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ABSTRACT 

A WIRELESS INTERFERENCE-AWARE INTERNET-OF-THINGS 

GATEWAY PLACEMENT FRAMEWORK WITH GENETIC 

ALGORITHM APPROACH 

 

Kong Zan Wai 

 

IoT (Internet-of-Things) gateways are deployed together with sensor 

nodes to facilitate manageability, and operational cost of the IoT system. 

Gateway placement optimization is implemented to strategically placing the IoT 

gateways, aiming to fulfil different technical requirements on top of minimizing 

the number of gateway. However, there is no existing gateway placement 

scheme that considers all the factors of number of gateways, sensor nodes 

coverage, lateral bound (inter-gateway) connections, redundancy for fault 

tolerance and dynamic changes of sensor nodes’ location.  

Therefore, this work proposes a framework to optimized gateway 

placement that considers all the aforementioned factors. The solution takes the 

layout of sensor nodes as input and generates a set of proposed IoT gateway 

locations. The framework  generates the solution using genetic algorithm. Our 

experimental results show that solution can be generated with relatively low 

processing power even for a  relatively wide search space.  One of the 

contributions of this work is the formalization of the fitness function for genetic 

algorithm.  

A series of simulations were designed and carried out to benchmark our 

framework against existing solutions with different evaluation criteria based on 

the consideration factors. Our framework gave promising results in terms of 

lower wireless network overlapping, minimized number of gateways required to 

cover all sensor nodes without compromising redundancies for fault-tolerance, 

and shorter overall distance of gateway movements required during the 

relocation due to the change of sensor nodes layout.  

  



 iii 

ACKNOWLEDGEMENT 

 

First of all, I would like to express my greatest gratitude to my supervisor 

Dr. Ooi Boon Yaik for his guidance and patience, especially the endurance with 

my aberrantly slow pace and procrastination. I would like thank my co-

supervisor, Dr. Liew Soung Yue, for all the supports and tolerance during the 

research period. 

I would like to express my appreciation towards every personnel of Faculty 

of Information and Communication Technology, and Institute of Postgraduate 

Studies and Research in Universiti Tunku Abdul Rahman, for helping me out 

when I was in trouble and tolerating with the inconveniences caused by me. 

I would also like to thank my current company, Infologic Pte Ltd for 

supporting me through these years. Special thanks to my director Mr. Chow King 

Tock and manager Ms. Veronica Sunaly, for their encouragements and 

acknowledging my abilities.  

Lastly, I would like to express my gratitude to my family, my fiancée and 

my best friends for the endless supports, not giving me pressure along the 

journey and be my beacon when I feel lost. It took longer than expected, but we 

are here. 

  



 iv 

APPROVAL SHEET 

 

This dissertation entitled “A WIRELESS INTERFERENCE-AWARE 

INTERNET-OF-THINGS GATEWAY PLACEMENT FRAMEWORK 

WITH GENETIC ALGORITHM APPROACH” was prepared by KONG 

ZAN WAI and submitted as partial fulfilment of the requirements for the degree 

of Master of Science (Computer Science) at Universiti Tunku Abdul Rahman.  

 

 

 

 

Approved by:  

 

 

 
 

___________________________  

(Dr. Ooi Boon Yaik)      Date: …………………..  

Main Supervisor  

Department of Computer Science  

Faculty of Information and Communication Technology  

Universiti Tunku Abdul Rahman  

 

 
 

 

___________________________  

(Dr. Liew Soung Yue)       Date: …………………..  

Co-supervisor  

Department of Computer and Communication Technology  

Faculty of Information and Communication Technology  

Universiti Tunku Abdul Rahman 

  

5/11/2021 

5/11/2021 



 v 

 

FACULTY OF INFORMATION AND COMMUNICATION 

TECHNOLOGY 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

Date: 05/11/2021 

 

SUBMISSION OF DISSERTATION 

 

It is hereby certified that Kong Zan Wai (ID No: 15ACM06682 ) has completed 

this dissertation entitled “A WIRELESS INTERFERENCE-AWARE 

INTERNET-OF-THINGS GATEWAY PLACEMENT FRAMEWORK WITH 

GENETIC ALGORITHM APPROACH” under the supervision of Dr. Ooi Boon 

Yaik (Supervisor) from the Department of Computer Science, Faculty of 

Information and Communication Technology, and Dr. Liew Soung Yue (Co-

Supervisor) from the Department of Computer and Communication Technology, 

Faculty of Information and Communication Technology.  

 

I understand that University will upload softcopy of my dissertation in pdf format 

into UTAR Institutional Repository, which may be made accessible to UTAR 

community and public.  

 

 Yours truly,  

 

______________ 

(Kong Zan Wai) 

 

 

  



 vi 

DECLARATION 

 

DECLARATION 

 

I Kong Zan Wai hereby declare that the dissertation/thesis is based on my 

original work except for quotations and citations which have been duly 

acknowledged. I also declare that it has not been previously or concurrently 

submitted for any other degree at UTAR or other institutions.  

 

 

 

 

________________  

(KONG ZAN WAI) 

 

 Date  05/11/2021 

 

 

 

  



 vii 

LIST OF TABLES 

Table 2.1 Comparison between existing techniques 15 

Table 3.1 Score system based on consideration factors 27 

Table 6.1 Average distribution of layer of overlapping in percentage and 

overlapping index 54 

Table 6.2 Average number of gateway failure with average number of 

deployed gateway 56 

Table 6.3 Average gateway movement required due to change of sensor nodes 

layout 58 

Table 6.4 Average computational time for different problem size 60 

 

 

  



 viii 

LIST OF FIGURES 

Figure 3.1 Example of sensor layout on mall floorplan 20 

Figure 3.2 Workflow of proposed framework 20 

Figure 3.3 Illustration of consideration factors 21 

Figure 3.4 Illustration of Selection 23 

Figure 3.5 Illustration of Crossover 24 

Figure 3.6 Illustration of Mutation 25 

Figure 4.1 Structure of Sensor and Gateway objects 29 

Figure 4.2 Structure of SensorLayout and GatewayLayout object 30 

Figure 4.3 Pseudocode of proposed GA model 31 

Figure 4.4 Pseudocode of Initialization 33 

Figure 4.5 Pseudocode of Selection 34 

Figure 4.6 Pseudocode of Crossover 35 

Figure 4.7 Pseudocode of Mutation 37 

Figure 4.8 Pseudocode of Fitness Evaluation 42 

Figure 4.9 Pseudocode of Get Moving Penalty 44 

Figure 4.10 Pseudocode of Distance 44 

Figure 5.1 Snippet of input and output file content 47 

Figure 5.2 Sample of 2D spatial plane visual with hexagonal gateway 

arrangement 48 



 ix 

Figure 5.3 Sample of 2D spatial plane visual with square gateway arrangement

 49 

Figure 5.4 Sample of 2D spatial plane visual with hexagonal gateway 

arrangement with maximized coverage 50 

Figure 6.1 Overlapping Layer Distribution in Percentage with Overlapping 

Index 55 

Figure 6.2 Number of gateway failure with number of deployed gateway 57 

Figure 6.3 Gateway movement required for different technique 59 

Figure 6.4 Number of sensor nodes vs time taken 60 

 

 

  



 x 

LIST OF ABBREVATIONS 

IoT Internet-of-Things 

AI Artificial intelligence 

GA Genetic Algorithm 

SSGW Solution-Specific Gateway 

IGW Internet Gateway 

Wi-Fi Wireless Fidelity 

CD Coordinate Device 

QoS Quality of Service 

LeTE Low-end Transmission Equipment 

ILP Integer Linear Programming 

LPWA Low Power Wide Area 

ICD Interference cancellation and decoding 

PGL Pixel with Gray Levels 

  



 xi 

TABLE OF CONTENTS 

 

ABSTRACT ii 

AKNOWLEDGEMENT iii 

APPROVAL SHEET iv 

DECLARATION vi 

LIST OF TABLES vii 

LIST OF FIGURES viii 

LIST OF ABBREVATIONS x 

TABLE OF CONTENTS xi 

 

1 INTRODUCTION ....................................................................................... 1 

 Research Background ........................................................................ 1 

 Problem Statement ............................................................................. 4 

 Objectives ........................................................................................... 5 

 Research Contribution ....................................................................... 5 

 Dissertation Organization .................................................................. 6 

2 LITERATURE REVIEW ............................................................................ 7 

 Gateway Placement Optimization ..................................................... 7 

 NewIoTGateway-Select ...................................................................... 8 

 Device Selection Adaptive to QoS (DESAQos) .................................. 9 

 Efficient Data Collection for IoT Services in Edge Computing 

Environment................................................................................................. 10 

 Improved Fast Search and Find of Density Peaks-based Fog Node 

Location of Fog Computing System ............................................................ 11 

 Optimized Gateway Placement for Interference Cancellation for 

Transmit-Only LPWA Networks ................................................................ 12 

 Robust Gateway Placement for Scalable LoRaWAN ..................... 13 

 Comparison between existing techniques ........................................ 14 

 Genetic Algorithm ............................................................................ 16 

 Summary .......................................................................................... 17 

3 PROPOSED SOLUTION .......................................................................... 19 

 Problem formulation ........................................................................ 19 

 Proposed model ................................................................................ 22 

3.2.1 Initialization ................................................................................... 22 

3.2.2 Selection ........................................................................................ 23 

3.2.3 Crossover ....................................................................................... 23 

3.2.4 Mutation ........................................................................................ 24 

3.2.5 Fitness Evaluation .......................................................................... 25 



 xii 

 Summary .......................................................................................... 28 

4 SYSTEM IMPLEMENTATION ............................................................... 29 

 Basic elements .................................................................................. 29 

 Genetic Algorithm Implementation ................................................. 30 

4.2.1 Initialization ................................................................................... 32 

4.2.2 Selection ........................................................................................ 33 

4.2.3 Crossover ....................................................................................... 34 

4.2.4 Mutation ........................................................................................ 35 

4.2.5 Fitness Evaluation .......................................................................... 37 

4.2.6 Get Moving Penalty ....................................................................... 42 
4.2.7 Distance ......................................................................................... 44 

 Realization ........................................................................................ 45 

 Summary .......................................................................................... 45 

