RISC-V INSTRUCTION SET EXTENSION ON
BLOCKCHAIN APPLICATION
By
Cheong Kin Seng

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER
ENGINEERING
Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN APPLICATION

Academic Session: JAN 2024

CHEONG KIN SENG

(CAPITAL LETTER)
declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

pt P

(Author’s signature) (Supervisor’s signature)

Address:
3, Lorong Kledang Timur 13,
Taman Rasi, 31450 Menglembu, _0Ooi Joo On

Perak. Supervisor’s name

Date: 25 APRIL 2024 Date: 26 APRIL 2024

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 25 APRIL 2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that Cheong Kin Seng (ID No:

204ACB03898) has completed this final year project/ dissertation/ thesis* entitled
«“ RISC-V Instruction Set Extension on Blockchain Application ” under the
supervision of Dr. Ooi Joo Onn (Supervisor) from the Department of Digital
Economy Technology , Faculty/Institute* of Information and
Communication Technology , and (Co-Supervisor)* from the
Department of , Faculty/Institute* of

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf
format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Cheong Kin Seng)

*Delete whichever not applicable

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “RISC-V INSTRUCTION SET EXTENSION ON
BLOCKCHAIN APPLICATION” is my own work except as cited in the references. The
report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : jﬁ@

Name : Cheong Kin Seng

Date . 25 April 2024

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Ooi Joo Onn
who has given me this bright opportunity to engage in a RISC-V architecture project. It is my
first step to establish a career in IC design field with relate to the RISC-V architecture which
is trending now. A million thanks to you. Besides, I would like to thank my moderator, Mr Lee
Heng Yew, to take part in the review of my project, in order to provide me some useful insights

and comments for me to improve on my project.

Finally, I must say thanks to my parents and my family for their love, support, and continuous

encouragement throughout the course.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project is an instruction set extension project based on RISC-V architecture for academic
purpose. Blockchain technology was widely used today to keep records due to its high security
and reliability. However, blockchain required a high computing power to function. Although
there were numerous ways to improve the performance speed of blockchain technology in
software implementations, hardware implementation of the blockchain algorithms was a more
preferred choice due to the emerging open-source computer architecture, RISC-V. RISC-V was
free and open license for anyone to customize their IC design. By adding new instruction
extensions to the RISC-V cores, they could be specialized to run certain types of tasks. This
would greatly shorten the instructions used by the algorithms and improved the execution time
of the programmes. One of the most common cryptographic algorithms used in blockchain
would be selected in this paper, typically djb2 hash algorithm. In this project, some instructions
were proposed to execute the cryptographic algorithm in shorter clock cycles and shorter
execution time. Towards the end of the project, the algorithms would be executed in a base
RISC-V core and an extended RISC-V core using simulation tools to perform performance
analysis. The simulation tool used in this project was Chipyard, which is a one-stop
development tool for anything regarding RISC-V customization. One of the main components
in Chipyard was Spike simulator, which was a software simulation tool in RISC-V standards
to execute the software executable file and also output the hardware information used during
the execution. Spike was used to run the compiled source codes in C/C++ language to
determine the execution time and clock cycles used by the programme. A RISC-V GNU
toolchain was installed for the compilation of the programme. The toolchain was also
customised and extended with extra instructions to compile the programme. The compiled
programme was simulated in Spike ISA simulator to test with the extension and without the

extension. The results were presented at the end of the report.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

TABLE OF CONTENTS

TITLE PAGE

REPORT STATUS DECLARATION FORM
FYP THESIS SUBMISSION FORM
DECLARATION OF ORIGINALITY
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.2 Objectives
1.3 Project Scope and Direction
1.4 Contributions

1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW

2.1 A RISC-V Processor with Area-Efficient Memristor-Based In-
Memory Computing for Hash Algorithm in Blockchain
Applications

2.2 Symmetric Cryptography on RISC-V: Performance Evaluation of
Standardized Algorithms

2.3 RISC-V Instruction Set Extensions for Lightweight Symmetric
Cryptography

2.4 VPQC: A Domain-Specific Vector Processor for Post-Quantum
Cryptography Based on RISC-V Architecture

2.5 The design of scalar AES instruction set extensions for RISC-V

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii
iii

iv

vi

vii

Xi
Xii

xiii

AW WD = -

Vii

2.6 Critical Remarks of Previous Works 9

2.6.1 Strengths 9

2.6.2 Weaknesses 9

CHAPTER 3 SYSTEM MODEL (FOR RESEARCH-BASED 10
PROJECT)

3.1 System Design Diagram/Equation 10

3.1.1 Description of DJB2 String Hash 10

3.1.2 Translation Hierarchy of C/C++ Programmes 11

3.1.3 System Architecture Diagram 12

3.2 RISC-V Architecture 13

CHAPTER 4 SYSTEM DESIGN 15

4.1 Design of Instruction Set Extension 15

4.1.1 Block Diagram of DJB2 String Hash Instruction Extension 15

4.1.2 Opcode of DJB2 String Hash Instruction Extension 15

4.1.3 Pseudocode of DJB2 String Hash Instruction Extension 17

4.2 Blockchain Application Source Codes 17

4.2.1 Assembly Codes of String Hash Function 18

4.3 Unit Test Programmes 19

4.3.1 Assembly Codes of Unit Test Programmes 22

CHAPTER 5 EXPERIMENT/SIMULATION 24

5.1 Hardware Setup 24

5.2 Software Setup 24

5.3 Setting and Configuration 24

5.4 System Operation (with Screenshot) 25

5.4.1 Source Code Compilation 25

5.4.2 Extending RISC-V GNU Toolchain 25

5.4.3 Modification of Spike ISA Simulator 27

5.5 Implementation Issues and Challenges 30

5.6 Concluding Remark 31

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1
6.2
6.3
6.4
6.5

System Testing and Performance Metrics
Testing Setup and Result

Project Challenges

Objectives Evaluation

Concluding Remark

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1
7.2

Conclusion

Recommendation

REFERENCES
APPENDIX
WEEKLY LOG

POSTER

PLAGIARISM CHECK RESULT
FYP2 CHECKLIST

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

32
32
33
33
33

34
34
34

35
36
49
54
55
58

Figure Number

Figure 1.5.1
Figure 1.5.2
Figure 1.5.3
Figure 2.1.1

Figure 2.1.2
Figure 2.1.4
Figure 2.1.5.1

Figure 2.1.5.2

Figure 3.1.1
Figure 3.1.2
Figure 3.1.3
Figure 3.2.2
Figure 4.1.1.1
Figure 4.1.2.1
Figure 4.1.2.2
Figure 4.1.2.3

Figure 4.1.2.4
Figure 4.2
Figure 4.2.1
Figure 4.3.1
Figure 4.3.2

LIST OF FIGURES

Title

Simplified view of the blockchain.
Cryptographic algorithms.

Cryptographic algorithms.

Modified RISC-V processor core with in-memory
computing (IMC).

RV32I assembly code of SBOX table.

The architecture of VPQC.

An AES encryption round implemented using
hardware-assisted T-tables.

Instruction mnemonics, and their mapping onto
pseudo-code functions.

C implementation of djb2 string hash.
Translation Hierarchy for C/C++ Programmes
System Design Implementation Flowchart
RISC-V 32-bit instruction formats

Block Diagram of Instruction Set Extension
RISC-V Base Opcode Map

Opcodes of DJB2 String Hash Instruction
Opcode’s Mask and Match Values of Custom
Instruction

Format for the Declaration of Instruction
Code Snippet of hash.c

Assembly Codes of hash.c

Code Snippet of test _hash.c

Code Snippet of test_hash asm.c

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

o N N B

11
11

12

10
11
12
13
15
15
16
16

16
18
19
20
21

LIST OF TABLES

Table Number Title Page
Table 1.5.1 The structure of a block. 4
Table 1.5.2 The structure of a block header. 5
Table 3.1.1 Specifications of PC 16
Table 3.2.1.1 DWORD padding 17
Table 5.1.1 Specifications of PC 24
Table 5.3.1 Usage of Optimization Flags 25
Table 6.2.1 Simulation Results 32

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

LIST OF SYMBOLS

beta

=

Q Ohm (resistance)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xii

LIST OF ABBREVIATIONS

PoW Proof of Work

RISC-V Reduced Instruction Set Computer (V)
JAY:| Instruction Set Architecture

ISE Instruction Set Extension

AES Advanced Encryption Standard

SHA Secure Hashing Algorithm

SM2 ShangMi 2

SM3 ShangMi 3

SM4 ShangMi 4

NIST National Institute of Standards and Technology
HDL Hardware Description Language

LwC Light Weight Cryptography

LWE Learning with Errors

RTL Register-Transfer Logic

HDL Hardware Description Language

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiii

CHAPTER 1

Chapter 1

Introduction
1.1 Problem Statement and Motivation

Mining was the mechanism that underpinned the decentralized clearing house, by
which transactions were validated and cleared [2]. However, on average, every 10
minutes [2] a new block was created with transactions that had taken place since the
previous block, effectively adding these transactions to the blockchain. It was important
to improve the efficiency of computing the cryptographic algorithms for the blockchain
technology to scale economically and timely. One way to improve the performance of
adding the new blocks to the chain was to have the computing chips designed to run

specifically for the use of blockchain technology.

RISC-V was an instruction set architecture (ISA) which was developed from
reduced instruction set computers (RISC) concepts. What set RISC-V apart from other
ISA designs was that it was freely available under open-source licenses (Refer
Appendix A-1 for its architecture). [4] There had been a recent surge of interest in
RISC-V, with many companies starting to offer RISC-V hardware. It supported 32-bit,
64-bit, and 128-bit architectures. RISC-V's popularity stemmed from its ability to
facilitate the development of specialized microprocessor designs. Unlike other
architectures, RISC-V was flexible and modular, which allowed for tailored designs
that were free from unnecessary features and capabilities that could negatively impact
performance and energy usage. Additionally, RISC-V's open-source nature lowered its

cost compared to proprietary RISC.

In October 2021, RISC-V published the volume 1 of the cryptography ISE that
provided the developers a set of specialized instructions for cryptographic algorithms
used in scalar calculations, namely the “Scalar & Entropy Source Instructions™ [5]. In
April 2023, RISC-V published the volume 2 of the cryptography ISE for the use in
vector calculations, namely the “Vector Instructions” [6]. In this paper, a solution was
proposed to extend the RISC-V ISA cryptography extension to enhance the
performance of computing blockchain algorithms in terms of clock cycles and

execution time.

CHAPTER 1

The motivation of this project was that the blockchain technology was a
decentralized ledger that ensured secure and transparent transaction records. The
network was maintained by nodes that verified and appended transactions to the
blockchain. However, with an increase in the number of transactions, the need for
additional nodes increased, leading to potential delays and increased fees [7].
Enhancing the clock cycles of the blockchain system could improve transaction speed
and decrease fees, thus making the technology more efficient and accessible to

businesses and individuals.

1.2 Objectives

The aim of the paper was to propose a few specific hardware instructions to be added
into the RISC-V ISA cryptography extension for the acceleration of some common
cryptographic algorithms used in blockchain. There were a few objectives that should

be achieved in this project.

Firstly, a functioning blockchain application with its cryptographic hash
function should be built. A thorough study through the algorithm in RISC-V assembly

codes should be studied to design its instruction set extension for customization.

Firstly, the proposed instructions should be able to reduce the code size when
the algorithms were translated into assembly languages, thus decreasing the instructions
per clock cycle when the processor was running the programmes. The code size will be
compared between the algorithms when running the base RV32I or RV64I instruction

set versus the one running in the base instruction set with the proposed instruction set.

