High Performance Logging Library for Run-Time Efficiency with Multithreaded
Support
BY
Low Chun Ee

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: High Performance Logging Library for Run-Time Efficiency with Multithreaded
Support

Academic Session: JUNE 2024

LOW CHUN EE
(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

Lk ¥

(Author’s signature) (Supervisor’s signature)

Address:
_63, Lorong Jasa Intan 7,
_Taman Jasa Intan, 14000 ___Ts. Wong Chee Siang

_Bukit Mertajam, Pulau Pinang (Supervisor’s name)

Date: 12/9/2024 Date: 12/9/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 12/9/2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that Low Chun Ee (ID No: _ 2106572) has completed this final year project
entitled “ High Performance Logging Library for Run-Time Efficiency with Multithreaded Support”
under the supervision of Ts. Wong Chee Siang (Supervisor) from the Department of Computer
Science, Faculty of Information and Communication Technology , and Mr Tan Chiang Kang @
Thang Chiang Kang (Co-Supervisor)* from the Department of Computer Science, Faculty of

Information and Communication Technology.
I understand that University will upload softcopy of my final year project in pdf format into UTAR
Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

[

(Student Name)
Low Chun Ee

*Delete whichever not applicable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “High Performance Logging Library for Run-Time
Efficiency with Multithreaded Support” is my own work except as cited in the references.
The report has not been accepted for any degree and is not being submitted concurrently in
candidature for any degree or other award.

e

Signature :
Name : __ LowChunEe
Date ; 12/9/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Ts. Wong Chee Siang and
my moderator, Mr Tan Chiang Kang @ Thang Chiang Kang, who have given me a golden
opportunity to involve in the software programming field study. Besides that, they have given
me a lot of guidance in order to complete this project. When | was facing problems in this
project, the advice from them always assists me in overcoming the problems. Again, a million

thanks to my supervisor and moderator.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project falls within the field of Software Engineering, specifically focusing on the
development of a high-performance logging library optimized for run-time efficiency with
multithreaded support. The primary issues addressed in this work are enhancing user-
friendliness, maximizing performance, and making source code to be easier to understand. To
tackle these challenges, the methodology involves utilizing the fmt library in C++,
implementing a multiple-producer, multiple-consumer (MPMC) lock-free queue, leveraging
advanced techniques such as futex for efficient synchronization, io_uring for asynchronous 1/0
operations, and C++ template metaprogramming for compile-time optimizations. The research
process encompassed designing, implementing, and testing these components to ensure both
usability and performance. The final product is a robust and efficient logging library written in
C++, which demonstrates significant improvements in both usability, execution speed, and

understandability compared to existing solutions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt e nae e nnaeanes \/
F A = I Y 3 G PSSP Vi
TABLE OF CONTENTS ...ttt aa e staa et e naennaaennee s Vil
LIST OF FIGURESooo ottt ettt saa et et e e et e neeanea e IX
LIST OF TABLES ...ttt a et e e et e e nra e e nreeanae e XI
CHAPTER 1 INTRODUCTION ...ttt sttt snae e naa e 1
1.1 Problem Statement and MOTIVALIONcc.eveiiireiiiiecie e 1
1.2 ODBJECTIVES ...ttt ettt ettt 3

1.3 Project SCOPE and DiIrECTION........ccueiiiieiiieitie ittt 5
1.4 CONEIIDULIONS ...ttt e et e e et e e e ant e e e enneeeannns 6

1.5 RePOIt OrganiZationccoouueeiiuieeeiieeesieeesieeessteeessiee e s sreaeantaeeessaeeesnseeesneeeeaneeesneees 7
CHAPTER 2 LITERATURE REVIEWooiiiiiiiiiiiieie e 7
2.1 Review 0f the TEChNOIOGIES........ccivvieiiieeccee e 7
2.1.1 Hardware PIatform.........ccoviiiiiii e 7

2. 1.2 FIFMWAIE/OS........eeee ettt e e ae e e e eeanree e 8

2.1.3 Programming LanQUAQES........cuueeerurreiiureeeiieeesireeessteeesssneesssaneassseesssnessnseeens 8

2.1.4 AIQOTIENIM Lo 10

2.1.4.1 Multi-Producer Multi-Consumer QUEUEeeeeeecuvieeeeeitreeeeeecieeeeeeeireeeeeenveeeens 10
2.1.4.2 C++ MemOry MOElccuviiiiei et 11
N B 0| o Y USRS 13
2.1.4.4 C++ Template Metaprogrammingccceeeceeeeiueeeeieeeeiieeereeeesreeesaeeeerveeeenneees 14
N S (o Vo SRR PS 16
2.1.5 Summary of the Technologies REVIEWcceeeeuieeiiiiieciiieeee e 18

2.2 Review 0f the EXIStING SYSLEMc.vviiiiiec ettt srae e 19
2.2 L FMEIOQ oo 19

2.2.2 PlOQ ettt 20

2.2.3 LOQUIU ..ttt e et e e e e e e e e et a e e e e e e s s nnb b b neeaeeeas 22
CHAPTER 3 SYSTEM METHODOLOGY/APPROACH OR SYSTEM MODEL 24
3.1 System Design Diagram/EQUALIONcccuvveieeiiiiiieeeiiiiis e siiies e e sives e e siree e e sivneee e 24

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

CHAPTER 4 SYSTEM DESIGNooiiiiiiii e 26

4.1 System Component SPECITICATIONooiiiiiiiiiiiiee s 26
I o T To [0 T [1 =T o o Lol SO 26

4.1.2 L0ggING LEVEL.....oniiiiee e 29

4.1.3 Multi-Producer Multi-Consumer QUEUEceeevvreerieeeiiieesieeesieee e 30

414 TUIM SEOUEINCET ...ttt ettt 34

BLLS FULEX et e et e e e 38

416 1O _UTINQ .tttk 41

4.2 SYStEM BUIIT PIOCESSvieiiiiiieiieeeie e 44
CHAPTER 5 SYSTEM IMPLEMENTATIONooiiiiiie e 47
5.1 HArAWAIE SEEUD ...ttt ettt nnne s 47
5.2 SOTIWAIE SELUD ...ttt ettt nrne s 47
5.3 Settings and ConFIQUIATIONccuiiiiiiiiieiie e 47
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSIONcccccooviiiieiieeee e, 48
6.1 System Testing and Performance MELriCScc.eecvvreriiie i 48
6.1.1 Performance COMPAIISONc.uveiiureeeiieeeiieeeeieeesieeeeieeeesreeeesraeeesnaeeeseeas 48

6.1.2 User-Friendly API COMPAIiSONccovureeiiieeciiiesiiseesiie e e e see e 51

6.2 ProjeCt Chall@NQeSeieiiie ettt e e e eesnaa e e nnaee e 55
6.3 ODJECtIVE EVAUIALIONccviiiiiiie e saee e 56
CHAPTER 7 CONCLUSION AND RECOMMENDATIONcoooiiiiiiiienieiie e 57
7.1 CONCIUSION ...ttt ettt e et sb e et e e be e anbeenbee s 57
7.2 RECOMMENUALIONcviieiiieiie sttt ettt e et e areeenree s 57
REFERENCES..... ..ottt sttt ettt ettt e arb e e te e nae e 58
FINAL YEAR PROJECT WEEKLY REPORTcooiiiiiiiiiiiie e 59
FINAL YEAR PROJECT WEEKLY REPORTocoiiiiiiiiiiie e 60
FINAL YEAR PROJECT WEEKLY REPORTocoiiiiiiiiiiiieceesee e 61
FINAL YEAR PROJECT WEEKLY REPORTocoiiiiiiiiiiiieceesee e 62
POSTER .ottt ettt et e e n et e et e e st e e abt e e beeenbeeanbe e teeaneee e 63

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

PLAGIARISM CHECK RESULTooiiiiiiii e 65

LIST OF FIGURES
Figure 1.1.1 Example of traditional logging method in C++........ccceeviinieniiiiee 1
Figure 1.1.2 Output Of the COUBc.eieriieeieeeeee e 1

Figure 1.1.3 Example of logging library that achieve the same output with Figure 1.1.2 2

Figure 2.1.4.2.1 ACQUIIe MEMOTY OFUEYccvveeeerieeiieeetieeeiieeesiteeesiaeeesaeeesneeesnaeeens 11
Figure 2.1.4.2.2 Release MemMOrY OFUENeeevuveeerieeeeiieeeiieeeseieeesteeeseeesieeesaee s 12
Figure 2.1.4.3.1 Comparison between fmt, std::cout, and printf............ccccceovereennenne 13
Figure 2.1.4.4.1 Template function eXamplecccveevreeeeeieeecie e 15
Figure 2.2.1.1 fmtlog github profile (781 Stars)cccceecvveevcvveeeieeesieeee e 19
Figure 2.2.2.1 plog github profile (2.2K Stars)cccceevvveeeeieeeiee e 20
Figure 2.2.2.2 APL OF PlOQ.....ceeeeieeeeieeeeeeee ettt 21
Figure 2.2.3.1 loguru github profile (1.8K Stars)cccccvvveecvvreeiieeeciie e 22
Figure 3.1.1 ArchiteCture DIagram...........ceecuvreesvreesiieeeiieeeitee e e e staeeseaesreesnnee s 24
Figure 4.1.1.1 API SUPPOITEAeeeeeieeeeieeeee ettt e aa e eeaesnnae e 26
Figure 4.1.1.2 Log template Class COUE...........ereurrreriieeeeieeeieeecee et 28
Figure 4.1.2.1 LogLevel enum class COUeccvvvevieeeciieeeieeeee e 29
Figure 4.1.3.1 MPMC QUEUE Class COUE..........cccrrreerereeiieeeiieeeciieeesieeeeeeeeee s 31
Figure 4.1.3.2 MPMC Queue essential variables............c.ceeecvvveeviveeeiiieeciie e, 31
Figure 4.1.3.3 Enqueue and dequeue function COe...........eevveveecieeeeiieeeciie e, 32
Figure 4.1.3.4 Obtain ticket function COde............oevvveeeerieeeieeeee e 33
Figure 4.1.3.5 SingleElementQueue template class codeccoveevvveevieeecrieeeiee, 33
Figure 4.1.4.1 TurnSequencer CONSLrUCIOr COUEc.vveeveveeeerieeeiieeeee e 34
Figure 4.1.4.2 TurnSequencer isTurn function code...........ccocvvveevveeeiieeeciieeceeeee, 35
Figure 4.1.4.3 TurnSequencer waitForTurn function code............ccccovveevveeevveeeennenn, 35
Figure 4.1.4.4 TurnSequencer tryWaitForTurn function code............cccceevvveviveeennnn. 35
Figure 4.1.4.5 TurnSequencer completeTurn function code...........ccccvvveevvvvevieeeennenn, 36
Figure 4.1.4.6 TurnSequencer decode helper functions codeccccccvvvveeecvieeeeennnee 37
Figure 4.1.4.7 TurnSequencer essential variables............cccovvveeeviiieeeesiiieeeeeiiee e 37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.5.1 Futex wait funCtion COUE...........cooveriieriieiieeeeeeee e 38

Figure 4.1.5.2 Futex wake funCtion COOEcoouveeiieriieiiieeeeeeeeeee e 39
Figure 4.1.6.1 10_Uring Class COUE..........ccoueeriieriieeiiesieeee e 41
Figure 4.1.6.2 io_uring Write fUNCtiON COUE...........cevierieeiieeiiesieese e 42
Figure 4.1.6.3 10_uring destruCtor COUE...........corieriierieeiieeiieee ettt 43
Figure 4.2.1 Installation command for fmt library..........ccccoooeeveinieniiieeeeee 45
Figure 4.2.2 Installation command for liburing library...........cccecovveeviveevieeeieeeee 45
Figure 4.2.3 Build command for my lHOrary...........cccceeevvveeeeieeesiieeieeee e 45
Figure 4.2.4 Example of using my lIDrary...........ccooeveveeveieeeieeeeeeee e 46
Figure 4.2.5 Output example SHOWNcoovireeiieeiee e 46
Figure 6.1.1.1 Test case for single-threaded scenario............ccceeevvveevvveevivresiieesiee, 48
Figure 6.1.1.2 Result of nanoseconds Vs iterations.............cceccvvveevvveeesiveescieeeseee s, 49
Figure 6.1.1.3 Test case for multi-threaded SCENAIIO..........cccvvveevevveesiieeiieeeiee e, 49
Figure 6.1.1.4 Result of mean nanoseconds vs number of threads.............ccccccvveveneeen. 50
Figure 6.1.2.1 My logging library APl example..........cceccvvveecrieeeiiieesiie e 52
Figure 6.1.2.2 plog API €XaMPIEcoeevveeeiieeeeeeee ettt ea et 52
Figure 6.1.2.3 10guru APT eXamPIe.......c..eveeuireeiiieeciee et 52
Figure 6.1.2.4 fmtlog AP1 €Xampleoeeeiiveeieeee ettt 53
Figure 6.1.2.5 my API example for specific data Structure.............cccccveevvveevivresnnenns 54
FIQUIE 6.1.2.6 OULPUL.......eeeeeeieeeiie ettt e e e e e a e e saaesannaesnnee e 54

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table 5.1.1 HArdware SETUPccoveeiieeierieeste ettt

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

xi

Chapter 1 Introduction

1.1 Problem Statement and Motivation
In the world of software, logging is a bit like notebook. It's a way for programs to keep track

of everything that happens while they run. This helps developers understand what their
programs are doing, find problems, and make improvements. However, just like a well-
organized notebook, developers need efficient tools for logging. Traditional methods of
logging can be slow and complicated. My logging library aims to solve this by making the

process faster, easier to use, and simpler to understand.

01
std: :ofstream

userld =

std::string errorMessage =

logfile << <¢ userId << < errorMessage << std::endl;

logfile.close();

Figure 1.1.1 Example of traditional logging method in C++

Based on the image shown above which is a traditional method used to log a message into a
file in C++, this approach actually works but can get cumbersome, especially as the complexity
of the messages increases. For example, the users required to type << operators multiple times

to insert their desired variables into the logging message.

