
A WIRELESS INTERFERENCE-AWARE INTERNET-OF-THINGS

GATEWAY PLACEMENT FRAMEWORK WITH GENETIC

ALGORITHM APPROACH

By

KONG ZAN WAI

A dissertation submitted to the Department of Computer and Communication

Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of
Master of Science (Computer Science) in

March 2022

 ii

ABSTRACT

A WIRELESS INTERFERENCE-AWARE INTERNET-OF-THINGS

GATEWAY PLACEMENT FRAMEWORK WITH GENETIC

ALGORITHM APPROACH

Kong Zan Wai

IoT (Internet-of-Things) gateways are deployed together with sensor

nodes to facilitate manageability, and operational cost of the IoT system.

Gateway placement optimization is implemented to strategically placing the IoT

gateways, aiming to fulfil different technical requirements on top of minimizing

the number of gateway. However, there is no existing gateway placement

scheme that considers all the factors of number of gateways, sensor nodes

coverage, lateral bound (inter-gateway) connections, redundancy for fault

tolerance and dynamic changes of sensor nodes’ location.

Therefore, this work proposes a framework to optimized gateway

placement that considers all the aforementioned factors. The solution takes the

layout of sensor nodes as input and generates a set of proposed IoT gateway

locations. The framework generates the solution using genetic algorithm. Our

experimental results show that solution can be generated with relatively low

processing power even for a relatively wide search space. One of the

contributions of this work is the formalization of the fitness function for genetic

algorithm.

A series of simulations were designed and carried out to benchmark our

framework against existing solutions with different evaluation criteria based on

the consideration factors. Our framework gave promising results in terms of

lower wireless network overlapping, minimized number of gateways required to

cover all sensor nodes without compromising redundancies for fault-tolerance,

and shorter overall distance of gateway movements required during the

relocation due to the change of sensor nodes layout.

 iii

ACKNOWLEDGEMENT

First of all, I would like to express my greatest gratitude to my supervisor

Dr. Ooi Boon Yaik for his guidance and patience, especially the endurance with

my aberrantly slow pace and procrastination. I would like thank my co-

supervisor, Dr. Liew Soung Yue, for all the supports and tolerance during the

research period.

I would like to express my appreciation towards every personnel of Faculty

of Information and Communication Technology, and Institute of Postgraduate

Studies and Research in Universiti Tunku Abdul Rahman, for helping me out

when I was in trouble and tolerating with the inconveniences caused by me.

I would also like to thank my current company, Infologic Pte Ltd for

supporting me through these years. Special thanks to my director Mr. Chow King

Tock and manager Ms. Veronica Sunaly, for their encouragements and

acknowledging my abilities.

Lastly, I would like to express my gratitude to my family, my fiancée and

my best friends for the endless supports, not giving me pressure along the

journey and be my beacon when I feel lost. It took longer than expected, but we

are here.

 iv

APPROVAL SHEET

This dissertation entitled “A WIRELESS INTERFERENCE-AWARE

INTERNET-OF-THINGS GATEWAY PLACEMENT FRAMEWORK

WITH GENETIC ALGORITHM APPROACH” was prepared by KONG

ZAN WAI and submitted as partial fulfilment of the requirements for the degree

of Master of Science (Computer Science) at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Ooi Boon Yaik) Date: …………………..

Main Supervisor

Department of Computer Science

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Dr. Liew Soung Yue) Date: …………………..

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

5/11/2021

5/11/2021

 v

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 05/11/2021

SUBMISSION OF DISSERTATION

It is hereby certified that Kong Zan Wai (ID No: 15ACM06682) has completed

this dissertation entitled “A WIRELESS INTERFERENCE-AWARE

INTERNET-OF-THINGS GATEWAY PLACEMENT FRAMEWORK WITH

GENETIC ALGORITHM APPROACH” under the supervision of Dr. Ooi Boon

Yaik (Supervisor) from the Department of Computer Science, Faculty of

Information and Communication Technology, and Dr. Liew Soung Yue (Co-

Supervisor) from the Department of Computer and Communication Technology,

Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

 Yours truly,

(Kong Zan Wai)

 vi

DECLARATION

DECLARATION

I Kong Zan Wai hereby declare that the dissertation/thesis is based on my

original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

(KONG ZAN WAI)

 Date 05/11/2021

 vii

LIST OF TABLES

Table 2.1 Comparison between existing techniques 15

Table 3.1 Score system based on consideration factors 27

Table 6.1 Average distribution of layer of overlapping in percentage and

overlapping index 54

Table 6.2 Average number of gateway failure with average number of

deployed gateway 56

Table 6.3 Average gateway movement required due to change of sensor nodes

layout 58

Table 6.4 Average computational time for different problem size 60

 viii

LIST OF FIGURES

Figure 3.1 Example of sensor layout on mall floorplan 20

Figure 3.2 Workflow of proposed framework 20

Figure 3.3 Illustration of consideration factors 21

Figure 3.4 Illustration of Selection 23

Figure 3.5 Illustration of Crossover 24

Figure 3.6 Illustration of Mutation 25

Figure 4.1 Structure of Sensor and Gateway objects 29

Figure 4.2 Structure of SensorLayout and GatewayLayout object 30

Figure 4.3 Pseudocode of proposed GA model 31

Figure 4.4 Pseudocode of Initialization 33

Figure 4.5 Pseudocode of Selection 34

Figure 4.6 Pseudocode of Crossover 35

Figure 4.7 Pseudocode of Mutation 37

Figure 4.8 Pseudocode of Fitness Evaluation 42

Figure 4.9 Pseudocode of Get Moving Penalty 44

Figure 4.10 Pseudocode of Distance 44

Figure 5.1 Snippet of input and output file content 47

Figure 5.2 Sample of 2D spatial plane visual with hexagonal gateway

arrangement 48

 ix

Figure 5.3 Sample of 2D spatial plane visual with square gateway arrangement

 49

Figure 5.4 Sample of 2D spatial plane visual with hexagonal gateway

arrangement with maximized coverage 50

Figure 6.1 Overlapping Layer Distribution in Percentage with Overlapping

Index 55

Figure 6.2 Number of gateway failure with number of deployed gateway 57

Figure 6.3 Gateway movement required for different technique 59

Figure 6.4 Number of sensor nodes vs time taken 60

 x

LIST OF ABBREVATIONS

IoT Internet-of-Things

AI Artificial intelligence

GA Genetic Algorithm

SSGW Solution-Specific Gateway

IGW Internet Gateway

Wi-Fi Wireless Fidelity

CD Coordinate Device

QoS Quality of Service

LeTE Low-end Transmission Equipment

ILP Integer Linear Programming

LPWA Low Power Wide Area

ICD Interference cancellation and decoding

PGL Pixel with Gray Levels

 xi

TABLE OF CONTENTS

ABSTRACT ii

AKNOWLEDGEMENT iii

APPROVAL SHEET iv

DECLARATION vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVATIONS x

TABLE OF CONTENTS xi

1 INTRODUCTION ... 1

 Research Background .. 1

 Problem Statement ... 4

 Objectives ... 5

 Research Contribution ... 5

 Dissertation Organization .. 6

2 LITERATURE REVIEW .. 7

 Gateway Placement Optimization ... 7

 NewIoTGateway-Select .. 8

 Device Selection Adaptive to QoS (DESAQos) 9

 Efficient Data Collection for IoT Services in Edge Computing

Environment... 10

 Improved Fast Search and Find of Density Peaks-based Fog Node

Location of Fog Computing System .. 11

 Optimized Gateway Placement for Interference Cancellation for

Transmit-Only LPWA Networks .. 12

 Robust Gateway Placement for Scalable LoRaWAN 13

 Comparison between existing techniques .. 14

 Genetic Algorithm .. 16

 Summary .. 17

3 PROPOSED SOLUTION .. 19

 Problem formulation .. 19

 Proposed model .. 22

3.2.1 Initialization ... 22

3.2.2 Selection .. 23

3.2.3 Crossover ... 23

3.2.4 Mutation .. 24

3.2.5 Fitness Evaluation .. 25

 xii

 Summary .. 28

4 SYSTEM IMPLEMENTATION ... 29

 Basic elements .. 29

 Genetic Algorithm Implementation ... 30

4.2.1 Initialization ... 32

4.2.2 Selection .. 33

4.2.3 Crossover ... 34

4.2.4 Mutation .. 35

4.2.5 Fitness Evaluation .. 37

4.2.6 Get Moving Penalty ... 42
4.2.7 Distance ... 44

 Realization .. 45

 Summary .. 45

5 EXPERIMENTAL SETUP ... 46

 Simulation Setup .. 46

5.1.1 Network Overlapping Region ... 47

5.1.2 Number of Gateways Required and Network Resiliency 49

5.1.3 Movement required due to change of sensor layout 51

5.1.4 Computational Time .. 52

 Summary .. 52

6 EVALUATION RESULTS .. 54

 Simulation Results.. 54

6.1.1 Network Overlapping Region ... 54

6.1.2 Number of Gateways Required and Network Resiliency 56

6.1.3 Movement required due to change of sensor layout 57

6.1.4 Computational Time .. 59

6.1.5 Summary ... 61

7 CONCLUSION AND FUTURE WORK.. 62

 Conclusion .. 62

 Future Work .. 64

REFERENCES ... 66

 1

1 INTRODUCTION

 Research Background

Internet-of-Things (IoT) is one of the most popular information

technology domains in present day. 500 billion devices are predicted to be linked

to the internet by year 2030 according to a report from Cisco [1]. With the rapid

growing of IoT, 5G and AI, they are expected to work closely together to provide

compelling services in both industrial and commercial area [2]. IoT is

implemented and working in background within a lot of modern days

applications [3], such as access control, public transit, industrial inspection,

retail analysis, traffic system, public safety, logistic and so on. Most of these

applications require continuous data collection from deployed sensor networks

and convey of data to the rendezvous point such as cloud, where data analysis

and post processing to more human-readable presentation shall be performed. In

order to ensure the reliability of analytic outcomes and measurements, reliable

IoT networks are crucial in order to prevent sporadic data collection. Scalability

on the other hand, is also important for IoT network as it might be growing and

altering over time after the deployment due to requirement changes of

application.

As IoT network grows and comprise a large number of connected sensors

nodes, deployment cost and manageability might get out of hand. The role of

conventional edge devices has recently been elevated to address the

aforementioned issue. Edge devices such as IoT gateways are now equipped with

more hardware resources and able to run smarter applications, making them

more capable than primitive access points. For example, they are able to

 2

preprocess received data before sending to cloud, store backlogged data locally

when the internet access is unavailable, and even take over certain tasks from

the cloud. A noteworthy movement is that in Cisco introduced Fog Computing

[4] a standard to extend computing to the edge network devices, to meet the

needs of IoT. Similarly, NVIDIA also introduce their EGX platform [5] which

facilitates AI production to move beyond the data centre and out to the edge

layer. Through these years, There are several studies [6]–[8] that focus on the

implementation of IoT gateway with different approaches on different

applications, which proved its potential and feasibility.

