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ABSTRACT 

 

The purpose of this study is to develop an artificial intelligent (AI) -integrated 

sun-tracking system and cloud position prediction system. These systems are to 

be applied on concentrated photovoltaic (CPV) to improve the efficiency in 

solar power generation. In this study, YOLOv8 is chosen as object detection 

model to recognize and locate the sun position. After successfully tracked the 

sun’s coordinate, Q-learning will be applied to control the motor in order to 

follow the sun. In addition, YOLOv8 also be applied to recognize the position 

of clouds. The purpose of cloud tracking is to encounter the problem of lost 

tracking of sun when it is shaded by clouds during cloudy weather. YOLOv8 

will first obtain the position of the cloud, then calculation will be made 

according to the cloud movement and speed to predict the cloud shading time. 

The cloud shading time will then be applied to calculate the predicted sun 

reappear position. After that, the CPV will turns toward and stand by at the 

predicted reappear sun position. This is important to shorten the response time 

after lost track of sun to increase the efficiency of power generated by CPV 

system. Furthermore, this project also using 180° fisheye lens for a wider view, 

so that the larger cloud image can be captured. In result, the YOLOv8 model 

trained have an accuracy of 0.69% on cloud detection, and 100% on sun 

detection. The Q-learning training result also shown that the agent is able to 

move towards the target in the end of 1,000,000 episodes. The fish-eye lens had 

improved the cloud detection by widening the field of view of the camera 

module. Furthermore, the solar irradiance results also proved the accuracy of 

the sun object detection model. While the sun position prediction result had 

shown the percentage error ranging from 11% to 25%, and 43% during rapid 

change of weather. Lastly, the implementation of artificial intelligence had 

improved the efficiency of concentrated photovoltaic system during cloudy day. 

For future improvement, wind speed sensor, real-time satellite forecast system 

can be implemented for higher accuracy in prediction.
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Energy is the lifeblood of modern society, transportation, communications 

systems and fuelling industries. It is the force that drives progress and underpins 

economic growth. However, most of the source of energy in this century are 

non-renewable, such as fossil fuels, coal, and natural gasses. The extremely drop 

of sources in 21’s century had warned the worldwide that energy landscape must 

undergo a transformative change. The quest for energy sources that power our 

life while preserving the planet had become limited. In such, renewable energy 

such as sunlight, wind and water had become a hot topic for study and research. 

Among all those sources, solar energy is the easiest to obtain as sunlight is 

always available.  

Solar power can be easily achieved by harnessed through photovoltaic 

(PV) panel, which converting sunlight into electricity. Although this technology 

had been found in the year 1839 by Edmond Becquerel, it is still not the major 

source for most country (Office, 2023). This is happened due to the mis-

estimated and unpredictable weather change which significantly cause the low 

efficiency of solar power generator. When the world still heads aching with this 

century problem, the rapid growth of artificial intelligence (AI) had become 

beacon of hope. In this era of advanced technology, a new hope arises with the 

fusion of two fields: artificial intelligence and solar energy. The introduce of AI 

with powerful calculation had unlocked the potential of solar power with its 

high accuracy prediction through data learning.  

By integrating AI into photovoltaic (PV) panel, the solar panel is 

upgraded such that providing an ‘eye’ to the system. An object detection AI 

model can be planted to track the position of sun. However, achieving sun 

tracking alone is not yet solving the problem. The main causes of low efficiency 

in PV system are due to the unpredictable weather change. The sudden cover of 

sun by clouds may causing loss of sun tracking. In order to enhance the 

performance of PV, cloud prediction can be integrated into the system. This can 

be done by using the AI object detection model to detect the cloud, then predict 
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the cloud moving direction, moving speed, and estimated covering time through 

calculations. By integrating cloud tracking and sun positioning system, the 

efficiency of PV system can be improved. 

 

1.2 Importance of the Study 

As the efficiency of photovoltaic system is a major factor affecting the future of 

solar power renewable energy, it is important to have high and stable 

performance system. In this regard, AI-integrated sun tracking system plays an 

important role in tracking the sun position during daytime. This function can 

cooperate with Q-learning AI model to achieve automatic adjustment of CPV 

panels to always facing the sun. Additionally, cloud tracking and prediction AI 

are also crucial to estimate the covering of cloud. By integrating a cloud 

prediction system, the CPV system can accurately calculate the position of sun 

reappear using the cloud’s shading time and moving direction obtain from the 

prediction. Besides, the cloud shading time, sun position and solar irradiance 

are also an important data in solar generation study. 

 

1.3 Problem Statement 

Current efficiency of PV system has faced a critical bottleneck as a primary 

source of power generation. Although there are current existing AI-integrated 

sun tracking PV system, the efficiency of the PV is still below the required 

demand. The main reason causing the problem is the loss track of sun during 

unstable weather such as cloudy and windy day where the sun is possibly shaded 

by clouds. This problem is further illustrated by the graph shown in Figure 1.1, 

which display the PV power output during different weather conditions. From 

Figure 1.1, it is clearly seen that the performance of PV is highly unstable during 

cloudy and rainy day.  
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Figure 1.1: Graph of PV Power Output During Different Weather. 

 (ResearchGate, 2016) 

 

The same problem is encountered by the AI sun tracking integrated 

CPV system. Once the sun is lost from tracking, the AI-integrated CPV system 

may stop turning and remains in the same position. When the cloud goes and 

the sun reappears, the CPV system will need time to react and reorient towards 

the sun. This time-consuming issue had caused the CPV system unable to 

receive the sunlight immediately, leading to a drop in efficiency. This issue 

could be even more critical when coming to a larger and heavier CPV system 

where lots of time is wasted in aligning the CPV panels with the sun.  

 

1.4 Aim and Objectives 

The aim of this study is to address the performance issue of CPV system by 

integrating an AI object detection model. The goal of this project is to increase 

the efficiency of CPV system during bad weather. The objective of this project 

is as follows: 

1. To integrate AI sun detection model into CPV system to achieve sun 

tracking feature. 

2. To develop a cloud prediction algorithm using AI cloud detection model 

3. To develop a CPV control system with cloud prediction and sun tracking 

algorithm cooperating with each other. 

 

1.5 Scope and Limitation of the Study 

In this project with the tittle ‘Artificial Intelligent Integrated Sun-Tracking 

System with Sun and Cloud Positions Prediction’. the scope of the project is to 
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develop a system to predict sun and cloud’s position using AI object detection 

model. The scope including calculations to obtain predicted cloud shading time 

and predicted position of sun reappearance. These efforts are aimed to enhance 

the efficiency of CPV system.  

However, for the limitation of the tittle, the wind speed was assumed 

to be constant throughout the entire process, from cloud shading until the sun 

reappears. To incorporate the wind factor, wind speed sensors would be required, 

or a forecast system would need to be integrated into the system, where this part 

will not be covered in this project. Besides, as long as the sun cannot be detected 

by the AI object detection model, it will be considered as no sun detected. This 

limitation arises from the working algorithm of AI model. 

 

1.6 Contribution of the Study 

This study had contributed to solve the limitation of the solar-tracking CPV 

system. During cloudy day, CPV system may lost track the sun when the sun is 

covered by clouds. This causes the CPV system consume time to retracking the 

sun when the sun is reappeared. In order to solve this problem, this project had 

integrated sun and cloud position prediction system to predict the sun reappear 

position. This could help the CPV system to quickly recapture the sun once the 

sun is reappeared.  

 Besides, this project had also improved the performance of the AI sun 

and cloud detection model, by implementing the latest detection model released 

in 2023, the YOLOv8. The implementing of YOLOv8 will improve the 

accuracy of the solar tracking system and prediction system. 

 Moreover, this project will also implement new reward and penalty 

system to the Q-learning algorithm. The dual-axis CPV motor with previously 

only able to turn 4 directions in each step is aimed to be upgraded to 8 directions 

available in each step. This could improve the efficiency of the CPV motor to 

find to shortest path towards the sun. 

 Apart from that, solar irradiance throughout a cloudy day is also 

measured and discussed to study the performance of the CPV system. Lastly, 

the study on the solar irradiance during cloudy day can contribute important data 

to the industry for solar irradiance prediction and solar energy research. 
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1.7 Outline of the Report 

This report describes the study on tittle ‘Artificial Intelligent Integrated Sun-

Tracking System with Sun and Cloud Positions Prediction’ which composed the 

following chapters: 

 Chapter 1 describes the introduction of the tittle which consist of 

background, problem statement, objective, limitation and scope of study. 

 Chapter 2 describes the literature review of artificial intelligence (AI), 

sun tracking system, and cloud prediction system. The study consists of 

historical background, algorithm of the AI model and recent development of PV 

system. 

 Chapter 3 describes the methodology of the project which includes AI 

object detection model training, design architecture, sun and cloud movement 

calculations, and hardware setup. 

 Chapter 4 describes the result and discussion of the project which 

consist of   YOLOv8 training result, Q-learning training, fisheye lens assisted 

in object detection, solar irradiance analysis, and sun and cloud position 

prediction result. 

 Chapter 5 describes the conclusion of the project and the 

recommendation for future work is discussed. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In this era with rapid growth in artificial intelligence (AI), people are striving to 

apply it on automation system. This is because automation system with 

processing capabilities can achieve fully automatic control without human’s 

help. This same applies to solar power field, where efforts are being made to 

achieve the automatic control PV system for sun tracking. In recent years, many 

research has been conducted on integrating AI with solar power plant. In this 

topic, the background study of AI, sun tracking, and cloud prediction system 

will be discussed. 

 

2.2 Artificial Intelligence 

Artificial intelligence (AI) refers to the development of computer system which 

can perform tasks that typically require human intelligence. In recent years, AI 

has gain popularity for integration into automation system, due to its abilities in 

problem-solving, learning and decision making. There are few categories and 

types of AI which currently in use including machine learning, deep learning, 

reinforcement learning, and robotics. With these capabilities, people are striving 

to integrate AI into automation system. In solar field, AI has been implemented 

to achieve sun tracking with automatic control of motors. The introduction of 

AI into photovoltaic (PV) cells has significantly increased the overall efficiency 

of solar power generation. However, training a good AI model could be 

challenging. 

 The AI model training process includes data collection, data 

preprocessing, model building, training validation and model testing 

(Javaid.S.,2023). For data collections, AI required a large set of labelled datasets 

in order to achieve high accuracy performance. For example, an AI object 

detection model would need lots of labelled images of the targeted object. The 

accuracy of the trained model depends on the quality and quantity of data, where 

the targeted object must clarify clearly in the dataset. While data preprocessing 
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process involves resizing image, enhancing and cleaning data to prepare for 

model training.  

