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ABSTRACT 

 

Automatic License Plate Recognition (ALPR) systems are crucial in extracting 

vehicle information. However, ALPR alone is insufficient for robust vehicle 

owner identification, especially in the event of misidentification or covered 

license plates (LPs). Acknowledging the significance of vehicle colour in 

enhancing identification accuracy, this project proposes a more secure and 

comprehensive approach by integrating Vehicle Colour Recognition (VCR) 

with LP detection and Optical Character Recognition (OCR) tasks. Unlike the 

conventional two-stage ALPR systems, this solution introduces a novel one-

stage YOLO-based multi-task model. It incorporates additional object 

detection heads onto the YOLO backbone, allowing for parallel processing 

and efficient real-time detection for all three tasks. The proposed model 

achieves spectacular results with mean Average Precision (mAP) scores of 

0.778, 0.963, and 0.881 for OCR, LP detection, and VCR, respectively. 

Promisingly, this model is comparable to single-head, single-task models, 

which are trained solely for each task. It outperforms a single-head multi-task 

model, which naively shares all tasks using one single head. Specifically, the 

model is 1.77x faster than the conventional approach, which involves 

inference of single-task models for OCR, LP, and VCR sequentially. 

Experimental results demonstrate that the proposed solution is robust in 

simultaneously addressing OCR, LP detection, and VCR within a unified, 

single-stage framework. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Automatic License Plate Recognition (ALPR) systems are designed to 

automatically detect, recognize, and record license plate (LP) numbers from 

images or video streams captured by cameras. Typically, most ALPR systems 

operate through a two-stage process. The first stage involves LP detection, 

where the system locates LPs from the captured images or video frames. 

Subsequently, the second stage employs Optical Character Recognition (OCR) 

to extract the alphanumeric characters present on the detected LPs (Tham and 

Tan, 2021). ALPR systems are frequently integrated into diverse fields, 

playing a crucial role in law enforcement, toll collection, parking management, 

and various other sectors. These systems offer highly effective, precise, and 

automated approaches for identifying vehicles and extracting associated 

information. 

Currently, real-time vehicle recognition primarily relies on ALPR. 

Recognising colour as a fundamental aspect of vehicle recognition, Vehicle 

Colour Recognition (VCR) should be integrated into ALPR. The integration of 

VCR into ALPR systems facilitates more reliable and precise vehicle 

identification. This fusion enriches the extracted vehicle information, enabling 

a more comprehensive identification process (Chen, Bai and Liu, 2014). In law 

enforcement, the fusion enhances the ability to track and identify vehicles 

involved in criminal activities or traffic violations. For instance, police 

departments can swiftly identify vehicles linked to criminal activities by 

accessing both LP information and specific details about the car's colour and 

model. 

Multi-task learning (MTL) offers an effective approach to perform 

multiple tasks in a unified model. This approach leverages shared 

representations across tasks to improve generalisation performance and 

accuracy (Crawshaw, 2020). Given the shared essence of object localisation 

and recognition within ALPR and VCR, unifying them into a singular one-

stage object detection problem through MTL becomes feasible. 
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1.2 Importance of the Study 

Most existing works on ALPR and VCR employ a two-stage approach, where 

object detection and object recognition tasks, are conducted sequentially. 

Although this method has showcased significant success, its sequential nature 

often results in slower inference times. The requirement for two distinct phases 

of detection and recognition, each demanding significant computational 

resources and complex algorithms, poses limitations in real-time applications 

where speed and efficiency are crucial and paramount. Fortunately, both 

ALPR and VCR fundamentally revolve around object detection within images 

or video frames. A single one-stage multi-task object detection model is 

feasible to accomplish both tasks, leading to faster inference times and reduced 

computational overhead.  

MTL presents an opportunity to leverage shared representations 

across different tasks, which leads to better generalisation. The multi-task 

model captures common features shared, enabling knowledge transfer to 

improve performance on related tasks. Beyond transfer learning, MTL reduces 

overall model complexity, resulting in more efficient resource utilisation. By 

eliminating the need for sequential tasks processing, MTL streamlines the 

inference pipeline, reducing latency and enabling real-time performance. 

 

1.3 Problem Statement 

While ALPR and VCR are crucial for comprehensive vehicle recognition, they 

remain two-stage approach, leading to slower inference times and increased 

computational overhead. An efficient one-stage object detection framework is 

paramount in OCR and VCR, especially in real-time applications. Furthermore, 

the two tasks remain separated, limiting accuracy through loss of information 

sharing among tasks. To address these challenges, there is a need to 

consolidate ALPR and VCR into a unified one-stage object detection model. 

This fusion necessitates proper branching, ensuring minimal 

interference but sufficient shared representations across tasks. Appropriate 

hyperparameters, such as loss function, is crucial for optimising each task 

contribution, ensuring accurate and reliable vehicle identification. The model 

architecture should be carefully designed and considered to achieve 

exceptional performance. Another challenge includes the absence of multi-
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labelled dataset covering the labelling of all tasks for multi-task model training. 

Existing datasets typically focus on individual tasks, imposing barrier to the 

development and training of multi-task model. 

 

1.4 Aim and Objectives 

Recognizing a car plate number using any deep learning technique may not be 

safe enough for owner identification. A more robust approach would involve 

recognising a combination of car colour and car plate number. Therefore, this 

project aims to develop a car plate recognition system using MTL. The 

objectives of the study are as follows: 

1. To develop a multi-task learning model that can 

simultaneously perform car colour and car plate number 

recognition. 

2. To implement the developed AI model in a real-world 

scenario. 

3. To compare the performance of the developed multi-task 

artificial intelligence (AI) model with conventional multi-AI 

models. 

 

1.5 Scope and Limitation of the Study 

In this project, ALPR and VCR are merged into a unified single-stage object 

detection model. This paradigm shift aims to streamline the process by 

removing sequential stages, thus boosting the inference speed significantly. By 

treating these intertwined tasks as a holistic object detection problem, the 

proposed methodology seeks to not only improve efficiency but also retain 

accuracy, paving the way for real-time applications in the domain of car plate 

recognition systems. 

There is an absence of unified approach to combine ALPR and VCR 

throughout the literature study, implementing difficulty in the multi-task 

model development. Model architecture is carefully considered to strike 

balance between shared representations and task-specific features. To the best 

of the knowledge, there is no publicly available multi-labelled dataset that 

covers the labelling of all tasks. Manual data collection and labelling 

resembling actual implementation are crucial for training multi-task model. 
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1.6 Contribution of the Study 

This study contributes to a multi-task model in a real-world setup, integrating 

ALPR and VCR for a more comprehensive vehicle recognition. The main 

contributions of this study are summarised as follows: 

1. An in-house multi-labelled dataset that covers VCR, LP 

detection, and OCR simultaneously is curated for model 

development. There is an absence of multi-labelled dataset 

covering the labelling of all tasks. 

2. Meanwhile, a lightweight single-stage model that integrates 

the three tasks into a unified framework is developed. This is 

especially advantageous for multi-tasking scenarios that 

require real-time processing. 

3. Extensive experiments are conducted to compare the 

performance of the proposed model with existing state-of-the-

art methods in terms of accuracy and inference speed. 

 

1.7 Outline of the Report 

The outline of this report consists of five chapters, providing readers adequate 

information of relevant studies and that of the developed project. This report is 

organised as follows: 

Chapter 1 discusses the general introduction, problem area, aims and 

objectives, scope and limitation as well as the contribution of the study, to 

provide a clear overview of the project. 

Chapter 2 reviews a large number of relevant research related to 

ALPR, VCR and MTL. The theory and related works are discussed and 

evaluated, highlighting the current gaps in related research. 

Chapter 3 describes the methodology and work plan of the project to 

provide all necessary details for replicating the project. The required resources, 

both hardware and software, are listed together with the model pipeline for 

model development. 

