

EFFICIENT IMPLEMENTATION OF LATTICE-BASED

CRYPTOGRAPHIC SCHEMES FOR INTERNET OF

THINGS APPLICATIONS

WONG ZHENG YAN

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

DECEMBER 2021

EFFICIENT IMPLEMENTATION OF LATTICE-BASED

CRYPTOGRAPHIC SCHEMES FOR INTERNET OF THINGS

APPLICATIONS

 By

WONG ZHENG YAN

A dissertation submitted to

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of Master of Science

(Computer Science)

December 2021

ii

ABSTRACT

EFFICIENT IMPLEMENTATION OF LATTICE-BASED

CRYPTOGRAPHIC SCHEMES FOR INTERNET OF THINGS

APPLICATIONS

Wong Zheng Yan

Lattice-based cryptography (LBC) is one of the most widely studied

post-quantum cryptography (PQC) candidates to date. Polynomial

multiplication (PM) and generation of error samples are two main bottlenecks

in LBC. PM can be implemented through schoolbook polynomial

multiplication algorithm (SPMA) and Number Theoretic Transform (NTT).

The SPMA has always been the simplest form of performing PM, and

often can be implemented through very light weight designs, but it suffers

from low throughputs. NTT on the other hand, requires vast hardware

utilization to cope with the high parallelism of the multiplication process,

although capable of completing the PM process in a much shorter timeframe.

Moreover, NTT requires special ring structure to operate, which may not be

found in all LBC schemes.

Karatsuba algorithm, being another candidate between these two

extremes, are not widely studied for LBC scheme implementation in FPGA.

Karatsuba algorithm can be used to speed up the PM process, while keeping

iii

the hardware utilization moderately lightweight. This fills in the gap between

SPMA and NTT, creating a robust and packed polynomial multiplier,

especially for IoT applications that requires higher security with hardware

constraints.

The main focus of this work is to develop a high-speed hardware

architecture to improve the performance of PM in LBC schemes such as Ring

Learning-with Error (R-LWE) and Learning-with-Errors (LWR) (Saber). This

research work implemented a 1-layer Karatsuba architecture to improve the

throughput of PM for R-LWE, and a 4-layer Karatsuba architecture to improve

the throughput of PM for SABER.

 By breaking the polynomials into smaller sub-polynomials for

multiplication, along with efficient data scheduling specifically for the

Karatsuba algorithm, the throughput of PM is improved drastically.

Furthermore, multiplicands are also stacked up to double the throughput in

both R-LWE and SABER implementations. Last but not least, the negacyclic

operations are integrated into the post-processing of Karatsuba, saving

additional memory elements for storing the intermediate results, and reducing

the time consume for computing the PM results.

 Experimental results show a speed up of 2.09× in throughput along

with a 6.52% improvement in throughput-per-slice for the R-LWE polynomial

multiplier. For the Saber polynomial multiplier, experimental results show a

speed up of 2.17× in throughput along with a 73.55% improvement in

throughput-per-slice.

iv

IoT applications require the sensor nodes to transmit sensor data

frequently to the nearby gateway device. This implies that the implementation

of public key scheme used in protecting such communication must achieve

sufficient throughput in order to ensure a timely response. The proposed

Karatsuba-based architecture allows high throughput performance, at the same

time do not consume extremely large hardware area; this shows great potential

to be used in IoT applications

v

ACKNOWLEDGEMENT

First, I would like to thank the university for funding this project. This

project was funded under the MoHE fundamental research grant scheme

(FRGS) with the grant number FRGS/1/2018/STG06/UTAR/03/1 and UTAR

top up scheme. Next, I would like to thank my supervisors Dr. Denis Wong

Chee Keong, Dr. Lee Wai Kong and Mr. Mok Kai Ming for their continuous

support and encouragement. I would also like to show appreciation to my

postgraduate friends and seniors that aid me along the way. Furthermore, I

would like to thank my friends and family for encouraging and standing by my

side along the way. Finally, I would like to thank Ms. CY who was always

there for me in times of despair and struggle, providing me abundance of

support and inspirations.

vi

APPROVAL SHEET

This dissertation entitled “EFFICIENT IMPLEMENTATION OF

LATTICE-BASED CRYPTOGRAPHIC SCHEMES FOR INTERNET

OF THINGS APPLICATIONS” was prepared by WONG ZHENG YAN and

submitted as partial fulfillment of the requirements for the degree of Master of

Science (Computer Science) at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Denis Wong Chee Keong) Date:…25/10/21……….

Supervisor

Department of Mathematical and Actuarial Sciences

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

(Dr. Lee Wai Kong) Date:…… 25/10/21…….

Co-supervisor

Department of Computer Engineering

Gachon University

(Mr. Mok Kai Ming) Date:…… 25/10/21…….

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vii

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ____25/10/21________

SUBMISSION OF DISSERTATION

It is hereby certified that WONG ZHENG YAN (ID No:

20ACM00703) has completed this dissertation entitled “_EFFICIENT

IMPLEMENTATION OF LATTICE-BASED CRYPTOGRAPHIC

SCHEMES FOR INTERNET OF THINGS APPLICATIONS ” under

the supervision of _DR. DENIS WONG CHEE KEONG_ (Supervisor)

from the Department of Mathematical and Actuarial Sciences, Lee Kong

Chian Faculty of Engineering Sciences , and _DR. LEE WAI KONG_

(Co-Supervisor) from the Department of Computer Engineering, Gachon

University, and _MR. MOK KAI MING (Co-Supervisor) from the

Department of Computer and Communication Technology, Faculty of

Information and Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible

to UTAR community and public.

Yours truly,

(WONG ZHENG YAN)

*Delete whichever not applicable

viii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

 (WONG ZHENG YAN)

Date ___________25/10/21__________

ix

LIST OF TABLES

Table

4.1

Functionality of each sub modules

Page

39

5.1 Clock cycles for different layers of Karatsuba

41

5.2 Code-based transformation

56

5.3 Hardware consumption comparison for different

multipliers

61

6.1 FPGA implementation results of SK R-LWE PM

core

62

6.2 Equivalent CLB slices (ECS) for DSP and BRAM

blocks in SK GEN 4

64

6.3 Comparison with previous R-LWE implementation

66

6.4 KaratSaber768 PM Core Post PAR results on Zynq

UltraScale+ FPGA (ZCU102)

68

6.5 KaratSaber768 Comparison with Previous

Saber768 Implementations

71

6.6 KaratSaber unified Comparison with Previous

Saber unified Implementations

72

x

LIST OF FIGURES

Figures

1.1

Public Key Encryption Example

Page

1

1.2 IoT framework 7

3.1 Schoolbook polynomial multiplication algorithm

(SPMA)

23

3.2 1-Layer Karatsuba algorithm for polynomial

multiplication (PM)

25

3.3 Karatsuba pre-processing (splitting)

27

3.4 Karatsuba post-processing (combination)

27

3.5 Negacyclic operation in Karatsuba post-processing

32

4.1 Conventional negacyclic operation for Karatsuba

34

4.2 Optimized post-process negacyclic operation for

Karatsuba

36

4.3 Block diagram of sk sub-module

40

4.4 Reading polynomial data for multiplicand

40

5.1 KaratSaber top level diagram 43

xi

5.2 Parallel input data loading pattern to calculate the

81 sub-polynomials using top layer sub-

polynomials (a0, a1..., a14, a15)

45

5.3 Computing sub-polynomials splitting according to

layers

46

5.4 Fully parallel grid input data loading for sub-

polynomials 1-27

48

5.5 Input sequence for top layer sub-polynomials and

multiplication

50

5.6 Computing sub-polynomials mapping according to

layers

54

5.7 Negacyclic operation for mapping process

56

5.8 Code-based transformation for mapping sequence

with various mode

57

5.9 KaratSaber polynomial multiplier block diagram

58

5.10 STM module block diagram

60

xii

LIST OF ABBREVIATIONS

FFT Fast Fourier Transform

LBC Lattice-based Cryptography

NIST National Institute of Science and Technology

NTT Number Theoretic Transform

PM Polynomial Multiplication

PQC Post-quantum Cryptography

SPMA Schoolbook Polynomial Multiplication Algorithm

xiii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS v

APPROVAL SHEET vi

SUBMISSION SHEET vii

DECLARATION viii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1

1.1 Introduction

1.1.1 Post-quantum Cryptography

1.1.2 Lattice-based Cryptography

1.1.3 Cryptography in IoT

1.2 Problem Statement

1.3 Objectives

1.4 Contribution

1.5 Dissertation Organization

1

3

4

7

9

9

10

11

2 LITERATURE REVIEW 12

2.1 SPMA

2.1.1 Optimized Schoolbook Polynomial Multiplication

for Compact Lattice-Based Cryptography on

FPGA

2.1.2 Lightweight Hardware implementation of R-

LWE Lattice-Based Cryptography

13

13

14

xiv

2.1.3 An Efficient and Parallel R-LWE

Cryptoprocessor

2.1.4 High-speed Instruction-set Coprocessor for

Lattice-based Key Encapsulation Mechanism:

Saber in Hardware

2.2 NTT

2.2.1 Open-Source FPGA Implementation of Post-

Quantum Cryptographic Hardware Primitives

2.2.2 Compact Ring-LWE Crypto-processor

2.2.3 A Resource-Efficient and Side-Channel Secure

Hardware Implementation of Ring-LWE

Cryptographic Processor

2.2.4 High-Throughput Ring-LWE Crypto-processors

2.2.5 Area-optimized Lattice-based Cryptographic

Processor for Constrained Devices

15

16

17

17

18

19

20

21

3 BACKGROUND 23

3.1 SPMA

3.2 NTT

3.3 Karatsuba

3.4 R-LWE

3.5 L-WR

3.6 Saber

3.7 Negacyclic Convolution

23

24

25

28

29

30

31

4 POLYNOMIAL CONVOLUTION HARDWARE DESIGN

FOR R-LWE SCHEME

33

4.1 Optimized Negacyclic Operations in

Karatsuba Post-processing

4.2 Hardware Design

34

38

5 POLYNOMIAL CONVOLUTION HARDWARE DESIGN

FOR SABER SCHEME

41

5.1 Parallel Grid Data Input

5.2 Partial Sub-polynomial Multiplication

44

49

xv

5.3 Code-based Post-processing Mapping with Negacyclic

5.4 Hardware Design

5.4.1 Shift-Two-Multiplicands (STM) Module

52

58

59

6 EXPERIMENTAL RESULTS AND DISCUSSION 62

6.1 SPMA-Karatsuba (SK) R-LWE Polynomial Multiplier

Utilizing Karatsuba

6.2 KaratSaber Saber Polynomial Multiplier Utilizing Karatsuba

6.3 Utilizing Research Output in IoT Applications

62

67

74

7 CONCLUSION AND FUTURE WORK 76

7.1 Conclusion

7.2 Future Work

76

78

LIST OF PUBLICATIONS 80

BIBLIOGRAPHY 81

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Public key cryptography (PKC), also known as asymmetric key

cryptography, uses a different key to encrypt and decrypt data. The PKC

scheme basically uses two mathematically related keys namely a public key

and a private key. The function of the public key is to encrypt the plaintext

into ciphertext, whereas the private key is used to decrypt the cipher text back

to its original plaintext. A few well-regarded PKC such as the RSA encryption

algorithm, Diffie-Hellman key exchange protocol and Paillier cryptosystem

are used for various purposes, ranging from digital signatures, encryption,

authentication, non-repudiation, and data integrity.