When comes to model selection, several types of algorithms can be 

chosen based on the complexity of problem, size and structure of data, and 

accuracy of the task. One of the most commonly used is machine learning, 

which is a subset of AI that focuses on statistical models. While deep learning 

is a subset of machine learning which uses artificial neural networks (ANN) to 

analyse and learn from data. Deep learning is popular for applications in object 

detection model, such as YOLO (You Only Look Once), which able to perform 

real-time object recognition (Chablani.M., 2017). 

Lastly, training validation take place after the initial training phase. 

This step is important to check the performance of the trained AI model. A new 

set of data, also known as validation dataset, will be run through to check the 

accuracy of the model. In this stage, adjustment of dataset will be performed in 

order to meet the requirement of the task. In summary, an AI model training 

consist of five crucial steps. The rapid improvement and evolution of AI 

technology, especially in machine learning and deep learning, will greatly 

benefits data processing task. 

 

2.2.1 Object Detection Model 

An AI object detection model is a fundamental task in computer vision, which 

enabling to identify and localize the objects within an image or video stream. In 

recent years, object detection model has been integrated into sun tracking 

system to develop high-performance solar power generator.   

Early object detection models such as Viola-Jones’ face detection 

algorithm are developed with slow, inaccurate and low performance on 

unfamiliar data (Zaidi et al., 2022). These issues are then solved with the 

introduction of convolutional neural network (CNNs), which leads to the speed 

improvement in deep learning. CNNs is a neural network that designed to 

process grid-like data such as images and videos (Peng et al., 2017). It is a 

fundamental of deep learning which can increase the effectiveness for works 

related to computer vision. This invention had leads to the exponential growth 

in object detection model by improving the detection accuracy. Over time, real-
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time deep learning-based object detection model, YOLO (You Only Look Once) 

were introduced with accurate positioning and speed performance. 

 Generally, the object detection model classified into one-stage and 

two-stage object detection algorithm. One-stage detector contains single feed-

forward fully convolutional network which enables bounding boxes and object 

classifications directly predicted on image (Carranza-Garcia et al., 2020). This 

feature provides high efficiency by reducing the computational time, making it 

suitable for real-time applications. The most common model with one-stage 

detector is YOLO, which also the first proposed single unified architecture.  

While two-stage detector algorithm have a higher accuracy with two-

step process. In the first step, preliminary test is carried out to generate a set of 

region of interest (RoIs) where all positive samples are removed. Then, the RoIs 

will pass over to second stage, to undergo regional classification and location 

refinement. This detector algorithm had given benefits of more accurate 

localization but required more processing time due to the complexity. The most 

common example for two stage object detection algorithm is Faster R-CNN. In 

summary, the comparison for two type of algorithm is shown in Table 2.1. 

 

Table 2.1: Table of Comparison Between One-Stage and Two-Stage Detector 

Aspect 
One-stage detector 

(YOLO) 

Two-stage detector 

(Faster R-CNN) 

Localization 

Accuracy 

Lower accuracy for small 

objects. 

Higher accuracy due to 

two steps of 

refinement. 

Run time 

required 

Shorter time for one step 

object localization. 

Longer period of time 

for the additional RoIs 

step. 

Model 

complexity 

Less complexity which leads 

to higher efficiency. 

More complex due to 

two-stage process. 

Real-Time 

Applications 

Well-suited due to its fast 

performance on videos and 

images. 

Not suitable due to the 

complexity of the 

algorithm. 
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2.2.2 Versions and Evolution of YOLO 

You Only Look Once (YOLO) is a deep learning-based object detection 

algorithm which first published in the year 2015 (Jiang et al., 2022). The 

invention of YOLO is to target a small size model yet fast calculation speed in 

object detection. It is applied on object tracking system in recent years due to 

fast image processing capability. YOLO achieves the objective by directly 

output bounding of box through neural network. This advantage brings YOLO 

with ability to suit in real-time applications. Apart from that, YOLO reduces the 

detecting error on background by using global image for detection. However, 

this also bring negative effect where the accuracy of YOLO will be limited. 

 Over the years, YOLO had undergone several evolutions. The original 

version of YOLO architecture contains 24 convolution layers and two connected 

layers. This version of YOLO has a major issue which is low accuracy in 

positioning and lower recall rate. This led to the development of YOLOv2 which 

have slightly improve the defects by using new classification model, Darknet-

19. While the development of YOLOv3 uses Darknet-53, with multi-scale 

features. In the year 2020, YOLOv4 has developed with greater focus on data 

comparison. YOLOv4 changed the overall detector framework into Input, 

Backbone, Neck and Head. When images are input to YOLOv4 with pre-

processed size, Backbone will capture hierarchical features from multiple scales. 

Different from YOLOv3, version 4 is using enhanced version of Darknet-53, 

which is CSP Darknet53. The Neck will be act as an intermediate between 

Backbone and Head, while Head will be responsible to make predictions 

through bounding box and classifications. The structure of YOLOv4 is shown 

in Figure 2.1. 

 

 

Figure 2.1: Structure of YOLOv4 
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The released of YOLOv5 improved the performance of YOLOv4 with 

faster model training and user-friendly coding environment. Overall, the 

versions from YOLO to YOLOv5 can be summarise in Table 2.2. 

 

Table 2.2: Versions of YOLO with Corresponding Improvement 

Versions of YOLO Improvements 

YOLO 
Achieve object detection with small model and faster 

speed 

YOLOv2 Improve in accuracy and overall performance 

YOLOv3 Provide multi scale detection 

YOLOv4 Improved feature extraction and enhance performance 

YOLOv5 Flexible control of model size and user friendly 

 

In the year 2022, the introduction of YOLOv7 had surpassed all known 

object detection model with high processing speed and high accuracy 

(Gasparovic et al., 2023). YOLOv7 are trained using MS COCO dataset and the 

architecture of the algorithm had upgraded. Similar to YOLOv4, Bag of 

Freebies are used as a general framework of training strategies to obtain high 

accuracy detection yet not affecting the overall processing speed. However, the 

training speed will be slightly lower compared to other existing model. 

While for YOLOv8, anchor-free architecture, enhancement of 

backbone and multi scale prediction ability had leads YOLOv8 to perform task 

faster with more accurate detection than YOLOv7. A study is done by 

Augmented Startups., (2023) in order to test the object detection accuracy and 

speed between YOLOv7 and YOLOv8 as shown in Figure 2.2 and Figure 2.3. 

From Figure 2.2, it shows that YOLOv8 has the highest accuracy with the 

limited amount of parameter while Figure 2.3 shows YOLOv8 can achieve the 

same accuracy as other models in a shorter period of time. Unlike YOLOv7, 

YOLOv8 able to detect smaller object with more irregular shapes, such as 

clouds.  
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Figure 2.2: Comparison of Accuracy (Augmented Startups, 2023) 

 

 

Figure 2.3: Comparison of Speed (Augmented Startups, 2023) 

 

In summary, YOLOv7 and YOLOv8 had significantly improved in 

object detection accuracy and processing time. The simple structure of the 

model had become reason of two models being highly applied on daily life, 

especially real time object detection. This is also a reason these two models are 

mostly chosen to apply in solar tracking system. 

 

2.3 Sun-Tracking System 

Sun tracking system, also known as solar tracking system, is a mechanism to 

orient a solar photovoltaic (PV) or sun reflector towards the sun. The purpose 
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of this mechanism is to maximise the energy output from the solar device by 

ensuring the PV panels receive direct sunlight throughout the day. As the 

position of sun changes throughout the day, a solar tracking system is important 

to adjust the angle of the PV cells so that it aims precisely at the sun (Abdallah 

& Nijmeh, 2003). This idea is came out in the mid-20th century, with the 

expansion of solar energy and advanced electronics that can leads to accurate 

tracking mechanism. 

 Solar tracking is commonly implemented in photovoltaic (PV) system 

and concentrated photovoltaic (CPV) system. In PV system, this generator 

converts sunlight directly into electricity using solar cells. This type of 

mechanism can result in high efficiency of PV panels. However, this method 

only applicable on areas with high solar insolation. While for CPV system, 

mirrors or lenses are used to reflect and focus the sun image on a small spot 

where multi-junction solar cells installed. This type of system requires sun 

tracking algorithm to tilt the entire structure with mirrors towards the sun so that 

maximum sunlight can be reflected. 

 In mechanism design, solar tracking system is classified into single-

axis and dual-axis. For single axis, the trackers consist of one degree freedom 

which act as an axis of rotation, aligned along the true north meridian (Ray & 

Tripathi, 2016). While dual-axis tracker has two degrees of freedom for rotation, 

where the primary axis is fixed to the ground, and it will be the reference for 

secondary axis. This mechanism allowed the tracker to follow the sun vertically 

and horizontally. Compared to single-axis, dual-axis are far more flexible with 

extra degree of movement to parallel the normal of sun to normal of CPV. A 

sample design of dual-axis tracker is as shown in Figure 2.4. 
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Figure 2.4: The Structure Design of a Dual-Axis Tracker (Jamroen et al., 

2020) 

 

2.3.1 Recent Development of Sun Tracking System 

Since 20th century, different type of sun tracking system is developed to improve 

the performance of PV system. In traditional way, the tracking of the sun can be 

achieved by using photosensors. From the research paper by Abdallah & Nijmeh, 

(2003) the sun tracking system is achieved using the photosensors to obtain the 

sun position and send electrical signals to the PLC control unit. A set of 

mathematical calculations using azimuth and zenith angle of sun is done using 

a computer program. Besides, this design also considers the motor speed 

calculation by dividing the daylight hours into four identical time intervals as 

shown in Figure 2.5. Although this kind of mechanism is able to achieve solar 

tracking, however, the cost implementation is slightly higher as it involves lots 

of hardware such as PLC control unit and photosensors. 

 

 

Figure 2.5: Four Identical Time Intervals During Daylight 

 Hours (Abdallah & Nijmeh, 2003) 
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 This theory is almost similar to Al-Mohamad, (2004) solar tracking 

system design where photo resistor is used to send command to control the PLC. 

The design includes two symmetric photo resistors installed on the same PV 

module with solid barrier in between. The increase and decrease of the solar-

radiation intensity will produce different voltage drop, which directly connected 

to analogue inputs of PLC for control purpose. The design of the photosensor is 

shown in Figure 2.6. This design is quite similar with the previous one however 

the accuracy will be slightly lower as it does not have detail control on motors. 

 

 

Figure 2.6: Circuit Design of Photosensors (Al-Mohammad, 2004) 

 

In recent years, as the introduce of AI, there are several developments 

of sun tracking system which optimize the advantage of it. Such example is the 

research from EI Shenawy et al., (2012) where artificial neural network (ANN) 

is used to control the solar tracking system. By using ANN, a series parallel 

feed-forward neural network was designed to construct a two-axis solar tracker 

as shown in Figure 2.7. The training of the ANN involves 1054 epochs to learn 

the error between output from ANN and output from training pair. By using the 

AI algorithm with large datasets provided, this design could highly improve the 

performance of sun tracking system. 
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Figure 2.7: Neural Network Identification Scheme (EI Shenawy et al., 2012) 

 

2.4 Cloud Prediction System 

Cloud prediction system is a technology with advance algorithm integrated to 

predict the movement of the cloud. This technology is crucial in 21st century as 

it plays an important role in forecast to predict the weather. In the past, the 

observation of the cloud movement can only be done using satellite platforms. 