Chapter 4 demonstrates and analyses the performance of the proposed 

model with thorough discussion. Result interpretations are provided for 

different hyperparameter tuning including accuracy, speed and number of 

parameters of the proposed multi-task model. 
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Chapter 5 concludes the achievements of this project aligning with 

the stated aims and objectives. Recommendations on future works are 

provided as well based on the potentials and limitations of current project. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

ALPR systems play a pivotal role by automating LPs detection and subsequent 

OCR to extract alphanumeric information. However, this method fails 

particularly when LPs cannot be detected accurately, changed or obscured. 

VCR offers complementary information for vehicle recognition and should be 

integrated into ALPR. However, existing methodologies predominantly adopt 

a two-stage approach for both ALPR and VCR, resulting in increased latency. 

Fortunately, MTL offers a promising avenue to consolidate LP detection, OCR, 

and VCR into a unified framework, thereby addressing latency issue. This 

literature review explores the evolution of ALPR and VCR, as well as the 

potential of MTL in enhancing ALPR systems. Additionally, the study reviews 

object detection models as the backbone of the project, and explores the 

available public datasets. 

 

2.2 Automatic License Plate Recognition (ALPR) 

ALPR has witnessed significant advancements in recent years, particularly in 

the realms of LP detection and OCR. Past works have focused on developing 

robust algorithms for LP detection and OCR, leveraging techniques ranging 

from traditional image processing to deep learning approaches (Shashirangana 

et al., 2021). Generally, ALPR systems employ a two-stage approach, where 

LP regions are first detected in the image, followed by OCR to extract the 

alphanumeric characters. 

With the advancements in deep learning, several object detection 

models including Region-based Convolutional Neural Network (R-CNN), 

Single-Shot Multibox Detector (SSD), and You Only Look Once (YOLO) are 

introduced for LP detection. Tu and Du (2022) suggest a hierarchical structure 

with multiple levels of R-CNN to handle sub-tasks like vehicle detection and 

license plate recognition, which reduces the overall computational 

requirements with improved accuracy. Considering the slow inference speed 

due to its multi-stage architecture, a lightweight single-stage SSD model is 
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proposed to localise license plates before passing to OCR model for real-time 

edge computing applications (Awalgaonkar, Bartakke and Chaugule, 2021). 

Similarly, Al-batat et al. (2022) introduce single-stage YOLO models for 

vehicle, LP and alphanumeric characters detection separately, utilising output 

from the previous stage. 

On the other hand, the character recognition methods in the 

subsequent stage vary among different studies. One popular method is to pass 

the extracted LPs to state-of-the-art OCR models such as Tesseract OCR and 

EasyOCR, which are easy to use due to their robustness and open-source 

nature (Tham and Tan, 2021). However, these OCR models may struggle with 

the variation in font styles and designs within LPs. These nuances may not be 

fully addressed by generic OCR models, leading to suboptimal performance. 

Rather than utilising these OCR models directly, they should be trained with 

relevant dataset to familiarise themselves with the unique characteristics of 

LPs for character recognition. Acknowledging that OCR forms a subset of 

Scene Text Recognition (STR) model specialising in structured text extraction, 

the study on a unified four-stage STR framework offers valuable insights. 

Most existing STR models fit into four stages consisting of transformation, 

feature extraction, sequence modelling and prediction for effective text 

 

Figure 2.1: Two-Types of Trade-Offs of STR Module Combinations (Baek 

et al., 2019) 
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recognition. The research work analyses the contributions of individual 

modules to performance in terms of accuracy, speed, and memory demand, 

using a consistent set of datasets (Baek et al., 2019). Figure 2.1 illustrates the 

trade-off plots of all STR module combinations. Alternatively, some studies 

advocate for treating LP character recognition as an object detection task, 

utilizing separate object detector for each character within the LP (Henry, Ahn 

and Lee, 2020). A notable drawback of the two-stage ALPR approach is its 

susceptibility to errors in the LP detection stage, impacting character 

recognition accuracy. Additionally, this multi-stage process often results in 

reduced inference speed. 

Substantial quantity of high-quality datasets is essential for effective 

ALPR models training. However, the scarcity of publicly available Malaysian 

LP datasets and the resource-intensive nature in collecting real license plate 

images possess challenges to the success of ALPR system. To address this 

issue, a novel synthetic dataset generator for Malaysian LPs is introduced to 

bridge the research gap (Asaad, Faizabadi and Mohd Zaki, 2023). Specifically, 

it employs the Text Recognition Data Generation (TRDG) module to simulate 

real-world Malaysian LPs, considering factors such as font type, background, 

margins, and letter spacing (Belval E, 2020). Additionally, augmentation 

techniques are applied to replicate and reflect potential real-world variations. 

Another approach involves generating license plate images from a small set of 

real images using Generative Adversarial Network (GAN), where over 9000 

realistic LP images are generated from merely 159 web-scraped real LP 

images (Han et al., 2020). Both proposed synthetic dataset generators 

significantly improve the accuracy of ALPR on real LPs. 

 

2.3 Vehicle Colour Recognition (VCR) 

VCR has evolved from traditional methods such as support vector machine 

(SVM) to the recent end-to-end trainable convolutional neural network (CNN). 

Razalli et al. (2020) propose Hue, Saturation and Value (HSV) colour 

segmentation to extract the colour information from detected emergency 

vehicle lights, which are then fed into an SVM classifier for colour 

classification. Recent advancements have predominantly embraced deep 

learning techniques, for both vehicle detection and colour classification tasks. 
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For instance, a pretrained YOLOv5 is fine-tuned to detect and crop vehicles 

before passing into RepVGG for vehicle make, model, year and colour 

recognition (Panetta et al., 2021). A similar framework is adopted by Tariq et 

al. (2021), where Faster R-CNN is used to first detect vehicles using a regional 

proposal network, followed by colour classification in a single-stage approach. 

Despite these advancements in VCR, the majority of existing 

frameworks still adhere to a two-stage process involving vehicle detection 

followed by colour classification. Remarkably, there has been minimal effort 

directed towards simultaneously addressing these tasks within a unified 

framework. This division into separate stages not only introduces latency but 

also poses challenges in integrating the outputs seamlessly. Moreover, the 

absence of publicly available datasets specifically designed for joint vehicle 

detection and colour classification further discourages the development of one-

stage vehicle colour recognition. 

 

2.4 Multi-Task Learning (MTL) 

MTL is a machine learning paradigm where a single model is trained to 

perform multiple tasks simultaneously. This approach is particularly beneficial 

when the tasks share some common underlying patterns or features, as 

leveraging these shared representations can lead to better generalization and 

overall performance (Wu, Zhang and Ré, 2020). MTL models typically fall 

into two main architectures: hard parameter sharing and soft parameter sharing. 

In hard parameter sharing, the task-specific heads are connected to a shared 

backbone. The shared backbone is trained simultaneously to learn features for 

multiple tasks, reducing the risk of overfitting to any specific task, which leads 

to improved generalisation performance. Conversely, in soft parameter sharing, 

each head possesses its own dedicated backbone. The parameters of each 

backbone are regularised using L1/L2 loss to encourage similarity, thereby 

facilitating knowledge sharing among the backbones (Crawshaw, 2020). 

Figure 2.2 illustrates the general overview of the two architectures. 
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As mentioned, hard parameter sharing directly shares parameters 

across all tasks, forcing shared representations, which act as a form of 

regularization to prevent overfitting. While the shared backbone features 

computational efficiency, it imposes strict constraints on parameter sharing, 

limiting effectiveness for tasks with diverse characteristics (Vafaeikia, Namdar 

and Khalvati, 2020). In contrast, soft parameter sharing introduces flexibility 

through feature sharing mechanism across backbones, regularising knowledge 

transfer across different tasks. The model adapts to unique characteristics of 

each task, leading to better performance where tasks have diverse 

requirements. However, this flexibility comes with increased computational 

overhead and risk of overfitting, as each task has its separate parameters (Sun 

et al., 2020). The comparison of MTL architectures is presented in Table 2.1. 