User ID: 42, Error: File Not Found

Figure 1.1.2 Output of the code

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

In traditional logging methods, developers have to manually manage file 1/0 which can be
cumbersome and slow. 1/O operations particularly when performed repeatedly are expensive
in terms of both time and system resources. This becomes a bottleneck especially when logging
is done frequently during the execution of high-performance applications. The traditional
approach of using streams such as fstream in C++ forces developers to manually format
messages using << operators which not only increases code verbosity but also hampers
readability and maintainability.

A well-designed logging library addresses these concerns by providing an easy-to-use interface
that reduces the code needed to log messages. Instead of manually handling file operations or
formatting, users can leverage a single function to log a message. Additionally, a logging
library optimizes 1/O operations often by batching writes or handling them asynchronously
thereby improving performance significantly without compromising the accuracy of the logs.

The need for a logging library arises from the desire to simplify the process of tracking program
behavior while maintaining high performance. Instead of manually managing log files and
message formatting, developers can focus on writing efficient code knowing that the logging
library will handle these aspects. By abstracting away the complexity of 1/0 and message
formatting, the library reduces the cognitive load on developers allowing them to log crucial

information with minimal effort.

main() {

logging::Log log;
user_id = 42;
std: :string error_message = "

log.setOutputFile("output.txt"

log.error("Use
return 0;

Figure 1.1.3 Example of logging library that achieve the same output with Figure 1.1.2

Moreover, a logging library enhances the scalability of the application. As the system grows

and becomes more complex, traditional logging methods may no longer be feasible due to the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

sheer volume of logs, require more << operator use, and the performance impact of frequent
file writes. A robust logging library mitigates this by optimizing logging at scale ensuring that
performance remains high even as the volume of logs increases. In essence, a logging library
IS not just about convenience. It’s about ensuring that logging remains efficient, high-
performing, and user-friendly. However, there isn't a complete logging library for C++

programming that balances excellent performance with easier to learn and user-friendliness.

This project attempts to produce a logging library that offers excellent performance, easier to
learn, and user-friendly APIs by taking on these difficulties head-on. Moreover, developers
will be able to easily include logging into their applications with the help of clear
documentation and user-friendly APIs which will make debugging, monitoring, and

performance analysis jobs easier.

Furthermore, the motivation of this project is also hope that this libary can make modern C++
programming techniques more accessible to a wider audience. The goal is to equip enthusiasts
and students with the necessary tools to better understand modern C++ by creating a logging
library with an easy-to-use interface and organized source code. This project presents an
opportunity to close the knowledge gap between theory and practice, giving young

programmers a better understanding of modern C++ ideas.

1.2 Objectives
The primary aim of this project is to

« enhance the user-friendliness of the logging framework by incorporating the fmt
library.

The fmt library provides a convenient and intuitive interface for formatting log messages and

allow developers to express complex logging statements in a readable manner. By leveraging

the fmt library, the logging process can be streamlined and improve developer productivity by

simplifying the creation and customization of log messages.

« implement logging framework using C++ template metaprogramming techniques to
optimize code generation during compile time.
By leveraging C++ template metaprogramming, efficient and type-safe logging code at

compile time are generated and hence minimizing runtime overhead and maximizing

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance. This approach enables developers to seamlessly integrate logging functionalities
into their applications without sacrificing runtime efficiency.

« address concurrency challenges in multi-threaded environments by utilizing multi-
producer multi-consumer queue in C++
To manage logging operations in a multi-threaded environment, the project implements an
MPMC queue, allowing multiple threads to produce and consume log messages concurrently.
By employing this approach, the logging framework can efficiently handle high levels of
concurrency without creating bottlenecks. Each thread writes to a shared queue which ensures
that log messages are processed in a thread-safe manner. This approach significantly reduces
contention between threads and ensures that the logging system can scale effectively across

multiple cores.

« enhance performance and efficiency by implementing an asynchronous 1/0O through
i0_uring

The project leverages io_uring which is a modern Linux API that allows for efficient

asynchronous 1/0 operations. This implementation minimizes the need for blocking 1/O calls

and enable the logging library to perform non-blocking writes to disk. By reducing the

dependency on traditional locking mechanisms and using lock-free data structures where

possible, the library ensures that I/0 operations can be handled swiftly and with minimal

overhead.

Furthermore, it's also critical to define what is and is not included in this project. First of all, it
will only support Linux and not other operating systems. Furthermore, there will be no support
for compatibility with other programming languages, and the library's capabilities will be

limited to the C++ language.

In conclusion, the goal of this project is to provide a high-performance, user-friendly, and easier
to learn C++ logging library. The development of a logging tool that is both user-friendly and
performs better than its competitors is essential to this project. Additionally, the project aims
to improve user accessibility to modern C++ programming methods by providing a more user-
friendly and streamlined source code, which should make it easier for users to understand

modern C++ concepts and the underlying computer architecture.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope and Direction
The primary scope of this project is to develop a C++ logging library that focuses on three key

aspects which are user-friendliness, high performance, and ease of learning. The library is
intended for developers who require a robust logging solution that is simple to integrate into
their projects without the need for extensive configuration or prior knowledge of advanced
logging techniques. The goal is to make the library accessible to developers at all skill levels
and provide a streamlined interface that minimizes the amount of code needed to set up logging

while still offering powerful performance features.

A major focus of the project will be the API's user-friendliness. The library will feature a
minimalistic and intuitive API that allows developers to quickly integrate logging into their
applications with minimal boilerplate. The API will be designed to be as simple as possible to
enable developers to log messages, errors, and other relevant information with just a few lines

of code.

Another critical aspect of the project is performance optimization. The library will leverage
advanced C++ features such as io_uring to handle asynchronous and non-blocking 1/0
operations efficiently. By implementing multi-threaded logging with mechanisms such as
MPMC queues and atomic operations, the library will be able to handle high-concurrency

environments without creating performance bottlenecks.

The learning curve of the library will also be kept low with a focus on simplicity in both usage
and understanding. The project will include thorough documentation and real-world examples
to help developers quickly learn how to use the library even if they have limited experience

with C++ logging systems. The library will be designed to be easy to understand and adopt

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

with clear and concise code that follows modern C++ practices. Integration with standard tools

like CMake will ensure that developers can start using the library quickly and without friction.

The overall direction of this project is centered on creating a logging library that prioritizes
developer experience, performance, and simplicity. By abstracting away the complexity of
asynchronous /0 and multi-threaded logging, the library will provide users with a fast,
reliable, and easy-to-learn solution that fits into a wide variety of projects. With its combination
of high performance and ease of use, the library will serve developers who need a powerful yet
simple logging solution that they can trust to handle the demands of modern software

development.

1.4 Contributions
First of all, the logging library offers a useful tool to help different industries optimize their

logging processes including system diagnostics and bug tracking. This efficiency results in
improved software development productivity and reliability which benefits the technology and
healthcare sectors. Additionally, the library is an invaluable teaching tool that provides a
practical introduction to modern C++ programming techniques. The program encourages a
more knowledgeable workforce by enabling students and aspiring developers to gain a deeper

understanding of computer architecture and C++ by offering a simple yet effective tool for

logging.

The project's underlying complexity and significance derive from the way it bridges the gap
between basic computer understanding and real-world software engineering issues. The project
is extremely satisfying and educational because it takes an extensive knowledge of computer

architecture to tackle problems like concurrency control and performance optimization.

This project provides an attracting investigation of advanced approaches for readers who are
interested in delving into the complexities of software optimization and system-level
programming. Within the framework of practical software engineering problems, the project

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

offers an in-depth examination of optimization techniques for reducing mutex lock overhead,
multi-producer multi-consumer queue, futex system call, and asynchronous 1/O which further
emphasizes its significance in the rapidly evolving software development industry. As a result,
readers will be able to learn insightful things about innovative methods and tools that could

influence software engineering in the future.

1.5 Report Organization
This report is organized into six chapters: Chapter 1 Introduction, Chapter 2 Literature Review,

Chapter 3 System Design, Chapter 4 System Implementation and Testing, Chapter 5 System
Outcome and Discussion, and Chapter 6 Conclusion. The first chapter provides an introduction
to this project, which includes the problem statement, project background and motivation,
project scope, project objectives, project contribution, and the organization of the report. The
second chapter presents a literature review of existing logging libraries and concurrency
handling techniques and assessing their strengths and weaknesses to establish a foundation for
this project's approach. The third chapter discusses the overall system design, including the
architecture of the high-performance logging library and the rationale behind key design
decisions. The fourth chapter details the implementation process that explain the integration of
multithreading, concurrency management, and asynchronous 1/O operations within the system.
Furthermore, the fifth chapter reports the results obtained from testing, evaluates the
performance of the logging library, and discusses the implications of the findings. The final
chapter concludes the report by summarizing the project's outcomes, discussing its

contributions to the field, and suggesting potential future work.

Chapter 2 Literature Review

2.1 Review of the Technologies

2.1.1 Hardware Platform

This project is developed on an Intel Core i5 processor which is a mid-range CPU known for
balancing performance and power efficiency. Intel's Core i5 processors are widely used in

personal computers to offer sufficient computational resources for multi-threaded operations

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

and concurrent workloads. The i5 architecture includes multiple cores and supports hyper-
threading in order to allow the system to handle several threads in parallel which is essential
for a multi-threaded logging system. Additionally, the processor's integrated cache and
memory bandwidth provide fast access to frequently used data which can further improving
the performance of concurrent applications like a logging library. The project leverages these
multi-core capabilities to ensure efficient execution of log writes particularly when using

technologies like io_uring that benefit from parallelism and non-blocking 1/0 operations.

2.1.2 Firmware/OS
The development environment is set up using Windows Subsystem for Linux 2 (WSL2) which

enables the use of a Linux kernel within a Windows operating system. Specifically, Ubuntu is
used as the Linux distribution within WSL2. This configuration allows the project to harness
the full power of the Linux kernel including system calls such as io_uring for high-performance
asynchronous 1/0. WSL2 provides near-native performance by running a real Linux kernel in
a lightweight virtual machine making it suitable for tasks that require direct access to kernel-
level resources. Ubuntu is one of the most popular and developer-friendly Linux distributions.
It offers a stable and consistent environment for compiling and running C++ applications.
Using WSL2 not only provides flexibility in development but also facilitates the testing and
debugging of Linux-specific features without the need for dual-booting or using a dedicated
Linux machine. This setup enables seamless integration of Linux’s advanced I/O capabilities

with the convenience of a Windows-based development workflow.

2.1.3 Programming Languages
The project is developed in C++, chosen for its combination of high performance, low-level

memory management, and extensive concurrency support. C++ offers fine-grained control over
hardware resources making it ideal for building a high-performance logging library where
efficiency and speed are critical. C++20, the latest version used in this project introduces

several new features that enhance both the performance and usability of the logging system.

One significant feature in C++20 is the concept mechanism which allows developers to define

constraints on template parameters. Concepts improve code readability and maintainability by

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ensuring that only valid types are passed to templates leading to better compile-time error
checking. In the context of this project, concepts are used to ensure that only types capable of
safe concurrency operations are passed into the logging system's templates particularly in areas
such as the multi-producer, multi-consumer (MPMC) queue. This makes the code safer, more
robust, and easier to debug.

The consteval keyword is another powerful feature of C++20 that enable compile-time
execution of certain functions. By utilizing consteval, the project can optimize critical parts of
the logging system such as constant expression evaluation for configurations which are
computed at compile time rather than runtime. This reduces overhead in the final binary and
speeds up the execution of the logging library. For example, compile-time calculations of
buffer sizes or configuration settings ensure that the logging system is more efficient and
tailored for high-performance scenarios.

Another key feature leveraged in the project is the source_location facility introduced in C++20
which allows the automatic capture of file names, line numbers, and function names where a
log is generated. This feature is critical in a logging library as it provides context for log entries
without requiring manual inputs from developers. By incorporating std::source_location, the
logging system automatically appends relevant debugging information to log entries to enhance

the system’s debugging capabilities while maintaining a simple and user-friendly API.

In addition to these C++20 specific features, the project makes extensive use of atomic
operations to implement a lock-free, thread-safe logging system. This approach avoids
traditional locking mechanisms like mutexes which can lead to performance bottlenecks in
multi-threaded environments. By using atomic operations, the system ensures that logging
operations such as enqueueing and dequeueing log messages, are safely performed across

multiple threads with minimal overhead.

The combination of C++20’s modern features such as concepts for safe template programming,
consteval for compile-time optimization, and source_location for enhanced logging metadata
along with C++'s traditional strengths in performance and concurrency, makes it an ideal choice
for developing a high-performance, user-friendly logging library. These features contribute to

a logging system that is not only efficient but also easy to use and maintain.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.4 Algorithm

2.1.4.1 Multi-Producer Multi-Consumer Queue

The MPMC (Multiple Producer, Multiple Consumer) queue is a data structure designed to
allow multiple threads to add (produce) and remove (consume) items concurrently without
using locks. This makes it highly efficient for scenarios where many threads need to interact
with the queue simultaneously. The MPMC queue doesn’t rely on traditional locking
mechanisms (like std::mutex). Instead, it uses atomic operations to manage access which
allows threads to work on the queue without blocking each other. This reduces overhead and

improves performance especially under heavy load.

In this MPMC queue, each thread (producer or consumer) is assigned a "turn” based on a
sequence number. A thread can only proceed with its operation (enqueue or dequeue) when its
turn arrives. This ensures that operations happen in a controlled and predictable order to avoid
conflicts between threads. When a producer wants to add an item to the queue, it waits until its
turn arrives. Once the turn matches, it places the item in the queue and moves on. This is done
without locking, using atomic operations to ensure that no two producers try to add items to

the same spot in the queue at the same time.

Consumers work similarly. They wait for their turn to remove an item from the queue. Once
their turn arrives, they safely remove the item and ensure that each item is only consumed once.
This is again managed through atomic operations to maintain efficiency and correctness. The
queue is designed to be fair which means that no single thread is favored over others. It also
handles wrap-around when the turn numbers get very large to ensure that the system remains

stable and efficient over time.

The MPMC queue implementation also utilizes futex to manage thread coordination more
efficiently. In scenarios where there is no contention (i.e., when a thread’s turn arrives and it
can proceed immediately), the MPMC queue avoids system calls. Threads can use atomic
operations to check their turn and proceed without invoking the kernel and make the operation
extremely fast. When there is contention (e.g., athread's turn hasn't arrived yet because another

thread is still working), the thread can go to sleep using futex. The futex system call allows a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

thread to sleep efficiently until it is notified that it can proceed. This prevents busy-waiting
where a thread would otherwise keep checking its turn in a loop and consume CPU resources.

