

RISC-V INSTRUCTION SET EXTENSION ON

BLOCKCHAIN APPLICATION

By

Cheong Kin Seng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN APPLICATION

 __

 __

Academic Session: JAN 2024_____________

 I CHEONG KIN SENG___

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 ___________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 3, Lorong Kledang Timur 13,

 Taman Rasi, 31450 Menglembu, ___Ooi Joo On_________________

 Perak._____________________ Supervisor’s name

 Date: 25 APRIL 2024_________ Date: 26 APRIL 2024___________

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis
Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 25 APRIL 2024__________

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Cheong Kin Seng___________________________ (ID No:

__20ACB03898) has completed this final year project/ dissertation/ thesis* entitled

“____________RISC-V Instruction Set Extension on Blockchain Application____ _” under the

supervision of Dr. Ooi Joo Onn________________ (Supervisor) from the Department of Digital

Economy Technology____________________, Faculty/Institute* of Information and

Communication Technology__________ , and ____________________ (Co-Supervisor)* from the

Department of ________________________, Faculty/Institute* of __________________________.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Cheong Kin Seng)

*Delete whichever not applicable

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “RISC-V INSTRUCTION SET EXTENSION ON

BLOCKCHAIN APPLICATION” is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : ________________

Name : Cheong Kin Seng___________

Date : 25 April 2024______________

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Ooi Joo Onn

who has given me this bright opportunity to engage in a RISC-V architecture project. It is my

first step to establish a career in IC design field with relate to the RISC-V architecture which

is trending now. A million thanks to you. Besides, I would like to thank my moderator, Mr Lee

Heng Yew, to take part in the review of my project, in order to provide me some useful insights

and comments for me to improve on my project.

Finally, I must say thanks to my parents and my family for their love, support, and continuous

encouragement throughout the course.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

This project is an instruction set extension project based on RISC-V architecture for academic

purpose. Blockchain technology was widely used today to keep records due to its high security

and reliability. However, blockchain required a high computing power to function. Although

there were numerous ways to improve the performance speed of blockchain technology in

software implementations, hardware implementation of the blockchain algorithms was a more

preferred choice due to the emerging open-source computer architecture, RISC-V. RISC-V was

free and open license for anyone to customize their IC design. By adding new instruction

extensions to the RISC-V cores, they could be specialized to run certain types of tasks. This

would greatly shorten the instructions used by the algorithms and improved the execution time

of the programmes. One of the most common cryptographic algorithms used in blockchain

would be selected in this paper, typically djb2 hash algorithm. In this project, some instructions

were proposed to execute the cryptographic algorithm in shorter clock cycles and shorter

execution time. Towards the end of the project, the algorithms would be executed in a base

RISC-V core and an extended RISC-V core using simulation tools to perform performance

analysis. The simulation tool used in this project was Chipyard, which is a one-stop

development tool for anything regarding RISC-V customization. One of the main components

in Chipyard was Spike simulator, which was a software simulation tool in RISC-V standards

to execute the software executable file and also output the hardware information used during

the execution. Spike was used to run the compiled source codes in C/C++ language to

determine the execution time and clock cycles used by the programme. A RISC-V GNU

toolchain was installed for the compilation of the programme. The toolchain was also

customised and extended with extra instructions to compile the programme. The compiled

programme was simulated in Spike ISA simulator to test with the extension and without the

extension. The results were presented at the end of the report.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 3

1.5 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 A RISC-V Processor with Area-Efficient Memristor-Based In-

Memory Computing for Hash Algorithm in Blockchain

Applications

5

2.2 Symmetric Cryptography on RISC-V: Performance Evaluation of

Standardized Algorithms

6

2.3 RISC-V Instruction Set Extensions for Lightweight Symmetric

Cryptography

6

2.4 VPQC: A Domain-Specific Vector Processor for Post-Quantum

Cryptography Based on RISC-V Architecture

7

2.5 The design of scalar AES instruction set extensions for RISC-V 8

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

2.6 Critical Remarks of Previous Works 9

2.6.1 Strengths 9

2.6.2 Weaknesses 9

CHAPTER 3 SYSTEM MODEL (FOR RESEARCH-BASED

PROJECT)

10

3.1 System Design Diagram/Equation 10

3.1.1 Description of DJB2 String Hash 10

3.1.2 Translation Hierarchy of C/C++ Programmes 11

3.1.3 System Architecture Diagram 12

3.2 RISC-V Architecture 13

CHAPTER 4 SYSTEM DESIGN 15

 4.1 Design of Instruction Set Extension 15

 4.1.1 Block Diagram of DJB2 String Hash Instruction Extension 15

 4.1.2 Opcode of DJB2 String Hash Instruction Extension 15

 4.1.3 Pseudocode of DJB2 String Hash Instruction Extension 17

 4.2 Blockchain Application Source Codes 17

 4.2.1 Assembly Codes of String Hash Function 18

 4.3 Unit Test Programmes 19

 4.3.1 Assembly Codes of Unit Test Programmes 22

CHAPTER 5 EXPERIMENT/SIMULATION 24

 5.1 Hardware Setup 24

5.2 Software Setup 24

5.3 Setting and Configuration 24

5.4 System Operation (with Screenshot) 25

 5.4.1 Source Code Compilation 25

 5.4.2 Extending RISC-V GNU Toolchain 25

 5.4.3 Modification of Spike ISA Simulator 27

5.5 Implementation Issues and Challenges 30

5.6 Concluding Remark 31

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 32

6.1 System Testing and Performance Metrics

32

6.2 Testing Setup and Result 32

6.3 Project Challenges 33

6.4 Objectives Evaluation 33

6.5 Concluding Remark 33

CHAPTER 7 CONCLUSION AND RECOMMENDATION 34

7.1 Conclusion 34

7.2 Recommendation 34

REFERENCES 35

 APPENDIX 36

 WEEKLY LOG 49

 POSTER 54

 PLAGIARISM CHECK RESULT 55

 FYP2 CHECKLIST 58

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 1.5.1 Simplified view of the blockchain. 4

Figure 1.5.2 Cryptographic algorithms. 6

Figure 1.5.3 Cryptographic algorithms. 6

Figure 2.1.1 Modified RISC-V processor core with in-memory

computing (IMC).

8

Figure 2.1.2 RV32I assembly code of SBOX table. 9

Figure 2.1.4 The architecture of VPQC. 11

Figure 2.1.5.1 An AES encryption round implemented using

hardware-assisted T-tables.

11

Figure 2.1.5.2 Instruction mnemonics, and their mapping onto

pseudo-code functions.

