

ARTIFICIAL INTELLIGENT INTEGRATED

SUN-TRACKING SYSTEM WITH SUN AND

CLOUD POSITIONS PREDICTION

HUANG DICK SHEN

UNIVERSITI TUNKU ABDUL RAHMAN

Artificial Intelligent Integrated Sun-Tracking

System with Sun and Cloud Positions Prediction

Huang Dick Shen

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Electrical and Electronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Huang Dick Shen

ID No. : 1903824

Date : 20/05/2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “Artificial intelligent integrated sun-

tracking system with sun and cloud positions prediction” was prepared by

HUANG DICK SHEN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Electrical and

Electronics Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

ChongKK
Typewriter
K.K.Chong

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, HUANG DICK SHEN. All right reserved.

iv

ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude and appreciation to my

supervisor, Prof. Dr. Chong Kok Keong for providing me the opportunity to

research on the tittle “Artificial Intelligent Integrated Sun-Tracking System with

Sun and Cloud Positions Prediction”. In this research, I have gained a lot of

experience and knowledge. I am grateful to all the guidance and advice provided

throughout this research development.

 I would also like to extend my gratitude to my senior, Tiow Yik Hong

of Universiti Tunku Abdul Rahman for the discussion and support throughout

the research. Lastly, I would like to express my gratitude to my parents and

friends for all their supports and advice throughout the project study.

v

ABSTRACT

The purpose of this study is to develop an artificial intelligent (AI) -integrated

sun-tracking system and cloud position prediction system. These systems are to

be applied on concentrated photovoltaic (CPV) to improve the efficiency in

solar power generation. In this study, YOLOv8 is chosen as object detection

model to recognize and locate the sun position. After successfully tracked the

sun’s coordinate, Q-learning will be applied to control the motor in order to

follow the sun. In addition, YOLOv8 also be applied to recognize the position

of clouds. The purpose of cloud tracking is to encounter the problem of lost

tracking of sun when it is shaded by clouds during cloudy weather. YOLOv8

will first obtain the position of the cloud, then calculation will be made

according to the cloud movement and speed to predict the cloud shading time.

The cloud shading time will then be applied to calculate the predicted sun

reappear position. After that, the CPV will turns toward and stand by at the

predicted reappear sun position. This is important to shorten the response time

after lost track of sun to increase the efficiency of power generated by CPV

system. Furthermore, this project also using 180° fisheye lens for a wider view,

so that the larger cloud image can be captured. In result, the YOLOv8 model

trained have an accuracy of 0.69% on cloud detection, and 100% on sun

detection. The Q-learning training result also shown that the agent is able to

move towards the target in the end of 1,000,000 episodes. The fish-eye lens had

improved the cloud detection by widening the field of view of the camera

module. Furthermore, the solar irradiance results also proved the accuracy of

the sun object detection model. While the sun position prediction result had

shown the percentage error ranging from 11% to 25%, and 43% during rapid

change of weather. Lastly, the implementation of artificial intelligence had

improved the efficiency of concentrated photovoltaic system during cloudy day.

For future improvement, wind speed sensor, real-time satellite forecast system

can be implemented for higher accuracy in prediction.

i

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF SYMBOLS / ABBREVIATIONS vi

LIST OF APPENDICES vii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 4

1.7 Outline of the Report 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Artificial Intelligence 6

2.2.1 Object Detection Model 7

2.2.2 Versions and Evolution of YOLO 9

2.3 Sun-Tracking System 11

2.3.1 Recent Development of Sun Tracking

System 13

2.4 Cloud Prediction System 15

2.4.1 Current Existing Cloud Prediction System 15

ii

2.5 Summary 16

3 METHODOLOGY AND WORK PLAN 17

3.1 Introduction 17

3.2 AI Sun–Tracking with Sun and Cloud Position

Prediction 17

3.2.1 Selection of Hardware and Software 17

3.2.2 Design Architecture and Practical Process 19

3.2.3 Custom Dataset of Sun and Clouds 23

3.2.4 Model Training for Object Detection 23

3.2.5 Q-learning Training 24

3.2.6 Calibration on Sun Moving Speed and

Direction 25

3.2.7 Cloud Movement Predictions 26

3.2.8 Sun-Tracking and Position Predictions 29

3.3 Summary 30

4 RESULT AND DISCUSSION 31

4.1 Introduction 31

4.2 Result of Machine Learning Training 31

4.2.1 YOLOv8 Training Result 31

4.2.2 Q-learning Training Result 34

4.3 Fisheye Lens Assisted in Object Detection 35

4.4 Solar Irradiance Analysis with Solar Tracking

System 37

4.5 Sun and Cloud Position Prediction 39

4.6 Summary 41

5 CONCLUSION AND RECOMMENDATIONS 43

5.1 Conclusions 43

5.2 Recommendation for Future Work 44

REFERENCES 45

APPENDICES 49

iii

LIST OF TABLES

Table 2.1: Table of Comparison Between One-Stage and Two-Stage

Detector 8

Table 2.2: Versions of YOLO with Corresponding Improvement 10

Table 3.1: List of Hardware Components 18

iv

LIST OF FIGURES

Figure 1.1: Graph of PV Power Output During Different Weather. 3

Figure 2.1: Structure of YOLOv4 9

Figure 2.2: Comparison of Accuracy (Augmented Startups, 2023) 11

Figure 2.3: Comparison of Speed (Augmented Startups, 2023) 11

Figure 2.4: The Structure Design of a Dual-Axis Tracker (Jamroen et al.,

2020) 13

Figure 2.5: Four Identical Time Intervals During Daylight 13

Figure 2.6: Circuit Design of Photosensors (Al-Mohammad, 2004) 14

Figure 2.7: Neural Network Identification Scheme (EI Shenawy et al.,

2012) 15

Figure 2.8: Illustration of Motion Vector Prediction (Hu et al., 2018) 16

Figure 2.9: Prediction of Cloud Trajectory (Hu et al., 2018) 16

Figure 3.1: The Comparison of Field of View Before and 18

Figure 3.2: Block Diagram of the Design 21

Figure 3.3: Flow Chart of the Design 22

Figure 3.4: Classification of Weather (Dreamstime, n.d.) 23

Figure 3.5: Reward and Penalty Points for Q-learning. 24

Figure 3.6: Reward and Penalty system for Q-learning 25

Figure 3.7: Illustration of the Calculation for Sun Speed Calibration. 26

Figure 3.8: An Example Situation of a Moving Cloud Detection and Sun

Tracking Stream from Camera 28

Figure 3.9: Situation when Cloud Covered the Sun 28

Figure 3.10: One Minute After Cloud Shading 28

Figure 3.11: Calculation from the Two Frames of Same Cloud 29

Figure 3.12: Calculation to Obtain Cloud Shading Time 29

v

Figure 3.13: Calculation of Predicted Sun Reappear Position 30

Figure 4.1: Training of YOLOv8 Model on Google Colab with 150

Epochs. 32

Figure 4.2: Result of Sun and Cloud YOLOv8 Detection. 33

Figure 4.3: Confusion Matrix of Sun and Cloud YOLOv8 Detection. 33

Figure 4.4: Sun and Cloud Detection on Sky Images. 34

Figure 4.5: The Reward Obtained for Every 50,000 Episodes 35

Figure 4.6: Image Captured by the Webcam Before Fisheye Lens is

Installed 36

Figure 4.7: Image Captured by the Webcam After Fisheye Lens is

Installed 36

Figure 4.8: Cloud Detection of Yolov8 Model Before Installation of

Fisheye Lens 37

Figure 4.9: Cloud Detection of Yolov8 Model After Installation of

Fisheye Lens 37

Figure 4.10: Graph of Solar Irradiance and YOLOv8 Sun Detection vs

Time 38

Figure 4.11: The Trajectory Motion Prediction of Sun After Covered by

Cloud 39

Figure 4.12: Percentage Error vs Time Graph During Cloudy Day (27

April 2024) 41

vi

LIST OF SYMBOLS / ABBREVIATIONS

Ssun Displacement of sun during calibration, unit

S1 Displacement of cloud in 1 minute, unit

S2 Displacement from sun to (X3, Y3), unit

S3 Predicted displacement, unit

Vs Velocity of sun, unit/min

Vc Velocity of cloud, unit/min

Xsun1 Coordinate X before calibration

Xsun2 Coordinate X after calibration

Ysun1 Coordinate Y before calibration

Ysun2 Coordinate Y after calibration

X1 Coordinate X before 1 minute

X2 Coordinate X after 1 minute

Y1 Coordinate Y before 1 minute

Y2 Coordinate Y after 1 minute

Xsun Coordinate X of sun before lost track

Ysun Coordinate Y of sun before lost track

X3 Coordinate X aligned on box

Y3 Coordinate Y aligned on box

Ɵsun Sun direction, degree°

t Cloud shading time

vii

LIST OF APPENDICES

Appendix A: Solar Irradiance and Prediction on 27 April 2024 49

Appendix B: Code of Q-learning Training 50

Appendix C: Code of CPV Control System 58

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Energy is the lifeblood of modern society, transportation, communications

systems and fuelling industries. It is the force that drives progress and underpins

economic growth. However, most of the source of energy in this century are

non-renewable, such as fossil fuels, coal, and natural gasses. The extremely drop

of sources in 21’s century had warned the worldwide that energy landscape must

undergo a transformative change. The quest for energy sources that power our

life while preserving the planet had become limited. In such, renewable energy

such as sunlight, wind and water had become a hot topic for study and research.

Among all those sources, solar energy is the easiest to obtain as sunlight is

always available.

Solar power can be easily achieved by harnessed through photovoltaic

(PV) panel, which converting sunlight into electricity. Although this technology

had been found in the year 1839 by Edmond Becquerel, it is still not the major

source for most country (Office, 2023). This is happened due to the mis-

estimated and unpredictable weather change which significantly cause the low

efficiency of solar power generator. When the world still heads aching with this

century problem, the rapid growth of artificial intelligence (AI) had become

beacon of hope. In this era of advanced technology, a new hope arises with the

fusion of two fields: artificial intelligence and solar energy. The introduce of AI

with powerful calculation had unlocked the potential of solar power with its

high accuracy prediction through data learning.

By integrating AI into photovoltaic (PV) panel, the solar panel is

upgraded such that providing an ‘eye’ to the system. An object detection AI

model can be planted to track the position of sun. However, achieving sun

tracking alone is not yet solving the problem. The main causes of low efficiency

in PV system are due to the unpredictable weather change. The sudden cover of

sun by clouds may causing loss of sun tracking. In order to enhance the

performance of PV, cloud prediction can be integrated into the system. This can

be done by using the AI object detection model to detect the cloud, then predict

2

the cloud moving direction, moving speed, and estimated covering time through

calculations. By integrating cloud tracking and sun positioning system, the

efficiency of PV system can be improved.

1.2 Importance of the Study

As the efficiency of photovoltaic system is a major factor affecting the future of

solar power renewable energy, it is important to have high and stable

performance system. In this regard, AI-integrated sun tracking system plays an

important role in tracking the sun position during daytime. This function can

cooperate with Q-learning AI model to achieve automatic adjustment of CPV

panels to always facing the sun. Additionally, cloud tracking and prediction AI

are also crucial to estimate the covering of cloud. By integrating a cloud

prediction system, the CPV system can accurately calculate the position of sun

reappear using the cloud’s shading time and moving direction obtain from the

prediction. Besides, the cloud shading time, sun position and solar irradiance

are also an important data in solar generation study.

1.3 Problem Statement

Current efficiency of PV system has faced a critical bottleneck as a primary

source of power generation. Although there are current existing AI-integrated

sun tracking PV system, the efficiency of the PV is still below the required

demand. The main reason causing the problem is the loss track of sun during

unstable weather such as cloudy and windy day where the sun is possibly shaded

by clouds. This problem is further illustrated by the graph shown in Figure 1.1,

which display the PV power output during different weather conditions. From

Figure 1.1, it is clearly seen that the performance of PV is highly unstable during

cloudy and rainy day.