With the rapid growth of machine learning and deep learning, the cloud 

movement prediction had marked a significant turning point, where the cloud 

prediction from ground image had getting more accurate. The commonly used 

algorithm includes motion vector, and trajectory prediction system such as 

Kalman Filter. 

 

2.4.1 Current Existing Cloud Prediction System 

According to Hu et al., (2018) research paper, a cloud prediction system is 

planted in a PV system to solve the efficiency issue cause by cloud shading. The 

cloud prediction system is achieved by using motion vector to predict the 

moving trajectory. The motion vector achieved the assignment by calculating 

the position deviation, which also known as two-dimensional motion vector. By 

calculating the motion vector, the future position of the moving cloud can be 

obtained as illustrated in Figure 2.8.  
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Figure 2.8: Illustration of Motion Vector Prediction (Hu et al., 2018) 

 

 From the research, the advantage of using motion vector includes high 

accuracy cloud trajectory prediction. This can be shown from the result obtained 

in Figure 2.9 where the time of the target clouds shades the sun is predicted 

accurately. 

 

 

Figure 2.9: Prediction of Cloud Trajectory (Hu et al., 2018) 

 

2.5 Summary 

There have been several developments in sun and cloud tracking system, with 

different method and algorithm being used. The main purpose of these research 

is to improve the efficiency of PV system. Overall, AI has been widely used in 

solar power field in recent years to enhance the performance of PV system. The 

advancement of AI has provided the technological foundation to power the sun 

and cloud prediction system.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter outlines the details of work to achieve the objectives in chapter 1. 

Selection of components and software will be discussed in this chapter. 

Moreover, calculation and theory to achieve the cloud prediction and sun 

tracking will be included. While the connection of the hardware will be 

visualized in block diagram and the process flow of the system will be illustrated 

in flow chart. 

 

3.2 AI Sun–Tracking with Sun and Cloud Position Prediction  

In this project, to achieve the sun tracking and cloud prediction system, AI 

object detection model, YOLOv8 will be used to identify the cloud and sun 

directly stream from the webcam module. Calculation of sun position and cloud 

movement prediction will be done using Pythagoras and Trigonometry theorem. 

This algorithm will be integrated in an existing CPV model consist of non-

imaging dish concentrator (NIDC) prototype on rooftop of Universiti Tunku 

Abdul Rahman (UTAR). This CPV contains 60 mirrors where each mirror has 

a dimension of 120mm × 120mm. Furthermore, the CPV is driven by a motor 

control unit which consist of two stepper motor and controlled using Arduino 

UNO.  

 

3.2.1 Selection of Hardware and Software 

For the hardware, Xiaomi Xiaovv webcam will be used to stream the sky image 

for sun and cloud detection. This webcam has resolution of 1024×768 with 

200w pixels. It provides high quality undistorted image which benefits for 

object detection. However, this camera module does not have waterproof feature. 

Thus, a waterproof electrical junction box will be used to cover the module.  

Besides, this webcam only provides view angle of 150° which is not 

wide enough to capture the whole sky image. As wide view of camera is 

important to prevent lost track of sun and cloud detection, a fisheye camera lens 
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are attached to the webcam to enhance the field of view. By the aids of fisheye 

lens, the field of view is upgraded to nearly 180° of vertical and 180° of 

horizontal view. The comparison of the field of view before and after fish-eye 

lens attached is shown in Figure 3.1. Furthermore, in order to protect the lens 

from exposing to bright sun, black film will be stick on the lens to ensure the 

long-term use of device. In summary, the hardware components used are listed 

in Table 3.1. 

 

 

Field of view before  

fish-eye lens attached 

 

Field of view with  

fish-eye lens attached 

Figure 3.1: The Comparison of Field of View Before and  

After Fisheye Lens Attached. 

 

Table 3.1: List of Hardware Components 

Hardware Components Statistics 

 

Xiaomi Xiaovv Webcam 

Resolution: 1024 × 768 

Field of view: 150° 

Connection: USB2.0 cable 
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Waterproof Electrical Junction Box 

Size: 4cm × 6cm × 3cm 

Material: PVC 

Features: Waterproof enclosure 

 

Fish-Eye Lens 

Field of view: 180° vertical and 

180°horizontal 

 

Black Film 

- 

 

 For software part, YOLOv8 will be used as AI object detection model 

due to the higher accuracy in detection and fast processing speed. The high 

accuracy detection of the model had benefits in detection of clouds with various 

irregular shape. Besides, the fast-processing speed allow the algorithm to work 

in real-time application. The training process of the sun and cloud detection 

model will be carried out in Google Collab, which is a workplace with 

programming language of Python. Then, the trained model will be export and 

run in Python IDLE. Lastly, Arduino IDE will be involved in control system 

part with the assistant of Q-learning. 

 

3.2.2 Design Architecture and Practical Process 

To achieve the sun tracking and cloud prediction system, AI object detection 

model YOLOv8 will be trained using datasets of sky images taken from UTAR 
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rooftop. A camera with fisheye lens will be installed to stream the real time sky 

image.  

Before starts operating, a calibration will be done to obtain the sun 

moving speed of the day. Calibration is important as the speed of sun will be 

various throughout the year. While the speed of sun throughout the day should 

be nearly constant as the rotation of earth is in constant speed (Sawal.I., n.d.). 

In such, the calibration on sun moving speed only needed once every day.  

This system will starts operating after calibrations. AI model will 

detect sun and clouds, and the CPV will be turned towards the sun using Q-

learning that planted in the control system. Once the sun is shaded where the AI 

model could not detect the sun, the centre coordination of the shading cloud will 

be collected and wait for 1 minute buffer. The purpose of this time buffer is to 

filter out small clouds that covered for a moment only, where no adjustment 

needed as it does not affect much in efficiency. For clouds shading 1 minute and 

above, the cloud centre point before and after 1 minute will be compared to 

obtain the displacement of cloud. By using this information, speed of cloud can 

be calculated. Besides, by comparing the coordinate of the two frames, the 

moving direction of the cloud in degree angle can be found using Trigonometry 

theory. Further calculations will be shown in the cloud prediction section.  

After obtaining the predicted cloud movement and shading time, the 

predicted sun reappear position will be calculated using formula and the angle 

of adjustment will be sent to the control system of the CPV, to turn towards the 

predicted sun reappear position. The block diagram of the overall design will be 

shown in Figure 3.2. While the flow chart of the procedures will be shown in 

Figure 3.3. 
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Figure 3.2: Block Diagram of the Design 
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Figure 3.3: Flow Chart of the Design 
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3.2.3 Custom Dataset of Sun and Clouds 

For training the sun and clouds AI detection model, sun and clouds image is 

collected on UTAR rooftop. The sky image will be collected during daytime 

from morning to evening involving different types of weather such as 

Altostratus cloud, Cirrostratus cloud and no cloud condition as shown in Figure 

3.4. The image taken should be in 180 degrees as the lens is attached to the 

camera.  

 

 

Altostratus cloud 

 

Cirrostratus cloud 

 

No cloud 

Figure 3.4: Classification of Weather (Dreamstime, n.d.) 

 

Once the sky images are collected, the sets of images will be uploaded 

to Roboflow for preprocessing step. Roboflow is a platform which provides 

tools for managing and preprocessing dataset. It is often used for YOLO 

detection model training because it can export formats that compatible with 

YOLO. The labelling of the image is done in Roboflow to label each cloud and 

sun presence in the image. The object labelling is ensured to be accurate 

especially for irregular shaped clouds. This is because the quality of the datasets 

will directly affect the result accuracy. Lastly, the dataset is exported into 

YOLOv8 in Google Colab for model training. 

 

3.2.4 Model Training for Object Detection 

The training of AI object detection model YOLOv8, is done in Google Colab 

which is a workspace specially designed for AI training using GPU accelerator. 

The model is trained using the sun and cloud labelled dataset, which previously 

prepared in Roboflow. The datasets can be easily imported to the training 

through Roboflow link. 

 In the training of the model, transfer learning is applied where the 

YOLOv8 model is initially trained on a large dataset, such as general object 
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detection on a large dataset MS COCO. The purpose of transfer learning is to 

improve the learning effective of the model where it will learn new task based 

on the learning method done previously. This become more important when 

limited datasets are used for training. For the sun and cloud detection, 403 

images with 100 epochs will be run to get a model with mean average precision 

(mAP50) of 0.7 and above for clouds and sun detection. 

 

3.2.5 Q-learning Training  

The Q-learning training is done in python IDLE. This Q-learning model is 

trained to find the shortest path from the ‘MOVINGPOINT’ towards the 

‘CENTRETARGET’. The ‘MOVINGPOINT’ will represent the sun while the 

‘CENTRETARGET’ will represent the centre of the camera. In this case, as the 

Q-learning is trained for 800×800-unit camera view, the ‘CENTRETARGET’ 

will be located at coordinate (400,400). 

 During the training process, the model used is not a pretrained model. 

In such, the moving point or also known as agent is initially moving in random 

direction as there are no Q-table for the reference. To ensure the moving point 

reach the target, 1,000,000 episode is done with maximum step of 1150 per 

episode. Besides, the epsilon is adjusted to 1 and epsilon decay set to 0.9998.  

 Furthermore, reward system and penalty system is programmed to limit 

the moving direction of the agent. This is to ensure the agent can find the 

shortest path towards the centre with 8 choices of moving direction provided in 

each step. The reward and penalty points are shown in Figure 3.5 while the 

algorithm of the reward and penalty system is shown in Figure 3.6. 

 

 

Figure 3.5: Reward and Penalty Points for Q-learning. 
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Figure 3.6: Reward and Penalty system for Q-learning 

 

During the training, Q-value is constantly updated to the Q-table by 

using the formula (3.1). Lastly, the agent is expected to find the shortest path 

towards the target after 1,000,000 episodes of training. 