Figure 1.1 Public Key Encryption Example

2

For years, the public-key encryption (PKE) and public-key signature

scheme cryptosystem has kept data safe, but with the emerging numbers of

quantum computers, this poses a big threat to the existing cryptosystem that

runs on PKE. Unlike conventional computers which use bits that can only be

in two states (either 1s or 0s), quantum computers on the other hand, use

qubits, typically subatomic particles, i.e., photons and electrons. The two most

significant quantum properties of qubits namely superposition and

entanglement enable a quantum machine to leap exponentially in terms of

computing power. An encryption algorithm that takes years to be

compromised by a classical computer, may only need minutes in quantum

computer, rendering many existing PKE obsolete.

Moreover, introduction of Shor’s algorithm in (Shor 1997) makes the

existing PKE even more vulnerable to quantum computers. The holy grail of

existing cryptosystems is based on prime factorization and finding discrete

logarithms, which are proven extremely difficult to be solved by classical

computer. However, by cleverly utilizing both classical computer and

quantum computers, computation problems like performing reversible

computation, prime factorization and Fourier transform on a quantum

computer can be solved. In other words, cracking prime factorization on

quantum computers is nothing but a piece of cake.

3

1.1.1 Post-quantum Cryptography

Post-quantum cryptography (PQC) refers to the development of new

kinds of cryptographic algorithms secure and resistant against attacks from

quantum computers, implemented using today’s conventional computers. A

report by the US National Institute of Standards and Technology (NIST) states

that by the year 2030, quantum machines would render the widely used RSA

algorithm insecure. Hence by that same year, NIST has initiated a process to

develop and standardize one or more quantum-resistant PQC algorithms

(NIST 2016).

Since traditional PKE mostly rely on mathematical problems such as

integer factorization and discrete logarithm, quantum machines and algorithms

can efficiently solve these types of traditional number-theoretic-based

cryptosystems. Although no large-scale quantum machines are yet to exist for

at least a decade or more, this should be considered as a warning and steps

should be taken in order to prevent quantum computers from completely

rendering cryptosystem useless. Researches on PQC mainly focus on six

approaches, where all six are significantly varied, namely:

i. Lattice-based Cryptography

ii. Multivariate Cryptography

iii. Hash-based Cryptography

iv. Code-based Cryptography

v. Super Singular Elliptic Curve Isogeny Cryptography

vi. Symmetric Key Quantum Resistance

4

This project focuses on multiple schemes in lattice-based cryptography.

1.1.2 Lattice-based Cryptography

Lattice-based cryptography (LBC) refers to the cryptography that

relates their security to hard mathematics problems around lattices, and is

considered one of the most widely studied post-quantum cryptography (PQC)

candidates to date. In the round 3 of National Institute of Standards and

Technology (NIST) post-quantum cryptography (PQC) standardization

process (NIST, 2021), five out of seven selected finalists are LBC. Many tests

were done on LBC and some lattice-based structures seem to resist attacks

from both classical and quantum computers very well. Hence, LBC is

regarded to be a prime candidate for quantum-secure PKC (Regev 2006).

There are several reasons behind choosing LBC to be the main focus of

this proposal. Firstly, one of the unique properties in LBC is that it can be used

to construct very reliable cryptographic primitives. Furthermore, the

computations involved in implementing LBC are not sophisticated; it usually

only requires matrix/polynomial multiplication and small modular arithmetic.

Lastly, LBC is chosen given its efficiency and practical advantage while

performing encryption on a low-cost device.

5

Polynomial multiplication (PM) and generation of error samples are

two main bottlenecks in LBC; the focus of this project is to propose a high-

speed hardware architecture to improve the performance of PM. PM can be

implemented through schoolbook polynomial multiplication algorithm (SPMA)

and Number Theoretic Transform (NTT). SPMA is simple and straightforward

to implement in hardware, while NTT requires complicated pre-computation

and array re-ordering to achieve high performance.

The SPMA has always been the simplest form of performing PM, and

often can be implemented through very light weight designs. For older

schemes such as the Ring-Learning with Errors (R-LWE), SPMA works well

in performing the PM. The multiplicator is often small in size, but suffer from

very slow speeds, in other words, extremely low to low throughputs. However,

given its simplicity, the R-LWE scheme which dictates the polynomial

multiplication be done in a negacyclic fashion, can be integrated and weaved

into the multiplication process. NTT on the other hand, requires vast hardware

utilization to cope with the high parallelity of the multiplication process. Being

on the other end of the spectrum, NTT is capable of completing the PM

process in a much shorter timeframe. That being said, NTT highly depends on

large framework and hardware utilization, hence it is often not suitable for IoT

applications that are targeted for a more lightweight and low-powered

implementation. Moreover, NTT requires special ring structure to operate,

which may not be found in all LBC schemes.

6

In newer schemes such as SABER, which is one of the NIST round

three finalist amongst the other PQC candidates, many papers have already

explored the implementation utilizing SPMA, since SABER cannot be

implemented using NTT. Despite that, both the R-LWE and SABER schemes

operate on the same polynomial ring equation (Pöppelmann, 2013), which

requires a negacyclic operation for the PM process.

Karatsuba algorithm, being another candidate between these two

extremes, are not widely studied for R-LWE and SABER implementation in

FPGA. Since the PM process has always been the bottleneck of the

cryptographic process, Karatsuba algorithm can be used as a catalyst to speed

up the PM process, while keeping the hardware utilization moderately

lightweight. This fills in the gap between SPMA and NTT, creating a robust

and packed polynomial multiplier, especially for IoT applications that requires

higher security with hardware constraints.

 In this project, we proposed a 1-Layer Karatsuba architecture to

improve the throughput of PM for R-LWE, and a 4-Layer Karatsuba

architecture to improve the throughput of PM for SABER. Due to the nature of

the Karatsuba algorithm, which involves splitting and combining the

polynomial during the PM process, it forbids the negacyclic operations to be

done along with the polynomial multiplication such as in SPMA. Hence, one

of the main challenges is implementing Karatsuba algorithm with negacyclic

efficiently.

7

1.1.3 Cryptography in IoT

The Internet of Things (IoT) has developed drastically over the past

decade. IoT devices such as sensor nodes are deployed ubiquitously to

transmit, collect and exchange information, which poses many vulnerabilities

against malicious attacks from adversaries.

Figure 1.2 IoT framework

Figure 1.2 displays a simple IoT framework. The sensor node(s) (SN)

read the IoT data and transmit them to the gateway. To encrypt the IoT data

using common block cipher (e.g., AES), the sensor nodes need to randomly

generate symmetric keys and transmit it to the gateway and cloud server for

decryption purpose. The Key Encapsulation Mechanism (KEM) is used to

perform such key exchange operations.

IoT Devices (Sensor Nodes)

8

However, in real life implementations, the number of sensor nodes

connected to the gateway are massive. When side channel attacks are

performed on the sensor nodes, the symmetric key used for encrypting IoT

data may be compromised. Hence, the symmetric key needs to be generated

for each communication session and transmitted frequently to the

gateway/cloud server. Due to this reason, the KEM must also be implemented

efficiently, so that the security of the IoT framework can be protected without

compromising the response time.

Despite that, previous KEM implementations for IoT devices are

mostly built upon conventional public key encryption schemes such as RSA.

As discussed earlier, conventional PKC is becoming obsolete due to the

emergence of Shor’s algorithm and more advanced quantum computers.

Hence, post-quantum schemes such as the LBC are used to replace the

conventional PKC in KEM. Due to the small key sizes and good performance

on various hardware platforms, lattice-based KEM can be computed with high

throughput and moderate amount of hardware, which is especially suitable for

IoT devices. The goal in this dissertation is to propose more efficient

polynomial multiplier architectures to further improve the throughput of

selected lattice-based KEM.

9

1.2 Problem Statements

1) The SPMA polynomial multiplier architectures used in R-LWE

schemes suffer from very slow speed performance. This is inherently

limited by the SPMA algorithm that comes with a high complexity.

Some IoT applications cannot utilize architectures that are too slow.

2) Existing Karatsuba-based polynomial multiplier architectures for LBC

schemes are having poor area-time efficiency. They achieved high

throughput in expense of large area consumption. The data processing

mechanism in handling various Karatsuba levels are also not fully

optimized.

1.3 Objectives

1) Design a Karatsuba-based polynomial multiplier architectures to speed

up the speed performance of polynomial multiplication in RLWE

schemes.

2) Develop a Karatsuba-based polynomial multiplier architectures with

minimal additional hardware. The developed architectures should

maintain a high throughput in order to cater for IoT applications, at the

same time achieve better area-time efficiency compared to existing

work.

10

1.4 Contribution

Contributions of this dissertation are as follows:

1) An efficient polynomial multiplier utilizing 1-Layer Karatsuba for R-

LWE scheme. The multiplier is developed with DSP utilization

algorithm for Karatsuba and integrated negacyclic operations in

Karatsuba post-processing. This design is catered for IoT devices

which uses relatively low hardware resources while having a high

throughput.

2) A high speed shifter-based polynomial multiplier implementation

utilizing 4-Layer Karatsuba for Saber key encapsulation mechanism

(KEM). The grid-based parallel data input for Karatsuba pre-

processing and post-process result mapping with integrated negacyclic

enables an optimal polynomial multiplication process utilizing

Karatsuba, eventually improving the overall speed performance. At the

same time, by implementing techniques to reuse registers in the pre-

processing and direct result mapping in post-processing, the hardware

resources consumption is drastically decreased achieving a more area-

time balanced design.

11

1.5 Dissertation Organization

The dissertation commenced with Chapter 1, which serves as a top

down introductory for the cryptographic schemes researched, while addressing

the vulnerabilities of existing cryptographic schemes. In Chapter 2, study is

conducted on the existing implementation of different LBC schemes utilizing

various algorithms such as SPMA, NTT and Karatsuba. Chapter 3 provides

further discussion and background information on the algorithms utilized to

implement polynomial multipliers in the LBC scheme, along with the

introduction to negacyclic convolution requirements for certain LBC schemes.

Chapter 4 focuses on the design of polynomial multiplier for the R-

LWE scheme, whereas Chapter 5 focuses on the design of polynomial

multiplier for the Saber scheme. Chapter 6 provides and discusses the

experimental results, where it is divided into two parts. The first part is for the

R-LWE scheme, and the second part is for the LWR scheme (Saber). Finally,

Chapter 7 concludes the research work, along with suggestions for potential

future research ideas and directions.

12

CHAPTER 2

LITERATURE REVIEW

Post-quantum cryptography is vital for the future of cryptography in

the imminent advancement of quantum computers. A substantial amount of

quantum cryptography researches has been conducted in recent years in

conjunction with NIST’s search for PQC’s to be standardize. Among the NIST

round 3 finalist for the public-key encryption schemes are candidates such as

Saber, Kyber, NTRU and Classic McEliece. The R-LWE scheme on the other

hand is an older LBC scheme that is widely researched too, due to its

efficiency.

