
i

FACULTY OF SCIENCE

UNIVERSITY TUNKU ABDUL

RAHMAN

JUNE 2024

BACHELOR OF SCIENCE

(HONOURS) STATISTICAL

COMPUTING AND

OPERATIONS RESEARCH

ANG ZI YING

LEVERAGING 3D SKELETON

VIDEO EXTRACTION AND DEEP

LEARNING FOR REAL-TIME SIGN

LANGUAGE RECOGNITION

MODEL

A
N

G
 Z

I Y
IN

G

B
.S

c
. (H

o
n

s) S
ta

tistic
a
l C

o
m

p
u

tin
g
 a

n
d

 O
p

e
r
a
tio

n
s R

e
se

a
r
c
h

2
0
2
4

ii

LEVERAGING 3D SKELETON VIDEO EXTRACTION AND DEEP

LEARNING FOR REAL-TIME SIGN LANGUAGE RECOGNITION

MODEL

By

ANG ZI YING

A project report submitted to the

Department of Physical and Mathematical Science

Faculty of Science

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements for the degree of

Bachelor of Science (Honours)

Statistical Computing and Operations Research

June 2024

iii

ABSTRACT

LEVERAGING 3D SKELETON VIDEO EXTRACTION AND DEEP

LEARNING FOR REAL-TIME SIGN LANGUAGE RECOGNITION

MODEL

ANG ZI YING

Sign language recognition is recognized as key research for reducing

communication barriers between deaf and hearing people. Over the past two

decades, researchers have shown great interest in sign language recognition due

to technological advances. Researchers have conducted extensive studies on

sign language recognition, but developing a highly accurate real-time model is

still difficult due to the time-consuming nature of sign language video

recognition. Due to the lack of a Malaysian Sign Language dataset, a video-

based Malaysian Sign Language dataset (MSL10) was created and will further

validate the results with the Argentinean Sign Language dataset (LSA64). This

study aims to propose a combination that maintains high accuracy and reduces

computational time, which consists of key points of important features, and a

deep learning recurrent neural network model, a high-accuracy and low-

computational model suitable for real-time sign language recognition.

MediaPipe's 3D skeleton video helps in removing unnecessary information

while reducing computation time. Compared to whole-body feature analysis,

this study shows that hand features can effectively reduce computation time and

improve accuracy. In the study, it was also found that the two-layer BiLSTM

iv

model has the best performance in terms of accuracy and computation time as

compared to the LSTM and three-layer BiLSTM models.

v

ACKNOWLEDGEMENTS

I am pleased to undertake the final year project entitled “Leveraging 3D Skeleton

Video Extraction and Deep Learning for Real-Time Sign Language Recognition

Model”. I would like to take this opportunity to thank every individual involved

in this project. High appreciation is given to my supervisor, Ms. Chin Fung Yuen,

a lecturer at the Faculty of Science at Universiti Tunku Abdul Rahman, for her

strong and timely support in developing my project and writing this report. I

would like to express my deepest gratitude to my external consultant, Dr. Lim

Foo Weng, for providing me with his invaluable guidance throughout this

project. Most importantly, I am grateful to Universiti Tunku Abdul Rahman, for

allowing me to study for the program Bachelor of Science (Hons) in Statistical

Computing and Operations Research. Lastly, special thanks to my family

members and friends who encourage me to complete this project.

vi

DECLARATION

I hereby declare that the project report is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that

it has not been previously or concurrently submitted for any other degree at

UTAR or other institutions.

ANG ZI YING

vii

APPROVAL SHEET

This project report entitled “LEVERAGING 3D SKELETON VIDEO

EXTRACTION AND DEEP LEARNING FOR REAL-TIME SIGN

LANGUAGE RECOGNITION MODEL” was prepared by ANG ZI YING

and submitted as partial fulfilment of the requirements for the degree of Bachelor

of Science (Hons) Statistical Computing and Operations Research at Universiti

Tunku Abdul Rahman.

Approved by:

(Ms. Chin Fung Yuen) Date: 14 Apr 2024

Supervisor

Department of Physical and Mathematical Science

Faculty of Science

Universiti Tunku Abdul Rahman

viii

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 26/02/2024

PERMISSION SHEET

It is hereby certified that ANG ZI YING (ID No: 19ADB01751) has completed

this final year project entitled “LEVERAGING 3D SKELETON VIDEO

EXTRACTION AND DEEP LEARNING FOR REAL-TIME SIGN

LANGUAGE RECOGNITION MODEL” under the supervision of Ms. Chin

Fung Yuen (Supervisor) from the Department of Physical and Mathematical

Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final

year project in pdf format into the UTAR Institutional Repository, which may

be made accessible to the UTAR community and public.

Yours truly,

(ANG ZI YING)