 

𝑛𝑒𝑤𝑞 = (1 − 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑞 + 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑟𝑎𝑡𝑒

∗ (𝑟𝑒𝑤𝑎𝑟𝑑 + 𝐷𝐼𝑆𝐶𝑂𝑈𝑁𝑇 ∗ 𝑚𝑎𝑥_𝑓𝑢𝑡𝑢𝑟𝑒_𝑞) 

 

(3.1) 

 

3.2.6 Calibration on Sun Moving Speed and Direction 

Calibration process can be done by pausing the CPV for 30 minutes. Then, the 

displacement of the sun, Ssun in 30 minutes will be collected, and the sun moving 

speed, VS can be calculated by using the formula (3.2) and (3.3). While, the sun 

moving direction in angle, Ɵsun can be calculated using formula (3.4). Figure 

3.7 had illustrated the calculations for sun speed calibration. Throughout the 

calibration process, the moving speed and moving direction of the sun will be 

obtained. 
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 𝑆𝑠𝑢𝑛 = √(𝑌𝑠𝑢𝑛2 − 𝑌𝑠𝑢𝑛1)2 + (𝑋𝑠𝑢𝑛2 − 𝑋𝑠𝑢𝑛1)2 (𝑢𝑛𝑖𝑡) 

 

(3.2) 

 

𝑉𝑆 =
𝑆𝑠𝑢𝑛

30
 (𝑢𝑛𝑖𝑡/𝑚𝑖𝑛) 

 

(3.3) 

 

 𝜃𝑠𝑢𝑛 = 𝑡𝑎𝑛−1  (
𝑦𝑠𝑢𝑛2 − 𝑦𝑠𝑢𝑛1

𝑥𝑠𝑢𝑛2 − 𝑥𝑠𝑢𝑛1
) (degree) 

 

(3.4) 

 

 

 

Figure 3.7: Illustration of the Calculation for Sun Speed Calibration. 

 

3.2.7 Cloud Movement Predictions 

To achieve the cloud movement prediction, a trained YOLOv8 model will be 

run in Python. Once the system starts operating, the sun and clouds will be 

detected, and control system will control CPV to follow the sun as shown in 

Figure 3.8. When one of the clouds had covered the sun where the AI model is 

unable to detect and track the sun position, Python will record the centre point 

(X1, Y1) of the shading clouds as shown in Figure 3.9. Then, the system will 

stops operating for 1 minute buffer, to filter off the small cloud covering 

situation. As small clouds did not cover for a long time, no adjustment of CPV 

is needed.  

After 1 minutes, the new centre point of the same cloud (X2, Y2) will 

be recorded as shown in Figure 3.10. By using the information obtain, the 

cloud’s moving speed (or velocity), VC can be easily obtained using the formula 

(3.5) and (3.6). Besides, the cloud moving direction, Ɵcloud can also be obtained 
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using Trigonometry theory with the formula (3.7). The illustration of the 

calculation is shown in Figure 3.11. 

 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑆1 = √(𝑌2 − 𝑌1)2 + (𝑋2 − 𝑋1)2 (𝑢𝑛𝑖𝑡) 

 

(3.5) 

 

 𝑉𝐶 =
 𝑆1

1
 (𝑢𝑛𝑖𝑡𝑠/𝑚𝑖𝑛) 

 

(3.6) 

 

 𝜃𝑐𝑙𝑜𝑢𝑑 = 𝑡𝑎𝑛−1  (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
) (degree) 

 

(3.7) 

 

Then, the point (X3, Y3) which lie on the side of the box of cloud 

detection is found using the formula (3.8) and (3.9). The displacement, S2 from 

the last appear sun centre point to (X3, Y3) will be calculated using the 

Pythagoras theory with the formula (3.10) as illustrated in Figure 3.12. 

 

𝑋3 = 𝑋2 +
𝐶𝑙𝑜𝑢𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑋

2
 (𝑢𝑛𝑖𝑡) 

 

(3.8) 

 

𝑌3 = (tan 𝜃 × 
𝑋

2
 ) + 𝑌2 

 

(3.9) 

 

 𝑆2 = √(𝑌3 − 𝑌𝑠𝑢𝑛)2 + (𝑋3 − 𝑋𝑠𝑢𝑛)2 

 

(3.10) 

 

Lastly, the predicted cloud shading time, t can be calculated by using 

the cloud moving speed, Vc and displacement, S2 obtained as shown in formula 

(3.11). 

 

        𝑡 =
𝑆2

𝑉𝐶
 

(3.11) 
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Figure 3.8: An Example Situation of a Moving Cloud Detection and Sun 

Tracking Stream from Camera 

 

Figure 3.9: Situation when Cloud Covered the Sun 

 

Figure 3.10: One Minute After Cloud Shading 
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Figure 3.11: Calculation from the Two Frames of Same Cloud 

 

Figure 3.12: Calculation to Obtain Cloud Shading Time 

 

3.2.8 Sun-Tracking and Position Predictions 

To achieve sun tracking, a trained YOLOv8 sun detection model will be run in 

Python. As the camera streamed the sky image into Python, the sun will be 

detected by the AI algorithm and the centre point of the sun will be obtained. 

Then, Q-learning cooperate with control system will tilt the CPV in horizontal 

and vertical axis towards the position of sun.  

 When the sun is shaded by a cloud, the position of sun will be lost 

tracked and cloud prediction calculations will come in to obtain the predicted 

cloud shading time. By using the cloud shading time, t and speed of sun, VS, the 

predicted displacement of sun, S3 throughout the cloud shading can be 

calculated using formula (3.12). 

 

S2 
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                                     𝑆3 = 𝑉𝑆  ×  𝑡 (𝑢𝑛𝑖𝑡) 

 

(3.12) 

 

Lastly, the CPV will turns to the location of the predicted sun reappear 

by using the precalculated sun moving direction during calibration to find the 

x-axis displacement and y-axis displacement using the formula (3.13) and (3.14) 

as illustrated in Figure 3.13. When the sun reappears, the sun tracking system 

with the aids of Q-learning will take over the control to carry out fine tune and 

continues sun tracking. 

 

𝑋 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑐𝑜𝑠 𝜃𝑠𝑢𝑛 ×  𝑆3 

 

(3.13) 

 

𝑌 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑠𝑖𝑛 𝜃𝑠𝑢𝑛 ×  𝑆3 

 

(3.14) 

 

 

 

Figure 3.13: Calculation of Predicted Sun Reappear Position 

 

3.3 Summary 

In summary, this AI sun-tracking and cloud prediction system involved object 

detection model, YOLOv8 to detect the coordination of sun and clouds. Q-

learning is integrated to command the movement of motor. When sun is lost 

tracked, prediction calculations will be performed in Python to predict the sun 

position and cloud movement. Pythagoras and Trigonometry theories will be 

involved in the calculations. Lastly, command to Arduino Uno to control the 

CPV towards targeted position.  

Θsun 
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CHAPTER 4 

 

4 RESULT AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the result of machine learning training including YOLOv8 

detection model and Q-learning is discussed. Besides, the result on sun tracking 

and prediction algorithm with the assistance of AI will be present in graph and 

diagram. In addition, the performance of the CPV system will be tested during 

cloudy day and solar irradiance value will be analysed and discussed. 

 

4.2 Result of Machine Learning Training 

In this project, two machine learning model have been used to achieve the sun 

tracking system and prediction system. For object detection model, YOLOv8 

have been trained to detect the sun and clouds presence in sky images. While 

Q-learning algorithm have been trained to find the shortest path from the agent 

‘MOVINGPOINT’ towards the ‘CENTRETARGET’. Both machine learning 

training result will be discussed. 

 

4.2.1 YOLOv8 Training Result 

YOLOv8 is a deep learning model which can be trained to make prediction by 

providing sufficient amount of data. In this training, Google Colab had been 

used to train the model with dataset of 403 sky images prepared in Roboflow. 

For the training process, 150 epochs have been done with the size of image 

resized to 800×800 pixels. The completion of the training is shown in Figure 

4.1: Training of YOLOv8 Model on Google Colab with 150 Epochs. 
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Figure 4.1: Training of YOLOv8 Model on Google Colab with 150 Epochs. 

 

From the result of the training as shown in Figure 4.2, the 150 epochs 

is completed in 0.786 hours by using GPU Tesla T4 provided by Google Colab. 

In object detection model training, the accuracy and performance of the trained 

model is measure in mAP50, which stands for mean average precision at IoU 

threshold of 0.50. The mAP value can be range from 0.0 to 1.0 where the higher 

the mAP value, the better the performance of the detection model. As a well-

known performance metric for machine learning model, it is frequently be 

referred when improving the model detection accuracy (Ahmed, N.N., n.d.).  

 

 From Figure 4.2, the result of sun detection training had shown that 

the performance of sun detection in mAP is 0.995, while for the result of cloud 

detection, the mAP is 0.685. The 0.995 mAP value in sun detection had 

explained that the accuracy of sun being detected is nearly 100%. This is 

because the framework of the YOLOv8 detection is based on the shape of the 

object. As the sun will only appear in round shape, the YOLOv8 could easily 

reach high mAP value by only required less amount of sun image dataset. 

However, the result of cloud detection shows a lower mAP value. This is due to 

the irregular shape of clouds appearance, where the model have more confusion 

in the prediction between clouds and sky background. Therefore, with the same 

number of datasets provided, the cloud detection has a significant lower 

accuracy than the sun detection. Besides, the mAP of each object detection can 
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also be visualized from the confusion matrix as shown in Figure 4.3. This 

confusion matrix had represented the true positive, false positive, true negative 

and false negative in each object detection. From the result obtain, 69% of 

clouds is predicted with true positive while 100% of sun is predicted with true 

positive.  

 

 

Figure 4.2: Result of Sun and Cloud YOLOv8 Detection. 

 

 

Figure 4.3: Confusion Matrix of Sun and Cloud YOLOv8 Detection. 

 

In addition, Figure 4.4 had shown some of the detection on sky images 

using the trained model. From the result obtain, the sun detection has an 

obviously higher confident level above 0.8, which had proved the high accuracy 

performance of YOLOv8 on sun recognition. While the cloud detection has a 

slightly lower confident level due to the irregular shape of clouds presence. 
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Figure 4.4: Sun and Cloud Detection on Sky Images. 

 

In short, YOLOv8 is trained to detect sun and clouds present in the sky 

image. The sun detection has a higher detection accuracy with 0.996 mAP while 

the cloud detection has a lower mAP value which is 0.685. From the results 

obtained, the accuracy of both sun and cloud detection had meets the 

requirement for CPV sun tracking system. 

 

4.2.2 Q-learning Training Result 

For the Q-learning, training is done in python IDLE with 1,000,000 episodes. 

In this training, the result of the reward is recorded for every 50,000 episodes. 

The rewards are plotted into graph of reward over episodes, and the part from 0 

to 150,000 episode is cropped out for discussion, as shown in Figure 4.5.  

 From the result, the reward is increasing from 0 episode to 50,000 

episode. During this stage, the agent is still in the learning process and the 

moving direction is in random. When the agent reaches saturated in 100,000 

episodes, the Q-learning model is able to reach the ‘CENTRETARGET’ by 

referring the Q-table. The reward in saturated phase is around 1400 as shown in 
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the graph. However, in order to make sure the agent be able to find the shortest 

path from any direction, the training is still continued until 1,000,000 episodes 

is complete.  