The futex mechanism wakes up only the threads that need to proceed based on the current state
of the queue and ensure that only the necessary threads are woken up and reduce unnecessary
context switches and improving overall performance. When a thread completes its operation
(such as enqueuing or dequeuing an item), it may need to wake up another thread whose turn
has arrived. This is done using the futex_wake function which efficiently wakes up the next
thread in line without involving the kernel unless absolutely necessary.

2.1.4.2 C++ Memory Model

std::memory_order_acquire and std::memory_order_release are memory orderings used in
C++11 and later versions to specify the synchronization behavior of atomic operations in multi-
threaded environments. These memory orderings are crucial for ensuring correct and efficient

communication between threads, especially when dealing with shared data.

When a variable is modified by one thread and accessed by another concurrently executing

thread, proper synchronization mechanisms must be used to ensure that the memory accesses

occur in a predictable order, avoiding data races and undefined behavior.

<SR
—

All memory operations
stay below the line

Figure 2.1.4.2.1 Acquire memory order

std::memory_order_acquire is used to ensure that memory accesses performed by the current
thread are not reordered before a particular atomic operation. When a thread performs a load

operation with memory_order_acquire, it establishes a synchronization dependency that

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

prevents subsequent memory reads or writes (or both) from being reordered before the load
operation. This ensures that any data read by the current thread is consistent with the memory
state at the time of the acquire operation.

All memory operations
stay above the line

B —
B g

Figure 2.1.4.2.2 Release memory order

On the other hand, std::memory_order_release is used to ensure that memory accesses
performed by the current thread are not reordered after a particular atomic operation. When a
thread performs a store operation with memory_order_release, it establishes a synchronization
dependency that prevents previous memory reads or writes (or both) from being reordered after
the store operation. This ensures that any data modifications made by the current thread are

visible to other threads that perform subsequent memory accesses. [5].

One of the reason that we need to use std::memory order is the compiler and CPU
optimizations can affect the behavior of code utilizing memory order_acquire and
memory_order_release. Compiler optimizations, such as instruction reordering and caching
optimizations, may rearrange the order of memory accesses in the generated machine code to
improve performance. However, these optimizations must respect the memory ordering
specified by atomic operations to maintain the correctness of multi-threaded programs.
Therefore, compilers need to generate appropriate memory barriers or fence instructions to

enforce the specified memory orderings.

Similarly, CPUs may perform optimizations such as speculative execution and out-of-order
execution to improve performance by executing instructions ahead of their program order.

These optimizations can potentially violate the memory orderings specified by atomic

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

operations, leading to incorrect behavior in multi-threaded programs. To address this, modern
CPUs provide memory ordering semantics that ensure the visibility and ordering of memory
accesses as specified by atomic operations.

In summary, std::memory_order_acquire and std::memory_order_release are used to specify
memory ordering semantics for atomic operations in multi-threaded C++ programs. Compiler
and CPU optimizations must take into account these memory orderings to ensure correct and
efficient execution of multi-threaded code. Compiler-generated memory barriers and CPU
memory ordering semantics play a crucial role in enforcing the specified memory orderings

and maintaining the correctness of multi-threaded programs.

2.1.4.3 Fmt Library

{fmt} is an open-source formatting library providing a fast and safe alternative to C stdio and
C++ iostreams [3]. The fmt library which stands for "format," provides a modern and type-safe
alternative to traditional methods like std::cout and printf for formatting and printing text. It
offers a simpler and more expressive syntax for constructing formatted strings, reducing the
likelihood of errors and improving code readability. Unlike printf, fmt library leverages C++
features like variadic templates and operator overloading to enable type-safe formatting
without sacrificing performance. It provides a rich set of formatting options that supports both
positional and named arguments as well as a wide range of data types such as integers, floating-

point numbers, strings, and custom types.

main() {
age = ';
std: :string name =
height = = 77;

std::string formatted_str = fut::format(, name, age, height);
fat: :print(, formatted_str);

std: :cout << << name << << age « << std::fixed << std::setprecision(’) << height < << std: zend]

print#(, name.c_str(), age, height);

Figure 2.1.4.3.1 Comparison between fmt, std::cout, and printf

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

Based on the figure above, fmt provides a modern and expressive syntax for constructing
formatted strings making the code more readable and maintainable. With fmt, developers can
use simple placeholders like {} to represent variables within the string and eliminate the need
for cumbersome format specifiers like %s, %d, and %f used in printf. This reduces the
likelihood of errors and makes the code easier to understand especially for complex formatting

scenarios.

Secondly, fmt ensures type safety by leveraging C++ features like variadic templates and
operator overloading. Unlike printf, which relies on variable arguments of type va_list and
lacks compile-time type checking, fmt performs type checking at compile time to prevent
common mistakes like mismatched format specifiers and arguments. Moreover, fmt provides
advanced formatting options like specifying precision for floating-point numbers and
controlling the alignment of text which are either cumbersome or limited in printf and std::cout.

On the other hand, traditional methods like printf and std::cout suffer from several
shortcomings that make them less suitable for modern C++ development. Printf's reliance on
C-style format specifiers and variable arguments makes the code prone to errors, especially

when dealing with complex formatting or type mismatches.

Similarly, std::cout, while providing a more object-oriented approach to output, still suffers
from verbosity and limited formatting capabilities. Constructing formatted output with
std::cout often involves chaining multiple insertion (<<) operators which can be cumbersome
and error-prone especially for complex formatting scenarios. Additionally, std::cout lacks
support for advanced formatting options like controlling precision for floating-point numbers

and alignment of text making it less flexible compared to fmt.

2.1.4.4 C++ Template Metaprogramming

C++ template metaprogramming is a technique used to perform computations and code
generation at compile-time using templates. It allows developers to write code that operates on
types rather than values and enable the compiler to generate different code paths based on the

types provided as template arguments.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

At its core, C++ templates provide a way to define generic classes and functions that can work
with any data type. Template metaprogramming takes this concept further by allowing

developers to manipulate types and perform computations using template parameters.

One of the key benefits of template metaprogramming is the ability to generate specialized
code for different types at compile-time. When a template is instantiated with a specific type,
the compiler generates code tailored to that type and optimizing performance and reducing
runtime overhead. This is in contrast to runtime polymorphism where the behavior is

determined at runtime through virtual function calls leading to potential performance overhead.

<
T square(T x) {
X * X;
}

main() {
int_num = °;
double_num = ;

result = square(int_num);
result_double = square(double_num);

Figure 2.1.4.4.1 Template function example

When the template function named square shown in figure above is called with an integer type
(int), the compiler generates code to perform integer multiplication. Similarly, when called
with a floating-point type (float or double), the compiler generates code for floating-point
multiplication. This specialization happens at compile-time, ensuring optimal performance for

each type.

Overall, C++ template metaprogramming is a powerful tool for writing efficient and flexible
code that operates on types rather than values. By leveraging compile-time computations and
code generation, developers can achieve better performance, maintainability, and flexibility in

their C++ programs.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

2.1.4.5 lo_uring
i0_uring is a modern Linux API introduced in kernel version 5.1 that enables high-performance

asynchronous 1/0 operations. It is designed to overcome the performance limitations of
traditional 1/0 models such as blocking 1/0 and asynchronous 1/0O (aio) by minimizing the
overhead associated with system calls and improving efficiency in scenarios that involve high
volumes of 1/0 operations such as file logging, network services, or databases. io_uring
achieves this by providing a ring-buffer-based interface where submission and completion
queues allow for non-blocking, batched 1/0 operations without the need for frequent context

switches between user and kernel space.

The core of io_uring revolves around two circular buffers, or "rings" which are the submission
queue (SQ) and the completion queue (CQ). These queues allow user-space applications to

submit 1/0 requests and later retrieve the results of these requests asynchronously.

Submission Queue is where the application submits 1/O operations. Instead of making
individual system calls for each operation (e.g., read(), write()), the application places requests
into this queue. Once an 1/0O operation is finished, the kernel places a completion event in the
CQ. The application can then read from this queue to check whether the 1/O operation has
completed successfully and handle the results accordingly. By batching 1/O operations and
allowing multiple submissions at once, io_uring reduces the number of system calls, resulting

in significant performance improvements for high-volume 1/0 workloads.

One of the key features of io_uring is its ability to handle 1/O operations in a completely non-
blocking manner. When an application submits an 1/0 request, the function returns
immediately without waiting for the operation to complete. The kernel processes the request in
the background, and the application can continue performing other tasks in parallel. Once the
I/0 operation completes, the result is posted to the completion queue, allowing the application

to retrieve it later.

This non-blocking behavior is especially useful for applications that need to handle many
concurrent 1/0O operations, such as network servers or logging systems where waiting on a

single 1/0 operation would create bottlenecks and reduce overall performance.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

Another performance-enhancing feature of io_uring is its ability to handle zero-copy I/O which
eliminates the need to copy data between user space and kernel space. In traditional 1/0 models,
data must be copied from user-space buffers to kernel-space buffers, which introduces
additional overhead. With zero-copy support, io_uring allows the kernel to directly access user-
space memory regions, reducing memory bandwidth usage and improving overall performance

in scenarios with large amounts of data.

io_uring allows applications to submit multiple 1/O requests at once in a batch which greatly
reduces the overhead associated with system calls. This batching mechanism is particularly
beneficial in scenarios where an application needs to perform several 1/0 operations in quick
succession such as logging to a file or handling multiple network connections. By submitting
a batch of requests in one go, the application minimizes the number of system calls leading to

faster execution and lower context-switching costs.

To further reduce the overhead of processing 1/O operations, io_uring introduces a kernel
polling mode. When kernel polling is enabled, the kernel constantly monitors the submission
and completion queues and eliminate the need for the application to explicitly notify the kernel
to start processing the queues. This is especially useful in high-throughput systems where
minimizing latency is critical such as in real-time logging systems. With kernel polling, the
completion of 1/0 operations can be detected more quickly and allowed the application to

respond to them with minimal delay.

i0_uring supports a wide range of 1/0O operations from basic file read/write operations to more
advanced features like splice(), send()/recv() for sockets, and poll(). This flexibility makes
io_uring suitable for a wide variety of use cases including file systems, network programming,
and low-latency logging systems. The ability to handle different types of I/O operations within
the same framework allows developers to build more efficient systems by consolidating various

I/0 mechanisms into a single, high-performance API.

In summary, io_uring represents a significant step forward in Linux asynchronous 1/0 because
it provides developers with a powerful tool for building high-performance, non-blocking
applications. Its efficient handling of 1/0 operations, minimal system call overhead, and ability

to scale in multi-threaded environments make it an ideal choice for building logging libraries

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

that need to handle large volumes of data quickly and reliably. By leveraging io_uring, a
logging system can achieve both high performance and low latency, ensuring that log messages
are written efficiently even under heavy load.

2.1.5 Summary of the Technologies Review
In summary, the combination of the chosen hardware, operating system, programming

language, and algorithms provides a robust foundation for building a high-performance and
user-friendly logging library. The Intel Core i5 processor's multi-core architecture enables the
efficient execution of concurrent operations which is essential for handling multiple threads in
parallel. This hardware capability is crucial for optimizing the logging system and allowing it
to scale well in environments with high logging throughput.

The use of WSL2 (Windows Subsystem for Linux 2) and Ubuntu as the development platform
allows the project to take full advantage of Linux's advanced system calls such as io_uring for
non-blocking 1/0 operations. By leveraging the Linux kernel within a Windows environment,
the project benefits from the flexibility of a Windows-based development workflow while

maintaining access to high-performance I/0 mechanisms.

The programming language C++ provides low-level control over memory and system
resources making it an excellent choice for implementing a high-performance logging system.
C++'s concurrency features particularly in C++20 further enhance the project through the use
of modern tools like concepts, consteval, and source_location. These features not only improve
performance by reducing runtime overhead but also ensure safer, more readable code with

improved compile-time guarantees.

Finally, the project's optimization techniques such as the use of MPMC queues, atomic
operations, and non-blocking 1/0 through io_uring which enable the logging system to handle
large volumes of log entries efficiently. The combination of these technologies ensures that the
logging library achieves its goals of being both high-performing and easy to use with minimal

impact on the overall system performance.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

2.2 Review of the Existing System

2.2.1 Fmtlog

& fmtlog Public @Watch 6 ~ % Fork M8~ 17 Star 781

¥ main ~ P 2 Branches ©) 1 Tags Q Gotofile Add file ~ ¢> Code ~ About

) fmtlog is a performant fmtlib-style
. Rao Meng upgrade fmtlib to 10.2.1 acd521b - 4 months a 1) 94 Commits logging library with latency in
nanoseconds.
-]
B st
0 .gitignore
0 .gitmodules

[CMakelists.txt

[ucense

[READMEmd

Figure 2.2.1.1 fmtlog github profile (781 stars)
fmtlog is a high-performance logging library designed for multithreaded environments,

leveraging the fmt formatting library for efficient string manipulation. The library focuses on
minimizing latency and overhead during logging operations, making it ideal for scenarios
where logging speed and stability are critical. It achieves low-latency logging by employing

two key optimization techniques inspired by the Nanolog logging library.

One of the primary optimizations is that fmtlog allocates a single-producer, single-consumer
(SPSC) queue for each logging thread. This queue is used to avoid thread contention which
typically happens when multiple threads attempt to log simultaneously. Instead of having each
thread contend for access to a shared resource, each thread gets its own dedicated logging queue.
These queues are automatically created when a thread logs a message for the first time and the
background thread polls these queues to process the log messages. This design ensures that as
the number of threads increases, the performance remains stable without degrading due to
contention. The default size of each queue is 1 MB, though this can be customized using a
compile-time macro (FMTLOG_QUEUE_SIZE). To further reduce latency, fmtlog provides a
fmt::preallocate() function that users can call once a thread is created and ensure that the queue

is allocated upfront.