5 EXPERIMENTAL SETUP ....................................................................... 46 

 Simulation Setup .............................................................................. 46 

5.1.1 Network Overlapping Region ......................................................... 47 

5.1.2 Number of Gateways Required and Network Resiliency ................ 49 

5.1.3 Movement required due to change of sensor layout ........................ 51 

5.1.4 Computational Time ...................................................................... 52 

 Summary .......................................................................................... 52 

6 EVALUATION RESULTS ........................................................................ 54 

 Simulation Results............................................................................ 54 

6.1.1 Network Overlapping Region ......................................................... 54 

6.1.2 Number of Gateways Required and Network Resiliency ................ 56 

6.1.3 Movement required due to change of sensor layout ........................ 57 

6.1.4 Computational Time ...................................................................... 59 

6.1.5 Summary ....................................................................................... 61 

7 CONCLUSION AND FUTURE WORK.................................................... 62 

 Conclusion ........................................................................................ 62 

 Future Work .................................................................................... 64 

REFERENCES ................................................................................................. 66 

 



 1 

1 INTRODUCTION 

 Research Background 

Internet-of-Things (IoT) is one of the most popular information 

technology domains in present day. 500 billion devices are predicted to be linked 

to the internet by year 2030 according to a report from Cisco [1]. With the rapid 

growing of IoT, 5G and AI, they are expected to work closely together to provide 

compelling services in both industrial and commercial area [2]. IoT is 

implemented and working in background within a lot of modern days 

applications [3], such as access control, public transit, industrial inspection, 

retail analysis, traffic system,  public safety, logistic and so on. Most of these 

applications require continuous data collection from deployed sensor networks 

and convey of data to the rendezvous point such as cloud, where data analysis 

and post processing to more human-readable presentation shall be performed. In 

order to ensure the reliability of analytic outcomes and measurements, reliable 

IoT networks are crucial in order to prevent sporadic data collection. Scalability 

on the other hand, is also important for IoT network as it might be growing and 

altering over time after the deployment due to requirement changes of 

application.  

As IoT network grows and comprise a large number of connected sensors 

nodes, deployment cost and manageability might get out of hand. The role of 

conventional edge devices has recently been elevated to address the 

aforementioned issue. Edge devices such as IoT gateways are now equipped with 

more hardware resources and able to run smarter applications, making them 

more capable than primitive access points. For example, they are able to 
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preprocess received data before sending to cloud, store backlogged data locally 

when the internet access is unavailable, and even take over certain tasks from 

the cloud. A noteworthy movement is that in Cisco introduced Fog Computing 

[4] a standard to extend computing to the edge network devices, to meet the 

needs of IoT. Similarly, NVIDIA also introduce their EGX platform [5] which 

facilitates AI production to move beyond the data centre and out to the edge 

layer. Through these years, There are several studies [6]–[8] that focus on the 

implementation of IoT gateway with different approaches on different 

applications, which proved its potential and feasibility. 

 In our previous work [9], we suggested the concept of collaborative IoT 

gateway, which is essentially a storage equipped single board edge computer 

that supports up to a minimum of 3 physical network interfaces. Each of the 

network interfaces has its communication role: northbound, southbound, and 

lateral bound. Northbound refers to connections between the cloud and gateway, 

southbound refers to connections between the sensor nodes and gateway; and 

the main novelty of this work, lateral bound, refers to the inter-gateway 

connections within the network. 

As the center point of these 3 connections, IoT gateways certainly 

become the backbone [10], [11] elements of the IoT network infrastructure. I.e., 

the availability and quality of service of IoT gateways should create direct 

impact to the overall throughput of the IoT application. It is more crucial when 

mission-critical IoT systems are required in areas such as airfield [12] and 

surveillance [13]. According to [14], the common issues related to gateway 
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placements in an IoT network are: congestion, coverage, location, interference 

and distance.  

An efficient gateway placement optimization scheme shall leverage the 

strength of collaborative IoT gateway and create a robust lateral bound network 

topology, subsequently provide better coverage to sensor nodes. For example, 

intersection region between coverage area of two or more gateways can provide 

redundancy to southbound devices, ultimately achieve better fault-tolerance. 

However, placing too many gateways at the same area might lead to opposite 

effects such as network congestion due to network interference [15], especially 

when sending large amounts of continuous data between the IoT gateways.  

On top of that, IoT sensor network can be dynamic [4], [16], [17]. Sensor 

nodes could be added, removed, and reallocate periodically to improve the 

efficiency of immediate data collection. Relatively, IoT gateways should also be 

easily varied in terms of location to comply with the requirements from new 

sensor arrangement.  To achieve that, the movement of existing deployed 

gateways to their new positions should be minimized to reduce the effort of IoT 

gateway relocation. 

Gateway placement optimization is a subject that generally aims to 

address the mentioned requirements with the constraints such as number of 

gateway and the number of redundancies. It is an active research area with a 

considerable amount of published work to proposed the solution or algorithm to 

optimize the IoT gateway placements with different requirements and 

constraints on top of the basic connectivity and redundancies [18]–[21]. In this 

work, we propose a framework to find the optimal solutions of gateway 
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placement based on the locations of pre-locate sensor nodes, which the 

preliminary proof of concept was done and documented [22]. In our work, 

actuators are similar to sensor nodes from a communication perspective; thus, 

they are not explicitly distinguished, and both will be referred as sensor nodes 

unless specified otherwise. Based on our study, we managed to list out a series 

of consideration factors that need to be included into the gateway placement 

optimization scheme: - (1) Number of gateways, (2) Node coverage, (3) Lateral 

bound connection, (4) Redundancy and (5) Dynamic sensor node location. The 

more detailed problem statements are sorted out in the next subsection.  

 Problem Statement 

According to our research, we found out that the consideration factors 

work relatively and extends to more issues when they have to be considered 

concurrently during the process of gateway placement optimization. 

Firstly, to facilitate the connectivity of lateral bound network, gateways 

shall be place within each other’s vicinity to communicate and create a strongly 

connected network. However, placing IoT gateways too close together in a 

sensor network might cause wireless interference, ultimately affect overall 

network performance. For applications where data continuity and short latency 

are crucial, this might be intolerable. 

 Secondly, to prevent single point of failure of sensor nodes’ connection 

to cloud, they should be under coverage of more than one IoT gateway. However, 

placing extra IoT gateway as redundancy will have adverse effects on the 

network performance and deployment cost. 
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IoT sensor network can be dynamic and varies from time to time in terms 

of placement layout. Nevertheless, existing gateway placement solutions have 

yet to accommodate changes due to dynamic sensor placement. Gateway 

placement will have to be agile to handle the dynamic nature. 

 Objectives 

The main objective of this research is basically to address the 

aforementioned problems, in a form of providing solutions to the multi-

conditions gateway optimization problem with the following as basis: 

1. To develop a framework to minimize the Wi-Fi interference between IoT 

gateway in the lateral bound network. 

2. To design a technique to minimize the number of IoT gateway placement 

without sacrificing fault-tolerance by exploring the trade-off between 

time and sub-optimal solution using soft computing approach. 

3. The design of the framework will accommodate dynamic sensors 

movement as consideration during computation of gateway placement 

scheme. 

 Research Contribution 

The major contributions of this research are as follows: 

1. The proposed gateway placement optimization framework takes multiple 

consideration factors into account, including number of gateways, 

redundancies, and network interference. The framework shall provide 

gateway placement layout for future IoT sensor network that is cost 

efficient, fault-tolerant and minimized interference. 
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2. The proposed framework also takes changes due to dynamic sensor 

layout as a consideration factor during the optimization. The optimized 

solution would reduce the effort to relocate gateways as sensor 

rearranged, which could continuously occur through the IoT system 

lifespan.  The minimization of effort shall subsequently reduce the labor 

and time to reconfigure the gateway layout. 

3. The proposed computational model is also highly scalable. It should be 

able to handle a wide range of problem size, which is the number of 

sensors, within acceptable computation time. In terms of software 

modification, the computational model should also be easily modified to 

include more consideration factor in future. In other words, the proposed 

model could work as a robust foundation and baseline model, which can 

be simply modified in future and branched into versions to adapt with 

different requirements. 

 Dissertation Organization 

The remaining of this dissertation is organized as follow. Chapter 2 – Literature 

Review, Chapter 3 – Proposed Solution, Chapter 4 – System Implementation, 

Chapter 5 – Experimental Setup and Chapter 6 – Evaluation Results. 
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2 LITERATURE REVIEW 

 Gateway Placement Optimization 

Gateway placement optimization is an existing research subject that aims 

to find the optimal locations of gateways based on a range of requirements. 

Gateway placement problems usually include basic requirements of minimizing 

number of gateway and still satisfying traffic demands [23], while modern 

gateway placement optimization research works would include more 

consideration factors or goals on top of those. A publication from Mnguni et al. 

[14] summarized more than 10 research works of gateway placement 

optimization algorithms for IoT over the past years. Despite the research works 

focused on IoT, there are diversities in terms of communication technology, 

objectives, constraints and problem size, relatively the approach taken to solve 

the problem are also broad.  

For example, Wu et al. [23]  proposed a gateway placement optimization 

solution for wireless mesh network. Implemented with graph theory, the 

algorithm aimed to find the minimum dominating sets with maximum weight 

among the connected mesh router networks, subsequently find the subset of 

routers to take over internet gateway roles, and finally assign the router 

attachments with load balancing as consideration factor.  

On the other hand, a research work by Ahmed et al.  [24] proposed to apply 

Genetic Algorithm (GA) to find the internet gateway locations among the 

connected mesh routers with the context of connectivity matrix of the mesh 

routers. The main objective of the research is to find near optimal solutions that 
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minimize the overall number of hops for mesh routers in a network to reach the 

nearest gateway.  

Moreover, there were also several notable works reviewed through our 

research process, which shall be explained in the following subsections. 

 NewIoTGateway-Select 

Karthikeya et al.[18] proposed NewIoTGateway-Select algorithm to find 

out optimal placement for Solution-Specific Gateways (SSGW) – edge devices 

that are equipped with multiple interfaces sensor, subsequently upgrading some 

of the SSGW to become Internet gateway (IGW). The main difference between 

SSGW and IGW is the latter has all the capabilities of former, but also comes 

with internet connectivity.  