 In our previous work [9], we suggested the concept of collaborative IoT

gateway, which is essentially a storage equipped single board edge computer

that supports up to a minimum of 3 physical network interfaces. Each of the

network interfaces has its communication role: northbound, southbound, and

lateral bound. Northbound refers to connections between the cloud and gateway,

southbound refers to connections between the sensor nodes and gateway; and

the main novelty of this work, lateral bound, refers to the inter-gateway

connections within the network.

As the center point of these 3 connections, IoT gateways certainly

become the backbone [10], [11] elements of the IoT network infrastructure. I.e.,

the availability and quality of service of IoT gateways should create direct

impact to the overall throughput of the IoT application. It is more crucial when

mission-critical IoT systems are required in areas such as airfield [12] and

surveillance [13]. According to [14], the common issues related to gateway

 3

placements in an IoT network are: congestion, coverage, location, interference

and distance.

An efficient gateway placement optimization scheme shall leverage the

strength of collaborative IoT gateway and create a robust lateral bound network

topology, subsequently provide better coverage to sensor nodes. For example,

intersection region between coverage area of two or more gateways can provide

redundancy to southbound devices, ultimately achieve better fault-tolerance.

However, placing too many gateways at the same area might lead to opposite

effects such as network congestion due to network interference [15], especially

when sending large amounts of continuous data between the IoT gateways.

On top of that, IoT sensor network can be dynamic [4], [16], [17]. Sensor

nodes could be added, removed, and reallocate periodically to improve the

efficiency of immediate data collection. Relatively, IoT gateways should also be

easily varied in terms of location to comply with the requirements from new

sensor arrangement. To achieve that, the movement of existing deployed

gateways to their new positions should be minimized to reduce the effort of IoT

gateway relocation.

Gateway placement optimization is a subject that generally aims to

address the mentioned requirements with the constraints such as number of

gateway and the number of redundancies. It is an active research area with a

considerable amount of published work to proposed the solution or algorithm to

optimize the IoT gateway placements with different requirements and

constraints on top of the basic connectivity and redundancies [18]–[21]. In this

work, we propose a framework to find the optimal solutions of gateway

 4

placement based on the locations of pre-locate sensor nodes, which the

preliminary proof of concept was done and documented [22]. In our work,

actuators are similar to sensor nodes from a communication perspective; thus,

they are not explicitly distinguished, and both will be referred as sensor nodes

unless specified otherwise. Based on our study, we managed to list out a series

of consideration factors that need to be included into the gateway placement

optimization scheme: - (1) Number of gateways, (2) Node coverage, (3) Lateral

bound connection, (4) Redundancy and (5) Dynamic sensor node location. The

more detailed problem statements are sorted out in the next subsection.

 Problem Statement

According to our research, we found out that the consideration factors

work relatively and extends to more issues when they have to be considered

concurrently during the process of gateway placement optimization.

Firstly, to facilitate the connectivity of lateral bound network, gateways

shall be place within each other’s vicinity to communicate and create a strongly

connected network. However, placing IoT gateways too close together in a

sensor network might cause wireless interference, ultimately affect overall

network performance. For applications where data continuity and short latency

are crucial, this might be intolerable.

 Secondly, to prevent single point of failure of sensor nodes’ connection

to cloud, they should be under coverage of more than one IoT gateway. However,

placing extra IoT gateway as redundancy will have adverse effects on the

network performance and deployment cost.

 5

IoT sensor network can be dynamic and varies from time to time in terms

of placement layout. Nevertheless, existing gateway placement solutions have

yet to accommodate changes due to dynamic sensor placement. Gateway

placement will have to be agile to handle the dynamic nature.

 Objectives

The main objective of this research is basically to address the

aforementioned problems, in a form of providing solutions to the multi-

conditions gateway optimization problem with the following as basis:

1. To develop a framework to minimize the Wi-Fi interference between IoT

gateway in the lateral bound network.

2. To design a technique to minimize the number of IoT gateway placement

without sacrificing fault-tolerance by exploring the trade-off between

time and sub-optimal solution using soft computing approach.

3. The design of the framework will accommodate dynamic sensors

movement as consideration during computation of gateway placement

scheme.

 Research Contribution

The major contributions of this research are as follows:

1. The proposed gateway placement optimization framework takes multiple

consideration factors into account, including number of gateways,

redundancies, and network interference. The framework shall provide

gateway placement layout for future IoT sensor network that is cost

efficient, fault-tolerant and minimized interference.

 6

2. The proposed framework also takes changes due to dynamic sensor

layout as a consideration factor during the optimization. The optimized

solution would reduce the effort to relocate gateways as sensor

rearranged, which could continuously occur through the IoT system

lifespan. The minimization of effort shall subsequently reduce the labor

and time to reconfigure the gateway layout.

3. The proposed computational model is also highly scalable. It should be

able to handle a wide range of problem size, which is the number of

sensors, within acceptable computation time. In terms of software

modification, the computational model should also be easily modified to

include more consideration factor in future. In other words, the proposed

model could work as a robust foundation and baseline model, which can

be simply modified in future and branched into versions to adapt with

different requirements.

 Dissertation Organization

The remaining of this dissertation is organized as follow. Chapter 2 – Literature

Review, Chapter 3 – Proposed Solution, Chapter 4 – System Implementation,

Chapter 5 – Experimental Setup and Chapter 6 – Evaluation Results.

 7

2 LITERATURE REVIEW

 Gateway Placement Optimization

Gateway placement optimization is an existing research subject that aims

to find the optimal locations of gateways based on a range of requirements.

Gateway placement problems usually include basic requirements of minimizing

number of gateway and still satisfying traffic demands [23], while modern

gateway placement optimization research works would include more

consideration factors or goals on top of those. A publication from Mnguni et al.

[14] summarized more than 10 research works of gateway placement

optimization algorithms for IoT over the past years. Despite the research works

focused on IoT, there are diversities in terms of communication technology,

objectives, constraints and problem size, relatively the approach taken to solve

the problem are also broad.

For example, Wu et al. [23] proposed a gateway placement optimization

solution for wireless mesh network. Implemented with graph theory, the

algorithm aimed to find the minimum dominating sets with maximum weight

among the connected mesh router networks, subsequently find the subset of

routers to take over internet gateway roles, and finally assign the router

attachments with load balancing as consideration factor.

On the other hand, a research work by Ahmed et al. [24] proposed to apply

Genetic Algorithm (GA) to find the internet gateway locations among the

connected mesh routers with the context of connectivity matrix of the mesh

routers. The main objective of the research is to find near optimal solutions that

 8

minimize the overall number of hops for mesh routers in a network to reach the

nearest gateway.

Moreover, there were also several notable works reviewed through our

research process, which shall be explained in the following subsections.

 NewIoTGateway-Select

Karthikeya et al.[18] proposed NewIoTGateway-Select algorithm to find

out optimal placement for Solution-Specific Gateways (SSGW) – edge devices

that are equipped with multiple interfaces sensor, subsequently upgrading some

of the SSGW to become Internet gateway (IGW). The main difference between

SSGW and IGW is the latter has all the capabilities of former, but also comes

with internet connectivity.

The proposed algorithm was implemented with greedy technique. It was

designed to first finds out all the intersected coordinate devices (CD) pairs in

terms of coverage range, and promote the most intersected ones to be SSGW

until all CDs are covered by at least 1 SSGW. The step is then repeated again

without the promoted CDs excluded to ensure each CD is connected to at least

2 different SSGW in order to achieve redundancies. The effective throughput of

the each computed SSGW are computed, which is the product of load factor and

link capacity. The link capacity is the maximum permissible load allowed on

each network interface, and load factor is the ratio of actual load on the link as

specific time. The SSGWs with highest effective throughput will be selected to

take the role of IGW. To adapt this algorithm for our use case, the CDs can be

taken as sensor nodes, where SSGW can be taken as IoT gateway. However, the

algorithm does not include sensor nodes movement as consideration factor.

 9

 Device Selection Adaptive to QoS (DESAQos)

 In addition, Gravalos et al. [20] suggested Device Selection Adaptive to

QoS (DESAQos), a heuristic approach to find out internet gateway location and

low-end transmission equipment (LeTE, which is similar to SSGW from

previous work) among the IoT facilities (a group of data collection nodes, or

sensor nodes). They formulated the gateway placement optimization problem

into a multi-constraints integer linear program (ILP) problem, but the formulated

ILP was too complex to be handled by usual ILP solver as the complexity is

exponential.

Therefore, a solution with heuristic approach was proposed, which

contains two parts which are the Initializion and clustering phase. Initialization

phase involves computation of candidate locations of LeTE and gateway based

on the existing facility centroid and Voronoi points, which are then served as the

input for Clustering phase. The Clustering phase performs K-means clustering

on the candidate locations to determine the locations of LeTEs and gateways.

The final outcome of the research work was proved to reduce the network

installation cost without compromising the QoS. However, parameters such as

the deployment price of gateway and outgoing traffic rate of facilities are

required as an input of the algorithm, which we assumed to have no access to

them in this work. Hence, it is not a feasible solution for our use case.

 10

 Efficient Data Collection for IoT Services in Edge Computing

Environment

Furthermore, Maiti et al.[25] proposed Efficient Data Collection for IoT

Services in Edge Computing Environment, which aimed to lower the overall

service latency by transforming cloud-centric environment to edge-centric

environment. The idea of mini-cloud was suggested in this work, which is a fog

device in between the layer of cloud and gateways, expected to partially take

over cloud role in IoT application. The mini-cloud locations are selected among

the existing gateway, with the priority of minimizing the latencies between mini-

clouds and gateways.

The authors first model the IoT gateways network as a graph with

gateways as vertices, links between gateways as edges and propagation latencies

as the edge weights. With this graph as basis, an n*n delay matrix which contains

the shortest path latency between each pair of gateways. With the input of

desired number k of mini-cloud and the delay matrix, the model shall go through

k-means clustering algorithm, where the initial locations are selected from the

gateways. But instead of averaging the distance of points with the cluster heads

as in native k-means clustering algorithm, the centering is done based on the

weight between the gateways and mini-cloud candidates. By the end of the

algorithm, which is where convergence is occurred, the locations of k number of

mini-cloud shall be computed.

To adapt this work to our scenario, we can take the mini-cloud as our IoT

gateways, and the gateways as our sensor nodes. However, the reviewed work

presume that the gateways are capable with multi-hop transmission, but our

 11

sensor nodes are not. The mini-clouds also not defined to have lateral

communications, where our IoT gateways do. Therefore, this algorithm is not

suitable for our use case as well.

 Improved Fast Search and Find of Density Peaks-based Fog Node

Location of Fog Computing System

Similarly, a research work published by Yuan et al.[21] stated that fog

node locations in fog computing network can be formulated as a clustering-based

multi-constrained optimization problem. With the consideration factors of

communication latency, fog node resource to cater with different types of nodes

and the resource cost, they modified the existing algorithm of clustering by fast

search and find by density peaks [26] that search for high density nodes based

on their number of reachable neighbor nodes and the distance with other high-

density nodes as cluster head, to compute the location of fog nodes within an

IoT network.

