obtain |R| 6

2(4) = 8; a contradiction. Therefore, CR(x1) is non-commutative. By Lemma

2.2.8(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 7}. Since

|CR(x1)| = 32, then R � CR(x1) = {x2, x3, x4, x5, x6, x7, r1, r2, · · · , r26} for

some r1, r2, · · · , r26 2 R � CR(x1). We claim that ri 62 CR(xj) \ CR(xk)

for any i 2 {1, 2, · · · , 26} and j, k 2 {2, 3, · · · , 7} with j 6= k. If ri 2

CR(xj) \ CR(xk) for some i 2 {1, 2, · · · , 26} and j, k 2 {2, 3, · · · , 7} with

j 6= k, then CR(xj) [ CR(xk) ✓ CR(ri). It is clear that CR(ri) 6= R,CR(xl) for

any l 2 {1, 2, · · · , 7}. Therefore, by Lemma 2.2.8(a), we obtain ri 2 CR(x1); a

contradiction. So, our claim is true. By Lemma 2.2.11, we have

|CR(xi) \ CR(x1)| =

8
>>><

>>>:

8 if �i = 4,

4 if �i = 8,

where i 2 {1, 2, · · · , 7}. Likewise, we have

|CR(xi) \ (R� CR(x1))| =

8
>>><

>>>:

8 if �i = 4,

4 if �i = 8,

where i 2 {1, 2, · · · , 7}. If |CR(x2) \ CR(x3) \ CR(x4)| > 2, then without loss

of generality, we have

CR(x2) � {0, d1, x2, r1, r2, · · · , r7},

CR(x3) � {0, d1, x3, r8, r9, · · · , r14},

CR(x4) � {0, d1, x4, r15, r16, r17}
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for some d1 2 CR(x1) � Z(R). It follows that CR(x2) [ CR(x3) [ CR(x4) ✓

CR(d1). This shows that x2, x3, x4, r1, r2, · · · , r17 2 CR(d1) and thus, |CR(d1)| =

32. Therefore, we have |CR(d1) \ CR(x1)| 6 8. Hence, by Lemma 2.2.11, we

obtain |R| 6 2(2)(8) = 32, which is a contradiction. Consequently, |CR(x2) \

CR(x3) \ CR(x4)| = 1. We continue the proof by considering two cases.

Case 1: �4 = 4. By Lemma 2.2.11, we have |CR(xi) \ CR(xj)| > 4 for

any two distinct i, j 2 {2, 3, 4}. Thus, without loss of generality, we have

CR(x2) = {0, d1, d2, d3, d4, d5, d6, d10, x2, r1, r2, · · · , r7},

CR(x3) = {0, d1, d2, d3, d7, d8, d9, d11, x3, r8, r9, · · · , r14},

CR(x4) = {0, d4, d5, d6, d7, d8, d9, d12, x4, r15, r16, · · · , r21}

for some d1, d2, · · · , d12 2 CR(x1)� Z(R). It follows that CR(x2) [ CR(x3) ✓

CR(d1), CR(x2) [ CR(x4) ✓ CR(d4) and CR(x3) [ CR(x4) ✓ CR(d7). It is

obvious that CR(di) 6= R,CR(xl) for any i 2 {1, 4, 7} and l 2 {1, 2, · · · , 7}.

Since |CR(x2) \ CR(x3) \ CR(x4)| = 1, then CR(di) 6= CR(dj) for any two

distinct i, j 2 {1, 4, 7}. Therefore, by Lemma 2.2.8(a), we have d1, d4, d7 do

not commute with each other. Now, we consider for CR(d1 + x1). Since d4 62

CR(d1 + x1) but d4 2 R,CR(x1), then CR(d1 + x1) 6= R,CR(x1). For any

i 2 {2, 3, · · · , 7}, since x1 2 CR(d1 + x1) but x1 62 CR(xi), then CR(d1 + x1) 6=

CR(xi). Since x2 62 CR(d1 + x1) but x2 2 CR(d1), then CR(d1 + x1) 6= CR(d1).

Since d4, d7 62 CR(d1 + x1) but d4 2 CR(d4) and d7 2 CR(d7), then CR(d1 +

x1) 6= CR(d4), CR(d7). Consequently, we obtain |Cent(R)| > 12, which is a
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contradiction.

Case 2: �4 = 8. In view of Lemma 2.7.3, it follows �5 = �6 = �7 = 8.

By Lemma 2.2.11, we have |CR(x2) \ CR(x3)| = 4 or 8. Thus, without any loss,

we have

CR(x2) = {0, d1, d2, d3, x2, r1, r2, · · · , r7, d4, d5, d6, d7},

CR(x3) = {0, d1, d2, d3, x3, r8, r9, · · · , r14, d8, d9, d10, d11}.

for some d1, d2, · · · , d11 2 CR(x1)� Z(R). We first consider |{d4, d5, d6, d7} \

{d8, d9, d10, d11}| = 0. Hence, we have

CR(di) � CR(x2) [ CR(x3) [ {x1} for any i 2 {1, 2, 3},

CR(di) � CR(x2) [ {x1} for any i 2 {4, 5, 6, 7},

CR(dj) � CR(x3) [ {x1} for any i 2 {8, 9, 10, 11}.

Since |CR(d1) \ CR(di)| > 17 for any i 2 {2, 3, · · · , 11}, then |CR(d1) \

CR(di)| = 32 for any i 2 {2, 3, · · · , 11}. This yields that CR(d1) = CR(d2) =

· · · = CR(d11). So, we have 0, d1, d2, · · · , d11 2 Z(CR(d1)), which gives that

|Z(CR(d1))| > 16. If |CR(d1) : Z(CR(d1))| = 1, then CR(d1) is commutative.

On the other hand, if |CR(d1) : Z(CR(d1))| = 2, then CR(d1)/Z(CR(d1)) is

cyclic, which follows that CR(d1) is commutative. In both situations, we obtain

CR(d1) is commutative. This leads to x1x2 = x2x1, which is a contradiction. So,
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we have

CR(x2) = {0, d1, d2, d3, x2, r1, r2, · · · , r7, d4, d5, d6, d7},

CR(x3) = {0, d1, d2, d3, x3, r8, r9, · · · , r14, d4, d5, d6, d7},

CR(d1) � {0, x2, x3, r1, r2, · · · , r14, d1, d2, · · · , d7}.

Next, without loss of generality, we have

CR(x4) � {0, x4, r15, r16, r17, w4},

CR(x5) � {0, x5, r18, r19, r20, w5},

CR(x6) � {0, x6, r21, r22, r23, w6},

CR(x7) � {0, x7, r24, r25, r26, w7}

for some w4, w5, w6, w7 2 CR(x1) � Z(R). If CR(d1) = CR(wi) for some

i 2 {4, 5, 6, 7}, then xi 2 CR(d1). This leads to |CR(d1)\CR(x1)| < 16. Hence,

it follows from Lemma 2.2.11 that |R| < 2(2)(16) = 64; a contradiction. So,

CR(d1) 6= CR(wi) for any i 2 {4, 5, 6, 7}. We claim that wu 6= wv for two distinct

u, v 2 {4, 5, 6, 7}. Suppose that wu = wv for any two distinct u, v 2 {4, 5, 6, 7},

then we have

CR(w4) � {0, x4, x5, x6, x7, r15, r16, · · · , r26, w4, x1}.

Since |R : CR(d1)| = |R : CR(w4)| = 2, then by Lemma 2.2.11, it follows that

|CR(d1) \ CR(w4)| = 16. Thus, we have d1 2 CR(w4). It is obvious that CR(d1)

and CR(w4) are not equal to R,CR(xi) for any i 2 {1, 2, · · · , 7}. Therefore,
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from Lemma 2.2.8(a), we obtain d1w4 6= w4d1, which is a contradiction. So, we

have wu 6= wv for two distinct u, v 2 {4, 5, 6, 7}. Without loss of generality, we

assume that u = 4 and v = 5. Thus, we have

CR(x4) � {0, x4, r15, r16, r17, w4, x1},

CR(x5) � {0, x5, r18, r19, r20, w5, x1}.

Since x4 2 CR(w4) but x4 62 CR(w5), then CR(w4) 6= CR(w5). Clearly,

CR(d1), CR(w4) and CR(w5) are not equal to R,CR(xi) for any i 2 {1, 2, · · · , 7}.

Hence, we have Cent(R) = {R,CR(x1), CR(x2), · · · , CR(x7), CR(d1), CR(w4),

CR(w5)}. Note that, there exist at least 12 distinct h1, h2, · · · , h12 2 CR(x1) �

Z(R) such that for any i 2 {1, 2, · · · , 12}, hi 62 CR(xj) for any j 2 {2, 3, · · · , 7}.

So, we are forced to conclude that CR(h1) = CR(h2) = · · · = CR(h12) =

CR(x1). This implies that 0, x1, h1, h2, · · · , h12 2 Z(CR(x1)), which gives

that |Z(CR(x1))| > 14 and it follows that |Z(CR(x1))| > 16. If |CR(x1) :

Z(CR(x1))| = 1, then CR(x1) is commutative. On the other hand, if |CR(x1) :

Z(CR(x1))| = 2, then CR(x1)/Z(CR(x1)) is cyclic, which follows that CR(x1)

is commutative. In both situations, we obtain CR(x1) is commutative. We have

reached a contradiction.

Lemma 2.8.11. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 72.

Proof. Assume that |R : Z(R)| = 72. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we have

R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have �2 = 4 or 6. Let m|G|
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denote the total number of elements with order m in an additive group G. For

the sake of simplicity, we write r = r + Z(R) for any r 2 R and S = S/Z(R)

for any S 6 R. Since R is not cyclic, then R ⇠= Z2 ⇥ Z36,Z3 ⇥ Z24,Z2 ⇥ Z2 ⇥

Z18,Z2 ⇥ Z6 ⇥ Z6 or Z6 ⇥ Z12. Hence, |CR(x1)| 6 36 and |CR(xi)| 6 18 for

any i 2 {2, 3, · · · , 7}. This shows that R has at most 36|Z36| elements of order

36 and R has at most 24|Z24| elements of order 24. Since 36|Z36| < 36|Z2 ⇥ Z36|

and 24|Z24| < 24|Z3 ⇥ Z24|, then R 6⇠= Z2 ⇥ Z36 and Z3 ⇥ Z24.

Suppose that R ⇠= Z2 ⇥Z2 ⇥Z18. We first claim that if |CR(xi)| = 18 for

some i 2 {2, 3, · · · , 7}, then CR(xi) 6⇠= Z3⇥Z6. If not, then R has 3|Z3⇥Z6| = 8

elements of order 3, which contradicts the fact that Z2 ⇥ Z2 ⇥ Z18 has only 2

elements of order 3. Next, we want to show that �6 6= 4. Assume that �6 = 4,

then CR(xi) ⇠= Z18 for any i 2 {2, 3, · · · , 6}. This gives that CR(xi) has exactly

2 elements of order 3 for any i 2 {2, 3, · · · , 6}. Since 3 is divide |CR(x1)|, then

there exists an element of order 3 in CR(x1). By the fact that Z2 ⇥ Z2 ⇥ Z18

has exactly 2 elements of order 3, then there exists some a 2 R � Z(R) with

order 3 such that a 2
6
\
i=1

CR(xi). So, by Lemma 1.3.1(b), (c) and Lemma 2.2.2,

we obtain a 2 Z(R), which leads to a contradiction. Consequently, �6 6= 4 and

so, |CR(xi)| 6 12 for any i 2 {6, 7}. Since Z2 ⇥ Z2 ⇥ Z18 has 42 elements

of order 18, then it follows that CR(x1) ⇠= Z2 ⇥ Z18 and CR(xi) ⇠= Z18 for any

i 2 {2, 3, 4, 5}. Since Z2 ⇥ Z2 ⇥ Z18 has exactly 2 elements of order 3, then

there exists some a 2 R� Z(R) with order 3 such that a 2
5
\
i=2

CR(xi). For any

i 2 {2, 3, 4, 5}, since CR(xi) is cyclic, then CR(xi) is commutative. Therefore,

we have
5
[
i=2

CR(xi) ✓ CR(a). This gives that R = CR(a) [ CR(x1) [ CR(x6) [
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CR(x7). So, by Lemma 2.7.3, we obtain |R| 6 |R|
2 + 2( |R|

6 ) = 5|R|
6 , which is a

contradiction.

Next, we suppose that R ⇠= Z6 ⇥ Z12. First, we consider |CR(x1)| 6 24.

Since Z6⇥Z12 has 32 elements of order 12, then it follows that CR(x1) ⇠= Z2⇥Z12

and CR(xi) ⇠= Z12 for any i 2 {2, 3, · · · , 7}. This yields that R has at most

6|Z2 ⇥ Z12|+ 6(6|Z12|) = 6 + 6(2) = 18 elements of order 6, which contradicts

the fact that Z6 ⇥ Z12 has 24 elements of order 6. Therefore, |CR(x1)| = 36.

If CR(x1) is commutative, then by Lemma 2.2.12, we obtain |R| 6 2(6) = 12,

which is a contradiction. Therefore, CR(x1) is non-commutative. By Lemma

2.2.8(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 7}. We claim

that if �2 = 4, then there exist four distinct l1, l2, l3, l4 2 {3, 4, 5, 6, 7} such that

�l1 = �l2 = �l3 = �l4 = 6. If not, then R has at most 12|Z3 ⇥Z12|+3(12|Z12|) =

16+ 3(4) = 28 elements of order 12, which contradicts the fact that Z6 ⇥Z12 has

32 elements of order 12. Therefore, our claim is true. On the other hand, if �2 = 6,

then by Lemma 2.2.1, we obtain �2 = �3 = · · · = �7 = 6. In both situations, we

have �l1 = �l2 = �l3 = �l4 = 6 for four distinct l1, l2, l3, l4 2 {3, 4, 5, 6, 7}. Let

i 2 {l1, l2, l3, l4}. In view of Lemma 2.2.11, we have CR(x2) \ CR(xi) 6= Z(R),

which implies that there exists some wi 2 (CR(x2) \ CR(xi)) � Z(R) and it

follows that CR(x2) [ CR(xi) ✓ CR(wi). It is obvious that CR(wi) 6= R,CR(xj)

for any j 2 {1, 2, · · · , 7}. Assume that CR(wj) = CR(wk) = CR(wl) for three

distinct j, k, l 2 {l1, l2, l3, l4}. Hence, we have CR(x2) [ CR(xj) [ CR(xk) [

CR(xl) ✓ CR(wj). It follows that R = CR(wj) [ CR(x1) [ CR(xl5) [ CR(xl6),

where l5 2 {3, 4, 5, 6, 7}� {l1, l2, l3, l4} and l6 2 {l1, l2, l3, l4}� {j, k, l}. So, by

116



Lemma 2.7.3, we obtain |R| 6 |R|
2 + |R|

4 + |R|
6 = 11|R|

12 , a contradiction is reached.

Consequently, there does not exist any three distinct j, k, l 2 {l1, l2, l3, l4} such

that CR(wj) = CR(wk) = CR(wl). Since |Cent(R)| = 11, then it follows

that CR(wj) = CR(wk) for two distinct j, k 2 {l1, l2, l3, l4}. Therefore, we have

R = CR(wj)[CR(x1)[CR(xu)[CR(xv)[CR(xl), where u, v 2 {l1, l2, l3, l4}�

{j, k} with u 6= v and l 2 {3, 4, 5, 6, 7} � {l1, l2, l3, l4}. Thus, by Lemma

2.7.3, we obtain |R| 6 |R|
2 + 2( |R|

6 ) + |CR(xl)|, which yields that �l 6 6. By

Lemma 2.2.11, we have CR(x2) \ CR(xl) 6= Z(R). So, there exists some

wl 2 (CR(x2)\CR(xl))�Z(R) and hence, CR(x2)[CR(xl) ✓ CR(wl). Clearly,

CR(wl) 6= R,CR(xi) for any i 2 {1, 2, · · · , 7}. If CR(wl) = CR(wj), then

R = CR(wl)[CR(x1)[CR(xu)[CR(xv). So, we obtain |R| 6 |R|
2 +2( |R|

6 ) = 5|R|
6

by Lemma 2.7.3, which is a contradiction. If CR(wl) = CR(wu) = CR(wv), then

R = CR(wl) [ CR(x1) [ CR(xj) [ CR(xk). So, we obtain |R| 6 |R|
2 + 2( |R|

6 ) =

5|R|
6 by Lemma 2.7.3, which is a contradiction again. Since |Cent(R)| = 11,

then we have CR(wm) 6= CR(wn) for two distinct m,n 2 {l, u, v}. Therefore,

CR(wj), CR(wm), CR(wn) are three distinct proper centralisers of R that are

different from CR(xi) for any i 2 {1, 2, · · · , t}. From Lemma 2.2.8(a), we have

wj, wm, wn 2 CR(x1) and wj, wm, wn do not commute with each other. We now

consider for CR(wj + x1). Since wm 62 CR(wj + x1) but wm 2 R,CR(x1), then

CR(wj + x1) 6= R,CR(x1). For any i 2 {2, 3, · · · , 7}, since x1 2 CR(wj + x1)

but x1 62 CR(xi), then CR(wj + x1) 6= CR(xi). Since xj 62 CR(wj + x1) but

xj 2 CR(wj), then CR(wj + x1) 6= CR(wj). Since wm, wn 62 CR(wj + x1)

but wm 2 CR(wm) and wn 2 CR(wn), then CR(wj + x1) 6= CR(wm), CR(wn).