ix

TABLE OF CONTENTS

 Page

ABSTRACT iii

ACKNOWLEDGEMENTS v

DECLARATION vi

APPROVAL SHEET vii

PERMISSION SHEET viii

TABLE OF CONTENTS ix

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi

CHAPTERS

INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement .. 3

1.3 Objective of Research ... 5

1.4 Significance of Study .. 6

LITERATURE REVIEW .. 8

2.1 Evolution of Sign Language Recognition (SLR) 8

2.2 Deep Learning Models .. 14

2.2.1 Deep Neural Network (DNN) and Convolutional Neural Network

(CNN) ... 14

2.2.2 Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term

Memory (Bi-LSTM) ... 16

METHODOLOGY ... 20

3.1 Dataset Introduction .. 20

3.2 3D Skeleton Video Creation ... 24

3.3 Data Preprocessing .. 31

3.4 RNN models .. 32

3.5 Model Evaluation Metrics ... 40

3.6 Flowchart of the Proposed Method ... 41

RESULTS AND DISCUSSION.. 43

4.1 Results ... 43

4.2 Discussion ... 53

x

CONCLUSION ... 55

5.1 Summary of Research ... 55

5.2 Limitations and Recommendations ... 58

REFERENCES ... 59

APPENDICES ... 65

xi

LIST OF TABLES

Table Page

3.4.1 Structure of LSTM (3 layers) 37

3.4.2 Structure of BiLSTM (2 layers) 37

3.4.3 Structure of BiLSTM (3 layers) 38

4.1.1 Overall Accuracy and Computation Time Performance of the 44

3D Skeleton Video on RNN Models of the MSL10 dataset

and LSA64 dataset

4.1.2 The Average of Accuracy and Computation Time Performance 45

of the MSL10 dataset with 1662 key points and LSTM model

4.1.3 The Average Accuracy and Computation Time Performance of 46

the MSL10 dataset with 1662 key points and 2-layer BiLSTM

model

4.1.4 The Average Accuracy and Computation Time Performance of 46

the MSL10 dataset with 1662 key points and 3-layer BiLSTM

model

4.1.5 The Average Accuracy and Computation Time Performance of 47

the MSL10 dataset with 126 key points and LSTM model

4.1.6 The Average Accuracy and Computation Time Performance of 47

the MSL10 dataset with 126 key points and 2-layer BiLSTM

model

4.1.7 The Average Accuracy and Computation Time Performance of 48

the MSL10 dataset with 126 key points and 3-layer BiLSTM

model

xii

4.1.8 The Average Accuracy and Computation Time Performance of 48

the LSA64 dataset with 1662 key points and LSTM model

4.1.9 The Average Accuracy and Computation Time Performance of 49

the LSA64 dataset with 1662 key points and 2-layer BiLSTM

model

4.1.10 The Average Accuracy and Computation Time Performance of 49

the LSA64 dataset with 1662 key points and 3-layer BiLSTM

model

4.1.11 The Average Accuracy and Computation Time Performance of 50

the LSA64 dataset with 126 key points and LSTM model

4.1.12 The Average Accuracy and Computation Time Performance of 50

the LSA64 dataset with 126 key points and 2-layer BiLSTM

model

4.1.13 The Average Accuracy and Computation Time Performance of 51

the LSA64 dataset with 126 key points and 3-layer BiLSTM

model

4.1.14 Overall Average Accuracy and Computation Time Performance 52

of 3D Skeleton Videos on RNN models with 5 repetitions on

MSL10 dataset and LSA64 dataset

xiii

LIST OF FIGURES

Figure Page

2.1.1 Architecture for recognizing faces based on local features 8

2.1.2 Overview of the Hand PointNet-based technique for 10

estimating 3D hand poses in single-depth pictures

2.1.3 The left picture shows the OpenPose 25 key points, and the 12

right picture shows multi-person pose estimation with

OpenPose

2.2.1.1 Deep Neural Network (DNN) with a single computational neuron 14

2.2.1.2 Convolution Neural Network 15

3.1.1 MSL10 dataset “Benar” 21

3.1.2 MSL10 dataset “Maaf” 21

3.1.3 MSL10 dataset “Kenyang” 21

3.1.4 MSL10 dataset “Makan” 22

3.1.5 The cropped images from LSA64 videos 23

3.2.1 Overview of MediaPipe holistic 24

3.2.2 MediaPipe hands key points label 25

3.2.3 MediaPipe poses key points label 25

3.2.4 MediaPipe facial key points label 26

3.2.5 Shape of MSL10 dataset 29

3.2.6 Shape of LSA64 dataset 30

xiv

3.4.1 Standard Recurrent Neural Network (RNN) and unfolded RNN 32

3.4.2 Long Short-Term Memory 34

3.4.5 2-layer Bidirectional Long Short-Term Memory 36

3.6.1. Flowchart of the proposed method 41

xv

LIST OF ABBREVIATIONS

LSTM Long Short-Term Memory

SVM Support Vector Machine

RFE Recursive Feature Elimination

BiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network

RNN Recurrent Neural Network

MSL Malaysian Sign Language

ASL American Sign Language

KNNOR K Nearest Neighbor Oversampling

LogitBoost Logit Boosting

CSLR Continuous Sign Language Model

ISLR Isolated Sign Language Recognition Model

MFD Malaysian Federation of the Deaf

SLR Sign Language Recognition

AUTSL Ankara University Turkish

GRU Gated Recurrent Unit

ResNet Residual Network

xvi

VGG Visual Geometry Group

PCA Principal Component Analysis

FLD Fisher’s Linear Discriminant

k-NN K-nearest neighbor

HHMs hidden Markov models

RGB Red, Green and Blue

OBB Oriented Bounding Box

3D Three-dimensional space

1D One-dimensional space

DNN Deep Neural Network

VGP Vanishing Gradient Problem

OpenCV Open-Source Computer Vision Library

ANNs Artificial Neural Networks

Adam Adaptive Moment Estimation

BIM Bahasa Isyarat Malaysia

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Deaf people use sign language to express their emotions and needs, and these

sign languages include body language, facial expressions, and gestures.

Communication barriers still exist between the deaf community and the public

due to the limited understanding of sign language. Therefore, there is a need for

a technology that facilitates communication between hearing and deaf people.

Real-time gesture detection in sign language video streams requires a model

with fast and accurate gesture recognition techniques. Computer vision

technology has come a long way in the last 20 years, improving human pose

estimation, vision-based sign language, and gesture recognition.

The Continuous Sign Language Recognition Model (CSLR) and the Isolated

Sign Language Recognition Model (ISLR) are two models used for recognizing

sign language (Sharma, Gupta, and Kumar, 2021). The difference between ISLR

and CSLR is that the first uses a single image to represent specific hand shapes

and poses, while the second uses a sequence of images to represent a moving

gesture (Aloysius and Geetha, 2020). CSLR is also known as dynamic gesture

recognition (Abdalla and Hemayed, 2013). There are several methods for

solving CSLR recognition problems, and most of the methods fall into two

stages (Liao et al., 2019). First, explore algorithms for computing hand and

gesture movement trajectories. Second, the implementation of each sign

language picture sequence.

2

The deaf population in Malaysia primarily uses Malaysian Sign Language

(MSL), which is also known as Bahasa Isyarat Malaysia (BIM), as their main

form of communication. The establishment of the Malaysian Federation of the

Deaf (MFD) in 1998 marked the starting point of Malaysian Sign Language

(MSL), which has gained significant popularity within deaf organizations (Hafit

et al., 2019). Malaysian Sign Language (MSL) originates from American Sign

Language (ASL) (Qodri, Rini Akmeliawati, and Mohammed, 2012). As MSL

originated from ASL, numerous local signs from ASL have been added to the

MSL, and MSL currently has roughly 75% similarity with ASL (SIL

International, 2022). There is no global sign language; hence, different sign

languages are used in different countries or areas.

3

1.2 Problem Statement

Most deep learning models that use images or video data take a longer time to

process. On top of that, the noise of the background will lower the accuracy of

sign language recognition. The goal of all sign language recognition researchers

is to develop a real-time system that accurately translates sign language into

words, enabling the deaf-mute community to connect with the hearing

community. The real-time sign language recognition model needs to respond

quickly, so computation time as well as the accuracy of the real-time sign

language recognition model are important.

Features extracted from the video can be a drawback. Extracting unwanted

features during the training process decreases accuracy and increases

computation time (Rahman et al., 2020). Key points built from the MediaPipe

holistic model will include face, pose, and hand key points (Indriani, Harris, and

Agoes, 2021). MediaPipe holistic model can create a complete landmark for the

human body and enables analysis tasks to cover full-body gestures, poses, and

actions. It is crucial to consider how the face and pose features in the dataset

impact the computation time and accuracy.

Currently, Long Short-Term Memory (LSTM) is widely used in sign language.

Unfortunately, LSTM networks struggle to capture complex temporal

dependencies inherent in sign language gestures, resulting in poor performance,

especially when capturing bidirectional contexts (Telmo Adão et al., 2023). The

LSTM model should be replaced.

4

Deep learning models have been formed by many layers of neurons; the layers

of neurons have also been known as neural networks. The number of layers is

selective; a high number of layers will increase the model complexity and enable

the ability to learn more information from the dataset, but at the same time, the

computation time will increase. Increasing the number of layers in a deep

learning model can make the neural network more complex and difficult to train

(Dumitru Erhan et al., 2009). A too-high number of layers will lead the deep

learning model to be overfitted; if overfitting happens, the model accuracy will

drop, and the computation time will increase as much unwanted information has

been learned by the model in the training stage. Therefore, it is crucial to

determine the number of layers that can maintain high accuracy and low

computation time.

It was found that there is a lack of video-based Malaysian Sign Language (MSL)

datasets in Malaysia. The exploitation of real-time continuous Malaysian Sign

Language (MSL) recognition models is also crucial for the development of

Malaysian Sign Language (MSL). Although MSL real-time recognition systems

are available on the market, the algorithms for real-time recognition systems are

not open source. For real-time recognition models, high accuracy, and low

computation time for detecting the correct sign language are very important.

Therefore, it is crucial to develop an open-source MSL real-time recognition

model that can be the basis for researchers in MSL real-time recognition systems.

5

1.3 Objectives of Research

The main research objective for this project is:

• To create a fast and high-accuracy real-time Malaysian sign language

recognition model.

The subsequent research objective for this project is:

• To convert the video-based dataset to 3D skeleton key points and exclude

background information.

• To compare the performance of LSTM networks and Bidirectional Long

Short-Term Memory (BiLSTM).

• To compare the performance of hands, posture, and facial key points with

solely hand key points.

• To evaluate the effectiveness of deep learning models with varying

numbers of layers.

• To create a dataset of Malaysian sign language videos.

6

1.4. Significance of Study

This study is crucial because it will enhance the understanding of sign language

recognition while also improving accessibility and communication for the deaf

community and promoting assistive technology research. This study is

significant in various ways:

1. Bridging the communication gap. By developing a real-time recognition

model of Malaysian Sign Language (MSL), this study contributes to

bridging the communication gap between the deaf and normal

communities in Malaysia. Accessible communication tools are essential

to promote understanding between different linguistic groups.

2. Create the MSL10 dataset. The MSL10 dataset addresses the lack of an

open-source MSL video dataset. This dataset can provide a foundation

for developers and researchers working on real-time MSL recognition.

3. Cross-language transferability. The presence of the LSA64 dataset in this

study proves that the proposed model applies not only to MSL but also

to Argentinian Sign Language, which helps the cross-lingual

transferability of the sign language recognition model. The real-time

recognition model enhances its applicability to other national sign

languages and shows its potential for multilingual understanding.

4. Deep learning model evaluation. By evaluating the performance of

various deep learning designs such as LSTM and BiLSTM models, this

study can provide insights into how well the models match the dataset so

that the optimal models can be selected for forming real-time recognition

algorithms for the MSL10 dataset.

7

5. Optimizing the number of layers in the model. The performance of the

model can be optimized by comparing the number of layers in the

BiLSTM model. Finding the right balance between computation time

and accuracy is crucial for building real-time recognition models.

6. Focus on hand key points only. Selecting only hand key points highlights

the importance of hand key points, whereas pose and face key points the

excessive information, which will increase computation time and

decrease accuracy. The selection of hand key points highlights the

importance of feature selection in sign language recognition.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Evolution of Sign Language Recognition (SLR)

Sign language recognition can be implemented with one or both hands, and the

method can be classified into two main groups: feature-based systems and deep

learning systems (Alsharif et al., 2023).