Recent implementations for the various schemes aforementioned, be it

on FPGA’s, ARM or Intel’s processors, algorithms such as SPMA and NTT

are very popular, often utilized to perform the polynomial multiplication.

However, since NTT is not applicable for schemes that has modular primes

that are not on the prime field such as the Saber scheme, or when the targeted

device has a hardware consumption limitation (commonly in IoT devices), the

Karatsuba algorithm comes into play and can be leveraged to improve the

performance of such schemes compared to their SPMA counterparts.

In the following sections, several researches utilizing SPMA and NTT

have been reviewed to give a better understanding on how the Karatsuba

algorithm can fill in the gap between both spectrums of the area-time aspect.

13

2.1 SPMA

2.1.1 Optimized Schoolbook Polynomial Multiplication for Compact

Lattice-Based Cryptography on FPGA (Liu et. el., 2019)

Liu et. al. (2019) implements an improved SPM algorithm to perform

polynomial multiplication for the R-LWE scheme. They introduced a novel

method for modular reduction and performing bit reduction.

The multiplication of 13-bit integer and 6-bit integer is transform to

13-bit multiplied by 5-bit integer by applying reduced bit-width representation.

The most significant bit (MSB) is removed from the 6-bit value since it only

indicates the sign. To perform modulo on the 18-bits product, a modular

reduction algorithm is used rather than building a hardware to perform

division. The 18-bits integer undergoes a Barrett reduction algorithm, which

only uses shifting, addition and subtraction, which is much more cost and

speed effective.

The second improvement made is by fitting two multiplications within

one DSP block on the FPGA. In Xilinx 7 series FPGAs, a single DSP block

can support multiplications up to 25 × 18 bits. Since the reduced size of

multiplication required is only 13 × 5 bits, one DSP block on the FPGA can

be fitted with two multiplicands, hence performing two multiplications at the

same time.

14

The hardware cost of implementation with parameters 𝑛 = 256 and

𝑞 = 7681 requires 898 LUTs, 1 DSP block, 3 8K BRAMs, and 815 registers,

which is easily scalable due to its small size but very low in terms of

efficiency.

2.1.2 Lightweight Hardware implementation of R-LWE Lattice-Based

Cryptography (Fan et. al., 2019)

Fan et al. (2019) proposes a lightweight hardware implementation of a

R-LWE cryptosystem without the risk of compromising the security. In other

words, although only a small amount of resources is used and the performance

slightly decreased, the security of the cryptosystem is guaranteed.

To achieve a lightweight R-LWE cryptosystem hardware architecture

design, a low cost and fast Gaussian sampler based on cumulative distribution

table (CDT) method is used. Besides, the method used for polynomial

multiplication in this paper is SPM algorithm. To further enhance the

efficiency, the polynomial multiplier is pipelined into multiple stages to cater

the latency of the process, hence reducing the clock cycles to achieve higher

frequency for the overall cryptosystem.

Compared to (Liu et al., 2019), this paper directly implements

multiplication of 13 × 13 bits without a bit reduction scheme. However,

Barrett reduction scheme is also used in this paper for modular reduction to

reduce resources usage while increasing efficiency.

15

The hardware cost of implementation with parameters 𝑛 = 256 and

𝑞 = 7681 requires 1098 LUTs, 1 DSP block, 0 BRAMs, and 407 registers,

which is extremely scalable due to its small size but very low in terms of

efficiency. The performance results and resources used in the papers and

journal are shown in the table below.

2.1.3 An Efficient and Parallel R-LWE Cryptoprocessor (Zhang et. al.,

2020)

Zhang et al. (2020) proposes implementation of extra DSPs blocks into

the work of (Liu et al., 2019) by tweaking the DSP utilization algorithm to

cater for the extra multiplication per cycle. Furthermore, the error term’s bit

width is also adjusted paired which is crucial in determining the overall

throughput of the entire polynomial multiplier.

Moreover, the thrifty reuse of hardware resources including the

schoolbook polynomial multiplier and the polynomial adder (PA) results in the

reduction of area consumption, which has not been undertaken in earlier

reported implementations. They exploit the operational features of polynomial

multiplication to implement an efficient and parallel SPM structure design for

the most critical operation of polynomial multiplication in R-LWE.

16

The iteration clock cycle is reduced by factor of 4 and results in 1.8×

speedup and 1.4× TPS. Furthermore, the reuse of the most critical parts in R-

LWE encryption and decryption hardware enables a 14% reduced area with

1.7× throughput improvement.

The hardware cost of implementation with parameters 𝑛 = 256 and

𝑞 = 7681 requires 699 LUTs, 2 DSP block, and 705 registers. Compared to

lightweight implementations, this polynomial multiplier outweighs them with

a much better throughput-per-slice (TPS).

2.1.4 High-speed Instruction-set Coprocessor for Lattice-based Key

Encapsulation Mechanism: Saber in Hardware (Roy and Basso (2020))

Roy and Basso (2020) proposed a lightweight cryptoprocessor

implementing SPMA; this can be regarded as the state-of-the-art SPMA-based

polynomial multiplier for Saber. They introduced an optimized coefficient-

wise modular multiplier, which is essentially the multiply-and-accumulate

(MAC) module. The MAC operations are carried out through simple shift and

add operations, consequently requiring no DSP blocks and substantial saving

in hardware resources. They also proposed a novel data loading technique,

reducing the cycle count of the loading of operands and the reading of

polynomial multiplication results. The size of the buffer is greatly reduced by

using the least common denominator between the coefficient size and the size

of the memory storing the coefficient, requiring almost 20% fewer registers.

17

The building blocks are integrated after optimization to realize an

instruction-set coprocessor hardware architecture that is able to computes all

KEM operations such as key generation, encapsulation and decapsulation.

The hardware cost of implementation for both Saber768 and Saber

unified with parameters parameters 𝑛 = 256 and 𝑞 = 8192 requires 17429

LUTs and 5083 registers.

2.2 NTT

2.2.1 Open-Source FPGA Implementation of Post-Quantum

Cryptographic Hardware Primitives (Agrawal et. al., 2019)

Agrawal et. al. (2019) proposed a FPGA-tailored implementation of

the R-LWE cryptographic primitives along with novel algorithmic proposals

such as oblivious transfer (OT) and zero-knowledge proof (ZKP). By using an

efficient implementation of a 𝑛-point NTT algorithm, a high-speed polynomial

multiplier is developed.

18

The prime modular q is fixed at 12,289 in this paper, since a realistic

implementation of the R-LWE based PKE cryptosystem requires q to be larger

than 10,000 to ensure that the implemented algorithm has at least 112 bits in

terms of security level, as stated by the security standards specify by NIST.

The length of the polynomial in this paper however, is parameterizable, one of

the few contributions of this paper, with 𝑛 (order of polynomial) ranging from

128 ~ 1024.

By optimizing and parameterizing the butterfly NTT method proposed

by Chen et al. (2015), an efficient hardware design is created ready to

implement. The hardware cost of implementation with parameters 𝑛=256 and

𝑞 = 12,289 requires 9152 LUTs, 26 DSP blocks, 3.5 BRAMs and 396

registers, which is not the most practical implementation method for IoT

devices.

2.2.2 Compact Ring-LWE Crypto-processor (Roy et. al., 2014)

Roy et el. (2014) proposed a compact but efficient crypto-processor for

a R-LWE based encryption scheme. The method used for polynomial

multiplication is NTT, along with three optimizations for the algorithm.

The NTT algorithm is improved by reducing the twiddle factor

computation cost, deriving an efficient memory access scheme, and avoiding

pre-computation during forward NTT, hence increasing the utilization of all

19

memory blocks and arithmetic components on the FPGA. They also devised

an optimal pipeline strategy to increase the overall operating speed and

frequency of the processor, which is based on two observations according to

the algorithm implemented. By splitting the critical path with highest delay or

latency into different stages, hence creating a balanced-delay stage pipeline

processor.

The hardware cost of implementation with parameters 𝑛 = 256 and 𝑞 =

7681 requires 1349 LUTs, 1 DSP block, 3 18K BRAMs and 860 registers.

2.2.3 A Resource-Efficient and Side-Channel Secure Hardware

Implementation of Ring-LWE Cryptographic Processor (Liu et. al., 2018)

Liu et al. (2018) proposed a practical hardware implementation of R-

LWE cryptosystem design on resources constrained devices, thus making it

more feasible and versatile for embedded or IoT devices.

In this paper, fast number theoretic transform (FNTT) is used for

performing polynomial multiplication. “FNTT is fundamentally an FFT

defined in a finite field without inaccurate floating point or complex

arithmetic”, hence performing polynomial multiplication much more

efficiently.

Besides, to enhance the performance of the whole system, this paper

also proposes a universal module for modular arithmetic called modular

20

processing element (MPE). This highly reduces the need for hardware

resources while performing both encryption and decryption, thus achieving a

resource-efficient cryptosystem design.

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

7681 requires 1307 LUTs, 0 DSP block, 1 18K BRAM, 3 8K BRAMs and

889 registers. This design has a high efficiency but failed to utilize efficiently

the resource and did not achieve equilibrium in area-time performance.

2.2.4 High-Throughput Ring-LWE Crypto-processors (Renteria-Mejia

and Velasco-Medina, 2017)

Renteria-Mejia and Velasco-Medina (2017) proposes a R-LWE crypto-

processor using NTT method with a high throughput. The paper mainly

focuses on throughput performance rather than achieving balance in area-time

performance.

This paper also implements Barrett reduction scheme in the modular

reduction algorithm in the operation of addition and multiplication of

polynomials over the ring. Inverse transform method was used while

designing the gaussian sampler that is responsible for generating a narrow

gaussian distribution of errors.

21

The cryptosystem architecture design introduced in this paper targets

high security and speed, but suffers from high cost and high resources usage

when compared with design from other papers.

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

12289 requires 25614 LUTs, 20 DSP block, 223 BRAMs and 27129 registers.

While dealing with embedded or IoT devices having many hardware and cost

constrain, this design is somewhat impractical and unrealizable.

2.2.5 Area-optimized Lattice-based Cryptographic Processor for

Constrained Devices (Liu et. al., 2017)

Liu et al. (2017) proposed an area optimized R-LWE crypto-processor

suitable for devices with resource constraints. Furthermore, the crypto-

processor is also designed to be resistance against side channel attacks.

A constant time gaussian sampler is used due to its resistance against

side channel timing attacks since it has a inconsistent runtime if generating

samples. To further increase the security of the system, an additional finite

state machine (FSM) shuffler is designed and added to the crypto-processor.

The purpose of the shuffler FSM is to further randomize the generated samples

by fetching and storing the samples in a completely random fashion. Iterative

22

NTT is used as the method to perform polynomial multiplication. Without

using any DSP blocks, a compact and lightweight crypto-processor is designed.

The hardware cost of implementation with parameters 𝑛=256 and 𝑞 =

7681 requires 1787 LUTs, 0 DSP block, 3 BRAMs, and 790 registers. This

design is scalable and feasible for resource constrained device although a bit

low in terms of efficiency compared to crypto-processor with high throughput

but uses a lot of hardware or resources.

23

CHAPTER 3

BACKGROUND

3.1 SPMA

Schoolbook Polynomial Multiplication Algorithm (SPMA) is proven to be the

most simple and straightforward approach to perform polynomial

multiplication.

