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ABSTRACT 

 

The urban rail transit networks worldwide are experiencing a growing 

disparity between supply and demand. In the context of Klang Valley, 

travelling with the urban rail transit network results in significant journey time 

between origin and destination (OD) compared to private vehicles due to the 

mature road network. The current Klang Valley urban rail transit network 

consists of radial lines, necessitating transfers at central business district (CBD) 

interchange stations and leading to bottleneck congestion. This study aims to 

assess the quantitative improvement of the forecasted network, which includes 

the introduction of LRT 3 and MRT Circle Line, in comparison to the existing 

operational network. Additionally, the compatibility of the available urban rail 

transit network infrastructure with passenger flow demand is evaluated. A 

comprehensive analysis was conducted with quantitative indicators including 

average shortest path length, betweenness centrality, closeness centrality, 

degree centrality, and clustering coefficient. Results indicate the important 

stations are predominantly located around CBD areas. The results indicate 

significant improvements in the forecasted network across various weighted 

analysis. The global average shortest path length decreased by 5.38% in 

unweighted network, while increased by 6.23% in time-weighted and 4.71% in 

distance-weighted network analysis. Similarly, global closeness centrality 

decreased by 5.16% in the unweighted network but increased by 6.06% and 

3.50% in the time-weighted and distance-weighted analyses, respectively. 

Betweenness centrality showed overall increases of 16.05% (unweighted), 

17.89% (time-weighted), and 18.75% (distance-weighted). Global degree 

centrality shows 0.83% increment while significant decrease of 18.53% was 

observed in global clustering coefficient. Strong regression values of 

compatibility analysis between network infrastructure and passenger flow 

based on average shortest path length and closeness centrality, with regression 

values ranging from 63.49% to 78.97%, while betweenness centrality shows 

lower regression ranging from 17.58% to 29.61%. The forecasted network 

demonstrates enhanced connectivity and reduced significance of individual 

stations with the additional shorter routes between OD pairs, effectively 

addressing congestion and long journey times.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

With the acceleration of urbanisation and population growth, urban rail transit 

has been widely adopted in many countries, given its efficiency and 

effectiveness in reducing traffic congestion (Huang et al., 2016). Urban rail 

transit is a general term to describe the various types of passenger-carrying rail 

systems that primarily operate around urban and suburban areas. It provides an 

alternative transportation mode for commuters travelling back and forth 

between their origin and destination (OD) on daily basis. Many of the densely 

populated major cities experienced extreme traffic congestion, with the rapid 

increment of population moving to urban areas for job opportunities, the 

traditional mode of transportation where commuters rely on private vehicles 

and low-capacity buses that can only carry limited number of passengers at the 

same time is just not sustainable. The number of vehicles on the road increases 

with the population growth which leads to a much worsening traffic 

congestion situation. 

 Urban rail transit is a rail based, fast, reliable, high-capacity, and 

energy efficient transportation mode that operates on dedicated tracks, capable 

of mobilising high volume of passengers from one point to another. This can 

reduce the number of vehicles on the road, thus alleviating the traffic 

congestion in the city centre. These independent transit lines interconnect with 

one another, connecting multiple important areas of a city, forming a complex 

urban rail transit network with high connectivity. 

 Rathbone (2023) agreed that owning a private vehicle is somehow a 

necessity rather than a luxury in some cities due to the availability and 

efficiency of a public transportation system. A highly car-dependent cities 

promotes horizontal growth and endless road infrastructure expansion, and 

expressway is needed to solve traffic congestion, which is not a viable option 

for a city with scarce land resources (Price, 2017). Countries with limited 

energy reserves limit their dependency on fuel imports by reducing inefficient 

private vehicle usage and focusing on the development of energy-efficient 
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urban rail transit network. A well-designed network with suitable 

implementation of the network pattern can encourage optimised connectivity 

of a system that encourages ridership, reduces the need to use a vehicles and 

traffic congestion. 

 The efficiency and connectivity of the public transport system is 

greatly enhanced and interrelated to the design of the network. A well-

designed urban rail transit network can reduce the number of transfers and 

unnecessary movements of passengers while changing to different lines at 

interchange stations, reducing the total journey times of passengers during 

their daily commute between OD. Saidi (2016) mentioned that a high 

connectivity complex urban rail transit network can reduce the vulnerability of 

a network with alternative route options for passengers to reach their 

destination in case of a breakdown of a transit line. The network pattern is the 

configuration of several rail transit lines designed to complement each other to 

form a complex rail network. 

The urban rail transit network worldwide adopted 3 types of network 

patterns in the network design, which include radial, circular, and grid network. 

A radial network with starting and terminating stations located in peripheral 

areas of a city was adopted to improve the connectivity of the city. Radial lines 

are more direct for passengers moving from suburban areas to the city centre, 

as there is less, or no transfer needed to reach their destination. Saidi (2016) 

mentioned that the main problem with radial lines is that trips between 

suburban areas cause unnecessary additional transfer loads and additional 

travel distance as passengers need to commute to interchange stations located 

in the CBD before heading to their destinations by transferring to other lines, 

increasing the total journey time taken to reach their destination. The 

additional passenger load generated may cause unnecessary congestion in 

interchange stations in the CBD, resulting in more crowded station platforms 

and trains that lead to increased journey times.  

Ring lines are transit lines circulating around the CBD of a city. The 

transit lines can be a full circle loop without terminus, or a partial circle line 

intercepting the existing transit lines to create shorter transit path and improve 

connectivity between suburban areas. As most countries first introduced urban 

rail transit, aiming to relieve traffic congestion on roads connecting the core 
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areas of the CBD and suburban areas. Walker (2015) agreed that most cities 

start implementing their rail transit network with a radial line that is effective 

to address this scenario, providing direct access without transfer to the central 

area. It is less likely to observe countries adopting a ring line transit pattern 

before a radial transit pattern, as a ring only transit line is inefficient in 

relieving the traffic congestion in the CBD area. 

Figure 1.1 shows the London Underground transit network designed 

by adopting radial and ring configurations. The network adopts radial lines to 

connect suburban areas with direct access to the CBD located at the heart of 

London, and a ring line circulating around the city centre providing direct 

access between the peripheral areas of the city. 

 

 
Figure 1.1: London Underground Map (Transit Maps, 2013) 

 

Grid networks are formed by transit lines that intersect 

perpendicularly to provide multiple transfer points throughout the network. 

The network provides direct connections that reduces the need for transfers 

(Walker, 2015). Figure 1.2 shows the New York City subway map shows a 

densely intersected transit lines forming a grid network that follows the grid 

street nature of the city. 
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Figure 1.2: New York City Subway Map (Coneybeare, 2019) 

 

1.1.1 Overview on Klang Valley Urban Rail Transit Network 

The rapid urbanisation of the Klang Valley in the past few decades has 

attracted professionals from various locations for career development. Burdett 

(2018) categorised the development movement of an urban city into 

centrifugal movement, where population moves away from a city centre, and 

centripetal movement, where population moves towards the urban area. He 

mentioned that cities may experience centripetal movement and slowly shift 

towards centrifugal movement towards peripheral areas around the urban area 

due to congestion, social issues, and environmental pollution. 

 The urban sprawl development in Klang Valley was catalysed by the 

availability of cheaper peripheral land and the unavailability of growth limits 

in the city (Naeema, Shamsuddin, and Sulaiman, 2016). He added that the 

sprawling development has increased energy consumption and the time spent 

commuting to CBD as it encourages horizontal development that has a lower 

population density. A high-density transit-oriented development that 

encourages vertical mixed development around a transit station can help 

increase the viability of urban rail transit networks. A well-designed urban rail 

transit network and the implementation of transit-oriented development in 
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Klang Valley can greatly increase the range of locations accessible via the rail 

transit network and, therefore, increase ridership. 

The implementation of Malaysia’s urban rail transit network is 

relatively late compared to other cities. With the effort of improving Klang 

Valley’s connectivity while reducing the reliance on private vehicles, Malaysia 

has implemented transit systems, namely Keretapi Tanah Melayu (KTM), 

Light Rapid Transit (LRT), Monorail, and Mass Rapid Transit (MRT). 

According to the Ministry of Transportation (2024), KTM commuter 

was the first electrified rail transit service in the Klang Valley. KTM has an 

extensive network stretching beyond Klang Valley, connecting Klang Valley 

to suburban areas. However, it has limited frequency and a slower travel speed, 

leading to a longer journey time. LRT, on the other hand, offers a much more 

frequent and faster train speed with a shorter route, connecting major 

residential areas and business districts around Klang Valley. It may face 

occasional disruption due to a lack of maintenance on trains and ageing 

infrastructure. Monorail KL uses a smaller fleet that runs on a single-rail 

system, requiring less space to operate. It primarily operates around the CBD 

in KL, given the flexibility to reach into a congested urban environment. The 

smaller fleet with lower capacity and limited coverage are among the 

drawbacks of the transit system. The recently launched MRT Kajang Line and 

Putrajaya Line in Klang Valley offer comfortable and reliable transportation 

services with higher capacity compared to other train services. The driverless 

train system is capable of travelling at higher speeds, offering a shorter 

journey time. As cited by Azhar (2022), the CEO of MRT Corporation, Zarif 

Hashim, said that the MRT Circle line is the last transit line under the 2010 

urban rail development blueprint after the MRT Kajang Line and MRT 

Putrajaya Line, becoming the backbone of Klang Valley’s Urban Rail Transit 

Network, improving connectivity with 31 stations, including 10 interchange 

stations connecting 8 existing lines. He added that the new urban rail 

development blueprint emphasises the west part of Kuala Lumpur, including 

Klang, Shah Alam, Petaling Jaya, and underserved areas like Selayang, Batu 

Caves, and Gombak. 

The existing operational urban rail transit network consists of a radial 

line primarily connects suburban areas with urban areas in the Klang Valley. 
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The upcoming MRT Circle Line is set to introduce a ring line to significantly 

enhance the connectivity of the region with direct linkage between suburban 

areas and reduce traffic congestion in the central area, providing a more 

efficient travel experience. The details of each operating rail system in the 

Klang Valley, along with the number of interchange stations to indicate 

connectivity, are tabulated in Table 1.1 below. 
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Table 1.1: The Urban Rail Transit Network in Klang Valley (mrt.com.my, 

n.d.) 

Types Num Transit Lines 
Start 

Operate 

Length 

(KM) 

Stations 

Number 
Interchange 

KTM 

1 KTM Seremban  1995 135 26 7 

2 KTM Port Klang  1995 126 34 11 

10 
KTM Skypark 

Link 
2018 24 3 1 

LRT 

3 LRT Ampang  1996 

45.1 

18 13 

4 LRT Sri Petaling  1998 31 15 

5 LRT Kelana Jaya  1998 46.4 37 12 

11 LRT 3 2024 38 26 2 

ERL 

6 
ERL KLIA 

Ekspres 
2002 57 3 1 

7 
ERL KLIA 

Transit 
2002 57 6 3 

Mono

rail 
8 Monorail 2003 8.6 11 6 

MRT 

9 MRT Kajang 2016 51 31 10 

12 MRT Putrajaya  2022 57 39 9 

13 MRT Circle  2032 50.8 31 10 
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Figure 1.3 shows the forecasted Klang Valley urban rail transit 

network. The forecasted network includes the provisional stations, the under-

construction LRT 3 transit line, and the proposed MRT Circle Line that is set 

to operate in 2032 (MRT Corp, 2024). The implementation of the new transit 

lines increases the connectivity of the overall urban rail transit network of 

Klang Valley with the increment of number of interchange stations.  

 

 
Figure 1.3: Klang Valley Urban Rail Transit Network (MRT Corp, n.d.) 
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1.2 Importance of the Study 

The implementation of urban rail transit networks worldwide has gained 

popularity in recent years. The study of the performance and connectivity of 

urban rail transit networks enhances the understanding of the strengths and 

weaknesses of the current network for future improvement strategies. The 

analysis enhances the efficiency and sustainability of transportation by 

optimising the topological connections among the stations to align with the 

passenger flow demand. The goal of enhancing the connectivity of the urban 

rail transit network is to promote ridership of the public transportation system 

and reduce traffic congestion by reducing the dependency on private vehicles. 

 

1.3 Problem Statement 

Urban rail transit describes the various types of passenger-carrying rail 

systems that operate between urban and suburban areas, serving as alternative 

travel options for passengers commuting to work daily. These rail systems 

were first introduced in Klang Valley in the late 1990s and were intended to 

relieve the traffic congestion in the CBD area by reducing the total number of 

vehicles that commute between urban and suburban areas by providing a 

transport option that is punctual, fast, reliable, energy efficient, and has a high 

mobility rate. However, the total journey time between OD is significantly 

higher than the journey time between the same OD with private vehicles, 

especially for underserved area like OD between suburban areas (Litman, 

2024). The current layout of the urban rail transit network in Klang Valley 

consists of 7 transit lines with stating and terminating stations in suburban 

areas and are passing through the CBD of Klang Valley; thus, these lines can 

be classified as radial transit lines. The common problem for a radial line is 

longer travel time between OD and bottleneck congestion at the interchange 

station located in CBD. The improvement in travel time and efficient transfer 

between multiple transit lines were analysed with the inclusion of the proposed 

MRT Circle Line by comparing the current and forecasted Klang Valley urban 

rail transit network in this study. There is a significant disparity between the 

available urban rail transit network infrastructure and passenger flow demand. 

The study analyses the compatibility of supply and demand quantitatively.  
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1.4 Aim and Objectives 

This study aims to assess the performance and connectivity of weighted Klang 

Valley urban rail transit network with quantitative indicators.  

 

The objectives of this study include: 

1. To quantitatively compare performance and connectivity of the current 

operational network with the forecasted network. 

2. To compare the compatibility of network’s infrastructure and the 

passenger flow demand. 

3. To compare the performance and connectivity of Klang Valley 

network with multiple major cities around the world.  

 

1.5 Scope and Limitation of the Study 

The scope of this study focuses on the topological analysis of the current and 

forecasted Klang Valley urban rail transit network with the assumption that 

passenger route choice is not affected by the transit trip cost. The scope of the 

network excludes Express Rail Link (ERL) KLIA Ekspress Line and KLIA 

Transit Line that primarily connect the airports and the suspended Skypark 

Link. The limitations of the study include the availability of passenger flow 

data for all KTM transit lines for compatibility comparison of the overall 

network and the actual time and distance data for new transit lines in 

forecasted network. The limitation in the data collection is the transfer time is 

subject to change due to date and time of collection and the speed of walking. 

Another limitation of the study is the MRT Circle Line alignment 

identification for distance collection is assumed based on the limited available 

information to the proposed transit line.  

 

1.6 Contribution of the Study 

The study aims to contribute insight to the performance through topological 

analysis of the Klang Valley urban rail transit network with widely used 

quantitative indicators. The study assesses the improvement impact of the 

proposed MRT Circle Line and the compatibility of the supply and demand of 

the network quantitatively, facilitating the feasibility study of the proposed 

transit network.  
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1.7 Outline of the Report 

The study consists of 5 chapters as follows: 

 

Chapter 1: Introduction 

The chapter provides purpose of the studies and the general introduction to the 

design and patterns of urban rail transit network adopted worldwide. This 

chapter also outlines the scope and limitations of the study.  

 

Chapter 2: Literature Review 

This chapter provides insight to the types of design patterns of urban rail 

transit networks. The different methods and considerations in performing 

topological and robustness analysis of the urban rail transit network were 

presented in this chapter. 

 

Chapter 3: Methodology 

This chapter presents the methodology of the study in analysing Klang Valley 

urban rail transit network. Methods and consideration of time, distance and 

passenger flow data collections were presented. The steps to analyse the data 

and the computation method of each quantitative indicators were displayed 

accordingly.  

 

Chapter 4: Results and Discussion 

This chapter displays the results obtained from the calculations of quantitative 

indicators of the performance of urban rail transit network in the form of tables 

and graphs. The chapter also includes discussions on the findings in fulfilling 

the aims and objectives of the study.  

 

Chapter 5: Conclusion and Recommendations 

The chapter concludes the overall findings of the study in which fulfil the aim 

and objectives of the study and proposed recommendations on future research 

extended from this study.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, the literature review was discussed based on the topological 

analysis and robustness analysis of an urban rail transit network. Numerous 

studies were conducted to analyse the performance of an urban rail transit 

network with indicators that were proposed based on graph theory and 

complex network theory to quantify the performance and importance of each 

station in the network. The findings of the research were reviewed. 

 

2.2 Network Patterns 

Alternative Transport (2018) illustrates the route types of urban rail transit 

network patterns, which include radial, circular (ring), and grid networks. 

Radial lines are transit lines with starting and terminating stations built away 

from the city centre, usually in the suburban areas. These lines pass through 

the Central Business District (CBD) area, serving commuters who work in the 

CBD and reside in suburban areas (Saidi, 2016).  

 

2.2.1 Radial Network 

Radial lines can be separated to two types, Figure 2.1 shows radial 

lines that only resemble the radius of a circle where the transit line terminates 

at the city centre, and Figure 2.2 shows the diameter where both stations are 

located out of the city centre and passing through the CBD. 

 
Figure 2.1: Radial Transit Line (Alternative Transport, 2018) 
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Figure 2.2: Diameter Transit Line (Alternative Transport, 2018) 

 

 Design models adopt the radial transit approach of emphasising the 

directness of a transit line and reducing the number of transfers or limiting the 

number of transfers to encourage ridership by reducing the transit user cost, 

which includes the time spent waiting, in the ride, and in the transfer (Zhao, 

2006). The same report quantifies the directness of a transit line by the 

additional travel time when the most direct route between OD is not chosen. 

However, radial lines only focus on the connectivity between CBD and 

suburban areas, the transit line has inadequate connectivity and increases the 

number of paths between non-central areas.  

 

2.2.2 Ring Network 

The second configuration of transit pattern is the ring transit line shown in 

Figure 2.3. 

 

 
Figure 2.3: Ring Transit Line (Alternative Transport, 2018) 
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 A ring transit line intercepts radial lines, forming interchange stations 

away from the central area for passengers to transfer between different transit 

lines. Figure 2.4 shows the radial-ring transit network configuration. 

 
Figure 2.4: Polar Diameter-Circumferential (Radial-Ring) Transit Line 

(Alternative Transport, 2018) 

 

 A ring line can provide direct linkage between peripheral areas of a 

CBD and suburban areas, enhancing the connectivity of the rail transit network. 

The additional options allow passengers with non-central destinations to 

commute directly towards their destination without needing to transfer at an 

interchange station in the city centre. Saidi (2016) mentioned that the 

introduction of a ring line to an existing rail transit network can improve 

connectivity with the addition of interchange stations. He also noted that the 

additional transfer stations can provide flexibility for passengers to transfer to 

the nearest transit lines to their destinations in case of service breakdowns on 

any lines, and the redundancy of the interchange can reduce the vulnerability 

of the overall rail transit network. It was mentioned by Yang et al. (2015) that 

vulnerability is a useful index to quantify the capability of an urban rail transit 

network to handle service disruption in the event of a disaster. By providing an 

additional route option for passengers with no intention of entering the central 

area, the passenger load at the interchange stations located in the CBD can be 

reduced. The original passenger load from these stations dispersed to multiple 

new interchange stations resulting from the intersections of the ring and radial 

lines. 
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2.2.3 Grid Network 

The third urban rail transit network pattern is grid network. A grid network is a 

transit system with arrangement of multiple rail lines intersecting each other to 

form a grid-like structure. This network pattern is more common in cities with 

well-designed street grids that allow rail lines to align with the major roads. 

Figure 2.5 shows the grid network transit line configuration. 

 
Figure 2.5: Grid Network Transit Line (Alternative Transport, 2018) 

 

Grid network transit lines have a set of parallel transit lines running 

from one end to another that intersect with another set of transit lines parallel 

to the other set, each spaced at a walkable distance, allowing passengers to 

access a station from any point within the urban rail transit network in the city 

centre. With this pattern of network coupled with optimised frequency, 

passengers can commute from one point to another on a relatively direct path 

that has similar travel time compared to driving. Walker (2015) mentioned that 

a grid network pattern is much preferable for dense cities with a large CBD 

area and multiple important points scattered along the city. He also mentioned 

that the highly connected grid network increases the number of locations 

passengers can reach with minimal transfers, the route is a direct L-shaped 

with just one transfer in an ideal grid transit network. Therefore, the coverage 

and accessibility of the grid network have reduced the total journey time by 

limiting the waiting time during transfers. The redundancy of the densely 

spaced stations reduces the network’s vulnerability in case of disruption, as 

there are alternative lines to accommodate the route between the OD. 
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2.3 Graph Theory and Complex Network Theory 

Researchers have widely adopted graph theory and complex network theory to 

quantitatively analyse the performance of an urban rail transit network for 

decades. Numerous indicators are proposed by researchers based on the two 

theories to assess the network from various aspects. Extensive research is 

applied to analyse the topological characteristics of various types of 

transportation, including airports, bus networks, and rail networks (Lin et al., 

2020). 