12

Figure 3.1.1 C implementation of djb2 string hash. 10

Figure 3.1.2 Translation Hierarchy for C/C++ Programmes 11

Figure 3.1.3 System Design Implementation Flowchart 12

Figure 3.2.2 RISC-V 32-bit instruction formats 13

Figure 4.1.1.1 Block Diagram of Instruction Set Extension 15

Figure 4.1.2.1 RISC-V Base Opcode Map 15

Figure 4.1.2.2 Opcodes of DJB2 String Hash Instruction 16

Figure 4.1.2.3 Opcode’s Mask and Match Values of Custom

Instruction

16

Figure 4.1.2.4 Format for the Declaration of Instruction 16

Figure 4.2 Code Snippet of hash.c 18

Figure 4.2.1 Assembly Codes of hash.c 19

Figure 4.3.1 Code Snippet of test_hash.c 20

Figure 4.3.2 Code Snippet of test_hash_asm.c 21

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 1.5.1 The structure of a block. 4

Table 1.5.2 The structure of a block header. 5

Table 3.1.1 Specifications of PC 16

Table 3.2.1.1 DWORD padding 17

Table 5.1.1 Specifications of PC 24

Table 5.3.1 Usage of Optimization Flags 25

Table 6.2.1 Simulation Results 32

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF SYMBOLS

β beta

Ω Ohm (resistance)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

PoW Proof of Work

RISC-V Reduced Instruction Set Computer (V)

ISA Instruction Set Architecture

ISE Instruction Set Extension

AES Advanced Encryption Standard

SHA Secure Hashing Algorithm

SM2 ShangMi 2

SM3 ShangMi 3

SM4 ShangMi 4

NIST National Institute of Standards and Technology

HDL Hardware Description Language

LWC Light Weight Cryptography

LWE Learning with Errors

RTL Register-Transfer Logic

HDL Hardware Description Language

CHAPTER 1

1

Chapter 1

Introduction
1.1 Problem Statement and Motivation

Mining was the mechanism that underpinned the decentralized clearing house, by

which transactions were validated and cleared [2]. However, on average, every 10

minutes [2] a new block was created with transactions that had taken place since the

previous block, effectively adding these transactions to the blockchain. It was important

to improve the efficiency of computing the cryptographic algorithms for the blockchain

technology to scale economically and timely. One way to improve the performance of

adding the new blocks to the chain was to have the computing chips designed to run

specifically for the use of blockchain technology.

RISC-V was an instruction set architecture (ISA) which was developed from

reduced instruction set computers (RISC) concepts. What set RISC-V apart from other

ISA designs was that it was freely available under open-source licenses (Refer

Appendix A-1 for its architecture). [4] There had been a recent surge of interest in

RISC-V, with many companies starting to offer RISC-V hardware. It supported 32-bit,

64-bit, and 128-bit architectures. RISC-V's popularity stemmed from its ability to

facilitate the development of specialized microprocessor designs. Unlike other

architectures, RISC-V was flexible and modular, which allowed for tailored designs

that were free from unnecessary features and capabilities that could negatively impact

performance and energy usage. Additionally, RISC-V's open-source nature lowered its

cost compared to proprietary RISC.

 In October 2021, RISC-V published the volume 1 of the cryptography ISE that

provided the developers a set of specialized instructions for cryptographic algorithms

used in scalar calculations, namely the “Scalar & Entropy Source Instructions” [5]. In

April 2023, RISC-V published the volume 2 of the cryptography ISE for the use in

vector calculations, namely the “Vector Instructions” [6]. In this paper, a solution was

proposed to extend the RISC-V ISA cryptography extension to enhance the

performance of computing blockchain algorithms in terms of clock cycles and

execution time.

CHAPTER 1

2

 The motivation of this project was that the blockchain technology was a

decentralized ledger that ensured secure and transparent transaction records. The

network was maintained by nodes that verified and appended transactions to the

blockchain. However, with an increase in the number of transactions, the need for

additional nodes increased, leading to potential delays and increased fees [7].

Enhancing the clock cycles of the blockchain system could improve transaction speed

and decrease fees, thus making the technology more efficient and accessible to

businesses and individuals.

1.2 Objectives

The aim of the paper was to propose a few specific hardware instructions to be added

into the RISC-V ISA cryptography extension for the acceleration of some common

cryptographic algorithms used in blockchain. There were a few objectives that should

be achieved in this project.

 Firstly, a functioning blockchain application with its cryptographic hash

function should be built. A thorough study through the algorithm in RISC-V assembly

codes should be studied to design its instruction set extension for customization.

Firstly, the proposed instructions should be able to reduce the code size when

the algorithms were translated into assembly languages, thus decreasing the instructions

per clock cycle when the processor was running the programmes. The code size will be

compared between the algorithms when running the base RV32I or RV64I instruction

set versus the one running in the base instruction set with the proposed instruction set.

Secondly, the proposed instructions were expected to improve the

performance of clock cycles and execution time of the algorithms mentioned when

running in the proposed solution than using the base RV32IMAFDC or RV64IMAFDC

instruction set.

CHAPTER 1

3

1.3 Project Scope and Direction

The scope of the project was to design a RISC-V ISE for the cryptographic algorithm

of blockchain technology. This included with developing the blockchain application

with cryptographic hash algorithm for design development, testing and verification.

The selection of tools for this project was necessary to learn about the functionality and

coverage for the success of this project. Besides, the RISC-V GNU Toolchain should

be customized with additional instruction, as well as to ensure the source codes would

be compiled with the custom instruction set. Then, a performance benchmark of the

hash algorithm would be carried out to compare the performance when running in a

base RISC-V machine and in a base RISC-V machine with the extended instruction set.

1.4 Contributions

The proposed RISC-V instruction set extension (ISE) aimed to improve the computing

performance of certain computational tasks by providing a set of new instructions

optimized for these tasks. By adding these instructions to the RISC-V ISA, the project

would enable more efficient and faster execution of these tasks on RISC-V-based

processors. Unlike existing solutions that rely on software-based optimizations or

custom hardware accelerators, the approach in this paper leveraged the flexibility of the

RISC-V ISA to add new instructions that could be executed directly by the processor.

This approach not only simplified the design and implementation of the acceleration

but also reduced the overhead of executing the task on the processor.

 A thorough analysis of the existing RISC-V ISA was conducted and identified with

the computational tasks that could benefit the most from the custom instructions. A set

of new instructions for these tasks were designed and prototyped as well as their

performance was evaluated on a simulated RISC-V processor. To evaluate the impact

and contribution of the suggested ISE, a comprehensive set of benchmarks was planned

to conduct to run the blockchain algorithms in the RISC-V simulator with the original

instruction set and extended instructions. The results were expected to demonstrate a

significant improvement in performance compared to existing solutions.

CHAPTER 1

4

1.5 Report Organization

This report consists of seven chapters were written in this report. Chapter 1 was the

project introduction; Chapter 2 was review of literature; Chapter 3 was describing the

system model; Chapter 4 was outlining the system design; Chapter 5 was the detailed

process of experiment and simulation; Chapter 6 reported the system testing and

evaluation; and Chapter 7 concluded the project and suggestions for further

improvements.

CHAPTER 2

5

Chapter 2

Literature Review

2.1 “A RISC-V Processor with Area-Efficient Memristor-Based In-Memory

Computing for Hash Algorithm in Blockchain Applications”

Xue et al. (2019) proposed the addition of a memristor-based in-memory computing

(IMC) core on a RISC-V processor for the blockchain technology. Figure 2.1.1 [8]

showed the additional memory module, i.e., the IMC module was installed in the CPU

core along with with a modified IMC controller and operation module. The IMC-

adapted instructions, which extended from the base RISC-V ISA were designed

specifically for the Keccak hash algorithm. The authors were successful to prove that

the addition of the IMC core in the RISC-V processor could save both execution time

and power consumption tremendously by 70% as compared to the base processor

without any extension.

 Figure 2.1.1 Custom in-memory computing (IMC) module.

