

POWER MANAGEMENT SCHEME FOR FPGA-BASED
CUSTOMIZABLE INTERNET OF THING (IoT) SENSOR

NODES

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTYOF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
MARCH 2022

POWER MANAGEMENT SCHEME FOR FPGA-BASED

CUSTOMIZABLE INTERNET OF THINGS (IoT) SENSOR NODES

By

A dissertation submitted to the Department of Computer and Communication

Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

March 2022

ii

ABSTRACT

POWER MANAGEMENT SCHEME FOR FPGA-BASED

CUSTOMIZABLE INTERNET OF THINGS (IoT) SENSOR NODES

Field-programmable gate array (FPGA)-based sensor nodes are popular for

their flexible design approach and field re-configurability. RISC32, one of the

recent Internet of things (IoT) processors proposed for developing FPGA-

based sensor nodes, has the ability to reconfigure the microarchitecture

dynamically according to program workload. This helps in reducing the

dynamic energy consumption required for completing program execution.

However, such an approach does not minimize the static energy consumption,

which is important in FPGA-based systems. In this study, two known low-

power techniques compatible with FGPA were implemented in RISC32: clock

gating (CG) and dynamic voltage–frequency scaling (DVFS) techniques. In

addition, a software tool (Energy Reduction Program Analyzer) was

developed to estimate the parameters that can configure the sensor node to

achieve minimum energy consumption, targeting the typical IoT application

scenario. Experimental results show that the low-power techniques applied in

this work can reduce the energy consumption by 47% compared to the original

RISC32. In particular, combining low-power techniques has shown improved

iii

energy saving compared to single low-power technique: 45% improvement

versus CG, 11.54% improvement versus DVFS, and 40% improvement versus

partial reconfiguration.

iv

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisors, Dr. Chang Jing

Jing and Mr. Mok Kai Ming, for their guidance, inspiration, and enthusiasm,

which enabled the completion of this research project. I would also like to give

a special appreciation to our research team member, Dr. Lee Wai Kong, for his

advice on the practical IoT application and the experimental flows prior to the

completion of the experimental work. Last but not least, I would like to thank

to my family for their full support in order for me to pursue my interest.

v

APPROVAL SHEET

This dissertation entitled “POWER MANAGEMENT SCHEME FOR

FPGA-BASED CUSTOMIZABLE INTERNET OF THINGS (IoT)

SENSOR NODES” was prepared by TAN BENG LIONG and submitted as

partial fulfillment of the requirements for the degree of Master of Science

(Computer Science) at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Chang Jing Jing)

Date: 7th March 2022

Supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Mr. Mok Kai Ming)

Date: 7th March 2022

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vi

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __7th March 2022_________

SUBMISSION OF DISSERTATION

It is hereby certified that TAN BENG LIONG (ID No: _17ACM06813) has

completed this dissertation entitled “POWER MANAGEMENT SCHEME FOR

FPGA-BASED CUSTOMIZABLE INTERNET OF THINGS (IoT) SENSOR

NODES” under the supervision of Dr. Chang Jing Jing (Supervisor) from the

Department of Computer and Communication Technology, Faculty of Information and

Communication Technology , and Mr. Mok Kai Ming (Co-Supervisor) from the

Department of Computer and Communication Technology, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community

and public.

Yours truly,

(TAN BENG LIONG)

vii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

Name: TAN BENG LIONG

Date: 7th March 2022

viii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iv

APPROVAL SHEET v

SUBMISSION SHEET vi

DECLARATION vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS xii

CHAPTER

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 6

1.3 Objectives 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Low-Power Techniques 8

2.1.1 Clock Gating 8

2.1.2 Power Gating 8

2.1.3 Dynamic Voltage and Frequency Scaling 9

2.1.4 Partial Reconfiguration 11

2.1.5 Power Management Module 12

2.1.6 Other Techniques 13

2.2 Research gap 13

CHAPTER 3 RISC-LP: THE PROPOSED LOW-POWER FPGA-BASED

SENSOR NODE 15

3.1 System Overview 15

3.2 Power Management Unit 18

3.2.1 Development of Clock Gating 22

3.2.2 Development of Dynamic Voltage and Frequency Scaling 25

3.4 Partial Reconfiguration 41

3.5 Xilinx Vivado Synthesis Results 43

CHAPTER 4 ENERGY REDUCTION PROGRAM ANALYZER 45

4.1 Step 1: Program Segmentation Process 48

4.2 Step 2: Link the Nodes 49

4.3 Step 3: Simulate Program for Clock Cycle Calculation. 50

ix

4.4 Step 4: Node classification 51

4.5 Step 5: Identify Program Type 52

4.6 Step 6: Search for a Potential Node to Insert Low-Power Instructions.

 53

4.7 Step 7: Insert Low-Power Instructions based on the Program Type 54

4.7.1 Polling-based Program 54

4.7.2 Timer-Interrupt-based Program 57

4.8 Example of EFRA on tuning frequency to optimal value. 59

CHAPTER 5 ENERGY REDUCTION EXPERIMENT AND RESULT 62

5.1 Polling-based Test Program 67

5.1.1 Program Behavior 67

5.1.2 Result based on Polling Test Program 67

5.2 Interrupt-based Test Program 70

5.2.1 Program Behavior 70

5.2.2 Result based on Interrupt Test Programs 71

5.3 Comparison with Existing Works. 73

CHAPTER 6 CONCLUSION 75

 REFERENCES

x

LIST OF TABLES

Table Page

Table 3.1: Specification of the RISC32-LP. .. 17
Table 3.2: DVFS-related input and output pins in the PMU. 18
Table 3.3: CG-related input and output pins in PMU. 20
Table 3.4: IO CG control unit’s LUT. ... 23
Table 3.5: CPU core CG control unit’s LUT. .. 23
Table 3.6: F–V pairs. ... 26
Table 3.7: The number of FFs used in each range of LDMC. 29

Table 3.8: SPI command values. .. 29

Table 3.9: DVFS-CU input and output pins. ... 31
Table 3.10: Description of each FSM state for DVFS-CU. 34
Table 3.11: Output pins value of each FSM state for DVFS-CU (DVFS-CU).

.. 36
Table 3.12: CDC circuit input and output pins .. 38

Table 3.13: FPGA resource difference between RISC32 and RISC32-LP. 44
Table 4.1 Pseudo code of the example user program. 47
Table 4.2 Assembly code of the example user program. 47

Table 4.3 Description for symbols used in this chapter. 48
Table 4.4 Pseudo algorithm used by ERPA to insert DVFS and TMA

instructions in a polling-based program. .. 54
Table 4.5 Pseudo algorithm used by ERPA to insert DVFS and TMA

instructions in an interrupt-based program. ... 57
Table 5.1 Short description for each test cases. ... 66
Table 5.2 Energy consumption of polling test program. 67

Table 5.3 Energy saving of polling test program. .. 68
Table 5.4 Energy consumption of interrupt test program. 71

Table 5.5 Energy saving of interrupt test program. ... 72
Table 5.6 Comparison with the existing low power techniques. 73
Table 6.1: Static and dynamic energy breakdown of 256-byte interrupt-based

test program at 40 MHz. .. 77

xi

LIST OF FIGURES

Figure Page

Figure 3.1: RISC32-LP architecture with IoT program compilation process. . 15
Figure 3.2: DVFS and CG components in the PMU. 17
Figure 3.3: PMU block diagram in RISC32-LP. ... 18
Figure 3.4: Clock gated module in RISC32-LP. .. 24
Figure 3.5: BUFHCE’s waveform. .. 24
Figure 3.6: Voltage regulator’s schematic. .. 27
Figure 3.7: LDMC circuitry. .. 28

Figure 3.8: Block diagram of DVFS-CU. .. 31

Figure 3.9: State diagram for DVFS-CU FSM. ... 33
Figure 3.10: clk1 and clk2 signals from the PLL... 34
Figure 3.11: Multi-clock domain in RISC32-LP and CDC circuit location. ... 37
Figure 3.12: Block diagram of the CDC circuit. .. 38
Figure 3.13: Details of the CDC circuit. .. 39

Figure 3.14: Example waveform of the CDC circuit. 40
Figure 3.15: RISC32’s microarchitecture in the ME mode. 41
Figure 3.16: RISC32’s microarchitecture in the PE mode. 41

Figure 3.17: Static and reconfigurable region in RISC32’s core (Kiat et al.,

2020). ... 42

Figure 4.1 Flow of ERPA analysis. ... 46
Figure 4.2 Assembly code of the example user program and the result after

segmentation process. .. 49
Figure 4.3 Example of the cyclic node graph created. 50
Figure 4.4 QNODE content based on the example user program. 50

Figure 4.5 Classification of nodes in the cyclic graph. 52
Figure 4.6 Node arrangements in QNODE based on the example user program

(timer-interrupt-based). .. 53
Figure 4.7 ERFA steps on insert SB instruction for DVFS feature in RISC32-

LP. .. 59
Figure 5.1 Hardware setup for energy measurement during the experiment. .. 62

Figure 5.2 Power consumption of polling test program (TSTMAX) with 256-

byte data size. ... 67

Figure 5.3 Energy saving for (TSTPR vs TSTMAX) and (TSTCOMB vs TSTMAX).

TSTPR did not achieve energy saving from 64-byte to 256-byte due to

overhead. .. 68
Figure 5.4 Energy saving for (TSTCG vs TSTMAX), (TSTDVFS vs TSTMAX),

(TSTCOMB vs TSTMAX) and (TSTERPA vs TSTMAX). Energy saving in TSTCOMB

is lower than TSTERPA due to PR overhead shown in Figure 5.3. 69
Figure 5.5 Power consumption of interrupt test program (TSTMAX) with 256-

byte data size .. 70

xii

LIST OF ABBREVIATIONS

ASIC Application-specific integrated Circuit

BER Bit error rate

C Transistor capacitance

CDC Clock domain crossing

CG Clock gating

DVFS Dynamic voltage and frequency scaling

DVFS-CU DVFS control unit

ERPA Energy Reduction Program Analyzer

fclock Operating clock frequency of a system

FF Flip-flop

FPGA Field-programmable gate array

ICAP Internal configuration access port

Iccint Current flow in the FPGA chip

IGATE Gate leakage

IGIDL Gate-induced drain leakage

IoT The Internet of Things

IREV Reverse bias junction leakage

Istatic Electric current in an idle system

ISUB Sub-threshold leakage

LDMC Logic delay measurement circuit

LUT Look-up table

ME Multi-cycle microarchitecture execution

MFF Main flip-flop

xiii

P Power consumption

Pdym Dynamic power consumption

PE Pipeline microarchitecture execution

PLL Phase-locked loop

PMU Power management unit

PR Partial reconfiguration

Pshort_circuit Short circuit power consumption

Pstatic Static power consumption

R Resistance

RAM Random access memory

RISC Reduced instruction set computer

RU Reconfigurable unit

SFF Slow flip-flop

SoC System on chip

TMA Toggle microarchitecture

Vccint Voltage supply for FPGA chip

Vdd Voltage supply of a system

Vshunt_resistor_anp Amplified potential different on the shunt resistor

The following abbreviations are used in Chapter 4

ndata_dep_acc

Number of data dependencies accumulated for consecutive

IO nodes, starting from CPU node until node_lp_config is

detected.

node_lp_config Potential node in which to insert low-power instruction.

Qndata_dep_acc Queue that stores ndata_dep_acc of each check point.

xiv

QNODE

Queue that stores the nodes’ properties based on the

program execution flow; nodes in the loop are unrolled

before storing.

Qnode_lp_config

Queue that stores the indices that correspond to

node_lp_config.

QTIO_acc Queue that stores TIO_acc at each check point.

TEXE

TNODE_TOTAL * 25 μs (period of the 40 MHz frequency);

program execution time (in μs) derived from TNODE_TOTAL.

TIDLE

(TTIMER_INT – TNODE_TOTAL) * 25 μs. The available program

slack for a timer interrupt-based program, converted from

clock cycle count to microseconds (μs).

TIO_acc

Total clock cycle count accumulated for consecutive IO

nodes, starting from a CPU node until node_lp_config is

detected.

TNODE_TOTAL

Total clock cycle count (from all nodes) needed to

complete a superloop

To_DVFS (μs)

Overhead (in μs) when changing operating frequency and

voltage.

To_PR (μs) Overhead (in μs) for the PR operation.

TTIMER_INT

Timer interrupt value in clock cycle count (measured at

maximum frequency, 40MHz)

1

CHAPTER 1

INTRODUCTION

1.1 Background

Internet of Things (IoT) refers to a system of interrelated computing

systems which enables them to exchange data with each other, or to the main

host (e.g., cloud server, computer, or smartphone). IoT devices are typically

embedded with electronics, software applications, sensors, actuators, and

network connectivity. In the recent decades, IoT technology has brought a

significant transformation in the manner in which we live and work. For

example, people are now able to monitor and control their vehicles, home

appliances, and even their pets from long distance as long as there is an

Internet connection for both devices. With IoT becoming increasingly

pervasive in our everyday lives, the demand and requirement for IoT devices

have also become increasingly complex.

 Like other electronic devices, a processor is compulsory for IoT

devices to process outgoing data or incoming instruction. However, the design

of an IoT processor possesses an additional challenge in terms of power

efficiency. This is attributable to the nature of IoT devices, which are often

portable, lightweight, and largely depend on battery lifetime. Hence, in this

study, low-power techniques were applied in the RISC32 processor to improve

its power efficiency.

 The power dissipation associated with a processor can be classified

into two categories: dynamic power dissipation and static power dissipation.

Dynamic power dissipation is mainly caused by switching activities during the

2

operation of the processor. The content stored in the register or memory of the

processor will always change, which means the charge and discharge of the

transistor will occur.

Static power dissipation is caused by leakage of current in a gate, which is

classified into four types:

● Sub-threshold leakage (ISUB): the current flows between the source and

drain of a MOSFET when a transistor is in the weak inversion region.

● Gate leakage (IGATE): the current that flows between the gate and to

substrate through the oxide layer due to the gate oxide tunneling and

hot carrier injection.

● Gate-induced drain leakage (IGIDL): the current leak between the drain

and substrate, which is caused by a high field effect in the MOSFET

drain.

● Reverse bias junction leakage (IREV): current leak caused by minority

carriers drift in the reversed-biased regions.

More specifically, the total power consumption of a processor can be

described using the following equation:

P = Pdym + Pshort_circuit + Pstatic

Where Pdym is the dynamic power consumption, Pshort_circuit is the short-circuit

power consumption, and Pstatic is the static power consumption. The dynamic

power component is given as Pdym = ∑(C * Vdd
2 * fclock), which is mainly

caused by the switching of activities during the operation of the processor. The

C* fclock in the equation represents total switching activities (charge or

discharge) taking place in a transistor per second, where C is the capacitance

3

of transistor in the system and fclock is the operating clock frequency of the

system. The rate of transistor charge and discharge depends on fclock. For

example, a processor with higher clock frequency will have a shorter clock

period resulting in more switching activities throughout the program

execution. The Vdd denotes the voltage level supplied to the system. A system

with a higher voltage supply can switch the logical level (“0” and “1”) of the

gate faster. This means, a processor with higher fclock (performance) will

require a higher Vdd to ensure fast logical level switching within a short fclock

period.