 

(a) 

 

(b) 

Figure 2.2: (a) Illustration of Hard Parameter Sharing (b) Illustration of Soft 

Parameter Sharing 
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Table 2.1: Comparison of MTL Architectures 

MTL Architectures Benefits Limitations 

Hard parameter 

sharing 

• Strong 

regulatisation: 

Shares a common 

backbone, which 

reduces the risk 

of overfitting and 

improves 

generalisation 

• Practicability: 

Adding tasks 

involves 

branching an 

additional head 

from the original 

model 

• Lack of task-

specific adaptation: 

Imposes strict 

sharing, limiting 

effectiveness for 

tasks with diverse 

characteristics 

Soft parameter 

sharing 

• Flexibility: 

Allows feature 

sharing across 

backbones while 

adapting to 

unique task 

characteristics 

for better 

performance 

among diverse 

task requirements 

• Selective 

transfer: 

Facilitates 

selective 

knowledge 

• Computational 

overhead: 

Increased 

complexity and 

risk of overfitting 

due to separate 

parameters for 

each task 
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MTL Architectures Benefits Limitations 

transfer by 

regularising 

parameters 

across tasks. 

 

Among the two techniques, hard parameter sharing stands out as a 

more prevalent approach due to its practicality, where adding an additional 

task involves branching an extra head from the backbone or neck of the 

original model. This practicability is notably showcased in the HydraNet 

architecture, a framework notably utilized in Tesla's self-driving cars. In 

HydraNet, a single backbone branches out into multiple task-specific heads, 

each dedicated to a distinct task relevant to autonomous driving (Agrawal, 

2023). Similarly, Wang et al. (2023) extended the capabilities of the object 

detection model YOLOv8 by integrating two additional heads into its 

backbone for drivable area, and lane line segmentation, respectively. Beyond 

autonomous driving, hard parameter sharing also finds application in disaster 

management scenarios. Notably, Tham et al. (2021) integrated a 

MobileNetV2-like disaster classification head into a YOLOv3 victim detection 

model, which further extends into edge computing application (Wong et al., 

2022; Tham et al., 2023). This integration reduces computational power, 

allowing the deployment of the multi-task model on resource-constrained 

devices. 

On the other hand, soft parameter sharing involves complex 

parameter sharing across the backbones, introducing enormous space of 

possible parameter sharing architectures. To address this issue, Mao and Li 

(2021) propose Gated Bridging Mechanism (GBM) for selective information 

exchange and filtering between tasks, which yields better performance than 

conventional mechanisms, in natural language processing (NLP) applications. 

Similarly, Chen et al. (2022) introduce Pruning-Based Feature Sharing (PBFS) 

which integrates model pruning into soft parameter sharing, allowing tasks to 

select parameters from a shared subnet based on their needs and prune noise 

parameters. Their work extends soft parameter sharing applications into 

classification and regression tasks with optimal results, underscoring the 



13 

effectiveness of PBFS in knowledge transfer. Additionally, soft parameter 

sharing finds applications in computer vision field where convolutional feature 

leaky unit (ConvFLU) is introduced to selectively transfer beneficial features 

between tasks while filtering out irrelevant information (Zhao et al., 2020). 

In the context of this research, MTL offers an opportunity to merge 

the two-stage process of ALPR and VCR into a unified, one-stage model. For 

example, the study by Huang et al. (2021) aligns with the objective, where a 

multi-task model is developed for LP detection and OCR. The multi-task 

model begins with a ResNet-50 with a feature pyramid structure (FPN) serving 

as the backbone, with different layers of the FPN branching out for the two 

tasks. Notably, this multi-task model achieves one-stage ALPR, since LP 

detection and OCR are performed simultaneously. However, there is currently 

no unified model that could perform ALPR and VCR simultaneously, in a one-

stage approach. 

 

2.5 Object Detection Models 

Both ALPR and VCR tasks revolve around object detection within images or 

video frames. Hence, selecting a suitable object detector is crucial to unify 

them into a single object detection framework, laying the foundation for the 

multi-task model. Throughout the studies, several state-of-the-art (SOTA) 

object detection models, such as R-CNN, YOLO and SSD, are proposed to 

address these challenges. 

 

2.5.1 Region-Based Convolutional Neural Network (R-CNN) 

R-CNN is a two-stage object detection model which extracts region proposals 

to CNN for feature extraction and SVM for classification. It proposes a 

simpler alternative to complex ensemble systems that rely on multiple image 

features and context through region proposals. Traditional object detectors are 

computationally expensive where regions of interest (RoI) with different 

spatial interest and aspect ratios are selected before passing to CNN. To 

address this issue, R-CNN extracts only around 2000 region proposals using 

selective search algorithm, reducing the computational need for CNN feature 

extraction. SVM then utilises these extracted features for subsequent bounding 

box regression and object classification. Figure 2.3 illustrates the R-CNN 
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model overview. This system is efficient due to the shared CNN computations 

across all categories with low-dimensional feature vectors computed (Girshick 

et al., 2013). Despite these advancements, R-CNN still suffers from slow 

training and inference time, in which each region proposal must be processed 

separately through CNN, leading to increased computational power. Notably, 

the fixed selective search algorithm in region proposal module limits the 

model learning process, leading to possible generation of bad region proposals 

(Mijwil et al., 2022). 

 

2.5.2 Fast R-CNN 

Realising the slow R-CNN architecture, the same authors innovate upon the 

previous work where Fast R-CNN performs convolution operation once per 

image for feature map generation. A RoI pooling layer then extracts feature 

vector from the feature map into RoI feature vector for subsequent bounding 

box regression and object classification. Benefiting from the improved feature 

 

Figure 2.3: R-CNN Model Overview (Girshick et al., 2013) 

 

 

Figure 2.4: Fast R-CNN Model Overview (Girshick, 2015) 
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extraction and object detection framework, Fast R-CNN benchmarks faster 

training speed and higher detection accuracy than R-CNN on the same 

baseline dataset (Girshick, 2015). However, Fast R-CNN still relies on 

selective search for generating region proposals, which remains a bottleneck in 

terms of speed. Figure 2.4 demonstrates the Fast R-CNN model architecture. 

 

2.5.3 Faster R-CNN 

Despite the advancements made in R-CNN and Fast R-CNN, these object 

detection models still depend on region proposal algorithms for object 

localisation. The computational expensive and slow nature of region proposal 

algorithms limit the training and inference speed of object detection models, 

especially for real-time applications. For efficient region proposal generation, 

(Ren et al., 2015) introduce Region Proposal Network (RPN) that share 

convolutional features with detection networks, elevating the cost for region 

proposals. The proposed object detection model combines RPN and Fast R-

CNN detector, addressing the region proposal computation through sliding 

window approach, as shown in Figure 2.5. Overall, Faster R-CNN achieves 

improved speed and accuracy by leveraging the shared convolutional features 

with RPN, overcoming the limitations of its predecessors. 

 

 

Figure 2.5: Faster R-CNN Overview (Ren et al., 2015) 
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2.5.4 You Only Look Once (YOLO) 

Conventional region proposal methods are computationally expensive, 

fostering the development of YOLO as a single-stage object detector. YOLO 

frames detection as a regression problem, predicting bounding boxes and class 

probabilities directly from full images in one evaluation. Unlike other 

detection systems, YOLO sees the entire image during training and testing, 

which allows it to learn contextual information about object classes and their 

appearance. The system divides input image into grid cells which is 

responsible for detecting objects whose centre falls within it. Each grid cell 

predicts bounding boxes and confidence scores, reflecting the likelihood of an 

object’s presence and the prediction accuracy. To provide class-specific 

confidence scores for each box, each grid cell predicts conditional class 

probabilities, given that an object is present. The architecture uses a single 

CNN to predict multiple bounding boxes and class probabilities 

simultaneously, enabling end-to-end training and real-time speeds (Redmon et 

al., 2015). To date, YOLO family has evolved through multiple generations 

until YOLOv9 which is the latest instalment in the YOLO series, underscoring 

the robustness of YOLO model in object detection. The comparison results of 

several SOTA object detection models are shown in Figure 2.6. 

 

 

Figure 2.6: Comparisons of Object Detection Models on Microsoft COCO Dataset (Wang, Yeh 

and Liao, 2024) 
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2.5.5 Single Shot MultiBox Detector (SSD) 

Similar to YOLO, SSD is a single-stage object detector that eliminates the 

need for region proposals and feature resampling, making it faster and simpler. 