The proposed clustering algorithm takes collections of nodes, along with

their locations, acceptable node-fog latency, resource and resource cost as inputs,

and giving outputs of cluster head locations, along with their required resource

and resource costs. The algorithm involved processes of obtaining the weighted

distances between all nodes, finding expected cluster sizes, iterations to find

optimized cluster centers, compute required resources for cluster centers to

server the cluster members and the cost.

As we can see, although this research work has a similar general goal as

ours, which is to find the optimized location of IoT gateways (fog node), but the

consideration factors are different. Besides, the expected input parameters of the

 12

algorithm also vary with ours, which most of them are outside our research scope.

Therefore, it can be concluded that the algorithm is also not suitable to be a

solution of our problems.

 Optimized Gateway Placement for Interference Cancellation for

Transmit-Only LPWA Networks

Tian et al. [27] attempted to optimize gateway placement with the

objective to minimize wireless interference within the transmit-only low power

wide area (LPWA) network. The research work was built on top of the concept

of capture effect and interference cancellation, which are the methods used to

process collision packets due to wireless interference. The capture and

interference cancellation process are to be done by gateways that are placed

among the transmit-only sensor nodes, which is to resolve the collisions between

packets from different connected sensor nodes. To ensure that the processes can

be carried on, the gateways will need to be placed in the effective regions within

the transmission range of sensor nodes.

Two algorithms were proposed to find the locations of gateways. Both

algorithms involved the computation of the following properties for each sensor

nodes with respect to the other nodes: 1) capture circle – the transmission region

where capture process can be performed, 2) ICD crescent – the transmission

region where interference and decoding can be performed outside of the capture

circle. Afterwards, the optional points, which are the intersection points between

capture circle and ICD crescents are located. These optional points are the

candidates of gateway locations. To decide which are the final points to place a

gateway, two algorithms were proposed.

 13

The first algorithm is the Algorithm Weight Bipartite Graph (WBG). It

generally creates a bipartite graph based on the optional points and the

intersected sensor nodes, with the weight of the graph edges as the intersection

type. With the greedy technique, the algorithm iterates to pick the optional point

from the bipartite graph with highest weight (located within intersection of most

capture circles and ICD crescents), and removed all the linked intersected sensor

nodes, until all sensor nodes are removed from the graph. The picked points are

then selected as the proposed gateway locations.

The second algorithm is the Algorithm of PGL (Pixel with Gray Levels).

It is similar to the first algorithm, in terms of the greedy technique part. However

instead of using the bipartite graph, the weight of the optional points is identified

by the pixel greyscale darkness level. As the optional points are actually on the

intersected regions of capture circle and ICD crescent, visualizing the regions

with translucent colour shall create darker colors within the overlapped regions,

where darker regions mean higher level of overlapping.

However, the research works does not have the same consideration factors

as ours. Factors such as redundancies, and sensor layout change are not taken

into accounts. Despite, the PGL approach of identifying level of overlapping

based on greyscale level still inspired us as an evaluation methodology.

 Robust Gateway Placement for Scalable LoRaWAN

Lastly, Loh et al. [28] suggested that the IoT gateway placement

optimization as a geometric set cover problem, where gateways are disks and

sensors are points. Each gateway should be assigned with a maximum number

 14

of sensor (capacity), where the main task is to ensure that each sensor is covered

by a gateway without exceeding the capacity.

The algorithm starts with providing the sensor node locations and

candidate gateway locations as input. A Voronoi diagram based on the gateway

locations that partitions the sensor nodes will be created. Each sensor nodes

within the Voronoi geometry with a gateway as center shall be attached to that

gateway, and the number of gateways shall be computed to ensure the condition

of gateway capacity is not violated. If the condition is fulfilled, a selected

gateway shall be removed from the set and the repeat the condition fulfilment

validation process, until 3 gateways are removed but still fulfilling the

requirements of not exceeding gateway capacity and all sensors are covered, OR

no gateway is allowed to be removed.

The algorithm managed to solve a capacitated geometric set cover problem

within a reasonable time based on real life Smart City scenario. However, the

objective and consideration factors are quite different with ours. The work did

not take fault tolerance with redundancies into account, and also not taking

sensors relocation as a consideration criterion.

 Comparison between existing techniques

Table 2.1 on next page concludes the existing technique, based on their

model/algorithm, objective, and the research outcome.

 15

Research Model/ algorithm Objective Research outcome

1 A Genetic Approach for Gateway Placement in

Wireless Mesh Networks [24]

Genetic Algorithm Minimize the variation of (Mesh

Router – Internet Gateway) MR-IG hop

counts

Improved overall WMN performance by reducing

MR-IG hop counts

2 Leveraging Solution-Specific Gateways for Cost-

Effective and Fault-Tolerant IoT Networking [18]

Greedy technique Reduce cost by minimizing number of

gateways, replace IGW with SSGW

when possible

Managed to proposed gateway placement

locations with minimized number of gateways

without single point failure

3 An Improved Fast Search and Find of Density

Peaks-based Fog Node Location of Fog

Computing System [21]

Improved K-means clustering

technique from Clustering by

fast search and find of density

peaks [26]

Proposed an improved algorithm to

locate fog node sites and determine

resource for each fog node

Takes shorter time to locate fog nodes compared

to existing algorithm, giving significant better

service performance (shorter latency) with the

trade-off of insignificant increment in cost.

4 Efficient Data Collection for IoT Services in

Edge Computing Environment [19]

Binary knapsack Lower the service latency compared to

IoT with cloud environment

Service latency is lower with mini-cloud among

IGW compare to cloud environment

5 Efficient Network Planning for Internet of Things

with QoS Constraints [29]

Voronoi points, K-means

clustering

Lower network installation cost without

compromising QoS,

Gives near optimal installation cost compared to

ILP Method

6 Optimized Gateway Placement for Interference

Cancellation in Transmit-Only LPWA Networks

[27]

Greedy technique To find the optimum location of

gateways for transmit-only LPWA

networks,

Proposed WBG and PGL greedy technique based

algorithms to find gateway locations with

minimal interference

7 Robust Gateway Placement for Scalable

LoRaWan [28]

Voronoi points, linear

programming

To minimize gateway count, but

ensuring that all sensors are covered

without exceeding gateway capacity

Solve a capacitated geometric set cover problem

within a reasonable time based on real life Smart

City scenario and fulfilling the objective

Table 2.1 Comparison between existing techniques

 16

 Genetic Algorithm

As more consideration factors are added on top of primitive gateway

placement optimization, the problem would get more complex due to the

increment of variable number, variable scope, and variable diversity. A heuristic

and global search approach would be preferable [30] to find a solution that does

not need to be optimal at each requirement, good enough to fulfill the minimum

requirements, wider search space, with a considerably short computational time.

For our scenario, immediate solution is not the main priority, instead global

search for sub-optimal solution is preferable. Therefore, locally search

algorithms such as Greedy Technique (as implemented in [18], [27]) and Linear

Programming (as implemented in [28]) is not a suit for this case. We find that

Genetic Algorithm (GA) [31] with the mentioned characteristics is a good fit to

implement the gateway placement optimization model as gateway placement

does not require a precise solution. On top of that, GA is also highly scalable,

thus modifications that need to be done in case of inclusion of new consideration

factor could be done with less effort.

 GA is a search heuristic that was inspired by the theory of evolution. It

imitates the process of natural selection, where the fittest individuals (genes) are

chosen for reproduction to produce offspring of the next generation. In GA, a

gene in a chromosome commonly refers to a variable in a solution to the problem;

and a population refer to a pool of chromosomes. Generally, the implementation

of GA shall consist of the following steps:

a) Initialization – A population of chromosomes (solution) with randomly

generated genes (variables) is initialized

 17

b) Selection – Two chromosomes (solution) are randomly selected from the

population

c) Crossover – Part of the genes (variables) from the selected

chromosomes (solutions) were extracted and combined to yield a new

chromosome (new solution)

d) Mutation – With a slight chance, a gene, or genes (variables) of the new

chromosome (solution) shall be mutated randomly (assign with new

random value)

e) Fitness Evaluation – The newly generated chromosomes (solution) go

through an evaluation process to assess the suitability of solving the

problem

 Summary

Gateway placement optimization is still a relevant research subject, as we

are able to find publications from the past few years. However, the researches

have different goals to meet, mainly because of the diversities of requirements

and objectives to pursue. The fields of focus for the reviewed works spanned

through different domains, such as cost efficiency, computing performance,

system reliability, quality of service and so on.

There are works that have intersected fields of interest as us, but none of

them solve the same set of problems as ours. It is also worth noting that none of

the reviewed works has taken changes due to dynamic sensor network into

account during the optimization. Nonetheless, the work from Karthikeya et. al.

[18], which will be referred as NewIoTGateway-select has the closest solution

 18

for the requirements to us, thus it will be taken as a benchmark object in the as

documented in the latter chapters.

 19

3 PROPOSED SOLUTION

As we decided to implement the framework using Genetic Algorithm, the

next step would be to formulate the gateway optimization problem and adapt to

the algorithm. In this chapter, we will focus on the problem formulation with the

requirements based on our research objectives and the methodology to model the

problem as the input to our computational model.

 Problem formulation

In this work, it is presumed that the gateway optimization problem is

within a finite spatial plane with a height h and width w, where sensor nodes are

distributed around the plane, resembling the sensor network in a monitored field.

In real life scenario, the sensor node locations should be able to be recorded on

a map or floorplan.

For instance, Figure 3.1 shows a shopping mall floor plan with the

locations of sensor nodes of a crowd counting project. With the aid of the

floorplan, the sensor node locations can be converted into a collection of XY

coordinates, which would be the input of the framework. The framework is also

expected to take the desired number of gateways, and original gateway

coordinates (obtainable with the same method as sensor nodes) as inputs to

yields a solution of proposed gateway layout solution. The detailed workflow of

the framework is described in Figure 3.2.

 20

Figure 3.1 Example of sensor layout on mall floorplan

Figure 3.2 Workflow of proposed framework

Based on our research objectives, we mainly aim to design a framework

to provide solutions for a multiple-conditions gateway placement optimization

problem. The framework should be able to yield solutions that 1) minimize the

Wi-Fi interference between IoT gateway in the lateral bound network, 2)

minimize the number of IoT gateway without compromising fault tolerance, and

3) adaptive to dynamic sensor movement.

 21

To formulate the gateway placement optimization problem, we listed out a

series of factors that must be considered during the problem solving based on

our scopes and objectives as illustrated in Figure 3.3:

Figure 3.3 Illustration of consideration factors

a) Average coverage of an IoT gateway for sensor nodes (southbound).

Asouth= πr2

b) Average distance of an IoT gateway lateral bound (in radius) for IoT

gateway collaboration.