Tsakanikas and Dagiuklas (2018) define feature-based systems as those that

extract specific features from input data, such as images or videos. In feature-

based systems, local features are implemented into a multilayered model that

incorporates face identification, preprocessing, feature extraction, dimension

reduction, and classification, as shown in Figure 2.1.1 (Nguyen, 2014).

Figure 2.1.1: Architecture for recognizing faces based on local

features (Nguyen, 2014)

9

Nguyen (2014) demonstrated the entire feature-based system process using a

face detection framework as a starting point. The image is initially taken by a

camera, and the algorithm will have to recognize the presence or absence of a

face. Then, the image is cropped according to the eye coordinates to find the

face to reduce the unwanted information and obtain a good frontal face image.

The next stage is image normalization, where the cropped images will be

processed using a preprocessing technique to eliminate light intensity. The

feature extraction method is applied to the images to extract the most important

features for classification. The dimension reduction task is carried out by

Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD).

The final stage is the classification process, which uses Support Vector

Machines (SVM) and K-nearest neighbor (k-NN).

Other than feature-based systems that focus on face detection, hand-detection

feature-based systems have also been highly used in sign language recognition.

Chen, Fu, and Huang (2003) implemented a hand gesture recognition system to

recognize continuous gestures. As mentioned by Chen, Fu, and Huang (2003),

the first stage in building a gesture recognition system is to extract the hand

region and track the moving hand. Then spatial and temporal features are

characterized and combined into feature vectors. Lastly, hidden Markov models

(HHMs) are applied to recognize the feature vectors based on different scores.

10

The assessment of hand-shaped features serves as the foundation for certain

related research. Kim et al. (2017) used deep neural networks to solve the Arabic

finger spelling recognition problem based on hand form characteristics.

Nevertheless, as handshape rather than hand movements are considered for deep

neural networks, the system is still restricted to simple action gestures.

Furthermore, there is always a calculation delay when photos or videos are used

as model inputs.

Ge et al. first proposed the Hand PointNet method for feature extraction by

transforming data types in 2018. The method estimates hand pose by directly

analyzing 3D point cloud data representing the visible surface of the hand.

Including the fingertip refinement network, the method outperforms existing

methods. Ge et al. (2018) illustrated how the method can accurately predict the

3D shape and position of the entire hand based on a single RGB image in Figure

2.1.2.

Figure 2.1.2: Overview of the Hand PointNet-based technique for estimating

3D hand poses in single-depth pictures (Ge et al., 2018)

11

MediaPipe is a library invented by Google. It is a tool that creates 3D skeleton

videos by extracting critical points in 3 dimensions from the face, pose, and hand.

The difference between PointNet and MediaPipe is that PointNet is designed

especially for processing point cloud data (A. Garcia-Garcia et al., 2016),

whereas MediaPipe is a tool to handle 3D data in a large framework of computer

vision tasks (Bora et al., 2023). Researchers have changed their focus to

employing MediaPipe since MediaPipe was introduced.

Other than MediaPipe Holistic, other libraries have been used for sign language

recognition. Kavana et al. (2022) adopted the hand landmark model and a palm

detector model from the MediaPipe hands library for sign language recognition.

Although there are other libraries for sign language recognition, MediaPipe is

still the most popular library for sign language recognition.

There are a few studies that employ MediaPipe Holistic for feature extraction.

Marais et al. (2022) compared a few feature extraction methods and concluded

that the model that uses MediaPipe Holistic to extract hand key points has higher

computational efficiency. Other than that, Selvaraj et al. (2021) used the 75 key

points in MediaPipe holistic pose extraction for pose estimation, further proving

that MediaPipe is highly used for different functions.

12

A study was conducted to compare MediaPipe holistic models with and without

facial key points (Samaan et al., 2022). Without facial key points, the model can

achieve higher accuracy in dynamic sign language recognition.

Other than PointNet, MediaPipe has also frequently been compared because they

are famous for computer vision for human posture estimation. OpenPose is

famous for multi-person human pose estimation. Figure 2.1.3 shows the

OpenPose 25 key points, and the multi-person pose estimation with OpenPose.

Figure 2.1.3: The left picture shows the OpenPose 25 key points, and the right

picture shows multi-person pose estimation with OpenPose (Namburi &

Hengsanankun, 2022).

13

There are a few comparison studies conducted between MediaPipe and

OpenPose, including one comparing the MediaPipe overall pose estimation

framework to the OpenPose single network whole body posture estimation by

Amit Moryossef et al. (2021). Other than that, Necati Cihan Camgoz et al. (2020)

presented the SLR transformer in the OpenPose model and the MediaPipe

system with a two-layer BiLSTM system. The results of the study show that the

accuracy attained by combining MediaPipe and BiLSTM is higher than that of

OpenPose and SLR. According to Lin, Jiao, and Zhao (2023), OpenPose fails to

recognize 3D human posture data. Its robustness is poor, and the demands for

computer graphics card hardware are costly as well. Therefore, in this study,

MediaPipe is used for the key point construction. From many MediaPipe

libraries, MediaPipe holistic is selected because of the high number of key points

that can be collected from the model.

14

2.2 Deep Learning Models

The early stage of deep learning began with McCulloch and Pitts (1943), who

studied the logic underpinning neural activity and the complex interactions

between brain events and logical propositions.

2.2.1 Deep Neural Network (DNN) and Convolutional Neural Network

(CNN)

A Deep Neural Network (DNN) uses feature learning to map input features and

outputs, and the mapping process occurs within multiple connected layers. Each

layer contains multiple interconnected neutrons to learn the relationship between

inputs and outputs. Figure 2.2.1.1 shows the DNN with a single computational

neuron.

Figure 2.2.1.1: Deep Neural Network (DNN) with a single computational

neuron (Georgevici and Terblanche, 2019).

15

After the development of DNN, the Convolutional Neural Network (CNN) was

created as an obvious choice for picture recognition. It is a multi-layer network

trained with gradient descent to learn complicated, high-dimensional, non-linear

mappings from vast collections of samples (Lecun et al., 1998). CNNs have

demonstrated exceptional performance in picture segmentation, classification,

detection, and retrieval-related tasks, making them one of the best learning

algorithms for comprehending image content (Cireşan et al., 2012; Liu, Deng,

and Yang, 2018). Figure 2.2.1.2 shows the structure of the CNN proposed by

Muhammad Mizanur Rahaman et al. (2019).

Figure 2.2.1.2: Convolution Neural Network (Muhammad Mizanur Rahaman

et al., 2019)

16

2.2.2 Long Short-Term Memory (LSTM) and Bidirectional Long Short-

Term Memory (Bi-LSTM)

Standard neural networks are limited because they assume that training and test

examples are independent of one another, and the examples are vectors with a

fixed length (Lipton, Berkowitz, and Elkan, 2015). To handle sequential data,

Recurrent Neural Networks (RNN) are built upon recent and historical data, and

in this way, RNN can handle sequential data hierarchically (Avraam Tsantekidis,

Nikolaos Passalis, and Anastasios Tefas, 2022). In long-term dependencies,

RNNs are vulnerable to the vanishing gradient problem (VGP), which stops the

network from learning and results in low prediction accuracy (Eshraghian et al.,

2023). However, this weakness poses no issues for RNN as it can be easily

solved using gated recurrent units (GRU) and long short-term memory (LSTM)

(Safwan Mahmood Al-Selwi et al., 2023).

After Hochreiter and Schmidhuber (1997) showed how recurrent network

algorithms learning superiority over Long Short-Term Memory (LSTM) was

invented, RNNs' efficacy grew considerably. Extensions to LSTM-style

algorithms include bidirectional LSTM, hierarchical LSTM, and hierarchical

attention GRU (Huang et al., 2018). Many sequence modeling tasks, including

language translation, time-series forecasting, and speech recognition, have seen

the successful application of LSTMs. Because LSTM networks can learn long-

term dependencies, they have been explored and applied to the classification of

sign language data. Research was conducted to translate Indian Sign Language's

static and dynamic signals into speech (Abraham, Nayak and Iqbal, 2019).

LSTM models require less computational time compared to CNN models.

17

The axis-independent architecture of the LSTM model is recognized as AI-

LSTM. According to Al Amin Hosain et al. (2019), training AI-LSTM took an

average of 25 minutes, and training spatial AI-LSTM took an average of 30

minutes, whereas training 3DCNN and Max3DCNN models required over 20

hours per model. Although LSTM is faster than CNN models, the computation

time of LSTM models is also considered to be too slow for large amounts of

data. The great gain in recognition accuracy provided by LSTM comes at the

cost of increased computational complexity when the size of the model increases

(Gers and Schmidhuber, 2000).