SSD has similar architecture as YOLO, where SSD divides each input image 

into grids of cells for bounding box and score generation in each grid. 

However, SSD is equipped with auxiliary structures for model enhancement in 

terms of both speed and accuracy. Considering that YOLO struggles with 

small object detection due to insufficient spatial resolution, SSD adds 

convolutional feature layers with different sizes to the backbone, generating 

multi-scale feature maps for detection. For each spatial location in the feature 

maps, SSD predicts bounding boxes with respect to different aspect ratio using 

separate predictors. With these modifications, SSD is able to achieve a higher 

accuracy and inference speed compared to Faster RCNN and YOLOv1, even 

with lower resolution input (Liu et al., 2015). A comparison of SDD and 

YOLOv1 architecture is illustrated in Figure 2.7. 

 

2.5.6 Comparison of Object Detection Models 

Table 2.2 presents a comparison of object detection models studied. 

 

 

Figure 2.7: Comparison of SSD and YOLOv1 Overview (Liu et al., 2015) 
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Table 2.2: Comparison of Object Detection Models 

Object 

Detection 

Model 

Detection 

Method 

Limitation 

R-CNN Two-stage Computationally expensive due to selective 

search in region proposals 

Fast R-CNN Two-stage Computationally expensive due to selective 

search in region proposals 

Faster R-CNN Two-stage High model complexity due to RPN 

YOLO Single-stage Difficulty in detecting small objects due to 

insufficient spatial resolution 

SSD Single-stage High model complexity due to multiple 

convolutional feature maps at different 

scales 

 

2.6 Datasets Available 

Many studies have been conducted on Malaysian ALPR systems with good 

recognition accuracy (Marzuki et al., 2019; Tham and Tan, 2021). However, 

as described in Section 2.2, there is still a lack of large publicly available 

dataset with high quality and reliability for ALPR task. Acknowledging this 

issue, a research work introduces public RodoSol-ALPR dataset with 

Mercosur LPs, which is a new unified LP standard in Mercosur countries, 

captured at toll booths (Laroca et al., 2022). Notably, such dataset is only 

applicable to Mercosur countries with similar LP layout, whereby other 

countries require algorithm changes to achieve similar results. Henry et al. 

(2020) propose a two-stage YOLOv3-based multinational ALPR system 

trained on diverse combinations of public dataset from five countries, 

demonstrating high accuracy and robustness without additional information 

needed. However, the evaluation on datasets from only five countries is 

insufficient to represent the full diversity of global license plate designs, 

leading to poor generalisation on other countries. On the other hand, 

Malaysian ALPR dataset comprises a combination of University of California, 

San Diego (UCSD) and MIMOS datasets, both of which are not publicly 
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available, hindering Malaysian ALPR system development (Asaad, Faizabadi 

and Mohd Zaki, 2023). 

VCR differs from ALPR in which the dataset is not limited by 

geographical distribution, allowing a more generalised approach by utilising 

public datasets from any regions for robust model training. Chen et al. (2014) 

proposes a dataset consisting of 15601 images with eight colour classes, which 

is challenging due to noises imposed by illumination variation, haze and 

overexposure. The scarcity of colour classes motivates Panetta et al. (2021) to 

create vehicle colour dataset (VCoR) with over 10k images and 15 colour 

classes. However, these datasets are limited to colour classification usage, 

while research works often require manual data collection and annotation for 

VCR task, which is treated as an object detection problem (Tariq, Khan and 

Ghani Khan, 2021). Overall, there is currently no publicly available multi-task 

dataset covering both ALPR and VCR tasks within a unified framework. The 

comparison of datasets available for both ALPR and VCR tasks is presented in 

Table 2.3. 

 

Table 2.3: Dataset Comparison 

Task Dataset Size Limitation 

ALPR RodoSol-ALPR 20000 • Consists 

only vehicle 

images with 

Mercosur 

LPs 

KarPlate 4267 • Focuses on 

Korean LPs 

Application-Oriented 

License Plate (AOLP) 

Dataset 

2049 • Focuses on 

Taiwanese 

LPs 

Medialab License Plate 

Recognition (LPR) 

Database 

716 • Focuses on 

Greek LPs 

Caltech Cars (Rear) 1999 126 • Focuses on 
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Task Dataset Size Limitation 

Dataset LPs from the 

United States 

of America 

(USA) 

University of Zagreb 

Dataset 

510 • Focuses on 

Croatian LPs 

UCSD and MIMOS 

Datasets 

20105 • Not publicly 

available 

VCR Image Dataset by Chen, Bai 

and Liu (2014) 

15601 • Limited to 

colour 

classification 

usage 

• Noisy 

images due 

to bad 

weather 

VCoR Over 10k 

images 

• Limited to 

colour 

classification 

usage 

 

2.7 Summary 

Generally, two-stage approach involves object detection, followed by object 

classification. In the first stage, object detection models like YOLOv5 and 

Faster R-CNN localise objects of interest for subsequent classification tasks. 

For license plate recognition, ALPR predominantly relies on state-of-the-art 

OCR models to extract alphanumeric information. Similarly, VCR employs 

classification models like RepVGG to determine vehicle colours. Although 

there exists one-stage approach for both ALPR and VCR, a unified model that 

could perform ALPR and VCR simultaneously is still absent. Past works in 

MTL demonstrates the potential of hard parameter sharing in bridging the 

research gap, particularly in developing a unified model for both tasks 
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seamlessly. However, there is still an absence of public multi-task dataset 

available for both ALPR and VCR tasks. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this work, a multi-task model is proposed to address ALPR and VCR 

simultaneously. Specifically, both ALPR and VCR tasks are approached as 

object detection problems, unifying the two tasks into a one-stage end-to-end 

object detection model. Additional heads are integrated onto YOLOv8 

backbone with weighted loss functions, enhancing feature generalisation and 

task-specific learning. During this phase, a multi-labelled dataset containing 

ALPR and VCR tasks is curated for multi-task model development. 

 

3.2 Hardware 

Training an AI model requires a robust and well-configured setup, where Intel 

NUC paired with Sonnet eGPU is leveraged for developing this project. 

Coupled with the flexible customisation options offered by Ubuntu, this setup 

provides a reliable environment to tackle the project requirements effectively. 

 

3.2.1 Intel NUC 10i7 Mini PC 

During the development phase, the project relies on Intel NUC 10i7 Mini PC, 

as shown in Figure 3.1. This CPU boasts 64-bit, six-core performance and 

incorporates a substantial 12 MB Intel Smart Cache, ensuring efficient 

handling of tasks. With support for Hyper-Threading, the 10th generation Intel 

i7 Core Processor efficiently manages up to 12 threads concurrently. It 

 

Figure 3.1: Intel NUC 10i7 Mini PC 
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dynamically scales up to an impressive Turbo Boost of 4.7 GHz, ensuring 

swift execution of tasks with a base speed of 1.1 GHz. Notably, its Thermal 

Design Power (TDP) is rated at a modest 25W, offering significant energy 

efficiency compared to conventional desktops or laptops (Anon., 2021). The 

mini PC's compact form factor makes it highly portable, while its 64GB of 

RAM and 2TB SSD ensure uninterrupted performance throughout the project's 

lifecycle. 

 

3.2.2 Sonnet eGPU Breakaway Box 750 

Deep learning demands substantial computational power for model training. 

To facilitate this project, Sonnet eGPU Breakaway Box 750, as depicted in 

Figure 3.2, is employed. This eGPU connects a high-performance NVIDIA 

GeForce RTX 1080 Ti to Intel NUC via Thunderbolt 3 port, thereby enabling 

GPU acceleration to enhance the computational capacity required for training 

deep learning models. The eGPU is equipped with a sizable built-in fan, which 

operates at variable speeds and is temperature-controlled, ensuring quiet and 

effective cooling for the installed GPU card (Anon., 2024a). 

 

3.3 Software 

Throughout the project, several framework and software including Python, 

OpenCV, PyTorch, Google Colaboratory and YOLOv8 are utilised for multi-

task model development. 

