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ABSTRACT 

 

 

EFFICIENT IMPLEMENTATION OF LATTICE-BASED 

CRYPTOGRAPHIC SCHEMES FOR INTERNET OF THINGS 

APPLICATIONS 

 

 

 

Wong Zheng Yan 

 

 

 

Lattice-based cryptography (LBC) is one of the most widely studied 

post-quantum cryptography (PQC) candidates to date. Polynomial 

multiplication (PM) and generation of error samples are two main bottlenecks 

in LBC. PM can be implemented through schoolbook polynomial 

multiplication algorithm (SPMA) and Number Theoretic Transform (NTT).  

The SPMA has always been the simplest form of performing PM, and 

often can be implemented through very light weight designs, but it suffers 

from low throughputs. NTT on the other hand, requires vast hardware 

utilization to cope with the high parallelism of the multiplication process, 

although capable of completing the PM process in a much shorter timeframe. 

Moreover, NTT requires special ring structure to operate, which may not be 

found in all LBC schemes. 

Karatsuba algorithm, being another candidate between these two 

extremes, are not widely studied for LBC scheme implementation in FPGA. 

Karatsuba algorithm can be used to speed up the PM process, while keeping 
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the hardware utilization moderately lightweight. This fills in the gap between 

SPMA and NTT, creating a robust and packed polynomial multiplier, 

especially for IoT applications that requires higher security with hardware 

constraints.  

The main focus of this work is to develop a high-speed hardware 

architecture to improve the performance of PM in LBC schemes such as Ring 

Learning-with Error (R-LWE) and Learning-with-Errors (LWR) (Saber). This 

research work implemented a 1-layer Karatsuba architecture to improve the 

throughput of PM for R-LWE, and a 4-layer Karatsuba architecture to improve 

the throughput of PM for SABER. 

 By breaking the polynomials into smaller sub-polynomials for 

multiplication, along with efficient data scheduling specifically for the 

Karatsuba algorithm, the throughput of PM is improved drastically. 

Furthermore, multiplicands are also stacked up to double the throughput in 

both R-LWE and SABER implementations. Last but not least, the negacyclic 

operations are integrated into the post-processing of Karatsuba, saving 

additional memory elements for storing the intermediate results, and reducing 

the time consume for computing the PM results. 

 Experimental results show a speed up of 2.09× in throughput along 

with a 6.52% improvement in throughput-per-slice for the R-LWE polynomial 

multiplier. For the Saber polynomial multiplier, experimental results show a 

speed up of 2.17× in throughput along with a 73.55% improvement in 

throughput-per-slice. 
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IoT applications require the sensor nodes to transmit sensor data 

frequently to the nearby gateway device. This implies that the implementation 

of public key scheme used in protecting such communication must achieve 

sufficient throughput in order to ensure a timely response. The proposed 

Karatsuba-based architecture allows high throughput performance, at the same 

time do not consume extremely large hardware area; this shows great potential 

to be used in IoT applications 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Public key cryptography (PKC), also known as asymmetric key 

cryptography, uses a different key to encrypt and decrypt data. The PKC 

scheme basically uses two mathematically related keys namely a public key 

and a private key. The function of the public key is to encrypt the plaintext 

into ciphertext, whereas the private key is used to decrypt the cipher text back 

to its original plaintext. A few well-regarded PKC such as the RSA encryption 

algorithm, Diffie-Hellman key exchange protocol and Paillier cryptosystem 

are used for various purposes, ranging from digital signatures, encryption, 

authentication, non-repudiation, and data integrity. 

 

 

Figure 1.1 Public Key Encryption Example  
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For years, the public-key encryption (PKE) and public-key signature 

scheme cryptosystem has kept data safe, but with the emerging numbers of 

quantum computers, this poses a big threat to the existing cryptosystem that 

runs on PKE. Unlike conventional computers which use bits that can only be 

in two states (either 1s or 0s), quantum computers on the other hand, use 

qubits, typically subatomic particles, i.e., photons and electrons. The two most 

significant quantum properties of qubits namely superposition and 

entanglement enable a quantum machine to leap exponentially in terms of 

computing power. An encryption algorithm that takes years to be 

compromised by a classical computer, may only need minutes in quantum 

computer, rendering many existing PKE obsolete.  

 

Moreover, introduction of Shor’s algorithm in (Shor 1997) makes the 

existing PKE even more vulnerable to quantum computers. The holy grail of 

existing cryptosystems is based on prime factorization and finding discrete 

logarithms, which are proven extremely difficult to be solved by classical 

computer. However, by cleverly utilizing both classical computer and 

quantum computers, computation problems like performing reversible 

computation, prime factorization and Fourier transform on a quantum 

computer can be solved. In other words, cracking prime factorization on 

quantum computers is nothing but a piece of cake. 
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1.1.1 Post-quantum Cryptography 

 

Post-quantum cryptography (PQC) refers to the development of new 

kinds of cryptographic algorithms secure and resistant against attacks from 

quantum computers, implemented using today’s conventional computers. A 

report by the US National Institute of Standards and Technology (NIST) states 

that by the year 2030, quantum machines would render the widely used RSA 

algorithm insecure. Hence by that same year, NIST has initiated a process to 

develop and standardize one or more quantum-resistant PQC algorithms 

(NIST 2016). 

 

Since traditional PKE mostly rely on mathematical problems such as 

integer factorization and discrete logarithm, quantum machines and algorithms 

can efficiently solve these types of traditional number-theoretic-based 

cryptosystems. Although no large-scale quantum machines are yet to exist for 

at least a decade or more, this should be considered as a warning and steps 

should be taken in order to prevent quantum computers from completely 

rendering cryptosystem useless. Researches on PQC mainly focus on six 

approaches, where all six are significantly varied, namely: 

i. Lattice-based Cryptography 

ii. Multivariate Cryptography 

iii. Hash-based Cryptography 

iv. Code-based Cryptography 

v. Super Singular Elliptic Curve Isogeny Cryptography 

vi. Symmetric Key Quantum Resistance 
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This project focuses on multiple schemes in lattice-based cryptography. 

 

1.1.2 Lattice-based Cryptography 

 

 

Lattice-based cryptography (LBC) refers to the cryptography that 

relates their security to hard mathematics problems around lattices, and is 

considered one of the most widely studied post-quantum cryptography (PQC) 

candidates to date. In the round 3 of National Institute of Standards and 

Technology (NIST) post-quantum cryptography (PQC) standardization 

process (NIST, 2021), five out of seven selected finalists are LBC. Many tests 

were done on LBC and some lattice-based structures seem to resist attacks 

from both classical and quantum computers very well. Hence, LBC is 

regarded to be a prime candidate for quantum-secure PKC (Regev 2006). 

 

There are several reasons behind choosing LBC to be the main focus of 

this proposal. Firstly, one of the unique properties in LBC is that it can be used 

to construct very reliable cryptographic primitives. Furthermore, the 

computations involved in implementing LBC are not sophisticated; it usually 

only requires matrix/polynomial multiplication and small modular arithmetic. 

Lastly, LBC is chosen given its efficiency and practical advantage while 

performing encryption on a low-cost device.   

 



5 

 

Polynomial multiplication (PM) and generation of error samples are 

two main bottlenecks in LBC; the focus of this project is to propose a high-

speed hardware architecture to improve the performance of PM. PM can be 

implemented through schoolbook polynomial multiplication algorithm (SPMA) 

and Number Theoretic Transform (NTT). SPMA is simple and straightforward 

to implement in hardware, while NTT requires complicated pre-computation 

and array re-ordering to achieve high performance. 

 

The SPMA has always been the simplest form of performing PM, and 

often can be implemented through very light weight designs. For older 

schemes such as the Ring-Learning with Errors (R-LWE), SPMA works well 

in performing the PM. The multiplicator is often small in size, but suffer from 

very slow speeds, in other words, extremely low to low throughputs. However, 

given its simplicity, the R-LWE scheme which dictates the polynomial 

multiplication be done in a negacyclic fashion, can be integrated and weaved 

into the multiplication process. NTT on the other hand, requires vast hardware 

utilization to cope with the high parallelity of the multiplication process. Being 

on the other end of the spectrum, NTT is capable of completing the PM 

process in a much shorter timeframe. That being said, NTT highly depends on 

large framework and hardware utilization, hence it is often not suitable for IoT 

applications that are targeted for a more lightweight and low-powered 

implementation. Moreover, NTT requires special ring structure to operate, 

which may not be found in all LBC schemes. 



6 

 

In newer schemes such as SABER, which is one of the NIST round 

three finalist amongst the other PQC candidates, many papers have already 

explored the implementation utilizing SPMA, since SABER cannot be 

implemented using NTT. Despite that, both the R-LWE and SABER schemes 

operate on the same polynomial ring equation (Pöppelmann, 2013), which 

requires a negacyclic operation for the PM process.    

 

Karatsuba algorithm, being another candidate between these two 

extremes, are not widely studied for R-LWE and SABER implementation in 

FPGA. Since the PM process has always been the bottleneck of the 

cryptographic process, Karatsuba algorithm can be used as a catalyst to speed 

up the PM process, while keeping the hardware utilization moderately 

lightweight. This fills in the gap between SPMA and NTT, creating a robust 

and packed polynomial multiplier, especially for IoT applications that requires 

higher security with hardware constraints.  

 

 In this project, we proposed a 1-Layer Karatsuba architecture to 

improve the throughput of PM for R-LWE, and a 4-Layer Karatsuba 

architecture to improve the throughput of PM for SABER. Due to the nature of 

the Karatsuba algorithm, which involves splitting and combining the 

polynomial during the PM process, it forbids the negacyclic operations to be 

done along with the polynomial multiplication such as in SPMA. Hence, one 

of the main challenges is implementing Karatsuba algorithm with negacyclic 

efficiently. 
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1.1.3 Cryptography in IoT 

 

 

 

The Internet of Things (IoT) has developed drastically over the past 

decade. IoT devices such as sensor nodes are deployed ubiquitously to 

transmit, collect and exchange information, which poses many vulnerabilities 

against malicious attacks from adversaries. 