 

2.3.1 Graph Theory 

With the first introduction in the eighteenth century, intended to solve 

transportation problems, graph theory has evolved for more than 200 years. 

Derrible and Kennedy (2009) and Quintero-Cano (2011) have reviewed the 

evolution and application of graph theory from its early days to recent 

applications on the urban rail transit network. 

The authors concluded that there are five types of graphs represented 

with graph theory, as shown in Figure 2.6. The theory represents a network 

with a directed graph when the direction of movement is limited to one 

direction and an undirected graph when the movement happens in both 

directions. An undirected graph can be segmented into a tree graph, where no 

loops were formed, and the total number of edges is always less than the total 

number of nodes or vertices. Another graph classified by the theory is a 

planner graph, where the edges or links only intersect at the nodes, while a 

non-planner graph can converge between edges. 

 
Figure 2.6: Types of Graphs (Quintero- Cano, 2011) 
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The application of graph theory in the mid-19th century focused on 

road transportation systems that emphasised economic aspects. As more 

intensive models were developed, several indicators were introduced that 

focused on the nodal connectivity of a network (Derrible and Kennedy, 2009). 

In the early 1980s, the approach of graph theory shifted from mathematical to 

computational systems, and during this period, the application of the theory 

began to focus on urban transport systems and bus networks, with more 

indicators being proposed (Derrible and Kennedy, 2009). With the first 

introduction based on graph theory to analyse human communications, Tu 

(2013) mentioned the centrality indicators, including degree, betweenness, and 

closeness, that were efficient to analyse and evaluate the importance of nodes 

from different points of view. Indicators proposed decades ago are still being 

used as supporting indicators today, these researchers have laid the foundation 

for transportation network structure optimisation. 

 

2.3.2 Complex Network Theory 

Networks comprised of nodes and edges are becoming more complex with 

increased network size, and more dynamical aspects are being considered 

when analysing a network. Meng et al. (2020) have summarised that with the 

increasing complexity of networks, complex network theory is now more 

crucial to analysing the local and global characteristics of urban public 

transportation. The paper also mentioned that recent studies revolve around the 

multiple indicators that were continuously evaluated and optimised over time 

to better reflect and produce useful insight into the urban rail transit network. 

The indicators involve the static topological characteristics of the connections 

between nodes and the dynamic characteristics of passenger flow to analyse 

the performance of the network from a local and global perspective. 

Soh et al. (2010) highlighted the significance of studying a network 

from a topological and dynamical perspective to understand the network 

holistically. The study has proved that dynamic analysis enhances the insights 

obtained from traditional topological analysis. With the advancement of 

complex network theory research and computational power in recent years, 

researchers have been able to analyse intricate networks with up to millions of 

nodes and edges. Complex network theory has gained popularity in analysing 
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the safety management and robustness of an urban rail transit network given 

its efficiency in analysing the scale-free and small-world characteristics of a 

network (Yang et al., 2015). Complex networks with scale-free characteristics 

are robust and follow a power law distribution where most nodes have a low 

degree and only a few nodes have disproportionately more connections, while 

small-world networks tend to have a short average path length and high local 

clustering where most nodes are reachable from other nodes in a relatively 

small number of steps despite the large size of the network (Meng et al., 2020). 

Pu, Li, and Ma (2022) concluded that the research on single-layer 

transportation systems based on complex networks has been refined over years 

of evolution and mentioned the possibility and efficiency of analysing and 

optimising multi-layer transportation networks by including multiple modes of 

transportation at once. 

 

2.3.3 Summary 

The long history of graph theory has paved the foundation for modern 

transportation system analysis. The increasingly popular complex network 

theory can address the limitations of the traditional graph theory in the analysis 

requirements of the increasingly complex urban rail transit network structure 

(Li, 2023). While graph theory mainly focuses on analysing physical and 

topological relationships of a network with simplified nodes and edges, 

complex network theory, which is very much interrelated with graph theory, 

includes the weighted dynamic characteristic to better reflect the real-world 

condition of a large-scale and increasingly complex network. Graph theory 

considers the classical indicators to reflect the connectivity and complex 

network theory dives deeper considering the centrality and clustering 

characteristics of the network. Combination of both theories in analysing an 

intricate urban rail transit network can complement each theory and provide 

comprehensive insight.  
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2.4 Analysis Model 

Multiple research papers have adopted the Space L and Space P analytical 

models to construct and represent the complex urban rail transit network to 

analyse and compare networks from different aspects. 

 

2.4.1 Space L 

Meng et al. (2020) and Lin et al. (2020) described the Space L model as the 

schematic layout of a transit network that represents a station as a node and the 

connection between adjacent nodes as an edge. It is supported by Ma, Sallan, 

and Lordan (2023) that the Space L model, which better reflects reality, 

represents the physical layout and characteristics of the urban rail transit 

network, including the number of stations and distance between adjacent 

stations. The Space L model emphasises the relationship between adjacent 

nodes and is suitable to perform analysis with interest related to the physical 

structure of the network, such as network coverage and shortest path length. 

 

2.4.2 Space P 

Ma, Sallan, and Lordan (2023) describe the Space P model as more aligned 

with public cognitive behaviour as the model represents travel routes between 

two nodes through multiple modes of transportation. The authors also 

mentioned that the Space P model can perform path planning and path search 

to determine the fastest path within a network. Meng et al. (2020) and Lin et al. 

(2020) supported the above statement that the Space P model considers the 

connections between two stations as edges, whether they are connected 

directly with the same line or through transfer between multiple lines in the 

network. The Space P model emphasises the dynamic and transfer 

characteristics of passenger flow in the network. 

 

2.4.3 Summary 

Space L and Space P analytical models in urban rail transit networks serve 

complementary roles in analysing the network from different aspects. Space L 

focuses on the physical connection between stations in the network, while 

Space P considers the dynamic properties of the passenger flow in a network. 
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Figure 2.7 shows the topological network representation modals adopted by 

researchers in analysing an urban rail transit network.  

 

 
Figure 2.7: Topological Network Representation Models (Meng et al, 2020) 

 

Meng et al. (2020) have further categorised public transportation into 

Space B model, which does not connect the same kind of nodes, and the Space 

C model, which represents each line as network nodes and connected nodes as 

links. However, the authors agreed that the Space L and Space P models are 

more aligned with the actual rail transit network, making them more suitable 

to analyse the network. 

 

2.5 Network Performance Indicators 

In the study of urban rail transit network planning and design, the evaluation 

of the network's performance is crucial. Researchers have proposed multiple 

indicators based on graph theory and complex network theory to quantify and 

assess the network structure's connectivity from different perspectives. This 

section discussed the widely used indicators in the study of urban rail transit 

networks. 
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2.5.1 Complexity 

Various analysis models propose different methods to represent nodes and 

edges. The complexity indicator is useful to compare different representations 

of the same complex transit network. This indicator is efficient in comparing 

the level of complexity among different networks to analyse the network we 

are interested in. Chen (2023) and Ding et al. (2015) assess the network's 

complexity by dividing the number of edges by the number of nodes. A 

network with a higher number of edges than nodes yield a higher complexity 

value. 

 

2.5.2 Connectivity  

The connectivity indicator measures the ratio of the actual connected edges to 

the possible maximum number of edges in a network (Chen, 2023). This is a 

useful indicator to analyse the extent of connectivity between the stations and 

compare different networks. A highly connected network increases 

accessibility and reduces passenger costs while using network services. The 

higher the value of the connectivity indicator, the greater the extent of network 

development and travel convenience (Chen, 2023; Ding et al., 2015). 

 

2.5.3 Clustering Coefficient  

The clustering coefficient indicator can reflect the efficiency of transfer and 

connectivity of the local rail transit network by assessing the relationship 

between a node and its neighbour. Meng et al. (2020) explain that the indicator 

represents the possibility that two neighbouring nodes of a node are also 

adjacent in a network, which measures the extent of aggregation among the 

stations in a network. The statement is supported by Ding et al. (2015) and Ma, 

Sallan, and Lordan (2023), who say that the indicators measure the extent of 

clustering among nodes of a network. Researchers also utilise the average 

clustering coefficient to assess the network by taking the mean clustering 

coefficient for all nodes. The higher the clustering coefficient, the better the 

connectivity of the entire urban rail transit network and the higher the 

robustness of the network with the presence of alternative routes connecting 

the neighbouring stations. 
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2.5.4 Degree Centrality 

The degree centrality indicator is useful in quantifying the importance of a 

node from a local perspective. Ding et al. (2015) and Lin et al. (2020) defined 

the indicator as the number of direct connections from a node; the greater the 

number of edges a node is connected to, the more important and influential the 

node is. A network is said to be scale-free when the degree distribution follows 

power law, indicating most stations have less degree centrality while a few 

stations have disproportionately high values (Meng et al., 2020). The 

network's average degree of centrality can be calculated as the mean value of 

all nodes. A node with a higher degree of centrality is more important within 

the network. 

 

2.5.5 Closeness Centrality  

Closeness centrality assesses the connectivity of a rail transit network with the 

actual distance between the nodes to identify the station that can be efficiently 

accessed from the rest of the network. It is calculated as the inverse of the 

average shortest path length between two nodes. Meng et al. (2020) describe 

closeness centrality as a positive indicator that can reflect the level of 

difficulty of reaching a node from another node. The indicator can reflect the 

degree of concentration of the adjacent nodes around a node; the more 

concentrated and closer the nodes are, the more important the node is (Ding et 

al., 2015). An effective distance metric that took into account passenger flow 

data and the mobility of the network was proposed by Lin et al. (2020) in 

response to the claim that distance alone is ineffective for measuring the 

distance between nodes in a network. A higher value of closeness centrality 

signifies that this node is important and can be easily reached from any other 

node in the same network. 

 

2.5.6 Betweenness Centrality  

Betweenness centrality measures how often a node is used as a link connecting 

two other nodes from a global perspective. It refers to the number of shortest 

paths that connect any two nodes of the network that pass through a single 

node. Stations with higher betweenness centrality tend to have higher 

passenger flow when the shortest path is chosen, which indicates the higher 
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passenger carrying capacity of the station (Lin et al., 2020). Ding et al. (2015) 

and Meng et al. (2020) agreed that stations with higher the betweenness 

centrality have greater passenger flow; this means that the nodes have higher 

control power over the traffic flow of the entire network. Any disruption to an 

important station may cause chain effects throughout the network. Since a 

station with higher centrality tends to have higher traffic flow, the station is 

more likely to experience bottlenecks and overwhelming traffic flow, 

especially during peak hours. This indicator can assist urban planners in 

emphasising the design of stations with higher centrality to cope with the 

higher traffic volume. 

 

2.5.7 Average Shortest Path Length 

Meng et al. (2020) mentioned that the path length between a given OD is 

described as the number of edges connecting the two nodes. It determines the 

connectivity and accessibility of the urban rail transit network. The average 

shortest path length value of a node is the mean value of the shortest path 

length between the given node and all other nodes. The smaller the average 

shortest path length value, the more extensive the connectivity of the network, 

with less travel required to reach another node (Meng et al., 2020). The 

network diameter is often referred to as the maximum shortest path length 

between two nodes (Ding et al., 2015). 

 

2.5.8 Summary 

In short, various researchers adopted graph theory and complex network 

theory to propose multiple indicators to quantitatively assess and compare the 

performance of multiple urban rail transit networks worldwide, or the changes 

in performance of a network before and after the development of new rail lines. 

These indicators were adopted by many researchers, which implies the 

reliability of the indicators to assess the urban rail transit network. These 

indicators can assist urban planners in identifying the important nodes to select 

potential stations as interchange stations for future transit lines. Moreover, it 

allows maintenance teams to highlight important stations to prevent 

catastrophic disruption to the station, which may affect the operation of the 

network. Quantitatively comparing the global value of each indicator can help 
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reflect the percentage performance difference between any two networks, 

facilitating the performance and connectivity forecasting and analysis of 

network expansion.  

 

2.6 Topological Analysis  

The urban rail transit network comprises multiple nodes and edges. 

Topological analysis is important to study the connections between the 

components of the network and optimise the network structure design, 

improving future rail transit development planning and connectivity 

optimisation. The analysis utilises mathematical tools to study the relation 

between space and object, providing helpful decisions for design, operation, 

and maintenance with the insight of nodal distribution in the network. This 

section explored how researchers analyse the topology of urban rail transit 

networks with graph theory and complex network theory. 

 

2.6.1 Network Expansion Performance 

Ding et al. (2015) have performed topological analysis on the Klang Valley 

urban rail transit network with complex network theory. Despite decades of 

implementations and improvements, the authors concluded that there is still 

insufficient research performed on rail transit networks to analyse the 

relationship between the network expansion process and network performance. 

An important point to note is that the expansion of an urban rail 

transit network not just meet the local needs of public transportation in an area; 

more importantly, it improves overall efficiency through the optimisation of 

the transportation capacity of the entire network in the long run. The Kuala 

Lumpur urban rail transit network is represented with the space-L method to 

describe its topological performance. The performance of the network is 

calculated and tested with classical traffic indicators, which include number of 

nodes and edges, complexity, connectivity, network loops, and availability of 

loops, while also considering indicators based on complex network theory, 

which include connection, clustering, and centrality. Using the year increment 

as a variable, Ding et al. (2015) analyse the changes to the performance of the 

network from 1995 to 2017, from the introduction of Keretapi Tanah Melayu 

(KTM) to the Mass Rapid Transit (MRT) Kajang line.  
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The result of the paper concluded that there is a linear relationship 

between the number of nodes and edges in the network with a high fitting 

confidence coefficient, whereas network complexity, connectivity, and 

availability of loops shoot up during the early years but gradually deteriorate. 

This paper performed an in-depth study on the network expansion process and 

found that the maximum value of node degree increased from 3 in 1995 to 9 in 

2017, indicating the increased connection of a single node with the network. 

Although more connections are formed, a large proportion have a relatively 

low node degree value of 2, referring to the fact that the rapid development of 

network connections cannot keep up with the speed of the overall physical 

expansion of the network. The largest portion of node degree remains at 2, 

despite gradual increment in maximum node degree. The degree distribution 

graph shifted from a normal distribution towards a heavy-tailed distribution 

over the years. Data shows the network had a peak global clustering 

coefficient in 2004 and gradually became loose over time, with KL Sentral 

Station being the most distinct cluster node in general. The average degree of 

centrality falls as the network grows, and the closeness degree value obeys the 

normal distribution, while the average betweenness centrality reduces with the 

increase of stations, and the value best fits the exponential distribution. 

Simulating the network growth process allows urban planners to observe 

changes with the addition of nodes to the existing urban rail transit network, 

which is useful in identifying potential stable growth points for the network 

(Ding et al., 2015). 

 

2.6.2 Travel Time Data Weighted Analysis 

Time weighted network analysis provides a comprehensive approach to the 

understanding of connectivity of the urban rail transit network. Jia et al. (2021) 

performed a study on identifying important stations of an urban rail transit 

network to understand the transmission path of COVID-19 by taking Beijing 

as case study. The study utilises various parameters to weigh the network. 

utilising travel time weighted network analysis provides a more realistic 

representation of the network dynamics, considering the real-world constraints 

including travel time between OD, waiting time and transfer time at 

interchange stations. The indicators used in the case study include degree 
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centrality, betweenness centrality, clustering coefficients, and PageRank to 

analyse the network from multiple aspects. Considering weighted parameters 

in the urban rail transit network analysis captures the intricacy of the real-

world scenario where passengers may have their personal preferred route.  

 

2.6.3 Distance Data Weighted Analysis 

Distance is another commonly used parameter to analyse the connectivity of 

an urban rail transit network. Tan et al. (2022) performed analysis to evaluate 

the utilisation of distance to weigh the network’s edge, then, the Nearest 

Transport Point indicator is computed to evaluate the possible alternative route 

and accessibility of switching between metro lines if any edge connecting two 

stations experiences disruptions. The findings of the paper include capturing 

the impact of proposed future transit lines when compared to the existing 

operational network using the multiple quantitative indicators including 

betweenness centrality. The study provides contribution to the analysis of 

urban rail transit network with the introduction of assessing the resilience of 

network considering the distance between two stations. The methodology used 

in the study is able to apply to any other urban rail transit network for similar 

analysis.  

 

2.6.4 Passenger Flow Data Weighted Analysis 

Lin et al. (2020) concluded that the results of many research papers are not 

applicable for the operation and management of an urban rail transit network 

as the papers solely focused on topological analysis of the structural elements 

of the network without including the dynamic interaction among passenger 

flow and network structure. The paper assesses the urban rail transit network 

by incorporating passenger flow data based on complex network theory to 

identify important stations and sections and measure the interaction and 

linkage between stations. The approach of the research obtained insight into 

the static properties and dynamic patterns produced by passenger movement to 

assist future infrastructure design and operational decisions. 

A weighted network was used to represent the Beijing rail transit 

system with passenger flow data obtained from Automated Fare Collection 

(AFC) of the network. The results suggest that stations with a high degree of 
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centrality experience a high level of transfer, boarding, and alighting volume; 

these stations are mostly located within a large residential area or commercial 

office area with high passenger flow volume, supporting the reliability of the 

indicator. Stations with a high betweenness centrality value concentrate around 

loop lines or transfer stations that intersect between loop lines and radial lines. 

While these stations are important for bridging commuters between suburban 

and urban areas, they often show a high risk of congestion during peak hours. 

The stations located in the city centre of Beijing generally have high 

closeness centrality, but this gradually reduces when moving towards the 

surrounding suburban areas. The important stations identified using the 

PageRank Index are among the busiest stations of the network, and the route 

that involves these stations is also among the busiest. The research also 

assesses the connection or edge between stations. The average passenger flow 

for the top 10 stations with the highest value of edge weight and betweenness 

centrality for edge exceeds 20,000, with the highest volume reaching 34,000. 

The top stations correlate to the high volume of passenger flow, indicating the 

reliability of the indicators to assess the rail network. The results also show 

that certain stations do not appear at the top of the list of other indicators 

despite having high betweenness centrality, confirming the unique roles of 

each indicator. In short, the result values of degree centrality, PageRank Index, 

betweenness centrality for node, betweenness centrality for edge, and edge 

weight were plotted on probability distribution graph according to the 

respective indicators, and the results obey power low, with only a very tiny 

portion of the stations or links having disproportionately high passenger flow 

volume and playing an important role in the entire network, while the results 

of closeness centrality follow normal distribution, indicating the network 

possesses the characteristics of the small world where most stations have high 

clustering and are closely connected to each other. Stations located in areas 

with high passenger flow volumes are usually important, and having the value 

of the indicator align with the passenger flow volume further reinforces the 

credibility of the above indicator. 

 A similar result is obtained in research by Xing, Lu and Chen (2016) 

on the weighted complex network analysis of urban rail transit networks by 

taking Shanghai Rail Transit System as case study. Weekday peak hour 
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passenger flow data obtained from Shanghai Shentong Metro Company is used 

to weigh the edge between nodes of the network. Analysis with passenger flow 

data reflects the actual traffic dynamics of the network. The findings of the 

study reflect multiple indicators calculated with passenger flow weighted 

network captures a more meaningful analysis compared to unweighted 

topological network analysis as it considers the number of passengers 

commuting around the network.  

 

2.6.5 Analytical Model Comparison  

While most research uses indicators to analyse the network represented by 

Space L, Meng et al. (2020) took a different approach by comparing the 

significance of multi-space modelling based on six parameters. The 

topological analysis of Shenzhen Metro (SZM) in the paper has concluded that 

the degree centrality distribution of SZM has a severe heavy-tailed distribution 

with a large proportion of nodes in Space L representation having a value less 

than 2, and Space P representation having a large proportion of nodes with a 

value less than 30. This is due to the network representation in Space P, which 

considers connections between any two nodes, which significantly increases 

the number of edges. The cumulative degree distribution of SZM was 

mentioned to obey power law distribution, and the network is said to be scale-

free, indicating the robustness of the network in resisting random failure. The 

clustering coefficient data shows nodes are more connected when analysed 

with Space P compared to Space L. Betweenness centrality and closeness 

centrality data observe dramatic differences in station ranking lists in different 

representation models. This signifies that a station has a different controlling 

role when represented in the 2 models.  

The authors concluded the centrality indicators have highly corelated 

mathematical connections in Space P, while distinct fluctuations of data are 

observed in Space L representations. The standardised data can be compared 

and ranked equally between Space L and Space P. The analysis revealed that 

stations with high scores are primarily transfer stations with higher probability 

as the risk point of the network, and the top stations are more decentralised in 

Space P but more centralised in Space L (Meng et al., 2020).   
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2.7 Robustness Analysis 

With increasing urbanisation and rapid population growth, the implementation 

of an urban rail transit network has become the most effective solution to 

traffic congestion in densely populated cities around the world. Nonetheless, 

the regular incidents of random failure and malicious attacks represent a 

significant challenge to the security and reliability of the network. Much 

research based on complex network theory has been done in recent years, 

focusing on quantitative analysis of the robustness of an urban rail transit 

network to handle different failures and attacks, as well as preventing 

cascading failures from happening. 