The proposed algorithm was implemented with greedy technique. It was 

designed to first finds out all the intersected coordinate devices (CD) pairs in 

terms of coverage range, and promote the most intersected ones to be SSGW 

until all CDs are covered by at least 1 SSGW. The step is then repeated again 

without the promoted CDs excluded to ensure each CD is connected to at least 

2 different SSGW in order to achieve redundancies. The effective throughput of 

the each computed SSGW are computed, which is the product of load factor and 

link capacity. The link capacity is the maximum permissible load allowed on 

each network interface, and load factor is the ratio of actual load on the link as 

specific time. The SSGWs with highest effective throughput will be selected to 

take the role of IGW. To adapt this algorithm for our use case, the CDs can be 

taken as sensor nodes, where SSGW can be taken as IoT gateway. However, the 

algorithm does not include sensor nodes movement as consideration factor. 
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 Device Selection Adaptive to QoS (DESAQos) 

 In addition, Gravalos et al. [20] suggested Device Selection Adaptive to 

QoS (DESAQos), a heuristic approach to find out internet gateway location and 

low-end transmission equipment (LeTE, which is similar to SSGW from 

previous work) among the IoT facilities (a group of data collection nodes, or 

sensor nodes). They formulated the gateway placement optimization problem 

into a multi-constraints integer linear program (ILP) problem, but the formulated 

ILP was too complex to be handled by usual ILP solver as the complexity is 

exponential.  

Therefore, a solution with heuristic approach was proposed, which 

contains two parts which are the Initializion and clustering phase. Initialization 

phase involves computation of candidate locations of LeTE and gateway based 

on the existing facility centroid and Voronoi points, which are then served as the 

input for Clustering phase. The Clustering phase performs K-means clustering 

on the candidate locations to determine the locations of LeTEs and gateways.  

The final outcome of the research work was proved to reduce the network 

installation cost without compromising the QoS. However, parameters such as 

the deployment price of gateway and outgoing traffic rate of facilities are 

required as an input of the algorithm, which we assumed to have no access to 

them in this work. Hence, it is not a feasible solution for our use case. 
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 Efficient Data Collection for IoT Services in Edge Computing 

Environment 

Furthermore, Maiti et al.[25] proposed Efficient Data Collection for IoT 

Services in Edge Computing Environment, which aimed to lower the overall 

service latency by transforming cloud-centric environment to edge-centric 

environment. The idea of mini-cloud was suggested in this work, which is a fog 

device in between the layer of cloud and gateways, expected to partially take 

over cloud role in IoT application. The mini-cloud locations are selected among 

the existing gateway, with the priority of minimizing the latencies between mini-

clouds and gateways. 

The authors first model the IoT gateways network as a graph with 

gateways as vertices, links between gateways as edges and propagation latencies 

as the edge weights. With this graph as basis, an n*n delay matrix which contains 

the shortest path latency between each pair of gateways. With the input of 

desired number k of mini-cloud and the delay matrix, the model shall go through 

k-means clustering algorithm, where the initial locations are selected from the 

gateways. But instead of averaging the distance of points with the cluster heads 

as in native k-means clustering algorithm, the centering is done based on the 

weight between the gateways and mini-cloud candidates. By the end of the 

algorithm, which is where convergence is occurred, the locations of k number of 

mini-cloud shall be computed. 

To adapt this work to our scenario, we can take the mini-cloud as our IoT 

gateways, and the gateways as our sensor nodes. However, the reviewed work 

presume that the gateways are capable with multi-hop transmission, but our 
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sensor nodes are not. The mini-clouds also not defined to have lateral 

communications, where our IoT gateways do. Therefore, this algorithm is not 

suitable for our use case as well.   

 Improved Fast Search and Find of Density Peaks-based Fog Node 

Location of Fog Computing System 

Similarly, a research work published by Yuan et al.[21] stated that fog 

node locations in fog computing network can be formulated as a clustering-based 

multi-constrained optimization problem. With the consideration factors of 

communication latency, fog node resource to cater with different types of nodes 

and the resource cost, they modified the existing algorithm of clustering by fast 

search and find by density peaks [26]  that search for high density nodes based 

on their number of reachable neighbor nodes and the distance with other high-

density nodes as cluster head, to compute the location of fog nodes within an 

IoT network. 

The proposed clustering algorithm takes collections of nodes, along with 

their locations, acceptable node-fog latency, resource and resource cost as inputs, 

and giving outputs of cluster head locations, along with their required resource 

and resource costs. The algorithm involved processes of obtaining the weighted 

distances between all nodes, finding expected cluster sizes, iterations to find 

optimized cluster centers, compute required resources for cluster centers to 

server the cluster members and the cost.  

As we can see, although this research work has a similar general goal as 

ours, which is to find the optimized location of IoT gateways (fog node), but the 

consideration factors are different. Besides, the expected input parameters of the 
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algorithm also vary with ours, which most of them are outside our research scope. 

Therefore, it can be concluded that the algorithm is also not suitable to be a 

solution of our problems.  

 Optimized Gateway Placement for Interference Cancellation for 

Transmit-Only LPWA Networks 

Tian et al. [27] attempted to optimize gateway placement with the 

objective to minimize wireless interference within the transmit-only low power 

wide area (LPWA) network. The research work was built on top of the concept 

of capture effect and interference cancellation, which are the methods used to 

process collision packets due to wireless interference. The capture and 

interference cancellation process are to be done by gateways that are placed 

among the transmit-only sensor nodes, which is to resolve the collisions between 

packets from different connected sensor nodes. To ensure that the processes can 

be carried on, the gateways will need to be placed in the effective regions within 

the transmission range of sensor nodes.  

Two algorithms were proposed to find the locations of gateways. Both 

algorithms involved the computation of the following properties for each sensor 

nodes with respect to the other nodes: 1) capture circle – the transmission region 

where capture process can be performed, 2) ICD crescent – the transmission 

region where interference and decoding can be performed outside of the capture 

circle. Afterwards, the optional points, which are the intersection points between 

capture circle and ICD crescents are located. These optional points are the 

candidates of gateway locations. To decide which are the final points to place a 

gateway, two algorithms were proposed.  
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The first algorithm is the Algorithm Weight Bipartite Graph (WBG). It 

generally creates a bipartite graph based on the optional points and the 

intersected sensor nodes, with the weight of the graph edges as the intersection 

type. With the greedy technique, the algorithm iterates to pick the optional point 

from the bipartite graph with highest weight (located within intersection of most 

capture circles and ICD crescents), and removed all the linked intersected sensor 

nodes, until all sensor nodes are removed from the graph. The picked points are 

then selected as the proposed gateway locations.  

The second algorithm is the Algorithm of PGL (Pixel with Gray Levels). 

It is similar to the first algorithm, in terms of the greedy technique part. However 

instead of using the bipartite graph, the weight of the optional points is identified 

by the pixel greyscale darkness level. As the optional points are actually on the 

intersected regions of capture circle and ICD crescent, visualizing the regions 

with translucent colour shall create darker colors within the overlapped regions, 

where darker regions mean higher level of overlapping.  

However, the research works does not have the same consideration factors 

as ours. Factors such as redundancies, and sensor layout change are not taken 

into accounts. Despite, the PGL approach of identifying level of overlapping 

based on greyscale level still inspired us as an evaluation methodology.   

 Robust Gateway Placement for Scalable LoRaWAN 

Lastly, Loh et al. [28] suggested that the IoT gateway placement 

optimization as a geometric set cover problem, where gateways are disks and 

sensors are points. Each gateway should be assigned with a maximum number 
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of sensor (capacity), where the main task is to ensure that each sensor is covered 

by a gateway without exceeding the capacity. 

The algorithm starts with providing the sensor node locations and 

candidate gateway locations as input. A Voronoi diagram based on the gateway 

locations that partitions the sensor nodes will be created. Each sensor nodes 

within the Voronoi geometry with a gateway as center shall be attached to that 

gateway, and the number of gateways shall be computed to ensure the condition 

of gateway capacity is not violated. If the condition is fulfilled, a selected 

gateway shall be removed from the set and the repeat the condition fulfilment 

validation process, until 3 gateways are removed but still fulfilling the 

requirements of not exceeding gateway capacity and all sensors are covered, OR 

no gateway is allowed to be removed. 

The algorithm managed to solve a capacitated geometric set cover problem 

within a reasonable time based on real life Smart City scenario. However, the 

objective and consideration factors are quite different with ours. The work did 

not take fault tolerance with redundancies into account, and also not taking 

sensors relocation as a consideration criterion. 

 Comparison between existing techniques 

Table 2.1 on next page concludes the existing technique, based on their 

model/algorithm, objective, and the research outcome.



 15 

# Research Model/ algorithm Objective Research outcome 

1 A Genetic Approach for Gateway Placement in 

Wireless Mesh Networks [24] 

Genetic Algorithm Minimize the variation of  (Mesh 

Router – Internet Gateway) MR-IG hop 

counts 

Improved overall WMN performance by reducing 

MR-IG hop counts 

2 Leveraging Solution-Specific Gateways for Cost-

Effective and Fault-Tolerant IoT Networking [18] 

Greedy technique Reduce cost by minimizing number of 

gateways, replace IGW with SSGW 

when possible 

Managed to proposed gateway placement 

locations with minimized number of gateways 

without single point failure 

3 An Improved Fast Search and Find of Density 

Peaks-based Fog Node Location of Fog 

Computing System [21]  

Improved K-means clustering 

technique from Clustering by 

fast search and find of density 

peaks [26] 

Proposed an improved algorithm to 

locate fog node sites and determine 

resource for each fog node 

Takes shorter time to locate fog nodes compared 

to existing algorithm, giving significant better 

service performance (shorter latency) with the 

trade-off of insignificant increment in cost. 