3

Figure 1.1: Graph of PV Power Output During Different Weather.

 (ResearchGate, 2016)

The same problem is encountered by the AI sun tracking integrated

CPV system. Once the sun is lost from tracking, the AI-integrated CPV system

may stop turning and remains in the same position. When the cloud goes and

the sun reappears, the CPV system will need time to react and reorient towards

the sun. This time-consuming issue had caused the CPV system unable to

receive the sunlight immediately, leading to a drop in efficiency. This issue

could be even more critical when coming to a larger and heavier CPV system

where lots of time is wasted in aligning the CPV panels with the sun.

1.4 Aim and Objectives

The aim of this study is to address the performance issue of CPV system by

integrating an AI object detection model. The goal of this project is to increase

the efficiency of CPV system during bad weather. The objective of this project

is as follows:

1. To integrate AI sun detection model into CPV system to achieve sun

tracking feature.

2. To develop a cloud prediction algorithm using AI cloud detection model

3. To develop a CPV control system with cloud prediction and sun tracking

algorithm cooperating with each other.

1.5 Scope and Limitation of the Study

In this project with the tittle ‘Artificial Intelligent Integrated Sun-Tracking

System with Sun and Cloud Positions Prediction’. the scope of the project is to

4

develop a system to predict sun and cloud’s position using AI object detection

model. The scope including calculations to obtain predicted cloud shading time

and predicted position of sun reappearance. These efforts are aimed to enhance

the efficiency of CPV system.

However, for the limitation of the tittle, the wind speed was assumed

to be constant throughout the entire process, from cloud shading until the sun

reappears. To incorporate the wind factor, wind speed sensors would be required,

or a forecast system would need to be integrated into the system, where this part

will not be covered in this project. Besides, as long as the sun cannot be detected

by the AI object detection model, it will be considered as no sun detected. This

limitation arises from the working algorithm of AI model.

1.6 Contribution of the Study

This study had contributed to solve the limitation of the solar-tracking CPV

system. During cloudy day, CPV system may lost track the sun when the sun is

covered by clouds. This causes the CPV system consume time to retracking the

sun when the sun is reappeared. In order to solve this problem, this project had

integrated sun and cloud position prediction system to predict the sun reappear

position. This could help the CPV system to quickly recapture the sun once the

sun is reappeared.

 Besides, this project had also improved the performance of the AI sun

and cloud detection model, by implementing the latest detection model released

in 2023, the YOLOv8. The implementing of YOLOv8 will improve the

accuracy of the solar tracking system and prediction system.

 Moreover, this project will also implement new reward and penalty

system to the Q-learning algorithm. The dual-axis CPV motor with previously

only able to turn 4 directions in each step is aimed to be upgraded to 8 directions

available in each step. This could improve the efficiency of the CPV motor to

find to shortest path towards the sun.

 Apart from that, solar irradiance throughout a cloudy day is also

measured and discussed to study the performance of the CPV system. Lastly,

the study on the solar irradiance during cloudy day can contribute important data

to the industry for solar irradiance prediction and solar energy research.

5

1.7 Outline of the Report

This report describes the study on tittle ‘Artificial Intelligent Integrated Sun-

Tracking System with Sun and Cloud Positions Prediction’ which composed the

following chapters:

 Chapter 1 describes the introduction of the tittle which consist of

background, problem statement, objective, limitation and scope of study.

 Chapter 2 describes the literature review of artificial intelligence (AI),

sun tracking system, and cloud prediction system. The study consists of

historical background, algorithm of the AI model and recent development of PV

system.

 Chapter 3 describes the methodology of the project which includes AI

object detection model training, design architecture, sun and cloud movement

calculations, and hardware setup.

 Chapter 4 describes the result and discussion of the project which

consist of YOLOv8 training result, Q-learning training, fisheye lens assisted

in object detection, solar irradiance analysis, and sun and cloud position

prediction result.

 Chapter 5 describes the conclusion of the project and the

recommendation for future work is discussed.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this era with rapid growth in artificial intelligence (AI), people are striving to

apply it on automation system. This is because automation system with

processing capabilities can achieve fully automatic control without human’s

help. This same applies to solar power field, where efforts are being made to

achieve the automatic control PV system for sun tracking. In recent years, many

research has been conducted on integrating AI with solar power plant. In this

topic, the background study of AI, sun tracking, and cloud prediction system

will be discussed.

2.2 Artificial Intelligence

Artificial intelligence (AI) refers to the development of computer system which

can perform tasks that typically require human intelligence. In recent years, AI

has gain popularity for integration into automation system, due to its abilities in

problem-solving, learning and decision making. There are few categories and

types of AI which currently in use including machine learning, deep learning,

reinforcement learning, and robotics. With these capabilities, people are striving

to integrate AI into automation system. In solar field, AI has been implemented

to achieve sun tracking with automatic control of motors. The introduction of

AI into photovoltaic (PV) cells has significantly increased the overall efficiency

of solar power generation. However, training a good AI model could be

challenging.

 The AI model training process includes data collection, data

preprocessing, model building, training validation and model testing

(Javaid.S.,2023). For data collections, AI required a large set of labelled datasets

in order to achieve high accuracy performance. For example, an AI object

detection model would need lots of labelled images of the targeted object. The

accuracy of the trained model depends on the quality and quantity of data, where

the targeted object must clarify clearly in the dataset. While data preprocessing

7

process involves resizing image, enhancing and cleaning data to prepare for

model training.

When comes to model selection, several types of algorithms can be

chosen based on the complexity of problem, size and structure of data, and

accuracy of the task. One of the most commonly used is machine learning,

which is a subset of AI that focuses on statistical models. While deep learning

is a subset of machine learning which uses artificial neural networks (ANN) to

analyse and learn from data. Deep learning is popular for applications in object

detection model, such as YOLO (You Only Look Once), which able to perform

real-time object recognition (Chablani.M., 2017).

Lastly, training validation take place after the initial training phase.

This step is important to check the performance of the trained AI model. A new

set of data, also known as validation dataset, will be run through to check the

accuracy of the model. In this stage, adjustment of dataset will be performed in

order to meet the requirement of the task. In summary, an AI model training

consist of five crucial steps. The rapid improvement and evolution of AI

technology, especially in machine learning and deep learning, will greatly

benefits data processing task.

2.2.1 Object Detection Model

An AI object detection model is a fundamental task in computer vision, which

enabling to identify and localize the objects within an image or video stream. In

recent years, object detection model has been integrated into sun tracking

system to develop high-performance solar power generator.

Early object detection models such as Viola-Jones’ face detection

algorithm are developed with slow, inaccurate and low performance on

unfamiliar data (Zaidi et al., 2022). These issues are then solved with the

introduction of convolutional neural network (CNNs), which leads to the speed

improvement in deep learning. CNNs is a neural network that designed to

process grid-like data such as images and videos (Peng et al., 2017). It is a

fundamental of deep learning which can increase the effectiveness for works

related to computer vision. This invention had leads to the exponential growth

in object detection model by improving the detection accuracy. Over time, real-

8

time deep learning-based object detection model, YOLO (You Only Look Once)

were introduced with accurate positioning and speed performance.

 Generally, the object detection model classified into one-stage and

two-stage object detection algorithm. One-stage detector contains single feed-

forward fully convolutional network which enables bounding boxes and object

classifications directly predicted on image (Carranza-Garcia et al., 2020). This

feature provides high efficiency by reducing the computational time, making it

suitable for real-time applications. The most common model with one-stage

detector is YOLO, which also the first proposed single unified architecture.

While two-stage detector algorithm have a higher accuracy with two-

step process. In the first step, preliminary test is carried out to generate a set of

region of interest (RoIs) where all positive samples are removed. Then, the RoIs

will pass over to second stage, to undergo regional classification and location

refinement. This detector algorithm had given benefits of more accurate

localization but required more processing time due to the complexity. The most

common example for two stage object detection algorithm is Faster R-CNN. In

summary, the comparison for two type of algorithm is shown in Table 2.1.

Table 2.1: Table of Comparison Between One-Stage and Two-Stage Detector

Aspect
One-stage detector

(YOLO)

Two-stage detector

(Faster R-CNN)

Localization

Accuracy

Lower accuracy for small

objects.

Higher accuracy due to

two steps of

refinement.

Run time

required

Shorter time for one step

object localization.

Longer period of time

for the additional RoIs

step.

Model

complexity

Less complexity which leads

to higher efficiency.

More complex due to

two-stage process.

Real-Time

Applications

Well-suited due to its fast

performance on videos and

images.

Not suitable due to the

complexity of the

algorithm.

9

2.2.2 Versions and Evolution of YOLO

You Only Look Once (YOLO) is a deep learning-based object detection

algorithm which first published in the year 2015 (Jiang et al., 2022). The

invention of YOLO is to target a small size model yet fast calculation speed in

object detection. It is applied on object tracking system in recent years due to

fast image processing capability. YOLO achieves the objective by directly

output bounding of box through neural network. This advantage brings YOLO

with ability to suit in real-time applications. Apart from that, YOLO reduces the

detecting error on background by using global image for detection. However,

this also bring negative effect where the accuracy of YOLO will be limited.

 Over the years, YOLO had undergone several evolutions. The original

version of YOLO architecture contains 24 convolution layers and two connected

layers. This version of YOLO has a major issue which is low accuracy in

positioning and lower recall rate. This led to the development of YOLOv2 which

have slightly improve the defects by using new classification model, Darknet-

19. While the development of YOLOv3 uses Darknet-53, with multi-scale

features. In the year 2020, YOLOv4 has developed with greater focus on data

comparison. YOLOv4 changed the overall detector framework into Input,

Backbone, Neck and Head. When images are input to YOLOv4 with pre-

processed size, Backbone will capture hierarchical features from multiple scales.

Different from YOLOv3, version 4 is using enhanced version of Darknet-53,

which is CSP Darknet53. The Neck will be act as an intermediate between

Backbone and Head, while Head will be responsible to make predictions

through bounding box and classifications. The structure of YOLOv4 is shown

in Figure 2.1.

Figure 2.1: Structure of YOLOv4

10

The released of YOLOv5 improved the performance of YOLOv4 with

faster model training and user-friendly coding environment. Overall, the

versions from YOLO to YOLOv5 can be summarise in Table 2.2.

Table 2.2: Versions of YOLO with Corresponding Improvement

Versions of YOLO Improvements

YOLO
Achieve object detection with small model and faster

speed

YOLOv2 Improve in accuracy and overall performance

YOLOv3 Provide multi scale detection

YOLOv4 Improved feature extraction and enhance performance

YOLOv5 Flexible control of model size and user friendly

In the year 2022, the introduction of YOLOv7 had surpassed all known

object detection model with high processing speed and high accuracy

(Gasparovic et al., 2023). YOLOv7 are trained using MS COCO dataset and the

architecture of the algorithm had upgraded. Similar to YOLOv4, Bag of

Freebies are used as a general framework of training strategies to obtain high

accuracy detection yet not affecting the overall processing speed. However, the

training speed will be slightly lower compared to other existing model.

While for YOLOv8, anchor-free architecture, enhancement of

backbone and multi scale prediction ability had leads YOLOv8 to perform task

faster with more accurate detection than YOLOv7. A study is done by

Augmented Startups., (2023) in order to test the object detection accuracy and

speed between YOLOv7 and YOLOv8 as shown in Figure 2.2 and Figure 2.3.

From Figure 2.2, it shows that YOLOv8 has the highest accuracy with the

limited amount of parameter while Figure 2.3 shows YOLOv8 can achieve the

same accuracy as other models in a shorter period of time. Unlike YOLOv7,

YOLOv8 able to detect smaller object with more irregular shapes, such as

clouds.

11

Figure 2.2: Comparison of Accuracy (Augmented Startups, 2023)

Figure 2.3: Comparison of Speed (Augmented Startups, 2023)

In summary, YOLOv7 and YOLOv8 had significantly improved in

object detection accuracy and processing time. The simple structure of the

model had become reason of two models being highly applied on daily life,

especially real time object detection. This is also a reason these two models are

mostly chosen to apply in solar tracking system.