 

2.7.1 Network Element Failure Scenario 

An urban rail transit network generally encounters two types of failure 

scenarios, which include random failure and malicious attacks (Yang et al., 

2015; Xing et al., 2017; Cats and Krishnakumari, 2020). Random failure of a 

node or edge often happens unintentionally or as an unexpected event that 

disrupts the normal operation of an urban rail transit network, while malicious 

attacks involve the intentional and deliberate actions of individuals that cause 

harm to the network. Yang et al. (2015) mentioned that the disruptive power of 

a random failure is minimal compared to a malicious attack that could cease 

the operation of an urban rail transit network for a long period of time. 

Another difference between the two scenarios is that the probability of a 

random failure is uniform across all stations within the network, while 

malicious attacks tend to occur at targeted stations, which is more important 

with a higher degree of betweenness. The authors also mentioned that natural 

disasters were not considered in their study as the disruption can cause 

catastrophic damage to the whole network, which is not practical to simulate 

with just several stations. Table 2.1 shows the common behaviours of urban 

rail transit networks in various kinds of failures and attacks.  
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Table 2.1: Summary of Common Behaviours of Failures and Attacks for an 

Urban Rail Transit Network (Yang et al, 2015). 

Categories  Precursors  Description  

Random 

Failure 

Technical 

malfunctions  

Broken rail, Broken wheels, Brake failure, Gear 

Failure, Signal failures, Power failure, Crack rail, 

Line fault, Exceeding speed 

Passengers 

actions 

Congestion, Suicide in platform, Fall onto track, 

Falls on escalators, Group fighting, Unconscious 

destruction due to 

drunkenness, Smoke in station/train, Wrong 

operation by driver, Passenger carrying 

dangerous goods, Passenger carrying pets, 

Riot caused by rumours, Caught in train doors 

Official 

actions  

Temporary disruption of service, Temporary line 

maintenance, Temporary closure for safety 

inspection, Temporary closure for 

special activity, Decision error 

Malicious 

attacks 

Targeted 

destruction  

Deliberate destruction, Passenger carrying 

dangerous/flammable goods, Passenger carrying 

poisonous goods, Kidnapping, 

Trespass, Manual destruction on rail, Manual 

destruction on train, Explosion in purpose, Set 

fires, Gun shooting, Derailment 

caused by human, Deliberate assassination to 

raise riot and etc. 

 

2.7.2 Robustness Indicators  

The efficiency and connectivity of an urban rail transit network typically 

depend on the topological completeness of the network (Yang et al., 2015). 

The robustness analysis model assesses the global performance of the network 

when subjected to various types of failures and attacks. Two indicators 

adopted by various researchers to quantify the robustness of an urban rail 

transit network are the Relative Size of the Maximal Connected Sub-graph 
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(RSMCS) and Global Network Efficiency (GNE) (Yang et al., 2015; Xing et 

al., 2017; Cats and Krishnakumari, 2020). 

The first indicator is the Relative Size of the Maximal Connected Sub-

graph (RSMCS). The removal of one or more nodes in a network disintegrates 

the graph into multiple sub-graphs, and the sub-graph with the maximum 

number of connected nodes is identified as the maximal connected sub-graph 

(Yang et al., 2015). The RSMCS indicator evaluates the robustness of the 

network that is under attack by evaluating the ratio of the largest remaining 

intact sub-graph with respect to the initial undisrupted network (Cats and 

Krishnakumari, 2020). Thus, evaluating the extent of disintegration of the 

network under various failure conditions. 

The second indicator is Global Network Efficiency (GNE). The 

shortest path length between two nodes is a common measurement of the 

efficiency of a network. However, the shortest path length between two 

unconnected neighbouring nodes within a network that is under attack yields 

an infinite value and cannot be computed (Yang et al., 2015; Xing et al, 2017). 

Rerouting and possible detours that affect the shortest path length may be 

required for a given OD due to the removal of nodes. GNE is proposed to 

assess the effect on the network (Cats and Krishnakumari, 2020). 

 

2.7.3 Methodology  

The performance of an urban rail transit network that is under various attacks 

is analysed with RSMCS and GNE indicators. In the robustness analysis 

where nodes are deleted to simulate the performance of a network under 

failure, Space L can represent the intuitiveness of physically adjacent nodes 

where these stations are directly connected in the most simplified manner 

compared to other representation models (Xing et al., 2017; Cats and 

Krishnakumari, 2020). 

A random failure happens at equal probability for all nodes, while 

malicious attacks happen to more important nodes within a network. As 

discussed previously, two of the topological indicators that are effective in 

evaluating the importance of a node within a network are degree centrality, 

which assesses the local connectivity, and betweenness centrality, which 

assesses the connectivity globally. Here, researchers use these indicators to 
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develop attacking strategies to simulate the worst-case scenario by precisely 

attacking the most important stations to evaluate the robustness of a network. 

Various attacking strategies were used by researchers to simulate the attacking 

strategies by removing nodes according to the importance ranking obtained 

from the network performance indicator. These strategies remove one node at 

a time from a network and reevaluate the centrality indicators, as well as the 

RSMCS and GNE indicators, to evaluate the performance of a disrupted 

network and compare the functionality loss globally in percentage (Yang et al., 

2015; Xing et al., 2017; Cats and Krishnakumari, 2020). Figure 2.8 shows the 

structure of the connected graph before and after the removal of a node. 

 

 
Figure 2.8: Structure of the Connected Graph Before and After Node Removal 

(Yang et al, 2015) 

 

In short, random failure follows a sequence where nodes are deleted 

randomly while malicious attacks target the most important nodes based on 

indicators including degree centrality and betweenness centrality. The 

performance of the global network is recalculated and compared. A rapid 

decrease in RSMCS and GNE presents a vulnerable characteristic of a network 

(Xing et al., 2017). 
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2.7.4 Findings  

Various researchers concur that malicious attacks are more likely to target an 

urban rail transit network than random failures. The decline of RSMCS when 

the network is under random failure is insignificant, and minimal 

fragmentation is observed compared to rapid deterioration when under 

malicious attacks (Xing et al., 2017). Cats and Krishnakumari (2020) 

concluded that at 40% of nodes or 50% of links removed based on degree and 

betweenness centrality removed in malicious attack simulation, the network 

exhibits a high degree of fragmentation, with no subgraph containing more 

than 1% of the original network, whereas about 80% nodes or links removal is 

required to achieve the same severity for random failure. Additionally, their 

findings indicate that when nodes or links are removed based on importance, 

particularly betweenness centrality, the RSMCS decreases rapidly and 

significantly. The degradation of network connectivity was twice as rapid 

when links were removed based on betweenness centrality compared to degree 

centrality, indicating the importance of global connectivity over local 

connectivity in identifying the critical links (Cats and Krishnakumari, 2020). 

A similar pattern was seen by the GNE indicator. In the case where 

just 10% of the nodes were removed from the network, the GNE recorded a 

slight decrease under random failure but a much more severe decline when the 

network is under malicious attack (Xing et al., 2017). Cats and Krishnakumari 

(2020) found that networks are considerably more susceptible to deliberate 

attacks than to random failures, with the most devastating consequences 

observed when targeting network elements characterised by the highest 

betweenness centrality values. In a scenario involving targeted removal of 

nodes, it was observed that even with the removal of just 5% of nodes, GNE is 

subjected to a rapid increase, indicating that even if the network is still intact, 

as indicated by RSMCS for both failures, the impact is severe, requiring 

significant detours and resulting in a substantially longer path within the 

network (Cats and Krishnakumari, 2020). 

Yang et al. (2015) mentioned that studies assumed the transfer station 

as a simple spatial point where the internal distance between multiple lines 

was not considered. A malicious attack is more likely to cause disruption to 

whole stations regardless of the size and distance apart between different lines, 
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while a random failure is less likely to cause widespread disruption to other 

lines connected to a station. 

The significance of a station varies within an urban rail transit 

network. While traditional research often assesses node importance using 

degree centrality and betweenness centrality, there's a lack of studies 

considering damage as a measure of node importance (Xing et al., 2017). 

Robustness analysis with the aforementioned indicators can analyse the 

functionality loss of a network when nodes are removed. RSMCS and GNE 

exhibit a more rapid decrease in network efficiency when nodes are removed 

based on betweenness centrality. A simulation that confirms the simultaneous 

failure of the top 5 stations with the highest indicators reveals that 

betweenness centrality-based removals impact network efficiency more than 

degree and strength centrality-based removals (Xing et al., 2017). 

The author stated that these findings provide insight for urban 

planners to consider potential locations to increase interchange stations, 

increase node redundancy to provide alternative routes for passengers to 

connect the OD, and prioritise limited resources to protect and enhance station 

structure. The findings from the research show most of the stations with the 

most damage to the network when removed are connected to a circle line, 

indicating the importance of the circle line. The circle line is effective in 

creating new transfer stations that serve as linkages between urban and rural 

areas to provide multiple alternative routes between given OD, thus increasing 

the connectivity and robustness of the network (Xing et al., 2017). 

While Cats and Krishnakumari (2020) credited the presence of ring 

lines intercepting radial lines with enhancing the network's robustness by 

providing transfer opportunities, the authors doubted the direct relationship 

between network structure and the robustness of the network. While 

decentralised networks are generally more resilient to targeted attacks, a 

polycentric urban agglomeration does not always necessarily lead to a 

distributed network in terms of centrality indicators. In the case study of the 

paper, a Randstad network with a polycentric structure was found to be the 

least robust in terms of network performance, which contradicts the general 

expectation that polycentricism enhances network robustness. The network 

structure of the Randstad network presents a fragile fork-like structure with 
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key stations located outside the urban cores, which makes it more susceptible 

to breakdowns between the key stations. Previous studies often assumed that 

the impacts of network element breakdowns were confined to the respective 

element. However, in practice, breakdown consequences can extend beyond 

the primary disruption and disrupt operations further upstream or downstream 

(Cats and Krishnakumari, 2020). 

 

2.8 Summary 

In recent years, there have been increasing studies adopting graph theory and 

complex network theory to introduce indicators to quantify the topological 

connectivity and robustness of the urban rail transit network in a weighted 

network. These networks are constructed with Space L and Space P 

representations, incorporating factors such as passenger flow data, distance, 

and travel time to mirror real-world complexities and obtain intuitive results. 

Network performance is comprehensively assessed through a range of metrics, 

including degree centrality, closeness centrality, betweenness centrality, 

clustering coefficient, and average shortest path length, which each assess the 

functionality and connectivity of the network from different aspects.  

 Robustness analysis simulates random attacks by replicating 

unexpected disruptions, while targeted attacks focus on high-importance nodes 

based on degree centrality and betweenness centrality. Importantly, these 

indicators enable the ranking of station importance from various perspectives, 

with the understanding that constructing weighted networks with different 

parameters can yield distinct ranking lists, allowing urban planners to 

highlight important stations as potential growth points for the network.  

 The global value when assessing a network can help 

quantitatively compare performance and connectivity of any two networks. 

The calculations of quantitative indicators help predict the performance of 

network expansion in assessing the impact and feasibility of the proposal of 

new transit lines when incorporating to the existing rail network.  
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CHAPTER 3 

 

3 METHODOLOGY 

 

3.1 Introduction 

This chapter have discussed the methodology of analysing the Klang Valley 

urban rail transit network with quantitative indicators. 

 

3.2 Flowchart  

Figure 3.1 shows the steps conducted in this study.  

 
Figure 3.1: Flowchart of Methodology 
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Based on the flowchart above, the study started with the data collection of time 

intervals and distance between stations, transfer time and distance between 

different platforms of an interchange station and passenger flow data between 

stations. Then the current operational network and forecasted network with the 

inclusion of new transit lines were constructed to confirm the topological 

connections of the network. After that, the Python code used to compute the 

values of indicators was validated with a small sample and verified with hand-

calculated values. Next, the Klang Valley urban rail transit network is 

analysed based on average shortest path length, betweenness centrality, 

closeness centrality, degree centrality and clustering coefficient with different 

parameters that include unweighted, time-weighted, distance-weighted and 

passenger flow weighted network. The results, discussions, conclusion and 

recommendations were prepared and documented in the report. The details of 

the procedure are described in following sub-sections.  

 

3.3 Data Collection 

The methodology employed in the data collection on the urban rail transit 

network in Klang Valley Malaysia includes desktop study and on-site survey 

with the aim of providing a comprehensive understanding of the performance 

and connectivity. The data collection involves identifying the direct 

connections of a same transit line and the interchange connection that connects 

multiple lines. The availability of the data provides a fundamental 

understanding on how the stations are connected for the following analysis. 

Distance and time between each station are chosen as the parameters 

in this study due to the availability and reliability of the parameters in 

reflecting the users’ commuting experience. Multiple logical assumptions were 

made to the expanded forecasted network to obtain the time and distance 

between stations to facilitate the analysis of the impact with the inclusion of 

LRT 3 and MRT Circle Line. Passenger flow data is collected to further 

analyse connectivity of the urban rail transit network to compare the from 

supply and demand perspective. However, the passenger flow data is limited 

to LRT, MRT and Monorail lines only.   

Efficient inter-platform connectivity is crucial for commuter transfer 

effectiveness within interchange stations. Interchange stations that undergo 
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comprehensive planning prior to construction typically have direct and 

straightforward connections, where the station seamlessly aligns with other 

lines, thus facilitating a smooth transfer experience. However, the Klang 

Valley urban rail transit networks observed majority interchange stations 

require long transfer time and distance due to multiple constraints such as land 

availability. The interconnection pathways between platforms may incorporate 

with escalators, particularly when linking underground platforms with elevated 

alignment stations, aiming to facilitate vertical passenger movement. 

Moreover, certain interchange stations feature platforms interconnected via 

linking bridges. Additionally, platforms within an interchange station that are 

situated at considerable distances, require passengers to exit the station and re-

enter to access connecting transit line station. Table 3.1 shows the connecting 

lines of each interchange station and the remarks on the amount of traverse 

required when moving between different platforms within the interchange 

stations. 
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Table 3.1: Connections Between Different Platforms of Interchange Stations

No. 
Interchange 

Station 
Connecting Lines Remarks 

1 Kampung Batu KTM Batu Cave 

MRT Putrajaya 

• Proximity connection with minimal traverse. 

• Exit and re-enter to the network is required. 

2 
Bandar Tasik 

Selatan 

KTM Batu Cave 

LRT Sri Petaling 

• Proximity connection with minimal traverse. 

• Exit and re-enter to the network is required. 

3 Kajang 
KTM Batu Cave 

MRT Kajang 

• Proximity connection with minimal traverse. 

• Exit and re-enter to the network is required. 

4 Sungai Buloh 
KTM Tg Malim 

MRT Putrajaya  

• Facilitated with link bridge for long walking 

distance. 

• Exit and re-enter to the network is required. 

5 

Kepong 

Sentral / Sri 

Damansara 

Timur 

KTM Tg Malim 

MRT Putrajaya 

• Facilitated with link bridge for long walking 

distance. 

• Exit and re-enter to the network is required 

6 
Abdullah 

Hukum 

KTM Tg Malim 

LRT Kelana Jaya 

• Facilitated with link bridge for long walking 

distance. 

• Exit and re-enter to the network is required 

7 Subang Jaya 
KTM Tg Malim 

LRT Kelana Jaya 

• Proximity connection with minimal traverse. 

• Exit and re-enter to the network is required 

8 Sentul Timur 
LRT Ampang 

LRT Sri Petaling 
• Direct Interchange with minimal transverse. 

9 Sentul 
LRT Ampang 

LRT Sri Petaling 
• Direct Interchange with minimal transverse. 

10 Pudu 
LRT Ampang 

LRT Sri Petaling 
• Direct Interchange with minimal transverse. 

11 Maluri 
LRT Ampang 

MRT Kajang 

• Comprises of underground and elevated 

alignment. 

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for long walking. 
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(continued) 

12 Sungai Besi 
LRT Sri Petaling 

MRT Putrajaya 
• Proximity connection with minimal traverse. 

13 Putra Height 
LRT Sri Petaling 

LRT Kelana Jaya 

• Proximity connection with minimal traverse. 

• Interchange at the end of transit lines. 

14 Ampang Park 
LRT Kelana Jaya 

MRT Putrajaya 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Notable walking distance between platforms. 

• Exit and re-enter to the network is required. 

15 Dang Wangi 
LRT Kelana Jaya 

Monorail 

• Notable walking distance between platforms 

• Exit and re-enter to the network is required. 

16 Bukit Bintang 
MRT Kajang 

Monorail 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Exit and re-enter to the network is required. 

17 
Kwasa 

Damansara 

MRT Kajang 

MRT Putrajaya 

• Proximity connection with minimal traverse. 

• Interchange at the end of transit lines. 

18 
Tun Razak 

Exchange 

MRT Kajang 

MRT Putrajaya 
• Direct Interchange with minimal transverse. 

19 
Sultan Ismail / 

Medan Tuanku 

LRT Ampang 

LRT Sri Petaling 

Monorail 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for notable long 

walking distance. 

• Exit and re-enter to the network is required. 

20 Masjid Jamek 

LRT Ampang 

LRT Sri Petaling 

LRT Kelana jaya 

• Proximity connection with minimal traverse. 
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(continued) 

21 
Plaza Rakyat / 

Merdeka 

LRT Ampang 

LRT Sri Petaling 

MRT Kajang 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators and travelator for 

traverse between platforms.  

22 Hang Tuah 

LRT Ampang 

LRT Sri Petaling 

Monorail 

• Proximity connection with minimal traverse. 

• Exit and re-enter to the network is required 

between LRT and Monorail lines.  

23 
Chan Show 

Lin 

LRT Ampang 

LRT Sri Petaling 

MRT Putrajaya 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for long walking 

distance. 

24 Titiwangsa 

LRT Ampang 

LRT Sri Petaling 

MRT Putrajaya 

Monorail 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for long walking 

distance. 

• Exit and re-enter to the network is required 

between Monorail and other transit lines.  

25 
Kuala Lumpur 

/ Pasar Seni 

KTM Batu Cave 

KTM Tg Malim 

LRT Kelana Jaya 

MRT Kajang 

• Comprises of underground and elevated 

alignment.  

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for long walking 

distance between KTM and other transit line. 

• Exit and re-enter to the network is required 

between KTM and other transit line.  
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(continued) 

26 Putra / PWTC 

KTM Batu Cave 

KTM Tg Malim 

LRT Ampang 

LRT Sri Petaling 

• Facilitated with link bridge for notable long 

walking distance between KTM and LRT lines. 

• Exit and re-enter to the network is required 

between KTM and LRT lines.  

27 
Bank Negara / 

Bandaraya 

KTM Batu Cave 

KTM Tg Malim 

LRT Ampang 

LRT Sri Petaling 

• Facilitated with link bridge for notable long 

walking distance between KTM and LRT lines. 

• Exit and re-enter to the network is required 

between KTM and LRT lines. 

28 

KL Sentral / 

Muzium 

Negara 

KTM Batu Cave 

KTM Tg Malim 

MRT Kajang 

LRT Kelana Jaya 

Monorail 

• Comprises of underground MRT station and 

elevated alignment of other transit lines.  

• Facilitated with escalators for vertical 

movement. 

• Facilitated with link bridge for notable long 

walking distance between Monorail linking to 

other platforms through NU Sentral Mall. 

• Relatively shorter distance between LRT and 

KTM stations located within same building.  

• Exit and re-enter to the network is required for 

all transit lines. 

 

It is noted that all interchange connecting to both KTM transit lines 

requires exiting and re-entering to the network to transfer. This is due to the 

different operators of the transit lines where KTM lines are operated by 

Keretapi Tanah Melayu (KTMB) and LRT, MRT and Monorail are operated 

by Prasarana Malaysia Berhad. All monorail stations also require exiting and 

re-entering to the network due to remoteness of station location and 

extensively longer walking distance between connecting transit lines. 

 

3.3.1 Time Data 

Time data collection throughout Klang Valley urban rail transit network 

involves different methodologies due to constraints faced by each transit line. 
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The following sections explain the detailed steps of time data collection in 

each distinct transit line. 

 

3.3.1.1 LRT and MRT Stations 

The time interval data between each station are collected through sourcing 

data from the official websites of the urban rail transit network operators, 

which include Prasarana Malaysia Berhad and Keretapi Tanah Melayu Berhad 

(KTMB). The websites present the departure time of the last train at each 

station. Subsequently, the time interval between two stations in a same transit 

line is determined by computing the time difference with precision to minutes.  

The time for the last train leaving each station on Monday to Saturday 

has slight variation with Sunday due to the commuter demand. There is 

typically higher demand from Monday to Saturday due to regular work and 

school schedules. Figure 3.2 shows the time which the last train leaving the 

station in both directions. The time taken for the train to move to subsequent 

station can be computed. Since the time might have slight difference for trains 

moving towards Kajang and Kwasa Damansara directions, time interval for 

both directions are calculated and the maximum value between the same 

stations is considered. The sample time interval for both directions and 

maximum time interval between stations are shown in Table 3.2. A similar 

computation method is performed for all LRT and MRT stations.  