4 Efficient Data Collection for IoT Services in 

Edge Computing Environment [19] 

Binary knapsack Lower the service latency compared to 

IoT with cloud environment 

Service latency is lower with mini-cloud among 

IGW compare to cloud environment 

5 Efficient Network Planning for Internet of Things 

with QoS Constraints [29] 

Voronoi points, K-means 

clustering 

Lower network installation cost without 

compromising QoS, 

Gives near optimal installation cost compared to 

ILP Method 

6 Optimized Gateway Placement for Interference 

Cancellation in Transmit-Only LPWA Networks 

[27] 

Greedy technique To find the optimum location of 

gateways for transmit-only LPWA 

networks, 

Proposed WBG and PGL greedy technique based 

algorithms to find gateway locations with 

minimal interference 

7 Robust Gateway Placement for Scalable 

LoRaWan [28] 

Voronoi points, linear 

programming 

To minimize gateway count, but 

ensuring that all sensors are covered 

without exceeding gateway capacity 

Solve a capacitated geometric set cover problem 

within a reasonable time based on real life Smart 

City scenario and fulfilling the objective 

Table 2.1 Comparison between existing techniques
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 Genetic Algorithm 

As more consideration factors are added on top of primitive gateway 

placement optimization, the problem would get more complex due to the 

increment of variable number, variable scope, and variable diversity. A heuristic 

and global search approach would be preferable [30] to find a solution that does 

not need to be optimal at each requirement, good enough to fulfill the minimum 

requirements, wider search space, with a considerably short computational time. 

For our scenario, immediate solution is not the main priority, instead global 

search for sub-optimal solution is preferable. Therefore, locally search 

algorithms such as Greedy Technique (as implemented in [18], [27]) and Linear 

Programming (as implemented in [28]) is not a suit for this case.  We find that 

Genetic Algorithm (GA) [31] with the mentioned characteristics is a good fit to 

implement the gateway placement optimization model as gateway placement 

does not require a precise solution. On top of that, GA is also highly scalable, 

thus modifications that need to be done in case of inclusion of new consideration 

factor could be done with less effort.  

 GA is a search heuristic that was inspired by the theory of evolution. It 

imitates the process of natural selection, where the fittest individuals (genes) are 

chosen for reproduction to produce offspring of the next generation. In GA, a 

gene in a chromosome commonly refers to a variable in a solution to the problem; 

and a population refer to a pool of chromosomes.  Generally, the implementation 

of GA shall consist of the following steps: 

a) Initialization – A population of chromosomes (solution) with randomly 

generated genes (variables) is initialized  
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b) Selection – Two chromosomes (solution) are randomly selected from the 

population 

c) Crossover – Part of the genes (variables) from the selected 

chromosomes (solutions) were extracted and combined to yield a new 

chromosome (new solution) 

d) Mutation – With a slight chance, a gene, or genes (variables) of the new 

chromosome (solution) shall be mutated randomly (assign with new 

random value) 

e) Fitness Evaluation – The newly generated chromosomes (solution) go 

through an evaluation process to assess the suitability of solving the 

problem 

 Summary 

Gateway placement optimization is still a relevant research subject, as we 

are able to find publications from the past few years. However, the researches 

have different goals to meet, mainly because of the diversities of requirements 

and objectives to pursue. The fields of focus for the reviewed works spanned 

through different domains, such as cost efficiency, computing performance, 

system reliability, quality of service and so on.  

There are works that have intersected fields of interest as us, but none of 

them solve the same set of problems as ours. It is also worth noting that none of 

the reviewed works has taken changes due to dynamic sensor network into 

account during the optimization. Nonetheless, the work from Karthikeya et. al. 

[18], which will be referred as NewIoTGateway-select has the closest solution 
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for the requirements to us, thus it will be taken as a benchmark object in the as 

documented in the latter chapters. 
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3 PROPOSED SOLUTION 

As we decided to implement the framework using Genetic Algorithm, the 

next step would be to formulate the gateway optimization problem and adapt to 

the algorithm. In this chapter, we will focus on the problem formulation with the 

requirements based on our research objectives and the methodology to model the 

problem as the input to our computational model.  

 Problem formulation 

In this work, it is presumed that the gateway optimization problem is 

within a finite spatial plane with a height h and width w, where sensor nodes are 

distributed around the plane, resembling the sensor network in a monitored field. 

In real life scenario, the sensor node locations should be able to be recorded on 

a map or floorplan.  

For instance, Figure 3.1 shows a shopping mall floor plan with the 

locations of sensor nodes of a crowd counting project. With the aid of the 

floorplan, the sensor node locations can be converted into a collection of XY 

coordinates, which would be the input of the framework. The framework is also 

expected to take the desired number of gateways, and original gateway 

coordinates (obtainable with the same method as sensor nodes) as inputs to 

yields a solution of proposed gateway layout solution. The detailed workflow of 

the framework is described in Figure 3.2. 
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Figure 3.1 Example of sensor layout on mall floorplan 

 

Figure 3.2 Workflow of proposed framework 

Based on our research objectives, we mainly aim to design a framework 

to provide solutions for a multiple-conditions gateway placement optimization 

problem. The framework should be able to yield solutions that 1) minimize the 

Wi-Fi interference between IoT gateway in the lateral bound network, 2) 

minimize the number of IoT gateway without compromising fault tolerance, and 

3) adaptive to dynamic sensor movement.  
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To formulate the gateway placement optimization problem, we listed out a 

series of factors that must be considered during the problem solving based on 

our scopes and objectives as illustrated in Figure 3.3: 

 

Figure 3.3 Illustration of consideration factors 

a) Average coverage of an IoT gateway for sensor nodes (southbound). 

Asouth= πr2 

b) Average distance of an IoT gateway lateral bound (in radius) for IoT 

gateway collaboration. 

Alateral = πr2 

c) Number of gateways a node can use to provide redundancy, i.e. the 

number of gateways a node can connect to. 

d) Number of sensor nodes under the coverage of a gateway. 

e) Number of collaborative IoT gateway within the average lateral bound 

distance set in (b) 
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f) Number of gateways desired. 

g) Distance between the original and proposed gateway positions (if any) 

 Proposed model 

Based on our framework structure, the output of the model (solution) is 

expected to be the layout of gateways within the 2D spatial plane. Therefore, the 

GA model of our framework shall be expressed as: 

• Chromosome (solution): 2D layout of gateways 

• Gene (variables): The location of each gateway of the layout 

On this basis, we model the gateway placement optimization to comply with the 

steps of a GA model, where the details are explained as follows: 

3.2.1 Initialization 

The purpose of initialization is to create an initial population of N 

chromosomes as an entry point of the computation. The properties of the 

chromosomes should be random. In our model, the chromosome is the gateway 

layout on a 2D spatial plane. In general, the initialization process shall generate 

a pool of random layouts of gateways. 

The values that can be randomized in a set of gateways are: 

• Number of gateways in the layout 

• Location of each gateway  

At the end of the initialization, the model is expected to create a defined number 

of gateway layouts, where each layout shall contain a randomized number of 

gateways, and each gateway shall have a random location within the spatial 

plane. 
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3.2.2 Selection 

 

Figure 3.4 Illustration of Selection 

During the selection process, two chromosomes in the population shall 

be randomly chosen from the population to go through the crossover process, 

repeated until a new generation of population is formed.  In our model, it will be 

presented as randomly selecting two different gateway layouts from the current 

population (illustrated in Figure 3.4) which will be taken as inputs of crossover 

(explained in next subsection). The process will be iterated with different 

random layouts for a defined number of times.  

3.2.3 Crossover 

Every pair of selected gateway layout from the selection process shall go 

through the crossover process. For each pair of layouts, says layouta
 and layoutb, 

a portion from each layout is extracted and joint to yields a new layout 

(visualized in Figure 3.5 below). In our model, we proposed to take the left 

portion of layouta
 and right portion of layoutb to go through the concatenation. 
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However, instead of cropping each layout by exactly half, a random percentage 

of layouta
 and layoutb (with total of 100%) shall be taken to increase the 

randomness of GA model.  For example, if the randomized percentage is 30%, 

then 30% of layouta from the left and 70% of layoutb from the right shall be 

combined and produce a new gateway layout.  

 

Figure 3.5 Illustration of Crossover 

3.2.4 Mutation 

By a small chance, the product of crossover shall get to go through mutation 

process. The mutation is done by randomly tweaking the genes in the 

chromosome. In our model, we proposed to have 3 types of mutation that involve 

the process of adding, removing and updating the genes to/from the 

chromosomes, as illustrated in Figure 3.6.  
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1. Adding – a new gene with randomized value shall be generated and 

append to the chromosome. I.e. a new extra gateway with random 

location shall be generated and added to the crossed-over layout of 

gateways.  

2. Removing – an existing gene shall be selected randomly and removed 

from the chromosome. I.e. an existing gateway from the crossed-over 

layout of gateways shall be randomly selected and removed from the 

layout. 

3. Updating – The properties of a random existing gene in a chromosome 

shall be assigned with a random new value. I.e. a random existing 

gateway from the crossed-over set of gateways shall be randomly 

relocate.  

 

Figure 3.6 Illustration of Mutation 

3.2.5 Fitness Evaluation 

For each of the chromosomes produced by crossover (mutated and not 

mutated), it must go through a fitness evaluation process. For our case, the fitness 

evaluation is about assessing the performance of gateway layouts based on the 
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input of the model, which are the sensor nodes layout, number of desired 

gateways in the layout and the original gateway layout (if any).  

To evaluate the fitness of the gateway layout, we have come out with a list of 

evaluation criteria corresponded to our consideration factors, namely:  

a) Number of gateways a node can use to provide redundancy 

b) Number of sensor nodes a gateway can cover 

c) Number of collaborative IoT gateway within the average lateral bound  

d) Number of gateways desired 

e) Distance between original (if any) and proposed gateway positions 

With the system of rewards and penalties, scores shall be rewarded or deducted 

based on the fulfillment of each criterion. Table 3.1 presents the grading system 

of the fitness evaluation of our model: 
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Score is rewarded Consideration Factor Score is deducted 

• For each node connected to a gateway 

• Reward gradually decrease to avoid too 

much overlapping 

** Extra score if node covered by exact 

number of gateways configured by user 

Number of gateways a 

node can use to provide 

redundancy 

• For each uncovered node 

• For each node a gateway covers 

• Gradually increases as the number of nodes 

under the coverage of the gateway increases  

Number of sensor nodes a 

gateway can cover 
• For each unconnected gateway 

• For each pair of gateways with intersected 

coverage 

• Reward decreases as the number of 

intersections of each gateway increases 

Number of collaborative 

IoT gateway within the 

average lateral bound 

• No change 

• If the number of gateways is less than the 

user-defined number of gateways. 