Static power, on the other hand, is represented by Pstatic = Vdd*Istatic, where

Vdd is the voltage supply to the system and Istatic is the current consumed by the

system when the processor is turned on without the switching activities (idle

state). However, since the static current has the relationship of Istatic = Vdd/R,

static power can be represented by Pstatic = Vdd
2/R, where R is the resistance

that is fixed for an implemented design. Therefore, the static power can be

reduced by lowering the voltage supply. However, it should be noted that a

system requires a minimum voltage supply to operate correctly. Hence, the

voltage supply cannot be reduced below the minimum level.

 Some of the popular techniques worth mentioning are dynamic voltage

and frequency scaling (DVFS), clock gating (CG), power gating, etc. However,

not all low-power techniques are suitable to be implemented in all processors.

For example, Peng et al. (2013) implemented the instruction-cycle-based

dynamic voltage scaling on digital signal processor, which has both complex

and simple instructions, but this technique does not help much in simple

reduced instruction set computer (RISC) processor since most of the RISC

4

instructions have similar latency. Another technique called power gating is

also not suitable for designs on Field-programmable gate array (FPGA), as

FPGAs do not offer to support the low power feature.

 In this project, FPGA was used to implement the RISC32 processor as

an IoT processor. Therefore, we could not apply the low-power techniques

that require modifications on transistor level. In this work, partial

reconfiguration (PR) and CG (Sterpone et al., 2011) are combined with DVFS

to achieve significant reduction of energy consumption.

 CG is one of the simplest low-power techniques. It reduces dynamic

power by deactivating the clock signal supplied to circuit regions, which are

idle during run-time. The clock signal is basically not allowed to switch.

 DVFS, one of the commonly used low-power techniques, is an obvious

choice for RISC32. It tunes supply voltage and operating frequency for power

reduction. Since both the dynamic and static power consumption are related to

supply voltage Vdd, reducing Vdd can decrease power consumption

significantly. At the same time, operating frequency (fclock) in the FPGA can

be reduced to further decrease dynamic power consumption. In the past,

DVFS has been proposed in many application-specific integrated circuit

(ASIC) designs, but it is challenging to adopt the same in an FPGA because it

is not widely supported by existing development tools. Recently, Nunez-

Yanez et al. (2015, 2017) and Wu et al. (2014) proposed techniques to enable

DVFS implementation in FPGA devices, opening up the possibility of

applying DVFS in FPGA-based IoT sensor nodes.

 Besides DVFS, PR feature in the FPGA has been proposed (Kiat et al.,

2020) to reduce power consumption. Energy consumption is reduced by

5

switching between two microarchitectures (pipeline and multi-cycle) through

PR. Switching of microarchitecture is done by a customized instruction, toggle

microarchitecture (TMA), based on the characteristics of the given tasks.

Although DVFS and the PR technique can effectively reduce the

power consumption in FPGA-based sensor nodes, configuring the system to

work at the lowest power level may not be beneficial due to the following

challenges:

1) When power consumption is reduced by DVFS (i.e., reducing Vdd),

the operating frequency must be reduced to avoid timing errors, which, in turn,

decreases execution speed. This can result in higher total energy consumption

if the designated tasks take a long time to complete.

2) Some IoT applications require data to be sent at fixed intervals to

ensure the timeliness of data processing at the gateway or in a cloud server.

Energy-efficient sensor nodes, although highly desired, must not violate such

timing requirements.

3) IoT applications come with a variety of energy and speed

requirements (Hempstead et al., 2008). It can be challenging to manually

configure parameters for DVFS and PR to achieve good energy efficiency and

speed for each IoT application.

To solve these “one-size-never-fits-all” challenge, a new software tool,

called the Energy Reduction Program Analyzer (ERPA), is introduced herein.

This tool enables automation of energy management in FPGA-based IoT

sensor nodes. By analyzing the behavior of a program, ERPA automatically

determines the best configurations for both DVFS (the frequency-voltage

pairing) and PR (the microarchitecture).

6

The contributions of this work are summarized below:

1) Low-power techniques (DVFS, PR, and CG) were developed and

applied to the RISC32 FPGA-based IoT sensor node to achieve lowest energy

consumption. The energy reductions achieved through these low-power

techniques were compared and analyzed in detail.

2) A new software tool, Energy Reduction Program Analyzer, was

developed to automatically determine the best configuration for various low-

power techniques. The instructions related to the low-power configurations are

inserted into programs automatically at the appropriate locations to achieve

optimal energy reductions.

1.2 Problem Statement

In Kiat et al. (2020), RISC32 is not implemented with any known low-

power techniques. Hence, the energy reduction is not maximized. Moreover,

most of the existing works are focused on using a single low-power technique.

To maximize the energy reduction in RISC32, multiple low-power techniques

have been implemented. However, after combining the low-power techniques,

RISC32 has several configurations with varied energy consumption and

performance levels. Hence, there is a need to ascertain the best configuration

for the implemented low-power techniques to achieve maximum energy

reduction.

1.3 Objectives

The main goal of this research is to reduce energy consumption of the

RISC32 for IoT applications. Several low-power techniques have been

implemented on the RISC32, which allowing the RISC32 to trade-off between

power and performance during program execution. Also, a software tool,

7

namely, Energy Reduction Program Analyzer has been developed to

determine (based on the program behavior) the best configuration while using

the low-power techniques. The prime objectives of this research are

enumerated as follows:

1. To implement low-power techniques (DVFS, PR, and CG) on the

RISC32 FPGA-based IoT sensor node to reduce its energy

consumption.

2. To develop a new software tool, Energy Reduction Program Analyzer,

for automatic configuration of the low-power techniques.

8

CHAPTER 2

LITERATURE REVIEW

This chapter discusses several known low-power techniques that are

applicable to FPGA power management are presented. These techniques

include CG, power gating, and DVFS. Besides that, it discusses a few new

trends of low-power techniques such as optimizing frequently used features in

a system and reuse hardware resources to implement multiple low-utilization

circuits by using the PR feature.

2.1 Low-Power Techniques

2.1.1 Clock Gating

CG is one of the most commonly employed low-power techniques. It

gates the clock signal of an idle circuit with an AND gate. This prevents

unnecessary clock switching, which consumes dynamic energy. However, the

AND gate can potentially cause glitchy output. Hence, Sterpone et al. (2011)

proposed a reconfigurable CG technique that replaces the AND gate used in

conventional CG. A controller is required to disable/enable the clock signals to

localize regions. This is achieved through command transmitted via Internal

Configuration Access Port (ICAP).

2.1.2 Power Gating

Power gating is another technique useful in reducing the energy

consumption in an FPGA. It gates the power supply to reduce idle power.

Power gating can save more power compared to CG but requires more

circuitry to support this feature. For example, there is a need to save and

restore the registers’ content in the power-gated circuit during power-down

9

and power-up phases. Bsoul et al. (2015) proposed a dynamically controlled

power gating technique applicable to an FPGA. This technique turns on/off the

power switch at run-time, and the authors reported a power saving of 83%.

The control signal of the power switch is connected to the general-purpose

routing fabric of the FPGA, which allows the FPGA itself to turn on/off the

power switch. However, this technique requires customization on the circuitry

inside the FPGA chip, which is not available in most of the commercial FPGA

chips. Another similar work was presented by Hosse et al. (2014), who applied

power gating technique to Zynq-7000, which consists of dual-core ARM

Cortex-A9 processor (the processing system) and a Xilinx 7 series FPGA. The

authors reported a power saving of 96%, where they used ARM Cortex-A9 to

control the power rail of FPGA chip. This design requires an extra monitor

system to control the power supply, which consumes extra power. Moreover,

many IoT sensor nodes do not process complex computational tasks. A high-

end processor like Cortex-A9 can be too power-hungry and unnecessary.

2.1.3 Dynamic Voltage and Frequency Scaling

DVFS is another popular low-power technique that adjusts power

(voltage supply) and system performance (clock frequency) during application

execution. Most of the prior work that implements DVFS focuses on how to

select the best frequency–voltage (f–v) pair with the help of additional circuits.

For instance, Nunez-Yanez et al. (2015, 2017) proposed an in-situ detector to

be inserted into critical paths between two flip-flops (FFs) of their target

design. The in-situ detector consists of a main flip-flop (MFF) and a slow flip-

flop (SFF). Both FFs are driven by the output of the critical paths, but the

input to the SFF is slightly delayed compared to MFF. By observing the output

10

of the MFF and SFF, the best operating frequency can be determined. In

Nunez-Yanez et al. (2015), the critical paths between FFs and memory, which

are called block RAMs, are included, while in Nunez-Yanez et al. (2017), just

the path between FFs is included.

Wu et al. (2016) proposed a free razor technique to scale the supply

voltage, to achieve energy efficiency, in addition to a forward error correction

module to maintain the accuracy of the system. Based on the bit error rate

(BER) sensor feedback, the voltage regulator can scale down the voltage

supply as long as the BER is low enough to tolerate system noise. One

drawback of this system is that it has an extra correction circuitry, which

potentially degrades the processor performance if an error occurs. These

techniques are not suitable to be implemented on RISC32 because adding such

circuitry to RISC32 is too costly in terms of hardware resources, as RISC32 is

aimed at implementing IoT sensor nodes.

Nunez-Yanez et al. (2015) combined the previously developed power

gating (Hosseinabady and Nunez-Yanez, 2014) and DVFS techniques to lower

the energy consumption in Zynq-7000 SoC ZC702 evaluation board. They

also used the PR technique to switch between two different hardware

configurations, namely, ME1 and ME6. The former represents the hardware

configuration with a single execution unit, whereas the latter involves six

execution units, where the execution unit refers to the MicroBlaze processor

developed on the programmable logic. The switch between two hardware

configurations is controlled by the ARM dual-core Cortex-A9 processor

through the Processor Configuration Access Port. This work shows that an

11

energy reduction as high as 60% is achieved when the tasks are executed on

the ME6 hardware configuration.

2.1.4 Partial Reconfiguration

Energy consumption can also be reduced by using PR, which allows

the reuse of the same hardware area to implement several low-utilization

circuits. For instance, Nunez-Yanez et al. (2017) presented a technique to

lower the energy consumption of the Zynq-7000 SoC ZC702 evaluation board

by using PR. This technique involves switching between two different

hardware configurations with one and six execution units. The authors

reported the energy reduction to be as high as 60%. Tamimi et al. (2018)

proposed a reconfigurable architecture to implement a soft-core processor.

They integrated functional units with low utilization (e.g., floating-point units)

into look-up table (LUT)-based reconfigurable units (RUs). The low-

utilization functional units only configure in RU when it is required to perform

a specific operation. This technique successfully reduced hardware resources

by 30.7%, reducing static power and energy consumption by 32.5% and

36.9%, respectively.

Kiat et al. (2020) proposed a feature in RISC32 that can dynamically

switch between pipeline microarchitecture execution (PE) and multi-cycle

microarchitecture execution (ME) to reduce energy consumption. PE can

achieve higher throughput but requires more hardware resources (pipeline

registers, forwarding circuits, a branch predictor, an interlock controller, etc.).

On the other hand, ME has lower throughput, but it requires fewer hardware

resources. Hence, to achieve better energy efficiency, PE is used to execute

CPU-bound tasks to complete them within a short time. However, for IO-

12

bound tasks, the CPU spends most of its time idle, waiting for the IO

instructions to be completed. Since ME consumes less power than PE, it is

more advantageous to use ME in such a scenario.

2.1.5 Power Management Module

Existing power management modules are usually designed to support

DVFS techniques. To achieve that, the power management module is required

to determine the suitable location in the user program to apply DVFS as well

as the right frequency to be configured, according to the program’s behavior.

In a method proposed by Tatematsu et al. (2011), the execution frequency is

selected by using the greedy algorithm. On the other hand, Qin et al.’s (2019)

method uses linear programming to determine the optimum frequency in every

task. However, the software performance needs to be maintained while trying

to reduce energy consumption. To address this issue, Wu et al. (2017)

modelled the long-term deadline-aware task scheduling and Deng et al. (2020)

proposed cuckoo search algorithm based on Gaussian random walk and

adaptive discovery probability to reduce energy under specific performance

constraints. In another similar work, Huang et al. (2018) developed a

scheduling method, which allows task scheduling with fault tolerance. These

prior works evaluated the energy reduction achieved by DVFS based on their

simulation result.

In this work, a similar idea was used to develop a power management

scheme including not only the DVFS configuration but also the PR

configuration. The developed ERPA needs to identify the IO-bound

instructions in the program to insert power management instructions

effectively for energy reduction purposes.

13

2.1.6 Other Techniques

Besides these popular low-power techniques, energy consumption can

also be reduced by developing function-specific hardware modules. For

instance, See et al. (2020) introduced RISC32-E, which integrates the RISC32

sensor node with an AES-128 coprocessor based on instruction in-order issue,

partial out-of-order completion. RISC32-E is able to perform encryption in

counter mode 200% faster compared to software encryption on RISC32.

Owing to the reduced encryption time, the energy consumption for encryption

tasks on RISC32-E was also reduced by 99% as compared to RISC32.

However, this energy reduction technique is applicable to the encryption task

only.

Recently, Brandalero et al. (2019) presented MuTARe, a single ISA

heterogeneous chip multiprocessor (CMP) with an additional voltage rail that

enables it to operate in the near-threshold-voltage regime. MuTARe improved

the design of CMP, which is more suitable for complicated and unpredictable

IoT workloads. Due to the complexity of the involved IoT tasks, they

proposed a dynamic binary translation (DBT) hardware module to

automatically transform the code for reconfigurable acceleration.

2.2 Research gap

To maximize the energy efficiency, it is logical to extend the RISC32

to RISC32-LP by incorporating low-power techniques DVFS and CG, which

can be applied to FPGA platforms. With the implementation of DVFS and

CG, RISC32-LP can trade-off its performance to reduce power consumption.

After integrating DVFS and CG on top of PR, RISC32-LP has multiple

options to reduce energy. Hence, a tool is required to regulate these low-power

14

techniques. In this work, we decided to develop a software that can calculate

the position to activate the desired low-power technique based on application’s

behavior and insert low-power instructions into the application accordingly.

Alternately, we could develop a hardware to profile the energy consumption

and adjust the low-power technique on-the-fly. However, this hardware would

have consumed extra hardware, which is costly for a sensor node device.

