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ABSTRACT 

 

 

 

POWER MANAGEMENT SCHEME FOR FPGA-BASED 

CUSTOMIZABLE INTERNET OF THINGS (IoT) SENSOR NODES 

 

 

 

 

   

 

 

 

 

Field-programmable gate array (FPGA)-based sensor nodes are popular for 

their flexible design approach and field re-configurability. RISC32, one of the 

recent Internet of things (IoT) processors proposed for developing FPGA-

based sensor nodes, has the ability to reconfigure the microarchitecture 

dynamically according to program workload. This helps in reducing the 

dynamic energy consumption required for completing program execution. 

However, such an approach does not minimize the static energy consumption, 

which is important in FPGA-based systems. In this study, two known low-

power techniques compatible with FGPA were implemented in RISC32: clock 

gating (CG) and dynamic voltage–frequency scaling (DVFS) techniques. In 

addition, a software tool (Energy Reduction Program Analyzer) was 

developed to estimate the parameters that can configure the sensor node to 

achieve minimum energy consumption, targeting the typical IoT application 

scenario. Experimental results show that the low-power techniques applied in 

this work can reduce the energy consumption by 47% compared to the original 

RISC32. In particular, combining low-power techniques has shown improved 
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energy saving compared to single low-power technique: 45% improvement 

versus CG, 11.54% improvement versus DVFS, and 40% improvement versus 

partial reconfiguration.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

Internet of Things (IoT) refers to a system of interrelated computing 

systems which enables them to exchange data with each other, or to the main 

host (e.g., cloud server, computer, or smartphone). IoT devices are typically 

embedded with electronics, software applications, sensors, actuators, and 

network connectivity. In the recent decades, IoT technology has brought a 

significant transformation in the manner in which we live and work. For 

example, people are now able to monitor and control their vehicles, home 

appliances, and even their pets from long distance as long as there is an 

Internet connection for both devices. With IoT becoming increasingly 

pervasive in our everyday lives, the demand and requirement for IoT devices 

have also become increasingly complex.   

 Like other electronic devices, a processor is compulsory for IoT 

devices to process outgoing data or incoming instruction. However, the design 

of an IoT processor possesses an additional challenge in terms of power 

efficiency. This is attributable to the nature of IoT devices, which are often 

portable, lightweight, and largely depend on battery lifetime. Hence, in this 

study, low-power techniques were applied in the RISC32 processor to improve 

its power efficiency. 

 The power dissipation associated with a processor can be classified 

into two categories: dynamic power dissipation and static power dissipation. 

Dynamic power dissipation is mainly caused by switching activities during the 
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operation of the processor. The content stored in the register or memory of the 

processor will always change, which means the charge and discharge of the 

transistor will occur. 

Static power dissipation is caused by leakage of current in a gate, which is 

classified into four types: 

● Sub-threshold leakage (ISUB): the current flows between the source and 

drain of a MOSFET when a transistor is in the weak inversion region. 

● Gate leakage (IGATE): the current that flows between the gate and to 

substrate through the oxide layer due to the gate oxide tunneling and 

hot carrier injection. 

● Gate-induced drain leakage (IGIDL): the current leak between the drain 

and substrate, which is caused by a high field effect in the MOSFET 

drain. 

● Reverse bias junction leakage (IREV): current leak caused by minority 

carriers drift in the reversed-biased regions. 

More specifically, the total power consumption of a processor can be 

described using the following equation: 

P = Pdym + Pshort_circuit + Pstatic 

Where Pdym is the dynamic power consumption, Pshort_circuit is the short-circuit 

power consumption, and Pstatic is the static power consumption. The dynamic 

power component is given as Pdym = ∑(C * Vdd
2 * fclock), which is mainly 

caused by the switching of activities during the operation of the processor. The 

C* fclock in the equation represents total switching activities (charge or 

discharge) taking place in a transistor per second, where C is the capacitance 
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of transistor in the system and fclock is the operating clock frequency of the 

system. The rate of transistor charge and discharge depends on fclock. For 

example, a processor with higher clock frequency will have a shorter clock 

period resulting in more switching activities throughout the program 

execution. The Vdd denotes the voltage level supplied to the system. A system 

with a higher voltage supply can switch the logical level (“0” and “1”) of the 

gate faster. This means, a processor with higher fclock (performance) will 

require a higher Vdd to ensure fast logical level switching within a short fclock 

period. 

Static power, on the other hand, is represented by Pstatic = Vdd*Istatic, where 

Vdd is the voltage supply to the system and Istatic is the current consumed by the 

system when the processor is turned on without the switching activities (idle 

state). However, since the static current has the relationship of Istatic = Vdd/R, 

static power can be represented by Pstatic = Vdd
2/R, where R is the resistance 

that is fixed for an implemented design. Therefore, the static power can be 

reduced by lowering the voltage supply. However, it should be noted that a 

system requires a minimum voltage supply to operate correctly. Hence, the 

voltage supply cannot be reduced below the minimum level. 

 Some of the popular techniques worth mentioning are dynamic voltage 

and frequency scaling (DVFS), clock gating (CG), power gating, etc. However, 

not all low-power techniques are suitable to be implemented in all processors. 

For example, Peng et al. (2013) implemented the instruction-cycle-based 

dynamic voltage scaling on digital signal processor, which has both complex 

and simple instructions, but this technique does not help much in simple 

reduced instruction set computer (RISC) processor since most of the RISC 
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instructions have similar latency. Another technique called power gating is 

also not suitable for designs on Field-programmable gate array (FPGA), as 

FPGAs do not offer to support the low power feature. 

 In this project, FPGA was used to implement the RISC32 processor as 

an IoT processor. Therefore, we could not apply the low-power techniques 

that require modifications on transistor level. In this work, partial 

reconfiguration (PR) and CG (Sterpone et al., 2011) are combined with DVFS 

to achieve significant reduction of energy consumption. 

 CG is one of the simplest low-power techniques. It reduces dynamic 

power by deactivating the clock signal supplied to circuit regions, which are 

idle during run-time. The clock signal is basically not allowed to switch. 

 DVFS, one of the commonly used low-power techniques, is an obvious 

choice for RISC32. It tunes supply voltage and operating frequency for power 

reduction. Since both the dynamic and static power consumption are related to 

supply voltage Vdd, reducing Vdd can decrease power consumption 

significantly. At the same time, operating frequency (fclock) in the FPGA can 

be reduced to further decrease dynamic power consumption. In the past, 

DVFS has been proposed in many application-specific integrated circuit 

(ASIC) designs, but it is challenging to adopt the same in an FPGA because it 

is not widely supported by existing development tools. Recently, Nunez-

Yanez et al. (2015, 2017) and Wu et al. (2014) proposed techniques to enable 

DVFS implementation in FPGA devices, opening up the possibility of 

applying DVFS in FPGA-based IoT sensor nodes. 

 Besides DVFS, PR feature in the FPGA has been proposed (Kiat et al., 

2020) to reduce power consumption. Energy consumption is reduced by 



 

5 

 

switching between two microarchitectures (pipeline and multi-cycle) through 

PR. Switching of microarchitecture is done by a customized instruction, toggle 

microarchitecture (TMA), based on the characteristics of the given tasks.  

Although DVFS and the PR technique can effectively reduce the 

power consumption in FPGA-based sensor nodes, configuring the system to 

work at the lowest power level may not be beneficial due to the following 

challenges: 

1) When power consumption is reduced by DVFS (i.e., reducing Vdd), 

the operating frequency must be reduced to avoid timing errors, which, in turn, 

decreases execution speed. This can result in higher total energy consumption 

if the designated tasks take a long time to complete. 

2) Some IoT applications require data to be sent at fixed intervals to 

ensure the timeliness of data processing at the gateway or in a cloud server. 

Energy-efficient sensor nodes, although highly desired, must not violate such 

timing requirements. 

3) IoT applications come with a variety of energy and speed 

requirements (Hempstead et al., 2008). It can be challenging to manually 

configure parameters for DVFS and PR to achieve good energy efficiency and 

speed for each IoT application.  

To solve these “one-size-never-fits-all” challenge, a new software tool, 

called the Energy Reduction Program Analyzer (ERPA), is introduced herein. 

This tool enables automation of energy management in FPGA-based IoT 

sensor nodes. By analyzing the behavior of a program, ERPA automatically 

determines the best configurations for both DVFS (the frequency-voltage 

pairing) and PR (the microarchitecture).  



 

6 

 

The contributions of this work are summarized below:  

1) Low-power techniques (DVFS, PR, and CG) were developed and 

applied to the RISC32 FPGA-based IoT sensor node to achieve lowest energy 

consumption. The energy reductions achieved through these low-power 

techniques were compared and analyzed in detail. 

2) A new software tool, Energy Reduction Program Analyzer, was 

developed to automatically determine the best configuration for various low-

power techniques. The instructions related to the low-power configurations are 

inserted into programs automatically at the appropriate locations to achieve 

optimal energy reductions. 

1.2 Problem Statement 

In Kiat et al. (2020), RISC32 is not implemented with any known low-

power techniques. Hence, the energy reduction is not maximized.  Moreover, 

most of the existing works are focused on using a single low-power technique. 

To maximize the energy reduction in RISC32, multiple low-power techniques 

have been implemented. However, after combining the low-power techniques, 

RISC32 has several configurations with varied energy consumption and 

performance levels. Hence, there is a need to ascertain the best configuration 

for the implemented low-power techniques to achieve maximum energy 

reduction. 

1.3 Objectives 

The main goal of this research is to reduce energy consumption of the 

RISC32 for IoT applications. Several low-power techniques have been 

implemented on the RISC32, which allowing the RISC32 to trade-off between 

power and performance during program execution. Also, a software tool, 
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namely, Energy Reduction Program Analyzer has been developed to 

determine (based on the program behavior) the best configuration while using 

the low-power techniques. The prime objectives of this research are 

enumerated as follows: 

1. To implement low-power techniques (DVFS, PR, and CG) on the 

RISC32 FPGA-based IoT sensor node to reduce its energy 

consumption.  

2. To develop a new software tool, Energy Reduction Program Analyzer, 

for automatic configuration of the low-power techniques.  
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CHAPTER 2  

 

LITERATURE REVIEW 

This chapter discusses several known low-power techniques that are 

applicable to FPGA power management are presented. These techniques 

include CG, power gating, and DVFS. Besides that, it discusses a few new 

trends of low-power techniques such as optimizing frequently used features in 

a system and reuse hardware resources to implement multiple low-utilization 

circuits by using the PR feature. 

2.1 Low-Power Techniques 

2.1.1 Clock Gating 

CG is one of the most commonly employed low-power techniques. It 

gates the clock signal of an idle circuit with an AND gate. This prevents 

unnecessary clock switching, which consumes dynamic energy. However, the 

AND gate can potentially cause glitchy output. Hence, Sterpone et al. (2011) 

proposed a reconfigurable CG technique that replaces the AND gate used in 

conventional CG. A controller is required to disable/enable the clock signals to 

localize regions. This is achieved through command transmitted via Internal 

Configuration Access Port (ICAP). 

2.1.2 Power Gating 

Power gating is another technique useful in reducing the energy 

consumption in an FPGA. It gates the power supply to reduce idle power. 

Power gating can save more power compared to CG but requires more 

circuitry to support this feature. For example, there is a need to save and 

restore the registers’ content in the power-gated circuit during power-down 
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and power-up phases. Bsoul et al. (2015) proposed a dynamically controlled 

power gating technique applicable to an FPGA. This technique turns on/off the 

power switch at run-time, and the authors reported a power saving of 83%. 

The control signal of the power switch is connected to the general-purpose 

routing fabric of the FPGA, which allows the FPGA itself to turn on/off the 

power switch. However, this technique requires customization on the circuitry 

inside the FPGA chip, which is not available in most of the commercial FPGA 

chips. Another similar work was presented by Hosse et al. (2014), who applied 

power gating technique to Zynq-7000, which consists of dual-core ARM 

Cortex-A9 processor (the processing system) and a Xilinx 7 series FPGA. The 

authors reported a power saving of 96%, where they used ARM Cortex-A9 to 

control the power rail of FPGA chip. This design requires an extra monitor 

system to control the power supply, which consumes extra power. Moreover, 

many IoT sensor nodes do not process complex computational tasks. A high-

end processor like Cortex-A9 can be too power-hungry and unnecessary. 

2.1.3 Dynamic Voltage and Frequency Scaling 

DVFS is another popular low-power technique that adjusts power 

(voltage supply) and system performance (clock frequency) during application 

execution. Most of the prior work that implements DVFS focuses on how to 

select the best frequency–voltage (f–v) pair with the help of additional circuits. 

For instance, Nunez-Yanez et al. (2015, 2017) proposed an in-situ detector to 

be inserted into critical paths between two flip-flops (FFs) of their target 

design. The in-situ detector consists of a main flip-flop (MFF) and a slow flip-

flop (SFF). Both FFs are driven by the output of the critical paths, but the 

input to the SFF is slightly delayed compared to MFF. By observing the output 
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of the MFF and SFF, the best operating frequency can be determined. In 

Nunez-Yanez et al. (2015), the critical paths between FFs and memory, which 

are called block RAMs, are included, while in Nunez-Yanez et al. (2017), just 

the path between FFs is included.  