The BiLSTM network not only uses LSTM to cope with long-term dependencies

but also utilizes future information by architecturally incorporating two forward

and backward LSTM layers (Peng et al., 2021). Abduljabbar, Dia, and Tsai

(2021) also mentioned that BiLSTM trains the input data in both forward and

backward directions. Inspired by the "coarse-to-fine" technique and predictive

coding theory, Ling, Zhong, and Li (2022) suggest a multi-scale prediction

model for video prediction. By fusing top-down and bottom-up information

flows, the model seeks to increase prediction ability while reducing reliance on

input data. The BiLSTM design comprises an encoder-decoder network. Smaller

BiLSTM hidden states are used to avoid computational overhead and prediction

difficulty. Adversarial training is a component of the training strategy that

addresses the instability of long-term predictions and sharpens the generated

images.

18

Researchers have extensively used 2-layer BiLSTM models and 3-layer

BiLSTM models in sign language recognition. A two-layer Bidirectional LSTM

(BiLSTM) network enhances pre-trained networks by tracking temporal

dependencies, thus improving the accuracy of the system used (Jella Sandhya

and KANCHARLA ANITHASHEELA, 2024). Li et al. (2020) propose a three-

layer BiLSTM in their study to search for key actions of their sign language

recognition. Researchers often discuss the number of layers appropriate for deep

learning models. Increasing the number of hidden layers can enhance training

set accuracy; however, additional layers are expected to cause overfitting

problems (Li et al., 2020).

In summary, previous studies have involved experiments to reduce facial

expressions in the overall MediaPipe key points but have not involved

experiments to reduce facial and postural key points in the overall MediaPipe

landmarks. The results of the previous study suggest that facial key points are

not necessary for sign language recognition. In addition to this, no study

provides a step-by-step approach to model a real-time recognition model for

Malaysian sign language. Based on what has not been covered in previous

studies, this study will experiment with using only hands key points to reduce

unnecessary features and computation time. Due to the lack of video based MSL

datasets and to create a real-time recognition model, the MSL dataset must be

created first. MediaPipe will be used as a tool to convert the video dataset to 3D

skeletal coordinates to reduce background noise and retain only 3D key points.

The performance of the LSTM model can be further improved by the BiLSTM

19

model. Since the BiLSTM model has 2 and 3 layers, the performance of both

models will be evaluated with a different number of layers. Finally, the best

model will be selected based on the results of this study to form a real-time

recognition model.

20

CHAPTER 3

METHODOLOGY

3.1 Dataset Introduction

Due to the lack of a Malaysian Sign Language (MSL) video dataset, the MSL10

dataset was recorded to study Malaysian Sign Language (MSL). The dataset

focused on ten words selected from the Malaysian Sign Language dictionary.

These words include familiar ones such as "Beli" (to buy), "Benar" (correct),

"Kenyang" (full), "Maaf" (sorry), "Makan" (to eat), "Mana" (where), "Minum"

(to drink), "Salah" (wrong), "Tandas" (bathroom), and "Tidur" (to sleep).

Each word chosen from the MSL is associated with a specific action. These signs

are learned from instructional videos on YouTube, as the MSL books are not

cost-free. The dataset consists of 1000 videos in total, with each word repeated

100 times. In the 100 times recording for each word, 50 signs will be recorded

using the left hand, while 50 times will be recorded using the right hand to make

sure that when changing hands, the sign can still be detected. Throughout the

whole recording, only one signer is included in this dataset. A few screenshots

illustrating how MSL will be presented are shown in Figures 3.1.1, 3.1.2, 3.1.3,

and 3.1.4.

21

Figure 3.1.1: MSL10 dataset “Benar”

Figure 3.1.2: MSL10 dataset “Maaf”

Figure 3.1.3: MSL10 dataset “Kenyang”

22

Figure 3.1.4: MSL10 dataset “Makan”

The MSL10 dataset is a valuable resource for researchers performing sign

language recognition in deep learning training by providing a set of MSL video

datasets. In addition, the creation of the MSL10 dataset pushes the pace of

research to allow researchers to improve their findings on Malaysian sign

language interpreting technology and ultimately create a complete real-time sign

language recognition model that will bridge the communication gap between the

deaf and normal communities in Malaysia.

Since the MSL10 dataset is self-created data and is small, the LSA64 dataset

will be used to represent the large volume of data with multiple signers. The

LSA64 dataset contains a wider range of Argentine sign languages which

consists of 64 different words. The dataset is open-source data that contains a

total of 3200 videos. The LSA64 dataset can be downloaded from

https://facundoq.github.io/datasets/lsa64/.

23

The LSA64 dataset is unique in inviting non-experts in sign language.

Specifically, 10 non-experts participated in the creation of the dataset, each

repeating 64 different sign language words five times. Each video in the LSA64

dataset captures a specific gesture to facilitate the training of deep learning

models. Compared with the MSL10 dataset, this dataset provides a higher

number of types of sign language, enabling the study to handle a larger amount

of data and study more complex information in the dataset. Figure 3.1.5 shows

the cropped image from LSA64 videos.

Figure 3.1.5: The cropped images from LSA64 videos

24

3.2 3D Skeleton Video Creation with MediaPipe

MediaPipe holistic is a model that consists of hand landmarks, pose landmarks,

and face landmarks that give estimations of posture, hand movements, and facial

expressions (Naz et al., 2023). Figure 3.2.1 shows an overview of MediaPipe

holistic, Figure 3.2.2 shows the 21 crucial points plotted with MediaPipe for

every hand, Figure 3.2.3 shows the 33 crucial points plotted with MediaPipe for

pose estimation, and Figure 3.2.4 shows the 468 crucial points plotted with

MediaPipe for facial regions.

Figure 3.2.1: Overview of MediaPipe Holistic (Subramanian et al., 2022).

25

Figure 3.2.2： MediaPipe hands key points label (Zhang et al., 2020)

Figure 3.2.3: MediaPipe poses key points label (Bazarevsky et al., 2020)

26

Figure 3.2.4： MediaPipe facial key points label (Yury Kartynnik et al., 2019).

MediaPipe can comprehend gestures and tracking actions like hand movements

from the hand’s key points. To precisely locate and orient important anatomical

landmarks on the human body, pose estimation is a necessity. At the same time,

facial key points will also be identified and tracked by MediaPipe, allowing for

the analysis of facial expressions and the recognition of emotions.

Before the recording of the MSL10 dataset, MediaPipe settings were done to

plot the key points of the MSL10 dataset while presenting the 1000 sign

languages. MediaPipe can recognize and monitor 21 different points on each

hand, 33 critical points for posture estimation, and 468 facial key points

(Lugaresi et al., 2019).

27

One of the goals is to compare the performance of the hand, pose, and face key

points versus the hand key points alone. MediaPipe will create the first set of

key points for the MSL10 dataset, consisting of a combination of hand, pose,

and face key points. Following the creation of the first set of data, hand-key

points will be extracted solely from the first set of key points, creating the second

set of data for the MSL10 dataset.

The calculation of the total number of key points per frame for all features:

(Hand key points × Three dimensions × No. of hands) + (pose key points ×

Three dimensions + Visibility) + (Face key points × Three dimensions)

= (21×3×2) + (33 × (3+1)) + (468 ×3)

= 126 + 132 + 1404

= 1662 key points.

The calculation of the total number of key points per frame for hands features:

(Hand key points, three dimensions, number of hands)

= (21×3×2)

= 126 key points.

28

OpenCV (Open-Source Computer Vision Library) is useful for a variety of

image processing and applications related to computer vision (Mohamad et al.,

2015). OpenCV was designed for computational efficiency, with a focus on real-

time applications (Kwon and Kim, 2022).

It has been discovered that MediaPipe and OpenCV can work

together. According to Almufti and Adnan Mohsin Abdulazeez (2024),

OpenCV is used to process live video data for gesture recognition, whereas

MediaPipe can be used for precise hand tracking from live video streams,

followed by feature extraction and data serialization.

OpenCV is used together with MediaPipe to capture the key points of the 3D

skeleton videos, and the MSL10 dataset was captured in an indoor setting with

controlled lighting. One second was split into thirty frames for each 3D skeleton

movie that was recorded. Every segment of sign language in every video had the

same number of frames. For the MSL10 dataset, two sets of data have been

formed with the 3D shape of (1000, 30, 1662) and (1000, 30, 126) as shown in

Figure 3.2.5.