Another important optimization is how fmtlog handles log message formatting. Instead of

repeatedly formatting the same information (such as format strings, log levels, and source

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

locations), fmtlog stores this static information in a table on the first call to a log statement.
Subsequent logs only push the index of the static info table entry along with the dynamic
arguments to the queue, significantly reducing the size and time required to log each message.
This minimizes memory usage and processing time as only the dynamic parts of the message
(such as variables) are processed during the logging operation. When the background thread
processes the queue, it uses the decoding function for each log statement to reconstruct the full
log message.

The use of the fmt library known for its efficient and flexible string formatting capabilities,
enhances fmtlog's performance. By offloading the string formatting to fmt, fmtlog benefits
from the same optimizations that make fmt highly performant and ensure that log messages are
formatted quickly without unnecessary overhead. Overall, fmtlog combines efficient queue
management with minimal formatting overhead and provides a logging solution that is both

fast and scalable in multithreaded environments.

2.2.2 Plog

“;' plog Public

¥ master ~ ¥ 5Branches ©) 27 Tags 0 Go to file Add file ~ ¢> Code ~ About

Portable, simple and extensible C++
SergiusTheBest Update FreeBSD Cl config 852871b -6 months ago () 590 Commits logging library
B circleci
B github/workflows
B doc
B include/plog
B samples

B test

(] .appveyor.ym|

m .

Figure 2.2.2.1 plog github profile (2.2k stars)

Plog is a lightweight, header-only logging library for C++ that has gained attention for its
simplicity, flexibility, and performance optimizations. It is particularly designed to provide

efficient logging for applications with stringent performance requirements.

A significant aspect of Plog is its focus on ease of use. Unlike more complex logging systems,

Plog requires minimal configuration and can be integrated quickly into a project. This makes

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

it accessible to both novice and experienced developers who need a logging solution without
diving deep into complex setups.

Being a header-only library, Plog eliminates the need for linking against external libraries
which simplifies the build process. Developers can start using Plog by simply including the
header file in their project. This avoids the overhead of managing external dependencies and

makes it easier to integrate into existing codebases.

Plog offers a simple and intuitive API. Logging a message in Plog is as easy as calling:

LOG_INFO << ;

Figure 2.2.2.2 API of plog
Plog distinguishes itself from other logging libraries with its focus on performance. It

implements several optimization strategies to minimize logging overhead, making it suitable
for high-performance applications. One of the key optimizations in Plog is its ability to
configure log levels at compile time. Developers can define log levels such that logging calls
below the specified level are removed entirely from the compiled binary. For instance, by
setting the log level to WARNING at compile time, all DEBUG and INFO logs are omitted,
reducing the performance impact of logging in production environments. This mechanism is
particularly beneficial for performance-critical applications where log messages should not

affect runtime performance but may still be useful during development or debugging.

Although Plog does not natively support asynchronous logging like some other logging
libraries (such as NanoLog or Loguru), its simplicity and efficient design allow developers to
easily integrate it with external asynchronous mechanisms. This is particularly useful for
developers looking to decouple log generation from log writing to improve application

performance under heavy load.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

2.2.3 Loguru

% loguru | Pubic OWach 56 ~ % Fork %6 v 77 Star 18

+ master ~ ¥ 2Bran ags Q Gotofile Addfile ~ About

) A lightweight C++ logging library
. bylowerik Merge pull request #215 from s Jada 1) 304 Commits

B cmake
B docs
B glog_bench mprove benchmarks with warmup

[] glog_example Add some example output of GLOG and Log

Figure 2.2.3.1 loguru github profile (1.8k stars)

Loguru is a modern C++ logging library aimed at simplifying the logging process with minimal
configuration and high efficiency. It has gained popularity due to its intuitive APl and
performance optimizations. However, it also presents limitations that may impact its usability

in certain contexts.

Loguru's design prioritizes simplicity and ease of use. It significantly reduces the typical
boilerplate code found in other logging frameworks by offering macros such as LOG_F,
CHECK_F, and LOG_IF_F. This enables developers to quickly add logging capabilities
without configuring complex logging systems. The automatic logging of contextual
information like function names, file paths, and line numbers also enhances its ease of use,

providing essential debugging details without extra effort from the user.

However, one of the notable limitations is that Loguru heavily relies on the << operator for
formatting log messages. This approach while familiar to C++ developers can become
cumbersome when constructing complex log entries. Users must chain multiple << operations
which can make the code less readable and verbose especially when compared to modern
formatting libraries like fmt (used by libraries such as fmtlog). The absence of fmt-style
formatting which allows for clearer and more concise string construction means that developers
may spend additional time on formatting when using Loguru. This limitation affects its user-

friendliness in scenarios where formatted output is complex or dynamically constructed.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

Loguru excels in optimization particularly with its efficient handling of log writes. One of its
key optimization techniques is buffered logging where logs are accumulated in memory before
being written to disk in batches. This significantly reduces the frequency of 1/O operations,
improving performance in scenarios with high log volume. Developers can control the
buffering to balance between performance and log integrity, making Loguru adaptable for real-

time or production environments.

Concurrency is a critical concern for logging libraries particularly in multi-threaded
environments. Loguru handles concurrency well by implementing thread-safe logging
mechanisms. It uses mutexes to ensure that logging operations are synchronized, preventing

data races and ensuring that log output remains consistent across threads.

In conclusion, Loguru is a highly user-friendly and efficient C++ logging library, well-suited
for a variety of applications. Its simple API design, automatic inclusion of contextual
information, and optimized performance through buffering and verbosity control make it an
attractive option for developers seeking an easy-to-integrate logging solution. Its concurrency

handling is robust, ensuring safe and efficient logging in multi-threaded environments.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

Chapter 3 System Methodology/Approach OR
System Model

3.1 System Design Diagram/Equation

Log Interface

MPMC Queue

lo_uring for

asynchronous
/O

Figure 3.1.1 Architecture Diagram

This system design diagram outlines an enhanced logging system architecture that includes
several key components such as a logging interface, a multiple-producer, multiple-consumer
(MPMC) queue, and asynchronous file /O functionality leveraging Linux’s io uring

mechanism.

At the core of the system is the logging interface, which acts as the entry point for log messages
generated throughout the application. This interface provides a unified API for logging
messages of various severity levels, such as debug, info, error, and fatal. Developers can utilize
this interface to log messages according to the criticality of events, ensuring that logs reflect

the correct severity.

Once a log message is generated, it is placed in a multiple-producer, multiple-consumer
(MPMC) queue. The MPMC queue is a high-performance data structure designed for

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

concurrent access from multiple threads. It utilizes atomic operations for thread-safe
enqueueing and dequeueing of log messages, allowing multiple threads to produce log entries
simultaneously without blocking or requiring traditional locking mechanisms. To ensure
smooth coordination between multiple threads, the queue relies on atomic wait-and-notify
operations and uses the futex system call for efficient synchronization in the scenarion of high

contention.

The MPMC queue acts as a buffer, decoupling the log message generation from file 1/0
operations. This separation prevents delays caused by slower file write operations from
impacting the performance of the application. Log messages are buffered in the queue until
they can be written to disk.

The final step in the logging pipeline is the asynchronous file 1/0 functionality which handles
writing log messages to files. This system takes advantage of the io_uring interface in the Linux
kernel, which allows for highly efficient asynchronous 1/0O operations. lo_uring reduces the
overhead of file system calls by providing a fast and efficient mechanism for queuing and
completing 1/0 tasks in the kernel, further boosting the logging system's performance. By using
i0_uring, the system ensures that log messages are written to disk without blocking the

application, even under heavy 1/O load.

In summary, this logging system architecture efficiently manages log generation,
categorization, buffering, and asynchronous storage through the use of key components such
as a logging interface, log level abstraction, an MPMC queue with atomic operations and futex
synchronization, and asynchronous file 1/0 using io_uring. This design ensures high
performance and scalability, making it suitable for modern, multithreaded applications that

require reliable logging even under heavy load conditions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 4 SYSTEM DESIGN

4.1 System Component Specification

.>> fmt, Args&&... args
: :forward<Args>(args)...);

template <typen:
error(source cation<fmt::format_string<Args...>> fmt, Args&&... args
addLogMessage(logging::LoglLevel::error, fmt, std::forward<Args>(args)...);

ate <typename... Args>

oid info(source_location<fmt::format_string<Args...>> fmt, A

addLogMessage(logging::LoglLevel::info, fmt, std::forward<

te <{type
1g<Args...>> fmt, Ar x&... args

fmt, std::forward<Args>(args)...);

setOutputFile(std: :string view);

Figure 4.1.1.1 API supported

The APIs shown in the provided image above are part of my logging library that allows
developers to record messages with different levels of severity or importance. The levels of
severity (such as debug, error, info, and fatal) reflect the nature of the message being logged.
For example, debug is used for low-priority information useful during development while error

and fatal are reserved for higher-priority issues.

Each API method like debug, error, info, and fatal accepts formatted strings (using the fmt
library for formatting) and additional arguments that will be included in the log message. This
enables users to log detailed messages with dynamic content making it easier to debug or

monitor software behavior.

The setOutputFile API shown is designed to allow users to specify where the log messages

should be stored. By calling setOutputFile with a file path, users can redirect the logs to a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

specific file. This is useful in scenarios where logs need to be preserved for later analysis or
when running programs in production environments where logs must be collected

systematically.

:source location loc ;

U> requires std::constructible_from<T, U>

_location(U inner,

: inner_ : forwar inner)), loc_
& format return inner_;

std: :source_location & location

other) =

other
name

name i R fmt
addLogMessage(lo n 0 std: : forward

LOGGING FOR EACH LOG LEVEL(FUNCTIO}
#undef

setOutputFile

< ... Args>
addLogMessage log;;ig::LogLevel level, source_location<fmt::format_string<Args...>> fmt, Args
std::string now = getPrefix();
& loc = fmt.location();
log_msg = fmt::vformat(to_string_view(fmt.format()), fmt::make_format_args(args...));
output_msg = fmt::format("{} {}:{} [{}] {}\n", now, loc.file_name(), loc.line(), loglLevelToString(level), log_msg);
deadline = std::chrono::steady_clock::now() + std::chrono::microseconds(250);
mpmc_.write(std: :move(output_msg));
std::string pop_msg{};
while (mpmc_.size() >= mpmc_.capacity() / 2) {

mpmc_.read(pop_msg) ;

io_context_.write(pop_msg.data(), pop_msg.size

< T, ... Args>
fmt: :basic_string_view<T> to_string_view(fmt::basic_format_string<T, Args...> fmt
return fmt;

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

std::string getPrefix();
std::string loglLevelToString(logging::LoglLevel);

ate

logging: :IoContext io_context_;
std::string_view file_path_;
MPMCQueue<std::string> mpmc_{1€0};

Figure 4.1.1.2 Log template class code

The Log class shown above is at the center of the system to provide functions to log messages
at different severity levels (e.g., debug, info, error, and fatal). Each log message is generated

using fmt::format which allows for efficient formatting.

The source_location struct is a template that wraps around the log message format string and
captures the source location where the log is generated such as file name, file location and etc.

This enables detailed log messages that include the origin of the log.

The use of X-macros is evident in how the different log levels (debug, info, error, fatal) are
handled. In my Log class, the macro LOGGING_FOR_EACH_LOG_LEVEL defines the log
levels and applies a function (FUNCTION) to each one. This allows to generate similar code
for each log level in a concise way and avoid the redundancy. By using X-macros, we can
easily add or modify log levels by updating the macro definition which keeps the code cleaner
and more maintainable. This pattern is useful for defining repetitive functionality across

multiple components or log levels without rewriting the same code.

Implicit conversion is another concept used in the source_location struct. The source_location
constructor accepts any type U that can be converted to T using the std::constructible from
concept. This allows the source_location to handle different types of format strings making it
more flexible. When pass the format string to the addLogMessage function, implicit conversion
happens automatically to convert the format string into the source_location type, simplifying
how the API is used. This is an example of how implicit conversion can streamline interactions

between different types in C++ while preserving type safety.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

After that, the log messages are enqueued into a multiple-producer, multiple-consumer queue
(MPMCQueue) with a default capacity of 100. The queue serves as a buffer, allowing multiple
threads to concurrently enqueue log messages without contention, thus improving performance
in multithreaded environments. The tryWriteUntil function attempts to write to the queue with
a timeout, ensuring that the system can handle load gracefully.

When the queue reaches half of its capacity, log messages are dequeued and written to a file
asynchronously using io_uring. The loContext class handles the asynchronous 1/0 operations,
allowing for non-blocking file writes. This decouples the logging process from the file 1/0,
ensuring that the application is not slowed down by file operations.

The setOutputFile function sets the path to the log file where messages will be written. The log
level and the source location of the message are included in each log entry, providing detailed
and structured log output. This design leverages modern C++ techniques like concepts and
concurrency primitives to build an efficient, scalable logging system.

Loglevel : std::
#define name
LOGGING FOR_EACH_ LOG_LEVEL(_ FUMCTIOM
#undef

i

.
J

Figure 4.1.2.1 LogLevel enum class code

The code above defines an enum class in the logging namespace where it categorizes different
logging levels. The macro LOGGING_FOR_EACH_LOG_LEVEL isused to list the log levels
such as debug, info, error, and fatal. This is an example of an X-macro, a technique that allows

to define repetitive items in one place and reuse them in different contexts.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

The LogLevel enum class is created using this macro. The X-macro defines each log level
name by invoking the _FUNCTION macro for each item in the
LOGGING_FOR_EACH_LOG_LEVEL list. This reduces redundancy and makes it easy to

add new log levels in the future by simply modifying the macro.

Once the macro is expanded, the LogLevel enum class will contain entries like debug, info,
error, and fatal, each represented by a std::uint8_t value. This structure helps categorize log

messages by severity, making the logging system more organized and flexible.