Alateral = πr2

c) Number of gateways a node can use to provide redundancy, i.e. the

number of gateways a node can connect to.

d) Number of sensor nodes under the coverage of a gateway.

e) Number of collaborative IoT gateway within the average lateral bound

distance set in (b)

 22

f) Number of gateways desired.

g) Distance between the original and proposed gateway positions (if any)

 Proposed model

Based on our framework structure, the output of the model (solution) is

expected to be the layout of gateways within the 2D spatial plane. Therefore, the

GA model of our framework shall be expressed as:

• Chromosome (solution): 2D layout of gateways

• Gene (variables): The location of each gateway of the layout

On this basis, we model the gateway placement optimization to comply with the

steps of a GA model, where the details are explained as follows:

3.2.1 Initialization

The purpose of initialization is to create an initial population of N

chromosomes as an entry point of the computation. The properties of the

chromosomes should be random. In our model, the chromosome is the gateway

layout on a 2D spatial plane. In general, the initialization process shall generate

a pool of random layouts of gateways.

The values that can be randomized in a set of gateways are:

• Number of gateways in the layout

• Location of each gateway

At the end of the initialization, the model is expected to create a defined number

of gateway layouts, where each layout shall contain a randomized number of

gateways, and each gateway shall have a random location within the spatial

plane.

 23

3.2.2 Selection

Figure 3.4 Illustration of Selection

During the selection process, two chromosomes in the population shall

be randomly chosen from the population to go through the crossover process,

repeated until a new generation of population is formed. In our model, it will be

presented as randomly selecting two different gateway layouts from the current

population (illustrated in Figure 3.4) which will be taken as inputs of crossover

(explained in next subsection). The process will be iterated with different

random layouts for a defined number of times.

3.2.3 Crossover

Every pair of selected gateway layout from the selection process shall go

through the crossover process. For each pair of layouts, says layouta
 and layoutb,

a portion from each layout is extracted and joint to yields a new layout

(visualized in Figure 3.5 below). In our model, we proposed to take the left

portion of layouta
 and right portion of layoutb to go through the concatenation.

 24

However, instead of cropping each layout by exactly half, a random percentage

of layouta
 and layoutb (with total of 100%) shall be taken to increase the

randomness of GA model. For example, if the randomized percentage is 30%,

then 30% of layouta from the left and 70% of layoutb from the right shall be

combined and produce a new gateway layout.

Figure 3.5 Illustration of Crossover

3.2.4 Mutation

By a small chance, the product of crossover shall get to go through mutation

process. The mutation is done by randomly tweaking the genes in the

chromosome. In our model, we proposed to have 3 types of mutation that involve

the process of adding, removing and updating the genes to/from the

chromosomes, as illustrated in Figure 3.6.

 25

1. Adding – a new gene with randomized value shall be generated and

append to the chromosome. I.e. a new extra gateway with random

location shall be generated and added to the crossed-over layout of

gateways.

2. Removing – an existing gene shall be selected randomly and removed

from the chromosome. I.e. an existing gateway from the crossed-over

layout of gateways shall be randomly selected and removed from the

layout.

3. Updating – The properties of a random existing gene in a chromosome

shall be assigned with a random new value. I.e. a random existing

gateway from the crossed-over set of gateways shall be randomly

relocate.

Figure 3.6 Illustration of Mutation

3.2.5 Fitness Evaluation

For each of the chromosomes produced by crossover (mutated and not

mutated), it must go through a fitness evaluation process. For our case, the fitness

evaluation is about assessing the performance of gateway layouts based on the

 26

input of the model, which are the sensor nodes layout, number of desired

gateways in the layout and the original gateway layout (if any).

To evaluate the fitness of the gateway layout, we have come out with a list of

evaluation criteria corresponded to our consideration factors, namely:

a) Number of gateways a node can use to provide redundancy

b) Number of sensor nodes a gateway can cover

c) Number of collaborative IoT gateway within the average lateral bound

d) Number of gateways desired

e) Distance between original (if any) and proposed gateway positions

With the system of rewards and penalties, scores shall be rewarded or deducted

based on the fulfillment of each criterion. Table 3.1 presents the grading system

of the fitness evaluation of our model:

 27

Score is rewarded Consideration Factor Score is deducted

• For each node connected to a gateway

• Reward gradually decrease to avoid too

much overlapping

** Extra score if node covered by exact

number of gateways configured by user

Number of gateways a

node can use to provide

redundancy

• For each uncovered node

• For each node a gateway covers

• Gradually increases as the number of nodes

under the coverage of the gateway increases

Number of sensor nodes a

gateway can cover
• For each unconnected gateway

• For each pair of gateways with intersected

coverage

• Reward decreases as the number of

intersections of each gateway increases

Number of collaborative

IoT gateway within the

average lateral bound

• No change

• If the number of gateways is less than the

user-defined number of gateways.

Number of gateways

desired

• If the number of gateways is greater

than the user-defined number of

gateways.

• No change Distance between original

(if any) and proposed

gateway positions

• Directly proportional to the distance

between original and generated

gateway positions.

Table 3.1 Score system based on consideration factors

 28

With all the gateway layouts evaluated with a score, they will be ranked

accordingly. The layout with the highest score shall be taken as the latest solution.

However, if the user opts not to stop at current generation, the top performers

from the current population shall be extracted as the candidates of next

generation of population. The new generation shall go through the selection,

crossover, mutation, and fitness evaluation process again. The whole cycle shall

be looped until the user stops it, which is usually when the acceptable solution

is yielded.

 Summary

In this chapter, we presented the high-level overview of the framework,

consisting of the inputs, model and outputs. The gateway placement

optimization problem formulated based on the consideration factors. Genetic

algorithm is selected as the baseline of the computational model due to the nature

and complexity of the gateway placement optimization problem. The

methodology of genetic algorithm was studied and explained. With the

consideration factors as basis, the purposed solution is modelled around the steps

in a generic GA life cycle: initialization, selection, crossover, mutation, fitness

evaluation. The proposed solution shall be implemented into a software program

which is explained in the next chapter – System Implementations.

 29

4 SYSTEM IMPLEMENTATION

In the previous chapter, we explained on the multiple-conditions gateway

placement optimization problem formulation and modeling to adapt with

Genetic Algorithms as a solution. To realize our proposed solution, we have

implemented the design as a software program. In this chapter, the programming

concepts of the implementation will be presented in detail. The program was

written in C# with .NET Framework. However, the explanations of the modules

will be presented in the form of abstraction.

 Basic elements

According to the proposed solution, the expected input of the gateway

placement optimization model are the desired number of gateways, sensor node

distribution layout, and original gateway layout (optional), and the expected

output is a solution of proposed gateway layout. Technically, a sensor/gateway

layout is a composite of individual nodes or gateways with their locations on a

2D spatial plane. The location on a 2D spatial plane can basically be represented

as an XY cartesian coordinate. With this concept, the gateway and sensor node

can be form into objects as represented in Figure 4.1:

Figure 4.1 Structure of Sensor and Gateway objects

Relatively, a layout as a collection of gateways or sensor, can be represented

as a list of gateway or sensor objects (as illustrated in Figure 4.2).

Sensor

{

 X: int

 Y: int

}

Gateway

{

 X: int

 Y: int

}

 30

Figure 4.2 Structure of SensorLayout and GatewayLayout object

These structures will be working as the basis elements through the entire

implementations, where the gateway layout structure also represent as the

chromosome in the genetic algorithm model.

 Genetic Algorithm Implementation

In this section, the implementation of the GA-based gateway placement

optimization model shall be explained. The model as proposed in the previous

chapter, shall follow the generic live cycle of generic GA, which consist of the

modules of initialization, selection, crossover, mutation and fitness evaluation.

The overview of the life cycle is basically implemented as the following logic in

Figure 4.3:

GatewayPlacementOptimizationModel

Inputs:
desiredGatewayNumber: int,
sensorLayout: SensorLayout,
originalGatewayLayout: GatewayLayout

Output:

SensorLayout

{

 Members: Sensor[]

}

GatewayLayout

{

 Members: Gateway[]

 Score: int

}

 31

solution: GatewayLayout

{

 var population = Initialization(POPULATION_SIZE)

 While !Stop

 var newGeneration

 For i = 1 to maxCandidateCount

 var parents = Selection(population)

 var child = Crossover(parents)

 child = Mutation(child)

 child.Score = FitnessEvaluation(child,
 sensorLayout
 originalGatewayLayout)

 newGeneration.Add(child)

 End For

 newGeneration = SortByHighestScore(newGeneration)

 population = newGeneration.Slice(0,
 population.count)

 solution = newGeneration.First()

 End While

}

Figure 4.3 Pseudocode of proposed GA model

Based on the pseudocode, the model is taking 3 inputs, and giving 1

output. The program starts by creating an initial population with the Initialization

function. In a loop that only stops at user command, a new generation is created

based on the current population, which begin with Selection from the current

population. For each of the selected “parents” from selection, they serve as the

input of Crossover which would produce a child. The child would be taken as

input for Mutation, where it might return the same or mutated child. Next, the

child shall go through Fitness Evaluation and assigned with a score,

subsequently added to the pool of new generation candidates.

 32

The steps are repeated until a defined number of candidates are created.

The candidates will then be sorted by their score from highest to lowest, where

the top N candidates will be taken to replace the current population, and the top

candidates will be used as the current solution. Based on the nature of GA, the

solution might be replaced through the generations. Once the user stops the

program, the solution from current generation will be taken as the final solution.

Next, we will explain on how each of the GA function works in detailed.

4.2.1 Initialization

The Initialization is a function with one input which is the size of population,

and shall return a collection of GatewayLayout. The function as described in the

pseudocode in Figure 4.4, starts by creating an empty population, and repeatedly

adding newly generated GatewayLayout object to it until it reaches the defined

size, eventually return it. Each of the generated GatewayLayout shall contain an

array of Gateway object with randomized X and Y value, in its Members

property, where the array length equals to defined number of user desired

gateway count.

Initialization

Input:

// number of chromosomes in the population

populationSize: int

{

 // create an empty population

 var population: GatewayLayout[]

 For i = 1 to populationSize

 // create an empty layout

 var layout : GatewayLayout

 33

 // create a number of gateway layouts
 // based on user defined number of desired gateway

 For j = 1 to USER_DESIRED_GATEWAY_COUNT

 var member : Gateway

 //with randomized X Y coordinates

 member.X = random(1, MAX_WIDTH)

 member.Y = random(1, MAX_HEIGHT)

 layout.Members.Add(member)

 End For

 // add the layout to population

 population.Add(layout)

 End For

 return population

}

Figure 4.4 Pseudocode of Initialization

4.2.2 Selection

The Selection function (Figure 4.5) takes a collection of GatewayLayout

as input, with the return value of two GatewayLayout objects. It is a relatively

simple function which randomly selects two items from the input

GatewayLayout array and returns them as an array of 2 elements.