 

 

Figure 1.2 IoT framework 

 

Figure 1.2 displays a simple IoT framework. The sensor node(s) (SN) 

read the IoT data and transmit them to the gateway. To encrypt the IoT data 

using common block cipher (e.g., AES), the sensor nodes need to randomly 

generate symmetric keys and transmit it to the gateway and cloud server for 

decryption purpose. The Key Encapsulation Mechanism (KEM) is used to 

perform such key exchange operations. 

 

IoT Devices (Sensor Nodes) 
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However, in real life implementations, the number of sensor nodes 

connected to the gateway are massive. When side channel attacks are 

performed on the sensor nodes, the symmetric key used for encrypting IoT 

data may be compromised. Hence, the symmetric key needs to be generated 

for each communication session and transmitted frequently to the 

gateway/cloud server. Due to this reason, the KEM must also be implemented 

efficiently, so that the security of the IoT framework can be protected without 

compromising the response time. 

 

Despite that, previous KEM implementations for IoT devices are 

mostly built upon conventional public key encryption schemes such as RSA. 

As discussed earlier, conventional PKC is becoming obsolete due to the 

emergence of Shor’s algorithm and more advanced quantum computers. 

Hence, post-quantum schemes such as the LBC are used to replace the 

conventional PKC in KEM. Due to the small key sizes and good performance 

on various hardware platforms, lattice-based KEM can be computed with high 

throughput and moderate amount of hardware, which is especially suitable for 

IoT devices. The goal in this dissertation is to propose more efficient 

polynomial multiplier architectures to further improve the throughput of 

selected lattice-based KEM. 
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1.2 Problem Statements 

 

 

1) The SPMA polynomial multiplier architectures used in R-LWE 

schemes suffer from very slow speed performance. This is inherently 

limited by the SPMA algorithm that comes with a high complexity. 

Some IoT applications cannot utilize architectures that are too slow. 

2) Existing Karatsuba-based polynomial multiplier architectures for LBC 

schemes are having poor area-time efficiency. They achieved high 

throughput in expense of large area consumption. The data processing 

mechanism in handling various Karatsuba levels are also not fully 

optimized. 

 

 

 

1.3 Objectives 

 

1) Design a Karatsuba-based polynomial multiplier architectures to speed 

up the speed performance of polynomial multiplication in RLWE 

schemes.  

2) Develop a Karatsuba-based polynomial multiplier architectures with 

minimal additional hardware. The developed architectures should 

maintain a high throughput in order to cater for IoT applications, at the 

same time achieve better area-time efficiency compared to existing 

work. 

 

 



10 

 

 

 

1.4 Contribution 

 

Contributions of this dissertation are as follows: 

 

1) An efficient polynomial multiplier utilizing 1-Layer Karatsuba for R-

LWE scheme. The multiplier is developed with DSP utilization 

algorithm for Karatsuba and integrated negacyclic operations in 

Karatsuba post-processing.  This design is catered for IoT devices 

which uses relatively low hardware resources while having a high 

throughput.  

2) A high speed shifter-based polynomial multiplier implementation 

utilizing 4-Layer Karatsuba for Saber key encapsulation mechanism 

(KEM). The grid-based parallel data input for Karatsuba pre-

processing and post-process result mapping with integrated negacyclic 

enables an optimal polynomial multiplication process utilizing 

Karatsuba, eventually improving the overall speed performance. At the 

same time, by implementing techniques to reuse registers in the pre-

processing and direct result mapping in post-processing, the hardware 

resources consumption is drastically decreased achieving a more area-

time balanced design. 
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1.5 Dissertation Organization 

 

The dissertation commenced with Chapter 1, which serves as a top 

down introductory for the cryptographic schemes researched, while addressing 

the vulnerabilities of existing cryptographic schemes. In Chapter 2, study is 

conducted on the existing implementation of different LBC schemes utilizing 

various algorithms such as SPMA, NTT and Karatsuba. Chapter 3 provides 

further discussion and background information on the algorithms utilized to 

implement polynomial multipliers in the LBC scheme, along with the 

introduction to negacyclic convolution requirements for certain LBC schemes.  

 

Chapter 4 focuses on the design of polynomial multiplier for the R-

LWE scheme, whereas Chapter 5 focuses on the design of polynomial 

multiplier for the Saber scheme. Chapter 6 provides and discusses the 

experimental results, where it is divided into two parts. The first part is for the 

R-LWE scheme, and the second part is for the LWR scheme (Saber). Finally, 

Chapter 7 concludes the research work, along with suggestions for potential 

future research ideas and directions.    
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

Post-quantum cryptography is vital for the future of cryptography in 

the imminent advancement of quantum computers. A substantial amount of 

quantum cryptography researches has been conducted in recent years in 

conjunction with NIST’s search for PQC’s to be standardize. Among the NIST 

round 3 finalist for the public-key encryption schemes are candidates such as 

Saber, Kyber, NTRU and Classic McEliece. The R-LWE scheme on the other 

hand is an older LBC scheme that is widely researched too, due to its 

efficiency.      

 

Recent implementations for the various schemes aforementioned, be it 

on FPGA’s, ARM or Intel’s processors, algorithms such as SPMA and NTT 

are very popular, often utilized to perform the polynomial multiplication. 

However, since NTT is not applicable for schemes that has modular primes 

that are not on the prime field such as the Saber scheme, or when the targeted 

device has a hardware consumption limitation (commonly in IoT devices), the 

Karatsuba algorithm comes into play and can be leveraged to improve the 

performance of such schemes compared to their SPMA counterparts.  

 

In the following sections, several researches utilizing SPMA and NTT 

have been reviewed to give a better understanding on how the Karatsuba 

algorithm can fill in the gap between both spectrums of the area-time aspect. 
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2.1 SPMA 

 

2.1.1 Optimized Schoolbook Polynomial Multiplication for Compact 

Lattice-Based Cryptography on FPGA (Liu et. el., 2019) 

 

Liu et. al. (2019) implements an improved SPM algorithm to perform 

polynomial multiplication for the R-LWE scheme. They introduced a novel 

method for modular reduction and performing bit reduction.  

 

The multiplication of 13-bit integer and 6-bit integer is transform to 

13-bit multiplied by 5-bit integer by applying reduced bit-width representation. 

The most significant bit (MSB) is removed from the 6-bit value since it only 

indicates the sign. To perform modulo on the 18-bits product, a modular 

reduction algorithm is used rather than building a hardware to perform 

division. The 18-bits integer undergoes a Barrett reduction algorithm, which 

only uses shifting, addition and subtraction, which is much more cost and 

speed effective.  

 

The second improvement made is by fitting two multiplications within 

one DSP block on the FPGA. In Xilinx 7 series FPGAs, a single DSP block 

can support multiplications up to 25 × 18  bits. Since the reduced size of 

multiplication required is only 13 × 5 bits, one DSP block on the FPGA can 

be fitted with two multiplicands, hence performing two multiplications at the 

same time. 

 



14 

 

The hardware cost of implementation with parameters 𝑛 = 256 and 

𝑞 = 7681 requires 898 LUTs, 1 DSP block, 3 8K BRAMs, and 815 registers, 

which is easily scalable due to its small size but very low in terms of 

efficiency. 

 

 

2.1.2 Lightweight Hardware implementation of R-LWE Lattice-Based 

Cryptography (Fan et. al., 2019) 

 

Fan et al. (2019) proposes a lightweight hardware implementation of a 

R-LWE cryptosystem without the risk of compromising the security. In other 

words, although only a small amount of resources is used and the performance 

slightly decreased, the security of the cryptosystem is guaranteed. 

 

To achieve a lightweight R-LWE cryptosystem hardware architecture 

design, a low cost and fast Gaussian sampler based on cumulative distribution 

table (CDT) method is used. Besides, the method used for polynomial 

multiplication in this paper is SPM algorithm. To further enhance the 

efficiency, the polynomial multiplier is pipelined into multiple stages to cater 

the latency of the process, hence reducing the clock cycles to achieve higher 

frequency for the overall cryptosystem. 

Compared to (Liu et al., 2019), this paper directly implements 

multiplication of 13 × 13  bits without a bit reduction scheme. However, 

Barrett reduction scheme is also used in this paper for modular reduction to 

reduce resources usage while increasing efficiency. 
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The hardware cost of implementation with parameters 𝑛 = 256  and 

𝑞 = 7681 requires 1098 LUTs, 1 DSP block, 0 BRAMs, and 407 registers, 

which is extremely scalable due to its small size but very low in terms of 

efficiency. The performance results and resources used in the papers and 

journal are shown in the table below. 

 

 

 

2.1.3 An Efficient and Parallel R-LWE Cryptoprocessor (Zhang et. al., 

2020) 

 

Zhang et al. (2020) proposes implementation of extra DSPs blocks into 

the work of (Liu et al., 2019) by tweaking the DSP utilization algorithm to 

cater for the extra multiplication per cycle. Furthermore, the error term’s bit 

width is also adjusted paired which is crucial in determining the overall 

throughput of the entire polynomial multiplier. 

 

Moreover, the thrifty reuse of hardware resources including the 

schoolbook polynomial multiplier and the polynomial adder (PA) results in the 

reduction of area consumption, which has not been undertaken in earlier 

reported implementations. They exploit the operational features of polynomial 

multiplication to implement an efficient and parallel SPM structure design for 

the most critical operation of polynomial multiplication in R-LWE.  
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The iteration clock cycle is reduced by factor of 4 and results in 1.8× 

speedup and 1.4× TPS. Furthermore, the reuse of the most critical parts in R-

LWE encryption and decryption hardware enables a 14% reduced area with 

1.7× throughput improvement.  