15

CHAPTER 3

RISC-LP: THE PROPOSED LOW-POWER FPGA-BASED SENSOR

NODE

3.1 System Overview

The proposed low-power FPGA based sensor node (RISC32-LP) is an

extension of the RISC32 (Kiat et al., 2020) that aims to further reduce the

energy consumption for IoT application. Figure 3.1 shows the architecture of

both (a) RISC32 and (b) RISC32-LP with the IoT program compilation

process.

 FPGA

CPU

PR
instance

I-CACHE D-CACHE
Stack
RAM

DATA
RAM

Priority
interrupt
controller

Sy
st

em
 B

u
s

SPI
Controller

UART
Controller

GPIO
Controller

Memory Arbiter

PR Controller

Flash
Controller

ADC

Flash
Memory

C program Assembly code

LLVM Complier

Pr
o

gr
am

 in
to

 F
la

sh
 M

em
o

ry

 FPGA

CPU

PR
instance

I-CACHE D-CACHE
Stack
RAM

DATA
RAM

Priority
interrupt
controller

Sy
st

e
m

 B
u

s

SPI
Controller

UART
Controller

GPIO
Controller

Memory Arbiter

PR Controller

Flash
Controller

ADC

Power
Management
Unit (PMU)

Flash
Memory

C program Assembly code
SB(dvfs) & TMA instructions

inserted Assembly code

LLVM Complier

Energy Reduction
Firmware Analyser

(ERFA)

P
ro

gr
a

m
 in

to
 F

la
sh

 M
em

o
ry

(a)

(b)

Figure 3.1: RISC32-LP architecture with IoT program compilation

process.

16

The previous project, RISC32, is an MIPS-ISA-compatible 32-bit IoT

processor. It supports only a small subset of the full MIPS instruction set

(MIPS32, 2000) adequate for an IoT sensor node. The PR feature of its

microarchitecture has been found to be able to reduce the dynamic energy

consumption (details described in Section 3.3).

In this study, the RISC32 was extended by adding an extra power

management unit (PMU) and a novel post-compilation energy optimization

software – Energy Reduction Program Analyzer (ERPA). Previously, to run an

IoT application in RISC32, the C program was compiled into MIPS assembly

code via an LLVM compiler. Each instruction in the MIPS assembly code was

then converted to their equivalent hexadecimal code and then configured into

FPGA. RISC32-LP, on the other hand, uses the MIPS assembly code

generated by the ERPA. The ERPA inserts the relevant low-power instructions

into the user program at appropriate locations automatically. This has greatly

reduced the effort in manually determining the low-power configurations to

achieve energy reduction.

Table 3.1 shows the specification of the RISC32-LP, which employs a

combination of low-power techniques, namely, CG, DVFS, and PR of the

microarchitecture, to achieve a significant reduction in energy consumption.

The RISC32-LP CPU runs at maximum 40 MHz, while the IO systems run at

10 MHz.

17

Table 3.1: Specification of the RISC32-LP.

 Multi-cycle Pipeline

Frequency (MHz) 40 MHz to 20 MHz 40 MHz to 20 MHz

Cycle per instructions 3–5 1

Branch predictor - 64 entries 4 ways
associative

Hardware differences.

Place in reconfigurable

region (PR instance)

Data-path unit,

Control unit finite

state machine

Data-path unit, branch

predictor, pipeline

registers, hazard

circuitry.

Power management unit CG, DVFS, PR

C
o
m

m
o
n

featu
res (S

tatic
R

eg
io

n
)

Memory system 4 kB boot ROM, 128 kB user access flash, 8
kB RAM (data and stack), 1 kB i-cache, 32 B
d-cache, 512 B memory-mapped I/O register

Communication
interface

ADC, UART, SPI, 32 GPIO pins.
The IO systems run at 10 MHz.

Partial Bitstream start
address

0x00A0_0000 0x00A8_0000

Bitstream size 3737 kB

FPGA board Nexys 4 DDR (XC7A100T)

F
P

G
A

reso
u
rces

(O
v
erall)

LUT 5631 6264

LUTRAM 127 311

FF 2782 3037

BRAM 3.50 3.50

IO 46 46

BUFG 5 5

The remainder of this chapter discusses the PMU, while the details of

ERPA are presented in Chapter 4.

PLL

40MHz

36MHz

32MHz

28MHz

24MHz

20MHz

100 MHz

PTH08T220W

0.90V ~ 1.00V

DVFS Control
Unit

Vcc_int

u
o

p
m

_
d

vfs_
clk

Digital
potentiometer

(MCP42100)

Voltage
Regulator

Clock crystal:

DVFSFIR[7:0] SPI command

FPGA Chip

CPU

PR
instance

I-CACHE D-CACHE
Stack
RAM

DATA
RAM

Priority
interrupt
controller

SPI
Controller

UART
Controller

GPIO
Controller

Memory Arbiter

PR Controller

Flash
Controller

ADC

urisc_ex_store_data

Core
CGCU

IO
CGCU

Clock gating
Control Unit

PMU

Figure 3.2: DVFS and CG components in the PMU.

18

3.2 Power Management Unit

The PMU is connected to the CPU through IO bus and consists of the

CG and DVFS modules, as shown in Figure 3.2. The CG module

enables/disables the CG function automatically based on the idle status of

other modules in RISC32-LP. On the other hand, DVFS module provides the

programmable parameter and f–v pairs that allow the RISC32-LP to execute

IoT program at different performances. These two techniques work

independently.

PMU
clk_100mhz uopm_dvfs_MOSI
uipm_dvfs_clk_rst uopm_dvfs_SS_n
uipm_dvfs_rst uopm_dvfs_SCLK

uipm_dvfs_wb_w_din uopm_dvfs_wb_w_ack
uipm_dvfs_wb_w_we
uipm_dvfs_wb_w_stb
uipm_dvfs_wb_r_we uopm_dvfs_wb_r_dout
uipm_dvfs_wb_r_stb

uipm_cg_gpio_busy
uipm_cg_uart_busy uopm_dvfs_clk
uipm_cg_spi_busy uopm_dvfs_clk_slowest
uipm_cg_dmem_busy
uipm_cg_dpex_we uopm_cg_gpio_en
uipm_cg_dpmem_we uopm_cg_uart_en
uipm_cg_dpmem_io_en uopm_cg_spi_en
uipm_cg_dpmem_dmem_en uopm_cg_dmem_en

uipm_cg_dpex_mult_en uopm_cg_mult_en
uipm_cg_dpmem_mult_busy
uipm_cg_dpwb_rf_wr uopm_cg_rf_en
uipm_cg_dp_rf_wr_en

8

8

32

Figure 3.3: PMU block diagram in RISC32-LP.

Table 3.2: DVFS-related input and output pins in the PMU.

Pin name: clk_100mhz Pin direction: input

Source -> Destination: FPGA board’s clock crystal -> PMU

Pin function: A 100 MHz clock signal from FPGA board.

Pin name: uipm_dvfs_clk_rst Pin direction: input

Source -> Destination: Global clock reset -> PMU

Pin function:

1: reset DVFS module in PMU and set the output clock (uopm_dvfs_clk) to

default value (40 MHz).

0: -

19

Pin name: uipm_dvfs_rst Pin direction: input

Source -> Destination: Global rest -> PMU

Pin function:

1: reset other modules in PMU except the DVFS module.

0: -

Pin name: uipm_dvfs_wb_w_din[7:0] Pin direction: input

Source -> Destination: Data-path unit -> PMU

Pin function: data input bus for DVFS control register (i.e., DVFS

frequency index register, DVFSFIR).

Pin name: uipm_dvfs_wb_w_we Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function: Wishbone standard write enable signal – indicate that the

current bus cycle is for write or read access

1: Write to DVFSFIR in PMU

0: -

Pin name: uipm_dvfs_wb_w_stb Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function: Wishbone standard strobe signal – indicate valid data transfer

cycle

1: activate SPI controller for write access

0: deactivate SPI controller for write access

Pin name: uipm_dvfs_wb_r_we Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function: Wishbone standard write enable signal – indicate that the

current bus cycle is for WRITE or READ access.

1: -

0: Read from DVFSFIR in PMU

Pin name: uipm_dvfs_wb_r_stb Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function: Wishbone standard strobe signal – indicate valid data transfer

cycle.

1: activate SPI controller for read access

0: deactivate SPI controller for read access

Pin name: uopm_dvfs_MOSI Pin direction: output

Source -> Destination: PMU -> External voltage regulator

Pin function: Master data output pin (follow standard SPI). Send

configuration data to external voltage regulator’s control register.

Pin name: uopm_dvfs_SS_n Pin direction: output

Source -> Destination: PMU -> External voltage regulator

Pin function: Slave select pin (follow standard SPI).

0: Data sending to external voltage regulator through uopm_dvfs_MOSI is

valid.

1: -

Pin name: uopm_dvfs_SCLK Pin direction: output

Source -> Destination: PMU -> External voltage regulator

Pin function: SPI clock signal for data synchronization across devices.

Pin name: uopm_dvfs_wb_w_ack Pin direction: output

Source -> Destination: PMU -> Data-path unit

Pin function: Wishbone standard acknowledge signal – indicate the

20

termination of a normal write cycle.

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uopm_dvfs_wb_r_dout[31:0] Pin direction: output

Source -> Destination: PMU -> Data-path unit

Pin function: Wishbone standard read data output bus.

Pin name: uopm_dvfs_clk Pin direction: output

Source -> Destination: PMU -> all clock signal in RISC32-LP

Pin function: Clock signal used to drive RISC32-LP.

Pin name: uopm_dvfs_clk_slowest Pin direction: output

Source -> Destination: PMU -> all IO modules’ slowest clock signal pins.

Pin function: Always load slowest clock signal in RISC32-LP (20 MHz).

Used by the IO module to generate their own baud-rate.

Table 3.3: CG-related input and output pins in PMU.

Pin name: uipm_cg_gpio_busy Pin direction: input

Source -> Destination: GPIO unit -> PMU

Pin function: Indicate that the GPIO unit is enabled and operating.

Pin name: uipm_cg_uart_busy Pin direction: input

Source -> Destination: UART unit -> PMU

Pin function: Indicate that the UART unit is enabled and operating.

Pin name: uipm_cg_spi_busy Pin direction: input

Source -> Destination: SPI unit -> PMU

Pin function: Indicate that the SPI unit is enabled and operating.

Pin name: uipm_cg_dmem_busy Pin direction: input

Source -> Destination: data ram -> PMU

Pin function: Indicate that the data RAM is enabled and operating.

Pin name: uipm_cg_dpex_we Pin direction: input

Source -> Destination: Data-path unit -> PMU

Pin function: Indicate that the current EX stage cycle is for read or write

access.

1: WRITE

0: READ

Pin name: uipm_cg_dpmem_we Pin direction: input

Source -> Destination: Data-path unit -> PMU

Pin function: Indicate that the current MEM stage cycle is for read or write

access.

1: WRITE

0: READ

Pin name: uipm_cg_dpmem_io_en[7:0] Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function: Indicate which IO unit is selected to be accessed in current

MEM stage cycle.

[0]: General-purpose register – used by the PR controller.

[1]: GPIO

[2]: PIC (Programmable interrupt controller)

[3]: SPI

[4]: UART

[5]: ADC

21

[6]: -

[7]: PMU

Pin name: uipm_cg_dpmem_dmem_en Pin direction: input

Source -> Destination: Address Decoder Block -> PMU

Pin function:

1: Indicate that the data RAM is selected to be accessed in current MEM

stage cycle.

0: -

Pin name: uipm_cg_dpex_mult_en Pin direction: input

Source -> Destination: Multiplier -> PMU

Pin function:

1: Indicate that the MULT instruction has arrived at EX stage of RISC32-

LP. Multiplier needs to operate in the next clock cycle.

0: -

Pin name: uipm_cg_dpmem_mult_busy Pin direction: input

Source -> Destination: Multiplier -> PMU

Pin function:

1: Indicate that the multiplier is operating.

0: -

Pin name: uipm_cg_dpwb_rf_wr Pin direction: input

Source -> Destination: -> PMU

Pin function:

1: Indicate that the register file writing enable signal is set at WB stage of

RISC32-LP. Register file is needed to operate in next clock cycle.

0: -

Pin name: uipm_cg_dp_rf_wr_en Pin direction: input

Source -> Destination: -> PMU

Pin function:

1: Write enable signal for register file in RISC32-LP.

0: -

Pin name: uopm_cg_gpio_en Pin direction: output

Source -> Destination: PMU -> GPIO’s clock buffer

Pin function:

1: Allow the GPIO clock signal switch at the same frequency as the IO

clock.

0: Gate the GPIO clock.

Pin name: uopm_cg_uart_en Pin direction: output

Source -> Destination: PMU -> UART’s clock buffer

Pin function:

1: Allow the UART clock signal switch at the same frequency as the IO

clock.

0: Gate the UART clock.

Pin name: uopm_cg_spi_en Pin direction: output

Source -> Destination: PMU -> SPI’s clock buffer

Pin function:

1: Allow the SPI clock signal switch at the same frequency as the IO clock.

0: Gate the SPI clock.

Pin name: uopm_cg_dmem_en Pin direction: output

Source -> Destination: PMU -> Data RAM and stack RAM’s clock buffer

Pin function:

22

1: Allow data and stack RAM clock signal switch at the same frequency as

the IO clock.

0: Gate data and stack RAM clock.

Pin name: uopm_cg_mult_en Pin direction: output

Source -> Destination: PMU -> Multiplier’s clock buffer

Pin function:

1: Allow the multiplier clock signal switch at the same frequency as the

CPU clock.

0: Gate the multiplier clock.

Pin name: uopm_cg_rf_en Pin direction: output

Source -> Destination: PMU -> Register file’s clock buffer

Pin function:

1: Allow the register file clock signal switch at the same frequency as the

CPU clock.

0: Gate the register file clock.

3.2.1 Development of Clock Gating

CG reduces the dynamic power consumption by disabling some of the

circuits in RISC32-LP that are not in use. In RISC32-LP, CG is applied to the

IO modules, stack RAM, data RAM, multiplier, and register files, which are

likely to remain idle during IoT program execution. These IO modules and

functional units are partitioned as units or blocks in RISC32-LP, which have

made CG easier to implement and maintain.

A module is considered to be in idle state whenever it is not being

accessed or enabled. For example, the IO module UART is identified as idle

when its enable flag is not set. A functional module, such as the multiplier, is

identified as IDLE when there is no multiplication instruction decoded in

RISC32-LP. When a particular functional or IO module is identified as idle,

the CG circuitry disconnects the clock tree of that module. No clock signal

would drive the module, and unnecessary switching activities are avoided.

Table 3.4 shows the IO CG control signals, and Table 3.5 shows the CPU core

CG control signals generated by the corresponding control unit.

23

Table 3.4: IO CG control unit’s LUT.