CHAPTER 2

6

2.2 “Symmetric Cryptography on RISC-V: Performance Evaluation of

Standardized Algorithms”

Nisancı, G., Flikkema, P.G., and Yalçın, T. (2022) presented software-only algorithms

with the RISC-V RV32I ISA. The performance of these algorithms was compared to

the performance of a RISC-V processor with customized hardware design

cryptographic execution. They implemented grev[i], shlf[i], and unshlf[i] in their work.

The authors [9] showed that the software implementations with the RISC-V

cryptography set extension provided significant improvements for the selected

algorithms (AES, CAST-128, SEED-V1, CAMELLIA V1, SEED-V2) at an additional

hardware cost of less than 9%. It is indeed a considerable amount of investment to

upgrade the hardware to cater for the needs of the cryptographic algorithms. The

authors also proposed a new instruction to accelerate the operations for calculation of

memory address for 8-bit input SBOX table. Figure 2.1.2 showed the RV32I assembly

code of the SBOX tables. Therefore, the authors used one instruction, instead of three

to calculate the memory address for 8-bit input SBOX tables.

Figure 2.1.2 RV32I assembly code of SBOX table.

2.3 “RISC-V Instruction Set Extensions for Lightweight Symmetric

Cryptography”

Cheng H. et al. (2023) presented the design, implementation, and evaluation of each

ISE for the ten LightWeight Cryptography (LWC) selected which were suitable for

resource-constrained devices. The authors [10] developed the ISE designs for ten of the

said algorithms by following a set of principled constraints. First, they followed the

RISC-V design principles, which was the instructions with the three registers. Then,

the authors implemented the designs with the RISC-V compliant Rocket core. When

compared to software-only options, the authors observed that 1) ISEs had minimal

additional overhead costs in hardware, 2) the ISEs can reduce execution time, which

varies based on the algorithm, and 3) the ISEs allow for consistent execution time and

a decrease in the size of the instruction set. varies based on the algorithm, and 3) the

CHAPTER 2

7

ISEs allow for consistent execution time and a decrease in the size of the instruction

set.

2.4 “VPQC: A Domain-Specific Vector Processor for Post-Quantum

Cryptography Based on RISC-V Architecture”

Xin, G. et al. (2020) suggested the development of a configurable cryptographic

processor, VPQC, for key encapsulation schemes, running both Ring-LWE and

Module-LWE schemes, which included a vector co-processor in a basic RISC-V core

in Figure 2.1.4. They explored the vectorization of number theoretic transform (NTT)

and sampling algorithms and design a high-performance vector architecture using

custom instructions that extended the RISC-V ISA. The proposed processor [11]

exhibited significantly faster computation speeds for key encapsulation mechanisms

(KEM) protocols compared to previous implementations, providing a high-speed PQC

platform for security applications.

Figure 2.1.4 The architecture of VPQC.

2.5 “The design of scalar AES instruction set extensions for RISC-V”

Marshall et al. (2020) implemented and evaluated five ISE designs for AES on two

different RISC-V complaint base microarchitectures. The authors found that the best

design for AES on 32-bit cores was to use a hardware-assisted T-tables, which required

only 20 instructions per round as shown in Figure 2.1.5.

CHAPTER 2

8

Figure 2.1.5.1 An AES encryption round implemented using hardware-assisted T-

tables.

For the AES on 64-bit cores, the best design option was to adopt a 64-bit data-path,

where two columns were packed into a 64-bit word. Figure 2.1.5.2 showed the

examples of the assembly instructions of the AES.

Figure 2.1.6 AES pseudo-code functions.

Furthermore, the RISC-V bitmanip ISE could combine with either a hardware assisted

T-tables or a 64-bit datapath to support AES-GCM, which the block ciphers took

advantage of parallel processing.

CHAPTER 2

9

2.2 Critical Remarks of Previous Works

2.2.1 Strengths

The strengths of the IMC core as proposed by Xue et al. [8] were the addition of the

additional IMC module in the CPU core to assist in accelerating the execution time and

clock cycles of the processes. The authors implemented additional memory in their

solution that could reduce the execution time by 70% as compared to the base core

without extension.

Nisancı, G., Flikkema, P.G., and Yalçın, T. implemented few custom

instructions to reduce the execution time of the symmetric cryptographic algorithms by

accelerating the calculation of memory address used by the algorithms. The solution

was proven successful to speed up the execution time and clock cycles when running

the algorithms with the custom instructions.

2.2.2 Weaknesses

However, these techniques also have several weaknesses. One of the studies did not

cover on the diverse cryptographic algorithms found in blockchain application with the

addition of the IMC core [8] in RISC-V processor as proposed by Xue et al., although

the authors achieved a remarkable performance to reduce the execution time and power

consumption with limited area overhead in the execution of Keccak algorithm. It is also

expensive for the chip manufacturers to design and integrate it with the RISC-V core.

Nisancı, G., Flikkema, P.G., and Yalçın, T. used loop unrolling [9] in the

software implementations of cryptographic algorithms to produce their results, which

increased the programme’s execution speed. However, this practice is not reliable as

the developers of the cryptographic algorithms would prefer using ‘for’ loop and

‘while’ loop in their approach to save time and reduce workload.

Xin et al. proposed the addition of a vector co-processor with the RISC-V base

core to run the post-quantum cryptographic workloads. Although the computation

speeds for the workloads were significantly improved, the processor core did not show

versatility to support the other cryptographic algorithms. To implement a non-versatile

processor core to operate for a limited number of functions, it would be very costly and

non-economical, just like in [8].

CHAPTER 3

10

Chapter 3

System Model

3.1 System Design Diagram/Equation

3.1.1 Description of DJB2 String Hash

The cryptographic algorithm selected in the system design was djb2 string hash

algorithm. A simple implementation of the djb2 in C was illustrated in Figure 3.1.1

[17].

Figure 3.1.1 C implementation of djb2 string hash.

The 32-bits prime number 5381 was assigned to the variable ‘hash’. A full iteration of

the character string ‘str’ was performed to each of its character with the djb2 string

hash algorithm. The djb2 string hash algorithm would firstly perform a shift-left

operation to the hash variable by 5, and then add it back by itself. This would also

mean that the hash variable was multiplied by itself by a factor of 33. After that, the

ASCII value of the current character was added to it. After the full iteration of the

character string was being done, the function would return the final value of hash to

the caller function.

3.1.2 Translation Hierarchy for C/C++ Programmes

CHAPTER 3

11

Figure 3.1.2 Translation Hierarchy for C/C++ Programmes

In Figure 3.2.3 above, to be able to run in a RISC-V machine, C/C++ source codes were

to be compiled with a RISC-V compatible compiler. An assembly language programme

would be produced and passed to the assembler. Then, the assembler would generate

an object file, which would be the machine language module. Another object file, which

was the library routine in machine language, defined in the compiler toolchain, would

be then processed together with the object file from the assembler into the linker. The

linker would generate an executable file for the machine to execute the codes. The

loader would read from the executable file and load the machine codes into the memory

of the registers in the RISC-V machine.

CHAPTER 3

12

3.1.3 System Architecture Diagram

Figure 3.1.3 System Design Implementation Flowchart

The illustration of the system design implementation flow was shown in Figure 3.1.3.

The design flow started with completing the source codes of the blockchain application.

The development of the blockchain application should include the djb2 string hash

CHAPTER 3

13

function as describe in section 3.1.1. Then, the application would be compiled with the

existing RISC-V GNU Toolchain. The compiler toolchain would produce an assembly

file with all the RISC-V assembly instructions used in the programme execution. The

assembly codes should be studied and analysed, so that the registers used were known.