 

The hardware cost of implementation with parameters 𝑛 = 256  and 

𝑞 = 7681 requires 699 LUTs, 2 DSP block, and 705 registers. Compared to 

lightweight implementations, this polynomial multiplier outweighs them with 

a much better throughput-per-slice (TPS). 

 

 

2.1.4 High-speed Instruction-set Coprocessor for Lattice-based Key 

Encapsulation Mechanism: Saber in Hardware (Roy and Basso (2020)) 

 

Roy and Basso (2020) proposed a lightweight cryptoprocessor 

implementing SPMA; this can be regarded as the state-of-the-art SPMA-based 

polynomial multiplier for Saber. They introduced an optimized coefficient-

wise modular multiplier, which is essentially the multiply-and-accumulate 

(MAC) module. The MAC operations are carried out through simple shift and 

add operations, consequently requiring no DSP blocks and substantial saving 

in hardware resources. They also proposed a novel data loading technique, 

reducing the cycle count of the loading of operands and the reading of 

polynomial multiplication results. The size of the buffer is greatly reduced by 

using the least common denominator between the coefficient size and the size 

of the memory storing the coefficient, requiring almost 20% fewer registers. 
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The building blocks are integrated after optimization to realize an 

instruction-set coprocessor hardware architecture that is able to computes all 

KEM operations such as key generation, encapsulation and decapsulation. 

 

The hardware cost of implementation for both Saber768 and Saber 

unified with parameters parameters 𝑛 = 256  and 𝑞 = 8192  requires 17429 

LUTs and 5083 registers.  

 

 

 

 

 

2.2 NTT 

 

2.2.1 Open-Source FPGA Implementation of Post-Quantum 

Cryptographic Hardware Primitives (Agrawal et. al., 2019) 

 

Agrawal et. al. (2019) proposed a FPGA-tailored implementation of 

the R-LWE cryptographic primitives along with novel algorithmic proposals 

such as oblivious transfer (OT) and zero-knowledge proof (ZKP). By using an 

efficient implementation of a 𝑛-point NTT algorithm, a high-speed polynomial 

multiplier is developed.  
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The prime modular q is fixed at 12,289 in this paper, since a realistic 

implementation of the R-LWE based PKE cryptosystem requires q to be larger 

than 10,000 to ensure that the implemented algorithm has at least 112 bits in 

terms of security level, as stated by the security standards specify by NIST. 

The length of the polynomial in this paper however, is parameterizable, one of 

the few contributions of this paper, with 𝑛 (order of polynomial) ranging from 

128 ~ 1024.  

 

By optimizing and parameterizing the butterfly NTT method proposed 

by Chen et al. (2015), an efficient hardware design is created ready to 

implement. The hardware cost of implementation with parameters 𝑛=256 and 

𝑞 = 12,289  requires 9152 LUTs, 26 DSP blocks, 3.5 BRAMs and 396 

registers, which is not the most practical implementation method for IoT 

devices. 

 

2.2.2 Compact Ring-LWE Crypto-processor (Roy et. al., 2014) 

 

Roy et el. (2014) proposed a compact but efficient crypto-processor for 

a R-LWE based encryption scheme. The method used for polynomial 

multiplication is NTT, along with three optimizations for the algorithm. 

 

The NTT algorithm is improved by reducing the twiddle factor 

computation cost, deriving an efficient memory access scheme, and avoiding 

pre-computation during forward NTT, hence increasing the utilization of all 
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memory blocks and arithmetic components on the FPGA. They also devised 

an optimal pipeline strategy to increase the overall operating speed and 

frequency of the processor, which is based on two observations according to 

the algorithm implemented. By splitting the critical path with highest delay or 

latency into different stages, hence creating a balanced-delay stage pipeline 

processor. 

 

The hardware cost of implementation with parameters 𝑛 = 256 and 𝑞 = 

7681 requires 1349 LUTs, 1 DSP block, 3 18K BRAMs and 860 registers. 

 

 

2.2.3 A Resource-Efficient and Side-Channel Secure Hardware 

Implementation of Ring-LWE Cryptographic Processor (Liu et. al., 2018) 

 

Liu et al. (2018) proposed a practical hardware implementation of R-

LWE cryptosystem design on resources constrained devices, thus making it 

more feasible and versatile for embedded or IoT devices. 

In this paper, fast number theoretic transform (FNTT) is used for 

performing polynomial multiplication. “FNTT is fundamentally an FFT 

defined in a finite field without inaccurate floating point or complex 

arithmetic”, hence performing polynomial multiplication much more 

efficiently.  

 

Besides, to enhance the performance of the whole system, this paper 

also proposes a universal module for modular arithmetic called modular 
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processing element (MPE). This highly reduces the need for hardware 

resources while performing both encryption and decryption, thus achieving a 

resource-efficient cryptosystem design. 

 

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

7681 requires 1307 LUTs, 0 DSP block, 1 18K BRAM, 3 8K BRAMs and 

889 registers. This design has a high efficiency but failed to utilize efficiently 

the resource and did not achieve equilibrium in area-time performance. 

 

 

 

2.2.4 High-Throughput Ring-LWE Crypto-processors (Renteria-Mejia 

and Velasco-Medina, 2017) 

 

Renteria-Mejia and Velasco-Medina (2017) proposes a R-LWE crypto-

processor using NTT method with a high throughput. The paper mainly 

focuses on throughput performance rather than achieving balance in area-time 

performance.  

 

This paper also implements Barrett reduction scheme in the modular 

reduction algorithm in the operation of addition and multiplication of 

polynomials over the ring. Inverse transform method was used while 

designing the gaussian sampler that is responsible for generating a narrow 

gaussian distribution of errors. 
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The cryptosystem architecture design introduced in this paper targets 

high security and speed, but suffers from high cost and high resources usage 

when compared with design from other papers.  

 

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

12289 requires 25614 LUTs, 20 DSP block, 223 BRAMs and 27129 registers. 

While dealing with embedded or IoT devices having many hardware and cost 

constrain, this design is somewhat impractical and unrealizable. 

 

 

 

2.2.5 Area-optimized Lattice-based Cryptographic Processor for 

Constrained Devices (Liu et. al., 2017) 

 

Liu et al. (2017) proposed an area optimized R-LWE crypto-processor 

suitable for devices with resource constraints. Furthermore, the crypto-

processor is also designed to be resistance against side channel attacks. 

 

A constant time gaussian sampler is used due to its resistance against 

side channel timing attacks since it has a inconsistent runtime if generating 

samples. To further increase the security of the system, an additional finite 

state machine (FSM) shuffler is designed and added to the crypto-processor. 

The purpose of the shuffler FSM is to further randomize the generated samples 

by fetching and storing the samples in a completely random fashion. Iterative 
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NTT is used as the method to perform polynomial multiplication. Without 

using any DSP blocks, a compact and lightweight crypto-processor is designed.  

 

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

7681 requires 1787 LUTs, 0 DSP block, 3 BRAMs, and 790 registers. This 

design is scalable and feasible for resource constrained device although a bit 

low in terms of efficiency compared to crypto-processor with high throughput 

but uses a lot of hardware or resources. 
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CHAPTER 3 

 

 

 

BACKGROUND 

 

 

3.1 SPMA 

 

Schoolbook Polynomial Multiplication Algorithm (SPMA) is proven to be the 

most simple and straightforward approach to perform polynomial 

multiplication.  

 

 

Figure 3.1 Schoolbook polynomial multiplication algorithm (SPMA) 

 

Referring to Figure 3.1, the Schoolbook Polynomial Multiplication Algorithm 

(SPMA) has complexity O(n2) with two nested loops where multiplication is 

repeated n × n times, where where n is the degree of polynomial. The 
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multiplication results are not directly used as an output, they are stored in an 

accumulator (line 4) and are used to compute negacyclic convolution (ref. 

Chapter 3.4). Finally, the secret polynomial b is rotated by multiplying it by x 

in Rq (line 6), essentially shifting the polynomial by a single position to the left 

or right. The direction of rotation for the secret polynomial depends on the 

design methodology as long as all iterations are visited. When rotating left, the 

polynomial’s MSB becomes the LSB and vice versa. Polynomial 

multiplication is completed when polynomial b is rotated back into its original 

position. 

 

 

 

 

3.2 NTT 

 

Number theoretic transform (NTT) is basically a generalization of a 

Fast Fourier Transform (FFT) obtained by replacing 𝑒−2𝜋𝑖𝑘/𝑁  with an nth   

primitive root of unity. When the number of elements in the transform is a 

composite value, a fast NTT may be constructed in the same manner as a FFT 

is constructed from the DFT. 

 

However, unlike the DFT, the NTT can be used for fast convolutions 

and correlations like the various FFT algorithms, since it has analogous 

theorems, such as the convolution theorem. Despite that, this dissertation does 

not delve deep into the various development of NTT since it is not a focus of 

this research.  
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3.3 Karatsuba 

 

Karatsuba algorithm for polynomial multiplication stems from (Karatsuba 

1962), which involves splitting the original integer or polynomial into smaller 

parts, replacing some multiplication process by addition and subtraction, in 

turn reducing the complexity of the multiplication process. Below is the 

pseudocode for a single iteration of Karatsuba or a 1-Layer Karatsuba. 

 

Figure 3.2 1-Layer Karatsuba algorithm for polynomial multiplication 

(PM) 
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The Karatsuba algorithm uses a divide and conquer approach, in which 

the polynomials are divided into smaller sub-polynomials to perform 

multiplication efficiently. These sub-polynomials are combined to form the 

final result. The algorithm can be divided into three main parts, pre-processing, 

polynomial multiplication and post-processing. 