2.3 Sun-Tracking System

Sun tracking system, also known as solar tracking system, is a mechanism to

orient a solar photovoltaic (PV) or sun reflector towards the sun. The purpose

12

of this mechanism is to maximise the energy output from the solar device by

ensuring the PV panels receive direct sunlight throughout the day. As the

position of sun changes throughout the day, a solar tracking system is important

to adjust the angle of the PV cells so that it aims precisely at the sun (Abdallah

& Nijmeh, 2003). This idea is came out in the mid-20th century, with the

expansion of solar energy and advanced electronics that can leads to accurate

tracking mechanism.

 Solar tracking is commonly implemented in photovoltaic (PV) system

and concentrated photovoltaic (CPV) system. In PV system, this generator

converts sunlight directly into electricity using solar cells. This type of

mechanism can result in high efficiency of PV panels. However, this method

only applicable on areas with high solar insolation. While for CPV system,

mirrors or lenses are used to reflect and focus the sun image on a small spot

where multi-junction solar cells installed. This type of system requires sun

tracking algorithm to tilt the entire structure with mirrors towards the sun so that

maximum sunlight can be reflected.

 In mechanism design, solar tracking system is classified into single-

axis and dual-axis. For single axis, the trackers consist of one degree freedom

which act as an axis of rotation, aligned along the true north meridian (Ray &

Tripathi, 2016). While dual-axis tracker has two degrees of freedom for rotation,

where the primary axis is fixed to the ground, and it will be the reference for

secondary axis. This mechanism allowed the tracker to follow the sun vertically

and horizontally. Compared to single-axis, dual-axis are far more flexible with

extra degree of movement to parallel the normal of sun to normal of CPV. A

sample design of dual-axis tracker is as shown in Figure 2.4.

13

Figure 2.4: The Structure Design of a Dual-Axis Tracker (Jamroen et al.,

2020)

2.3.1 Recent Development of Sun Tracking System

Since 20th century, different type of sun tracking system is developed to improve

the performance of PV system. In traditional way, the tracking of the sun can be

achieved by using photosensors. From the research paper by Abdallah & Nijmeh,

(2003) the sun tracking system is achieved using the photosensors to obtain the

sun position and send electrical signals to the PLC control unit. A set of

mathematical calculations using azimuth and zenith angle of sun is done using

a computer program. Besides, this design also considers the motor speed

calculation by dividing the daylight hours into four identical time intervals as

shown in Figure 2.5. Although this kind of mechanism is able to achieve solar

tracking, however, the cost implementation is slightly higher as it involves lots

of hardware such as PLC control unit and photosensors.

Figure 2.5: Four Identical Time Intervals During Daylight

 Hours (Abdallah & Nijmeh, 2003)

14

 This theory is almost similar to Al-Mohamad, (2004) solar tracking

system design where photo resistor is used to send command to control the PLC.

The design includes two symmetric photo resistors installed on the same PV

module with solid barrier in between. The increase and decrease of the solar-

radiation intensity will produce different voltage drop, which directly connected

to analogue inputs of PLC for control purpose. The design of the photosensor is

shown in Figure 2.6. This design is quite similar with the previous one however

the accuracy will be slightly lower as it does not have detail control on motors.

Figure 2.6: Circuit Design of Photosensors (Al-Mohammad, 2004)

In recent years, as the introduce of AI, there are several developments

of sun tracking system which optimize the advantage of it. Such example is the

research from EI Shenawy et al., (2012) where artificial neural network (ANN)

is used to control the solar tracking system. By using ANN, a series parallel

feed-forward neural network was designed to construct a two-axis solar tracker

as shown in Figure 2.7. The training of the ANN involves 1054 epochs to learn

the error between output from ANN and output from training pair. By using the

AI algorithm with large datasets provided, this design could highly improve the

performance of sun tracking system.

15

Figure 2.7: Neural Network Identification Scheme (EI Shenawy et al., 2012)

2.4 Cloud Prediction System

Cloud prediction system is a technology with advance algorithm integrated to

predict the movement of the cloud. This technology is crucial in 21st century as

it plays an important role in forecast to predict the weather. In the past, the

observation of the cloud movement can only be done using satellite platforms.

With the rapid growth of machine learning and deep learning, the cloud

movement prediction had marked a significant turning point, where the cloud

prediction from ground image had getting more accurate. The commonly used

algorithm includes motion vector, and trajectory prediction system such as

Kalman Filter.

2.4.1 Current Existing Cloud Prediction System

According to Hu et al., (2018) research paper, a cloud prediction system is

planted in a PV system to solve the efficiency issue cause by cloud shading. The

cloud prediction system is achieved by using motion vector to predict the

moving trajectory. The motion vector achieved the assignment by calculating

the position deviation, which also known as two-dimensional motion vector. By

calculating the motion vector, the future position of the moving cloud can be

obtained as illustrated in Figure 2.8.

16

Figure 2.8: Illustration of Motion Vector Prediction (Hu et al., 2018)

 From the research, the advantage of using motion vector includes high

accuracy cloud trajectory prediction. This can be shown from the result obtained

in Figure 2.9 where the time of the target clouds shades the sun is predicted

accurately.

Figure 2.9: Prediction of Cloud Trajectory (Hu et al., 2018)

2.5 Summary

There have been several developments in sun and cloud tracking system, with

different method and algorithm being used. The main purpose of these research

is to improve the efficiency of PV system. Overall, AI has been widely used in

solar power field in recent years to enhance the performance of PV system. The

advancement of AI has provided the technological foundation to power the sun

and cloud prediction system.

17

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter outlines the details of work to achieve the objectives in chapter 1.

Selection of components and software will be discussed in this chapter.

Moreover, calculation and theory to achieve the cloud prediction and sun

tracking will be included. While the connection of the hardware will be

visualized in block diagram and the process flow of the system will be illustrated

in flow chart.

3.2 AI Sun–Tracking with Sun and Cloud Position Prediction

In this project, to achieve the sun tracking and cloud prediction system, AI

object detection model, YOLOv8 will be used to identify the cloud and sun

directly stream from the webcam module. Calculation of sun position and cloud

movement prediction will be done using Pythagoras and Trigonometry theorem.

This algorithm will be integrated in an existing CPV model consist of non-

imaging dish concentrator (NIDC) prototype on rooftop of Universiti Tunku

Abdul Rahman (UTAR). This CPV contains 60 mirrors where each mirror has

a dimension of 120mm × 120mm. Furthermore, the CPV is driven by a motor

control unit which consist of two stepper motor and controlled using Arduino

UNO.

3.2.1 Selection of Hardware and Software

For the hardware, Xiaomi Xiaovv webcam will be used to stream the sky image

for sun and cloud detection. This webcam has resolution of 1024×768 with

200w pixels. It provides high quality undistorted image which benefits for

object detection. However, this camera module does not have waterproof feature.

Thus, a waterproof electrical junction box will be used to cover the module.

Besides, this webcam only provides view angle of 150° which is not

wide enough to capture the whole sky image. As wide view of camera is

important to prevent lost track of sun and cloud detection, a fisheye camera lens

18

are attached to the webcam to enhance the field of view. By the aids of fisheye

lens, the field of view is upgraded to nearly 180° of vertical and 180° of

horizontal view. The comparison of the field of view before and after fish-eye

lens attached is shown in Figure 3.1. Furthermore, in order to protect the lens

from exposing to bright sun, black film will be stick on the lens to ensure the

long-term use of device. In summary, the hardware components used are listed

in Table 3.1.

Field of view before

fish-eye lens attached

Field of view with

fish-eye lens attached

Figure 3.1: The Comparison of Field of View Before and

After Fisheye Lens Attached.

Table 3.1: List of Hardware Components

Hardware Components Statistics

Xiaomi Xiaovv Webcam

Resolution: 1024 × 768

Field of view: 150°

Connection: USB2.0 cable

19

Waterproof Electrical Junction Box

Size: 4cm × 6cm × 3cm

Material: PVC

Features: Waterproof enclosure

Fish-Eye Lens

Field of view: 180° vertical and

180°horizontal

Black Film

-

 For software part, YOLOv8 will be used as AI object detection model

due to the higher accuracy in detection and fast processing speed. The high

accuracy detection of the model had benefits in detection of clouds with various

irregular shape. Besides, the fast-processing speed allow the algorithm to work

in real-time application. The training process of the sun and cloud detection

model will be carried out in Google Collab, which is a workplace with

programming language of Python. Then, the trained model will be export and

run in Python IDLE. Lastly, Arduino IDE will be involved in control system

part with the assistant of Q-learning.

3.2.2 Design Architecture and Practical Process

To achieve the sun tracking and cloud prediction system, AI object detection

model YOLOv8 will be trained using datasets of sky images taken from UTAR

20

rooftop. A camera with fisheye lens will be installed to stream the real time sky

image.

Before starts operating, a calibration will be done to obtain the sun

moving speed of the day. Calibration is important as the speed of sun will be

various throughout the year. While the speed of sun throughout the day should

be nearly constant as the rotation of earth is in constant speed (Sawal.I., n.d.).

In such, the calibration on sun moving speed only needed once every day.

This system will starts operating after calibrations. AI model will

detect sun and clouds, and the CPV will be turned towards the sun using Q-

learning that planted in the control system. Once the sun is shaded where the AI

model could not detect the sun, the centre coordination of the shading cloud will

be collected and wait for 1 minute buffer. The purpose of this time buffer is to

filter out small clouds that covered for a moment only, where no adjustment

needed as it does not affect much in efficiency. For clouds shading 1 minute and

above, the cloud centre point before and after 1 minute will be compared to

obtain the displacement of cloud. By using this information, speed of cloud can

be calculated. Besides, by comparing the coordinate of the two frames, the

moving direction of the cloud in degree angle can be found using Trigonometry

theory. Further calculations will be shown in the cloud prediction section.

After obtaining the predicted cloud movement and shading time, the

predicted sun reappear position will be calculated using formula and the angle

of adjustment will be sent to the control system of the CPV, to turn towards the

predicted sun reappear position. The block diagram of the overall design will be

shown in Figure 3.2. While the flow chart of the procedures will be shown in

Figure 3.3.

21

Figure 3.2: Block Diagram of the Design

22

Figure 3.3: Flow Chart of the Design

23

3.2.3 Custom Dataset of Sun and Clouds

For training the sun and clouds AI detection model, sun and clouds image is

collected on UTAR rooftop. The sky image will be collected during daytime

from morning to evening involving different types of weather such as

Altostratus cloud, Cirrostratus cloud and no cloud condition as shown in Figure

3.4. The image taken should be in 180 degrees as the lens is attached to the

camera.

Altostratus cloud

Cirrostratus cloud

No cloud

Figure 3.4: Classification of Weather (Dreamstime, n.d.)

Once the sky images are collected, the sets of images will be uploaded

to Roboflow for preprocessing step. Roboflow is a platform which provides

tools for managing and preprocessing dataset. It is often used for YOLO

detection model training because it can export formats that compatible with

YOLO. The labelling of the image is done in Roboflow to label each cloud and

sun presence in the image. The object labelling is ensured to be accurate

especially for irregular shaped clouds. This is because the quality of the datasets

will directly affect the result accuracy. Lastly, the dataset is exported into

YOLOv8 in Google Colab for model training.

3.2.4 Model Training for Object Detection

The training of AI object detection model YOLOv8, is done in Google Colab

which is a workspace specially designed for AI training using GPU accelerator.

The model is trained using the sun and cloud labelled dataset, which previously

prepared in Roboflow. The datasets can be easily imported to the training

through Roboflow link.

 In the training of the model, transfer learning is applied where the

YOLOv8 model is initially trained on a large dataset, such as general object

24

detection on a large dataset MS COCO. The purpose of transfer learning is to

improve the learning effective of the model where it will learn new task based

on the learning method done previously. This become more important when

limited datasets are used for training. For the sun and cloud detection, 403

images with 100 epochs will be run to get a model with mean average precision

(mAP50) of 0.7 and above for clouds and sun detection.