Secondly, the proposed instructions were expected to improve the
performance of clock cycles and execution time of the algorithms mentioned when
running in the proposed solution than using the base RV32IMAFDC or RV64IMAFDC

instruction set.

CHAPTER 1

1.3 Project Scope and Direction

The scope of the project was to design a RISC-V ISE for the cryptographic algorithm
of blockchain technology. This included with developing the blockchain application
with cryptographic hash algorithm for design development, testing and verification.
The selection of tools for this project was necessary to learn about the functionality and
coverage for the success of this project. Besides, the RISC-V GNU Toolchain should
be customized with additional instruction, as well as to ensure the source codes would
be compiled with the custom instruction set. Then, a performance benchmark of the
hash algorithm would be carried out to compare the performance when running in a

base RISC-V machine and in a base RISC-V machine with the extended instruction set.

14 Contributions

The proposed RISC-V instruction set extension (ISE) aimed to improve the computing
performance of certain computational tasks by providing a set of new instructions
optimized for these tasks. By adding these instructions to the RISC-V ISA, the project
would enable more efficient and faster execution of these tasks on RISC-V-based
processors. Unlike existing solutions that rely on software-based optimizations or
custom hardware accelerators, the approach in this paper leveraged the flexibility of the
RISC-V ISA to add new instructions that could be executed directly by the processor.
This approach not only simplified the design and implementation of the acceleration

but also reduced the overhead of executing the task on the processor.

A thorough analysis of the existing RISC-V ISA was conducted and identified with
the computational tasks that could benefit the most from the custom instructions. A set
of new instructions for these tasks were designed and prototyped as well as their
performance was evaluated on a simulated RISC-V processor. To evaluate the impact
and contribution of the suggested ISE, a comprehensive set of benchmarks was planned
to conduct to run the blockchain algorithms in the RISC-V simulator with the original
instruction set and extended instructions. The results were expected to demonstrate a

significant improvement in performance compared to existing solutions.

CHAPTER 1

1.5 Report Organization

This report consists of seven chapters were written in this report. Chapter 1 was the
project introduction; Chapter 2 was review of literature; Chapter 3 was describing the
system model; Chapter 4 was outlining the system design; Chapter 5 was the detailed
process of experiment and simulation; Chapter 6 reported the system testing and
evaluation; and Chapter 7 concluded the project and suggestions for further

improvements.

CHAPTER 2

Chapter 2

Literature Review

2.1 “A RISC-V Processor with Area-Efficient Memristor-Based In-Memory
Computing for Hash Algorithm in Blockchain Applications”

Xue et al. (2019) proposed the addition of a memristor-based in-memory computing
(IMC) core on a RISC-V processor for the blockchain technology. Figure 2.1.1 [8]
showed the additional memory module, i.e., the IMC module was installed in the CPU
core along with with a modified IMC controller and operation module. The IMC-
adapted instructions, which extended from the base RISC-V ISA were designed
specifically for the Keccak hash algorithm. The authors were successful to prove that
the addition of the IMC core in the RISC-V processor could save both execution time
and power consumption tremendously by 70% as compared to the base processor

without any extension.

Bus Interface Unit

o e

CPU Core
IMC Module

Instruction Arithmetic > Memory >

Fetch Unit Logic Unit Controller Write back

to registers
---------- R A
.............. * omeeeeeeeeeeoeoeoooooos ™| Instruction |
H [s 1
. . ’ Memory :
: IMC ; ; :
~ - M ['
; Controller IMC Core i 17| Data Memory |[:

Figure 2.1.1 Custom in-memory computing (IMC) module.

CHAPTER 2

2.2 “Symmetric Cryptography on RISC-V: Performance Evaluation of
Standardized Algorithms”

Nisanci, G., Flikkema, P.G., and Yalcin, T. (2022) presented software-only algorithms
with the RISC-V RV32I ISA. The performance of these algorithms was compared to
the performance of a RISC-V processor with customized hardware design
cryptographic execution. They implemented grev|[i], shlf[i], and unshlf]i] in their work.
The authors [9] showed that the software implementations with the RISC-V
cryptography set extension provided significant improvements for the selected
algorithms (AES, CAST-128, SEED-V1, CAMELLIA V1, SEED-V2) at an additional
hardware cost of less than 9%. It is indeed a considerable amount of investment to
upgrade the hardware to cater for the needs of the cryptographic algorithms. The
authors also proposed a new instruction to accelerate the operations for calculation of
memory address for 8-bit input SBOX table. Figure 2.1.2 showed the RV32I assembly
code of the SBOX tables. Therefore, the authors used one instruction, instead of three

to calculate the memory address for 8-bit input SBOX tables.

1 SRLI(RD1,RS1,imm1) 1 SRLI(RD1,RS1,imm2) 1 SRLI(RD1,RS1,imm3)
2 ANDI(RD2,RD1,0xFF) 2 ANDI(RD2,RD1,0x1FE) 2 ANDI(RD2,RD1,0x3FC)
3 ADD(RD3,RD2,A0) 3 ADD(RD3,RD2,A0) 3 ADD(RD3,RD2,A0)

(a) 8x8 Table (b) 8x16 Table (c) 8x32 Table

Figure 2.1.2 RV32I assembly code of SBOX table.

23 “RISC-V Instruction Set Extensions for Lightweight Symmetric
Cryptography”

Cheng H. et al. (2023) presented the design, implementation, and evaluation of each
ISE for the ten LightWeight Cryptography (LWC) selected which were suitable for
resource-constrained devices. The authors [10] developed the ISE designs for ten of the
said algorithms by following a set of principled constraints. First, they followed the
RISC-V design principles, which was the instructions with the three registers. Then,
the authors implemented the designs with the RISC-V compliant Rocket core. When
compared to software-only options, the authors observed that 1) ISEs had minimal
additional overhead costs in hardware, 2) the ISEs can reduce execution time, which
varies based on the algorithm, and 3) the ISEs allow for consistent execution time and

a decrease in the size of the instruction set. varies based on the algorithm, and 3) the

CHAPTER 2

ISEs allow for consistent execution time and a decrease in the size of the instruction

set.

24 “VPQC: A Domain-Specific Vector Processor for Post-Quantum
Cryptography Based on RISC-V Architecture”

Xin, G. et al. (2020) suggested the development of a configurable cryptographic
processor, VPQC, for key encapsulation schemes, running both Ring-LWE and
Module-LWE schemes, which included a vector co-processor in a basic RISC-V core
in Figure 2.1.4. They explored the vectorization of number theoretic transform (NTT)
and sampling algorithms and design a high-performance vector architecture using
custom instructions that extended the RISC-V ISA. The proposed processor [11]
exhibited significantly faster computation speeds for key encapsulation mechanisms
(KEM) protocols compared to previous implementations, providing a high-speed PQC

platform for security applications.

sy
,’/ 512 Const RAM & % v Arithmetic Uni Datal \\
/! & v?z,, ector Arithmetic Units (7> ‘
// 12 512,
/ 512
- 7| Controland |
"“|‘” — 7/~ Status Registers| || Pre- | Vectorized | Post- il;ag;.l
RSOV || wojsT 12|! Permutation | Butterfly | | Permutation ",
Core m Data_out 512 " ol nEtwork | i Units i :__.’!93!‘!9_’]!...:75:
| e b =7 Twiddle Factors| s,
512 512 NTT Core
Vector e RAM
Coprocessor
Mem.req
”l 1 51] Vi . Data3
o™ l — st | Vector Regfile | v :1‘1’ Vectorized Samplers >
i
51 snz/l/uauz_z et -
\ Instruction e 5, y,
\ —=+ Keccak Core ’ ’ ’ ‘ ’ ’
N | e Decoder (> e "
P E*:,%E%g s* Prefetch FIFO
N a's'glals J
e 3 0 _

Figure 2.1.4 The architecture of VPQC.

2.5 “The design of scalar AES instruction set extensions for RISC-V”

Marshall et al. (2020) implemented and evaluated five ISE designs for AES on two
different RISC-V complaint base microarchitectures. The authors found that the best
design for AES on 32-bit cores was to use a hardware-assisted T-tables, which required

only 20 instructions per round as shown in Figure 2.1.5.

CHAPTER 2

1 |1lw a0, 16(RK) // Load Round Key

2 | 1w al, 20(RK)

3 |1w a2, 24(RK)

4 | 1w a3, 28(RK) // to,t1,t2,t3 contains current round state.
5 | saes.v3.encsm a0, a0, t0, O // Nezt state for column O.

6 | saes.v3.encsm a0, a0, t1, 1 // Current column 0 in tO.

7 | saes.v3.encsm a0, a0, t2, 2 // Nezt column 0 accumulates in a0

8 | saes.v3.encsm a0, a0, t3, 3

9 | saes.v3.encsm al; al, ti, O // Nezt state for column 1

10 | saes.v3.encsm al, al, t2, 1

11 | saes.v3.encsm ai, al, t3, 2

12 | saes.v3.encsm ai, a1, 0, 3

13 | saes.v3.encsm a2; a2, 2, 0 // Nezt state for column 2.

14 | saes.v3.encsm a2, a2, t8, 1

15 | saes.v3.encsm a2, a2, to, 2

16 | saes.v3.encsm a2, a2, ti, 3

17 | saes.v3.encsm a3, a3, t3, 0 // Nezt state for column 3.

18 | saes.v3.encsm a3, a3, to, 1

19 | saes.v3.encsm a3, a3, ti, 2

20 | saes.v3.encsm a3, a3, t2, 3 // a0,al,a2,a3 contains new round state

Figure 2.1.5.1 An AES encryption round implemented using hardware-assisted T-
tables.
For the AES on 64-bit cores, the best design option was to adopt a 64-bit data-path,
where two columns were packed into a 64-bit word. Figure 2.1.5.2 showed the

examples of the assembly instructions of the AES.

1 | saes.v4.ks1 rd rsl rcon : v4.ksi(rd, rsl, rcon)

2 | saes.v4.ks2 rd rs1 rs2 : v4.ks2(rd, rsil, rs2)

3 | saes.v4.imix rd rsi : v4.InvMix(rd, rsi)

4 | saes.v4.encsm rd rsl1 rs2 : v4.Enc(rd, rsi, rs2, mix=1)
5 | saes.v4.encs rd rsl rs2 : v4.Enc(rd, rs1, rs2, mix=0)
6 | saes.v4.decsnm rd rs1 rs2 : v4.Dec(rd, rsl, rs2, mix=1)
7 | saes.v4.decs rd rs1 rs2 : v4.Dec(rd, rsl, rs2, mix=0)
8

9 |v4.ks1(rd, rsl, enc_rcon): // KeySchedule: SubBytes, Rotate, Round Const
10 temp.32 = rs1.32[1]

31 rcon = 0x0

12 if (enc_rcon != OxA):

13 temp.32 = ROTR32(temp.32, 8)

14 rcon = RoundConstants.8[enc_rcon]

15 temp.8[i] = AESSBox[temp.8[i]l] for i=0..3

16 temp.8[0] = temp.8[0] ~ rcon

17 rd.64 = {temp.32, temp.32}

18

19 | v4.ks2(rd, rsil, rs2): // KeySchedule: XOR
20 rd.32[0] = rs1.32[1] ~ rs2.32[0]
21 rd.32[1] = rs1.32[1] ~ rs2.32[0] ~ rs2.32[1]
22

23 |v4.Enc(rd, rs1l, rs2, mix): // SubBytes, ShiftRows, MizColumns

24 t1.128 = ShiftRows ({rs2, rsi1})

25 t2.64 = t1.64[0]

26 t3.8([1] = AESSBox[t2.8[i]] for i=0..7

27 rd.32[i] = AESMixColumn(t3.32[i]) if mix else t3.32[i] for i=0..1

28

29 |v4.Dec(rd, rs1l, rs2, mix, hi): // InvSubBytes, InvShiftRows, InvMizColumns
30 t1.128 = InvShiftRows(rs2 || rsi1)

31 t2.64 = t1.64[0]

32 t3.8[1] = AESInvSBox[t2.8[i]] for i=0..7

33 rd.32[i] = AESInvMixColumn(t3.32[i]) if mix else t3.32[i] for i=0..1
34

35 |v4.InvMix(rd, rsi): // Inverse MizColumns

36 rd.32[i] = AESInvMixColumn(rs1.32[i]) for i=0..1

Figure 2.1.6 AES pseudo-code functions.
Furthermore, the RISC-V bitmanip ISE could combine with either a hardware assisted
T-tables or a 64-bit datapath to support AES-GCM, which the block ciphers took

advantage of parallel processing.