 

 

Figure 3.2: Sonnet eGPU Breakaway Box 750 
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3.3.1 Python 

Python, with its logo shown in Figure 3.3, is the programming language of 

choice for developing this deep learning project. It is highly suitable for deep 

learning applications owing to its flexibility, user-friendliness, and an 

extensive array of robust libraries and frameworks, including PyTorch and 

OpenCV (Sayantini, 2019). Furthermore, Python has a large active community 

of developers, ensuring large number of tutorials and documentation readily 

available. This community support greatly facilitates development, enabling 

swift resolution of common issues and access to guidance during model 

development. 

 

3.3.2 OpenCV 

OpenCV as shown in Figure 3.4, is an open-source software library for 

computer vision and machine learning. OpenCV is known for its vast 

algorithms for image processing operations, machine learning applications and 

computer vision tasks. With its support for Python interface and compatibility 

with Linux operating system, it is used thoroughly in the project development. 

Moreover, OpenCV has a large user community, reflecting its widespread 

adoption and reliability, especially in real-time applications where speed is 

paramount (Anon., 2024). 

 

Figure 3.3: Python Logo 

 

 

Figure 3.4: OpenCV Logo 
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3.3.3 PyTorch 

PyTorch, depicted by its logo in Figure 3.5, stands out as an open-source 

machine learning framework employed for training deep neural networks. The 

fundamental building block of PyTorch is tensor, which is similar to an array 

or matrix. These tensors encapsulate model inputs, outputs, and parameters. 

The various tensors available within this library elevate the neural network 

development process. Notably, PyTorch is constructed using Python and 

boasts a robust ecosystem of tools, including ONNX, along with support for 

GPU training (Jye, 2022). 

 

3.3.4 Google Colaboratory 

Google Colaboratory, also known as Google Colab, is a browser-hosted 

Jupyter notebook service that eliminates the need for installation or setup. It 

offers free computing resources, including GPU and TPU, allowing users to 

execute computationally intensive tasks, such as machine learning, at 

impressive speeds. The platform's seamless integration with Google Drive and 

effortless sharing features makes it a convenient and accessible choice for 

project development (Aminu, 2023). In this project, the powerful GPU 

capabilities of Google Colab are harnessed to accelerate model training, 

ensuring a faster and more efficient process. Its logo is shown in Figure 3.6. 

 

 

Figure 3.5: PyTorch Logo 

 

 

Figure 3.6: Google Colaboratory Logo 
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3.3.5 YOLOv8 

YOLOv8, developed by Ultralytics, is a cutting-edge, SOTA object detection 

model. YOLO is a one-stage object detector that analyses and makes 

predictions for bounding boxes and object labels within image in one go. In 

contrast to typical two-stage object detection algorithms, YOLO significantly 

enhances the speed of overall system. Due to its unique design, YOLO is 

highly effective for object identification, capable of detecting objects in real-

time with high accuracy. With its speed, accuracy, and ease of use, YOLOv8 

is an excellent choice for object detection requirement in this project (Jocher, 

Chaurasia and Qiu, 2023). 

 

3.4 Work Plan 

3.4.1 Dataset 

The dataset used for multi-task training is obtained predominantly from a 

residential area, consisting of 1555 images. This dataset collected for model 

training is insufficient, particularly for OCR tasks, where the characters are 

small and diverse. Realising this issue, synthetic data generation techniques 

are employed to create five synthetic variations for each real data instance 

(Belval E, 2020). These variations focus on modifying LP and OCR 

components, generating replicas of the original data. Notably, the VCR image-

label pairs remain unchanged, as VCR task is not subject to modification 

during the synthetic data generation process. This results in a fivefold increase 

in the number of data instances for LP and OCR tasks. Figure 3.7 illustrates 

the synthetic data generation pipeline. 

Each image is annotated precisely on characters, license plates and 

cars’ colour, where several instances for each class may present in the same 

image as illustrated in Figure 3.8. The dataset is then split into train, test and 

valid sets, following a ratio of 7:2:1. Data augmentation is applied solely on 

training set, resulting in 3x original number of training data. The distribution 

of instances for each task is presented in Table 3.1.  
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Table 3.1: Total Objects Annotated for Each Task 

 Synthetic Data Real Data 

Class Labels Train Validation Test Train Validation Test 

LP Detection 16926 1613 804 3510 327 184 

OCR 118482 11291 5628 22536 2132 1113 

VCR 16929 1583 815 2456 325 192 

 

Figure 3.8: Annotated Data 

 

Figure 3.7: Synthetic Dataset Generation Flowchart 
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 Synthetic Data Real Data 

Class Labels Train Validation Test Train Validation Test 

Total 152337 14487 7247 28502 2784 1489 

 

In the model training pipeline, two-step approach is adopted, where 

synthetic dataset serves as the foundation for model pretraining, followed by 

fine-tuning using real data. However, the synthetic data generation process 

introduces an imbalance within the dataset, with a ratio of 1:5 for VCR to LP 

and OCR image-label pairs. To mitigate this issue, the loss function for each 

task is balanced, which is further discussed in subsequent section. 

 

3.4.2 Model Architecture 

There are multiple popular object detection models, including R-CNN, SSD, 

and YOLO. Among these, YOLO has emerged as the de facto object detection 

model for real-time applications due to its high inference speed and accuracy 

(Wong et al., 2023). In this project, YOLOv8 is chosen as the foundation 

framework for the multi-task model due to its user-friendliness and well-

documented workflows that streamline training and deployment (Jocher, 

Chaurasia and Qiu, 2023). The smallest YOLOv8 variant, YOLOv8n, is 

chosen, since it is unwise to use larger model when dealing with limited 

dataset, as it may lead to overfitting. 

YOLOv8 builds upon the previous versions of YOLO algorithms, 

where its architecture comprises of two main parts: backbone and head. It 

utilises a modified version of CSPDarknet53 as backbone with cross-stage 

partial connections (CSP) to enhance information flow between layers. The 

series of convolutional layers in the head takes feature maps from P3, P4 and 

P5 of the backbone as inputs. In YOLOv8, C2f module is adopted to extract 

features at three different scales, replacing traditional YOLO neck. Lastly, 

three detection head models are used to detect objects based on the three 

different features, specialising in small, medium and large object detection 

respectively. The head models consist of fully connected layers with anchor-

free detection, making the model more adaptive to object shapes and sizes. 

In this project, additional heads are incorporated onto YOLOv8 

backbone, forming a multi-head YOLOv8 model to solve the aforementioned 
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tasks. Through empirical study, the optimal number of heads is determined to 

be three, dedicated to i) OCR, ii) LP detection and iii) VCR. These three heads 

are selected based on object size and task characteristics. The shared backbone 

facilitates knowledge transfer across multiple tasks, while the task-specific 

head is tailored to the specific requirements of respective task, enhancing 

model accuracy. Together, a unified multi-task model for ALPR and VCR is 

formed. Figure 3.9 illustrates the multi-task model architecture. 

 

3.4.3 Loss Functions 

Several methods have been explored to optimize multiple loss functions 

simultaneously from a multi-objective optimisation perspective. The simplest 

approach is to naively sum them up into a single scalar loss value (Gong et al., 

2019). However, not all objectives hold the same level of priority. Hence, 

another common approach is to perform a weighted sum of losses for each 

task (Xin et al., 2022). Other techniques for multi-task optimisation exist, 

which involves incorporating additional regularisation or normalisation to 

mitigate gradient conflicts. For instance, GradNorm is a method that adjusts 

gradient norms across all tasks during training through a novel gradient loss 

(Chen et al., 2018). However, these methods often come with additional 

computational overheads without a guaranteed performance improvement 

 

Figure 3.9: Multi-Task YOLOv8 Architecture for OCR, LP Detection and VCR 
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compared to the weighted sum approach. To ensure scalability and practicality, 

weighted sum approach is employed for multi-loss optimisation. 