Consequently, we obtain |Cent(R)| > 12, a contradiction is reached.
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Hence, we have R ⇠= Z2 ⇥ Z6 ⇥ Z6. We first claim that �6 6= 4. Suppose

that �6 = 4, then CR(xi) ⇠= Z3 ⇥ Z6 for any i 2 {2, 3, · · · , 6}. This gives that

CR(xi) has exactly 8 elements of order 3 for any i 2 {2, 3, · · · , 6}. Since 3 is

divide |CR(x1)|, then there exists an element of order 3 in CR(x1). By the fact

that Z2 ⇥ Z6 ⇥ Z6 has exactly 8 elements of order 3, then there exists some a 2

R�Z(R) with order 3 such that a 2
6
\
i=1

CR(xi). So, by Lemma 1.3.1(b), (c) and

Lemma 2.2.2, we obtain a 2 Z(R), which leads to a contradiction. Consequently,

�6 6= 4. We next claim that �5 6= 4. Assume that �5 = 4, then CR(xi) ⇠= Z3 ⇥ Z6

for any i 2 {2, 3, 4, 5}. This gives that CR(xi) has exactly 8 elements of order 3

for any i 2 {2, 3, 4, 5}. Since 3 is divide |CR(x1)|, then there exists an element of

order 3 in CR(x1). By the fact that Z2 ⇥ Z6 ⇥ Z6 has exactly 8 elements of order

3, then there exists some a 2 R�Z(R) with order 3 such that a 2
5
\
i=1

CR(xi). In

view of Lemma 2.2.8(b), there exist four distinct l1, l2, l3, l4 2 {1, 2, 3, 4, 5} such

that CR(xl1), CR(xl2), CR(xl3), CR(xl4) are commutative. Therefore, we have

4
[
i=1

CR(xli) ✓ CR(a). It follows that R = CR(a) [ CR(xl5) [ CR(x6) [ CR(x7),

where l5 2 {1, 2, 3, 4, 5}� {l1, l2, l3, l4}. So, by Lemma 2.7.3, we obtain |R| 6

|R|
2 +2( |R|

6 ) = 5|R|
6 , which is impossible. So, �5 6= 4. If �1 > 4, then R has at most

4(6|Z3⇥Z6|)+3(6|Z2⇥Z6|) = 4(8)+3(6) = 50 elements of order 6, which leads

to a contradiction as Z2⇥Z6⇥Z6 has 56 elements of order 6. Therefore, �1 6 3. If

CR(x1) is commutative, then it follows from Lemma 2.2.11 that |R| 6 3(6) = 18,

which is a contradiction. Thus, CR(x1) is non-commutative. From Lemma

2.2.8(b), we have CR(xi) is commutative for any i 2 {2, 3, · · · , 7}. Next, we

want to show that �4 6= 4. Suppose that �4 = 4, then CR(xi) ⇠= Z3 ⇥ Z6 for any

i 2 {2, 3, 4}. This gives that CR(xi) has exactly 8 elements of order 3 for any
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i 2 {2, 3, 4}. If 3 is not divide |CR(x5)|, then |CR(x5)| = 2, 4 or 8. This implies

that R has at most 6|Z6⇥Z6|+3(6|Z3⇥Z6|)+2(6|Z6|) = 24+3(8)+2(2) = 52

elements of order 6. This contradicts with the fact that Z2 ⇥ Z6 ⇥ Z6 has 56

elements of order 6. Therefore, 3 is divide |CR(x5)|. Since 3 is divide |CR(x5)|,

then there exists an element of order 3 in CR(x5). By the fact that Z2 ⇥ Z6 ⇥ Z6

has exactly 8 elements of order 3, then there exists some a 2 R�Z(R) with order

3 such that a 2
5
\
i=2

CR(xi). Thus, we have
5
[
i=2

CR(xi) ✓ CR(a). This implies

that R = CR(a) [ CR(x1) [ CR(x6) [ CR(x7). By Lemma 2.7.3, it follows that

|R| 6 |R|
2 + 2( |R|

6 ) = 5|R|
6 , which is impossible. So, �4 6= 4. We now claim that

CR(x2)\CR(xi) 6= Z(R) for any i 2 {3, 4, 5, 6}. We first consider the case where

�2 = 4. If �6 > 18, then R has at most 6|Z6⇥Z6|+2(6|Z3⇥Z6|)+2(6|Z2⇥Z6|) =

24 + 2(8) + 2(6) = 52 elements of order 6, which contradicts the fact that

Z2 ⇥Z6 ⇥Z6 has 56 elements of order 6. Hence, �6 6 12. Therefore, by Lemma

2.2.11, it follows that CR(x2) \ CR(xi) 6= Z(R) for any i 2 {3, 4, 5, 6}. We

next consider the case where �2 = 6. From Lemma 2.2.1, we have �6 = 6.

Therefore, by Lemma 2.2.11, it follows that CR(x2) \ CR(xi) 6= Z(R) for

any i 2 {3, 4, 5, 6}. By combining these two cases, our claim is proved. Let

i 2 {3, 4, 5, 6}. Hence, there exists some wi 2 (CR(x2)\CR(xi))�Z(R), which

gives that CR(x2) [ CR(xi) ✓ CR(wi). It is obvious that CR(wi) 6= R,CR(xj)

for any j 2 {1, 2, · · · , 7}. Assume that CR(wj) = CR(wk) = CR(wl) for three

distinct j, k, l 2 {3, 4, 5, 6}. Hence, we have CR(x2) [ CR(xj) [ CR(xk) [

CR(xl) ✓ CR(wj). It follows that R = CR(wj) [ CR(x1) [ CR(xh) [ CR(x7),

where h 2 {3, 4, 5, 6} � {j, k, l}. So, by Lemma 2.7.3, we obtain |R| 6 |R|
2 +

|R|
4 + |R|

6 = 11|R|
12 , a contradiction is reached. Consequently, there does not exist
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any three distinct j, k, l 2 {3, 4, 5, 6} such that CR(wj) = CR(wk) = CR(wl).

Since |Cent(R)| = 11, then it follows that CR(wj) = CR(wk) for two distinct

j, k 2 {3, 4, 5, 6}. Therefore, we have R = CR(wj) [ CR(x1) [ CR(xu) [

CR(xv)[CR(x7), where u, v 2 {3, 4, 5, 6}�{j, k} with u 6= v. Thus, by Lemma

2.7.3, we obtain |R| 6 |R|
2 + |R|

4 + |R|
6 + |CR(xl)|, which yields that �7 6 12.

If �2 = 4, then it follows from Lemma 2.2.11 that CR(x2) \ CR(x7) 6= Z(R).

On the other hand, if �2 = 6, then by Lemma 2.2.1, �7 = 6. Therefore, by

Lemma 2.2.11, it follows that CR(x2) \ CR(x7) 6= Z(R). So, there exists some

w7 2 (CR(x2)\CR(x7))�Z(R) and hence, CR(x2)[CR(x7) ✓ CR(w7). Clearly,

CR(w7) 6= R,CR(xi) for any i 2 {1, 2, · · · , 7}. If CR(w7) = CR(wj), then R =

CR(wl)[CR(x1)[CR(xu)[CR(xv). So, we obtain |R| 6 |R|
2 + |R|

4 + |R|
6 = 11|R|

12

by Lemma 2.7.3, which is a contradiction. If CR(w7) = CR(wu) = CR(wv), then

R = CR(w7)[CR(x1)[CR(xj)[CR(xk). So, we obtain |R| 6 |R|
2 + |R|

4 + |R|
6 =

11|R|
12 by Lemma 2.7.3, which is a contradiction again. Since |Cent(R)| = 11,

then we have CR(wm) 6= CR(wn) for two distinct m,n 2 {7, u, v}. Therefore,

CR(wj), CR(wm), CR(wn) are three distinct proper centralisers of R that are

different from CR(xi) for any i 2 {1, 2, · · · , t}. From Lemma 2.2.8(a), we have

wj, wm, wn 2 CR(x1) and wj, wm, wn do not commute with each other. We now

consider for CR(wj + x1). Since wm 62 CR(wj + x1) but wm 2 R,CR(x1), then

CR(wj + x1) 6= R,CR(x1). For any i 2 {2, 3, · · · , 7}, since x1 2 CR(wj + x1)

but x1 62 CR(xi), then CR(wj + x1) 6= CR(xi). Since xj 62 CR(wj + x1) but

xj 2 CR(wj), then CR(wj + x1) 6= CR(wj). Since wm, wn 62 CR(wj + x1)

but wm 2 CR(wm) and wn 2 CR(wn), then CR(wj + x1) 6= CR(wm), CR(wn).

Consequently, we obtain |Cent(R)| > 12, a contradiction is reached.

120



Lemma 2.8.12. Let {x1, x2, · · · , x7} be the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then |R : Z(R)| 6= 80.

Proof. Assume that |R : Z(R)| = 80. Without loss of generality, we suppose that

|R : CR(xi)| = �i, where �1 6 �2 6 · · · 6 �7. From Lemma 1.3.1(a), we have

R/Z(R) =
7
[
i=1

[CR(xi)/Z(R)]. By Lemma 2.8.3, we have �2 = 4 or 5. Let m|G|

denote the total number of elements with order m in an additive group G. For the

sake of simplicity, we write r = r + Z(R) for any r 2 R and S = S/Z(R) for

any S 6 R.

Since R is not cyclic, then R ⇠= Z2⇥Z40,Z2⇥Z2⇥Z20,Z2⇥Z2⇥Z2⇥Z10

or Z4 ⇥ Z20. Hence, |CR(x1)| 6 40 and |CR(xi)| 6 20 for any i 2 {2, 3, · · · , 7}.

This shows that R has at most 40|Z40| elements of order 40. Since 40|Z40| <

40|Z2 ⇥ Z40|, then R 6⇠= Z2 ⇥ Z40. We first claim that �1 6= 5. Assume that

�1 = 5, then |CR(x1)| = 16 and |CR(xi)| 6 16 for any i 2 {2, 3, · · · , 7}. This

shows that |R| has at most 6(10|Z10|) = 6(4) = 24 elements of order 10. Also,

there does not exist any element of order 20. This contradicts with the fact that

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 has 60 elements of order 10 and Z2 ⇥ Z2 ⇥ Z20,Z4 ⇥ Z20

have an element of order 20. Thus, �1 6= 5. We next claim that �6 6= 4. Suppose

that �6 = 4, then CR(xi) ⇠= Z2 ⇥ Z10 or Z20 for any i 2 {2, 3, · · · , 6}. This

gives that CR(xi) has exactly 4 elements of order 5 for any i 2 {2, 3, · · · , 6}.

Since 5 is divide |CR(x1)|, then there exists an element of order 5 in CR(x1). By

the fact that Z2 ⇥ Z2 ⇥ Z20,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 and Z4 ⇥ Z20 have exactly 4

elements of order 5, then there exists some a 2 R � Z(R) with order 5 such

that a 2
6
\
i=1

CR(xi). So, by Lemma 1.3.1(b), (c) and Lemma 2.2.2, we obtain
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a 2 Z(R), which leads to a contradiction. Consequently, �6 6= 4.

We claim that �5 6= 4. Suppose that �5 = 4, then CR(xi) ⇠= Z2 ⇥ Z10 or

Z20 for any i 2 {2, 3, 4, 5}. This gives that CR(xi) has exactly 4 elements of order

5 for any i 2 {2, 3, 4, 5}. Since 5 is divide |CR(x1)|, then there exists an element

of order 5 in CR(x1). By the fact that Z2 ⇥ Z2 ⇥ Z20,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 and

Z4⇥Z20 have exactly 4 elements of order 5, then there exists some a 2 R�Z(R)

with order 5 such that a 2
5
\
i=1

CR(xi). In view of Lemma 2.2.8(b), there exist four

distinct l1, l2, l3, l4 2 {1, 2, 3, 4, 5} such that CR(xl1), CR(xl2), CR(xl3), CR(xl4)

are commutative. Therefore, we have
4
[
i=1

CR(xli) ✓ CR(a). It follows that

R = CR(a)[CR(xl5)[CR(x6)[CR(x7), where l5 2 {1, 2, 3, 4, 5}�{l1, l2, l3, l4}.

So, by Lemma 2.7.3, we obtain |R| 6 |R|
2 + 2( |R|

5 ) = 9|R|
10 , which is impossible.

So, �5 6= 4. Therefore, we have |CR(x1)| 6 40, |CR(xi)| 6 20 for any i 2

{2, 3, 4} and |CR(xj)| 6 16 for any j 2 {5, 6, 7}. This gives that R has at most

20|Z2⇥Z20|+3(20|Z20|) = 16+3(8) = 40 elements of order 20. Since Z4⇥Z20

has 48 elements of order 20, then R 6⇠= Z4 ⇥ Z20.

Next, we want to show that �4 6= 4. Suppose that �4 = 4, then CR(xi) ⇠=

Z2 ⇥ Z10 or Z20 for any i 2 {2, 3, 4}. This gives that CR(xi) has exactly 4

elements of order 5 for any i 2 {2, 3, 4}. Since 5 is divide |CR(x1)|, then there

exists an element of order 5 in CR(x1). By the fact that Z2 ⇥ Z2 ⇥ Z20 and

Z2⇥Z2⇥Z2⇥Z10 have exactly 4 elements of order 5, then there exists some a 2

R�Z(R) with order 5 such that a 2
4
\
i=1

CR(xi). In view of Lemma 2.2.8(b), there

exist three distinct l1, l2, l3 2 {1, 2, 3, 4} such that CR(xl1), CR(xl2), CR(xl3) are
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commutative. Therefore, we have
3
[
i=1

CR(xli) ✓ CR(a). It follows that R =

CR(a)[CR(xl4)[CR(x5)[CR(x6)[CR(x7), where l4 2 {1, 2, 3, 4}�{l1, l2, l3}.

We claim that �7 6= 8. If �7 = 8, then |CR(x7)| = 10 and so, CR(x7) ⇠= Z10. This

shows that CR(x7) has exactly 4 elements of order 5. By the fact that Z2⇥Z2⇥Z20

and Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 have exactly 4 elements of order 5, then a 2 CR(x7).

Since CR(x7) is cyclic, then CR(x7) is commutative, which follows that CR(x7) 6

CR(a). Therefore, we have R = CR(a) [ CR(xl4) [ CR(x5) [ CR(x6). So, from

Lemma 2.2.1, we obtain |R| 6 |R|
2 + 2( |R|

5 ) = 9|R|
10 ; a contradiction. So, �7 6= 8.

If �6 6= 5, then by Lemma 2.7.3, we obtain |R| 6 |R|
2 + |R|

5 + 2( |R|
8 ) = 19|R|

20 ; a

contradiction. So, �6 = 5 and hence, �5 = 5. From Lemma 2.7.3 again, we have

|R : CR(a)| = 2 and |R : CR(xl4)| = 2. Since �2 > 4, then l4 = 1. Hence, we

have |CR(a)| = |CR(x1)| = 40, |CR(x5)| = |CR(x6)| = 16 and |CR(x7)| 6 16

with |CR(x7)| 6= 10. Note that, R = CR(a)[CR(x1)[CR(x5)[CR(x6)[CR(x7).

Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z20. Since Z2 ⇥ Z2 ⇥ Z20 has 32 elements of order

20, then it follows that CR(a), CR(x1) ⇠= Z2 ⇥ Z20. This implies that R has at

most 2(10|Z2 ⇥ Z20|) = 2(12) = 24 elements of order 10. We have reached a

contradiction as Z2 ⇥ Z2 ⇥ Z20 has 28 elements of order 10. Next, we suppose

that R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10. Hence, CR(a), CR(x1) ⇠= Z2 ⇥ Z2 ⇥ Z10. This

yields that R has at most 2(10|Z2 ⇥ Z2 ⇥ Z10|) = 2(28) = 56 elements of order

10, which leads to a contradiction as Z2⇥Z2⇥Z2⇥Z10 has 60 elements of order

10. So, �4 6= 4.

Therefore, we have |CR(x1)| 6 40, |CR(xi)| 6 20 for any i 2 {2, 3} and

|CR(xj)| 6 16 for any j 2 {4, 5, 6, 7}. Assume that R ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10.
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Since Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 has 60 elements of order 10, then it follows that

CR(x1) ⇠= Z2⇥Z2⇥Z10, CR(x2), CR(x3) ⇠= Z2⇥Z10 and CR(xu), CR(xv) ⇠= Z10

for two distinct u, v 2 {4, 5, 6, 7}. This gives that CR(xi) has exactly 4 elements

of order 5 for any i 2 {1, 2, 3, u, v}. By the fact that Z2 ⇥ Z2 ⇥ Z2 ⇥ Z10 has

exactly 4 elements of order 5, then there exists some a 2 R� Z(R) with order

5 such that a 2 \
i=1,2,3,u,v

CR(xi). In view of Lemma 2.2.8(b), there exist four

distinct l1, l2, l3, l4 2 {1, 2, 3, u, v} such that CR(xl1), CR(xl2), CR(xl3), CR(xl4)

are commutative. Therefore, we have
4
[
i=1

CR(xli) ✓ CR(a). It follows that R =

CR(a) [ CR(xl5) [ CR(xl6) [ CR(xl7), where l5 2 {1, 2, 3, u, v}� {l1, l2, l3, l4}

and l6, l7 2 {4, 5, 6, 7} � {u, v} with l6 6= l7. Hence, we obtain |R| 6 |R|
2 +

2( |R|
5 ) = 9|R|

10 by Lemma 2.7.3, a contradiction is reached. Consequently, we have

R ⇠= Z2 ⇥ Z2 ⇥ Z20. Since Z2 ⇥ Z2 ⇥ Z20 has 32 elements of order 20, then it

follows that CR(x1) ⇠= Z2⇥Z20 and CR(x2), CR(x3) ⇠= Z20. Since Z2⇥Z2⇥Z20

has 28 elements of order 10, then we have CR(xu), CR(xv) ⇠= Z10 for two distinct

u, v 2 {4, 5, 6, 7}. This gives that CR(xi) has exactly 4 elements of order 5 for

any i 2 {1, 2, 3, u, v}. By using similar arguments as in above, we will obtain

|R| 6 |R|
2 + 2( |R|

5 ) = 9|R|
10 , which leads to a contradiction.