Wu et al. (2016) proposed a free razor technique to scale the supply 

voltage, to achieve energy efficiency, in addition to a forward error correction 

module to maintain the accuracy of the system. Based on the bit error rate 

(BER) sensor feedback, the voltage regulator can scale down the voltage 

supply as long as the BER is low enough to tolerate system noise. One 

drawback of this system is that it has an extra correction circuitry, which 

potentially degrades the processor performance if an error occurs. These 

techniques are not suitable to be implemented on RISC32 because adding such 

circuitry to RISC32 is too costly in terms of hardware resources, as RISC32 is 

aimed at implementing IoT sensor nodes. 

Nunez-Yanez et al. (2015) combined the previously developed power 

gating (Hosseinabady and Nunez-Yanez, 2014) and DVFS techniques to lower 

the energy consumption in Zynq-7000 SoC ZC702 evaluation board. They 

also used the PR technique to switch between two different hardware 

configurations, namely, ME1 and ME6. The former represents the hardware 

configuration with a single execution unit, whereas the latter involves six 

execution units, where the execution unit refers to the MicroBlaze processor 

developed on the programmable logic. The switch between two hardware 

configurations is controlled by the ARM dual-core Cortex-A9 processor 

through the Processor Configuration Access Port. This work shows that an 
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energy reduction as high as 60% is achieved when the tasks are executed on 

the ME6 hardware configuration. 

2.1.4 Partial Reconfiguration 

Energy consumption can also be reduced by using PR, which allows 

the reuse of the same hardware area to implement several low-utilization 

circuits. For instance, Nunez-Yanez et al. (2017) presented a technique to 

lower the energy consumption of the Zynq-7000 SoC ZC702 evaluation board 

by using PR. This technique involves switching between two different 

hardware configurations with one and six execution units. The authors 

reported the energy reduction to be as high as 60%. Tamimi et al. (2018) 

proposed a reconfigurable architecture to implement a soft-core processor. 

They integrated functional units with low utilization (e.g., floating-point units) 

into look-up table (LUT)-based reconfigurable units (RUs). The low-

utilization functional units only configure in RU when it is required to perform 

a specific operation. This technique successfully reduced hardware resources 

by 30.7%, reducing static power and energy consumption by 32.5% and 

36.9%, respectively. 

Kiat et al. (2020) proposed a feature in RISC32 that can dynamically 

switch between pipeline microarchitecture execution (PE) and multi-cycle 

microarchitecture execution (ME) to reduce energy consumption. PE can 

achieve higher throughput but requires more hardware resources (pipeline 

registers, forwarding circuits, a branch predictor, an interlock controller, etc.). 

On the other hand, ME has lower throughput, but it requires fewer hardware 

resources. Hence, to achieve better energy efficiency, PE is used to execute 

CPU-bound tasks to complete them within a short time. However, for IO-
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bound tasks, the CPU spends most of its time idle, waiting for the IO 

instructions to be completed. Since ME consumes less power than PE, it is 

more advantageous to use ME in such a scenario.  

2.1.5 Power Management Module 

Existing power management modules are usually designed to support 

DVFS techniques. To achieve that, the power management module is required 

to determine the suitable location in the user program to apply DVFS as well 

as the right frequency to be configured, according to the program’s behavior. 

In a method proposed by Tatematsu et al. (2011), the execution frequency is 

selected by using the greedy algorithm. On the other hand, Qin et al.’s (2019) 

method uses linear programming to determine the optimum frequency in every 

task. However, the software performance needs to be maintained while trying 

to reduce energy consumption. To address this issue, Wu et al. (2017) 

modelled the long-term deadline-aware task scheduling and Deng et al. (2020) 

proposed cuckoo search algorithm based on Gaussian random walk and 

adaptive discovery probability to reduce energy under specific performance 

constraints. In another similar work, Huang et al. (2018) developed a 

scheduling method, which allows task scheduling with fault tolerance. These 

prior works evaluated the energy reduction achieved by DVFS based on their 

simulation result.  

In this work, a similar idea was used to develop a power management 

scheme including not only the DVFS configuration but also the PR 

configuration. The developed ERPA needs to identify the IO-bound 

instructions in the program to insert power management instructions 

effectively for energy reduction purposes.  



 

13 

 

2.1.6 Other Techniques 

Besides these popular low-power techniques, energy consumption can 

also be reduced by developing function-specific hardware modules. For 

instance, See et al. (2020) introduced RISC32-E, which integrates the RISC32 

sensor node with an AES-128 coprocessor based on instruction in-order issue, 

partial out-of-order completion. RISC32-E is able to perform encryption in 

counter mode 200% faster compared to software encryption on RISC32. 

Owing to the reduced encryption time, the energy consumption for encryption 

tasks on RISC32-E was also reduced by 99% as compared to RISC32. 

However, this energy reduction technique is applicable to the encryption task 

only. 

Recently, Brandalero et al. (2019) presented MuTARe, a single ISA 

heterogeneous chip multiprocessor (CMP) with an additional voltage rail that 

enables it to operate in the near-threshold-voltage regime. MuTARe improved 

the design of CMP, which is more suitable for complicated and unpredictable 

IoT workloads. Due to the complexity of the involved IoT tasks, they 

proposed a dynamic binary translation (DBT) hardware module to 

automatically transform the code for reconfigurable acceleration. 

2.2 Research gap 

To maximize the energy efficiency, it is logical to extend the RISC32 

to RISC32-LP by incorporating low-power techniques DVFS and CG, which 

can be applied to FPGA platforms. With the implementation of DVFS and 

CG, RISC32-LP can trade-off its performance to reduce power consumption.  

After integrating DVFS and CG on top of PR, RISC32-LP has multiple 

options to reduce energy. Hence, a tool is required to regulate these low-power 
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techniques. In this work, we decided to develop a software that can calculate 

the position to activate the desired low-power technique based on application’s 

behavior and insert low-power instructions into the application accordingly. 

Alternately, we could develop a hardware to profile the energy consumption 

and adjust the low-power technique on-the-fly. However, this hardware would 

have consumed extra hardware, which is costly for a sensor node device. 
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CHAPTER 3  

 

RISC-LP: THE PROPOSED LOW-POWER FPGA-BASED SENSOR 

NODE 

3.1 System Overview 

The proposed low-power FPGA based sensor node (RISC32-LP) is an 

extension of the RISC32 (Kiat et al., 2020) that aims to further reduce the 

energy consumption for IoT application. Figure 3.1 shows the architecture of 

both (a) RISC32 and (b) RISC32-LP with the IoT program compilation 

process. 
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Figure 3.1: RISC32-LP architecture with IoT program compilation 

process. 
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The previous project, RISC32, is an MIPS-ISA-compatible 32-bit IoT 

processor. It supports only a small subset of the full MIPS instruction set 

(MIPS32, 2000) adequate for an IoT sensor node. The PR feature of its 

microarchitecture has been found to be able to reduce the dynamic energy 

consumption (details described in Section 3.3).  

In this study, the RISC32 was extended by adding an extra power 

management unit (PMU) and a novel post-compilation energy optimization 

software – Energy Reduction Program Analyzer (ERPA). Previously, to run an 

IoT application in RISC32, the C program was compiled into MIPS assembly 

code via an LLVM compiler. Each instruction in the MIPS assembly code was 

then converted to their equivalent hexadecimal code and then configured into 

FPGA. RISC32-LP, on the other hand, uses the MIPS assembly code 

generated by the ERPA. The ERPA inserts the relevant low-power instructions 

into the user program at appropriate locations automatically. This has greatly 

reduced the effort in manually determining the low-power configurations to 

achieve energy reduction.  

Table 3.1 shows the specification of the RISC32-LP, which employs a 

combination of low-power techniques, namely, CG, DVFS, and PR of the 

microarchitecture, to achieve a significant reduction in energy consumption. 

The RISC32-LP CPU runs at maximum 40 MHz, while the IO systems run at 

10 MHz. 
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Table 3.1: Specification of the RISC32-LP.  

 Multi-cycle Pipeline 

Frequency (MHz) 40 MHz to 20 MHz 40 MHz to 20 MHz 

Cycle per instructions 3–5 1 

Branch predictor - 64 entries 4 ways 
associative 

Hardware differences. 

Place in reconfigurable 

region (PR instance) 

Data-path unit, 

Control unit finite 

state machine 

Data-path unit, branch 

predictor, pipeline 

registers, hazard 

circuitry. 

Power management unit CG, DVFS, PR 

C
o
m

m
o
n
 

featu
res (S

tatic 
R

eg
io

n
) 

Memory system 4 kB boot ROM, 128 kB user access flash, 8 
kB RAM (data and stack), 1 kB i-cache, 32 B 
d-cache, 512 B memory-mapped I/O register 

Communication 
interface 

ADC, UART, SPI, 32 GPIO pins. 
The IO systems run at 10 MHz. 

Partial Bitstream start 
address 

0x00A0_0000 0x00A8_0000 

Bitstream size 3737 kB 

FPGA board Nexys 4 DDR (XC7A100T) 

F
P

G
A

 

reso
u
rces 

(O
v
erall) 

LUT 5631 6264 

LUTRAM 127 311 

FF 2782 3037 

BRAM 3.50 3.50 

IO 46 46 

BUFG 5 5 

 

The remainder of this chapter discusses the PMU, while the details of 

ERPA are presented in Chapter 4.  
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Figure 3.2: DVFS and CG components in the PMU.  
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3.2 Power Management Unit  

The PMU is connected to the CPU through IO bus and consists of the 

CG and DVFS modules, as shown in Figure 3.2. The CG module 

enables/disables the CG function automatically based on the idle status of 

other modules in RISC32-LP. On the other hand, DVFS module provides the 

programmable parameter and f–v pairs that allow the RISC32-LP to execute 

IoT program at different performances. These two techniques work 

independently. 

PMU
clk_100mhz             uopm_dvfs_MOSI
uipm_dvfs_clk_rst             uopm_dvfs_SS_n
uipm_dvfs_rst             uopm_dvfs_SCLK

uipm_dvfs_wb_w_din    uopm_dvfs_wb_w_ack
uipm_dvfs_wb_w_we
uipm_dvfs_wb_w_stb
uipm_dvfs_wb_r_we   uopm_dvfs_wb_r_dout
uipm_dvfs_wb_r_stb

uipm_cg_gpio_busy
uipm_cg_uart_busy                 uopm_dvfs_clk
uipm_cg_spi_busy  uopm_dvfs_clk_slowest
uipm_cg_dmem_busy
uipm_cg_dpex_we            uopm_cg_gpio_en
uipm_cg_dpmem_we            uopm_cg_uart_en
uipm_cg_dpmem_io_en              uopm_cg_spi_en
uipm_cg_dpmem_dmem_en        uopm_cg_dmem_en

uipm_cg_dpex_mult_en           uopm_cg_mult_en
uipm_cg_dpmem_mult_busy
uipm_cg_dpwb_rf_wr                 uopm_cg_rf_en
uipm_cg_dp_rf_wr_en

8

8

32

 

Figure 3.3: PMU block diagram in RISC32-LP. 

Table 3.2: DVFS-related input and output pins in the PMU.  

Pin name: clk_100mhz   Pin direction: input   

Source -> Destination: FPGA board’s clock crystal -> PMU 

Pin function: A 100 MHz clock signal from FPGA board. 

Pin name: uipm_dvfs_clk_rst  Pin direction: input    

Source -> Destination: Global clock reset -> PMU 

Pin function:  

1: reset DVFS module in PMU and set the output clock (uopm_dvfs_clk) to 

default value (40 MHz). 

0: - 
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Pin name: uipm_dvfs_rst   Pin direction: input   

Source -> Destination: Global rest -> PMU 

Pin function: 

1: reset other modules in PMU except the DVFS module. 

0: - 

Pin name: uipm_dvfs_wb_w_din[7:0] Pin direction: input   

Source -> Destination: Data-path unit -> PMU 

Pin function: data input bus for DVFS control register (i.e., DVFS 

frequency index register, DVFSFIR). 

Pin name: uipm_dvfs_wb_w_we  Pin direction: input  

  

Source -> Destination: Address Decoder Block -> PMU 

Pin function: Wishbone standard write enable signal – indicate that the 

current bus cycle is for write or read access 

1: Write to DVFSFIR in PMU 

0: - 

Pin name: uipm_dvfs_wb_w_stb  Pin direction: input   

Source -> Destination: Address Decoder Block -> PMU 

Pin function: Wishbone standard strobe signal – indicate valid data transfer 

cycle  

1: activate SPI controller for write access 

0: deactivate SPI controller for write access 

Pin name: uipm_dvfs_wb_r_we  Pin direction: input   

Source -> Destination: Address Decoder Block -> PMU 

Pin function: Wishbone standard write enable signal – indicate that the 

current bus cycle is for WRITE or READ access. 