Number of gateways 

desired 

• If the number of gateways is greater 

than the user-defined number of 

gateways. 

• No change Distance between original 

(if any) and proposed 

gateway positions 

• Directly proportional to the distance 

between original and generated 

gateway positions. 

Table 3.1 Score system based on consideration factors 
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With all the gateway layouts evaluated with a score, they will be ranked 

accordingly. The layout with the highest score shall be taken as the latest solution. 

However, if the user opts not to stop at current generation, the top performers 

from the current population shall be extracted as the candidates of next 

generation of population. The new generation shall go through the selection, 

crossover, mutation, and fitness evaluation process again. The whole cycle shall 

be looped until the user stops it, which is usually when the acceptable solution 

is yielded.  

 Summary 

In this chapter, we presented the high-level overview of the framework, 

consisting of the inputs, model and outputs. The gateway placement 

optimization problem formulated based on the consideration factors. Genetic 

algorithm is selected as the baseline of the computational model due to the nature 

and complexity of the gateway placement optimization problem. The 

methodology of genetic algorithm was studied and explained. With the 

consideration factors as basis, the purposed solution is modelled around the steps 

in a generic GA life cycle: initialization, selection, crossover, mutation, fitness 

evaluation. The proposed solution shall be implemented into a software program 

which is explained in the next chapter – System Implementations.   
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4 SYSTEM IMPLEMENTATION 

In the previous chapter, we explained on the multiple-conditions gateway 

placement optimization problem formulation and modeling to adapt with 

Genetic Algorithms as a solution. To realize our proposed solution, we have 

implemented the design as a software program. In this chapter, the programming 

concepts of the implementation will be presented in detail. The program was 

written in C# with .NET Framework. However, the explanations of the modules 

will be presented in the form of abstraction. 

 Basic elements 

According to the proposed solution, the expected input of the gateway 

placement optimization model are the desired number of gateways, sensor node 

distribution layout, and original gateway layout (optional), and the expected 

output is a solution of proposed gateway layout. Technically, a sensor/gateway 

layout is a composite of individual nodes or gateways with their locations on a 

2D spatial plane. The location on a 2D spatial plane can basically be represented 

as an XY cartesian coordinate. With this concept, the gateway and sensor node 

can be form into objects as represented in Figure 4.1: 

  

Figure 4.1 Structure of Sensor and Gateway objects 

Relatively, a layout as a collection of gateways or sensor, can be represented 

as a list of gateway or sensor objects (as illustrated in Figure 4.2).  

Sensor 

{ 

    X: int 

    Y: int 

} 

Gateway 

{ 

    X: int 

    Y: int 

} 
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Figure 4.2 Structure of SensorLayout and GatewayLayout object 

These structures will be working as the basis elements through the entire 

implementations, where the gateway layout structure also represent as the 

chromosome in the genetic algorithm model. 

 Genetic Algorithm Implementation 

In this section, the implementation of the GA-based gateway placement 

optimization model shall be explained. The model as proposed in the previous 

chapter, shall follow the generic live cycle of generic GA, which consist of the 

modules of initialization, selection, crossover, mutation and fitness evaluation. 

The overview of the life cycle is basically implemented as the following logic in 

Figure 4.3: 

GatewayPlacementOptimizationModel 

Inputs:  
desiredGatewayNumber: int, 
sensorLayout: SensorLayout, 
originalGatewayLayout: GatewayLayout 

Output: 

SensorLayout 

{ 

    Members: Sensor[] 

} 

GatewayLayout 

{ 

    Members: Gateway[] 

    Score: int 

} 
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solution: GatewayLayout 

{ 

  var population = Initialization(POPULATION_SIZE) 

  While !Stop 

    var newGeneration 

 

    For i = 1 to maxCandidateCount 

        var parents = Selection(population) 

        var child = Crossover(parents) 

        child = Mutation(child) 

        child.Score = FitnessEvaluation(child,  
                      sensorLayout 
                      originalGatewayLayout) 

        newGeneration.Add(child) 

    End For 

     

    newGeneration = SortByHighestScore(newGeneration) 

    population = newGeneration.Slice(0, 
                 population.count) 

    solution = newGeneration.First() 

  End While 

} 

Figure 4.3 Pseudocode of proposed GA model 

Based on the pseudocode, the model is taking 3 inputs, and giving 1 

output. The program starts by creating an initial population with the Initialization 

function. In a loop that only stops at user command, a new generation is created 

based on the current population, which begin with Selection from the current 

population. For each of the selected “parents” from selection, they serve as the 

input of Crossover which would produce a child. The child would be taken as 

input for Mutation, where it might return the same or mutated child. Next, the 

child shall go through Fitness Evaluation and assigned with a score, 

subsequently added to the pool of new generation candidates.  
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The steps are repeated until a defined number of candidates are created. 

The candidates will then be sorted by their score from highest to lowest, where 

the top N candidates will be taken to replace the current population, and the top 

candidates will be used as the current solution. Based on the nature of GA, the 

solution might be replaced through the generations. Once the user stops the 

program, the solution from current generation will be taken as the final solution.  

Next, we will explain on how each of the GA function works in detailed. 

4.2.1 Initialization 

The Initialization is a function with one input which is the size of population, 

and shall return a collection of GatewayLayout. The function as described in the 

pseudocode in Figure 4.4, starts by creating an empty population, and repeatedly 

adding newly generated GatewayLayout object to it until it reaches the defined 

size, eventually return it. Each of the generated GatewayLayout shall contain an 

array of Gateway object with randomized X and Y value, in its Members 

property, where the array length equals to defined number of user desired 

gateway count.  

Initialization 

Input: 

// number of chromosomes in the population 

populationSize: int   

{ 

  // create an empty population 

  var population: GatewayLayout[] 

 

  For i = 1 to populationSize 

    // create an empty layout 

    var layout : GatewayLayout 
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    // create a number of gateway layouts 
    // based on user defined number of desired gateway 

    For j = 1 to USER_DESIRED_GATEWAY_COUNT 

      var member : Gateway 

 

      //with randomized X Y coordinates 

      member.X = random(1, MAX_WIDTH) 

      member.Y = random(1, MAX_HEIGHT) 

      layout.Members.Add(member) 

    End For 

   

    // add the layout to population 

    population.Add(layout) 

  End For 

 

  return population 

} 

Figure 4.4 Pseudocode of Initialization 

4.2.2 Selection 

The Selection function (Figure 4.5) takes a collection of GatewayLayout 

as input, with the return value of two GatewayLayout objects. It is a relatively 

simple function which randomly selects two items from the input 

GatewayLayout array and returns them as an array of 2 elements. 

Selection 

Input: 

population: GatewayLayout[] 

{ 

  var max = population.Count 

 

  // randomly pick two layout from the population 
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  var parentA = GatewayLayout[random(0,max)] 

  var parentB = GatewayLayout[random(0,max)] 

 

  // wrap the two parents and return 

  var parents = { parentA , parentB } 

 

  return parents 

} 

Figure 4.5 Pseudocode of Selection 

4.2.3 Crossover 

The function of Crossover is to extract the genes from the two parents 

GatewayLayout objects and combine them into a child. Based on our proposed 

solution, the Crossover should take the left portion of layout A and right portion 

of layout B with random percentages that sum up to 100%. In our 

implementation as shown in the pseudocode in Figure 4.6, instead of using 

percentage, a random point between the width of the 2D spatial plane is 

generated as a slicing point. Any Gateway object in layout A that has an X value 

smaller than the slicing point, and any gateway object in layout B that has greater 

or equal value as the slicing point, shall be extracted and merged as a new 

chromosome. Although the approach looks different on paper, theoretically it 

should be the same as what we have proposed in last chapter.  

It is also notable that the implemented Crossover function has a 

prevention mechanism to not returning a child chromosomes (GatewayLayout) 

with empty genes (0 Gateway).  

Crossover 

Input: 
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parents: GatewayLayout[2] 

{ 

  // create a child with no member 

  var child: GatewayLayout 

 

  // to ensure that the eventual child member  
  // is not empty 

  While child.Members is empty 

 

    // generate a horizontal slicing point within 
    // the layout 

    var slicingPoint = Random(0, MAXWIDTH) 

 

    // extract the left side of layoutA and  
    // right side of layoutB based on slicing point 
    // inside the where() function is a lambda 
    // expression to compare the X value of member with 
    // slicing point 

    var genesA = parents[0].Members. 
                   where(g => g.X < slicingPoint) 

    var genesB = parents[1].Members 
                   where(g => g.X >= slicingPoint) 

 

    // combine the two genes into one and assign 
    // to child 

    child.Members = genesA.Join(genesB) 

  End While 

 

  return child 

} 

Figure 4.6 Pseudocode of Crossover 

4.2.4 Mutation 

The Mutation function block aims to tweak the genes of a chromosomes 

with a slight chance. As proposed in the previous chapter, the mutation block is 
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expected to contain three types of operations, which are add, remove and update 

a gene (Gateway) in a chromosome (GatewayLayout).  

In our implementation (refer to Figure 4.7), the three operations are 

mutually exclusive. The input chromosome has individual chances to go through 

the operations, ranging from neither, any or all. To decide whether the chance is 

hit, a random number is generated between 1-100, if the number is smaller than 

the mutation rate (e.g. 3 for 3%), the corresponding block shall be run.  

For addition operation, a new Gateway object with randomized X and Y 

value within the 2D spatial plane dimensions shall be generated and append to 

the layout’s Members property. The removal operation shall randomly pick a 

Gateway object from the layout’s Members property and remove it from the 

array. The update operation shall randomly pick a Gateway object from the 

layout’s Members property and assign it with a random X and Y properties. 