3.2.5 Q-learning Training

The Q-learning training is done in python IDLE. This Q-learning model is

trained to find the shortest path from the ‘MOVINGPOINT’ towards the

‘CENTRETARGET’. The ‘MOVINGPOINT’ will represent the sun while the

‘CENTRETARGET’ will represent the centre of the camera. In this case, as the

Q-learning is trained for 800×800-unit camera view, the ‘CENTRETARGET’

will be located at coordinate (400,400).

 During the training process, the model used is not a pretrained model.

In such, the moving point or also known as agent is initially moving in random

direction as there are no Q-table for the reference. To ensure the moving point

reach the target, 1,000,000 episode is done with maximum step of 1150 per

episode. Besides, the epsilon is adjusted to 1 and epsilon decay set to 0.9998.

 Furthermore, reward system and penalty system is programmed to limit

the moving direction of the agent. This is to ensure the agent can find the

shortest path towards the centre with 8 choices of moving direction provided in

each step. The reward and penalty points are shown in Figure 3.5 while the

algorithm of the reward and penalty system is shown in Figure 3.6.

Figure 3.5: Reward and Penalty Points for Q-learning.

25

Figure 3.6: Reward and Penalty system for Q-learning

During the training, Q-value is constantly updated to the Q-table by

using the formula (3.1). Lastly, the agent is expected to find the shortest path

towards the target after 1,000,000 episodes of training.

𝑛𝑒𝑤𝑞 = (1 − 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑞 + 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑟𝑎𝑡𝑒

∗ (𝑟𝑒𝑤𝑎𝑟𝑑 + 𝐷𝐼𝑆𝐶𝑂𝑈𝑁𝑇 ∗ 𝑚𝑎𝑥_𝑓𝑢𝑡𝑢𝑟𝑒_𝑞)

(3.1)

3.2.6 Calibration on Sun Moving Speed and Direction

Calibration process can be done by pausing the CPV for 30 minutes. Then, the

displacement of the sun, Ssun in 30 minutes will be collected, and the sun moving

speed, VS can be calculated by using the formula (3.2) and (3.3). While, the sun

moving direction in angle, Ɵsun can be calculated using formula (3.4). Figure

3.7 had illustrated the calculations for sun speed calibration. Throughout the

calibration process, the moving speed and moving direction of the sun will be

obtained.

26

 𝑆𝑠𝑢𝑛 = √(𝑌𝑠𝑢𝑛2 − 𝑌𝑠𝑢𝑛1)2 + (𝑋𝑠𝑢𝑛2 − 𝑋𝑠𝑢𝑛1)2 (𝑢𝑛𝑖𝑡)

(3.2)

𝑉𝑆 =
𝑆𝑠𝑢𝑛

30
 (𝑢𝑛𝑖𝑡/𝑚𝑖𝑛)

(3.3)

 𝜃𝑠𝑢𝑛 = 𝑡𝑎𝑛−1 (
𝑦𝑠𝑢𝑛2 − 𝑦𝑠𝑢𝑛1

𝑥𝑠𝑢𝑛2 − 𝑥𝑠𝑢𝑛1
) (degree)

(3.4)

Figure 3.7: Illustration of the Calculation for Sun Speed Calibration.

3.2.7 Cloud Movement Predictions

To achieve the cloud movement prediction, a trained YOLOv8 model will be

run in Python. Once the system starts operating, the sun and clouds will be

detected, and control system will control CPV to follow the sun as shown in

Figure 3.8. When one of the clouds had covered the sun where the AI model is

unable to detect and track the sun position, Python will record the centre point

(X1, Y1) of the shading clouds as shown in Figure 3.9. Then, the system will

stops operating for 1 minute buffer, to filter off the small cloud covering

situation. As small clouds did not cover for a long time, no adjustment of CPV

is needed.

After 1 minutes, the new centre point of the same cloud (X2, Y2) will

be recorded as shown in Figure 3.10. By using the information obtain, the

cloud’s moving speed (or velocity), VC can be easily obtained using the formula

(3.5) and (3.6). Besides, the cloud moving direction, Ɵcloud can also be obtained

27

using Trigonometry theory with the formula (3.7). The illustration of the

calculation is shown in Figure 3.11.

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑆1 = √(𝑌2 − 𝑌1)2 + (𝑋2 − 𝑋1)2 (𝑢𝑛𝑖𝑡)

(3.5)

 𝑉𝐶 =
 𝑆1

1
 (𝑢𝑛𝑖𝑡𝑠/𝑚𝑖𝑛)

(3.6)

 𝜃𝑐𝑙𝑜𝑢𝑑 = 𝑡𝑎𝑛−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
) (degree)

(3.7)

Then, the point (X3, Y3) which lie on the side of the box of cloud

detection is found using the formula (3.8) and (3.9). The displacement, S2 from

the last appear sun centre point to (X3, Y3) will be calculated using the

Pythagoras theory with the formula (3.10) as illustrated in Figure 3.12.

𝑋3 = 𝑋2 +
𝐶𝑙𝑜𝑢𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑋

2
 (𝑢𝑛𝑖𝑡)

(3.8)

𝑌3 = (tan 𝜃 ×
𝑋

2
) + 𝑌2

(3.9)

 𝑆2 = √(𝑌3 − 𝑌𝑠𝑢𝑛)2 + (𝑋3 − 𝑋𝑠𝑢𝑛)2

(3.10)

Lastly, the predicted cloud shading time, t can be calculated by using

the cloud moving speed, Vc and displacement, S2 obtained as shown in formula

(3.11).

 𝑡 =
𝑆2

𝑉𝐶

(3.11)

28

Figure 3.8: An Example Situation of a Moving Cloud Detection and Sun

Tracking Stream from Camera

Figure 3.9: Situation when Cloud Covered the Sun

Figure 3.10: One Minute After Cloud Shading

29

Figure 3.11: Calculation from the Two Frames of Same Cloud

Figure 3.12: Calculation to Obtain Cloud Shading Time

3.2.8 Sun-Tracking and Position Predictions

To achieve sun tracking, a trained YOLOv8 sun detection model will be run in

Python. As the camera streamed the sky image into Python, the sun will be

detected by the AI algorithm and the centre point of the sun will be obtained.

Then, Q-learning cooperate with control system will tilt the CPV in horizontal

and vertical axis towards the position of sun.

 When the sun is shaded by a cloud, the position of sun will be lost

tracked and cloud prediction calculations will come in to obtain the predicted

cloud shading time. By using the cloud shading time, t and speed of sun, VS, the

predicted displacement of sun, S3 throughout the cloud shading can be

calculated using formula (3.12).

S2

30

 𝑆3 = 𝑉𝑆 × 𝑡 (𝑢𝑛𝑖𝑡)

(3.12)

Lastly, the CPV will turns to the location of the predicted sun reappear

by using the precalculated sun moving direction during calibration to find the

x-axis displacement and y-axis displacement using the formula (3.13) and (3.14)

as illustrated in Figure 3.13. When the sun reappears, the sun tracking system

with the aids of Q-learning will take over the control to carry out fine tune and

continues sun tracking.

𝑋 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑐𝑜𝑠 𝜃𝑠𝑢𝑛 × 𝑆3

(3.13)

𝑌 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑠𝑖𝑛 𝜃𝑠𝑢𝑛 × 𝑆3

(3.14)

Figure 3.13: Calculation of Predicted Sun Reappear Position

3.3 Summary

In summary, this AI sun-tracking and cloud prediction system involved object

detection model, YOLOv8 to detect the coordination of sun and clouds. Q-

learning is integrated to command the movement of motor. When sun is lost

tracked, prediction calculations will be performed in Python to predict the sun

position and cloud movement. Pythagoras and Trigonometry theories will be

involved in the calculations. Lastly, command to Arduino Uno to control the

CPV towards targeted position.

Θsun

31

CHAPTER 4

4 RESULT AND DISCUSSION

4.1 Introduction

In this chapter, the result of machine learning training including YOLOv8

detection model and Q-learning is discussed. Besides, the result on sun tracking

and prediction algorithm with the assistance of AI will be present in graph and

diagram. In addition, the performance of the CPV system will be tested during

cloudy day and solar irradiance value will be analysed and discussed.

4.2 Result of Machine Learning Training

In this project, two machine learning model have been used to achieve the sun

tracking system and prediction system. For object detection model, YOLOv8

have been trained to detect the sun and clouds presence in sky images. While

Q-learning algorithm have been trained to find the shortest path from the agent

‘MOVINGPOINT’ towards the ‘CENTRETARGET’. Both machine learning

training result will be discussed.

4.2.1 YOLOv8 Training Result

YOLOv8 is a deep learning model which can be trained to make prediction by

providing sufficient amount of data. In this training, Google Colab had been

used to train the model with dataset of 403 sky images prepared in Roboflow.

For the training process, 150 epochs have been done with the size of image

resized to 800×800 pixels. The completion of the training is shown in Figure

4.1: Training of YOLOv8 Model on Google Colab with 150 Epochs.

32

Figure 4.1: Training of YOLOv8 Model on Google Colab with 150 Epochs.

From the result of the training as shown in Figure 4.2, the 150 epochs

is completed in 0.786 hours by using GPU Tesla T4 provided by Google Colab.

In object detection model training, the accuracy and performance of the trained

model is measure in mAP50, which stands for mean average precision at IoU

threshold of 0.50. The mAP value can be range from 0.0 to 1.0 where the higher

the mAP value, the better the performance of the detection model. As a well-

known performance metric for machine learning model, it is frequently be

referred when improving the model detection accuracy (Ahmed, N.N., n.d.).

 From Figure 4.2, the result of sun detection training had shown that

the performance of sun detection in mAP is 0.995, while for the result of cloud

detection, the mAP is 0.685. The 0.995 mAP value in sun detection had

explained that the accuracy of sun being detected is nearly 100%. This is

because the framework of the YOLOv8 detection is based on the shape of the

object. As the sun will only appear in round shape, the YOLOv8 could easily

reach high mAP value by only required less amount of sun image dataset.

However, the result of cloud detection shows a lower mAP value. This is due to

the irregular shape of clouds appearance, where the model have more confusion

in the prediction between clouds and sky background. Therefore, with the same

number of datasets provided, the cloud detection has a significant lower

accuracy than the sun detection. Besides, the mAP of each object detection can

33

also be visualized from the confusion matrix as shown in Figure 4.3. This

confusion matrix had represented the true positive, false positive, true negative

and false negative in each object detection. From the result obtain, 69% of

clouds is predicted with true positive while 100% of sun is predicted with true

positive.

Figure 4.2: Result of Sun and Cloud YOLOv8 Detection.

Figure 4.3: Confusion Matrix of Sun and Cloud YOLOv8 Detection.

In addition, Figure 4.4 had shown some of the detection on sky images

using the trained model. From the result obtain, the sun detection has an

obviously higher confident level above 0.8, which had proved the high accuracy

performance of YOLOv8 on sun recognition. While the cloud detection has a

slightly lower confident level due to the irregular shape of clouds presence.

34

Figure 4.4: Sun and Cloud Detection on Sky Images.

In short, YOLOv8 is trained to detect sun and clouds present in the sky

image. The sun detection has a higher detection accuracy with 0.996 mAP while

the cloud detection has a lower mAP value which is 0.685. From the results

obtained, the accuracy of both sun and cloud detection had meets the

requirement for CPV sun tracking system.

4.2.2 Q-learning Training Result

For the Q-learning, training is done in python IDLE with 1,000,000 episodes.

In this training, the result of the reward is recorded for every 50,000 episodes.

The rewards are plotted into graph of reward over episodes, and the part from 0

to 150,000 episode is cropped out for discussion, as shown in Figure 4.5.