CHAPTER 2

2.2 Critical Remarks of Previous Works

2.2.1 Strengths

The strengths of the IMC core as proposed by Xue et al. [8] were the addition of the
additional IMC module in the CPU core to assist in accelerating the execution time and
clock cycles of the processes. The authors implemented additional memory in their
solution that could reduce the execution time by 70% as compared to the base core
without extension.

Nisanci, G., Flikkema, P.G., and Yal¢in, T. implemented few custom
instructions to reduce the execution time of the symmetric cryptographic algorithms by
accelerating the calculation of memory address used by the algorithms. The solution
was proven successful to speed up the execution time and clock cycles when running

the algorithms with the custom instructions.

2.2.2 Weaknesses

However, these techniques also have several weaknesses. One of the studies did not
cover on the diverse cryptographic algorithms found in blockchain application with the
addition of the IMC core [8] in RISC-V processor as proposed by Xue et al., although
the authors achieved a remarkable performance to reduce the execution time and power
consumption with limited area overhead in the execution of Keccak algorithm. It is also
expensive for the chip manufacturers to design and integrate it with the RISC-V core.

Nisanci, G., Flikkema, P.G., and Yalgin, T. used loop unrolling [9] in the
software implementations of cryptographic algorithms to produce their results, which
increased the programme’s execution speed. However, this practice is not reliable as
the developers of the cryptographic algorithms would prefer using ‘for’ loop and
‘while’ loop in their approach to save time and reduce workload.

Xin et al. proposed the addition of a vector co-processor with the RISC-V base
core to run the post-quantum cryptographic workloads. Although the computation
speeds for the workloads were significantly improved, the processor core did not show
versatility to support the other cryptographic algorithms. To implement a non-versatile
processor core to operate for a limited number of functions, it would be very costly and

non-economical, just like in [8].

CHAPTER 3

Chapter 3
System Model

3.1 System Design Diagram/Equation

3.1.1 Description of DJB2 String Hash

The cryptographic algorithm selected in the system design was djb2 string hash
algorithm. A simple implementation of the djb2 in C was illustrated in Figure 3.1.1

[17].

unsigned long
hash(unsigned char *
{
unsigned long
e (SR

while (c = #
= ((

return

djb2 hash

@theartincode

Figure 3.1.1 C implementation of djb2 string hash.

The 32-bits prime number 5381 was assigned to the variable ‘hash’. A full iteration of
the character string ‘str’ was performed to each of its character with the djb2 string
hash algorithm. The djb2 string hash algorithm would firstly perform a shift-left
operation to the hash variable by 5, and then add it back by itself. This would also
mean that the hash variable was multiplied by itself by a factor of 33. After that, the
ASCII value of the current character was added to it. After the full iteration of the
character string was being done, the function would return the final value of hash to

the caller function.

3.1.2 Translation Hierarchy for C/C++ Programmes

10

CHAPTER 3

C/C++ Source Code

N\

Compiler

N\

Assembly Language Programme

Assembler

Object: Machine Language Module Object: Library Routine (machine language

Executable: Machine Language Programme

Figure 3.1.2 Translation Hierarchy for C/C++ Programmes

Memory

In Figure 3.2.3 above, to be able to run in a RISC-V machine, C/C++ source codes were
to be compiled with a RISC-V compatible compiler. An assembly language programme
would be produced and passed to the assembler. Then, the assembler would generate
an object file, which would be the machine language module. Another object file, which
was the library routine in machine language, defined in the compiler toolchain, would
be then processed together with the object file from the assembler into the linker. The
linker would generate an executable file for the machine to execute the codes. The
loader would read from the executable file and load the machine codes into the memory

of the registers in the RISC-V machine.

11

CHAPTER 3

3.1.3 System Architecture Diagram

P o e am e -,
b}

(Blockchain Application]

%
i s

=

| DJB2 String Hash |
Function

RISC-V GNU L_

Compiler

RISC-V Instruction Set
Extension

Assembly 1
Code

RISC-VISA Simulator
| (With or Without Extension]

Not Satisfied
Simulation

Results

Performance Analysis

Satisfied

o === e,
) End 1
N
Figure 3.1.3 System Design Implementation Flowchart
The illustration of the system design implementation flow was shown in Figure 3.1.3.
The design flow started with completing the source codes of the blockchain application.

The development of the blockchain application should include the djb2 string hash

12

CHAPTER 3

function as describe in section 3.1.1. Then, the application would be compiled with the
existing RISC-V GNU Toolchain. The compiler toolchain would produce an assembly
file with all the RISC-V assembly instructions used in the programme execution. The
assembly codes should be studied and analysed, so that the registers used were known.
After that, the information would be used to design the custom instruction set extension.
Then, the extension would be defined in the compiler toolchain and the toolchain should
be rebuilt. The blockchain application should be compiled again and the assembly codes
should include the customized instructions. The compiled files would be executable
and a RISC-V ISA simulator, with or without the instruction set extension would
execute the file. The simulation results would be generated, such as the clock cycles
and the number of instructions executed. Then, the analysis would be performed on the

results to determine the performance of the system.

3.2 RISC-V Architecture
RISC-V is an open-source, royalty-free instruction set architecture (ISA) that defines
the set of instructions that a computer processor can execute. It is designed to be simple,
modular, and highly customizable.
It has a variety of standard extensions:
1) RV32I/RV641/RV128I: The base integer instruction sets with 32, 64, or 128-
bit data widths.
2) M (Integer Multiplication and Division): Adds instructions for integer
multiplication and division.
3) F (Single-Precision Floating-Point) and D (Double-Precision Floating-
Point): Extensions for floating-point arithmetic.
4) C (Compressed): Reduces instruction size by using 16-bit instructions for
common operations.
5) A (Atomic): Supports atomic memory operations for concurrency control.
6) V (Vector): Introduces vector operations for SIMD (Single Instruction,

Multiple Data) processing.

For a 32-bit RISC-V machine, it has the following structure for its instructions as
shown in Figure 3.2.2. The programme’s source codes were required to be translated to
the corresponding machine code in 32-bit or 64-bit format for the programme to

function correctly.

13

CHAPTER 3

31:25 24:20 19:15 14:12 11:7 6:0
funct? | rs2 sl funct3 | gd op
imm11:0 sl funct | zd op
mmmils | rs2 sl funct3 | mmmso | op
imm12,10:5 | rs2 1sl funct3 | imms1 1 | op
imms1:12 d op
1mMm?20,10:1,11,19:12 d op

5 bits 2bits Shits Shbhits 3 bits 5 bits 7 bits

Figure 3.2.2 RISC-V 32-bit instruction formats

14

CHAPTER 4

Chapter 4

System Design

4.1 Design of Instruction Set Extension

4.1.1 Block Diagram of DJB2 String Hash Instruction Extension

n=]

djb2 prime number

rsl

tharacter

———

rz2

djb2 string hash instruction

hazh result

rd

previous hash result

rzl

character

 —

rz2

djb2 string hash instruction

hash rezult

——

rd

Figure 4.1.1.1 Block Diagram of Instruction Set Extension

As illustrated in the block diagram in Figure 4.1.1.1, the djb2 string hash instruction

extension was accepting two inputs from rs/ and rs2 registers. The rs/ stored the djb2

prime number as defined in the djb2 string hash function of the blockchain application

in C. The rs2 stored each ASCII value of the character from a character string. Then,

the custom instruction would perform its behaviour to retrieve the value of the hash

result, which would be stored into the rd register. In the next iteration of character, the

hash result from the rd register would be loaded into the rs/ register to perform its

calculation again. The process would iterate itself for the next character in the character

string until no character was found.

4.1.2 Opcode of DJB2 String Hash Instruction Extension

inst[4:2] 000 001 010 011 100 101 110 111

inst|6:5] (> 32b)
00| LOAD | LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC | OP-IMM-32 48b
01| STORE |STORE-FP | custom-1 AMO opP LUI OP-32 64b
10 | MADD MSUB | NMSUB | NMADD | OP-FP | reserved | custom-2/rv128 | 48b
11 | BRANCH| JALR reserved JAL SYSTEM | reserved | custom-3/rv128 | > 80b

Figure 4.1.2.1 RISC-V Base Opcode Map

In Figure 4.1.2.1 [18], the opcodes labelled with ‘custom-0’, ‘custom-1’, ‘custom-2’,

and ‘custom-3’ were available for the use of custom instruction extension in RISC-V.

While there were three slots for reserved, it was better not to consume them as there

would be overlapping of opcodes in the future. The ‘custom-1" opcode was chosen for

15

CHAPTER 4

the custom extension of this project. The value for inst[6:5] was 01b and the value
inst[4:2] was 010b, hence these two values would be taken into design the opcode of

the custom instruction extension.

The opcode could be designed easily through a tool called ‘riscv-opcodes’ [19],
which could be cloned from its GitHub repo. It would automatically generate the
opcode for the RISC-V instruction after the custom instruction format was inserted into
one of the files and inputting the terminal command ‘make’ to build the ‘riscv-opcodes’
project. As shown in Figure 4.1.2.2, the format of custom instruction ‘djb2’ was

inserted into the v i file.

14..12=0 6.

14..12=0 6.. S
pred succ rsl1 14..12=0 rd 6..2=0x03 1..0=3

Figure 4.1.2.2 Opcodes of DJB2 String Hash Instruction
To breakdown the format, the ‘funct7’ from bit 31 to bit 25 has the value of 1, and
the ‘funct3’ from bit 14 to bit 12 has the value of 0. The opcode from bit 6 to bit 0 was
separately assigned for each bit to minimize the error of overlapping, i.e. bit 6 to bit 5
has the value of 1, bit 4 to bit 2 has the value of 2, and bit 1 to bit 0 has the value of 3.
Finally, the other unassigned bits [24:20] are for rs2, bits [19:15] are for rs1, and bits
[11:7] are for rd. The opcode of the instruction defined here was following the RTYPE

instruction, which was shown in Figure 3.2.2, Section 3.2.

After the ‘riscv-opcodes’ tool was built, the representation of the opcode of the
custom instruction would be generated in encoding.out.h file. The match and mask
values of the custom instruction would be used in later steps to call the custom

instruction.

BUB2 0x200002b

BUBZ oxfeoo707f

Figure 4.1.2.3 Opcode’s Mask and Match Values of Custom Instruction

In the same encoding.out.h file, there was a line of code to declare the custom

instruction in Figure 4.1.2.4, which will be used in the compiler.

3958 BECLARE_INSN(@§B2, MATCH_DUBZ, MASK_DUB2)

Figure 4.1.2.4 Format for the Declaration of Instruction

16

CHAPTER 4

4.1.3 Pseudocode of DJB2 String Hash Instruction Extension
The behavioural design of the djb2 string hash instruction custom extension could be
described in this way:
1. Assign the value of the prime number 5381 into rs/ register if first iteration,
else assign the value of rd into rs1/.
Shift-left the value inside »s/ by a factor of 5.
Add the shifted value with the value stored in rs/.
Add the value in rs/ with the value in rs2.