1: - 

0: Read from DVFSFIR in PMU 

Pin name: uipm_dvfs_wb_r_stb  Pin direction: input   

Source -> Destination: Address Decoder Block -> PMU 

Pin function: Wishbone standard strobe signal – indicate valid data transfer 

cycle.  

1: activate SPI controller for read access 

0: deactivate SPI controller for read access 

Pin name: uopm_dvfs_MOSI   Pin direction: output 

Source -> Destination: PMU -> External voltage regulator 

Pin function: Master data output pin (follow standard SPI). Send 

configuration data to external voltage regulator’s control register.  

Pin name: uopm_dvfs_SS_n   Pin direction: output 

Source -> Destination: PMU -> External voltage regulator 

Pin function: Slave select pin (follow standard SPI). 

0: Data sending to external voltage regulator through uopm_dvfs_MOSI is 

valid. 

1: -  

Pin name: uopm_dvfs_SCLK   Pin direction: output 

Source -> Destination: PMU -> External voltage regulator 

Pin function: SPI clock signal for data synchronization across devices. 

Pin name: uopm_dvfs_wb_w_ack  Pin direction: output 

Source -> Destination: PMU -> Data-path unit 

Pin function: Wishbone standard acknowledge signal – indicate the 
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termination of a normal write cycle. 

1: normal bus cycle termination 

0: no bus cycle termination 

Pin name: uopm_dvfs_wb_r_dout[31:0] Pin direction: output 

Source -> Destination: PMU -> Data-path unit 

Pin function: Wishbone standard read data output bus. 

Pin name: uopm_dvfs_clk   Pin direction: output 

Source -> Destination: PMU -> all clock signal in RISC32-LP 

Pin function: Clock signal used to drive RISC32-LP. 

Pin name: uopm_dvfs_clk_slowest  Pin direction: output 

Source -> Destination: PMU -> all IO modules’ slowest clock signal pins. 

Pin function: Always load slowest clock signal in RISC32-LP (20 MHz). 

Used by the IO module to generate their own baud-rate. 

 

Table 3.3: CG-related input and output pins in PMU.  

Pin name: uipm_cg_gpio_busy  Pin direction: input 

Source -> Destination: GPIO unit -> PMU 

Pin function: Indicate that the GPIO unit is enabled and operating. 

Pin name: uipm_cg_uart_busy  Pin direction: input 

Source -> Destination: UART unit -> PMU 

Pin function: Indicate that the UART unit is enabled and operating. 

Pin name: uipm_cg_spi_busy   Pin direction: input 

Source -> Destination: SPI unit -> PMU 

Pin function: Indicate that the SPI unit is enabled and operating. 

Pin name: uipm_cg_dmem_busy  Pin direction: input 

Source -> Destination: data ram -> PMU 

Pin function: Indicate that the data RAM is enabled and operating. 

Pin name: uipm_cg_dpex_we   Pin direction: input 

Source -> Destination: Data-path unit -> PMU 

Pin function: Indicate that the current EX stage cycle is for read or write 

access. 

1: WRITE 

0: READ    

Pin name: uipm_cg_dpmem_we  Pin direction: input 

Source -> Destination: Data-path unit -> PMU 

Pin function: Indicate that the current MEM stage cycle is for read or write 

access. 

1: WRITE 

0: READ 

Pin name: uipm_cg_dpmem_io_en[7:0] Pin direction: input 

Source -> Destination: Address Decoder Block -> PMU 

Pin function: Indicate which IO unit is selected to be accessed in current 

MEM stage cycle. 

[0]: General-purpose register – used by the PR controller. 

[1]: GPIO 

[2]: PIC (Programmable interrupt controller) 

[3]: SPI 

[4]: UART 

[5]: ADC 
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[6]: - 

[7]: PMU 

Pin name: uipm_cg_dpmem_dmem_en Pin direction: input 

Source -> Destination: Address Decoder Block -> PMU 

Pin function:  

1: Indicate that the data RAM is selected to be accessed in current MEM 

stage cycle. 

0: - 

Pin name: uipm_cg_dpex_mult_en  Pin direction: input 

Source -> Destination: Multiplier -> PMU 

Pin function:  

1: Indicate that the MULT instruction has arrived at EX stage of RISC32-

LP. Multiplier needs to operate in the next clock cycle. 

0: - 

Pin name: uipm_cg_dpmem_mult_busy Pin direction: input 

Source -> Destination: Multiplier -> PMU 

Pin function:  

1: Indicate that the multiplier is operating. 

0: - 

Pin name: uipm_cg_dpwb_rf_wr  Pin direction: input 

Source -> Destination: -> PMU 

Pin function:  

1: Indicate that the register file writing enable signal is set at WB stage of 

RISC32-LP. Register file is needed to operate in next clock cycle. 

0: - 

Pin name: uipm_cg_dp_rf_wr_en  Pin direction: input 

Source -> Destination: -> PMU 

Pin function:  

1: Write enable signal for register file in RISC32-LP. 

0: - 

Pin name: uopm_cg_gpio_en   Pin direction: output 

Source -> Destination: PMU -> GPIO’s clock buffer 

Pin function:  

1: Allow the GPIO clock signal switch at the same frequency as the IO 

clock. 

0: Gate the GPIO clock. 

Pin name: uopm_cg_uart_en   Pin direction: output 

Source -> Destination: PMU -> UART’s clock buffer 

Pin function:  

1: Allow the UART clock signal switch at the same frequency as the IO 

clock. 

0: Gate the UART clock. 

Pin name: uopm_cg_spi_en   Pin direction: output 

Source -> Destination: PMU -> SPI’s clock buffer 

Pin function:  

1: Allow the SPI clock signal switch at the same frequency as the IO clock. 

0: Gate the SPI clock. 

Pin name: uopm_cg_dmem_en  Pin direction: output 

Source -> Destination: PMU -> Data RAM and stack RAM’s clock buffer 

Pin function:  
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1: Allow data and stack RAM clock signal switch at the same frequency as 

the IO clock. 

0: Gate data and stack RAM clock. 

Pin name: uopm_cg_mult_en   Pin direction: output 

Source -> Destination: PMU -> Multiplier’s clock buffer 

Pin function:  

1: Allow the multiplier clock signal switch at the same frequency as the 

CPU clock. 

0: Gate the multiplier clock. 

Pin name: uopm_cg_rf_en   Pin direction: output 

Source -> Destination: PMU -> Register file’s clock buffer 

Pin function:  

1: Allow the register file clock signal switch at the same frequency as the 

CPU clock. 

0: Gate the register file clock. 

 

3.2.1  Development of Clock Gating 

CG reduces the dynamic power consumption by disabling some of the 

circuits in RISC32-LP that are not in use. In RISC32-LP, CG is applied to the 

IO modules, stack RAM, data RAM, multiplier, and register files, which are 

likely to remain idle during IoT program execution. These IO modules and 

functional units are partitioned as units or blocks in RISC32-LP, which have 

made CG easier to implement and maintain.  

A module is considered to be in idle state whenever it is not being 

accessed or enabled. For example, the IO module UART is identified as idle 

when its enable flag is not set. A functional module, such as the multiplier, is 

identified as IDLE when there is no multiplication instruction decoded in 

RISC32-LP. When a particular functional or IO module is identified as idle, 

the CG circuitry disconnects the clock tree of that module. No clock signal 

would drive the module, and unnecessary switching activities are avoided. 

Table 3.4 shows the IO CG control signals, and Table 3.5 shows the CPU core 

CG control signals generated by the corresponding control unit.  
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Table 3.4: IO CG control unit’s LUT.  
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Table 3.5: CPU core CG control unit’s LUT.  
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Figure 3.4: Clock gated module in RISC32-LP.  

 
Figure 3.5: BUFHCE’s waveform. 

 As shown in Figure 3.4, the clock tree of each module is driven by a 

clock buffer (BUFHCE), which is used to connect or disconnect the clock tree. 

Note that the clock control signals are named as uopm_cg_X_en, where X is 

the name of the clock-gated module. For instance, uopm_cg_uart_en refers to 

the clock control signal for the UART module. All clock control signals are 

generated by the IO CG control unit (IO_CGCU) and the core CG control unit 
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(Core_CGCU) in the PMU. In this work, the BUFHCE is used to implement 

CG instead of an AND gate because the former can ensure a glitch-less output. 

Both RISC32 microarchitectures (PE and ME) have the following five 

stages: instruction fetch (IF), instruction decode (ID), execution (EX), memory 

(MEM), and write-back (WB) stage. Note that even though BUFHCE is a type 

of clock driver available on Xilinx 7-series FPGA, it will cause an output 

signal (which is the clock signal driving the selected modules) delayed by one 

clock cycle as illustrated in Figure 3.5(a). To avoid this problem, the clock 

control signal of each BUFHCE is generated one clock cycle before the 

module is being accessed (see Figure 3.5(b)). For example, IO and memory 

modules are only being accessed during the MEM stage. Hence, the required 

clock control signals are asserted at an earlier stage i.e., the EX stage. For 

register file and multiplier, the clock control signal is asserted in the MEM and 

ID stage, respectively. 

According Pdym = ∑ (C * Vdd
2 * fclock), the dynamic energy reduces 

when the parameter fclock decreases.   

3.2.2  Development of Dynamic Voltage and Frequency Scaling 

In RISC32-LP, the DVFS is applied to the CPU and memory system 

(except the FPGA external flash memory) to dynamically scale its operating 

frequency and voltage automatically. A DVFS module that supports six f–v 

pairs was developed, based on the maximum number of frequencies supported 

by a phase-locked loop (PLL) in Artix 7. The desired range of the operating 

frequencies can be chosen based on application. In our case, the range of 40 

MHz to 20 MHz was chosen. This range is equally divided into six 

frequencies (40 MHz, 36 MHz, 32 MHz, 28 MHz, 24 MHz, and 20 MHz) 
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since the PLL in Artix-7 could only generate six frequencies. Hence, only six 

f–v pairs were developed as listed in Table 3.6 

Table 3.6: F–V pairs. 

DVFSFIR[7:0] 0 1 2 3 4 5 

Frequency 

(MHz) 

40 36 32 28 24 20 

Voltage (V) 1.00 0.98 0.96 0.94 0.92 0.90 

 

  

The f–v pairs are represented as a single-digit index (0 to 5) stored in a 

small memory. To select the desired f–v pair, the store byte (SB) instruction is 

used by the program to write the corresponding index value into the DVFS 

frequency index register (DVFSFIR). The DVFSFIR is IO memory mapped to 

the address 0xbfff ff3f. For example, in “sb $t1, 0x3f($s2)”, $t1 holds the 

index value 0x02, which corresponds to 32 MHz and 0.96 V, while $s2 is used 

to hold the IO memory map base address (0xbfff ff00) to all the IO registers, 

including DVFSFIR. Hence, the sum of $s2’s content and offset (0x3f) yields 

the address of DVFSFIR register, which the index (0x02) in $t1 will be 

transferred to. Figure 3.2 shows the main components of DVFS module 

residing in the PMU.  

To determine the voltage for each frequency, the following steps were 

taken. However, to achieve lowest energy consumption for a given task, the 

most suitable f–v pair is first determined by the ERPA based on the task’s 

behavior. Then, the following steps will run: 

1) PLL generates the six clock frequencies listed in Table 3.6. One of the 

clock frequencies will be used as the operating frequency for the RISC32-LP 

based on DVFSFIR. 
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Figure 3.6: Voltage regulator’s schematic. 

2) A voltage regulator is designed to generate the corresponding supply 

voltage at the selected operating frequency. In this work, the voltage regulator 

provides the voltage supply in the range of 0.90–1.00 V, based on the reliable 

safe voltage range for the target FGPA (Datasheet, Xilinx. 2015). Figure 3.6 

shows the voltage regulator, PTH08T220W. It can produce variable output 

voltage by adjusting the digital potentiometer (MCP42100). Based on the 

index value in DVFSFIR, the DVFS control unit (DVFS-CU) sends a 16-bit 

SPI command to the digital potentiometer to adjust the resistance, which, in 

turn produces the desirable supply voltage value. 

3) A logic delay measurement circuit (LDMC) is developed to determine the 

optimal voltage supply for each operating frequency.  It is used to ensure that 

in each f–v pair, the voltage supply will provide enough drive strength for the 

corresponding clock frequency in RISC32-LP. If a voltage supply does not 

provide enough drive strength at the designated clock frequency, timing error 

would occur in RISC32-LP, whereby the data will not be timely captured by 

the registers. On the other hand, excessive voltage supply will cause RISC32-

LP to consume extra energy, which is not the aim of our project.  
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Figure 3.7: LDMC circuitry. 

 The LDMC is implemented in FPGA together with RISC32-LP 

(referred to as RISC32-LP+LDMC in the following paragraph). By default, 

RISC32-LP is operating at 40 MHz with a 1.0 V voltage supply. To find out 

the optimal voltage supply values for each of the clock frequencies (36 MHz, 

32 MHz, 28 MHz, 24 MHz, and 20 MHz), the operating frequency of RISC32 

is lowered down accordingly, and the LDMC responds to the frequency 

change by generating an SPI command to adjust the voltage supply 

accordingly. The voltage supply values measured at each of the above-

mentioned frequencies are recorded in Table 3.6. The details of LDMC 

operation are described in the next paragraph. 