 

 

Figure 4.5: The Reward Obtained for Every 50,000 Episodes 

 

In short, the result of Q-learning training had shown that the model is 

successfully trained to find the shortest path towards the target. The Q-table 

obtain can be directly used in the CPV system where the agent represents the 

sun and the ‘CENTRETARGET’ will be the centre point of camera view. 

 

4.3 Fisheye Lens Assisted in Object Detection 

In this project, fisheye lens had been attached to the camera module to provide 

a wider view for YOLOv8 detection. As the detection model is trained using 

complete full image of clouds, it is important to provide a wide vision that able 

to capture the whole clouds figure during the cloud detection.  A comparison of 

sky image capture with and without assistant of fisheye lens is shown in Figure 

4.6 and Figure 4.7. From the comparison, it is clearly seen that the sky image 

captured without fisheye lens have a narrow view and it is only able to obtain 

half image of the large cloud. However, when fisheye lens is attached, the view 

is obviously wider and the whole cloud image can be captured.  
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Figure 4.6: Image Captured by the 

Webcam Before Fisheye 

Lens is Installed 

 

Figure 4.7: Image Captured by the 

Webcam After Fisheye 

Lens is Installed 

 

 

Furthermore, the comparison shown in Figure 4.8 and Figure 4.9 also 

proved that the installation of fisheye lens had improved the accuracy of cloud 

detection. From Figure 4.8, the cloud pointed by red arrow is initially not 

detected due to the incomplete cloud image provided to cloud detection model. 

However, when the fisheye lens is installed, the cloud has been detected as 

shown in Figure 4.9. The detection of cloud is important as it will affect the 

prediction algorithm when comes to cloud and sun position prediction. If clouds 

are not detected, the prediction algorithm may not run and cause the loss 

tracking of sun.  

 

 

 

 

 

 

                   

                 Half image of the cloud 

 

 

 

Full image of 

the cloud 
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Figure 4.8: Cloud Detection of 

Yolov8 Model Before 

Installation of Fisheye 

Lens 

 

Figure 4.9: Cloud Detection of 

Yolov8 Model After 

Installation of Fisheye 

Lens 

 

 

 

Therefore, the installation of fisheye lens is necessary, and it has 

improved the detection model performance by providing a wide view of sky. 

The comparison had proved the importance of fisheye lens in assisting the 

detection model. 

 

4.4 Solar Irradiance Analysis with Solar Tracking System 

In order to measure the performance of CPV system with solar-tracking feature, 

solar irradiance value is recorded from 10:00am to 3:40pm on 27th April 2024. 

The weather is cloudy before 3:40pm and turns to rain after that. In this CPV 

performance test, a photometer is fixed parallelly to the camera, and it will be 

always 90 degrees facing the sun. This photometer will measure the analogue 

value of solar irradiance with the unit W/m2. While the YOLOv8 sun appearance 

detection is also collected by using Excel file. The sun appearance will be 

present in 0%, 50% and 100% sun appearance based on the area of sun detected. 

The 0% represent a totally loss of sun appearance; 50% represent a partially 

appearance of sun; and 100% will represent a full image of sun appearance. The 

Cloud 
Cloud 
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data collection of both solar irradiance and YOLOv8 sun detection is done with 

10 minutes interval. 

 The Figure 4.10 had shown the solar irradiance and yolov8 sun 

detection vs time graph plotted from the data collected. In this graph, the solar 

irradiance had shown the instable value throughout the day. This is due to the 

shading of clouds during the cloudy day. When the sun is covered by clouds, 

the solar irradiance value will drop significantly and remains until the sun 

reappear. In the other hand, the graph had shown that the YOLOv8 sun 

appearance detection follows and exactly match to the fluctuation of solar 

irradiance graph. This had proved the accuracy of the sun detection model, 

where the solar irradiance value increase when sun is detected.  

 Moreover, according to ENERGY.GOV (n.d.), the solar irradiance will 

reach the peak value in the afternoon and drops in morning and late afternoon. 

This is due to the rays’ long-distance travel through the atmosphere when the 

sun altitude is low during both periods. With the information provided, the trend 

of the solar irradiance increasing from 10:00am to the peak at 12:30pm and 

starts to drop after the peak had proved the accuracy of the solar tracking feature. 

The solar irradiance result had proved the dual-axis CPV system facing 90 

degrees toward the sun throughout the day.  

 

 

Figure 4.10: Graph of Solar Irradiance and YOLOv8 Sun Detection vs Time 

 

 In short, the matching of the detection with the fluctuation of solar 

irradiance graph had proved the accuracy and performance of YOLOv8 sun 
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detection model. While the trend of the solar irradiance throughout the day had 

verified the performance of CPV solar tracking system. 

 

4.5 Sun and Cloud Position Prediction 

To identify the accuracy of cloud and sun position prediction, the actual and 

predicted sun reappear coordinate is recorded during each shading of sun. This 

data is collected during a cloudy day on 27th April 2024. The percentage error 

will then be calculated to illustrate the prediction algorithm. To calculate the 

percentage error, formula  (4.1) will be used, with predicted value represent the 

predicted displacement between sun last appear coordinate with sun reappear 

coordinate; while actual value represents the actual displacement between the 

sun last appear position with sun reappear position. In Figure 4.11, the diagram 

had illustrated the position of predicted and actual sun, with percentage error 

calculated from 11:00am to 11:20am. This diagram is drawn with 5 minutes 

interval to further analyse the percentage error and position of sun in each time 

stamp.  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
| × 100% 

 

 (4.1) 

 

 

Figure 4.11: The Trajectory Motion Prediction of Sun After Covered by Cloud 
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From the prediction diagram in Figure 4.11, the sun moving angle is 

19.74°, which is calculated during the calibration. The result shows that the 

predicted sun reappear position is slightly further than the actual sun reappear 

position. The prediction results an increment in percentage error of 6.25% for 

each 5 minutes. While the sun reappearance results a percentage error of 25%.  

Apart from that, a percentage error vs time graph is plotted for each 

prediction throughout the day as shown in Figure 4.12. From the graph, the sun 

is covered by the clouds in four periods. In the first three periods, the percentage 

error is range from 11% to 25%. This percentage error is due to the change of 

wind speed which causing the inconstant speed of moving clouds. As the 

prediction system is assuming the sun and clouds have a constant speed, any 

changes in speed may affect the result. This can be clearly seen during 1:50pm 

to 2:50pm where the percentage error reached 43%. This is due to the sudden 

change of weather where it starts to rain after 3:40pm. The changes in weather 

and speed of wind causing the cloud moving in inconstant speed and leads to 

the prediction error. In addition, as the cloud will changes its shape over time, 

the irregular shape and difference in cloud coverage area will also affect the 

prediction accuracy. 

Furthermore, the graph during the last period also shows the predicted 

sun shaded time is longer than the actual sun shaded time. Although there is 

prediction error, the sun-tracking of the CPV will not be affected much as long 

the predicted direction is accurate. This is because the CPV sun tracking system 

is programmed to keep detect the appearance of sun. As long as the sun does 

not appear outside the view of camera, the tracking system will recapture the 

sun once it reappears. When sun is detected, the Q-learning will command the 

CPV to turn towards it, even though the sun is reappeared earlier than predicted. 

This can be proved from solar irradiance graph in Figure 4.10, where the sun 

tracking system had recaptured the sunlight once the sun is reappeared again. 
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Figure 4.12: Percentage Error vs Time Graph During Cloudy Day (27 April 

2024) 

 

 In summary, the results had shown that the prediction system able to 

predict the movement of sun when covered by clouds. However, there are 

percentage error where the predicted sun reappears position is further than the 

actual sun reappear position. The percentage error is getting higher when the 

wind speed changes rapidly during weather change. To solve the limitation, 

there are some future improvements can be done. The first solution is 

implementing a wind sensor into the prediction system. This could help to 

improve the accuracy of cloud movement prediction by monitoring the wind 

speed changes. Besides, real time satellite forecast system can also be integrated 

so that the changes in cloud’s shape and area can be monitored. 

 

4.6 Summary 

In summary, YOLOv8 is trained to detect the sun and clouds from sky images. 

The accuracy of the YOLOv8 on sun detection is 0.996 mAP while cloud 

detection is 0.685 mAP. For Q-learning training, the reward is saturated at 1400 

during 100,000 episodes of training. While from the solar irradiance recorded 

in cloudy day, the matching of sun detection with the fluctuation of YOLOv8 

detection had proved the performance of the sun detection model. Besides, the 

trend of the solar irradiance also proved the accuracy of the CPV on sun tracking 

feature. Furthermore, percentage error of prediction system is calculated and 
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plotted in graph. From the graph, the predicted sun reappears position is slightly 

further from the actual sun position. However, the small difference in prediction 

error does not affect much in solar tracking as the CPV is programmed to 

recapture the sun as long as the sun is still in the view of webcam.  
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project had integrated two types of machine learning to automate the CPV 

sun tracking system. For sun and cloud detection model, YOLOv8 is chosen due 

to its high accuracy and less computational time. The advantage of YOLOv8 

detection model allowed the detection to run in stream, avoiding the delay issue. 

For YOLOv8 model training, 403 sky images is used and the training is conduct 

with 100 epochs. The trained model results a sun detection accuracy of 0.996 

mAP50 while the cloud detection results 0.685 mAP50.  

 For Q-learning training, 1,000,000 episodes is done with the reward 

obtain for every 50,000 episodes. When episodes of 100,000 is run, the reward 

obtained has starts to saturate at 1400. The result has showed that the Q-learning 

model are able to find the shortest path towards the target point.  

 Furthermore, the performance and accuracy of the CPV system sun-

tracking feature is proven by the result of solar irradiance throughout a day. 

From the solar irradiance graph, the detection of sun in matching the fluctuation 

of the solar irradiance had proved the accuracy of the sun detection model.  

 Apart from that, the percentage error of prediction vs time graph had 

shown that the predicted sun reappear position is slightly further than the actual 

sun reappear position. The percentage error can be range from 11% for nearly 

constant cloud moving speed to 43% for large area clouds with unstable weather 

change. The error in the prediction is due to the changes of speed and inconstant 

shape of clouds over time. However, this limitation can be further improved by 

integrating wind speed sensor and satellite forecast system, so that the clouds 

changes can be monitored. 

 In addition, the installation of fisheye lens on the webcam had 

improved the vision of sky image streaming. When fisheye lens is attached, a 

wider view is provided to sun and cloud detection model. This had improved 

the accuracy of the detection as more information is input to the model. 
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 In summary, the integration of YOLOv8 model with sun and cloud 

position prediction system had improved the overall efficiency of the CPV 

system by solving the sun lost tracking issue during cloudy day. By integrating 

the sun position prediction system, the CPV is able to turned and standby at the 

sun reappear position. This could capture the sun once it is reappeared and 

reduce the time-consuming problem during retracking of sun. Lastly, the AI-

based CPV system had introduce a new trend of technology to solar industry 

and this could improve the efficiency of solar energy generation in the future.  