 

 Referring to Figure 3.2, every time the algorithm is called, input 

polynomial a is split into two half-sized sub-polynomials a_high and a_low 

(lines 2-3). They are then added up to produce the third half-sized sub- 

polynomial a_mid (line 4). The input polynomial b undergoes the same 

process of splitting (lines 5-7), resulting in another three half sized sub-

polynomials, b_high, b_low and b_mid.  

 

After completing pre-processing, the sub-polynomials are then 

multiplied in pairs (lines 8-10). Finally, Karatsuba post-processing 

(combination of sub-polynomial multiplication results) can be done. The sub-

polynomials ab_low and ab_high are subtracted from ab_mid, producing a 

ab_newmid sub-polynomial (line 11). Lastly, the sub-polynomials are stacked 

and added accordingly with respect to the index of n (lines 12-14). 
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Figure 3.3 Karatsuba pre-processing (splitting) 

 

 

 

 

 

Figure 3.4 Karatsuba post-processing (combination) 
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3.4 R-LWE 

 

Ring-learning with errors (R-LWE) is a widely investigated algorithm 

that is based on a hard lattice problem. The most critical operation in the R-

LWE schemes is polynomial multiplication on the ring.  

 

The hardware resource requirements for R-LWE-based public key 

encryption scheme needs to cater for both encryption and decryption 

operations, mainly due to the polynomial multiplication process which 

requires a high hardware consumption. The encryption process requires 

polynomial multiplication and addition while encoding the plaintext to 

polynomial. After performing polynomial multiplication, the decryption 

process also involves polynomial multiplication and addition, but this time, 

decoding the polynomial back into plaintext. 

 

The R-LWE scheme basically incurs a random error (noise) value into 

the polynomial to increase the complexity of the lattice problem, hence the 

name learning with errors. More details about the R-LWE scheme can be 

found in (Pöppelmann and Güneysu, 2013). 
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3.5 LWR 

 

The Learning-with-Rounding (LWR) scheme was first proposed in 

(Banerjee 2012), where a de-randomization technique was proposed to 

enhance the conventional Learning-with-Errors (LWE) scheme. By giving a 

more direct construction of the pseudorandom function (PRF) families, which 

is based on learning and hard lattice problems, the LWR scheme achieved a 

higher efficiency as it is distinctly parallelizable from the implementation 

aspect.  

 

The LWR scheme is much simpler compared to the LWE scheme, in 

which the inner product is just deterministically rounded to the relatively 

nearby element, giving it an arbitrary value of error in a given range. This 

omits the need to perform further operations such as the addition of the small 

random error terms, since the scheme is no longer dependant on random and 

independent errors. Moreover, the LWR scheme operates on polynomials with 

coefficients in the form of Z2n (power of two), and it introduces random errors 

through rounding operations. As a result, the modular operations can be 

carried out through simple truncated shifting operations. 
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3.6 Saber 

 

Saber is an LWR-based scheme submitted to NIST standardization 

(NIST, 2021), first introduced in (D’Anvers et al., 2018). Like all other LBC 

schemes, polynomial multiplication is the most computationally intensive 

operation in Saber. Although Saber and LWE schemes both operate on the 

similar polynomial ring, Zq[x]/(xn + 1) (Pöppelmann and Güneysu , 2013), the 

Number Theoretic Transform (NTT) algorithm cannot be utilized to speed up 

the computation of polynomial convolution in Saber as the polynomial 

coefficients (Z2
10 and Z2

13) are not on a prime field as they are in LWE 

schemes. Furthermore, although Saber operates on two different moduli (q and 

p), both of them are in the powers of 2 form, hence omitting the need for 

additional modular operations. The degree of polynomial (n) in Saber is 

always 256 regardless of the security level. Currently, the Saber suite supports 

three security levels: LightSaber, Saber768 and FireSaber. Since Saber is a 

module-LWR scheme, the polynomials are organized in an l × n dimension, 

where l = 2, 3, 4 for LightSaber, Saber768 and FireSaber respectively. In this 

paper, we focus on improving the efficiency of polynomial multiplier 

hardware architecture, which can be used to perform matrix-vector 

multiplication and inner product (D’Anvers et al., 2018) in Saber. 
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3.7 Negacyclic Convolution 

 

In this dissertation, research is done on two different schemes namely 

R-LWE and Saber. However, both schemes operates on the same polynomial 

ring equation Zq[x]/(xn + 1) (Pöppelmann and Güneysu , 2013). In other words, 

both schemes are required to perform the polynomial multiplication in a 

negacyclic convolution manner.  

 

To implement this efficiently, the negacyclic operations can be 

integrated into the SPMA, wherein the multiplication is performed with 

respect to the coefficient position. Hence, after computing the polynomial 

multiplication, the results are accumulated in the final registers according to 

the position of the polynomial coefficient, Figure 3.1 (line 4). The 

multiplication result of each coefficient is then stored in the respective 

accumulator, and the next iteration of multiplication starts after polynomial b 

is rotated, Figure 3.1 (line 6). Hence polynomial multiplier that utilizes SPMA 

with negacyclic is also called a coefficient-wise polynomial multiplier. The 

details can also be found in (Roy and Basso, 2020). 

 

Due to the splitting (pre-processing) and combination (post-processing) 

of sub-polynomials in Karatsuba algorithm, negacyclic convolution can only 

be applied after completing the multiplication process, as shown in Figure 3.5. 

The degree of product of two polynomials, each with the degree n is 2n−1. 
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The product polynomial is split in the higher half polynomial with the degree 

of n−1 and the lower half polynomial with the degree of n. Lastly, a 1-bit 0 

would be concatenated to the nth bit of the higher half polynomial, and then 

subtracted from the lower half polynomial, giving the final result of 

polynomial multiplication computed through negacyclic convolution. 

 

 

Figure 3.5 Negacyclic operation in Karatsuba post-processing 
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CHAPTER 4 

 

 

 

POLYNOMIAL CONVOLUTION HARDWARE DESIGN FOR R-LWE 

SCHEME 

 

 

A 1-Layer Karatsuba is utilized in developing the polynomial 

convolution hardware for R-LWE. to reduce the complexity of polynomial 

multiplication, wherein the core multiplication on smaller polynomial still 

relies on SPMA. We adopted the similar techniques from prior work to 

perform Barrett reduction for modular prime (Liu et al., 2019) and high-speed 

multiplication using DSP slice (Zhang et al., 2020). A novel technique is 

proposed to reduce the memory consumption in negacyclic convolution, which 

greatly improved the area efficiency. 

 

Furthermore, a technique to optimize negacyclic operations in 

Karatsuba algorithm is proposed to reduce the memory consumption, which 

greatly improved the area efficiency. The proposed algorithm combines the 

Karatsuba combination and negacyclic operation without extra memory and 

latency.  
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4.1 Optimized Negacyclic Operations in  

Karatsuba Post-processing 

 

 

 

 

 

Figure 4.1 Conventional negacyclic operation for Karatsuba 

 

 

To reduce time required for Karatsuba post-processing and negacyclic 

operations, both are combined and integrated. Referring to Figure 4.1, ab_full 

is segregated according to its sub-polynomials ab_high, ab_low and 

ab_newmid (see Layer 1) for clear view of its internal components. Layer 2 

depicts the post-multiplication negacyclic operation, wherein the higher half 
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polynomial is subtracted from the lower half polynomial. Refer to Layer 3, by 

rearranging the variables after the post-multiplication negacyclic operation, we 

can see that the subtraction result can be simplified as such: ab_high is 

subtracted from ab_low, and ab_newmid is added to the first half of 

subtraction result. In addition, ab_newmid is also subtracted from the lower 

half of the subtraction result. This is the conventional way to perform 

negacyclic operation, which is not efficient due to the extra memory and 

cycles required.  

 

Hence, a novel algorithm is proposed to combine the Karatsuba 

combination and negacyclic operation without extra memory and latency, 

shown in Figure 4.2.  
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Figure 4.2 Optimized post-process negacyclic operation for Karatsuba 

 

The final result can be computed directly using the resultant sub-

polynomials (ab_high, ab_low and ab_mid) of the multiplication process, 

without the need to recombine them into ab full and then only perform 

negacyclic operation. To breakdown the algorithm in Figure 4.2, we look at 

the computation of the final result ab_res’s LSB. Referring to Layer 3 in 

Figure 4.1, the process requires the value of ab_low[0] – ab_high[0] – 

ab_newmid[128], whereas ab_newmid[128] = ab_mid[128] – ab_low[128] – 
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ab_high[128]. Hence, (line 2- 6) depicts the input of all required values 

respectively, with i = 0 and n = 256. Line 7 is the process of computing 

ab_low – ab_high, and line 8 is the process of computing ab_newmid. 

Throughout (line 9-13), if iteration index i is less than n/2 = 128, which 

denotes the lower half of the polynomial, ab_newmid is subtracted. On the 

other hand, ab_newmid is added if index is greater than n/2, denoting the 

higher half of the polynomial.  

 

Compared to the conventional method which takes a total of 768 

cycles, the proposed technique only takes 260 cycles. Thus, gaining a 66.15% 

decrease in clock cycles due to the integration of both Karatsuba combination 

and negacyclic operations. The memory consumption is also reduced by 100% 

because we no longer need to compute the final polynomial of size n = 511, 

hence the intermediate polynomial ab_full can be removed. 
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4.2 Hardware Design 

 

 

The SPMA-Karatsuba (SK) R-LWE Polynomial Multiplier Core is 

segregated into three sub-modules and separated into five different stages. The 

functionality of sub-modules and stages are stated in Table 4.1. The module 

k_split_prep executes first level of Karatsuba polynomial splitting and the 

input preparation stage, denoted by karatsuba 1_1 and prep input respectively. 