The details of LDMC operation are described here. The LDMC is 

made up of a serial chain of LUT and FFs. The number of LUTs and FFs used 

depend on the critical path delay of RISC32-LP. Conceptually, the chain is 

grouped into three ranges of logic delays, which can be used to indicate the 

signal strength of the critical path: insufficient, optimal, and excessive. The 

LUTs are used to create the logic level delays, and the FFs are used to store 

the outputs of the LUTs to indicate how far in terms of delay the LDMC_ref 
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signal has propagated. We can think of the LDMC_ref signal as a ruler to 

indicate whether the critical path signal is in the insufficient, optimal, and 

excessive delay range. The number of FFs used in each range is specified in 

Table 3.7.  

Table 3.7: The number of FFs used in each range of LDMC. 

Logic level delay range Number of FFs in 

series 

Insufficient 82 

Optimal 8 

Excessive 8 

 

For example, to get the optimal voltage at 36 MHz, the frequency of RISC32-

LP+LDMC was tuned to 36 MHz manually. Consequently, the clock period 

was stretched longer, allowing more time for the LDMC_ref to propagate from 

the Toggle flip-flop (TFF) and through the LUTs, reaching the excessive range 

within a clock period. This means that 1.0 V is too excessive to be used as the 

supply voltage for the 36 MHz operating frequency. Hence, the comparison 

circuit outputted an SPI command, which was used by the potentiometer and 

external voltage regulator to lower the supply voltage by one level. This was 

repeated until the LDMC_ref reached the optimal range. The voltage was then 

recorded to form the f–v pair at 36 MHz as shown in Table 3.6. The above 

process was repeated to obtain all the f–v pair values and their corresponding 

SPI command values as shown in Table 3.8 

Table 3.8: SPI command values.  

DVFSFIR[7:0] 0 1 2 3 4 5 

Frequency 

(MHz) 

40 36 32 28 24 20 

Voltage (V) 1.00 0.98 0.96 0.94 0.92 0.90 

SPI command 0x12F9 0x1277 0x1242 0x1229 0x1218 0x120D 
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The SPI command values have been hardcoded in Verilog in the PMU. 

After we obtaining the above values, the LDMC can be removed so that the 

PMU can have a shorter response time for every frequency change. 

By default, the f–v pair has been set to 40MHz–1V, which is the 

highest performance available experimented in RISC32-LP. When the SB 

instruction is executed, it triggers the signal urisc_ex_store_data (refer to 

Figure 3.2) to activate the DVFS operation to start the frequency adjustment. 

The f–v pair’s index supplied by SB is first stored in DVFSFIR, and then 

compared with the previous DVFSFIR value to decide whether to increase or 

decrease the frequency. If the targeted frequency is lower than the previous 

one, DVFS-CU first selects the requested operating frequency via the 

multiplexer, then issues the 16-bit SPI command to the digital potentiometer to 

reduce the voltage supply step-by-step based on voltage value in Table 3.8. If 

the voltage supply is reduced before the frequency, the voltage supply can 

cause timing error. Hence, the frequency has to be reduced first before 

configuring the voltage supply. On the other hand, if the targeted frequency is 

higher than the previous one, voltage supply is increased first before the 

DVFS-CU selects the higher operating frequency. This is done to ensure that 

the drive strength of the voltage supply is enough to support the higher 

operating frequency. 

To control the switching of f–v pairs, a DVFS-CU was developed. 

Figure 3.8 shows the block diagram of DVFS-CU, and Table 3.9 describes the 

function of each pin. 
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DVFS Control Unit
sbifs_clk                                    sbofs_holdcmd
sbifs_rst                                           sbofs_busy

                                     sbofs_clk1_rst
sbifs_fchange                                                  sbofs_clk2_rst
sbifs_cmd_sent                                         sbofs_fready

    sbofs_clksel
sbifs_clk1
sbifs_clk2

2

 

Figure 3.8: Block diagram of DVFS-CU. 

Table 3.9: DVFS-CU input and output pins. 

Pin name: sbifs_clk   Pin direction: input    

Source -> Destination: PMU -> DVFS-CU 

Pin function: 100 MHz clock signal from FPGA board. This clock signal 

drives the DVFS-CU itself only. It is not used to supply to other part of 

RISC32-LP. 

Pin name: sbifs_rst   Pin direction: input    

Source -> Destination: PMU -> DVFS-CU 

Pin function:  

1: reset DVFS-CU. 

0: - 

Pin name: sbifs_fchange[1:0]  Pin direction: input    

Source -> Destination: PMU -> DVFS-CU 

Pin function: 

Indicate that the new request RISC32-LP core clock frequency is lower, 

higher, or equal compared to the current RISC32-LP core clock frequency.  

00: Equal. 

01: -   

10: New < Current  

11: New > Current 

Pin name: sbifs_cmd_sent  Pin direction: input    

Source -> Destination: PMU -> DVFS-CU 

Pin function:  

1: Indicate that the previous SPI command is sent to the digital 

potentiometer (used to configure the voltage supply level of external voltage 

regulator). 

0: - 

Pin name: sbifs_clk1   Pin direction: input    

Source -> Destination: PLL (in PMU) -> DVFS-CU 

Pin function: The clock frequency is used to drive the RISC32-LP core 

when the DVFS-CU is in “RESET_CLK2,” which is the DVFS-CU’s idle 

state.   

Pin name: sbifs_clk2   Pin direction: input    

Source -> Destination: PLL (in PMU) -> DVFS-CU 

Pin function: The clock frequency that is used to drive the RISC32-LP core 

when PMU is configuring new request clock frequency. This is to prevent 

the whole RISC32-LP stall when the PMU is modifying the clock 

frequency. 
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Pin name: sbofs_holdcmd  Pin direction: output    

Source -> Destination: DVFS-CU -> SPI transmitter in the PMU 

Pin function:  

1: Hold / Do not allow the value the SPI command change while command 

transmission is in progress. 

0: - 

Pin name: sbofs_busy   Pin direction: output 

Source -> Destination: DVFS-CU -> PMU 

Pin function:  

1: The DVFS-CU is in progress of change f–v pair. 

0: The DVFS-CU is in “RESET_CLK2” state / idle state. 

Pin name: sbofs_clk1_rst  Pin direction: output    

Source -> Destination: DVFS-CU -> PMU 

Pin function: 

1: Reset clk1 (no switching). 

0: -  

Pin name: sbofs_clk2_rst  Pin direction: output    

Source -> Destination: DVFS-CU -> PMU 

Pin function: 

1: Reset clk2 (no switching). 

0: - 

Pin name: sbofs_fready  Pin direction: output    

Source -> Destination: DVFS-CU -> PMU 

Pin function: 

1: clk2 is set to new requested frequency. 

0: - 

Pin name: sbofs_clksel  Pin direction: output 

Source -> Destination: DVFS Control Unit -> PMU 

Pin function: 

1: select clk2 as clock signal that drive RISC32-LP core. 

0: select clk1 as clock signal that drive RISC32-LP core. 

Pin name: bufgmux_cnt_rst  Pin direction: internal signal 

Source -> Destination: N/A 

Pin function: 

Reset bufgmux_cnt register. 

Register name: bufgmux_cnt 

Register function: 

Register in DVFS-CU. 

A counter used to count until nine clock cycles (100 MHz). Nine clock 

cycles is the latency required for bufgmux switch from clk1 to clk2 or vice 

versa.  

Pin name: clkcounter_cnt_rst  Pin direction: internal signal 

Source -> Destination: N/A 

Pin function: 

Reset clkcounter_cnt register. 

Register name: clkcounter_cnt 

Register function: 

Register in DVFS-CU. 

A counter used to count until four clock cycles (100 MHz). Four clock 

cycles is the latency needed for clk1 and clk2 to switch to other new 
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frequency safely. 

  

There are a total of eight states in the DVSF-CU finite state machine 

(FSM) as shown in Figure 3.9. Each state is described in Table 3.10, and the 

output pin value for each state is listed in Table 3.11. 

RESET_CLK2

SET_CLK2

WAIT_VOLT1

SOURCE_CLK2

SOURCE_CLK1

WAIT_VOLT2

RESET_CLK1

SET_CLK1

sbifs_fchange[1]

other

sbifs_fchange[0] &
clkcounter_terminate

sbifs_cmd_sent

bufgmux_terminate

other

other

other

1

clkcounter_terminate

bufgmux_terminate

sbifs_cmd_sent

other

other

other

!sbifs_fchange[0] &
clkcounter_terminate

sbifs_rst

 

Figure 3.9: State diagram for DVFS-CU FSM.  

The selected clock frequency of the PLL is duplicated into two clock sources: 

clk1 and clk2 as shown in Figure 3.10. The reason is to ensure that the CPU 

can continuously operate with a stable clock source: while one clock source is 

setting up (unstable), the other clock source can be used.  
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Figure 3.10: clk1 and clk2 signals from the PLL. 

 

Table 3.10: Description of each FSM state for DVFS-CU. 

Present state of 

DVFS-CU 

Next state of DVFS-

CU  

Description 

RESET_CLK2  

 

sbifs_fchange[1]: 

SET_CLK2 

 

 

 

 

other: RESET_CLK2 

Idle state. 

 

If the new request frequency is 

different from the current 

frequency, go to SET_CLK2 

state. 

 

Remain idle if no frequency 

change requested. 

SET_CLK2  

 

 

 

 

 

 

sbifs_fchange[0] & 

clkcounter_terminate: 

WAIT_VOLT1 

 

!sbifs_fchange[0] & 

clkcounter_terminate: 

SOURCE_CLK2 

 

other: 

SET_CLK2 

Set up clk2 to the new 

requested frequency value. 

Need to wait for the clk2 

finish setting up 

(clkcounter_terminate==1) 

before going to the next state. 

 

If the new frequency is higher 

than current frequency, go to 

WAIT_VOLT1. 

 

If the new frequency is lower 

than the current frequency, go 

to SOURCE_CLK2. 

 

Wait for acknowledge signal 

(clkcounter_terminate). 

WAIT_VOLT1  

 

 

 

Wait for new voltage supply 

level set up before switching 

to a higher frequency. 
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sbifs_cmd_sent: 

SOURCE_CLK2 

 

other: 

WAIT_VOLT1 

Go to SOURCE_CLK2 once 

ready. 

 

Wait for acknowledge signal 

(sbifs_cmd_sent). 

SOURCE_CLK2  

 

 

 

 

 

 

 

 

 

 

bufgmux_terminate: 

RESET_CLK1 

 

 

 

other: 

SOURCE_CLK2 

Change the RISC32-LP core 

clock signal from clk1 to clk2. 

This process is handled by 

BUFGMUX_CTRL, which is 

a combination of clock buffer 

and multiplexer available in 

Xilinx FPGA chip. 

 

 

 

 

Go to RESET_CLK1 after 

BUFGMUX_CTRL 

completed the switching 

between clk1 and clk2. 

 

Wait for acknowledge signal 

(bufgmux_terminate).  

RESET_CLK1  

 

 

Always true: 

SET_CLK1 

Reset clk1 before changing 

clk1 to new frequency. 

SET_CLK1  

 

 

 

 

 

 

clkcounter_terminate: 

SOURCE_CLK1 

 

other: SET_CLK1 

Set up clk1 to the new 

requested frequency value. 

Need to wait for the clk1 

finish setting up 

(clkcounter_terminate==1) 

before going to the next state. 

 

Go to SOURCE_CLK1 once it 

is ready. 

 

Wait for acknowledge signal 

(clkcounter_terminate). 

SOURCE_CLK1  

 

 

 

bufgmux_terminate: 

WAIT_VOLT2 

 

 

 

other: 

Change the RISC32-LP core 

clock signal from clk2 back to 

clk1.  

 

Go to WAIT_VOLT2 after 

BUFGMUX_CTRL 

completed the switching 

between clk1 and clk2. 

 

Wait for acknowledge signal 
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SOURCE_CLK1 (bufgmux_terminate).  

WAIT_VOLT2  

 

 

 

 

 

sbifs_cmd_sent: 

RESET_CLK2 

 

other: 

WAIT_VOLT1 

Wait for new voltage supply 

level set up. This is mainly for 

the case that the new 

frequency is lower than the 

current frequency. (Skipped 

WAIT_VOLT1) 

 

Go to RESET_CLK2 once 

done. 

 

Wait for acknowledge signal 

(sbifs_cmd_sent). 

 

Table 3.11: Output pins value of each FSM state for DVFS-CU (DVFS-

CU). 