 

5.2 Recommendation for Future Work 

For future improvement, the cloud detection model can be retrained with more 

datasets. This is because the clouds are irregular shape, which it is a challenge 

to the YOLOv8 detection model. Thus, more sky images can be collected in the 

future and the epoch of the training can be increase based on the datasets 

available.  

 Besides, wind speed sensor can be integrated in the sun and cloud 

prediction algorithm. By applying wind speed sensor, the speed of the moving 

clouds can be monitored to improve the accuracy of prediction. Furthermore, a 

real time satellite forecast system can be integrated to monitor the changes in 

cloud coverage area. This could help the prediction system to predict the cloud 

shading time through the changes of cloud. 

 Lastly, trajectory machine learning can be implemented in the future to 

improve the prediction algorithm. This could achieve higher accuracy in 

prediction as machine learning model have more powerful calculation tools and 

it can be trained using past data. 
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APPENDICES 

 

Appendix A: Solar Irradiance and Prediction on 27 April 2024  

Tim
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m2 
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Actual 
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ce 

Move 
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Distan

ce 
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(%) 

10:0

0 
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4 100 0 0 

 

0 0 0 
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3 100 0 0 0 0 0 
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0 
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0 
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Appendix B: Code of Q-learning Training 

import numpy as np 

from PIL import Image 

import cv2 

import matplotlib.pyplot as plt 

import pickle 

from matplotlib import style 

import time 

 

style.use("ggplot") 
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#functions required 

def SaveQtable(start_q_table,q_table): 

    if start_q_table != None: 

        print('oktest') 

        with open(start_q_table, "wb") as f: 

            print('ok2') 

            pickle.dump(q_table, f) 

            print("q_table is updated.") 

    else: 

        with open(f"qtable-{int(time.time())}.pickle", "wb") as f: 

            print("ok1") 

            pickle.dump(q_table, f) 

            print("New q_table is created.") 

             

# classes required 

# for environment and agent 

class MOVINGPOINT: 

    def __init__(self): 

        self.x = np.random.randint(0, XSIZE) 

        self.y = np.random.randint(0, YSIZE) 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

 

    def action(self, choice): 

        ''' 

    Gives us 4 total movement options. (0,1,2,3) 

        ''' 

        if choice == 0: 

            #move right 
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            self.move(x=1, y=0)  

             

        elif choice == 1: 

            #move left 

            self.move(x=-1, y=0) 

             

        elif choice == 2: 

            #move up 

            self.move(x=0, y=1) 

             

        elif choice == 3: 

            #move down 

            self.move(x=0, y=-1) 

 

        elif choice == 4: 

            #move right up  

            self.move(x=1, y=1)  

             

        elif choice == 5: 

            #move left up 

            self.move(x=-1, y=1) 

             

        elif choice == 6: 

            #move right down 

            self.move(x=1, y=-1) 

             

        elif choice == 7: 

            #move left down 

            self.move(x=-1, y=-1) 

         

             

 

    def move(self, x=False, y=False): 



53 

 

        #### put signal code here for motor to move 

 

        # If no value for x, move randomly 

        if not x: 

            self.x += np.random.randint(-1, 2) 

        else: 

            self.x += x 

 

        # If no value for y, move randomly 

        if not y: 

            self.y += np.random.randint(-1, 2) 

        else: 

            self.y += y 

 

        # If we are out of bounds, fix! 

        if self.x < 0: 

            self.x = 0 

        elif self.x > XSIZE-1: 

            self.x = XSIZE-1 

        if self.y < 0: 

            self.y = 0 

        elif self.y > YSIZE-1: 

            self.y = YSIZE-1 

           

             

class MOVINGTARGET(): 

    def __init__(self): 

        self.x = np.random.randint(0, XSIZE) 

        self.y = np.random.randint(0, YSIZE) 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 
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        return (self.x-other.x, self.y-other.y) 

     

    def action(self): 

        pass 

 

class CENTERTARGET(): 

    def __init__(self): 

        self.x = int (XSIZE/2) 

        self.y = int (YSIZE/2) 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

     

    def action(self): 

        pass 

 

 

# define parameter 

XSIZE = 800 

YSIZE = 800 

 

HM_EPISODES = 1000000 

maximum_step= 1150 #define maximum step per episode 

MOVE_PENALTY = 30 

MOVE_REWARD= 0.9  #Can be 0 

MOVE_SLOPE_REWARD= 2 

MOVE_SLOPE_PENALTY= 15 

SAME_AXIS_PENALTY= 25 

ON_TARGET_REWARD = 1000 

epsilon = 1 #0 for retraining the models 

EPS_DECAY = 0.9998  # Every episode will be epsilon*EPS_DECAY 
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SHOW_EVERY = 50000  # how often to play through env visually. 

 

start_q_table = None # None or Filename 

 

LEARNING_RATE = 0.1 

DISCOUNT = 0.95 

 

MOVING_POINT_N = 1  # moving point key in dict 

MOVING_TARGET_N = 2  # target key in dict 

CENTER_TARGET_N = 3 #center target key in dict 

 

 

# the dict for colour 

d = {1: (255, 175, 0), 

     2: (0, 255, 0), 

     3: (0, 0,255)} 

 

 

if start_q_table is None: 

    q_table = {} 

    for i in range(-XSIZE+1, XSIZE): 

        for ii in range(-YSIZE+1, YSIZE): 

            q_table[(i, ii)] = [np.random.uniform(-5, 0) for i in range(8)] 

 

else: 

    with open(start_q_table, "rb") as f: 

        print('ok9') 

        q_table = pickle.load(f) 

 

 

 

episode_rewards = [] 
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for episode in range(HM_EPISODES): 

    moving_target = CENTERTARGET() 

    moving_point = MOVINGPOINT() 

    if episode % SHOW_EVERY == 0: 

        print(f"on #{episode}, epsilon is {epsilon}") 

        print(f"{SHOW_EVERY} ep mean: {np.mean(episode_rewards[-

SHOW_EVERY:])}") 

        show = True 

    else: 

        show = False 

         

    episode_reward = 0 

    for i in range(maximum_step): 

        obs = moving_point - moving_target 

        old_x = moving_point.x 

        old_y = moving_point.y 

        old_distance = np.sqrt(obs[0]**2+obs[1]**2) 

        if np.random.random() > epsilon: 

            # GET THE ACTION 

            action = np.argmax(q_table[obs]) 

        else: 

            action = np.random.randint(0, 8) 

         

        moving_point.action(action) 

        new_obs = (moving_point-moving_target) 

        new_distance = np.sqrt(new_obs[0]**2+ new_obs[1]**2) 

        If_distance_horizontal= np.sqrt((obs[0]-1)**2+ obs[1]**2) 

        If_distance_vertical= np.sqrt(obs[0]**2+ (obs[1]-1)**2) 

     

        if moving_point.x == moving_target.x and moving_point.y == 

moving_target.y: 

            reward = ON_TARGET_REWARD 

        elif new_distance < old_distance: 
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            reward= MOVE_REWARD 

            if action == 4 or action == 5 or action == 6 or action == 7: 

                if new_distance> If_distance_horizontal or 

new_distance>If_distance_vertical: 

                    reward= -MOVE_SLOPE_PENALTY 

                elif old_x == moving_target.x or old_y == moving_target.y: 

                    reward = -SAME_AXIS_PENALTY 

 

                else: 

                    reward= MOVE_SLOPE_REWARD 

             

        else: 

            reward = -MOVE_PENALTY 

    

        max_future_q = np.max(q_table[new_obs]) 

        current_q = q_table[obs][action] 

     

        if reward == ON_TARGET_REWARD: 

            new_q = ON_TARGET_REWARD 

        else: 

            new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * 

(reward + DISCOUNT * max_future_q) 

            q_table[obs][action] = new_q 

     

        if show: 

            #to show visually 

            env = np.zeros((XSIZE, YSIZE, 3), dtype=np.uint8)  # starts an rbg of 

our size 

            env[moving_point.x][moving_point.y] = d[MOVING_POINT_N] 

            env[moving_target.x][moving_target.y] = d[MOVING_TARGET_N] 

            img = Image.fromarray(env, 'RGB')  

            img = img.resize((600, 600))  # resizing  

            cv2.imshow("image", np.array(img)) 
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            if reward == ON_TARGET_REWARD:  # crummy code to hang at the 

end if we reach abrupt end for good reasons or not. 

                if cv2.waitKey(500) & 0xFF == ord('q'): #hit q key it will break 

                    break 

            else: 

                if cv2.waitKey(10) & 0xFF == ord('q'): 

                    break 

        episode_reward += reward 

        if reward == ON_TARGET_REWARD: 

            break 

         

    episode_rewards.append(episode_reward) 

    epsilon *= EPS_DECAY  

           

moving_avg = np.convolve(episode_rewards, 

np.ones((SHOW_EVERY,))/SHOW_EVERY, mode='valid') 

plt.plot([i for i in range(len(moving_avg))], moving_avg) 

plt.ylabel(f"Reward {SHOW_EVERY}ma") 

plt.xlabel("episode #") 

plt.show() 

print("ok") 

SaveQtable(start_q_table,q_table) 

 

Appendix C: Code of CPV Control System 

import time 

from ultralytics import YOLO 

import cv2 

import math 

import pickle 

from datetime import datetime,date 

from openpyxl import Workbook, load_workbook 

import signal 

import numpy as np 
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import matplotlib.pyplot as plt 

import pathlib 

import serial 

 

model_path = 

r"C:\Users\USER\Documents\FYP\Sun0995Cloud0724Detection.pt" 

 

model = YOLO(model_path) 

 

cap = cv2.VideoCapture(1) 

fourcc = cv2.VideoWriter_fourcc(*'MP4V') 

out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (640,640)) 

 

cloud_midpoints = []  # Array to store cloud midpoints 

twocloud_coord = [] #to save the coordinate of the two clouds before and after 

60sec 

cloud_corner1_frame =[]#to save cloud corner coordination for first block 

cloud_corner2_frame =[]#to save cloud corner coordination for second block 

loop = 0 

Shad_time = 0 

 

#define parameter for Q-learning 

suntarget =[] 

XSIZE = 800 

YSIZE = 800 

sun_threshold_distance_range = (1,3) # define threshold distance in pixel for 

the motor to run when sun is detected 

threshold_distance = sun_threshold_distance_range [0] 

MOVE_PENALTY = 30 

MOVE_REWARD= 0.9  #Can be 0 

MOVE_SLOPE_REWARD= 2 

MOVE_SLOPE_PENALTY= 15 

SAME_AXIS_PENALTY= 25 
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ON_TARGET_REWARD = 1000 

epsilon = 0 #0 for retraining and run the model 

EPS_DECAY = 0.9998  # Every episode will be epsilon*EPS_DECAY 

LEARNING_RATE = 0.1 

DISCOUNT = 0.95 

start_q_table = "qtable-1710127871.pickle" # None or Filename 

 

movex = 0 

movey =0 

predictedxmove = 0 

predictedymove = 0 

rollpermove = 0.21380 

tiltpermove = 0.41895 

starttime = float(0) 

endtime = float(23) 

 

#to connect arduino 

arduino = serial.Serial(port='COM4', baudrate=9600, timeout=.1)#Create Serial 

port object called arduinoSerialData 

time.sleep(2) 

 

def sendsignal(desiredmove): 

    byte_command = bytes(desiredmove,'utf-8') 

    arduino.write(byte_command)    

 

def recorddata(array,number): 

    return array.append(number) 

 

def currenttimedecimal(): 

    currentDateAndTime = datetime.now() 

    currenttime = currentDateAndTime.hour + currentDateAndTime.minute/60 

+ currentDateAndTime.second/3600 

    return (currenttime) 
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def SaveQtable(start_q_table,q_table): 

    if start_q_table != None: 

        with open(start_q_table, "wb") as f: 

            pickle.dump(q_table, f) 

            print("q_table is updated.") 

    else: 

        with open(f"qtable-{int(time.time())}.pickle", "wb") as f: 

            pickle.dump(q_table, f) 

            print("New q_table is created.") 