4.1.3 Multi-Producer Multi-Consumer Queue

<template < T, template <typename> Atom, Dynamic> Derived,
T, 3 > Atom, Dynamic>
MPMCQueueBase<Derived<T, Atom, Dynamic>> {
(std::is_nothrow_constructible<T, T&&>::value);

T value_type;
using Slot = SingleElementQueue<T, Atom>;

MPMCQueueBase(queueCapacity)
: capacity_(queueCapacity),
pushTicket_ (@),
popTicket_(@),
pushSpinCutoff_(e@),
popSpinCutoff_(e)

if (queueCapacity == @
throw std::invalid_argument("MPMCQueue with explicit capacity © is impossible");

assert
assert < *>(
< *>(<

<ptrdiff_t>(hardware_destructive_interference_size));

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

< T, template <typename> class Atom = std:: N Dynamic = false>
MPMCQueue : MPMCQueueBase<MPMCQueue<T, Atom, Dynamic>> {
using Slot = SingleElementQueue<T, Atom>;

MPMCQueue(queueCapacity) : MPMCQueueBase<MPMCQueue<T, Atom, Dynamic>>(queueCapacity) {

->stride_ = ->computeStride(queueCapacity);
-»slots_ = new Slot[queueCapacity + 2 * ->kSlotPadding];

1
J

MPMCQueue()

)iz

Figure 4.1.3.1 MPMC Queue class code

The MPMCQueue class is a template class that allows the queue to hold different types (T),
and it supports customization through atomic operations (Atom) and an optional dynamic mode
(Dynamic). It inherits from the MPMCQueueBase class which provides most of the core
functionality. The constructor of MPMCQueue initializes the queue with a capacity, computes
a stride value for optimized slot access, and allocates memory for the queue slots. These slots
are instances of the SingleElementQueue class, which represents individual storage locations

in the queue.

hardware_destructive_interference_size = 64;

1
kAdaptationFreq = 128,

kSlotPadding = (hardware_destructive_interference_size - 1) / Slot) + 1

I3
alignas(hardware_destructive_interference_size) capacity_;
Slot* slots_j;
stride_;
alignas(hardware_destructive_interference_size) Atom< pushTicket_;

alignas(hardware_destructive_interference_size) Atom< popTicket_;

alignas(hardware_destructive_interference_size) Atom< pushSpinCutoff_;

alignas(hardware_destructive_interference_size) Atom< popSpinCutoff_;

pad_[hardware_destructive_interference_size - Atom< »1;

Figure 4.1.3.2 MPMC Queue essential variables

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

In the base class MPMCQueueBase, the pushTicket and popTicket_ atomic variables track
the number of enqueued and dequeued elements, respectively. The queue uses these tickets to
ensure that each enqueue and dequeue operation happens in the correct order. The stride
variable is used to calculate the index of the slot that a thread should access, ensuring that the
slots are spaced out in a way that minimizes cache line contention especially when multiple

threads are writing to or reading from the queue simultaneously.

enqueueImpl(turn, Atom¢ >& spinCutoff, updateSpinCutoff, T&& goner, ImplByMove)
sequencer_.waitForTurn(turn * 2, spinCutoff, updateSpinCutoff);
new (&contents_) T(std::move(goner));

sequencer_.completeTurn(turn * 2);

dequeueImpl(turn, Atom¢ >& spinCutoff, updateSpinCutoff, T& elem, ImplBy
sequencer_.waitForTurn(turn * 2 + 1, spinCutoff, updateSpinCutoff);

elem = std::move(*ptr());

destroyContents();

sequencer_.completeTurn(turn * 2 + 1);

Figure 4.1.3.3 Enqueue and dequeue function code

The enqueue and dequeue operations in the queue are managed using a ticket system. When a
producer thread calls the write function, it attempts to obtain a push ticket by using atomic
compare-and-swap (CAS) operations on pushTicket_. If the ticket is obtained, the producer
can proceed to enqueue its element into the slot. Similarly, the read function uses a ticket-based
system for dequeuing. The tickets ensure that the correct element is enqueued or dequeued at

the correct time, maintaining consistency across multiple threads.

< Clock>
tryoObtainPromisedPushTicketUntil(ticket, Slot*& slots, stride, std::chrono::time_point<Cled
deadlineReached = ;
while (!deadlineReached
if (tryObtainPromisedPushTicket(ticket, slots, cap, stride)) {
return

}

2

deadlineReached = !slots[idx(ticket, cap, stride)].tryWaitForEnqueueTurnUntil(turn(ticket, cap), pushSpinCutoff_,
(ticket % kAdaptationFreq) == @, when);

return

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

¢ Clock>
tryObtainPromisedPopTicketuntil(ticket, slot*& slots, stride, std::chrono::time_point<Cla
deadlineReached = ;
while (!deadlineReached
if (<Derived<T, Atom, Dynamic>>()->tryObtainPromisedPopTicket(ticket, slots, cap, stride)) {
return 8

}

deadlineReached = !slots[idx(ticket, cap, stride)].tryWaitForDequeueTurnUntil(turn(ticket, cap), pushSpinCutoff_,
(ticket % kAdaptationFreq) == @, when);

return

Figure 4.1.3.4 Obtain ticket function code

A significant part of the code is dedicated to turn-based sequencing using the TurnSequencer.
This mechanism ensures that threads enqueue and dequeue elements in the correct order, even
in a highly concurrent environment. Each slot in the queue can only be accessed by one thread
at a time, and the TurnSequencer ensures that the thread holds the "turn" before accessing a
slot. Once a thread completes its operation (either enqueuing or dequeuing), it "completes™ its

turn, allowing other threads to proceed.

Atom>
SingleElementQueue {
~SingleElementQueue() {
if ((sequencer_.uncompletedTurnLSB() & 1) == 1
destroyContents();

std::enable_if<std::is_nothrow_constructible<T>::value || std::is_nothrow_constructible<T,
enqueue(turn, Atom< >& spinCutoff, updateSpinCutoff, T&& goner)
enqueueImpl(turn, spinCutoff, updateSpinCutoff, std::move(goner), typename std::conditional<std::is_nothrow_constructi
ImplByMove, ImplByRelocation>::type());

< Clock>
tryWaitForEnqueueTurnUntil(turn, Atom< >& spinCutoff, updateSpinCutoff,
std: :chrono::time_point<Clock>& when) {
return sequencer_.tryWaitForTurn(turn * 2, spinCutoff, updateSpinCutoff, &when) != TurnSequencer<Atom>::TryWaitResult:

mayEnqueue (turn)
return sequencer_.isTurn(turn * 2);

dequeue(turn, Atom< >& spinCutoff, updateSpinCutoff, T& elem) {
dequeueImpl(turn, spinCutoff, updateSpinCutoff, elem, std::conditional<std::is_trivially copyable<T>::value,

Figure 4.1.3.5 SingleElementQueue template class code

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

The SingleElementQueue class represents the individual slots in the queue. It is responsible for
holding a single element (T) and ensuring that it is safely constructed, moved, or destroyed
during enqueue and dequeue operations. Depending on the type of element (T), the queue uses
either a move-based or relocation-based strategy for transferring data into and out of the slot.
This flexibility is managed through template specialization and conditional compilation based
on the properties of T.

The class also handles spinning and waiting through spin-waiting mechanisms (such as
pushSpinCutoff_ and popSpinCutoff_) which control how long a thread will spin-wait before
yielding if it cannot immediately obtain a ticket or access a slot. This helps reduce contention

and improves performance in high-concurrency scenarios.

In summary, this code implements an efficient, lock-free MPMC queue that supports multiple
producers and consumers with minimal contention. The use of atomic variables, ticket-based
queuing, and turn-based sequencing ensures safe and consistent operations, while avoiding

locks and maximizing throughput in concurrent environments.

4.1.4 Turn Sequencer
TurnSequencer class designed to manage the sequential execution of threads based on a "turn”

system. At its core, the TurnSequencer uses atomic operations to keep track of the current turn
and the state of the waiters. The concept of "turns” allows threads to know when it is their turn
to proceed, while others wait until their turn arrives. The TurnSequencer ensures that threads

waiting for a particular turn will not proceed until their turn is reached.

This class contains a state_ variable is a 32-bit atomic integer that encodes both the current turn
and the number of waiters waiting for upcoming turns. The kTurnShift constant is used to split
the 32-bit state into two parts: the upper bits store the current turn, and the lower bits store the

waiter count which represents how many waiters are ahead in line for future turns.

explicit TurnSequencer(const uint32 t firstTurn = @) noexcept : state (encode(firstTurn << kTurnShift, @)) {}

Figure 4.1.4.1 TurnSequencer constructor code

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

The constructor initializes the state_ variable by encoding the initial turn (firstTurn) and setting
the number of waiters to 0. By default, the firstTurn is set to 0, meaning that the first turn will
be "turn 0" when the sequencer starts.

isTurn(turn)

state = state_.load(std::memory_order_acquire);

return decodeCurrentSturn(state) == (turn << kTurnShift);

Figure 4.1.4.2 TurnSequencer isTurn function code

The method above checks whether the given turn is the current turn. It compares the decoded
current turn from state_ with the requested turn. This is a simple check, often used to decide

whether a thread should proceed or wait.

waitForTurn(turn, Atom< >& spinCutoff, updateSpinCutoff)

ret = tryWaitForTurn(turn, spinCutoff, updateSpinCutoff);

Figure 4.1.4.3 TurnSequencer waitForTurn function code

The method above is called by threads to wait for their turn. Internally, it calls tryWaitForTurn,
which contains the logic to either spin (busy-wait) or put the thread to sleep using futex calls

if the wait extends beyond a certain threshold.

Clock = std::chrono:: ; Duration = Clock: :durationy

esult tryWaitForTurn(turn, Aton o spinCutoff,
updateSpinCutoff, std:chrono: :time point<Clock, Durationy* absTine =

Figure 4.1.4.4 TurnSequencer tryWaitForTurn function code

This is where the actual waiting logic occurs. The method attempts to wait for a specific turn
(turn). It uses a combination of busy-waiting and futex-based sleeping to optimize thread

performance.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

At first, the thread spins (repeatedly checks the state) for a few iterations to see if the turn has
advanced. This is done in the fast path to avoid the overhead of system calls like futex in cases
where the thread's turn will arrive quickly. If the turn does not arrive within the busy-waiting
threshold, the thread is put to sleep using the futexWait system call. This prevents excessive
CPU usage while waiting for a longer time. The method also accounts for thread contention
and "wrap-around" of turn values by ensuring that even if the current turn is numerically lower

than the requested turn due to wrap-around, the comparison remains correct.

completeTurn(turn) |
state = state_.load(std::memory_order_acquire

while
assert(state == encode(turn << kTurnShift, decodeMaxWaitersDelta(state)));
max_waiter_delta = decodeMaxWaitersDelta(state);
new_state = encode((turn + 1) << kTurnShift, max_waiter_delta == @ ? @ : max_waiter_delta - 1);

if (state_.compare_exchange strong(state, new_state)) {
if (max_waiter_delta != @) {
detail: :futexllake(&state , std::numeric_limits< »>::max(), futexChannel(turn + 1));

Figure 4.1.4.5 TurnSequencer completeTurn function code

The method above is called when a thread has finished its turn. It advances the sequencer to
the next turn by incrementing the current turn in state . If there are other threads waiting for
the next turn, it wakes them up using the futexWake system call, signaling that their turn is

ready.

The method ensures that the thread that has finished its turn updates the state correctly and
handles any waiting threads. If there are no waiters, the system skips waking up other threads,

optimizing performance by avoiding unnecessary futex calls.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

decodeCurrentSturn(
return state & ~kWaitersMask;

decodeMaxWaitersDelta(
return state & kWaitersMask;

encode(currentSturn, maxkaiterD)
return currentSturn | std::min {kWaitersMask}, maxWaiterD);

Figure 4.1.4.6 TurnSequencer decode helper functions code

The state_ variable encodes two pieces of information which are the current turn (most
significant bits) and the maximum waiter delta (least significant bits) which indicates how
many threads are waiting for future turns. Two helper methods, encode and decode, are used
to encode and decode these values. encode combines the current turn and waiter delta into a
single integer. decodeCurrentSturn extracts the current turn from state .
decodeMaxWaitersDelta extracts the number of waiters from state . This encoding ensures
that the sequencer can track both the current turn and how many threads are waiting for future

turns efficiently using atomic operations.

kSpinUsingHardwareClock = 1;
kCyclesPerSpinLimit = kSpinUsingHardwareClock ? 1 : 10;

kTurnShift = 6;
kWlaitersMask = (1 << kTurnShift) - 1;

kMinSpinLimit = 206@ / kCyclesPerSpinLimit;

kMaxSpinLimit = 20000 / kCyclesPerSpinlLimit;

std: :atomic<std:: > state ;

Figure 4.1.4.7 TurnSequencer essential variables

Several constants are defined to manage the behavior of the sequencer.

kTurnShift: Determines how much the turn value is shifted to make space for the waiter delta.
kMinSpinLimit and kMaxSpinLimit: Define the range for busy-waiting before switching to
futex-based waiting.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

kCyclesPerSpinLimit: Defines how many cycles to spin before considering switching to the
futex-based wait.

The TurnSequencer class implements an efficient mechanism for coordinating thread execution
in a turn-based manner. It ensures that threads take turns in the correct order and uses busy-
waiting combined with futex-based sleeping to optimize for performance and minimize
contention. The atomic operations and futex system calls allow it to handle multiple threads

efficiently, even in highly concurrent environments.

The TurnSequencer is ideal for scenarios where threads must take turns in accessing a shared
resource or performing a sequence of operations, and it ensures fairness and ordering between

threads, all while optimizing performance with minimal contention.

4.1.5 Futex
This futex (Fast Userspace Mutex) implementation focuses on providing low-level

synchronization mechanisms which utilizing Linux's futex system call. The futex system call
allows threads to wait on and wake each other in a more efficient way compared to traditional
mutexes, especially when there is no contention. This implementation uses
FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET, which are extensions to the standard

futex system calls.

At its core, this implementation provides a wrapper around the futex system call for both
waiting (futexWait) and waking (futexWake) threads based on a specific memory address,
commonly a 32-bit integer. The futex itself is an atomic variable that threads can wait on when

the variable's value is not what they expect, and they can wake up once the value changes.

FutexResult nativeFutexWaitImpl(const void* int32 t std::chrono: :system clock:: noint const* absSystemTine,

assert(absSystemTime == nullpt

Figure 4.1.5.1 Futex wait function code

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

This function is responsible for putting the calling thread to sleep when a specific condition is
met, using the FUTEX_WAIT_BITSET operation. Before putting the thread to sleep, it ensures
that the value of the atomic variable (addr) is what the thread expects (i.e., expected). If the
value has changed, the thread will not sleep and the function will return
FutexResult::VALUE_CHANGED.