Lemma 2.8.13. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then t 6= 8.

Proof. Assume that t = 8. Let {x1, x2, · · · , x8} be the maximal non-commuting

set of R. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �8. From Lemma 1.3.1(a), we have R =
8
[
i=1

CR(xi). By

Lemma 2.2.3, we have CR(xi) is commutative for any i 2 {1, 2, · · · , 8} and

CR(a), CR(b) are two distinct non-commutative proper centralisers of R for some
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a, b 2 R�Z(R). By Theorem 2.2.23, we have |R : Z(R)| > 16 with |R : Z(R)|

is not square-free, |R : Z(R)| 6= p
2
q for any two distinct primes p, q, and

|R : Z(R)| 6= p
2 for any prime p.

First, we claim that �i > 4 for any i 2 {1, 2, · · · , 8}. Assume that �1 6 3,

then by Corollary 2.2.13, we obtain |R : Z(R)| 6 3�2. By Lemma 2.2.1, we

have �2 6 7. If �2 6 5, then |R : Z(R)| 6 15; a contradiction. If �2 = 6,

then |R : Z(R)| 6 18; a contradiction. If �2 = 7, then |R : Z(R)| 6 21; a

contradiction. Therefore, �1 > 4 and so, �i > 4 for any i 2 {1, 2, · · · , 8}, as

claimed

Next, we want to show that CR(a) contains exactly two distinct CR(xi)’s.

From Lemma 2.2.7, we have R = CR(a) [
✓

[
i2A

CR(xi)

◆
for some A ⇢

{1, 2, · · · , 8} with |A| 6 6. Obviously, |A| 6= 0. Suppose that |A| 6 3, then

by Lemma 2.2.1, it follows that �i 6 |A| 6 3 for some i 2 A. This contra-

dicts with the fact that �i > 4. Assume that |A| = 4 or 5. Thus, we have

R = CR(a) [
✓

|A|
[
i=1

CR(xki)

◆
for |A| distinct k1, k2, · · · , k|A| 2 {1, 2, · · · , 8}.

Without loss of generality, we assume that �k1 6 �k2 6 · · · 6 �|A|. We

claim that �k1 = 4. By Lemma 2.2.1, �k1 6 |A|. For |A| = 4, we have

�k1 = 4. For |A| = 5, we have �k1 = 4 or 5. If �k1 = 5, then by Lemma

2.2.1, we obtain �k2 = �k3 = �k4 = �k5 = 5. Therefore, by Corollary

2.2.13, we obtain |R : Z(R)| 6 5(5) = 25, which is a contradiction. So,

�k1 = 4. We next claim that �ki 6= 5 and 7 for any i 2 {2, · · · , |A|}. Sup-

pose that �ki = 5 or 7 for some i 2 {2, · · · , |A|}, then by Corollary 2.2.13,
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we obtain |R : Z(R)| 6 4�2. If �2 = 5, then |R : Z(R)| 6 20, which is

a contradiction. If �2 = 7, then |R : Z(R)| 6 28, which is a contradiction

again. Therefore, �ki 6= 5 and 7 for any i 2 {2, · · · , |A|}. In view of Lemma

2.7.3, we have |R| 6
|A|P
i=1

|CR(xki)| 6 |R|
4 + (|A| � 1)|CR(xk2)|, which gives

that �k2 6 4(|A|�1)
3 6 5. Therefore, �k2 = 4. In view of Lemma 2.7.3 again,

we have |R| 6
|A|P
i=1

|CR(xki)| 6 2( |R|
4 ) + (|A| � 2)|CR(xk3)|, which gives that

�k3 6 2(|A| � 2) 6 6. Therefore, �k3 = 4 or 6. Here, we consider CR(xk1) \

CR(xk2) = Z(R). By Lemma 2.2.11, we obtain |R : Z(R)| 6 16 and hence,

|R : Z(R)| = 16. Since CR(a) is non-commutative, then by Lemma 2.2.15, we

obtain |R : CR(a)| = 2. We claim that if �ki < 8 for some i 2 {1, 2, · · · , |A|},

then CR(xki) 6 CR(b). By Lemma 2.2.11, we have CR(a) \ CR(xki) 6= Z(R).

It follows that there exists some w 2 (CR(a) \ CR(xki))� Z(R). Since CR(xki)

is commutative, then CR(xki) 6 CR(w). It is clear that CR(w) 6= R,CR(xj)

for any j 2 {1, 2, · · · , 8} � {ki}. If CR(w) = CR(a), then CR(xki) 6 CR(a).

On the other hand, if CR(w) = CR(xki), then CR(w) is commutative and hence,

CR(w) 6 CR(a) and so, CR(xki) 6 CR(a). In both situations, we obtain a contra-

diction because CR(xki) ⌦ CR(a). So, we obtain CR(w) = CR(b) and therefore,

CR(xki) 6 CR(b). If |A| = 4, then R = CR(a) [ CR(b) [ CR(xk4). Thus, it

follows from Lemma 2.2.1 that �k4 = 2, which is a contradiction. If |A| = 5, then

R = CR(a) [CR(b) [CR(xk4) [CR(xk5). If �k5 6= 4, then by Lemma 2.7.3, we

obtain |R| 6 |CR(a)|+ |CR(xk4)|+ |CR(xk5)| 6 |R|
2 + |R|

4 + |R|
8 = 7|R|

8 , which is

impossible. So, we have �k4 = �k5 = 4 and it follows that R = CR(a) [ CR(b).

Thus, by Lemma 2.2.1, we obtain |R : CR(b)| = 1, which is a contradic-

tion. Consequently, CR(xk1) \ CR(xk2) 6= Z(R). Thus, there exists some r 2
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(CR(xk1)\CR(xk2))�Z(R) such that CR(xk1)[CR(xk2) ✓ CR(r). It is obvious

that CR(r) 6= R,CR(xi) for any i 2 {1, 2, · · · , 8}. Since CR(xk1), CR(xk2) ⌦

CR(a), then CR(r) 6= CR(a). So, we obtain CR(r) = CR(b). This gives

that R = CR(a) [ CR(b) [
✓

|A|
[
i=3

CR(xki)

◆
. Since |CR(b)| > |CR(xk1)|, then

|R : CR(b)| 6 3. We claim that if �ki 6 6 for some i 2 {3, · · · , |A|}, then

CR(xki) 6 CR(b). Assume that CR(b)\CR(xki) = Z(R), then by Lemma 2.2.11,

we obtain |R : Z(R)| 6 3�ki . If �ki 6 5, then |R : Z(R)| 6 15; a contradiction.

If �ki = 6, then |R : Z(R)| 6 18; a contradiction. So, CR(b) \ CR(xki) 6= Z(R).

Thus, there exists some w 2 (CR(b) \ CR(xki))� Z(R). Since CR(xki) is com-

mutative, then CR(xki) 6 CR(w). It is clear that CR(w) 6= R,CR(xj) for any

j 2 {1, 2, · · · , 8}�{ki}. Since CR(xki) ⌦ CR(a), then CR(w) 6= CR(a). So, we

conclude that CR(w) = CR(b) or CR(xki). If CR(w) = CR(b), then CR(xki) 6

CR(b). On the other hand, if CR(w) = CR(xki), then CR(w) is commutative and

hence, CR(w) 6 CR(b) and so, CR(xki) 6 CR(b). In both situations, we obtain

CR(xki) 6 CR(b), as claimed. If |A| = 4, then R = CR(a) [ CR(b) [ CR(xk4).

Therefore, by Lemma 2.2.1, we obtain �k4 = 2, a contradiction is reached. If

|A| = 5, then R = CR(a) [ CR(b) [ CR(xk4) [ CR(xk5). If �k5 6= 4, then by

Lemma 2.7.3, we obtain |R| 6 |CR(a)|+|CR(xk4)|+|CR(xk5)| 6 |R|
2 + |R|

4 + |R|
6 =

11|R|
12 , which is impossible. So, we have �k4 = �k5 = 4 and it follows that

R = CR(a)[CR(b). Thus, by Lemma 2.2.1, we obtain |R : CR(b)| = 1, which is

a contradiction. Consequently, |A| 6= 4 and 5. So, |A| = 6. It follows that CR(a)

contains exactly two distinct CR(xi)’s, as desired. By using a manner entirely

similar to that used to prove CR(a) contains exactly two distinct CR(xi)’s, we

will obtain CR(b) is also contains exactly two distinct CR(xi)’s.
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Since CR(a), CR(b) contains exactly two distinct CR(xi)’s, then we have

CR(xu1), CR(xu2) 6 CR(a) and CR(xv1), CR(xv2) 6 CR(b) for some u1, u2, v1,

v2 2 {1, 2, · · · , 8} with u1 6= u2 and v1 6= v2. We claim that |{u1, u2} \

{v1, v2}| = 0. Suppose to the contrary that |{u1, u2} \ {v1, v2}| > 1. Without

any loss, we assume that u1 = v1. Now, we consider for CR(xu1 + xv2). Since

xi 2 R,CR(xi) but xi 62 CR(xu1+xv2) for any i 2 {u1, v2}, then CR(xu1+xv2) 6=

R,CR(xu1), CR(xv2). Since xu1 2 CR(a), CR(b) but xu1 62 CR(xu1 + xv2),

then CR(xu1 + xv2) 6= CR(a), CR(b). So, CR(xu1 + xv2) = CR(xi) for some

i 2 {1, 2, · · · , 8} � {u1, v2}. Since b 2 CR(xu1 + xv2), then b 2 CR(xi).

Since CR(xi) is commutative, then we have CR(xi) 6 CR(b). This contradicts

with the fact that CR(b) contains exactly two distinct CR(xi)’s. Consequently,

|{u1, u2} \ {v1, v2}| = 0, as claimed. Therefore, in view of Lemma 1.3.1(c),

we have {CR(a), CR(b), CR(xk1), CR(xk2), CR(xk3), CR(xk4)} is an irredundant

cover of R for four distinct k1, k2, k3, k4 2 {1, 2, · · · , 8} with k1 < k2 < k3 < k4.

Next, we claim that CR(b)\CR(xk1) = Z(R). Let w 2 CR(b)\CR(xk1). Since

CR(xk1) is commutative, then CR(xk1) 6 CR(w). Clearly, CR(w) 6= CR(xi) for

any i 2 {1, 2, · · · , 8} � {k1}. If CR(w) = CR(a) or CR(b), then CR(xk1) 6

CR(a) or CR(b), which is a contradiction. If CR(w) = CR(xk1), then CR(w) is

commutative and hence, CR(w) 6 CR(b) and therefore, CR(xk1) 6 CR(b), which

is a contradiction again. So, we obtain CR(w) = R, which implies that w 2 Z(R).

This gives that CR(b) \ CR(xk1) 6 Z(R). On the other hand, it is obvious that

Z(R) 6 CR(b) \ CR(xk1). Hence, CR(b) \ CR(xk1) = Z(R), as claimed. So,

we have |R : Z(R)| 6 f(6) = 36 and consequently, |R : Z(R)| = 16, 24, 27, 32

or 36. If |R : Z(R)| = 27, then by Lemma 2.2.16 and Lemma 2.2.4, we have
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|Cent(R)| = 9, a contradiction is reached. Therefore, |R : Z(R)| = 16, 24, 32 or

36. Since CR(b) is non-commutative, then by Lemma 2.2.15, we have

|R : CR(b)|

8
>>>>>>>><

>>>>>>>>:

= 2 if |R : Z(R)| = 16,

6 3 if |R : Z(R)| = 24 or 36,

6 4 if |R : Z(R)| = 32.

By Lemma 2.2.11, we have |R : Z(R)| 6 �k1 |R : CR(b)|. By Lemma 2.7.3,

|R| 6 |CR(b)| +
4P

i=1
|CR(xki)| 6 |CR(b)| + 4|CR(xk1)|, which gives that �k1 6

4|R|
|R|�|CR(b)| . Assume that |R : CR(b)| = 2, then �k1 6 8 and thus, |R : Z(R)| 6

8(2) = 16, which implies that |R : Z(R)| = 16. If �k1 6= 8, then |R : Z(R)| 6

2(4) = 8; a contradiction. Therefore, �k1 = 8 and so, �k2 = �k3 = �k4 = 8. We

claim that �u1 = �u2 = �v1 = �v2 = 4. If �i = 8 for some i 2 {u1, u2, v1, v2},

then |R : Z(R)| 6 4 + (4� 1) + (4� 1) + 5(2� 1) = 15, which is impossible.

So, �u1 = �u2 = �v1 = �v2 = 4. If a + Z(R) = b + Z(R), then CR(a) =

CR(b), which is impossible. Thus, a + Z(R) 6= b + Z(R). Since a + Z(R) 2

(CR(xu1) \ CR(xu2))/Z(R) and b + Z(R) 2 (CR(xv1) \ CR(xv2))/Z(R), then

we obtain |R : Z(R)| 6 4 + 3(4� 1) + 4(2� 1)� 2 = 15, which is impossible.

Therefore, |R : CR(b)| 6= 2. If |R : CR(b)| = 3, then �k1 6 6 and thus,

|R : Z(R)| 6 6(3) = 18; a contradiction. If |R : CR(b)| = 4, then �k1 6 5 and

thus, |R : Z(R)| 6 5(4) = 20; a contradiction. Consequently, t 6= 8.

Lemma 2.8.14. Let t be the cardinality of the maximal non-commuting set of a

finite ring R. If R is an 11-centraliser finite ring, then t 6= 9.

Proof. Assume that t = 9. Let {x1, x2, · · · , x9} be the maximal non-commuting
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set of R. Without loss of generality, we suppose that |R : CR(xi)| = �i, where

�1 6 �2 6 · · · 6 �9. From Lemma 1.3.1(c), we have {CR(xi) | i = 1, 2, · · · , 9}

is an irredundant cover of R. By Lemma 2.2.3, we have CR(xi) is commutative

for any i 2 {1, 2, · · · , 9} and CR(a) is non-commutative for some a 2 R�Z(R).

By Lemma 2.2.6, we have {CR(a)} [
✓

[
i2A

{CR(xi)}
◆

is an irredundant

cover of R for some A ⇢ {1, 2, · · · , 9} with |A| 6 6. Clearly, |A| 6= 0. If |A| = 1,

then by Lemma 2.2.1, it follows that �i = 1 for some i 2 A, which is a contradic-

tion. We claim that if i 2 A, then CR(xi) \ CR(a) = Z(R). This claim can be

proved by using a manner entirely similar to that used to prove Lemma 2.6.4. Thus,

we have |R : Z(R)| 6 max{f(3), f(4), f(5), f(6), f(7)} = 81. Therefore,

by Theorem 2.2.23, we obtain |R : Z(R)| = 16, 24, 27, 32, 36, 40, 48, 54, 56,

60, 64, 72, 80 or 81. If |R : Z(R)| = 27, then by Lemma 2.2.16 and Lemma

2.2.4, we obtain |Cent(R)| = 10, which is a contradiction. So, |R : Z(R)| =

16, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80 or 81. Since CR(a) is non-commutative,
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then by Lemma 2.2.15, we have

|R : CR(a)|

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

= 2 if |R : Z(R)| = 16,

6 3 if |R : Z(R)| = 24, 36, 54 or 81,

6 4 if |R : Z(R)| = 32,

6 5 if |R : Z(R)| = 40 or 60,

6 6 if |R : Z(R)| = 48,

6 7 if |R : Z(R)| = 56,

6 8 if |R : Z(R)| = 64,

6 9 if |R : Z(R)| = 72,

6 10 if |R : Z(R)| = 80.

Since CR(xi) \ CR(a) = Z(R) for any i 2 A, then by Lemma 2.2.11, we obtain

�i > 8 for any i 2 A. But, by Lemma 2.2.1, we have �i 6 |A| 6 6 for some

i 2 A. We have reached a contradiction. Consequently, t 6= 9.

Lemma 2.8.15. Let {x1, x2, · · · , x10} be the maximal non-commuting set of a

finite ring R. Let |R : CR(x1)| 6 |R : CR(x2)| 6 · · · 6 |R : CR(x10)|. If R is

an 11-centraliser finite ring, then |R : CR(x1)| = 3µ�2, |R : CR(xi)| = 9 for any

i 2 {2, 3, · · · , 10} and R/Z(R) ⇠= Zµ
3 for some µ 2 {3, 4}.

Proof. From Lemma 1.3.1(a), we have R =
10
[
i=1

CR(xi). By Corollary 2.2.5, we

have CR(xi) \ CR(xj) = Z(R) for any two distinct i, j 2 {1, 2, · · · , 10}. Let

|R : CR(xi)| = �i for any i 2 {1, 2, · · · , 10}. By Lemma 2.2.11, we have |R :

Z(R)| 6 �
2
2 . In view of Lemma 2.2.1 and Lemma 2.2.14, we have 4 6 �2 6 9.
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By Theorem 2.2.23, we have |R : Z(R)| > 16 with |R : Z(R)| is not square-free,

|R : Z(R)| 6= p
2
q for any two distinct primes p, q, and |R : Z(R)| 6= p

2 for any

prime p. For the sake of simplicity, we write S = S/Z(R) for any S 6 R.

If �2 = 4, then |R| 6 16, which gives that |R| = 16. Since |R| =

10P
i=1

|CR(xi)|� 9, then we obtain |R| is odd, which is a contradiction. If �2 = 5,

then |R| 6 25, which is a contradiction. Assume that �2 = 6. Therefore, |R| 6 36.

