
DYNAMIC ORDER-BASED SCHEDULING

ALGORITHMS FOR AUTOMATED RETRIEVAL

SYSTEM IN SMART WAREHOUSES

LIU JIALEI

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND

COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

DECEMBER 2021

i

DYNAMIC ORDER-BASED SCHEDULINGALGORITHMS FOR
AUTOMATED RETRIEVAL SYSTEM IN SMARTWAREHOUSES

By

LIU JIALEI

A dissertation submitted to the Department of Computer Science,
Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,
in partial fulfillment of the requirements for the degree of
Master of Science (Computer Science) in December 2021

ii

ABSTRACT

DYNAMIC ORDER-BASED SCHEDULINGALGORITHMS FOR
AUTOMATED RETRIEVAL SYSTEM IN SMARTWAREHOUSES

LIU JIALEI

With the rapid development of logistics industry, Smart Warehouse, which aims to

automate the tasks of storage, picking, packaging, delivery, etc., has become a very

important part in the logistics system. To automate and speed up the item retrieval

process, a Smart Warehouse usually employs a management system, called the

Automated Retrieval System (ARS), to control and schedule the retrieval jobs.

However, most of the existing ARS scheduling algorithms handle the retrieval jobs of

items independently, but do not consider the integrality of orders. Thus, the overall

delay of orders cannot be optimized. In this dissertation, we introduce the concept of

Order Tag to the ARS scheduling algorithms. First, we verify whether the Order Tag

strategy can reduce the overall delay in the case of "Static Order Arrival". We propose two static

algorithms, namely Static Order-Based Scheduling Algorithm – I (SOB-I) and Static Order-Based

Scheduling Algorithm II (SOB-II). Simulation results demonstrate that these two strategies can

reduce the total retrieval delay by approximately 30% compared to the existing algorithms, such

as Order-Based Random Out Algorithm (OBRO), Item-Based Shortest-Job-First Algorithm (IB-

SJF). Next, we study the case of "Dynamic Order Arrival". Instead of assuming that all

iii

orders arrive to the system before processing, the algorithm considers orders arrive

dynamically and it handles each new order once received. This makes the warehouse

more flexible and efficient, but it also has higher requirements on the scheduling

algorithms. To minimize the average delay and ensuring the fairness, two algorithms

are proposed. They are named as Dynamic Order-Based (DOB) and Dynamic Order-

Based with Threshold (DOBT) Scheduling Algorithms, respectively. Compared with

the First-Come-First-Serve and other approaches, the simulation results show that

DOB and DOBT are able to reduce the average order retrieval delay by at least 30%,

and generate less backlog pressure to the downstream operations.

iv

ACKNOWLEDGEMENT

First of all, I would like to show my great appreciation to my main supervisor, Dr.

Liew Soung Yue, who has been helping me all along the way of my Master’s study at

UTAR. Dr. Liew has been of great help to me both academically and in life. In terms

of life, as an international student, when I first came to Malaysia, he helped me get

familiar with the environment here and often cared about my life like a good friend.

Academically, he often pointed me in the direction with his rich experience and

professional knowledge when I was confused. I couldn't have made it this far without

his help. At the same time, I would also like to thank my co-supervisor, Dr. Ooi Boon

Yaik, who often provides some good ideas and suggestions for our research and

promotes our research process at critical moments. Similarly, I must also thank my

external co-supervisor, Prof. Qin Donghong. It was with his encouragement that I

embarked on my study trip to UTAR, which is an unforgettable and meaningful

experience. I also want to thank him for his concern about my life and study, which

often gives me warmth and motivation to persist.

Finally, I'd like to thank everyone I've met at UTAR for all the trouble I've put you

through. I really appreciate your patience and help.

v

APPROVAL SHEET

This dissertation/thesis entitled “Dynamic Order-based Scheduling Algorithms for

Automated Retrieval System in Smart Warehouses” was prepared by LIU JIALEI

and submitted as partial fulfillment of the requirements for the degree of Master of

Master of Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Liew Soung Yue) Date:…………………..
Main Supervisor
Department of Computer and Communication Technology
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

(Dr. Ooi Boon Yaik) Date:…………………..
Co-supervisor
Department of Computer Science
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

(Prof. Qin Donghong)
Co-supervisor
Department of Network Engineering
Faculty of Artificial Intelligence
Guangxi University for Nationalities

Date:…………………..

17/5/2022

17/5/2022

boonyaik
Typewriter
17/5/2022

vi

SUBMISSION SHEET

FACULTYOF INFORMATIONAND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKUABDUL RAHMAN

Date: __________________

SUBMISSION OF FINALYEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that LIU JIALEI (ID No: 19ACM07125) has completed this dissertation

entitled “ Order-based Scheduling Algorithms for Automated Retrieval System in Smart

Warehouses ” under the supervision of Dr. Liew Soung Yue (Supervisor) from the Department

of Computer and Communication Technology, Faculty of Information and Communication

Technology , and Dr. Ooi Boon Yaik (Co-Supervisor) from the Department of Computer Science,

Faculty of Information and Communication Technology, and Prof. Qin Donghong (Co-

Supervisor), from the Department of Network Engineering, Faculty of Artificial Intelligence,

Guangxi University for Nationalities.

I understand that University will upload softcopy of my dissertation in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(LIU JIALEI)

Liew
16/5/2022

vii

*Delete whichever not applicable

DECLARATION

I hereby declare that the dissertation is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare that it has
not been previously or concurrently submitted for any other degree at UTAR or other
institutions.

Name ____________________________
(LIU JIALEI)

Date _____________________________

Liew
16/5/2022

viii

TABLE OFCONTENTS

Page
ABSTRACT... ii
ACKNOWLEDGEMENT... iv
APPROVAL SHEET... v
SUBMISSION SHEET...vi
DECLARATION... vii
TABLE OF CONTENTS... viii
LIST OFTABLES... x
LIST OF FIGURES..xi
LIST OFABBREVIATIONS .. xiii

Chapter

1.0 INTRODUCTION... 1
1.1 Background .. 1
1.2 Problem Statement ... 3
1.3 Objectives ...4
1.4 Organization of Dissertation .. 5

2.0 RELATED WORKS ..6

2.1 Utilization of AGV in Smart Warehouses .. 7
2.2 Utilization of Automated Stackers in Smart Warehouses11
2.3 Algorithms for Scheduling the Stackers’ Jobs ... 13
2.4 Layout and Workflow of Smart Warehouses ..18

3.0 MATHEMATICALMODELLING OFTHE PROBLEM.............................. 21
3.1 Retrieval Time ..21
3.2 Notations and Definitions .. 22
3.3 Objective Function ... 25

4.0 Static Scheduling Algorithms ..27
4.1 Order-Based Random Out Algorithm (OBRO) ..27
4.2 Item-Based Shortest-Job-First Algorithm (IB-SJF) 27
4.3 Static Order-Based Scheduling Algorithm – I (SOB-I) 29

4.3.1 Job Set, Schedule Sequence and Order Tag29
4.3.2 Implementation Procedure ...30

4.4 Static Order-Based Scheduling Algorithm – II (SOB-II)30
4.4.1 Order Set ..30
4.4.2 Implementation Procedure ...30

4.5 Comparison between SOB-I and SOB-II ...31

ix

4.6 Methodology for Performance Study ...32
5.0 SIMULATION and DISCUSSION I ..33

5.1 Simulation Settings .. 33
5.2 Simulation Results ... 33
5.3 Discussion .. 35

6.0 DYNAMIC SCHEDULINGALGORIHTMS...36
6.1 First-Come-First-Serve (FCFS) Scheduler .. 36
6.2 Last-Come-First-Serve (LCFS) Scheduler ...37
6.3 Shortest-Job-First (SJF) Scheduler .. 37
6.4 Dynamic Ordered-Based (DOB) Scheduler ...38

6.4.1 Flow of DOB Scheduling Algorithm...41
6.4.2 Discussion of DOB..43

6.5 Dynamic Order-Based with Threshold (DOBT) Scheduler 43
6.6 Methodology for Performance Study ...44

7.0 SIMULATION and DISCUSSION II .. 45
7.1 Simulation Models ... 45

7.1.1 Random Model for Generating Order Arrivals45
7.1.2 Random Model for Generating Item Quantity45
7.1.3 Random Models for Generating Shelf Locations and Retrieval Times

46
7.2 Simulation Settings .. 47
7.3 DOB VS. other Schedulers ...47

7.3.1 Average Retrieval Delay of Orders ..49
7.3.2 Maximum Retrieval Delay of Orders .. 50
7.3.3 Downstream Backlog Pressure .. 52

7.4 DOBT vs. DOB and FCFS ...54
7.5 Discussion .. 59

8.0 CONCLUSION.. 61
8.1 Proposed Approaches and Achievement .. 61
8.2 Future Work ..62

REFERENCES.. 64
APPENDIXA: EXPERIMENT DATA..70

x

LIST OFTABLES

Table Page

3.2.1 Notations and Definitions 24

4.2.2 Retrieval time of three orders 29

4.2.3 Schedule of three stackers 29

6.4.1. Definitions of Variables 41

7.4.1 Average Delays of Different Algorithms with Different Thresholds 55

xi

LIST OF FIGURES

Figure Page

2.2.1 Top view of shelves and stackers (J. Cheng, 2019) 12

2.3.1 Comparison of ACO and Hybrid algorithm. (H. Hu, et al., July 2018) 15

3.1 (a) Layout of the smart warehouse. (b) Workflow of the warehouse 19

3.2 Structure of a shelf. 20

4.1.1 Coordinate map of the shelf. 22

4.2.1 Mapping of the ordered items to the jobs of stackers. 24

4.2.2 An example of item-job mapping. 25

4.2.3 The job queue of a stacker. 25

5.2.1 Order continuity on the same stacker 28

6.2.1 Total Delay in Seconds over the Number of Orders with five stackers. 34

6.2.2 Total Delay in Seconds over the Number of Orders with ten stackers. 34

6.2.3 Total Delay in Seconds over the Number of Orders with fifteen stackers. 34

7.4.1 Flow of Dynamic Order-Based Algorithm. 39

8.3.1.1 Comparison of average delays with 6 stackers 49

8.3.1.2 Comparison of average delays with 12 stackers 50

8.3.2.1 Comparison of max delays with different order rates 51

8.3.3.1 Comparison of average order pressures with different order rates 53

8.3.3.2 Comparison of max order pressures with different order rates 53

8.3.3.3 Comparison of average item pressures with different order rates 53

8.3.3.4 Comparison of max item pressures with different order rates 54

8.4.1 Average Delays of DOBT with different threshold values. 55

8.4.2 Max order delays of DOBT under different threshold values ( =110
orders/hour). 56

8.4.3 Average order pressures of DOBT under different threshold values (=110
orders/hour). 57

8.4.4 Max order pressures of DOBT under different threshold values (=110
orders/hour). 58

xii

8.4.5 Average item pressures of DOBT under different threshold values (=110
orders/hour). 58

8.4.6 Max item pressures of DOBT under different threshold values ( =110
orders/hour). 59

xiii

LIST OFABBREVIATIONS

SW Smart Warehouse

WMS Warehouse Management System

AS/RS Automated Storage and Retrieval

System

ASS Automated Storage System

ARS Automated Retrieval System

DOB Dynamic Order-Based

DOBT Dynamic Order-Based with Threshold

FCFS First-Come-First-Serve

LCLS Last-Come-First-Serve

SJF Shortest-Job-First

AGV Automated Guided Vehicles

TSP Travelling Salesman Problem

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

OBRO Order-Based Random Out Algorithm

IB-SJF Item-Based Shortest-Job-First (IB-SJF)

Algorithm

SOB-I Static Order-Based Scheduling

Algorithm – I (SOB-I)

SOB-II Static Order-Based Scheduling

Algorithm – II (SOB-II)

1

CHAPTER 1

INTRODUCTION

1.1 Background

More and more customers choose to shop online because they can reach a

great variety of products conveniently with just a few clicks. In addition, online

shopping can also reduce people's contact and ensure their safety while they are

shopping for the daily needs. This is particularly important during the pandemic of

COVID-19. With the growth of e-commerce businesses, on the other hand, the

merchants would need to provide quality products and good services in order to

attract customers to buy from them. To reduce their business costs, many merchants

choose to store their products in public warehouses, because this can streamline their

backend storing and delivering processes so that they can be more focused on the

frontend promotion and selling processes [1], [2]. Such a trend also puts higher

demands on the management capabilities of those large public warehouses.