Figure 3.1 Schoolbook polynomial multiplication algorithm (SPMA)

Referring to Figure 3.1, the Schoolbook Polynomial Multiplication Algorithm

(SPMA) has complexity O(n2) with two nested loops where multiplication is

repeated n × n times, where where n is the degree of polynomial. The

24

multiplication results are not directly used as an output, they are stored in an

accumulator (line 4) and are used to compute negacyclic convolution (ref.

Chapter 3.4). Finally, the secret polynomial b is rotated by multiplying it by x

in Rq (line 6), essentially shifting the polynomial by a single position to the left

or right. The direction of rotation for the secret polynomial depends on the

design methodology as long as all iterations are visited. When rotating left, the

polynomial’s MSB becomes the LSB and vice versa. Polynomial

multiplication is completed when polynomial b is rotated back into its original

position.

3.2 NTT

Number theoretic transform (NTT) is basically a generalization of a

Fast Fourier Transform (FFT) obtained by replacing 𝑒−2𝜋𝑖𝑘/𝑁 with an nth

primitive root of unity. When the number of elements in the transform is a

composite value, a fast NTT may be constructed in the same manner as a FFT

is constructed from the DFT.

However, unlike the DFT, the NTT can be used for fast convolutions

and correlations like the various FFT algorithms, since it has analogous

theorems, such as the convolution theorem. Despite that, this dissertation does

not delve deep into the various development of NTT since it is not a focus of

this research.

25

3.3 Karatsuba

Karatsuba algorithm for polynomial multiplication stems from (Karatsuba

1962), which involves splitting the original integer or polynomial into smaller

parts, replacing some multiplication process by addition and subtraction, in

turn reducing the complexity of the multiplication process. Below is the

pseudocode for a single iteration of Karatsuba or a 1-Layer Karatsuba.

Figure 3.2 1-Layer Karatsuba algorithm for polynomial multiplication

(PM)

26

The Karatsuba algorithm uses a divide and conquer approach, in which

the polynomials are divided into smaller sub-polynomials to perform

multiplication efficiently. These sub-polynomials are combined to form the

final result. The algorithm can be divided into three main parts, pre-processing,

polynomial multiplication and post-processing.

 Referring to Figure 3.2, every time the algorithm is called, input

polynomial a is split into two half-sized sub-polynomials a_high and a_low

(lines 2-3). They are then added up to produce the third half-sized sub-

polynomial a_mid (line 4). The input polynomial b undergoes the same

process of splitting (lines 5-7), resulting in another three half sized sub-

polynomials, b_high, b_low and b_mid.

After completing pre-processing, the sub-polynomials are then

multiplied in pairs (lines 8-10). Finally, Karatsuba post-processing

(combination of sub-polynomial multiplication results) can be done. The sub-

polynomials ab_low and ab_high are subtracted from ab_mid, producing a

ab_newmid sub-polynomial (line 11). Lastly, the sub-polynomials are stacked

and added accordingly with respect to the index of n (lines 12-14).

27

Figure 3.3 Karatsuba pre-processing (splitting)

Figure 3.4 Karatsuba post-processing (combination)

28

3.4 R-LWE

Ring-learning with errors (R-LWE) is a widely investigated algorithm

that is based on a hard lattice problem. The most critical operation in the R-

LWE schemes is polynomial multiplication on the ring.

The hardware resource requirements for R-LWE-based public key

encryption scheme needs to cater for both encryption and decryption

operations, mainly due to the polynomial multiplication process which

requires a high hardware consumption. The encryption process requires

polynomial multiplication and addition while encoding the plaintext to

polynomial. After performing polynomial multiplication, the decryption

process also involves polynomial multiplication and addition, but this time,

decoding the polynomial back into plaintext.

The R-LWE scheme basically incurs a random error (noise) value into

the polynomial to increase the complexity of the lattice problem, hence the

name learning with errors. More details about the R-LWE scheme can be

found in (Pöppelmann and Güneysu, 2013).

29

3.5 LWR

The Learning-with-Rounding (LWR) scheme was first proposed in

(Banerjee 2012), where a de-randomization technique was proposed to

enhance the conventional Learning-with-Errors (LWE) scheme. By giving a

more direct construction of the pseudorandom function (PRF) families, which

is based on learning and hard lattice problems, the LWR scheme achieved a

higher efficiency as it is distinctly parallelizable from the implementation

aspect.

The LWR scheme is much simpler compared to the LWE scheme, in

which the inner product is just deterministically rounded to the relatively

nearby element, giving it an arbitrary value of error in a given range. This

omits the need to perform further operations such as the addition of the small

random error terms, since the scheme is no longer dependant on random and

independent errors. Moreover, the LWR scheme operates on polynomials with

coefficients in the form of Z2n (power of two), and it introduces random errors

through rounding operations. As a result, the modular operations can be

carried out through simple truncated shifting operations.

30

3.6 Saber

Saber is an LWR-based scheme submitted to NIST standardization

(NIST, 2021), first introduced in (D’Anvers et al., 2018). Like all other LBC

schemes, polynomial multiplication is the most computationally intensive

operation in Saber. Although Saber and LWE schemes both operate on the

similar polynomial ring, Zq[x]/(xn + 1) (Pöppelmann and Güneysu , 2013), the

Number Theoretic Transform (NTT) algorithm cannot be utilized to speed up

the computation of polynomial convolution in Saber as the polynomial

coefficients (Z2
10 and Z2

13) are not on a prime field as they are in LWE

schemes. Furthermore, although Saber operates on two different moduli (q and

p), both of them are in the powers of 2 form, hence omitting the need for

additional modular operations. The degree of polynomial (n) in Saber is

always 256 regardless of the security level. Currently, the Saber suite supports

three security levels: LightSaber, Saber768 and FireSaber. Since Saber is a

module-LWR scheme, the polynomials are organized in an l × n dimension,

where l = 2, 3, 4 for LightSaber, Saber768 and FireSaber respectively. In this

paper, we focus on improving the efficiency of polynomial multiplier

hardware architecture, which can be used to perform matrix-vector

multiplication and inner product (D’Anvers et al., 2018) in Saber.

31

3.7 Negacyclic Convolution

In this dissertation, research is done on two different schemes namely

R-LWE and Saber. However, both schemes operates on the same polynomial

ring equation Zq[x]/(xn + 1) (Pöppelmann and Güneysu , 2013). In other words,

both schemes are required to perform the polynomial multiplication in a

negacyclic convolution manner.

To implement this efficiently, the negacyclic operations can be

integrated into the SPMA, wherein the multiplication is performed with

respect to the coefficient position. Hence, after computing the polynomial

multiplication, the results are accumulated in the final registers according to

the position of the polynomial coefficient, Figure 3.1 (line 4). The

multiplication result of each coefficient is then stored in the respective

accumulator, and the next iteration of multiplication starts after polynomial b

is rotated, Figure 3.1 (line 6). Hence polynomial multiplier that utilizes SPMA

with negacyclic is also called a coefficient-wise polynomial multiplier. The

details can also be found in (Roy and Basso, 2020).

Due to the splitting (pre-processing) and combination (post-processing)

of sub-polynomials in Karatsuba algorithm, negacyclic convolution can only

be applied after completing the multiplication process, as shown in Figure 3.5.

The degree of product of two polynomials, each with the degree n is 2n−1.

32

The product polynomial is split in the higher half polynomial with the degree

of n−1 and the lower half polynomial with the degree of n. Lastly, a 1-bit 0

would be concatenated to the nth bit of the higher half polynomial, and then

subtracted from the lower half polynomial, giving the final result of

polynomial multiplication computed through negacyclic convolution.

Figure 3.5 Negacyclic operation in Karatsuba post-processing

33

CHAPTER 4

POLYNOMIAL CONVOLUTION HARDWARE DESIGN FOR R-LWE

SCHEME

A 1-Layer Karatsuba is utilized in developing the polynomial

convolution hardware for R-LWE. to reduce the complexity of polynomial

multiplication, wherein the core multiplication on smaller polynomial still

relies on SPMA. We adopted the similar techniques from prior work to

perform Barrett reduction for modular prime (Liu et al., 2019) and high-speed

multiplication using DSP slice (Zhang et al., 2020). A novel technique is

proposed to reduce the memory consumption in negacyclic convolution, which

greatly improved the area efficiency.

Furthermore, a technique to optimize negacyclic operations in

Karatsuba algorithm is proposed to reduce the memory consumption, which

greatly improved the area efficiency. The proposed algorithm combines the

Karatsuba combination and negacyclic operation without extra memory and

latency.

34

4.1 Optimized Negacyclic Operations in

Karatsuba Post-processing

Figure 4.1 Conventional negacyclic operation for Karatsuba

To reduce time required for Karatsuba post-processing and negacyclic

operations, both are combined and integrated. Referring to Figure 4.1, ab_full

is segregated according to its sub-polynomials ab_high, ab_low and

ab_newmid (see Layer 1) for clear view of its internal components. Layer 2

depicts the post-multiplication negacyclic operation, wherein the higher half

35

polynomial is subtracted from the lower half polynomial. Refer to Layer 3, by

rearranging the variables after the post-multiplication negacyclic operation, we

can see that the subtraction result can be simplified as such: ab_high is

subtracted from ab_low, and ab_newmid is added to the first half of

subtraction result. In addition, ab_newmid is also subtracted from the lower

half of the subtraction result. This is the conventional way to perform

negacyclic operation, which is not efficient due to the extra memory and

cycles required.

Hence, a novel algorithm is proposed to combine the Karatsuba

combination and negacyclic operation without extra memory and latency,

shown in Figure 4.2.

36

Figure 4.2 Optimized post-process negacyclic operation for Karatsuba

The final result can be computed directly using the resultant sub-

polynomials (ab_high, ab_low and ab_mid) of the multiplication process,

without the need to recombine them into ab full and then only perform

negacyclic operation. To breakdown the algorithm in Figure 4.2, we look at

the computation of the final result ab_res’s LSB. Referring to Layer 3 in

Figure 4.1, the process requires the value of ab_low[0] – ab_high[0] –

ab_newmid[128], whereas ab_newmid[128] = ab_mid[128] – ab_low[128] –

37

ab_high[128]. Hence, (line 2- 6) depicts the input of all required values

respectively, with i = 0 and n = 256. Line 7 is the process of computing

ab_low – ab_high, and line 8 is the process of computing ab_newmid.

Throughout (line 9-13), if iteration index i is less than n/2 = 128, which

denotes the lower half of the polynomial, ab_newmid is subtracted. On the

other hand, ab_newmid is added if index is greater than n/2, denoting the

higher half of the polynomial.

Compared to the conventional method which takes a total of 768

cycles, the proposed technique only takes 260 cycles. Thus, gaining a 66.15%

decrease in clock cycles due to the integration of both Karatsuba combination

and negacyclic operations. The memory consumption is also reduced by 100%

because we no longer need to compute the final polynomial of size n = 511,

hence the intermediate polynomial ab_full can be removed.

38

4.2 Hardware Design

The SPMA-Karatsuba (SK) R-LWE Polynomial Multiplier Core is

segregated into three sub-modules and separated into five different stages. The

functionality of sub-modules and stages are stated in Table 4.1. The module

k_split_prep executes first level of Karatsuba polynomial splitting and the

input preparation stage, denoted by karatsuba 1_1 and prep input respectively.