Outputs Inputs

u
o
p
m

_
cg

_
g
p
io

_
en

u
o
p
m

_
cg

_
u
art_

en

u
o
p
m

_
cg

_
sp

i_
en

u
o
p
m

_
cg

_
d
m

em
_
en

u
ip

m
_
cg

_
g
p
io

_
b
u
sy

u
ip

m
_
cg

_
u
art_

b
u
sy

u
ip

m
_
cg

_
sp

i_
b
u
sy

u
ip

m
_
cg

_
d
m

em
_

b
u
sy

u
ip

m
_
cg

_
d
p
ex

_
w

e

u
ip

m
_
cg

_
d
p
m

em
_
w

e

u
ip

m
_
cg

_
d
p
m

em
_
io

_
en

[7
:0

]

u
ip

m
_
cg

_
d
p
m

em
_
d
m

em
_
en

1 1 1 1 x x X X 1 x x x

1 0 0 0 0 0 0 0 0 1 [1] 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 [4] 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 [3] 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

Table 3.5: CPU core CG control unit’s LUT.

Outputs Inputs

u
o
p
m

_
cg

_
m

u
lt_

en

u
o
p
m

_
cg

_
rf_

en

u
ip

m
_
cg

_
d
p
ex

_
m

u
lt_

en

u
ip

m
_
cg

_
d
p
m

em
_
m

u
lt_

b
u
sy

u
ip

m
_
cg

_
d
p
w

b
_
rf_

w
r

u
ip

m
_
cg

_
d
p
_
rf_

w
r_

en

1 0 1 x x x

1 0 x 1 x x

0 1 x x 1 x

0 1 x x x 1

24

CPU Core

Multiplier

Stack
RAM

DATA
RAM

SPI
Controller

UART
Controller

GPIO
Controller ADC

PMU

uopm_dvfs_clk
uopm_dvfs_clk_slowest

100 MHzClock crystal:

Register file

BUFHCE

uopm_cg
_spi_en

uopm_cg
_uart_en

uopm_cg
_gpio_en

uopm_cg
_adc_en

uopm_cg
_dmem_en

uopm_cg
_rf_en

uopm_cg
_mult_en C

lo
ck co

n
tro

l

sig
n

a
ls

Core
CGCU

IO
CGCU

Figure 3.4: Clock gated module in RISC32-LP.

Figure 3.5: BUFHCE’s waveform.

 As shown in Figure 3.4, the clock tree of each module is driven by a

clock buffer (BUFHCE), which is used to connect or disconnect the clock tree.

Note that the clock control signals are named as uopm_cg_X_en, where X is

the name of the clock-gated module. For instance, uopm_cg_uart_en refers to

the clock control signal for the UART module. All clock control signals are

generated by the IO CG control unit (IO_CGCU) and the core CG control unit

25

(Core_CGCU) in the PMU. In this work, the BUFHCE is used to implement

CG instead of an AND gate because the former can ensure a glitch-less output.

Both RISC32 microarchitectures (PE and ME) have the following five

stages: instruction fetch (IF), instruction decode (ID), execution (EX), memory

(MEM), and write-back (WB) stage. Note that even though BUFHCE is a type

of clock driver available on Xilinx 7-series FPGA, it will cause an output

signal (which is the clock signal driving the selected modules) delayed by one

clock cycle as illustrated in Figure 3.5(a). To avoid this problem, the clock

control signal of each BUFHCE is generated one clock cycle before the

module is being accessed (see Figure 3.5(b)). For example, IO and memory

modules are only being accessed during the MEM stage. Hence, the required

clock control signals are asserted at an earlier stage i.e., the EX stage. For

register file and multiplier, the clock control signal is asserted in the MEM and

ID stage, respectively.

According Pdym = ∑ (C * Vdd
2 * fclock), the dynamic energy reduces

when the parameter fclock decreases.

3.2.2 Development of Dynamic Voltage and Frequency Scaling

In RISC32-LP, the DVFS is applied to the CPU and memory system

(except the FPGA external flash memory) to dynamically scale its operating

frequency and voltage automatically. A DVFS module that supports six f–v

pairs was developed, based on the maximum number of frequencies supported

by a phase-locked loop (PLL) in Artix 7. The desired range of the operating

frequencies can be chosen based on application. In our case, the range of 40

MHz to 20 MHz was chosen. This range is equally divided into six

frequencies (40 MHz, 36 MHz, 32 MHz, 28 MHz, 24 MHz, and 20 MHz)

26

since the PLL in Artix-7 could only generate six frequencies. Hence, only six

f–v pairs were developed as listed in Table 3.6

Table 3.6: F–V pairs.

DVFSFIR[7:0] 0 1 2 3 4 5

Frequency

(MHz)

40 36 32 28 24 20

Voltage (V) 1.00 0.98 0.96 0.94 0.92 0.90

The f–v pairs are represented as a single-digit index (0 to 5) stored in a

small memory. To select the desired f–v pair, the store byte (SB) instruction is

used by the program to write the corresponding index value into the DVFS

frequency index register (DVFSFIR). The DVFSFIR is IO memory mapped to

the address 0xbfff ff3f. For example, in “sb $t1, 0x3f($s2)”, $t1 holds the

index value 0x02, which corresponds to 32 MHz and 0.96 V, while $s2 is used

to hold the IO memory map base address (0xbfff ff00) to all the IO registers,

including DVFSFIR. Hence, the sum of $s2’s content and offset (0x3f) yields

the address of DVFSFIR register, which the index (0x02) in $t1 will be

transferred to. Figure 3.2 shows the main components of DVFS module

residing in the PMU.

To determine the voltage for each frequency, the following steps were

taken. However, to achieve lowest energy consumption for a given task, the

most suitable f–v pair is first determined by the ERPA based on the task’s

behavior. Then, the following steps will run:

1) PLL generates the six clock frequencies listed in Table 3.6. One of the

clock frequencies will be used as the operating frequency for the RISC32-LP

based on DVFSFIR.

27

Figure 3.6: Voltage regulator’s schematic.

2) A voltage regulator is designed to generate the corresponding supply

voltage at the selected operating frequency. In this work, the voltage regulator

provides the voltage supply in the range of 0.90–1.00 V, based on the reliable

safe voltage range for the target FGPA (Datasheet, Xilinx. 2015). Figure 3.6

shows the voltage regulator, PTH08T220W. It can produce variable output

voltage by adjusting the digital potentiometer (MCP42100). Based on the

index value in DVFSFIR, the DVFS control unit (DVFS-CU) sends a 16-bit

SPI command to the digital potentiometer to adjust the resistance, which, in

turn produces the desirable supply voltage value.

3) A logic delay measurement circuit (LDMC) is developed to determine the

optimal voltage supply for each operating frequency. It is used to ensure that

in each f–v pair, the voltage supply will provide enough drive strength for the

corresponding clock frequency in RISC32-LP. If a voltage supply does not

provide enough drive strength at the designated clock frequency, timing error

would occur in RISC32-LP, whereby the data will not be timely captured by

the registers. On the other hand, excessive voltage supply will cause RISC32-

LP to consume extra energy, which is not the aim of our project.

28

Figure 3.7: LDMC circuitry.

 The LDMC is implemented in FPGA together with RISC32-LP

(referred to as RISC32-LP+LDMC in the following paragraph). By default,

RISC32-LP is operating at 40 MHz with a 1.0 V voltage supply. To find out

the optimal voltage supply values for each of the clock frequencies (36 MHz,

32 MHz, 28 MHz, 24 MHz, and 20 MHz), the operating frequency of RISC32

is lowered down accordingly, and the LDMC responds to the frequency

change by generating an SPI command to adjust the voltage supply

accordingly. The voltage supply values measured at each of the above-

mentioned frequencies are recorded in Table 3.6. The details of LDMC

operation are described in the next paragraph.

The details of LDMC operation are described here. The LDMC is

made up of a serial chain of LUT and FFs. The number of LUTs and FFs used

depend on the critical path delay of RISC32-LP. Conceptually, the chain is

grouped into three ranges of logic delays, which can be used to indicate the

signal strength of the critical path: insufficient, optimal, and excessive. The

LUTs are used to create the logic level delays, and the FFs are used to store

the outputs of the LUTs to indicate how far in terms of delay the LDMC_ref

29

signal has propagated. We can think of the LDMC_ref signal as a ruler to

indicate whether the critical path signal is in the insufficient, optimal, and

excessive delay range. The number of FFs used in each range is specified in

Table 3.7.

Table 3.7: The number of FFs used in each range of LDMC.

Logic level delay range Number of FFs in

series

Insufficient 82

Optimal 8

Excessive 8

For example, to get the optimal voltage at 36 MHz, the frequency of RISC32-

LP+LDMC was tuned to 36 MHz manually. Consequently, the clock period

was stretched longer, allowing more time for the LDMC_ref to propagate from

the Toggle flip-flop (TFF) and through the LUTs, reaching the excessive range

within a clock period. This means that 1.0 V is too excessive to be used as the

supply voltage for the 36 MHz operating frequency. Hence, the comparison

circuit outputted an SPI command, which was used by the potentiometer and

external voltage regulator to lower the supply voltage by one level. This was

repeated until the LDMC_ref reached the optimal range. The voltage was then

recorded to form the f–v pair at 36 MHz as shown in Table 3.6. The above

process was repeated to obtain all the f–v pair values and their corresponding

SPI command values as shown in Table 3.8

Table 3.8: SPI command values.

DVFSFIR[7:0] 0 1 2 3 4 5

Frequency

(MHz)

40 36 32 28 24 20

Voltage (V) 1.00 0.98 0.96 0.94 0.92 0.90

SPI command 0x12F9 0x1277 0x1242 0x1229 0x1218 0x120D

30

The SPI command values have been hardcoded in Verilog in the PMU.

After we obtaining the above values, the LDMC can be removed so that the

PMU can have a shorter response time for every frequency change.

By default, the f–v pair has been set to 40MHz–1V, which is the

highest performance available experimented in RISC32-LP. When the SB

instruction is executed, it triggers the signal urisc_ex_store_data (refer to

Figure 3.2) to activate the DVFS operation to start the frequency adjustment.

The f–v pair’s index supplied by SB is first stored in DVFSFIR, and then

compared with the previous DVFSFIR value to decide whether to increase or

decrease the frequency. If the targeted frequency is lower than the previous

one, DVFS-CU first selects the requested operating frequency via the

multiplexer, then issues the 16-bit SPI command to the digital potentiometer to

reduce the voltage supply step-by-step based on voltage value in Table 3.8. If

the voltage supply is reduced before the frequency, the voltage supply can

cause timing error. Hence, the frequency has to be reduced first before

configuring the voltage supply. On the other hand, if the targeted frequency is

higher than the previous one, voltage supply is increased first before the

DVFS-CU selects the higher operating frequency. This is done to ensure that

the drive strength of the voltage supply is enough to support the higher

operating frequency.

To control the switching of f–v pairs, a DVFS-CU was developed.

Figure 3.8 shows the block diagram of DVFS-CU, and Table 3.9 describes the

function of each pin.

31

DVFS Control Unit
sbifs_clk sbofs_holdcmd
sbifs_rst sbofs_busy

 sbofs_clk1_rst
sbifs_fchange sbofs_clk2_rst
sbifs_cmd_sent sbofs_fready

 sbofs_clksel
sbifs_clk1
sbifs_clk2

2

Figure 3.8: Block diagram of DVFS-CU.

Table 3.9: DVFS-CU input and output pins.

Pin name: sbifs_clk Pin direction: input

Source -> Destination: PMU -> DVFS-CU

Pin function: 100 MHz clock signal from FPGA board. This clock signal

drives the DVFS-CU itself only. It is not used to supply to other part of

RISC32-LP.

Pin name: sbifs_rst Pin direction: input

Source -> Destination: PMU -> DVFS-CU

Pin function:

1: reset DVFS-CU.

0: -

Pin name: sbifs_fchange[1:0] Pin direction: input

Source -> Destination: PMU -> DVFS-CU

Pin function:

Indicate that the new request RISC32-LP core clock frequency is lower,

higher, or equal compared to the current RISC32-LP core clock frequency.

00: Equal.

01: -

10: New < Current

11: New > Current

Pin name: sbifs_cmd_sent Pin direction: input

Source -> Destination: PMU -> DVFS-CU

Pin function:

1: Indicate that the previous SPI command is sent to the digital

potentiometer (used to configure the voltage supply level of external voltage

regulator).

0: -

Pin name: sbifs_clk1 Pin direction: input

Source -> Destination: PLL (in PMU) -> DVFS-CU

Pin function: The clock frequency is used to drive the RISC32-LP core

when the DVFS-CU is in “RESET_CLK2,” which is the DVFS-CU’s idle

state.

Pin name: sbifs_clk2 Pin direction: input

Source -> Destination: PLL (in PMU) -> DVFS-CU

Pin function: The clock frequency that is used to drive the RISC32-LP core

when PMU is configuring new request clock frequency. This is to prevent

the whole RISC32-LP stall when the PMU is modifying the clock

frequency.

32

Pin name: sbofs_holdcmd Pin direction: output

Source -> Destination: DVFS-CU -> SPI transmitter in the PMU

Pin function:

1: Hold / Do not allow the value the SPI command change while command

transmission is in progress.

0: -

Pin name: sbofs_busy Pin direction: output

Source -> Destination: DVFS-CU -> PMU

Pin function:

1: The DVFS-CU is in progress of change f–v pair.

0: The DVFS-CU is in “RESET_CLK2” state / idle state.

Pin name: sbofs_clk1_rst Pin direction: output

Source -> Destination: DVFS-CU -> PMU

Pin function:

1: Reset clk1 (no switching).

0: -

Pin name: sbofs_clk2_rst Pin direction: output

Source -> Destination: DVFS-CU -> PMU

Pin function:

1: Reset clk2 (no switching).

0: -

Pin name: sbofs_fready Pin direction: output

Source -> Destination: DVFS-CU -> PMU

Pin function:

1: clk2 is set to new requested frequency.

0: -

Pin name: sbofs_clksel Pin direction: output

Source -> Destination: DVFS Control Unit -> PMU

Pin function:

1: select clk2 as clock signal that drive RISC32-LP core.

0: select clk1 as clock signal that drive RISC32-LP core.

Pin name: bufgmux_cnt_rst Pin direction: internal signal

Source -> Destination: N/A

Pin function:

Reset bufgmux_cnt register.

Register name: bufgmux_cnt

Register function:

Register in DVFS-CU.

A counter used to count until nine clock cycles (100 MHz). Nine clock

cycles is the latency required for bufgmux switch from clk1 to clk2 or vice

versa.

Pin name: clkcounter_cnt_rst Pin direction: internal signal

Source -> Destination: N/A

Pin function:

Reset clkcounter_cnt register.

Register name: clkcounter_cnt

Register function:

Register in DVFS-CU.

A counter used to count until four clock cycles (100 MHz). Four clock

cycles is the latency needed for clk1 and clk2 to switch to other new

33

frequency safely.