In addition to more frequent import and export operations, e-commerce

merchants need to handle a large quantity of customers and take care of customers’

purchasing experiences carefully. Delay in deliveries will have negative impacts on

the image of a merchant, as this will influence the customers’ satisfaction. When the

2

qualities and prices of the same products provided by different suppliers are more or

less in the same range, the delay will make a subtle influence on customers choices.

The faster the delivery the better the customer experience. What more is, there will

always be some people who would like to pay extra fees for faster delivery for various

reasons.

The function of warehouse plays a definitely important role in the whole

logistics process. In contrast to the traditional warehouses, with the development of

automation technology, more and more Smart Warehouses appear. They change the

operation pattern of warehouses from “people to goods” to “goods to people” through

automated equipment, which greatly improved the efficiency of the warehouse [3].

A Smart Warehouse has a different management approach. For example,

Warehouse Management System (WMS) and Automated Storage and Retrieval

System (AS/RS) are introduced, which can manage inventory information and

perform storage and retrieval operations automatically. In this way, it can not only

save the labor cost under the traditional warehouse sorting mode, but also reduce the

errors caused by manual operation and reduce the potential safety hazards for workers,

so as to greatly improve the work efficiency in all aspects of warehousing, and

provide reliable warehousing services for large-scale e-commerce activities. Typically,

an AS/RS employs automated stackers to store and retrieve items. With this

technology, the Smart Warehouse can handle higher shelves, which means it can have

a greater storage capacity as compared with the traditional warehouses. However, the

performance of AS/RS operations relies on the careful designs and implementations

3

of the relevant process flows and algorithms of the system.

1.2 Problem Statement

In typical warehouse operations, upon receiving the orders from customers,

the purchased items need to be retrieved from shelves and then packaged accordingly

for delivery. These operations need to be properly managed in order to guarantee

excellent experience for customers [4], [5].

There are many factors that may affect the customer satisfaction level. Among

these factors, “delay in delivery” has a devastating impact on the reputation of

merchants, and it greatly influence the customers’ choices on the preferred merchants.

As a matter of fact, there are even customers who are willing to pay more for faster

delivery [6]. Although a differentiated handling policy can be implemented at a

warehouse to reduce the delivery delay for a group of high-priority customers [7], the

overall performance of the warehouse is still very important to ensure the satisfaction

of most customers [8]. Therefore, there is a need for optimizing every operation of the

warehouse in order to provide better service for all.

The AS/RS can be divided into two subsystems, namely Automated Storage

System (ASS) and Automated Retrieval System (ARS). In this dissertation, we focus

on the process and operation of ARS because the product retrieval speed directly

affects the subsequent processes in the Smart Warehouse, such as packaging and

delivery, and thus bringing significant impact to the entire transaction duration

between merchants and customers. In particular, the items ordered by the same

4

customer should be considered as an integral part; because if such an integrality is not

considered by the ARS in the retrieval process, then the entire order may experience

an unnecessary delay because the order from the merchant used to contain multiple

items, and the items that come to the packing area first needs to wait for other items.

In the past, the integrality of order has not received much attention in the

parallel retrieval process of multiple stackers. Most of the research focuses on how to

reduce the travel distance of the stacker, neglecting that one order usually contains

multiple items. To take the integrality into account, this dissertation proposes using an

Order Tag to label all the items that belong to the same order. The Order Tags are then

used to schedule the item retrieval sequence of each stacker in order to achieve the

required performance. In other words, the way of calculating the Order Tags will

determine the scheduling discipline of the ARS.

1.3 Objectives

The main objective of this dissertation is to study the integration of the

concept of Order Tag into the scheduling of ARS in order to minimize the average

retrieval delay of all orders and ensure the fairness among the orders to improve the

overall shopping experience of customers. In order to achieve this main objective,

first of all, we need to design a suitable mathematical model to describe and evaluate

the job scheduling problem of stackers. The whole study is divided into two scenarios:

the first stage verifies whether the order-based algorithms can really reduce the delay

in the case of “Static Order Arrival”; the second stage designs the dynamic Order-

5

based algorithms for the case of Dynamic Order Arrival, and then verifies the

performance of the algorithms through experiments.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we

review some relevant works and point out the difference of our proposed algorithms,

and discuss the layout and workflow of the smart warehouse. The mathematical

model of the retrieval process of stackers is derived in Chapter 3. We explain the

procedure of static scheduling algorithms in Chapter 4. Simulation results are

discussed in Chapter 5. We elaborate on the design of our dynamic scheduling

algorithms, and compare them with the FCFS and other approaches in Chapter 6. In

Chapter 7, the simulation models and assumptions are presented. We also discuss the

simulation settings and analyzes the performances of the abovementioned scheduling

algorithms. Finally, Chapter 8 presents the conclusions.

6

CHAPTER 2

RELATEDWORKS

This Chapter provides an overview of two kinds of implementation of “goods

to person” retrieval process in the Smart Warehouse, and analyses their advantages

and disadvantages. The application and working principles of automated stackers in

the Smart Warehouse are also introduced. Besides, we make a thorough review of the

research of other scholars on stackers’ scheduling algorithm and compare them with

our research.

Warehouses in the modern logistics industry are getting more inclined to the

adoption of automation technology, which makes the efficiency and effectiveness of

warehouses higher. Amazon uses Automated Guided Vehicles (AGV) to transport the

entire shelf to the sorter [9], thus liberating the legs of the sorter, which has led many

scholars to pay attention to the utilization of AGV and other automated equipment to

deliver the items to the sorter to improve the performance of the total warehouse. This

new type of work style makes the packagers just need to wait at the Packaging Station

and wait for the products (or the whole shelf) come to them. Using this principle,

various automated shelves have been designed. There are two main kinds of shelves

adopted by modern automated warehouse. With reference to Fig. 2.1, the first one is

7

movable shelves. Generally, the movable shelves are smaller and lighter than fixed

shelves, and their height is not very high, usually a few meters, so that AGVs can

carry them. The grid of items stored on each layer of the shelves is not very large so

the shelves are often used to store smaller items. In this case, an AGV is able to carry

the whole shelf to the packaging station even there is only one product needed to be

picked. With reference to Fig. 2.2, another is the fixed shelves, which are not movable

but we can utilize some automated equipment to pick and retrieve items automatically.

Then we can use AGVs or conveyor belts to transport the goods to the Packaging

station.

Figure 2.1. Movable shelf and AGV [9]

Figure 2.2 Fixed Shelf and Stacker [19]

2.1 Utilization of AGV in Smart Warehouses

The environment of warehouse for the AGV is always considered as a grid

8

map and each grid is a reachable location for AGV. Since multiple AGVs move

together at the same time, the competition for resource or the right to use of each grid

will occur. There are various collisions that may occur in real time. To simplify the

problem many research teams studied the corresponding Collision Model. Zheng’s

team [10] classify the collision issues into four kinds: head-on collision, cross

collision, node-occupancy collision, and shelf-occupancy collision, as the following

figure 2.1.1 shows. The greatest thing of their work is that they set some parameters

and attached each situation with an acute mathematical formula so that the supervisor

system level can compute each kind of collisions in advance and formulate

corresponding solutions.

Figure 2.1.1 Collision Types [10]

In the case of carrying the whole shelf to the sorting station, the AGV has two

states: load state means it is carrying one shelf and unload state means it’s going to

carry one shelf or charge or do something else [10]. There are many routing

algorithms that have been designed and tested to plan routes for AGVs, such as

particle swarm optimization [11], colony optimization [12] and Conflict-Based Search

[13]. Zheng Zhang’s team proposed an algorithm called Collision-Free Route

9

Planning. The theory behind it is a typical off-line [14] routing planning algorithm.

They use improved Dijkstra’s algorithm [15] to plan the complete path for the AGV in

advance. Then they utilize the collision detection formula to compute whether there

are any possible collisions may occur between the current AGV’s route and previous

AGVs’ routes. If there may occur collisions. The system will choose one or two

solutions from the three alternative solutions until the collision disappear. The next

AGV will repeat these processes. It schedules the path of AGVs previously and use

the collision detection to ensure there are no collisions will happen in the actual

operation.

In contrast, Yijing Guo’s team provided a Dynamic Unlock Algorithm [16],

which doesn’t need to process the collisions at the path planning stage. They liken the

AGVs contention for nodes to the contention of computer resources by multiple

threads in system. They first plan the routes for every AGV without considering

whether there will be collisions among these routes. After the first step, they make

lists of each site to record all the AGVs that need the same site in a queue as the

Figure 2.1.2 shows. Each time to a specific site, only the head number of in its queue

can use that site, means it can move through the site. That means even other AGVs

may arrive before the head AGV, they all need to wait until head AGV arrive. This

algorithm is one kind of on-line algorithm [17] of path planning for AGV. This kind of

algorithms always resolve the collision during the real running of AGVs.

10

Figure 2.1.2 List of each site [17]

Actually, whether it’s Zheng Zhang’s or Yijing Guo’s team or other research

teams, they all abstracted the collision model very well and provided corresponding

solutions to each kind of collisions, which can be used in any scenario where AGV is

required. However, the algorithms provided by them still have some drawbacks. For

example, Collision-Free Route Planning provided by Zheng Zhang’s team takes a

large amount of time when planning the path route for the new AGV. Because each

time the system needs to compare the new path with the previously planned paths to

detect whether there are collisions. If there is any, it will have to replan the route. In

addition, an off-line algorithm cannot deal with any accident that occurs at real

operation. Besides， in Dynamic Unlock Algorithm, each AGV needs to wait until

the head AGV of queue arrive. If there are two AGVs whose routes are completely

converse, then the deadlock may occur, just like the threads int system.

From the perspective of the practical application of their papers and in an

automated warehouse scenario, what we really want to do is deliver the items that

need to be picked to the sorting station. However, if we are moving the entire shelf to

a packaging station just for picking one or two products from it, the work efficiency is

very low form the perspective of AGVs. What’s more, a shelf, with a few meters high,

11

greatly reduce the speed at which the AGV can run. That’s one of main reasons that

we start paying attention on the fixed shelves and ARS.

Consider that if we can fetch the products we need from shelves and the AGV

just need to deliver the useful products to the Packaging Station. Not only there will

be less limitations on the speed of AGV, but also can we make the full use of the

space in the warehouse. That is because if we need to move the whole shelf, then the

kinds of products we can store are very limited due to the size of shelf’s structure and

the weight AGV can bear.