By Lemma 2.2.11, we have |CR(x1)| 6 6. If |R| = 24, then R ⇠= Z2 ⇥ Z12 or

Z2 ⇥ Z2 ⇥ Z6 as R is not cyclic. Thus, |CR(x1)| 6 6 and |CR(xi)| 6 4 for any

i 2 {2, 3, · · · , 10}. This leads to R has at most 2 elements of order 6. Also, there

does not exist any element of order 12 in R. We have reached a contradiction as

Z2 ⇥ Z2 ⇥ Z6 has 14 elements of order 6 and Z2 ⇥ Z12 has an element of order

12. If |R| = 36, then R ⇠= Z2 ⇥ Z18,Z3 ⇥ Z12 or Z6 ⇥ Z6 as R is not cyclic.

Thus, |CR(xi)| 6 6 for any i 2 {1, 2, · · · , 10}. This shows that R has at most

20 elements of order 6. Also, there does not exist any element of order 12 and

order 18 in R. This leads to a contradiction as Z6 ⇥ Z6 has 24 elements of order

6, Z3 ⇥ Z12 has an element of order 12 and Z2 ⇥ Z18 has an element of order

18. If �2 = 7, then |R| 6 49, which is a contradiction. If �2 = 8, then |R| 6 64.

From Lemma 2.2.11, we have |CR(x1)| 6 8. If |R| = 16, 32 or 64, then since

|R| =
10P
i=1

|CR(xi)| � 9, it follows that |R| is odd, a contradiction is reached. If

|R| = 24, then R ⇠= Z2 ⇥ Z12 or Z2 ⇥ Z2 ⇥ Z6 as R is not cyclic. It follows that

|CR(x1)| 6 8 and |CR(xi)| 6 3 for any i 2 {2, 3, · · · , 10}. This shows that R

has at most 2 elements of order 6. Also, there does not exist any element of order

12 in R. This contradicts with the fact that Z2 ⇥Z2 ⇥Z6 has 14 elements of order
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6 and Z2 ⇥ Z12 has an element of order 12. If |R| = 40, then R ⇠= Z2 ⇥ Z20 or

Z2 ⇥ Z2 ⇥ Z10 as R is not cyclic. Therefore, |CR(x1)| 6 8 and |CR(xi)| 6 5

for any i 2 {2, 3, · · · , 10}. This leads to there does not exist any element of

order 10 and order 20 in R, which contradicts the fact that Z2 ⇥ Z2 ⇥ Z10 has an

element of order 10 and Z2 ⇥ Z20 has an element of order 20. If |R| = 48, then

R ⇠= Z2 ⇥Z24,Z2 ⇥Z2 ⇥Z12,Z2 ⇥Z2 ⇥Z2 ⇥Z6 or Z4 ⇥Z12 as R is not cyclic.

Thus, |CR(x1)| 6 8 and |CR(xi)| 6 6 for any i 2 {2, 3, · · · , 10}. It follows that

R has at most 20 elements of order 6. Also, there does not exist any element of

order 12 and order 24 in R. We have reached a contradiction as Z2⇥Z2⇥Z2⇥Z6

has 30 elements of order 6, Z2 ⇥ Z2 ⇥ Z12,Z4 ⇥ Z12 have an element of order

12 and Z2 ⇥ Z24 has an element of order 24. If |R| = 56, then R ⇠= Z2 ⇥ Z28

or Z2 ⇥ Z2 ⇥ Z14 as R is not cyclic. Hence, |CR(x1)| 6 8 and |CR(xi)| 6 7

for any i 2 {2, 3, · · · , 10}. It follows that there does not exist any element of

order 14 and order 28 in R, which leads to a contradiction as Z2 ⇥ Z2 ⇥ Z14 has

an element of order 14 and Z2 ⇥ Z28 has an element of order 28. Consequently,

�2 = 9. Therefore, by Lemma 2.2.1, we obtain �2 = �3 = · · · = �10 = 9.

Since |R| =
10P
i=1

|CR(xi)|� 9, then we have �1 = |R|
9 . Let m|G| denote the total

number of elements with order m in an additive group G. If |R| = 27, then

R/Z(R) ⇠= Z3 ⇥ Z9 or Z3 ⇥ Z3 ⇥ Z3 as R is not cyclic. Hence, |CR(x1)| = 9

and |CR(xi)| = 3 for any i 2 {2, 3, · · · , 10}. This shows that R has at most

9|Z9| elements of order 9. Since 9|Z9| < 9|Z3 ⇥ Z9|, then R 6⇠= Z3 ⇥ Z9. If

|R| = 36, then R ⇠= Z2 ⇥Z18,Z3 ⇥Z12 or Z6 ⇥Z6 as R is not cyclic. Therefore,

|CR(x1)| = 9 and |CR(xi)| = 4 for any i 2 {2, 3, · · · , 10}. This shows that there

does not exist any element of order 6, order 12 and order 18 in R. This leads to a

133



contradiction as Z6 ⇥ Z6 has an elements of order 6, Z3 ⇥ Z12 has an element of

order 12 and Z2⇥Z18 has an element of order 18. If |R| = 54, then R ⇠= Z2⇥Z27

or Z3 ⇥ Z3 ⇥ Z6 as R is not cyclic. Thus, |CR(x1)| = 9 and |CR(xi)| = 6 for

any i 2 {2, 3, · · · , 10}. This shows that there does not exist any element of order

27. Since 2 is divide |CR(xi)| for any i 2 {2, 3, · · · , 10}, then R has at least 9

elements of order 2. We have reached a contradiction as Z2 ⇥ Z27 has an element

of order 27 and Z3 ⇥ Z3 ⇥ Z6 has only 1 element of order 2. If |R| = 72, then

R ⇠= Z2⇥Z36,Z2⇥Z2⇥Z18,Z2⇥Z6⇥Z6,Z3⇥Z24 or Z6⇥Z12 as R is not cyclic.

Therefore, |CR(x1)| = 9 and |CR(xi)| = 8 for any i 2 {2, 3, · · · , 10}. This

implies that there does not exist any element of order 6, order 12, order 18, order

24 and order 36 in R. This leads to a contradiction as Z2⇥Z6⇥Z6 has an element

of order 6, Z6 ⇥ Z12 has an element of order 12, Z2 ⇥ Z2 ⇥ Z18 has an element

of order 18, Z3 ⇥ Z24 has an element of order 24 and Z2 ⇥ Z36 has an element

of order 36. If |R| = 81, then R ⇠= Z3 ⇥ Z27,Z3 ⇥ Z3 ⇥ Z9,Z3 ⇥ Z3 ⇥ Z3 ⇥ Z3

or Z9 ⇥ Z9 as R is not cyclic. Thus, |CR(xi)| = 9 for any i 2 {1, 2 · · · , 10}.

It follows that R has at most 10(9|Z9|) = 60 elements of order 9. Also, there

does not exist any element of order 27 in R. Since Z9 ⇥ Z9 has 72 elements

of order 9 and Z3 ⇥ Z27 has an element of order 27, then R 6⇠= Z9 ⇥ Z9 and

Z3 ⇥ Z27. Assume that R ⇠= Z3 ⇥ Z3 ⇥ Z9. To simplify writing, we let r =

r + Z(R) for any r 2 R. Since Z3 ⇥ Z3 ⇥ Z9 has 54 elements of order 8, then

there exist two distinct l1, l2 2 {1, 2, · · · , 10} such that CR(xl1), CR(xl2) ⇠= Z9.

Hence, there exist some a 2 CR(xl1) � Z(R), b 2 CR(xl2) � Z(R) such that

CR(xl1) = {0, a, 2a, · · · , 8a} and CR(xl2) = {0, b, 2b, · · · , 8b}. This implies

that R = {ma+ nb | m,n 2 Z9} ⇠= Z9 ⇥ Z9, which leads to a contradiction.
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Consequently, R ⇠= Z3 ⇥ Z3 ⇥ Z3 ⇥ Z3.

Theorem 2.8.16. Let R be an 11-centraliser finite ring. Let X1, X2, · · · , X10

be the 10 distinct proper centralisers of R with |R : X1| 6 |R : X2| 6 · · · 6

|R : X10|. Let t be the cardinality of the maximal non-commuting set of R. Then

|R : X1| = 3µ�2
, |R : Xi| = 9 for any i 2 {2, 3, · · · , 10}, R/Z(R) ⇠= Zµ

3 and

Prob(R) = 1
9 +

8
32µ�2 for some µ 2 {3, 4}.

Proof. By Lemma 1.3.1(d)-(g), Lemma 2.7.1, Lemma 2.7.2, Lemma 2.7.5, Lem-

mas 2.8.1-2.8.5, Lemmas 2.8.7-2.8.14, we obtain t = 10. Thus, it follows from

Lemma 2.8.15 that |R : Xi| = 3µ�2, |R : Xi| = 9 for any i 2 {2, 3, · · · , 10} and

R/Z(R) ⇠= Zµ
3 for some µ 2 {3, 4}. In view of Corollary 2.2.5, it follows that for

any r1, r2 2 R � Z(R), either CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R).

Consequently, by (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

3µ
+

⇣
|R|
3µ�2 � |R|

3µ

⌘⇣
|R|
3µ�2

⌘
+ 9

⇣
|R|
9 � |R|

3µ

⌘⇣
|R|
9

⌘

|R|2

=
1

9
+

8

32µ�2
.

We are done.

In general, the converse of the above theorem is not necessarily true.

For example, R1 = { [ a b
c 0 ]| a, b, c 2 Z3} is a 14-centraliser finite ring with

R1/Z(R1) ⇠= Z3 ⇥ Z3 ⇥ Z3, where the multiplication operation of R is de-

fined as [ a b
c 0 ] [

x y
z 0 ] =

⇥
ax+bz ay
cx 0

⇤
for any [ a b

c 0 ] , [
x y
z 0 ] 2 R. Besides that, R2 =
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⇢
a b c d
0 0 0 0
0 0 0 0
0 0 0 0

����� a, b, c, d 2 Z3

�
is a 29-centraliser finite ring with R2/Z(R2) ⇠=

Z3 ⇥Z3 ⇥Z3 ⇥Z3. In the following, we provide an example of an 11-centraliser

finite ring, which is appeared in the proof of Proposition 2.2.18.

Example 2.8.17. Let M(a, b, c) be defined by M(a, b, c) =
h
a b c
0 0 0
0 0 0

i
for any

a, b, c 2 Z3. The ring R = {M(a, b, c) | a, b, c 2 Z3} is an 11-centraliser finite

ring with

R = CR(M(0, 0, 0)),

X1 = CR(M(0, 0, 1)) = CR(M(0, 0, 2)) = CR(M(0, 1, 0))

= CR(M(0, 1, 1)) = CR(M(0, 1, 2)) = CR(M(0, 2, 0))

= CR(M(0, 2, 1)) = CR(M(0, 2, 2))

= {M(0, 0, 0),M(0, 0, 1),M(0, 0, 2),M(0, 1, 0),M(0, 1, 1)

M(0, 1, 2),M(0, 2, 0),M(0, 2, 1),M(0, 2, 2)},

X2 = CR(M(1, 0, 0)) = CR(M(2, 0, 0))

= {M(0, 0, 0),M(1, 0, 0),M(2, 0, 0)},

X3 = CR(M(1, 0, 1)) = CR(M(2, 0, 2))

= {M(0, 0, 0),M(1, 0, 1),M(2, 0, 2)},

X4 = CR(M(1, 0, 2)) = CR(M(2, 0, 1))

= {M(0, 0, 0),M(1, 0, 2),M(2, 0, 1)},

X5 = CR(M(1, 1, 0)) = CR(M(2, 2, 0))

= {M(0, 0, 0),M(1, 1, 0),M(2, 2, 0)},

X6 = CR(M(1, 1, 1)) = CR(M(2, 2, 2))

= {M(0, 0, 0),M(1, 1, 1),M(2, 2, 2)},
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X7 = CR(M(1, 1, 2)) = CR(M(2, 2, 1))

= {M(0, 0, 0),M(1, 1, 2),M(2, 2, 1)},

X8 = CR(M(1, 2, 0)) = CR(M(2, 1, 0))

= {M(0, 0, 0),M(1, 2, 0),M(2, 1, 0)},

X9 = CR(M(1, 2, 1)) = CR(M(2, 1, 2))

= {M(0, 0, 0),M(1, 2, 1),M(2, 1, 2)},

X10 = CR(M(1, 2, 2)) = CR(M(2, 1, 1))

= {M(0, 0, 0),M(1, 2, 2),M(2, 1, 1)}.

Note that, {M(0, 0, 1),M(1, 0, 0),M(1, 0, 1),M(1, 0, 2),M(1, 1, 0),M(1, 1, 1),

M(1, 1, 2),M(1, 2, 0),M(1, 2, 1),M(1, 2, 2)} is a non-commuting set of R with

cardinality 10. Also, we note that there does not exist a non-commuting set of R

with cardinality 11. Thus, the cardinality of the maximal non-commuting set of R

is 10. Besides that, we have |R : X1| = 3, |R : Xi| = 9 for any i 2 {2, 3, · · · , 10}.

Since Z(R) = {M(0, 0, 0)}, then we have R/Z(R) ⇠= Z3 ⇥ Z3 ⇥ Z3. Lastly,

from (1.3), we obtain

Prob(R) =
|Z(R)|
|R| +

P
r2R�Z(R)

|CR(r)|

|R|2

=
1

27
+

8(9) + 18(3)

272

=
17

81
.

We conclude this chapter by summarizing the main theorems regarding
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the n-centraliser ring. Here, we list the results obtained by Dutta et al. (2018a)

and Nath et al. (2022).

characterisation Obtained by

R is a 1-centraliser ring if and only if R is commuta-

tive.

By definition

There does not exist any 2-centraliser and 3-centraliser

ring.

Nath et al. (2022)

R is a 4-centraliser finite ring if and only if R/Z(R) ⇠=

Z2 ⇥ Z2 if and only if the cardinality of the maximal

non-commuting set of R is 3.

Dutta et al. (2018a),

Nath et al. (2022)

R is a 5-centraliser finite ring if and only if R/Z(R) ⇠=

Z3 ⇥ Z3 if and only if the cardinality of the maximal

non-commuting set of R is 4.

Dutta et al. (2018a),

Nath et al. (2022)

If R is a 6-centraliser finite ring, then |R : Z(R)| =

8, 12 or 16.

Dutta et al. (2018a)

If R is a 7-centraliser finite ring, then |R : Z(R)| =

12, 18, 20, 24 or 25.

Dutta et al. (2018a)

Table 2.1: Characterisation for all n-centraliser finite rings

with n 6 7

In this chapter, we have obtained the characterisation for all n-centraliser finite

rings for n 2 {6, 7, 8, 9, 10, 11} in terms of R/Z(R). Also, we have deter-

mined their cardinality of the maximal non-commuting set, index of proper

centralisers and Prob(R). In the following, we present the results that we
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have obtained. Let n 2 {6, 7, 8, 9, 10, 11}. Let R be an n-centraliser finite

ring. Let X1, X2, · · · , Xn�1 be the n � 1 distinct proper centralisers of R with

|R : X1| 6 |R : X2| 6 · · · 6 |R : Xn�1|. Let t be the cardinality of the maximal

non-commuting set of R.

n

characterisation

t Index of proper centralisers of R Isomorphism of

R/Z(R)

Prob(R)

6
5 |R : X1| = 2, |R : Xi| = 4 for

any i 2 {2, 3, 4, 5}

Z2 ⇥ Z2 ⇥ Z2
7
16

5 |R : Xi| = 4 for any i 2

{1, 2, 3, 4, 5}

Z2⇥Z2⇥Z2⇥Z2
19
64

7 6 |R : Xi| = 5 for any i 2

{1, 2, · · · , 6}

Z5 ⇥ Z5
29
125

8 7 |R : Xi| = 4 for any i 2

{1, 2, · · · , 7}

Z2 ⇥ Z2 ⇥ Z2
11
32

9 8 |R : Xi| = 7 for any i 2

{1, 2, · · · , 8}

Z7 ⇥ Z7
55
343

10

6 |R : Xi| = 2 for any i 2

{1, 2, 3}, |R : Xi| = 4 for any

i 2 {4, 5, · · · , 9},

Z2⇥Z2⇥Z2⇥Z2
11
32

6 |R : Xi| = 2 for any i 2

{1, 2, 3}, |R : Xi| = 4 for any

i 2 {4, 5, · · · , 9},

Z4 ⇥ Z4
11
32
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9 |R : Xi| = 4 for any i 2

{1, 2, 3}, |R : Xi| = 8 for any

i 2 {4, 5, · · · , 9}

Z2⇥Z2⇥Z2⇥Z2
1
4

9 |R : X1| = 2, |R : Xi| = 8 for

any i 2 {2, 3, · · · , 9}

Z2⇥Z2⇥Z2⇥Z2
11
32

9 |R : X1| = 4, |R : Xi| = 8 for

any i 2 {2, 3, · · · , 9}

Z2 ⇥ Z2 ⇥ Z2 ⇥

Z2 ⇥ Z2

23
128

9 |R : Xi| = 8 for any i 2

{1, 2, · · · , 9}

Z2 ⇥ Z2 ⇥ Z2 ⇥

Z2 ⇥ Z2 ⇥ Z2

71
512

11
10 |R : X1| = 3, |R : Xi| = 9 for

any i 2 {2, 3, · · · , 10}

Z3 ⇥ Z3 ⇥ Z3
17
81

10 |R : Xi| = 9 for any i 2

{1, 2, · · · , 10}

Z3⇥Z3⇥Z3⇥Z3
89
729

Table 2.2: Characterisation for all n-centraliser finite rings

with 6 6 n 6 11

140



CHAPTER 3

FINITE RINGS WITH CARDINALITY OF THE MAXIMAL

NON-COMMUTING SET IS 5

3.1 Introduction

In this chapter, we study the structures for all finite rings with cardinality of the

maximal non-commuting set is 5. To achieve it, we have applied some of the

similar techniques which have been used in Amiri and Madadi (2016) to prove

our main result. Our main result is:

Main Result. If R is a finite ring with cardinality of the maximal non-commuting

set is 5, then R satisfies one of the following structures:

(a) |Cent(R)| = 6, and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(b) |Cent(R)| = 16 and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

For the purpose of convenience, for any finite ring R, we denote r =

r + Z(R) for any r 2 R and denote S = S/Z(R) for any S 6 R in this chapter.