 

Figure 3.2: Operating Hours sample for MRT Kajang Line (MyRapid, 2024)

Table 3.2: Travel Time Between Stations for MRT Kajang Line 
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Station Name Time Taken (minute) 

From To 
Towards 

Kajang 

Towards 

Kwasa 

Damansara 

Maximum 

time taken 

Kwasa 

Damansara 

Kwasa 

Sentral 
2 3 3 

Kwasa 

Sentral 

Kota 

Damansara 
4 3 4 

Kota 

Damansara 
Surian 2 3 3 

Surian 
Mutiara 

Damansara 
2 3 3 

Mutiara 

Damansara 

Bandar 

Utama 
2 2 2 

Bandar 

Utama 
TTDI 3 3 3 

TTDI 
Phileo 

Damansara 
3 3 3 

Phileo 

Damansara 

Pusat Bandar 

Damansara 
3 4 4 

Pusat Bandar 

Damansara 
Semantan 2 2 2 

 

3.3.1.2 Monorail Line 

The last train leaving each station schedule of Monorail Line is not 

available on the official website of the operator Prasarana Malaysia Berhad. 

Therefore, the time interval between Monorail Line stations is collected with 

Google Map features. First, the station names of two adjacent monorail 

stations are entered into the search box of Google Map and the transit mode is 

selected as shown in Figure 3.3. Then, the time interval between two adjacent 

stations is displayed as shown in Figure 3.4 where the time interval between 
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Monorail Line KL Sentral station and Monorail Line Tun Sambanthan station 

is 3 minutes.  

 

 
Figure 3.3: Transit Route Between Monorail KL Sentral and Monorail Tun 

Sambanthan Station. 

 

 
Figure 3.4: Time Interval Between Monorail KL Sentral and Monorail Tun 

Sambanthan Station. 

 

3.3.1.3 Interchange Stations  

 However, the time interval data available on the websites is limited to 

the interval between stations of the same transit line. The time required for 

transfers between different transit lines within an interchange station is not 

available on the said websites. To address the incomplete data, an on-site 

survey was conducted at all interchange stations to collect data of transfer time 
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between different transit lines within an interchange station. A binomial 

coefficient formula is used to identify the number of combinations based on 

the number of intersecting transit lines within an interchange station as shown 

in Equation 3.1.  

 

 𝑛𝑛𝐶𝐶𝑟𝑟 (3.1) 

 

Where:  

𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑖𝑖𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑖𝑖𝑇𝑇 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 

𝑛𝑛 = 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑖𝑖𝑇𝑇 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 𝑖𝑖𝑛𝑛𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑖𝑖𝑛𝑛 𝑇𝑇 𝑝𝑝𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛 𝑖𝑖𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛  

 

The transfer time calculations involve the utilisations of a stopwatch 

to measure the total time taken to move from platform of one transit line to 

another platform within the interchange station. The inter-platform 

connectivity and the mode of transfer involved in each interchange station 

presented in Table 3.1 facilitate the calculation of transfer time. The transfer 

time between platforms is calculated with Equation 3.2 with the components 

of the interchange stations identified during the site data collections.  

 

 𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛𝑛𝑛 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑇𝑇𝑇𝑇𝑊𝑊𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 

+𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑛𝑛𝑊𝑊 𝐵𝐵𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 

+𝐸𝐸𝐸𝐸𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 

(3.2) 

 

Where: 

𝑊𝑊𝑇𝑇𝑇𝑇𝑊𝑊𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑊𝑊𝑇𝑇𝑇𝑇𝑊𝑊𝑖𝑖𝑛𝑛𝑖𝑖 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑛𝑛  

𝐸𝐸𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑛𝑛 𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 𝑖𝑖𝑛𝑛𝑛𝑛𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣 𝑤𝑤𝑖𝑖𝑇𝑇ℎ 𝑛𝑛𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛  

𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑛𝑛 𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 ℎ𝑇𝑇𝑛𝑛𝑖𝑖𝑜𝑜𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣 𝑤𝑤𝑖𝑖𝑇𝑇ℎ 𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛   

𝐿𝐿𝑖𝑖𝑛𝑛𝑊𝑊 𝐵𝐵𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑛𝑛 𝑤𝑤𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖 𝑇𝑇 𝑇𝑇𝑖𝑖𝑛𝑛𝑊𝑊 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 

𝐸𝐸𝐸𝐸𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑊𝑊𝑛𝑛𝑛𝑛 𝑛𝑛𝐸𝐸𝑖𝑖𝑇𝑇 𝑇𝑇𝑛𝑛𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛 𝑇𝑇ℎ𝑛𝑛 𝑛𝑛𝑛𝑛𝑇𝑇𝑤𝑤𝑇𝑇𝑛𝑛𝑊𝑊  

 

Pedestrian movement during escalator and travelator operations was 

intentionally omitted during the data collection process to simulate the 

condition during the crowded peak hours, where spaces of escalators are filled, 
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leaving no room for additional pedestrian movement. The walking speed is 

kept constant for all traversing to ensure consistent data collection. The 

collected data is rounded up to the nearest minutes to ensure standardised and 

cohesive representations of the transfer time to facilitate the analysis. 

 The transfer time data is collected on 5th January 2024. A total of 28 

interchange stations are visited for transfer time collection. The interchange 

stations have a total of 67 pairs of transfer paths between different platforms 

within interchange stations. Each pair is identified, and the transfer time is 

calculated and shown in Appendix A. The time period of transfer time data 

collection at interchange stations for each transit line is shown in Table 3.3. 

 

Table 3.3: Time Data Collection Period of Each Transit Line 

Transit Lines Time Data Collection Period 

MRT Putrajaya 10am – 11.30am 

LRT Sri Petaling 12pm – 2.30pm 

LRT Ampang 12pm – 2.30pm 

KTM Batu Cave 2pm – 3pm 

Monorail 3pm – 4pm 

MRT Kajang 4pm – 6pm 

LRT Kelana Jaya 7pm – 9pm 

KTM Tanjung Malim 7pm – 9pm 

 

3.3.2 Distance Data 

The data collection procedure for distance between stations includes the 

identification of coordinates for all stations with the help of Google Maps to 

precisely locate their positions. The estimated distance between each station 

pair along the railway are measured with the distance measurement feature 

available on Google Maps. The iterative processes are repeated systematically 

to collected distance data between all pairs of stations within the network. 

Data collected is documented in an Excel file with information including 

station names and distances between the station pairs.  
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The data collection of the transfer time between multiple transit lines 

within an interchange station involves measuring the time interval to traverse 

between platforms of one transit line and another. As such, the specific day in 

a week and the time in a day have minimal impact to the data collection. The 

collection of time interval and distance data between stations on the same 

transit line is not constrained by specific day and time. The flexibility enables 

the data collection to be conducted at any given moment with contingent of 

availability of computers and internet access.  

The estimated distance is facilitated with Google Map transit route 

feature. The OD station is keyed in into Google Map as shown in Figure 3.5. 

Then the actual alignment is traced and shown on the aerial view of Google 

Map as shown in Figure 3.6. The same figure also showcases the distance 

measuring feature of Google Map where the alignment of MRT is traced to 

measure the distance. 

 

 
Figure 3.5: Transit Route from Station MRT Surian to MRT Mutiara 

Damansara. 
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Figure 3.6: Measuring Estimated Distance Between Station MRT Surian and 

MRT Mutiara Damansara. 

 

3.3.3 Forecasted Network Data 

The analysis of the Klang Valley urban rail transit network includes the 

improvement analysis between the current operational network and the 

forecasted network that includes the provisional stations of the existing line, 

the under-construction LRT 3 and the proposed MRT Circle Line. Due to the 

unavailability of the travel time and distance between stations of LRT 3 and 

MRT Circle Line, multiple logical assumptions were made to facilitate the 

analysis of the impact of the new transit line to the network.  

The station location and the alignment of the under-construction LRT 

3 transit lines were confirmed as shown in Figure 3.7. The location and 

alignment of the LRT 3 are located with Google Map to measure the distance 

between stations.  
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Figure 3.7: LRT 3 Alignment Map (LRT 3, 2024). 

 

The exact location and alignment of stations not shown in aerial view 

of Google Map. The exact coordinates of the station and the alignment is 

confirmed by using Street View feature of Google Map as shown in Figure 3.8. 

Street View features is helpful to identify station locations where aerial view 

map is not updated.  

 
Figure 3.8: Street View of Station Jalan Meru 
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Then, the distance between each station can be obtained by measuring 

with distance measuring features of Google Map by tracing the alignment as 

shown in Figure 3.9. The LRT 3 alignment is measured to have a total length 

of 37.57 km, aligns with the 37 km total alignment length (LRT 3, 2024).  

 

 
Figure 3.9: Measuring Estimated Distance Between Station Kayu Ara and BU 

11 

 

However, MRT Circle Line was still in the proposal stage and the 

exact location of station and alignment of the MRT Circle Line were not 

confirmed as at the date of analysis. Therefore, the location of the station was 

estimated based on the map of proposed alignment of MRT Circle Line as 

shown in Figure 3.10.   
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Figure 3.10: Proposed Alignment of MRT Circle Line (Seah, 2022). 

 

In the data collection of the distance between stations of MRT Circle 

Line, an estimated alignment of the transit line was drawn on Google Map as 

shown in Figure 3.11 to facilitate an accurate estimation of the edge weight. 

To ensure a reliable and logical assumptions, the station location was 

estimated to be constructed on empty land and the alignment of the transit 

lines follows the empty available road network with a reasonable spacing 

between stations. The MRT Circle Line alignment is measured to have a total 

length of 50.93 km, aligns with the 51km total alignment length (MRT Corp, 

2024). 
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Figure 3.11: Estimated Alignment of MRT Circle Line Drawn on Google 

Map 

 

The time data of both LRT 3 and MRT Circle Line were not available. 

Therefore, the data were estimated based on the distance between stations with 

an average train speed assumed to be 50km/h considering the acceleration and 

deceleration of train coaches when departing and approaching a station. The 

travel time between stations was calculated and rounded up to the nearest 

minute.  

A total of 11 new interchange stations were created with the inclusion 

of the new transit lines. Assumptions to the distance and travel time data 

between different platforms within the same interchange stations were made 

due to the unavailability of the data. Taking the average value of the actual 

collected distance and time traversing between different platforms of the 

available interchange stations, the distance between stations was assumed to 

be 0.2km and the time taken was assumed to be 5 minutes.   
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3.3.4 Passenger Flow Data 

The analysis includes using passenger flow data as the parameters to analyse 

the urban rail transit network. The passenger flow data is available on the 

official government website with data provided by Prasarana (Government of 

Malaysia, 2024). The website provides the number of passengers flowing 

between any two stations. The number of passengers traverse between any two 

stations is used to construct a weighted network to analyse the urban rail 

transit network. However, the limitation of the website is the unavailability of 

passenger flow data for all KTM stations. Therefore, the analysis of passenger 

flow data includes only all MRT, LRT and monorail lines.  

The selection of time frame for passenger flow data is important to 

ensure the reliability and accuracy of the data collection and analysis. 

Passenger flow data for July 2023 is chosen for this study as the observation 

period has minimal disruption from school holidays and public holidays that 

may affect the number of passengers on certain stations, ensuring a more 

stable representation of regular commuter patterns. In addition, by selecting 

for monthly data instead of specific daily data can provide a consistent urban 

rail transit network usage trend as it prevents the potential inconsistency 

caused by variation between weekdays and weekends.  

The passenger flow data between any pairs of stations is obtained from 

the official government website. The OD station was selected accordingly as 

shown in Figure 3.12. Then, the passenger flow data for July 2023 is collected. 

The website displays the passenger flow data for both directions, data for both 

directions was collected, and the maximum value is selected to weigh the 

network.   

 
Figure 3.12: Ridership Data Between LRT Sentul and LRT Sentul Timur 

(Government of Malaysia, 2024) 



55 

3.4 Data Analysis 

This section explains the methodology in the analysis of the raw data with the 

aid of python code. Python code is used to process the iterative data analysis to 

ensure efficiency and reliability. 

 

3.4.1 Data Pre-processing 

To facilitate the evaluation of the performance of the Klang Valley urban rail 

transit network that is characterised by multiple lines with distinct colours, a 

systematic temporal naming of 4-digit station code is employed. The first two 

digits denote the specific transit line the station belongs to, and the subsequent 

two digits signifies the specific station. The coding mechanism facilitates the 

identification of both line and station by referencing the station node code. 

In the input data excel file, the first column is named “Node 1”, and the 

second column is named “Node 2”. The third column denotes the weight 

between the 2 nodes in the same row. This study considers analysis of 

unweighted network, time data weighted network, distance data weighted 

network, and passenger flow data weighted network.  

 

3.4.2 Network Construction 

Network construction can facilitate and enhance the development of network 

models that is used to evaluate the networks connectivity and dynamics over 

time (Scharler and Borrett, 2021). The authors also mentioned that collection 

of necessary data and parameterising of the network model is important in 

ensuring a reliable network construction.  

The representation gives a better representation of the actual network 

and displays the relationship between nodes, the weight of the edge, and 

interchange stations. Network construction can also help to cross check the 

input data file with the actual network to ensure reliable analysis in this study. 

The Klang Valley urban rail transit network is weighted with time data, 

distance data and passenger flow data. The current network and forecasted 

network are represented with Pyvis, a Python library used to create interactive 

network graph, as shown in Figure 3.13 and Figure 3.14 respectively. Pyvis 

map can display the name of each station and show the edge weight 
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represented by the line thickness with the respective colour according to the 

Klang Valley urban rail transit network map.  

 
Figure 3.13: Network Construction of Current Network with Pyvis. 

 
Figure 3.14: Network Construction of Forecasted Network with Pyvis. 
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3.4.3 Validation of Computation Method 

A comprehensive validation process was conducted to ensure the accuracy and 

reliability of the output result of each indicator computed with the Python code 

in analysing the urban rail transit network. A small sized sample network was 

randomly created with edge weights between each node pair is equal to 1 as 

shown in Table 3.4. Then the network is visualised with Pyvis to ensure 

correct connection among the nodes as shown in Figure 3.15. The process 

involves running the Python code with the input data and obtain the results to 

test the functionality of the code that returns the local and global values of the 

5 indicators. Then, the result values of each indicator of the same sample 

network were also manually computed using the formula presented in Section 

3.5. Results from both computations were cross-checked to verify consistency 

and accuracy. The validation process can help identify and address any 

discrepancy or error on the Python code before the computation of the actual 

network data.  

 

Table 3.4: Input Data for Small Sample Network 

Node 1 Node 2 Distance Colour Node 1 Colour Node 2 

0101 0102 1 #315090 #315090 

0101 0107 1 #315090 #315090 

0102 0107 1 #315090 #315090 

0102 0106 1 #315090 #315090 

0102 0103 1 #315090 #315090 

0103 0106 1 #315090 #315090 

0103 0104 1 #315090 #315090 

0104 0105 1 #315090 #315090 

0105 0106 1 #315090 #315090 

0106 0107 1 #315090 #315090 

0107 0108 1 #315090 #315090 

0108 0109 1 #315090 #315090 

0109 0105 1 #315090 #315090 

0109 0110 1 #315090 #315090 

0110 0111 1 #315090 #315090 
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Figure 3.15: Network Construction of Small Sample Network. 

 

3.4.4 Computation of Indicators 

The network performance value is computed based on the respective formulas 

of the 5 indicators which include average shortest path length, betweenness 

centrality, closeness centrality, degree centrality and clustering coefficient. 

The increasing number of nodes and edges of the urban rail transit network 

increases the complexity of the calculation of the selected indicator that 

involves high volume of repeated iterations. To ensure efficiency and accuracy 

Python code is used to perform the calculations of the indicators. The 

calculations and explanations to each of the selected indicators is broken down 

in section 3.5.  

 

3.4.5 Presentation of Results 

The results of 5 indicators for each individual node under different parameters 

weighted network analysis is computed. The values are categoriesed into equal 

size classes according to indicator values of each node. Next, the frequency of 

the indicator that falls under each of the classes is calculated. The 

corresponding probability of occurrence is computed by dividing the 

frequency of each class by the total frequency. Then, the probability of each 

class and the upper boundary value of each class is plotted on the graph. Then 

the x-axis and y-axis of the graph is changed to logarithmic scales. The graph 

is compared to a power law graph trendline.  
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Street (2017) explains the rate of change of variable can be affected by 

the exponent of a power law equation. The power law equation is represented 

with a general equation 𝑌𝑌 = 𝑀𝑀𝑋𝑋𝐵𝐵 . The exponent of the equation, B value, 

represents the rate of change of Y variable in respect of X variable. Positive B 

value indicates rate of increase of Y variable in respect to the increase of X 

variable, while a negative B value indicates the rate of decrease of Y variable 

with respect of the increase of X variable. The magnitude of B indicates the 

steepness of the increase or decrease.  

 

3.5 Network Performance Indicators Applied 

The network performance indicators are used to analyse the performance of 

the network quantitatively. The selected indicators quantitatively reflect the 

actual topological characteristics of the network. This subsection breaks down 

the computation of the indicators.  

 

3.5.1 Average Shortest Path Length 

Average shortest path length (L) measures the average distance or path 

between all pairs of nodes in a network. Local average shortest path length is 

the average number of paths the station requires to move to any other station 

of the network. The lower the value of average shortest path length indicates a 

more connected network and efficient network with less path required to reach 

another node. Equation 3.3 shows the formula to calculate the average shortest 

path length (Ding et al., 2015; Lin et al., 2020; Meng et al., 2020).  

 

 𝐿𝐿(𝑖𝑖) =
2

𝑁𝑁(𝑁𝑁 − 1)�𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

 (3.3) 

 

𝑊𝑊ℎ𝑛𝑛𝑛𝑛𝑛𝑛: 

𝐿𝐿(𝑖𝑖) = 𝐴𝐴𝑖𝑖𝑛𝑛𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖ℎ𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇ℎ 𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑇𝑇ℎ 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 

𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆ℎ𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖𝑛𝑛 𝑛𝑛𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑗𝑗 
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3.5.2 Betweenness Centrality 

Betweenness centrality (B) reflects the number of shortest paths connecting 

any two nodes that pass through a node. The greater betweenness centrality 

indicates the greater importance of the node acting as a mediator or a bridge in 

a network. The indicator is calculated by dividing the number of shortest paths 

passing through a node by the total number of shortest paths in the network. 

Equation 3.4 shows the formula to calculate betweenness centrality (Ding et 

al., 2015; Lin et al., 2020; Meng et al., 2020).  

 

 
𝐵𝐵𝑖𝑖 = �

𝜎𝜎𝑠𝑠𝑠𝑠(𝑖𝑖)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑠𝑠

 (3.4) 

 

𝑊𝑊ℎ𝑛𝑛𝑛𝑛𝑛𝑛: 

 𝐵𝐵𝑖𝑖 = 𝐵𝐵𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝐶𝐶𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑣𝑣 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

𝜎𝜎𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑖𝑖ℎ𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇ℎ 𝑖𝑖𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑇𝑇 

𝜎𝜎𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑖𝑖ℎ𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇ℎ 𝑖𝑖𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑇𝑇  

                          𝑇𝑇ℎ𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖ℎ 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

 

3.5.3 Closeness Centrality 

Closeness centrality (C) reflects the difficulty of other nodes from the network 

reaching a node. The greater the closeness centrality, the more connected the 

node to the entire network. The indicator is calculated with the reciprocal of 

the average shortest path length. Equation 3.5 shows the formula to calculate 

closeness centrality (Ding et al., 2015; Lin et al., 2020; Meng et al., 2020). 

 

 𝐶𝐶𝑖𝑖 =
𝑁𝑁 − 1
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

 (3.5) 

 

𝑊𝑊ℎ𝑛𝑛𝑛𝑛𝑛𝑛: 

𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑖𝑖𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑣𝑣 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 

𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆ℎ𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖𝑛𝑛 𝑛𝑛𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 𝑇𝑇𝑛𝑛𝑖𝑖 𝑗𝑗 
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3.5.4 Degree Centrality 

Degree centrality (D) is the index to reflect the connectivity of a node 

compared to another node. The degree of a node is calculated with the number 

of edges radiating outward from the node. The higher the degree indicates the 

greater connections the node has to another node in the network. 

 

3.5.5 Clustering Coefficient  

Clustering coefficient (CC) reflects the tendency of the neighbouring nodes of 

a node also connected to each other directly in a network. The greater the 

coefficient indicates the network is highly connected to enhance passenger 

transfer convenience. Equation 3.6 shows the formula to calculate clustering 

coefficient (Ding et al., 2015; Ma, Sallan, and Lordan, 2023). 