2.2 Utilization of Automated Stackers in Smart Warehouses

With the advancement of automation technology, many new facilities have

been developed for automating the warehouse operations to enhance the production

processes and management approaches [18]–[20]. One of these facilities is the

Automated Stacker, which can be used to retrieve items from a shelf automatically in

a Smart Warehouse [21]. In order to increase the storage capacity, on the other hand,

the Smart Warehouse is normally equipped with multiple parallel shelves of extremely

large size. The Smart Warehouse can then employ a management system, called the

Automated Retrieval System (ARS), to control and schedule the retrieval jobs of

multiple stackers on these parallel shelves [22], [23].

The concept of the stacker first appeared in the 1960s and was put into

industrial use in the United States [24]. At present, the maximum height of the

automated stacker in advanced countries can reach more than 50 meters, the

12

maximum horizontal movement can reach 300 - 400 m / min, the horizontal

acceleration can reach 5 m / s 2; the vertical lifting speed can reach 100 m / min and

the load can reach 10T, the positioning error can be controlled within 5mm [25], [26].

Considering its running speed, load, and positioning accuracy, automated stacker is a

relatively mature automation technology. It can basically meet the storing and

retrieval ability we need.

Since between every two shelves there is a stacker. Figure 2.2.1 is a top view

of the stackers and shelves. That means all the products that store on the adjacent

shelves can only be accessed by only one stacker. This may cause some “congestion”,

when there are a large number of items in the adjacent shelves that need to be taken

out. Therefore, for the three-dimensional fixed shelves, the placement of items also

needs to be adjusted appropriately, and some related attributes of the items need to be

considered, such as turnover rate, or other methods need to be introduced to reduce

this “congestion” [27]. What’s more, there is limitation on the loading capacity of a

stacker, so when a pile of items arrives at the stacker, which one to be retrieved first

that means the retrieval order of items may make different sense in the reality.

Figure 2.2.1 Top view of shelves and stackers [27]

In short, the AGV make the packagers relief their legs. However, carrying the

13

whole shelf seems not an advisable choice due to the limitation both to the storage

capacity of shelves and the efficiency of she stacker. It seems a feasible scheme that

we combine stacker (storage capacity of the fixed shelf) and AGV to reach a more

efficient Smart Warehouse.

2.3 Algorithms for Scheduling the Stackers’ Jobs

Many existing works attempt to improve the overall performance of Smart

Warehouses. For example, Kung et al. studied the warehouse system with multiple

stackers on a common rail to reduce chances of collision among stackers and improve

the work efficiency of warehouse significantly [28]. At present, the leading research

on the retrieval process of Smart Warehouses is to optimize the moving path of the

stacker according to the storage location of the items so as to minimize the total

completion time of orders [29]–[31].

Most of the above works assume that a stacker can travel through the

corresponding shelve to retrieve multiple items in a trip. They further formulate the

retrieval jobs of stackers as combinatorial optimization problems, such as the

Travelling Salesman Problem (TSP) [32]–[39], so that many optimization algorithms

can be applied to solve the stacker scheduling problem. TSP is one of most common

problems been researched, it is an np-hard problem that we cannot solve the problem

in polynomial time. These algorithms include HGA-VNS Algorithm [33],

Combination of Free Search and Amendment Circle Algorithm [34], Genetic

Algorithm [35], Non-dominant Sequencing Genetic Algorithm with Elite Strategy [36]

14

and Genetic Particle Swarm Algorithm [37]. Li et al. studied the utilization of stackers

in the tobacco industry and solved the coordination problem of the Automated Storage

System and Retrieval System [38]; through the engineering test cases, the

effectiveness of their designed algorithm has been demonstrated. Besides, there are

also some teams that research different types of stacker aisles. Yu analyzed the ant

colony system and parthenogenetic algorithm, and proposed a parthenogenetic ant

colony algorithm, which greatly reduces the time of order picking to improve

warehouse efficiency [39].

However, with the increasing number of orders, it takes exponential time for

the above optimization algorithms to get acceptable results, and yet it is with no

guarantee of getting an optimal solution in a fixed number of iterations. Furthermore,

the design of an optimization algorithm to reach an optimal or suboptimal solution

can sometimes be complicated and the parameters need to be subtly adjusted, which is

not practical in the real situations. For example, the Fee Search is a heuristic

algorithm which not only take advantages of Ant Colony Optimization (ACO) and

Particle Swarm Optimization (PSO), but also the characteristic of advanced animals

like sense and mobility [34]. Amendment-circle algorithm is not efficient enough

nowadays, but its feasibility makes it useful in Huaining Hu’s team’s research. They

make numeric simulations. The result of their experiments shows that the hybrid

algorithms is better than ACO in the solution of ordering picking problem under their

assumptions.

However, as the Figure 2.3.1 shows, through the experiment data, when the

15

problem size extend to 40, the speed of hybrid algorithm declines sharply. When the

test size achieves 800, the time cost reach 576 seconds. What’s more, all the heuristic

algorithms cannot assure the optimal solution, they have the possibility to stuck into a

local problem. And the research didn’t show us the probability we can hit the optimal

solution or the deviation between the result of their algorithms and the real optimal

solutions that we can reach. More practicable and more flexible algorithms need to be

proposed to face different needs of automated warehouses.

Figure 2.3.1 Comparison of ACO and Hybrid algorithm. [34]

Another issue of most of the existing approaches is that, they focus on the

travelling path of a stacker, but do not pay much attention to the integrality of orders

across multiple parallel stackers. It should be noted that an order from merchants

usually contains multiple items. And an order can be packaged into a parcel only

when all its items have been retrieved. Therefore, the order may experience

unnecessary waiting time if one of its items encounters a much larger retrieval delay

than other items do.

In this dissertation, we focus on the scenario whereby an ARS is employed in

a Smart Warehouse to manage the retrieval jobs of multiple stackers. We further

assume that each order from a customer may contain multiple items distributed over

16

different shelves, and a stacker can only pick up one item at a time. However, parallel

processing of multiple stackers is possible to accomplish the retrieval task [40]. It

should also be noted that when an order is waiting for the last item to be retrieved, the

rest of its items that have been retrieved will have to occupy the temporary storage of

the downstream operation, such as at the packaging station. Such pending order will

then become the backlog and generate pressure to the system.

For this reason, the retrieval sequence of items of different orders in different

stackers will affect the overall performance [41], [42]. That is, a proper scheduling

approach can not only reduce the average retrieval delay, but also reduce the backlog

pressure.

Guo et al. [43] considered the integrality of order in the situation where the

arrivals of all orders are known in advance. They focused more on how to resolve the

contention for stacker resources to reduce the total retrieval time and get the optimal

retrieval sequence with the Ant Colony Algorithm. Through their experiments, they

enhanced about 10% efficiency compared with the traditional optimization algorithms.

Unfortunately, they did not consider that in a real-world scenario, a warehouse

normally receives orders dynamically.

We integrate the order integrality into a label, named Order Tag, for

performing the job scheduling of stackers. First step, we demonstrate work showed

that the integration of Order Tag in the job scheduling algorithms can effectively

reduce the average retrieval delay for the case of Static Order Arrival. Next, we

further extend the work to deal with Dynamic Order Arrival, and proposes two

17

dynamic order-based scheduling algorithms, namely DOB and DOBT, respectively.

The details of the two proposed algorithms will be discussed in the subsequent

sections.

There are also some naive algorithms proposed in logistic-related researches,

such as Order-Based Random Out Algorithm [44], [45], Shortest-Job-First Algorithm

[46], [47], First Come First Serve Algorithm [48], [49], Last Come First Serve

Algorithm [50], [51].

Although these native algorithms are rarely studied alone, they can be used as

a comparison to reflect the improvement of our algorithms from different angles. For

example, Order-Based Random-Served is a naive algorithm which does not consider

the Item Retrieval Time. On the other hand, Item-Based Shortest-Job-First is another

naive algorithm which does not consider the integrality of the order. Our approach

combines two parameters (1) Order-Tag and (2) Item Retrieval Time for job

scheduling. If one of the parameters is removed from the algorithm, then it becomes a

naive algorithm which cannot achieve the required performance.

18

2.4 Layout and Workflow of Smart Warehouses

Typically, there are multiple types of built-in facilities in a Smart Warehouse

that need to operate together to accommodate customers’ demands, as shown in

Figure 2.4.1. These facilities are responsible for different processes, which include

picking/retrieving the ordered items from shelves, transferring the retrieved items to

packaging stations, and packaging the items into parcels for shipping. The layout of

these facilities has to be well designed in order to streamline the shelf-to-package

operations of the warehouse. There are two mainstream automated shelf-to-package

approaches, and they are described as follows.

The first approach is to use heavy-duty Automated Guided Vehicles (AGVs) to

lift and transport shelf units to the pickers at the packaging stations; then the pickers

manually select the items ordered by customers from the shelf units, and package the

items into parcels [52], [53]. However, many challenges may arise in warehouse

management with this approach, such as the avoidance of collisions of the AGVs [54].

Moreover, as the entire shelf unit must be lifted and moved, the speed of the AGVs

ought to be low and thus it limits the throughput of the warehouse. Another issue is

that, since a shelf unit may contain many other items which are not required by the

picker, moving the entire shelf unit may result in the wastage of energy. The high

maintenance cost of heavy-duty AGVs and the size limitation of the shelf unit are two

other potential problems with this approach.

With reference to Figure 2.4.1a, the other shelf-to-package approach can be

divided into three sub-operations [55], [56]. The first sub-operation is to use

19

automated stackers to automatically pick and retrieve the ordered items from the

shelves in the Retrieval Area; the retrieved items are then placed at the transfer

stations in the Transfer Area. In the second sub-operation, a fleet of lightweight AGVs

or a conveyor belt is employed to transport the items from the Transfer Area to the

Packaging Area. In the last sub-operation, there are several packaging stations in the

Packaging Area, which are in charge of packaging the items ordered by customers

into parcels. Note that the items from the same order have to be packaged by the same

packaging station. With this approach, only the ordered items will be transported.

Thus, not only that it optimizes energy usage, but also the entire operation, including

picking process, can be automated.

The workflow of Smart Warehouse is summarized and shown in Figure 2.4.1b.

In this dissertation, we focus on the retrieval process in the Retrieval Area.

Figure 2.4.1 (a) Layout of the smart warehouse. (b) Workflow of the warehouse

With reference to Figure 2.4.2, each shelf in the Retrieval Area can be divided

into multiple levels vertically, and each level has a height of h. In each level, space is

further divided into several storage units horizontally, and each storage unit has a

width of w. A storage unit can store one kind of product only. Moreover, each shelf is

20

associated with an automated stacker composed of a movable cargo platform and a

robotic picker. The movable cargo platform can move to any of the storage units of

the shelf so that the robotic picker can take out an item from the storage unit at a time,

and then transport the item back to the transfer station. Based on this operation setting,

we derive the mathematical model of the retrieval process of stackers in the next

Section.

Figure 2.4.2 Structure of a shelf.

21

CHAPTER 3

MATHEMATICAL MODELLING OF THE PROBLEM

3.1 Retrieval Time

Without the loss of generality, let the position of a storage unit be denoted by

(x, y), where xth and yth are the ordinal numbers of the storage unit along the

horizontal and vertical directions, respectively, in the shelf. We further assume that

the parking position of the stacker as well as the item transfer station are at location (0,

0). Note that the stacker can move along horizontal and vertical directions to reach

any of the storage units to retrieve item(s). An example is as shown in Figure 3.1.1.