Next, sk module performs spma stage. Lastly, the process ends with the first

level Karatsuba polynomial combination (karatsuba 1_2) and post-

multiplication negacyclic process (negacyclic), which are performed by the

module k_combi_nega. The Karatsuba splitting process in karatsuba 1_1 stage

will result in six sub-polynomials a_low, a_high, a_mid, b_low, b_high and

b_mid. A prep_input stage is required before the spma stage to increase the

parallelism of the multiplication process. This stage duplicates b_low to an

additional BRAM to avoid memory read conflict. In all, six BRAMs are

created to store a_mid, b_mid, b_low, ab_high, ab_low and ab_mid.

39

Module Name Stage Functionality

k_split_prep karatsuba 1_1 Perform first level splitting of the

polynomial into sub-polynomials

prep_input Preparation Stage

sk spma Perform Schoolbook PM

k_combi_nega karatsuba 1_2 Perform first level combination of the

polynomial into sub-polynomials

negacyclic Perform post-multiplication

negacyclic operations

Table 4.1 Functionality of each sub modules

The architecture of sk sub-module is illustrated in Figure 4.1. It

performs three sets of multiplications per cycle; in each set, one multiplier is

paired with two multiplicands (i.e., a_low, b_lowE, b_lowO), whereby two

multiplications (i.e., a_low × b_lowE and a_low × b_lowO) are performed

through spma. Refer to Figure 4.2, all even indexed multiplicands of b_low

will pass through b_lowE, and odd indexed multiplicands through b_lowO.

The same input method is applied for b_high and b_mid. The sk sub-module

operates using three DSP slices in parallel to achieve a higher throughput,

whereby computing the three sub-polynomials ab_high, ab_low, and ab_mid

in a single loop. Lastly, the proposed novel negacyclic algorithm for

Karatsuba is applied in negacyclic stage, implemented using the

k_combi_nega sub-module.

40

Figure 4.3 Block diagram of sk sub-module

Figure 4.4 Reading polynomial data for multiplicand

41

CHAPTER 5

POLYNOMIAL CONVOLUTION HARDWARE DESIGN FOR SABER

SCHEME

This chapter gives the architectural details, improvement over the

earlier work and the the rationale for design choices of KaratSaber that

employs SPMA-Karatsuba polynomial multiplier for Saber. The hierarchical

Karatsuba Architecture KaratSaber uses a 4-layer Karatsuba implementation

in the pre-process and post-process stage. In the earlier work by (Zhu et al.,

2020), an 8-Layer Karatsuba, with four layers at the pre and post-process

stages, and another four at the multiplication stage was presented introducing

large pre-processing and post-processing overhead, which is far from optimal.

A feasibility analysis was carried out to reach the optimized value of number

of layers in Karatsuba recursion.

Karatsuba

Hierarchy
1-L 2-L 3-L 4-L 5-L 6-L 7-L 8-L

Clock

Cycles
96 80 72 68 66 65 65 65

Sub-

Polynomials
3 9 27 81 243 719 2187 6561

Table 5.1 Clock cycles for different layers of Karatsuba

42

Referring to Table I, after performing a four layer (4-L) hierarchical

Karatsuba in the pre and post-process stages, it records the best timing

performance (68 clock cycles). Increasing the number of layers to six (6- L)

can offer a marginal improvement (4.4%) in performance. However, this

improvement does not outweigh the hardware consumption for a more

sophisticated pre-process and post-process hardware architecture to handle

719 sub-polynomials. Hence, we do not increase the Karatsuba recursion

beyond four layers.

The proposed 4-layer Karatsuba architecture goes through three stages.

The first stage is the pre-processing of input polynomials into sub-polynomials

with a smaller degree. The Karatsuba recursion produces 3x sub-polynomials,

where x is the number of Karatsuba layers. Therefore, a 4-layer Karatsuba

implementation would result in 34 = 81 sub-polynomials in total, wherein each

sub-polynomial has a degree of n/2x = 256/16 = 16. To speed up the

computation, a fully parallel grid data input technique was adopted. After pre-

processing, the multiplication stage take place, wherein the 81 sets of degree-

16 sub-polynomials undergo polynomial multiplication, resulting in 81 set of

degree 31 sub-polynomials multiplication results. In the final stage, the

multiplication results are combined and the negacyclic operations are

performed. To compute the post-process and negacyclic operations in a more

efficient fashion, an instruction code-based post-process mapping technique

with negacyclic is proposed.

43

To ensure a fair comparison, we developed our multiplier with the

same input bit size as (Roy and Basso, 2020). The multiplier handles

polynomial a input in 208-bit wide (16 coefficients, size of each coefficient is

13-bit), and polynomial b input in 64-bit wide (16 coefficients, size of each

coefficient is 4-bit). The proposed KaratSaber architecture is built upon this 4-

layer hierarchical Karatsuba architecture, which includes shifter-based

multipliers and several novel techniques that streamline the pre-processing and

post-processing operations.

Figure 5.1 KaratSaber top level diagram

44

5.1 Parallel Grid Data Input

In (Roy and Basso, 2020), the compact input pre-processing is

designed to only process and output a single pair of sub-polynomial for

multiplication per cycle. Although some intermediate values are stored by

reusing some registers, the pre-processing stage includes several no-op cycles.

In other words, data dependency constraints the efficiency of pre-processing

since some data requires a waiting time for the previous data to be computed

and stored first, leaving some cycles empty.

To increase the parallelism of the polynomial multiplier, the pre-

process stage involving the splitting of the degree-256 polynomial was

performed in a parallel fashion. The 81 sub-polynomials are required to be

stored in 81 parallel register sets to enable a fast data access. To achieve such

performance, the data has to be ready as soon as possible. Referring to Figure

3, the polynomial can be first split into the top layer 16 sub-polynomials (a0,

a1, ..., a15) each with 16 coefficients. At this moment, the top layer sub-

polynomials are passed to the pre-process module as inputs for each cycle in

parallel. Note that one needs to determine the register set for storing the top

layer sub-polynomial. With this proposed mechanism, the data input is

processed in a completely parallel manner. This enables more than one input

to be accessed for multiplication per cycle through reusing the registers by

exploiting the sub-polynomial grid pattern, which is explained subsequently.

45

Figure 5.2 Parallel input data loading pattern to calculate the 81 sub-polynomials using top layer sub-polynomials (a0, a1..., a14, a15)

46

Figure 5.3 Computing sub-polynomials splitting according to layers

The sequence of sub-polynomials for consecutive layers were pre-

computed prior to the implementation. Figure 5.3 shows an example of

computing the first nine sub-polynomials. Continue from the top layer sub-

polynomials, the second layer sub-polynomials were computed, i.e., a0 and a1

produces a0 + a1. The process is then repeated until all remaining sub-

polynomials are computed. After 81 iterations, the results of all sub-

polynomials were computed as shown in the last column in Figure 5.2.

 According to the results computed, each of them is either a top layer

sub-polynomial, or a combination of different top layer sub-polynomials.

Hence, if the register set consist of a particular top layer sub-polynomial, it is

marked. Finally, with a completed table, we can hard-code each register to

either hold or add in the new value, depending of the final sub-polynomial it is

supposed to store. By doing so, the pre-process can be done in only 16 cycles.

47

However, implementing 81 sets of registers for all sub-polynomials

would require a total of 81 × 16 × 13 = 16848 registers. Referring to Figure

5.3, upon observing the full grid data input sequence, the input pattern actually

repeats itself for every nine register sets across four top layer sub-polynomials,

i.e., registers set R1 → R9 and top layer sub-polynomials a0 → a3. The next

pattern repetition occurs in the register sets R10 → R18 and the top layer sub-

polynomials a4 → a7. The same pattern is repeated for a total of 16 times

throughout the entire data input process. Based on this pattern, we can reduce

81 register sets to only nine by reusing them. After the first set of nine sub-

polynomial multiplications are computed, the top layer sub-polynomials a4 →

a7 are added to the nine register sets, resulting in sub-polynomials 19 → 27.

When the second set of nine polynomial multiplications are completed, top

layer sub-polynomials a4 → a7 is again loaded. At this time, the previous

values in registers R1 → R9 can be overwritten, since we no longer need the

values of top layer sub-polynomials a0 → a3; this produces sub-polynomials

10 → 18. The process of adding and overwriting the nine register sets is

repeated until all sub-polynomials have undergone the multiplication process.

48

Figure 5.4 Fully parallel grid input data loading for sub-polynomials 1-27

49

5.2 Partial Sub-polynomial Multiplication

Referring to Figure 5.3, R3 should be holding the value of (a0 + a1), and

it is supposed to be multiplied with (b0 + b1). However, pre-processing (b0+b1)

would result in the overflow problem mentioned earlier in Chapter 3.3.

 (a0 + a1)(b0 + b1) = (a0 + a1) ∗ b0 + (a0 + a1) ∗ b1

Hence, to avoid the problem of overflow, a partial multiplication

technique for each sub-polynomial was proposed by performing separate

multiplications between the same multiplier (a0 + a1) and different

multiplicands (b0 and b1) respectively. In other words, only polynomial a is

required to undergo pre-process.

By doing so, we eliminate the overflow problem of polynomial b

regardless of how many layers of Karatsuba is implemented. Although the

number of multiplications increases, the hardware consumption and clock

cycles are still relatively low compared to multipliers that utilize DSP48E1

blocks. This can be achieved by cleverly stacking the operations and

performing them simultaneously in our shifter-based multiplier, to cater for

overflowed polynomial b. Further discussion and comparison that involves the

design of shifter-based multiplier are presented in Section 5.4.

50

Figure 5.5 Input sequence for top layer sub-polynomials and

multiplication

Figure 6 shows the sub-polynomial input sequence for multiplication.

Since each set of shifter-based multipliers can handle one multiplier and two

multiplicands, two sets of multiplications are carried out. For multiplications

that only has a single multiplicand, i.e., a0∗b0, a value 0 is taken as the second

multiplicand. Nevertheless, to avoid data dependencies and empty cycles, the

top layer sub-polynomial input is carefully arranged. Referring to Figure 6,

after the first two cycles, register sets R1, R2 and R3 will be ready for

multiplication since they only consist of a0 and a1. After the 4th cycle, the nine

register sets already has the first nine sub-polynomials (1→9) stored waiting

for multiplication.

51

To ensure a smooth transition, the next top layer sub-polynomials a4 →

a7 have to be added starting from the 5th cycle. However, the first nine

multiplications are yet to be completed, and interfering with the registers too

early may lead to the multiplier inputted with inaccurate data. To overcome

this, multiplication for R5 and R6 is done lastly for the first nine

multiplications. Referring to Figure 5.4, the arrow displays the original and

modified sequence of R5 and R6, changing it from the 5th to the 7th cycle.

Among the four top layer sub-polynomials loaded, R5 and R6 only

store the last two top layer sub-polynomials, i.e., (a2 & a3) or (a6 & a7) etc.

This enables the first two top layer sub-polynomials to be added or overwritten

before the current nine sub-polynomial multiplications have been fully

completed without affecting the data integrity. By the third cycle, registers R1,

R2 and R3 are already ready for the multiplication process, therefore the pre-

process stage can be overlapped and polynomial multiplication can be started

at the third cycle.