Present State of 

DVFS-CU 

Output pins value 

RESET_CLK2 sbofs_holdcmd = 1 

sbofs_clk2_rst = 1 

bufgmux_cnt_rst = 1 

clkcounter_cnt_rst =1 

SET_CLK2 sbofs_holdcmd = 1 

sbofs_busy = 1 

bufgmux_cnt_rst = 1 

WAIT_VOLT1 sbofs_busy = 1 

bufgmux_cnt_rst = 1  

clkcounter_cnt_rst =1 

SOURCE_CLK2 sbofs_holdcmd = 1 

sbofs_busy = 1 

clkcounter_cnt_rst = 1 

RESET_CLK1 sbofs_holdcmd = 1 

sbofs_busy = 1 

sbofs_fready = 1 

sbofs_clksel = 1  

bufgmux_cnt_rst = 1  

clkcounter_cnt_rst =1 

SET_CLK1 sbofs_holdcmd = 1 

sbofs_busy = 1 

sbofs_clksel = 1  

bufgmux_cnt_rst = 1  

SOURCE_CLK1 sbofs_holdcmd = 1 

sbofs_busy = 1  

clkcounter_cnt_rst =1 

WAIT_VOLT2 sbofs_busy = 1  

bufgmux_cnt_rst = 1  

clkcounter_cnt_rst =1 
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  Clock Domain Crossing in RISC32-LP 

To implement DVFS, the processor RISC32-LP requires multi-clock domain 

since the IO system is running at 10 MHz. Figure 3.11 illustrates the clock 

domain of each area in RISC32-LP. 

 

Figure 3.11: Multi-clock domain in RISC32-LP and CDC circuit location. 

To resolve multi-clock domain metastability issue, a simple clock domain 

crossing (CDC) circuit is implemented in between the different clock domain 

areas as shown in Figure 3.11. Figure 3.12 shows the block diagram of the 

CDC circuit, and Table 3.12 describes the pins of the CDC circuit. The details 

of CDC circuit and example waveform are shown in Figure 3.13 and Figure 

3.14, respectively. 
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Figure 3.12: Block diagram of the CDC circuit. 

Table 3.12: CDC circuit input and output pins 

Write side 

Pin name: wrdy    Pin direction: output  

  

Pin function:  

1: CDC FIFO ready to receive data (writeable) 

0: CDC FIFO is full (not writeable) 

Pin name: wfifo_empty   Pin direction: output 

Pin function:  

1: CDC FIFO empty 

0: CDC FIFO not empty 

Pin name: data_in   Pin direction: input 

Pin function: 

Data bus. Data to be write into FIFO. 

Pin name: wput    Pin direction: input 

Pin function:  

Write enable pin. 

1: Write data 

0: - 

Pin name: wclk    Pin direction: input  

Pin function:  

Clock signal. Need to use the same clock with the source that wrote the data 

into FIFO. 

Pin name: wrst   Pin direction: input  

Pin function:  

Reset pin for write side. 

Read Side 

Pin name: rrdy    Pin direction: output 

Pin function:  

1: Indicate there is data in FIFO and ready to be read. 

0: No data available to read 

Pin name: data_out   Pin direction: output  

Pin function: 



 

39 

 

Data bus. Data to be read from FIFO  

Pin name: rget    Pin direction: input  

Pin function: 

Read enable pin. 

1: Read data. 

0: - 

Pin name: rclk    Pin direction: input 

Pin function: 

Cock signal. Need to use the same clock with the destination that read the 

data from FIFO 

 

 

Figure 3.13: Details of the CDC circuit. 

 The CDC circuit is used to sync the control signals and data bus 

between the modules operating at different clock frequencies. For example, 

the core and the UART. The UART is driven by a 10 MHz clock (IO clock). 

However, the core of RISC32-LP could be driven by any frequency available 

in f–v pairs (20 MHz to 40 MHz). 
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(a) 

 

(b) 

 

Figure 3.14: Example waveform of the CDC circuit. 

 Figure 3.14 illustrates the waveform behavior of the CDC circuit when 

the signals are passed from the core to the UART or SPI. The example in the 

figure shown are the core signals on the write side of the CDC block and the 

UART signals are on the read side of CDC block. Figure 3.14 (a) shows how 

the data is stored in the CDC FIFO. The waveform shows the case whereby 

the UART always reads the data from the core when the data is available. 

Figure 3.14 (b) shows how the read pointer and the write pointer affect the 

FIFO-not-full and FIFO-not-empty conditions. The former indicates that the 

FIFO is still able to receive new data, whereas the latter indicates that there is 
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new data that can be read from the FIFO. When the FIFO is full, the wrdy pin 

of the CDC circuit will be de-asserted and the core cannot write data until the 

pin is asserted again. On the other hand, the UART can read from the CDC 

circuit if the rrdy is de-asserted, which means that the FIFO is empty. 

 

3.4 Partial Reconfiguration 

 

Figure 3.15: RISC32’s microarchitecture in the ME mode. 
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Figure 3.16: RISC32’s microarchitecture in the PE mode. 

Kiat et al. (2020) proposed a unique feature in RISC32 – a processor 

with a partial reconfigurable microarchitecture. It can dynamically switch 

between multi-cycle microarchitecture execution (ME) (Figure 3.15) and 

pipeline microarchitecture execution (PE) (Figure 3.16) to reduce the energy 

consumption. PE can achieve higher throughput at the expense of more 
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hardware resources (pipeline registers, forwarding circuits, branch predictor, 

interlock controller, etc.). On the other hand, ME has lower throughput, but it 

requires lesser hardware resources. In CPU-bound tasks, PE has a better 

energy efficiency because the designated tasks can be completed within a 

short time. However, for IO-bound tasks, the CPU is spending most of its time 

idle, waiting for the IO instructions to complete. Since ME consumes less 

power compared to PE, it is more advantageous to use ME in such a scenario. 

Note that for IO-bound task, both ME and PE take the same amount of time to 

complete, because the bottleneck lies in communication instead of 

computation. 

 
Figure 3.17: Static and reconfigurable region in RISC32’s core (Kiat et al., 

2020). 

The PR feature on FPGA allows designers to reconfigure partial region 

of the FPGA during operation. In RISC32, PR only takes place within the 

CPU core, which is aimed to switch between PE and ME. Referring to Figure 

3.17, the CPU core is divided into two regions: static and reconfigurable. The 

functional units that are required for both PE and ME are placed in the static 
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region, where no PR can take place. On the other hand, the reconfigurable 

region is reserved for the remaining hardware portion that is needed to form 

the PE or ME data path. 

To facilitate the reconfiguration of microarchitecture from the program, 

a new instruction TMA was introduced in RISC32 (Kiat et al., 2020). Once the 

TMA instruction is detected, the processor execution stalls, and the PR 

controller starts the PR process on the reconfigurable region. First, the 

microarchitecture that is currently being used (i.e., PE or ME) is identified. 

Next, the PR controller retrieves the partial bit-stream of the targeted 

microarchitecture from the flash memory. For instance, if the current 

microarchitecture is ME, then the PE (target) will be loaded, and vice versa. 

The partial bit-stream is used to program the reconfigurable region through 

ICAP on the Artix-7 FPGA chip. After the configuration is completed by the 

PR controller, the processor continues to execute the instruction that was 

stalled previously, with the newly configured microarchitecture. The time 

taken for a PR operation to complete is based on the system frequency and the 

size of the partial bit-stream. As reported by Kiat et al. (2020), it takes 44 ms 

for a 20 MHz system frequency with 175,624 bytes of partial bit-stream. 

3.5  Xilinx Vivado Synthesis Results 

Table 3.13 shows that only a very small amount of extra FPGA 

resource is required in RISC32-LP as compared to RISC32 after the 

implementation of PMU in RISC32-LP. 
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Table 3.13: FPGA resource difference between RISC32 and RISC32-LP. 

FPGA resources RISC32 RISC32-LP Extra resource 

used by 

RISC32-LP 

Multi-

cycle 

Pipelin

e 

Multi-

cycle 

Pipelin

e 

Multi-

cycle 

Pipelin

e 
LUT 63,40

0 

5,181 

(8.37%) 

5,849 

(9.23%) 

5,631 

(8.88%) 

6,264 

(9.88%) 

450 

(0.51%) 

415 

(0.65%) 

LUTRAM 19,00

0 

127 

(0.67%) 

311 

(1.64%) 

127 

(0.67%) 

311 

(1.64%) 

0 (0%) 0 (0%) 

FF 12,68

00 

2,258 

(1.78%) 

2,545 

(2.01%) 

2,782 

(2.19%) 

3,037 

(2.4%) 

524 

(0.41%) 

492 

(0.39%) 

BRAM 135 3.5 

(2.59%) 

3.5 

(2.59%) 

3.5 

(2.59%) 

3.5 

(2.59%) 

0 (0%) 0 (0%) 

BUFG 32 2 (6.25%) 2 

(6.25%) 

5 

(15.63%) 

5 

(15.63%) 

3 

(9.38%) 

3 

(9.38%) 

BUFHCE 96 0 (0%) 0 (0%) 6 

(6.25%) 

6 

(6.25%) 

6 

(6.25%) 

6 

(6.25%) 

SLICE 15,85

0 

1,746 

(11.02%) 

1,997 

(12.60%) 

1,876 

(11.84%) 

2,072 

(13.07%) 

130 

(0.82%) 

75 

(0.47%) 
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CHAPTER 4  

 

ENERGY REDUCTION PROGRAM ANALYZER 

In the previous chapter, DVFS and CG techniques were developed and 

combined with the microarchitectural reconfiguration technique introduced by 

Kiat et al (2020) to further reduce the energy consumption. However, the best 

configuration (f–v pair and PE/ME) that achieves the maximum energy 

reduction largely depends on the user program. Since IoT technologies are 

applied in various fields with diverse characteristics, the user program pattern 

in IoT sensor nodes differs in many ways. For example, some IoT applications 

have specific time constraints to be fulfilled. While achieving low energy 

consumption in a sensor node is important, the time constraints should not be 

overlooked, because doing so may affect the response time of the entire IoT 

system.  

To determine the best energy-saving configuration automatically, a 

software tool, named ERPA, was developed. In particular, the ERPA analyzes 

the given user program being executed on RISC32-LP and selects the best 

locations in the program to insert the instructions that execute the DVFS (i.e., 

SB) or the best microarchitecture reconfiguration (i.e., the TMA). 

 The user program for RISC32-LP is assumed to be developed in 

assembly code. If high-level language (e.g., C) is used to develop the 

programs (See, 2017), the code must be compiled into assembly code before it 

is analyzed by the ERPA. ERPA analysis flow is illustrated in Figure 4.1. It is 

grouped into seven steps, which will be explained in more detail later. 
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Step 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Flow of ERPA analysis. 

 

To better illustrate how the ERPA works, an example user program 

shown in Table 4.1 is used for explanation. This program executes an infinite 

while loop (often referred to as a superloop), wherein ADC sampling and 

conversion can be implemented through a polling- or interrupt-based method. 

The corresponding assembly code is shown in Table 4.2. The steps to carry 

out program analysis by the ERPA tool are described in detail in the 

subsequent section.  

 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 
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Table 4.1 Pseudo code of the example user program. 

 

Table 4.2 Assembly code of the example user program. 

 

 

 

 

 

 

 

 

 

while true do 
 data = ADC.getData(); 
 temp = ConvertADC(data); 
 idle (250000); 
end 
function ConvertADC(value) is 
 return value*100/4096; 
end 

//Start of while loop 
loop:  lw $s1, [adc] 
  sw $s1, [data] 
  jal conv 
  sw $v0, [temp] 
  mtc0 $zero, $9 
  li $t2, 1250 
poll:  mfc0 $t1, $9 
  sub $t3, $t2, $t1 
  bgtz $t3, poll 
  j superloop 
//Start of ConvertADC() function 
conv:  li $t1, 100 
  lw $a1, [data] 
  mult $a1, $t1 
  mflo $t2 
  srl $v0, $t2, 12 
  jr $ra 
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Table 4.3 lists all the important variables used in this section. 

Table 4.3 Description for symbols used in this chapter. 

Variable Definition  

TTIMER_INT Timer interrupt value in clock cycle count (measured at 

the maximum frequency, 40 MHz) 

TNODE_TOTAL Total clock cycle count (from all nodes) required to 

complete a superloop 

TIDLE (TTIMER_INT – TNODE_TOTAL) * 25 μs. The available 

program slack for a timer interrupt-based program, 

converted from clock cycle count to microseconds (μs). 

TEXE TNODE_TOTAL * 25 μs (period of the 40 MHz frequency); 

program execution time (in μs) derived from 

TNODE_TOTAL. 

QNODE Queue that stores the nodes’ properties based on the 

program execution flow; nodes in the loop are unrolled 

before storing. 

TIO_acc Total clock cycle count accumulated for consecutive IO 

nodes, starting from a CPU node until node_lp_config 

is detected. 

QTIO_acc Queue that stores TIO_acc at each check point. 

node_lp_config Potential node in which to insert low-power 

instructions. 

Qnode_lp_config Queue that stores the indices that correspond to 

node_lp_config. 

ndata_dep_acc Number of data dependencies accumulated for 

consecutive IO nodes, starting from a CPU node until 

node_lp_config is detected. 