 

 𝐶𝐶𝐶𝐶(𝑖𝑖) =
2𝑛𝑛𝑖𝑖

𝑊𝑊𝑖𝑖(𝑊𝑊𝑖𝑖 − 1)
 (3.6) 

 

𝑊𝑊ℎ𝑛𝑛𝑛𝑛𝑛𝑛: 

𝐶𝐶𝐶𝐶(𝑖𝑖) = 𝐶𝐶𝑇𝑇𝑛𝑛𝑖𝑖𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 𝐶𝐶𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑇𝑇 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 𝑖𝑖𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖ℎ𝑛𝑛𝑇𝑇𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖 

𝑊𝑊𝑖𝑖 = 𝐷𝐷𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛 𝑖𝑖  

 

3.6 Summary  

This chapter summarises the methodology used in analysing the performance 

and connectivity of Klang Valley urban rail transit network. The urban rail 

transit network weighted with multiple parameters to yield the desired output 

analysis data. The parameters employed in this study include time data, 

distance data, and passenger flow data. The unweighted and weighted 

networks is analysed with the computation of quantitative indicators that 

include average shortest path length, betweenness centrality, closeness 

centrality, degree centrality and clustering coefficient. The output analysis data 

ranks the stations based on the computed indicator value.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter discusses the results obtained from the methodology. The urban 

rail transit network of Klang Valley is analysed with quantitative indicators 

that include average shortest path length, betweenness centrality, closeness 

centrality, degree centrality and clustering coefficient. While most research 

focuses on analysing the network with unweighted network, this study 

analyses the network with 3 realistic parameters that include time, distance, 

and the passenger flow data.  

The Klang Valley urban rail transit network is analysed from both 

supply and demand aspects. In the supply assessment, the current 

configuration of the network is analysed and compared with the forecasted 

network with the inclusion of provisional stations of the existing lines, the 

under-construction LRT 3, and the proposed MRT Circle Line to yield insight 

on the percentage improvement of the extended network. In the demand 

assessment, the network is analysed with passenger flow data and compared 

with the findings of the current network analysis to evaluate the compatibility 

between the supply of existing infrastructure with the current demand. The 

unweighted analysis of the current and forecasted Klang Valley urban rail 

transit network is compared with 8 major cities’ network to identify strengths 

and weaknesses for future improvement.  

The probability distribution graph of 5 indicators and the top 10 

performing stations are presented accordingly. The results for betweenness 

centrality, closeness centrality and clustering coefficients are normalised to 

standardise the values within the range of 0 and 1 for a fair comparison 

between networks of different sizes. 
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4.2 Validation of Python Code 

In the analysis of Klang Valley urban rail transit network, Python code is used 

to compute the values for 5 quantitative indicators including average shortest 

path length, betweenness centrality, closeness centrality, degree centrality and 

clustering coefficient. To validation process involves comparing the indicator 

values obtained by the code and hand calculations as explained in Section 

3.4.4. The validation process of the Python code with a small size sample 

network is crucial in ensuring the credibility and reliability of the actual 

analysis of the Klang Valley network. Validation of the code can avoid 

potential discrepancies of the results and mitigate the risk of pointless efforts 

and contributions in this study. The verified code can ensure reproducibility of 

the singular code to apply to various analysis scenarios including different size 

networks and different parameter-weighted network analysis. Table 4.1 shows 

the indicator value of the small size sample network based on the input data in 

Section 3.4.4 calculated with Python code. The values of each node were 

verified with hand-calculation based on the formula explained in Section 3.5.  

 

Table 4.1: Indicator Value of Small Sample Network with Python Code  

Node 

Average 

Shortest Path 

Length 

Betweenness 

Centrality 

Closeness 

Centrality 

Clustering 

Coefficient 

Degree 

Centrality 

0101 2.6 0 0.38 1.0 2 

0102 2.2 4.33 0.45 0.5 4 

0107 2.0 9.50 0.50 0.3 4 

0106 1.9 8.17 0.53 0.3 4 

0103 2.4 3.17 0.42 0.3 3 

0104 2.4 2.00 0.42 0 2 

0105 1.9 12.33 0.53 0 3 

0108 2.1 7.50 0.48 0 2 

0109 2.0 18.00 0.50 0 3 

0110 2.7 9.00 0.37 0 2 

0111 3.6 0 0.28 0 1 

Global 2.3 6.73 0.44 0.2 2.72 
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4.3 General Findings  

The general findings and observations are explained in this section. The 

longest OD pairs of both current and forecasted networks are identified and 

compared with the time taken to drive between the same OD. The driving time 

data are taken based on weekday peak hour on 9am Wednesday. The findings 

are presented separately based on overall network and urban network for 

better observation on the connectivity of stations located around central area 

of Klang Valley. The overall network observes the top 5 longest OD 

considering the whole network, while the urban network omits stations located 

significantly away from CBD area. The stations omitted in the urban network 

include Station Tanjung Malim to Station Sungai Buloh and Station Batu Tiga 

to Station Pelabuhan Klang from KTM Tanjung Malim Line, and Station 

Kajang 2 to Station Pulau Sebang from KTM Batu Cave Line.  

 
4.3.1 Current Network 

The top 5 longest pairs of OD of current network were identified and shown in 

Table 4.2. The top 5 longest OD generally takes more than 240 minutes of 

transit time as compared to around 130 minutes of driving time, almost two 

times the time taken to transit. The stations shown in the table are at the end of 

the radial KTM transit line station that located at suburban area that usually 

located at significant distance away from the CBD. There is minimal 

improvement to the longest OD of the current network with the inclusion of 

LRT 3 and MRT Circle Line in the forecasted network. This is because the 

alignment and interchange stations of the new transit lines provide minimal 

influence on the shortest path between the longest OD pairs.  
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Table 4.2: Top 5 Longest OD of Overall Current Network 

Station Time (min) 

From To 
Transit 

(Current) 

Transit 

(Forecasted) 
Driving 

Pulau Sebang Tanjung Malim 257 257 160 

Pulau Sebang Pelabuhan Klang 248 235 130 

Pulau Sebang K Kubu Bharu 242 242 160 

Pulau Sebang Jalan Kastam 241 228 130 

Rembau Tanjung Malim 240 240 150 

 

Table 4.3 shows the top 5 longest OD of urban current network where several 

suburban area stations were omitted to analyse the connectivity of the central 

part of the Klang Valley. Generally, the top 5 longest OD times of urban areas 

is significantly lower, with around 106 minutes. The stations shown in the 

table are located towards the end of the radial MRT Putrajaya Line and LRT 

Sri Petaling Line stations that located at peripheral area of Klang Valley with 

notable distance away from the CBD. Significant improvements were 

observed to the time taken to transit between the longest pair of OD of current 

network with the inclusion of LRT 3 and MRT Circle Line in the forecasted 

network. In general, a 30 minute or 30% reduction in transit time is observed. 

The shortest path between the OD initially passes through the CBD area along 

MRT Putrajaya Line, in the forecasted network, the shortest path switched to 

travelling along LRT 3. However, the time taken to drive between the OD is 

still significantly shorter compared to transit time. With about 3 times the 

driving time taken in the current network, reduced to around 2 times in 

forecasted network.  
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Table 4.3: Top 5 Longest OD of Urban Current Network 

Station Time (min) 

From To 
Transit 

(Current) 

Transit 

(Forecasted) 
Driving 

Sungai Buloh Puchong Prima 108 77 45 

Sungai Buloh Putra Heights 107 75 35 

Kampung Selamat Puchong Prima 106 73 45 

Kampung Selamat Putra Heights 106 71 35 

Sungai Buloh Puchong Perdana 106 79 40 

 

4.3.2 Forecasted Network 

The top 5 longest pairs of OD of forecasted network were identified and 

shown in Table 4.4. The top 5 longest OD in overall forecasted network 

generally from similar locations compared to overall current network. The 

longest OD takes around 235 minutes of transit time compared to around 130 

minutes of driving time, almost twice the time taken to transit. The stations 

shown in the table are at the end of the radial KTM transit line station that 

located at suburban area that usually located at significant distance away from 

the CBD. The OD pairs with maximum time taken to transit in overall network 

remain at 258 minutes between KTM Pulau Sebang and KTM Tanjung Malim 

stations. This is due to the alignment and interchange stations of LRT 3 and 

MRT Circle Line provides minimal influence on the shortest path between the 

OD pairs. A similar observation where transit has almost double the time 

taken compared to driving between same OD.  
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Table 4.4: Top 5 Longest OD of Overall Forecasted Network 

Station Time (min) 

From To Transit Driving 

Pulau Sebang Tanjung Malim 258 160 

Pulau Sebang K Kubu Bharu 243 160 

Rembau Tanjung Malim 241 150 

Pulau Sebang Rasa 237 150 

Pulau Sebang Pelabuhan Klang 235 130 

 

Table 4.5 shows the top 5 longest OD of urban forecasted network where 

several suburban area stations were omitted to analyse the connectivity of the 

central part of the Klang Valley. Generally, the longest OD pair in forecasted 

network takes longer time to transit compared to in the current network, with 

about 17 minutes difference. The table of longest OD pairs in urban forecasted 

network shows stations from LRT 3. The implementation of LRT 3 intended 

to serve the underserved areas around Klang. However, due to the radial 

characteristics and the station location at notable distance from the CBD area 

has increased the time taken to travel. With that said, the average shortest path 

length of the network still reduces notably with the inclusion of LRT 3 and 

MRT Circle Line. A similar observation where transit has almost doubled the 

time taken compared to driving between same OD.  

 

Table 4.5: Top 5 Longest OD of Urban Forecasted Network 

Station Time (min) 

From To Transit Driving 

Johan Setia Kajang 125 60 

Johan Setia Stadium Kajang 124 60 

Johan Setia Putrajaya Sentral 123 55 

Johan Setia Sungai Jernih 122 60 

Bandar Bukit Tinggi Kajang 122 60 



68 

4.3.3 Summary 

In short, the inclusion of LRT 3 and MRT Circle Line in the forecasted 

network has decreased the total time taken of the longest OD pairs observed in 

current urban network while minimal improvements to the overall network. 

Time taken to transit between the same OD is consistently around 2 to 3 times 

the time taken to drive.  

 

4.4 Current Network Operational Analysis 

This section evaluates the operational efficiency of the current Klang Valley 

urban rail transit network that consists of operational transit lines. The network 

is evaluated with unweighted, time weighted and distance weighted network to 

yield a comprehensive analysis of the network. The current operational 

network consists of 177 stations with 15,576 pairs of OD. 

Degree centrality and clustering coefficients are not considered in the 

time-weighted and distance-weighted network analysis. These two indicators 

primarily focus on the topological connection of a network without 

considering the weighted parameters like time and distance. Degree centrality 

measures the number of direct connections of a node, and clustering 

coefficient measures the tendency of a node cluster together in a network. 

Calculating the indicators with time and distance data does not provide 

relevant insight into the network. Focusing the analysis of time and distance 

weighted networks with average shortest path length, betweenness centrality 

and closeness centrality effectively addresses the key considerations of the 

analysis.   

 

4.4.1 Unweighted Network 

Table 4.6 shows the top 10 results of the unweighted network analysis of the 5 

indicators which include the average shortest path length, betweenness 

centrality, closeness centrality, degree centrality, and clustering coefficient of 

the current operational network. 
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Table 4.6: Top 10 Ranking Station of Unweighted Current Network Analysis 

 Average Shortest Path 
Length Betweenness Centrality Closeness Centrality Degree Centrality Clustering Coefficient 

1 Kuala Lumpur / 
Pasar Seni 8.64 MidValley 0.214 Kuala Lumpur / 

Pasar Seni 0.116 KL Sentral / 
Muzium Negara 9 KL Sentral / 

Muzium Negara 0.440 

2 KL Sentral / 
Muzium Negara 8.70 Seputeh 0.210 KL Sentral / 

Muzium Negara 0.115 Kuala Lumpur / 
Pasar Seni 8 Titiwangsa 0.350 

3 MidValley 9.04 Salak Selatan 0.206 MidValley 0.111 Bank Negara / 
Bandaraya 8 Kuala Lumpur / 

Pasar Seni 0.300 

4 Bank Negara / 
Bandaraya 9.06 Bandar Tasik 

Selatan 0.204 Bank Negara / 
Bandaraya 0.110 Putra / PWTC 8 Bank Negara / 

Bandaraya 0.300 

5 Plaza Rakyat / 
Merdeka 9.26 Angkasapuri 0.189 Plaza Rakyat / 

Merdeka 0.108 Titiwangsa 7 Putra / PWTC 0.300 

6 Masjid Jamek 9.32 Pantai Dalam 0.183 Masjid Jamek 0.107 
Plaza Rakyat / 

Merdeka 6 
Plaza Rakyat / 

Merdeka 0.167 

7 Seputeh 9.50 Petaling 0.176 Seputeh 0.105 Masjid Jamek 6 Masjid Jamek 0.167 

8 Bank Rakyat - 
Bangsar 9.55 Jalan 

Templer 0.170 Bank Rakyat - 
Bangsar 0.105 Hang Tuah 6 Hang Tuah 0.167 

9 Abdullah Hukum 9.59 Kg Dato 
Harun 0.164 Abdullah 

Hukum 0.104 Sultan Ismail / 
Medan Tuanku 6 Sultan Ismail / 

Medan Tuanku 0.167 

10 Putra / PWTC 9.62 Seri Setia 0.157 Putra / PWTC 0.104 Chan Show Lin 6 Chan Show Lin 0.167 

 Global 14.09 Global 0.052 Global 0.075 Global 2.41 Global 0.014 
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The global average shortest path length of the unweighted network is 14.09, 

indicating the network requires 14.09 steps to move from any node of the 

network to any other node on average. The results table shows notable 

consistency among average shortest path length, closeness centrality, degree 

centrality and clustering coefficients. In total, there are 6 stations concurrently 

appeared on the top 10 stations of the 4 indicators, namely Kuala 

Lumpur/Pasar Seni, KL Sentral/Muzium Negara, Bank Negara/Bandaraya, 

Putra/PWTC, Plaza Rakyat/Merdeka, and Masjid Jamek Station. These 

stations are among the interchange stations that intersect multiple transit lines 

of the network.  

However, results of betweenness centrality show rather different 

stations appeared on the list with MidValley and Seputeh stations topping the 

list of average shortest path length, betweenness centrality and closeness 

centrality concurrently. It is observed that stations that appear at the top list of 

betweenness centrality often do not appear elsewhere. Stations located in the 

CBD tend to have high redundancy in terms of the connections. Therefore, in 

the calculation of betweenness centrality, there is often multiple route choices 

to move around among the stations in the CBD. This dilutes the number of 

shortest paths passing through a station, which then leads to lower 

betweenness centrality of each station. In contrast, stations adjacent to the 

CBD stations have only singular route, increasing the number of shortest paths 

passing through, yielding a higher local betweenness centrality.  

It is observed that a limited number of stations exhibit high degree 

centrality and clustering coefficient values in the network analysis. This 

suggests the network has unequal distribution and lack of redundancy of 

interchange stations to reduce bottleneck congestion.  

 

4.4.2 Time Weighted Network 

Table 4.7 shows the top 10 results of the time-weighted network analysis of 

the current operational transit lines with average shortest path length, 

betweenness centrality and closeness centrality.  
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Table 4.7: Top 10 Ranking Station of Time-weighted Current Network Analysis 

 Average Shortest Path 
Length Betweenness Centrality Closeness Centrality 

1 Masjid Jamek 35.70 Bank Rakyat - 
Bangsar 0.225 Masjid Jamek 0.028 

2 Plaza Rakyat / 
Merdeka 35.83 Tun Razak 

Exchange 0.216 Plaza Rakyat / 
Merdeka 0.028 

3 Tun Razak 
Exchange 35.91 Abdullah Hukum 0.176 Tun Razak 

Exchange 0.028 

4 Kuala Lumpur / 
Pasar Seni 36.09 Cochrane 0.143 Kuala Lumpur / 

Pasar Seni 0.028 

5 Bank Rakyat - 
Bangsar 37.33 Sungai Besi 0.133 Bank Rakyat - 

Bangsar 0.027 

6 Conlay 37.59 Kuchai 0.128 Conlay 0.027 

7 Hang Tuah 37.67 Kuala Lumpur / 
Pasar Seni 0.124 Hang Tuah 0.027 

8 Bukit Bintang 37.75 Kerinchi 0.123 Bukit Bintang 0.027 

9 KL Sentral / 
Muzium Negara 37.75 Taman Naga 

Emas 0.123 KL Sentral / 
Muzium Negara 0.027 

10 Cochrane 37.89 Conlay 0.122 Cochrane 0.026 

 Global 58.65 Global 0.060 Global 0.019 

 

The global average shortest path length of the time-weighted network is 58.65 

minutes, which is considerably long travel period due to the extended KTM 

lines. From table 4.2, 5 out of the top 10 stations with high betweenness 

centrality values appeared in the top list of average shortest path length and 

closeness centrality list.  

Time-weighted network analysis considers the actual time taken to 

walk and traverse between different platforms of an interchange station. 

Results reveal top performing station in betweenness centrality list 

predominantly from CBD area. The shortest path length between any pair of 

stations in time-weighted analysis differs from unweighted network analysis. 

Stations revolved around CBD areas tend to have lower values of average 

shortest path length and closeness centrality due to the centric location and 
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dense interconnection with other transit lines, requiring less time to move to 

any other stations in the network.  

It is worth noting that KTM stations rarely top the list in time weighted 

network due to the longer journey time between stations and the longer 

transfer time between different platforms in the interchange stations compared 

to other transit lines.  

 

4.4.3 Distance Weighted Network 

Table 4.8 shows the top 10 results of the distance-weighted network analysis 

of the current operational transit lines with average shortest path length, 

betweenness centrality and closeness centrality.  

 

Table 4.8: Top 10 Ranking Station of Distance-weighted Current Network Analysis 

 Average Shortest Path 
Length Betweenness Centrality Closeness Centrality 

1 Masjid Jamek 15.63 Angkasapuri 0.187 Masjid Jamek 0.064 

2 Plaza Rakyat / 
Merdeka 15.65 Pantai Dalam 0.181 Plaza Rakyat / 

Merdeka 0.064 

3 Kuala Lumpur / 
Pasar Seni 15.71 Petaling 0.175 Kuala Lumpur / 

Pasar Seni 0.064 

4 Hang Tuah 15.83 Jalan Templer 0.168 Hang Tuah 0.063 

5 KL Sentral / 
Muzium Negara 15.98 Kg Dato Harun 0.162 KL Sentral / 

Muzium Negara 0.063 

6 Pudu 16.04 Abdullah Hukum 0.159 Pudu 0.062 

7 Bukit Bintang 16.09 
Bandar Tasik 

Selatan 0.156 Bukit Bintang 0.062 

8 Bank Negara / 
Bandaraya 16.10 Seri Setia 0.156 Bank Negara / 

Bandaraya 0.062 

9 Dang Wangi 16.18 Setia Jaya 0.150 Dang Wangi 0.062 

10 Imbi 16.20 Sungai Besi 0.141 Imbi 0.062 

 Global 28.48 Global 0.058 Global 0.042 
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The global average shortest path length of the distance-weighted network is 

28.48 kilometres. The 10 stations that top the betweenness centrality list do 

not appear in average shortest path length and closeness centrality lists. The 

edge weight of the distance-weighted network analysis considers the actual 

distance between stations. As such, the transfer distance between different 

platforms in an interchange station seemed relatively short when compared to 

the overall distance between stations. Therefore, the shortest path may pass 

through the multiple supplementary interchange stations to reach the 

destinations without considering the actual traverse time between platforms 

and the boarding and alighting time required. Stations with high betweenness 

centrality mainly located adjacent to KL Sentral/Muzium Negara station and 

along KTM Tanjung Malim line, rather similar to the top 10 stations of 

betweenness centrality of unweighted network analysis in Section 4.2.1. 

 

4.4.4 Graph 

Probability distribution graphs were used to analyse the likelihood of stations 

in the network exhibits high importance over other stations based on the 

quantitative indicators.  

 

4.4.4.1 Probability Distribution Graph of Unweighted Current Network  

This subsection discusses the probability distribution graphs of the unweighted 

current network based on 5 indicators that include average shortest path length, 

betweenness centrality, closeness centrality, degree centrality and clustering 

coefficient. Figure 4.1 shows the probability distributions of current network 

based on average shortest path length follows power law distribution, with an 

exponent of -3.945 and a regression value of 0.5863. Figure 4.2 shows the 

probability distributions of current network based on betweenness centrality 

follows power law distribution, with an exponent of -1.471 and a regression 

value of 0.7081. Figure 4.3 shows the probability distribution of current 

network based on closeness centrality follows normal distributions. Figure 4.4 

shows the probability distributions of current network based on degree 

centrality follows power law distribution, with an exponent of -2.912 and a 

regression value of 0.9986. Figure 4.5 shows the probability distributions of 
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current network based on clustering coefficient follows power law distribution, 

with an exponent of -2.892 and a regression value of 0.9885.  