That is, if the stacker desires to retrieve an item from the storage unit located at (4, 3),

then it needs to first travel from (0, 0) to (4, 3). Subsequently, the stacker can take out

the desired item from the storage unit (4, 3) and transport the item back to (0, 0). The

whole retrieval process is completed after the stacker drops the desired item at the

transfer station. Note that the horizontal unit distance is w, and the vertical unit

distance is h. In addition, we assume that the horizontal and vertical travelling speeds

of the stacker are �� and �� , respectively. As shown in (1), the traveling time of the

stacker from (0, 0) to (x, y) is the maximum time needed to travel along with both

directions.

22

Time from 0,0 to �, � = max
� ∙ �
��

,
� ∙ ℎ
��

(3.1)

The common retrieval time function can then be obtained by calculating the

entire time needed for a stacker to perform a one-time pick-up job from point (x, y).

Let T denote the sum of the constant times needed for the stacker to take out an item

from a storage unit, drop the item to the transfer station, etc. Thus, for the item stored

in (x, y), we have the retrieval time function, F(x, y), as shown below.

� �, � = max �∙�
��

, �∙ℎ
��

× 2 + � (3.2)

Figure 3.1.1 Coordinate map of the shelf.

3.2 Notations and Definitions

With reference to Figure 3.1.1 and Table 3.2.1, let Q = {O1, O2, ..., OK} be the

order set that includes all the orders received by the system, where K is the total

number of orders in the order set, and order Oi the ith order in Q, for 1 ≤ i ≤ K.

The order Oi further contains several items requested by the customer. Let Li

≥1 be the total number of items in order Oi, then Oi = {�1
� , �2

� , ..., ���
� }, where ��

� is the

jth item of order i and 1≤ j ≤ Li. Note that each item ��
� should be converted into a

retrieval job of the corresponding stacker.

23

On the other hand, assume that there are N stackers in the warehouse, and each

stacker will receive a set of retrieval jobs corresponding to the orders received by the

system. Let R = {S1, S2, ..., SN} be the stacker set, where Sn is the set of retrieval jobs

allocated to stacker n, for 1 ≤ n ≤ N.

Let Zn be the total number of retrieval jobs allocated to stacker n and ��
� be the

pth retrieval job in Sn, where 1 ≤ p ≤ Zn. Then we have Sn = {�1
� , �2

� , ..., ���
� }, which

represents the retrieval job sequence that stacker n needs to handle.

Note that, each retrieval job ��
� in the stacker set R is corresponding to an item

��
� in the order set Q. Such a relationship is actually a one-to-one mapping from Q to R.

In other words, the retrieval job scheduling problem of stackers can be

formulated by two functions, � �, � and � �, � in such a way that there is a one-to-one

mapping from ��
� of Q to �� �,�

� �,� of R. Note that, � �, � denotes which stacker is

assigned to retrieve item ��
� , and � �, � denotes the position of item ��

� in the retrieval

job sequence of stacker � �, � . The objective of a retrieval job scheduling algorithm is

then to determine the details of these two mapping functions so as to achieve the

performance desired while fulfilling the retrieval requirement (e.g., shelf � �, � must

contain item ��
�).

24

Figure 3.2.1 Mapping of the ordered items to the jobs of stackers.

Table 3.2.1 Notations and Definitions

Notation Definition

Q = {O1, O2, ..., OK} The set of orders received by the system, which contains K orders

Oi = {�1
� , �2

� … ���
� } The ith order, which contains Li items

��
� The jth item of the ith order,

R = {S1, S2, ..., SN} The set of stackers used in the warehouse, which contains N stackers

Sn = {�1
�, �2

�, ..., ���
� } The set of jobs of the nth stacker, which contains Zn retrieval jobs.

��
� The pth job in the nth stacker,

An example is given in Figure 3.2.2, where the sixth order contains three items,

and these three items will be mapped to the retrieval jobs of stackers 1, 2, and 3,

respectively.

25

Figure 3.2.2 An example of item-job mapping.

With reference to Figure 3.2.3, the retrieval jobs of each stacker can actually

be formulated as a single-sever priority non-preemptive queue. In this example, �� �,�
� �,�

is the fifth item in the job queue to be processed by Sn(i,j). When a new retrieval job is

assigned to the stacker, the sequence of the existing jobs in the queue may be affected

and need to be re-arranged based on the recalculated priorities (which will be

discussed later); however, such a queuing model is said to be non-preemptive because

the job which is being executed will not be interrupted by the arrival of a higher

priority job.

Figure 3.2.3 The job queue of a stacker.

3.3 Objective Function

Since the work presented in this dissertation focuses on the performance of

ARS, in the following discussion, the term "delay" is referred to as the delay incurred

26

in the retrieval process unless otherwise specified.

Let the objective of the two-dimensional mapping function (i, j) → (n, p) be

minimizing the average delay of the orders received by the system. Such an objective

is actually equivalent to minimizing the total delay of all orders.

Considering the order integrality, the retrieval delay of an order is measured as

the duration from the arrival of the order until the retrieval of the last item of the order.

In other words, the delay of an order is equal to the maximum delay of the item

belonging to the order, as indicated in (3).

Delay of �� = max
1≤�≤��

Delay �� ��
� (3.3)

Let �� be the arrival time of order Oi, and DT(i,j) be the departure time of item

��
� . Note that the departure time of item ��

� is defined as the time when the item reaches

the transfer station from the shelf. The delay of item ��
� can then be represented by

Delay of ��
� = DT �, � –�� (3.4)

Combining (3.3) and (3.4), we can get the following.

Delay of �� = max
1≤�≤Li

DT �, � − �� (3.5)

It should be noted that the value of DT(i,j) is determined by variables n and p,

and it is actually the output of the scheduler. Thus, the objective function of the

scheduler can then be formulated as, finding the mapping of �, � → �, � in order to

Minimize
�=1

�
max

1≤�≤��
DT �, � − ��� (3.6)

27

CHAPTER 4

Static Scheduling Algorithms

In this chapter, some existing algorithms will be discussed (Sections 4.1 and

4.2), and then our order-based algorithms will be proposed (Sections 4.3 and 4.4) for

the scenario of static order arrivals.

4.1 Order-Based Random Out Algorithm (OBRO)

Assume that a warehouse receives a bunch of orders from their management

system, then OBRO is the simplest strategy to handle these orders because when any

stacker is available, the warehouse will just randomly select an order with an item at

the stacker to serve. The rest of the items of this order will also be distributed to other

corresponding stackers. In this case, the sequence of orders to be served is random,

and the computation cost is small.

4.2 Item-Based Shortest-Job-First Algorithm (IB-SJF)

In the Item-Based Shortest-Job-First Algorithm, the item with shorter

retrieval time gets higher execution priority. In addition, if there are multiple items

from the same order that will be assigned to the same stacker, then they can actually

be combined as a “bigger item” for that stacker. Assume that we have only one

28

stacker in our smart warehouse which is the simplest case in our study. To each

“item”, it is obvious that every time executing the “item” with shortest retrieval time

can minimize the total delay of all the “items”. For example, there are three orders

O1, O2 and O3(suppose that they have only one item). And retrieval time is

respectively 5, 6, 7 units of time. If we take the IB-SJF strategy, we will make the

shortest retrieval time first and get the job sequence: �1
1 , �1

2 , �1
3 . The delay of each

order is 5, 11, 18 units of time respectively, which definitely brings the lowest order

delay.

The reason that we combine the items from the same order as a “bigger item”,

is illustrated in Table 4.2.1, which means consecutively completing items from the

same order. Assume that we have two orders (each of them has two items) on the

same stacker, the total delay of two orders brought by schedule two is always less

than schedule one.

Schedule one
�1
1 �1

2 �2
1 �2

2

Schedule two
�1
1 �2

1 �1
2 �2

2

Figure 4.2.1 Order continuity on the same stacker

However, when it comes to multiple stackers, the IB-SJF doesn’t work as well

as before. There is some space to improve them. For example, we have three orders

(O1 has two items, O2 has one item and O3 has three items) and three stackers. Let

RTn(i, j) be the retrieval time of ��
� from the respective stacker and assume that the

retrieval time of each item is given in Table 4.2.2. If we take the IB-SJF strategy as

mentioned before, we will get the schedule shows in Table 4.2.3. We find that, in the

29

job sequence S1, �1
2 needs to wait for �1

3 and the meantime, in the S3, �3
3need to wait for

�2
1 . So, if we interchange the order of �1

2 and �1
3 in the S1, the total delay will be

reduced.

Table 4.2.2 Retrieval time of three orders

Order

Job Sequence

O1 O2 O3

S1 0 RT1(�1
2)=7 RT1(�1

3)=5

S2 RT2(�1
1)=5 0 RT2(�2

3)=3

S3 RT3(�2
1)=5 0 RT3(�3

3)=6

Table 4.2.3 Schedule of three stackers

S1 �1
3 �1

2

S2 �1
1 �2

3

S3 �2
1 �3

3

4.3 Static Order-Based Scheduling Algorithm – I (SOB-I)

4.3.1 Job Set, Schedule Sequence and Order Tag

Assume that we have two sequences for each stacker, one is Job Set

containing the items allocated to that stacker, another is Schedule Sequence

containing the items’ execution order. The Order Tag of an order is the maximum

delay of items in it. Since none item is selected at the beginning, all the items’ waiting

time is 0 and their delay is equal to their retrieval time. The items belong to the same

order share the same tag (that’s why they are called Order Tag).

30

4.3.2 Implementation Procedure

1. Initialize each order’s Order Tag equal to the maximum retrieval time of the

items in it and allocate all of items to corresponding stacker’s Job Set.

2. Traverse every stacker to find the remaining item with smallest Order Tag.

3. Add the item selected from the Job Set of stacker into the Schedule Sequence.

4. Modify waiting time of the remaining items in the same stacker’s Job Set.

5. If the modified waiting time of item plus its retrieval time is greater than its

original Order Tag, change that Order Tag with this new value.

6. Check whether there are items need to be completed. If still has, return back to

step 2. Otherwise, go to step 7.

7. Finish scheduling algorithm.

4.4 Static Order-Based Scheduling Algorithm – II (SOB-II)

4.4.1 Order Set

SOB-II shares the same concepts of Job Set, Schedule Sequence and Order

Tag with SOB-I. However, its core idea is the Order Set, which contains all orders

received by warehouse. Each iteration in the algorithm, we select one order from

Order Set and complete its items.

4.4.2 Implementation Procedure

1. Initialize each order’s Order Tag equal to the maximum retrieval time of

31

items in it and add all orders to Order Set.

2. Traverse each order in the Order Set to find the order with smallest order tag.

3. Add all the items contained by the order selected to the Schedule Sequence

of the corresponding stacker.

4. Modify waiting time of the items in the same stacker’s Job Sequence.

5. If the modified waiting time of job plus its retrieval time is greater than

original Order Tag, change that Order Tag with this new value.

6. Check whether there are orders need to be completed. If still has, return back

to step 2. Otherwise, go to step 7.

7. Finish scheduling algorithm.

4.5 Comparison between SOB-I and SOB-II

The core idea applied in both two greedy strategies is dynamically maintaining

the Order Tag of each order. Since only if all the items contained by an order been

retrieved then that order can be sent out, we need to take consideration of each part

together. What’s more, the items belong to different orders can affect each other, so

we adjust the Order Tag each time we select items. The difference between two

algorithms is that the SOB-I stands on the perspective of each stacker. Each iteration

SOB-I can select one item from each stackers’ Job Sequence (if its Job Sequence is

not null). The SOB-II is from the angle of order entities. Each iteration we start from

Order Sequence and find the order with smallest Order Tag. The difference for

32

implementation between two algorithms is that SOB-I usually only take care of the

items on the same stacker whereas the SOB-II considering all the orders.