There are a total of eight states in the DVSF-CU finite state machine

(FSM) as shown in Figure 3.9. Each state is described in Table 3.10, and the

output pin value for each state is listed in Table 3.11.

RESET_CLK2

SET_CLK2

WAIT_VOLT1

SOURCE_CLK2

SOURCE_CLK1

WAIT_VOLT2

RESET_CLK1

SET_CLK1

sbifs_fchange[1]

other

sbifs_fchange[0] &
clkcounter_terminate

sbifs_cmd_sent

bufgmux_terminate

other

other

other

1

clkcounter_terminate

bufgmux_terminate

sbifs_cmd_sent

other

other

other

!sbifs_fchange[0] &
clkcounter_terminate

sbifs_rst

Figure 3.9: State diagram for DVFS-CU FSM.

The selected clock frequency of the PLL is duplicated into two clock sources:

clk1 and clk2 as shown in Figure 3.10. The reason is to ensure that the CPU

can continuously operate with a stable clock source: while one clock source is

setting up (unstable), the other clock source can be used.

34

u
o

p
m

_
dvfs_clk

40MHz

36MHz

32MHz

28MHz

24MHz

20MHz

PLL
clk1

clk2

bu
fgm

ux

sbofs_clksel

Figure 3.10: clk1 and clk2 signals from the PLL.

Table 3.10: Description of each FSM state for DVFS-CU.

Present state of

DVFS-CU

Next state of DVFS-

CU

Description

RESET_CLK2

sbifs_fchange[1]:

SET_CLK2

other: RESET_CLK2

Idle state.

If the new request frequency is

different from the current

frequency, go to SET_CLK2

state.

Remain idle if no frequency

change requested.

SET_CLK2

sbifs_fchange[0] &

clkcounter_terminate:

WAIT_VOLT1

!sbifs_fchange[0] &

clkcounter_terminate:

SOURCE_CLK2

other:

SET_CLK2

Set up clk2 to the new

requested frequency value.

Need to wait for the clk2

finish setting up

(clkcounter_terminate==1)

before going to the next state.

If the new frequency is higher

than current frequency, go to

WAIT_VOLT1.

If the new frequency is lower

than the current frequency, go

to SOURCE_CLK2.

Wait for acknowledge signal

(clkcounter_terminate).

WAIT_VOLT1

Wait for new voltage supply

level set up before switching

to a higher frequency.

35

sbifs_cmd_sent:

SOURCE_CLK2

other:

WAIT_VOLT1

Go to SOURCE_CLK2 once

ready.

Wait for acknowledge signal

(sbifs_cmd_sent).

SOURCE_CLK2

bufgmux_terminate:

RESET_CLK1

other:

SOURCE_CLK2

Change the RISC32-LP core

clock signal from clk1 to clk2.

This process is handled by

BUFGMUX_CTRL, which is

a combination of clock buffer

and multiplexer available in

Xilinx FPGA chip.

Go to RESET_CLK1 after

BUFGMUX_CTRL

completed the switching

between clk1 and clk2.

Wait for acknowledge signal

(bufgmux_terminate).

RESET_CLK1

Always true:

SET_CLK1

Reset clk1 before changing

clk1 to new frequency.

SET_CLK1

clkcounter_terminate:

SOURCE_CLK1

other: SET_CLK1

Set up clk1 to the new

requested frequency value.

Need to wait for the clk1

finish setting up

(clkcounter_terminate==1)

before going to the next state.

Go to SOURCE_CLK1 once it

is ready.

Wait for acknowledge signal

(clkcounter_terminate).

SOURCE_CLK1

bufgmux_terminate:

WAIT_VOLT2

other:

Change the RISC32-LP core

clock signal from clk2 back to

clk1.

Go to WAIT_VOLT2 after

BUFGMUX_CTRL

completed the switching

between clk1 and clk2.

Wait for acknowledge signal

36

SOURCE_CLK1 (bufgmux_terminate).

WAIT_VOLT2

sbifs_cmd_sent:

RESET_CLK2

other:

WAIT_VOLT1

Wait for new voltage supply

level set up. This is mainly for

the case that the new

frequency is lower than the

current frequency. (Skipped

WAIT_VOLT1)

Go to RESET_CLK2 once

done.

Wait for acknowledge signal

(sbifs_cmd_sent).

Table 3.11: Output pins value of each FSM state for DVFS-CU (DVFS-

CU).

Present State of

DVFS-CU

Output pins value

RESET_CLK2 sbofs_holdcmd = 1

sbofs_clk2_rst = 1

bufgmux_cnt_rst = 1

clkcounter_cnt_rst =1

SET_CLK2 sbofs_holdcmd = 1

sbofs_busy = 1

bufgmux_cnt_rst = 1

WAIT_VOLT1 sbofs_busy = 1

bufgmux_cnt_rst = 1

clkcounter_cnt_rst =1

SOURCE_CLK2 sbofs_holdcmd = 1

sbofs_busy = 1

clkcounter_cnt_rst = 1

RESET_CLK1 sbofs_holdcmd = 1

sbofs_busy = 1

sbofs_fready = 1

sbofs_clksel = 1

bufgmux_cnt_rst = 1

clkcounter_cnt_rst =1

SET_CLK1 sbofs_holdcmd = 1

sbofs_busy = 1

sbofs_clksel = 1

bufgmux_cnt_rst = 1

SOURCE_CLK1 sbofs_holdcmd = 1

sbofs_busy = 1

clkcounter_cnt_rst =1

WAIT_VOLT2 sbofs_busy = 1

bufgmux_cnt_rst = 1

clkcounter_cnt_rst =1

37

 Clock Domain Crossing in RISC32-LP

To implement DVFS, the processor RISC32-LP requires multi-clock domain

since the IO system is running at 10 MHz. Figure 3.11 illustrates the clock

domain of each area in RISC32-LP.

Figure 3.11: Multi-clock domain in RISC32-LP and CDC circuit location.

To resolve multi-clock domain metastability issue, a simple clock domain

crossing (CDC) circuit is implemented in between the different clock domain

areas as shown in Figure 3.11. Figure 3.12 shows the block diagram of the

CDC circuit, and Table 3.12 describes the pins of the CDC circuit. The details

of CDC circuit and example waveform are shown in Figure 3.13 and Figure

3.14, respectively.

38

Figure 3.12: Block diagram of the CDC circuit.

Table 3.12: CDC circuit input and output pins

Write side

Pin name: wrdy Pin direction: output

Pin function:

1: CDC FIFO ready to receive data (writeable)

0: CDC FIFO is full (not writeable)

Pin name: wfifo_empty Pin direction: output

Pin function:

1: CDC FIFO empty

0: CDC FIFO not empty

Pin name: data_in Pin direction: input

Pin function:

Data bus. Data to be write into FIFO.

Pin name: wput Pin direction: input

Pin function:

Write enable pin.

1: Write data

0: -

Pin name: wclk Pin direction: input

Pin function:

Clock signal. Need to use the same clock with the source that wrote the data

into FIFO.

Pin name: wrst Pin direction: input

Pin function:

Reset pin for write side.

Read Side

Pin name: rrdy Pin direction: output

Pin function:

1: Indicate there is data in FIFO and ready to be read.

0: No data available to read

Pin name: data_out Pin direction: output

Pin function:

39

Data bus. Data to be read from FIFO

Pin name: rget Pin direction: input

Pin function:

Read enable pin.

1: Read data.

0: -

Pin name: rclk Pin direction: input

Pin function:

Cock signal. Need to use the same clock with the destination that read the

data from FIFO

Figure 3.13: Details of the CDC circuit.

 The CDC circuit is used to sync the control signals and data bus

between the modules operating at different clock frequencies. For example,

the core and the UART. The UART is driven by a 10 MHz clock (IO clock).

However, the core of RISC32-LP could be driven by any frequency available

in f–v pairs (20 MHz to 40 MHz).

40

(a)

(b)

Figure 3.14: Example waveform of the CDC circuit.

 Figure 3.14 illustrates the waveform behavior of the CDC circuit when

the signals are passed from the core to the UART or SPI. The example in the

figure shown are the core signals on the write side of the CDC block and the

UART signals are on the read side of CDC block. Figure 3.14 (a) shows how

the data is stored in the CDC FIFO. The waveform shows the case whereby

the UART always reads the data from the core when the data is available.

Figure 3.14 (b) shows how the read pointer and the write pointer affect the

FIFO-not-full and FIFO-not-empty conditions. The former indicates that the

FIFO is still able to receive new data, whereas the latter indicates that there is

41

new data that can be read from the FIFO. When the FIFO is full, the wrdy pin

of the CDC circuit will be de-asserted and the core cannot write data until the

pin is asserted again. On the other hand, the UART can read from the CDC

circuit if the rrdy is de-asserted, which means that the FIFO is empty.

3.4 Partial Reconfiguration

Figure 3.15: RISC32’s microarchitecture in the ME mode.

Multiplier
Stage 2

I-Cache

ALU

CP0

Multiplier
Stage 1

Address
Decoder

D-Cache

Data and
Stack
RAM

SPI

UART

GPIO

Branch
predictor

IF ID EX MEM WB

Main Control Block

Arithmetic Logic
Control Block

Forwarding block

Interlock block

Boot
ROM

Branch
predictor

CP2CP2Q SWQ

Read Register File
Write

Register
File

ADC

IF
/I

D
 P

ip
el

in
e

R
eg

is
te

r

ID
/E

X
 P

ip
el

in
e

R
eg

is
te

r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

gi
st

e
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
eg

is
te

r

Figure 3.16: RISC32’s microarchitecture in the PE mode.

Kiat et al. (2020) proposed a unique feature in RISC32 – a processor

with a partial reconfigurable microarchitecture. It can dynamically switch

between multi-cycle microarchitecture execution (ME) (Figure 3.15) and

pipeline microarchitecture execution (PE) (Figure 3.16) to reduce the energy

consumption. PE can achieve higher throughput at the expense of more

42

hardware resources (pipeline registers, forwarding circuits, branch predictor,

interlock controller, etc.). On the other hand, ME has lower throughput, but it

requires lesser hardware resources. In CPU-bound tasks, PE has a better

energy efficiency because the designated tasks can be completed within a

short time. However, for IO-bound tasks, the CPU is spending most of its time

idle, waiting for the IO instructions to complete. Since ME consumes less

power compared to PE, it is more advantageous to use ME in such a scenario.

Note that for IO-bound task, both ME and PE take the same amount of time to

complete, because the bottleneck lies in communication instead of

computation.

Figure 3.17: Static and reconfigurable region in RISC32’s core (Kiat et al.,

2020).

The PR feature on FPGA allows designers to reconfigure partial region

of the FPGA during operation. In RISC32, PR only takes place within the

CPU core, which is aimed to switch between PE and ME. Referring to Figure

3.17, the CPU core is divided into two regions: static and reconfigurable. The

functional units that are required for both PE and ME are placed in the static

43

region, where no PR can take place. On the other hand, the reconfigurable

region is reserved for the remaining hardware portion that is needed to form

the PE or ME data path.

To facilitate the reconfiguration of microarchitecture from the program,

a new instruction TMA was introduced in RISC32 (Kiat et al., 2020). Once the

TMA instruction is detected, the processor execution stalls, and the PR

controller starts the PR process on the reconfigurable region. First, the

microarchitecture that is currently being used (i.e., PE or ME) is identified.

Next, the PR controller retrieves the partial bit-stream of the targeted

microarchitecture from the flash memory. For instance, if the current

microarchitecture is ME, then the PE (target) will be loaded, and vice versa.

The partial bit-stream is used to program the reconfigurable region through

ICAP on the Artix-7 FPGA chip. After the configuration is completed by the

PR controller, the processor continues to execute the instruction that was

stalled previously, with the newly configured microarchitecture. The time

taken for a PR operation to complete is based on the system frequency and the

size of the partial bit-stream. As reported by Kiat et al. (2020), it takes 44 ms

for a 20 MHz system frequency with 175,624 bytes of partial bit-stream.

3.5 Xilinx Vivado Synthesis Results

Table 3.13 shows that only a very small amount of extra FPGA

resource is required in RISC32-LP as compared to RISC32 after the

implementation of PMU in RISC32-LP.

44

Table 3.13: FPGA resource difference between RISC32 and RISC32-LP.

FPGA resources RISC32 RISC32-LP Extra resource

used by

RISC32-LP

Multi-

cycle

Pipelin

e

Multi-

cycle

Pipelin

e

Multi-

cycle

Pipelin

e
LUT 63,40

0

5,181

(8.37%)

5,849

(9.23%)

5,631

(8.88%)

6,264

(9.88%)

450

(0.51%)

415

(0.65%)

LUTRAM 19,00

0

127

(0.67%)

311

(1.64%)

127

(0.67%)

311

(1.64%)

0 (0%) 0 (0%)

FF 12,68

00

2,258

(1.78%)

2,545

(2.01%)

2,782

(2.19%)

3,037

(2.4%)

524

(0.41%)

492

(0.39%)

BRAM 135 3.5

(2.59%)

3.5

(2.59%)

3.5

(2.59%)

3.5

(2.59%)

0 (0%) 0 (0%)

BUFG 32 2 (6.25%) 2

(6.25%)

5

(15.63%)

5

(15.63%)

3

(9.38%)

3

(9.38%)

BUFHCE 96 0 (0%) 0 (0%) 6

(6.25%)

6

(6.25%)

6

(6.25%)

6

(6.25%)

SLICE 15,85

0

1,746

(11.02%)

1,997

(12.60%)

1,876

(11.84%)

2,072

(13.07%)

130

(0.82%)

75

(0.47%)

45

CHAPTER 4

ENERGY REDUCTION PROGRAM ANALYZER

In the previous chapter, DVFS and CG techniques were developed and

combined with the microarchitectural reconfiguration technique introduced by

Kiat et al (2020) to further reduce the energy consumption. However, the best

configuration (f–v pair and PE/ME) that achieves the maximum energy

reduction largely depends on the user program. Since IoT technologies are

applied in various fields with diverse characteristics, the user program pattern

in IoT sensor nodes differs in many ways. For example, some IoT applications

have specific time constraints to be fulfilled. While achieving low energy

consumption in a sensor node is important, the time constraints should not be

overlooked, because doing so may affect the response time of the entire IoT

system.

To determine the best energy-saving configuration automatically, a

software tool, named ERPA, was developed. In particular, the ERPA analyzes

the given user program being executed on RISC32-LP and selects the best

locations in the program to insert the instructions that execute the DVFS (i.e.,

SB) or the best microarchitecture reconfiguration (i.e., the TMA).

 The user program for RISC32-LP is assumed to be developed in

assembly code. If high-level language (e.g., C) is used to develop the

programs (See, 2017), the code must be compiled into assembly code before it

is analyzed by the ERPA. ERPA analysis flow is illustrated in Figure 4.1. It is

grouped into seven steps, which will be explained in more detail later.