The proposed multi-task YOLO consists of three heads, each 

corresponding to one of the three tasks: OCR, LP detection and VCR. Let 

𝐿𝑂𝐶𝑅, 𝐿𝐿𝑃 and 𝐿𝑉𝐶𝑅 denote the loss function for each task-specific head. Since 

all three tasks are treated as object detection problems, each head can adopt 

the YOLOv8 object detection loss function, 𝐿𝑑𝑒𝑡𝑒𝑐𝑡 as its loss function. The 

anchorless YOLOv8 detect head employs a decoupled approach to transform 

high-dimensional features into three outputs using convolutional layers. Each 

output includes class predictions and bounding boxes relative to its resolution. 

The detect head loss function, 𝐿𝑑𝑒𝑡𝑒𝑐𝑡  is computed using the Equation (3.1) 

shown below: 

 

 𝐿𝑑𝑒𝑡𝑒𝑐𝑡 = 𝐿𝑏𝑜𝑥 + 𝐿𝑐𝑙𝑠 + 𝐿𝑑𝑓𝑙 (3.1) 

 

where 𝐿𝑏𝑜𝑥 represents the bounding box loss, 𝐿𝑐𝑙𝑠 represents the classification 

loss and 𝐿𝑑𝑓𝑙 represents the distribution focal loss (DFL). With this, each of 

the three heads adopt 𝐿𝑑𝑒𝑡𝑒𝑐𝑡  for its loss function 𝐿𝑂𝐶𝑅 , 𝐿𝐿𝑃  and 𝐿𝑉𝐶𝑅 , 

respectively. Finally, the total loss function can be expressed as the weighted 

sum of each individual loss as in Equation (3.2): 

 

 𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤𝑖𝐿𝑖𝑖  (3.2) 

 

where the two constraints for the weightage 𝑤𝑖 of respective loss are: 𝑤𝑖 > 0 

and ∑ 𝑤𝑖𝑖 = 1, 𝑖 ∈ {𝑂𝐶𝑅, 𝐿𝑃, 𝑉𝐶𝑅}. 

 

As described in Section 3.4.1, the multi-task model is prone to 

overfitting the VCR task due to the class imbalance issue. To address this 

issue, the loss weight for VCR is set to 0.1, effectively reducing the 

significance of VCR task during training to overcome the risk of overfitting. 

OCR is prioritised by allocating higher attention to it. Through empirical 

testing, the weightage for OCR, LP detection and VCR is determined to be 0.6, 
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0.3 and 0.1, respectively. The multi-task loss function during fine-tuning is 

represented by Equation (3.3): 

 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 0.6𝐿𝑂𝐶𝑅 + 0.3𝐿𝐿𝑃 + 0.1𝐿𝑉𝐶𝑅 (3.3) 

 

3.4.4 Augmentation Settings and Hyperparameters 

To improve the robustness and performance of the proposed multi-task YOLO 

model, data augmentation techniques are applied for better model 

generalisation. Table 3.2 tabulates the configuration of each augmentation 

setting. 

 

Table 3.2: Augmentation Settings 

Argument Type Value Range 

hsv_h float 0.015 0.0 - 1.0 

hsv_s float 0.7 0.0 - 1.0 

hsv_v float 0.4 0.0 - 1.0 

degrees float 0 -180 - +180 

translate float 0.1 0.0 - 1.0 

scale float 0.5 >=0.0 

shear float 0 -180 - +180 

perspective float 0 0.1 - 0.001 

flipud float 0 0.0 - 1.0 

fliplr float 0.5 0.0 - 1.0 

bgr float 0 0.0 - 1.0 

mosaic float 1 0.0 - 1.0 

mixup float 0 0.0 - 1.0 

copy_paste float 0 0.0 - 1.0 

auto_augment str randaugment - 

erasing float 0.4 0.0 - 0.9 

crop_fraction float 1 0.1 - 1.0 
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3.5 Performance Evaluation 

The performance for each task is evaluated using mean Average Precision 

(mAP), which is the average of Average Precision (AP) across all classes in a 

model. On the other hand, AP is derived from precision (P) and recall (R). The 

formula for precision and recall are shown in Equation (3.4) and (3.5) 

respectively. 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.4) 

 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.5) 

 

where TP, FP and FN, represents true positive, false positive and false 

negative count respectively. 

 

Given that AP is the area under the PR curve, AP can be represented 

by Equation (3.6) shown below: 

 

 𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

𝑅=0
 (3.6) 

 

Finally, mAP is simply obtained by averaging AP across all classes as 

in Equation (3.7). 

 

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑖=1  (3.7) 

 

where 𝑁 is the total number of classes for each task-specific head. 

 

Overall, the multi-task model will be evaluated using frames per 

second (FPS), providing an insight on the speed of the system in real-time 

applications. Equation (3.8) outlines the formula for FPS. 

 

 FPS =
Number of frames

∑ Inference time of each frame
 (3.8) 
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The performance evaluation of the proposed model consists of few 

parts as detailed below: 

• mAP of OCR, LP detection and VCR tasks on different model 

configurations 

• FPS of different model configurations trained 

• Number of parameters and floating-point operations per 

second (FLOPs) of different model configurations 
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3.6 Gantt Chart 

Table 3.3: Gantt Chart 

  Final Year Project 1  Final Year Project 2 

No. Project Activities 
W

1 

W

2 

W

3 

W

4 

W

5 

W

6 

W

7 

W

8 

W

9 

W

1

0 

W

1

1 

W

1

2 

W

1

3 

W

1

4 

 
W

1 

W

2 

W

3 

W

4 

W

5 

W

6 

W

7 

W

8 

W

9 

W

1

0 

W

1

1 

W

1

2 

W

1

3 

W

1

4 

1 

Understanding the objectives 

and problem statement of the 

topic     
           

  

 

  
            

  

2 
Study the current achievement 

of car plate recognition system       
          

  

 

  
            

  

3 
Study the fundamentals of 

multi-task learning         
         

  

 

  
            

  

4 
Research on optical character 

recognition   
  

      
       

  

 

  
            

  

5 
Research on vehicle colour 

recognition   
    

    
      

  

 

  
            

  

6 

Research on possible 

implementations of multi-task 

learning   
     

        
   

  

 

  
            

  

7 Progress report writing   
        

             
            

  

8 Data collection and annotation   
            

         
          

  

9 
Develop the basis of multi-task 

car plate recognition system   
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10 Model training and testing   
            

     
   

        
     

  

11 
Research and generate synthetic 

data   
            

  

 

  
      

      
   

  

12 
Fine tune the car plate 

recognition system   
            

  

 

  
        

      
 

  

13 
Car plate recognition system 

performance evaluation                             

 

                            

14 Final report writing                              
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3.7 Summary 

A one-stage YOLO-based multi-task model is designed to address ALPR 

system by unifying OCR, LP detection and VCR within a single framework. 

The multi-task model is first pretrained on synthetic data and fine-tuned on 

real data, leveraging transfer learning technique for OCR task. To address data 

imbalance issue during pretraining phase, weighted sum approach is adopted 

for multi-task optimisation. Extensive experiments will be conducted to 

compare the performance of the proposed model with existing state-of-the-art 

methods in terms of both accuracy and inference speed. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

Synthetic LP generation is done strictly according to the Malaysia vehicle LP 

rules with data augmentation to mimic the real-world scenarios. Using the 

synthetic dataset as pretraining data allows the multi-task model to quickly 

adapt and learn the LP layout as well as the familiarising with OCR task. 

Subsequently, the model is fine-tuned with real data to adapt with the real-life 

conditions. The performance of proposed multi-task model is predominantly 

evaluated using mAP and FPS. To elevate model performance across all tasks, 

extensive hyperparameter tuning is conducted. Notably, empirical testing 

demonstrates that the multi-task model outperforms single-head model in 

overall. 

 

4.2 Synthetic Dataset 

4.2.1 Malaysia Vehicle Registration Plate Rules 

Throughout the synthetic data generation process, many factors are considered 

to meet the Malaysia LP specifications and replicate real-world scenarios. 