29

Figure 3.2.5: Shape of MSL10 dataset

Since the LSA64 dataset consists of pre-recorded videos, the method used by

MSL10 does not apply to the LSA64 dataset. Therefore, a loop is created to open

each video in the LSA64 dataset and then uses MediaPipe to extract 30 frames

of key points from each video and arrange them into appropriate shapes. The

key points plotted in the LSA64 dataset are complete features that include a

combination of hand, pose, and face key points. Same with the MSL10 dataset,

another set of only hand key points will be extracted from the LSA64 full-

featured data to form two sets of data with the shapes (3200, 30, 1662) and (3200,

30, 126), respectively, as shown in Figure 3.2.6.

30

Figure 3.2.6: Shape of LSA64 dataset

31

3.3 Data Preprocessing

After forming two different sets of data with different characteristics from each

of the two datasets, the next step is to categorize all the data using words. In the

previous step, the formation of the dataset followed the sequence of each word

while collecting the data. For example, if the first word in the MSL10 dataset is

"Beli," followed by "Benar,” then all the 3D skeleton datasets of "Benar" will

be sequenced after the entire "Beli" dataset. This arrangement further simplifies

the labeling of the datasets. For supervised training, each piece of data will be

labeled with the corresponding sign language word. The MSL10 dataset has ten

different labels, whereas the LSA64 dataset has 64.

Data splitting will be carried out for each dataset after labeling. In each dataset,

75% of the data will be split into a training set and 25% of the data will be split

into a testing set.

32

3.4 RNN models

Once the data has been split, the next step is to train the training set with a deep-

learning Recurrent Neural Network (RNN) model. RNNs are a form of Artificial

Neural Network (ANN) that are created for handling sequential and time-series

data. RNNs are well-known for having feedback linkages in the networks

(Chung et al., 2015).

RNNs outperform non-recurrent models in continuous gesture recognition

because they can learn the hierarchy of actions and foresee the start and end of

actions (Pigou et al., 2016). Figure 3.4.1 displays the construction of the normal

Recurrent Neural Network (RNN) and the unfolded RNN presented by Feng et

al. (2017).

Figure 3.4.1: Standard Recurrent Neural Network (RNN) and unfolded

RNN (Feng et al., 2017)

33

Because RNN has to foresee the next word of a sentence by remembering the

previous word, it has to consider the output of the previous step as input to the

current step.

TensorFlow was published by Google in November 2015. It acts as an open-

source deep learning software library that allows developers to define, train, and

deploy machine learning models (Goldsborough, 2016). MediaPipe can also

work with TensorFlow. According to Sundar and Bagyammal (2022),

MediaPipe collects hand key points while TensorFlow trains and detects the

machine learning algorithm. Therefore, TensorFlow is used in this study to build

the three RNN models.

In this study, three RNN-related models are used to deal with the sign language

recognition task, namely the Long Short-Term Memory (LSTM) model, the 2-

layer Bidirectional Long Short-Term Memory (BiLSTM) model, and the 3-layer

BiLSTM model. These RNN models usually capture the temporal dependencies

in the data. The LSTM model can solve the gradient vanishing problem, which

is a possible problem when training traditional RNNs. Figure 3.4.2 shows the

structure of the LSTM model.

34

Figure 3.4.2: Long Short-Term Memory (Le et al., 2019)

An LSTM network consists of blocks of storage called cells, and cell states and

hidden states are transferred to the next cell. Data can be added or removed from

the cell state through sigmoid gates. A gate is analogous to a layer containing

different weights.

The first step in practicing LSTM is to decide what information to forget from

the previous memory cell. The input to the gate of forgetting (𝑓𝑡) comes from

the output of the previous LSTM cell (ℎ𝑡−1) and the current input (𝑋𝑡). The

35

forgetting gate (𝑓𝑡) decides which parts of the old storage cell (𝐶𝑡−1) should be

forgotten and takes a value ranging from 0 to 1.

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓 (1)

In equation (1), 𝜎 represents the sigmoid function, 𝑊𝑓 the weight matrix and 𝑏𝑓

the bias of the forget gate.

The LSTM stores and refreshes the storage cell with new information as needed.

The sigmoid layer determines whether the cell should be updated with the new

information. The tanh layer assigns weights to new data to judge its relevance.

The updated information is coupled with the old-stored cell (𝐶𝑡−1) to calculate

the new cell state (𝐶𝑡).

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (2)

𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛) (3)

𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑁𝑡𝑖𝑡 (4)

𝐶𝑡 represents the cell state at time 𝑡, while 𝐶𝑡−1 represents the cell state at

time 𝑡 − 1. 𝑊 is the weight matrix, while 𝑏 is the cell state bias.

The LSTM creates an output value (ℎ𝑡) based on the updated cell state (𝐶𝑡), but

filtered. The final output value (ℎ𝑡) is calculated by multiplying the output gate

(𝑂𝑡) by the tanh layer value applied to the cell state.

36

𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜 (5)

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

𝑊𝑜 is the weight matrix and 𝑏𝑜 is the bias for the output gate.

The BiLSTM model is formed by combining LSTM model and bi-directional

RNN model (Ameur, Ben Khalifa, and Salim Bouhlel, 2020). The BiLSTM

model is designed to handle both forward and backward information. Figure

3.4.5 demonstrates the structure of the two-layer BiLSTM.

Figure 3.4.5: 2-layer Bidirectional Long Short-Term Memory (Li et al., 2020).

37

The input sequences of the LSTMs are processed from time steps 𝑡 = 1 to 𝑡 =

𝑛 . In each time step, the LSTM layer generates a hidden state → ℎ𝑡 . The

backward LSTM layer output sequence (← ℎ𝑡) is produced by processing the

input sequences in the reverse order. The combination of → ℎ and ← ℎ is

realized by a sigmoid function (𝜎) to form the final output vector 𝑦𝑡. 𝑦𝑡 contains

information from the forward and reverse contexts as the final output of the

BiLSTM layer.

Tables 3.4.1, 3.4.2, and 3.4.3 list the structural models of the three RNN models.

Table 3.4.1：Structure of LSTM (3 layers)

Layer (type) Output Shape

lstm (LSTM) (None, 30, 64)

lstm_1 (LSTM) (None, 30, 128)

lstm_2 (LSTM) (None, 64)

dense (Dense) (None, 64)

dense_1 (Dense) (None, 32)

dense_2 (Dense) (None, 10)

Table 3.4.2：Structure of BiLSTM (2 layers)

Layer (type) Output Shape

bidirectional (Bidirectional) (None, 30, 128)

bidirectional_1 (Bidirectional) (None, 128)

dense (Dense) (None, 32)

dense_1 (Dense) (None, 10)

38

Each of the RNN models comprises a consistent number of dense layers in its

structure. "Relu'' is selected as the activation of the model in a neural network's

hidden layers to introduce nonlinearity. Rectified Linear Unit (ReLU) is a non-

linear activation function used in deep neural networks (Dureja and Pahwa,

2018). Nonlinearity is introduced through ReLU in the neural network's hidden

layers (SCI, 2020).

To estimate the class of an input image, the model's activation in the final layer

of a neural network is set to "Softmax". Softmax returns the output in

probabilities (Rahman and Aris Rakhmadi, 2023) and it is frequently used in the

final layer to determine the output class of the data (Agarap, 2019).

Table 3.4.3： Structure of BiLSTM (3 layers)

Layer (type) Output Shape

bidirectional (Bidirectional) (None, 30, 512)

bidirectional_1 (Bidirectional) (None, 30, 1024)

bidirectional_2 (Bidirectional) (None, 512)

dense (Dense) (None, 64)

dense_1 (Dense) (None, 32)

dense_2 (Dense) (None, 10)

39

The Adaptive Moment Estimation can minimize the loss function during the

model's training (Dhandapani, Vikranth Lokeshwar, and Jain, 2024). Adaptive

Moment Estimation which is also known as Adam is chosen as the optimizer in

this study.

40

3.5 Model Evaluation Metrics

The model's performance is evaluated with computation time and accuracy.

Accuracy can be defined in terms of the number of correct classifications over

the total number of classifications attempted while the computation time is the

time required to complete the RNN model training and test set fitting process.

The formula for defining accuracy and computation time is given below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑
 (7)

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = RNN model fitting end time -RNN model fitting start time (8)

The performance and efficiency of deep learning models can be observed by

evaluating their accuracy and computation time. The desired goal of this study

is to obtain high accuracy with minimum computation time.

41

3.6 Flowchart of the proposed method

To give a thorough overview of the suggested technique and all its steps, a full

flowchart has been constructed and is presented in Figure 3.6.1.