After that, the information would be used to design the custom instruction set extension.

Then, the extension would be defined in the compiler toolchain and the toolchain should

be rebuilt. The blockchain application should be compiled again and the assembly codes

should include the customized instructions. The compiled files would be executable

and a RISC-V ISA simulator, with or without the instruction set extension would

execute the file. The simulation results would be generated, such as the clock cycles

and the number of instructions executed. Then, the analysis would be performed on the

results to determine the performance of the system.

3.2 RISC-V Architecture

RISC-V is an open-source, royalty-free instruction set architecture (ISA) that defines

the set of instructions that a computer processor can execute. It is designed to be simple,

modular, and highly customizable.

It has a variety of standard extensions:

1) RV32I/RV64I/RV128I: The base integer instruction sets with 32, 64, or 128-

bit data widths.

2) M (Integer Multiplication and Division): Adds instructions for integer

multiplication and division.

3) F (Single-Precision Floating-Point) and D (Double-Precision Floating-

Point): Extensions for floating-point arithmetic.

4) C (Compressed): Reduces instruction size by using 16-bit instructions for

common operations.

5) A (Atomic): Supports atomic memory operations for concurrency control.

6) V (Vector): Introduces vector operations for SIMD (Single Instruction,

Multiple Data) processing.

For a 32-bit RISC-V machine, it has the following structure for its instructions as

shown in Figure 3.2.2. The programme’s source codes were required to be translated to

the corresponding machine code in 32-bit or 64-bit format for the programme to

function correctly.

CHAPTER 3

14

CHAPTER 4

15

Chapter 4

System Design
4.1 Design of Instruction Set Extension

4.1.1 Block Diagram of DJB2 String Hash Instruction Extension

Figure 4.1.1.1 Block Diagram of Instruction Set Extension

As illustrated in the block diagram in Figure 4.1.1.1, the djb2 string hash instruction

extension was accepting two inputs from rs1 and rs2 registers. The rs1 stored the djb2

prime number as defined in the djb2 string hash function of the blockchain application

in C. The rs2 stored each ASCII value of the character from a character string. Then,

the custom instruction would perform its behaviour to retrieve the value of the hash

result, which would be stored into the rd register. In the next iteration of character, the

hash result from the rd register would be loaded into the rs1 register to perform its

calculation again. The process would iterate itself for the next character in the character

string until no character was found.

4.1.2 Opcode of DJB2 String Hash Instruction Extension

Figure 4.1.2.1 RISC-V Base Opcode Map

In Figure 4.1.2.1 [18], the opcodes labelled with ‘custom-0’, ‘custom-1’, ‘custom-2’,

and ‘custom-3’ were available for the use of custom instruction extension in RISC-V.

While there were three slots for reserved, it was better not to consume them as there

would be overlapping of opcodes in the future. The ‘custom-1’ opcode was chosen for

CHAPTER 4

16

the custom extension of this project. The value for inst[6:5] was 01b and the value

inst[4:2] was 010b, hence these two values would be taken into design the opcode of

the custom instruction extension.

 The opcode could be designed easily through a tool called ‘riscv-opcodes’ [19],

which could be cloned from its GitHub repo. It would automatically generate the

opcode for the RISC-V instruction after the custom instruction format was inserted into

one of the files and inputting the terminal command ‘make’ to build the ‘riscv-opcodes’

project. As shown in Figure 4.1.2.2, the format of custom instruction ‘djb2’ was

inserted into the rv_i file.

Figure 4.1.2.2 Opcodes of DJB2 String Hash Instruction

To breakdown the format, the ‘funct7’ from bit 31 to bit 25 has the value of 1, and

the ‘funct3’ from bit 14 to bit 12 has the value of 0. The opcode from bit 6 to bit 0 was

separately assigned for each bit to minimize the error of overlapping, i.e. bit 6 to bit 5

has the value of 1, bit 4 to bit 2 has the value of 2, and bit 1 to bit 0 has the value of 3.

Finally, the other unassigned bits [24:20] are for rs2, bits [19:15] are for rs1, and bits

[11:7] are for rd. The opcode of the instruction defined here was following the RTYPE

instruction, which was shown in Figure 3.2.2, Section 3.2.

After the ‘riscv-opcodes’ tool was built, the representation of the opcode of the

custom instruction would be generated in encoding.out.h file. The match and mask

values of the custom instruction would be used in later steps to call the custom

instruction.

Figure 4.1.2.3 Opcode’s Mask and Match Values of Custom Instruction

In the same encoding.out.h file, there was a line of code to declare the custom

instruction in Figure 4.1.2.4, which will be used in the compiler.

Figure 4.1.2.4 Format for the Declaration of Instruction

CHAPTER 4

17

4.1.3 Pseudocode of DJB2 String Hash Instruction Extension

The behavioural design of the djb2 string hash instruction custom extension could be

described in this way:

1. Assign the value of the prime number 5381 into rs1 register if first iteration,

else assign the value of rd into rs1.

2. Shift-left the value inside rs1 by a factor of 5.

3. Add the shifted value with the value stored in rs1.

4. Add the value in rs1 with the value in rs2.

5. Store the final value into rd.

6. Repeat Step 1 until all characters are completely hashed.

4.2 Blockchain Application Source Codes

The blockchain application source codes were taken from the GitHub repo ‘A-Simple-

Blockchain-Simulation-Using-C’ [20]. The source codes consist of a blockchain.c

which acts as the parent file to call the other children files, a hash.c file to generate the

djb2 hash value for the strings, a linkedList.c file to link and chain the blocks together,

and some other header files to construct the classes. The full source codes were included

in Appendix C.

The hash.c file was the main file to make modifications for the project. The code

snippet is shown in Figure 4.2. A string would be passed from the parent file

blockchain.c into the function defined in string_hash to generate the djb2 string hash

value. After all the characters from the string were executed with the string hash

function, the final value of the hash result would be returned to the caller.

CHAPTER 4

18

Figure 4.2 Code Snippet of hash.c

4.2.1 Assembly Codes of String Hash Function

The assembly codes of the string hash function were as shown in Figure 4.2.1. The first

column represented the program counter of the RISC-V machine, which would be

incremented by 4 for every cycle. The second column represented the value of

instruction code in hexadecimal format. The third column represented the human-

readable instructions as decoded from the hexadecimal instructions from second

column.

CHAPTER 4

19

Figure 4.2.1 Assembly Codes of hash.c

4.3 Unit Test Programmes

Two unit test programmes were written to test and validate the compiler without the

custom instruction extension and with the extension. The first unit test was named

test_hash.c and its purpose was to test the compiler without the custom instruction. The

code snippet of test_hash.c was shown in Figure 4.3.1.

CHAPTER 4

20

Figure 4.3.1 Code Snippet of test_hash.c

 The second unit test was to test the compiler with the extended instruction and was

named test_hash_asm.c. The source code was as shown in Figure 4.3.2. To directly call

the custom instruction, the function asm volatile() should be used. Then, write the

instruction name with its register variables. In this case, “djb2 %[z], %[x], %[y]” would

be equal to “djb2 rd, rs1, rs2”. The line ‘[z] “=r” (result)’ would represent that the write

operation to rd register after the result was computed. The line ‘[x] “r” (result), [y] “r”

(*p)’ represented the value of result to be assigned to rs1 register and the value of the

current character *p to be assigned to rs2 register. The computing operation of the

custom instruction would be done on back-end side of the RISC-V ISA Simulator, for

which the Spike tool was chosen as the simulator in this project.