Common Peninsular Malaysia LPs follow a XXX YYYY format, where X 

represents the state or territory prefix, X represents the alphabetical sequences 

and Y represents the number sequence. East Malaysia LPs are slightly 

different, in which the second character represents the division prefix. This 

algorithm is altered into X YYYY X format on exhaustion, further allowing a 

vast number of registered plates in specific state or territory. Notably, special 

plates are introduced during special occasions, replacing the leading alphabets 

such as LIMO, PATR1OT and PUTRAJAYA. With the exception of taxis, 

vehicle dealers and diplomats, all Malaysia LPs have white alphanumeric 

characters on black plate for both front and rear plates, regardless of the 

vehicle type (Anon., 2024b). However, several exceptions are present in the 

algorithm as follows: 

• Leading zeros are prohibited in the number sequence. 
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• The letters I and O are excluded from the alphabetical 

sequences due to their similarities with the numbers 1 and 0. 

• The letter Z is excluded and reserved for Malaysian military 

vehicles. 

 

In the context of this research, synthetic LPs with X YYYY X format 

and special plates are not generated as each alphanumeric character is treated 

as an object detection problem. For robust OCR task, letter Z is included 

during data generation process to accommodate special plates like NAZA. 

Additionally, LPs with red, blue and white background for taxis, vehicle 

dealers and diplomats respectively are omitted due to their rare occurrence. 

Notably, the fonts for normal and special LPs are Franklin Gothic Bold and 

Calisto MT Italic respectively according to regulations (Anon., 2024b). 

However, in reality, different fonts are used for normal LPs, including Arial 

Bold, Bebas Neue, Grand Junction, Helvetica Now Micro and Palo 

Compressed Medium, which is illegal (Asaad, Faizabadi and Mohd Zaki, 

2023). For close resemblance of the real-world LPs, all these unauthorised 

fonts are included in the synthetic dataset generation. Figure 4.1 shows some 

samples of synthetic images with different fonts. 

 

4.2.2 Synthetic License Plate Generation 

 

Figure 4.1: Samples of Synthetic Images 
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Data annotation process is typically tedious and time-consuming, where 

annotators have to label large quantities of quality images for good model 

generalisation. Moreover, human error poses a challenge in data annotation 

due to mislabelled data and inconsistent annotation, leading to decreased 

model performance. To automate data annotation process, cv2 library is 

utilised for contours detection and bounding box generation of all characters 

on the synthetic image. The synthetic images are ideal and non-realistic to 

replicate the real-world LPs for further model training. Hence, data 

augmentation techniques are applied, generating realistic-looking LPs. Finally, 

these images together with the bounding boxes, are skewed according to the 

LP’s angle in original images and replaced, creating synthetic dataset with 

modified LPs. Figure 4.2 shows the annotated LP before and after 

augmentation. 

 

4.3 Model Training Setup 

Before training the model, transfer learning technique is applied by initialising 

the model with pretrained Common Objects in Context (COCO) weights to 

enhance its training process. Due to data scarcity, the model is pretrained on 

synthetic dataset to warm up the model for better convergence. After 

pretraining with synthetic dataset, the model is fine-tuned on real dataset. 

Notably, the VCR head is frozen during fine-tuning to prevent overfitting, as 

VCR image-label pairs are not replaced during synthetic data generation. A 

consistent batch size of 12 is used throughout model training. It is observed 

that epochs are a tricky hyperparameter for each model configuration. 

 

 

(a) (b) 

Figure 4.2: (a) Annotated LP before Augmentation (b) Annotated LP after 

Augmentation 
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Determining the appropriate number of epochs poses a challenge for each 

model configuration. Hence, the best epochs discovered for each model 

configuration are reported in the result tabulations. All models in this work are 

trained on the NVIDIA GeForce RTX 1080 Ti Graphic Cards. Table 4.1 

shows the complete experimental platform configurations, while Table 4.2 

presents the library versions used in the codebase development. 

Table 4.1: Experimental Platform Configurations 

Names Configuration 

Operating System Ubuntu 18.04.6 

CPU Intel Core i7-10710U CPU @ 1.10GHz 

RAM (GB) 64 

GPU NVIDIA GeForce RTX 1080 Ti 

GPU Acceleration Library CUDA11.4 

 

Table 4.2: Library Versions Used in the Codebase Development 

Libraries Versions 

ultralytics 8.0.105 

torch 1.13.1+cu117 

openvino 2023.1.0 

scipy 1.10.1 

opencv-python 4.9.0.80 

trdg 1.8.0 

imutils 0.5.4 

 

4.4 Hyperparameter Tuning 

According to Table 4.3, higher image resolution significantly enhances model 

performance. Specifically, increasing the image resolution ensures a mAP 

improvement for OCR ranging from 17% to 44%, depending on the model 

configurations. This improvement is rationalised by the fact that OCR involves 

detecting small characters in the input image, which is challenging in low-

resolution images. Meanwhile, the significance of pretraining model on 

synthetic data is demonstrated in Table 4.4, where the model accuracy 

improves. For instance, the mAP for VCR significantly improves as the 
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number of synthetic datasets increases, going from one set to five sets. 

However, the number of synthetic datasets is capped at five sets as no 

significant performance improvement is observed beyond 5 sets. With these 

observations, the ablation study presented in Table 4.5 utilises 960 image 

resolution with models pretrained on five sets of synthetic data as base models. 

 

Table 4.3: Image Size Effect on Model Accuracy 

Model Configuration Image Size 
mAP50 

Epochs 
OCR LP VCR 

1 Head, 1 Task      

OCR (Pretrained) 
640 0.653 - - 20+80 

960 0.819 - - 20+80 

LP 
640 - 0.956 - 80 

960 - 0.956 - 80 

VCR  
640 - - 0.716 80 

960 - - 0.708 80 

1 Head, 3 Tasks (Pretrained) 
640 0.550 0.872 0.890 80+80 

960 0.791 0.874 0.891 80+80 

3 Head, 3 Tasks (Pretrained) 
640 0.628 0.963 0.877 80+80 

960 0.735 0.965 0.862 20+40 

 

Table 4.4: Synthetic Data Effect on Model Accuracy 

Model 

Configuration 

Sets of Pretrained 

Synthetic Data 

mAP50 
Epochs 

OCR LP VCR 

1 Head, 3 Tasks 
1 0.772 0.763 0.793 80+80 

5 0.791 0.874 0.891 80+80 

3 Head, 3 Tasks 
1 0.781 0.962 0.76 80+80 

5 0.735 0.965 0.862 20+40 

 

Table 4.5: Ablation Study. Shaded Indicates the Optimal Model for All Tasks 

 Model Configuration 
mAP50 

Epochs 
OCR LP VCR Average 

 1 Head, 1 Task      
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 Model Configuration 
mAP50 

Epochs 
OCR LP VCR Average 

A OCR (Pretrained) 0.819 - - 

0.828 

20+80 

B LP - 0.956 - 80 

C VCR - - 0.708 80 

D 
1 Head, 3 Tasks 

(Pretrained) 
0.791 0.874 0.891 0.852 80+80 

E 
3 Head, 3 Tasks 

(Pretrained) 
0.735 0.965 0.862 0.854 20+40 

E1 E with disabled mosaic 0.755 0.966 0.817 0.846 20+40 

E2 

E with frozen VCR head, 

5:4:1 loss weightage and 

disabled mosaic 

0.755 0.958 0.849 0.854 20+40 

E3 

E with frozen VCR head, 

6:3:1 loss weightage and 

disabled mosaic 

0.778 0.963 0.881 0.874 20+40 

E4 

E with frozen VCR head, 

7:2:1 loss weightage and 

disabled mosaic 

0.764 0.953 0.87 0.862 20+40 

 

In the ablation study to access the effectiveness of the proposed 

solution, conventional methods represented by Models A, B, C, and D are 

included as the performance baseline. Models A, B, and C serve as baselines, 

with each model individually fine-tuned for specific tasks. In contrast, Model 

D adopts a naive approach, consolidating all tasks under a single head. 

Interestingly, the proposed solution (Model E3) is comparable with the single-

head YOLO model trained for both single and multi-task. Model E3 

demonstrates a competitive edge by achieving improvements within a 

deviation of 24.4% and 10.2% from single-head single-task models (Model A, 

B and C) and single-head multi-tasks model (Model D), respectively. Model 

E3 is flexible enough to simultaneously optimise for OCR, LP, and VCR, with 

the highest average mAP of 0.874 among all model configurations. This 
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underscores model E3’s ability to achieve a delicate balance between model 

complexity and generalisation. 