The core of the function revolves around using FUTEX_WAIT_BITSET. This variant of the
futex wait allows for the use of a bitmask (waitMask). Only if the thread’s bit is set in both the
wait mask and wake mask will the thread be woken up later. This enables more control over
which threads are woken up, particularly useful in scenarios where multiple threads are waiting

on the same futex but some should be ignored for specific wake-up conditions.

If a timeout is provided (via absSystemTime or absSteadyTime), the thread will sleep for a
limited time, after which it will return FutexResult:: TIMEDOUT. The function also handles
interrupts (EINTR) and cases where the futex value has already changed (EWOULDBLOCK),
returning FutexResult::INTERRUPTED or FutexResult::VALUE_CHANGED respectively.

The bitmask (waitMask) allows for up to 32 separate conditions (each represented by a bit in a
32-bit mask) that can be checked atomically during the wake-up process, providing a finer

granularity of control over which threads should be woken up.

int nativeFutexWakeImpl(const void* addr, int count, uwint32 t wakeMask) {
int rv = syscall
__NR_futex,
addr,
FUTEX WAIT BITSET | FUTEX PRIVATE FLAG,
count,

wakeMask) ;

rv < 0
return @;

return rv 3

Figure 4.1.5.2 Futex wake function code
This function is responsible for waking up threads that are waiting on the futex, using the

FUTEX WAKE_BITSET operation. It calls syscall(__NR_futex) with the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

FUTEX_WAKE_BITSET flag, which means it will wake up threads waiting on the futex at
the provided memory address (addr), but only if their wait mask intersects with the wake mask
(wakeMask). This is critical for performance, as it avoids waking up unnecessary threads.

The count parameter controls how many threads should be woken up. If this is set to
std::numeric_limits<int>::max(), it will attempt to wake all threads that match the wake
condition. Otherwise, it will wake up a limited number of threads, improving efficiency in
scenarios where waking all waiting threads is not required. If the system call fails (returns a
negative value), it returns O, indicating that no threads were woken up. Otherwise, it returns
the number of threads that were successfully woken up.

The FUTEX_WAIT _BITSET and FUTEX _WAKE_BITSET operations are specialized
versions of the regular futex system calls that allow for a bitmask to be applied when waiting
and waking threads. These operations are useful when you need more control over which
threads are allowed to wake up, as they provide the ability to set conditions on wakeups based

on bitmasks.

FUTEX_WAIT_BITSET allows a thread to wait until it is woken up based on a specific
bitmask. Only if the wait condition and the mask are satisfied will the thread be put to sleep,

ensuring that only threads with the right conditions will wait.

FUTEX_WAKE_BITSET is used to wake threads that are waiting on the futex. The wake mask
is compared with the wait mask of each sleeping thread, and only those threads that have a

matching bit set will be woken up. This allows for efficient wake-up of only the relevant threads.

This futex implementation provides an efficient way for threads to wait and be woken up based
on atomic conditions and bitmask operations. The use of FUTEX WAIT _BITSET and
FUTEX_WAKE_BITSET adds more control over which threads are woken up, preventing
unnecessary wake-ups and improving performance in highly concurrent environments. The
code also provides flexibility with timeouts, handling interruptions, and ensuring that the futex

state is checked atomically to avoid race conditions.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

4.1.6 lo_uring
The loContext class in the code is designed to handle asynchronous file writing using the Linux

i0_uring interface, which offers high-performance 1/0 operations by minimizing system call
overhead. This class is part of my logging system that can handle concurrent log writes across
multiple threads efficiently. It leverages io_uring to submit batched 1/0 requests, reducing the
need for blocking or repeated system calls. Additionally, a turn-based synchronization
mechanism (TurnSequencer) ensures that log entries are processed in the correct order when
multiple threads are involved.

logging {

IoContext {
IoContext
IoContext IoContext
IoContext(IoContext
IoContext& operators= IoContext
IoContext& operator=(IoContext
~ToContext();

register_file(std::string_view);

write) 3

io_uring io_uring_;
fds[2];
std: :atomic< > count_{@};
std::atomic< > turn_{0};
TurnSequencer<std::atomic> turn_sequencer_;

alignas(64) std::atomic< > spinCutoff_;

Figure 4.1.6.1 io_uring class code
At the core of the loContext class is the io_uring structure, represented by the io_uring_

variable. This structure manages the submission and completion queues for asynchronous
operations. All file writing operations are handled through this interface, allowing the system

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

to submit write requests without waiting for their completion, which is crucial for performance

in high-concurrency environments.

The file descriptor for the target file is stored in the fds array, specifically in fds[0]. The file is
opened when the user calls the register_file function, which opens a log file in append mode.
This function prepares the system to start logging to the file, handling any potential errors if
the file cannot be opened.

logging::IoContext: :write(message, len) {
turn_sequencer_.waitForTurn(turn_, spinCutoff_,);
io_uring_sqe* sqe = io_uring_get_sqe(&io_uring_);
if (!sqe) {
fprintf(stderr, "Failed to get submission queue entry\n");
return;

* new_buffer = new [len];
memcpy (new_buffer, message, len);

io_uring_prep_write(sqe, fds[@], new_buffer, len, @);
sqe->user_data = < >(new_buffer);

turn = turn_.fetch_add(1, std::memory_order_acqg_rel);
turn_sequencer_.completeTurn(turn);

count = count_.fetch_add(1, std::memory_order_acq_rel) + 1;

f (count == QUEUE_DEPTH / 2) {

lo_uring_submit(&io_uring);

count_.store(@, std::memory_order_release);
io_uring_cqge* cqe;

i =@; 1 < QUEUE_DEPTH / 2; ++i
ret_wait = io_uring_wait_cqe(&io_uring_, &cqe);

* completed_buffer = *>(cqe->user_data);
delete[] completed_buffer;

io_uring_cqe_seen(&io_uring_, cqge);

Figure 4.1.6.2 io_uring write function code
The write function is the most important part of the class, responsible for handling the actual

log writes asynchronously. Each time a log message is passed to this function, the

TurnSequencer ensures that the thread attempting to write waits for its "turn” in order to avoid

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

race conditions or conflicts. Once the thread’s turn is up, a submission queue entry (SQE) is
retrieved from io_uring, and the log message is copied into a new buffer. This buffer is then
submitted for a non-blocking write operation using io_uring_prep_write. The buffer's address
is stored in user_data to allow for clean-up once the write operation is complete. After enough
writes have been queued (half of the defined queue depth), the system submits these requests
for execution and processes any completed writes by freeing the associated buffers.

One of the critical variables in this class is count_, an atomic counter that tracks the number of
log messages submitted for writing. Once the counter reaches half the defined queue depth, the
function submits the batched writes to io_uring. This batching reduces the frequency of
submissions, improving overall performance. Another important atomic variable is turn_,
which works alongside TurnSequencer to ensure that threads perform their writes in an orderly
fashion. By incrementing turn_ atomically and ensuring that each thread waits for its turn to
submit, the class avoids the contention and disorder that can occur in multi-threaded

environments.

logging: :IoContext: :~IoContext() {
if (count_ != @) {
io_uring_submit(&io_uring_);

io_uring_cge* cqe;
i=9; i < count_; ++i
ret_wait = io_uring_wait_cqe(&io_uring , &cge);

* completed_buffer = < *>(cge->user_data);
delete[] completed_buffer;

io_uring_cqe_seen(&io_uring_, cqe);

3
J

io_uring_queue_exit(&io_uring_);

Figure 4.1.6.3 io_uring destructor code

The destructor of loContext (~loContext) ensures that any remaining writes are flushed and
completed before the object is destroyed. If there are pending write operations, the destructor
submits them and waits for their completion, cleaning up the buffers used for writing. This
guarantees that no data is lost when the object is deallocated. Finally, the io_uring_queue_exit
function is called to free the resources used by io_uring, ensuring that all associated resources

are properly released.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

This implementation offers several advantages over traditional 1/0 mechanisms. By using
10_uring, the system minimizes the number of context switches between user and kernel space,
reducing latency and improving throughput for 1/0 operations. It also allows for batching of
operations, meaning that multiple 1/0 requests can be submitted at once and completed
asynchronously. This is especially beneficial for high-throughput systems like logging libraries,
where many 1/O operations can occur concurrently without slowing down the rest of the

application.

Overall, the loContext class is designed to make efficient use of io_uring for asynchronous,
non-blocking file writes, which is particularly well-suited for high-performance logging in a

multithreaded environment.

4.2 System Build Process

| followed a systematic approach using CMake to streamline the configuration and build
process. The entire project is designed to be modular allowing for flexibility in integrating
different components like fmt and liburing libraries. The primary goal was to ensure that the
logging library is built efficiently while allowing users to customize specific parameters like

optimization flags and debugging options.

Before beginning the build, users need to install the required dependencies such as fmt for
formatting output and liburing for efficient asynchronous 1/0O. These libraries are not bundled
within the project so they must be installed on the user's system especially if they are running

WSL2 Ubuntu. The installation steps for these dependencies are straightforward.

To install fmt on Ubuntu, you can use the following commands:

sudo apt update

sudo apt install libfmt-dev

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

Figure 4.2.1 Installation command for fmt library

For liburing, you will need to clone the repository and build it manually:

sudo apt update

sudo apt imstall liburing-dewv

Figure 4.2.2 Installation command for liburing library

Once both dependencies are installed, you can proceed with building the logging library. After
cloning the repository containing the library, users can generate the necessary build files and

compile the project with a few commands. To do so, run:

cmake -B build

make

Figure 4.2.3 Build command for my library

The cmake -B build command configures the project by generating build files in the build
directory which keeps the source tree clean. After the build files are prepared, running the make
command compiles the project and produce the desired output including the library and

executable.

If any issues arise during the installation or configuration process, or if you'd like to see how
the libraries are linked and managed in the build process, you can refer to the CMakeL.ists.txt
file which is available in my GitHub repository https://github.com/Chunee/Log-
Library/tree/main. This file contains all the necessary details for linking external libraries and

setting up the project's build and compilation flags.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

, user_id, error_message);

Figure 4.2.4 Example of using my library

To begin using the library, users simply instantiate a logging::Log object which provides the
core logging functionality. Once this object is created, users can easily specify an output file
for their log entries with the setOutputFile() function.

The API further simplifies logging by allowing users to write log messages with varying levels
of importance such as error messages. By using formatted logging methods like log.error(),

users can seamlessly include dynamic content such as variables within their log entries.

= ‘.'.l-.”.[.l\”.‘[}';'.

2024-88-83 11:35:38.259 140048957253564 /home/chunee/log/test.cpp:2@ [error] User ID: 42, Error message: File not found

Figure 4.2.5 Output example shown

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 Hardware Setup

Description Specifications
Model ROG Strix G531GT_G531GT
Processor Intel Core i15-9300H (2.4 GHz)
Operating System Windows 10 (64-bits)
Graphic NVIDIA GeForce GTX 1650
Memory 8GB RAM (DDR4)
Storage 512GB SSD

Table 5.1.1 Hardware Setup
5.2 Software Setup
Before starting to develop this high performance logging library, there are four software needed
to be installed and downloaded in my laptop:
1. Ubuntu 22.04
2. Git 2.34.0
3. CMake 3.27.0-rc4
4.G++11.4.0

5.3 Settings and Configuration
This logging library is configured using CMake and compiled with the G++ compiler and

ensuring compatibility with C++20 standards. First, the CMake version 3.27.0-rc4 is used as
the build system generator. The CMakeL.ists.txt file is created to define the necessary project

configuration including the required version of CMake and C++20 as the language standard.

The project uses multiple external libraries such as fmt for formatting and liburing for
asynchronous 1/0O, which are linked using the find_package command in CMake. The G++
11.4.0 compiler is specified for compiling the project, with necessary flags like -std=c++20 to
ensure compliance with modern C++ standards. All project files are organized into respective
source and header directories which are then included in the CMake configuration to automate
the build process.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

Once configured, the cmake command like cmake -B build is executed to generate the makefile
followed by the make command to compile the logging library. The CMake configuration
ensures that all dependencies and necessary compiler flags are handled, allowing the logging
library to be built efficiently on the specified system setup.

CHAPTER 6 SYSTEM EVALUATION AND
DISCUSSION

6.1 System Testing and Performance Metrics

6.1.1 Performance Comparison

for (j=8; <30 +j) {
start = std::chrono::high_resolution_clock: :now();
for i=0; i< 1008; ++i

log.error("User ID: {}, Error message: {}", i, error_message);

end = std::chrono::high_resolution_clock::now();

duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);

Figure 6.1.1.1 Test case for single-threaded scenario

1e6 Nanoseconds vs lterations for 4 Different Logging Libraries
— Mylog
—— Fmtlo
3.5 - 9
— plog
loguru
3.0 A
2.5 -
wn
©
c
o
@ 2.0 A
w
o
=
1]
=
1.5 4
1.0 4
_ e S QO
0.5 /‘:’,__._-\/ W/
0 5 10 15 20 25 30

lterations

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

Figure 6.1.1.2 Result of nanoseconds vs iterations

The graph above compares the performance of my logging library (blue line), with three other
logging libraries such as fmtlog (red line), plog (black line), and loguru (pink line) over 30 test
executions. The x-axis represents the number of times | tested (from 1 to 30 iterations), while
the y-axis shows the time (in nanoseconds) required to log a message 100 times within a loop.

Based on the result, my logging library generally performs well, sitting between fmtlog and
plog in terms of consistency and speed. It maintains a relatively low and stable nanosecond
time, indicating that it handles logging operations efficiently within the tested framework. My
logging library doesn't experience large spikes like plog or loguru, which suggests it is more
robust in terms of avoiding performance degradation across different test iterations. However,

fmtlog slightly outperforms my logging library in terms of overall nanoseconds.