4.6 Methodology for Performance Study

In order to compare the above static algorithms, we will carry out the simulation study

in the next Chapter. We will ensure that the order information processed by each

algorithm is consistent in each simulation experiment, reducing the impact of other

variables. To collect sufficient data from the experiment for statistical analysis, we

will generate a large number of orders in the beginning of each simulation, and then

we use the uniform distribution to randomly generate the number of items in each

order and their shell locations. These serve as the inputs to different algorithms. After

the orders being processed with different algorithms, we collect the retrieval delay of

each item and of each order under these algorithms to calculate the Average Retrieval

Delay and Maximum Retrieval Delay to compare the pros and cons of these

algorithms.

33

CHAPTER 5

SIMULATION and DISCUSSION I

5.1 Simulation Settings

We make a large number of simulations with JAVA language to compare the

performance among these four strategies: OBRO, IB-SJF, SOB-I and SOB-II. We

simulate three cases: warehouse with 5 stackers, 10 stackers and 15 stackers. For each

case, we test every strategy with 100 orders, 200 orders ... until 1000 orders and

randomly generate the items amount and retrieval time for each item.

5.2 Simulation Results

Here are data tables and line charts drew from simulations. The line charts

Figure 5.2.1, 5.2.2 and 5.2.3 (raw data can be found in Appendix A), which shows the

trend of total delay’s change with the number of orders and stacker increasing, as a

result of the different scheduling outcome computed by different algorithms.

34

Figure 5.2.1 Total Delay in Seconds over the Number of Orders with five stackers.

Figure 5.2.2 Total Delay in Seconds over the Number of Orders with ten stackers.

Figure 5.2.3 Total Delay in Seconds over the Number of Orders with fifteen stackers.

The simulation results from Figure 5.2.1~5.2.3 prove that the SOB-I and SOB-

35

II can distinctly reduce the total delay of orders. To each case, we find the SOB-II’s

performance is always slightly better than SOB-I. And the delay computed by SOB-I

and SOB-II can always reduce 30% of delay computed OBRO and IB-SJF, no matter

the number of orders is large or small. In the case of five stackers, the total delay

increases sharply when the number of orders reaches 500. Comparing different cases,

when we use ten stackers, the total retrieval delay can drop sharply when processing

the same amount of orders with five stackers. Comparing Figure 5.2.2 and Table 5.2.3,

when the amount of orders reaches to 400, the gap of total delay stands out between

10 stackers and 15 stackers.

5.3 Discussion

In this Chapter, we have proposed two Order-Based scheduling algorithms.

We counted the integrality of orders and proposed the demand for minimizing the

total delay of orders. Through the simulation results, we compared these four

strategies: OBRO, IB-SJF, SOB-I and SOB-II. And the improvement of the

algorithms we have proposed is significant. The best application scenario is when we

can realize shipping each order in units which will definitely decrease total retrieval

delay. This research is meaningful to those warehouses who attach importance to the

satisfaction of customers. Actually, in many real warehouses, orders come

dynamically not the same as the case of our research. In next Chapter, we will study

the circumstance where bunches of orders dynamically arrive at the warehouse and

deal with the conflicts between different batches.

36

CHAPTER 6

DYNAMIC SCHEDULING ALGORIHTMS

With the objective function given in Chapter 4, in this Chapter we discuss

some existing schedulers, such as FCFS, LCFS, SJF, etc. We then propose two new

scheduling algorithms, DOB and DOBT, which are able to better approach the

objective of minimizing the average delay of the orders.

6.1 First-Come-First-Serve (FCFS) Scheduler

FCFS is the simplest algorithm to perform the item-job mapping function. At

each time when there are orders received by the ARS, the FCFS scheduler will always

arrange the order which arrives earlier to be retrieved first. The advantages and

disadvantages of FCFS are obvious. First, it has a very low time complexity.

Considering that the maximum number of items in an order is Lmax, then the time

complexity of scanning through the order to place its items into the corresponding

stacker queues is O(Lmax). It should be noted that if Lmax, is a constant value, then this

scanning process has time complexity O(1). Since there is no need for rearranging the

retrieval job sequence when a new item arrives, the overall FCFS algorithm’s

complexity is O(1).

However, the FCFS scheduler does not take the order integrality and overall

37

delay into account; thus, it is not efficient in reducing the total delay of all orders. For

example, if an order (say Oi) contains an item (say ��
�) that has a long delay time at one

of the stackers (say stacker n), even if the rest of the items (say ��
� , where kj) can be

retrieved earlier at other stackers (say stacker n’, where n’n), it would not help as all

other items (i.e. ��
�) will still need to wait for the last item (i.e. ��

�) to be retrieved

before they can be packaged. In such a case, a more efficient scheduler should

schedule the jobs from other orders (say Oi’) to be executed earlier without strictly

following FCFS, aiming to reduce the total delay of all orders.

6.2 Last-Come-First-Serve (LCFS) Scheduler

LCFS is the opposite algorithm to FCLS. When a new order arrives, stackers

always execute the items from this new order first. That is, LCFS schedules the job

retrieval sequence based on the waiting times that the pending orders have

experienced. The longer time that an order has waited, the lower priority it has to be

serviced. The disadvantage of this service discipline is obvious, because the service to

the pending items will be further delayed while there is a new arrival. As a result, it

can be expected that LCFS will have a poor performance in terms of overall delay and

fairness.

6.3 Shortest-Job-First (SJF) Scheduler

If an item has a long service (retrieval) time at a stacker, the rest of the items

in the queue will have to wait and experience the same large amount of waiting time.

38

With this observation, SJF is a simple greedy algorithm that schedules the shortest job

in each queue (stacker) to be serviced first. This is done in the hope to minimize the

overall waiting time experienced by all items in the queue. Consider a sorted queue,

when a new retrieval job arrives to the queue, SJF needs to insert the job to the queue

based on its retrieval time. If the binary insertion algorithm is used, the complexity of

SJF is �(log �), where Z is the number of existing jobs in the queue when the new

job arrives.

However, SJF does not consider the integrality of order over multiple queues.

Therefore, even some items of an order have been retrieved, they will still need to

wait for the last item of this order to come before they can be packaged. As a result,

the overall order delay may not be improved with SJF.

6.4 Dynamic Ordered-Based (DOB) Scheduler

We design a dynamic algorithm, named the Dynamic Order-Based (DOB)

Scheduling Algorithm, with the consideration of order integrality and overall delay. In

our previous work, we have proved that in the case of Static Order Arrival, the Order-

Based scheduling algorithm can reduce the total delay of orders significantly. We

extend the algorithm to perform the scheduling task for stackers with Dynamic Order

Arrival.

In general, we introduce the concept of Order Tag to the scheduling algorithm

as follows. When a new order arrives to the system, it will be assigned an Order Tag

so that all the items in this order will receive the same Order Tag. On the other hand,

39

at any time, each stacker will execute the item retrieval process based on the

ascending order of the items’ Order Tags in the queue. Note that once an Order Tag

has been assigned to an item, the tag will remain until another new order arrives. Then

the Order Tag may need to be recalculated, depending on the criteria of the scheduler.

The general flow of the Order-Based Algorithm is illustrated in Figure 6.4.1,

where there are three main parallel processes. The first process is to detect whether

there is a new order arriving to the system. If there is, the second process will be

triggered to calculate/recalculate the Order Tags for all items in the queues and

schedule the retrieval sequences of stackers accordingly. Meanwhile, the stackers will

continue to retrieve items (in the third process) as long as the job queues are not

empty.

Figure 6.4.1 Flow of Dynamic Order-Based Algorithm.

The concept of Order Tag can actually be implemented with different

schedulers, such as FCFS. That is, in FCFS, the Order Tag of each order is set to be

40

the arrival time of that order, and once the Order Tag has been assigned, it will not be

changed throughout the whole retrieval process. In this case, however, even if

subsequently there arrive some new items with shorter retrieval times, these new

arrivals can only be placed in the queue after the existing items, and thus they may

experience large delay. In other words, the performance of FCFS could be adversely

affected by the items which arrive earlier but with very long retrieval times.

To resolve the problem that occurs in FCFS, we propose that when a new

order arrives, other than that its Order Tag needs to be calculated, the Order Tags of

the existing items in the stackers’ job queues may also need to be recalculated. The

objective of the Order Tag calculation/recalculation is to allow the orders that can

complete the retrieval jobs earlier to get higher priority (lower Order Tag values).

Thus, the Order Tag calculation/recalculation should take the following factors into

account, namely the orders’ arrival times, item retrieval times, and expected delays. It

should also be noted that the principles of Order Tag calculation/recalculation actually

determine the service disciplines, and also the complexities, of the respective

schedulers.

With reference to Table 6.4.1, consider the status of the job queue of stacker n

at time t. Let Residuen(t) be the residual retrieval time of the job being executed by

the stacker, Vn(t) the set of waiting jobs in the queue, and qn(t) = |Vn(t)| the number of

the jobs in the queue.

Let �� be the arrival time of order Ol, where 0 < ��< ��+1 for all l ≥ 1. Note

that the Order Tag calculation/recalculation procedure will be triggered only at �� ,

41

then the values of Order Tags will remain the same in the time interval [��, ��+1).

At time �� , the scheduler will first scan through the items in Ol and distribute

the retrieval jobs of Ol to the corresponding stacker queues. Upon receiving the new

job requests, stacker n will update its Vn(��) and qn(��). Then the next scheduling task

is to calculate/recalculate the Order Tags of all items in Vn(��), for 1 ≤ n ≤ N.

Without the loss of generality, let ��
� Vn(��) be a waiting job in the queue of

stacker n, RTn(i, j) the Retrieval Time of item ��
�.

To explain the entire flow of DOB, we further define other variables as shown

in Table 6.4.1. Note that OrderTag(i) is the output of the Order Tag

Calculation/Recalculation Procedure for all unfinished order Oi.

Table 6.4.1. Definitions of Variables

Variables Definition
Residuen(t) The residual retrieval time of the job being executed by the stacker n at time t.

Vn(t) The set of jobs waiting to be retrieved by the stacker n at time t.
qn(t) The number of jobs in the job queue of stacker n at time t.
�� The arrival time of lth order, ��.

RTn(i, j) The retrieval time of item ��
�

W The set of orders pending for Order Tag assignment
Busyn Busy Time of stacker n

EFTn(i, j) Expected Finish Time of item ��
�

TempOT (i) Temporary Order Tag of Oi, a running variable
OrderTag(i) Order Tag of Oi, the output of the Order Tag Calculation/Recalculation Procedure

6.4.1 Flow of DOB Scheduling Algorithm

With reference to Figure 6.4.1, the following is the flow of the DOB scheduling
algorithm.
i. The scheduler continuously detects whether there is a new order arriving.
ii. Assume that there is a new order Ol arriving at time ��.

42

iii. The items of Ol will be scanned and mapped to the corresponding stackers’ job
queues, and the scheduler updates the values of Vn(i) and qn(t) accordingly.

iv. The scheduler then initializes the running variables for the Order Tage
Calculation/Recalculation Procedure as follows.