Qndata_dep_acc Queue that stores ndata_dep_acc of each check point. 

To_DVFS (μs) Overhead (in μs) when changing operating frequency 

and voltage. 

To_PR (μs) Overhead (in μs) for the PR operation. 

 

4.1 Step 1: Program Segmentation Process 

The first step carried out by the ERPA is to segment and label the 

given program (which includes the user program, the exception handler, and 

the interrupt service routine) into nodes based on jump instructions, branch 

instructions, or a new label, before the program flow changes. An example is 

illustrated in Figure 4.2. Each instruction in a node is executed before 

branching to another node. This way, the program flow can be systematically 

predicted by the ERPA. In this step, each node is named based on an index 
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and the corresponding label. For example, in Figure 4.2, “loop” is split into 

two segments due to the jump instruction (jal), where the first node is named 

0_loop and the second node is named 1_loop. 

  
Figure 4.2 Assembly code of the example user program and the result 

after segmentation process. 

 

4.2 Step 2: Link the Nodes 

After the assembly code is segmented into nodes, they are linked according to 

the program flow. A cyclic node graph will be formed at the end of this step as 

shown in Figure 4.3. 
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Figure 4.3 Example of the cyclic node graph created. 

4.3 Step 3: Simulate Program for Clock Cycle Calculation. 

After the node graph is generated, the ERPA simulates the program 

and records the clock cycle counts that each node is needed to execute, 

including cache-miss and IO-bound tasks. During this simulation, the 

sequence for node execution is stored in the node queue (QNODE). The 

simulation ends when every node in the graph is simulated. 

Figure 4.4 shows an example of the QNODE content, the clock cycle 

count for each node, and the total clock cycle count for program execution. 

This information is necessary to determine a suitable clock frequency and the 

microarchitecture to be used for each node.  

 
Figure 4.4 QNODE content based on the example user program. 
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4.4 Step 4: Node classification 

Next, the ERPA classifies the nodes into IO nodes (for IO-bound tasks) 

or CPU nodes (for CPU-bound tasks). This classification process is needed to 

determine the suitable clock frequency and the microarchitecture to be used to 

maximize energy reduction. The classification result of the example user 

program is shown in Figure 4.5. A CPU node is expected to have a longer 

execution time when the clock frequency is reduced or when the 

microarchitecture switches from PE to ME. On the other hand, the execution 

time for an IO node is not affected in this situation. At this step, any 

conditional branching loops are identified, wherein the loop can be 

constructed from one or more nodes. The instructions of the identified 

branching loops are analyzed and classified into either IO or CPU nodes. In 

Figure 4.5, the circled 0-poll node is the only branching loop to be identified, 

so only the instructions of this particular node are analyzed. The node 

classification process is described below. 

1. Identify the exit-condition register of the branching loop. The last 

instruction will always be the conditional branching instruction. 

Therefore, $t3 from bgtz $t3,poll are labelled as the exit condition 

register. 

2. Identify the registers that the exit-condition register ($t3) depends on. 

In our example shown in Figure 4.2, it is the sub $t3, $t2, $t1. Since 

the target of this instruction is the exit condition register ($t3), $t1 and 

$t2 are labelled as dependent registers. Continue this process to trace 

the dependent register(s) until the first instruction of the loop has been 

reached. In this example, the operation stops at mcf0 $t1, $9, where $t1 
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depends on the value of $t9, so the dependent register $t1 is replaced 

with $9. The operation concludes that the dependent registers for $t3 

are $t2 and $9. 

3. Compare exit-condition and dependent registers. If the exit-condition 

register differs from any of the identified dependent registers, then the 

node is an IO node; otherwise, it is classified as a CPU node. 

 
Figure 4.5 Classification of nodes in the cyclic graph. 

 

4.5 Step 5: Identify Program Type  

In this step, the program pattern is identified as either timer interrupt or 

polling-based, which can be checked from the timer interrupt enable (IE) flag. 

If the IE flag is set, then the program is identified as timer-interrupt-based; 

otherwise, it is polling-based. For a timer-interrupt program, every superloop 

(the infinite loop shown in Table 4.2) must be completed within the timer 

interrupt value (TTIMER_INT). This parameter is useful for indicating when a 

new superloop will begin execution. We assume that TTIMER_INT is invariably 

larger than the total number of clock cycles needed to complete a superloop 
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(TNODE_TOTAL). However, for a polling-based program, there will be no time 

constraint on completing a superloop. 

 

4.6 Step 6: Search for a Potential Node to Insert Low-Power 

Instructions. 

 
Figure 4.6 Node arrangements in QNODE based on the example user 

program (timer-interrupt-based). 

Finding a potential node for inserting low-power instructions (SB or 

TMA) is only done once in a superloop. If a node is in a loop and is chosen for 

low-power instructions insertion, then the problem of repeatedly executing the 

low-power instruction will arise due to the looping. Figure 4.6 (a) illustrates 

this problem. Consider the case if we execute the program from the beginning 

until point Y at 40 MHz and switch to 20 MHz thereafter. Then, 0_poll will be 

selected for insertion of the SB (20 MHz) instruction. However, in reality, the 

program will start using 20 MHz at point X, since that is the starting point for 

0_poll loop execution, as shown in Figure 4.6 (b). This will cause the 

superloop program execution time to increase and exceed TTIMER_INT. 

Therefore 1_poll instead of 0_poll is selected for inserting SB (20 MHz) as 

shown in Figure 4.6 (c). Even though the energy savings are not as good as the 
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ideal case in Figure 4.6 (a), the program will be completed within the 

TTIMER_INT constraint, which will ensure timing correctness in program 

execution. The potential node identified through this process is marked as 

node_lp_config (low-power configurable node). Note that not all nodes 

marked as node_lp_config will have low-power instructions inserted. The 

selection will be based on the time overhead from To_DVFS and To_PR. 

 

4.7 Step 7: Insert Low-Power Instructions based on the Program Type 

In this phase, the best f–v pair for a particular node is selected to 

optimize the energy performance. At the same time, the ERPA determines if it 

is worth inserting the TMA instruction for a further energy reduction from 

changing the microarchitecture. 

 

4.7.1  Polling-based Program 

Table 4.4 Pseudo algorithm used by ERPA to insert DVFS and TMA 

instructions in a polling-based program. 

Function used: 

get_clock_cnt() – Return the clock count needed to complete a node 

execution. 

get_data_dep() – Get ndata_dep_acc from the nodes. 

set_freq(X) – Insert the SB instruction into the corresponding node. 

Parameter X is the operation frequency to be set. 

insert_TMA() – Insert TMA instruction into the corresponding node. 

push(Y) – Push parameter Y as the last element in the queue. 

at(Z) – Get the element at index Z in a queue. 

is_node_lp_config() – Return true if a node is node_lp_config else return 

false. 

τ = threshold for microarchitecture switch (PE to ME) based on 

ndata_dep_acc. 

index_lp = selected node from Qindex_pl_config for low-power instruction 

insertion. 

size_QNODE = size of QNODE 

1 

2 

3 

4 

5 

6 

for n = size_QNODE-1, size_ QNODE -2, …, 0 do 

 If QNODE.at(n) is CPU then 

  TIO_acc = 0; 

  ndata_dep_acc = 0; 

 else 

  TIO_acc += QNODE.at(n).get_clock_cnt(); 
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7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

  ndata_dep_acc += QNODE.at(n).get_data_dep(); 

 end 

 if (QNODE.at(n).is_node_lp_config()) then 

  QTIO_acc.push(TIO_acc); 

  Qindex_lp_config.push(n); 

  Qndata_dep_acc.push(ndata_dep_acc); 

 end 

end 

size_QTIO_acc = size of QTIO_acc 

for n = 0, 1, 2, …, size_QTIO_acc-1 do 

 if QTIO_acc.at(n) > To_DVFS then 

  QNODE.at(index_lp).set_freq(20); 

  if (QTIO_acc.at(n) > To_DVFS + To_PR && 

Qndata_dep_acc.at(n) >τthen 

   QNODE.at(index_lp).insert_TMA(); 

  end 

 else 

  QNODE.at(index_lp).set_freq(40); 

 end 

end 

 

For a polling-based program, a CPU node always executes at the 

highest performance (at 40MHz in PE mode) to minimize the program 

execution time. However, an IO node executes at the lowest operating 

frequency when the time spent by consecutive IO nodes is more than To_DVFS; 

otherwise, it remains at 40 MHz. Referring to lines 1–8 in Table 4.4, the 

QNODE is scanned from the last node to the first. If an IO node is detected, the 

clock cycle counts (TIO_acc) of the consecutive IO nodes are accumulated. If a 

CPU node is detected, TIO_acc is reset to zero, because the node does not 

contribute to the clock cycle count accumulation of consecutive IO nodes. 

Next, in lines 9–13, when a node_lp_config node is detected (whether IO or 

CPU), the current TIO_acc and node n are saved into QTIO_acc and Qindex_lp_config, 

respectively. This process continues until all nodes in QNODE are checked. 

Subsequently, in lines 16–26 of Table 4.4, each element in QTIO_acc is 

compared with the configuration time for DVFS (To_DVFS). The element with a 
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value larger than To_DVFS is obtained, so that the corresponding node can be 

identified and switched to the lowest frequency (20 MHz). This is done to 

ensure that the time spent in IO nodes (TIO_acc) is longer than the frequency 

configuration time (To_DVFS), so that it is worth executing the DVFS operation. 

At the same time, the IO nodes are configured to ME via the TMA 

instruction for further energy reduction, provided the following condition is 

met: the accumulated data dependency count (ndata_dep_acc) of the IO nodes 

is larger than the defined threshold (τ). In our experiment, we found that, 

during the IO transfer, when the forwarding circuitry (in PE mode) is actively 

resolving data dependencies, relatively high power is consumed. Hence, the 

data dependency occurrence or count is an important factor for determining 

microarchitecture reconfigurations between PE and ME. Kiat et al. proved that 

the microarchitecture PR process managed to save energy when the program’s 

data size was at least 512 bytes or more (Kiat et al, 2020). Hence, to ensure 

that the PR approach saves energy, τ is obtained by calculating the 

ndata_dep_acc of the test program executed in the ME microarchitecture with 

a 512-byte data size. In other words, if the energy reduction in ME mode is 

more than the energy overhead for PR, then ME is selected for the IO nodes; 

otherwise, PE is used. The accumulated data dependency value 

(ndata_dep_acc) is calculated in the same manner as TIO_acc; ndata_dep_acc is 

stored in Qndata_dep_acc when node_lp_config is detected (for IO and CPU 

nodes). In lines 18–21 of Table 4.4, the ERPA checks each element in 

Qndata_dep_acc and QTIO_acc. If the n-th element in QTIO_acc is greater than To_DVFS 

+ To_PR and the n-th element in Qndata_dep_acc is greater than the τ defined earlier, 

then TMA will be inserted into the corresponding node_lp_config node so that 
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it operates in ME. This ends the insertion of low-power instructions for 

polling-based programs. 

4.7.2  Timer-Interrupt-based Program 

Table 4.5 Pseudo algorithm used by ERPA to insert DVFS and TMA 

instructions in an interrupt-based program. 

Function used: 

get_clock_cnt() – Return the clock count needed to complete a node 

execution. 

get_data_dep() – Get ndata_dep_acc from the nodes. 

set_freq(X) – Insert the SB instruction into the corresponding node. 

Parameter X is the operation frequency to be set. 

insert_TMA() – Insert TMA instruction into the corresponding node. 

push(Y) – Push parameter Y as the last element in the queue. 

at(Z) – Get the element at index Z in a queue. 

is_node_lp_config() – Return true if a node is node_lp_config else return 

false. 

getExtraTime(X) – Return additional node execution time when the 

operating frequency is lowered from 40MHz to X. 

getExtraCycleTMA() – Return additional clock cycles needed for the node 

to complete execution in ME compared to PE. 