CHAPTER 4

21

Figure 4.3.2 Code Snippet of test_hash_asm.c

CHAPTER 4

22

4.3.1 Assembly Codes of Unit Test Programmes

After the installation of the RISC-V GNU Toolchain, the following command line could

produce the assembly codes of the programme and output to a textfile.

Riscv64-unknown-elf-objdump -D filename > dumpfile.txt

The assembly codes of the first unit test programme without the custom instruction

were shown in Figure 4.3.1.1. The custom instruction of djb2 hash function was no

where to be found in the assembly code of the test programme.

Figure 4.3.1.1 Assembly Codes of Unit Test without Extension

 In figure 4.3.1.2, the assembly codes of the second unit test programme with the

custom instruction were extracted into the assembly dump file. The custom instruction

djb2 was successfully called by the compiler, which would also mean the success of

extending the compiler with the custom instruction.

CHAPTER 4

23

Figure 4.3.1.2 Assembly Codes of Unit Test with Extension

CHAPTER 5

24

Chapter 5
Experiment/Simulation

5.1 Hardware Setup

A desktop PC with Linux OS was setup. A computer issued for the process of building

RISC-V simulation tools, RISC-V toolchains, and the blockchain application. The

details of the PC specifications were as shown in Table 5.1.1

Table 5.1.1 Specifications of PC

Description Specifications

Model Asus B85-Pro Gamer

Processor Intel Core i5-4400

Operating System Ubuntu 22.04.3 LTS

Graphic NVIDIA GeForce GTX 750TI 2GB GRAM

Memory 16GB DDR3 RAM

Storage 1TB SATA SSD

5.2 Software Setup

In this project, there are few software tools needed to be downloaded and installed in

the PC:

1. Ubuntu 22.04.3 LTS

2. Chipyard: 1.10.0 (https://chipyard.readthedocs.io/en/stable/)

3. RISC-V GNU Toolchain (https://github.com/riscv-collab/riscv-gnu-toolchain/)

4. Spike RISC-V ISA Simulator from Chipyard (https://github.com/riscv-

software-src/riscv-isa-sim/)

5. RISC-V Opcodes (https://github.com/riscv/riscv-opcodes)

6. Visual Studio Code

5.3 Setting and Configuration

There were several settings and configurations required to be done each time the source

code was compiled. In this project, the optimization options were included during the

compilation of the blockchain application source codes. The optimization options have

different usages respectively and the results would also be affected. There were five

CHAPTER 5

25

optimization options used which were O0, O1, O2, O3, and Os. The usage of the

optimization flags was described in Table 5.3.1.

Table 5.3.1 Usage of Optimization Flags

Optimization Flags Usage

O0 Compilation time is reduced.

 No code optimization.

O1 Code size is reduced.

 Execution time for small functions is reduced.

O2 More optimization.

 Code size is reduced even more.

 Execution time is improved.

O3 Highest optimization.

 Code size is reduced greatly.

 Execution time is greatly improved.

Os Only reduce code size.

5.4 System Operation

5.4.1 Source Code Compilation

The blockchain application source codes in C could be compiled with the GCC

compiler from the RISC-V GNU Toolchain. To compile the source codes, the gcc tool

should be called in the terminal. The following commands were examples that were

used:

riscv64-unknown-elf-gcc -O0 -c blockchain.c hash.c linkedList.c -o O0_main.riscv

riscv64-unknown-elf-gcc -O1 -c blockchain.c hash.c linkedList.c -o O1_main.riscv

riscv64-unknown-elf-gcc -O2 -c blockchain.c hash.c linkedList.c -o O2_main.riscv

riscv64-unknown-elf-gcc -O3 -c blockchain.c hash.c linkedList.c -o O3_main.riscv

riscv64-unknown-elf-gcc -O4 -c blockchain.c hash.c linkedList.c -o Os_main.riscv

5.4.2 Extending RISC-V GNU Toolchain

CHAPTER 5

26

RISC-V architecture was highly customizable and extensible, and the same would go

for its RISC-V GNU compiler toolchain. The RISC-V GNU Toolchain was pre-

installed if Chipyard was used in the project. Otherwise, the toolchain could be

manually built and installed by referring to the official GitHub repo “riscv-gnu-

toolchain” [21].

 Since the source codes of blockchain application were written in C, only the GCC

could compile all the codes into RISC-V executable. The customization and extension

of the GCC compiler could be done in these few steps:

Step 1: Open the file riscv-opc.h located in riscv-gnu-

toolchain/binutils/include/opcode/

Step 2: Add the match and mask values of the instruction, as well as the declaration of

instruction into the file as shown in Figure 4.3.1 and Figure 4.3.2.

Figure 4.3.1 Adding Match and Mask Values into riscv-opc.h

Figure 4.3.2 Declaration of Instruction in riscv-opc.h

Step 3: Open the file riscv-opc.c located in riscv-gnu-toolchain/binutils/opcodes

CHAPTER 5

27

Step 4: Add the line into the function ‘const struct riscv_opcode riscv_opcodes[]’ in the

file as shown in Figure 4.3.3. The format of the declaration structure was described

Figure 4.3.4. More explanations about each parameter required in the format could be

found in Appendix D.

Figure 4.3.3 Defining Instruction Behaviour in riscv-opc.c

Figure 4.3.4 Format of riscv_opcodes struct

Step 5: Rebuild the RISC-V GNU Toolchain using the following command.

./configure –prefix=$(RISCV) –with-cmodel=medany

sudo make clean

sudo make -j$(nproc)

5.4.3 Modification of Spike ISA Simulator

Spike was a RISC-V ISA software simulator that could provide an emulation

mimicking a RISC-V CPU machine. Spike was also highly customizable and extensible

in which the developers could modify, add, and test new instructions.

 In this project, the custom instruction set could be added to the Spike simulator in

these few steps:

Step 1: Change directory to chipyard/toolchains/riscv-tools/riscv-isa-sim

Step 2: Add match and mask values of custom instruction into riscv/encoding.h as

shown in Figure 5.4.3.1

CHAPTER 5

28

Figure 5.4.3.1 Adding Match and Mask Values of DJB2 Hash Instruction in

encoding.h

Step 3: Add the declaration of instruction in the same encoding.h file as shown in Figure

5.4.3.2.

Figure 5.4.3.2 Adding Declaration of DJB2 Hash Instruction in encoding.h

Step 4: Add the custom instruction into the array of “riscv_insn_ext_i” in riscv.mk.in

file under the current directory as illustrated in Figure 5.4.3.3.

CHAPTER 5

29

Figure 5.4.3.3 Adding DJB2 Hash Instruction in riscv.mk.in

Step 5: Create a new header file with the name of the instruction in the directory

riscv/insn/. Example: djb2.h

Step 6: Write the behaviour of the custom instruction in the header file that has just

been created as shown in Figure 5.4.3.4.

Figure 5.4.3.4 Functional Behaviour of Custom Instruction.

Step 7: Add the RISC-V format type of instruction in riscv-isa-sim/disasm/disasm.cc

as seen in Figure 5.4.3.5.