Next, sk module performs spma stage. Lastly, the process ends with the first 

level Karatsuba polynomial combination (karatsuba 1_2) and post-

multiplication negacyclic process (negacyclic), which are performed by the 

module k_combi_nega. The Karatsuba splitting process in karatsuba 1_1 stage 

will result in six sub-polynomials a_low, a_high, a_mid, b_low, b_high and 

b_mid. A prep_input stage is required before the spma stage to increase the 

parallelism of the multiplication process. This stage duplicates b_low to an 

additional BRAM to avoid memory read conflict. In all, six BRAMs are 

created to store a_mid, b_mid, b_low, ab_high, ab_low and ab_mid. 
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Module Name Stage  Functionality 

k_split_prep karatsuba 1_1 Perform first level splitting of the 

polynomial into sub-polynomials 

prep_input Preparation Stage 

sk spma Perform Schoolbook PM 

k_combi_nega karatsuba 1_2 Perform first level combination of the 

polynomial into sub-polynomials 

negacyclic  Perform post-multiplication 

negacyclic operations 

 

Table 4.1 Functionality of each sub modules  

 

 

The architecture of sk sub-module is illustrated in Figure 4.1. It 

performs three sets of multiplications per cycle; in each set, one multiplier is 

paired with two multiplicands (i.e., a_low, b_lowE, b_lowO), whereby two 

multiplications (i.e., a_low × b_lowE and a_low × b_lowO) are performed 

through spma. Refer to Figure 4.2, all even indexed multiplicands of b_low 

will pass through b_lowE, and odd indexed multiplicands through b_lowO. 

The same input method is applied for b_high and b_mid. The sk sub-module 

operates using three DSP slices in parallel to achieve a higher throughput, 

whereby computing the three sub-polynomials ab_high, ab_low, and ab_mid 

in a single loop. Lastly, the proposed novel negacyclic algorithm for 

Karatsuba is applied in negacyclic stage, implemented using the 

k_combi_nega sub-module. 
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Figure 4.3 Block diagram of sk sub-module 

 

 

 

 

Figure 4.4 Reading polynomial data for multiplicand 
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CHAPTER 5 

 

 

 

POLYNOMIAL CONVOLUTION HARDWARE DESIGN FOR SABER 

SCHEME 

 

 

 

 

This chapter gives the architectural details, improvement over the 

earlier work and the the rationale for design choices of KaratSaber that 

employs SPMA-Karatsuba polynomial multiplier for Saber. The hierarchical 

Karatsuba Architecture KaratSaber uses a 4-layer Karatsuba implementation 

in the pre-process and post-process stage. In the earlier work by (Zhu et al., 

2020), an 8-Layer Karatsuba, with four layers at the pre and post-process 

stages, and another four at the multiplication stage was presented introducing 

large pre-processing and post-processing overhead, which is far from optimal. 

A feasibility analysis was carried out to reach the optimized value of number 

of layers in Karatsuba recursion.  

 

Karatsuba 

Hierarchy 
1-L 2-L 3-L 4-L 5-L 6-L 7-L 8-L 

Clock 

Cycles 
96 80 72 68 66 65 65 65 

Sub- 

Polynomials 
3 9 27 81 243 719 2187 6561 

Table 5.1 Clock cycles for different layers of Karatsuba 
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Referring to Table I, after performing a four layer (4-L) hierarchical 

Karatsuba in the pre and post-process stages, it records the best timing 

performance (68 clock cycles). Increasing the number of layers to six (6- L) 

can offer a marginal improvement (4.4%) in performance. However, this 

improvement does not outweigh the hardware consumption for a more 

sophisticated pre-process and post-process hardware architecture to handle 

719 sub-polynomials. Hence, we do not increase the Karatsuba recursion 

beyond four layers.  

 

The proposed 4-layer Karatsuba architecture goes through three stages. 

The first stage is the pre-processing of input polynomials into sub-polynomials 

with a smaller degree. The Karatsuba recursion produces 3x sub-polynomials, 

where x is the number of Karatsuba layers. Therefore, a 4-layer Karatsuba 

implementation would result in 34 = 81 sub-polynomials in total, wherein each 

sub-polynomial has a degree of n/2x = 256/16 = 16. To speed up the 

computation, a fully parallel grid data input technique was adopted. After pre-

processing, the multiplication stage take place, wherein the 81 sets of degree-

16 sub-polynomials undergo polynomial multiplication, resulting in 81 set of 

degree 31 sub-polynomials multiplication results. In the final stage, the 

multiplication results are combined and the negacyclic operations are 

performed. To compute the post-process and negacyclic operations in a more 

efficient fashion, an instruction code-based post-process mapping technique 

with negacyclic is proposed.  

 



43 

 

To ensure a fair comparison, we developed our multiplier with the 

same input bit size as (Roy and Basso, 2020). The multiplier handles 

polynomial a input in 208-bit wide (16 coefficients, size of each coefficient is 

13-bit), and polynomial b input in 64-bit wide (16 coefficients, size of each 

coefficient is 4-bit). The proposed KaratSaber architecture is built upon this 4-

layer hierarchical Karatsuba architecture, which includes shifter-based 

multipliers and several novel techniques that streamline the pre-processing and 

post-processing operations. 

 

Figure 5.1 KaratSaber top level diagram 
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5.1 Parallel Grid Data Input  

 

In (Roy and Basso, 2020), the compact input pre-processing is 

designed to only process and output a single pair of sub-polynomial for 

multiplication per cycle. Although some intermediate values are stored by 

reusing some registers, the pre-processing stage includes several no-op cycles. 

In other words, data dependency constraints the efficiency of pre-processing 

since some data requires a waiting time for the previous data to be computed 

and stored first, leaving some cycles empty.  

 

To increase the parallelism of the polynomial multiplier, the pre-

process stage involving the splitting of the degree-256 polynomial was 

performed in a parallel fashion. The 81 sub-polynomials are required to be 

stored in 81 parallel register sets to enable a fast data access. To achieve such 

performance, the data has to be ready as soon as possible. Referring to Figure 

3, the polynomial can be first split into the top layer 16 sub-polynomials (a0, 

a1, ..., a15) each with 16 coefficients. At this moment, the top layer sub-

polynomials are passed to the pre-process module as inputs for each cycle in 

parallel. Note that one needs to determine the register set for storing the top 

layer sub-polynomial. With this proposed mechanism, the data input is 

processed in a completely parallel manner. This enables more than one input 

to be accessed for multiplication per cycle through reusing the registers by 

exploiting the sub-polynomial grid pattern, which is explained subsequently. 
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Figure 5.2 Parallel input data loading pattern to calculate the 81 sub-polynomials using top layer sub-polynomials (a0, a1..., a14, a15) 
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Figure 5.3 Computing sub-polynomials splitting according to layers 

 

The sequence of sub-polynomials for consecutive layers were pre-

computed prior to the implementation. Figure 5.3 shows an example of 

computing the first nine sub-polynomials. Continue from the top layer sub-

polynomials, the second layer sub-polynomials were computed, i.e., a0 and a1 

produces a0 + a1. The process is then repeated until all remaining sub-

polynomials are computed. After 81 iterations, the results of all sub-

polynomials were computed as shown in the last column in Figure 5.2. 

 

 According to the results computed, each of them is either a top layer 

sub-polynomial, or a combination of different top layer sub-polynomials. 

Hence, if the register set consist of a particular top layer sub-polynomial, it is 

marked. Finally, with a completed table, we can hard-code each register to 

either hold or add in the new value, depending of the final sub-polynomial it is 

supposed to store. By doing so, the pre-process can be done in only 16 cycles.  
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However, implementing 81 sets of registers for all sub-polynomials 

would require a total of 81 × 16 × 13 = 16848 registers. Referring to Figure 

5.3, upon observing the full grid data input sequence, the input pattern actually 

repeats itself for every nine register sets across four top layer sub-polynomials, 

i.e., registers set R1 → R9 and top layer sub-polynomials a0 → a3. The next 

pattern repetition occurs in the register sets R10 → R18 and the top layer sub-

polynomials a4 → a7. The same pattern is repeated for a total of 16 times 

throughout the entire data input process. Based on this pattern, we can reduce 

81 register sets to only nine by reusing them. After the first set of nine sub-

polynomial multiplications are computed, the top layer sub-polynomials a4 → 

a7 are added to the nine register sets, resulting in sub-polynomials 19 → 27. 

When the second set of nine polynomial multiplications are completed, top 

layer sub-polynomials a4 → a7 is again loaded. At this time, the previous 

values in registers R1 → R9 can be overwritten, since we no longer need the 

values of top layer sub-polynomials a0 → a3; this produces sub-polynomials 

10 → 18. The process of adding and overwriting the nine register sets is 

repeated until all sub-polynomials have undergone the multiplication process. 
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Figure 5.4 Fully parallel grid input data loading for sub-polynomials 1-27 
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5.2 Partial Sub-polynomial Multiplication 

 

Referring to Figure 5.3, R3 should be holding the value of (a0 + a1), and 

it is supposed to be multiplied with (b0 + b1). However, pre-processing (b0+b1) 

would result in the overflow problem mentioned earlier in Chapter 3.3. 

 

 (a0 + a1)(b0 + b1) = (a0 + a1) ∗ b0 + (a0 + a1) ∗ b1 

 

Hence, to avoid the problem of overflow, a partial multiplication 

technique for each sub-polynomial was proposed by performing separate 

multiplications between the same multiplier (a0 + a1) and different 

multiplicands (b0 and b1) respectively. In other words, only polynomial a is 

required to undergo pre-process.  

 

By doing so, we eliminate the overflow problem of polynomial b 

regardless of how many layers of Karatsuba is implemented. Although the 

number of multiplications increases, the hardware consumption and clock 

cycles are still relatively low compared to multipliers that utilize DSP48E1 

blocks. This can be achieved by cleverly stacking the operations and 

performing them simultaneously in our shifter-based multiplier, to cater for 

overflowed polynomial b. Further discussion and comparison that involves the 

design of shifter-based multiplier are presented in Section 5.4. 
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Figure 5.5 Input sequence for top layer sub-polynomials and 

multiplication 

 

 

Figure 6 shows the sub-polynomial input sequence for multiplication. 