Selection

Input:

population: GatewayLayout[]

{

 var max = population.Count

 // randomly pick two layout from the population

 34

 var parentA = GatewayLayout[random(0,max)]

 var parentB = GatewayLayout[random(0,max)]

 // wrap the two parents and return

 var parents = { parentA , parentB }

 return parents

}

Figure 4.5 Pseudocode of Selection

4.2.3 Crossover

The function of Crossover is to extract the genes from the two parents

GatewayLayout objects and combine them into a child. Based on our proposed

solution, the Crossover should take the left portion of layout A and right portion

of layout B with random percentages that sum up to 100%. In our

implementation as shown in the pseudocode in Figure 4.6, instead of using

percentage, a random point between the width of the 2D spatial plane is

generated as a slicing point. Any Gateway object in layout A that has an X value

smaller than the slicing point, and any gateway object in layout B that has greater

or equal value as the slicing point, shall be extracted and merged as a new

chromosome. Although the approach looks different on paper, theoretically it

should be the same as what we have proposed in last chapter.

It is also notable that the implemented Crossover function has a

prevention mechanism to not returning a child chromosomes (GatewayLayout)

with empty genes (0 Gateway).

Crossover

Input:

 35

parents: GatewayLayout[2]

{

 // create a child with no member

 var child: GatewayLayout

 // to ensure that the eventual child member
 // is not empty

 While child.Members is empty

 // generate a horizontal slicing point within
 // the layout

 var slicingPoint = Random(0, MAXWIDTH)

 // extract the left side of layoutA and
 // right side of layoutB based on slicing point
 // inside the where() function is a lambda
 // expression to compare the X value of member with
 // slicing point

 var genesA = parents[0].Members.
 where(g => g.X < slicingPoint)

 var genesB = parents[1].Members
 where(g => g.X >= slicingPoint)

 // combine the two genes into one and assign
 // to child

 child.Members = genesA.Join(genesB)

 End While

 return child

}

Figure 4.6 Pseudocode of Crossover

4.2.4 Mutation

The Mutation function block aims to tweak the genes of a chromosomes

with a slight chance. As proposed in the previous chapter, the mutation block is

 36

expected to contain three types of operations, which are add, remove and update

a gene (Gateway) in a chromosome (GatewayLayout).

In our implementation (refer to Figure 4.7), the three operations are

mutually exclusive. The input chromosome has individual chances to go through

the operations, ranging from neither, any or all. To decide whether the chance is

hit, a random number is generated between 1-100, if the number is smaller than

the mutation rate (e.g. 3 for 3%), the corresponding block shall be run.

For addition operation, a new Gateway object with randomized X and Y

value within the 2D spatial plane dimensions shall be generated and append to

the layout’s Members property. The removal operation shall randomly pick a

Gateway object from the layout’s Members property and remove it from the

array. The update operation shall randomly pick a Gateway object from the

layout’s Members property and assign it with a random X and Y properties.

Mutation

Input:

child: GateawayLayout
mutationRate : Int between 1-100

{

 // Mutation rate

 If Random(1, 100) < MUTATION_RATE

 // Create a new Gateway object with random XY

 var newMember : Gateway

 newMember.X = random(1, MAX_WIDTH)

 newMember.Y = random(1, MAX_HEIGHT)

 // Append to existing members

 child.Members.Add(newMember)

 End If

 // Mutation rate

 37

 If Random(1, 100) < MUTATION_RATE

 // To prevent 0 Gateway upon removal

 If child.Members.count > 1

 // randomly pick a gateway and remove

 var index = Random(0, child.Members.count - 1)

 child.Members.Remove(child.Members[index])

 End If

 End If

 // Mutation rate

 If Random(1, 100) < MUTATION_RATE

 // randomly pick a gateway

 var index = Random(0, child.Members.count - 1)

 var x = random(1, MAX_WIDTH)

 var y = random(1, MAX_HEIGHT)

 // assign with new randomized value

 child.Members(child.Members[index]).X = x

 child.Members(child.Members[index]).Y = y

 End If

 return child

}

Figure 4.7 Pseudocode of Mutation

4.2.5 Fitness Evaluation

The Fitness Evaluation function (pseudocode in Figure 4.8) is the

essence of our GA model. With the inputs of candidate gateway layout, sensor

layout and original gateway layout, the function mainly aims to grade the

GatewayLayout object based on multiple consideration factors as per described

in section 3.2.5. The evaluation process is divided into two parts, which are

rewards and penalties.

 38

The evaluation score starts with 0, increase/decrease according to the

rewards and penalties. The first consideration factor is the number of gateways

a node can use to provide redundancy. In our implementation, we find out the

number of connectable gateways for each sensor node by computing the distance

between all gateways and sensors, subsequently compare with the defined

coverage radius. For each gateway a sensor can connect to, a defined score

factored by the number of connected gateways will be added, resulting with

gradually lower rewards with respect to redundancy saturation. The final number

of connectable gateways for each sensor are also recorded, where each

achievement of exact redundancy number as defined by user shall be given extra

points. On the other hand, heavy penalty will also be incurred if for every node

that has insufficient redundancy.

The second consideration factor is the number of sensor nodes a gateway

can cover. Based on the computed number of connectable gateways for each

sensor node, for each sensor node a gateway can connect to, defined score

multiply with the number of connected nodes will be given, resulting with

gradually higher score for each sensor nodes under coverage. The final number

of covered sensors are recorded, and penalties will be given for each gateway

that has 0 node under coverage.

The next consideration factor of the fitness evaluation is the number of

collaborative IoT gateway within the average lateral bound. Among the gateway

layout itself, the connectivity between all gateways are computed, again by

computing the distance sand compare against the defined coverage radius, where

lower than means within the communication vicinity. For each gateway, every

 39

intersection with other gateway is entitled with a score reward, which is factored

by of the intersected target, resulting with gradually decreasing rewards.

Number of desired gateways is an expected number of gateways in the

solution gateway layout defined by user. The evaluation function shall award

score for every unit of gateway less than the defined number, but deducted for

every extra one in the input GatewayLayout. The last consideration factor during

fitness evaluation is the distance between original and proposed gateway

positions, which is omittable if no original gateway layout is provided. A

lumpsum computed by the moving penalty calculator function (Get Moving

Penalty – explained in details in next subsection) will be deducted from the total

score and there goes the fitness score of the chromosome (GatewayLayout).

FitnessEvaluation

Input:

candidate : GatewayLayout
sensorLayout : SensorLayout
originalGatewayLayout : GatewayLayout

{

 var gateways = candidate.Members

 var gatewayCount = gateways.Count

 var sensors = sensorLayout.Members

 var sensorCount = sensors.Count

 var score : int

 // number of gateways each sensor can connect to

 var sensorConnectedIndex : int[]

 // number of sensors each gateway can cover

 var gatewayCoverageIndex : int[]

 // number of gateways a gateway can connect to

 var lateralConnectionIndex : int[]

 40

 // initialize records with 0s

 For i = 0 to sensorCount

 sensorConnectedIndex.Add(0)

 End For

 For i = 0 to gatewayCount

 gatewayCoverageIndex.Add(0)

 End For

 For i = 0 to gatewayCount

 lateralConnectionIndex.Add(0)

 End For

 For i = 0 to gatewayCount

 For j = 0 to sensorCount

 If(Distance(gateways[i], sensors[j]) <
 COVERAGE_RADIUS)

 // increment of sensor coverage count

 ++gatewayCoverageIndex[i]

 // increment of gateway connectivity count

 ++sensorConnectedIndex[j]

 // Score given for each gateway a sensor
 // can connect to, decrease gradually
 // to prevent overcrowding

 Score += NODE_COVERAGE_REWARD /
 sensorConnectedIndex[j]

 // Score given for each sensor a gateway
 // can cover, increase linearly

 Score += NODE_COVERING_REWARD *
 gatewayCoverageIndex[i]

 End If

 End For

 For k = i + 1 to gatewayCount

 If Distance(gateways[i], gateways[k] <
 COVERAGE_RADIUS)

 // increment of lateral bound connectivity
 // for both gateways

 41

 ++interGatewayConnectedIndex[i]

 ++interGatewayConnectedIndex[k]

 // reward score for each intersection
 // reward decrease gradually
 // to prevent overcrowding

 score += GATEWAY_INTERSECT_REWARD /
 lateralConnectionIndex[i];

 End If

 End For

 // Score given for each exact redundancy achieved

 Foreach index in sensorConnectedIndex where
 index equals to USER_DEFINED_REDUNDANCY

 score += EXACT_REDUNDANCY_REWARDS

 End Foreach

 // Heavy penalty for each sensor without
 // sufficient redundancy

 Foreach index in sensorConnectedIndex where
 index is less than USER_DEFINED_REDUNDANCY

 score -= REDUNDANCY_PENALTY

 End Foreach

 // Penalty for each gateway without any
 // sensor nodes under coverage

 Foreach index in gatewayCoverageIndex where
 index is 0

 score -= NOT_COVERING_PENALTY

 End Foreach

 // Moving penalty

 var movingPenalty = GetMovingPenalty(
 candidate, originalGatewayLayout)

 score -= movingPenalty

 // Score rewarded for each gateway less compared
 // to user defined number, but deducted
 // for each extra

 42

 var gatewayCountReward = (USER_DESIRED_GATEWAY_COUNT
 - gatewayCount) *
 GATEWAY_COUNT_REWARD

 score += gatewayCountReward

 end For

 return score

}

Figure 4.8 Pseudocode of Fitness Evaluation

4.2.6 Get Moving Penalty

The Get Moving Penalty (Figure 4.9) sub-function is used to compute

the reduction score incurred by the movements of gateways between two layouts.

The idea of gateway moving is based on the case of user having to physically

move the gateways from original locations of existing layout to new locations of

proposed layouts due to the changes of sensor layout change. The moving

penalty is basically the effort required to move the existing gateways to their

new locations, which is the total travel distance.

To compute the total distance, all the distances between the gateways in

original layout and new layout will be computed and stored in a list along with

their indices (the length of list is expected to be number of gateways in original

layout times number of gateways in new layout). The list will be sorted

ascendingly by the distances and the shortest combinations of original-new

gateway locations shall be taken with the Greedy approach. Eventually, the sum

of the taken combinations’ distances is return as the moving penalty.

With this implementation, if either of the layouts has empty members

(gateways), it shall return 0. If there is difference between the number of

 43

gateways in the layouts, the difference will be considered as addition or removal

to/from deployment, not contributing to the moving penalty.