In Section 3.2, we obtain some results for finite rings with |R| = 16. Finally, in

Section 3.3, we give the proof of our main result.
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3.2 Preliminary Results

In this section, we establish some results that are helpful for the proof of the main

result.

Lemma 3.2.1. Let R be a finite ring. Let r 2 R� Z(R) with |CR(r)| = pm for

some prime p and m 2 N. If CR(r) is non-commutative, then the order of r is

not m.

Proof. Suppose that the order of r is m. Since CR(r) is non-commutative,

then CR(r) satisfies Z(R) < Z(CR(r)) < CR(r). Since r 2 Z(CR(r)), then

|Z(CR(r))| is divisible by m. Hence, |CR(r) : Z(CR(r))| = p. This leads to

CR(r)/Z(CR(r)) is cyclic. It yields that CR(r) is commutative, which leads to a

contradiction.

Lemma 3.2.2. Let R be a finite ring. Let r1 2 R�Z(R) with |CR(r1)| = p1p2p3

for some primes p1, p2, p3. If CR(r1) is non-commutative, then CR(r1) 6= CR(r2)

for any r2 2 R� Z(R) with r1 62< r2 >.

Proof. Assume that CR(r1) = CR(r2) for some r2 2 R�Z(R) with r1 62< r2 >.

Since CR(r1) is non-commutative, then CR(r1) satisfies Z(R) < Z(CR(r1)) <

CR(r1). Suppose that |Z(CR(r1))| = pipj for two distinct i, j 2 {1, 2, 3}, then

|CR(r1) : Z(CR(r1))| = pk, where k 2 {1, 2, 3} � {i, j}. This yields that

CR(r1)/Z(CR(r1)) is cyclic. Consequently, CR(r1) is commutative, which is a

contradiction. Thus, we have |Z(CR(r1))| = pi for some i 2 {1, 2, 3}. This

gives that Z(CR(r1)) is cyclic with order pi. So, we obtain r1 2 Z(CR(r1)) =

Z(CR(r2)) =< r2 >, which leads to a contradiction.
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In the following, we provide some results for finite rings with |R| = 16.

Lemma 3.2.3. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16. Let

{x1, x2, x3, x4, x5} be the maximal non-commuting set of R. If |R : CR(xi)| 6= 2

for any i 2 {1, 2, 3, 4, 5}, then |Cent(R)| = 16.

Proof. From Lemma 1.3.1(a), we have R =
5
[
i=1

CR(xi). Given that |R : CR(xi)|

6= 2 for any i 2 {1, 2, 3, 4, 5} and |R| = 16, thus it can be easily seen that

|CR(xi)| = 4 for any i 2 {1, 2, 3, 4, 5} and CR(xi) \ CR(xj) = Z(R) for any

two distinct i, j 2 {1, 2, 3, 4, 5}. By Lemma 2.2.15, CR(xi) is commutative for

any i 2 {1, 2, 3, 4, 5}. Thus, it can be easily checked that for any r 2 R� Z(R),

CR(r) is non-commutative if and only if |CR(r)| = 8. Since |Cent(R)| > 6,

then there exists some a1 2 R � Z(R) such that CR(a1) is non-commutative

with |CR(a1)| = 8. Without loss of generality, we assume that a1 2 CR(x1).

Therefore, we have

CR(x1) = {0, x1, a1, x1 + a1}

and

CR(a1) = {0, x1, a1, x1 + a1, a2, a3, a4, a5}

for some a2, a3, a4, a5 2 R � Z(R). Now, we claim that |CR(xi) \ A| = 1 for

any i 2 {2, 3, 4, 5}, where A = {a2, a3, a4, a5}. Suppose that |CR(xi) \ A| >

2 for some i 2 {2, 3, 4, 5}. So, we have ak1 , ak2 2 CR(xi) for two distinct

k1, k2 2 {2, 3, 4, 5}. If |CR(ak1) \ CR(ak2)| = 4|Z(R)|, then a1 2 CR(x1) \

CR(ak1) \ CR(ak2) = CR(x1) \ CR(xi) = Z(R), which is a contradiction. If
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|CR(ak1) \ CR(ak2)| = 8|Z(R)|, then CR(ak1) = CR(ak2) with |CR(ak1)| = 8,

which contradicts with Lemma 3.2.1 and Lemma 3.2.2. So, our claim is true.

Without loss of generality, we let ai 2 CR(xi) for any i 2 {2, 3, 4, 5}. Hence, we

have

CR(xi) = {0, xi, ai, xi + ai}

for any i 2 {2, 3, 4, 5}. For any i 2 {2, 3, 4, 5}, since a1 2 CR(ai) but a1 62

CR(xi), then CR(xi) < CR(ai). So, |CR(ai)| = 8 for any i 2 {2, 3, 4, 5}. Next,

we claim that |CR(xj + aj)| = 8 for some j 2 {1, 2, 3, 4, 5}. Assume that

|CR(xi + ai)| = 4 for any i 2 {1, 2, 3, 4, 5}. Thus, CR(xi + ai) = CR(xi) for

any i 2 {1, 2, 3, 4, 5}. This implies that

CR(a2) = {0, x2, a2, x2 + a2, a1, a3, a4, a5}.

This shows that |CR(a1)\CR(a2)| = 6, which contradicts the fact that |CR(a1)\

CR(a2)| is divide |R|. Consequently, we have |CR(xj + aj)| = 8 for some

j 2 {1, 2, 3, 4, 5}, as claimed. We claim that |CR(aj) \ {ai, xi + ai}| = 1

for any i 2 {1, 2, 3, 4, 5} � {j}. If |CR(aj) \ {ai, xi + ai}| = 2 for some

i 2 {1, 2, 3, 4, 5} � {j}, then aj 2 CR(xi), which is a contradiction. We next

claim that |CR(xj + aj) \ {ai, xi + ai}| = 1 for any i 2 {1, 2, 3, 4, 5} � {j}.

If |CR(xj + aj) \ {ai, xi + ai}| = 2 for some i 2 {1, 2, 3, 4, 5} � {j}, then

xj + aj 2 CR(xi), which is a contradiction. By Lemma 3.2.1 and Lemma 3.2.2,

we obtain CR(aj) 6= CR(xj+aj). It follows that CR(aj)\CR(xj + aj) = CR(xj).

Thus, we have xi + ai 2 CR(aj) or xi + ai 2 CR(xj + aj) but not both. This
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implies that |CR(xi + ai)| > 5 for any i 2 {1, 2, 3, 4, 5}� {j}. Hence, we have

|CR(xi + ai)| = 8 for any i 2 {1, 2, 3, 4, 5} � {j}. Consequently, we obtain

|Cent(R)| = 1+5+10 = 16 by Lemma 3.2.1 and Lemma 3.2.2, as desired.

Lemma 3.2.4. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16. Let

{x1, x2, x3, x4, x5} be the maximal non-commuting set of R. If |R : CR(xk)| = 2

for some k 2 {1, 2, 3, 4, 5}, then |R : CR(xl)| = 2 for some l 2 {1, 2, 3, 4, 5}�

{k}.

Proof. Suppose that |R : CR(xl)| > 4 for any l 2 {1, 2, 3, 4, 5}� {k}. Without

loss of generality, we assume that k = 1. Thus, CR(x1) can be written as

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b}

for some a, b 2 R�Z(R). By Lemma 1.3.1(a), we have R =
5
[
i=1

CR(xi). Hence,

by Lemma 2.7.3, we obtain |CR(xi)| = 4 for any i 2 {2, 3, 4, 5}. Assume that

ab = ba, then CR(x1) is commutative. Thus, it follows from Lemma 2.2.12 that

|R| 6 2(4) = 8, which is a contradiction. So, ab 6= ba. By Lemma 2.2.11,

we obtain |CR(x1) \ CR(xi)| = 2 for any i 2 {2, 3, 4, 5}. Then, there exist

four elements w2, w3, w4, w5 2 {a, b, a + b, x1 + a, x1 + b, x1 + a + b} such

that wi 2 CR(xi) for any i 2 {2, 3, 4, 5}. Let A = {a, b, a + b, x1 + a, x1 +

b, x1 + a + b} � {w2, w3, w4, w5}. Now, we claim that A = {u3, x1 + u3} for

some u3 2 {a, b, a+ b}. Suppose to the contrary that A 6= {w, x1 + w} for any

w 2 {a, b, a+ b}. Hence, we note that there exist two distinct u, v 2 {a, b, a+ b}

such that u, v 2 A, u, x1+ v 2 A or x1+u, x1+ v 2 A. Since all the elements in

the set A are non-commute with x2, x3, x4, x5, then we have {↵, �, x2, x3, x4, x5}
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is a non-commuting set of R with cardinality 6, where ↵ 2 {u, x1 + u} and

� 2 {v, x1 + v}. This contradicts with the fact that the cardinality of the maximal

non-commuting set of R is 5. Therefore, A = {u3, x1 + u3} for some u3 2

{a, b, a+ b}, as claimed. Without loss of generality, we have

CR(x2) = {0, x2, u1, x2 + u1},

CR(x3) = {0, x3, x1 + u1, x1 + x3 + u1},

CR(x4) = {0, x4, u2, x4 + u2},

CR(x5) = {0, x5, x1 + u2, x1 + x5 + u2},

where u1, u2 2 {a, b, a+ b}� {u3} with u1 6= u2. By Lemma 2.2.15, CR(xi) is

commutative for any i 2 {2, 3, 4, 5}. Consequently, we obtain

CR(u1) = {0, x1, u1, x1 + u1, x2, x2 + u1, x4 + u2, x1 + x5 + u2}

and

CR(x1 + u1) = {0, x1, u1, x1 + u1, x3, x1 + x3 + u1, x4 + u2, x1 + x5 + u2}.

This shows that |CR(u1) \ CR(x1 + u1)| = 6. We have reached a contradiction

as |CR(u1) \ CR(x1 + u1)| is divide |R|.

Lemma 3.2.5. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16. Let

{x1, x2, x3, x4, x5} be the maximal non-commuting set of R. If |R : CR(xk)| =

|R : CR(xl)| = 2 for two distinct k, l 2 {1, 2, 3, 4, 5}, then |Cent(R)| = 16.

Proof. Without loss of generality, we assume that k = 1 and l = 2. By Lemma
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2.2.11, we obtain |CR(x1) \ CR(x2)| = 4. Therefore, CR(x1) \ CR(x2) can be

written as CR(x1)\CR(x2) = {0, a, b, a+ b} for some a, b 2 R�Z(R). So, we

have

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b},

CR(x2) = {0, x2, a, b, a+ b, x2 + a, x2 + b, x2 + a+ b}.

Suppose that ab = ba, then CR(x1) and CR(x2) are commutative. Therefore, by

Lemma 2.2.12, we obtain |R| 6 2(2) = 4, which is a contradiction. So, ab 6= ba.

Thus, we have

CR(a) = {0, a, x1, x2, x1 + x2, x1 + a, x2 + a, x1 + x2 + a},

CR(b) = {0, b, x1, x2, x1 + x2, x1 + b, x2 + b, x1 + x2 + b},

CR(a+ b) = {0, a+ b, x1, x2, x1 + x2, x1 + a+ b, x2 + a+ b,

x1 + x2 + a+ b},

CR(x1 + x2) = {0, x1 + x2, a, b, a+ b, x1 + x2 + a, x1 + x2 + b,

x1 + x2 + a+ b}.

Apart from this, we have

CR(u+ v) = {0, u, v, u+ v}

for any u 2 {x1, x2, x1 + x2} and v 2 {a, b, a + b}. Consequently, we have

|Cent(R)| = 1 + 2 + 4 + 9 = 16. This completes the proof.
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3.3 Proof of Main Result

In this section, we give the proof of our main result.

Theorem 3.3.1. If R is a finite ring with cardinality of the maximal non-commuting

set is 5, then R satisfies one of the following structures:

(a) |Cent(R)| = 6, and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(b) |Cent(R)| = 16 and R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Proof. Let {x1, x2, x3, x4, x5} be the maximal non-commuting set of R. By

Lemma 1.3.1(d), we have |Cent(R)| > 6. If |Cent(R)| = 6, then by Theorem

2.3.1, we get R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2. Next, we

consider for |Cent(R)| > 6. By Lemma 1.3.1(b), (c), it follows that {CR(xi) |

i = 1, 2, 3, 4, 5} is an irredundant cover of R with intersection Z(R). Therefore,

we obtain |R : Z(R)| 6 f(5) = 16. Thus, by Theorem 2.2.23, we have |R :

Z(R)| = 8 or 16. If |R : Z(R)| = 8, then by Lemma 2.2.16 and Lemma 2.2.4,

we get |Cent(R)| = 6, which is a contradiction. So, we have |R : Z(R)| = 16. In

view of Lemma 3.2.3, Lemma 3.2.4 and Lemma 3.2.5, we obtain |Cent(R)| = 16.

Suppose to the contrary that R/Z(R) 6⇠= Z2⇥Z2⇥Z2⇥Z2. Then, there exists some

a 2 R�Z(R) such that the order of a is 4 or 8. Since gcd(3, order of a) = 1, then

CR(a) = CR(3a). Since a 6= 3a, then we obtain |Cent(R)| < |R : Z(R)|, which

leads to a contradiction. So, we can conclude that R/Z(R) ⇠= Z2⇥Z2⇥Z2⇥Z2.

We are done.
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CHAPTER 4

(m,n)-CENTRALISER FINITE RINGS

4.1 Introduction

Inspired by the works of Ashrafi et al. (2020), we intend to determine the structures

of (m,n)-centraliser finite rings. In Section 4.2, we first give some requirements

which will be used in the construction of our main results. We also compute

|m � Cent(R)| for certain classes of finite rings. Finally, in Section 4.3, we

describe the characterisation for some (m,n)-centraliser finite rings for n 6 10.

4.2 Some Requirements and Some Computations of |m� Cent(R)|

In this section, we establish some useful lemmas that will be employed in the

construction of our main results. Besides that, we compute |m � Cent(R)| by

imposing some assumptions on the finite ring R.

Lemma 4.2.1. Let m 2 N with m > 2 and let R be a non-commutative ring.

Then the following statements hold.

(a) If |Z(R)| = m� 1, then |Cent(R)| 6 |m� Cent(R)|.

(b) If |Z(R)| > m, then |Cent(R)| 6 |m� Cent(R)|� 1.

Proof. We claim that Cent(R)� {R} ⇢ (m� Cent(R))� {R}. Let CR(r1) 2
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Cent(R)� {R}, where r1 2 R�Z(R). Hence, we have CR(r1) =
m
\
i=1

CR(ri) 2

(m � Cent(R)) � {R} for m � 1 distinct r2, r3, · · · , rm 2 Z(R). This shows

that Cent(R)� {R} ✓ (m� Cent(R))� {R}. Suppose that Cent(R)� {R} =

(m� Cent(R))� {R}. Since R is non-commutative, then there exist two distinct

r1, r2 2 R� Z(R) such that r1r2 6= r2r1. Thus, there exists some r 2 R� Z(R)

such that

CR(r) =

8
>>><

>>>:

CR(r1) \ CR(r2) if m = 2,

m
\
i=1

CR(ri) for m� 2 distinct r3, r4, · · · , rm 2 Z(R) if m > 3.

This implies that r 2
m
\
i=1

CR(ri), which gives that r1, r2 2 CR(r). This contradicts

with the fact that r1, r2 62
m
\
i=1

CR(ri). Consequently, Cent(R) � {R} ⇢ (m �

Cent(R))� {R}, as claimed.

(a) Since |Z(R)| = m � 1, we have R 62 m � Cent(R). It follows that

Cent(R)� {R} ⇢ m� Cent(R). Therefore, |Cent(R)| 6 |m� Cent(R)|.

(b) Since |Z(R)| > m, we have R 2 m � Cent(R). It follows that

Cent(R) ⇢ m� Cent(R). Therefore, |Cent(R)| 6 |m� Cent(R)|� 1.

Lemma 4.2.2. If R is an n-centraliser finite ring with 4 6 n 6 9, then every

proper centraliser of R is commutative.

Proof. By Lemma 1.3.1(f), (g), Theorem 2.3.1, Theorem 2.4.1, Theorem 2.5.1

and Theorem 2.6.5, it follows that the cardinality of the maximal non-commuting

set of R is n� 1. So, we obtain every proper centraliser of R is commutative by
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Lemma 2.2.4.

Theorem 4.2.3. Let m 2 N with m > 2 and let R be a finite non-commutative

ring with every proper centraliser of R is commutative. Then the following

statements hold.

(a) If |Z(R)| = m� 1, then |m� Cent(R)| = |Cent(R)|.

(b) If |Z(R)| > m, then |m� Cent(R)| = |Cent(R)|+ 1.

Proof. Here, we let
m
\
i=1

CR(ri) 2 m�Cent(R), where all ri’s are in R and distinct

from each other.

(a) Since |Z(R)| = m�1, then ri 2 R�Z(R) for some i 2 {1, 2, · · · ,m}.