52

5.3 Code-based Post-processing Mapping with Negacyclic

(Zhu et al., 2021) only implemented two layers of mapping, which

means the post-process is separated into several parts. As soon as a degree 64

sub-polynomial multiplication result is ready, it is transferred out to an

external memory element storing the intermediate results. In other words, they

implemented a multiplier that depends on external infrastructure to complete

the multiplication process. Furthermore, the negacyclic operations after

completing the entire post-process are not documented clearly in their work. A

Karatsuba mapping process that enables the sub-polynomial multiplication

results to be directly transposed back into the final multiplication results was

proposed, along with the necessary negacyclic operations.

After the multiplication process, we would arrive at 81 sub-polynomial

multiplication results that need to undergo four layers of Karatsuba

combination or post-process. Furthermore, negacyclic operations are required

since Karatsuba does not support integration of negacyclic during

multiplication like the case in SPMA.

We can reverse the method used in pre-processing, and map the results

back into the final polynomial directly from the fourth layer. Since the final

polynomial would be a degree (2 ∗ 256) − 1 = 511 polynomial, a total of 32

sets of 16 coefficient registers are required to hold the final polynomial result.

53

The results of multiplication with degree 31 were then concatenated with a 13-

bit 0’s as the MSB. Finally, the concatenated degree 32 polynomial

multiplication result is split into lower half, RL, and higher half, RH, each

holding a degree-16 polynomial.

The mapping process is essentially combining the sub-polynomial

multiplication results back into the full multiplication results. Conventionally,

the post-process for each layer is done hierarchically, going from the lowest

layer to the final layer. However, since we can directly compute the sub-

polynomials such as in pre-processing, the mapping process can actually be

computed by reversing the pre-process steps, the layer diagram of sub-

polynomial in Figure 5.3 can be extended to the final register sets acci, where i

= 0 → 31 as shown in Figure 8. The first four sets of top layer sub-

polynomials a0 → a3 with a total degree of 64 produces a degree 128 sub-

polynomial multiplication result after MSB concatenation. Hence, eight sets of

registers acc0 → acc7, each with a capacity of degree-16 polynomial is

required.

To determine the sequence of mapping, all occurrence of the targeted

sub-polynomial is tabulated. Referring to Figure 5.6, all sub-polynomials are

always multiplied with its corresponding pair, i.e., a0 ∗ b0, (a0 + a1) ∗ (b0 + b1).

All multiplication results in Figure 5.6 are only denoted by polynomial a. For

instance, [a0 ∗ b0] is denoted by a0 and (a0 + a1) ∗ (b0 + b1) is denoted by (a0 +

a1).

54

Figure 5.6 Computing sub-polynomials mapping according to layers

The first sub-polynomial result that requires mapping in our case is a0.

Based on the sub-polynomial layer diagram in Figure 5.6, to compute the full

mapping sequence for a0, all occurrence of a0 is tabulated layer by layer. Since

we are starting with a single coefficient sub-polynomial a0, a positive result

(+RL, +RH) is stored to the respective register sets. When the coefficient size is

doubled due to addition (i.e., (a0 + a1) and (a0 + a2)), the polarity of the result

is toggled and a negative result (−RL, −RH) is stored. Lastly, for the next

subsequent doubled coefficient size (a0 + a1 + a2 + a3), the polarity is again

toggled, changing it back into a positive result. In summary, regardless of the

size of coefficients, the computation always starts from a positive polarity, and

is toggled every time the coefficient size doubles.

55

The mapping sequence is done for all 81 sub-polynomials, spanning

across 32 sets of registers acci. Before actually implementing the design, we

proposed to integrate the negacyclic operations here. The upper half (acc16 →

acc31) of register set acci is subtracted from the lower half register sets (acc0

→ acc15). For the example in Figure 5.6, the upper half (acc4 → acc7) is

subtracted from (acc0 → acc3). Referring to Figure 5.7, the register sets

required is reduced in half immediately, requiring only acc0 → acc3 now, and

for the full extend case, the total register sets required is reduced from acc0 →

acc31 to acc0 → acc15.

Referring to Figure 5.8, the mapping sequence of first nine sub-

polynomials are shown in the upper part. Without optimization, the mapping

sequence has to be hard-coded and components will be fixed for ad-hoc

computation. Optimization such as rearrangement of the sequence or scaling

the postprocess would be impossible. Hence, we propose to transform the

mapping sequence into a code-based instruction to gain flexibility in changing

and modifying the sequence. This is also highly beneficial for scaling or

modifying the multiplier. Referring to Table 5.2, each mode is represented by

a decimal number, and the number 0 is used to fill in the empty slots,

representing no operation. Finally, we would arrive at a much more orderly

mapping sequence for each sub-polynomials. During implementation, each

value to be stored in the final register set acci’s is simply multiplexed using the

proposed code-based instructions for each sub-polynomials. Since each row of

56

code-based sequence is fixed for each multiplication results, the column

sequence can be simply rearranged for scalability purposes, i.e., four

multiplications per cycle.

Figure 5.7 Negacyclic operation for mapping process

Mode Code

+RL 1

+RH 2

-RL 3

-RH 4

+RH + RL 5

+RH - RL 6

-RH + RL 7

-RH - RL 8

Table 5.2 Code-based transformation

57

Figure 5.8 Code-based transformation for mapping sequence with various mode

58

5.4 Hardware Design

The KaratSaber Polynomial Core comprises of three major blocks: the

pre-process module, the Shift-Two-Multiplicand (STM) multiplication module

and the post-process module, along with a controller and a wrapper engulfing

all, as referred in the Figure 5.9. A total of 512 shift-based multipliers are

implemented for the polynomial multiplication. As soon as the first set of data

are ready after pre-processing, the multiplication process is performed. The

multiplication results are then passed as input for post processing and

forwarded to the register sets storing the final polynomial multiplication

results with negacyclic.

Figure 5.9 KaratSaber polynomial multiplier block diagram

59

5.4.1 Shift-Two-Multiplicands (STM) Module

The coefficients of secret polynomial (polynomial b) are randomly

generated through binomial distributions with varying range of [-3,3], [-4.4]

and [-5,5], depending on the level of security (LightSaber, Saber768,

FireSaber). Combined with the fact that Saber operates on modulo with power

of 2, a truncated modular multiplier can be developed by using shifters only.

From a hardware consumption point of view, DSP48E1 blocks consume more

hardware area than a shift-based multiplier. For instance, on our target FPGA

device (ZCU102), one DSP-based multiplier consumes 70 Configurable Logic

Block (CLB) slices, whereas a shift-based multiplier only consumes 10 CLB

slices. With the vast difference in hardware consumption, we can used it as

our advantage since there is much room for additional hardware targeting a

throughput improvement.

In (Roy and Basso, 2020), they proposed a Multiply-And-Accumulate

shifter-based multiplier to replace conventional DSP48E1 blocks. The shifting

technique for multiplication in our multiplier is similar since the process is

straight forward. However, we do not need the accumulator for the

multiplication results since we are not utilizing SPMA. Furthermore, we also

doubled the multiplier throughput by increasing the number of multiplicands.

60

In this research, a shifter-based multiplier capable of processing two

multiplications per cycle by pairing two multiplicands with one multiplier,

namely the Shift-Two-Multiplicand (STM) module was proposed. Since the

two multiplicands share the same multiplier, the same set of results are

multiplexed to two different results. Referring to Figure 12, the values of

multiplicands (b1 and b2) are used as a multiplexer signal to choose between

the same set of multiplier results.

Figure 5.10 STM module block diagram

61

Multiplier Slice1 Mult-per-cycle Efficiency2

DSP48E1 70 1 1.43

(Roy and Basso,

2020)’s MAC
10 1 10.00

This work’s

STM
19 2 10.53

Table 5.3 Hardware consumption comparison for different multipliers

[1] Slice = FPGA Configurable Logic Block (CLB) slice

[2] Efficiency = (Multiplication-per-cycle/Number of slices)*100

Even when paired with two multiplicands, the STM module only

consumes 19 CLB slices. Referring to Table 5.3, when compared to a single

multiplicand shifter-based multiplier such as (Roy and Basso, 2020)’s MAC,

we doubled the throughput by utilizing 90% more hardware, increasing the

efficiency by 5.3%. Whereas when compared to a DSP48E1 multiplier, the

proposed STM is 3.68× smaller with twice as much throughput. During

implementation, the multiplier modules are often utilized in great numbers

(i.e., 256) parallelly, hence even a small improvement in efficiency such as 5.3%

would contribute to a large amount of reduction in hardware consumption.

62

CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 SPMA-Karatsuba (SK) R-LWE Polynomial Multiplier Utilizing

Karatsuba

The proposed architecture was implemented and synthesized on a

Xilinx Kintex 7 FPGA (KC705) using Vivado 2019.2. A total of four

generations of SK R-LWE Polynomial Multiplier Core were developed in this

work (SK Gen 1-4) and the results are presented in Table 6.1. Other than the

Karatsuba algorithm, Gen 1 also utilizes the barrett reduction from (Liu et al.

2019).

Generation LUT/FF/Slice1

/BRAM/DSP

Freq

(MHz)

Clock

Cycles

Throughput

(Kbps)

TPS2

SK Gen 1 538/611/189

/3.0/1

299.40 50829 1507.9 7.98

Sk Gen 2 698/734/289

/8.0/1

328.95 25876 3254.4 11.26

SK Gen 3 872/881/363

/4.0/1

332.67 22565 3775.8 10.40

SK Gen 4 1125/1034/394

/3.0/3

335.80 8787 9783.2 24.83

Table 6.1 FPGA implementation results of SK R-LWE PM core

63

[1] Slice - FPGA Configurable Logic Block (CLB) slice,

[2] TPS - Throughput per slice, without considering BRAM and DSP

Gen 2 is essentially the Gen 1 architecture with additional DSP slice

utilization algorithm implemented. Building on Gen 2 architecture, the novel

negacyclic algorithm is implemented in Gen 3. Finally, Gen 4 was built with

extra DSP slices shows a significant increase in throughput, taking full

advantage of the Karatsuba algorithm. To ensure a fair comparison of this

work with the other implementations on different FPGAs e.g., Virtex/Spartan,

a conversion is performed to compute the equivalent Configurable Logic

Block (CLB) slice value for the DSP48E1 slices and BRAMs.

By utilizing the built-in IP core for a Xilinx 7 series, a single DSP48E1

slice can be substituted with a 25- bit × 18-bit multiplier resulting in 128 slices.

Similarly, an 18K BRAM can be substituted by 166 slices (Liu et al. 2019).

However, the proposed design does not fully utilize the DSP slice and BRAMs,

therefore, a weight ratio is given to accurately depict the actual number of

slices utilized. The weight and equivalent slices in SK Gen 4 implemented on

the FPGA are shown in detailed in Table IV.