 From the result, the reward is increasing from 0 episode to 50,000

episode. During this stage, the agent is still in the learning process and the

moving direction is in random. When the agent reaches saturated in 100,000

episodes, the Q-learning model is able to reach the ‘CENTRETARGET’ by

referring the Q-table. The reward in saturated phase is around 1400 as shown in

35

the graph. However, in order to make sure the agent be able to find the shortest

path from any direction, the training is still continued until 1,000,000 episodes

is complete.

Figure 4.5: The Reward Obtained for Every 50,000 Episodes

In short, the result of Q-learning training had shown that the model is

successfully trained to find the shortest path towards the target. The Q-table

obtain can be directly used in the CPV system where the agent represents the

sun and the ‘CENTRETARGET’ will be the centre point of camera view.

4.3 Fisheye Lens Assisted in Object Detection

In this project, fisheye lens had been attached to the camera module to provide

a wider view for YOLOv8 detection. As the detection model is trained using

complete full image of clouds, it is important to provide a wide vision that able

to capture the whole clouds figure during the cloud detection. A comparison of

sky image capture with and without assistant of fisheye lens is shown in Figure

4.6 and Figure 4.7. From the comparison, it is clearly seen that the sky image

captured without fisheye lens have a narrow view and it is only able to obtain

half image of the large cloud. However, when fisheye lens is attached, the view

is obviously wider and the whole cloud image can be captured.

36

Figure 4.6: Image Captured by the

Webcam Before Fisheye

Lens is Installed

Figure 4.7: Image Captured by the

Webcam After Fisheye

Lens is Installed

Furthermore, the comparison shown in Figure 4.8 and Figure 4.9 also

proved that the installation of fisheye lens had improved the accuracy of cloud

detection. From Figure 4.8, the cloud pointed by red arrow is initially not

detected due to the incomplete cloud image provided to cloud detection model.

However, when the fisheye lens is installed, the cloud has been detected as

shown in Figure 4.9. The detection of cloud is important as it will affect the

prediction algorithm when comes to cloud and sun position prediction. If clouds

are not detected, the prediction algorithm may not run and cause the loss

tracking of sun.

 Half image of the cloud

Full image of

the cloud

37

Figure 4.8: Cloud Detection of

Yolov8 Model Before

Installation of Fisheye

Lens

Figure 4.9: Cloud Detection of

Yolov8 Model After

Installation of Fisheye

Lens

Therefore, the installation of fisheye lens is necessary, and it has

improved the detection model performance by providing a wide view of sky.

The comparison had proved the importance of fisheye lens in assisting the

detection model.

4.4 Solar Irradiance Analysis with Solar Tracking System

In order to measure the performance of CPV system with solar-tracking feature,

solar irradiance value is recorded from 10:00am to 3:40pm on 27th April 2024.

The weather is cloudy before 3:40pm and turns to rain after that. In this CPV

performance test, a photometer is fixed parallelly to the camera, and it will be

always 90 degrees facing the sun. This photometer will measure the analogue

value of solar irradiance with the unit W/m2. While the YOLOv8 sun appearance

detection is also collected by using Excel file. The sun appearance will be

present in 0%, 50% and 100% sun appearance based on the area of sun detected.

The 0% represent a totally loss of sun appearance; 50% represent a partially

appearance of sun; and 100% will represent a full image of sun appearance. The

Cloud
Cloud

38

data collection of both solar irradiance and YOLOv8 sun detection is done with

10 minutes interval.

 The Figure 4.10 had shown the solar irradiance and yolov8 sun

detection vs time graph plotted from the data collected. In this graph, the solar

irradiance had shown the instable value throughout the day. This is due to the

shading of clouds during the cloudy day. When the sun is covered by clouds,

the solar irradiance value will drop significantly and remains until the sun

reappear. In the other hand, the graph had shown that the YOLOv8 sun

appearance detection follows and exactly match to the fluctuation of solar

irradiance graph. This had proved the accuracy of the sun detection model,

where the solar irradiance value increase when sun is detected.

 Moreover, according to ENERGY.GOV (n.d.), the solar irradiance will

reach the peak value in the afternoon and drops in morning and late afternoon.

This is due to the rays’ long-distance travel through the atmosphere when the

sun altitude is low during both periods. With the information provided, the trend

of the solar irradiance increasing from 10:00am to the peak at 12:30pm and

starts to drop after the peak had proved the accuracy of the solar tracking feature.

The solar irradiance result had proved the dual-axis CPV system facing 90

degrees toward the sun throughout the day.

Figure 4.10: Graph of Solar Irradiance and YOLOv8 Sun Detection vs Time

 In short, the matching of the detection with the fluctuation of solar

irradiance graph had proved the accuracy and performance of YOLOv8 sun

39

detection model. While the trend of the solar irradiance throughout the day had

verified the performance of CPV solar tracking system.

4.5 Sun and Cloud Position Prediction

To identify the accuracy of cloud and sun position prediction, the actual and

predicted sun reappear coordinate is recorded during each shading of sun. This

data is collected during a cloudy day on 27th April 2024. The percentage error

will then be calculated to illustrate the prediction algorithm. To calculate the

percentage error, formula (4.1) will be used, with predicted value represent the

predicted displacement between sun last appear coordinate with sun reappear

coordinate; while actual value represents the actual displacement between the

sun last appear position with sun reappear position. In Figure 4.11, the diagram

had illustrated the position of predicted and actual sun, with percentage error

calculated from 11:00am to 11:20am. This diagram is drawn with 5 minutes

interval to further analyse the percentage error and position of sun in each time

stamp.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
| × 100%

 (4.1)

Figure 4.11: The Trajectory Motion Prediction of Sun After Covered by Cloud

40

From the prediction diagram in Figure 4.11, the sun moving angle is

19.74°, which is calculated during the calibration. The result shows that the

predicted sun reappear position is slightly further than the actual sun reappear

position. The prediction results an increment in percentage error of 6.25% for

each 5 minutes. While the sun reappearance results a percentage error of 25%.

Apart from that, a percentage error vs time graph is plotted for each

prediction throughout the day as shown in Figure 4.12. From the graph, the sun

is covered by the clouds in four periods. In the first three periods, the percentage

error is range from 11% to 25%. This percentage error is due to the change of

wind speed which causing the inconstant speed of moving clouds. As the

prediction system is assuming the sun and clouds have a constant speed, any

changes in speed may affect the result. This can be clearly seen during 1:50pm

to 2:50pm where the percentage error reached 43%. This is due to the sudden

change of weather where it starts to rain after 3:40pm. The changes in weather

and speed of wind causing the cloud moving in inconstant speed and leads to

the prediction error. In addition, as the cloud will changes its shape over time,

the irregular shape and difference in cloud coverage area will also affect the

prediction accuracy.

Furthermore, the graph during the last period also shows the predicted

sun shaded time is longer than the actual sun shaded time. Although there is

prediction error, the sun-tracking of the CPV will not be affected much as long

the predicted direction is accurate. This is because the CPV sun tracking system

is programmed to keep detect the appearance of sun. As long as the sun does

not appear outside the view of camera, the tracking system will recapture the

sun once it reappears. When sun is detected, the Q-learning will command the

CPV to turn towards it, even though the sun is reappeared earlier than predicted.

This can be proved from solar irradiance graph in Figure 4.10, where the sun

tracking system had recaptured the sunlight once the sun is reappeared again.

41

Figure 4.12: Percentage Error vs Time Graph During Cloudy Day (27 April

2024)

 In summary, the results had shown that the prediction system able to

predict the movement of sun when covered by clouds. However, there are

percentage error where the predicted sun reappears position is further than the

actual sun reappear position. The percentage error is getting higher when the

wind speed changes rapidly during weather change. To solve the limitation,

there are some future improvements can be done. The first solution is

implementing a wind sensor into the prediction system. This could help to

improve the accuracy of cloud movement prediction by monitoring the wind

speed changes. Besides, real time satellite forecast system can also be integrated

so that the changes in cloud’s shape and area can be monitored.

4.6 Summary

In summary, YOLOv8 is trained to detect the sun and clouds from sky images.

The accuracy of the YOLOv8 on sun detection is 0.996 mAP while cloud

detection is 0.685 mAP. For Q-learning training, the reward is saturated at 1400

during 100,000 episodes of training. While from the solar irradiance recorded

in cloudy day, the matching of sun detection with the fluctuation of YOLOv8

detection had proved the performance of the sun detection model. Besides, the

trend of the solar irradiance also proved the accuracy of the CPV on sun tracking

feature. Furthermore, percentage error of prediction system is calculated and

42

plotted in graph. From the graph, the predicted sun reappears position is slightly

further from the actual sun position. However, the small difference in prediction

error does not affect much in solar tracking as the CPV is programmed to

recapture the sun as long as the sun is still in the view of webcam.

43

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

This project had integrated two types of machine learning to automate the CPV

sun tracking system. For sun and cloud detection model, YOLOv8 is chosen due

to its high accuracy and less computational time. The advantage of YOLOv8

detection model allowed the detection to run in stream, avoiding the delay issue.

For YOLOv8 model training, 403 sky images is used and the training is conduct

with 100 epochs. The trained model results a sun detection accuracy of 0.996

mAP50 while the cloud detection results 0.685 mAP50.

 For Q-learning training, 1,000,000 episodes is done with the reward

obtain for every 50,000 episodes. When episodes of 100,000 is run, the reward

obtained has starts to saturate at 1400. The result has showed that the Q-learning

model are able to find the shortest path towards the target point.

 Furthermore, the performance and accuracy of the CPV system sun-

tracking feature is proven by the result of solar irradiance throughout a day.

From the solar irradiance graph, the detection of sun in matching the fluctuation

of the solar irradiance had proved the accuracy of the sun detection model.

 Apart from that, the percentage error of prediction vs time graph had

shown that the predicted sun reappear position is slightly further than the actual

sun reappear position. The percentage error can be range from 11% for nearly

constant cloud moving speed to 43% for large area clouds with unstable weather

change. The error in the prediction is due to the changes of speed and inconstant

shape of clouds over time. However, this limitation can be further improved by

integrating wind speed sensor and satellite forecast system, so that the clouds

changes can be monitored.

 In addition, the installation of fisheye lens on the webcam had

improved the vision of sky image streaming. When fisheye lens is attached, a

wider view is provided to sun and cloud detection model. This had improved

the accuracy of the detection as more information is input to the model.

44

 In summary, the integration of YOLOv8 model with sun and cloud

position prediction system had improved the overall efficiency of the CPV

system by solving the sun lost tracking issue during cloudy day. By integrating

the sun position prediction system, the CPV is able to turned and standby at the

sun reappear position. This could capture the sun once it is reappeared and

reduce the time-consuming problem during retracking of sun. Lastly, the AI-

based CPV system had introduce a new trend of technology to solar industry

and this could improve the efficiency of solar energy generation in the future.

5.2 Recommendation for Future Work

For future improvement, the cloud detection model can be retrained with more

datasets. This is because the clouds are irregular shape, which it is a challenge

to the YOLOv8 detection model. Thus, more sky images can be collected in the

future and the epoch of the training can be increase based on the datasets

available.

 Besides, wind speed sensor can be integrated in the sun and cloud

prediction algorithm. By applying wind speed sensor, the speed of the moving

clouds can be monitored to improve the accuracy of prediction. Furthermore, a

real time satellite forecast system can be integrated to monitor the changes in

cloud coverage area. This could help the prediction system to predict the cloud

shading time through the changes of cloud.

 Lastly, trajectory machine learning can be implemented in the future to

improve the prediction algorithm. This could achieve higher accuracy in

prediction as machine learning model have more powerful calculation tools and

it can be trained using past data.

45

REFERENCES

Abdallah, S. and Nijmeh, S. (2004) “Two axes sun tracking system with PLC

control,” Energy Conversion and Management, 45(11–12), pp. 1931–

1939. Available at: https://doi.org/10.1016/j.enconman.2003.10.007.

Admin, A. (2022) “Do solar panels work on cloudy days?,” AESOLAR

[Preprint]. Available at: https://ae-solar.com/do-solar-panels-work-on-

cloudy-days/.