GetMovingPenalty

Input:

layoutA: GatewayLayout

layoutB: GatewayLayout

{

 var gatewaysA = layoutA.Members

 var gatewaysB = layoutB.Members

 // distance mapper, an array of object with
 // properties of distance, and indices of
 // gateways

 var distanceMapper : {distance : int,
 indexA: int,
 indexB: int}[]

 var penalty = 0. // initial penalty is 0

 // find out all the distances between gateways

 For i = 0 to gatewaysA.Count - 1

 For j = 0 to gatewaysB.Count - 1

 var distance =
 Distance(gatewaysA[i],gatewaysB[j])

 // record the distance to mapper

 distanceMapper.Add({distance, i, j})

 End For

 End For

 // sort the array based on distance

 distanceMapper =
 distanceMapper.SortByDistanceAscending()

 // while the mapper still contains record

 While distanceMapper.Count > 0

 44

 // take the curent shortest distance
 // and add to penalty

 penalty += distanceMapper[0].distance

 i = distanceMapper[0].indexA

 j = distanceMapper[0].indexB

 // remove all records which has
 // either gateway of the removed record

 distanceMapper.RemoveWhere(d =>

 d.indexA equals to i OR

 d.indexB equals to j

)

 End While

 return penalty

}

Figure 4.9 Pseudocode of Get Moving Penalty

4.2.7 Distance

Distance

Input:

nodeA: Gateway or Sensor

nodeB: Gateway or Sensor

{

 // Pythagoras theorem

 distance = sqrt(
 (nodeA.X – nodeB.X)2 + (nodeA.Y – nodeB.Y)2)
 return distance

}

Figure 4.10 Pseudocode of Distance

The distance sub-function (Figure 4.10) returns the distance between two

nodes, with any combinations of gateway and sensor. The function basically

utilized the Pythagoras theorem a2 + b2 = c2 to compute distance between two

points, with the aid of XY coordinates in each node.

 45

 Realization

The implementations described above were written into a software with C#

programming language with .NET Framework. The program consists of a

graphic user interface where the proposed solution of current generation is

presented to user in the graphical 2D spatial plane.

The information such as current generation and number of gateways are

also shown, and there are controls where user can insert the source sensor nodes

layout and original gateway layout (in .json file format), and buttons to start and

stop the computation. Upon stopping the computation, the last generated

solution shall be exported as a .json file.

 Summary

In this chapter, the implementation of the proposed solution is explained in

detail majorly in the form of abstractions. The model with native GA cycle steps

is described and presented in pseudocodes which programmed according to the

designs in the proposal. However, there were some parts where adaptation works

are required to formulate the problem into a more computable form. The codes

were written into a desktop program where GUI is available for user to have a

more interactive experience.

 46

5 EXPERIMENTAL SETUP

 Simulation Setup

A set of simulations is designed and run to evaluate the performance of the

proposed framework against other techniques to propose a solution for gateway

placement optimization problem. The simulation data is derived and transformed

from an existing real-time crowd counting application, where sensors are located

around a shopping mall to detect visitors flow. The simulation is setup and run

with the following basis:

• Two IoT-gateways should be placed within the lateral bound

communication vicinity to ensure communicability.

• The average coverage of the southbound and average distance of the

lateral bound are set the same because based on our actual

implementation, both are using 2.4GHz Wi-Fi.

• To ensure that each sensor node is covered by redundancy k=2, each

location is placed with 2 gateways for the uniform arrangements.

In general, each technique would be given with a same series of problem

inputs: the sensor node locations in a 2D spatial plane; and expected to yield a

solution for each problem: the gateway locations.

For implementation, each problem is modeled as a file that consists of a list

of json node objects (refer to Figure 5.1) with randomized X and Y coordinates

within a designated range. Every technique is implemented into programs

written in C# language, which would read the input file, propose a solution based

on the deserialized input and consequently record the solution as another file that

contains a list of json gateway objects with computed X and Y coordinates as

 47

output. For uniform arrangements, the implemented program shall always return

a constant solution that is hardcoded but sufficient to fulfill the mentioned

requirements (to ensure that each sensor node is covered by redundancy k=2,

each location is placed with 2 gateways). The simulation is basically to

iteratively running every program of particular technique with the array of input

files until all inputs have a proposed solution from each technique. The outputs

are subsequently analyzed and evaluated based on different criteria, the

simulation to evaluate each criterion are elaborated in following subsections.

Figure 5.1 Snippet of input and output file content

5.1.1 Network Overlapping Region

To evaluate the wireless interference caused by network overlapping of

the proposed framework, it was compared against the uniform arrangements

of hexagonal [32] (Figure 5.2) and square arrangements [33] (Figure 5.3)

where the gateways are placed within the communication vicinity. These

arrangements were shown to be the most efficient patterns to cover an area with

 48

least overlapping. Besides, it is also compared with the existing solution

NewIoTGateway-Select by Karthikeya et al.[18], which we have reviewed in

Chapter 2. We generate 30 problems as input with 50 sensor nodes each and

collect the output solutions by each technique.

A profiling program is written to take the solution file as input and return

the coverage of area in percent for each layer of overlapping. The program would

create a visual of 2D spatial plane with white background overlaid with the

gateway according to their coordinates in the solution. Each gateway is

surrounded by a circle with constant radius and translucent coloured fill that

indicates the wireless coverage of it. Technically, when two translucent circles

overlap, the intersected area shall have a lower transparency (i.e. more saturated

colour) and the more layer of overlapping shall result with even lower

transparency. Ultimately, each layer of overlapping would be indicated with

different colour.

Figure 5.2 Sample of 2D spatial plane visual with hexagonal gateway

arrangement

 49

Figure 5.3 Sample of 2D spatial plane visual with square gateway

arrangement

The coverage area by different layer of overlapping is acquired from this

visual of 2D spatial plane using pixel counting based on the distinct colour of

each layer. The distribution of each layer of overlapping in percentage is then

calculated and recorded in a table. To better illustrate the overlapping layer, we

have come out with a formula to determine the overlapping index as follow:

𝑖𝑜 = ∑ 𝑙 × 𝐴𝑙

𝐿

𝑙=1

 (1)

Where io indicates the overlapping index, l indicates the overlapping layer, L

indicates the maximum overlapping layer and Ai indicates the area percentage of

the overlapping layer.

5.1.2 Number of Gateways Required and Network Resiliency

In this simulation, the proposed framework is compared against the

hexagonal arrangement with max coverage and minimum overlapping [32]

which is a most efficient uniform arrangement in terms of area coverage with

least overlapping area, and the reviewed work of NewIoTGateway-Select [18]

to evaluate the number of gateways required and network resiliency of the

 50

proposed solution. Unlike previous simulation, the hexagonal arrangement has

its gateways placed further to maximize the coverage (Figure 5.4). The 3

techniques generate the solution based on the same set of problems from last

simulation. For the first part of evaluation, the number of gateway in each

solution is extracted and recorded.

Figure 5.4 Sample of 2D spatial plane visual with hexagonal gateway

arrangement with maximized coverage

 For the second part of the evaluation, which is the network resiliency, we

run fault injection tests on each collected solution based on their problem. A

program is written to take the problem (list of sensor nodes) and solution (list of

gateway) as input and creates a connectivity matrix of every sensor node with

gateways. The gateways are randomly marked as remove one by one until at

least one node is not connected to any gateway. All collected solutions and their

corresponding problem shall go through the test for 30 times and the number of

gateway removed for each iteration, which also indicates the level of fault

tolerance is recorded.

 51

5.1.3 Movement required due to change of sensor layout

In this simulation, the proposed framework is compared against

NewIoTGateway-Select [18]. The intention of this simulation is to imitate the

scenario of rearranging a set of deployed gateways to cater for a new sensor

nodes layout, subsequently evaluate the overall movement required for each

gateway. To start the simulation, 30 problems with 50 sensor nodes each are

generated and serve as inputs for the programs implemented by the 2 techniques

to compute respective solutions.

For these 30 problems, says P1 – P30, we regard a single problem as the

original sensor nodes layout and its next problem (circularly) as the new sensor

nodes layout. For example, P3 is the new layout of P2, P4 is the new layout of P3,

P1 is the new layout of P30 and so on. In such event, we can assume that the

differences in positions between the solution of a single problem and its next

problem is the movement incurred by the change of sensor node layout.

The program implemented with our proposed framework would be

executed again with the same 30 problems as input, but for this time, it would

take another input, which is the solution from last problem so that it can take the

original layout into consideration to compute a new solution in order to

minimizes the movement between original and new gateway locations.

To determine the movement required from original gateway layout to

new gateway layout, all distances between gateways in both layout are computed

and added into a list along with the two gateways. The element with shortest

available distance is popped from the list, followed by removing all other

elements containing any of its two gateways. This process is repeated until the

list is empty. The sum of distances from the popped elements is recorded as the

 52

result of movement required between original and new gateway layout. Besides,

the difference in the number of gateway between the original and new gateway

layout is also recorded.

5.1.4 Computational Time

In this simulation, the proposed framework is compared against

NewIoTGateway-Select [18] from the perspective of computational time. The

programs implemented based on the 2 techniques attempt to solve problems with

different sizes (number of nodes of 20 – 80 with the multiple of 20) and iterate

for 30 times for each size. For NewIoTGateway-Select, the recording time is the

time taken to compute a solution; while the recording time for the proposed

framework is the time taken to complete 5000 generations.

 Summary

To summarize this chapter, a series of experiments consisting of 4 sets of

experiments were designed and setup to benchmark the proposed framework

based on different criteria. The simulations involved benchmarking the

performances of the proposed framework against existing techniques.

 The evaluation criteria include: (1) Network overlapping region – to

evaluate the wireless interference caused by network overlapping within IoT

gateways; (2) Number of Gateways Required and Network Resiliency – to

evaluate the performance of minimizing number of required gateway and fault

tolerance; (3) Movement required due to change of sensor layout – to assess the

performance of minimizing the gateway movement required from original to

new gateway layout due to sensor layout changes; (4) Computational Time – To

benchmark the computational speed of the framework to produce a solution.

 53

 The simulations shall be executed, and the results are presented in the

next chapter.

 54

6 EVALUATION RESULTS

 Simulation Results

The simulation as described in the previous section is executed, the output

results are collected and organized for analysis. The following subsections show

the simulation outcomes and our findings

6.1.1 Network Overlapping Region

The collected results of the output from the simulation to evaluate the

network overlapping region are sorted out and organized as Table 6.1 below,

containing the mean percentage of area distribution with different layer of

overlapping, along with their standard deviation (σ). With our suggested formula,

we also calculated the overlapping index (io) based on the results. According to

the data in the table, a graph shown in Figure 6.1 is also generated to give a better

visualization to the data.