My logging library demonstrates stable and consistent performance across all 30 iterations,
only slightly trailing fmtlog. The performance is superior to both plog and loguru which show
occasional performance spikes. The consistent performance of my logging library along with
its minimal fluctuation suggests that my design using fmt and MPMC queues is effective for
handling high-frequency logging tasks without significant overhead. However, fmtlog still
outperforms the others which may be due to optimizations that | could explore to further

improve my logging library’s efficiency.

j=20; j < 308; ++j) {
std::vector<std: :thread> threads;
start = std::chrono::high_resolution_clock: :now();

for i=89; i< 16; ++i
threads.push_back(std::thread([i, user_id, error_message, &log
log.error("User ID: {}, Error message: {}", i, error_message);

));

for &t : threads

t.join();

td::chrono::high_resolution_clock: :now();

duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);

Figure 6.1.1.3 Test case for multi-threaded scenario
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

Mean Nanoseconds vs Number of Threads for 4 Different Logging Libraries in Multi-Threaded Scenario
leb

—— Mylog

| —— Fmtlog

— plog
loguru

Mean Nanoseconds

Number of Threads

Figure 6.1.1.4 Result of mean nanoseconds vs number of threads

The graph above illustrates the performance of four different logging libraries which are my
library, fmtlog, plog, and loguru measured in terms of mean nanoseconds per iteration. The x-
axis represents the thread spawned count while the y-axis shows the mean time (in nanoseconds)
required for logging operations in each iteration. Each data point is the mean of 30 iterations
for logging operations performed with varying numbers of threads, starting from 1 thread and

gradually increasing up to 16 threads.

The purpose of the experiment is to compare how these libraries handle multi-threaded logging
in a high-concurrency scenario assessing both their performance and scalability as the number

of threads increases.

Based on the image given above, fmtlog (Red Line) shows a steep increase in time with each
iteration which indicates that it faces significant overhead as the iterations increase. The
potential reason for this is fmtlog's design by using thread-local storage (TLS). Each thread
maintains its own log buffer which can lead to contention or inefficiencies when the data from
these threads must be merged or ordered.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

Fmtlog's approach of adjusting ordering using a heap may also introduce overhead because
merging logs from different threads requires additional computation to ensure that the log
entries are ordered correctly. As the number of iterations grows, this ordering process could be

more computationally expensive, resulting in the observed increase in time.

Loguru (Pink Line) and Plog (Black Line) perform relatively well in the graph compared to
fmtlog but they still experience a slight increase in time as iterations progress. The reason
behind this could be the << operator they use for formatting logs. While this operator is familiar
in C++ and relatively fast, it is not as optimized as the fmt library. This could cause minor
inefficiencies when constructing log messages especially under high-volume, multi-threaded

workloads.

Despite using <<, these libraries seem to handle concurrency well and don't suffer the same
performance degradation as fmtlog. This suggests that the concurrency mechanism they
employ is effective for managing log writes but may not be as scalable under extreme

conditions.

My library (blue line) shows a stable performance with minimal growth in time across
iterations. It leverages the fmt library for string formatting and utilizes an MPMC (multi-
producer, multi-consumer) queue. The use of fmt provides efficient formatting compared to
the << operator. Additionally, the use of the MPMC queue with a turn sequencer and futex-
based synchronization offers a highly optimized, lock-free or low-contention mechanism for
managing concurrent log writes across threads.

In conclusion, the graph reflects the performance trade-offs of each logging library in a multi-
threaded environment. Fmtlog experiences the most significant overhead due to thread-local
storage and heap-based ordering, while loguru and plog though faster, are limited by their user-
friendliness of the << operator for formatting. My library is leveraging the fmt library and a
highly optimized concurrency mechanism that outperforms the others demonstrating the

effectiveness of combining modern formatting tools with efficient MPMC queues.

6.1.2 User-Friendly APl Comparison

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

j=9; j<30; ++j)
start = std::chrono::high_resolution_clock::now();

for i=9; 1< 100; ++i
log.error("User ID: {}, Error message: {}", i, error_message);

end = std::chrono::high_resolution_clock::now();

duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);

Figure 6.1.2.1 My logging library APl example
for (j=0; j < 30; ++j) {
start = std::chrono::high_resolution_clock::now();
for i=29; i< 108; ++i
PLOG_DEBUG << "User ID: " << i << ", Error message: " << error_message;
end = std::chrono::high_resolution_clock: :now();

duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);

Figure 6.1.2.2 plog API example

j=8; j < 30; ++j) {
start = std::chrono::high_resolution_clock: :now();

i=9; i< 160; ++i
LOG_F(ERROR, "User ID: %d, Error message: %s", i, error_message.c_str());
std: :chrono: :high_resolution_clock: :now();

duration = std::chrono::duration_cast<std: :chrono: :nanoseconds>(end - start);

Figure 6.1.2.3 loguru API example
for (j=0; j < 30; ++j)
start = std::chrono::high_resolution_clock: :now();

for i=09; i< 109; ++i
FMTLOG(fmtlog::ERR, "User ID: {}, M : {}", i, error_message);

fmtlog: :poll();

end = std::chrono::high_resolution_clock: :now();

duration = std::chrono::duration_cast<std::chrono: :nanoseconds>(end - start);

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

Figure 6.1.2.4 fmtlog API example

When developing a logging library, one of the key goals is to create a system that is both
powerful and user-friendly. Comparing the use of the fmt library in my logging library and
fmtlog to other popular logging libraries such as plog and loguru clearly demonstrates how
different logging frameworks can affect the user experience especially in terms of readability
and ease of use.

In the case of plog as illustrated in the image, the library relies heavily on the use of the <<
operator for message formatting. While this can work for simple messages, it quickly becomes
cumbersome as the complexity of the log message increases. Each component of the message
such as a user ID or error message, must be separately chained using <<. This can clutter the
code making it less readable and more prone to errors especially if the order or type of

arguments changes.

On the other hand, loguru adopts a printf-style format string approach which require users to
specify format specifiers like %d for integers or %s for strings. While this method is efficient
and familiar to many, it introduces a level of complexity that can be frustrating. Users must be
aware of the data type of each argument and match it with the correct format specifier. This
not only increases the chance of errors such as using %d for a floating-point number but also

requires additional steps like converting std::string objects to const char* using c_str().

In contrast, a logging library built using the fmt library offers a much more streamlined and
intuitive experience. With fmt, users can simply include placeholders ({}) in the log message,
and the library automatically handles type resolution at runtime. There is no need for users to
manually specify the type of each argument nor are there any additional steps to convert data
types. This reduces the mental overhead for developers and allows them to focus on the content
of the message not the formatting. As a result, the code remains clean, concise, and easy to

maintain, even when logging complex messages with multiple variables.

std: :vector<

log.error("Elen

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

Figure 6.1.2.5 my APl example for specific data structure

2004-09-06 16:50:10,263 139628937615232 /home/chunee logtest..cpp:23 [error] Elements of vector: [1, 2, 3]

Figure 6.1.2.6 output

The fmt library also offers an intuitive and powerful approach to logging complex data types
such as std::vector. As shown in the image, the fmt library allows the user to log the contents
of a vector directly by passing the vector as an argument in the placeholder {}. This level of
flexibility is one of the key advantages of using fmt as it automatically formats the elements of
the vector and produce a clear and readable log message without requiring any additional
manipulation of the data.

In contrast, libraries like plog and loguru do not provide such out-of-the-box support for
logging complex data types like std::vector. In the case of plog, the operator << is primarily
designed for handling simple data types mean users would have to manually iterate over the
vector and use multiple << operators to log each element. This process can be cumbersome and

leads to less readable code.

Similarly, loguru which relies on a printf-style formatting system does not directly support
containers like std::vector. Users would need to implement custom formatting logic or convert
the vector into a more suitable form for logging which complicates the logging process and
requires additional steps such as writing loops or helper functions to convert the vector

elements into a string format.

In conclusion, my logging library still offers nearly the same speed as plog and loguru while
maintaining superior user-friendliness, thanks to its seamless integration with the fmt library.
While libraries like fmtlog may outperform in raw speed especially in single-threaded scenarios

due to its highly optimized design, it falls short in multi-threaded environments.

In contrast, my logging library is designed to handle concurrency effectively while still
utilizing the powerful formatting capabilities of fmt. This allows for a balanced trade-off

between speed and multi-threading support, ensuring that performance is not compromised

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

even when handling complex data types like std::vector or custom objects,which neither plog
nor loguru support as easily. Additionally, the simplicity of using {} placeholders for
formatting without the need for chaining multiple operators as in plog or specifying format
specifiers like in loguru makes the logging process both faster to write and cleaner to read.
Thus, my library combines high performance, multi-threading capability, and ease of use hence
providing a robust solution for modern logging needs.

6.2 Project Challenges
In this project, several challenges emerged and each presenting a unique obstacle in the

development process. One of the initial difficulties involved configuring CMake to integrate
external libraries like fmt and liburing. Ensuring that these libraries are correctly linked and
compatible with the rest of the project often requires troubleshooting complex build

configurations which can be particularly time-consuming and error-prone.

Using tools like GDB to trace and identify issues in concurrent threads presents challenges as
traditional debugging techniques often fall short when tracking interactions between threads.
Identifying race conditions, deadlocks, and other multithreading issues requires patience and a

deep understanding of both the program's behavior and the debugger itself.

Memory management also poses a persistent challenge. Detecting memory leaks, invalid
access, and other subtle issues can often go unnoticed without specialized tools or testing
environments. These issues can lead to unpredictable behaviors that are difficult to replicate

and debug and also adding further complexity to the development process if left unchecked.

In addition to these difficulties, understanding and implementing advanced optimization
techniques such as atomic operations and MPMC (Multiple Producer Multiple Consumer)
queues is essential for ensuring that the logging library performs well in high-concurrency
scenarios. These techniques require a solid understanding of low-level performance concepts

and their practical implications on the system.

Furthermore, learning new concepts like liburing which handles efficient asynchronous 1/0
operations presents its own challenge, as mastering unfamiliar libraries while developing an
application requires both time and dedicated effort. Finally, becoming proficient with the Vim

editor is necessary for efficient code navigation and editing, yet it comes with a learning curve

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

that may slow initial productivity. Overcoming these hurdles is essential to the success of the

project.

6.3 Objective Evaulation
The project successfully met its objective of enhancing user-friendliness by incorporating the

fmt library into the logging framework. The fmt library's ability to format log messages with a
clean, intuitive syntax significantly improved the developer experience. As a result, complex

logging statements became more readable and easier to maintain.

In addition, the objective of implementing C++ template metaprogramming was achieved,
optimizing code generation at compile time. This approach minimized runtime overhead by
generating type-safe and efficient logging code. The successful integration of template
metaprogramming techniques allowed developers to use the logging library without
performance penalties and ensure that it delivered on the promise of high performance and

seamless integration within applications.

Concurrency challenges in multi-threaded environments were effectively addressed by
employing a multi-producer multi-consumer (MPMC) queue. This implementation ensured
that multiple threads could concurrently produce and consume log messages without
significant bottlenecks. By using the MPMC queue, the logging framework handled high levels
of concurrency and minimizing contention between threads. This solution not only increased
the scalability of the system across multiple cores but also ensured thread safety throughout the

logging process.

Furthermore, the project succeeded in improving performance and efficiency through the use
of io_uring for asynchronous I/0O operations. The io_uring API allowed for non-blocking writes
and this reduce the reliance on traditional blocking 1/O calls and enhancing overall system
responsiveness. As a result, the logging library exhibited strong performance in high-load

scenarios.

Overall, this project achieved its goal of creating a high-performance, user-friendly logging,

and simpler to learn logging library exclusively for Linux and C++. Each of the stated

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

objectives was successfully implemented and provided a modern C++ solution that is both
accessible and efficient.

CHAPTER 7 Conclusion and Recommendation

7.1 Conclusion
In conclusion, this project provided a valuable and enriching experience particularly in

managing concurrency. Although working with concurrency presented significant challenges,
it was also an engaging process that allowed me to deepen my understanding of multi-threaded
programming. Successfully implementing the MPMC queue and ensuring thread safety while
minimizing contention was a rewarding accomplishment which highlighted the complexity and

importance of concurrency in modern software development.

Additionally, io_uring proved to be an excellent framework for handling asynchronous 1/0
operations. Its non-blocking nature and efficient 1/0 management enhanced the performance
of the logging library particularly in high-demand environments. This project reinforced how
io_uring can be a powerful tool for building scalable and responsive applications and | found

its integration to be one of the highlights of the development process.

The project also introduced me to key concepts in C++ metaprogramming, concurrent lock-
free data structures, and atomic operations. Leveraging template metaprogramming for
optimizing code at compile-time, understanding how to implement lock-free data structures,
and working with atomic primitives greatly expanded my knowledge and skills in these
advanced C++ topics. This exposure has been both challenging and rewarding, offering insights

into building efficient and scalable systems.

Overall, this project was a valuable learning experience, and I look forward to continuing my
work in this area. | hope to further contribute to the development and refinement of this logging
library, applying the lessons I’ve learned and exploring even more sophisticated techniques to

optimize performance and concurrency management.

7.2 Recommendation
In the future, several enhancements could be implemented to further improve the functionality

and versatility of the logging library. First and foremost, expanding the API offerings is

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

essential to provide developers with more flexibility in how they interact with the library. While
the current set of features addresses the core requirements of logging, additional APIs could be
added to accommodate a wider range of logging scenarios such as set the thread name, and etc.
This would give developers more control over the logging process and allow for finer-grained
management of log output.

Additionally, expanding the output destinations for log messages would greatly enhance the
library's utility in modern applications. Currently, the library primarily logs to files, but
introducing support for logging to web services, consoles, or even remote systems would make
it more adaptable to various use cases. For example, applications running in cloud
environments often require logs to be sent to centralized services, making web or network-
based logging essential. The ability to output logs to multiple locations simultaneously such as
a file and a console would also provide more flexibility for developers especially during
debugging and development phases.

Another key recommendation is the implementation of a termination mechanism when logging
at the "fatal” level. In many critical systems, a fatal log entry often signifies an unrecoverable
error and immediate termination of the application is necessary. Adding this feature would
make the logging library more robust and ensure that fatal errors are handled appropriately and

preventing further damage or data corruption in the event of critical failures.

Lastly, expanding the logging library to support additional operating systems could increase its
applicability across different environments. While the library currently focuses on Linux,
adding support for platforms like Windows and macOS would make it more versatile and

accessible to a wider range of developers.