If rj 2 Z(R) for any j 2 {1, 2, · · · ,m} � {i}, then
m
\
i=1

CR(ri) = CR(r) for

some r 2 R � Z(R). If rj 2 R � Z(R) for some j 2 {1, 2, · · · ,m} � {i},

then by Lemma 1.3.1(h), we obtain
m
\
i=1

CR(ri) = Z(R) or CR(r) for some

r 2 R � Z(R). Therefore, m � Cent(R) = {Z(R)} [ (Cent(R) � {R}).

Consequently, |m� Cent(R)| = |Cent(R)|.

(b) Given that |Z(R)| > m. If ri 2 Z(R) for any i 2 {1, 2, · · · ,m}, then

m
\
i=1

CR(ri) = R. If ri 2 R � Z(R) for some i 2 {1, 2, · · · ,m}, then by using

similar arguments as in part (a), we obtain
m
\
i=1

CR(ri) = Z(R) or CR(r) for some

r 2 R� Z(R). Therefore, m� Cent(R) = {Z(R)} [ Cent(R). Consequently,

|m� Cent(R)| = |Cent(R)|+ 1.

Theorem 4.2.4. Let m 2 N with m > 2 and let R be a finite non-commutative

ring with |Z(R)| > m�1. Let t be the cardinality of the maximal non-commuting
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set of R. Then every proper centraliser of R is commutative if and only if

|m� Cent(R)| =

8
>>><

>>>:

t+ 1 if |Z(R)| = m� 1,

t+ 2 if |Z(R)| > m.

Proof. The necessity part follows readily by Lemma 2.2.4 and Theorem 4.2.3.

Next, we consider the sufficiency part. In view of Lemma 4.2.1, we obtain

|Cent(R)| 6 t + 1. So, we have |Cent(R)| = t + 1 by Lemma 1.3.1(e).

Consequently, by Lemma 2.2.4, it follows that every proper centraliser of R

is commutative.

Theorem 4.2.5. Let m,n 2 N with m,n > 2 and let R be a finite ring with

|R : Z(R)| = p
n

for some prime p. Let |CR(r)| = p|Z(R)| or p
2|Z(R)| for any

r 2 R�Z(R). Let s1 and s2 be the total numbers of distinct proper centralisers in

R with order p|Z(R)| and p
2|Z(R)|, respectively. Then the following statements

hold.

(a) s1 + s2(p+ 1) = pn�1
p�1 .

(b) If |Z(R)| = m� 1, then |m� Cent(R)| = s1 + s2 + 1.

(c) If |Z(R)| > m, then |m� Cent(R)| = s1 + s2 + 2.

Proof. In view of Lemma 2.2.15, we obtain every proper centraliser of R is

commutative.

(a) By Lemma 1.3.1(h), it follows that for any r1, r2 2 R� Z(R), either

CR(r1) = CR(r2) or CR(r1) \ CR(r2) = Z(R). So, we have |R| � |Z(R)| =
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s1(|CR(a1)|� |Z(R)|) + s2(|CR(a2)|� |Z(R)|), where a1, a2 2 R�Z(R) with

|CR(a1)| = p|Z(R)| and |CR(a2)| = p
2|Z(R)|. This gives that s1 + s2(p+ 1) =

pn�1
p�1 .

(b) It follows from Theorem 4.2.3(a) that |m� Cent(R)| = s1 + s2 + 1.

(c) It follows from Theorem 4.2.3(b) that |m�Cent(R)| = s1+s2+2.

To simplify the writing in Theorem 4.2.6 and Theorem 4.2.7, we denote

�(R) =

8
>>><

>>>:

1 if |Z(R)| = m� 1

0 if |Z(R)| > m

, for any ring R and m 2 N with m > 2.

Theorem 4.2.6. Let m 2 N with m > 2. Let R1, R2 be rings with |Z(R1)|,

|Z(R2)| > m� 1. Then

|m� Cent(R1 ⇥R2)|

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

|m� Cent(R1)||m� Cent(R2)|

+ �(R2)|m� Cent(R1)|+ �(R1)|m� Cent(R2)|
if m = 2,

|m� Cent(R1)||m� Cent(R2)|

+ �(R2)|m� Cent(R1)|+ �(R1)|m� Cent(R2)|

+ �(R1)�(R2)

if m > 3.

Proof. It can be easily seen that

m
\
i=1

CR1⇥R2((ai, bi))

=
m
\
i=1

(CR1(ai)⇥ CR2(bi))
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= (
m
\
i=1

CR1(ai))⇥ (
m
\
i=1

CR2(bi)) (4.1)

for any (a1, b1), (a2, b2), · · · , (am, bm) 2 R1 ⇥ R2. Let (a1, b1), (a2, b2), · · · ,

(am, bm) be m distinct elements in R1 ⇥ R2. Before we continue the proof,

without loss of generality, we consider the following two situations.

Situation 1: |Z(R1)| > m. Since |Z(R1)| > m,
m
\
i=1

CR1(ai) can be

written as
m
\
i=1

CR1(ai) =
m
\
i=1

CR1(xi) for m distinct x1, x2, · · · , xm 2 R1.

Situation 2: |Z(R1)| = m � 1. If not all ai’s are in Z(R1), then since

|Z(R1)| = m� 1,
m
\
i=1

CR1(ai) can be written as
m
\
i=1

CR1(ai) =
m
\
i=1

CR1(xi) for m

distinct x1, x2, · · · , xm 2 R1. On the other hand, if all ai’s are in Z(R1), then

m
\
i=1

CR1(ai) = R1.

Now, we break the proof into the following four cases.

Case 1: |Z(R1)|, |Z(R2)| > m. By using (4.1) and similar arguments as

in Situation 1, we have

m
\
i=1

CR1⇥R2((ai, bi)) = (
m
\
i=1

CR1(xi))⇥ (
m
\
i=1

CR2(yi))

for m distinct x1, x2, · · · , xm 2 R1 and m distinct y1, y2, · · · , ym 2 R2. Conse-

quently, we obtain

|m� Cent(R1 ⇥R2)| = |m� Cent(R1)||m� Cent(R2)|.
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Case 2: |Z(R1)| > m, |Z(R2)| = m � 1. By using (4.1) and similar

arguments as in Situation 1 and 2, we have

m
\
i=1

CR1⇥R2((ai, bi))

=

8
>>><

>>>:

(
m
\
i=1

CR1(xi))⇥ (
m
\
i=1

CR2(yi)) if not all bi’s are in Z(R2),

(
m
\
i=1

CR1(xi))⇥R2 if all bi’s are in Z(R2)

for m distinct x1, x2, · · · , xm 2 R1 and m distinct y1, y2, · · · , ym 2 R2. Conse-

quently, we obtain

|m� Cent(R1 ⇥R2)| = |m� Cent(R1)||m� Cent(R2)|+ |m� Cent(R1)|.

Case 3: |Z(R1)| = m� 1, |Z(R2)| > m. By using similar arguments as

in Case 2, we obtain

|m� Cent(R1 ⇥R2)| = |m� Cent(R1)||m� Cent(R2)|+ |m� Cent(R2)|.

Case 4: |Z(R1)| = |Z(R2)| = m � 1. By using (4.1) and similar

arguments as in Situation 2, we have

m
\
i=1

CR1⇥R2((ai, bi))
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=

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

(
m
\
i=1

CR1(xi))⇥ (
m
\
i=1

CR2(yi)) if not all ai’s are in Z(R1) and not all bi’s

are in Z(R2),

R1 ⇥ (
m
\
i=1

CR2(yi)) if all ai’s are in Z(R1) and not all bi’s are

in Z(R2),

(
m
\
i=1

CR1(xi))⇥R2 if not all ai’s are in Z(R1) and all bi’s are

in Z(R2),

R1 ⇥R2 if all ai’s are in Z(R1), all bi’s are in

Z(R2) and m > 3

for m distinct x1, x2, · · · , xm 2 R1 and m distinct y1, y2, · · · , ym 2 R2. Conse-

quently, we obtain

|m� Cent(R1 ⇥R2)|

=

8
>>>>>>>>>><

>>>>>>>>>>:

|m� Cent(R1)||m� Cent(R2)|

+ |m� Cent(R1)|+ |m� Cent(R2)|
if m = 2,

|m� Cent(R1)||m� Cent(R2)|

+ |m� Cent(R1)|+ |m� Cent(R2)|+ 1

if m > 3.

By combining all the cases, we obtain the desired result.

To conclude this section, we give a generalisation of the above theorem.

Theorem 4.2.7. Let m,n 2 N with m,n > 2. Let R1, R2, · · · , Rn be rings with
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|Z(R1)|, |Z(R2)|, · · · , |Z(Rn)| > m� 1 . Let ⇤n = {1, 2, · · · , n}. Then

�����m� Cent

 
nY

i=1

Ri

!����� =

8
>>>>>>>>><

>>>>>>>>>:

nY

i=1

|m� Cent(Ri)|+Mn�1 if m = 2

nY

i=1

|m� Cent(Ri)|+Mn�1

+
nY

i=1

�(Ri)

if m > 3

,

where Mn�1 =
n�1X

i=1

0

BBBB@

X

Bi⇢⇤n
with

|Bi|=i

  
Y

x2Bi

�(Rx)

! 
Y

y2⇤n�Bi

|m� Cent(Ry)|
!!

1

CCCCA
.

Proof. To prove this result, we will use mathematical induction. By Theorem

4.2.6, the result holds for n = 2. Suppose that there exists some k 2 N with

k > 3 such that

�����m� Cent

 
kY

i=1

Ri

!����� =

8
>>>>>>>>>><

>>>>>>>>>>:

kY

i=1

|m� Cent(Ri)|+Mk�1 if m = 2

kY

i=1

|m� Cent(Ri)|+Mk�1

+
kY

i=1

�(Ri)

if m > 3

.

Now, we want to show that the result also holds for n = k+1. By Theorem 4.2.6,

we have

�����m� Cent

 
k+1Y

i=1

Ri

!�����

=

�����m� Cent

 
kY

i=1

Ri ⇥Rk+1

!�����
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=

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

�����m� Cent

 
kY

i=1

Ri

!����� |m� Cent (Rk+1)|

+ �(Rk+1)

�����m� Cent

 
kY

i=1

Ri

!�����

+ �

 
kY

i=1

Ri

!
|m� Cent (Rk+1)|

if m = 2,

�����m� Cent

 
kY

i=1

Ri

!����� |m� Cent (Rk+1)|

+ �(Rk+1)

�����m� Cent

 
kY

i=1

Ri

!�����

+ �

 
kY

i=1

Ri

!
|m� Cent (Rk+1)|+ �

 
kY

i=1

Ri

!
�(Rk+1)

if m > 3

=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

 
kY

i=1

|m� Cent(Ri)|+Mk�1

!
|m� Cent (Rk+1)|

+ �(Rk+1)

 
kY

i=1

|m� Cent(Ri)|+Mk�1

!

+

 
kY

i=1

� (Ri)

!
|m� Cent (Rk+1)|

if m = 2,

 
kY

i=1

|m� Cent(Ri)|+Mk�1 +
kY

i=1

�(Ri)

!
|m� Cent (Rk+1)|

+ �(Rk+1)

 
kY

i=1

|m� Cent(Ri)|+Mk�1 +
kY

i=1

�(Ri)

! if m > 3.

By expanding and simplifying, we obtain

�����m� Cent

 
k+1Y

i=1

Ri

!����� =

8
>>>>>>>>>><

>>>>>>>>>>:

k+1Y

i=1

|m� Cent(Ri)|+Mk if m = 2

k+1Y

i=1

|m� Cent(Ri)|+Mk

+
k+1Y

i=1

�(Ri)

if m > 3,

,

as desired.
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4.3 Some (m,n)-Centraliser Finite Rings

In this section, we give the characterisation for some (m,n)-centraliser finite

rings with n 6 10. We begin with the following result.

Theorem 4.3.1. Let m 2 N with m > 2 and let R be a non-commutative ring

with |Z(R)| > m� 1. Then R is not (m, 2)-centraliser ring, (m, 3)-centraliser

ring, and (m, 4)-centraliser ring with |Z(R)| > m.

Proof. Suppose that R is an (m, 2)-centraliser ring, (m, 3)-centraliser ring, or

(m, 4)-centraliser ring with |Z(R)| > m. Then, by Lemma 4.2.1, we obtain

|Cent(R)| 6 3, which contradicts the fact that |Cent(R)| > 4.

Theorem 4.3.2. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| =

m�1. Then R is an (m, 4)-centraliser finite ring if and only if R/Z(R) ⇠= Z2⇥Z2.

Proof. ()): By Lemma 4.2.1(a), we obtain |Cent(R)| 6 4. Since |Cent(R)| >

4, we have |Cent(R)| = 4. Hence, by [A3], we have R/Z(R) ⇠= Z2 ⇥ Z2.

((): In view of [A2], we have |Cent(R)| = 4. Consequently, R is an

(m, 4)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(a).

Theorem 4.3.3. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m�1. Then R is an (m, 5)-centraliser finite ring if and only if R/Z(R) ⇠= Z2⇥Z2

with |Z(R)| > m, or R/Z(R) ⇠= Z3 ⇥ Z3 with |Z(R)| = m� 1.

Proof. ()): By Lemma 4.2.1, we obtain |Cent(R)| 6 5. Since |Cent(R)| > 4,

we have 4 6 |Cent(R)| 6 5. Hence, by Lemma 4.2.2, Theorem 4.2.3, [A3] and
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[A4], we have R/Z(R) ⇠= Z2 ⇥ Z2 with |Z(R)| > m, or R/Z(R) ⇠= Z3 ⇥ Z3

with |Z(R)| = m� 1.

((): In view of [A2], we have |Cent(R)| = 4 with |Z(R)| > m, or

|Cent(R)| = 5 with |Z(R)| = m� 1. Consequently, R is an (m, 5)-centraliser

finite ring by Lemma 4.2.2 and Theorem 4.2.3.

Theorem 4.3.4. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| =

m� 1. If R is an (m, 6)-centraliser finite ring, then R/Z(R) ⇠= Z2 ⇥Z2 ⇥Z2 or

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Proof. By Lemma 4.2.1(a), we obtain |Cent(R)| 6 6. Since |Cent(R)| > 4,

we have 4 6 |Cent(R)| 6 6. Hence, by Lemma 4.2.2, Theorem 4.2.3(a) and

Theorem 2.3.1, we have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Theorem 4.3.5. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m. Then R is an (m, 6)-centraliser finite ring if and only if R/Z(R) ⇠= Z3 ⇥ Z3.

Proof. ()): By Lemma 4.2.1(b), we obtain |Cent(R)| 6 5. Since |Cent(R)| >

4, we have 4 6 |Cent(R)| 6 5. Hence, by Lemma 4.2.2, Theorem 4.2.3(b) and

[A4], we have R/Z(R) ⇠= Z3 ⇥ Z3.

((): In view of [A2], we have |Cent(R)| = 5. Consequently, R is an

(m, 6)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(b).

Theorem 4.3.6. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| =

m�1. Then R is an (m, 7)-centraliser finite ring if and only if R/Z(R) ⇠= Z5⇥Z5.
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Proof. ()): By Lemma 4.2.1(a), we obtain |Cent(R)| 6 7. Since |Cent(R)| >

4, we have 4 6 |Cent(R)| 6 7. Hence, by Lemma 4.2.2, Theorem 4.2.3(a) and

Theorem 2.4.1, we have R/Z(R) ⇠= Z5 ⇥ Z5.

((): In view of [A2], we have |Cent(R)| = 7. Consequently, R is an

(m, 7)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(a).

Theorem 4.3.7. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m. If R is an (m, 7)-centraliser finite ring, then R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Proof. By Lemma 4.2.1(b), we obtain |Cent(R)| 6 6. Since |Cent(R)| > 4,

we have 4 6 |Cent(R)| 6 6. Hence, by Lemma 4.2.2, Theorem 4.2.3(b) and

Theorem 2.3.1, we have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

Theorem 4.3.8. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| =

m� 1. If R is an (m, 8)-centraliser finite ring, then R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2.

Proof. By Lemma 4.2.1(a), we obtain |Cent(R)| 6 8. Since |Cent(R)| > 4,

we have 4 6 |Cent(R)| 6 8. Hence, by Lemma 4.2.2, Theorem 4.2.3(a) and

Theorem 2.5.1, we have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2.

Theorem 4.3.9. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m. Then R is an (m, 8)-centraliser finite ring if and only if R/Z(R) ⇠= Z5 ⇥ Z5.

Proof. ()): By Lemma 4.2.1(b), we obtain |Cent(R)| 6 7. Since |Cent(R)| >

4, we have 4 6 |Cent(R)| 6 7. Hence, by Lemma 4.2.2, Theorem 4.2.3(b) and

Theorem 2.4.1, we have R/Z(R) ⇠= Z5 ⇥ Z5.
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((): In view of [A2], we have |Cent(R)| = 7. Consequently, R is an

(m, 8)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(b).

Theorem 4.3.10. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| =

m�1. Then R is an (m, 9)-centraliser finite ring if and only if R/Z(R) ⇠= Z7⇥Z7.

Proof. ()): By Lemma 4.2.1(a), we obtain |Cent(R)| 6 9. Since |Cent(R)| >

4, we have 4 6 |Cent(R)| 6 9. Hence, by Lemma 4.2.2, Theorem 4.2.3(a) and

Theorem 2.6.5, we have R/Z(R) ⇠= Z7 ⇥ Z7.

((): In view of [A2], we have |Cent(R)| = 9. Consequently, R is an

(m, 9)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(a).

Theorem 4.3.11. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m. If R is an (m, 9)-centraliser finite ring, then R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2.