Procedure 1 Initialization of the Statuses of
Stacker Job Queues
1:W← The set of unfinished orders
2: For n← 0 to N
3: Busyn← Residuen(l)

v. The scheduler invokes the Order Tag calculation/recalculation as follows.
Procedure 2 Order-Tag Calculation/Recalculation
1: WhileW   do
2: For each i where Oi W
3: TempOT (i) ← 0; // Initialize the temporary order tag of Oi

4: For j← 1 to Li // Update the temporary order tag of Oi

5: If ��
� has not been retrieved

6: then n←The stacker of ��
�;

7: EFTn(i, j) ← RTn(i, j) + Busyn;
8: TempOT (i) ← max

�, �'
{TempOT � , EFT� (�, �)}

9: End For
10: End For
11: s← 0; TempOT(s) ←  // Initialize the order with min TempOT
12: For each i where Oi W // Identify the order with min TempOT
13: If TempOT(i) < TempOT(s)
14: then s← i
15: End For
16: OrderTag (s) ← TempOT(s) //Confirm the order tag of Os

17: For j←0 to Ls // Update queue statuses
18: If ��

� has not been retrieved
19: then n←The stacker of ��

�;
20: Busyn← Busyn+ RTn(s, j)
21: End For
22: W←W – {Os}
23: End While

vi. Arrange each stacker to retrieve items according to the ascending order of Order
Tags of the item.

vii. Each stacker retrieves items according to the scheduled sequence from the
Scheduler.

viii. Every time when an item has been retrieved from stacker n, the scheduler will
update Vn(t) and qn(t). Furthermore, the scheduler will also check whether the
corresponding order is completed. If yes, then remove the completed order from
the set of unfinished orders.

ix. If qn(t)0, the stacker n continues the retrieval process.

43

6.4.2 Discussion of DOB

Assume that we have �� unfinished orders in the system when a new order

arrives. Since we need to do �� rounds of Order Tag Calculation/Recalculation, and in

each round the Scheduler needs to find the order with the smallest Order Tag among

the �� orders, the time complexity of DOB algorithm is then O(��2).

With the consideration of order integrality, DOB can significantly improve the

overall retrieval delay of orders. This is verified by the simulation results presented in

Chapter 7. However, an issue is that some of the orders may incur a huge retrieval

delay. It is because DOB always sacrifices those orders that contain items with a large

retrieval time, so much so that DOB will keep delaying their retrieval process by

assigning them large Order Tags. In this case, starvation occurs. This is undesirable

because if the delays of some orders are too large, it will extremely affect the

experience of a small group of customers. In other words, DOB actually lacks the

fairness among all orders.

6.5 Dynamic Order-Based with Threshold (DOBT) Scheduler

In order to resolve the starvation issue, we further propose an algorithm named

Dynamic Order-Based with Threshold (DOBT) Scheduling algorithm. The flow of

DOBT is quite similar to that of DOB. The only difference is that DOBT introduces a

threshold limit in the Order Tag Recalculation Procedure to limit the maximum

waiting time of so as to provide a certain degree of fairness among orders. Through

the experiments shown in Chapter 7, we find that with an appropriate threshold value,

44

DOBT can solve the problem of large maximum delay very well. It should also be

noted that the time complexities of DOB and DOBT are the same.

6.6 Methodology for Performance Study

In the simulation experiment, we will use the Poisson process to randomly generate a

large number of orders and the corresponding arrival times, and this process is

different from the “Static Order Arrival” case. For each order, we use uniform

distributions to randomly generate the number of items and the shell location of each

item. These serve as the inputs to different dynamic scheduling algorithms. We collect

the retrieval delay value of each item and of each order under these algorithms to

calculate Average Retrieval Delay and Maximum Retrieval Delay to compare the pros

and cons of these algorithms. At the same time, we also collect downstream pressure

data to study the possible downstream pressure caused by different algorithms from

the statistical data, thus highlighting the advantages of our proposed algorithm. The

pressure generated by each algorithm to the downstream process is measured by the

downstream item pressure and order pressure. In all experiments, under the condition

of the same order rate, the order information processed by each scheduler is

completely consistent, so as to control the deviation of the experimental results.

45

CHAPTER 7

SIMULATION and DISCUSSION II

7.1 Simulation Models

In this section, we discuss the simulation models for our experiments to

evaluate the performances of the scheduling algorithms discussed in Section V. To

implement the discrete event simulation, we need to find a proper way to create new

orders, simulating the scenario where customers place their orders at different times to

the warehouse. Furthermore, each order may contain one or several items. On the

other hand, each item is stored in a storage unit with a specific coordinate in the shelf.

7.1.1 Random Model for Generating OrderArrivals

Assume that the system time starts from t = 0. The arrival times of these orders

to the ARS are denoted by 1, 2, …, respectively. We assume the arrival of orders is a

Poisson process with an arrival rate of . Then the interval between two consecutive

arrivals of orders is a random number with an exponential distribution with mean 1/,

and this can be used to generate random numbers to create stochastic order arrivals.

7.1.2 Random Model for Generating Item Quantity

Each order from a customer may contain various items. Let the number of

46

items in an order be modeled by a random variable, L, with a binomial distribution in

the range of [1, ����] , where ���� is the maximum number of items that an order

may have. Then the probability that there are r items in an order is denoted by �(� =

�), where

� � = � = ��−1
����−1 ��−1 1 − � ����−� (7.1)

Note that the expected number of items in an order, �[�], is equal to

� � = ���� − 1 × � (7.2)

With (7.1) and (7.2), the value of � can be identified if the values of ���� and

�[�] are given. For example, if ���� = 30 and � � = 10, then � is equal to 0.345.

It should also be noted that, combining the order arrival model and item

quantity model, the item arrival rate is equal to  ∙ �[�]. This value should not exceed

the maximum throughput of the ARS, or the system will saturate, resulting in buffer

overflow.

7.1.3 Random Models for Generating Shelf Locations and Retrieval Times

Before calculating the retrieval time of an item, we need to find out the shelf

and the coordinate of the storage unit where the item is stored.

To simplify the simulation, we assume that each item is randomly distributed

over any of the N shelves, and its coordinate is evenly and randomly distributed over

all storage units of the shelf.

With reference to (3.2) shown in Chapter 3, the values of h, w, vx, vy, and T are

47

all constant in a simulation; and the values of x and y can be randomly generated for

each item.

Let �[�] be the average retrieval time of items. Then the maximum throughput

of the ARS is given by �/�[�]. Thus, to avoid saturation, the order arrival rate must

fulfil the following condition in any simulation experiment.

 <
N

� L ∙ �[F]
(9)

7.2 Simulation Settings

In our simulation, we assume that each shelf is of a fixed size of 40m20m.

On the other hand, each storage unit has a size of 2m1m. In other words, each shelf

contains 400 storage units.

We have two main experimental settings: one is in the warehouse with 6

shelves, and the other with 12 shelves. Note that, each shelf is associated with one and

only one stacker. The experiments are conducted with these two settings in order to

compare the performances of DOB and DOBT against FCFS, LCFS, and SJF

algorithms. In the next Subsections, we comprehensively study these algorithms under

various values of order rates, running times, and thresholds.

7.3 DOB VS. other Schedulers

In this subsection, we compare the performances of the DOB, FCFS and SJF

algorithms. Since we need to simulate the dynamic arrival of orders at the warehouse,

48

different order arrival rates must be taken into consideration in our experiments. In the

case of 6 stackers, the range of order rate is set between 20 orders/hour and 60

orders/hour; in the case of 12 stackers, the range is set between 90 orders/hour and

120 orders/hour. The different ranges of order arrival rates are considered for the two

settings because we need to prevent the system overflow in the respective settings,

while stress testing the algorithms. In addition, in our simulations, we consider the

following performance metrics: (A) Average Retrieval Delay of Orders, (B)

Maximum Retrieval Delay of Orders, and (C) Downstream Backlog Pressure.

Downstream Backlog Pressure is defined as the pressure generated from the

started-but-unfinished orders to the packaging stations. It is because when the

retrieval process of an order has begun, the corresponding packaging station needs to

wait until the last item of the order is retrieved, only then the packaging station can

start to do the packaging. Throughout this period of time, all other items than the last

one will need to wait at the packaging station, which creates pressure on the

packaging area's buffer zone.

To quantify the measure, we consider the Downstream Backlog Pressure from

two aspects: (i) order quantity pressure and (ii) item quantity pressure. The order

quantity pressure is referred to as the number of pending orders at any time in the

packaging area, and the item quantity pressure is referred to as the number of pending

items at any time in the packaging area. Both order and item quantity pressures are

meaningful to reflect the performances of different algorithms on the pressure to the

49

packaging stations. Besides, we also study these two metrics from the perspectives of

the average pressure value and the maximum pressure value.

7.3.1 Average Retrieval Delay of Orders

Figure 7.3.1.1 and Figure 7.3.1.2 compare the performances of DOB, FCFS,

SJF and LCFS with different order rates.

Although the numbers of stackers are different in Figure 7.3.1.1 and Figure

7.3.1.2, they reflect the same phenomenon. It can be found that when there are only 6

stackers and the order rate reaches 60 orders/hour, the average delays of FCFS, SJF

and LCS are 764s, 1440s and 1514s respectively, whereas the DOB just needs 477

seconds, a decrease of 37% compared with FCFS. Similarly, when we have 12

stackers and the order rate reaches 120 orders/hour, the average delay of DOB also

drops by about 39% compared with FCFS.

Figure 7.3.1.1 Comparison of average delays with 6 stackers

50

Figure 7.3.1.2 Comparison of average delays with 12 stackers

Regardless of 6 stackers or 12 stackers, when the order rate is relatively small,

for example, in the 6-stacker setting, when the order rate is less than 40 orders/hour,

there is no noticeable gap in average delays brought by the algorithms. When the

order rate gets even smaller, the performance of DOB gets closer to FCFS, but it is

always slightly better than FCFS. On the other hand, the higher the input pressure

(order rate/stacker sum), the more pronounced the advantages of DOB algorithm over

the FCFS. Moreover, the average delays of SJF and LCFS are always worse than

FCFS and DOB.

7.3.2 Maximum Retrieval Delay of Orders

The DOB has a better performance than FCFS in terms of Average Retrieval

Delay, because the DOB algorithm will first execute the items that belong to the

orders with small Order Tags and delay the execution of other orders with big Order

Tags. That means it will sacrifice a small group of orders in order to improve the

51

overall delay experienced by other orders. However, this is not actually fair because

the Order Tags are calculated based on the locations of the items of these orders in the

shelf storage from the ground point.

To observe how DOB may sacrifice this small group of orders, we also take

the Maximum Retrieval Delay into consideration in our simulation. In Figure 7.3.2.1.

Under the condition of 12 stackers, we found that when the order rate is low, the

maximum delay of the DOB algorithm is a little higher than the maximum delay of

the FCFS algorithm. However, as the order rate grows, the gap between FCFS’s and

DOB’s curves has multiplied. When the order rate reaches 120 orders/hour, the

maximum delay of DOB is 27738s, but the maximum delay of FCFS is only 2718s.

Although DOB reduces the average delay, it also terribly increases the maximum

waiting time. It should be noted that the maximum delays of LCFS and SJF are even

worse than DOB.

Figure 7.3.2.1 Comparison of max delays with different order rates

52

7.3.3 Downstream Backlog Pressure

One of the reasons that the retrieval process plays an important role in

warehouses is that it affects subsequent processes, such as the Packaging Area. The

downstream backlog pressure actually comes from the integrality of order. Because

only when all of the items belonging to the same order arrive at the Packaging station,

they can be packaged and sent to the next place.

In the following figures, the quantity of the pending orders and the quantity of

the pending items in the Packaging Area will be used to measure the downstream

backlog pressure. Note that we show only the curves for DOB, FIFO, and SJF, but not

LCFS, because the downstream backlog pressures of LCFS is significantly larger than

the others, and thus it is not suitable to be put in the same figure for comparison.