Layer of

overlapping

GA Framework
NewIoTGateway

-Select
Hexagonal Square

Mean

percentage
σ

Mean

percentage
σ

Mean

percentage
σ

Mean

percentage
σ

1 25.76 7.28 19.15 4.45 0.00 0.00 0.00 0.00

2 52.19 10.56 30.61 4.91 41.94 0.00 37.53 0.00

3 12.36 4.06 23.07 3.22 0.00 0.00 0.00 0.00

4 6.97 5.86 17.03 3.28 40.00 0.00 35.14 0.00

5 2.12 3.28 7.66 3.54 0.00 0.00 0.00 0.00

6 0.58 1.94 2.12 1.97 11.14 0.00 19.91 0.00

7 0.01 0.08 0.34 0.78 0.00 0.00 0.00 0.00

8 0.00 0.00 0.03 0.14 6.92 0.00 7.42 0.00

Total 100.00 100.00 100.00 100.00

iO 209.29 271.25 366.09 394.49

Table 6.1 Average distribution of layer of overlapping in percentage and

overlapping index

 55

Figure 6.1 Overlapping Layer Distribution in Percentage with

Overlapping Index

From the results, we can see that the hexagonal and square uniform

arrangements have their distributions over the even number layer of overlapping

between 2 to 8. This is due to 2 gateways are placed on each position to ensure

the redundancy of k-2. Around half of the covered area of for NewIoTGateway-

Select is with 1 and 2 layers of overlapping, while the rest are covered with

higher layer of overlapping. For the proposed GA framework, almost 80% of the

area is covered by 1 and 2 layers of overlapping, while most of the remaining is

covered with layers of 3 to 5. Majority of the covered area of proposed GA

framework is below 5 layers of overlapping, while the uniform arrangements

have a significant portion of the coverage make up with 6 and 8 layers.

According to the overlapping index, the proposed GA framework is

noticeably lower than the other 3 techniques. It is around 23%, 43% and 47%

lower than the NewIoTGateway-Select, hexagonal and square arrangements

respectively. This shows that most of the covered area of the solutions yielded

0

100

200

300

400

500

0

10

20

30

40

50

60

GA Framework NewIoTGateway-Select Hexagonal Square

O
ve

rl
ap

p
in

g
in

d
ex

D
is

tr
u

b
u

ti
o

n
 a

re
a

(%
)

Layers of overlapping

Overlapping Layer Distribution in Percentage with
Overlapping Index

1 2 3 4 5 6 7 8 io

 56

by GA Framework are with low layer of network overlapping, which should

relatively prevent heavy wireless interference within the lateral-bound network.

6.1.2 Number of Gateways Required and Network Resiliency

From this simulation, the collective of tolerable number of gateway

failure before at least a sensor node is uncovered is recorded. The proposed GA

framework is evaluated along with the hexagonal arrangement with maximum

coverage and NewIoTGateway-Select. The results from a total of 30 x 30 fault

injection tests are organized and compiled as the following Table 6.2 and further

presented as a combo chart in Figure 6.2.

Proposed GA

Framework

NewIoTGateway

-Select

Hexagonal

(Max

Coverage)

Mean σ Mean σ
Mea

n
σ

Average number

of gateway

failure before a

sensor node is

out of coverage

3.3 1.0 4.4 1.5 4.5 1.4

Average number

of deployed

gateway

9.0 0.8 12.3 1.2 12.0 0

Table 6.2 Average number of gateway failure with average number of

deployed gateway

 57

Figure 6.2 Number of gateway failure with number of deployed gateway

 Based on the results, we found that our proposed GA framework has a

lower tolerance to gateway failure compared to the other techniques, which is

around 25% lower. However, the number of gateways deployed is also 25%

lower than the other 2 approaches. When we put these 2 sets of number together,

we discover that the ratio of number of gateway failure to number of deployed

gateways are almost the same through all three techniques, which is around 36%.

Therefore, although the GA framework has a tradeoff of lower tolerance to

failure in terms of unit of gateway with the reduction of deployed gateways, it

actually maintains the tolerance from the perspective of correlation.

6.1.3 Movement required due to change of sensor layout

One of our objectives in this research is to accommodate dynamic

sensors movement as consideration during computation of gateway placement

scheme, ultimately to reduce overall gateway movement incurred by the change

of sensor nodes movement. In this simulation, we find out the total distances

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

Proposed GA Framework NewIoTGateway-Select Hexagonal (Max
Coverage)

R
at

io

N
u

m
b

e
r

o
f

ga
te

w
ay

Number of Gateway Failure with
Number of Deployed Gateway

Number of gateway failures before a sensor is out of coverage

Number of deployed gateway

Ratio of number of gateway failure to number of deployed gateway

 58

between new and original gateway placement schemes computed by different

techniques.

It is notable that we also include the result of our proposed GA

framework without the input of original gateways locations. We exclude uniform

arrangements from this simulation because we assume that uniform

arrangements are static and there is not movement regardless of the sensor nodes

changes. The results of the simulation is organized and compiled as Table 6.3

below and presented as a bar chart in Figure 6.3.

NewIoTGateway-Select

Proposed GA

framework

(without input of

original gateways)

Proposed GA framework

(with input of original

gateways)

Movement

Gateway

differenc

e

Movement

Gateway

differenc

e

Movement
Gateway

difference

Average 1815.10 0 1450.40 0 796.03 0

σ 570.79 1.8 389.66 1.3 233.60 1.3

Table 6.3 Average gateway movement required due to change of sensor

nodes layout

 59

Figure 6.3 Gateway movement required for different technique

Based on the results, the average movement of the 3 techniques over the

30 output solution is 1815.10, 1450.40 and 796.03 units respectively. From the

numbers, we find that the movement of NewIoTGateway-Select is around 25%

more than the proposed GA framework without input of original gateways, and

double of the proposed GA framework with the input of original gateways. From

the number of gateway difference, we can see that the average difference are all

0 with a standard deviation of 1.3 to 1.8.

 According to the findings, it can be concluded that the proposed GA

framework with the input of original gateway locations, is able to drastically

reduce the movement of gateway during the event of changes in sensor nodes

layout without the need of adding many extra gateways.

6.1.4 Computational Time

The programs implemented with proposed GA framework and

NewIoTGateway-Select are set to run in to solve gateway placement

optimization problem with different problem size (number of sensor nodes) on

0

200

400

600

800

1000

1200

1400

1600

1800

2000

NewIoTGateway-Select Proposed GA framework
(without input of original

gateways)

Proposed GA framework
(with input of original

gateways)

M
o

ve
m

e
n

t
(u

n
it

)

Gateway Movement Required for
Different Technique

(lower is better)

 60

a Windows 10 machine installed with an Intel i7-7700HQ processor and 16GB

RAM. The following Table 6.4 and the graph in Figure 6.4 show the average

time taken for NewIoTGateway-select to produce a solution and for proposed

GA framework to complete 5000 generations.

Number of Sensor Nodes

Computational Time (s)

Proposed GA Framework NewIoTGateway-Select

Mean σ Mean σ

20 6 x 10-3 2 x 10-3 16.00 0.52

40 15 x 10-3 4 x 10-3 31.90 1.3

60 29 x 10-3 6 x 10-3 51.93 2.84

80 49 x 10-3 11 x 10-3 79.37 1.85

100 74 x 10-3 17 x 10-3 102.10 2.88

Table 6.4 Average computational time for different problem size

Figure 6.4 Number of sensor nodes vs time taken

According to the results, we can see that the GA Framework has its

computational time increases linearly with the problem size, and take around

100 seconds to for problem with 100 sensor nodes. For NewIoTGateway-Select,

0

20

40

60

80

100

120

20 40 60 80 100

Ti
m

e
ta

ke
n

 (
s)

Number of sensor nodes

Number of Sensor Nodes vs Time Taken

Proposed GA Framework NewIoTGateway-Select

 61

it is almost immediate. However, considering that the program is only executed

when there is a change in the setup, the execution time is reasonable.

6.1.5 Summary

Based on the evaluation results, we are able to come out with a number

of findings regarding the GA framework. The framework is able to give

solutions for gateway placement optimization problems with the input of list of

sensor nodes with X and Y coordinates, and the solutions include gateway

redundancy of k=2 for each sensor nodes.

The framework is also able to provide solutions that has lower

overlapping index, where most of the overlapping region is below 5 layers. The

solutions also minimize the number of gateways to cover all sensor nodes, but

the tolerance of failure in terms of gateway unit is also lower. However, it still

able maintain the ratio of failed gateway to deployed gateway to be close with

other techniques.

For the required movement of gateway due to change of sensor nodes

layout, the GA framework shows good performance when it is fed with the

information of original gateway locations as input during the computation. The

outputs give significantly better results compared to the existing work.

Nevertheless, the computational time of the GA framework is shown notably

longer compared to NewIoTGateway-Select, but considering that the it is only

executed when there is a change in the setup, the execution time is still

reasonable.

 62

7 CONCLUSION AND FUTURE WORK

 Conclusion

To sum up the project, this research has developed a framework to find

solutions for gateway placement optimization problems, with the considerations

of wireless interference, number of gateways, redundancies, and gateway

relocations due to changes of sensor nodes layout. In this research, we have

presented the common implementations of deploying IoT gateway in IoT sensor

networks for better cost efficiency, and store and forward capabilities. This

research is built on top of the basis of collaborative IoT gateway which the lateral

bound connection which shall facilitate the implementations of gateway

redundancies.

It is realized that although deploying extra gateways can provide

redundancies to sensor nodes internet connection, placing too many gateways

eventually cause signal overlapping and network interference, also having

impact to deployment cost. Besides, IoT sensor network can be dynamic and

differ from time to time, gateway placement has to be agile to handle the

dynamic nature. Gateway placement optimization is the problem that we tried

so solve, which involves finding optimal gateway locations to place gateways in

order to fulfill multiple conditions. In this research we have reviewed a number

of existing works aimed of solving gateway placement optimizations with

different types of consideration factors. Although none of the works have the

same objectives as ours, we still manage to find one that is relatively close to our

requirements and selected it to be our benchmarking target.

 63

We proposed a gateway placement framework, which takes the sensor

node locations, number of gateway desired and original gateway locations as

input, and shall produce the proposed gateway locations (layout). Based on our

requirements, we have come out with a list of consideration factors and

formulate them into gateway placement optimization problem. As more

consideration factors are added on top of primitive gateway placement

optimization, the problem would get more complex due to variable number

variable scope and variable diversity. Genetic algorithm is selected to implement

our optimization model in the proposed framework as a global search approach

is more preferable to find a solution that does not need to be optimal at each

requirement, good enough to fulfill the minimum requirement and with wider

search space.

The gateway placement optimization model in our framework is designed

with genetic algorithm as basis. Problems and requirements are formulated to

adapt the steps in a genetic algorithm lifecycle, which are initialization, selection,

crossover, mutation and fitness evaluation. The proposed solution is

implemented into software programming logics accordingly, and written in a

modern programming language to be compiled as a software. The written

software program, along with another software programs created based on the

benchmarking solution, are used to go through a series of simulations for

performance evaluations.

The simulations are designed to evaluate the performance of our gateway

placement framework based on several evaluation criteria, namely: network

overlapping region, number of gateways required and resiliency of the network,

movement required due to change of sensor layout, and the computational time.

 64

The framework is evaluated against uniform gateway placement, and also the

solutions by an existing research work. The evaluation outcomes of the

framework are promising for each evaluation criterion, but due to the nature of

genetic algorithm, there are still some space of improvement in terms of the

computational speed compared to the existing work that was implemented with

greedy technique.