46

Step 7

Figure 4.1 Flow of ERPA analysis.

To better illustrate how the ERPA works, an example user program

shown in Table 4.1 is used for explanation. This program executes an infinite

while loop (often referred to as a superloop), wherein ADC sampling and

conversion can be implemented through a polling- or interrupt-based method.

The corresponding assembly code is shown in Table 4.2. The steps to carry

out program analysis by the ERPA tool are described in detail in the

subsequent section.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

47

Table 4.1 Pseudo code of the example user program.

Table 4.2 Assembly code of the example user program.

while true do
 data = ADC.getData();
 temp = ConvertADC(data);
 idle (250000);
end
function ConvertADC(value) is
 return value*100/4096;
end

//Start of while loop
loop: lw $s1, [adc]
 sw $s1, [data]
 jal conv
 sw $v0, [temp]
 mtc0 $zero, $9
 li $t2, 1250
poll: mfc0 $t1, $9
 sub $t3, $t2, $t1
 bgtz $t3, poll
 j superloop
//Start of ConvertADC() function
conv: li $t1, 100
 lw $a1, [data]
 mult $a1, $t1
 mflo $t2
 srl $v0, $t2, 12
 jr $ra

48

Table 4.3 lists all the important variables used in this section.

Table 4.3 Description for symbols used in this chapter.

Variable Definition

TTIMER_INT Timer interrupt value in clock cycle count (measured at

the maximum frequency, 40 MHz)

TNODE_TOTAL Total clock cycle count (from all nodes) required to

complete a superloop

TIDLE (TTIMER_INT – TNODE_TOTAL) * 25 μs. The available

program slack for a timer interrupt-based program,

converted from clock cycle count to microseconds (μs).

TEXE TNODE_TOTAL * 25 μs (period of the 40 MHz frequency);

program execution time (in μs) derived from

TNODE_TOTAL.

QNODE Queue that stores the nodes’ properties based on the

program execution flow; nodes in the loop are unrolled

before storing.

TIO_acc Total clock cycle count accumulated for consecutive IO

nodes, starting from a CPU node until node_lp_config

is detected.

QTIO_acc Queue that stores TIO_acc at each check point.

node_lp_config Potential node in which to insert low-power

instructions.

Qnode_lp_config Queue that stores the indices that correspond to

node_lp_config.

ndata_dep_acc Number of data dependencies accumulated for

consecutive IO nodes, starting from a CPU node until

node_lp_config is detected.

Qndata_dep_acc Queue that stores ndata_dep_acc of each check point.

To_DVFS (μs) Overhead (in μs) when changing operating frequency

and voltage.

To_PR (μs) Overhead (in μs) for the PR operation.

4.1 Step 1: Program Segmentation Process

The first step carried out by the ERPA is to segment and label the

given program (which includes the user program, the exception handler, and

the interrupt service routine) into nodes based on jump instructions, branch

instructions, or a new label, before the program flow changes. An example is

illustrated in Figure 4.2. Each instruction in a node is executed before

branching to another node. This way, the program flow can be systematically

predicted by the ERPA. In this step, each node is named based on an index

49

and the corresponding label. For example, in Figure 4.2, “loop” is split into

two segments due to the jump instruction (jal), where the first node is named

0_loop and the second node is named 1_loop.

Figure 4.2 Assembly code of the example user program and the result

after segmentation process.

4.2 Step 2: Link the Nodes

After the assembly code is segmented into nodes, they are linked according to

the program flow. A cyclic node graph will be formed at the end of this step as

shown in Figure 4.3.

50

Figure 4.3 Example of the cyclic node graph created.

4.3 Step 3: Simulate Program for Clock Cycle Calculation.

After the node graph is generated, the ERPA simulates the program

and records the clock cycle counts that each node is needed to execute,

including cache-miss and IO-bound tasks. During this simulation, the

sequence for node execution is stored in the node queue (QNODE). The

simulation ends when every node in the graph is simulated.

Figure 4.4 shows an example of the QNODE content, the clock cycle

count for each node, and the total clock cycle count for program execution.

This information is necessary to determine a suitable clock frequency and the

microarchitecture to be used for each node.

Figure 4.4 QNODE content based on the example user program.

51

4.4 Step 4: Node classification

Next, the ERPA classifies the nodes into IO nodes (for IO-bound tasks)

or CPU nodes (for CPU-bound tasks). This classification process is needed to

determine the suitable clock frequency and the microarchitecture to be used to

maximize energy reduction. The classification result of the example user

program is shown in Figure 4.5. A CPU node is expected to have a longer

execution time when the clock frequency is reduced or when the

microarchitecture switches from PE to ME. On the other hand, the execution

time for an IO node is not affected in this situation. At this step, any

conditional branching loops are identified, wherein the loop can be

constructed from one or more nodes. The instructions of the identified

branching loops are analyzed and classified into either IO or CPU nodes. In

Figure 4.5, the circled 0-poll node is the only branching loop to be identified,

so only the instructions of this particular node are analyzed. The node

classification process is described below.

1. Identify the exit-condition register of the branching loop. The last

instruction will always be the conditional branching instruction.

Therefore, $t3 from bgtz $t3,poll are labelled as the exit condition

register.

2. Identify the registers that the exit-condition register ($t3) depends on.

In our example shown in Figure 4.2, it is the sub $t3, $t2, $t1. Since

the target of this instruction is the exit condition register ($t3), $t1 and

$t2 are labelled as dependent registers. Continue this process to trace

the dependent register(s) until the first instruction of the loop has been

reached. In this example, the operation stops at mcf0 $t1, $9, where $t1

52

depends on the value of $t9, so the dependent register $t1 is replaced

with $9. The operation concludes that the dependent registers for $t3

are $t2 and $9.

3. Compare exit-condition and dependent registers. If the exit-condition

register differs from any of the identified dependent registers, then the

node is an IO node; otherwise, it is classified as a CPU node.

Figure 4.5 Classification of nodes in the cyclic graph.

4.5 Step 5: Identify Program Type

In this step, the program pattern is identified as either timer interrupt or

polling-based, which can be checked from the timer interrupt enable (IE) flag.

If the IE flag is set, then the program is identified as timer-interrupt-based;

otherwise, it is polling-based. For a timer-interrupt program, every superloop

(the infinite loop shown in Table 4.2) must be completed within the timer

interrupt value (TTIMER_INT). This parameter is useful for indicating when a

new superloop will begin execution. We assume that TTIMER_INT is invariably

larger than the total number of clock cycles needed to complete a superloop

53

(TNODE_TOTAL). However, for a polling-based program, there will be no time

constraint on completing a superloop.

4.6 Step 6: Search for a Potential Node to Insert Low-Power

Instructions.

Figure 4.6 Node arrangements in QNODE based on the example user

program (timer-interrupt-based).

Finding a potential node for inserting low-power instructions (SB or

TMA) is only done once in a superloop. If a node is in a loop and is chosen for

low-power instructions insertion, then the problem of repeatedly executing the

low-power instruction will arise due to the looping. Figure 4.6 (a) illustrates

this problem. Consider the case if we execute the program from the beginning

until point Y at 40 MHz and switch to 20 MHz thereafter. Then, 0_poll will be

selected for insertion of the SB (20 MHz) instruction. However, in reality, the

program will start using 20 MHz at point X, since that is the starting point for

0_poll loop execution, as shown in Figure 4.6 (b). This will cause the

superloop program execution time to increase and exceed TTIMER_INT.

Therefore 1_poll instead of 0_poll is selected for inserting SB (20 MHz) as

shown in Figure 4.6 (c). Even though the energy savings are not as good as the

54

ideal case in Figure 4.6 (a), the program will be completed within the

TTIMER_INT constraint, which will ensure timing correctness in program

execution. The potential node identified through this process is marked as

node_lp_config (low-power configurable node). Note that not all nodes

marked as node_lp_config will have low-power instructions inserted. The

selection will be based on the time overhead from To_DVFS and To_PR.

4.7 Step 7: Insert Low-Power Instructions based on the Program Type

In this phase, the best f–v pair for a particular node is selected to

optimize the energy performance. At the same time, the ERPA determines if it

is worth inserting the TMA instruction for a further energy reduction from

changing the microarchitecture.

4.7.1 Polling-based Program

Table 4.4 Pseudo algorithm used by ERPA to insert DVFS and TMA

instructions in a polling-based program.

Function used:

get_clock_cnt() – Return the clock count needed to complete a node

execution.

get_data_dep() – Get ndata_dep_acc from the nodes.

set_freq(X) – Insert the SB instruction into the corresponding node.

Parameter X is the operation frequency to be set.

insert_TMA() – Insert TMA instruction into the corresponding node.

push(Y) – Push parameter Y as the last element in the queue.

at(Z) – Get the element at index Z in a queue.

is_node_lp_config() – Return true if a node is node_lp_config else return

false.

τ = threshold for microarchitecture switch (PE to ME) based on

ndata_dep_acc.

index_lp = selected node from Qindex_pl_config for low-power instruction

insertion.

size_QNODE = size of QNODE

1

2

3

4

5

6

for n = size_QNODE-1, size_ QNODE -2, …, 0 do

 If QNODE.at(n) is CPU then

 TIO_acc = 0;

 ndata_dep_acc = 0;

 else

 TIO_acc += QNODE.at(n).get_clock_cnt();

55

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 ndata_dep_acc += QNODE.at(n).get_data_dep();

 end

 if (QNODE.at(n).is_node_lp_config()) then

 QTIO_acc.push(TIO_acc);

 Qindex_lp_config.push(n);

 Qndata_dep_acc.push(ndata_dep_acc);

 end

end

size_QTIO_acc = size of QTIO_acc

for n = 0, 1, 2, …, size_QTIO_acc-1 do

 if QTIO_acc.at(n) > To_DVFS then

 QNODE.at(index_lp).set_freq(20);

 if (QTIO_acc.at(n) > To_DVFS + To_PR &&

Qndata_dep_acc.at(n) >τthen

 QNODE.at(index_lp).insert_TMA();

 end

 else

 QNODE.at(index_lp).set_freq(40);

 end

end

For a polling-based program, a CPU node always executes at the

highest performance (at 40MHz in PE mode) to minimize the program

execution time. However, an IO node executes at the lowest operating

frequency when the time spent by consecutive IO nodes is more than To_DVFS;

otherwise, it remains at 40 MHz. Referring to lines 1–8 in Table 4.4, the

QNODE is scanned from the last node to the first. If an IO node is detected, the

clock cycle counts (TIO_acc) of the consecutive IO nodes are accumulated. If a

CPU node is detected, TIO_acc is reset to zero, because the node does not

contribute to the clock cycle count accumulation of consecutive IO nodes.

Next, in lines 9–13, when a node_lp_config node is detected (whether IO or

CPU), the current TIO_acc and node n are saved into QTIO_acc and Qindex_lp_config,

respectively. This process continues until all nodes in QNODE are checked.

Subsequently, in lines 16–26 of Table 4.4, each element in QTIO_acc is

compared with the configuration time for DVFS (To_DVFS). The element with a

56

value larger than To_DVFS is obtained, so that the corresponding node can be

identified and switched to the lowest frequency (20 MHz). This is done to

ensure that the time spent in IO nodes (TIO_acc) is longer than the frequency

configuration time (To_DVFS), so that it is worth executing the DVFS operation.

At the same time, the IO nodes are configured to ME via the TMA

instruction for further energy reduction, provided the following condition is

met: the accumulated data dependency count (ndata_dep_acc) of the IO nodes

is larger than the defined threshold (τ). In our experiment, we found that,

during the IO transfer, when the forwarding circuitry (in PE mode) is actively

resolving data dependencies, relatively high power is consumed. Hence, the

data dependency occurrence or count is an important factor for determining

microarchitecture reconfigurations between PE and ME. Kiat et al. proved that

the microarchitecture PR process managed to save energy when the program’s

data size was at least 512 bytes or more (Kiat et al, 2020). Hence, to ensure

that the PR approach saves energy, τ is obtained by calculating the

ndata_dep_acc of the test program executed in the ME microarchitecture with

a 512-byte data size. In other words, if the energy reduction in ME mode is

more than the energy overhead for PR, then ME is selected for the IO nodes;

otherwise, PE is used. The accumulated data dependency value

(ndata_dep_acc) is calculated in the same manner as TIO_acc; ndata_dep_acc is

stored in Qndata_dep_acc when node_lp_config is detected (for IO and CPU

nodes). In lines 18–21 of Table 4.4, the ERPA checks each element in

Qndata_dep_acc and QTIO_acc. If the n-th element in QTIO_acc is greater than To_DVFS

+ To_PR and the n-th element in Qndata_dep_acc is greater than the τ defined earlier,

then TMA will be inserted into the corresponding node_lp_config node so that

57

it operates in ME. This ends the insertion of low-power instructions for

polling-based programs.

4.7.2 Timer-Interrupt-based Program

Table 4.5 Pseudo algorithm used by ERPA to insert DVFS and TMA

instructions in an interrupt-based program.

Function used:

get_clock_cnt() – Return the clock count needed to complete a node

execution.

get_data_dep() – Get ndata_dep_acc from the nodes.

set_freq(X) – Insert the SB instruction into the corresponding node.

Parameter X is the operation frequency to be set.

insert_TMA() – Insert TMA instruction into the corresponding node.

push(Y) – Push parameter Y as the last element in the queue.

at(Z) – Get the element at index Z in a queue.

is_node_lp_config() – Return true if a node is node_lp_config else return

false.

getExtraTime(X) – Return additional node execution time when the

operating frequency is lowered from 40MHz to X.

getExtraCycleTMA() – Return additional clock cycles needed for the node

to complete execution in ME compared to PE.

τ = threshold for microarchitecture switch (PE to ME) based on

ndata_dep_acc.

index_lp = selected node from Qindex_pl_config for low-power instruction

insertion.

size_QNODE = size of QNODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

for n = size_QNODE-1, size_QNODE-2, …, 0 do

 if QNODE.at(n).is_node_lp_config() then

 if Tidle > QNODE.at(n).getExtraTime(20) + To_DVFS then

 QNODE.at(n).set_freq(20); f = 20;

 else

 if Tidle > QNODE.at(n).getExtraTime(24) + To_DVFS then

 QNODE.at(n).set_freq(24); f = 24;

 else

 if Tidle > QNODE.at(n).getExtraTime(28) + To_DVFS then

 QNODE.at(n).set_freq(28); f = 28;

 else

 if Tidle > QNODE.at(n).getExtraTime(32) + To_DVFS then

 QNODE.at(n).set_freq(32); f = 32;

 else

 if Tidle > QNODE.at(n).getExtraTime(36) + To_DVFS then

 QNODE.at(n).set_freq(36); f = 36;

 else

 QNODE.at(n).set_freq(40); f = 40;

 end

 end

 end

 end

58

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 end

 Qindex_lp_config.push(n);

 Tidle = Tidle – QNODE.at(n).getExtraTime(f);

 end

end

if Tidle > To_PR*2 then

Tidle -= To_PR*2;

for n = size_0-1, …, 2, 1, 0 do

 if Tidle > QNODE.at(n).getExtraCycleTMA() then

 Tidle -=QNODE.at(n).getExtraCycleTMA();

 else

 break;

 end

 nata_dep_acc += QNODE.at(n).get_data_dep();

 if QNODE.at(n).is_node_lp_config() then

 TMA_node_1 = n;

 end

end

TMA_node_0 = size_0 – 1;

end

if ndata_dep_acc > τ then

QNODE.at(TMA_node_0).insert_TMA();

QNODE.at(TMA_node_1).insert_TMA();

End

For interrupt-based programs, the ERPA attempts to reduce the

operating frequency of each node in QNODE. In lines 1–27 of Table 4.5, the

process starts from the last node in QNODE, which is marked as node_lp_config.