Mutation 

Input: 

child: GateawayLayout 
mutationRate : Int between 1-100 

{ 

  // Mutation rate 

  If Random(1, 100) < MUTATION_RATE 

    // Create a new Gateway object with random XY 

    var newMember : Gateway 

    newMember.X = random(1, MAX_WIDTH) 

    newMember.Y = random(1, MAX_HEIGHT) 

    // Append to existing members 

    child.Members.Add(newMember) 

  End If 

 

  // Mutation rate 
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  If Random(1, 100) < MUTATION_RATE 

    // To prevent 0 Gateway upon removal 

    If child.Members.count > 1 

      // randomly pick a gateway and remove 

      var index = Random(0, child.Members.count - 1) 

      child.Members.Remove(child.Members[index]) 

    End If    

  End If    

 

  // Mutation rate 

  If Random(1, 100) < MUTATION_RATE 

    // randomly pick a gateway 

    var index = Random(0, child.Members.count - 1 ) 

    var x = random(1, MAX_WIDTH) 

    var y = random(1, MAX_HEIGHT) 

    // assign with new randomized value 

    child.Members(child.Members[index]).X = x 

    child.Members(child.Members[index]).Y = y 

  End If    

 

  return child 

} 

Figure 4.7 Pseudocode of Mutation 

4.2.5 Fitness Evaluation 

The Fitness Evaluation function (pseudocode in Figure 4.8) is the 

essence of our GA model. With the inputs of candidate gateway layout, sensor 

layout and original gateway layout, the function mainly aims to grade the 

GatewayLayout object based on multiple consideration factors as per described 

in section 3.2.5. The evaluation process is divided into two parts, which are 

rewards and penalties.  
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The evaluation score starts with 0, increase/decrease according to the 

rewards and penalties. The first consideration factor is the number of gateways 

a node can use to provide redundancy. In our implementation, we find out the 

number of connectable gateways for each sensor node by computing the distance 

between all gateways and sensors, subsequently compare with the defined 

coverage radius. For each gateway a sensor can connect to, a defined score 

factored by the number of connected gateways will be added, resulting with 

gradually lower rewards with respect to redundancy saturation. The final number 

of connectable gateways for each sensor are also recorded, where each 

achievement of exact redundancy number as defined by user shall be given extra 

points. On the other hand, heavy penalty will also be incurred if for every node 

that has insufficient redundancy.  

The second consideration factor is the number of sensor nodes a gateway 

can cover. Based on the computed number of connectable gateways for each 

sensor node, for each sensor node a gateway can connect to, defined score 

multiply with the number of connected nodes will be given, resulting with 

gradually higher score for each sensor nodes under coverage. The final number 

of covered sensors are recorded, and penalties will be given for each gateway 

that has 0 node under coverage.  

The next consideration factor of the fitness evaluation is the number of 

collaborative IoT gateway within the average lateral bound. Among the gateway 

layout itself, the connectivity between all gateways are computed, again by 

computing the distance sand compare against the defined coverage radius, where 

lower than means within the communication vicinity. For each gateway, every 
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intersection with other gateway is entitled with a score reward, which is factored 

by of the intersected target, resulting with gradually decreasing rewards. 

Number of desired gateways is an expected number of gateways in the 

solution gateway layout defined by user. The evaluation function shall award 

score for every unit of gateway less than the defined number, but deducted for 

every extra one in the input GatewayLayout. The last consideration factor during 

fitness evaluation is the distance between original and proposed gateway 

positions, which is omittable if no original gateway layout is provided. A 

lumpsum computed by the moving penalty calculator function (Get Moving 

Penalty – explained in details in next subsection) will be deducted from the total 

score and there goes the fitness score of the chromosome (GatewayLayout). 

FitnessEvaluation 

Input:  

candidate : GatewayLayout  
sensorLayout : SensorLayout 
originalGatewayLayout : GatewayLayout 

{ 

  var gateways = candidate.Members 

  var gatewayCount = gateways.Count 

  var sensors = sensorLayout.Members 

  var sensorCount = sensors.Count 

 

  var score : int 

  // number of gateways each sensor can connect to 

  var sensorConnectedIndex : int[] 

  // number of sensors each gateway can cover 

  var gatewayCoverageIndex : int[] 

  // number of gateways a gateway can connect to 

  var lateralConnectionIndex : int[] 
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  // initialize records with 0s 

  For i = 0 to sensorCount 

    sensorConnectedIndex.Add(0) 

  End For   

  For i = 0 to gatewayCount 

    gatewayCoverageIndex.Add(0) 

  End For   

  For i = 0 to gatewayCount 

    lateralConnectionIndex.Add(0) 

  End For   

 

  For i = 0 to gatewayCount 

    For j = 0 to sensorCount 

      If(Distance(gateways[i], sensors[j]) <  
          COVERAGE_RADIUS) 

        // increment of sensor coverage count 

        ++gatewayCoverageIndex[i] 

        // increment of gateway connectivity count 

        ++sensorConnectedIndex[j] 

        // Score given for each gateway a sensor  
        // can connect to, decrease gradually 
        // to prevent overcrowding 

        Score += NODE_COVERAGE_REWARD / 
                 sensorConnectedIndex[j] 

        // Score given for each sensor a gateway 
        // can cover, increase linearly 

        Score += NODE_COVERING_REWARD * 
                 gatewayCoverageIndex[i] 

 

      End If   

    End For 

   

    For k = i + 1 to gatewayCount 

      If Distance(gateways[i], gateways[k] < 
          COVERAGE_RADIUS) 

        // increment of lateral bound connectivity 
        // for both gateways 
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        ++interGatewayConnectedIndex[i] 

        ++interGatewayConnectedIndex[k] 

        // reward score for each intersection 
        // reward decrease gradually 
        // to prevent overcrowding 

        score += GATEWAY_INTERSECT_REWARD / 
                 lateralConnectionIndex[i]; 

      End If 

    End For 

 

    // Score given for each exact redundancy achieved 

    Foreach index in sensorConnectedIndex where 
            index equals to USER_DEFINED_REDUNDANCY 

      score += EXACT_REDUNDANCY_REWARDS 

    End Foreach 

     

    // Heavy penalty for each sensor without 
    // sufficient redundancy 

    Foreach index in sensorConnectedIndex where 
            index is less than USER_DEFINED_REDUNDANCY 

      score -= REDUNDANCY_PENALTY 

    End Foreach 

     

    // Penalty for each gateway without any 
    // sensor nodes under coverage 

    Foreach index in gatewayCoverageIndex where 
            index is 0 

      score -= NOT_COVERING_PENALTY 

    End Foreach 

     

    // Moving penalty 

    var movingPenalty = GetMovingPenalty( 
                       candidate, originalGatewayLayout) 

    score -= movingPenalty 

    // Score rewarded for each gateway less compared  
    // to user defined number, but deducted 
    // for each extra 
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    var gatewayCountReward = (USER_DESIRED_GATEWAY_COUNT 
                             - gatewayCount) * 
                             GATEWAY_COUNT_REWARD  

    score += gatewayCountReward 

     

  end For 

  return score 

} 

Figure 4.8 Pseudocode of Fitness Evaluation 

4.2.6 Get Moving Penalty 

The Get Moving Penalty (Figure 4.9) sub-function is used to compute 

the reduction score incurred by the movements of gateways between two layouts. 

The idea of gateway moving is based on the case of user having to physically 

move the gateways from original locations of existing layout to new locations of 

proposed layouts due to the changes of sensor layout change. The moving 

penalty is basically the effort required to move the existing gateways to their 

new locations, which is the total travel distance.  

To compute the total distance, all the distances between the gateways in 

original layout and new layout will be computed and stored in a list along with 

their indices (the length of list is expected to be number of gateways in original 

layout times number of gateways in new layout). The list will be sorted 

ascendingly by the distances and the shortest combinations of original-new 

gateway locations shall be taken with the Greedy approach. Eventually, the sum 

of the taken combinations’ distances is return as the moving penalty. 

With this implementation, if either of the layouts has empty members 

(gateways), it shall return 0. If there is difference between the number of 
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gateways in the layouts, the difference will be considered as addition or removal 

to/from deployment, not contributing to the moving penalty. 

GetMovingPenalty 

Input: 

layoutA: GatewayLayout 

layoutB: GatewayLayout 

{ 

  var gatewaysA = layoutA.Members 

  var gatewaysB = layoutB.Members 

   
  // distance mapper, an array of object with 
  // properties of distance, and indices of 
  // gateways 

  var distanceMapper : {distance : int,  
                      indexA: int,  
                      indexB: int}[] 

  var penalty = 0. // initial penalty is 0 

 

  // find out all the distances between gateways 

  For i = 0 to gatewaysA.Count - 1 

      For j = 0 to gatewaysB.Count - 1 

        var distance = 
            Distance(gatewaysA[i],gatewaysB[j]) 

        // record the distance to mapper 

        distanceMapper.Add({distance, i, j})  

      End For 

  End For 

 

  // sort the array based on distance 

  distanceMapper = 
        distanceMapper.SortByDistanceAscending() 

   

  // while the mapper still contains record 

  While distanceMapper.Count > 0 
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    // take the curent shortest distance  
    // and add to penalty 

    penalty += distanceMapper[0].distance 

    i = distanceMapper[0].indexA 

    j = distanceMapper[0].indexB 

    // remove all records which has  
    // either gateway of the removed record 

    distanceMapper.RemoveWhere( d => 

      d.indexA equals to i OR 

      d.indexB equals to j 

      ) 

  End While 

  return penalty 

} 

Figure 4.9 Pseudocode of Get Moving Penalty 

4.2.7 Distance 

Distance 

Input: 

nodeA: Gateway or Sensor 

nodeB: Gateway or Sensor 

{ 

  // Pythagoras theorem 

  distance = sqrt( 
       (nodeA.X – nodeB.X)2 + (nodeA.Y – nodeB.Y)2) 
  return distance 

} 

Figure 4.10 Pseudocode of Distance 

The distance sub-function (Figure 4.10) returns the distance between two 

nodes, with any combinations of gateway and sensor. The function basically 

utilized the Pythagoras theorem a2 + b2 = c2 to compute distance between two 

points, with the aid of XY coordinates in each node. 
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 Realization 

The implementations described above were written into a software with C# 

programming language with .NET Framework. The program consists of a 

graphic user interface where the proposed solution of current generation is 

presented to user in the graphical 2D spatial plane.  

The information such as current generation and number of gateways are 

also shown, and there are controls where user can insert the source sensor nodes 

layout and original gateway layout (in .json file format), and buttons to start and 

stop the computation. Upon stopping the computation, the last generated 

solution shall be exported as a .json file. 