 

class SUNMOVINGPOINT(): 

    def __init__(self,Xcoordinate,Ycoordinate): 

        self.x = Xcoordinate 

        self.y = Ycoordinate 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

 

    def action(self, choice): 

        ''' 

    Gives us 4 total movement options. (0,1,2,3) 

        ''' 

        if choice == 0: 

            #move right 

            self.move(x=1, y=0)  

             

        elif choice == 1: 

            #move left 

            self.move(x=-1, y=0) 
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        elif choice == 2: 

            #move up 

            self.move(x=0, y=1) 

             

        elif choice == 3: 

            #move down 

            self.move(x=0, y=-1) 

 

        elif choice == 4: 

            #move right up  

            self.move(x=1, y=1)  

             

        elif choice == 5: 

            #move left up 

            self.move(x=-1, y=1) 

             

        elif choice == 6: 

            #move right down 

            self.move(x=1, y=-1) 

             

        elif choice == 7: 

            #move left down 

            self.move(x=-1, y=-1) 

 

    def move(self, x=False, y=False): 

        global status 

        if not x: 

                self.x += x 

        elif x == 1: 

                desiredmove = '4' #frame move left, target move right 

                 

                status = 'Left(1)' 

                sendsignal(desiredmove) 
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                self.x += x 

        elif x == -1: 

                desiredmove = '6' #frame move right, target move left 

                 

                status = 'Right(1)' 

                sendsignal(desiredmove) 

                self.x += x 

 

        if not y: 

                self.y += y 

        elif y == 1: 

                desiredmove = '8' #frame move down, target move up (remember 

generalise coordinate system) 

                 

                status = 'Up(1)' 

                sendsignal(desiredmove) 

                self.y += y 

        elif y == -1: 

                desiredmove = '2' #frame move up, target move down (remember 

generalise coordinate system) 

                 

                status = 'Down(1)' 

                sendsignal(desiredmove) 

                self.y += y 

class TARGET(): 

    def __init__(self,Xcoordinate,Ycoordinate): 

        self.x = Xcoordinate 

        self.y = Ycoordinate 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 
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    def action(self): 

        pass 

 

if start_q_table is None: 

    # initialize the q-table# 

    q_table = {} 

    for i in range(-XSIZE+1, XSIZE): 

        for ii in range(-YSIZE+1, YSIZE): 

            q_table[(i, ii)] = [np.random.uniform(-5, 0) for i in range(4)] 

 

else: 

    with open(start_q_table, "rb") as f: 

        q_table = pickle.load(f) 

 

def predictmotormove(predictedxmove,predictedymove): 

    global status 

    x=0 

    y=0 

    while predictedxmove != 0: 

        if predictedxmove > 0: 

            desiredmove = '6' 

            status = 'Predict Right' 

            x = x +1 

            predictedxmove = predictedxmove - 1 

        elif predictedxmove < 0: 

            desiredmove = '4' 

            status = 'Predict Left' 

            x = x - 1 

            predictedxmove = predictedxmove + 1 

        sendsignal(desiredmove) 

        time.sleep(2) 

    while predictedymove != 0: 
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        if predictedymove >0: 

            desiredmove = '2' 

            status = 'Predict down' 

            y = y +1 

            predictedymove = predictedymove -1 

        elif predictedymove <0: 

            desiredmove = '8' 

            status = 'Predict Up' 

            y = y - 1 

            predictedymove = predictedymove + 1 

        sendsignal(desiredmove) 

        time.sleep(2) 

    return x,y 

 

def 

motormove(label,moving_point,moving_target,threshold_distance,sun_thresho

ld_distance_range): 

    global status 

    obs = moving_point - moving_target 

    old_x = moving_point.x 

    old_y = moving_point.y 

    old_distance = np.sqrt(obs[0]**2+obs[1]**2) 

    if old_distance > threshold_distance: 

        threshold_distance= sun_threshold_distance_range[0] 

        if np.random.random() > epsilon: 

            # GET THE ACTION 

            action = np.argmax(q_table[obs]) 

        else: 

            action = np.random.randint(0, 8) 

     

        if action == 0: 

            if label == 'sun': 

                x = 1 
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                y = 0 

        elif action == 1: 

            if label == 'sun': 

                x = -1 

                y = 0 

        elif action == 2: 

            if label == 'sun': 

                x= 0 

                y= 1 

        elif action == 3: 

            if label == 'sun': 

                x = 0 

                y = -1 

        elif action == 4: 

            if label == 'sun': 

                x = 1 

                y = 1 

        elif action == 5: 

            if label == 'sun': 

                x = -1 

                y = 1 

        elif action == 6: 

            if label == 'sun': 

                x = 1 

                y = -1 

        elif action == 7: 

            if label == 'sun': 

                x = -1 

                y = -1 

        moving_point.action(action) 

        new_obs = (moving_point-moving_target) 

        new_distance = np.sqrt(new_obs[0]**2+ new_obs[1]**2) 

        If_distance_horizontal= np.sqrt((obs[0]-1)**2+ obs[1]**2) 
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        If_distance_vertical= np.sqrt(obs[0]**2+ (obs[1]-1)**2) 

         

        if moving_point.x == moving_target.x and moving_point.y == 

moving_target.y: 

            reward = ON_TARGET_REWARD 

        elif new_distance < old_distance: 

            reward= MOVE_REWARD 

            if action == 4 or action == 5 or action == 6 or action == 7: 

                if new_distance> If_distance_horizontal or 

new_distance>If_distance_vertical: 

                    reward= -MOVE_SLOPE_PENALTY 

                elif old_x == moving_target.x or old_y == moving_target.y: 

                    reward = -SAME_AXIS_PENALTY 

 

                else: 

                    reward= MOVE_SLOPE_REWARD 

             

        else: 

            reward = -MOVE_PENALTY 

    

        max_future_q = np.max(q_table[new_obs]) 

        current_q = q_table[obs][action] 

     

        if reward == ON_TARGET_REWARD: 

            new_q = ON_TARGET_REWARD 

        else: 

            new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * 

(reward + DISCOUNT * max_future_q) 

            q_table[obs][action] = new_q 

    elif old_distance <= threshold_distance: 

        threshold_distance = sun_threshold_distance_range[1] 

        print('reach target') 

        status = 'Reach' 
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        #Flag = 1 

        x = 0 

        y = 0 

    else: 

        status = 'Stay' 

        x = 0 

        y = 0 

    return x,y,threshold_distance 

 

def reversemotormove(xmove,ymove,motorresttime): #redo 

    while xmove != 0: 

        if xmove > 0: 

            desiredmove = '4' 

            xmove = xmove - 1 

        elif xmove < 0: 

            desiredmove = '6' 

            xmove = xmove + 1 

        sendsignal(desiredmove) 

        time.sleep(motorresttime) 

    while ymove != 0: 

        if ymove > 0: 

            desiredmove = '8' 

            ymove = ymove - 1 

        elif ymove <0: 

            desiredmove = '2' 

            ymove = ymove + 1 

        sendsignal(desiredmove) 

        time.sleep(motorresttime) 

    print('Reverse movement done.') 

 

#Define 

 

def calculate_distance(x1, y1, x2, y2): 
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    return math.sqrt((x2 - x1)**2 + (y2 - y1)**2) 

 

def calc_Ssun(coord1, coord2): 

    xsun1, ysun1 = coord1 

    xsun2, ysun2 = coord2 

    distance = math.sqrt((xsun2 - xsun1)**2 + (ysun2 - ysun1)**2) 

    return distance 

 

def calc_Anglesun(coord1, coord2): 

    xsun1, ysun1 = coord1 

    xsun2, ysun2 = coord2 

    angle_rad = math.atan2(ysun2 - ysun1, xsun2 - xsun1) 

    angle_deg = math.degrees(angle_rad) 

    return angle_deg 

 

def calc_S1(coord3, coord4): 

    x1, y1 = coord3 

    x2, y2 = coord4 

    distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) 

    return distance 

 

def calc_S2(coordsun, coordpre): 

    x1, y1 = coordsun 

    x2, y2 = coordpre 

    distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) 

    if distance < 0: 

        distance = distance * (-1) 

        return distance 

    else: 

        return distance 

     

def calc_Anglecloud(coord3, coord4): 

    x1, y1 = coord3 
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    x2, y2 = coord4 

    angle_rad = math.atan2(y2 - y1, x2 - x1) 

    angle_deg = math.degrees(angle_rad) 

    return angle_deg 

 

 

#FIxed variable 

xcam = 800 

ycam = 800 

cammid = (xcam/2, ycam/2) 

time_cali = 900 

time_cloud= 60 #cloud prediction time or known as buffer 

 

#Main 

 

sun_detected = False  # Flag to check if sun is detected 

 

print('Tracking Started.') 

today = date.today() 

currentdate = datetime.now().strftime('%Y-%m-%d') 

workbook = Workbook()  

file_name = f"data_{currentdate}.xlsx" 

workbook.save(file_name) # 

wb = load_workbook(file_name) 

ws = wb.active 

ws2 = wb.create_sheet(title="Sheet 2") 

ws3 = wb.create_sheet(title="Sheet 3") 

 

def save_excel_and_exit(sig,frame): 

    print('Ctrl + C detected! Saving Excel file...') 

    wb.save(file_name) 

    print('Excel file saved. Exiting gracefully.') 

    cap.release() 
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    out.release() 

    cv2.destroyAllWindows() 

    exit(0) 