Since each set of shifter-based multipliers can handle one multiplier and two 

multiplicands, two sets of multiplications are carried out. For multiplications 

that only has a single multiplicand, i.e., a0∗b0, a value 0 is taken as the second 

multiplicand. Nevertheless, to avoid data dependencies and empty cycles, the 

top layer sub-polynomial input is carefully arranged. Referring to Figure 6, 

after the first two cycles, register sets R1, R2 and R3 will be ready for 

multiplication since they only consist of a0 and a1. After the 4th cycle, the nine 

register sets already has the first nine sub-polynomials (1→9) stored waiting 

for multiplication.  
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To ensure a smooth transition, the next top layer sub-polynomials a4 → 

a7 have to be added starting from the 5th cycle. However, the first nine 

multiplications are yet to be completed, and interfering with the registers too 

early may lead to the multiplier inputted with inaccurate data. To overcome 

this, multiplication for R5 and R6 is done lastly for the first nine 

multiplications. Referring to Figure 5.4, the arrow displays the original and 

modified sequence of R5 and R6, changing it from the 5th to the 7th cycle.  

 

Among the four top layer sub-polynomials loaded, R5 and R6 only 

store the last two top layer sub-polynomials, i.e., (a2 & a3) or (a6 & a7) etc. 

This enables the first two top layer sub-polynomials to be added or overwritten 

before the current nine sub-polynomial multiplications have been fully 

completed without affecting the data integrity. By the third cycle, registers R1, 

R2 and R3 are already ready for the multiplication process, therefore the pre-

process stage can be overlapped and polynomial multiplication can be started 

at the third cycle. 
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5.3 Code-based Post-processing Mapping with Negacyclic 

 

 

(Zhu et al., 2021) only implemented two layers of mapping, which 

means the post-process is separated into several parts. As soon as a degree 64 

sub-polynomial multiplication result is ready, it is transferred out to an 

external memory element storing the intermediate results. In other words, they 

implemented a multiplier that depends on external infrastructure to complete 

the multiplication process. Furthermore, the negacyclic operations after 

completing the entire post-process are not documented clearly in their work. A 

Karatsuba mapping process that enables the sub-polynomial multiplication 

results to be directly transposed back into the final multiplication results was 

proposed, along with the necessary negacyclic operations.  

 

After the multiplication process, we would arrive at 81 sub-polynomial 

multiplication results that need to undergo four layers of Karatsuba 

combination or post-process. Furthermore, negacyclic operations are required 

since Karatsuba does not support integration of negacyclic during 

multiplication like the case in SPMA.  

 

We can reverse the method used in pre-processing, and map the results 

back into the final polynomial directly from the fourth layer. Since the final 

polynomial would be a degree (2 ∗ 256) − 1 = 511 polynomial, a total of 32 

sets of 16 coefficient registers are required to hold the final polynomial result. 
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The results of multiplication with degree 31 were then concatenated with a 13-

bit 0’s as the MSB. Finally, the concatenated degree 32 polynomial 

multiplication result is split into lower half, RL, and higher half, RH, each 

holding a degree-16 polynomial.  

 

The mapping process is essentially combining the sub-polynomial 

multiplication results back into the full multiplication results. Conventionally, 

the post-process for each layer is done hierarchically, going from the lowest 

layer to the final layer. However, since we can directly compute the sub-

polynomials such as in pre-processing, the mapping process can actually be 

computed by reversing the pre-process steps, the layer diagram of sub-

polynomial in Figure 5.3 can be extended to the final register sets acci, where i 

= 0 → 31 as shown in Figure 8. The first four sets of top layer sub-

polynomials a0 → a3 with a total degree of 64 produces a degree 128 sub-

polynomial multiplication result after MSB concatenation. Hence, eight sets of 

registers acc0 → acc7, each with a capacity of degree-16 polynomial is 

required.  

 

To determine the sequence of mapping, all occurrence of the targeted 

sub-polynomial is tabulated. Referring to Figure 5.6, all sub-polynomials are 

always multiplied with its corresponding pair, i.e., a0 ∗ b0, (a0 + a1) ∗ (b0 + b1). 

All multiplication results in Figure 5.6 are only denoted by polynomial a. For 

instance, [a0 ∗ b0] is denoted by a0 and (a0 + a1) ∗ (b0 + b1) is denoted by (a0 + 

a1).  
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Figure 5.6 Computing sub-polynomials mapping according to layers 

 

The first sub-polynomial result that requires mapping in our case is a0. 

Based on the sub-polynomial layer diagram in Figure 5.6, to compute the full 

mapping sequence for a0, all occurrence of a0 is tabulated layer by layer. Since 

we are starting with a single coefficient sub-polynomial a0, a positive result 

(+RL, +RH) is stored to the respective register sets. When the coefficient size is 

doubled due to addition (i.e., (a0 + a1) and (a0 + a2)), the polarity of the result 

is toggled and a negative result (−RL, −RH) is stored. Lastly, for the next 

subsequent doubled coefficient size (a0 + a1 + a2 + a3), the polarity is again 

toggled, changing it back into a positive result. In summary, regardless of the 

size of coefficients, the computation always starts from a positive polarity, and 

is toggled every time the coefficient size doubles.  
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The mapping sequence is done for all 81 sub-polynomials, spanning 

across 32 sets of registers acci. Before actually implementing the design, we 

proposed to integrate the negacyclic operations here. The upper half (acc16 → 

acc31) of register set acci is subtracted from the lower half register sets (acc0 

→ acc15). For the example in Figure 5.6, the upper half (acc4 → acc7) is 

subtracted from (acc0 → acc3). Referring to Figure 5.7, the register sets 

required is reduced in half immediately, requiring only acc0 → acc3 now, and 

for the full extend case, the total register sets required is reduced from acc0 → 

acc31 to acc0 → acc15.  

 

Referring to Figure 5.8, the mapping sequence of first nine sub-

polynomials are shown in the upper part. Without optimization, the mapping 

sequence has to be hard-coded and components will be fixed for ad-hoc 

computation. Optimization such as rearrangement of the sequence or scaling 

the postprocess would be impossible. Hence, we propose to transform the 

mapping sequence into a code-based instruction to gain flexibility in changing 

and modifying the sequence. This is also highly beneficial for scaling or 

modifying the multiplier. Referring to Table 5.2, each mode is represented by 

a decimal number, and the number 0 is used to fill in the empty slots, 

representing no operation. Finally, we would arrive at a much more orderly 

mapping sequence for each sub-polynomials. During implementation, each 

value to be stored in the final register set acci’s is simply multiplexed using the 

proposed code-based instructions for each sub-polynomials. Since each row of 
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code-based sequence is fixed for each multiplication results, the column 

sequence can be simply rearranged for scalability purposes, i.e., four 

multiplications per cycle. 

 

Figure 5.7 Negacyclic operation for mapping process 

 

 

Mode Code 

+RL 1 

+RH 2 

-RL 3 

-RH 4 

+RH + RL 5 

+RH - RL  6 

-RH + RL 7 

-RH - RL 8 

 

Table 5.2 Code-based transformation  
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Figure 5.8 Code-based transformation for mapping sequence with various mode 
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5.4 Hardware Design 

 

 

 

The KaratSaber Polynomial Core comprises of three major blocks: the 

pre-process module, the Shift-Two-Multiplicand (STM) multiplication module 

and the post-process module, along with a controller and a wrapper engulfing 

all, as referred in the Figure 5.9. A total of 512 shift-based multipliers are 

implemented for the polynomial multiplication. As soon as the first set of data 

are ready after pre-processing, the multiplication process is performed. The 

multiplication results are then passed as input for post processing and 

forwarded to the register sets storing the final polynomial multiplication 

results with negacyclic. 

 

 

Figure 5.9 KaratSaber polynomial multiplier block diagram 
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5.4.1 Shift-Two-Multiplicands (STM) Module 

 

The coefficients of secret polynomial (polynomial b) are randomly 

generated through binomial distributions with varying range of [-3,3], [-4.4] 

and [-5,5], depending on the level of security (LightSaber, Saber768, 

FireSaber). Combined with the fact that Saber operates on modulo with power 

of 2, a truncated modular multiplier can be developed by using shifters only. 

From a hardware consumption point of view, DSP48E1 blocks consume more 

hardware area than a shift-based multiplier. For instance, on our target FPGA 

device (ZCU102), one DSP-based multiplier consumes 70 Configurable Logic 

Block (CLB) slices, whereas a shift-based multiplier only consumes 10 CLB 

slices. With the vast difference in hardware consumption, we can used it as 

our advantage since there is much room for additional hardware targeting a 

throughput improvement.  

 

In (Roy and Basso, 2020), they proposed a Multiply-And-Accumulate 

shifter-based multiplier to replace conventional DSP48E1 blocks. The shifting 

technique for multiplication in our multiplier is similar since the process is 

straight forward. However, we do not need the accumulator for the 

multiplication results since we are not utilizing SPMA. Furthermore, we also 

doubled the multiplier throughput by increasing the number of multiplicands.  
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In this research, a shifter-based multiplier capable of processing two 

multiplications per cycle by pairing two multiplicands with one multiplier, 

namely the Shift-Two-Multiplicand (STM) module was proposed. Since the 

two multiplicands share the same multiplier, the same set of results are 

multiplexed to two different results. Referring to Figure 12, the values of 

multiplicands (b1 and b2) are used as a multiplexer signal to choose between 

the same set of multiplier results.  