τ = threshold for microarchitecture switch (PE to ME) based on 

ndata_dep_acc. 

index_lp = selected node from Qindex_pl_config for low-power instruction 

insertion. 

size_QNODE = size of QNODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

for n = size_QNODE-1, size_QNODE-2, …, 0 do 

    if QNODE.at(n).is_node_lp_config() then 

        if Tidle > QNODE.at(n).getExtraTime(20) + To_DVFS then 

            QNODE.at(n).set_freq(20); f = 20; 

        else 

            if Tidle > QNODE.at(n).getExtraTime(24) + To_DVFS then 

                QNODE.at(n).set_freq(24); f = 24; 

            else 

                if Tidle > QNODE.at(n).getExtraTime(28) + To_DVFS then 

                    QNODE.at(n).set_freq(28); f = 28; 

                else 

                    if Tidle > QNODE.at(n).getExtraTime(32) + To_DVFS then 

                        QNODE.at(n).set_freq(32); f = 32; 

                    else 

                        if Tidle > QNODE.at(n).getExtraTime(36) + To_DVFS then 

                            QNODE.at(n).set_freq(36); f = 36; 

                        else 

                            QNODE.at(n).set_freq(40); f = 40; 

                        end 

                    end 

                end 

            end 
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24 
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27 
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29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

    end 

    Qindex_lp_config.push(n); 

    Tidle = Tidle – QNODE.at(n).getExtraTime(f); 

    end 

end 

if Tidle > To_PR*2 then 

Tidle -= To_PR*2; 

for n = size_0-1, …, 2, 1, 0 do 

        if Tidle > QNODE.at(n).getExtraCycleTMA() then 

            Tidle -=QNODE.at(n).getExtraCycleTMA(); 

        else 

            break; 

        end 

        nata_dep_acc += QNODE.at(n).get_data_dep(); 

        if QNODE.at(n).is_node_lp_config() then 

            TMA_node_1 = n; 

        end 

end 

TMA_node_0 = size_0 – 1; 

end 

if ndata_dep_acc > τ then 

QNODE.at(TMA_node_0).insert_TMA(); 

QNODE.at(TMA_node_1).insert_TMA(); 

End 

 

For interrupt-based programs, the ERPA attempts to reduce the 

operating frequency of each node in QNODE. In lines 1–27 of Table 4.5, the 

process starts from the last node in QNODE, which is marked as node_lp_config. 

When the operating frequency is reduced, TEXE and TIDLE will be updated 

according to the node type. For CPU nodes, node execution time will increase 

(due to lowering of the operating frequency), which, in turn, stretches the 

overall TEXE (and reduces TIDLE). In contrast, when the operating frequency is 

reduced, this will not affect the IO nodes’ execution time, since the latter 

depend on the IO module baud rate. The algorithm then continues with next-

to-last node_lp_config until all nodes are checked or TIDLE < 0. 

Next, in lines 28–43, if TIDLE > To_PR*2 after the frequency is tuned, 

then the ERPA will insert two TMAs at the correct locations to toggle the 
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microarchitecture back and forth. The accumulated data dependencies 

(ndata_dep_acc) between the two TMA locations need to be greater than τ. 

The idea is to use up the slack, TIDLE, as much as possible. Like frequency 

tuning, the process starts with the last node_lp_config node until all nodes in 

QNODE are processed or TIDLE < 0. Note that we only need TMAs in the 

following cases: 

1. From ME to PE when executing CPU nodes (corresponds to data 

sampling and processing tasks). 

2. From PE to ME when executing IO nodes (corresponds to data 

transmission). 

4.8  Example of EFRA on tuning frequency to optimal value.   

 
Figure 4.7 ERFA steps on insert SB instruction for DVFS feature in 

RISC32-LP. 
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Figure 4.7 shows how the ERFA inserts SB instructions that control the DVFS 

feature in RISC32-LP. The same example user program is used to explain the 

steps.  

1. The ERFA identifies the idle time, TIDLE, which is located after the user 

program executed with 40 MHz clock frequency. 

2. The ERFA utilizes the TIDLE by reducing the operating frequency of 

the last node_lp_config (i.e., the “1_poll”). ERFA pre-sets the 

frequency to be as low as possible, which is 20 MHz. TIDLE is reduced 

by the extra time needed by “1_poll” to execute at 20 MHz, but there is 

still TIDLE available. 

3. ERFA continues to search for node_lp_config (starting from the last 

node). “1_loop” is found to be the next node_lp_config. Similar to step 

2, the “1_loop” is pre-set to be executed at 20 MHz, and TIDLE further 

reduces accordingly. 

4. ERFA repeats step 3 on the “0_conv” node. 

5. ERFA repeats step 3 on “0_loop” node, but at this step, the remaining 

TIDLE is insufficient for “0_loop” to run at the frequency 28 MHz. 

(TIDLE < 0_loop.getExtraTime(28) + To_DVFS, refer to Table 4.5).  

6. Due to that, “0_loop” is pre-set to execute at 32 MHz, which is the 

operation frequency that is a step higher than 28 MHz (refer to Table 

3.6). 

7. After all the nodes have been searched, ERFA will insert SB (32 MHz) 

and SB (20 MHz) instructions at “0_loop” and “0_conv” nodes, 

respectively, to tune the operation frequency. There is no need to insert 
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extra SB instruction at “1_loop” and “1_poll” since they are 

maintained as 20 MHz after “0_conv” has been tuned to 20 MHz. 
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CHAPTER 5  

 

ENERGY REDUCTION EXPERIMENT AND RESULT 

The energy measurement is performed on Nexys 4 DDR board with 

Xilinx Artix-7 XC7A100T FPGA chip, 4860 Kbits BRAM, on-chip ADC, and 

16 MB serial flash memory.  

FPGA

Oscilloscope

Shunt Resistor
Rshunt

Potentiometer 
+ Voltage 
Regulator

Vccint

Vshunt_resistor_amp

Amplifier

 
Figure 5.1 Hardware setup for energy measurement during the 

experiment.  

To measure the current supplied to the FPGA chip, a 0.01 Ohm shunt 

resistor is connected serially in between the external voltage regulator and 

Xilinx FPGA chip as shown in Figure 5.1. An amplifier is used to amplify 

voltage of the 0.01 Ohm resistor, and the output of amplifier, Vshunt_resistor_amp, 

is recorded. The voltage supply, Vccint and Vshunt_resistor_amp, are monitored and 

recorded during the experiments by using an oscilloscope. Since the connected 

shut resistor has the same current flow as FPGA chip, the current flow through 

the FPGA, Iccint, can be obtained by using formula (1). With the obtained 
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current value, Iccint, the energy consumed by RISC32-LP, ERISC32-LP, during the 

experiment can be calculated by using formula (2). 

 
 

 
Two types of test program (polling- and interrupt-based) were 

developed based on typical data transmit operations in IoT sensor nodes. Both 

programs carry out the same tasks, which are described as follows: 

1) Data collection: Read N bytes of data from ADC. 

2) Data processing: Encrypt N bytes of data received using AES-128. 

3) Data transmission: Send out the encrypted data through UART. 

The N-byte data is read from ADC, where N ranges from 64 to 4096. The N 

cannot be more than 4096 due to the limited 8196-byte RAM memory in 

RISC32-LP. The RAM is used to store other program’s variables besides the 

N-byte data. Next, the N-byte data is encrypted by using AES-128 algorithm. 

Finally, the encrypted data is sent out via UART. These three tasks are 

repeated for 5 minutes, and the total energy consumed during this duration is 

measured. In practical IoT applications, the sensor node usually accumulates a 

large amount of data (larger than 1 KB) before transmitting the same to a 

gateway device. This is done to reduce the energy consumption of the sensor 

node by avoiding the activation of the IO (which connects to the wireless 

external module) frequently. For example, sensor nodes in a sensor network 

take turn to transmit data when they are utilizing the multi-hop communication 

(Liew et al., 2018) mechanism. In this situation, sensor nodes accumulate the 

data and store them in local memory (RAM) while waiting for their turn to 

transmit. These experiments are set up according to this kind of IoT 
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application settings. The data collection and AES-128 encryption involved 

large number of arithmetic and logic operations, while data transmission 

involves IO communication (UART) and memory transfer operations. These 

program tasks are grouped into two categories: 

1) Computationally intensive tasks (CPU-bound tasks): data collection and 

encryption. 

2) Computationally less-intensive tasks (IO-bound task): data transmission. 

For computationally intensive tasks, the high-performance setting (40 MHz 

operating frequency and PE) is used to reduce the energy consumption by 

completing the tasks faster. On the other hand, for computationally less-

intensive tasks (which do not involve many logical and arithmetic operations) 

low-performance setting (20 MHz operating frequency and ME) is used to 

achieve low power consumption. However, in some situations, the low-

performance setting will not be used when the overhead of PR and DVFS is 

greater than the energy it can save. Hence, to achieve the optimal energy 

efficiency in the dynamic scenario discussed above, the ERPA is developed to 

assist in determining frequency values and the microarchitecture to be used 

throughout the program execution.  

We use two types of test programs (polling- and interrupt-based) to 

monitor the transmit buffer in UART module. 

The first type of test program used polling-based method to monitor 

the UART’s transmit buffers, while the second type of program uses interrupt-

based method for the same. In polling test program, the core of RISC32-LP 

always checks the condition of UART’s transmit buffers during IO 

communication operation. UART needs to send all 4-byte data and make sure 
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that the transmit buffer is empty before CPU writes another 4-byte of 

encrypted data. However, in interrupt test program, the CPU core is idle after 

completing the data collection and processing. The CPU core only writes data 

into UART’s transmit buffers when the UART module interrupt takes place. 

Owing to this difference, the energy consumption of these two programs 

varies greatly, which we will discuss in the next section, mainly due to the 

operating status of CPU core. 

To verify that the proposed ERPA can achieve the most energy savings 

compared to other methods, both types of programs were executed under six 

different test cases. These cases measured the program’s energy savings from 

using CG, DVFS, PR, a combination of all low-power techniques and ERPA 

on RISC32-LP. Each test case is described below:  

1. TSTMAX: Execute the test programs on RISC32 without any low-power 

techniques. 

2. TSTCG: Execute the test programs on RISC32-LP with CG enabled 

throughout the experiment but with no extra low-power techniques 

used. 

3. TSTDVFS: Execute the test programs on RISC32-LP with only the 

DVFS instruction, SB inserted manually. CPU nodes ran at 40 MHz, 

and IO nodes ran at 20 MHz. 

4. TSTPR: Execute the test programs on RISC32-LP, but only PR 

instruction TMA was inserted manually. CPU nodes ran under PE, and 

IO nodes ran under ME. 
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5. TSTCOMB: Execute the test programs on RISC32-LP while CG is 

enabled and with DVFS and PR instructions inserted manually. CPU 

nodes ran under PE at 40 MHz, and IO nodes ran under ME at 20MHz. 

6. TSTERPA: The test programs were analyzed and modified by ERPA to 

achieve low power. 

TSTMAX represents the test programs executed on RISC32 without any 

low-power techniques applied, which is the base case for comparison. TSTCG, 

TSTDVFS, and TSTPR represent the test programs executed on RISC32-LP with 

only a single low-power technique applied (CG, DVFS, or PR). TSTCOMB 

represents the test programs executed on RISC32-LP with all the developed 

low-power techniques (CG, DVFS, and PR) applied. However, TSTERPA 

represents the test programs executed on RISC32-LP with all developed low-

power techniques applied but controlled by the ERPA according to the test 

programs’ behavior. Table 5.1 summarizes the description of each test case. 

Table 5.1 Short description for each test cases. 

Test Name Description 

TSTMAX 

(No low-power 

technique applied) 

Microarchitecture: Pipeline 

Clock frequency: 40 MHz 

TSTCG Microarchitecture: Pipeline with CG feature 

Clock frequency: 40 MHz 

TSTDVFS 

(manual assign) 

Micro-architecture: Pipeline 

Clock frequency: 40 MHz (CPU-bound), 20MHz (IO-bound) 

TSTPRR 

(manual assign) 

Microarchitecture: Pipeline (CPU-bound), multi-cycle (IO-bound) 

Clock frequency: 40 MHz 

TSTCOMB 

(manual assign) 

Microarchitecture: Pipeline (CPU-bound), multi-cycle (IO-bound) 

with CG feature 

Clock frequency: 40 MHz (CPU-bound), 20 MHz (IO-bound) 

TSTERFA Microarchitecture with CG feature and clock frequency assign by 

ERFA. 
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5.1 Polling-based Test Program 

5.1.1 Program Behavior 

Data transmission
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Figure 5.2 Power consumption of polling test program (TSTMAX) with 

256-byte data size. 

The polling-based test program samples and encrypts N bytes of data, then 

transmits all the encrypted data through UART. Figure 5.2 shows the power 

consumption of the polling test program for a 256-byte data transfer. 

 

5.1.2  Result based on Polling Test Program 

Tables 5.2 and 5.3 show the result for all the test cases. Figures 5.3 and 5.4 are 

the graphs plotted based on the results.  

Table 5.2 Energy consumption of polling test program. 
Data Size 

(Bytes) 

Energy Consumption (mJ) 

TSTMAX TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA 

64 7.06 6.95 19.70 4.34 7.52 4.26 

128 14.90 14.53 16.54 8.98 11.51 8.72 

256 30.07 29.44 30.16 18.02 19.54 17.63 

512 60.15 58.41 56.89 35.85 35.64 35.94 

1024 118.22 114.85 111.07 70.57 65.05 68.51 

2048 249.40 243.67 216.65 149.66 134.36 135.12 

4096 498.84 487.83 437.63 298.27 263.84 265.03 
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Table 5.3 Energy saving of polling test program. 
Data 

Size 
(Bytes) 

Energy Saving (%) 

TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA 

vs TSTMAX 

64 1.61 −178.87 38.59 −6.49 39.65 

128 2.47 −11.06 39.73 22.74 41.47 

256 2.08 −0.33 40.07 35.31 41.36 

512 2.90 5.43 40.40 40.74 40.24 

1024 2.85 6.04 40.31 44.97 42.05 

2048 2.30 13.13 39.99 46.13 45.82 

4096 2.21 12.27 40.21 47.11 46.87 

 

Data 

Size 

(Bytes) 

Energy Saving (%) 

TSTCOMB vs TSTDVFS TSTERPA 

TSTCG TSTPR TSTDVFS vs TSTCOMB vs TSTDVFS vs TSTCOMB 

64 −8.23 61.81 −73.41 42.33 1.72 43.32 

128 20.78 30.44 −28.18 21.99 2.89 24.24 

256 33.94 35.52 −7.94 7.35 2.15 9.35 

512 38.97 37.34 0.57 −0.57 −0.27 −0.84 

1024 43.36 41.43 7.81 −8.47 2.92 −5.30 

2048 44.86 37.99 10.23 −11.39 9.71 −0.57 

4096 45.91 39.71 11.54 −13.05 11.14 −0.45 

 

 

Figure 5.3 Energy saving for (TSTPR vs TSTMAX) and (TSTCOMB vs 

TSTMAX). TSTPR did not achieve energy saving from 64-byte to 256-byte 

due to overhead. 