Store the final value into rd.

AR i

Repeat Step 1 until all characters are completely hashed.

4.2 Blockchain Application Source Codes

The blockchain application source codes were taken from the GitHub repo ‘A-Simple-
Blockchain-Simulation-Using-C’ [20]. The source codes consist of a blockchain.c
which acts as the parent file to call the other children files, a hash.c file to generate the
djb2 hash value for the strings, a linkedList.c file to link and chain the blocks together,
and some other header files to construct the classes. The full source codes were included

in Appendix C.

The hash.c file was the main file to make modifications for the project. The code
snippet is shown in Figure 4.2. A string would be passed from the parent file
blockchain.c into the function defined in string hash to generate the djb2 string hash
value. After all the characters from the string were executed with the string hash

function, the final value of the hash result would be returned to the caller.

17

CHAPTER 4

string hash(\ | *string)

result

¥) string;
"\O

result result << 5) + result
++p;

result;

Figure 4.2 Code Snippet of hash.c

4.2.1 Assembly Codes of String Hash Function

The assembly codes of the string hash function were as shown in Figure 4.2.1. The first
column represented the program counter of the RISC-V machine, which would be
incremented by 4 for every cycle. The second column represented the value of
instruction code in hexadecimal format. The third column represented the human-
readable instructions as decoded from the hexadecimal instructions from second

column.

18

CHAPTER 4

00000000000101aa <string hash>:
10laa: 7179 addi sp,sp,-48
10lac: 422 sd s0,40(sp)
101ae: 1800 addi s0,sp,48
101b0: fcad3c23 sd a0,-40(s0)
101b4: 6785 lui a5,0x1
101b6: 50578793 addi a5,a5,1285 # 1505 <exit-0xebe3>
101ba: fefd42623 sw a5, -20(s0)
101be: fd843783 ld a5,-40(s0)
101c2: fef43023 sd a5,-32(s0)
101c6: a805] 101f6 <string hash+0x4c>
fec42783 lw a5,-20(s0)
0057979b slliw a5,a5,0x5
2781 sext.w a5,as
fec42703 lw a4,-20(s0)
9fb9 addw a5,a5,ad
0007871b sext.w a4,as
fe043783 ld a5,-32(s0)
0007c783 Lbu a5,0(a5)
2781 sext.w a5,as
9fb9 addw a5,a5,a4
fef42623 sw a5,-20(s0)
fe043783 ld a5,-32(s0)
0785 addi a5,a5,1
fef43023 sd a5,-32(s0)
fe043783 1d a5,-32(s0)
0007c783 1lbu a5,0(a5)
f7e9 bnez a5,101c8 <string hash+0xle>
fec42783 lw a5, -20(s0)
853e mv a0,as
7422 1d s0,40(sp)
6145 addi sp,sp,48
8082 ret

Figure 4.2.1 Assembly Codes of hash.c

4.3 Unit Test Programmes

Two unit test programmes were written to test and validate the compiler without the
custom instruction extension and with the extension. The first unit test was named
test _hash.c and its purpose was to test the compiler without the custom instruction. The

code snippet of fest hash.c was shown in Figure 4.3.1.

19

CHAPTER 4

string

.r»',. 'p !_ J
result result << 5) + result + *p;

Figure 4.3.1 Code Snippet of test hash.c

The second unit test was to test the compiler with the extended instruction and was
named test_hash_asm.c. The source code was as shown in Figure 4.3.2. To directly call
the custom instruction, the function asm volatile() should be used. Then, write the
instruction name with its register variables. In this case, “djb2 %[z], %[x], %[y]” would
be equal to “djb2 rd, rs1, rs2”. The line ‘[z] “=r” (result)’ would represent that the write
operation to rd register after the result was computed. The line ‘[x] “r” (result), [y] “t”
(*p)’ represented the value of result to be assigned to rs/ register and the value of the
current character *p to be assigned to rs2 register. The computing operation of the
custom instruction would be done on back-end side of the RISC-V ISA Simulator, for

which the Spike tool was chosen as the simulator in this project.

20

CHAPTER 4

string

*p = "kinsen g";
result = 5381;

*p '= '\O

djb2 %[z], %[x], %[y]l\n\t'

4| 172) r" (result)
: [x] "r" (result), [y]

Figure 4.3.2 Code Snippet of test_hash _asm.c

21

CHAPTER 4

4.3.1 Assembly Codes of Unit Test Programmes
After the installation of the RISC-V GNU Toolchain, the following command line could

produce the assembly codes of the programme and output to a textfile.

Riscv64-unknown-elf-objdump -D filename > dumpfile.txt

The assembly codes of the first unit test programme without the custom instruction
were shown in Figure 4.3.1.1. The custom instruction of djb2 hash function was no

where to be found in the assembly code of the test programme.

00000000000101a6 <main>:
101a6: 1101 addi sp,sp,-32
101a8: ec22 sd s0,24(sp)
10laa: 1000 addi s0,sp,32
10lac: 67¢c5 lui a5,0x11
101ae: 74878793 addi a5,a5,1864 # 11748 < errno+0xa>
101b2: fef43423 sd a5, -24(s0)
101b6: 6785 Llui a5,0x1
101b8: 50578793 addi a5,a5,1285 # 1505 <exit-Oxebe3>
101bc: fefd42223 sw a5, -28(s0)
101cO: a805 j 101f0 <main+0x4a>
101c2: fed42783 lw a5, -28(s0)
101c6: 0057979b slliw a5,a5,0x5
101ca: 2781 sext.w a5,ab
101cc: fed42703 lw a4, -28(s0)
101d0O: 9fb9 addw a5,a5,a4
101d2: 0007871b sext.w a4,ab
101d6: fe843783 ld a5, -24(s0)
101da: 0007c783 Lbu a5,0(a5)
101de: 2781 sext.w a5,as
101e0: 9fb9 addw a5,a5,a4
101e2: fefd2223 sw a5, -28(s0)
101e6: fe843783 ld a5, -24(s0)
10lea: 0785 addi a5,a5,1
10lec: fef43423 sd a5,-24(s0)
101f0: fe843783 ld a5,-24(s0)
101f4: 0007c783 Lbu a5,0(as5)
101f8: f7e9 bnez a5,101c2 <main+0x1lc>
101fa: 4781 li a5,0
101fc: 853e mv a0,as5
101fe: 6462 ld s0,24(sp)
10200: 6105 addi sp,sp,32
10202: 8082 ret

Figure 4.3.1.1 Assembly Codes of Unit Test without Extension

In figure 4.3.1.2, the assembly codes of the second unit test programme with the
custom instruction were extracted into the assembly dump file. The custom instruction
djb2 was successfully called by the compiler, which would also mean the success of

extending the compiler with the custom instruction.

22

CHAPTER 4

00000000000101a6 <main>:
101a6: 1101
101a8: ec22
10laa: 1000
10lac: 67¢c5
101ae: 73878793
101b2: fef43423
101b6: 6785
101b8: 50578793
101bc: fef42223
101cO: abfo5
101c2: fe843783
101c6: 0007c783
101ca: fed42703
101ce: 02f707ab
101d2: fef42223
101d6: fe843783
101da: 0785
101dc: fef43423
101e0: fe843783
101e4: 0007c783
101e8: ffe9
10lea: 4781
101ec: 853e
101lee: 6462
101f0: 6105
101f2: 8082

addi sp,sp,-32

sd s0,24(sp)

addi s0,sp,32

lui a5,0x11

addi a5,a5,1848 # 11738 < errno+0xa>
sd a5,-24(s0)

lui a5, 0x1

addi a5,a5,1285 # 1505 <exit-Oxebe3>
sw a5, -28(s0)

j 101e0 <main+0x3a>

ld a5,-24(s0)

Lbu a5,0(as)

lw a4, -28(s0)

djb2 a5,a4,a5

sw a5, -28(s0)

ld a5,-24(s0)

addi a5,a5,1

sd a5, -24(s0)

ld a5,-24(s0)

1lbu a5,0(as)

bnez a5,101c2 <main+0x1lc>
1i a5,0

mv a0,as

ld s0,24(sp)

addi sp,sp,32

ret

Figure 4.3.1.2 Assembly Codes of Unit Test with Extension

23

CHAPTER 5

Chapter 5
Experiment/Simulation

5.1 Hardware Setup
A desktop PC with Linux OS was setup. A computer issued for the process of building
RISC-V simulation tools, RISC-V toolchains, and the blockchain application. The

details of the PC specifications were as shown in Table 5.1.1

Table 5.1.1 Specifications of PC

Description Specifications
Model Asus B85-Pro Gamer
Processor Intel Core 15-4400
Operating System Ubuntu 22.04.3 LTS
Graphic NVIDIA GeForce GTX 750T1 2GB GRAM
Memory 16GB DDR3 RAM
Storage 1TB SATA SSD

5.2 Software Setup
In this project, there are few software tools needed to be downloaded and installed in
the PC:
1. Ubuntu 22.04.3 LTS
2. Chipyard: 1.10.0 (https://chipyard.readthedocs.io/en/stable/)
3. RISC-V GNU Toolchain (https://github.com/riscv-collab/riscv-gnu-toolchain/)
4. Spike RISC-V ISA Simulator from Chipyard (https://github.com/riscv-

software-src/riscv-isa-sim/)

5. RISC-V Opcodes (https://github.com/riscv/riscv-opcodes)
6. Visual Studio Code

5.3 Setting and Configuration

There were several settings and configurations required to be done each time the source
code was compiled. In this project, the optimization options were included during the
compilation of the blockchain application source codes. The optimization options have

different usages respectively and the results would also be affected. There were five

24

CHAPTER 5

optimization options used which were O0, O1, 02, O3, and Os. The usage of the

optimization flags was described in Table 5.3.1.

Table 5.3.1 Usage of Optimization Flags

Optimization Flags Usage
00 e Compilation time is reduced.
e No code optimization.
Ol e Code size is reduced.
e Execution time for small functions is reduced.
02 e More optimization.
e Code size is reduced even more.
e Execution time is improved.
O3 e Highest optimization.
e Code size is reduced greatly.
e Execution time is greatly improved.
Os e Only reduce code size.

5.4 System Operation
5.4.1 Source Code Compilation

The blockchain application source codes in C could be compiled with the GCC

compiler from the RISC-V GNU Toolchain. To compile the source codes, the gce tool

should be called in the terminal. The following commands were examples that were

used:

riscv64-unknown-elf-gcc -O0 -c blockchain.c hash.c linkedList.c -o O0 main.riscv
riscv64-unknown-elf-gcc -O1 -c blockchain.c hash.c linkedList.c -o O1 main.riscv
riscv64-unknown-elf-gce -O2 -c blockchain.c hash.c linkedList.c -0 O2_main.riscv
riscv64-unknown-elf-gce -O3 -¢ blockchain.c hash.c linkedList.c -0 O3 _main.riscv

riscv64-unknown-elf-gcc -O4 -c blockchain.c hash.c linkedList.c -o Os_main.riscv

5.4.2 Extending RISC-V GNU Toolchain

25

CHAPTER 5

RISC-V architecture was highly customizable and extensible, and the same would go
for its RISC-V GNU compiler toolchain. The RISC-V GNU Toolchain was pre-
installed if Chipyard was used in the project. Otherwise, the toolchain could be
manually built and installed by referring to the official GitHub repo “riscv-gnu-

toolchain” [21].