 

 

Figure 5.10 STM module block diagram 
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Multiplier Slice1 Mult-per-cycle Efficiency2 

DSP48E1 70 1 1.43 

(Roy and Basso, 

2020)’s MAC 
10 1 10.00 

This work’s 

STM 
19 2 10.53 

 

Table 5.3 Hardware consumption comparison for different multipliers 

[1] Slice = FPGA Configurable Logic Block (CLB) slice 

[2] Efficiency = (Multiplication-per-cycle/Number of slices)*100 

 

 

Even when paired with two multiplicands, the STM module only 

consumes 19 CLB slices. Referring to Table 5.3, when compared to a single 

multiplicand shifter-based multiplier such as (Roy and Basso, 2020)’s MAC, 

we doubled the throughput by utilizing 90% more hardware, increasing the 

efficiency by 5.3%. Whereas when compared to a DSP48E1 multiplier, the 

proposed STM is 3.68× smaller with twice as much throughput. During 

implementation, the multiplier modules are often utilized in great numbers 

(i.e., 256) parallelly, hence even a small improvement in efficiency such as 5.3% 

would contribute to a large amount of reduction in hardware consumption. 
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CHAPTER 6 

 

 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

 

 

6.1 SPMA-Karatsuba (SK) R-LWE Polynomial Multiplier Utilizing    

Karatsuba 

 

 

The proposed architecture was implemented and synthesized on a 

Xilinx Kintex 7 FPGA (KC705) using Vivado 2019.2. A total of four 

generations of SK R-LWE Polynomial Multiplier Core were developed in this 

work (SK Gen 1-4) and the results are presented in Table 6.1. Other than the 

Karatsuba algorithm, Gen 1 also utilizes the barrett reduction from (Liu et al. 

2019).  

Generation LUT/FF/Slice1 

/BRAM/DSP 

Freq 

(MHz) 

Clock 

Cycles 

Throughput 

(Kbps) 

TPS2 

SK Gen 1 538/611/189 

/3.0/1 

299.40 50829 1507.9 7.98 

Sk Gen 2 698/734/289 

/8.0/1 

328.95 25876 3254.4 11.26 

SK Gen 3 872/881/363 

/4.0/1 

332.67 22565 3775.8 10.40 

SK Gen 4 1125/1034/394 

/3.0/3 

335.80 8787 9783.2 24.83 

Table 6.1 FPGA implementation results of SK R-LWE PM core 



63 

 

[1] Slice - FPGA Configurable Logic Block (CLB) slice,  

[2] TPS - Throughput per slice, without considering BRAM and DSP 

 

Gen 2 is essentially the Gen 1 architecture with additional DSP slice 

utilization algorithm implemented. Building on Gen 2 architecture, the novel 

negacyclic algorithm is implemented in Gen 3. Finally, Gen 4 was built with 

extra DSP slices shows a significant increase in throughput, taking full 

advantage of the Karatsuba algorithm. To ensure a fair comparison of this 

work with the other implementations on different FPGAs e.g., Virtex/Spartan, 

a conversion is performed to compute the equivalent Configurable Logic 

Block (CLB) slice value for the DSP48E1 slices and BRAMs.  

 

By utilizing the built-in IP core for a Xilinx 7 series, a single DSP48E1 

slice can be substituted with a 25- bit × 18-bit multiplier resulting in 128 slices. 

Similarly, an 18K BRAM can be substituted by 166 slices (Liu et al. 2019). 

However, the proposed design does not fully utilize the DSP slice and BRAMs, 

therefore, a weight ratio is given to accurately depict the actual number of 

slices utilized. The weight and equivalent slices in SK Gen 4 implemented on 

the FPGA are shown in detailed in Table IV.  

 

 

 

 



64 

 

Attribute Utilization 

(BRAM/DSP) 

BRAM  

(18K) 

DSP 

Equivalent CLB Slices (ECS) 1/1 166 128 

Implementation ECS 6/3 996 384 

Weight 6/3 0.19 0.88 

Actual Implementation ECS 6/3 189.2 337.9 

Table 6.2 Equivalent CLB slices (ECS) for DSP and BRAM blocks in SK 

GEN 4 

 

Table 6.3 compares the proposed SK R-LWE PM core with earlier 

implementations of the SPMA R-LWE cryptoprocessors, which implemented 

the same parameters (n = 256, q = 7681). The work by (Zhang et al., 2020) 

only presented the results for entire R-LWE cryptoprocessors. In this paper, 

we have implemented the PM core (SPMA-4) based on the description of their 

work in order to provide a fair comparison. Since this proposed work is not 

implementing a fully recursive Karatsuba algorithm, the conventional 

complexity equation O(n) cannot be used to compute the total number of 

cycles. Given that the polynomial was split into three sub-polynomials for 

computation using SPMA with DSP utilization, the total number of cycles 

would be O(n2) 2 ÷ 2 + n + n 2 cycles for all stages, including 211 constant 

extra cycles for overhead and pipe-lining purposes.  

 

Experimental results show that the proposed architecture achieved 

2.09× higher throughput along with a 6.52% improvement in throughput-per-



65 

 

slice. However, the architecture from (Liu et al., 2019) remains the most area-

time efficient design, with a much lower throughput (3.92× slower than our 

SK Gen 4). 
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 Device LUT/FF/Slice BRAM 

(18K) 

DSP Freq 

(MHz) 

Cycle Throughput 

(Kbps) 

ECS Throughput/ 

Slice1 

This Work Kintex 7 1125/1034/394 3.0 3 335.80 8787 9783.2 921.1 10.62 

(Liu et al., 2019) (SPMA) Kintex 7 317/198/103 0.0 1 333.00 34177 2494.3 210.4 11.85 

(Zhang et al., 2020)2 (SPMA) Kintex 7 699/705/265 0.0 2 300.95 16456 4681.8 469.8 9.97 

(Feng et al., 2020)3 (NTT) Spartan 6 -/-/8680 0.5 128 235.29 220 273.8k 25125.4 10.9 

(Liu et al., 2018)4 (NTT) Spartan 6 1307/889/406 0.5 1 80.00 72.0k 284.44 462.0 0.62 

Table 6.3 Comparison with previous R-LWE implementation 

[1] 3 Calculated using Equivalent CLB slices (ECS)  

[2] Re-implemented by following the original paper (Zhang et al., 2020)  

[3] Estimated by scaling the 21-bit modulus q to 13-bit  

[4] Result of Complete R-LWE Processor in (Liu et al., 2018) 



67 

 

6.2 KaratSaber Saber Polynomial Multiplier Utilizing Karatsuba  

 

 

The proposed KaratSaber architecture is synthesized and implemented 

on a Xilinx Zynq UltraScale+ FPGA (ZCU102) using Vivado 2019.2. To 

benchmark efficiency vs. architectural optimization, three versions of 

KaratSaber Polynomial Multiplier Core (Saber PM 1-3) were developed for 

both Saber768 and unified Saber (LightSaber, Saber768, FireSaber). 

KaratSaber PM 1 is the basic architecture that utilizes a 4- layer hierarchical 

Karatsuba. It implements the proposed fully parallel data input and instruction 

code-based post-process mapping with negacyclic. Only a single multiplicand 

shifter-based multiplier is used in this iteration. In KaratSaber PM 2, we 

implemented the proposed STM modules by doubling the multiplicand inputs 

to the shifters. Towards our aim, some additional optimizations were done, 

which include adding pipelines at the modified STM and control modules to 

increase the throughput. Data input of the STM modules were rearranged to 

reduce data dependencies. In KaratSaber PM 3, data input for the STM 

modules were rearranged to further reduce data dependencies, reducing the 

idle cycles from nine to three. Lastly, in KaratSaber PM 4, the proposed 

parallel grid data input is introduced, reducing the hardware consumption 

drastically. Data input for the STM modules was again rearranged (depicted in 

Chapter 5.2 and Figure 5.5).  
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Generation 

LUT/ 

FF/ 

Slice1 

Freq 

(MHz) 

Clock 

Cycles 

Throughput 

(Mbps) 
TPS2 

KaratSaber  

PM 1 

84554/ 

 52060/  

12948 

229.15 152 387.88 29.96 

KaratSaber  

PM 2 

115403/  

70805/  

18959 

336.02 88 984.62 51.93 

KaratSaber  

PM 3 

97111/  

64128/ 

 16074 

338.18 82 1066.67 66.35 

KaratSaber  

PM 4 

77546/  

56658/ 

 11916 

322.16 82 1005.89 84.42 

 

Table 6.4 KaratSaber768 PM Core Post PAR results on Zynq UltraScale+ 

FPGA (ZCU102) 

 

 

Table 6.4 shows the implementation of this work from KaratSaber PM 

1 to PM 4, all implemented with post-place and post-route. To ensure a fair 

comparison of this work with other implementations utilizing different 

Ultrascale+ FPGAs e.g., Zynq/Virtex/Kintex, a metric is used to compute the 

equivalent Configurable Logic Block (CLB) slices value. This metric was also 

used in the previous work (Liu et al., 2019), (Zhang et al., 2020), (Wong et al., 

2021), for comparing results from different FPGA implementations.  
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The LUTs and FFs consumption reported in (Roy and Basso, 2020), 

(Zhu et al., 2021) and (He et al., 2021) can be converted into CLB slice values. 

Referring to the Xilinx Ultrascale Architecture CLB resources documentation 

(Ultrascale Architecture), both SLICEL and SLICEM has the same amount of 

eight LUTs and 16 FFs per CLB slice. Hence, we can easily convert the 

documented LUTs and FFs into equivalent CLB slice (ECS) values. For 

example, based on the hardware consumption reported by (Roy and Basso, 

2020), the value of 17429 LUTs is divided by eight, and the result is rounded 

to the nearest integer (ceiling operation), giving us 2179 ECS. For the value of 

5083 FFs, it is divided by 16, giving us 318 ECS. In total, we can arrive at a 

total ECS of 2496.  