Probability distribution graph of current network based on average 

shortest path length, betweenness centrality, degree centrality and clustering 

coefficients follows a power law distribution with a negative exponent ranging 

from -3.945 to -1.471. A negative exponent in power law distribution indicates 

an inverse relationship between the increase in indicator values and the 

corresponding probability. The probability of occurrence decreases 

exponentially as the indicator value increases. This suggests that only few 

number of stations have great influence and exhibits significant importance 

over the majority stations in the network. A higher magnitude of the exponents 

indicates a steeper decline in probability distribution of a node with higher 

indicator value and greater heterogeneity presence in the network. The 

probability distribution graph for average shortest path length has the greatest 

magnitude of exponent compared to other indicators, indicates the less 

likelihood of a node with extreme high average shortest path length while 

most stations generally have lower shortest path length to move around the 

network. The probability graph exhibits high regression value ranging from 

0.5863 to 0.9986. This indicates a great adherence of the distribution of each 

indicator value with the power law distribution. 

 

 
Figure 4.1: Probability Distribution Graph of Average Shortest Path Length of 

Unweighted Current Network 
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Figure 4.2: Probability Distribution Graph of Betweenness Centrality of 

Unweighted Current Network 

 
Figure 4.3: Probability Distribution Graph of Closeness Centrality of 

Unweighted Current Network 

 
Figure 4.4: Probability Distribution Graph of Degree Centrality of 

Unweighted Current Network 
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Figure 4.5: Probability Distribution Graph of Clustering Coefficient of 

Unweighted Current Network 

 

4.4.4.2 Probability Distribution Graph of Time-weighted Current 

Network  

This subsection discusses the probability distribution graphs of the time-

weighted current network based on 3 indicators that include average shortest 

path length, betweenness centrality, closeness centrality. Figure 4.6 shows the 

probability distributions of current network based on average shortest path 

length follows power law distribution, with an exponent of -3.466 and a 

regression value of 0.8536. Figure 4.7 shows the probability distributions of 

current network based on betweenness centrality follows power law 

distribution, with an exponent of -2.747 and a regression value of 0.6735. 

Figure 4.8 shows the probability distribution of current network based on 

closeness centrality follows normal distributions.  

The probability distribution in time-weighted network analysis is 

similar with graphs in unweighted network analysis with similar negative 

exponent values for average shortest path length and betweenness centrality, 

while closeness centrality follows normal distribution. The explanation for a 

negative exponent in power law distribution is the inverse relationship 

between the increase in indicator values and the corresponding probability. 

The probability of occurrence decreases exponentially as the indicator value 

increases. This suggests that only few number of stations have great influence 

and exhibit significant importance over the majority stations in the network. A 
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higher magnitude of the exponents indicates a steeper decline in probability 

distribution of a node with higher indicator value and greater heterogeneity 

presence in the network. The probability graph exhibits high regression value 

ranging from 0.6735 to 0.8536. This indicates a great adherence of the 

distribution of each indicator value with the power law distribution. 

The probability distribution graph for average shortest path length in 

time-weighted network analysis has slightly lower magnitude value of 

exponent compared to unweighted current network, suggests that the 

likelihood of having station with higher average shortest path length in time-

weighted network analysis is higher. Whereas the probability distribution of 

betweenness centrality in time-weighted network analysis has higher exponent 

magnitude compared to unweighted network analysis, this indicates a steeper 

decline and the decreased likelihood of stations having high betweenness 

centrality value. 

 

 
Figure 4.6: Probability Distribution Graph of Average Shortest Path Length of 

Time-weighted Current Network 
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Figure 4.7: Probability Distribution Graph of Betweenness Centrality of Time-

weighted Current Network 

 
Figure 4.8: Probability Distribution Graph of Closeness Centrality of Time-

weighted Current Network 

 

4.4.4.3 Probability Distribution Graph of Distance-weighted Current 

Network  

This subsection discusses the probability distribution graphs of the distance-

weighted current network based on 3 indicators that include average shortest 

path length, betweenness centrality, closeness centrality. Figure 4.9 shows the 

probability distributions of current network based on average shortest path 

length follows power law distribution, with an exponent of -3.745 and a 

regression value of 0.9959. Figure 4.10 shows the probability distributions of 

current network based on betweenness centrality follows power law 

distribution, with an exponent of -2.609 and a regression value of 0.8765. 
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Figure 4.11 shows the probability distribution of current network based on 

closeness centrality follows normal distributions.  

The probability distribution in distance-weighted network analysis is 

similar with graphs above with similar negative exponent values for average 

shortest path length and betweenness centrality, while closeness centrality 

follows normal distribution. The explanation for a negative exponent in power 

law distribution is the inverse relationship between the increase in indicator 

values and the corresponding probability. The probability of occurrence 

decreases exponentially as the indicator value increases. This suggest that only 

few number of stations have great influence and exhibit significant importance 

over the majority stations in the network. A higher magnitude of the exponents 

indicates a steeper decline in probability distribution of a node with higher 

indicator value and greater heterogeneity presence in the network. The 

probability graph exhibits high regression value ranging from 0.8765 to 

0.9959. This indicates a great adherence of the distribution of each indicator 

value with the power law distribution. 

The probability distribution graph for average shortest path length in 

distance-weighted network analysis has slightly lower magnitude value of 

exponent compared to unweighted network analysis, suggests that the 

likelihood of having station with higher average shortest path length in time-

weighted network analysis is higher. Whereas the probability distribution of 

betweenness centrality in time-weighted network analysis has higher exponent 

magnitude compared to unweighted network analysis, this indicates a steeper 

decline and the decreased likelihood of stations having high betweenness 

centrality value. The regression value of average shortest path length 

probability distribution in distance-weighted network analysis is close to 1, 

indicating the great adherence to power law distribution. This is due to the 

presence of few limited number of KTM stations located distanced away and 

beyond Klang Valley and these stations have significantly higher average 

shortest path length when analysed with distance as parameter.  
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Figure 4.9: Probability Distribution Graph of Average Shortest Path Length of 

Distance-weighted Current Network 

 
Figure 4.10: Probability Distribution Graph of Betweenness Centrality of 

Distance-weighted Current Network 

 
Figure 4.11: Probability Distribution Graph of Closeness Centrality of 

Distance-weighted Current Network 
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4.4.4.4 Graph Overview of Current Network 

All probability distribution graphs in current network analysis, except for 

closeness centrality, follow power law distribution, indicates the 

heterogeneous and scale-free characteristic of the network (Meghanathan, 

n.d.).  

Average shortest path length graph shows that majority of the stations 

have low value, indicating less steps to move between any pair of nodes with 

only few stations requires high number of paths to move to any other station, 

especially thoses station located at the end of the radial transit lines. 

Betweenness centrality graph shows most stations have low value, indicating 

limited influence on the network while only few stations have significantly 

higher value, suggesting the role as critical hubs with large number of shortest 

paths passing through. Degree centrality graph shows only few stations have 

high connections in the network and most stations only have two connections. 

Clustering coefficient graph shows only few stations have high number of 

supplementary connections between the neighbouring stations, while majority 

of the stations exhibit zero in clustering coefficient. Degree centrality obeys 

power law with great regression value, indicating the network exhibits scale-

free properties. 

All power law distribution graphs have negative exponent value, 

suggesting the rate of decrease of probability is higher than the rate of increase 

in network size. A higher magnitude of exponent indicates a more 

heterogeneous network, with only few stations having high indicator value and 

most of the stations having low value. The high regression value of each graph 

indicates the great adherence of the data distribution with power law 

distribution model. Closeness centrality distribution graph for 3 networks 

follows a normal distribution pattern, indicates evenly distributed network 

with minimal extreme values. The unweighted closeness centrality graph 

observed a left skewed normal distribution graph while time-weighted and 

distance-weighted graphs observed a right skewed normal distribution graph.  

 

 



82 

4.4.5 Summary 

Stations appeared on the top list of indicators show the importance of the 

station in the network. Stations that appeared on multiple indicator top list in 

different parameters weighted networks repeatedly show greater importance 

and influence over the network.  

The shortest path between same pair of OD may change when network 

is weighted with different parameters, causing changes to the importance 

ranking of stations in the network quantified by different indicators. The 

topological analysis reveals the important node and serves as key protected 

station.  

All power law distribution graphs have negative exponent, indicating 

the probability distribution decreases at a rate higher than the increase of 

network size. However, closeness centrality distribution follows a normal 

distribution pattern. The current network can be categorised as scale-free 

network. 
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4.5 Forecasted Network Operational Analysis 

This section evaluates the operational efficiency of the forecasted Klang 

Valley urban rail transit network that included the provisional stations of the 

existing lines, the under-construction LRT 3, and the proposed MRT Circle 

Line. The network is evaluated with unweighted, time-weighted, and distance-

weighted to yield a comprehensive analysis of the expanded network. The 

number of stations increased from 177 to 225 number of stations in the 

analysis of the forecasted network with 25,200 pairs of OD.   

The analysis of the forecasted network aims to predict the operational 

efficiency improvement with the implementation of the new transit line 

compared to the current operational urban rail transit network of Klang Valley.  

 

4.5.1 Unweighted Network 

Table 4.9 shows the top 10 results of the unweighted network operational 

analysis of the 5 indicators that include the average shortest path length, 

betweenness centrality, closeness centrality, degree centrality, and clustering 

coefficient of the forecasted network with the inclusion of LRT 3 and MRT 

Circle Line. 
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Table 4.9: Top 10 Ranking Station of Unweighted Forecasted Network Analysis 

 Average Shortest Path 
Length 

Betweenness 
Centrality Closeness Centrality Degree Centrality Clustering Coefficient 

1 Kuala Lumpur / 
Pasar Seni 9.45 Petaling 0.175 KL Sentral / 

Muzium Negara 0.106 KL Sentral / 
Muzium Negara 9 KL Sentral / 

Muzium Negara 0.440 

2 KL Sentral / 
Muzium Negara 9.45 Jalan Templer 0.170 Kuala Lumpur / 

Pasar Seni 0.106 Titiwangsa 9 Titiwangsa 0.440 

3 MidValley 9.90 Kg Dato 
Harun 0.166 MidValley 0.101 Kuala Lumpur / 

Pasar Seni 8 Kuala Lumpur / 
Pasar Seni 0.300 

4 Bank Negara / 
Bandaraya 9.93 Seri Setia 0.162 Bank Negara / 

Bandaraya 0.101 Bank Negara / 
Bandaraya 8 Bank Negara / 

Bandaraya 0.300 

5 Angkasapuri 10.05 Bandar Tasik 
Selatan 0.158 Angkasapuri 0.100 Putra / PWTC 8 Putra / PWTC 0.300 

6 Abdullah Hukum 10.07 Setia Jaya 0.158 
Abdullah 
Hukum 0.099 

Plaza Rakyat / 
Merdeka 6 

Plaza Rakyat / 
Merdeka 0.167 

7 Semantan 10.12 Pantai Dalam 0.155 Semantan 0.099 Masjid Jamek 6 Masjid Jamek 0.167 

8 Plaza Rakyat / 
Merdeka 10.16 MidValley 0.155 Plaza Rakyat / 

Merdeka 0.098 Hang Tuah 6 Hang Tuah 0.167 

9 Bank Rakyat - 
Bangsar 10.22 Seputeh 0.151 Bank Rakyat - 

Bangsar 0.098 Chan Show Lin 6 Chan Show Lin 0.167 

10 Pantai Dalam 10.24 Subang Jaya 0.150 Pantai Dalam 0.098 Sultan Ismail / 
Medan Tuanku 6 Sultan Ismail / 

Medan Tuanku 0.167 

 Global 14.85 Global 0.043 Global 0.071 Global 2.43 Global 0.012 
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The global average shortest path length of the unweighted forecasted network 

increased to 14.85. Interestingly, the inclusion of LRT 3 and MRT Circle line 

increased the difficulties to move from any node of the network to any other 

node. The implementation of a radial LRT 3 line with only 2 interchange 

stations increased overall network size and the number of steps to move 

around in the network despite the inclusion of MRT Circle line that provides 

10 interchange stations to provide alternatives routes to the network. A similar 

scenario of increment in average shortest path length with the network 

expansion is observed in unweighted network analysis by (Ding et al., 2015). 

The unweighted network analysis of the paper observes a smaller connectivity 

and less efficient with the expansion of stations in LRT Sri Petaling and LRT 

Kelana Jaya Lines of Klang Valley urban rail transit network. Scaggs (2021) 

mentioned that as the number of nodes and edges of a network increases, the 

density of the network decreases, causing the network to be considered as 

sparse network. The author mentioned that with the number of paths between 

OD increases as the density of the network decreases. The betweenness 

centrality list shows the stations mainly located around KTM Batu Cave Line 

and KTM Tanjung Malim Line, with Pantai Dalam station is the new 

interchange station connecting MRT Circle Line.  

The results table of the forecasted unweighted network analysis shows 

4 same stations appeared on the top list of average shortest path length, 

closeness centrality, degree centrality and clustering coefficients, namely 

Kuala Lumpur/Pasar Seni, KL Sentral/Muzium Negara, Bank 

Negara/Bandaraya, and Plaza Rakyat/Merdeka station, a decrement from 6 

stations of the current operational unweighted network analysis. The stations 

that concurrently topping the list of average shortest path length, betweenness 

centrality and closeness centrality is left with MidValley station. Suggesting 

the forecasted network exhibits a decentralised characteristic with less singular 

stations toping all list concurrently.   

Minimal changes to the degree centrality list with only Titiwangsa 

station have increment of degree centrality due to the inclusion of MRT Circle 

Line. The inclusion of the interchange station from the two transit lines 

increases the global degree centrality from 2.41 to 2.43. The clustering 

coefficient of the forecasted network reduces from 0.014 to 0.012 due to the 
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growing size of the network. This suggests the rate of growth of connections 

among station cannot keep pace with the network size growth rate as the 

additional stations do not offer increment of supplementary connections 

around a node, and instead relatively sparse distribution, which reduces the 

average clustering coefficient (Ding et al., 2015). The unweighted network 

analysis shows a generally decrement in multiple indicators in the forecasted 

network analysis. The possible explanation is the less accurate representation 

of each edge weight with 1 in the analysis compared to more realistic time and 

distance weighted network analysis.  
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4.5.2 Time Weighted Network 

Table 4.10 shows the top 10 results of the time-weighted network operational 

analysis of the 3 indicators that include average shortest path length, 

betweenness centrality and closeness centrality of the forecasted network with 

the inclusion of LRT 3 and MRT Circle Line. 

 

Table 4.10: Top 10 Ranking Station of Time-weighted Forecasted Network Analysis 

 Average Shortest Path 
Length 

Betweenness Centrality Closeness Centrality 

1 Masjid Jamek 36.08 
Jalan Klang 

Lama 0.147 Masjid Jamek 0.028 

2 Tun Razak 
Exchange 36.16 Kuchai 0.146 Tun Razak 

Exchange 0.028 

3 Kuala Lumpur / 
Pasar Seni 36.19 Pantai Dalam 0.129 Kuala Lumpur / 

Pasar Seni 0.028 

4 Plaza Rakyat / 
Merdeka 36.20 Glenmarie 2 0.123 Plaza Rakyat / 

Merdeka 0.028 

5 Bank Rakyat - 
Bangsar 36.53 Bandar Utama 0.117 Bank Rakyat - 

Bangsar 0.027 

6 Universiti 36.65 Universiti 0.117 Universiti 0.027 

7 Pantai Permai 36.73 
Tun Razak 
Exchange 0.116 Pantai Permai 0.027 

8 Jalan Klang Lama 36.98 Phileo 
Damansara 0.115 Jalan Klang Lama 0.027 

9 UM 37.09 Taman Naga 
Emas 0.115 UM 0.027 

10 Kerinchi 37.23 Bukit Kiara 
Selatan 0.114 Kerinchi 0.027 

 Global 55.00 Global 0.050 Global 0.020 

 

The global average shortest path length of the time-weighted forecast network 

is 55 minutes, a reduction of 3.65 minutes from the current network layout 

despite the increasing overall network size. The reduction of global average 

shortest path length signifies the improvement in travelling efficiency of the 
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overall network in terms of travelling duration, requiring less travelling time 

between OD.  

A network with lower global betweenness centrality values indicates a 

more decentralised and resilient network. The global betweenness centrality 

value decreased from 0.060 to 0.050 in the network expansion. Although a 

higher local betweenness centrality value means a node is important in a 

network, but an overly high value indicates higher possibility of bottleneck 

congestion at few critical nodes. The statement above is supported by the 

research done by Derrible (2012) where the betweenness centrality of central 

stations decreases with the additional number of nodes and edges, resulting in 

a more uniformly distributed centrality of stations, reducing the possibility 

where few stations dominate the network. The paper also mentioned that the 

decrease in dependency on specific nodes increases robustness of the network 

in handling unexpected disruptions and reduces the possibility of congestion at 

central stations.  

The new interchange stations alleviate the probability of congestion 

which can be observed with the reduction of local betweenness centrality 

values of each station in forecasted network from the current network. The 

alternative shortest path route emerged from the inclusion of LRT 3 and MRT 

Circle Line distributes traffic flow of the network to reduce the dependency on 

specific node. The global closeness centrality values increased from 0.019 to 

0.020 with the network expansion. This indicates that it is more efficient when 

connecting any node to any other node within the network.  

In the forecasted network analysis, 8 distinctive new stations from 

LRT 3 and MRT Circle Line appeared on the top list in time-weighted 

network analysis. This indicates the strategic station location and efficient 

routing of the new transit lines can effectively integrate with the existing rail 

lines. Bandar Utama and Glenmarie 2 station are the only 2 interchange 

stations that integrate LRT 3 with the current network. Therefore, both 

interchange stations may experience bottleneck congestion and appear on the 

top 10 list of betweenness centrality due to the scarcity of connection of the 

transit line with the network. Time-weighted network analysis shows the 

inclusion of LRT 3 and MRT Circle Line can effectively improve the overall 

connectivity of the network as suggested by the improvement on the global 
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values of multiple indicators and the emergence of multiple stations from new 

transit lines as the top important stations in the top ranking.  

 

4.5.3 Distance Weighted Network 

Table 4.11 shows the top 10 results of the distance-weighted network 

operational analysis of the 3 indicators that include average shortest path 

length, betweenness centrality and closeness centrality of the forecasted 

network with the inclusion of LRT 3 and MRT Circle Line. 

 

Table 4.11: Top 10 Ranking Station of Distance-weighted Forecasted Network Analysis 

 Average Shortest Path 
Length Betweenness Centrality Closeness Centrality 

1 Masjid Jamek 15.62 Sungai Besi 0.150 Masjid Jamek 0.064 

2 Kuala Lumpur / 
Pasar Seni 15.66 Pantai Dalam 0.148 Kuala Lumpur / 

Pasar Seni 0.064 

3 Plaza Rakyat / 
Merdeka 

15.66 Petaling 0.147 Plaza Rakyat / 
Merdeka 

0.064 

4 
KL Sentral / 

Muzium Negara 15.87 Jalan Templer 0.142 
KL Sentral / 

Muzium Negara 0.063 

5 Hang Tuah 15.88 Kg Dato Harun 0.138 Hang Tuah 0.063 

6 Bank Negara / 
Bandaraya 16.09 Subang Jaya 0.135 Bank Negara / 

Bandaraya 0.062 

7 Pudu 16.11 Seri Setia 0.134 Pudu 0.062 

8 Bukit Bintang 16.15 Setia Jaya 0.130 Bukit Bintang 0.062 

9 Dang Wangi 16.20 Glenmarie 2 0.129 Dang Wangi 0.062 

10 
Bank Rakyat - 

Bangsar 16.26 
Jalan Klang 

Lama 0.127 
Bank Rakyat - 

Bangsar 0.062 

 Global 27.14 Global 0.047 Global 0.043 

 

A pattern is observed whereby stations located at CBD areas tend to 

top the list of average shortest path length and closeness centrality, while 
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stations located near to residential areas along KTM lines top the list of 

betweenness centrality. 

As explained in the methodology chapter, the distance between each 

node of LRT 3 and MRT Circle Line is measured with Google Map with the 

estimated route planning and station location while the time interval is 

calculated by multiplying the distance with an estimated 50 km/h average 

speed of train. Despite the linear relationship between time data and distance 

data which shall yield a similar result, the analysis shows significant 

difference. None of the new stations from LRT 3 and MRT Circle Line 

appeared at the top list of average shortest path length and closeness centrality, 

and just 3 new stations top the list of betweenness centrality list. This indicates 

the lack of influence from the new stations on the efficiency of the network 

when analysed with distance data. The possible explanation to the disparity 

between time-weighted and distance-weighted analysis is the unique 

characteristic of interchange stations in both analyses.  

The distance data between platforms within an interchange station 

appears to be relatively short when compared to the distance between nodes, 

the shortest path between any node pair may pass through multiple 

interchange stations consisting of multiple transit lines to find the shortest 

distance route. In contrast, the time data between platforms within an 

interchange station captures the real traverse time that is similar to the interval 

time between pairs of nodes, the shortest path between any nodes may be 

limited to few paths with lower interval time. The time-weighted analysis 

shows the stations from forecasted network can provide a shorter time interval 

path. This suggests that the inclusion of MRT Circle Line offers route with 

shorter time interval but may not necessarily be a shorter distance route.  