Al-Mohamad, A. (2004) “Efficiency improvements of photo-voltaic panels

using a Sun-tracking system,” Applied Energy, 79(3), pp. 345–354.

Available at: https://doi.org/10.1016/j.apenergy.2003.12.004.

Anka, A. (2021) “YOLO v4: Optimal Speed & Accuracy for object detection,”

Medium, 14 December. Available at:

https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-

object-detection-79896ed47b50.

“Artificial Intelligent Control of a Solar Tracking System” (2011) Journal of

Applied Sciences Research, 8(8)((3971–3984)).

Author.fullName (no date) How fast does Earth spin? Available at:

https://www.newscientist.com/question/fast-earth-

spin/#:~:text=At%20the%20equator%2C%20its%20circumference,abo

ut%201670%20kilometres%20per%20hour.

Carranza-García, M. et al. (2020) “On the Performance of One-Stage and Two-

Stage Object Detectors in Autonomous Vehicles Using Camera Data,”

Remote Sensing, 13(1), p. 89. Available at:

https://doi.org/10.3390/rs13010089.

46

Chablani, M. (2023) “YOLO — You only look once, real time object detection

explained,” Medium, 28 August. Available at:

https://towardsdatascience.com/yolo-you-only-look-once-real-time-

object-detection-explained-492dc9230006.

Du, L., Zhang, R. and Wang, X. (2020) “Overview of two-stage object detection

algorithms,” Journal of Physics, 1544(1), p. 012033. Available at:

https://doi.org/10.1088/1742-6596/1544/1/012033.

Fig. 1. Solar power output for different weather conditions: a sunny... (no date).

Available at: https://www.researchgate.net/figure/Solar-power-output-

for-different-weather-conditions-a-sunny-day-20-April-2013-

cloudy_fig1_301680317.

Figure 2. The model architecture of YOLO, where the backbone extracts... (no

date). Available at: https://www.researchgate.net/figure/The-model-

architecture-of-YOLO-where-the-backbone-extracts-features-from-an-

image-the_fig1_351889219.

Gašparović, B. et al. (2023) “Evaluating YOLOV5, YOLOV6, YOLOV7, and

YOLOV8 in Underwater Environment: Is There Real Improvement?,”

Is There Real Improvement? [Preprint]. Available at:

https://doi.org/10.23919/splitech58164.2023.10193505.

Hu, K. et al. (2018) “A new ultra-short-term photovoltaic power prediction

model based on ground-based cloud images,” Journal of Cleaner

Production, 200, pp. 731–745. Available at:

https://doi.org/10.1016/j.jclepro.2018.07.311.

Jamroen, C. et al. (2020) “A low-cost dual-axis solar tracking system based on

digital logic design: Design and implementation,” Sustainable Energy

47

Technologies and Assessments, 37, p. 100618. Available at:

https://doi.org/10.1016/j.seta.2019.100618.

Javaid, S. (2023) “5 AI Training Steps & Best Practices in 2023,” AIMultiple

[Preprint]. Available at: https://research.aimultiple.com/ai-training/.

Jiang, P. et al. (2022) “A review of Yolo algorithm developments,” Procedia

Computer Science, 199, pp. 1066–1073. Available at:

https://doi.org/10.1016/j.procs.2022.01.135.

Laman web rasmi Jabatan Meteorologi Malaysia (no date). Available at:

https://www.met.gov.my/en/pendidikan/iklim-malaysia/#Evaporation.

Mean Average Precision (MAP): A complete guide (no date). https://kili-

technology.com/data-labeling/machine-learning/mean-average-

precision-map-a-complete-guide.

Office, E.C. and D.L.T.U.S.P. and T. (2023) 'A brief history of solar panels,'

Smithsonian Magazine, 15 November.

https://www.smithsonianmag.com/sponsored/brief-history-solar-

panels-

180972006/#:~:text=It%20all%20began%20with%20Edmond,to%20li

ght%20or%20radiant%20energy.

Peng, S. et al. (2017) “Modulation classification using convolutional Neural

Network based deep learning model,” IEEE [Preprint]. Available at:

https://doi.org/10.1109/wocc.2017.7929000.

Ray, S. and Tripathi, A.K. (2016) “Design and development of Tilted Single

Axis and Azimuth-Altitude Dual Axis Solar Tracking systems,” IEEE

[Preprint]. Available at: https://doi.org/10.1109/icpeices.2016.7853190.

48

Solar Radiation Basics (no date). https://www.energy.gov/eere/solar/solar-

radiation-

basics#:~:text=In%20the%20early%20morning%20and,solar%20colle

ctor%20around%20solar%20noon.

Unlock the Full Potential of Object Detection with YOLOv8 (no date). Available

at: https://www.augmentedstartups.com/blog/unlock-the-full-potential-

of-object-detection-with-yolov8-faster-and-more-accurate-than-

yolov7-

2#:~:text=Faster%3A%20YOLOv8%20is%20faster%20than,YOLOv7

%20in%20detecting%20small%20objects.

Zaidi, S.S.A. et al. (2022) “A survey of modern deep learning based object

detection models,” Digital Signal Processing, 126, p. 103514. Available

at: https://doi.org/10.1016/j.dsp.2022.103514.

49

APPENDICES

Appendix A: Solar Irradiance and Prediction on 27 April 2024

Tim

e

W/

m2

Sun

Appeara

nce (%)

Predicte

d Sun

Coordin

ate

Actual

Sun

Coordin

ate

Predict

ed Sun

Distan

ce

Move

(unit)

Actual

Sun

Distan

ce

Move

(unit)

Percenta

ge Error

(%)

10:0

0

831.

4 100 0 0

0 0 0

10:1

0

834.

3 100 0 0 0 0 0

10:2

0 879 100 0 0 0 0 0

10:3

0

866.

7 100 0 0 0 0 0

10:4

0

478.

9 50 0 0 0 0 0

10:5

0

371.

3 50 0 0 0 0 0

11:0

0

234.

5 0 405,407 403,404 8 6 25

11:1

0

222.

7 0 405,407 403,404 8 6 25

11:2

0

399.

8 50 0 0 0 0 0

11:3

0

997.

4 100 0 0 0 0 0

11:4

0

100

3
100

0 0 0 0 0

11:5

0

104

7
100

0 0 0 0 0

12:0

0

242.

4
0

405,408 403,407 9 8 11

12:1

0
367 0

405,408 403,407 9 8 11

12:2

0

106

7
100

0 0 0 0 0

12:3

0

109

2
100

0 0 0 0 0

12:4

0

429.

8
50

0 0 0 0 0

12:5

0

286.

4
0

404,406 403,407 5 4 20

13:0

0

571.

2
50

0 0 0 0 0

50

13:1

0

101

1
100

0 0 0 0 0

13:2

0

101

3
100

0 0 0 0 0

13:3

0

100

9
100

0 0 0 0 0

13:4

0

100

1
100

0 0 0 0 0

13:5

0

101

0
100

0 0 0 0 0

14:0

0

244.

7
0

434,460 422,434 68 39 43

14:1

0

227.

8
0

434,460 422,434 68 39 43

14:2

0

217.

5
0

434,460 422,434 68 39 43

14:3

0

299.

9
0

434,460 422,434 68 39 43

14:4

0

555.

6
50

0 0 0 0 0

14:5

0

988.

2
100

0 0 0 0 0

15:0

0

972.

1
100

0 0 0 0 0

15:1

0

929.

9
100

0 0 0 0 0

15:2

0

874.

5
100

0 0 0 0 0

15:3

0

877.

8
100

0 0 0 0 0

15:4

0

830.

3
100

0 0 0 0 0

Appendix B: Code of Q-learning Training

import numpy as np

from PIL import Image

import cv2

import matplotlib.pyplot as plt

import pickle

from matplotlib import style

import time

style.use("ggplot")

51

#functions required

def SaveQtable(start_q_table,q_table):

 if start_q_table != None:

 print('oktest')

 with open(start_q_table, "wb") as f:

 print('ok2')

 pickle.dump(q_table, f)

 print("q_table is updated.")

 else:

 with open(f"qtable-{int(time.time())}.pickle", "wb") as f:

 print("ok1")

 pickle.dump(q_table, f)

 print("New q_table is created.")

classes required

for environment and agent

class MOVINGPOINT:

 def __init__(self):

 self.x = np.random.randint(0, XSIZE)

 self.y = np.random.randint(0, YSIZE)

 def __str__(self):

 return f"{self.x}, {self.y}"

 def __sub__(self, other):

 return (self.x-other.x, self.y-other.y)

 def action(self, choice):

 '''

 Gives us 4 total movement options. (0,1,2,3)

 '''

 if choice == 0:

 #move right

52

 self.move(x=1, y=0)

 elif choice == 1:

 #move left

 self.move(x=-1, y=0)

 elif choice == 2:

 #move up

 self.move(x=0, y=1)

 elif choice == 3:

 #move down

 self.move(x=0, y=-1)

 elif choice == 4:

 #move right up

 self.move(x=1, y=1)

 elif choice == 5:

 #move left up

 self.move(x=-1, y=1)

 elif choice == 6:

 #move right down

 self.move(x=1, y=-1)

 elif choice == 7:

 #move left down

 self.move(x=-1, y=-1)

 def move(self, x=False, y=False):

53

 #### put signal code here for motor to move

 # If no value for x, move randomly

 if not x:

 self.x += np.random.randint(-1, 2)

 else:

 self.x += x

 # If no value for y, move randomly

 if not y:

 self.y += np.random.randint(-1, 2)

 else:

 self.y += y

 # If we are out of bounds, fix!

 if self.x < 0:

 self.x = 0

 elif self.x > XSIZE-1:

 self.x = XSIZE-1

 if self.y < 0:

 self.y = 0

 elif self.y > YSIZE-1:

 self.y = YSIZE-1

class MOVINGTARGET():

 def __init__(self):

 self.x = np.random.randint(0, XSIZE)

 self.y = np.random.randint(0, YSIZE)

 def __str__(self):

 return f"{self.x}, {self.y}"

 def __sub__(self, other):

54

 return (self.x-other.x, self.y-other.y)

 def action(self):

 pass

class CENTERTARGET():

 def __init__(self):

 self.x = int (XSIZE/2)

 self.y = int (YSIZE/2)

 def __str__(self):

 return f"{self.x}, {self.y}"

 def __sub__(self, other):

 return (self.x-other.x, self.y-other.y)

 def action(self):

 pass

define parameter

XSIZE = 800

YSIZE = 800

HM_EPISODES = 1000000

maximum_step= 1150 #define maximum step per episode

MOVE_PENALTY = 30

MOVE_REWARD= 0.9 #Can be 0

MOVE_SLOPE_REWARD= 2

MOVE_SLOPE_PENALTY= 15

SAME_AXIS_PENALTY= 25

ON_TARGET_REWARD = 1000

epsilon = 1 #0 for retraining the models

EPS_DECAY = 0.9998 # Every episode will be epsilon*EPS_DECAY

55

SHOW_EVERY = 50000 # how often to play through env visually.

start_q_table = None # None or Filename

LEARNING_RATE = 0.1

DISCOUNT = 0.95

MOVING_POINT_N = 1 # moving point key in dict

MOVING_TARGET_N = 2 # target key in dict

CENTER_TARGET_N = 3 #center target key in dict

the dict for colour

d = {1: (255, 175, 0),

 2: (0, 255, 0),

 3: (0, 0,255)}

if start_q_table is None:

 q_table = {}

 for i in range(-XSIZE+1, XSIZE):

 for ii in range(-YSIZE+1, YSIZE):

 q_table[(i, ii)] = [np.random.uniform(-5, 0) for i in range(8)]

else:

 with open(start_q_table, "rb") as f:

 print('ok9')

 q_table = pickle.load(f)

episode_rewards = []