Since the source codes of blockchain application were written in C, only the GCC
could compile all the codes into RISC-V executable. The customization and extension

of the GCC compiler could be done in these few steps:

Step l: Open the file riscv-opc.h located in riscv-gnu-

toolchain/binutils/include/opcode/

Step 2: Add the match and mask values of the instruction, as well as the declaration of

instruction into the file as shown in Figure 4.3.1 and Figure 4.3.2.

builtins.cc C riscv-opch M X

binutils > include > opcode > C riscv-opc.h > = MASK_DJB2

#define MASK ! Oxfe00707f
#define MAT(XEM 0x2006033
#define MASK REM 0Oxfe@0707f
#define MA MU 0x2007033
#define MASI M Oxfe00707f
#define MATCH MULW 0x200003b
#define MASK MULW Oxfe@0707f
#define M/)IVW 0x200403b
#define MASK DIVW Oxfe00707f
#define MAT()JJB2 0x200002b
#define Oxfe@0707f
#define MATCH DIVUW 0x200503b
#define MASI [VUW Oxfe00707f

Figure 4.3.1 Adding Match and Mask Values into riscv-opc.h

Figure 4.3.2 Declaration of Instruction in riscv-opc.h

Step 3: Open the file riscv-opc.c located in riscv-gnu-toolchain/binutils/opcodes

26

CHAPTER 5

Step 4: Add the line into the function ‘const struct riscv_opcode riscv_opcodes[]’ in the
file as shown in Figure 4.3.3. The format of the declaration structure was described
Figure 4.3.4. More explanations about each parameter required in the format could be

found in Appendix D.

scv _opcodes[] =

Aa ab, * ?0of6

, INSN CLASS ZIHINTNTL AND C, 7 \ ; | , match_opcol
, INSN CLASS ZIHINTNTL AND C, N ALL, MA N , match_op|
, INSN CLASS ZIHINTPAUSE, M y , match_opcode, 0

Y INSNECLASSETPR=d s ™) MATCH MOD, MASK MOD, match_opcode, 0
, INSN CLASS I, NSyt MATCH DJB2, MASK DJB2, match_opcode, 0
, INSN CLASS C, - 0, oxffffu, match opcode, E
, INSN CLASS I, "", | | << . OXFFFFff

Figure 4.3.3 Defining Instruction Behaviour in riscv-opc.c

Figure 4.3.4 Format of riscv_opcodes struct

Step 5: Rebuild the RISC-V GNU Toolchain using the following command.

Jconfigure —prefix=$(RISCV) —with-cmodel=medany
sudo make clean

sudo make -j$(nproc)

5.4.3 Modification of Spike ISA Simulator
Spike was a RISC-V ISA software simulator that could provide an emulation
mimicking a RISC-V CPU machine. Spike was also highly customizable and extensible

in which the developers could modify, add, and test new instructions.

In this project, the custom instruction set could be added to the Spike simulator in
these few steps:
Step 1: Change directory to chipyard/toolchains/riscv-tools/riscv-isa-sim
Step 2: Add match and mask values of custom instruction into riscv/encoding.h as

shown in Figure 5.4.3.1

27

CHAPTER 5

encoding.h - riscv-isa-si
al Help

isa_parser.cc M C encoding.h = riscv.mk.in M

riscv > C encoding.h > = MATCH_DJB2

uci Liic UALUUSGUOO

#define MASK DIV 0Oxfe00707f
#d MATCH DIVU 0x2005033
i
i

#define MASK DIVU Oxfe@0707f
#define M { DIVUW 0x200503b
#define MASK DIVUW Oxfe00707f
#define MATCH DIVW 0x200403b
#define MASK DIVW Oxfe@0707f
#define MATCH PDIBZ 0x200002b
#define MASK DJB2 0Oxfe@0707f
#define M H DRET 0x7b200073

Figure 5.4.3.1 Adding Match and Mask Values of DJB2 Hash Instruction in

encoding.h

Step 3: Add the declaration of instruction in the same encoding.h file as shown in Figure
543.2.
encoding.h - riscv-isa-sim - Visual St
nal Help

isa_parser.cc M C encoding.h X = riscv.mk.in M

riscv > C encoding.h > ..

Figure 5.4.3.2 Adding Declaration of DJB2 Hash Instruction in encoding.h

Step 4: Add the custom instruction into the array of “riscv_insn_ext i” in riscv.mk.in

file under the current directory as illustrated in Figure 5.4.3.3.

28

CHAPTER 5

riscv.mk.in - riscv-isa-sim -

inal Help

isa_parser.cc M C encoding.h = riscv.mk.in M X

riscv > = riscv.mk.in
riscv._srcs = \

riscv_test srcs =\
check-opcode-overlap.t.cc \

riscv_gen hdrs = \
insn_list.h \

riscv_insn ext i = \
add \
mod \
djb2 \
addi \
ETo [s BAARN
addw \
and \
andi \

Figure 5.4.3.3 Adding DJB2 Hash Instruction in riscv.mk.in

Step 5: Create a new header file with the name of the instruction in the directory

riscv/insn/. Example: djb2.h

Step 6: Write the behaviour of the custom instruction in the header file that has just
been created as shown in Figure 5.4.3.4.
djb2.h - riscv-isa-sim - Visual Studio Code

al Help

i+ isa_parser.cc M C encoding.h = riscv.mk.in M i+ interactive.cc

riscv > insns > C djb2.h > @ WRITE_RD(sext_xlen)

n(((RS1 << 5) | RS

Figure 5.4.3.4 Functional Behaviour of Custom Instruction.

Step 7: Add the RISC-V format type of instruction in riscv-isa-sim/disasm/disasm.cc

as seen in Figure 5.4.3.5.

29

CHAPTER 5

disasm.cc - riscv-isa-sim -

al Help
2+ disasm.cc X i+ isa_parser.cc M C encoding.h
disasm disasm.cc > @ add_instructions(const isa_parser_t *)

ITYPE(andi);
[ITYPE("sext.w", addiw);
INE ITYPE(addiw);

[TYPE SHIFT(slliw);
E ITYP IIFT(srliw);
E ITYPE SHIFT(sraiw);

RTYPE(add) ;

Figure 5.4.3.5 Defining the RISC-V Format Type of Custom Instruction

5.5 Implementation Issues and Challenges

During the installation of Chipyard, an issue might arise due to the absence of
‘guestmount’ module. It could be solved by entering the command ‘sudo apt-get install
libguestfs-tools’. Nevertheless, the installation might take some time if the CPU and
RAM are not powerful. The diskspace consumed for the project was around 10+ GB.
A low performing CPU could also delay the time to rebuild the RISC-V GNU
Toolchain and Spike ISA Simulator, as these tools contained a tremendous number of

files.

Besides, the syntax of the code lines should be carefully typed and inserted as a lack
of correct syntax could lead to the failure of rebuilding the customized tools for the
research. The consequence of this would consume extra time to look for the errors and

fix them.

Furthermore, the instruction extension should not be added into the RISC-V ISA
profile ‘I’ as the extension profile was meant for integer operation. However, adding an
extra instruction set extension class into the tools was tedious and complicated, as it

required a lot more steps to complete the behaviour of the instructions and simulation.

30

CHAPTER 5

5.6 Concluding Remark

In this project, the main tool used for simulation was Chipyard. Several tools were
included when Chipyard was built, such as the RISC-V GNU Toolchain and Spike ISA
Simulator. When compiling the source codes of the blockchain application, a few gcc
optimization techniques were used, such as the -Os, -O0, -O1, -O2, and -O3. To extend
the RISC-V GNU Toolchain such that it was able to compile the codes with custom
instruction, some files are required to be modified. For instance, adding the opcodes in
riscv-opc.h and declaring the instruction in riscv-opc.c. Finally, the customization of
Spike ISA Simulator was required to simulate the execution of the software in the Spike
device. To modify the simulator, quite a few steps are required to be completed. For
example, creating a new header file for the custom instruction and defining its
behaviour in the file, adding the opcode in encoding.h, adding the instruction in

riscv.mk.in, and defining the format type of the instruction in disasm.cc.

31

CHAPTER 6

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

A performance analysis of the Spike ISA simulator with custom instruction extension
along with the simulator without any modification was conducted to determine the
impact of the project. There were a number of information that the simulator could
provide which could be taken as the performance metrics of this project. The
performance metrics are the number of instructions executed and the program execution

time.

The program execution time was a common metric to determine the time needed to
execute the program in the CPU. The formula to calculate the program execution time

was given as below:

(number of instructions) X CPI

Program Execution Time =
g clock ticks

6.2 Testing Setup and Result

The blockchain application was compiled with different optimization flags as discussed
in section 5.3. A total of 10 RISC-V executables were generated to perform the test.
The cycles per instruction (CPI) was set to maintain at 1.00 in the simulator. To use the
simulator to execute the programme and to generate the simulation result, the following

command was entered:

spike pk -s <filename>

The result was collected and organized in Table 6.2.1. The evidence of the results was

appended in Appendix E.

Table 6.2.1 Simulation Results

Base (without extension) | With custom extension | Reduction .
) Reduction
in
O Flags # Execution # Execution | . in time
instructions
Instructions | Time (ms) | Instructions | Time (ms) %) (%)
0

32

CHAPTER 6

-Os 41018 45.58 41013 45.57 0 0

-0O0 55329 48.11 51855 47.14 -6.28 -2.02
-0O1 40993 45.55 40413 44.90 -1.41 -1.43
-02 41408 43.59 40828 42.98 -1.40 -1.40
-03 41408 43.59 40828 42.98 -1.40 -1.40

Based on the data in Table 6.2.1, the blockchain application compiled with -Os flag had
a very insignificant difference, which resulted in a 0% reduction in both instructions
size and execution time. The application compiled with -O0 had the most significant
impact, which resulted in -6.28% in instructions size and -2.02% in execution time.
While the programme compiled with -O1 had a difference of -1.41% and -1.43% in
both instruction sizes and execution time respectively. Finally, the -O2 and -O3 flags
caused the programme to have a reduction of -1.40% in both instruction sizes and

execution time.

6.3 Project Challenges

The Spike ISA simulator was a RISC-V instruction set simulator. The custom
instruction sets were tested in the software simulator first, before developing it with the
hardware changes. The Spike ISA simulator was not a cycle-accurate simulator after
all. Therefore, the clock cycles and ticks generated from the simulator may not be
accurate to act as a reference for the results. However, it showed the custom instruction
extension showed performance improvement and was ready to be implemented with

hardware changes.

6.4 Objectives Evaluation

The project was successful to achieve all the mentioned objectives in section 1.2.
Firstly, a functioning instruction set extension was successfully designed and run in the
simulator for the blockchain hash algorithm. Then, the code size was able to be reduced
with the customization, which could be seen most obviously in the compiled application
with -O0 optimization flag. Finally, the custom instruction set was able to reduce the

clock cycles as well as the program execution time of the blockchain application.

6.5 Concluding Remark

33

CHAPTER 6

The performance of the custom instruction was satisfied. It was able to improve the
performance in both instruction code sizes and program execution time by at least
1.40%. However, the simulation results may not be as precise as it seemed as the Spike
ISA simulator was not a cycle-accurate simulator, instead it was just a instruction set

simulator to test the functionality of the custom instruction extension.

34

CHAPTER 7

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

Blockchain technology implementation in real-world applications had a challenge in
which the time consumption to add a new block to its blockchains was high. To improve
the time and cost efficiency of calculating its hash and thus speed up the addition of
blocks in the blockchain, a custom instruction set was proposed as an extension to the
RISC-V base ISA. RISC-V architecture was chosen in this project due to its open source
nature, highly customizable, and availability of a large pool of community developers.
In this project, a simple blockchain application was selected as a case study for its
cryptographic algorithms. The hash function used was DJB2 string hash. The proposed
instruction sets would be added to the RISC-V ISA to reduce the number of code sizes
and to improve the performance of the program execution time of blockchain algorithm.
Thus, the extended RISC-V CPU with the proposed extensions would be more efficient
and effective in terms of execution time when running the blockchain application with
DJB2 string hash. The impact of the custom instruction set extension on the
performance was simulated in Spike ISA Simulator and its results are presented in

Chapter 6.