Proof. By Lemma 4.2.1(b), we obtain |Cent(R)| 6 8. Since |Cent(R)| > 4,

we have 4 6 |Cent(R)| 6 8. Hence, by Lemma 4.2.2, Theorem 4.2.3(b) and

Theorem 2.5.1, we have R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2.

We conclude this chapter by giving the characterisation for some (m, 10)-

centraliser finite rings.

Theorem 4.3.12. Let m 2 N with m > 2 and let R be a finite ring with |Z(R)| >

m. Then R is an (m, 10)-centraliser finite ring if and only if R/Z(R) ⇠= Z7 ⇥Z7.

Proof. ()): By Lemma 4.2.1(b), we obtain |Cent(R)| 6 9. Since |Cent(R)| >

4, we have 4 6 |Cent(R)| 6 9. Hence, by Lemma 4.2.2, Theorem 4.2.3(b) and

Theorem 2.6.5, we have R/Z(R) ⇠= Z7 ⇥ Z7.

162



((): In view of [A2], we have |Cent(R)| = 9. Consequently, R is an

(m, 10)-centraliser finite ring by Lemma 4.2.2 and Theorem 4.2.3(b).
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CHAPTER 5

NON-CENTRALISER GRAPHS OF FINITE RINGS

5.1 Introduction

In this chapter, we attempt to discuss various graph theoretical properties of the

non-centraliser graphs of finite rings. Let G be a graph. We denote by V (G) the

vertex set of G, E(G) the edge set of G. An edge {x, y} in E(G) is said to join the

vertices x and y. For any two vertices x, y in V (G), we write x ⇠ y (respectively,

x 6⇠ y) to means that x is adjacent to y (respectively, x is non-adjacent to y). We

use the notation d(x, y) to denote the distance between two vertices x and y in

V (G). We let CR(x) be defined by CR(x) = {y 2 R | CR(x) = CR(y)}.

5.2 Some Properties of ⌥R

In this section, we investigate some properties of ⌥R. We first give some examples

of ⌥R.

Example 5.2.1. Consider the ring R1 = ha, b | 2a = 2b = 0, a2 = a, b
2 = b,

ab = a, ba = bi. Note that, R1 can be simplified as R1 = {0, a, b, a+ b}. Since

a 6= b, then ab 6= ba. Hence, we have
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CR1(0) = R1,

CR1(a) = {0, a},

CR1(b) = {0, b},

CR1(a+ b) = {0, a+ b}.

This gives that V (⌥R1) = {0, a, b, a+ b} and E(⌥R1) = {{0, a}, {0, b}, {0, a+

b}, {a, b}, {a, a+ b}, {b, a+ b}}. Therefore, ⌥R1 is as follows:

0 a b a+ b

Figure 5.1: Non-centraliser graph ⌥R1

This shows us that ⌥R1 is a complete 4-partite graph.

Example 5.2.2. Consider the ring R2 = ha, b | 3a = 3b = 0, a2 = a, b
2 = b,

ab = a, ba = bi. Note that, R2 can be simplified as R2 = {0, a, 2a, b, 2b, a +

b, a+ 2b, 2a+ b, 2a+ 2b}. Since a 6= b, then ab 6= ba. Hence, we have

CR2(0) = R2,

CR2(a) = CR2(2a) = {0, a, 2a},

CR2(b) = CR2(2b) = {0, b, 2b},
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CR2(a+ b) = CR2(2a+ 2b) = {0, a+ b, 2a+ 2b},

CR2(a+ 2b) = CR2(2a+ b) = {0, a+ 2b, 2a+ b}.

This gives that V (⌥R2) = {0, a, 2a, b, 2b, a + b, a + 2b, 2a + b, 2a + 2b} and

E(⌥R2) = {{0, a}, {0, 2a}, {0, b}, {0, 2b}, {0, a+ b}, {0, 2a+ 2b}, {0, a+ 2b},

{0, 2a+b}, {a, b}, {a, 2b}, {a, a+b}, {a, 2a+2b}, {a, a+2b}, {a, 2a+b}, {2a, b},

{2a, 2b}, {2a, a+b}, {2a, 2a+2b}, {2a, a+2b}, {2a, 2a+b}, {b, a+b}, {b, 2a+

2b}, {b, a + 2b}, {b, 2a + b}, {2b, a + b}, {2b, 2a + 2b}, {2b, a + 2b}, {2b, 2a +

b}, {a+b, a+2b}, {a+b, 2a+b}, {2a+2b, a+2b}, {2a+2b, 2a+b}}. Therefore,

⌥R2 is as follows:

0

a 2a

b 2b

a+ b 2a+ 2b

a+ 2b 2a+ b

Figure 5.2: Non-centraliser graph ⌥R2

This shows us that ⌥R2 is a complete 5-partite graph.
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From the above examples, we see that |Cent(R1)| = 4 and ⌥R1 is a

complete 4-partite graph. Also, we see that |Cent(R2)| = 5 and ⌥R2 is a complete

5-partite graph. The following result shows that the structure of ⌥R can be affected

by |Cent(R)|.

Proposition 5.2.3. Let R be a finite non-commutative ring. Then |Cent(R)| = n

if and only if ⌥R is a complete n-partite graph.

Proof. If |Cent(R)| = n, then Cent(R) = {CR(r1), CR(r2), · · · , CR(rn)} for

n distinct elements r1, r2, · · · , rn 2 R. Since V (⌥R) can be partitioned into n

partite sets CR(r1),CR(r2), · · · ,CR(rn) such that for any two vertices x 2 CR(ri)

and y 2 CR(rj), x ⇠ y if and only if i 6= j, then ⌥R is a complete n-partite graph.

Conversely, assume that ⌥R is a complete n-partite graph but |Cent(R)| = m,

where m 6= n. Hence, by the necessity part, we obtain ⌥R is a complete m-partite

graph. We have reached a contradiction.

As an immediate consequence of Proposition 5.2.3, [A1], [A3], [A4],

Theorem 2.3.1, Theorem 2.4.2, Theorem 2.5.1, Theorem 2.6.6, Theorem 2.7.10

and Theorem 2.8.16, we have the following result.

Proposition 5.2.4. Let R be a finite ring. Then the following statements hold.

(a) ⌥R is an empty graph if and only if R is commutative.

(b) ⌥R is neither a complete bipartite graph nor a complete tripartite graph.

(c) ⌥R is a complete 4-partite graph if and only if R/Z(R) ⇠= Z2 ⇥ Z2.

(d) ⌥R is a complete 5-partite graph if and only if R/Z(R) ⇠= Z3 ⇥ Z3.
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(e) If ⌥R is a complete 6-partite graph, then R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2 or

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(f) ⌥R is a complete 7-partite graph if and only if R/Z(R) ⇠= Z5 ⇥ Z5.

(g) If ⌥R is a complete 8-partite graph, then R/Z(R) ⇠= Z2 ⇥ Z2 ⇥ Z2.

(h) ⌥R is a complete 9-partite graph if and only if R/Z(R) ⇠= Z7 ⇥ Z7.

(i) If ⌥R is a complete 10-partite graph, then R/Z(R) ⇠= Z4 ⇥ Z4,Z2 ⇥ Z2 ⇥

Z2 ⇥ Z2,Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 or Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2.

(j) If ⌥R is a complete 11-partite graph, then R/Z(R) ⇠= Z3 ⇥ Z3 ⇥ Z3 or

Z3 ⇥ Z3 ⇥ Z3 ⇥ Z3.

5.2.1 Clique and Colouring

The clique number of a graph G, denoted by !(G), is the order of a largest

complete subgraph contained in G. The chromatic number of a graph G, denoted

by �(G), is the smallest number of colours required to colour the vertices of G so

that every adjacent vertices in G are assigned different colours. The following

result is a direct consequence of Proposition 5.2.3.

Proposition 5.2.1.1. Let R be a finite non-commutative ring. Then !(⌥R) =

�(⌥R) = |Cent(R)|.
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5.2.2 Domination Number and Independent Set

A subset D of the vertex set of a graph G is called a dominating set of G if every

vertex not in D is adjacent to at least one vertex in D. Furthermore, the domination

number of G, denoted by �(G), is the cardinality of a smallest dominating set of

G. In this part, we first find an upper bound of �(⌥R).

Proposition 5.2.2.1. Let R be a finite non-commutative ring. Then �(⌥R) 6 2.

Proof. For any r1 2 R � Z(R), since CR(r1) 6= CR(0), then we have r1 ⇠ 0.

On the other hand, for any r2 2 Z(R), since CR(r2) 6= CR(x) for some x 2

R � Z(R), then we have r2 ⇠ x. This shows that {0, x} is a dominating set of

⌥R. Therefore, we obtain �(⌥R) 6 2.

We now obtain some sufficient conditions for �(⌥R) = 2.

Proposition 5.2.2.2. Let R be a finite non-commutative ring. If |Z(R)| 6= 1 or

2r 6= 0 for any r 2 R, then �(⌥R) = 2.

Proof. By Proposition 5.2.2.1, �(⌥R) 6 2. Suppose that �(⌥R) = 1. Let {x} be

a dominating set of ⌥R. Assume that |Z(R)| 6= 1. Let w 2 Z(R)� {0}. Since

CR(x) = CR(x+ w), then x 6⇠ (x+ w), which leads to a contradiction. So, we

have 2r 6= 0 for any r 2 R. This gives that 2x 6= 0 and thus, x 6= �x. Since

CR(x) = CR(�x), then x 6⇠ �x, which leads to a contradiction again. Hence,

�(⌥R) = 2.

A subset D of the vertex set of a graph G is called an independent set of
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G if every two distinct vertices in D are non-adjacent with each other. Moreover,

D is said to be a maximal independent set of G if its cardinality is the largest one

among all such sets. We next give a necessary condition for maximal independent

set of ⌥R.

Proposition 5.2.2.3. Let R be a finite non-commutative ring. If S is a maximal

independent set of ⌥R, then S = \
s2S

CR(s).

Proof. Let w 2 S. Since S is a maximal independent set of ⌥R, then w 6⇠ s for

any s 2 S � {w}. Hence, CR(w) = CR(s) for any s 2 (S � {w}) [ {w} = S.

It follows that w 2 CR(s) for any s 2 S and hence, w 2 \
s2S

CR(s). This gives

that S ✓ \
s2S

CR(s). On the other hand, let w 2 \
s2S

CR(s). Thus, w 2 CR(s) for

any s 2 S and therefore, we have CR(w) = CR(s) for any s 2 S. If w 62 S, then

w 6⇠ s for any s 2 S � {w} = S. This shows that S [ {w} can be formed an

independent set of ⌥R, which contradicts the fact that S is a maximal independent

set of ⌥R. Therefore, w 2 S and so, \
s2S

CR(s) ✓ S. Consequently, we obtain

S = \
s2S

CR(s).

5.2.3 Diameter and Girth

The diameter of a graph G, denoted by diam(G), is the largest distance between

any two vertices of G. We begin this subsection by determine a lower bound of

diam(⌥R).

Proposition 5.2.3.1. Let R be a finite non-commutative ring. Then ⌥R is con-

nected and diam(⌥R) 6 2.
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Proof. Let x, y be two distinct elements in R. Here, we consider the following

three cases.

Case 1: x, y 2 Z(R). Thus, we have CR(x) 6= CR(w) and CR(w) 6=

CR(y) for some w 2 R� Z(R). It follows that x ⇠ w ⇠ y. Therefore, we have

d(x, y) 6 2.

Case 2: Either x 2 Z(R) or y 2 Z(R) but not both. Thus, we have

CR(x) 6= CR(y). It follows that x ⇠ y. Therefore, we have d(x, y) = 1.

Case 3: x, y 62 Z(R). Thus, we have CR(x) 6= CR(0) and CR(0) 6=

CR(y). It follows that x ⇠ 0 ⇠ y. Therefore, we have d(x, y) 6 2.

Consequently, by all the cases above, we obtain ⌥R is connected and

diam(⌥R) 6 2.

The following proposition presents some necessary and sufficient condi-

tions for diam(⌥R) = 1.

Proposition 5.2.3.2. Let R be a finite non-commutative ring. Then the following

statements are equivalent.

(a) diam(⌥R) = 1.

(b) ⌥R is complete.

(c) |Cent(R)| = |R|.
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Proof. (a))(b): Since diam(⌥R) = 1, then d(x, y) 6 1 for any two distinct

x, y 2 V (⌥R). In view of Proposition 5.2.3.1, ⌥R is connected. So, we have

d(x, y) = 1 for any two distinct x, y 2 V (⌥R). Consequently, ⌥R is complete.

(b))(c): Assume to the contrary that |Cent(R)| < |R|. Let |Cent(R)| =

n. Thus, we have Cent(R) = {CR(r1), CR(r2), · · · , CR(rn)} for n distinct

elements r1, r2, · · · , rn 2 R. Let r 2 R � {r1, r2, · · · , rn}. Since CR(r) 2

Cent(R), then CR(r) = CR(ri) for some i 2 {1, 2, · · · , n}. Hence, r 6⇠ ri,

which contradicts the fact that ⌥R is complete.

(c))(a): Since |Cent(R)| = |R|, then CR(x) 6= CR(y) for any two

distinct x, y 2 R. This implies that d(x, y) = 1 for any x, y 2 R. Consequently,

we obtain diam(⌥R) = 1.

The girth of a graph G, denoted by gr(G), is the length of the shortest

cycle contained in G. In the following, we obtain an exact value of gr(⌥R).

Proposition 5.2.3.3. Let R be a finite non-commutative ring. Then gr(⌥R) = 3.

Proof. Since R is non-commutative, then there exist two distinct elements r1, r2 2

R such that r1r2 6= r2r1. This gives that CR(r1) 6= CR(r2) 6= CR(0). It follows

that r1 ⇠ r2 ⇠ 0 ⇠ r1 is a triangle contained in ⌥R, which implies that gr(⌥R) 6

3. Since ⌥R is a simple graph, then gr(⌥R) > 3. Consequently, gr(⌥R) = 3.
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5.2.4 Degree

The degree of a vertex x in a graph G is the number of edges incident with x, and

is written deg(x). We begin with the following result which gives the degree of

each vertex in ⌥R.

Proposition 5.2.4.1. Let R be a finite non-commutative ring. Then for any

x 2 V (⌥R),

deg(x) = |R|� |CR(x)|
8
>>><

>>>:

= |R|� |Z(R)| if x 2 Z(R),

> |R|� |CR(x)| if x 62 Z(R).

Proof. Let x 2 V (⌥R). Since CR(x) 6= CR(u) for any u 62 CR(x), then x ⇠ u

for any u 62 CR(x). It follows that deg(x) > |R|�|CR(x)|. Since CR(x) = CR(v)

for any v 2 CR(x), then x 6⇠ v for any v 2 CR(x). It follows that deg(x) 6

|R|� |CR(x)|. Therefore, we obtain deg(x) = |R|� |CR(x)|. If x 2 Z(R), then

CR(x) = Z(R) and so, we have deg(x) = |R|� |Z(R)|. Assume that x 62 Z(R).

Since CR(x) ✓ CR(x), then we have deg(x) > |R|� |CR(x)|.

We use the notation �(G) to represent the minimum vertex degree in a

graph G. In the following proposition, we give a lower bound of �(⌥R).

Proposition 5.2.4.2. Let R be a finite non-commutative ring. Then �(⌥R) > 3.

Proof. Suppose to the contrary that �(⌥R) 6 2 for some non-commutative ring

R. Thus, deg(x) 6 2 for some x 2 V (⌥R). Hence, we note that x is non-
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adjacent to at least |R| � 3 distinct vertices in V (⌥R). Therefore, we have

CR(x) = CR(r1) = CR(r2) = · · · = CR(r|R|�3) for |R| � 3 distinct elements

r1, r2, · · · , r|R|�3 2 R. This yields that |Cent(R)| 6 3, which contradicts with

[A1].

By applying Proposition 5.2.4.2, we can confirm that ⌥R is not isomorphic

to certain graph. For example, ⌥R is not isomorphic to tree. Next, we improve a

lower bound of �(⌥R) and develop an upper bound of �(⌥R).

Proposition 5.2.4.3. Let R be a finite non-commutative ring. Then |R|
2 6

�(⌥R) 6 |R|� 1.

Proof. Since x 2 CR(x) for any x 2 R, then |CR(x)| > 1 for any x 2 R. Since

Z(R) < R, then |Z(R)| 6 |R|
2 . Since CR(x) < R for any x 62 Z(R), then

|CR(x)| 6 |R|
2 for any x 62 Z(R). Thus, it follows from Proposition 5.2.4.1

that |R|
2 6 deg(x) 6 |R| � 1 for any x 2 V (⌥R). Consequently, we obtain

|R|
2 6 �(⌥R) 6 |R|� 1.

By combining the Proposition 5.2.4.2 and Proposition 5.2.4.3, we have

the following result.

Proposition 5.2.4.4. Let R be a finite non-commutative ring. Then max{3, |R|
2 } 6

�(⌥R) 6 |R|� 1.

Dirac’s theorem (see Dirac (1952)) is a well-known theorem in the Hamil-

tonian problem. Dirac’s theorem states that a simple graph G is hamiltonian if
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�(G) > 2 and �(G) > |V (G)|
2 . As a direct consequence of Proposition 5.2.4.4 and

Dirac’s theorem, we have the following result.

Proposition 5.2.4.5. Let R be a finite non-commutative ring. Then ⌥R is Hamil-

tonian.

5.2.5 Connectivity and Planarity

The edge connectivity (respectively, vertex connectivity) of a graph G, denoted

by �(G) (respectively, (G)), is the minimum number of edges (respectively,

vertices) required to be eliminated from G so that G is disconnected. Chartrand

(1966) has verified that for any simple graph G, if �(G) > |V (G)|�1
2 , then �(G) =

�(G). Thus, by combining this result and Proposition 5.2.4.4, we obtain the

following proposition immediately.