 

 Summary 

In this chapter, the implementation of the proposed solution is explained in 

detail majorly in the form of abstractions. The model with native GA cycle steps 

is described and presented in pseudocodes which programmed according to the 

designs in the proposal. However, there were some parts where adaptation works 

are required to formulate the problem into a more computable form. The codes 

were written into a desktop program where GUI is available for user to have a 

more interactive experience.   
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5 EXPERIMENTAL SETUP 

 Simulation Setup 

A set of simulations is designed and run to evaluate the performance of the 

proposed framework against other techniques to propose a solution for gateway 

placement optimization problem. The simulation data is derived and transformed 

from an existing real-time crowd counting application, where sensors are located 

around a shopping mall to detect visitors flow. The simulation is setup and run 

with the following basis:  

• Two IoT-gateways should be placed within the lateral bound 

communication vicinity to ensure communicability.  

• The average coverage of the southbound and average distance of the 

lateral bound are set the same because based on our actual 

implementation, both are using 2.4GHz Wi-Fi.  

• To ensure that each sensor node is covered by redundancy k=2, each 

location is placed with 2 gateways for the uniform arrangements. 

In general, each technique would be given with a same series of problem 

inputs: the sensor node locations in a 2D spatial plane; and expected to yield a 

solution for each problem: the gateway locations.  

For implementation, each problem is modeled as a file that consists of a list 

of json node objects (refer to Figure 5.1) with randomized X and Y coordinates 

within a designated range. Every technique is implemented into programs 

written in C# language, which would read the input file, propose a solution based 

on the deserialized input and consequently record the solution as another file that 

contains a list of json gateway objects with computed X and Y coordinates as 
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output. For uniform arrangements, the implemented program shall always return 

a constant solution that is hardcoded but sufficient to fulfill the mentioned 

requirements (to ensure that each sensor node is covered by redundancy k=2, 

each location is placed with 2 gateways). The simulation is basically to 

iteratively running every program of particular technique with the array of input 

files until all inputs have a proposed solution from each technique. The outputs 

are subsequently analyzed and evaluated based on different criteria, the 

simulation to evaluate each criterion are elaborated in following subsections.  

 

Figure 5.1 Snippet of input and output file content 

5.1.1 Network Overlapping Region 

To evaluate the wireless interference caused by network overlapping of 

the proposed framework, it was compared against the uniform arrangements 

of hexagonal [32] (Figure 5.2) and square arrangements [33] (Figure 5.3) 

where the gateways are placed within the communication vicinity. These 

arrangements were shown to be the most efficient patterns to cover an area with 
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least overlapping. Besides, it is also compared with the existing solution 

NewIoTGateway-Select by Karthikeya et al.[18], which we have reviewed in 

Chapter 2. We generate 30 problems as input with 50 sensor nodes each and 

collect the output solutions by each technique.  

A profiling program is written to take the solution file as input and return 

the coverage of area in percent for each layer of overlapping. The program would 

create a visual of 2D spatial plane with white background overlaid with the 

gateway according to their coordinates in the solution. Each gateway is 

surrounded by a circle with constant radius and translucent coloured fill that 

indicates the wireless coverage of it. Technically, when two translucent circles 

overlap, the intersected area shall have a lower transparency (i.e. more saturated 

colour) and the more layer of overlapping shall result with even lower 

transparency. Ultimately, each layer of overlapping would be indicated with 

different colour.  

 

Figure 5.2 Sample of 2D spatial plane visual with hexagonal gateway 

arrangement 
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Figure 5.3 Sample of 2D spatial plane visual with square gateway 

arrangement 

The coverage area by different layer of overlapping is acquired from this 

visual of 2D spatial plane using pixel counting based on the distinct colour of 

each layer. The distribution of each layer of overlapping in percentage is then 

calculated and recorded in a table. To better illustrate the overlapping layer, we 

have come out with a formula to determine the overlapping index as follow:  

 

𝑖𝑜 =  ∑ 𝑙 × 𝐴𝑙

𝐿

𝑙=1

 (1) 

Where io indicates the overlapping index, l indicates the overlapping layer, L 

indicates the maximum overlapping layer and Ai indicates the area percentage of 

the overlapping layer. 

5.1.2 Number of Gateways Required and Network Resiliency 

In this simulation, the proposed framework is compared against the 

hexagonal arrangement with max coverage and minimum overlapping [32] 

which is a most efficient uniform arrangement in terms of area coverage with 

least overlapping area, and the reviewed work of NewIoTGateway-Select [18] 

to evaluate the number of gateways required and network resiliency of the 
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proposed solution. Unlike previous simulation, the hexagonal arrangement has 

its gateways placed further to maximize the coverage (Figure 5.4). The 3 

techniques generate the solution based on the same set of problems from last 

simulation. For the first part of evaluation, the number of gateway in each 

solution is extracted and recorded.  

 

 

Figure 5.4 Sample of 2D spatial plane visual with hexagonal gateway 

arrangement with maximized coverage 

 For the second part of the evaluation, which is the network resiliency, we 

run fault injection tests on each collected solution based on their problem. A 

program is written to take the problem (list of sensor nodes) and solution (list of 

gateway) as input and creates a connectivity matrix of every sensor node with 

gateways. The gateways are randomly marked as remove one by one until at 

least one node is not connected to any gateway. All collected solutions and their 

corresponding problem shall go through the test for 30 times and the number of 

gateway removed for each iteration, which also indicates the level of fault 

tolerance is recorded. 
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5.1.3 Movement required due to change of sensor layout 

In this simulation, the proposed framework is compared against 

NewIoTGateway-Select [18]. The intention of this simulation is to imitate the 

scenario of rearranging a set of deployed gateways to cater for a new sensor 

nodes layout, subsequently evaluate the overall movement required for each 

gateway. To start the simulation, 30 problems with 50 sensor nodes each are 

generated and serve as inputs for the programs implemented by the 2 techniques 

to compute respective solutions. 

For these 30 problems, says P1 – P30, we regard a single problem as the 

original sensor nodes layout and its next problem (circularly) as the new sensor 

nodes layout. For example, P3 is the new layout of P2, P4 is the new layout of P3, 

P1 is the new layout of P30 and so on. In such event, we can assume that the 

differences in positions between the solution of a single problem and its next 

problem is the movement incurred by the change of sensor node layout. 

The program implemented with our proposed framework would be 

executed again with the same 30 problems as input, but for this time, it would 

take another input, which is the solution from last problem so that it can take the 

original layout into consideration to compute a new solution in order to 

minimizes the movement between original and new gateway locations. 

To determine the movement required from original gateway layout to 

new gateway layout, all distances between gateways in both layout are computed 

and added into a list along with the two gateways. The element with shortest 

available distance is popped from the list, followed by removing all other 

elements containing any of its two gateways. This process is repeated until the 

list is empty. The sum of distances from the popped elements is recorded as the 
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result of movement required between original and new gateway layout. Besides, 

the difference in the number of gateway between the original and new gateway 

layout is also recorded. 

5.1.4 Computational Time 

In this simulation, the proposed framework is compared against 

NewIoTGateway-Select [18] from the perspective of computational time. The 

programs implemented based on the 2 techniques attempt to solve problems with 

different sizes (number of nodes of 20 – 80 with the multiple of 20) and iterate 

for 30 times for each size. For NewIoTGateway-Select, the recording time is the 

time taken to compute a solution; while the recording time for the proposed 

framework is the time taken to complete 5000 generations. 

 Summary 

To summarize this chapter, a series of experiments consisting of 4 sets of 

experiments were designed and setup to benchmark the proposed framework 

based on different criteria. The simulations involved benchmarking the 

performances of the proposed framework against existing techniques. 

 The evaluation criteria include: (1) Network overlapping region – to 

evaluate the wireless interference caused by network overlapping within IoT 

gateways; (2) Number of Gateways Required and Network Resiliency – to 

evaluate the performance of minimizing number of required gateway and fault 

tolerance; (3) Movement required due to change of sensor layout – to assess the 

performance of minimizing the gateway movement required from original to 

new gateway layout due to sensor layout changes; (4) Computational Time – To 

benchmark the computational speed of the framework to produce a solution. 
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 The simulations shall be executed, and the results are presented in the 

next chapter. 
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6 EVALUATION RESULTS 

 Simulation Results 

The simulation as described in the previous section is executed, the output 

results are collected and organized for analysis. The following subsections show 

the simulation outcomes and our findings 

6.1.1 Network Overlapping Region 

The collected results of the output from the simulation to evaluate the 

network overlapping region are sorted out and organized as Table 6.1 below, 

containing the mean percentage of area distribution with different layer of 

overlapping, along with their standard deviation (σ). With our suggested formula, 

we also calculated the overlapping index (io) based on the results. According to 

the data in the table, a graph shown in Figure 6.1 is also generated to give a better 

visualization to the data. 

Layer of 

overlapping 

GA Framework 
NewIoTGateway 

-Select 
Hexagonal Square 

Mean 

percentage 
σ 

Mean 

percentage 
σ 

Mean 

percentage 
σ 

Mean 

percentage 
σ 

1 25.76 7.28 19.15 4.45 0.00 0.00 0.00 0.00 

2 52.19 10.56 30.61 4.91 41.94 0.00 37.53 0.00 

3 12.36 4.06 23.07 3.22 0.00 0.00 0.00 0.00 

4 6.97 5.86 17.03 3.28 40.00 0.00 35.14 0.00 

5 2.12 3.28 7.66 3.54 0.00 0.00 0.00 0.00 

6 0.58 1.94 2.12 1.97 11.14 0.00 19.91 0.00 

7 0.01 0.08 0.34 0.78 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.03 0.14 6.92 0.00 7.42 0.00 

Total 100.00   100.00   100.00   100.00   

iO 209.29 271.25 366.09 394.49 

Table 6.1 Average distribution of layer of overlapping in percentage and 

overlapping index 
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Figure 6.1 Overlapping Layer Distribution in Percentage with 

Overlapping Index 

From the results, we can see that the hexagonal and square uniform 

arrangements have their distributions over the even number layer of overlapping 

between 2 to 8. This is due to 2 gateways are placed on each position to ensure 

the redundancy of k-2.  Around half of the covered area of for NewIoTGateway-

Select is with 1 and 2 layers of overlapping, while the rest are covered with 

higher layer of overlapping. For the proposed GA framework, almost 80% of the 

area is covered by 1 and 2 layers of overlapping, while most of the remaining is 

covered with layers of 3 to 5. Majority of the covered area of proposed GA 

framework is below 5 layers of overlapping, while the uniform arrangements 

have a significant portion of the coverage make up with 6 and 8 layers. 