As shown in Figure 7.3.3.1 and Figure 7.3.3.2, we can find that as the order

rate increases, the FCFS algorithm’s average order pressure and maximum order

pressure are getting higher and higher than the DOB algorithm. This also shows that

the DOB algorithm can not only reduce the average delay, but also effectively relieve

the downstream backlog pressure. When it comes to the item quantity, shown in

Figure 7.3.3.3 and Figure 7.3.3.4, it more clearly reflects that the DOB algorithm can

effectively relieve downstream backlog pressure. It should also be noted that SJF

always has worse downstream backlog pressure than FCFS and DOB do.

53

Figure 7.3.3.1 Comparison of average order pressures with different order rates

Figure 7.3.3.2 Comparison of max order pressures with different order rates

Figure 7.3.3.3 Comparison of average item pressures with different order rates

54

Figure 7.3.3.4 Comparison of max item pressures with different order rates

7.4 DOBT vs. DOB and FCFS

As the DOB algorithm improves the average delay and reduces the

downstream backlog pressure, it also brings a huge maximum delay at the same time.

That means, if the system schedules the orders based purely on DOB, there will be

some customers who may need to wait 5 times longer than the waiting time incurred

in FCFS. This will cause a horrible customer experience. To fix this problem, we

further introduce the “threshold” to limit the waiting time of orders. When some

orders that have waited longer than the threshold, the DOBT algorithm will arrange

these orders to be executed first. This will also provide a certain degree of fairness

among the orders.

To simplify the notation, we substitute threshold with “th”. That is, “th-400”

means that we set a threshold of 400 seconds to all orders.

Table 7.4.1 records the experiment data, and Figure 7.4.1 shows the

corresponding curves of the average delays of the algorithms. With the order rate

55

increasing, all the curves are in an upward trend. The curve of FCFS is always higher

than the others’, whereas the curve of DOB is at the bottom all the time. However, the

curve of th-100 almost coincides with the curve of FCFS, because when the threshold

is set to be very small, the Order Tag will not be effective. Besides, when the

threshold is larger, the algorithm performance is closer to DOB. When the order rate

reaches 120 orders/hour, the curve of th-2000 is much closer to the curve of DOB

than the curve of th-400. The curve of FCFS and the curve of DOB are the upper and

lower bounds of the cures with thresholds respectively.

Table 7.4.1 Average Delays of Different Algorithms with Different Thresholds

rate FCFS DOB th-100 th-400 th-1000 th-2000

80 177 137 156 140 138 137

90 221 167 203 178 169 167

100 272 199 257 224 204 199

110 442 295 433 326 326 303

120 715 426 710 674 574 489

Figure 7.4.1 Average Delays of DOBT with different threshold values.

56

As shown in Figure 7.4.2, to compare the maximum delay of DOBT with

different threshold values, we set the order rate to be 110 orders/hour. We experiment

it with the threshold values from 400 seconds to 4000 seconds. It is not difficult to

find that with a small threshold value, DOBT can well control the max delay of orders,

approaching the performance of FCFS. In other words, DOBT is good at reducing the

maximum waiting time with an appropriate setting of the threshold value, yet

providing an acceptable average delay performance.

Figure 7.4.2 Max order delays of DOBT under different threshold values (=110 orders/hour).

Combining the observations drawn from Figure 7.4.1 and Figure 7.4.2, we can

conclude that with the increasing of threshold value, the average order delay of the

DOBT algorithm is getting closer to the performance of the DOB algorithm. Besides,

the maximum order delay of DOBT is close to the maximum order delay of FCFS

when the threshold is small. In other words, maximum order delay and average order

57

delay are at the opposite sides of the balance, and the threshold value a parameter that

one can adjust in order to get the expected performance for an optimal warehouse

operational plan.

Figure 7.4.3 – Figure 7.4.6 shows the downstream backlog pressure of DOBT,

FCFS, and DOB. The similar phenomenon can be observed. The higher threshold

value of DOBT, the closer performance to the DOB; and when the threshold value is

small, the performance of DOBT is close to the FCFS’s.

Figure 7.4.3 Average order pressures of DOBT under different threshold values (=110

orders/hour).

58

Figure 7.4.4 Max order pressures of DOBT under different threshold values (=110 orders/hour).

Figure 7.4.5 Average item pressures of DOBT under different threshold values (=110

orders/hour).

59

Figure 7.4.6 Max item pressures of DOBT under different threshold values (=110 orders/hour).

7.5 Discussion

In this Chapter, we have considered Dynamic Order Arrival and studied the

corresponding scheduling algorithms of ARS to schedule the retrieval jobs of stackers

in smart warehouses. In particular, we proposed using “Order Tag” to enable the ARS

to consider the integrality of orders, while scheduling the retrieval jobs dynamically.

Through our study, we found that two of the performance metrics, average order

retrieval delay and max order retrieval delay are difficult to be co-optimized at the

same time. Thus, we introduced a threshold to the scheduling algorithm to balance the

two performance metrics. The simulation results shows that the Dynamic Order-

Based with Threshold Algorithm (DOBT) can narrow the maximum order delay

significantly through a small sacrifice of average order delay. Other than the delay

performance, one of the important contributions of our work is to alleviate the

60

downstream backlog pressure in the Packaging Area, because both DOB and DOBT

can reduce the number of pending orders and items significantly compared with FCFS

and other algorithms.

61

CHAPTER 8

CONCLUSION

This chapter summarizes the algorithms proposed in this dissertation, highlights the

contributions and discusses the possible future works.

8.1 Proposed Approaches and Achievement

In the past, the integrality of order has not received much attention for the parallel

retrieval process of multiple stackers. To take this into account, this dissertation

proposes using an Order Tag to label all the items that belong to the same order for

retrieval job scheduling. The way of calculating the Order Tags will then determine

the scheduling discipline of the ARS.

In order to study how the Order Tags can be incorporated into the scheduling process

of ARS, this dissertation investigates the implementation of Order Tags under two

scenarios. First, we verify whether the Order Tag strategy can reduce the overall delay

in the case of "Static Order Arrival". "Static Order Arrival" means that the smart

warehouse has received all the orders before the scheduling starts, and no new orders

will be added during the processing of orders. For example, some warehouses set a

time node so that orders received before this point are processed simultaneously.

We propose two static algorithms, namely Static Order-Based Scheduling Algorithm

– I (SOB-I) and Static Order-Based Scheduling Algorithm II (SOB-II). Simulation

results demonstrate that these two strategies can reduce the total retrieval delay by

approximately 30% compared to the existing algorithms, such as Order-Based

62

Random Out Algorithm (OBRO), Item-Based Shortest-Job-First Algorithm (IB-SJF).

Next, and more importantly, we study the case of "Dynamic Order Arrival". Instead

of waiting for all orders to arrive before processing, the algorithm will process each

new order once received, which makes the warehouse more flexible and efficient, and

also has higher requirements on the scheduling algorithms. To minimize the average

delay and ensuring the fairness, two algorithms are proposed. They are named as

Dynamic Order-Based (DOB) and Dynamic Order-Based with Threshold (DOBT)

Scheduling Algorithms, respectively. Compared with the First-Come-First-Serve and

other approaches, the simulation results show that DOB and DOBT are able to reduce

the average order retrieval delay by at least 30%, and generate less backlog pressure

to the downstream operations. Overall, the contributions of this dissertation are

meaningful to decrease the average delay of all the orders and improve the production

efficiency of the Smart Warehouse, thus enhance the shopping experience of all the

customers.

8.2 Future Work

One limitation of Dynamic Order-Based with Threshold (DOBT) comes with that the

determination of the threshold needs to be combined with the actual situation of the

warehouse. Different warehouses, in different periods, have different order rates. In

the future, we can combine the actual operation data of some warehouses to find a

more suitable threshold. At the same time, we only considered the retrieval stage, not

the storage stage, the process of putting the goods on the shelves. The strategy to

63

choose an appropriate way to combine these two stages, for example, before the

stacker retrieve the goods from the transfer station, take some goods to the

corresponding shelves on the way, which can greatly improve the overall efficiency of

the warehouse.

64

REFERENCES

[1] N. Boysen, R. De Koster, and F. Weidinger, 2019. Warehousing in the e-commerce era: A
survey. European Journal of Operational Research, 277(2), pp.396-411.

[2] Y. Yu, X. Wang, R.Y. Zhong and G.Q. Huang, 2016. E-commerce logistics in supply chain
management: Practice perspective. Procedia Cirp, 52, pp.179-185.

[3] A. LARSSON, 2016, Selection of Automated Order Picking Systems, M.S. thesis,
Department of Technology Management and Economics, CHALMERS UNIVERSITY OF
TECHNOLOGY.

[4] V. Aggarwal, Y.F.R. Chen, T. Lan and Y. Xiang, 2017. Sprout: A functional caching approach
to minimize service latency in erasure-coded storage. IEEE/ACM Transactions on
Networking, 25(6), pp.3683-3694.

[5] D. Culler and J. Long, 2016. A prototype smart materials warehouse application implemented
using custom mobile robots and open source vision technology developed using
emgucv. Procedia Manufacturing, 5, pp.1092-1106.

[6] K.N. Lemon and P.C. Verhoef, 2016. Understanding customer experience throughout the
customer journey. Journal of marketing, 80(6), pp.69-96.

[7] Z. He, V. Aggarwal and S.Y. Nof, 2018. Differentiated service policy in smart warehouse
automation. International Journal of Production Research, 56(22), pp.6956-6970.

[8] H. Zhang, Z. Guo, W. Zhang, H. Cai, C. Wang, Y. Yu, W. Li and J. Wang, 2019. Layout
design for intelligent warehouse by evolution with fitness approximation. IEEE Access, 7,
pp.166310-166317.

[9] B. Sainathuni, P. J. Parikh, X. Zhang and K. Nan. (2014). The warehouse-inventory-
transportation problem for supply chains. European Journal of Operational
Research, 237(2), 690-700.

[10] Z. Zhang, Q. Guo, J. Chen and P. Yuan, 2018. Collision-free route planning for multiple
AGVs in an automated warehouse based on collision classification. IEEE Access, 6,

65

pp.26022-26035.

[11] M. Saska, M. Macas, L. Preucil and L. Lhotska, 2006, September. Robot path planning using
particle swarm optimization of Ferguson splines. In 2006 IEEE Conference on Emerging
Technologies and Factory Automation (pp. 833-839). IEEE.

[12] X. Fan, X. Luo, S. Yi, S. Yang and H. Zhang, 2003, October. Optimal path planning for
mobile robots based on intensified ant colony optimization algorithm. In IEEE International
Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings.
2003 (Vol. 1, pp. 131-136). IEEE.

[13] G. Sharon, R. Stern, A. Felner and N.R. Sturtevant, 2015. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219, pp.40-66.

[14] T. Le-Anh and M.B.M. De Koster, 2006. A review of design and control of automated guided
vehicle systems. European Journal of Operational Research, 171(1), pp.1-23.

[15] G. Qing, Z. Zheng and X. Yue, 2017, May. Path-planning of automated guided vehicle based
on improved Dijkstra algorithm. In 2017 29th Chinese control and decision conference
(CCDC) (pp. 7138-7143). IEEE.

[16] Y. Guo, H. Huang, F. Gao and X. Qiao, 2017, October. Improving the Performance of Multi-
AGV Systems with a Dynamic Unlock Algorithm. In 2017 10th International Conference on
Intelligent Computation Technology and Automation (ICICTA) (pp. 39-43). IEEE.

[17] Y. Huang, 2015, The Research of Automated Warehouse Order Scheduling Based on
Imperialist Competitive Algorithm. M.S. thesis, South China University of Technology.