7.2 Recommendation

The project could be further improved by modifying the hardware behaviours in the
RTL design. A RISC-V hardware that was functioning and able to fit the custom
instruction set could have a more concrete result and proof for the practicality and

functionality of the instruction set extension.

35

REFERENCES

REFERENCES

[1] Ledin J., “Blockchain and Bitcoin Mining Architectures,” in Modern Computer
Architecture and Organization, 2™ ed. Birmingham, UK: Packt, 2022, pp. 395-419.

[2] Antonopoulos A.M., “The Blockchain,” in Mastering Bitcoin, 2™ ed. California, CA, USA:
O’Reilly, 2017, pp. 195-211.

[3] Himelstein M. et al., “RISV-V Blockchain SIG Meeting 2022-Jan-24” in RISV-V
Blockchain SIG Biweekly Meeting, Jan. 24,2022, [Online]. Available: https://github.com/riscv-
admin/blockchain/blob/main/MeetingMinutes/2022/RISC-
V%?20Blockchain%20S1G%20meeting%202022%20Jan24.pdf

[4] J. Jacobsen. “Let’s Make RISC-V Connected Systems Synonymous with Security” RISC-
V.org. https://riscv.org/blog/2021/01/lets-make-risc-v-connected-systems-synonymous-with-

security/ (Accessed Apr. 16, 2023)

[5] Zeh, A., Glew, A., Spinney, B., Marshall, B., Page, D., Atkins, D., Dockser, K., Saarinen,
M.-J.O., Menhorn, N., Deutsch, L.P., et al. “RISC-V Cryptographic Extension Proposals
Volume I: Scalar & Entropy Source Instructions Version v1.0.17, 2022. Available online:
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar (Accessed Apr. 19, 2023).

[6] Zeh, A., Glew, A., Spinney, B., Marshall, B., Page, D., Atkins, D., Dockser, K., Saarinen,
M.J.O., Menhorn, N., Newell, R., et al. “RISC-V Cryptographic Extension Proposals Volume

II: Vector Instructions.”, 2023. Available online: https://github.com/riscv/riscv-

crypto/releases/tag/v20230407 (Accessed Apr. 19, 2023).

[7] IBM, “Benefits of blockchain.” IBM.com. https://www.ibm.com/topics/benefits-of-
blockchain (Accessed Apr. 18, 2023)

[8] Xue, X., Wang, C., Liu, W., Lv, H., Wang, M., and Zeng, X., “A RISC-V processor with
area-efficient memristor-based in-memory computing for hash algorithm in blockchain
applications,” Micromachines, vol. 10, pp. 541, Aug. 2019, do0i:10.3390/mi10080541

[9] Nisanci, G., Flikkema, P.G., and Yalgin, T., “Symmetric cryptography on RISC-V:
Performance evaluation of standardized algorithms,” Cryptography, vol. 6, pp. 41, Aug. 2022,
doi.org/10.3390/cryptography6030041

[10] Cheng, H., GroBschadl, J., Marshall, B., Page, D., and Pham, T., “RISC-V instruction set
externsions for lightweight symmetric cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2023, no. 1, pp. 193-237, Nov. 2022,
doi:10.46586/tches.v2023.11.193-237

36

REFERENCES

[11] Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., and Zeng, X., “VPQC: a
domain-specific vector processor for post-quantum cryptography based on RISC-V

architecture,” IEEE Transactions on Circuits and Systems-1: Regular Papers, vol. 67, no. 8,

pp. 2672-2684, Aug. 2020, doi:10.1109/TCSI1.2020.2983185

[12] Marshall, B., Newell, G.R., Page, D., Saarinen, M.J.O., and Wolf, C., “The design of
scalar AES instruction set extensions for RISC-V,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2021, no. 1, pp. 109-136, Dec. 2020,
doi:10.4586/tches.v2021.i1.109-136

[13] Patterson, D.A., and Hennesy, J.L., “Instructions: language of the computer,” in
Computer Organization and Design RISC-V: The hardware software interface, 2™ ed.
Cambridge, MA, USA: MK, 2021, ch. 2, pp. 68-128.

[14] Hu, B., Chen, Y., and Zeng, X., “An Agile Instruction Set Extension Method Based
onthe RISC-V Processor,” 2021 IEEE 4th International Conference on Electronics
Technology, 2021, doi:10.1109/ICET51757.2021.9450911

[15] Preneel, B., Dobbertin, H., and Bosselaers, A., “The Cryptographic Hash Function
RIPEMD-160,” in CryptoBytes 3(2), pp. 9-14, 1997.

[16] Harris, S., and Harris, D.M., “Architecture: Machine Language,” in Digital Design and
Computer Architecture RISC-V Edition, Cambridge, MA, USA: MK, 2022, ch. 6, pp. 332-
343.

[17] Stanis, F., “008 — djb2 hash” The Art in Code. https://theartincode.stanis.me/008-djb2/
(Accessed Apr. 24, 2024)

[18] RISC-V International, “The RISC-V Instruction Set Manual Volume I: Unprivileged
ISA” riscv.org. https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-
IMAFDQC/riscv-spec-20191213.pdf (Accessed Apr. 25, 2024)

[19] RISC-V International, “RISC-V Opcodes” riscv.org. https://github.com/riscv/riscv-
opcodes (Accessed Apr. 25, 2024)

[20] Charvi, B., Chaitra, B., Ankitha, C., “A-Simple-Blockchain-Simulation-Using-C”
https://github.com/Chaitra-Bhat383/A-Simple-Blockchain-Simulation-Using-C (Accessed
Apr. 25, 2024)

[21] RISC-V Collab, “RISCV-GNU-TOOLCHAIN” https://github.com/riscv-collab/riscv-
gnu-toolchain (Accessed Apr. 25, 2024)

[22] Altinay, O., Ors, B., “Instruction Extension of RV32I and GCC Back End for ASCON
Lightweight Cryptography Algorithm”, 2021.

37

APPENDIX

APPENDIX
Appendix A

RISC-V 32-Bit Architecture

I funct7] rs2 | rsi I funct3 I rd I opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

Here is the meaning of each name of the fields in RISC-V instructions:

B opcode: Basic operation of the instruction, and this abbreviation is its

traditional name.
m rd: The register destination operand. It gets the result of the operation.
B funct3: An additional opcode field.
m rsl: The first register source operand.
m rs2: The second register source operand.

® funct7: An additional opcode field.

Figure A1-1 RISC-V fields.

SP — 0000 003f ffff fffOye, T

T

Dynamic data
Static data
0000 0000 1000 00004,y
Text
PC— 0000 0000 0040 0000pex
Reserved

0

Figure A1-2 RISC-V memory allocation for programme and data.

Al

APPENDIX

4

Add

—

a

Read

Instruction

ddress

Instruction »

(31-0)

/
[
/

Instruction [6-0] |

\ Branch

| MemRead

| MemtoReg

\
\

Instruction [19-15)

{Control

| MemWrite

' ALUOp

;" ALUSrc

"_ 5’(RegWrite

Read

Instruction [24-20)

register 1 Read
Reag datal

. Instruction [11-7]

register 2

Wite ~ Read

memory

Instruction [31-0]

register 9ata2

Write
data Registers

@

Instruction [30,14-12)

‘ycontrolg

\/

|

Read
Address deta

Figure A1-3 RISC-V simple datapath.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

APPENDIX

RISC-V 32-Bit Instruction Set Base and Extensions
RV32IMAC

O — v — RV32A | ¢ cAp (cor
| et cxom

QLN GV GUVUIND GUREVID @UREVOND | crwse cu
cRose o

osw csw

 crw csu

 cr csRa

. cswse ceEez

 cRswse canez

crsose 3

~ cad cm

Y Y

CADDHSSP CJIAR

| CADDUSPN CEBREAK

| CsRRWI CsRRsl CSRRGI EBREAK sus csus cwv
QrENGEND (EENcEID [2ve —] el ————

_ Base Integer ISA /| Compressed ISA Extension

Figure A2-1 The modular instruction set of the RV32IMAC variant. This is a 32-bit CPU
with the Base Integer ISA (RV321) and the ISA extensions for Integer Multiplication and
Division (RV32M), Atomic Instructions (RV32A), and Compressed Instructions (RV32C)

A-2
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

RISC-V Architecture Green Card

1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

RISC-V Reference Data Card (“Green Card”)

'
1
1
1
1
1
1
I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
1
1
1
1
1
1
1
1
1
1
1
1

L RISC-V

0]

Reference Data

RV32] BASE INTEGER INSTRUCTIO!
MNEMONIC FMT NAME:

ADD

I ADD Immediaic
R AND

1 AND Immediate
U Add Upper Immediate 10 PC
SB. Branch EQual

Bg0 SB Branch Greater than os Equal

alphabetical order
K

SCRIPTION (in Verilog) NOTE
Rird] = R[rs1] + R[rs2]

Ried] = R[rs1] + imen

R{rd] = Rrs1] & R{rs2]

Rird] = Rrs1 | & in
Rird] = FC + fimm, 1250}

bgeu SB Brunch = Unsigned]
PC=PC+{imm [0}
SB fhranch Less Than HR[rs1 [<R[rs2) PC=PCH i
SB Branch Less Than Unsigned ifTR{rs1 J<R[rs2) PC=PC+ 2
S Branch Not Equil HTR[rs1Jt=Rrs2) PC=PC {imm, 150
1 Cont/Stn RepReaditClear Rird] = CSRICSR = CSR & ~Rirst]
I ContSmtRegRead&Clear Rind] = CSR,CSR = CSR & ~imm
T
carea 1 ConLiStaRegReaddSct Rjnd]=CSR; CSR = CSR [R[rsl]
carcst I Cont/StatRegReadSet Rind] = CSR, CSR = CSR |imm
Imm
| ContSutRepResd&Write Rjnd] = CSR: CSR = R[ss1 |
| Cont/Stut Rep Resd@Write Rrd] = CSR; CSR = imm
Imm
1 Enviroament BREAK Transfer control to debugger
I Environment CALL Transfer control 10 operating system
I Synch thread Synchronizes threads
I Synch lnstr & Dato Synchronizes wrtes 10 instruction
siream
US Jump & Link Rird] = PC44; PC = PC + fimm, 50}
I Jump & Link Register R{rd] = PC+4: PC = Rrs1] imm
i 1 Load Byte Rjnd] = Y
2ABMIJTIMIRcs1 Frimm|(70)} »
| Load Byte Unsigned Rird] = {24bOM[R[rs1 [+imm{7:0)}
1 | Load Halfword Rird] =
(EBMJ(15), MIR[rs1 | imm](1S
Laad Halfword Unsigned Rfrd] = [1GBOMIR[rs1 Himam &
Load Upper Immediate Rfed] = fimim, 1260}
Losd Word Rjed] = (M[R{rs [[+imm}(31:0)3
OR Rrd] = R{rs1] | Rfes2]
OR Immediate Rird] = Rrs1] | imm o
Store Byte MIR[rs1 [+ imm(7:0) = Rrs2§(7:0)
Store Halfword MIR[rs1 Himm{15:0) = Rlr2K15:0)
Shifl Left Rjrd] = Rfrs1] << R[es2)
Shifl Left Immediate R{rd] = Rfrst | << imm
Set Less Than Rird] = (R[rs1] < R[s2) 7120
Sct Less Than Immediste Rird] = (R{rs1] < imm) 7150
Set< Immediate Unsigned Rjed] = (Rirs1] < imm) ?
SetLess Than Unsigied Rfed] = (R[rs1] < R[rs2]) ?
St Right Aritimetic Riod| = R[rs1 | >> Rirs2] N
Shift Right Arth Imm Rird] = Rirsl > imm B
Shift Right (Word) Rird] = Rirst | => Rirs2] ;i
Shift Right Immediate Rjrd] = Rjrs1]>> imm L
SUBtract (Word) R{rd] = Rjrst | - Rjes2] ?
Store Word MIR[rs1 [+imm](31:0) = R[s2K31:0)
X0 Rird] = Ryrst | * R|r2]
XOR Immediate Rird] = Rjrs1]~ imm
e 2%