64

Attribute Utilization

(BRAM/DSP)

BRAM

(18K)

DSP

Equivalent CLB Slices (ECS) 1/1 166 128

Implementation ECS 6/3 996 384

Weight 6/3 0.19 0.88

Actual Implementation ECS 6/3 189.2 337.9

Table 6.2 Equivalent CLB slices (ECS) for DSP and BRAM blocks in SK

GEN 4

Table 6.3 compares the proposed SK R-LWE PM core with earlier

implementations of the SPMA R-LWE cryptoprocessors, which implemented

the same parameters (n = 256, q = 7681). The work by (Zhang et al., 2020)

only presented the results for entire R-LWE cryptoprocessors. In this paper,

we have implemented the PM core (SPMA-4) based on the description of their

work in order to provide a fair comparison. Since this proposed work is not

implementing a fully recursive Karatsuba algorithm, the conventional

complexity equation O(n) cannot be used to compute the total number of

cycles. Given that the polynomial was split into three sub-polynomials for

computation using SPMA with DSP utilization, the total number of cycles

would be O(n2) 2 ÷ 2 + n + n 2 cycles for all stages, including 211 constant

extra cycles for overhead and pipe-lining purposes.

Experimental results show that the proposed architecture achieved

2.09× higher throughput along with a 6.52% improvement in throughput-per-

65

slice. However, the architecture from (Liu et al., 2019) remains the most area-

time efficient design, with a much lower throughput (3.92× slower than our

SK Gen 4).

66

 Device LUT/FF/Slice BRAM

(18K)

DSP Freq

(MHz)

Cycle Throughput

(Kbps)

ECS Throughput/

Slice1

This Work Kintex 7 1125/1034/394 3.0 3 335.80 8787 9783.2 921.1 10.62

(Liu et al., 2019) (SPMA) Kintex 7 317/198/103 0.0 1 333.00 34177 2494.3 210.4 11.85

(Zhang et al., 2020)2 (SPMA) Kintex 7 699/705/265 0.0 2 300.95 16456 4681.8 469.8 9.97

(Feng et al., 2020)3 (NTT) Spartan 6 -/-/8680 0.5 128 235.29 220 273.8k 25125.4 10.9

(Liu et al., 2018)4 (NTT) Spartan 6 1307/889/406 0.5 1 80.00 72.0k 284.44 462.0 0.62

Table 6.3 Comparison with previous R-LWE implementation

[1] 3 Calculated using Equivalent CLB slices (ECS)

[2] Re-implemented by following the original paper (Zhang et al., 2020)

[3] Estimated by scaling the 21-bit modulus q to 13-bit

[4] Result of Complete R-LWE Processor in (Liu et al., 2018)

67

6.2 KaratSaber Saber Polynomial Multiplier Utilizing Karatsuba

The proposed KaratSaber architecture is synthesized and implemented

on a Xilinx Zynq UltraScale+ FPGA (ZCU102) using Vivado 2019.2. To

benchmark efficiency vs. architectural optimization, three versions of

KaratSaber Polynomial Multiplier Core (Saber PM 1-3) were developed for

both Saber768 and unified Saber (LightSaber, Saber768, FireSaber).

KaratSaber PM 1 is the basic architecture that utilizes a 4- layer hierarchical

Karatsuba. It implements the proposed fully parallel data input and instruction

code-based post-process mapping with negacyclic. Only a single multiplicand

shifter-based multiplier is used in this iteration. In KaratSaber PM 2, we

implemented the proposed STM modules by doubling the multiplicand inputs

to the shifters. Towards our aim, some additional optimizations were done,

which include adding pipelines at the modified STM and control modules to

increase the throughput. Data input of the STM modules were rearranged to

reduce data dependencies. In KaratSaber PM 3, data input for the STM

modules were rearranged to further reduce data dependencies, reducing the

idle cycles from nine to three. Lastly, in KaratSaber PM 4, the proposed

parallel grid data input is introduced, reducing the hardware consumption

drastically. Data input for the STM modules was again rearranged (depicted in

Chapter 5.2 and Figure 5.5).

68

Generation

LUT/

FF/

Slice1

Freq

(MHz)

Clock

Cycles

Throughput

(Mbps)
TPS2

KaratSaber

PM 1

84554/

 52060/

12948

229.15 152 387.88 29.96

KaratSaber

PM 2

115403/

70805/

18959

336.02 88 984.62 51.93

KaratSaber

PM 3

97111/

64128/

 16074

338.18 82 1066.67 66.35

KaratSaber

PM 4

77546/

56658/

 11916

322.16 82 1005.89 84.42

Table 6.4 KaratSaber768 PM Core Post PAR results on Zynq UltraScale+

FPGA (ZCU102)

Table 6.4 shows the implementation of this work from KaratSaber PM

1 to PM 4, all implemented with post-place and post-route. To ensure a fair

comparison of this work with other implementations utilizing different

Ultrascale+ FPGAs e.g., Zynq/Virtex/Kintex, a metric is used to compute the

equivalent Configurable Logic Block (CLB) slices value. This metric was also

used in the previous work (Liu et al., 2019), (Zhang et al., 2020), (Wong et al.,

2021), for comparing results from different FPGA implementations.

69

The LUTs and FFs consumption reported in (Roy and Basso, 2020),

(Zhu et al., 2021) and (He et al., 2021) can be converted into CLB slice values.

Referring to the Xilinx Ultrascale Architecture CLB resources documentation

(Ultrascale Architecture), both SLICEL and SLICEM has the same amount of

eight LUTs and 16 FFs per CLB slice. Hence, we can easily convert the

documented LUTs and FFs into equivalent CLB slice (ECS) values. For

example, based on the hardware consumption reported by (Roy and Basso,

2020), the value of 17429 LUTs is divided by eight, and the result is rounded

to the nearest integer (ceiling operation), giving us 2179 ECS. For the value of

5083 FFs, it is divided by 16, giving us 318 ECS. In total, we can arrive at a

total ECS of 2496.

In most cases, the CLB slices are not fully utilized, therefore the ECS

values computed through conversion may be slightly underestimated

compared to the actual hardware consumption, since it also excludes some

circuitries and minor some components. According to the CLB conversion and

the actual CLB slices consumed in this work, we found that there is a 2.6%

difference between these two values. However, we did not leverage this

difference and maintained the original value computed.

Xilinx Vivado does not provide the resources utilized for DSP and

BRAM blocks. To convert the DSP48E1 blocks into ECS, we can utilize the

built-in IP core for a Xilinx Ultrascale series, whereby a single DSP48E1 slice

70

can be substituted with a 25-bit × 18-bit unsigned multiplier resulting in 70

slices. For implementations that utilize DSPs such as (Zhu et al., 2021), the

DSPs are converted into ECS values, i.e., 85 × 70 = 5950.

Table 6.5 compares the proposed Saber768 and Saber unified

polynomial multiplier core with earlier Saber implementations that utilize both

SPMA and Karatsuba. For clarity, we take our cores throughput as reference

(1×) and compare with all other cores throughput in comparison (e.g., n times

lower depicted as ↓ n×). Similarly, a TPS percentage difference (as ±m%) of

our cores compared to the reported results is also presented. Experimental

results prove that the proposed Saber768 architecture achieved 7.47× and

20.04× higher throughput when compared to Saber polynomial multipliers

developed utilizing SPMA in (Roy and Basso, 2020) and (He et al., 2021)

respectively. Although (He et al., 2021) remains the most area-time efficient

architecture with the highest throughput per slice (TPS), the throughput is

extremely low, which may not be suitable for applications that require a timely

response. When compared to the Karatsuba implementation for Saber768 in

(Zhu et al., 2021), the proposed polynomial multiplier achieved a 2.04× higher

throughput along with a 26.98% improvement in TPS. On the other hand, the

proposed Saber unified (LightSaber, Saber768, FireSaber) polynomial

multiplier achieved 8.10×, 27.01× and 3.40× higher throughput when

compared to (Roy and Basso, 2020), (He et al., 2021) and (Zhu et al., 2021)

respectively.

71

Variation Implementation
LUT/ FF/

Slice
DSP

Freq

(MHz)
Cycle

Throughput

(Mbps)

Speed

up (x)

ECS

Throughput

per Slice1

Improve-

ment (%)

Saber768

This work2 77546 / 56658

/ 11916
0 322.16 82 1005.89 1.00 11916 84.42 100

(Zhu et al.,

2021)

13735 / 4486 /

1998
85 160.00 83 493.45 ↓2.04 7948 62.08 -26.98

(Roy and

Basso, 2020)

17429 / 5083 /

2496
0 250.00 297 134.74 ↓7.47 2570 53.98 -46.04

(He et al., 2021)
2231 / 1737 /

492
0 250.00 1279 50.20 ↓20.04 492 102.02 +22.73

Table 6.5 KaratSaber768 Comparison with Previous Saber768 Implementations

[1] Calculated using Equivalent CLB slices (ECS)

[2] This work’s KaratSaber768 PM 4

[3] This work’s KaratSaber unified PM 4

72

Variation Implementation
LUT/ FF/

Slice
DSP

Freq

(MHz)
Cycle

Throughput

(Mbps)

Speed

up (x)

ECS

Throughput

per Slice1

Improve-

ment (%)

Saber

Unified

This work3 89222 / 56657

/ 14082
0 335.68 82 1024.00 1.00 14082 74.41 100

(Zhu et al.,

2021)

13735 / 4486 /

1998
85 100.00 83 308.43 ↓3.40 7948 38.81 -84.62

(Roy and

Basso, 2020)

17429 / 5083 /

2496
0 150.00 297 129.19 ↓8.10 2570 51.80 -38.32

(He et al., 2021)
2231 / 1737 /

492
0 250.00 1647 38.79 ↓27.01 492 78.84 +9.12

Table 6.6 KaratSaber unified Comparison with Previous Saber unified Implementations

[1] Calculated using Equivalent CLB slices (ECS)

[2] This work’s KaratSaber768 PM 4

[3] This work’s KaratSaber unified PM 4

73

The proposed KaratSaber architecture can be used as a co-processor in

FPGA-based IoT processor (Kiat et al., 2020) in various IoT applications. The

high TPS achieved by KaratSaber indicates that it is capable in handling high

throughput KEM operations, with a moderate hardware consumption. This is

an important feature when it is used in an IoT sensor node that needs to update

the cloud server frequently, or it is used in a gateway device that needs to

communicate with hundreds of sensor nodes in a timely manner. On the other

hand, applications that has very stringent hardware area consumption may opt

for extremely small architecture like (He et al., 2021), which greatly sacrifices

the throughput performance.

74

6.3 Utilizing Research Output in IoT Applications

Application of cryptography in IoT covers a wide array of devices

targeting different usage. For the work in this dissertation, the targeted

implementation falls in the category of IoT applications that requires relatively

high throughput, i.e., communications and database.

In the encryption techniques for secure communication analysis (Sanap

and More, 2021), they compared various symmetric encryption algorithms for

secure communication. To hinder misuse and alteration of sensitive

information, an efficient cryptosystem with robust security is relatively

important. Algorithms compared in this analysis (Sanap and More, 2021)

includes DES, 3DES and AES, which are symmetric encryption schemes that

are widely used in IoT applications. The symmetric keys need to be refreshed

and encapsulated by the sensor nodes frequently before transmitting them to

the cloud servers. The high throughput hardware architectures developed in

this dissertation can be used to accelerate this process (KEM), which benefit

many IoT applications that require timely response. Due to the area-time

efficient design proposed in this dissertation, the area consumption is also

reasonable for many IoT applications.