A similar positive result was obtained from distance weighted network 

analysis. The global average shortest path length decreased from 28.48 

kilometres in the current network to 27.14 kilometres in the forecasted 

network, indicates that the shortest path length between any pair of nodes 

reduced by 1.34 kilometres on average. The inclusion of the MRT Circle Line 

provides shorter alternative route between any two nodes, facilitating a more 

efficient travelling around the network. A similar decreasing pattern for both 

local and global betweenness centrality is observed in distance-weighted 
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network analysis. The global betweenness centrality decreased from 0.058 to 

0.047 in the distance-weighted analysis indicating the distribution of shortest 

path between any pair of nodes to passing through more nodes rather than 

concentrating at several crucial nodes. This reduces the dependency on several 

important nodes which in turn reduces the potential of bottleneck congestion. 

The global closeness centrality of the network increased from 0.042 to 0.043 

with the network expansion, indicating slight improvement to the distance 

connectivity of the network.  

 

4.5.4 Graph 

Probability distribution graphs were used to analyse the likelihood of stations 

in the network exhibit high importance over other stations based on the 

quantitative indicators.  

 

4.5.4.1 Probability Distribution Graph of Unweighted Forecasted 

Network  

This subsection discusses the probability distribution graphs of the unweighted 

forecasted network based on 5 indicators that include average shortest path 

length, betweenness centrality, closeness centrality, degree centrality and 

clustering coefficient. Figure 4.12 shows the probability distributions of 

forecasted network based on average shortest path length follows power law 

distribution, with an exponent of -4.316 and a regression value of 0.7109. 

Figure 4.13 shows the probability distributions of forecasted network based on 

betweenness centrality follows power law distribution, with an exponent of -

1.878 and a regression value of 0.8145. Figure 4.14 shows the probability 

distribution of forecasted network based on closeness centrality follows 

normal distributions. Figure 4.15 shows the probability distributions of 

forecasted network based on degree centrality follows power law distribution, 

with an exponent of -3.615 and a regression value of 0.9994. Figure 4.16 

shows the probability distributions of forecasted network based on clustering 

coefficient follows power law distribution, with an exponent of -2.839 and a 

regression value of 0.9872.  

Probability distribution graph of forecasted network based on average 

shortest path length, betweenness centrality, degree centrality and clustering 
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coefficients follows a power law distribution with a negative exponent ranging 

from -4.316 to -1.878. A negative exponent in power law distribution indicates 

an inverse relationship between the increase in indicator values and the 

corresponding probability. The probability of occurrence decreases 

exponentially as the indicator value increases. This suggests that only few 

number of stations have great influence and exhibit significant importance 

over the majority stations in the network. A higher magnitude of the exponents 

indicates a steeper decline in probability distribution of a node with higher 

indicator value and greater heterogeneity presence in the network.  

The probability distribution graph for average shortest path length in 

unweighted forecasted network also has the greatest magnitude of exponent 

compared to other indicators, indicating the less likelihood of a node with 

extreme high average shortest path length while most stations generally have 

lower shortest path length to move around the network. The magnitude of 

exponent of average shortest path length, betweenness centrality and degree 

centrality in forecasted unweighted network has higher value compared to 

current network analysis, suggesting reduced tendency of a station having 

extreme high average shortest path length, betweenness centrality and degree 

centrality in comparison. This indicates the inclusion of new transit lines in 

forecasted network reduced the probability of stations having extreme long 

average shortest path length compared to the current operational network. The 

probability graph exhibits high regression value ranging from 0.7109 to 

0.9994. The forecasted unweighted network has higher regression value 

compared to current unweighted network, indicating a greater adherence of the 

distribution of each indicator value with the power law distribution. 
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Figure 4.12: Probability Distribution Graph of Average Shortest Path 

Length of Unweighted Forecasted Network 

 
Figure 4.13: Probability Distribution Graph of Betweenness Centrality of 

Unweighted Forecasted Network 

 
Figure 4.14: Probability Distribution Graph of Closeness Centrality of 

Unweighted Forecasted Network 
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Figure 4.15: Probability Distribution Graph of Degree Centrality of 

Unweighted Forecasted Network 

 
Figure 4.16: Probability Distribution Graph of Clustering Coefficient of 

Unweighted Forecasted Network 

 

4.5.4.2 Probability Distribution Graph of Time-weighted Forecasted 

Network 

This subsection discusses the probability distribution graphs of the time-

weighted forecasted network based on 3 indicators that include average 

shortest path length, betweenness centrality, closeness centrality. Figure 4.17 

shows the probability distributions of forecasted network based on average 

shortest path length follows power law distribution, with an exponent of -

4.326 and a regression value of 0.9845. Figure 4.18 shows the probability 

distributions of forecasted network based on betweenness centrality follows 

power law distribution, with an exponent of -1.753 and a regression value of 
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0.7136. Figure 4.19 shows the probability distribution of forecasted network 

based on closeness centrality follows normal distributions.  

The probability distribution in time-weighted network analysis is 

similar with graphs in unweighted network analysis with similar negative 

exponent values for average shortest path length and betweenness centrality, 

while closeness centrality follows normal distribution. The explanation for a 

negative exponent in power law distribution is the inverse relationship 

between the increase in indicator values and the corresponding probability. 

The probability of occurrence decreases exponentially as the indicator value 

increases. This suggests that only few number of stations have great influence 

and exhibit significant importance over the majority stations in the network. A 

higher magnitude of the exponents indicates a steeper decline in probability 

distribution of a node with higher indicator value and greater heterogeneity 

presence in the network. The probability graph exhibits high regression value 

ranging from 0.7136 to 0.9845. This indicates a great adherence of the 

distribution of each indicator value with the power law distribution. 

 

 
Figure 4.17: Probability Distribution Graph of Average Shortest Path 

Length of Time-weighted Forecasted Network 
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Figure 4.18: Probability Distribution Graph of Betweenness Centrality of 

Time-weighted Forecasted Network 

 
Figure 4.19: Probability Distribution Graph of Closeness Centrality of 

Time-weighted Forecasted Network 

 

4.5.4.3 Probability Distribution Graph of Distance-weighted Forecasted 

Network 

This subsection discusses the probability distribution graphs of the distance-

weighted forecasted network based on 3 indicators that include average 

shortest path length, betweenness centrality, closeness centrality. Figure 4.20 

shows the probability distributions of forecasted network based on average 

shortest path length follows power law distribution, with an exponent of -

3.981 and a regression value of 0.9984. Figure 4.21 shows the probability 

distributions of forecasted network based on betweenness centrality follows 

power law distribution, with an exponent of -1.601 and a regression value of 
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0.7799. Figure 4.22 shows the probability distribution of forecasted network 

based on closeness centrality follows normal distributions.  

The probability distribution in distance-weighted forecasted network 

analysis is similar with graphs above with similar negative exponent values for 

average shortest path length and betweenness centrality, while closeness 

centrality follows normal distribution. The explanation for a negative exponent 

in power law distribution is the inverse relationship between the increase in 

indicator values and the corresponding probability. The probability of 

occurrence decreases exponentially as the indicator value increases. This 

suggests that only few number of stations have great influence and exhibit 

significant importance over the majority stations in the network. A higher 

magnitude of the exponents indicates a steeper decline in probability 

distribution of a node with higher indicator value and greater heterogeneity 

presence in the network. The probability graph exhibits high regression value 

ranging from 0.7799 to 0.9984. This indicates a great adherence of the 

distribution of each indicator value with the power law distribution. 

The regression value of average shortest path length probability 

distribution in distance-weighted forecasted network analysis is similarly close 

to 1, indicating the great adherence to power law distribution. This is due to 

the presence of few limited number of KTM stations located distanced away 

and beyond Klang Valley and these stations have significantly higher average 

shortest path length when analysed with distance as parameter. 
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Figure 4.20: Probability Distribution Graph of Average Shortest Path 

Length of Distance-weighted Forecasted Network 

 
Figure 4.21: Probability Distribution Graph of Betweenness Centrality of 

Distance-weighted Forecasted Network 

 
Figure 4.22: Probability Distribution Graph of Closeness Centrality of 

Distance-weighted Forecasted Network 
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4.5.4.4 Graph Overview of Forecasted Network 

All graphs, except for closeness centrality in the forecasted network analysis, 

follow power law distribution, indicating the heterogeneous and scale-free 

characteristic of the network. 

The forecasted network analysis observes a similar trend across the 

indicators in different parameter-weighted networks. The average shortest path 

length graph reveals that most stations maintain low values, indicating shorter 

travel distances between them. Similarly, the betweenness centrality graph 

shows that most stations have low values, implying limited influence on the 

network, while few stations act as critical hubs with many shortest paths 

passing through them. The degree centrality graph reveals that only a few 

stations have high connectivity, with most stations having only two 

connections. Clustering coefficient graph illustrates that only a few stations 

have a high number of supplementary connections among neighbouring 

stations, while the majority exhibit zero clustering coefficient. Similarly, the 

forecasted network shows scale-free characteristic as evident by significant 

regression value of power law distribution of degree centrality graph.  

The power law distribution graphs in both current and forecasted 

network analysis show a negative exponent value, suggesting the rate of 

decrease of probability is higher than the rate of increase in network size. The 

high regression value of each graph suggests great adherence of the data 

distribution with power law distribution model. The exponent values in 

forecasted network analysis have some differences compared to current 

network analysis. The magnitude of average shortest path length and degree 

centrality graph exponents have slight increase while for betweenness 

centrality and clustering coefficient graphs decrease.  

Closeness centrality distribution graph for 3 networks follows a normal 

distribution pattern, indicates evenly distributed network with minimal 

extreme values. The unweighted, time-weighted, and distance-weighted 

closeness centrality graphs observed a left skewed normal distribution graph. 
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4.5.5 Summary 

The inclusion of LRT 3 and MRT Circle Line in the forecasted network shows 

improvement in time-weighted and distance-weighted network analysis, while 

unweighted analysis shows slight decrement in multiple indicators due to the 

less accurate and realistic representation of the edge weight.  

Although the distance and time between LRT 3 and MRT Circle Line 

stations are estimated based on 50km/h train speed, which shall return a linear 

relationship between the time and distance data, the new transit line stations 

having greater influence over the network in time-weighted network compared 

to distance-weighted network as evidenced by new stations superseding 

existing stations as the important stations in multiple indicator value ranking 

list.  

Similar to current network analysis, all power law distribution graphs 

in forecasted network have negative exponent value, suggest the probability 

distribution decreases at a rate higher than the increase of network size. 

Conversely, closeness centrality observes left skewed normal distribution 

pattern. The forecasted network can be categorised as scale-free network.  
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4.6 Passenger Demand Analysis 

With the increasing disparity between the supply and demand of the 

worldwide urban rail transit network, the compatibility of the network 

infrastructure with the passenger flow demand of Klang Valley urban rail 

transit network is evaluated.  

The current network is weighted and analysed with the available 

passenger flow data obtained from the operator website. However, data for 

KTM lines are not available. The network is modified with 131 stations with 

8,515 pairs of OD.  

Analysis in Section 4.2 and 4.3 focus on existing and forecasted 

network infrastructure and the topological connection. The analysis with 

passenger flow weighted network aims to obtain performance and connectivity 

insight of the network with quantitative indicators and compare with the 

existing network infrastructure to yield the compatibility between the supply 

and demand of the urban rail transit network.  

 

4.6.1 Unweighted Network 

Table 4.12 shows the top 10 results of the unweighted network operational 

analysis of the 4 indicators that include average shortest path length, 

betweenness centrality, closeness centrality and degree centrality of current 

operational urban rail transit network of Klang Valley excluding both KTM 

lines. 
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Table 4.12: Top 10 Ranking Station of Unweighted Modified Network Analysis 

 Average Shortest Path Length Betweenness Centrality Closeness Centrallity Degree Centrality 

1 Tun Razak Exchange 8.65 Tun Razak Exchange 0.366 Tun Razak Exchange 0.116 KL Sentral / Muzium 
Negara 5 

2 Bukit Bintang 8.72 Chan Show Lin 0.366 Bukit Bintang 0.115 Chan Show Lin 5 

3 Chan Show Lin 8.89 KL Sentral / Muzium 
Negara 0.343 Chan Show Lin 0.112 Titiwangsa 5 

4 Plaza Rakyat / 
Merdeka 8.94 Sungai Besi 0.321 Plaza Rakyat / 

Merdeka 0.112 Tun Razak Exchange 4 

5 Kuala Lumpur / Pasar 
Seni 9.14 Kuchai 0.299 Kuala Lumpur / Pasar 

Seni 0.109 Kuala Lumpur / Pasar 
Seni 4 

6 Pudu 9.15 Taman Naga Emas 0.291 Pudu 0.109 Bukit Bintang 4 

7 Masjid Jamek 9.16 Kuala Lumpur / Pasar 
Seni 0.268 Masjid Jamek 0.109 Maluri 4 

8 Hang Tuah 9.20 Bukit Bintang 0.244 Hang Tuah 0.109 Sungai Besi 4 

9 Conlay 9.21 Maluri 0.236 Conlay 0.109 Masjid Jamek 4 

10 Dang Wangi / Bukit 
Nanas 9.22 Bank Rakyat - Bangsar 0.199 Dang Wangi / Bukit 

Nanas 0.109 Hang Tuah 4 

 Global 13.73 Global 0.099 Global 0.078 Global 2.18 
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The urban rail transit network with the inclusion of both KTM lines provided 

additional 9 interchange stations around the network. The unweighted analysis 

of the modified network observes the effect of the exclusion of the interchange 

stations to facilitate the fair comparison with the passenger flow weighted 

network in the following section. 

The average shortest path length reduced to 13.73 compared to 14.09 

of the current networks with both KTM lines in Section 4.2. However, with 9 

interchange stations excluded in this analysis, the global degree centrality 

decreased to 2.18 as well.  

The results show 4 same stations toping lists of all 4 indicators, namely 

Tun Razak Exchange, Chan Show Lin, Kuala Lumpur / Pasar Seni, and Bukit 

Bintang stations. These stations are among the most crucial stations in the 

network and located around CBD areas.  

 

4.6.2 Passenger Flow Weighted Network 

Table 4.13 shows the top 10 results of the passenger flow weighted network 

demand analysis of the 4 indicators that include average shortest path length, 

betweenness centrality, closeness centrality and degree centrality of current 

operational urban rail transit network of Klang Valley excluding both KTM 

lines.  
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Table 4.13: Top 10 Ranking Station of Passenger Flow Weighted Modified Network Analysis 

 Average Distance Betweenness Centrality Closeness Centrality Degree Centrality 

1 Bukit Bintang 3.63 Tun Razak Exchange 0.547 Bukit Bintang 0.276 KL Sentral / Muzium 
Negara 130126 

2 Dang Wangi / Bukit 
Nanas 3.64 Bukit Bintang 0.493 Dang Wangi / Bukit 

Nanas 0.275 KLCC 78205 

3 Tun Razak Exchange 3.64 KL Sentral / Muzium 
Negara 0.440 Tun Razak Exchange 0.275 Kuala Lumpur / Pasar 

Seni 76762 

4 Raja Chulan 3.65 Masjid Jamek 0.400 Raja Chulan 0.274 Bukit Bintang 74579 

5 Imbi 3.66 Kuala Lumpur / Pasar 
Seni 0.394 Imbi 0.273 Ampang Park 72698 

6 
Plaza Rakyat / 

Merdeka 3.66 
Dang Wangi / Bukit 

Nanas 0.365 
Plaza Rakyat / 

Merdeka 0.273 Bank Rakyat - Bangsar 56797 

7 Masjid Jamek 3.67 Chan Show Lin 0.345 Masjid Jamek 0.272 Imbi 41182 

8 Cochrane 3.69 Cheras 0.312 Cochrane 0.271 Tun Razak Exchange 39583 

9 Kuala Lumpur / Pasar 
Seni 3.70 Salak Selatan 0.304 Kuala Lumpur / Pasar 

Seni 0.270 Maluri 37452 

10 Chan Show Lin 3.71 Sungai Besi 0.299 Chan Show Lin 0.270 Surian 36967 

 Global 6.35 Global 0.112 Global 0.183 Global 12225 
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An anticipated analysis outcome suggests that most top-ranking stations in 

passenger flow weighted analysis located around CBD. The stations around 

CBD areas are often associated with economic activities that attracts 

significant number of commuters. The results of the passenger flow weighted 

network analysis shows that 6 stations concurrently top the list of average 

shortest path length, betweenness centrality and closeness centrality; namely 

Kuala Lumpur / Pasar Seni, Chan Show Lin, Masjid Jamek, Bukit Bintang, 

Dang Wangi / Bukit Nanas, and Tun Razak Exchange stations. These are 

among the stations with great influence on the overall network when 

considering the number of passengers passing through each node on daily 

basis. Stations with high betweenness centrality value may be susceptible to 

nodal attacks, which can jeopardise the connectivity of the network. 

Degree centrality in passenger flow weighted network analysis 

represents the number of passengers flowing through a single node. It is 

observed that 4 stations having high number of passengers flow despite not 

serving as an interchange station. The possible explanation is that these 

stations are the important destination stations where most passengers 

disembark the train to work. The top stations with high numbers of passengers 

are all located at CBD of Kuala Lumpur, passengers from peripheral area 

around Klang Valley commute to the top-ranking stations located at the city 

centre. As such, stations with high number of connections does not necessarily 

mean high passenger flow.  

The result tables show most of the top stations of the current network 

operational analysis in section 4.2 and the unweighted analysis of the modified 

network excluding all KTM lines matches with the top stations of the 

passenger flow weighted network analysis. This indicates the network’s 

infrastructure effectively aligns with the passenger flow demand and usage 

pattern, which contributes to the overall connectivity and functionality of the 

network.  

Individual station may have different ranking in topological analysis 

and passenger flow weighted analysis. Stations that rank high in both section 

4.2 and passenger flow weighted network analysis illustrate the strong 

alignment and correlation between the supply and demand of the network. 

Indicating effectiveness of the network in facilitating passenger movement. 
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Stations that rank high in Section 4.2 but low in passenger flow weighted 

network analysis exhibit underutilization of the station in the network. This 

can be caused by unoptimized station location or inadequate accessibility 

around the station. Whereas station that ranks low in section 4.2 but significant 

in passenger flow weighted network analysis shows overutilization of the 

station. These stations were potentially built before urbanisation, which cause 

exponential increase in passenger flow over time. These stations shall be 

closely monitored to mitigate potential capacity constraints and bottleneck 

congestion.  

 

4.6.3 Graph 

Linear graphs are plotted to facilitate the quantitative compatibility 

comparison between current network infrastructure and the passenger flow 

demand. The comparison was conducted for the average shortest path length, 

betweenness centrality and closeness centrality ranking of unweighted 

network, time-weighted network, and distance-weighted network between the 

current operational network analysis and passenger demand analysis.  

The results for the passenger flow analysis are sorted in ascending and 

the station name is represented with the ranking of the list. This yielded a 

linear line for the passenger flow weighted indicator ranking with regression 

line equal to 1. The results for unweighted network, time-weighted network, 

and distance-weighted network analysis are treated similarly and the rankings 

are then sorted out. Both data are then plotted on the same graph to observe 

the changes of the station ranking in different parameter weighted analysis and 

the compatibility of the station ranking between supply and demand. The 

analysis facilitates the identification of underutilisation and overutilisation of 

stations in the network.  

 

The passenger flow weighted analysis ranking is compared with 

topological analysis of network that is unweighted, time-weighted, and 

distance-weighted. Graphs for average shortest path length and closeness 

centrality shows relatively high correlation in different parameter-weighted 

network analysis with minimal fluctuation of station ranking. This indicates 

that from the perspective of average shortest path length and closeness 
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centrality, the currently available urban rail transit network infrastructures 

align effectively with the passenger flow demand. In contrast, the graphs for 

betweenness centrality shows relatively low regression value with significant 

fluctuations of station ranking in 3 different parameter weighted analysis. This 

indicates that stations that is important in topological analysis may not 

necessarily have high passenger flow passing through. Figure 4.23 to Figure 

4.31 shows the compatibility between supply and demand for unweighted, 

time-weighted and distance-weighed network analysis. 

 

4.6.3.1 Compatibility Comparison of Average Shortest Path Length  

This subsection discusses the compatibility between passenger flow weighted 

analysis with unweighted, time-weighted and distance-weighted current 

network analysis based on average shortest path length. Figure 4.23 shows the 

ranking comparison between demand based on passenger flow weighted 

network analysis with unweighted network analysis based on average shortest 

path length, with regression value of 0.6349. Figure 4.24 shows the ranking 

comparison between demand based on passenger flow weighted network 

analysis with time-weighted network analysis based on average shortest path 

length, with regression value of 0.8137. Figure 4.25 shows the ranking 

comparison between demand based on passenger flow weighted network 

analysis with distance-weighted network analysis based on average shortest 

path length, with regression value of 0.7897. 