20 The feast significam bit of the branch address in jalr is st (0 0

3 fuigned) Load instructions extend the sign bit of dea o fIll the 12

) Multiply with e operand signed aud ane wrsigned
61 The Simgle version does u single-precision operation uring the rightmost 32 bits of a 64-

bir register

70 Claxsify wrifes & 1i-bit mask fo show which properties are trie (e.g., ~nf.

denon,

]

) +0, ~inf,

: nohtng
write of the memory locai

rpase iself berween the read and the

The immosiiara fiuld is sign-extencicd fn RISC-Y

© 2021 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computter O

ARITHMETIC CORE IN
RV64M Maltiply Extension
MNEMONIC

STRUCTION SET

FMTNAME DESCRIPTION (in Verilog) NOTE
mul R MU Rind] = (RInT] * Rin2Iad 01
R Rind] - (R[] * Rin2ix127:64)
R MuLsiply Hish Usignd e[nd] = (RIm1] * Rin2IN127:641 2
R MULtiply upper fall Rind] = (R[] * Rirs2 N1 27:64))
Unmig
R DiVide R{nd] - (Rim1} Rin2])
R DIVide Ussigned i)~ Ris1)Rin2) E)
R REMsinder Rind] = (Rrs1] % Rfr2])
remy R REMbinder Unsigned Rd] = (Rsd] % Rfr2) 2
RVG4F and RV64D Floating-Paint Extensions
tla, 1 Lot (Wort) Fl] - Mgt i)
§ S (Word) MR i =]
R Flvd] = Flsi] + Fln2] B
R Fieg) = Flst | - Fir) 7
B Flrd) = Fnt] * FEn2))
R Flndl = st/ Fls2) 7
® Flrd] = s 1y 7
R Fre] = Fmst] * T2} + Find])]
R s = Flst] * 2] - i3] 7
R Nepstive Maiphy-ADD Tled] =Pl * Fle2] - Findl))
R Nepsive Matply SUBmr] - (Fle1|* Fln2] - Fls3]) 7
R SHN source Flrd] = £ Flm Fivi 62001 7
R Negative SIGN sourse Frd] = £ - Fn2J83 L Fles o 7
R or SiGN source 63 Flnal 632, b))
min.d R MiNimam Flnd - Flent] < el 7 et 7
Hird]
fma. s, tman.d R MAXimum Fled] = (Fimt] > Fr2])] I
e}
feq., feq.d R Compars Flow EQuel Rled] = (FLs1 = Flo2 7110 n
R Compare FlosiLew Than Rjnf] = (11 He2ly 11 -0 7
R Compare Float Loss thanes = Rln] = (FIn1 = €n2 7110 n
R Clmsify Type Rinf] = el Flrs 1) 7.8)
R Move from eneger) = irsi) 7
R Move o Ineger Kled] = Fle| 7
R Convent fram SF 10 DI Flrd] = simgledFIrs 1}
R ComefomDPisP Flo] = dosbietFint])
R Convert from 32b Imeger Flrd] = floa(Refr 1 1131:0) b
R Coovertfrom 65b lemeger F]rd] = flomRims 1 6300})
R Comvenfum 320l Fle) = floatiRIss b j31:9)) 27
R pn_.inrmmm o] = RowitRen 63:00) 1
R Comeniea 37 Integer RInH3 1) - imegenFlst) n
R Convert v é4b Inceger R{nd}ed4) = imegenF{mi]) o
R Convento 328 It Unsigned R{nj310) = integsnb (b1 27
R Convertso osh Int Unsigned R[WNED0) * integestFlesh i 2.7
RV64A Atomic Extension
amcadd.w, anosdd.d R ADD K{nd] - MIRIes). 9
M{Rrs 1) = MRIssL]) + R{rs2}
amoard.v,ancand.d R AND ijod] - MTRIPS 1], 9
MR 1} MRI L & RI52]
amcmax W, anomax. d R MAXimum Relnd] = MIRIr1[].)
HTRI21 - MIRLS D MG~ R
amemaxi.u anomasxu. 4 R MAXimum Unsigned Rind] = M{R[rs1]]. %)
R[] = MIRG D MR = e
powamomin.d R MNmm] MR . 9)
R[] MR I MIRGsT -]
PR — il MR 29)
R[] < MRS MRl =)
R ok Kiod] - M[Rjes] 9
MBI 1} MBI L) Rir)
R SWAP] MiRIrs . MIRIod)~ Rin | 9)
R XOR
1e R besd Resersnd
seimse.d R Swn
Conditional
CORE INSTRUCTION FORMATS
31 n 2% 25 M4 20
R Tunet? [m
i i 11:0]
s {1 1:5] | m2
sB mm] 12)10:5] |)
u imn{31:12]
us mmd 20010:1111)19:12] 7] opoode

and Design: The

Interfirce: RISC-V Edition

Figure A3-1 RISC-V Architecture Green Card (1)

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

PSEUDO INSTRUCTIONS

MNEMONIC

= aero
Branch 4 sero
Absolute Value
FP Mave

Tump
1 Tomp register
1a Load address
1 Load imm
v Move
Negale

No operation
Not

Returm

St = zera
Set £ zer

DESCRIPTION
I{Rfrsl =) PO=PC+ {imm, b0}
ITRfrs! [1=0) PC=PC= fimim, 160}

F{rd] = (Flrsi]= 0) 7 =F|rs1] : Flrs1]
Fird] = Flrs1]

Flrd] = -F[rs1]

PC= |

Rl
Rird] = (Rrst = 0)7 1 :0
RIrd] = (Rlrst =07 1:0

OPCODES IN NUMERICAL ORDER BY OPCODE
OPCODE
1

MNEMONIC FMT

FEREERRIRRE wes

FUNCT3
a0

FUNCT? OR IMM. HEXADECIMAL

REGISTER NAME, USE, CALLING CONVENTION

REGISTER NAME USE
*0 The constant valve 0
w1 o Rt address
i T Stack pointer
P ilobal painter
Tread pointer -
‘emporarics Caller
i Callee
3 Collee
Funci /Return values Caller
T Caller
i Callee
Temporaries Caller
FP Temposarics Callet
FF Saved regisiers Callee
FF Function values Calker
FP Function anguments Caller
vl repisiers Callee
Rjrd] = Rirsl] + Rles2] Callet
E 754 FLOATING-POINT STANDARD
3 x (1 + Fraction) x 28t - 6o
where Half- sion Bias = 15, Single-Precision Bias = 127,
Daouble-Frec: Bias = 1023, Quad-Precision Bias = 16383
1EEE Half-, Single-, Double-, and Quad-Precision Formats:
15 10 9]
| s | Exponent Fraction |
31 30 22 0
[s] Exponent | Fraction g
63 62 52 51 o
I s] Exponent Fraction I
127 126 nzim 0
MEMORY ALLOCATION STACK FRAME
SPo= (000 0031 1T 1, Stack Higher
* Argument9_|Memory
Argument 8| Addresses
e

Dynamie Data

Saved Registers|

0000 000 1000 (0D

Pk Bl Local Variables
PC =P 0000 0000.0080 0000, | T Sei Lower
Memory
| Reserved Frim
SIZE PREFIXES AND SYMBOLS
SIZE REFIX__|_SYMBOL SI7E PREFIX | SYMBOL

[3 T Kibi- K

M Fad Mebi- A

G 2% G

T 2 T

P 7

E E

2 2]

v ™ Yi

[] » [

o L

m 1000~ r

n 1000 0

n 10007 z

D 10007 Y
10007 :
o™ [l

© 2021 by Elsevier, Inc. All rights reserved. From Panterson and Hennessy, Conputer Organization and Design: The Hardware/Software Interface: RISC-V Edivion

Figure A3-1 RISC-V Architecture Green Card (2)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

RISC-V Reference Data Card (*“Green Card™)

A-3

APPENDIX

Appendix B

Project Timeline

vz-ken-g
ajeq pu3

}I0M JO uonejussalq

UOI}BPUALILIOD3Y PUE UOISNOU0)

U0jssNas|q pue uopen|eA3 waisks

uoneuawa|duw| walshs

ubisaq wass

Abojopoupap walshs

M3IARY 3Injesa)] buluayibuang

‘¢ dM

Y10/ JO UOIeJULS3l

|esodoid jo uoissiwgng

Ylom Areujwiaid

51001 dn bumas

5|00} youeasay buipul4

Abojopoyia | 103l014 3ulaQ

MIA3Y INela)]

30uedyubIS pue 1edw) ‘sandalq0
'ad0ag 103[014 ‘JuaLalels Waqolq auyeq

Yoleasay punolbyoeg

3L 13loid auyaq

‘L dAd

vl

€l

4’

0l

X3IM

ASVL

gz-unr-9z
ajeq eis

Figure B-1 Project Gantt Chart

B-1

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Information Technology (Honours) Computer Engineering

APPENDIX

Appendix C
Blockchain Application Source Codes

#include <ctype.h>
/* *

* Generate a hash key from a string.
%k

* (@param string The string.

* (@return A hash key for the string.
*/

int string_hash(void *string)

{

/* This is the djb2 string hash function */

int result = 5381;
unsigned char *p;

p = (unsigned char *) string;
while (*p 1="0") {

result = (result << 5) + result + *p;
+p;

}

return result;

Figure C-1 hash.c

#include <stdio.h>
#include <stdlib.h>

#include "linkedlist.h"

NODE * reverse(NODE * node) {
NODE * temp;
NODE * previous = NULL;
while (node != NULL) {
temp = node->next;
node->next = previous;
previous = node;
node = temp;
b

return previous;

}

void init(NODE** head) {
*head = NULL;

}

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

}

}

}

}

NODE* add(NODE* node, DATA data) {

NODE* temp = (NODE*) malloc(sizeof (NODE));
if (temp == NULL) {
exit(0); // no memory available
}
temp->data = data;
temp->next = node;
node = temp;
return node;

void print_list(NODE* head) {

head = reverse(head);
NODE * temp;

int indent = 0;
printf(""Print chain\n");

printf(" \n");
for (temp = head; temp; temp = temp->next, indent = indent+2)
{

printf("%*sPrevious hash\t%d\n", indent,"", temp->data.info.previous_block hash);
printf("%*sBlock hash\t%d\n", indent,"", temp->data.info.block hash);
printf("%*sTransaction\t%s\n", indent,"", temp->data.info.transactions);
printf("%*s\n", indent, "");

}

printf("\r\n");

void add_at(NODE* node, DATA data) {

NODE* temp = (NODE*) malloc(sizeof (NODE));
if (temp == NULL) {

exit(EXIT_FAILURE); // no memory available
b
temp->data = data;
temp->next = node->next;
node->next = temp;

void remove node(NODE* head) {

NODE* temp = (NODE*) malloc(sizeof (NODE));
if (temp == NULL) {

exit(EXIT_FAILURE); // no memory available
}
temp = head->next;
head->next = head->next->next;
free(temp);