 

signal.signal(signal.SIGINT, save_excel_and_exit) 

 

suntarget = TARGET(xcam/2, ycam/2) 

ws.append(['Time','MoveX','MoveY','ObjectX','ObjectY','Label']) 

ws2.append(['Time','Predicted X displacement','Predicted Y 

displacement','PredictedMoveX','PredictedMoveY']) 

calibration = 0 #calibration needed if coord1 and 2 empty. 

coord1=[379,398] 

coord2=[340,384] 

unitpermovex = 0 

unitpermovey = 0 

sun_xmid = 0 

sun_ymid = 0 

global status 

status = 'Stay' 

calibrationonce = True 

nextstoptime = None 

n = True 

 

while cap.isOpened (): 

    # Read a frame from the video 

    success, frame = cap.read() 

    print(status) 

 

    if success: 

        # Run YOLOv8 inference on the frame 

        frame = cv2.resize(frame,(800,800)) 

        results = model.predict(frame,imgsz=(800,800), conf=0.1) 

        if calibration == 1: 
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            #print("0") 

            for result in results:  # iterate results 

                boxes = result.boxes.cpu().numpy()  # get boxes on CPU in numpy 

                cloud_midpoints_frame = []  # Temporary array for cloud midpoints 

in the current frame 

                for box in boxes:  # iterate boxes 

                    x1box, y1box, x2box, y2box = box.xyxy[0].astype(int) 

                    x_mid = (x1box + x2box) // 2  # calculate midpoint x-coordinate 

                    y_mid = (y1box + y2box) // 2  # calculate midpoint y-coordinate 

 

                    name = box.cls[0] 

 

                    if name == 1:  # Sun is detected 

                        sun_xmid = x_mid 

                        sun_ymid = y_mid 

                        if n == True: 

                            coord1 = (sun_xmid, sun_ymid) 

                            print(f"Midpoint of sun: ({sun_xmid}, {sun_ymid})") 

                            nextstoptime = currenttimedecimal()+60/3600 

                            t1 = currenttimedecimal() 

                            #print("1") 

                            n = False 

                        elif n ==False and currenttimedecimal()>=nextstoptime: 

                            print('1') 

                            coord2 = (sun_xmid, sun_ymid) 

                            print(f"Midpoint of sun: ({sun_xmid}, {sun_ymid})") 

                            calibration = 0 

                            t2=currenttimedecimal() 

                            time_cali = (t2-t1)*3600#sun calibration time 10 mins 

                            print(f"calibration duration = {time_cali}") 

                            #print("2") 

                            break 
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        elif calibration == 0: 

            if calibrationonce == True: 

 

                print(f"Coordinate of sun before 10 mins: {coord1}") 

                print(f"Coordinate of sun after 10 mins: {coord2}") 

                calcunitpermove = True 

                firstsun = True 

                ws3.append(['coodinate of sun before 10 mins',coord1[0],coord1[1]]) 

                ws3.append(['coodinate of sun after 10 mins',coord2[0],coord2[1]]) 

                ws3.append(['calibration time',time_cali]) 

                calibrationonce = False 

                         

            for result in results:  # iterate results 

                buffer_time = 0 

                x = 0 

                y = 0 

                xdisplacement = 0 #unit 

                ydisplacement = 0 

                predictedxmove = 0 

                predictedymove = 0 

                label = None 

                #global status 

                #status = 'Stay' 

                Flag = 0 

                 

                if calcunitpermove == True and firstsun == True: 

                    sunx1,suny1 = sun_xmid, sun_ymid 

                    firstsun=False 

                    print('ok') 

                elif status == 'Reach'and calcunitpermove == True: 

                #elif Flag == 1 and calcunitpermove == True: 

                    sunx2, suny2 = sun_xmid, sun_ymid 
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                    #sunx2,suny2 = coord2[0], coord2[1] 

                    unitpermovex = (sunx2-sunx1)/movex 

                    unitpermovey = (suny2-suny1)/movey 

                    print(unitpermovex) 

                    print(unitpermovey) 

                    calcunitpermove = False 

                     

                     

                if(currenttimedecimal()>starttime and 

currenttimedecimal()<endtime): 

                     

                    boxes = result.boxes.cpu().numpy()  # get boxes on CPU in numpy 

                     

                    sun_detected = False  # Reset the flag for each frame 

                    cloud_midpoints_frame = []  # Temporary array for cloud 

midpoints in the current frame 

                     

                    for box in boxes:  # iterate boxes 

                        x1box, y1box, x2box, y2box = box.xyxy[0].astype(int) 

                        x_mid = (x1box + x2box) // 2  # calculate midpoint x-coordinate 

                        y_mid = (y1box + y2box) // 2  # calculate midpoint y-coordinate 

 

                        name = box.cls[0] 

 

                        if name == 1:  # Sun is detected 

                            label = 'Sun' 

                            sun_detected = True 

                            print(f"Midpoint of sun: ({x_mid}, {y_mid})") 

                            sun_area = (x2box - x1box)*(y2box - y1box) 

                            sun_area_threshold = 400 

                            if sun_area < sun_area_threshold: 

                                print('half sun detected') 

                            sun_xmid = x_mid #for q learning 
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                            sun_ymid = y_mid #for q learning 

                            twocloud_coord = [] #to save the coordinate of the two clouds 

before and after 60sec 

                            loop = 0 

                            sunposition = SUNMOVINGPOINT(sun_xmid,sun_ymid) 

                            x,y,threshold_distance= 

motormove('sun',sunposition,suntarget,threshold_distance,sun_threshold_dista

nce_range) 

                            xdisplacement = 0 #unit 

                            ydisplacement = 0 

                            predictedxmove = 0 

                            predictedymove = 0 

 

                             

                        elif name == 0 :           #sun not detected 

                            label = 'Cloud' 

                            print(f"Midpoint of cloud: ({x_mid}, {y_mid})") 

                            cloud_midpoints_frame.append((x_mid, y_mid))  # Store 

cloud midpoint in the current frame 

                            cloud_corner1_frame.extend([x1box, y1box]) 

                            cloud_corner2_frame.extend([x2box, y2box]) 

                            buffer_time = 60 

 

                        movex = movex + x 

                        movey = movey + y 

                        

ws.append([currenttimedecimal(),movex,movey,x_mid,y_mid,label])    

                             

 

                    # If the sun is not detected, save all cloud midpoints from the last 

frame 

                    if not sun_detected: 
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                        cloud_midpoints.extend(cloud_midpoints_frame)  # Append 

cloud midpoints from the current frame 

                        print("Sun not detected. Saving cloud midpoints...") 

                        print("Cloud Midpoints when sun dissapear:", cloud_midpoints) 

                         

 

                        loop += 1 

 

                        min_distance = float('inf') 

                        blockcloud = None 

 

                        for coord in cloud_midpoints: 

                            distance = calculate_distance(coord[0], coord[1], cammid[0], 

cammid[1]) 

                            if distance < min_distance: 

                                min_distance = distance 

                                blockcloud = coord 

                            if blockcloud: 

                                print(f"The cloud blocking is: {blockcloud}") 

                                twocloud_coord.extend(coord) 

                                cloud_midpoints = [] 

                                if loop > 1: 

                                    loop = 0 

                                    #Shad_time =  True 

                                    print(f"The coordinate of blocking cloud b4 and after is: 

{twocloud_coord}") 

                                    coord3 = (twocloud_coord[0],twocloud_coord[1]) 

                                    coord4 = (twocloud_coord[-2],twocloud_coord[-1]) 

 

                                    #the two corner coordinate of the shading cloud 

                                    x1cloud = cloud_corner1_frame[2] 

                                    x2cloud = cloud_corner2_frame[2] 

                                    y1cloud = cloud_corner1_frame[3] 
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                                    y2cloud = cloud_corner2_frame[3] 

 

                                    #xlength and ylength of the shading cloud 

                                    xlength = x2cloud - x1cloud 

                                    ylength = y2cloud - y1cloud 

  

                                    #vector 

                                    Sx = (coord2[0] - coord1[0])/time_cali 

                                    Sy = (coord2[1] - coord1[1])/time_cali 

                                    Cx = (coord4[0] - coord3[0])/time_cloud 

                                    Cy = (coord4[1] - coord3[1])/time_cloud 

 

                                    #Cloud movement 

                                    Anglecloud = calc_Anglecloud(coord3, coord4) 

 

                                    #Cloud prediction 

                                    Check = 

(math.tan(math.radians(Anglecloud)))*(xlength/2) 

                                    Treshold = ylength/2 

 

                                    if Check >= Treshold: 

                                        Ycloud = coord4[1] 

                                        Shad_time = abs(((ycam/2)- Ycloud + 

(ylength/2))/(Cy - Sy)) 

 

                                    else: 

                                        Xcloud = coord4[0] 

                                        Shad_time = abs(((xcam/2)- Xcloud + 

(xlength/2))/(Cx - Sx)) 

 

                                    x3 = (xcam/2)+ (Shad_time*Sx) 

                                    y3 = (ycam/2)+ (Shad_time*Sy) 
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                                    xdisplacement = x3 - (xcam/2) 

                                    ydisplacement = y3 - (ycam/2) 

                                    print(f"x displacement: {xdisplacement}unit") 

                                    print(f"y displacement: {ydisplacement}unit") 

                                    predictedxmove = round(xdisplacement / unitpermovex) 

                                    predictedymove = round(ydisplacement / unitpermovey) 

 

                                    x,y = 

predictmotormove(predictedxmove,predictedymove) 

                                    buffer_time = 0 

 

                                    

ws2.append([currenttimedecimal(),xdisplacement,ydisplacement,predictedxmo

ve,predictedymove]) 

                                 

                                 

                                     

                            else: 

                                print("No cloud midpoints to calculate the nearest.") 

 

                        print(f"Pls wait {buffer_time+ Shad_time}seconds") 

                         

                        time.sleep(buffer_time+ Shad_time) 

                         

                else: 

                    break 

 

 

        # Visualize the results on the frame 

        annotated_frame = results[0].plot() 

        for box in results[0].boxes.xywh: 

            x, y, w, h = box 
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            annotated_frame = cv2.circle(annotated_frame, (int(x), int(y)), radius=0, 

color=(255, 0, 0), thickness=4) #BGR 

 

        annotated_frame = cv2.circle(annotated_frame, (xcam//2, ycam//2), 

radius=0, color=(0, 0, 255), thickness=4) #BGR 

        annotated_frame = cv2.resize(annotated_frame, (640,640)) 

         

        # Display the annotated frame 

        cv2.imshow("YOLOv8 Inference", annotated_frame) 

        out.write(annotated_frame) 

         

        # Break the loop if 'q' is pressed 

        if cv2.waitKey(1) & 0xFF == ord("q"): 

            break 

    else: 

        # Break the loop if the end of the video is reached 

        break 