Proposition 5.2.5.1. Let R be a finite non-commutative ring. Then max{3, |R|
2 } 6

�(⌥R) = �(⌥R) 6 |R|� 1.

Next, we give the relation between the (⌥R) and �(⌥R).

Proposition 5.2.5.2. Let R be a finite non-commutative ring. Then (⌥R) =

�(⌥G) = �(⌥G) = |R|�max
r2R

{|CR(r)|}.

Proof. Let |Cent(R)| = n. Thus, we have Cent(R) = {CR(r1), CR(r2), · · · ,

CR(rn)} for n distinct elements r1, r2, · · · , rn 2 R. By Proposition 5.2.3, ⌥R is

a complete n-partite graph. Since ⌥R is a complete n-partite graph, then (⌥R)
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(respectively, �(⌥R)) is equal to the minimum number of vertices (respectively,

edges) required to be eliminated from ⌥R so that ⌥R left only a single partite set

(respectively, ⌥R exists an isolated vertex). Thus, we have (⌥R) = �(⌥R) =

|R|� max
r2{r1,r2,··· ,rn}

{|CR(r)|} = |R|�max
r2R

{|CR(r)|}. From Proposition 5.2.5.1,

�(⌥R) = �(⌥R). Consequently, we get the desired result.

Kuratowski (1930) published a famous theorem regarding the planarity

of a graph, which is Kuratowski’s theorem. Kuratowski’s theorem states that

a graph is planar if and only if it does not contain a subdivision of K5 or K3,3

as a subgraph, where K5 is a complete graph of order 5 and K3,3 is a complete

bipartite graph with both partite sets having 3 vertices. In the following, we obtain

a complete characterisation of the planarity of ⌥R.

Proposition 5.2.5.3. Let R be a finite non-commutative ring. Then ⌥R is planar

if and only if |R| = 4.

Proof. We first consider the necessity part. Assume that |Z(R)| > 3. Let

{0, z1, z2} ✓ Z(R) and let r 2 R � Z(R). It follows that CR(0) = CR(z1) =

CR(z2) and CR(r) = CR(r + z1) = CR(r + z2) and CR(0) 6= CR(r). Since

CR(a) 6= CR(b) for any a 2 {0, z1, z2}, b 2 {r, r+z1, r+z2}, then a ⇠ b for any

a 2 {0, z1, z2}, b 2 {r, r+z1, r+z2}. This gives that K3,3 is a subgraph contained

in ⌥R, which contradicts with the Kuratowski’s Theorem. So, |Z(R)| 6 2. By

[A1], |Cent(R)| > 4. If |Cent(R)| > 6, then {CR(r1), CR(r2), · · · , CR(r6)} ✓

Cent(R) for six distinct elements r1, r2, · · · , r6 2 R. Since CR(a) 6= CR(b) for

any a 2 {r1, r2, r3}, b 2 {r4, r5, r6}, then a ⇠ b for any a 2 {r1, r2, r3}, b 2
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{r4, r5, r6}. This gives that K3,3 is a subgraph contained in ⌥R, which con-

tradicts with the Kuratowski’s Theorem. If |Cent(R)| = 5, then Cent(R) =

{CR(r1), CR(r2), · · · , CR(r5)} for five distinct elements r1, r2, · · · , r5 2 R. By

[A4], |R| > 9. Let r 2 R � {r1, r2, · · · , r5}. Since CR(r) 2 Cent(R), then

CR(r) = CR(ri) for some i 2 {1, 2, · · · , 5}. Without loss of generality, we

assume that i = 1. Since CR(a) 6= CR(b) for any a 2 {r, r1, r2}, b 2 {r3, r4, r5},

then a ⇠ b for any a 2 {r, r1, r2}, b 2 {r3, r4, r5}. This gives that K3,3 is a

subgraph contained in ⌥R, which contradicts with the Kuratowski’s Theorem. So,

|Cent(R)| = 4. Thus, we have Cent(R) = {CR(r1), CR(r2), CR(r3), CR(r4)}

for four distinct elements r1, r2, r3, r4 2 R. Suppose that |Z(R)| = 2 and let

Z(R) = {0, z}. Note that, CR(r1) = CR(r1+z) and CR(r3) = CR(r3+z). Since

CR(a) 6= CR(b) for any a 2 {r1, r1 + z, r2}, b 2 {r3, r3 + z, r4}, then a ⇠ b for

any a 2 {r1, r1 + z, r2}, b 2 {r3, r3 + z, r4}. This gives that K3,3 is a subgraph

contained in ⌥R, which contradicts with the Kuratowski’s Theorem. Conse-

quently, |Z(R)| = 1. So, by [A3], we obtain |R| = 4, as required. Conversely,

let R = {0, r1, r2, r3}. Note that, |Cent(R)| 6 |R| = 4. By [A1], |Cent(R)| > 4

and thus, |Cent(R)| = 4. It follows that CR(0), CR(r1), CR(r2), CR(r3) are dis-

tinct from each other, which yields that a ⇠ b for any two distinct elements

a, b 2 R. Consequently, ⌥R can be drawn in the plane without edges crossing

and so, ⌥R is planar.
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5.2.6 Regularity

In this part, we study the regularity of ⌥R. We first prove the following equiva-

lence.

Proposition 5.2.6.1. Let R be a finite non-commutative ring. Then the following

statements are equivalent.

(a) ⌥R is regular.

(b) x+ Z(R) = CR(x) for any x 2 R.

(c) |Cent(R)| = |R : Z(R)|.

Proof. Note that, x + Z(R) ✓ CR(x) for any x 2 R. By Proposition 5.2.4.1,

deg(x) = |R|� |CR(x)| for any x 2 V (⌥R) and deg(0) = |R|� |Z(R)|. Hence,

we have

⌥R is regular , deg(0) = deg(x) for any x 2 V (⌥R)

, |R|� |Z(R)| = |R|� |CR(x)| for any x 2 R

, |Z(R)| = |CR(x)| for any x 2 R

, |x+ Z(R)| = |CR(x)| for any x 2 R

, x+ Z(R) = CR(x) for any x 2 R.

So, the implication (a),(b) holds.

We now show (b),(c). For necessity part, suppose to the contrary that

|Cent(R)| < |R : Z(R)|. It follows that there exist two distinct elements
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r1 + Z(R), r2 + Z(R) 2 R/Z(R) such that CR(r1) = CR(r2). Therefore, we

obtain r1 2 CR(r2) = r2 + Z(R), which implies that r1 + Z(R) = r2 + Z(R), a

contradiction is reached. Conversely, we assume that x+Z(R) 6= CR(x) for some

x 2 R. Note that, x+Z(R) ✓ CR(x). Hence, CR(x) * x+Z(R). It follows that

there exists some a 2 CR(x) but a 62 x+ Z(R). Thus, we have CR(a) = CR(x)

and a+Z(R) 6= x+Z(R). This gives that |Cent(R)| < |R : Z(R)|, which leads

to a contradiction.

Next, we indicate the structure of R/Z(R) when ⌥R is regular.

Proposition 5.2.6.2. Let R be a finite non-commutative ring. If ⌥R is regular,

then R/Z(R) ⇠= Zn
2 for some n > 2.

Proof. If R/Z(R) ⇠= Z2, then R/Z(R) is cyclic. This yields that R is com-

mutative, which is impossible. So, R/Z(R) 6⇠= Z2. We want to show that all

non-identity elements in R/Z(R) have order 2. Let x 2 R � Z(R). Since

CR(x) = CR(�x), then x 2 CR(�x). In view of Proposition 5.2.6.1, x 2

�x + Z(R). It follows that x = �x + z for some z 2 Z(R), which gives that

2x = z. This implies that the order of x+ Z(R) is 2. So, we can conclude that

R/Z(R) ⇠= Zn
2 for some n > 2.

In general, the converse of Proposition 5.2.6.2 is not necessarily true.

For example, R =
nh

a b c
0 0 0
0 0 0

i��� a, b, c 2 Z2

o
is a non-commutative ring with

R/Z(R) ⇠= Z3
2 but ⌥R is not regular. In the following, we demonstrate that

the converse of Proposition 5.2.6.2 is holds for some circumstances.
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Proposition 5.2.6.3. Let R be a finite non-commutative ring. If R/Z(R) ⇠= Z2
2,

then ⌥R is regular.

Proof. In view of [A2], |Cent(R)| = 4. So, by Proposition 5.2.6.1, we have ⌥R

is regular.

Proposition 5.2.6.4. Let R be a finite non-commutative ring. If R/Z(R) ⇠= Z3
2,

then ⌥R is regular if and only if |R : CR(r)| = 4 for any r 2 R� Z(R).

Proof. If ⌥R is regular, then by Proposition 5.2.6.1, we have |Cent(R)| = 8. So,

we obtain |R : CR(r)| = 4 for any r 2 R� Z(R) by Theorem 2.5.1. Conversely,

we assume that ⌥R is not regular. Thus, it follows from Proposition 5.2.6.1 that

|Cent(R)| 6= 8. Therefore, by [A7], we have |Cent(R)| = 6. But, by Theorem

2.3.1, we obtain |R : CR(r)| 6= 4 for some r 2 R � Z(R). We have reached a

contradiction. So, ⌥R is regular.

Next, we show that ⌥R is not an n-regular graph for some positive integer

n.

Proposition 5.2.6.5. Let R be a finite non-commutative ring. Let n 2 N with

n > 4 and let D be the set D =
�
d 2 N | d 6 n

3 , d
�� n

 
. If for any d 2 D, 1 + n

d

is square free or 1 + n
d = p

2
q for two distinct primes p, q, then ⌥R is not an

n-regular graph.

Proof. Assume that ⌥R is an n-regular graph. By Proposition 5.2.4.1, deg(0) =

|R|� |Z(R)| and thus, we have |R|� |Z(R)| = n. It follows that |R : Z(R)| =

n+|Z(R)|
|Z(R)| = 1 + n

|Z(R)| . Since Z(R) < CR(x) < R for any x 2 R � Z(R),
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then |R| = k1|CR(x)| = k1k2|Z(R)| for some k1, k2 > 2, which implies that

|R| = k|Z(R)| for some k > 4. Hence, we have (k � 1)|Z(R)| = n. This shows

that |Z(R)|
�� n and |Z(R)| = n

k�1 6 n
3 , which gives that |Z(R)| 2 D. From

the given assumptions, we have 1 + n
|Z(R)| is square-free or 1 + n

|Z(R)| = p
2
q for

two distinct primes p, q. If 1 + n
|Z(R)| = p

2
q for two distinct primes p, q, then

by Lemma 2.2.17, we obtain a contradiction. So, 1 + n
|Z(R)| is square-free. This

implies that R/Z(R) ⇠= Z1+ n
|Z(R)|

and hence, R/Z(R) is cyclic. Consequently, R

is commutative. We have reached a contradiction.

5.2.7 Rings with the Same Non-Centraliser Graph

In this subsection, we determine some sufficient conditions to guarantee the

isomorphism between two non-centraliser graphs.

Buckley et al. (2014) have introduced the notion of Z-isoclinic between

two rings. Following Buckley et al. (2014), two rings R1 and R2 are said to

be Z-isoclinic if there exist additive group isomorphisms � : R1/Z(R1) !

R2/Z(R2) and  : [R1, R1] ! [R2, R2] such that  ([u, v]) = [u
0
, v

0
] whenever

�(u + Z(R1)) = u
0
+ Z(R2) and �(v + Z(R1)) = v

0
+ Z(R2). Recall that,

for a ring R, [x, y] = xy � yx is the additive commutator of R and [R,R] =

{[xi, yi] + · · · + [xn, yn] | x1, y1, · · · , xn, yn 2 R, n 2 N} is the commutator

subgroup of (R,+). We conclude this chapter by showing that two non-centraliser

graphs are isomorphic when two rings are Z-isoclinic and the cardinalities of their

centres are equal.
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Proposition 5.2.7.1. Let R1, R2 be two finite non-commutative rings with |Z(R1)| =

|Z(R2)|. If R1 and R2 are Z-isoclinic, then ⌥R1
⇠= ⌥R2 .

Proof. Since R1 and R2 are Z-isoclinic, then there exists an additive group iso-

morphism � : R1/Z(R1) ! R2/Z(R2). Thus, |R1/Z(R1)| = |R2/Z(R2)|. Let

|R1/Z(R1)| = n. Hence, we have R1/Z(R1) = {x1+Z(R1), · · · , xn+Z(R1)}

for n distinct elements x1, · · · , xn 2 R1, and R2/Z(R2) = {y1+Z(R2), · · · , yn+

Z(R2)} for n distinct elements y1, · · · , yn 2 R2. Without loss of generality,

we assume that �(xi + Z(R1)) = yi + Z(R2) for any i 2 {1, · · · , n}. Since

|Z(R1)| = |Z(R2)|, then we are able to construct a map g : Z(R1) ! Z(R2)

such that g is bijective. Note that, for any u 2 R1 (respectively, v 2 R2), u

(respectively, v) can be written in the form u = xi + z for some i 2 {1, · · · , n}

and z 2 Z(R1) (respectively, v = yi + g(z) for some i 2 {1, · · · , n} and

g(z) 2 Z(R2)) and this representation is unique. Here, we construct a map

f : R1 ! R2 such that f(xi + z) = yi + g(z) for any i 2 {1, · · · , n} and

z 2 Z(R1). Assume that f is not injective, then f(xi + z1) = f(xj + z2) for

two distinct xi + z1, xj + z2 2 R1. Thus, we have yi + g(z1) = yj + g(z2). If

i = j, then g(z1) = g(z2), which gives that z1 = z2, which is a contradiction.

Therefore, i 6= j. It follows that yi + Z(R2) = yj + Z(R2), which implies that

�(xi +Z(R1)) = �(xj +Z(R1)). This gives that xi +Z(R1) = xj +Z(R1). So,

we obtain i = j, which is a contradiction again. Therefore, f is injective. Since

|Z(R1)| = |Z(R2)|, then |R1| = |R2| and consequently, f is bijective.

Let {u, v} be an arbitrary edge in E(⌥R1). Thus, CR1(u) 6= CR1(v).

Hence, we know that either |CR1(u) � CR1(v)| > 1 or |CR1(v) � CR1(u)| > 1
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but not both. Without loss of generality, we suppose that |CR1(u)� CR1(v)| > 1.

Hence, there exists an element w 2 CR1(u) but w 62 CR1(v). Note that, u, v, w

can be written as u = xi + z1, v = xj + z2, w = xk + z3 for some i, j, k 2

{1, · · · , n} and z1, z2, z3 2 Z(R1). Since w 2 CR1(u) but w 62 CR1(v), then

xkxi�xixk = 0 and xkxj�xjxk 6= 0, which gives that [xk, xi] = 0 and [xk, xj] 6=

0. Since R1 and R2 are Z-isoclinic, then there exists another additive group

isomorphism  : [R1, R1] ! [R2, R2] such that for any s, t 2 {1, · · · , n}, if

�(xs+Z(R1)) = ys+Z(R2) and �(xt+Z(R1)) = yt+Z(R2), then  ([xs, xt]) =

[ys, yt]. Since the kernel of f is {0}, then we note that for any s, t 2 {1, · · · , n},

[xs, xt] = 0 if and only if [ys, yt] = 0. So, we obtain [yk, yi] = 0 and [yk, yj] 6= 0,

which yields that yk 2 CR2(yi) = CR2(yi + g(z1)) = CR2(f(xi + z1)) =

CR2(f(u)) but yk 62 CR2(yj) = CR2(yj+g(z2)) = CR2(f(xj+z2)) = CR2(f(v)).

It follows that CR2(f(u)) 6= CR2(f(v)) and so, {f(u), f(v)} is an edge in E(⌥2).

This shows that there exists a bijective map f : V (R1) ! V (R2) such that for

any u, v 2 V (R1), {u, v} 2 E(R1) if and only if {f(u), f(v)} 2 E(R2). So, we

can conclude that ⌥R1
⇠= ⌥R2 .
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CHAPTER 6

CONCLUSION

In conclusion, the study of n-centraliser rings has allowed us to delve into un-

derstanding the impact of the number of distinct centralisers in a finite ring on

its structure and commutativity. Throughout this study, we have meticulously

investigated various topics related to the centraliser of a ring. This investigation

involved characterising all n-centraliser finite rings for n 2 {6, 7, 8, 9, 10, 11}

and computing their commuting probabilities. Additionally, we have classified the

structures for all finite rings with cardinality of the maximal non-commuting set

is 5. Moreover, we have generalised the notion of n-centraliser rings and yielded

various results regarding this generalisation. To achieve this, we introduced the

notion of (m,n)-centraliser rings and determined the characterisation for some

(m,n)-centraliser finite rings for n 6 10. Finally, we have employed the concept

of centralisers to establish a connection between a graph and a ring. This was

accomplished by introducing the concept of the non-centraliser graph of rings

and discussing various graph-theoretic properties of the non-centraliser graph of

finite rings.

On the other hand, we have also identified some open problems for future

work. The investigation in Chapter 2 could be extended by considering the exis-

tence and characterisation of n-centraliser finite rings for n > 12. Furthermore,
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the study in Chapter 3 might be continued by considering the cardinality of the

maximal non-commuting set to be t, where t > 6. Moreover, in Chapter 4, we

imposed the assumption that |Z(R)| > m� 1. The results in Chapter 4 could be

further improved by encompassing the cases where |Z(R)| 6 m� 2. Lastly, in

Chapter 5, the applications of the non-centraliser graph of finite rings in various

fields remain largely unexplored. The exploration of applications for the non-

centraliser graph of finite rings opens up new avenues for research. Furthermore,

the discussion in Chapter 5 could be continued by considering the complement of

the non-centraliser graph of rings.
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