Figure 3.6.1: Flowchart of the proposed method

The first stage of the flowchart is 3D skeleton video formation using MediaPipe

for the MSL10 dataset and LSA64 dataset. The potting of key points follows the

holistic mode in MediaPipe, which contains face, pose, and hand key points

(1662 key points). The second stage is hand-key points (126 key points) that will

be formed from the holistic model as the second set of data. The third stage is

the data splitting of the dataset. Each of the datasets is split into training and

testing sets. The training set comprises 75% of the data, which is used to train

the models, while the remaining 25% forms the testing set, which is utilized to

evaluate model performance. In the fourth stage, the training data will be fitted

into the RNN models (LSTM, 2-layer BiLSTM, and 3-layer BiLSTM). These

42

models are trained to learn patterns and relationships within the data. Lastly,

after training the RNN models, their performance is evaluated in terms of

accuracy and computational time.

This flowchart shows the complete process, from data formation to model

evaluation, giving an easy understanding of the stages involved in the proposed

technique.

43

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

Table 4.1.1 shows the accuracy and computation time performance of the 3D

skeleton videos on the RNN models for the MSL10 and LSA64 datasets.

44

Table 4.1.1: Overall Accuracy and Computation Time Performance of the 3D Skeleton Video on RNN Models of the MSL10 dataset and

LSA64 dataset

 MSL10 LSA64

 LSTM 2-layer BiLSTM 3-layer BiLSTM LSTM 2-layer BiLSTM 3-layer BiLSTM

1662 key points Accuracy (%): 88.80 96.40 92.40 0.50 76.375 0.75

Computation Time (s): 192.66 604.32 3945.66 1264.42 1224.65 11022.28

126 key points Accuracy (%): 96.40 97.60 98.00 79.875 86.875 81.875

Computation Time (s): 94.88 79.79 2948.88 317.95 255.23 9629.44

45

To improve the accuracy of the data, it is recommended to conduct five repeats

for each combination to get a total of five sets of data for a single combination.

The accuracy and computation time will vary due to the random splitting of the

data. The repeats of 12 combinations in 12 tables are shown below.

Table 4.1.2: The Average of Accuracy and Computation Time Performance

of the MSL10 dataset with 1662 key points and LSTM model

MSL10, 1662 key points, LSTM

No. Accuracy (%) Computation Time (s)

1. 88.80 192.66

2. 59.20 217.50

3. 78.00 211.54

4. 82.00 241.18

5. 94.40 253.94

Average: 80.48 223.364

46

Table 4.1.3: The Average Accuracy and Computation Time Performance of

the MSL10 dataset with 1662 key points and 2-layer BiLSTM model

MSL10, 1662 key points, 2-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 96.4 604.32

2. 97.6 269.33

3. 96.4 310.86

4. 96.8 384.07

5. 96.8 344.84

Average: 96.8 382.684

Table 4.1.4: The Average Accuracy and Computation Time Performance of

the MSL10 dataset with 1662 key points and 3-layer BiLSTM model

MSL10, 1662 key points, 3-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 92.4 3945.66

2. 87.2 3883.93

3. 91.2 3611.82

4. 88.4 4041.65

5. 84 4173.34

Average: 88.64 3931.28

47

Table 4.1.5: The Average Accuracy and Computation Time Performance

of the MSL10 dataset with 126 key points and LSTM model

MSL10, 126 key points, LSTM

No. Accuracy (%) Computation Time (s)

1. 96.4 94.88

2. 96 104.48

3. 93.6 116.55

4. 96.4 140.32

5. 84.8 132.75

Average: 93.08 117.8

Table 4.1.6: The Average Accuracy and Computation Time Performance of

the MSL10 dataset with 126 key points and 2-layer BiLSTM model

MSL10, 126 key points, 2-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 97.6 79.79

2. 97.6 87.74

3. 97.2 84.91

4. 96.4 79.99

5. 97.2 84.09

Average: 97.2 83.3

48

Table 4.1.8: The Average Accuracy and Computation Time Performance of

the LSA64 dataset with 1662 key points and LSTM model

LSA64, 1662 key points, LSTM

No. Accuracy (%) Computation Time (s)

1. 0.50 1264.41

2. 52.5 667.06

3. 0.50 735.58

4. 0.75 792.79

5. 1.375 725.01

Average: 11.125 836.97

Table 4.1.7: The Average Accuracy and Computation Time Performance of

the MSL10 dataset with 126 key points and 3-layer BiLSTM model

MSL10, 126 key points, 3-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 98 2948.88

2. 97.2 2790.65

3. 98 3498.97

4. 94.8 3470.63

5. 98 3611.51

Average: 97.2 3264.128

49

Table 4.1.9: The Average Accuracy and Computation Time Performance

of the LSA64 dataset with 1662 key points and 2-layer BiLSTM model

LSA64, 1662 key points, 2-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 76.375 1224.65

2. 70.625 957.02

3. 78.5 845.11

4. 75.875 1094.49

5. 76.875 1135.60

Average: 75.65 1051.374

Table 4.1.10: The Average Accuracy and Computation Time Performance

of the LSA64 dataset with 1662 key points and 3-layer BiLSTM model

LSA64, 1662 key points, 3-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 0.75 11022.28

2. 0.75 10451.67

3. 0.625 10426.82

4. 0.5 10427.46

5. 0.625 12703.33

Average: 0.65 11006.312

50

Table 4.1.11: The Average Accuracy and Computation Time Performance

of the LSA64 dataset with 126 key points and LSTM model

LSA64, 126 key points, LSTM

No. Accuracy (%) Computation Time (s)

1. 79.875 317.95

2. 79.125 413.32

3. 0.75 341.44

4. 81.625 278.72

5. 78 353.38

Average: 63.875 340.962

Table 4.1.12: The Average Accuracy and Computation Time Performance of

the LSA64 dataset with 126 key points and 2-layer BiLSTM model

LSA64, 126 key points, 2-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 86.875 255.23

2. 85.625 229.07

3. 87.5 290.62

4. 84.875 286.45

5. 86.125 293.56

Average: 86.2 270.986

51

Table 4.1.13: The Average Accuracy and Computation Time Performance

of the LSA64 dataset with 126 key points and 3-layer BiLSTM model

LSA64, 126 key points, 3-layer BiLSTM

No. Accuracy (%) Computation Time (s)

1. 81.875 9629.44

2. 81.5 8719.24

3. 83 9591.64

4. 79.625 10647.68

5. 83 9177.39

Average: 81.3 9481.078

The average accuracy and computational time for five iterations of the

experiment for every model displayed in Tables 4.1.2 through 4.1.13 were

substituted into Table 4.1.14 to create the final table.

52

Table 4.1.14: Overall Average Accuracy and Computation Time Performance of 3D Skeleton Videos on RNN models with 5 repetitions on

MSL10 dataset and LSA64 dataset

 MSL10 LSA64

 LSTM 2-layer BiLSTM 3-layer BiLSTM LSTM 2-layer BiLSTM 3-layer BiLSTM

1662 key points Accuracy (%): 80.48 96.8 88.64 11.125 75.65 0.65

Computation Time (s): 223.364 382.684 3931.28 836.97 1051.374 11006.312

126 key points Accuracy (%): 93.08 97.2 97.2 63.875 86.2 81.8

Computation Time (s): 117.8 83.3 3264.128 340.962 270.986 9481.078

53

4.2 Discussion

From Table 4.1.14, by comparing the performance of LSTM and BiLSTM

models, we can see that both 2-layer and 3-layer bi-directional LSTM (BiLSTM)

models outperform the traditional LSTM model in terms of accuracy at different

key points and on different datasets. Since BiLSTM can read data in both

directions, BiLSTM models are better at understanding sequence relationships

than LSTM models. It is worth noting that the accuracy of the LSTM model

decreases when the dataset capacity increases from the MSL10 dataset to the

LSA64 dataset. For the 1662 key points, the LSTM model tended to overfit when

the capacity of the dataset was maximized in this experiment. From Table 4.1.8,

out of the five replicated experiments, only one experiment did not show

overfitting, and the accuracy remained low. The reason for the overfitting may

be that the LSTM model is not capable of handling such a large amount of data.

In terms of computation time, while the LSTM model performs better at 1662

key points, the 2-tier BiLSTM model performs better at 126 key points. In this

case, since 126 key points result in higher accuracy than 1662 key points, it can

still be concluded that the performance of the 2-layer BiLSTM outperforms the

LSTM model in terms of computation time. The reason for this situation could

be that BiLSTM processes input sequences in both directions and therefore

converges faster during training.