When the operating frequency is reduced, TEXE and TIDLE will be updated

according to the node type. For CPU nodes, node execution time will increase

(due to lowering of the operating frequency), which, in turn, stretches the

overall TEXE (and reduces TIDLE). In contrast, when the operating frequency is

reduced, this will not affect the IO nodes’ execution time, since the latter

depend on the IO module baud rate. The algorithm then continues with next-

to-last node_lp_config until all nodes are checked or TIDLE < 0.

Next, in lines 28–43, if TIDLE > To_PR*2 after the frequency is tuned,

then the ERPA will insert two TMAs at the correct locations to toggle the

59

microarchitecture back and forth. The accumulated data dependencies

(ndata_dep_acc) between the two TMA locations need to be greater than τ.

The idea is to use up the slack, TIDLE, as much as possible. Like frequency

tuning, the process starts with the last node_lp_config node until all nodes in

QNODE are processed or TIDLE < 0. Note that we only need TMAs in the

following cases:

1. From ME to PE when executing CPU nodes (corresponds to data

sampling and processing tasks).

2. From PE to ME when executing IO nodes (corresponds to data

transmission).

4.8 Example of EFRA on tuning frequency to optimal value.

Figure 4.7 ERFA steps on insert SB instruction for DVFS feature in

RISC32-LP.

60

Figure 4.7 shows how the ERFA inserts SB instructions that control the DVFS

feature in RISC32-LP. The same example user program is used to explain the

steps.

1. The ERFA identifies the idle time, TIDLE, which is located after the user

program executed with 40 MHz clock frequency.

2. The ERFA utilizes the TIDLE by reducing the operating frequency of

the last node_lp_config (i.e., the “1_poll”). ERFA pre-sets the

frequency to be as low as possible, which is 20 MHz. TIDLE is reduced

by the extra time needed by “1_poll” to execute at 20 MHz, but there is

still TIDLE available.

3. ERFA continues to search for node_lp_config (starting from the last

node). “1_loop” is found to be the next node_lp_config. Similar to step

2, the “1_loop” is pre-set to be executed at 20 MHz, and TIDLE further

reduces accordingly.

4. ERFA repeats step 3 on the “0_conv” node.

5. ERFA repeats step 3 on “0_loop” node, but at this step, the remaining

TIDLE is insufficient for “0_loop” to run at the frequency 28 MHz.

(TIDLE < 0_loop.getExtraTime(28) + To_DVFS, refer to Table 4.5).

6. Due to that, “0_loop” is pre-set to execute at 32 MHz, which is the

operation frequency that is a step higher than 28 MHz (refer to Table

3.6).

7. After all the nodes have been searched, ERFA will insert SB (32 MHz)

and SB (20 MHz) instructions at “0_loop” and “0_conv” nodes,

respectively, to tune the operation frequency. There is no need to insert

61

extra SB instruction at “1_loop” and “1_poll” since they are

maintained as 20 MHz after “0_conv” has been tuned to 20 MHz.

62

CHAPTER 5

ENERGY REDUCTION EXPERIMENT AND RESULT

The energy measurement is performed on Nexys 4 DDR board with

Xilinx Artix-7 XC7A100T FPGA chip, 4860 Kbits BRAM, on-chip ADC, and

16 MB serial flash memory.

FPGA

Oscilloscope

Shunt Resistor
Rshunt

Potentiometer
+ Voltage
Regulator

Vccint

Vshunt_resistor_amp

Amplifier

Figure 5.1 Hardware setup for energy measurement during the

experiment.

To measure the current supplied to the FPGA chip, a 0.01 Ohm shunt

resistor is connected serially in between the external voltage regulator and

Xilinx FPGA chip as shown in Figure 5.1. An amplifier is used to amplify

voltage of the 0.01 Ohm resistor, and the output of amplifier, Vshunt_resistor_amp,

is recorded. The voltage supply, Vccint and Vshunt_resistor_amp, are monitored and

recorded during the experiments by using an oscilloscope. Since the connected

shut resistor has the same current flow as FPGA chip, the current flow through

the FPGA, Iccint, can be obtained by using formula (1). With the obtained

63

current value, Iccint, the energy consumed by RISC32-LP, ERISC32-LP, during the

experiment can be calculated by using formula (2).

Two types of test program (polling- and interrupt-based) were

developed based on typical data transmit operations in IoT sensor nodes. Both

programs carry out the same tasks, which are described as follows:

1) Data collection: Read N bytes of data from ADC.

2) Data processing: Encrypt N bytes of data received using AES-128.

3) Data transmission: Send out the encrypted data through UART.

The N-byte data is read from ADC, where N ranges from 64 to 4096. The N

cannot be more than 4096 due to the limited 8196-byte RAM memory in

RISC32-LP. The RAM is used to store other program’s variables besides the

N-byte data. Next, the N-byte data is encrypted by using AES-128 algorithm.

Finally, the encrypted data is sent out via UART. These three tasks are

repeated for 5 minutes, and the total energy consumed during this duration is

measured. In practical IoT applications, the sensor node usually accumulates a

large amount of data (larger than 1 KB) before transmitting the same to a

gateway device. This is done to reduce the energy consumption of the sensor

node by avoiding the activation of the IO (which connects to the wireless

external module) frequently. For example, sensor nodes in a sensor network

take turn to transmit data when they are utilizing the multi-hop communication

(Liew et al., 2018) mechanism. In this situation, sensor nodes accumulate the

data and store them in local memory (RAM) while waiting for their turn to

transmit. These experiments are set up according to this kind of IoT

64

application settings. The data collection and AES-128 encryption involved

large number of arithmetic and logic operations, while data transmission

involves IO communication (UART) and memory transfer operations. These

program tasks are grouped into two categories:

1) Computationally intensive tasks (CPU-bound tasks): data collection and

encryption.

2) Computationally less-intensive tasks (IO-bound task): data transmission.

For computationally intensive tasks, the high-performance setting (40 MHz

operating frequency and PE) is used to reduce the energy consumption by

completing the tasks faster. On the other hand, for computationally less-

intensive tasks (which do not involve many logical and arithmetic operations)

low-performance setting (20 MHz operating frequency and ME) is used to

achieve low power consumption. However, in some situations, the low-

performance setting will not be used when the overhead of PR and DVFS is

greater than the energy it can save. Hence, to achieve the optimal energy

efficiency in the dynamic scenario discussed above, the ERPA is developed to

assist in determining frequency values and the microarchitecture to be used

throughout the program execution.

We use two types of test programs (polling- and interrupt-based) to

monitor the transmit buffer in UART module.

The first type of test program used polling-based method to monitor

the UART’s transmit buffers, while the second type of program uses interrupt-

based method for the same. In polling test program, the core of RISC32-LP

always checks the condition of UART’s transmit buffers during IO

communication operation. UART needs to send all 4-byte data and make sure

65

that the transmit buffer is empty before CPU writes another 4-byte of

encrypted data. However, in interrupt test program, the CPU core is idle after

completing the data collection and processing. The CPU core only writes data

into UART’s transmit buffers when the UART module interrupt takes place.

Owing to this difference, the energy consumption of these two programs

varies greatly, which we will discuss in the next section, mainly due to the

operating status of CPU core.

To verify that the proposed ERPA can achieve the most energy savings

compared to other methods, both types of programs were executed under six

different test cases. These cases measured the program’s energy savings from

using CG, DVFS, PR, a combination of all low-power techniques and ERPA

on RISC32-LP. Each test case is described below:

1. TSTMAX: Execute the test programs on RISC32 without any low-power

techniques.

2. TSTCG: Execute the test programs on RISC32-LP with CG enabled

throughout the experiment but with no extra low-power techniques

used.

3. TSTDVFS: Execute the test programs on RISC32-LP with only the

DVFS instruction, SB inserted manually. CPU nodes ran at 40 MHz,

and IO nodes ran at 20 MHz.

4. TSTPR: Execute the test programs on RISC32-LP, but only PR

instruction TMA was inserted manually. CPU nodes ran under PE, and

IO nodes ran under ME.

66

5. TSTCOMB: Execute the test programs on RISC32-LP while CG is

enabled and with DVFS and PR instructions inserted manually. CPU

nodes ran under PE at 40 MHz, and IO nodes ran under ME at 20MHz.

6. TSTERPA: The test programs were analyzed and modified by ERPA to

achieve low power.

TSTMAX represents the test programs executed on RISC32 without any

low-power techniques applied, which is the base case for comparison. TSTCG,

TSTDVFS, and TSTPR represent the test programs executed on RISC32-LP with

only a single low-power technique applied (CG, DVFS, or PR). TSTCOMB

represents the test programs executed on RISC32-LP with all the developed

low-power techniques (CG, DVFS, and PR) applied. However, TSTERPA

represents the test programs executed on RISC32-LP with all developed low-

power techniques applied but controlled by the ERPA according to the test

programs’ behavior. Table 5.1 summarizes the description of each test case.

Table 5.1 Short description for each test cases.

Test Name Description

TSTMAX

(No low-power

technique applied)

Microarchitecture: Pipeline

Clock frequency: 40 MHz

TSTCG Microarchitecture: Pipeline with CG feature

Clock frequency: 40 MHz

TSTDVFS

(manual assign)

Micro-architecture: Pipeline

Clock frequency: 40 MHz (CPU-bound), 20MHz (IO-bound)

TSTPRR

(manual assign)

Microarchitecture: Pipeline (CPU-bound), multi-cycle (IO-bound)

Clock frequency: 40 MHz

TSTCOMB

(manual assign)

Microarchitecture: Pipeline (CPU-bound), multi-cycle (IO-bound)

with CG feature

Clock frequency: 40 MHz (CPU-bound), 20 MHz (IO-bound)

TSTERFA Microarchitecture with CG feature and clock frequency assign by

ERFA.

67

5.1 Polling-based Test Program

5.1.1 Program Behavior

Data transmission

Total UART transmission s power

consumption

P
o

w
e

r
(m

W
)

Data Collection

and Processing

Time (ms)

Figure 5.2 Power consumption of polling test program (TSTMAX) with

256-byte data size.

The polling-based test program samples and encrypts N bytes of data, then

transmits all the encrypted data through UART. Figure 5.2 shows the power

consumption of the polling test program for a 256-byte data transfer.

5.1.2 Result based on Polling Test Program

Tables 5.2 and 5.3 show the result for all the test cases. Figures 5.3 and 5.4 are

the graphs plotted based on the results.

Table 5.2 Energy consumption of polling test program.
Data Size

(Bytes)

Energy Consumption (mJ)

TSTMAX TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA

64 7.06 6.95 19.70 4.34 7.52 4.26

128 14.90 14.53 16.54 8.98 11.51 8.72

256 30.07 29.44 30.16 18.02 19.54 17.63

512 60.15 58.41 56.89 35.85 35.64 35.94

1024 118.22 114.85 111.07 70.57 65.05 68.51

2048 249.40 243.67 216.65 149.66 134.36 135.12

4096 498.84 487.83 437.63 298.27 263.84 265.03

68

Table 5.3 Energy saving of polling test program.
Data

Size
(Bytes)

Energy Saving (%)

TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA

vs TSTMAX

64 1.61 −178.87 38.59 −6.49 39.65

128 2.47 −11.06 39.73 22.74 41.47

256 2.08 −0.33 40.07 35.31 41.36

512 2.90 5.43 40.40 40.74 40.24

1024 2.85 6.04 40.31 44.97 42.05

2048 2.30 13.13 39.99 46.13 45.82

4096 2.21 12.27 40.21 47.11 46.87

Data

Size

(Bytes)

Energy Saving (%)

TSTCOMB vs TSTDVFS TSTERPA

TSTCG TSTPR TSTDVFS vs TSTCOMB vs TSTDVFS vs TSTCOMB

64 −8.23 61.81 −73.41 42.33 1.72 43.32

128 20.78 30.44 −28.18 21.99 2.89 24.24

256 33.94 35.52 −7.94 7.35 2.15 9.35

512 38.97 37.34 0.57 −0.57 −0.27 −0.84

1024 43.36 41.43 7.81 −8.47 2.92 −5.30

2048 44.86 37.99 10.23 −11.39 9.71 −0.57

4096 45.91 39.71 11.54 −13.05 11.14 −0.45

Figure 5.3 Energy saving for (TSTPR vs TSTMAX) and (TSTCOMB vs

TSTMAX). TSTPR did not achieve energy saving from 64-byte to 256-byte

due to overhead.

 TSTPR vs TSTMAX

TSTCOMB vs TSTMAX

69

Figure 5.4 Energy saving for (TSTCG vs TSTMAX), (TSTDVFS vs TSTMAX),

(TSTCOMB vs TSTMAX) and (TSTERPA vs TSTMAX). Energy saving in

TSTCOMB is lower than TSTERPA due to PR overhead shown in Figure 5.3.

In the column “TSTCG” of Table 5.2, it can be seen that CG can save

up to 1.6% to 2.2%, which can be averaged out to 2% of energy consumption

across different data sizes. Although CG manages to reduce unnecessary

switching activities in RISC32-LP, the energy saving achieved is not

significant. On the other hand, microarchitectural PR is only able to save

energy when the data size is larger than 512 bytes. This implies that

microarchitectural PR should be avoided for small data size, because the

overhead caused by PR is more significant than the energy saving achieved,

for the data size that is lower than 512 bytes. Despite this disadvantage, PR

manages to reduce energy around 12% at a 4096-byte data size. DVFS

(TSTDVFS) manages to reduce the energy consumption around 40% throughout

the experiment, even for small data sizes, because the overhead of configuring

DVFS is smaller than the energy saving achieved.

70

By combining all the low-power techniques (TSTCOMB), we can

achieve 11.5% extra energy saving compared to using DVFS only at 4096-

byte data size. However, it consumes extra 42.33% energy compared to

TSTDVFS at 64-byte due to the additional overhead introduced by PR as shown

in Figure 5.3. This shows that even if we combine all the low-power

techniques developed, we cannot achieve energy saving when executing tasks

with smaller data size. Hence, we proposed to use the ERPA to control PR and

DVFS based on the program behavior profile to get the best energy saving.