56

for episode in range(HM_EPISODES):

 moving_target = CENTERTARGET()

 moving_point = MOVINGPOINT()

 if episode % SHOW_EVERY == 0:

 print(f"on #{episode}, epsilon is {epsilon}")

 print(f"{SHOW_EVERY} ep mean: {np.mean(episode_rewards[-

SHOW_EVERY:])}")

 show = True

 else:

 show = False

 episode_reward = 0

 for i in range(maximum_step):

 obs = moving_point - moving_target

 old_x = moving_point.x

 old_y = moving_point.y

 old_distance = np.sqrt(obs[0]**2+obs[1]**2)

 if np.random.random() > epsilon:

 # GET THE ACTION

 action = np.argmax(q_table[obs])

 else:

 action = np.random.randint(0, 8)

 moving_point.action(action)

 new_obs = (moving_point-moving_target)

 new_distance = np.sqrt(new_obs[0]**2+ new_obs[1]**2)

 If_distance_horizontal= np.sqrt((obs[0]-1)**2+ obs[1]**2)

 If_distance_vertical= np.sqrt(obs[0]**2+ (obs[1]-1)**2)

 if moving_point.x == moving_target.x and moving_point.y ==

moving_target.y:

 reward = ON_TARGET_REWARD

 elif new_distance < old_distance:

57

 reward= MOVE_REWARD

 if action == 4 or action == 5 or action == 6 or action == 7:

 if new_distance> If_distance_horizontal or

new_distance>If_distance_vertical:

 reward= -MOVE_SLOPE_PENALTY

 elif old_x == moving_target.x or old_y == moving_target.y:

 reward = -SAME_AXIS_PENALTY

 else:

 reward= MOVE_SLOPE_REWARD

 else:

 reward = -MOVE_PENALTY

 max_future_q = np.max(q_table[new_obs])

 current_q = q_table[obs][action]

 if reward == ON_TARGET_REWARD:

 new_q = ON_TARGET_REWARD

 else:

 new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE *

(reward + DISCOUNT * max_future_q)

 q_table[obs][action] = new_q

 if show:

 #to show visually

 env = np.zeros((XSIZE, YSIZE, 3), dtype=np.uint8) # starts an rbg of

our size

 env[moving_point.x][moving_point.y] = d[MOVING_POINT_N]

 env[moving_target.x][moving_target.y] = d[MOVING_TARGET_N]

 img = Image.fromarray(env, 'RGB')

 img = img.resize((600, 600)) # resizing

 cv2.imshow("image", np.array(img))

58

 if reward == ON_TARGET_REWARD: # crummy code to hang at the

end if we reach abrupt end for good reasons or not.

 if cv2.waitKey(500) & 0xFF == ord('q'): #hit q key it will break

 break

 else:

 if cv2.waitKey(10) & 0xFF == ord('q'):

 break

 episode_reward += reward

 if reward == ON_TARGET_REWARD:

 break

 episode_rewards.append(episode_reward)

 epsilon *= EPS_DECAY

moving_avg = np.convolve(episode_rewards,

np.ones((SHOW_EVERY,))/SHOW_EVERY, mode='valid')

plt.plot([i for i in range(len(moving_avg))], moving_avg)

plt.ylabel(f"Reward {SHOW_EVERY}ma")

plt.xlabel("episode #")

plt.show()

print("ok")

SaveQtable(start_q_table,q_table)

Appendix C: Code of CPV Control System

import time

from ultralytics import YOLO

import cv2

import math

import pickle

from datetime import datetime,date

from openpyxl import Workbook, load_workbook

import signal

import numpy as np

59

import matplotlib.pyplot as plt

import pathlib

import serial

model_path =

r"C:\Users\USER\Documents\FYP\Sun0995Cloud0724Detection.pt"

model = YOLO(model_path)

cap = cv2.VideoCapture(1)

fourcc = cv2.VideoWriter_fourcc(*'MP4V')

out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (640,640))

cloud_midpoints = [] # Array to store cloud midpoints

twocloud_coord = [] #to save the coordinate of the two clouds before and after

60sec

cloud_corner1_frame =[]#to save cloud corner coordination for first block

cloud_corner2_frame =[]#to save cloud corner coordination for second block

loop = 0

Shad_time = 0

#define parameter for Q-learning

suntarget =[]

XSIZE = 800

YSIZE = 800

sun_threshold_distance_range = (1,3) # define threshold distance in pixel for

the motor to run when sun is detected

threshold_distance = sun_threshold_distance_range [0]

MOVE_PENALTY = 30

MOVE_REWARD= 0.9 #Can be 0

MOVE_SLOPE_REWARD= 2

MOVE_SLOPE_PENALTY= 15

SAME_AXIS_PENALTY= 25

60

ON_TARGET_REWARD = 1000

epsilon = 0 #0 for retraining and run the model

EPS_DECAY = 0.9998 # Every episode will be epsilon*EPS_DECAY

LEARNING_RATE = 0.1

DISCOUNT = 0.95

start_q_table = "qtable-1710127871.pickle" # None or Filename

movex = 0

movey =0

predictedxmove = 0

predictedymove = 0

rollpermove = 0.21380

tiltpermove = 0.41895

starttime = float(0)

endtime = float(23)

#to connect arduino

arduino = serial.Serial(port='COM4', baudrate=9600, timeout=.1)#Create Serial

port object called arduinoSerialData

time.sleep(2)

def sendsignal(desiredmove):

 byte_command = bytes(desiredmove,'utf-8')

 arduino.write(byte_command)

def recorddata(array,number):

 return array.append(number)

def currenttimedecimal():

 currentDateAndTime = datetime.now()

 currenttime = currentDateAndTime.hour + currentDateAndTime.minute/60

+ currentDateAndTime.second/3600

 return (currenttime)

61

def SaveQtable(start_q_table,q_table):

 if start_q_table != None:

 with open(start_q_table, "wb") as f:

 pickle.dump(q_table, f)

 print("q_table is updated.")

 else:

 with open(f"qtable-{int(time.time())}.pickle", "wb") as f:

 pickle.dump(q_table, f)

 print("New q_table is created.")

class SUNMOVINGPOINT():

 def __init__(self,Xcoordinate,Ycoordinate):

 self.x = Xcoordinate

 self.y = Ycoordinate

 def __str__(self):

 return f"{self.x}, {self.y}"

 def __sub__(self, other):

 return (self.x-other.x, self.y-other.y)

 def action(self, choice):

 '''

 Gives us 4 total movement options. (0,1,2,3)

 '''

 if choice == 0:

 #move right

 self.move(x=1, y=0)

 elif choice == 1:

 #move left

 self.move(x=-1, y=0)

62

 elif choice == 2:

 #move up

 self.move(x=0, y=1)

 elif choice == 3:

 #move down

 self.move(x=0, y=-1)

 elif choice == 4:

 #move right up

 self.move(x=1, y=1)

 elif choice == 5:

 #move left up

 self.move(x=-1, y=1)

 elif choice == 6:

 #move right down

 self.move(x=1, y=-1)

 elif choice == 7:

 #move left down

 self.move(x=-1, y=-1)

 def move(self, x=False, y=False):

 global status

 if not x:

 self.x += x

 elif x == 1:

 desiredmove = '4' #frame move left, target move right

 status = 'Left(1)'

 sendsignal(desiredmove)

63

 self.x += x

 elif x == -1:

 desiredmove = '6' #frame move right, target move left

 status = 'Right(1)'

 sendsignal(desiredmove)

 self.x += x

 if not y:

 self.y += y

 elif y == 1:

 desiredmove = '8' #frame move down, target move up (remember

generalise coordinate system)

 status = 'Up(1)'

 sendsignal(desiredmove)

 self.y += y

 elif y == -1:

 desiredmove = '2' #frame move up, target move down (remember

generalise coordinate system)

 status = 'Down(1)'

 sendsignal(desiredmove)

 self.y += y

class TARGET():

 def __init__(self,Xcoordinate,Ycoordinate):

 self.x = Xcoordinate

 self.y = Ycoordinate

 def __str__(self):

 return f"{self.x}, {self.y}"

 def __sub__(self, other):

 return (self.x-other.x, self.y-other.y)

64

 def action(self):

 pass

if start_q_table is None:

 # initialize the q-table#

 q_table = {}

 for i in range(-XSIZE+1, XSIZE):

 for ii in range(-YSIZE+1, YSIZE):

 q_table[(i, ii)] = [np.random.uniform(-5, 0) for i in range(4)]

else:

 with open(start_q_table, "rb") as f:

 q_table = pickle.load(f)

def predictmotormove(predictedxmove,predictedymove):

 global status

 x=0

 y=0

 while predictedxmove != 0:

 if predictedxmove > 0:

 desiredmove = '6'

 status = 'Predict Right'

 x = x +1

 predictedxmove = predictedxmove - 1

 elif predictedxmove < 0:

 desiredmove = '4'

 status = 'Predict Left'

 x = x - 1

 predictedxmove = predictedxmove + 1

 sendsignal(desiredmove)

 time.sleep(2)

 while predictedymove != 0:

65

 if predictedymove >0:

 desiredmove = '2'

 status = 'Predict down'

 y = y +1

 predictedymove = predictedymove -1

 elif predictedymove <0:

 desiredmove = '8'

 status = 'Predict Up'

 y = y - 1

 predictedymove = predictedymove + 1

 sendsignal(desiredmove)

 time.sleep(2)

 return x,y

def

motormove(label,moving_point,moving_target,threshold_distance,sun_thresho

ld_distance_range):

 global status

 obs = moving_point - moving_target

 old_x = moving_point.x

 old_y = moving_point.y

 old_distance = np.sqrt(obs[0]**2+obs[1]**2)

 if old_distance > threshold_distance:

 threshold_distance= sun_threshold_distance_range[0]

 if np.random.random() > epsilon:

 # GET THE ACTION

 action = np.argmax(q_table[obs])

 else:

 action = np.random.randint(0, 8)

 if action == 0:

 if label == 'sun':

 x = 1

66

 y = 0

 elif action == 1:

 if label == 'sun':

 x = -1

 y = 0

 elif action == 2:

 if label == 'sun':

 x= 0

 y= 1

 elif action == 3:

 if label == 'sun':

 x = 0

 y = -1

 elif action == 4:

 if label == 'sun':

 x = 1

 y = 1

 elif action == 5:

 if label == 'sun':

 x = -1

 y = 1

 elif action == 6:

 if label == 'sun':

 x = 1

 y = -1

 elif action == 7:

 if label == 'sun':

 x = -1

 y = -1

 moving_point.action(action)

 new_obs = (moving_point-moving_target)

 new_distance = np.sqrt(new_obs[0]**2+ new_obs[1]**2)

 If_distance_horizontal= np.sqrt((obs[0]-1)**2+ obs[1]**2)

67

 If_distance_vertical= np.sqrt(obs[0]**2+ (obs[1]-1)**2)

 if moving_point.x == moving_target.x and moving_point.y ==

moving_target.y:

 reward = ON_TARGET_REWARD

 elif new_distance < old_distance:

 reward= MOVE_REWARD

 if action == 4 or action == 5 or action == 6 or action == 7:

 if new_distance> If_distance_horizontal or

new_distance>If_distance_vertical:

 reward= -MOVE_SLOPE_PENALTY

 elif old_x == moving_target.x or old_y == moving_target.y:

 reward = -SAME_AXIS_PENALTY

 else:

 reward= MOVE_SLOPE_REWARD

 else:

 reward = -MOVE_PENALTY

 max_future_q = np.max(q_table[new_obs])

 current_q = q_table[obs][action]

 if reward == ON_TARGET_REWARD:

 new_q = ON_TARGET_REWARD

 else:

 new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE *

(reward + DISCOUNT * max_future_q)

 q_table[obs][action] = new_q

 elif old_distance <= threshold_distance:

 threshold_distance = sun_threshold_distance_range[1]

 print('reach target')

 status = 'Reach'

68

 #Flag = 1

 x = 0

 y = 0

 else:

 status = 'Stay'

 x = 0

 y = 0

 return x,y,threshold_distance

def reversemotormove(xmove,ymove,motorresttime): #redo

 while xmove != 0:

 if xmove > 0:

 desiredmove = '4'

 xmove = xmove - 1

 elif xmove < 0:

 desiredmove = '6'

 xmove = xmove + 1

 sendsignal(desiredmove)

 time.sleep(motorresttime)

 while ymove != 0:

 if ymove > 0:

 desiredmove = '8'

 ymove = ymove - 1

 elif ymove <0:

 desiredmove = '2'

 ymove = ymove + 1

 sendsignal(desiredmove)

 time.sleep(motorresttime)

 print('Reverse movement done.')