NODE *free listtNODE *head) {

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-1

APPENDIX

NODE *tmpPtr = head,;

NODE *followPtr;

while (tmpPtr !=NULL) {
followPtr = tmpPtr;
tmpPtr = tmpPtr->next;
free(followPtr);

H
return NULL;

Figure C-2 linkedList.c

#include <stdio.h>
#include <search.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "block.h"
#include "linkedlist.h"

#define NVOTES 10
extern hash string hash(void *string);

typedef enum party code t {GOOD_PARTY, MEDIOCRE PARTY, EVIL PARTY,
MAX PARTIES} party code;

char *party name[MAX PARTIES] = {"GOOD PARTY", "MEDIOCRE PARTY",
"EVIL PARTY"};

static party code get vote()
{
int r = rand();
return 1% MAX PARTIES;

}

void main(int argc, char const *argv[])

{
srand(time(NULL));

NODE *head;
DATA genesis_element;
init(&head);

// First block is created manually with hash =0

transaction genesis_transactions = {party name[get vote()]};

block t genesis block = {0, string_hash(genesis_transactions), genesis_transactions};
genesis_element.info = genesis block;

head = add(head, genesis_element);

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

// Now, we are going to submmit n random votes
int 1, previous_hash = genesis_element.info.previous block hash;
transaction trans_list = (transaction) malloc(NVOTES * sizeof(char)*10);
for(i=0;i<NVOTES;i++)
{

DATA *el = malloc(sizeof(DATA));

block t *b = malloc(sizeof(block t));

transaction t = {party name[get vote()]};
strcat(trans_list, t);
b->previous block hash = previous hash;
b->block hash = string_hash(trans_list);
b->transactions = t;

el->info = *b;

previous_hash = b->block hash;

head = add(head, *el);

}
print_list(head);

return;

}

Figure C-3 blockchain.c

#ifndef BLOCK _H
#define BLOCK H

typedef int hash;
typedef char *transaction;

typedef struct Block T {
hash previous_block hash;
hash block hash;
transaction transactions;
tblock t;

#endif /BLOCK H

Figure C-4 block.h

#ifndef LINKEDLIST H
#define LINKEDLIST H

#include <stdio.h>
#include <stdlib.h>

#include "block.h"

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-1

APPENDIX

typedef struct {
block t info;
} DATA;

typedef struct node {
DATA data;
struct node* next;
} NODE;

void init(NODE** head);

NODE* add(NODE* node, DATA data);

void add_at(NODE* node, DATA data);

void print_list(NODE* head);

NODE * reverse(NODE * node);

void get list_transactions(NODE* head, unsigned char *list_transactions);

#endif /LINKEDLIST H

Figure C-5 linkedList.h

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Appendix D
Format for Declaration of Instruction in riscv-opc.c

Table D-1 Format for Declaration of Instruction in riscv-opc.c

case 'd':
[NSH AND (RD, insn,
continue;
case 's':
[l ND (RS1, insn,
continue;
case 't
[l ‘ ND (RS2, insn,

continue;

Parameter Explanation
name name of the instruction.
xlen width of an integer register in bits. [32, 64, 0 (any)]
isa ISA extension class name.
operands defined in riscv-gnu-toolchain/binutils/gas/config/tc-riscv.c

match the match value.

mask the mask value.

instruction.

static int

return ((insn * op->match) & op->mask) == ©;

[

match func | pointer to the function recovering funct7, funct3 and opcode fields of the

match_opcode (const struct riscv_opcode *op, insn_t insn)

pinfo this field is equal to 0 most of the time except for branch/jump instructions

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

Appendix E

Simulation Results

Table E-1 Simulation Results

Optimization

Without Custom Extension

-Os

With Custom Extension

bbl loader

900 ticks

41018 cycles

41018 instructions
1.00 CPI

bbl loader

900 ticks

41013 cycles

41013 instructions
1.00 CPI

bbl loader

1150 ticks

55329 cycles

55329 instructions
1.00 CPI

bbl loader

1100 ticks

51855 cycles

51855 instructions
1.00 CPI

bbl loader
900 ticks
40993 cycles

40993 instructions
1.00 CPI

bbl loader

900 ticks

40413 cycles

40413 instructions
1.00 CPI

bbl loader

950 ticks

41408 cycles

41408 instructions
1.00 CPI

bbl loader

950 ticks

40828 cycles

40828 instructions
1.00 CPI

bbl loader

950 ticks

41408 cycles

41408 instructions
1.00 CPI

bbl loader

950 ticks

40828 cycles

40828 instructions
1.00 CPI

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

FINAL YEAR PROJECT WEEKLY REPORT
(Project 11)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 2

Student Name & ID: Cheong Kin Seng (20ACB03898)

Supervisor: Dr Qoi Joo Onn

Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE

2. WORK TO BE DONE
Study the simulation tool and learn the usage of it.

3. PROBLEMS ENCOUNTERED
Too many bugs in the open-source tools.

4. SELF EVALUATION OF THE PROGRESS
Need to debug the tools on my own or ask the community for solutions

Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

FINAL YEAR PROJECT WEEKLY REPORT
(Project 11)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 4

Student Name & ID: Cheong Kin Seng (20ACB03898)

Supervisor: Dr Qoi Joo Onn

Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Debugging the tools on my own.

2. WORK TO BE DONE
Think of ways to carry out the objectives of my project.

3. PROBLEMS ENCOUNTERED
Too difficult to figure out a solution as the complexity is too high and limited resources
are available for reference.

4. SELF EVALUATION OF THE PROGRESS
Think too much and it hindered my project progress.

Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

FINAL YEAR PROJECT WEEKLY REPORT
(Project 11)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 6

Student Name & ID: Cheong Kin Seng (20ACB03898)

Supervisor: Dr Qoi Joo Onn

Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Reducing the scope of the project.

2. WORK TO BE DONE
Refine the objectives to fit my abilities.

3. PROBLEMS ENCOUNTERED
Project complexity is too hard. Worried to not able to finish it on time.

4. SELF EVALUATION OF THE PROGRESS
Too much complaints and whining.

Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

FINAL YEAR PROJECT WEEKLY REPORT
(Project 11)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 8

Student Name & ID: Cheong Kin Seng (20ACB03898)

Supervisor: Dr Qoi Joo Onn

Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Refining the project objectives.

2. WORK TO BE DONE
Start working on writing parts of the reports.

3. PROBLEMS ENCOUNTERED
Stuck on few chapters as there was no clue how to continue writing them.

4. SELF EVALUATION OF THE PROGRESS
Need to calm down and think of a solution to progress further

Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

FINAL YEAR PROJECT WEEKLY REPORT
(Project 11)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 10

Student Name & ID: Cheong Kin Seng (20ACB03898)

Supervisor: Dr Qoi Joo Onn

Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Thought of ways to complete the project

2. WORK TO BE DONE
Finish the simulation, writing the report and complete project.

3. PROBLEMS ENCOUNTERED
Time was too tight to do everything at once.

4. SELF EVALUATION OF THE PROGRESS
Need to manage my time well for the progress.

o et

Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

Project Developer:

EXTENSION ON
BLOCKCHAIN APPLICATION

Project Supervisor:
Dr Ooi Joo Onn

Introduction

DJB2 string hash algorithm is a common cryptographic algorithm used in
Blockchain technology. A RISC-V instruction set extension is designed to
accelerate the execution of the hash function.

OBJECTIVES

e To customize a RISC-V instruction set extension
¢ To enhance program execution time

¢ To reduce assembly code size

METHODOLOGY

Extended RISC-V RISC-VISA
Compiler Assembly Code Sy Results
Base (without extension) | With custom extension Reduction
) Reduction
. . in o
O Flags # Execution # Execution | . in time
.))) instructions
Instructions | Time (ms) | Instructions | Time (ms) . (%)
(%)
-Os 41018 45.58 41013 45.57 0 0
-00 55329 48.11 51855 47.14 -6.28 -2.02
-01 40993 45.55 40413 44.90 -1.41 -1.43
02 41408 43.59 40828 42.98 140 140 Lesser
Memory,
CONCLUSION Faster
Execution

e Programs are able to successfully compile with the extension.
¢ Reduced number of instructions.
e Reduced program execution time.

Faculty of Information and Communication Technology

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS)
COMPUTER ENGINEERING

UNIVERSITI TUNKU ABDUL RAHMAN

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

turnitin_report.pdf

ORIGINALITY REPORT

/. Ay Ay T

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Gorkem Nisanci, Paul G. Flikkema, Tolga 1 %
Yalgin. "Symmetric Cryptography on RISC-V:
Performance Evaluation of Standardized
Algorithms", Cryptography, 2022

Publication

e k€. my 1o
ol 1o
iemetSotee <Tw
Guozhu Xin, Jun Han, Tianyu Yin, Yuchao <1 %

Zhou, Jianwei Yang, Xu Cheng, Xiaoyang
Zeng. "VPQC: A Domain-Specific Vector
Processor for Post-Quantum Cryptography
Based on RISC-V Architecture", IEEE
Transactions on Circuits and Systems I:
Regular Papers, 2020

Publication

H Submitted to Universiti Tunku Abdul Rahman <1
%

Student Paper

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

. Marc L. Corliss, E. Christopher Lewis, Amir 1
Y , :) < |l %
Roth. "The implementation and evaluation of
dynamic code decompression using DISE",
ACM Transactions on Embedded Computing
Systems, 2005
Publication
n Ozlem Altinay, Berna Ors. "Instruction <1
Extension of RV32I and GCC Back End for »
Ascon Lightweight Cryptography Algorithm",
2021 IEEE International Conference on Omni-
Layer Intelligent Systems (COINS), 2021
Publication
n Submitted to Trinity College Dublin <
Student Paper %
liﬂ:{(_f:lé[esloeurcczronicdesign.com <’ &%
mdpi-res.com 1
lnternFe)t Source < %
www2.mdpi.com 1
Internet Source p < %
"ICT Systems and Sustainability", Springer =
Science and Business Media LLC, 2023 =
Publication
elib.dIr.de
Internet Source <1 %

s-space.snu.ac.kr

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Internet Source

b
(92

hdl.handle.net

Internet Source

b
(o)}

www.editricesapienza.it

Internet Source

-
~N

www.era.lib.ed.ac.uk

Internet Source

Y
0]

www.myeclipseide.com

Internet Source

-md
O

dias.library.tuc.gr

Internet Source

5
=,

www.mdpi.com

Internet Source

B
—

Exclude quotes On Exclude matches

Exclude bibliography On

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: lof |

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY
Full Name(s) of Cheong Kin Seng
Candidate(s)
ID Number(s) 20ACB03898
Programme / Course Bachelor of Information Technology (Honours) Computer
i i i Engineering
Title of Final Year Project |RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
PPLICATION
Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)
ok
Overall similarity index:___7 %
Similarity by source
Internet Sources: 4 %
Publications: 4 %
Student Papers: 1 %
ok
Number of individual sources listed of
more than 3% similarity: _1
Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

e

Signature of Supervisor Signature of Co-Supervisor
Name: OOI Joo On Name:
Date: 26 April 2024 Date:

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU AEBDUL RAHMAMN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id

20ACB03898

Student Name

Cheong Kin Seng

Supervisor Name Dr. Ooi Joo Onn

TICK (\)

DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Title Page

Signed Report Status Declaration Form

Signed FYP Thesis Submission Form

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

All references in bibliography are cited in the thesis, especially in the chapter
of literature review

Appendices (if applicable)

Weekly Log

Poster

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

2|22 =2 Pl P P - Pl Pl =l =l [l [l [P [P

| agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

my report.

/AF@..

|, the author, have checked and confirmed all the items listed in the table are included in

(Signature of Student)
Date: 26 April 2024

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