 The regression value of the compatibility graph based on average 

shortest path length was relatively high with minimal fluctuations between 

station rankings based on supply and demand. This indicates that from the 

perpective of average shortest path length, the currently available urban rail 

transit network infrastructures align effectively with the passenger flow 

demand. 
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Figure 4.23: Compatibility Comparison of Average Shortest Path Length 

of Unweighted Network 

 
Figure 4.24: Compatibility Comparison of Average Shortest Path Length 

of Time-weighted Network 

 
Figure 4.25: Compatibility Comparison of Average Shortest Path Length 

of Distance-weighted Network 
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4.6.3.2 Compatibility Comparison of Betweenness Centrality 

This subsection discusses the compatibility between passenger flow weighted 

analysis with unweighted, time-weighted and distance-weighted current 

network analysis based on betweenness centrality. Figure 4.26 shows the 

ranking comparison between demand based on passenger flow weighted 

network analysis with unweighted network analysis based on betweenness 

centrality, with regression value of 0.1758. Figure 4.27 shows the ranking 

comparison between demand based on passenger flow weighted network 

analysis with time-weighted network analysis based on betweenness centrality, 

with regression value of 0.2961. Figure 4.28 shows the ranking comparison 

between demand based on passenger flow weighted network analysis with 

distance-weighted network analysis based on betweenness centrality, with 

regression value of 0.2616. 

 The regression value of the compatibility graph based on betweenness 

centrality was relatively low with notable fluctuations between station 

rankings based on supply and demand. This indicates that from the aspect of 

betweenness centrality, significant improvement on the currently available 

urban rail transit network infrastructures were required to align effectively 

with the passenger flow demand. Stations that is important in topological 

analysis may not necessarily have high passenger flow passing through. 

 

 
Figure 4.26: Compatibility Comparison of Betweenness Centrality of 

Unweighted Network 
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Figure 4.27: Compatibility Comparison of Betweenness Centrality of 

Time-weighted Network 

 
Figure 4.28: Compatibility Comparison of Betweenness Centrality of 

Distance-weighted Network 

 

4.6.3.3 Compatibility Comparison of Closeness Centrality 

This subsection discusses the compatibility between passenger flow weighted 

analysis with unweighted, time-weighted and distance-weighted current 

network analysis based on average shortest path length. Figure 4.29 shows the 

ranking comparison between demand based on passenger flow weighted 

network analysis with unweighted network analysis based on closeness 

centrality, with regression value of 0.6349. Figure 4.30 shows the ranking 

comparison between demand based on passenger flow weighted network 

analysis with time-weighted network analysis based on closeness centrality, 

with regression value of 0.8137. Figure 4.31 shows the ranking comparison 
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between demand based on passenger flow weighted network analysis with 

distance-weighted network analysis based on closeness centrality, with 

regression value of 0.7897. 

 The regression value of the compatibility graph based on closeness 

centrality has similar results with graphs based on average shortest path length, 

both have relatively high values with minimal fluctuations between station 

ranking based on supply and demand. This indicates that from the aspect of 

closeness centrality, the currently available urban rail transit network 

infrastructures align effectively with the passenger flow demand. 

 

 
Figure 4.29: Compatibility Comparison of Closeness Centrality of 

Unweighted Network 

 
Figure 4.30: Compatibility Comparison of Closeness Centrality of Time-

weighted Network 
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Figure 4.31: Compatibility Comparison of Closeness Centrality of 

Distance-weighted Network 

 

4.6.4 Summary 

The comparison between topological analysis and passenger demand analysis 

reveals the effectiveness of the network fulfilling the usage pattern. 

Compatibility graph for average shortest path length and closeness centrality 

observes a minimal fluctuation for different parameter-weighted networks 

while betweenness centrality graph shows significant fluctuation with 

relatively lower regression value. While there is predominantly positive 

correlation between supply and demand, which indicates partial compatibility 

of the current network with the passenger flow demand, there remains room 

for improvement to the network.  
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4.7 Global Network Overview 

This section compares the performance and connectivity of the current and 

forecasted urban rail transit network of Klang Valley with multiple major 

cities. Zhang et al (2013) have conducted a comprehensive study in calculating 

the topological characteristics of 30 urban rail transit networks worldwide. 

The study analysed the unweighted network with multiple indicators based on 

graph theory and complex network theory. The results for 5 major countries 

and their corresponding node numbers, average shortest path length, 

betweenness centrality, degree centrality, and clustering coefficient values are 

extracted to facilitate the comparative analysis with the Klang Valley network. 

Table 4.9 shows the indicator values of urban rail transit network of 5 major 

cities compared to current and forecasted Klang Valley network. The ranking 

of the multiple indicator values according to Table 4.14 is shown in Figure 

4.32.  

 

Table 4.14: Indicator Values of Major Cities Urban Rail Transit Network 

City Node 
Degree 

Centrality 

Betweenness 

Centrality 

Clustering 

Coefficient 

Average 

Shortest 

Path Length 

Klang Valley 177 2.41 1246.5 0.0143 14.09 

Klang Valley 

(Forecasted Network) 
225 2.43 1085.0 0.0116 14.85 

Hong Kong* 90 2.09 574.3 0.0241 11.91 

Paris* 300 2.37 1945.6 0.0157 12.01 

Tokyo* 227 2.42 1270.4 0.0338 10.23 

London* 323 2.32 2464.9 0.0387 14.31 

New York* 422 2.34 2794 0.0365 12.13 

*Source: Zhang et al. (2019) 
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Figure 4.32: Global Network Ranking with Indicators 

 

The Klang Valley network has 177 nodes and increase to 225 nodes in 

the forecasted network. Although the Klang Valley network has greater 

number of nodes compared to cities with lower populations like Hong Kong, 

the network still has lower number of nodes compared to large cities like New 

York and London network.  

The average betweenness centrality values show a linear increment 

trend compared to the increase of number of nodes (Zhang et al., 2013). The 

increase in node number can increase the number of node pairs. A higher 

average betweenness centrality illustrates a more centralised network while a 

lower value means a decentralised network. The betweenness centrality 

ranking of current and forecasted network of Klang Valley lies at relatively 

low position, indicating relatively decentralised network.  

High average degree centrality indicates high number of interchange 

stations and improved connectivity around the network. The current Klang 

Valley network ranks number 3 and increase to ranking number 1 with the 

forecasted network due to the increment of number of interchange stations. 

Tokyo, Paris and New York networks are among those with high degree 

centrality.  

Clustering coefficient ranking also has a similar ranking trend with the 

node number and betweenness centrality ranking among the networks with 

slight changes. The current and forecasted Klang Valley networks are among 
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the networks with the lowest clustering coefficient. London has the highest 

clustering coefficient, indicates highly interconnections among the stations of 

the network. Hong Kong network with relatively low rankings for node 

number, degree centrality and betweenness centrality has a high clustering 

coefficient and average shortest path length ranking, indicating the well-

established and well-planned network with great connectivity. 

The current and forecasted network of Klang Valley has relatively low 

ranking among the networks. The Klang Valley network has high degree 

centrality but low in average shortest path length. The possible reason to the 

disparity is the lack of optimisation of interchange station location selection 

which did not provide optimised shortest path between OD. The overall trend 

of current and forecasted network of Klang Valley is similar when ranked 

among the networks. New York, London, Tokyo and Paris networks among 

the networks with consistent high ranking for all 5 indicators.  

Acknowledging the limitations of the data extracted from the research 

paper by Zhang et al. (2013) is important. With the advancement and 

increasing attention to the urban rail transit network, the results obtained dated 

back in 2013 may be superseded with results from an improved network. The 

comparative analysis of the current and forecasted network of the Klang 

Valley highlights underscore deficiency in terms of multiple indicators when 

compared to well established networks of major cities, which highlights the 

need for improvements within the Klang Valley network infrastructure to 

enhance connectivity and align with global transit standards. 
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4.8 Summary 

The findings in this study mainly focus on the comparative analysis and the 

percentage improvement of the forecasted network with the inclusion of LRT 

3 and MRT Circle Line compared to the current operational Klang Valley 

urban rail transit network, and the compatibility between the supply and 

demand of the network is discussed in this chapter. Figure 4.33 shows the 

percentage improvement of global indicator value of the forecasted network 

compared to the current network.  

 

 
Figure 4.33: Percentage Improvement Comparison Between Current and 

Forecasted Network. 

 

Average shortest path length, betweenness centrality and closeness 

centrality show positive improvement in multiple parameter-weighted network, 

except for unweighted network analysis due to the unrealistic representation of 

edge weight. Degree centrality shows minor increment in average number of 

connections due to the new interchange station with the inclusion of new 

transit lines. However, clustering coefficient shows drastic decrement due to 

the increase of network size, indicating the rate of connection increase among 

nodes cannot keep pace with the increase of network size. New stations from 

LRT 3 and MRT Circle Line superseding the previous stations as the top-

ranking stations indicates the effective alignment of the new stations. Stations 

concurrently appear on multiple indicators in different parameter-weighted 
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network analysis list have greater influence on the network. Probability 

distribution graph for all indicators when weighted with different parameters 

in current and forecasted network shows strong correlation with power law 

distribution pattern, except for closeness centrality follows normal distribution 

pattern.  

The study also analyses the network supply and demand. Figure 4.34 

shows the regression value of the compatibility between available network 

infrastructure with the passenger flow demand results.  

 

 
Figure 4.34: Regression Value of Compatibility Between Supply and 

Demand 

 

The compatibility results show overall positive correlation between the 

supply and demand of the urban rail transit network of Klang Valley, except 

for betweenness centrality with relatively lower regression value, indicating 

improvements to the network infrastructure is required to improve the 

correlation between supply and demand. Comparison between the topological 

connection with passenger flow demand helps identify underutilization or 

overutilization of a station, guiding improvement efforts. The ranking 

comparison of the current operational and forecasted Klang Valley urban rail 

transit network with 8 major city networks shows deficiency in multiple 

indicators, indicating improvement is required to align with global transit 

network standards.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, the study of the Klang Valley urban rail transit network with 

journey time, distance, and passenger flow data weighted network analysis and 

computed with 5 quantitative indicators provides comprehensive insight to the 

performance and connectivity of the network.  

The performance of the current and forecasted Klang Valley urban 

rail transit network was quantitatively compared with 5 indicators including 

average shortest path length, betweenness centrality, closeness centrality, 

degree centrality and clustering coefficient in unweighted, time-weighed and 

distance weighted network. The global average shortest path length value 

shows 5.38% decrement in unweighted network analysis while an increment 

of 6.23% and 4.71% were observed in time-weighted and distance-weighted 

network analysis respectively. A similar pattern was observed in global 

closeness centrality value with 5.16% decrement in unweighted network 

analysis while an increment of 6.06% and 3.50% were observed in time-

weighted and distance-weighted network analysis respectively. The reduction 

in average shortest path length and closeness centrality in unweighted network 

analysis is due to the inaccurate representation of edge weighted compared to 

time and distance. An overall increase in global betweenness centrality for 

unweighted, time-weighted and distance-weighted with 16.05%, 17.89% and 

18.75% positive improvement respectively. The introduction of new transit 

lines to the network has enhanced the connectivity and reduction of 

significance of each individual station, evidenced by the reduction of local and 

global betweenness centrality, which reduce the possibility of bottleneck 

congestion. A minimal 0.83% improvement to the global degree centrality was 

observed in the unweighted network analysis due to the increased interchange 

stations while a significant decrement of 18.53% to the global clustering 

coefficient due to the lack of connections among adjacent stations with the 

increase in network size. The emergence of stations from LRT 3 and MRT 
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Circle Line on the top-ranking stations shows effective alignment of the new 

transit lines. The introduction of new transit lines to the network has enhanced 

the connectivity and reduction of significance of each individual station, 

evidenced by the reduction of local and global betweenness centrality, which 

reduces the possibility of bottleneck congestion.  

The compatibility of the network’s infrastructure and the passenger 

flow demand is compared in this study. The regression value of the 

comparison between supply and demand based on average shortest path length 

and closeness centrality was relatively high with values ranging from 63.49% 

to 78.97%, while relatively lower value for betweenness centrality with values 

ranging from 17.58% to 29.61%. The ranking difference for each station 

facilitates the identification of underutilisation and overutilization of a station. 

The partial compatibility between the supply and demand suggests the rooms 

for improvement to the network. 

The performance and connectivity of the current and forecasted 

network is compared with urban rail transit networks of major cities. The 

comparison of the Klang Valley network with major cities highlights the 

strengths and weaknesses of the network, facilitating best practices for future 

improvements. Both current and forecasted Klang Valley urban rail transit 

network exhibit high degree centrality but relatively low in betweenness 

centrality, clustering coefficient and average shortest path length due to the 

lack of optimisation of interchange stations at planning stage.  

 

5.2 Recommendations for Future Work 

There are several recommendations to improve the study of the Klang Valley 

urban rail transit network. Firstly, passenger flow data for KTM lines is 

recommended to obtained from the operator to facilitate the comprehensive 

compatibility analysis between the supply and demand of the overall urban rail 

transit network. Next, it is recommended to enhance the analysis of the 

network by incorporating additional indicators to evaluate the optimised train 

frequency and capacity constraints of trains coaches and station platforms to 

facilitate the high volume during peak hours. Other than that, it is 

recommended to reconduct the analysis of the forecasted network by replacing 
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the assumed data of LRT 3 and MRT Circle Line with the actual journey time, 

distance, and passenger flow data to accurately assess the impact to the overall 

network. Besides, it is recommended to conduct robustness analysis by 

simulating the removal of important stations from the network and analyse the 

ability of the network in handling failure of a station. In addition, the study of 

the public transportation in Klang Valley is recommended to incorporate bus 

and other vehicle networks to increase first mile and last mile connectivity.  
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APPENDICES 

 

Appendix A: Transfer Time and Distance of Interchange Stations. 

 

From To Transfer 

Station Name 
Transit 

Line 
Station Name 

Transit 

Line 
Time (min) 

Distance 

(KM) 

1 Kampung Batu KTM 1 
Kampung 

Batu 
MRT 2 4 0.19 

2 
Bandar Tasik 

Selatan 
KTM 1 

Bandar Tasik 

Selatan 

LRT Sri 

Petaling 
3 0.11 

3 Kajang KTM 1 Kajang MRT 1 3 0.25 

4 Sungai Buloh KTM 2 Sungai Buloh MRT 2 4 0.27 

5 Kepong Sentral KTM 2 
Sri Damansara 

Timur 
MRT 2 3 0.19 

6 
Abdulah 

Hukum 
KTM 2 

Abdulah 

Hukum 

LRT 

Kelana 

Jaya 

2 0.10 

7 Subang Jaya KTM 2 Subang Jaya 

LRT 

Kelana 

Jaya 

3 0.11 

8 Sentul Timur 
LRT 

Ampang 
Sentul Timur 

LRT Sri 

Petaling 
1 0.10 

9 Sentul 
LRT 

Ampang 
Sentul 

LRT Sri 

Petaling 
1 0.10 

10 Pudu 
LRT 

Ampang 
Pudu 

LRT Sri 

Petaling 
1 0.10 

11 Maluri 
LRT 

Ampang 
Maluri MRT 1 5 0.20 

12 Sungai Besi 
LRT Sri 

Petaling 
Sungai Besi MRT 2 4 0.10 

13 Putra Height 
LRT Sri 

Petaling 
Putra Height 

LRT 

Kelana 
1 0.10 
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Jaya 

14 Ampang Park 

LRT 

Kelana 

Jaya 

Ampang Park MRT 2 10 0.23 

15 Dang Wangi 

LRT 

Kelana 

Jaya 

Bukit Nanas Monorail 9 0.37 

16 Bukit Bintang Monorail Bukit Bintang MRT 1 6 0.18 

17 
Kwasa 

Damansara 
MRT 1 

Kwasa 

Damansara 
MRT 2 1 0.10 

18 TRX MRT 1 TRX MRT 2 1 0.10 

19 

Sultan Ismail 
LRT 

Ampang 
Sultan Ismail 

LRT Sri 

Petaling 
1 0.10 

Sultan Ismail 
LRT 

Ampang 

Medan 

Tuanku 
Monorail 10 0.70 

Sultan Ismail 
LRT Sri 

Petaling 

Medan 

Tuanku 
Monorail 10 0.70 

20 

Masjid Jamek 
LRT 

Ampang 
Masjid Jamek 

LRT Sri 

Petaling 
1 0.10 

Masjid Jamek 
LRT 

Ampang 
Masjid Jamek 

LRT 

Kelana 

Jaya 

3 0.10 

Masjid Jamek 
LRT Sri 

Petaling 
Masjid Jamek 

LRT 

Kelana 

Jaya 

3 0.10 

21 

Plaza Rakyat 
LRT 

Ampang 
Plaza Rakyat 

LRT Sri 

Petaling 
1 0.10 

Plaza Rakyat 
LRT 

Ampang 
Merdeka MRT 1 6 0.30 

Plaza Rakyat 
LRT Sri 

Petaling 
Merdeka MRT 1 6 0.30 

22 Hang Tuah 
LRT 

Ampang 
Hang Tuah 

LRT Sri 

Petaling 
1 0.10 
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Hang Tuah 
LRT 

Ampang 
Hang Tuah Monorail 3 0.17 

Hang Tuah 
LRT Sri 

Petaling 
Hang Tuah Monorail 3 0.17 

23 

Chan Show Lin 
LRT 

Ampang 

Chan Show 

Lin 

LRT Sri 

Petaling 
1 0.10 

Chan Show Lin 
LRT 

Ampang 

Chan Show 

Lin 
MRT 2 5 0.21 

Chan Show Lin 
LRT Sri 

Petaling 

Chan Show 

Lin 
MRT 2 5 0.21 

24 

Titiwangsa 
LRT 

Ampang 
Titiwangsa 

LRT Sri 

Petaling 
1 0.10 

Titiwangsa 
LRT 

Ampang 
Titiwangsa Monorail 2 0.16 

Titiwangsa 
LRT 

Ampang 
Titiwangsa MRT 2 4 0.14 

Titiwangsa 
LRT Sri 

Petaling 
Titiwangsa Monorail 2 0.16 

Titiwangsa 
LRT Sri 

Petaling 
Titiwangsa MRT 2 4 0.14 

Titiwangsa Monorail Titiwangsa MRT 2 4 0.16 

25 

Kuala Lumpur KTM 1 Kuala Lumpur KTM 2 1 0.10 

Kuala Lumpur KTM 1 Pasar Seni 

LRT 

Kelana 

Jaya 

4 0.21 

Kuala Lumpur KTM 1 Pasar Seni MRT 1 6 0.30 

Kuala Lumpur KTM 2 Pasar Seni 

LRT 

Kelana 

Jaya 

4 0.21 

Kuala Lumpur KTM 2 Pasar Seni MRT 1 6 0.30 

Pasar Seni 

LRT 

Kelana 

Jaya 

Pasar Seni MRT 1 4 0.10 
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26 

Putra KTM 1 Putra KTM 2 1 0.10 

Putra KTM 1 PWTC 
LRT 

Ampang 
10 0.75 

Putra KTM 1 PWTC 
LRT Sri 

Petaling 
10 0.75 

Putra KTM 2 PWTC 
LRT 

Ampang 
10 0.75 

Putra KTM 2 PWTC 
LRT Sri 

Petaling 
10 0.75 

PWTC 
LRT 

Ampang 
PWTC 

LRT Sri 

Petaling 
1 0.10 

27 

Bank Negara KTM 1 Bank Negara KTM 2 1 0.10 

Bank Negara KTM 1 Bandaraya 
LRT 

Ampang 
5 0.24 

Bank Negara KTM 1 Bandaraya 
LRT Sri 

Petaling 
5 0.24 

Bank Negara KTM 2 Bandaraya 
LRT 

Ampang 
5 0.24 

Bank Negara KTM 2 Bandaraya 
LRT Sri 

Petaling 
5 0.24 

Bandaraya 
LRT 

Ampang 
Bandaraya 

LRT Sri 

Petaling 
1 0.10 

28 

Kl Sentral KTM 1 Kl Sentral KTM 2 1 0.10 

Kl Sentral KTM 1 Kl Sentral 

LRT 

Kelana 

Jaya 

3 0.10 

Kl Sentral KTM 1 Kl Sentral Monorail 6 0.29 

Kl Sentral KTM 1 
Muzium 

Negara 
MRT 1 9 0.46 

Kl Sentral KTM 2 Kl Sentral 

LRT 

Kelana 

Jaya 

3 0.10 

Kl Sentral KTM 2 Kl Sentral Monorail 6 0.29 
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Kl Sentral KTM 2 
Muzium 

Negara 
MRT 1 9 0.46 

Kl Sentral 

LRT 

Kelana 

Jaya 

Kl Sentral Monorail 6 0.25 

Kl Sentral 

LRT 

Kelana 

Jaya 

Muzium 

Negara 
MRT 1 9 0.52 

Kl Sentral Monorail 
Muzium 

Negara 
MRT 1 12 0.77 
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