REFERENCES

[1] Fmtlib. “A modern formatting library” GitHub
https://github.com/fmtlib/fmt (accessed September. 12, 2024)

[2] “{fmt} A modern formatting library”. fmt.dev.
https://fmt.dev/latest/index.html (accessed September. 12, 2024)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

https://github.com/fmtlib/fmt
https://fmt.dev/latest/index.html

[3] CppCon, Charles Frasch, USA. Single Producer Single Consumer Lock-Free FIFO From
the Ground-Up.(2023). Accessed: September. 12, 2024. [Online Video].
Available: https://www.youtube.com/watch?v=K3P_L mg6pw0

[4] CppCon, Alex Dathskovsky, USA. C++ Memory Model: from C++11 to C++23. (2023).
Access: September. 12, 2024. [Online Video].
Available: https://www.youtube.com/watch?v=SVEYNEWZL 04

[5] fmtlog. “fmtlog is a performant fmtlib-style logging library with latency in nanoseconds.”
GitHub. https://github.com/MengRao/fmtlog (accessed September. 12, 2024)

[6] plog. “Portable, simple and extensible C++ logging library” GitHub
https://github.com/SergiusTheBest/plog (accessed September. 12, 2024)

[7] loguru. “A lightweight C++ logging library” GitHub
https://github.com/emilk/loguru (accessed September. 12, 2024)

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: 3, 3 | Study week no.: 2

Student Name & ID: Low Chun Ee 2106572

Supervisor: Ts. Wong Chee Siang

Project Title: High Performance Logging Library for Run-Time Efficiency with
Multithreaded Support

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

https://www.youtube.com/watch?v=K3P_Lmq6pw0
https://www.youtube.com/watch?v=SVEYNEWZLo4

1. WORK DONE

[Please write the details of the work done in the last fortnight.]
- implemented thread local storage

- able to log out the message

- fixed some bugs

2. WORK TO BE DONE
- solve ordering of message problem

3. PROBLEMS ENCOUNTERED
- solutions to solve ordering of message problem

4. SELF EVALUATION OF THE PROGRESS

- not bad
Supervisor’s signature Student’s signature
FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)
Trimester, Year: 3, 3 | Study week no.: 6

Student Name & ID: Low Chun Ee 2106572

Supervisor: Ts. Wong Chee Siang

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

Project Title: High Performance Logging Library for Run-Time Efficiency with
Multithreaded Support

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
- implemented multi-producer multi-consumer queue

2. WORK TO BE DONE
- benchmark the result

3. PROBLEMS ENCOUNTERED
- Build multiple open source libraries

4. SELF EVALUATION OF THE PROGRESS

- Not bad
Supervisor’s signature Student’s signature
FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)
Trimester, Year: 3,3 | Study week no.: 10

Student Name & ID: Low Chun Ee 2106572

Supervisor: Ts. Wong Chee Siang

Project Title: High Performance Logging Library for Run-Time Efficiency with
Multithreaded Support

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
- Benchmark the performance

2. WORK TO BE DONE
- Write the report
- Discuss the performance result

3. PROBLEMS ENCOUNTERED
- None

4. SELF EVALUATION OF THE PROGRESS

- Not bad
Supervisor’s signature Student’s signature
FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)
Trimester, Year: 3,3 | Study week no.: 11

Student Name & ID: Low Chun Ee 2106572

Supervisor: Ts. Wong Chee Siang

Project Title: High Performance Logging Library for Run-Time Efficiency with

Multithreaded Support

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
- Discussed the performance result

2. WORK TO BE DONE
- Write the report and poster

3. PROBLEMS ENCOUNTERED
- None

4. SELF EVALUATION OF THE PROGRESS
- Not bad

[t

Supervisor’s signature Student’s signature

POSTER

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

HIGH PERFORMANCE LOGGING LIBRARY
FOR RUNTIME EFFICIENCY WITH MULTI-

THREADED SUPPORT

A C++ logging library that is user-friendly, simpler to learn, and optimized using template
metaprogramming, lock free MPMC queue, and io_uring for asynchronous 1/0

INTRODUCTION

« Logging libraries play a crucial role in capturing program output, helping

developers track the behavior of applications.

« Unlike simple print statements (e.g., std::cout, fstream << operator), logging

libraries provide powerful features like log levels, formatting such as
timestamp, location of line, and thread id, and high performance.

« Efficient logging is essential in applications with high performance
demands, such as web servers or real-time systems, where logging
operations must not slow down the core functionality.

/7

enhance the user-friendliness of the logging framework by incorporating
the fmt library.

implement logging framework using C++ template metaprogramming
techniques to optimize code generation during compile time.

address concurrency challenges in multi-threaded environments by utilizing
multi-preducer multi-consumer queue in C++.

enhance |/O operation by using io_uring library in Linux.

BENCHMARK RESULT

1e6 Nanoseconds vs Iterations for 4 Different Logging Libraries

— plog

25

15
10
05 SN %

Nanoseconds
s

— Mylog
— Fmtlog

loguru

0 H 10 15 20 25
Rerations.

Mean Nanoseconds vs Number of Threads for 4 Different Logging Libraries in Multi-Threaded Scenario

— Mylog
] — rmtiog
— plog
logury

e u o

w

Mean Nanoseconds

-
0
o 2 4 6 8 10 12 bt}

Number of Threads

ARCHITECTURE DIAGRAM

To_uring for
Log Interface MPMC Queue asynchronous
/o

Ly v

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

« My logging library demonstrates consistent and low-latency performance
across multi-threaded scenarios, outperforming competitors like Fmtlog,
which struggle with increased thread counts and logging loads.

« Planned enhancements include expanding the API, supporting logging to

web services, and implementing fatal error handling for immediate
application termination in critical situations.

64

PLAGIARISM CHECK RESULT

21ACBO6572_FYP2

ORIGIMALITY REPORT

4., 3y T 24

SIMILARITY INDEX INTERMET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Submitted to Universiti Tunku Abdul Rahman 'I
Student Paper %

eprints.utar.edu.my
Internet Source <1 %

=]

opensource-heroes.com <‘| %

Internet Source

[&]

Prateek Singh. "Learn Windows Subsystem <'| %
for Linux", Springer Science and Business
Media LLC, 2020

Publication

Lecture Notes in Computer Science, 2013. <‘|
%

Publication

]

it.des.dev
%‘.erne:ﬁ'uurce <1 %

El

docs.rs <‘| %

Internet Source

=]

Ada Gavrilovska. "Attaining High Performance <'| %
Communications - A Vertical Approach”,
Chapman and Hall/CRC, 2019

Publication

[=]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

fict.utaredu.m
Internet Source y <1 %
Submitted to Indiana Wesleyan Universi
Student Paper y ty <1 %
A Submitted to Midlands State Universi
Student Paper ty <1 %
N www.javaskool.com
12 Internet SJDurI:E < 1 %
M Submitted to Purdue Universi
13 Student Paper ty < 1 %
Submitted to Queen's College
Student Paper Q g <1 %
Submitted to Swinburne University of <'| %
Technology
Student Paper
Peizhao Ou, Brian Demsky. "Checking <1 %
Concurrent Data Structures Under the
C/C++11 Memory Model", Proceedings of the
22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming - PPoPP
'"17, 2017
Publication
Tao Ma, Xin-Yu Liu, Shuang-Long Cai, Jin <1 %

Zhang. "Development and validation of a
nomogram for predicting rapid relapse in

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

triple-negative breast cancer patients treated
with neoadjuvant chemotherapy", Frontiers in

Cell and Developmental Biology, 2024

Publication

WWW.POWer.or

lnr.ernetSEurce g <1 %
cms.faa.gov

1 9 lr'lr.»arnetSUUH:Eg < 1 %

N export.arxiv.or
2U lnteﬁetSuurce g <1 %
onaldteofilo.medium.com

lrn}r.'ernetSwrce <1 %

Lorenzo Quirés Diaz. "Layout Analysis for <'| %
Handwritten Documents. A Probabilistic
Machine Learning Approach", Universitat
Politecnica de Valencia, 2022
Publication

Shams Al Ajrawi, Charity Jennings, Paul <‘| %
Menefee, Wathig Mansoor, Mansoor Ahmed
Alaali. "chapter 9 Advanced C++ Programming
Techniques", IGI Global, 2024
Publication

A api.mountainscholar.or
24 lnr!::rnetSwrce g <1 %

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Exclude quotes Exclude matches

Exclude bibliography

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-1AD-005 | Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY
Full Name(s) of Low Chun Ee
Candidate(s)
ID Number(s) 2106572
Programme / Course Bachelor of Computer Science

Title of Final Year Project |High Performance Logging Library for Runtime Efficiency with

Multi-threaded Support

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds

the limits approved by UTAR)

Overall similarity index:_ 4 %

Similarity by source

Internet Sources: 3 %
Publications: 1 %
Student Papers: 2 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(i) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

Signature of Supervisor Signature of Co-Supervisor
Name: Ts. Wong Chee Siang Name: Mr Tan Chiang Kang @ Thang
Chiang Kang

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

Date: 12/9/2024 Date: 12/9/2024

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 2106572

Student Name Low Chun Ee

Supervisor Name | Ts. Wong Chee Siang

TICK (\/) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Title Page

Signed Report Status Declaration Form

Signed FYP Thesis Submission Form

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

L2222 |2 2]

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

< |2 <2

All references in bibliography are cited in the thesis, especially in the chapter
of literature review

Appendices (if applicable)

Weekly Log

Poster

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

2|22]12]

| agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my

(Signature of Student)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

Date: 12/9/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

	TABLE OF CONTENTS
	Chapter 1 Introduction
	1.1 Problem Statement and Motivation
	Figure 1.1.1 Example of traditional logging method in C++
	Figure 1.1.2 Output of the code
	Figure 1.1.3 Example of logging library that achieve the same output with Figure 1.1.2

	1.2 Objectives
	1.3 Project Scope and Direction
	1.4 Contributions
	1.5 Report Organization

	Chapter 2 Literature Review
	2.1 Review of the Technologies
	2.1.1 Hardware Platform
	2.1.2 Firmware/OS
	2.1.3 Programming Languages
	2.1.4 Algorithm
	2.1.4.1 Multi-Producer Multi-Consumer Queue
	2.1.4.2 C++ Memory Model
	Figure 2.1.4.2.1 Acquire memory order
	Figure 2.1.4.2.2 Release memory order

	2.1.4.3 Fmt Library
	Figure 2.1.4.3.1 Comparison between fmt, std::cout, and printf

	2.1.4.4 C++ Template Metaprogramming
	Figure 2.1.4.4.1 Template function example

	2.1.4.5 Io_uring
	2.1.5 Summary of the Technologies Review

	2.2 Review of the Existing System
	2.2.1 Fmtlog
	Figure 2.2.1.1 fmtlog github profile (781 stars)

	2.2.2 Plog
	Figure 2.2.2.1 plog github profile (2.2k stars)
	Figure 2.2.2.2 API of plog

	2.2.3 Loguru
	Figure 2.2.3.1 loguru github profile (1.8k stars)

	Chapter 3 System Methodology/Approach OR System Model
	3.1 System Design Diagram/Equation
	Figure 3.1.1 Architecture Diagram

	CHAPTER 4 SYSTEM DESIGN
	4.1 System Component Specification
	4.1.1 Logging Interface
	Figure 4.1.1.1 API supported
	Figure 4.1.1.2 Log template class code

	4.1.2 Logging Level
	Figure 4.1.2.1 LogLevel enum class code

	4.1.3 Multi-Producer Multi-Consumer Queue
	Figure 4.1.3.1 MPMC Queue class code
	Figure 4.1.3.2 MPMC Queue essential variables
	Figure 4.1.3.3 Enqueue and dequeue function code
	Figure 4.1.3.4 Obtain ticket function code
	Figure 4.1.3.5 SingleElementQueue template class code

	4.1.4 Turn Sequencer
	Figure 4.1.4.1 TurnSequencer constructor code
	Figure 4.1.4.2 TurnSequencer isTurn function code
	Figure 4.1.4.3 TurnSequencer waitForTurn function code
	Figure 4.1.4.4 TurnSequencer tryWaitForTurn function code
	Figure 4.1.4.5 TurnSequencer completeTurn function code
	Figure 4.1.4.6 TurnSequencer decode helper functions code
	Figure 4.1.4.7 TurnSequencer essential variables

	4.1.5 Futex
	Figure 4.1.5.1 Futex wait function code
	Figure 4.1.5.2 Futex wake function code

	4.1.6 Io_uring
	Figure 4.1.6.1 io_uring class code
	Figure 4.1.6.2 io_uring write function code
	Figure 4.1.6.3 io_uring destructor code

	4.2 System Build Process
	Figure 4.2.1 Installation command for fmt library
	Figure 4.2.2 Installation command for liburing library
	Figure 4.2.3 Build command for my library
	Figure 4.2.4 Example of using my library
	Figure 4.2.5 Output example shown

	CHAPTER 5 SYSTEM IMPLEMENTATION
	5.1 Hardware Setup
	Table 5.1.1 Hardware Setup

	5.2 Software Setup
	5.3 Settings and Configuration

	CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION
	6.1 System Testing and Performance Metrics
	6.1.1 Performance Comparison
	Figure 6.1.1.1 Test case for single-threaded scenario
	Figure 6.1.1.2 Result of nanoseconds vs iterations
	Figure 6.1.1.3 Test case for multi-threaded scenario
	Figure 6.1.1.4 Result of mean nanoseconds vs number of threads

	6.1.2 User-Friendly API Comparison
	Figure 6.1.2.1 My logging library API example
	Figure 6.1.2.2 plog API example
	Figure 6.1.2.3 loguru API example
	Figure 6.1.2.4 fmtlog API example
	Figure 6.1.2.5 my API example for specific data structure
	Figure 6.1.2.6 output

	6.2 Project Challenges
	6.3 Objective Evaulation

	CHAPTER 7 Conclusion and Recommendation
	7.1 Conclusion
	7.2 Recommendation

	REFERENCES
	FINAL YEAR PROJECT WEEKLY REPORT
	FINAL YEAR PROJECT WEEKLY REPORT (1)
	FINAL YEAR PROJECT WEEKLY REPORT (2)
	FINAL YEAR PROJECT WEEKLY REPORT (3)
	POSTER
	PLAGIARISM CHECK RESULT