The dedicated loss design in Equation (3.3) is demonstrated to well-

suit the multi-task model. Across models E1 to E4, best performance is 

achieved when the weights for 𝐿𝑂𝐶𝑅, 𝐿𝐿𝑃 and 𝐿𝑉𝐶𝑅 are adjusted to be 0.6, 0.3 

and 0.1, respectively. Any other ratio would degrade the overall performance. 

Meanwhile, mosaic data augmentation is disabled since it is primarily 

beneficial for large objects. Disabling mosaic augmentation slightly improves 

OCR and LP detection while adversely affecting VCR performance, as shown 

in the transition from model E to model E1. However, this issue can be 

compensated through the dedicated loss function, as demonstrated by the 

increase in mAP for VCR in model E3. Once again, this underscores the 

advantage of the custom loss function. 

 

4.5 Output Demonstration 

This section demonstrates the output of each head from the multi-task model, 

including OCR, LP detection and VCR head, which is shown in Figure 4.3, 

Figure 4.4 and Figure 4.5 respectively. 

 

 

Figure 4.3: OCR Head Output 
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4.6 Performance Evaluation 

Based on Table 4.5, the proposed model achieves the highest average mAP of 

0.874 among all models, with mAP for OCR, LP detection and VCR as 0.778, 

0.963, and 0.881 respectively. Notably, the proposed model is implemented 

 

Figure 4.4: LP Detection Head Output 

 

 

Figure 4.5: VCR Head Output 
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for real-time applications, in which inference speed is the key evaluation 

metric. Table 4.6 compares the FPS of different model configurations. The 

conventional approach involves sequential execution of each single-head 

single-task YOLO, as shown in setup: Model A + B + C. The inference time is 

significantly slow because sequential processing imposes a cumulative time 

overhead, hindering real-time applications. On the other hand, the naive 

approach of using single-head for multi-tasking (Model D) exhibits the fastest 

inference time. However, this efficiency comes at the cost of compromised 

accuracy, indicating a potential trade-off between speed and accuracy. In 

contrast, the multi-head multi-task Model E3 has a higher inference speed than 

the conventional sequential execution approach. Although Model E3 has a 

lower FPS than the naive multi-task model D, it has the highest average mAP 

among all model configurations. This strikes a balance between efficiency and 

prediction, surpassing existing single-task and multi-task model configurations. 

Recognising the role of multithreading in model inference process, 

Model E3 is deployed in a multithreaded manner, as described by Wong 

(2024). Table 4.7 compares the FPS of two video sources with both single- 

and multi-stream threading configuration. Multithreading significantly 

enhances the model inference speed by 45.69% and 69.05% on single-stream 

prerecorded video setting with GPU and CPU respectively. Notably, multi-

stream setting is slightly slower than single-stream as several frames are 

processed concurrently, consuming additional computational power. In terms 

of video source, Real-Time Streaming Protocol (RTSP) has slower inference 

speed where video is streamed over a server rather than obtained locally. 

However, RTSP has flexible configurations in how the video stream is 

managed and delivered to cater specific needs and further optimisation. Hence, 

it remains as the de facto standard for closed-circuit television (CCTV), in 

which the multi-task model will be implemented in the future. 

 

Table 4.6: FPS of Different Models 

Model Configuration FPS (on GPU) FPS (on CPU) mAP50 (average) 

Model A + B + C 

(sequential execution) 
18.868 5.376 0.828 
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Model Configuration FPS (on GPU) FPS (on CPU) mAP50 (average) 

Model D 53.452 16.522 0.852 

Model E3 36.225 9.510 0.874 

 

Table 4.7: FPS of Model E3 on Different Sources and Multithreading 

Configurations 

Source Multithread FPS (on GPU) FPS (on CPU) 

Prerecorded video 
Single-stream  52.7780 16.0770 

Multi-stream 40.6866 8.9300 

RTSP 
Single-stream  23.1716 9.3468 

Multi-stream 22.4547 2.6978 

 

Table 4.8 compares the parameter size and FLOPs between 

conventional and proposed methods. Undoubtedly, the sequential execution of 

Model A, B and C exhibits the highest number of parameters and FLOPs due 

to the combination of three models. Meanwhile, Model D, as a single-head 

single-model setup showcases the lowest number of parameters and FLOPs. 

Although Model E3 utilises higher number of parameters and FLOPs than the 

naive multi-task Model D, it is still lightweight compared to the conventional 

sequential execution approach. 

 

Table 4.8: Number of Parameters and FLOPs of Different Models 

Model Configuration Number of Parameters (M) FLOPs (GFLOPs) 

Model A + B + C 

(sequential execution) 
9.041 24.623 

Model D 3.019 8.237 

Model E3 6.495 18.175 

 

Figure 4.6 illustrates an example of ALPR using the proposed multi-

task model. Overall, the model performs well to detect the vehicle colour and 

license plate. Minor error is observed on OCR where the model recognises as 

“8ABK138” rather than “ABK1388”. Similar and repeated alphanumeric 

characters confuse the model, resulting in an additional “8” in front of “A” and 
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missing “8” at the end, especially when the characters are small. Considering 

this issue, geofencing is empirically adopted for the model to perform OCR 

only when the license plate is near to the camera. For real-time application, 

license plate tracking is applied, maintaining unique ID for each detected 

license plate and subsequent OCR task. On the other hand, the performance of 

VCR is evaluated using the Precision-Recall (PR) Curve as shown in Figure 

4.7. 

 

 

Figure 4.6: Failure OCR Case 
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4.7 Summary 

The proposed multi-task model achieves comparable performance with both 

single-head single-task and single-head multi-task model. Initially, this project 

leverages transfer learning technique with synthetic data to improve OCR task 

due to its small and diverse characteristics. For further model optimisation, 

extensive hyperparameter tuning is conducted involving number of epochs, 

weighted loss function and data augmentation. As such, the proposed model 

achieves the highest average mAP among all models. Although this model 

incorporates additional heads onto the backbone, it is still lightweight with 

comparable FPS for real-world applications. 

 

 

Figure 4.7: PR Curve for VCR Head 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, a novel multi-task YOLOv8 model is designed for OCR, LP 

detection and VCR. The model demonstrated exceptional performance, 

achieving high mAP scores of 0.778, 0.963, and 0.881 for OCR, LP detection, 

and VCR tasks, respectively. It outperforms conventional two-stage systems 

and strikes a balance between accuracy and inference speed for single-head 

models, making it suitable for real-world applications. Given the multi-head 

nature of the proposed model, it is still lightweight for execution on edge 

devices. 

Despite the challenge posed by a limited dataset comprising only 

1555 images, various strategies are employed, including pretraining on 

synthetic data and hyperparameter tuning, to enhance the model’s performance. 

Notably, OCR tasks exhibit slightly lower accuracy compared to LP detection 

and VCR tasks due to the small and diverse alphanumeric characters. To 

address this issue, geofencing is adopted to perform OCR only when the 

license plate is within a specified region, enhancing OCR performance.  

This research contributes to the advancement of ALPR systems, 

offering a comprehensive solution for vehicle identification that can be 

beneficial for law enforcement and security surveillance. 

 

5.2 Recommendations for Future Work 

In future research, the proposed model can be further optimised by 

incorporating OpenVINO. OpenVINO, known for accelerating and deploying 

deep learning models for efficient execution on edge devices, presents a 

promising avenue for improving the model’s efficiency. Furthermore, the 

model’s capabilities will be extended to recognise car make and model, 

providing a more comprehensive understanding of the observed vehicles. 

Additional dataset will be curated by leveraging pseudo-labelling approach 

with current model, reducing human intervention and enhancing model 
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performance simultaneously. Specifically, dataset distribution should be taken 

into account, in which real-life conditions and geographical distribution the 

model will be deployed. The optimised model holds significant potential for 

deployment in real-world scenarios, such as residential areas or shopping 

malls, contributing to advanced ALPR systems. 
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