 TSTPR vs TSTMAX 

TSTCOMB vs TSTMAX 
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Figure 5.4 Energy saving for (TSTCG vs TSTMAX), (TSTDVFS vs TSTMAX), 

(TSTCOMB vs TSTMAX) and (TSTERPA vs TSTMAX). Energy saving in 

TSTCOMB is lower than TSTERPA due to PR overhead shown in Figure 5.3. 

In the column “TSTCG” of Table 5.2, it can be seen that CG can save 

up to 1.6% to 2.2%, which can be averaged out to 2% of energy consumption 

across different data sizes. Although CG manages to reduce unnecessary 

switching activities in RISC32-LP, the energy saving achieved is not 

significant. On the other hand, microarchitectural PR is only able to save 

energy when the data size is larger than 512 bytes. This implies that 

microarchitectural PR should be avoided for small data size, because the 

overhead caused by PR is more significant than the energy saving achieved, 

for the data size that is lower than 512 bytes. Despite this disadvantage, PR 

manages to reduce energy around 12% at a 4096-byte data size. DVFS 

(TSTDVFS) manages to reduce the energy consumption around 40% throughout 

the experiment, even for small data sizes, because the overhead of configuring 

DVFS is smaller than the energy saving achieved. 
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By combining all the low-power techniques (TSTCOMB), we can 

achieve 11.5% extra energy saving compared to using DVFS only at 4096-

byte data size. However, it consumes extra 42.33% energy compared to 

TSTDVFS at 64-byte due to the additional overhead introduced by PR as shown 

in Figure 5.3. This shows that even if we combine all the low-power 

techniques developed, we cannot achieve energy saving when executing tasks 

with smaller data size. Hence, we proposed to use the ERPA to control PR and 

DVFS based on the program behavior profile to get the best energy saving. 

TSTERPA can achieve better energy reduction compared to other TSTs, and 

comparable to TSTCOMB when the data size increases more than 512 bytes.  

5.2  Interrupt-based Test Program 

5.2.1  Program Behavior 

 
Figure 5.5 Power consumption of interrupt test program (TSTMAX) with 

256-byte data size 

Interrupt test program splits the N-byte data into 16 data segments. The 

first data segment (N/16 bytes) is sampled, encrypted and then transmitted 
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through UART. While transmitting the first data segment, the second data 

segment is sampled and encrypted in parallel. The second data segment will 

enter the transmission pipeline after the first data segment is transmitted. 

Referring to Figure 5.5, the following data segments are processed in the 

similar fashion until all data segments are completely transmitted. 

5.2.2  Result based on Interrupt Test Programs 

From the polling test program results, we observed that the 

microarchitectural PR will only start saving energy for data size of 256 bytes 

onward. Hence, in interrupt test program, the minimum data size was chosen 

to be 256 bytes. In the interrupt test program, the minimum data size of each 

data segment must be 16 bytes due to AES-128 encryption, which uses 16-

byte data as input. Hence the number of data segments selected is also 16, 

obtained by dividing minimum data size (256 bytes) with a data segment size 

(16 bytes). 

Referring to Table 5.4, CG manages to save energy up to 1.9%, which 

is a small number, similar to the result in Table 5.2 for polling-based program. 

Similarly, DVFS managed to save 41% of energy, which is close to the result 

in polling-based program.  

Table 5.4 Energy consumption of interrupt test program. 
Data Size 
(Bytes) 

Energy Consumption (mJ) 

TSTMAX TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA 

256 27.95 27.52 28.58 16.61 16.41 16.59 

512 42.46 41.07 42.89 24.95 24.48 24.83 

1024 69.62 68.77 69.48 40.98 39.31 40.12 

2048 126.21 124.07 125.50 74.06 71.11 72.79 

4096 235.58 231.03 233.15 138.44 132.20 132.33 

8192 461.05 452.53 458.75 270.98 259.70 260.71 

 

 

 

 

 

 

 



 

72 

 

Table 5.5 Energy saving of interrupt test program. 
Data 

Size 
(Bytes) 

Energy Saving (%) 

TSTCG TSTPR TSTDVFS TSTCOMB TSTERPA 

vs TSTMAX 

256 1.52 -2.27 40.59 41.27 40.64 

512 1.79 -1.02 41.23 42.35 41.53 

1024 1.23 0.21 41.14 43.54 42.37 

2048 1.69 0.57 41.32 43.65 42.32 

4096 1.93 1.03 41.23 43.88 43.83 

8192 1.85 0.50 41.23 43.67 43.45 

 

Data 

Size 

(byte) 

Energy Saving (%) 

TSTCOMB vs TSTDVFS TSTERPA 

TSTCG TSTPR TSTDVFS vs TSTCOMB vs TSTDVFS vs TSTCOMB 

256 40.37 42.58 1.15 -1.17 0.08 -1.08 

512 41.30 42.93 1.90 -1.93 0.50 -1.43 

1024 42.84 43.42 4.07 -4.24 2.09 -2.06 

2048 42.68 43.33 3.98 -4.14 1.71 -2..36 

4096 42.78 43.30 4.51 -4.72 4.41 -0.10 

8192 42.61 43.39 4.16 -4.34 3.79 -0.39 

 

During the UART transmission in polling-based program, the CPU 

core keeps monitoring the status of UART transmit buffer to see if it is empty 

and ready to be loaded with the next encrypted data. This process continues 

until all the encrypted data is transmitted. However, for interrupt-based 

program, the CPU core only loads the encrypted data to the UART transmit 

buffer when the UART module interrupt take place; otherwise, the CPU core 

remains idle. This causes the power consumption in UART transmission to 

differ greatly between polling- and interrupt-based programs, which appears as 

a shaded area under the power––time graph in Figure 5.5. Since the power 

consumption of UART transmission in interrupt-based program is already low, 

employing PR in this situation does not reduce much energy consumption. 

Therefore, the TSTPR has relatively worse energy saving in interrupt-based 

program compared to the polling-based program.  

TSTCOMB in interrupt-based program achieves energy saving up to 

4.51% compared to TSTDVFS due to the additional energy reduction from the 

CG and PR. TSTERPA achieves similar performance with TSTCOMB across all 

data sizes, which is expected. However, TSTERPA allows automatic 
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configuration of low-power techniques, which saves the program development 

time and effort 

5.3 Comparison with Existing Works. 

Table 5.6 Comparison with the existing low power techniques. 
Low-Power Techniques Single/Multiple 

Cores 

Energy reduction Complexity Energy 

Optimization Tool 

Sterpone et al. (2011) Single Low Low No 

Bsoul et al. (2015) Single/Multiple High Medium No 

Kiat et al. (2020) Single Medium Medium No 

Wu et al. (2014) Single High Medium No 

Nunez-Yanez et al. 

(2017) 

Multiple High High Yes 

Bramdalero (2019) Multiple High High Yes 

RISC-LP (this work) Single High Medium Yes 

 

Table 5.6 summarizes the existing works on FPGA-based low-power 

techniques. CG (Sterpone et al., 2011) can be used to reduce the dynamic 

power consumption, but its contribution is too small for FPGA-based systems. 

Similarly, the microarchitectural technique proposed in RISC32 (Kiat et al., 

2020) is also limited to dynamic energy reduction only. Power gating (Bsoul 

et al. 2015) can be used to reduce the energy consumption significantly, but 

this feature is not available in commercial FPGAs. Free razor technique 

proposed by Wu et al. (2014) requires a hardware module to collect the BER, 

which is too costly for IoT sensor nodes. Nunez-Yanez et al. (2017) proposed 

a similar approach that achieved a much higher energy saving with the help of 

an energy optimization tool. Note that all these techniques only concern a 

single low-power technique, which may not be the optimal solution for FPGA-

based IoT sensor nodes. In this work, the proposed RISC-LP combines the 

benefits of CG, PR, and DVFS to reduce the energy consumption significantly. 

Moreover, the proposed energy optimization tool (ERFA) ensures that the 

energy consumption in RISC32-LP is always optimized based on the given 

firmware. This is a feature not commonly found in other works. Compared to 
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Brandalero (2019), our solution is less complex, because we only target 

single-core processors. The energy optimization tool provided by previous 

researchers requires additional DBT hardware resources, but ERFA is a 

completely software-based solution that does not add energy consumption to 

the hardware system. On the other hand, this work combines a few low-power 

techniques, which can be a complementary solution for work done by 

Brandalero (2019) to reduce the energy consumption further. 
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CHAPTER 6  

 

CONCLUSION 

An FPGA-based soft-core IoT System on Chip (Soc), RISC32 has 

been enhanced in energy saving aspect by implementing known low-power 

techniques (DVFS and CG). These techniques are applicable to commercial 

FPGA are employed and combined with the PR technique presented on 

previous work done by Kiat et al. (2020).  

The energy saving of the combined techniques is measured and shown 

to have saved up to 47.11% (refer to Table 5.3, column TSTCOMB) and 43.88% 

(refer to Table 5.5, column TSTCOMB) on polling and interrupt test program 

respectively. However, combining techniques did not guarantee the highest 

energy saving all the time. The PR approach consumed extra (overhead) 

energy in the microarchitecture configuration. If the energy saving is not more 

than the overhead energy, the combined technique will be worse than the 

DVFS alone as seen in Table 5.3. To gain the benefits of the mentioned 

approaches, the ERPA is proposed to analyze the program and insert low-

power-technique-related instructions (SB and TMA) into the program in 

accordance with program’s behavior. ERPA classified the program’s tasks into 

CPU- and IO-bound tasks. While executing an IO-bound task, the RISC32-

LP’s core is being idle until the IO-bound tasks are completed. Hence, during 

execution of an IO task, the RISC32-LP’s core is switched to the lowest 

performance (lowest f–v pair and ME), whenever the predicted energy saving 

done by DVFS and PR must be more than the energy consumed (overhead 

energy) by DVFS and PR, respectively. As a result, a combination of RISC32-
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LP with ERPA-modified program will always achieve minimum energy 

consumption. 

Kiat et al. (2020) showed the PR technique only manages to reduce the 

dynamic energy. However, in our work, the overall energy (static and dynamic 

energy) reduction is obtained because DVFS has effect on both. From our 

result, DVFS (maximum: 41%) contributes most of the energy reduction 

compared to CG (maximum: 2.21%) and PR (maximum: 12%). This is 

because the static energy is the dominating component in our design 

implemented on the Artix-7 FPGA board, and DVFS is the only technique that 

manages to reduce static energy. 

Based on Table 3.13, the total FPGA resource usage for the pipeline 

structure is around 13.07%. Much of the FPGA areas are not used for logic 

circuit, thus consuming unnecessary static power. As the technology shrinks, 

leakage power also increases, making up a larger component of the total 

power consumption. This can be seen in Kolluri (2015), wherein at 28 nm, the 

Artix-7 power ratio of the static versus dynamic is around 1:1. This gives a 

hint that in our current design, the achieved static: dynamic ratio, which is 

2.5:1 as shown in Table 6.1, can be further improved. By using a much smaller 

size commercial reconfigurable FPGA to reduce the unused FPGA areas, the 

redundant static power consumption can be significantly reduced. This has a 

significant impact on the values in relation to the dynamic power consumption 

presented herein. Hence, the dynamic low-power techniques such as the PR 

and CG will have a larger role to play in FPGA-based designs and worth the 

time for further development. 

 



 

77 

 

Table 6.1: Static and dynamic energy breakdown of 256-byte interrupt-

based test program at 40 MHz. 

Static energy (mJ) 

Dynamic energy (mJ) 

198.06 

81.44 

Static-to-dynamic energy ratio 2.5:1 

 In future, there is a possibility for RISC32-LP implementing more 

instructions to support more features. Due to this, the information (e.g., clock 

cycle needed for new instructions to complete in RISC32-LP multi-cycle 

mode) is needed to update in ERPA to ensure ERPA functionality. To improve 

the ERPA, we could explore more task scheduling algorithm and implement a 

usable algorithm on ERPA to achieve better energy consumption.  
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