From the results of Table 4.1.14, by comparing the performance of the 2-layer

BiLSTM model and the 3-layer BiLSTM model, the 2-layer BiLSTM model has

higher accuracy in the MSL10 and LSA64 datasets. This is because the 3-layer

BiLSTM model suffers from an overfitting problem. The overfitting problem is

54

when the model captures a lot of noise or irrelevant information from the training

data. The complex model formed from the training data cannot detect the test

data well, resulting in low accuracy and long computation time. The

computation time of the 2-layer BiLSTM model is also shorter compared to the

3-layer BiLSTM. This is because the 2-layer BiLSTM is simpler as compared

to 3-layer BiLSTM, so it takes less time to train the model. In addition to this,

the computation time increases when the model is overfitted.

Throughout the performance from Table 4.1.14, by comparing the 1662 key

points to the 126 key points, accuracy improves as the number of key points

decreases. This is because the reduced key points are not important or contain

noise. Reducing the number of key points improves accuracy by eliminating

sources that confuse the model. Reducing the number of key points from 1,662

to 126 will also reduce the computation time of the model as the sample size

decreases. With fewer key points, the model may become simpler and less likely

to overfit. Simpler datasets may be easier for the model to learn the relationships

and patterns in the data, thus reducing computation time.

55

CHAPTER 5

CONCLUSION

5.1 Summary of Research

This research tackles the issue of the model's lengthy processing time while

utilizing picture or video input, which arises from the deep learning model's

excessive processing time. The MSL10 dataset was created due to the lack of

open-source Malaysian sign language videos. To reduce the video dataset to a

video featuring 3D skeleton key points and excluding background information,

MediaPipe is used. The 3D skeletal video extracted with MediaPipe can

precisely represent the semantic meaning of sentences and extract significant

information, such as the key points of hands, poses, and faces. With the use of

MediaPipe, the time used to convert the video can be reduced significantly.

Throughout the studies, the BiLSTM model outperformed the LSTM model in

terms of accuracy and computational time. The 2-layer BiLSTM model also

consistently outperforms the 3-layer BiLSTM model in terms of accuracy and

computation time. When all feature key points were compared to only hand key

points, the accuracy increased while the computation time decreased.

56

In conclusion, a 2-layer BiLSTM model is recommended together with the

MediaPipe model, which contains only the hand key points. This study

demonstrates the correlation between the number of layers in the BiLSTM

model and the performance of the model in terms of computation time and

accuracy. This study also shows that hand-key points alone are sufficient for

deep-learning models to recognize sign language.

Using OpenCV and Python, a real-time recognition model has been developed.

The MediaPipe library is used by the real-time recognition algorithm to identify

hand landmarks on the webcam. The system constantly records webcam frames

and uses MediaPipe's holistic model to process them to identify landmarks. After

landmarks have been identified, key points are extracted and fed into a machine

learning model that has already been trained for prediction. Predicting the sign

being performed involves maintaining track of a series of important points over

time and applying this sequence to prediction logic. The algorithm updates a

sentence variable with the detected sign if the predicted sign exceeds a

predetermined threshold, hence guaranteeing seamless transitions between signs

in the recognized phrase. Lastly, the algorithm uses OpenCV to display the

sentence and symbol that have been identified on the screen. With this

configuration, real-time sign language recognition can be done straight from a

camera stream, which opens a wide range of useful applications.

57

In conclusion, the 2-layer BiLSTM model, hand key point extraction, and 3D

skeleton videos may all be used to achieve the fastest computation time without

sacrificing the model's accuracy. The final approach combines the 2-layer

BiLSTM deep learning model with MediaPipe 126 hands key points. Using the

resulting technique, a real-time model for the MSL10 dataset has been

developed.

58

5.2 Limitations and Recommendations

Since Malaysian Sign Language (MSL) is not an open-source sign language, it

is a difficult task to gather enough high-quality data on MSL, thus limiting the

dataset's representativeness and variety. It will have an impact on how broadly

the findings can be applied. Sign languages can differ between communities and

between regions, and peculiarities of culture can influence how signs are

understood and recognized.

The technique of selecting important point features will be the focus of future

studies in this study. The process of Recursive Feature Elimination (RFE)

includes prioritizing each feature and determining the most crucial elements

(Arif Mudi Priyatno and Triyanna Widiyaningtyas, 2024). Using RFE, key

points can be ranked according to their importance in sign language recognition.

RFE iteratively removes the least important features until the desired number of

features is reached. To increase accuracy, researchers might conduct

experiments to find the ideal number of important points to choose from. There

will be a continuous process involved in choosing features based on high-level

features.

59

REFERENCES

A. Garcia-Garcia, Gomez-Donoso, F., Garcia-Rodriguez, J., Orts-Escolano, S.,

Cazorla, M. and Azorin-Lopez, J. (2016). PointNet: A 3D Convolutional Neural

Network for real-time object class recognition. doi:

https://doi.org/10.1109/ijcnn.2016.7727386.

Abdalla, M.S. and Hemayed, E.E. (2013). Dynamic Hand Gesture Recognition

of Arabic Sign Language using Hand Motion Trajectory Features. Global

journal of computer science and technology, 13(5).

Abduljabbar, R.L., Dia, H. and Tsai, P.-W. (2021). Development and evaluation

of bidirectional LSTM freeway traffic forecasting models using simulation data.

Scientific Reports, 11(1). doi: https://doi.org/10.1038/s41598-021-03282-z.

Abraham, E., Nayak, A. and Iqbal, A. (2019). Real-Time Translation of Indian

Sign Language using LSTM. 2019 Global Conference for Advancement in

Technology (GCAT). doi: https://doi.org/10.1109/gcat47503.2019.8978343.

Agarap, A.F. (2019). An Architecture Combining Convolutional Neural

Network (CNN) and Support Vector Machine (SVM) for Image Classification.

arXiv:1712.03541 [cs, stat]. [online] Available at:

https://arxiv.org/abs/1712.03541.

Al Amin Hosain, Panneer Selvam Santhalingam, Pathak, P.H., Kosecka, J. and

Rangwala, H. (2019). Sign Language Recognition Analysis using Multimodal

Data. doi: https://doi.org/10.1109/dsaa.2019.00035.

Almufti, S.M. and Adnan Mohsin Abdulazeez (2024). An Integrated Gesture

Framework of Smart Entry Based on Arduino and Random Forest

Classifier. Indonesian Journal of Computer Science, 13(1). doi:

https://doi.org/10.33022/ijcs.v13i1.3735.

Aloysius, N. and Geetha, M. (2020). Understanding vision-based continuous

sign language recognition. Multimedia Tools and Applications, 79(31-32),

pp.22177–22209. doi: https://doi.org/10.1007/s11042-020-08961-z.

Alsharif, B., Altaher, A.S., Altaher, A., Ilyas, M. and Alalwany, E. (2023). Deep

Learning Technology to Recognize American Sign Language Alphabet. Sensors,

[online] 23(18), p.7970. doi: https://doi.org/10.3390/s23187970.

Ameur, S., Ben Khalifa, A. and Salim bouhlel, M. (2020). A novel Hybrid

Bidirectional Unidirectional LSTM Network for Dynamic Hand Gesture

Recognition with Leap Motion. Entertainment Computing, p.100373. doi:

https://doi.org/10.1016/j.entcom.2020.100373.

Amit Moryossef, Ioannis Tsochantaridis, Dinn, J., Necati Cihan Camgoz,

Bowden, R., Jiang, T., Rios, A., Muller, M. and Ebling, S. (2021). Evaluating

the Immediate Applicability of Pose Estimation for Sign Language Recognition.

arXiv (Cornell University). doi:

https://doi.org/10.1109/cvprw53098.2021.00382.

Arif Mudi Priyatno and Triyanna Widiyaningtyas (2024). A SYSTEMATIC

LITERATURE REVIEW: RECURSIVE FEATURE ELIMINATION

https://arxiv.org/abs/1712.03541

60

ALGORITHMS. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer),

9(2), pp.196–207. doi: https://doi.org/10.33480/jitk.v9i2.5015.

Avraam Tsantekidis, Nikolaos Passalis and Anastasios Tefas (2022). Recurrent

neural networks. Elsevier eBooks, pp.101–115. doi:

https://doi.org/10.1016/b978-0-32-385787-1.00010-5.

Bazarevsky, V., Grishchenko, I., Karthik Raveendran, Zhu, T., Zhang, F. and

Grundmann, M. (2020). BlazePose: On-device Real-time Body Pose tracking.

arXiv (Cornell University). doi: https://doi.org/10.48550/arxiv.2006.10204.

Bora, J., Saine Dehingia, Abhijit Boruah, Anuraag Anuj Chetia and Dikhit

Gogoi (2023). Real-time Assamese Sign Language Recognition using

MediaPipe and Deep Learning. 218, pp.1384–1393. doi:

https://doi.org/10.1016/j.procs.2023.01.117.