 

In most cases, the CLB slices are not fully utilized, therefore the ECS 

values computed through conversion may be slightly underestimated 

compared to the actual hardware consumption, since it also excludes some 

circuitries and minor some components. According to the CLB conversion and 

the actual CLB slices consumed in this work, we found that there is a 2.6% 

difference between these two values. However, we did not leverage this 

difference and maintained the original value computed.  

 

Xilinx Vivado does not provide the resources utilized for DSP and 

BRAM blocks. To convert the DSP48E1 blocks into ECS, we can utilize the 

built-in IP core for a Xilinx Ultrascale series, whereby a single DSP48E1 slice 
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can be substituted with a 25-bit × 18-bit unsigned multiplier resulting in 70 

slices. For implementations that utilize DSPs such as (Zhu et al., 2021), the 

DSPs are converted into ECS values, i.e., 85 × 70 = 5950.  

 

Table 6.5 compares the proposed Saber768 and Saber unified 

polynomial multiplier core with earlier Saber implementations that utilize both 

SPMA and Karatsuba. For clarity, we take our cores throughput as reference 

(1×) and compare with all other cores throughput in comparison (e.g., n times 

lower depicted as ↓ n×). Similarly, a TPS percentage difference (as ±m%) of 

our cores compared to the reported results is also presented. Experimental 

results prove that the proposed Saber768 architecture achieved 7.47× and 

20.04× higher throughput when compared to Saber polynomial multipliers 

developed utilizing SPMA in (Roy and Basso, 2020) and (He et al., 2021) 

respectively. Although (He et al., 2021) remains the most area-time efficient 

architecture with the highest throughput per slice (TPS), the throughput is 

extremely low, which may not be suitable for applications that require a timely 

response. When compared to the Karatsuba implementation for Saber768 in 

(Zhu et al., 2021), the proposed polynomial multiplier achieved a 2.04× higher 

throughput along with a 26.98% improvement in TPS. On the other hand, the 

proposed Saber unified (LightSaber, Saber768, FireSaber) polynomial 

multiplier achieved 8.10×, 27.01× and 3.40× higher throughput when 

compared to (Roy and Basso, 2020), (He et al., 2021) and (Zhu et al., 2021) 

respectively.  
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Variation Implementation 
LUT/ FF/ 

Slice 
DSP 

Freq 

(MHz) 
Cycle 

 

Throughput 

(Mbps) 

Speed 

up (x) 

 

ECS 

 

Throughput 

per Slice1 

Improve-

ment (%) 

Saber768 

This work2 77546 / 56658 

/ 11916 
0 322.16 82 1005.89 1.00 11916 84.42 100 

(Zhu et al., 

2021) 

13735 / 4486 / 

1998 
85 160.00 83 493.45 ↓2.04 7948 62.08 -26.98 

(Roy and 

Basso, 2020) 

17429 / 5083 / 

2496 
0 250.00 297 134.74 ↓7.47 2570 53.98 -46.04 

(He et al., 2021) 
2231 / 1737 / 

492 
0 250.00 1279 50.20 ↓20.04 492 102.02 +22.73 

 

Table 6.5 KaratSaber768 Comparison with Previous Saber768 Implementations 

[1] Calculated using Equivalent CLB slices (ECS)  

[2] This work’s KaratSaber768 PM 4  

[3] This work’s KaratSaber unified PM 4 
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Variation Implementation 
LUT/ FF/ 

Slice 
DSP 

Freq 

(MHz) 
Cycle 

 

Throughput 

(Mbps) 

Speed 

up (x) 

 

ECS 

 

Throughput 

per Slice1 

Improve-

ment (%) 

Saber 

Unified 

This work3 89222 / 56657 

/ 14082 
0 335.68 82 1024.00 1.00 14082 74.41 100 

(Zhu et al., 

2021) 

13735 / 4486 / 

1998 
85 100.00 83 308.43 ↓3.40 7948 38.81 -84.62 

(Roy and 

Basso, 2020) 

17429 / 5083 / 

2496 
0 150.00 297 129.19 ↓8.10 2570 51.80 -38.32 

(He et al., 2021) 
2231 / 1737 / 

492 
0 250.00 1647 38.79 ↓27.01 492 78.84 +9.12 

 

Table 6.6 KaratSaber unified Comparison with Previous Saber unified Implementations 

[1] Calculated using Equivalent CLB slices (ECS)  

[2] This work’s KaratSaber768 PM 4  

[3] This work’s KaratSaber unified PM 4 
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The proposed KaratSaber architecture can be used as a co-processor in 

FPGA-based IoT processor (Kiat et al., 2020) in various IoT applications. The 

high TPS achieved by KaratSaber indicates that it is capable in handling high 

throughput KEM operations, with a moderate hardware consumption. This is 

an important feature when it is used in an IoT sensor node that needs to update 

the cloud server frequently, or it is used in a gateway device that needs to 

communicate with hundreds of sensor nodes in a timely manner. On the other 

hand, applications that has very stringent hardware area consumption may opt 

for extremely small architecture like (He et al., 2021), which greatly sacrifices 

the throughput performance. 
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6.3 Utilizing Research Output in IoT Applications 

 

 

Application of cryptography in IoT covers a wide array of devices 

targeting different usage. For the work in this dissertation, the targeted 

implementation falls in the category of IoT applications that requires relatively 

high throughput, i.e., communications and database. 

 

In the encryption techniques for secure communication analysis (Sanap 

and More, 2021), they compared various symmetric encryption algorithms for 

secure communication. To hinder misuse and alteration of sensitive 

information, an efficient cryptosystem with robust security is relatively 

important. Algorithms compared in this analysis (Sanap and More, 2021) 

includes DES, 3DES and AES, which are symmetric encryption schemes that 

are widely used in IoT applications. The symmetric keys need to be refreshed 

and encapsulated by the sensor nodes frequently before transmitting them to 

the cloud servers. The high throughput hardware architectures developed in 

this dissertation can be used to accelerate this process (KEM), which benefit 

many IoT applications that require timely response. Due to the area-time 

efficient design proposed in this dissertation, the area consumption is also 

reasonable for many IoT applications. 

 

Furthermore, implementations such as database security (Zaw et. al., 

2019), cloud storage (Deepthi et. al., 2021) and medical images encryption 

(Benssalah et. al., 2018) involves transmitting, computing and storing 
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immense quantity of sensitive data that requires robust security and high 

throughput. This research work can also be integrated into such applications 

inhibit attacks from advanced quantum computers. 
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CHAPTER 7 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

7.1 Conclusion 

 

In this research work, a high-speed polynomial multiplier utilizing 

Karatsuba algorithm was developed for R-LWE and Saber schemes. As 

discussed in earlier chapters, when implementing the Karatsuba algorithm, the 

overhead (hardware consumption) increases proportional to the layers of 

Karatsuba. To avoid sacrificing too much hardware resulting in imbalance in 

the area-time aspect, the Karatsuba algorithm implemented in this research is 

never in a fully recursive fashion. However, due to the nature of the Karatsuba 

algorithm, it actually can be aid algorithms like SPMA to perform the 

polynomial multiplication in s shorter timeframe, in other words, increasing 

the overall throughput buy using a moderate amount of additional hardware. 

Hence, Karatsuba can be regarded as a catalyst algorithm to speed up the 

polynomial multiplication process, since it still relies on SPMA to complete 

the multiplication operation. Despite that, the throughput advantage of the 

Karatsuba algorithm far outweighs the hardware scarification.  
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In summary, this dissertation has provided answers to the following 

research challenges: 

 

1) Karatsuba algorithm can be used to speed up the polynomial 

multiplication in LBC schemes, which is more advantageous 

compared to SPMA. It is able to achieve better area-time 

balance compared to pure SPMA implementations. 

 

2) Promising PQC schemes like LWR that inhibits the use of NTT 

implementation (e.g., Saber) can be accelerated by utilizing the 

Karatsuba algorithm, enabling it to achieve higher throughput 

while maintaining a balance area-time aspect 

 

 

3) Negacyclic operations for Karatsuba can be easily integrated 

into the Karatsuba post-processing stage, despite the number of 

implemented Karatsuba layers (recursiveness). This enables the 

efficiency of Karatsuba implementation for LBC schemes by 

omitting the additional cycles required for negacyclic 

operations. 

 

4) While implementing Karatsuba, the challenge of polynomial b 

overflowing can be solved by constraining the layers of 

Karatsuba implemented, or on the other hand, perform separate 
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multiplications simultaneously. The latter increases the 

flexibility and scalability of the polynomial multiplier.  

 

 

 

 

7.2 Future Work 

 

 

 

The Karatsuba polynomial multiplier developed for both R-LWE and 

Saber scheme can also be implemented to cater for other schemes such as 

Scabbard, (Mera et al., 2021). Since the bottleneck for LBC scheme is 

polynomial multiplication, the shift-based multiplicator that has a high 

efficiency and low hardware consumption can also be migrated into different 

LBC schemes for future works. The shift-based multiplicator can also be 

customized to cater for additional numbers of multiplicands in different use 

cases, hence widening the possibilities for future implementations. 

 

Furthermore, different layers of Karatsuba implementation can also be 

researched. Algorithms such as Toom-Cook algorithm is also a viable research 

direction where different layers and parameters can be tweaked to develop an 

efficient polynomial multiplier. Since the Toom-Cook algorithm is able to 

split the original polynomial into unsymmetrical sizes, this opens many 

possibilities and combinations for implementing the algorithm.  
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Besides, the Toom-Cook algorithm is also more suitable for 

asymptotical cases where it can efficiently compute large polynomial 

multiplication. In other words, the conquer and dividing techniques displayed 

in this research can be implemented on other PQC schemes that has larger 

parameters (requires higher security) using the Toom-Cook algorithm. 

 

Lastly, the energy consumption of the polynomial multiplier can be 

further minimized for applications such as IoT devices using system level 

power management technique (Tan et al., 2021) is another promising direction. 
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