#Define

def calculate_distance(x1, y1, x2, y2):

69

 return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

def calc_Ssun(coord1, coord2):

 xsun1, ysun1 = coord1

 xsun2, ysun2 = coord2

 distance = math.sqrt((xsun2 - xsun1)**2 + (ysun2 - ysun1)**2)

 return distance

def calc_Anglesun(coord1, coord2):

 xsun1, ysun1 = coord1

 xsun2, ysun2 = coord2

 angle_rad = math.atan2(ysun2 - ysun1, xsun2 - xsun1)

 angle_deg = math.degrees(angle_rad)

 return angle_deg

def calc_S1(coord3, coord4):

 x1, y1 = coord3

 x2, y2 = coord4

 distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

 return distance

def calc_S2(coordsun, coordpre):

 x1, y1 = coordsun

 x2, y2 = coordpre

 distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

 if distance < 0:

 distance = distance * (-1)

 return distance

 else:

 return distance

def calc_Anglecloud(coord3, coord4):

 x1, y1 = coord3

70

 x2, y2 = coord4

 angle_rad = math.atan2(y2 - y1, x2 - x1)

 angle_deg = math.degrees(angle_rad)

 return angle_deg

#FIxed variable

xcam = 800

ycam = 800

cammid = (xcam/2, ycam/2)

time_cali = 900

time_cloud= 60 #cloud prediction time or known as buffer

#Main

sun_detected = False # Flag to check if sun is detected

print('Tracking Started.')

today = date.today()

currentdate = datetime.now().strftime('%Y-%m-%d')

workbook = Workbook()

file_name = f"data_{currentdate}.xlsx"

workbook.save(file_name) #

wb = load_workbook(file_name)

ws = wb.active

ws2 = wb.create_sheet(title="Sheet 2")

ws3 = wb.create_sheet(title="Sheet 3")

def save_excel_and_exit(sig,frame):

 print('Ctrl + C detected! Saving Excel file...')

 wb.save(file_name)

 print('Excel file saved. Exiting gracefully.')

 cap.release()

71

 out.release()

 cv2.destroyAllWindows()

 exit(0)

signal.signal(signal.SIGINT, save_excel_and_exit)

suntarget = TARGET(xcam/2, ycam/2)

ws.append(['Time','MoveX','MoveY','ObjectX','ObjectY','Label'])

ws2.append(['Time','Predicted X displacement','Predicted Y

displacement','PredictedMoveX','PredictedMoveY'])

calibration = 0 #calibration needed if coord1 and 2 empty.

coord1=[379,398]

coord2=[340,384]

unitpermovex = 0

unitpermovey = 0

sun_xmid = 0

sun_ymid = 0

global status

status = 'Stay'

calibrationonce = True

nextstoptime = None

n = True

while cap.isOpened ():

 # Read a frame from the video

 success, frame = cap.read()

 print(status)

 if success:

 # Run YOLOv8 inference on the frame

 frame = cv2.resize(frame,(800,800))

 results = model.predict(frame,imgsz=(800,800), conf=0.1)

 if calibration == 1:

72

 #print("0")

 for result in results: # iterate results

 boxes = result.boxes.cpu().numpy() # get boxes on CPU in numpy

 cloud_midpoints_frame = [] # Temporary array for cloud midpoints

in the current frame

 for box in boxes: # iterate boxes

 x1box, y1box, x2box, y2box = box.xyxy[0].astype(int)

 x_mid = (x1box + x2box) // 2 # calculate midpoint x-coordinate

 y_mid = (y1box + y2box) // 2 # calculate midpoint y-coordinate

 name = box.cls[0]

 if name == 1: # Sun is detected

 sun_xmid = x_mid

 sun_ymid = y_mid

 if n == True:

 coord1 = (sun_xmid, sun_ymid)

 print(f"Midpoint of sun: ({sun_xmid}, {sun_ymid})")

 nextstoptime = currenttimedecimal()+60/3600

 t1 = currenttimedecimal()

 #print("1")

 n = False

 elif n ==False and currenttimedecimal()>=nextstoptime:

 print('1')

 coord2 = (sun_xmid, sun_ymid)

 print(f"Midpoint of sun: ({sun_xmid}, {sun_ymid})")

 calibration = 0

 t2=currenttimedecimal()

 time_cali = (t2-t1)*3600#sun calibration time 10 mins

 print(f"calibration duration = {time_cali}")

 #print("2")

 break

73

 elif calibration == 0:

 if calibrationonce == True:

 print(f"Coordinate of sun before 10 mins: {coord1}")

 print(f"Coordinate of sun after 10 mins: {coord2}")

 calcunitpermove = True

 firstsun = True

 ws3.append(['coodinate of sun before 10 mins',coord1[0],coord1[1]])

 ws3.append(['coodinate of sun after 10 mins',coord2[0],coord2[1]])

 ws3.append(['calibration time',time_cali])

 calibrationonce = False

 for result in results: # iterate results

 buffer_time = 0

 x = 0

 y = 0

 xdisplacement = 0 #unit

 ydisplacement = 0

 predictedxmove = 0

 predictedymove = 0

 label = None

 #global status

 #status = 'Stay'

 Flag = 0

 if calcunitpermove == True and firstsun == True:

 sunx1,suny1 = sun_xmid, sun_ymid

 firstsun=False

 print('ok')

 elif status == 'Reach'and calcunitpermove == True:

 #elif Flag == 1 and calcunitpermove == True:

 sunx2, suny2 = sun_xmid, sun_ymid

74

 #sunx2,suny2 = coord2[0], coord2[1]

 unitpermovex = (sunx2-sunx1)/movex

 unitpermovey = (suny2-suny1)/movey

 print(unitpermovex)

 print(unitpermovey)

 calcunitpermove = False

 if(currenttimedecimal()>starttime and

currenttimedecimal()<endtime):

 boxes = result.boxes.cpu().numpy() # get boxes on CPU in numpy

 sun_detected = False # Reset the flag for each frame

 cloud_midpoints_frame = [] # Temporary array for cloud

midpoints in the current frame

 for box in boxes: # iterate boxes

 x1box, y1box, x2box, y2box = box.xyxy[0].astype(int)

 x_mid = (x1box + x2box) // 2 # calculate midpoint x-coordinate

 y_mid = (y1box + y2box) // 2 # calculate midpoint y-coordinate

 name = box.cls[0]

 if name == 1: # Sun is detected

 label = 'Sun'

 sun_detected = True

 print(f"Midpoint of sun: ({x_mid}, {y_mid})")

 sun_area = (x2box - x1box)*(y2box - y1box)

 sun_area_threshold = 400

 if sun_area < sun_area_threshold:

 print('half sun detected')

 sun_xmid = x_mid #for q learning

75

 sun_ymid = y_mid #for q learning

 twocloud_coord = [] #to save the coordinate of the two clouds

before and after 60sec

 loop = 0

 sunposition = SUNMOVINGPOINT(sun_xmid,sun_ymid)

 x,y,threshold_distance=

motormove('sun',sunposition,suntarget,threshold_distance,sun_threshold_dista

nce_range)

 xdisplacement = 0 #unit

 ydisplacement = 0

 predictedxmove = 0

 predictedymove = 0

 elif name == 0 : #sun not detected

 label = 'Cloud'

 print(f"Midpoint of cloud: ({x_mid}, {y_mid})")

 cloud_midpoints_frame.append((x_mid, y_mid)) # Store

cloud midpoint in the current frame

 cloud_corner1_frame.extend([x1box, y1box])

 cloud_corner2_frame.extend([x2box, y2box])

 buffer_time = 60

 movex = movex + x

 movey = movey + y

ws.append([currenttimedecimal(),movex,movey,x_mid,y_mid,label])

 # If the sun is not detected, save all cloud midpoints from the last

frame

 if not sun_detected:

76

 cloud_midpoints.extend(cloud_midpoints_frame) # Append

cloud midpoints from the current frame

 print("Sun not detected. Saving cloud midpoints...")

 print("Cloud Midpoints when sun dissapear:", cloud_midpoints)

 loop += 1

 min_distance = float('inf')

 blockcloud = None

 for coord in cloud_midpoints:

 distance = calculate_distance(coord[0], coord[1], cammid[0],

cammid[1])

 if distance < min_distance:

 min_distance = distance

 blockcloud = coord

 if blockcloud:

 print(f"The cloud blocking is: {blockcloud}")

 twocloud_coord.extend(coord)

 cloud_midpoints = []

 if loop > 1:

 loop = 0

 #Shad_time = True

 print(f"The coordinate of blocking cloud b4 and after is:

{twocloud_coord}")

 coord3 = (twocloud_coord[0],twocloud_coord[1])

 coord4 = (twocloud_coord[-2],twocloud_coord[-1])

 #the two corner coordinate of the shading cloud

 x1cloud = cloud_corner1_frame[2]

 x2cloud = cloud_corner2_frame[2]

 y1cloud = cloud_corner1_frame[3]

77

 y2cloud = cloud_corner2_frame[3]

 #xlength and ylength of the shading cloud

 xlength = x2cloud - x1cloud

 ylength = y2cloud - y1cloud

 #vector

 Sx = (coord2[0] - coord1[0])/time_cali

 Sy = (coord2[1] - coord1[1])/time_cali

 Cx = (coord4[0] - coord3[0])/time_cloud

 Cy = (coord4[1] - coord3[1])/time_cloud

 #Cloud movement

 Anglecloud = calc_Anglecloud(coord3, coord4)

 #Cloud prediction

 Check =

(math.tan(math.radians(Anglecloud)))*(xlength/2)

 Treshold = ylength/2

 if Check >= Treshold:

 Ycloud = coord4[1]

 Shad_time = abs(((ycam/2)- Ycloud +

(ylength/2))/(Cy - Sy))

 else:

 Xcloud = coord4[0]

 Shad_time = abs(((xcam/2)- Xcloud +

(xlength/2))/(Cx - Sx))

 x3 = (xcam/2)+ (Shad_time*Sx)

 y3 = (ycam/2)+ (Shad_time*Sy)

78

 xdisplacement = x3 - (xcam/2)

 ydisplacement = y3 - (ycam/2)

 print(f"x displacement: {xdisplacement}unit")

 print(f"y displacement: {ydisplacement}unit")

 predictedxmove = round(xdisplacement / unitpermovex)

 predictedymove = round(ydisplacement / unitpermovey)

 x,y =

predictmotormove(predictedxmove,predictedymove)

 buffer_time = 0

ws2.append([currenttimedecimal(),xdisplacement,ydisplacement,predictedxmo

ve,predictedymove])

 else:

 print("No cloud midpoints to calculate the nearest.")

 print(f"Pls wait {buffer_time+ Shad_time}seconds")

 time.sleep(buffer_time+ Shad_time)

 else:

 break

 # Visualize the results on the frame

 annotated_frame = results[0].plot()

 for box in results[0].boxes.xywh:

 x, y, w, h = box

79

 annotated_frame = cv2.circle(annotated_frame, (int(x), int(y)), radius=0,

color=(255, 0, 0), thickness=4) #BGR

 annotated_frame = cv2.circle(annotated_frame, (xcam//2, ycam//2),

radius=0, color=(0, 0, 255), thickness=4) #BGR

 annotated_frame = cv2.resize(annotated_frame, (640,640))

 # Display the annotated frame

 cv2.imshow("YOLOv8 Inference", annotated_frame)

 out.write(annotated_frame)

 # Break the loop if 'q' is pressed

 if cv2.waitKey(1) & 0xFF == ord("q"):

 break

 else:

 # Break the loop if the end of the video is reached

 break