According to the overlapping index, the proposed GA framework is 

noticeably lower than the other 3 techniques. It is around 23%, 43% and 47% 

lower than the NewIoTGateway-Select, hexagonal and square arrangements 

respectively. This shows that most of the covered area of the solutions yielded 
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by GA Framework are with low layer of network overlapping, which should 

relatively prevent heavy wireless interference within the lateral-bound network.   

6.1.2 Number of Gateways Required and Network Resiliency 

From this simulation, the collective of tolerable number of gateway 

failure before at least a sensor node is uncovered is recorded. The proposed GA 

framework is evaluated along with the hexagonal arrangement with maximum 

coverage and NewIoTGateway-Select. The results from a total of 30 x 30 fault 

injection tests are organized and compiled as the following Table 6.2 and further 

presented as a combo chart in Figure 6.2. 

 

Proposed GA 

Framework 

NewIoTGateway 

-Select 

Hexagonal 

(Max 

Coverage) 

Mean σ Mean σ 
Mea

n 
σ 

Average number 

of gateway 

failure before a 

sensor node is 

out of coverage 

3.3 1.0 4.4 1.5 4.5 1.4 

Average number 

of deployed 

gateway  

9.0 0.8 12.3 1.2 12.0 0 

 

Table 6.2 Average number of gateway failure with average number of 

deployed gateway 
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Figure 6.2 Number of gateway failure with number of deployed gateway 

 Based on the results, we found that our proposed GA framework has a 

lower tolerance to gateway failure compared to the other techniques, which is 

around 25% lower. However, the number of gateways deployed is also 25% 

lower than the other 2 approaches. When we put these 2 sets of number together, 

we discover that the ratio of number of gateway failure to number of deployed 

gateways are almost the same through all three techniques, which is around 36%. 

Therefore, although the GA framework has a tradeoff of lower tolerance to 

failure in terms of unit of gateway with the reduction of deployed gateways, it 

actually maintains the tolerance from the perspective of correlation.  

6.1.3 Movement required due to change of sensor layout 

One of our objectives in this research is to accommodate dynamic 

sensors movement as consideration during computation of gateway placement 

scheme, ultimately to reduce overall gateway movement incurred by the change 

of sensor nodes movement. In this simulation, we find out the total distances 
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between new and original gateway placement schemes computed by different 

techniques.  

It is notable that we also include the result of our proposed GA 

framework without the input of original gateways locations. We exclude uniform 

arrangements from this simulation because we assume that uniform 

arrangements are static and there is not movement regardless of the sensor nodes 

changes. The results of the simulation is organized and compiled as Table 6.3 

below and presented as a bar chart in Figure 6.3. 

 

NewIoTGateway-Select 

Proposed GA 

framework 

(without input of 

original gateways) 

Proposed GA framework 

(with input of original 

gateways) 

Movement 

Gateway 

differenc

e 

Movement 

Gateway 

differenc

e 

Movement 
Gateway 

difference 

Average 1815.10 0 1450.40 0 796.03 0 

σ 570.79 1.8 389.66 1.3 233.60 1.3 

 

Table 6.3 Average gateway movement required due to change of sensor 

nodes layout 
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Figure 6.3 Gateway movement required for different technique 

Based on the results, the average movement of the 3 techniques over the 

30 output solution is 1815.10, 1450.40 and 796.03 units respectively. From the 

numbers, we find that the movement of NewIoTGateway-Select is around 25% 

more than the proposed GA framework without input of original gateways, and 

double of the proposed GA framework with the input of original gateways. From 

the number of gateway difference, we can see that the average difference are all 

0 with a standard deviation of 1.3 to 1.8. 

 According to the findings, it can be concluded that the proposed GA 

framework with the input of original gateway locations, is able to drastically 

reduce the movement of gateway during the event of changes in sensor nodes 

layout without the need of adding many extra gateways. 

6.1.4 Computational Time 

The programs implemented with proposed GA framework and 

NewIoTGateway-Select are set to run in to solve gateway placement 

optimization problem with different problem size (number of sensor nodes) on 
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a Windows 10 machine installed with an Intel i7-7700HQ processor and 16GB 

RAM. The following Table 6.4 and the graph in Figure 6.4 show the average 

time taken for NewIoTGateway-select to produce a solution and for proposed 

GA framework to complete 5000 generations. 

Number of Sensor Nodes 

Computational Time (s) 

Proposed GA Framework NewIoTGateway-Select 

Mean σ Mean σ 

20 6 x 10-3 2 x 10-3 16.00 0.52 

40 15 x 10-3 4 x 10-3 31.90 1.3 

60 29 x 10-3 6 x 10-3 51.93 2.84 

80 49 x 10-3 11 x 10-3 79.37 1.85 

100 74 x 10-3 17 x 10-3 102.10 2.88 

Table 6.4 Average computational time for different problem size 

 

Figure 6.4 Number of sensor nodes vs time taken 

According to the results, we can see that the GA Framework has its 

computational time increases linearly with the problem size, and take around 
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it is almost immediate. However, considering that the program is only executed 

when there is a change in the setup, the execution time is reasonable.  

6.1.5 Summary 

Based on the evaluation results, we are able to come out with a number 

of findings regarding the GA framework. The framework is able to give 

solutions for gateway placement optimization problems with the input of list of 

sensor nodes with X and Y coordinates, and the solutions include gateway 

redundancy of k=2 for each sensor nodes.  

The framework is also able to provide solutions that has lower 

overlapping index, where most of the overlapping region is below 5 layers. The 

solutions also minimize the number of gateways to cover all sensor nodes, but 

the tolerance of failure in terms of gateway unit is also lower. However, it still 

able maintain the ratio of failed gateway to deployed gateway to be close with 

other techniques.  

For the required movement of gateway due to change of sensor nodes 

layout, the GA framework shows good performance when it is fed with the 

information of original gateway locations as input during the computation. The 

outputs give significantly better results compared to the existing work. 

Nevertheless, the computational time of the GA framework is shown notably 

longer compared to NewIoTGateway-Select, but considering that the it is only 

executed when there is a change in the setup, the execution time is still 

reasonable.  
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7 CONCLUSION AND FUTURE WORK 

 Conclusion 

To sum up the project, this research has developed a framework to find 

solutions for gateway placement optimization problems, with the considerations 

of wireless interference, number of gateways, redundancies, and gateway 

relocations due to changes of sensor nodes layout. In this research, we have 

presented the common implementations of deploying IoT gateway in IoT sensor 

networks for better cost efficiency, and store and forward capabilities. This 

research is built on top of the basis of collaborative IoT gateway which the lateral 

bound connection which shall facilitate the implementations of gateway 

redundancies. 

It is realized that although deploying extra gateways can provide 

redundancies to sensor nodes internet connection, placing too many gateways 

eventually cause signal overlapping and network interference, also having 

impact to deployment cost. Besides, IoT sensor network can be dynamic and 

differ from time to time, gateway placement has to be agile to handle the 

dynamic nature. Gateway placement optimization is the problem that we tried 

so solve, which involves finding optimal gateway locations to place gateways in 

order to fulfill multiple conditions. In this research we have reviewed a number 

of existing works aimed of solving gateway placement optimizations with 

different types of consideration factors. Although none of the works have the 

same objectives as ours, we still manage to find one that is relatively close to our 

requirements and selected it to be our benchmarking target.  
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We proposed a gateway placement framework, which takes the sensor 

node locations, number of gateway desired and original gateway locations as 

input, and shall produce the proposed gateway locations (layout). Based on our 

requirements, we have come out with a list of consideration factors and 

formulate them into gateway placement optimization problem. As more 

consideration factors are added on top of primitive gateway placement 

optimization, the problem would get more complex due to variable number 

variable scope and variable diversity. Genetic algorithm is selected to implement 

our optimization model in the proposed framework as a global search approach 

is more preferable to find a solution that does not need to be optimal at each 

requirement, good enough to fulfill the minimum requirement and with wider 

search space. 

The gateway placement optimization model in our framework is designed 

with genetic algorithm as basis. Problems and requirements are formulated to 

adapt the steps in a genetic algorithm lifecycle, which are initialization, selection, 

crossover, mutation and fitness evaluation. The proposed solution is 

implemented into software programming logics accordingly, and written in a 

modern programming language to be compiled as a software. The written 

software program, along with another software programs created based on the 

benchmarking solution, are used to go through a series of simulations for 

performance evaluations. 

The simulations are designed to evaluate the performance of our gateway 

placement framework based on several evaluation criteria, namely: network 

overlapping region, number of gateways required and resiliency of the network, 

movement required due to change of sensor layout, and the computational time. 
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The framework is evaluated against uniform gateway placement, and also the 

solutions by an existing research work. The evaluation outcomes of the 

framework are promising for each evaluation criterion, but due to the nature of 

genetic algorithm, there are still some space of improvement in terms of the 

computational speed compared to the existing work that was implemented with 

greedy technique.  

At the end of this research, we can conclude that all of the research 

objectives are achieved, which are 1) to develop a framework to minimize the 

Wi-Fi interference between IoT gateway in the lateral bound network, 2) to 

design a technique to minimize the number of IoT gateway placement without 

sacrificing fault-tolerance and 3) the design of the framework will accommodate 

dynamic sensors movement as consideration during computation of gateway 

placement scheme. 

 Future Work 

GA is known to have a very high scalability. The future works can take 

advantage of this nature by tweaking the fitness evaluation module, our GA 

framework can be further improved to adapt with a wider range of gateway 

placement problem. More considerations factor can be injected on top of the 

current set to cater with new requirements and constraints. For instance, 

restricted area to place a gateway, multiple wireless communication 

technologies, load balancing and so on. 

On top of that, there are still rooms of improvement for the computational 

speed of the GA framework. The current model was implemented with single 

threaded programming. For future work, the model can be implemented with the 

concept of multi-threaded programming to greatly improve the computational 
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speed and raise the upper bound of problem size that can be solved within a time 

frame. 
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