[18] B.S.S. Tejesh and S.J.A.E.J. Neeraja, 2018. Warehouse inventory management system using
IoT and open source framework. Alexandria engineering journal, 57(4), pp.3817-3823.

[19] A. Gilya-Zetinov, D. Demianova and A. Khelvas, 2019, November. Palletizing for Full-
automated Warehouses on the Genetics Algorithm Base. In 2019 International Conference on
Engineering and Telecommunication (EnT) (pp. 1-5). IEEE.

[20] X. Jiang, D. Zhao and H. Xu, 2019, April. Analysis and reconstruction of Pharmaceutical
Warehouse logistics delivery system. In 2019 IEEE International Conference on Smart
Manufacturing, Industrial & Logistics Engineering (SMILE) (pp. 226-229). IEEE.

[21] X. Sun, Z. Ma, Z. Wang and C. Ai, 2017. The development of stereoscopic warehouse stacker
control system based on motion controller. In MATEC Web of Conferences (Vol. 139, p.

66

00038). EDP Sciences.

[22] S. Li, N. Qin, D. Huang, D. Huang and L. Ke, 2019. Damage localization of stacker’s track
based on EEMD-EMD and DBSCAN cluster algorithms. IEEE Transactions on
Instrumentation and Measurement, 69(5), pp.1981-1992.

[23] H. Rams, M. Schöberl and K. Schlacher, 2017. Optimal motion planning and energy-based
control of a single mast stacker crane. IEEE Transactions on Control Systems
Technology, 26(4), pp.1449-1457.

[24] Z. Xu, 2018, Research on Control Technology of the Style of Clamp Box Stacker Crane with
Light and High-Speed. M.S. thesis, Wuhan University of Technology.

[25] C. Hang, 2018, Design and Study of A Single Colum Stacker in A Three-dimensional
Warehouse. Tianjin University of Science and Technology.

[26] Y. Lin, 2014, Research on Order Picking System Improvement for Double Fast-pick Areas.
Shandong University.

[27] J. Cheng, 2019, The Analysis and Design of Automated Stereo Warehouse System of MT
Company. Southeast University.

[28] Y. Kung, Y. Kobayashi, T. Higashi, M. Sugi and J. Ota, 2014. Order scheduling of multiple
stacker cranes on common rails in an automated storage/retrieval system. International
Journal of Production Research, 52(4), pp.1171-1187.

[29] Y. Khojasteh and J.D. Son, 2016. A travel time model for order picking systems in automated
warehouses. The International Journal of Advanced Manufacturing Technology, 86(5),
pp.2219-2229.

[30] X. Yang, Z. Xu, W. Jin, and F. Shu, 2021, Optimization of automatic stacker picking
sequence under the mixed picking strategy. Computer Integrated Manufacturing Systems,
27(03),933-942.

[31] K.W. Pang and H.L. Chan, 2017. Data mining-based algorithm for storage location
assignment in a randomised warehouse. International Journal of Production
Research, 55(14), pp.4035-4052.

[32] Y. Wang, S. Mou and Y. Wu, 2015. Task scheduling for multi-tier shuttle warehousing
systems. International Journal of Production Research, 53(19), pp.5884-5895.

67

[33] X.T. Kong, X. Yang, K.L. Peng and C.Z. Li, 2020. Cyber physical system-enabled
synchronization mechanism for pick-and-sort ecommerce order fulfilment. Computers in
Industry, 118, p.103220.

[34] H. Hu, L. Li and Z. Lv, 2018, July. A Novel Hybrid Algorithm for Order Picking
Optimization in Automated Warehouse. In 2018 37TH Chinese Control Conference
(CCC) (pp. 3216-3220). IEEE.

[35] G. Nastasi, V. Colla, S. Cateni and S. Campigli, 2018. Implementation and comparison of
algorithms for multi-objective optimization based on genetic algorithms applied to the
management of an automated warehouse. Journal of Intelligent Manufacturing, 29(7),
pp.1545-1557.

[36] X. Yang, Z. Xu, W. Jin, and F. Shu, 2021, The optimization problem of stacker operation
sequence under compound picking strategy. Computer Integrated Manufacturing System, 27,
pp. 933-942.

[37] K. Liu, J. Niu, Y. Shen and S. Li, 2016, Stacker Job Path Optimization Based on Genetic
Particle Swarm," (in Chinese), Journal of Shijiazhuang Tiedao University (Natural Science
Edition), 29(2), pp. 67-71.

[38] L. Wencan, H. Xuli, X. Yanggao and L. Yu, 2021, March. Research on Strategies and
Algorithms for Intelligent Scheduling of Tobacco Industry Stackers. In 2021 4th
International Conference on Electron Device and Mechanical Engineering (ICEDME) (pp.
279-286). IEEE.

[39] X. Yu, X. Liao, W. Li, X. Liu and Z. Tao, 2019. Logistics automation control based on
machine learning algorithm. Cluster Computing, 22(6), pp.14003-14011.

[40] F. Chen, Y. Wei and H. Wang, 2018. A heuristic based batching and assigning method for
online customer orders. Flexible Services and Manufacturing Journal, 30(4), pp.640-685.

[41] J. Zhang, X. Wang and K. Huang, 2016. Integrated on-line scheduling of order batching and
delivery under B2C e-commerce. Computers & Industrial Engineering, 94, pp.280-289.

[42] C.N. Guptha, M.G. Bhaskar and V. Meghasree, 2018, December. Design of IoT Architecture
for order picking in a typical warehouse. In 2018 3rd International Conference on
Computational Systems and Information Technology for Sustainable Solutions (CSITSS) (pp.
50-53). IEEE.

[43] J. Guo, Z.B. Jiang, Y.B. Chu and N. Geng, 2012. Study of Scheduling of Parallel Multi-task

68

Picking Based on Limited Working Area. Industrial Engineering and Management, 3, pp.102-
107.

[44] M. Çelk and H. Süral, 2014. Order picking under random and turnover-based storage policies
in fishbone aisle warehouses. IIE transactions, 46(3), pp.283-300.

[45] Y.C. Ho, T.S. Su and Z.B. Shi, 2008. Order-batching methods for an order-picking warehouse
with two cross aisles. Computers & Industrial Engineering, 55(2), pp.321-347.

[46] H. Tang, X. Cheng, W. Jiang and S. Chen (2021). Research on equipment configuration
optimization of AGV unmanned warehouse. IEEE Access, 9, 47946-47959.

[47] J. Santos, P. Costa, L. Rocha, K. Vivaldini, A. P. Moreira and G. Veiga, (2016). Validation of
a time based routing algorithm using a realistic automatic warehouse scenario. In Robot 2015:
Second Iberian Robotics Conference (pp. 81-92). Springer, Cham.

[48] N.C. Truong, T.G. Dang and D.A. Nguyen, 2017, December. Building management
algorithms in automated warehouse using continuous cluster analysis method. In
International Conference on Advanced Engineering Theory and Applications (pp. 1068-1077).
Springer, Cham.

[49] P. Gharat, C. Gori, A. Kothawade and D.K. Chitre, WEB BASED AUTOMATED
WAREHOUSE MANAGEMENT SYSTEM.

[50] D. Roy, A. Krishnamurthy, S.S. Heragu and C.J. Malmborg, 2013. Blocking effects in
warehouse systems with autonomous vehicles. IEEE Transactions on Automation Science
and Engineering, 11(2), pp.439-451.

[51] D. Roy, A. Krishnamurthy, S. Heragu and C. Malmborg, 2015. Stochastic models for unit-
load operations in warehouse systems with autonomous vehicles. Annals of Operations
Research, 231(1), pp.129-155.

[52] H. Yoshitake, R. Kamoshida and Y. Nagashima, 2019. New automated guided vehicle system
using real-time holonic scheduling for warehouse picking. IEEE Robotics and Automation
Letters, 4(2), pp.1045-1052.

[53] H. Tang, X. Cheng, W. Jiang and S. Chen, 2021. Research on Equipment Configuration
Optimization of AGV Unmanned Warehouse. IEEE Access, 9, pp.47946-47959.

[54] K. Guo, J. Zhu and L. Shen, 2020. An Improved Acceleration Method Based on Multi-Agent
System for AGVs Conflict-Free Path Planning in Automated Terminals. IEEE Access, 9,

69

pp.3326-3338.

[55] S. Liu, 2018, October. Research on Scheduling Policy of Automated Warehouse System.
In Proceedings of the 2nd International Conference on Computer Science and Application
Engineering (pp. 1-5).

[56] B. Sun, X. Zhang, H. Qiao, G. Li and Y. Chen, 2020. Multi-type resources collaborative
scheduling in automated warehouse with fuzzy processing time. Journal of Intelligent &
Fuzzy Systems, 39(1), pp.899-910。

70

APPENDIX A: EXPERIMENT DATA

Total Delay in seconds of all orders with five stackers.

Total Delay in Seconds of all orders with ten stackers

71

Total Delay of in Seconds all orders with fifteen stackers.

	 ABSTRACT
	ACKNOWLEDGEMENT
	APPROVAL SHEET
	SUBMISSION SHEET
	DECLARATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1INTRODUCTION
	1.1Background
	1.2Problem Statement
	1.3Objectives
	1.4Organization of Dissertation

	CHAPTER 2RELATED WORKS
	2.1 Utilization of AGV in Smart Warehouses
	2.2Utilization of Automated Stackers in Smart Warehou
	2.3 Algorithms for Scheduling the Stackers’ Jobs
	2.4Layout and Workflow of Smart Warehouses

	CHAPTER 3MATHEMATICAL MODELLING OF THE PROBLEM
	3.1Retrieval Time
	3.2Notations and Definitions
	3.3Objective Function

	CHAPTER 4Static Scheduling Algorithms
	4.1 Order-Based Random Out Algorithm (OBRO)
	4.2 Item-Based Shortest-Job-First Algorithm (IB-SJF)
	4.3Static Order-Based Scheduling Algorithm – I (SOB-I
	4.3.1Job Set, Schedule Sequence and Order Tag
	4.3.2Implementation Procedure

	4.4 Static Order-Based Scheduling Algorithm – II (SOB
	4.4.1Order Set
	4.4.2Implementation Procedure

	4.5Comparison between SOB-I and SOB-II
	4.6Methodology for Performance Study

	CHAPTER 5SIMULATION and DISCUSSION I
	5.1Simulation Settings
	5.2Simulation Results
	5.3Discussion

	CHAPTER 6DYNAMIC SCHEDULING ALGORIHTMS
	6.1First-Come-First-Serve (FCFS) Scheduler
	6.2Last-Come-First-Serve (LCFS) Scheduler
	6.3Shortest-Job-First (SJF) Scheduler
	6.4Dynamic Ordered-Based (DOB) Scheduler
	6.4.1Flow of DOB Scheduling Algorithm
	6.4.2Discussion of DOB

	6.5Dynamic Order-Based with Threshold (DOBT) Schedule
	6.6Methodology for Performance Study

	CHAPTER 7SIMULATION and DISCUSSION II
	7.1Simulation Models
	7.1.1Random Model for Generating Order Arrivals
	7.1.2Random Model for Generating Item Quantity
	7.1.3Random Models for Generating Shelf Locations and R

	7.2Simulation Settings
	7.3DOB VS. other Schedulers
	7.3.1Average Retrieval Delay of Orders
	7.3.2Maximum Retrieval Delay of Orders
	7.3.3Downstream Backlog Pressure

	7.4DOBT vs. DOB and FCFS
	7.5Discussion

	CHAPTER 8CONCLUSION
	8.1Proposed Approaches and Achievement
	8.2Future Work

	REFERENCES
	APPENDIX A: EXPERIMENT DATA