CHAPTER 5

30

Figure 5.4.3.5 Defining the RISC-V Format Type of Custom Instruction

5.5 Implementation Issues and Challenges

During the installation of Chipyard, an issue might arise due to the absence of

‘guestmount’ module. It could be solved by entering the command ‘sudo apt-get install

libguestfs-tools’. Nevertheless, the installation might take some time if the CPU and

RAM are not powerful. The diskspace consumed for the project was around 10+ GB.

A low performing CPU could also delay the time to rebuild the RISC-V GNU

Toolchain and Spike ISA Simulator, as these tools contained a tremendous number of

files.

 Besides, the syntax of the code lines should be carefully typed and inserted as a lack

of correct syntax could lead to the failure of rebuilding the customized tools for the

research. The consequence of this would consume extra time to look for the errors and

fix them.

 Furthermore, the instruction extension should not be added into the RISC-V ISA

profile ‘I’ as the extension profile was meant for integer operation. However, adding an

extra instruction set extension class into the tools was tedious and complicated, as it

required a lot more steps to complete the behaviour of the instructions and simulation.

CHAPTER 5

31

5.6 Concluding Remark

In this project, the main tool used for simulation was Chipyard. Several tools were

included when Chipyard was built, such as the RISC-V GNU Toolchain and Spike ISA

Simulator. When compiling the source codes of the blockchain application, a few gcc

optimization techniques were used, such as the -Os, -O0, -O1, -O2, and -O3. To extend

the RISC-V GNU Toolchain such that it was able to compile the codes with custom

instruction, some files are required to be modified. For instance, adding the opcodes in

riscv-opc.h and declaring the instruction in riscv-opc.c. Finally, the customization of

Spike ISA Simulator was required to simulate the execution of the software in the Spike

device. To modify the simulator, quite a few steps are required to be completed. For

example, creating a new header file for the custom instruction and defining its

behaviour in the file, adding the opcode in encoding.h, adding the instruction in

riscv.mk.in, and defining the format type of the instruction in disasm.cc.

CHAPTER 6

32

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

A performance analysis of the Spike ISA simulator with custom instruction extension

along with the simulator without any modification was conducted to determine the

impact of the project. There were a number of information that the simulator could

provide which could be taken as the performance metrics of this project. The

performance metrics are the number of instructions executed and the program execution

time.

 The program execution time was a common metric to determine the time needed to

execute the program in the CPU. The formula to calculate the program execution time

was given as below:

������� ��������� ���� =
(������ �� ������������) × ���

����� �����

6.2 Testing Setup and Result

The blockchain application was compiled with different optimization flags as discussed

in section 5.3. A total of 10 RISC-V executables were generated to perform the test.

The cycles per instruction (CPI) was set to maintain at 1.00 in the simulator. To use the

simulator to execute the programme and to generate the simulation result, the following

command was entered:

spike pk -s <filename>

The result was collected and organized in Table 6.2.1. The evidence of the results was

appended in Appendix E.

Table 6.2.1 Simulation Results

O Flags

Base (without extension) With custom extension Reduction

in

instructions

(%)

Reduction

in time

(%)

Instructions

Execution

Time (ms)

Instructions

Execution

Time (ms)

CHAPTER 6

33

-Os 41018 45.58 41013 45.57 0 0

-O0 55329 48.11 51855 47.14 -6.28 -2.02

-O1 40993 45.55 40413 44.90 -1.41 -1.43

-O2 41408 43.59 40828 42.98 -1.40 -1.40

-O3 41408 43.59 40828 42.98 -1.40 -1.40

Based on the data in Table 6.2.1, the blockchain application compiled with -Os flag had

a very insignificant difference, which resulted in a 0% reduction in both instructions

size and execution time. The application compiled with -O0 had the most significant

impact, which resulted in -6.28% in instructions size and -2.02% in execution time.

While the programme compiled with -O1 had a difference of -1.41% and -1.43% in

both instruction sizes and execution time respectively. Finally, the -O2 and -O3 flags

caused the programme to have a reduction of -1.40% in both instruction sizes and

execution time.

6.3 Project Challenges

The Spike ISA simulator was a RISC-V instruction set simulator. The custom

instruction sets were tested in the software simulator first, before developing it with the

hardware changes. The Spike ISA simulator was not a cycle-accurate simulator after

all. Therefore, the clock cycles and ticks generated from the simulator may not be

accurate to act as a reference for the results. However, it showed the custom instruction

extension showed performance improvement and was ready to be implemented with

hardware changes.

6.4 Objectives Evaluation

The project was successful to achieve all the mentioned objectives in section 1.2.

Firstly, a functioning instruction set extension was successfully designed and run in the

simulator for the blockchain hash algorithm. Then, the code size was able to be reduced

with the customization, which could be seen most obviously in the compiled application

with -O0 optimization flag. Finally, the custom instruction set was able to reduce the

clock cycles as well as the program execution time of the blockchain application.

6.5 Concluding Remark

CHAPTER 6

34

The performance of the custom instruction was satisfied. It was able to improve the

performance in both instruction code sizes and program execution time by at least

1.40%. However, the simulation results may not be as precise as it seemed as the Spike

ISA simulator was not a cycle-accurate simulator, instead it was just a instruction set

simulator to test the functionality of the custom instruction extension.

CHAPTER 7

35

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

Blockchain technology implementation in real-world applications had a challenge in

which the time consumption to add a new block to its blockchains was high. To improve

the time and cost efficiency of calculating its hash and thus speed up the addition of

blocks in the blockchain, a custom instruction set was proposed as an extension to the

RISC-V base ISA. RISC-V architecture was chosen in this project due to its open source

nature, highly customizable, and availability of a large pool of community developers.

In this project, a simple blockchain application was selected as a case study for its

cryptographic algorithms. The hash function used was DJB2 string hash. The proposed

instruction sets would be added to the RISC-V ISA to reduce the number of code sizes

and to improve the performance of the program execution time of blockchain algorithm.

Thus, the extended RISC-V CPU with the proposed extensions would be more efficient

and effective in terms of execution time when running the blockchain application with

DJB2 string hash. The impact of the custom instruction set extension on the

performance was simulated in Spike ISA Simulator and its results are presented in

Chapter 6.

7.2 Recommendation

The project could be further improved by modifying the hardware behaviours in the

RTL design. A RISC-V hardware that was functioning and able to fit the custom

instruction set could have a more concrete result and proof for the practicality and

functionality of the instruction set extension.

REFERENCES

36

REFERENCES

[1] Ledin J., “Blockchain and Bitcoin Mining Architectures,” in Modern Computer

Architecture and Organization, 2nd ed. Birmingham, UK: Packt, 2022, pp. 395-419.

[2] Antonopoulos A.M., “The Blockchain,” in Mastering Bitcoin, 2nd ed. California, CA, USA:

O’Reilly, 2017, pp. 195-211.

[3] Himelstein M. et al., “RISV-V Blockchain SIG Meeting 2022-Jan-24” in RISV-V

Blockchain SIG Biweekly Meeting, Jan. 24, 2022. [Online]. Available: https://github.com/riscv-

admin/blockchain/blob/main/MeetingMinutes/2022/RISC-

V%20Blockchain%20SIG%20meeting%202022%20Jan24.pdf

[4] J. Jacobsen. “Let’s Make RISC-V Connected Systems Synonymous with Security” RISC-

V.org. https://riscv.org/blog/2021/01/lets-make-risc-v-connected-systems-synonymous-with-

security/ (Accessed Apr. 16, 2023)

[5] Zeh, A., Glew, A., Spinney, B., Marshall, B., Page, D., Atkins, D., Dockser, K., Saarinen,

M.-J.O., Menhorn, N., Deutsch, L.P., et al. “RISC-V Cryptographic Extension Proposals

Volume I: Scalar & Entropy Source Instructions Version v1.0.1”, 2022. Available online:

https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar (Accessed Apr. 19, 2023).