At the end of this research, we can conclude that all of the research

objectives are achieved, which are 1) to develop a framework to minimize the

Wi-Fi interference between IoT gateway in the lateral bound network, 2) to

design a technique to minimize the number of IoT gateway placement without

sacrificing fault-tolerance and 3) the design of the framework will accommodate

dynamic sensors movement as consideration during computation of gateway

placement scheme.

 Future Work

GA is known to have a very high scalability. The future works can take

advantage of this nature by tweaking the fitness evaluation module, our GA

framework can be further improved to adapt with a wider range of gateway

placement problem. More considerations factor can be injected on top of the

current set to cater with new requirements and constraints. For instance,

restricted area to place a gateway, multiple wireless communication

technologies, load balancing and so on.

On top of that, there are still rooms of improvement for the computational

speed of the GA framework. The current model was implemented with single

threaded programming. For future work, the model can be implemented with the

concept of multi-threaded programming to greatly improve the computational

 65

speed and raise the upper bound of problem size that can be solved within a time

frame.

 66

REFERENCES

[1] Cisco, “Internet of Thing,” 2016.

[2] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From IoT

to 5G I-IoT: The Next Generation IoT-Based Intelligent Algorithms and

5G Technologies,” IEEE Commun. Mag., vol. 56, no. 10, pp. 114–120,

2018.

[3] NVIDIA, “Metropolis - Video Analytics & Applications.” [Online].

Available: https://www.nvidia.com/en-sg/autonomous-

machines/intelligent-video-analytics-platform/. [Accessed: 01-Dec-

2019].

[4] B. Flavio, R. Milito, J. Zhu, and A. Sateesh, “Fog Computing and Its

Role in the Internet of Things,” Proc. First Ed. MCC Work. Mob. Cloud

Comput., pp. 13–16, 2012.

[5] NVIDIA, “NVIDIA EGX: Accelerating Edge Computing for AI at the

Edge | NVIDIA.” [Online]. Available: https://www.nvidia.com/en-

sg/data-center/products/egx-edge-computing/. [Accessed: 01-Dec-2019].

[6] M. Hemmatpour, M. Ghazivakili, B. Montrucchio, and M. Rebaudengo,

“DIIG: A Distributed Industrial IoT Gateway,” Proc. - Int. Comput.

Softw. Appl. Conf., vol. 1, pp. 755–759, 2017.

[7] S. Shirmohammadi, W. T. Chai, B. Y. Ooi, and S. Y. Liew, “Taxi-

sharing: A wireless IoT-gateway selection scheme for delay-tolerant

data,” I2MTC 2018 - 2018 IEEE Int. Instrum. Meas. Technol. Conf.

Discov. New Horizons Instrum. Meas. Proc., pp. 1–6, 2018.

[8] T. Adesina and O. Osasona, “A Novel Cognitive IoT Gateway

Framework: Towards a Holistic Approach to IoT Interoperability,”

IEEE 5th World Forum Internet Things, WF-IoT 2019 - Conf. Proc., pp.

53–58, 2019.

[9] B. Y. Ooi, Z. W. Kong, W. K. Lee, S. Y. Liew, and S. Shirmohammadi,

“A collaborative IoT-gateway architecture for reliable and cost effective

measurements,” IEEE Instrum. Meas. Mag., vol. 22, no. 6, pp. 11–17,

 67

2019.

[10] S. Ivanov and E. Nett, “Achieving Fault-Tolerant Network Topology in

Wireless Mesh Networks,” pp. 1–24, 2012.

[11] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric

architecture to provide novel M2M services,” 2014 IEEE World Forum

Internet Things, pp. 514–519, 2014.

[12] M. Kumari, A. Kumar, and R. Singhal, “Design and Analysis of IoT-

Based Intelligent Robot for Real-Time Monitoring and Control,” 2020

Int. Conf. Power Electron. IoT Appl. Renew. Energy its Control. PARC

2020, pp. 549–552, 2020.

[13] A. Mijuskovic, R. Bemthuis, A. Aldea, and P. Havinga, “An Enterprise

Architecture based on Cloud, Fog and Edge Computing for an Airfield

Lighting Management System,” Proc. - IEEE Int. Enterp. Distrib.

Object Comput. Work. EDOCW, vol. 2020-Octob, pp. 63–73, 2020.

[14] S. Mnguni, P. Mudali, A. M. Abu-Mahfouz, and M. Adigyn, “A Review

On Gateway Placement Algorithms on Internet of Things,” Proc. Int.

Conf. Intell. Sustain. Syst. ICISS 2019, pp. 479–484, 2019.

[15] J. Zhang, G. Han, and Y. Gui, “An interference-aware cognitive WLAN

for high density wireless environment,” Int. Conf. ICT Converg. 2015

Innov. Towar. IoT, 5G, Smart Media Era, ICTC 2015, no. 2014, pp.

586–588, 2015.

[16] M. Kim, S. Park, and W. Lee, “Ping-pong free advanced and energy

efficient sensor relocation for iot-sensory network,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1–18, 2020.

[17] N. Battat, H. Seba, and H. Kheddouci, “Monitoring in mobile ad hoc

networks : A survey,” Comput. NETWORKS, vol. 69, pp. 82–100, 2014.

[18] S. A. Karthikeya, J. K. Vijeth, and C. S. R. Murthy, “Leveraging

Solution-Specific Gateways for Cost-Effective and Fault-Tolerant IoT

Networking,” IEEE Wirel. Commun. Netw. Conf. (WCNC 2016) - Track

4 - Serv. Appl. Bus., 2016.

[19] P. Maiti, J. Shukla, B. Sahoo, and A. K. Turuk, “Efficient Data

 68

Collection for IoT Services in Edge Computing Environment,” 2017 Int.

Conf. Inf. Technol., pp. 101–106, 2017.

[20] I. Gravalos, P. Makris, K. Christodoulopoulos, and E. A. Varvarigos,

“Efficient Network Planning for Internet of Things with QoS

Constraints,” IEEE Internet Things J., pp. 1–6, 2018.

[21] X. Yuan, Y. He, Q. Fang, X. Tong, C. Du, and Y. Ding, “An Improved

Fast Search and Find of Density Peaks-based Fog Node Location of,”

2017 IEEE Int. Conf. Internet Things IEEE Green Comput. Commun.

IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, pp. 635–642, 2017.

[22] Z. W. Kong, T. B. Tan, B. Y. Ooi, and S. Y. Liew, “Interference-aware

Wireless Internet of Things Gateway Placement Scheme,” Proc. - Int.

Conf. Comput. Inf. Sci. Sustain. Tomorrow with Digit. Innov. ICCOINS

2021, no. July, pp. 201–206, 2021.

[23] W. Wenjia, L. Junzhou, and Y. Ming, “Gateway placement optimization

for load balancing in wireless mesh networks,” Proc. 2009 13th Int.

Conf. Comput. Support. Coop. Work Des. CSCWD 2009, pp. 408–413,

2009.

[24] A. M. Ahmed and A. H. A. Hashim, “A Genetic Approach for Gateway

Placement in Wireless Mesh Networks,” IJCSNS Int. J. Comput. Sci.

Netw. Secur., vol. 15, no. 7, p. 9, 2015.

[25] P. Maiti, J. Shukla, B. Sahoo, and A. K. Turuk, “QoS-Aware Fog Nodes

Placement,” 2018 4th Int. Conf. Recent Adv. Inf. Technol., pp. 1–6,

2018.

[26] A. Rodriguez and A. Laio, “Clustering by fast search and find of density

peaks,” Science (80-.)., vol. 344, no. 6191, pp. 1492–1496, 2014.

[27] H. Tian, M. A. Weitnauer, and G. Nyengele, “Optimized gateway

placement for interference cancellation in transmit-only LPWA

networks,” Sensors (Switzerland), vol. 18, no. 11, pp. 1–23, 2018.

[28] F. Loh, D. Bau, J. Zink, A. Wolff, and T. Hossfeld, “Robust Gateway

Placement for Scalable LoRaWAN,” pp. 71–78, 2021.

[29] I. Gravalos, P. Makris, K. Christodoulopoulos, and E. A. Varvarigos,

 69

“Efficient Network Planning for Internet of Things with QoS

Constraints,” IEEE Internet Things J., vol. 5, no. 5, pp. 3823–3836,

2018.

[30] J. Brownlee, “Local Optimization Versus Global Optimization.”

[Online]. Available: https://machinelearningmastery.com/local-

optimization-versus-global-optimization/. [Accessed: 01-Apr-2021].

[31] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: Concepts

and applications,” IEEE Trans. Ind. Electron., vol. 43, no. 5, pp. 519–

534, 1996.

[32] Y. Kamer, G. Ouillon, and D. Sornette, “Barycentric fixed-mass method

for multifractal analysis,” Phys. Rev. E, vol. 88, no. 2, p. 022922, Aug.

2013.

[33] “Optimal Packing.” [Online]. Available:

https://datagenetics.com/blog/june32014/index.html. [Accessed: 13-

Dec-2020].

	1 INTRODUCTION
	1.1 Research Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Research Contribution
	1.5 Dissertation Organization

	2 LITERATURE REVIEW
	2.1 Gateway Placement Optimization
	2.2 NewIoTGateway-Select
	2.3 Device Selection Adaptive to QoS (DESAQos)
	2.4 Efficient Data Collection for IoT Services in Edge Computing Environment
	2.5 Improved Fast Search and Find of Density Peaks-based Fog Node Location of Fog Computing System
	2.6 Optimized Gateway Placement for Interference Cancellation for Transmit-Only LPWA Networks
	2.7 Robust Gateway Placement for Scalable LoRaWAN
	2.8 Comparison between existing techniques
	2.9 Genetic Algorithm
	2.10 Summary

	3 PROPOSED SOLUTION
	3.1 Problem formulation
	3.2 Proposed model
	3.2.1 Initialization
	3.2.2 Selection
	3.2.3 Crossover
	3.2.4 Mutation
	3.2.5 Fitness Evaluation

	3.3 Summary

	4 SYSTEM IMPLEMENTATION
	4.1 Basic elements
	4.2 Genetic Algorithm Implementation
	4.2.1 Initialization
	4.2.2 Selection
	4.2.3 Crossover
	4.2.4 Mutation
	4.2.5 Fitness Evaluation
	4.2.6 Get Moving Penalty
	4.2.7 Distance

	4.3 Realization
	4.4 Summary

	5 EXPERIMENTAL SETUP
	5.1 Simulation Setup
	5.1.1 Network Overlapping Region
	5.1.2 Number of Gateways Required and Network Resiliency
	5.1.3 Movement required due to change of sensor layout
	5.1.4 Computational Time

	5.2 Summary

	6 EVALUATION RESULTS
	6.1 Simulation Results
	6.1.1 Network Overlapping Region
	6.1.2 Number of Gateways Required and Network Resiliency
	6.1.3 Movement required due to change of sensor layout
	6.1.4 Computational Time
	6.1.5 Summary

	7 CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work

	REFERENCES