Furthermore, implementations such as database security (Zaw et. al.,

2019), cloud storage (Deepthi et. al., 2021) and medical images encryption

(Benssalah et. al., 2018) involves transmitting, computing and storing

75

immense quantity of sensitive data that requires robust security and high

throughput. This research work can also be integrated into such applications

inhibit attacks from advanced quantum computers.

76

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this research work, a high-speed polynomial multiplier utilizing

Karatsuba algorithm was developed for R-LWE and Saber schemes. As

discussed in earlier chapters, when implementing the Karatsuba algorithm, the

overhead (hardware consumption) increases proportional to the layers of

Karatsuba. To avoid sacrificing too much hardware resulting in imbalance in

the area-time aspect, the Karatsuba algorithm implemented in this research is

never in a fully recursive fashion. However, due to the nature of the Karatsuba

algorithm, it actually can be aid algorithms like SPMA to perform the

polynomial multiplication in s shorter timeframe, in other words, increasing

the overall throughput buy using a moderate amount of additional hardware.

Hence, Karatsuba can be regarded as a catalyst algorithm to speed up the

polynomial multiplication process, since it still relies on SPMA to complete

the multiplication operation. Despite that, the throughput advantage of the

Karatsuba algorithm far outweighs the hardware scarification.

77

In summary, this dissertation has provided answers to the following

research challenges:

1) Karatsuba algorithm can be used to speed up the polynomial

multiplication in LBC schemes, which is more advantageous

compared to SPMA. It is able to achieve better area-time

balance compared to pure SPMA implementations.

2) Promising PQC schemes like LWR that inhibits the use of NTT

implementation (e.g., Saber) can be accelerated by utilizing the

Karatsuba algorithm, enabling it to achieve higher throughput

while maintaining a balance area-time aspect

3) Negacyclic operations for Karatsuba can be easily integrated

into the Karatsuba post-processing stage, despite the number of

implemented Karatsuba layers (recursiveness). This enables the

efficiency of Karatsuba implementation for LBC schemes by

omitting the additional cycles required for negacyclic

operations.

4) While implementing Karatsuba, the challenge of polynomial b

overflowing can be solved by constraining the layers of

Karatsuba implemented, or on the other hand, perform separate

78

multiplications simultaneously. The latter increases the

flexibility and scalability of the polynomial multiplier.

7.2 Future Work

The Karatsuba polynomial multiplier developed for both R-LWE and

Saber scheme can also be implemented to cater for other schemes such as

Scabbard, (Mera et al., 2021). Since the bottleneck for LBC scheme is

polynomial multiplication, the shift-based multiplicator that has a high

efficiency and low hardware consumption can also be migrated into different

LBC schemes for future works. The shift-based multiplicator can also be

customized to cater for additional numbers of multiplicands in different use

cases, hence widening the possibilities for future implementations.

Furthermore, different layers of Karatsuba implementation can also be

researched. Algorithms such as Toom-Cook algorithm is also a viable research

direction where different layers and parameters can be tweaked to develop an

efficient polynomial multiplier. Since the Toom-Cook algorithm is able to

split the original polynomial into unsymmetrical sizes, this opens many

possibilities and combinations for implementing the algorithm.

79

Besides, the Toom-Cook algorithm is also more suitable for

asymptotical cases where it can efficiently compute large polynomial

multiplication. In other words, the conquer and dividing techniques displayed

in this research can be implemented on other PQC schemes that has larger

parameters (requires higher security) using the Toom-Cook algorithm.

Lastly, the energy consumption of the polynomial multiplier can be

further minimized for applications such as IoT devices using system level

power management technique (Tan et al., 2021) is another promising direction.

80

LIST OF PUBLICATIONS

1. Wong, Z.-Y., Wong, D.C.-K., Lee, W.-K. and Mok, K.-M., 2021.

High-Speed RLWE-Oriented Polynomial Multiplier Utilizing

Karatsuba Algorithm. In: IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 68, no. 6, pp. 2157-2161.

2. Wong, Z.-Y., Wong, D.C.-K., Lee, W.-K., Mok, K.-M., Yap, W.-S.

and Khalid, A., 2021. KaratSaber: New Speed Records for Saber

Polynomial Multiplication using Efficient Karatsuba FPGA

Architecture. [Currently under review. Submitted to IEEE Transaction

on Circuits and System I: Regular Papers]

81

BIBLIOGRAPHY

Agrawal, R., Bu, L., Ehret, A. and Kinsy, M., 2019. Open-Source FPGA

Implementation of Post-Quantum Cryptographic Hardware Primitives. 29th

International Conference on Field Programmable Logic and Applications

(FPL), Barcelona, Spain, pp.211–217.

Banerjee, A., Peikert, C. and Rosen, A., 2012. Pseudorandom functions and

lattices, in Advances in Cryptology—EUROCRYPT, Pointcheval, D. and

Johansson, T., Eds. Berlin, Germany: Springer, 2012, pp. 719–737.

Benssalah, M., Rhaskali, Y. and Azzaz, M. S., 2018. Medical Images

Encryption Based on Elliptic Curve Cryptography and Chaos Theory, 2018

International Conference on Smart Communications in Network Technologies

(SaCoNeT), pp. 222-226

D’Anvers, J.P., Karmakar, A., Roy, S.S. and Vercauteren, F., 2018. Saber:

Module-LWR based key exchange, CPA-secure encryption and CCA secure

KEM, National Institute of Standards and Technology (NIST). [Online]

Available: <https://csrc.nist.gov/CSRC/media/Projects/post-quantum-

cryptography/documents/round-3/submissions/SABER-Round3.zip>.

Deepthi, B., Ramani, G., Deepika, R. and Shabbeer., M., 2021. Hybrid Secure

Cloud Storage data based on improved Encryption Scheme, 2021

International Conference on Emerging Smart Computing and Informatics

(ESCI), pp. 776-779.

82

Fan, S., Liu, W., Howe, J., Khalid, A. and O’Neill, M., 2018. "Lightweight

Hardware Implementation of R-LWE Lattice-Based Cryptography," in 2018

IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp.

403-406

He, P., Lee, C.-Y. and Xie, J., 2021. Compact Coprocessor for KEM Saber:

Novel Scalable Matrix Originated Processing, in Third PQC Standardization

Conference. [Online] Available at:

<https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-

conference/documents/accepted-papers/xie-compact-coprocessor-

pqc2021.pdf>.

Karatsuba, A. and Ofman Y., "Multiplication of Many-Digital Numbers by

Automatic Computers," in Proceedings of the USSR Academy of Sciences. 145:

293–294. Translation in the academic journal Physics-Doklady, 7 (1963), pp.

595–596, 1962

Kiat, W. P., Mok, K. M., Lee, W. K., Goh, H. G. and Achar, R., 2020. An

energy efficient FPGA partial reconfiguration based micro-architectural

technique for IoT applications, in Microprocessors and Microsystems, vol. 73,

pp. 102966 – 102975.

Liu, D., Cong, Z. and Hui, L., 2017. Area-optimized Lattice-based

cryptographic processor for constrained devices. Midwest Symposium on

Circuits and Systems, 2017–August, pp.277–280.

Liu, D., Zhang, C., Lin, H., Chen, Y. and Zhang, M., 2018. A Resource-

Efficient and Side-Channel Secure Hardware Implementation of Ring-LWE

Cryptographic Processor. IEEE Transactions on Circuits and Systems I:

Regular Papers, 66(4), pp.1474–1483.

83

Liu, W., Fan, S., Khalid, A., Rafferty, C., O’Neill, M., 2019. Optimized

Schoolbook Polynomial Multiplication for Compact Lattice-Based

Cryptography on FPGA, in IEEE Transactions on Very Large-Scale

Integration (VLSI) Systems, vol. 27, no. 10, pp.2459–2463.

Mera, J. M. B., Karmakar, A., Kundu, S., Verbauwhede, I., 2021. Scabbard: a

suite of efficient learning with rounding key-encapsulation mechanisms”,

IACR Transactions on Cryptographic Hardware and Embedded Systems,

2021(4), 474–509.

NIST, 2016, Post-Quantum Cryptography Standardization, [online] Available

at: <https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-

Cryptography-Standardization>.

NIST, 2021. Post-Quantum Cryptography Standardization: Round 3

Submissions. [online] Available at: <https://csrc.nist.gov/Projects/Post-

Quantum-Cryptography/Round-3-Submissions>.

Pöppelmann, T. and Güneysu, T., 2013. Towards Practical Lattice-Based

Public-Key Encryption on Reconfigurable Hardware. In: Proc. Int.

Conference of Selected Areas Cryptography, pp. 68–85.

Regev, O. 2006. Lattice-Based Cryptography, C. Dwork (Ed.) CRYPTO 2006.

LCNS, vol. 4117, pp. 131-141.

Renteria-Mejia, C.P. and Velasco-Medina, J., 2017. High-Throughput Ring-

LWE Crypto-processors. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 25(8), pp.2332–2345.

84

Roy, S.S. and Basso, A., 2020. High-speed Instruction-set Coprocessor for

Lattice-based Key Encapsulation Mechanism: Saber in Hardware, in IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2020(4),

443-466.

Roy, S.S., Vercauteren, F., Mentens, N., Donglong, D. and Verbauwhede, I.,

2014. Compact ring-LWE cryptoprocessor. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 8731, pp.371–391.

Sanap. S. D. and More, V., 2021. Analysis of Encryption Techniques for

Secure Communication," 2021 International Conference on Emerging Smart

Computing and Informatics (ESCI), pp. 290-294.

Shor, P.W. 1997. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer, SIAM J. Comput., 26 (5), pp.

1484–1509.

Tan, B. L., Mok, K. M., Chang, J. J., Lee, W. K. and Hwang, S. O., 2021.

RISC32- LP: Low-power FPGA-based IoT Sensor Nodes with Energy

Reduction Program Analyzer, in IEEE Internet of Things Journal, in press.

UltraScale Architecture Configurable Logic Block User Guide. [online]

Available at: <https://www.xilinx.com/support/documentation/user

guides/ug574- ultrascale-clb.pdf>.

85

Wong, Z.-Y., Wong, D.C.-K, Lee, W.-K. and Mok, K.-M, 2020. High speed

RLWE-Oriented Polynomial Multiplier Utilizing Karatsuba Algorithm, in

IEEE Transactions on circuits and Systems II: Express Briefs, vol. 68, no. 6,

pp. 2157-2161.

Zaw, T. M., Thant, M. and Bezzateev, S.V., 2019. Database Security with

AES Encryption, Elliptic Curve Encryption and Signature, 2019 Wave

Electronics and its Application in Information and Telecommunication

Systems (WECONF), pp. 1-6

Zhang, Y., Wang, C., Kundi, D.E.S., Khalid, A., O’Neill, M. and Liu, W.,

2020. An Efficient and Parallel R-LWE Cryptoprocessor, in IEEE Trans.

Circuits Syst. II: Express Briefs, vol. 67, no. 5, pp. 886-890, 2020.

Zhu, Y., Zhu, M., Yang, B., Zhu, W., Deng, C., Chen, C., Wei, S. and Liu, L.,

2021. LWRpro: An Energy-Efficient Configurable Crypto-Processor for

Module-LWR, in IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 68, no. 3, pp. 1146-1159.