[6] Zeh, A., Glew, A., Spinney, B., Marshall, B., Page, D., Atkins, D., Dockser, K., Saarinen,

M.J.O., Menhorn, N., Newell, R., et al. “RISC-V Cryptographic Extension Proposals Volume

II: Vector Instructions.”, 2023. Available online: https://github.com/riscv/riscv-

crypto/releases/tag/v20230407 (Accessed Apr. 19, 2023).

[7] IBM, “Benefits of blockchain.” IBM.com. https://www.ibm.com/topics/benefits-of-

blockchain (Accessed Apr. 18, 2023)

[8] Xue, X., Wang, C., Liu, W., Lv, H., Wang, M., and Zeng, X., “A RISC-V processor with

area-efficient memristor-based in-memory computing for hash algorithm in blockchain

applications,” Micromachines, vol. 10, pp. 541, Aug. 2019, doi:10.3390/mi10080541

[9] Nisancı, G., Flikkema, P.G., and Yalçın, T., “Symmetric cryptography on RISC-V:

Performance evaluation of standardized algorithms,” Cryptography, vol. 6, pp. 41, Aug. 2022,

doi.org/10.3390/cryptography6030041

[10] Cheng, H., GroBschadl, J., Marshall, B., Page, D., and Pham, T., “RISC-V instruction set

externsions for lightweight symmetric cryptography,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2023, no. 1, pp. 193-237, Nov. 2022,

doi:10.46586/tches.v2023.i1.193-237

REFERENCES

37

[11] Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., and Zeng, X., “VPQC: a

domain-specific vector processor for post-quantum cryptography based on RISC-V

architecture,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 67, no. 8,

pp. 2672-2684, Aug. 2020, doi:10.1109/TCSI.2020.2983185

[12] Marshall, B., Newell, G.R., Page, D., Saarinen, M.J.O., and Wolf, C., “The design of

scalar AES instruction set extensions for RISC-V,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2021, no. 1, pp. 109-136, Dec. 2020,

doi:10.4586/tches.v2021.i1.109-136

[13] Patterson, D.A., and Hennesy, J.L., “Instructions: language of the computer,” in

Computer Organization and Design RISC-V: The hardware software interface, 2nd ed.

Cambridge, MA, USA: MK, 2021, ch. 2, pp. 68-128.

[14] Hu, B., Chen, Y., and Zeng, X., “An Agile Instruction Set Extension Method Based

onthe RISC-V Processor,” 2021 IEEE 4th International Conference on Electronics

Technology, 2021, doi:10.1109/ICET51757.2021.9450911

[15] Preneel, B., Dobbertin, H., and Bosselaers, A., “The Cryptographic Hash Function

RIPEMD-160,” in CryptoBytes 3(2), pp. 9-14, 1997.

[16] Harris, S., and Harris, D.M., “Architecture: Machine Language,” in Digital Design and

Computer Architecture RISC-V Edition, Cambridge, MA, USA: MK, 2022, ch. 6, pp. 332-

343.

[17] Stanis, F., “008 – djb2 hash” The Art in Code. https://theartincode.stanis.me/008-djb2/

(Accessed Apr. 24, 2024)

[18] RISC-V International, “The RISC-V Instruction Set Manual Volume I: Unprivileged

ISA” riscv.org. https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-

IMAFDQC/riscv-spec-20191213.pdf (Accessed Apr. 25, 2024)

[19] RISC-V International, “RISC-V Opcodes” riscv.org. https://github.com/riscv/riscv-

opcodes (Accessed Apr. 25, 2024)

[20] Charvi, B., Chaitra, B., Ankitha, C., “A-Simple-Blockchain-Simulation-Using-C”

https://github.com/Chaitra-Bhat383/A-Simple-Blockchain-Simulation-Using-C (Accessed

Apr. 25, 2024)

[21] RISC-V Collab, “RISCV-GNU-TOOLCHAIN” https://github.com/riscv-collab/riscv-

gnu-toolchain (Accessed Apr. 25, 2024)

[22] Altinay, O., Ors, B., “Instruction Extension of RV32I and GCC Back End for ASCON

Lightweight Cryptography Algorithm”, 2021.

APPENDIX

A1

APPENDIX
Appendix A

RISC-V 32-Bit Architecture

Figure A1-1 RISC-V fields.

Figure A1-2 RISC-V memory allocation for programme and data.

APPENDIX

A-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure A1-3 RISC-V simple datapath.

APPENDIX

A-2
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

RISC-V 32-Bit Instruction Set Base and Extensions

Figure A2-1 The modular instruction set of the RV32IMAC variant. This is a 32-bit CPU

with the Base Integer ISA (RV32I) and the ISA extensions for Integer Multiplication and

Division (RV32M), Atomic Instructions (RV32A), and Compressed Instructions (RV32C)

APPENDIX

A-3
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

RISC-V Architecture Green Card

Figure A3-1 RISC-V Architecture Green Card (1)

APPENDIX

A-3
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure A3-1 RISC-V Architecture Green Card (2)

APPENDIX

B-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix B
Project Timeline

Figure B-1 Project Gantt Chart

APPENDIX

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix C
Blockchain Application Source Codes
#include <ctype.h>
/**
 * Generate a hash key from a string.
 *
 * @param string The string.
 * @return A hash key for the string.
 */
int string_hash(void *string)
{
 /* This is the djb2 string hash function */

 int result = 5381;
 unsigned char *p;

 p = (unsigned char *) string;

 while (*p != '\0') {
 result = (result << 5) + result + *p;
 ++p;
 }

 return result;
}

Figure C-1 hash.c

#include <stdio.h>
#include <stdlib.h>

#include "linkedlist.h"

NODE * reverse(NODE * node) {
 NODE * temp;
 NODE * previous = NULL;
 while (node != NULL) {
 temp = node->next;
 node->next = previous;
 previous = node;
 node = temp;
 }
 return previous;
}

void init(NODE** head) {
 *head = NULL;
}

APPENDIX

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

NODE* add(NODE* node, DATA data) {
 NODE* temp = (NODE*) malloc(sizeof (NODE));
 if (temp == NULL) {
 exit(0); // no memory available
 }
 temp->data = data;
 temp->next = node;
 node = temp;
 return node;
}

void print_list(NODE* head) {
 head = reverse(head);
 NODE * temp;
 int indent = 0;
 printf("Print chain\n");
 printf("=========== \n");
 for (temp = head; temp; temp = temp->next, indent = indent+2)
 {
 printf("%*sPrevious hash\t%d\n", indent,"", temp->data.info.previous_block_hash);
 printf("%*sBlock hash\t%d\n", indent,"", temp->data.info.block_hash);
 printf("%*sTransaction\t%s\n", indent,"", temp->data.info.transactions);
 printf("%*s\n", indent, "");
 }

 printf("\r\n");
}

void add_at(NODE* node, DATA data) {
 NODE* temp = (NODE*) malloc(sizeof (NODE));
 if (temp == NULL) {
 exit(EXIT_FAILURE); // no memory available
 }
 temp->data = data;
 temp->next = node->next;
 node->next = temp;
}

void remove_node(NODE* head) {
 NODE* temp = (NODE*) malloc(sizeof (NODE));
 if (temp == NULL) {
 exit(EXIT_FAILURE); // no memory available
 }
 temp = head->next;
 head->next = head->next->next;
 free(temp);
}