TSTERPA can achieve better energy reduction compared to other TSTs, and

comparable to TSTCOMB when the data size increases more than 512 bytes.

5.2 Interrupt-based Test Program

5.2.1 Program Behavior

Figure 5.5 Power consumption of interrupt test program (TSTMAX) with

256-byte data size

Interrupt test program splits the N-byte data into 16 data segments. The

first data segment (N/16 bytes) is sampled, encrypted and then transmitted

71

through UART. While transmitting the first data segment, the second data

segment is sampled and encrypted in parallel. The second data segment will

enter the transmission pipeline after the first data segment is transmitted.

Referring to Figure 5.5, the following data segments are processed in the

similar fashion until all data segments are completely transmitted.

5.2.2 Result based on Interrupt Test Programs

From the polling test program results, we observed that the

microarchitectural PR will only start saving energy for data size of 256 bytes

onward. Hence, in interrupt test program, the minimum data size was chosen

to be 256 bytes. In the interrupt test program, the minimum data size of each

data segment must be 16 bytes due to AES-128 encryption, which uses 16-

byte data as input. Hence the number of data segments selected is also 16,

obtained by dividing minimum data size (256 bytes) with a data segment size

(16 bytes).

Referring to Table 5.4, CG manages to save energy up to 1.9%, which

is a small number, similar to the result in Table 5.2 for polling-based program.

Similarly, DVFS managed to save 41% of energy, which is close to the result

in polling-based program.

Table 5.4 Energy consumption of interrupt test program.
Data Size
(Bytes)

Energy Consumption (mJ)

TSTMAX TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA

256 27.95 27.52 28.58 16.61 16.41 16.59

512 42.46 41.07 42.89 24.95 24.48 24.83

1024 69.62 68.77 69.48 40.98 39.31 40.12

2048 126.21 124.07 125.50 74.06 71.11 72.79

4096 235.58 231.03 233.15 138.44 132.20 132.33

8192 461.05 452.53 458.75 270.98 259.70 260.71

72

Table 5.5 Energy saving of interrupt test program.
Data

Size
(Bytes)

Energy Saving (%)

TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA

vs TSTMAX

256 1.52 -2.27 40.59 41.27 40.64

512 1.79 -1.02 41.23 42.35 41.53

1024 1.23 0.21 41.14 43.54 42.37

2048 1.69 0.57 41.32 43.65 42.32

4096 1.93 1.03 41.23 43.88 43.83

8192 1.85 0.50 41.23 43.67 43.45

Data

Size

(byte)

Energy Saving (%)

TSTCOMB vs TSTDVFS TSTERPA

TSTCG TSTPR TSTDVFS vs TSTCOMB vs TSTDVFS vs TSTCOMB

256 40.37 42.58 1.15 -1.17 0.08 -1.08

512 41.30 42.93 1.90 -1.93 0.50 -1.43

1024 42.84 43.42 4.07 -4.24 2.09 -2.06

2048 42.68 43.33 3.98 -4.14 1.71 -2..36

4096 42.78 43.30 4.51 -4.72 4.41 -0.10

8192 42.61 43.39 4.16 -4.34 3.79 -0.39

During the UART transmission in polling-based program, the CPU

core keeps monitoring the status of UART transmit buffer to see if it is empty

and ready to be loaded with the next encrypted data. This process continues

until all the encrypted data is transmitted. However, for interrupt-based

program, the CPU core only loads the encrypted data to the UART transmit

buffer when the UART module interrupt take place; otherwise, the CPU core

remains idle. This causes the power consumption in UART transmission to

differ greatly between polling- and interrupt-based programs, which appears as

a shaded area under the power––time graph in Figure 5.5. Since the power

consumption of UART transmission in interrupt-based program is already low,

employing PR in this situation does not reduce much energy consumption.

Therefore, the TSTPR has relatively worse energy saving in interrupt-based

program compared to the polling-based program.

TSTCOMB in interrupt-based program achieves energy saving up to

4.51% compared to TSTDVFS due to the additional energy reduction from the

CG and PR. TSTERPA achieves similar performance with TSTCOMB across all

data sizes, which is expected. However, TSTERPA allows automatic

73

configuration of low-power techniques, which saves the program development

time and effort

5.3 Comparison with Existing Works.

Table 5.6 Comparison with the existing low power techniques.
Low-Power Techniques Single/Multiple

Cores

Energy reduction Complexity Energy

Optimization Tool

Sterpone et al. (2011) Single Low Low No

Bsoul et al. (2015) Single/Multiple High Medium No

Kiat et al. (2020) Single Medium Medium No

Wu et al. (2014) Single High Medium No

Nunez-Yanez et al.

(2017)

Multiple High High Yes

Bramdalero (2019) Multiple High High Yes

RISC-LP (this work) Single High Medium Yes

Table 5.6 summarizes the existing works on FPGA-based low-power

techniques. CG (Sterpone et al., 2011) can be used to reduce the dynamic

power consumption, but its contribution is too small for FPGA-based systems.

Similarly, the microarchitectural technique proposed in RISC32 (Kiat et al.,

2020) is also limited to dynamic energy reduction only. Power gating (Bsoul

et al. 2015) can be used to reduce the energy consumption significantly, but

this feature is not available in commercial FPGAs. Free razor technique

proposed by Wu et al. (2014) requires a hardware module to collect the BER,

which is too costly for IoT sensor nodes. Nunez-Yanez et al. (2017) proposed

a similar approach that achieved a much higher energy saving with the help of

an energy optimization tool. Note that all these techniques only concern a

single low-power technique, which may not be the optimal solution for FPGA-

based IoT sensor nodes. In this work, the proposed RISC-LP combines the

benefits of CG, PR, and DVFS to reduce the energy consumption significantly.

Moreover, the proposed energy optimization tool (ERFA) ensures that the

energy consumption in RISC32-LP is always optimized based on the given

firmware. This is a feature not commonly found in other works. Compared to

74

Brandalero (2019), our solution is less complex, because we only target

single-core processors. The energy optimization tool provided by previous

researchers requires additional DBT hardware resources, but ERFA is a

completely software-based solution that does not add energy consumption to

the hardware system. On the other hand, this work combines a few low-power

techniques, which can be a complementary solution for work done by

Brandalero (2019) to reduce the energy consumption further.

75

CHAPTER 6

CONCLUSION

An FPGA-based soft-core IoT System on Chip (Soc), RISC32 has

been enhanced in energy saving aspect by implementing known low-power

techniques (DVFS and CG). These techniques are applicable to commercial

FPGA are employed and combined with the PR technique presented on

previous work done by Kiat et al. (2020).

The energy saving of the combined techniques is measured and shown

to have saved up to 47.11% (refer to Table 5.3, column TSTCOMB) and 43.88%

(refer to Table 5.5, column TSTCOMB) on polling and interrupt test program

respectively. However, combining techniques did not guarantee the highest

energy saving all the time. The PR approach consumed extra (overhead)

energy in the microarchitecture configuration. If the energy saving is not more

than the overhead energy, the combined technique will be worse than the

DVFS alone as seen in Table 5.3. To gain the benefits of the mentioned

approaches, the ERPA is proposed to analyze the program and insert low-

power-technique-related instructions (SB and TMA) into the program in

accordance with program’s behavior. ERPA classified the program’s tasks into

CPU- and IO-bound tasks. While executing an IO-bound task, the RISC32-

LP’s core is being idle until the IO-bound tasks are completed. Hence, during

execution of an IO task, the RISC32-LP’s core is switched to the lowest

performance (lowest f–v pair and ME), whenever the predicted energy saving

done by DVFS and PR must be more than the energy consumed (overhead

energy) by DVFS and PR, respectively. As a result, a combination of RISC32-

76

LP with ERPA-modified program will always achieve minimum energy

consumption.

Kiat et al. (2020) showed the PR technique only manages to reduce the

dynamic energy. However, in our work, the overall energy (static and dynamic

energy) reduction is obtained because DVFS has effect on both. From our

result, DVFS (maximum: 41%) contributes most of the energy reduction

compared to CG (maximum: 2.21%) and PR (maximum: 12%). This is

because the static energy is the dominating component in our design

implemented on the Artix-7 FPGA board, and DVFS is the only technique that

manages to reduce static energy.

Based on Table 3.13, the total FPGA resource usage for the pipeline

structure is around 13.07%. Much of the FPGA areas are not used for logic

circuit, thus consuming unnecessary static power. As the technology shrinks,

leakage power also increases, making up a larger component of the total

power consumption. This can be seen in Kolluri (2015), wherein at 28 nm, the

Artix-7 power ratio of the static versus dynamic is around 1:1. This gives a

hint that in our current design, the achieved static: dynamic ratio, which is

2.5:1 as shown in Table 6.1, can be further improved. By using a much smaller

size commercial reconfigurable FPGA to reduce the unused FPGA areas, the

redundant static power consumption can be significantly reduced. This has a

significant impact on the values in relation to the dynamic power consumption

presented herein. Hence, the dynamic low-power techniques such as the PR

and CG will have a larger role to play in FPGA-based designs and worth the

time for further development.

77

Table 6.1: Static and dynamic energy breakdown of 256-byte interrupt-

based test program at 40 MHz.

Static energy (mJ)

Dynamic energy (mJ)

198.06

81.44

Static-to-dynamic energy ratio 2.5:1

 In future, there is a possibility for RISC32-LP implementing more

instructions to support more features. Due to this, the information (e.g., clock

cycle needed for new instructions to complete in RISC32-LP multi-cycle

mode) is needed to update in ERPA to ensure ERPA functionality. To improve

the ERPA, we could explore more task scheduling algorithm and implement a

usable algorithm on ERPA to achieve better energy consumption.

78

REFERENCES

Peng, S. Y., Huang, T. C., Lee, Y. H., Chiu, C. C., Chen, K. H., Lin, Y. H., ...

& Yang, C. C. (2013). Instruction-cycle-based dynamic voltage scaling power

management for low-power digital signal processor with 53% power savings.

IEEE Journal of Solid-State Circuits, 48(11), 2649-2661.

Sterpone, L., Carro, L., Matos, D., Wong, S., & Fakhar, F. (2011, March). A

new reconfigurable clock-gating technique for low power SRAM-based

FPGAs. In 2011 Design, Automation & Test in Europe (pp. 1-6). IEEE.

Nunez-Yanez, J. L., Hosseinabady, M., & Beldachi, A. (2015). Energy

optimization in commercial FPGAs with voltage, frequency and logic scaling.

IEEE Transactions on Computers, 65(5), 1484-1493

Nunez-Yanez, J. (2017). Adaptive voltage scaling in a heterogeneous FPGA

device with memory and logic in-situ detectors. Microprocessors and

Microsystems, 51, 227-238.

Wu, Y., Thomson, S., Sun, H., Krause, D., Yu, S., & Kurio, G. (2014). Free

razor: A novel voltage scaling low-power technique for large SoC designs.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11),

2431-2437.

Kiat, W. P., Mok, K. M., Lee, W. K., Goh, H. G., & Achar, R. (2020). An

energy efficient FPGA partial reconfiguration based micro-architectural

technique for IoT applications. Microprocessors and Microsystems, 73,

102966.

Hempstead, M., Lyons, M. J., Brooks, D., & Wei, G. Y. (2008). Survey of

hardware systems for wireless sensor networks. Journal of Low Power

Electronics, 4(1), 11-20.

Bsoul, A. A., Wilton, S. J., Tsoi, K. H., & Luk, W. (2015). An FPGA

architecture and CAD flow supporting dynamically controlled power gating.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(1),

178-191.

Hosseinabady, M., & Nunez-Yanez, J. L. (2014, September). Run-time power

gating in hybrid ARM-FPGA devices. In 2014 24th International Conference

on Field Programmable Logic and Applications (FPL) (pp. 1-6). IEEE.

Tamimi, S., Ebrahimi, Z., Khaleghi, B., & Asadi, H. (2018). An efficient

SRAM-based reconfigurable architecture for embedded processors. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

38(3), 466-479.

Qin, Y., Zeng, G., Kurachi, R., Li, Y., Matsubara, Y., & Takada, H. (2019).

Energy-efficient intra-task dvfs scheduling using linear programming

formulation. IEEE Access, 7, 30536-30547.

79

Tatematsu, T., Takase, H., Zeng, G., Tomiyama, H., & Takada, H. (2011,

January). Checkpoint extraction using execution traces for intra-task dvfs in

embedded systems. In 2011 Sixth IEEE International Symposium on

Electronic Design, Test and Application (pp. 19-24). IEEE.

Huang, K., Jiang, X., Zhang, X., Yan, R., Wang, K., Xiong, D., & Yan, X.

(2018). Energy-efficient fault-tolerant mapping and scheduling on

heterogeneous multiprocessor real-time systems. IEEE Access, 6, 57614-

57630.

Deng, Z., Yan, Z., Huang, H., & Shen, H. (2020). Energy-aware task

scheduling on heterogeneous computing systems with time constraint. IEEE

Access, 8, 23936-23950.

Wu, T., Liu, Y., Zhang, D., Li, J., Hu, X. S., Xue, C. J., & Yang, H. (2017).

Dvfs-based long-term task scheduling for dual-channel solar-powered sensor

nodes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

25(11), 2981-2994.

See, J. C., Mok, K. M., Lee, W. K., & Goh, H. G. (2020). RISC32‐E: Field

programmable gate array based sensor node with queue system to support fast

encryption in Industrial Internet of Things applications. International Journal

of Circuit Theory and Applications, 48(8), 1209-1226.

Brandalero, M. (2019). MuTARe: a multi-target, adaptive reconfigurable

architecture.

Datasheet, Xilinx. (2015). Artix-7 FPGAs Data Sheet: DC and AC Switching

Characteristics v1. 18.

 See, J. C., Lee, W. K., Mok, K. M., & Goh, H. G. (2017, November).

Development of LLVM compilation toolchain for IoT processor targeting

wireless measurement applications. In 2017 IEEE 4th International

Conference on Smart Instrumentation, Measurement and Application (ICSIMA)

(pp. 1-4). IEEE.

Liew, S. Y., Tan, C. K., Gan, M. L., & Goh, H. G. (2018). A fast, adaptive,

and energy-efficient data collection protocol in multi-channel-multi-path

wireless sensor networks. IEEE Computational Intelligence Magazine, 13(1),

30-40.

Kolluri, S. (2015). Leveraging Power Leadership at 28 nm with Xilinx 7

Series FPGAs Process Technology. vol, 436, 1-16.

MIPS32 (2000). The MIPS32 Instruction Set. In: MIPS32 Architecture for

Programmers Volume II: The MIPS32 Instruction Set. (pp. 21 - 29) MIPS

Technologies, Inc.