NODE *free_list(NODE *head) {

APPENDIX

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 NODE *tmpPtr = head;
 NODE *followPtr;
 while (tmpPtr != NULL) {
 followPtr = tmpPtr;
 tmpPtr = tmpPtr->next;
 free(followPtr);
 }
 return NULL;
}

Figure C-2 linkedList.c

#include <stdio.h>
#include <search.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "block.h"
#include "linkedlist.h"

#define NVOTES 10

extern hash string_hash(void *string);

typedef enum party_code_t {GOOD_PARTY, MEDIOCRE_PARTY, EVIL_PARTY,
MAX_PARTIES} party_code;
char *party_name[MAX_PARTIES] = {"GOOD PARTY", "MEDIOCRE_PARTY",
"EVIL_PARTY"};

static party_code get_vote()
{
 int r = rand();
 return r%MAX_PARTIES;
}

void main(int argc, char const *argv[])
{
 srand(time(NULL));

 NODE *head;
 DATA genesis_element;
 init(&head);

 // First block is created manually with hash = 0
 transaction genesis_transactions = {party_name[get_vote()]};
 block_t genesis_block = {0, string_hash(genesis_transactions), genesis_transactions};
 genesis_element.info = genesis_block;
 head = add(head, genesis_element);

APPENDIX

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 // Now, we are going to submmit n random votes
 int i, previous_hash = genesis_element.info.previous_block_hash;
 transaction trans_list = (transaction) malloc(NVOTES * sizeof(char)*10);
 for(i=0;i<NVOTES;i++)
 {
 DATA *el = malloc(sizeof(DATA));
 block_t *b = malloc(sizeof(block_t));

 transaction t = {party_name[get_vote()]};
 strcat(trans_list, t);
 b->previous_block_hash = previous_hash;
 b->block_hash = string_hash(trans_list);
 b->transactions = t;
 el->info = *b;
 previous_hash = b->block_hash;
 head = add(head, *el);

 }

 print_list(head);

 return;
}

Figure C-3 blockchain.c

#ifndef BLOCK_H
#define BLOCK_H

typedef int hash;
typedef char *transaction;

typedef struct Block_T {
 hash previous_block_hash;
 hash block_hash;
 transaction transactions;
}block_t;

#endif //BLOCK_H

Figure C-4 block.h

#ifndef LINKEDLIST_H
#define LINKEDLIST_H

#include <stdio.h>
#include <stdlib.h>

#include "block.h"

APPENDIX

C-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

typedef struct {
 block_t info;
} DATA;

typedef struct node {
 DATA data;
 struct node* next;
} NODE;

void init(NODE** head);
NODE* add(NODE* node, DATA data);
void add_at(NODE* node, DATA data);
void print_list(NODE* head);
NODE * reverse(NODE * node);
void get_list_transactions(NODE* head, unsigned char *list_transactions);

#endif //LINKEDLIST_H

Figure C-5 linkedList.h

APPENDIX

D-1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix D
Format for Declaration of Instruction in riscv-opc.c

Table D-1 Format for Declaration of Instruction in riscv-opc.c
Parameter Explanation

name name of the instruction.

xlen width of an integer register in bits. [32, 64, 0 (any)]

isa ISA extension class name.

operands defined in riscv-gnu-toolchain/binutils/gas/config/tc-riscv.c

match the match value.

mask the mask value.

match_func pointer to the function recovering funct7, funct3 and opcode fields of the

instruction.

pinfo this field is equal to 0 most of the time except for branch/jump instructions

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix E
Simulation Results

Table E-1 Simulation Results
Optimization Without Custom Extension With Custom Extension

-Os

-O0

-O1

-O2

-O3

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 2
Student Name & ID: Cheong Kin Seng (20ACB03898)
Supervisor: Dr Ooi Joo Onn
Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
-

2. WORK TO BE DONE
Study the simulation tool and learn the usage of it.

3. PROBLEMS ENCOUNTERED
Too many bugs in the open-source tools.

4. SELF EVALUATION OF THE PROGRESS
Need to debug the tools on my own or ask the community for solutions

 _________________________ __ _____________
 Supervisor’s signature Student’s signature

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 4
Student Name & ID: Cheong Kin Seng (20ACB03898)
Supervisor: Dr Ooi Joo Onn
Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Debugging the tools on my own.

2. WORK TO BE DONE
Think of ways to carry out the objectives of my project.

3. PROBLEMS ENCOUNTERED
Too difficult to figure out a solution as the complexity is too high and limited resources
are available for reference.

4. SELF EVALUATION OF THE PROGRESS
Think too much and it hindered my project progress.

 _________________________ __ _____________
 Supervisor’s signature Student’s signature

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 6
Student Name & ID: Cheong Kin Seng (20ACB03898)
Supervisor: Dr Ooi Joo Onn
Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Reducing the scope of the project.

2. WORK TO BE DONE
Refine the objectives to fit my abilities.

3. PROBLEMS ENCOUNTERED
Project complexity is too hard. Worried to not able to finish it on time.

4. SELF EVALUATION OF THE PROGRESS
Too much complaints and whining.

 _________________________ __ _____________
 Supervisor’s signature Student’s signature

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 8
Student Name & ID: Cheong Kin Seng (20ACB03898)
Supervisor: Dr Ooi Joo Onn
Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Refining the project objectives.

2. WORK TO BE DONE
Start working on writing parts of the reports.

3. PROBLEMS ENCOUNTERED
Stuck on few chapters as there was no clue how to continue writing them.

4. SELF EVALUATION OF THE PROGRESS
Need to calm down and think of a solution to progress further

 _________________________ __ _____________
 Supervisor’s signature Student’s signature

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 10
Student Name & ID: Cheong Kin Seng (20ACB03898)
Supervisor: Dr Ooi Joo Onn
Project Title: RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

1. WORK DONE
Thought of ways to complete the project

2. WORK TO BE DONE
Finish the simulation, writing the report and complete project.

3. PROBLEMS ENCOUNTERED
Time was too tight to do everything at once.

4. SELF EVALUATION OF THE PROGRESS
Need to manage my time well for the progress.

 _________________________ __ _____________
 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Cheong Kin Seng

ID Number(s)

20ACB03898

Programme / Course Bachelor of Information Technology (Honours) Computer
Engineering

Title of Final Year Project RISC-V INSTRUCTION SET EXTENSION ON BLOCKCHAIN
APPLICATION

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: _7__ %

Similarity by source
Internet Sources: _______4________%
Publications: ___4_____ %
Student Papers: _____1____ %

 ok

Number of individual sources listed of
more than 3% similarity: 1

 ok

Parameters of originality required and limits approved by UTAR are as Follows:
 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __OOI Joo On______________
 Name: __________________________

Date: 26 April 2024_______________ Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY
(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION
Student Id 20ACB03898
Student Name Cheong Kin Seng
Supervisor Name Dr. Ooi Joo Onn

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed all the items listed in the table are included in
my report.

__ ____________________
(Signature of Student)
Date: 26 April 2024