Chen, F.-S., Fu, C.-M. and Huang, C.-L. (2003). Hand gesture recognition using

a real-time tracking method and hidden Markov models. Image and Vision

Computing, 21(8), pp.745–758. doi: https://doi.org/10.1016/s0262-

8856(03)00070-2.

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2015). Gated Feedback

Recurrent Neural Networks. [online] arXiv.org. doi:

https://doi.org/10.48550/arXiv.1502.02367.

Cireşan, D., Meier, U., Masci, J. and Schmidhuber, J. (2012). Multi-column

deep neural network for traffic sign classification. Neural Networks, 32, pp.333–

338. doi: https://doi.org/10.1016/j.neunet.2012.02.023.

Dhandapani, V.L. and Jain, S., n.d. Neural Networks for Portfolio-Level Risk

Management: Portfolio Compression, Static Hedging, Counterparty Credit Risk

Exposures and Impact on Capital Requirement. arxiv.org. [online] Available at:

https://arxiv.org/html/2402.17941v1 [Accessed 18 May 2024].

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio and

Vincent, P. (2009). The Difficulty of Training Deep Architectures and the Effect

of Unsupervised Pre-Training. Pp.153–160.

Dureja, A. and Pahwa, P. (2018). Analysis of Non-linear Activation Functions

for Classification Tasks using Convolutional Neural Networks. Recent Patents

on Computer Science, 11. doi:

https://doi.org/10.2174/2213275911666181025143029.

Eshraghian, J.K., Ward, M., Emre Neftci, Wang, X., Lenz, G., Dwivedi, G.,

Bennamoun, M., Doo Seok Jeong and Lü, W. (2023). Training Spiking Neural

Networks Using Lessons From Deep Learning. Proceedings of the IEEE, 111(9),

pp.1016–1054. doi: https://doi.org/10.1109/jproc.2023.3308088.

Feng, W., Guan, N., Li, Y., Zhang, X. and Luo, Z. (2017). Audio visual speech

recognition with multimodal recurrent neural networks. doi:

https://doi.org/10.1109/ijcnn.2017.7965918.

Ge, L., Cai, Y.-J., Weng, J. and Yuan, J. (2018). Hand PointNet: 3D Hand Pose

Estimation Using Point Sets. doi: https://doi.org/10.1109/cvpr.2018.00878.

61

Georgevici, A.I. and Terblanche, M. (2019). Neural networks and deep learning:

a brief introduction. Intensive Care Medicine. doi:

https://doi.org/10.1007/s00134-019-05537-w.

Gers, F.A. and Schmidhuber, J. (2000). Recurrent nets that time and count.

[online] IEEE Xplore. doi: https://doi.org/10.1109/IJCNN.2000.861302.

Goldsborough, P. (2016). A Tour of TensorFlow. [online] arXiv.org. doi:

https://doi.org/10.48550/arXiv.1610.01178.

Hafit, H., Xiang, C.W., Yusof, M.M., Wahid, N. and Kassim, S. (2019).

Malaysian Sign Language Mobile Learning Application: A recommendation

app to communicate with hearing-impaired communities. International Journal

of Electrical and Computer Engineering (IJECE), 9(6), p.5512. doi:

https://doi.org/10.11591/ijece.v9i6.pp5512-5518.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), pp.1735–1780.

Huang, J., Zhou, W., Zhang, Q., Li, H. and Li, W. (2018). Video-Based Sign

Language Recognition Without Temporal Segmentation. Proceedings of the

AAAI Conference on Artificial Intelligence, 32(1). doi:

https://doi.org/10.1609/aaai.v32i1.11903.

Indriani, Harris, Moh. and Agoes, A.S. (2021). Applying Hand Gesture

Recognition for User Guide Application Using MediaPipe. Proceedings of the

2nd International Seminar of Science and Applied Technology (ISSAT 2021).

doi: https://doi.org/10.2991/aer.k.211106.017.

Jella Sandhya and KANCHARLA ANITHASHEELA (2024). Spatiotemporal

Modeling for Dynamic Gesture Recognition in Video Streams. Research Square

(Research Square). doi: https://doi.org/10.21203/rs.3.rs-4019650/v1.

Kavana, K.M. and Suma, N.R., 2022. Recognization of hand gestures using

mediapipe hands. International Research Journal of Modernization in

Engineering Technology and Science, 4(06).

Kim, T.-H., Keane, J., Wang, W., Hall, M.B., Riggle, J., Shakhnarovich, G.,

Brentari, D. and Livescu, K. (2017). Lexicon-free fingerspelling recognition

from video: Data, models, and signer adaptation. Computer Speech & Language,

46, pp.209–232. doi: https://doi.org/10.1016/j.csl.2017.05.009.

Kwon, Y. and Kim, D. (2022). Real-Time Workout Posture Correction using

OpenCV and MediaPipe. The Journal of Korean Institute of Information

Technology, 20(1), pp.199–208. doi:

https://doi.org/10.14801/jkiit.2022.20.1.199.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11),

pp.2278–2324. doi: https://doi.org/10.1109/5.726791.

Li, H., Gao, L., Han, R., Wan, L. and Feng, W. (2020). Key Action and Joint

CTC-Attention based Sign Language Recognition. ICASSP 2020 - 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

doi: https://doi.org/10.1109/icassp40776.2020.9054316.

62

Liao, Y., Xiong, P., Min, W., Min, W. and Lu, J. (2019). Dynamic Sign

Language Recognition Based on Video Sequence With BLSTM-3D Residual

Networks. IEEE Access, 7, pp.38044–38054. doi:

https://doi.org/10.1109/access.2019.2904749.

Lin, Y., Jiao, X. and Zhao, L. (2023). Detection of 3D Human Posture Based on

Improved Mediapipe. Journal of Computer and Communications, [online] 11(2),

pp.102–121. doi: https://doi.org/10.4236/jcc.2023.112008.

Ling, C., Zhong, J. and Li, W. (2022). Predictive Coding Based Multiscale

Network with Encoder-Decoder LSTM for Video Prediction. arXiv (Cornell

University). doi: https://doi.org/10.48550/arxiv.2212.11642.

Lipton, Z.C., Berkowitz, J. and Elkan, C. (2015). A Critical Review of Recurrent

Neural Networks for Sequence Learning. [online] arXiv.org. Available at:

https://arxiv.org/abs/1506.00019.

Liu, X., Deng, Z. and Yang, Y. (2018). Recent progress in semantic image

segmentation. Artificial Intelligence Review, [online] 52(2), pp.1089–1106. doi:

https://doi.org/10.1007/s10462-018-9641-3.

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang,

F., Chang, C.-L., Yong, M.G., Lee, J., Chang, W.-T., Hua, W., Georg, M. and

Grundmann, M. (2019). MediaPipe: A Framework for Building Perception

Pipelines. doi: https://doi.org/10.48550/arxiv.1906.08172.

Marais, M., Brown, D., Connan, J. and Boby, A. (2022). An Evaluation of Hand-

Based Algorithms for Sign Language Recognition. [online] IEEE Xplore. doi:

https://doi.org/10.1109/icABCD54961.2022.9856310.

McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. The Bulletin of Mathematical Biophysics, [online] 5(4),

pp.115–133. doi: https://doi.org/10.1007/bf02478259.

Mohamad, M., Saman, M.Y.M., Hitam, M.S. and Telipot, M., 2015. A Review

on OpenCV. Terengganu: Universitas Malaysia Terengganu, 3, p.1.

Muhammad Mizanur Rahaman, Mahin, M., Ali, H. and Md. Hasanuzzaman

(2019). BHCDR: Real-Time Bangla Handwritten Characters and Digits

Recognition using Adopted Convolutional Neural Network. doi:

https://doi.org/10.1109/icasert.2019.8934476.

Namburi, A., & Hengsanankun, T. (2022). Combining SVM and human-pose

for a vision-based fall detection. ICIC Express Letters, Part B: Applications,

13(11), 1177-1187.

Naz, N., Sajid, H., Ali, S., Hasan, O. and Ehsan, M.K. (2023). Signgraph: An

Efficient and Accurate Pose-Based Graph Convolution Approach Toward Sign

Language Recognition. IEEE Access, 11, pp.19135–19147. doi:

https://doi.org/10.1109/access.2023.3247761.

Necati Cihan Camgoz, Koller, O., Hadfield, S. and Bowden, R. (2020). Sign

Language Transformers: Joint End-to-End Sign Language Recognition and

Translation. doi: https://doi.org/10.1109/cvpr42600.2020.01004.

63

Nguyen, H.-T. (2014). Contributions to facial feature extraction for face

recognition. [online] hal.science. Available at: https://hal.science/tel-01138363

[Accessed 29 Mar. 2024].

Peng, T., Zhang, C., Zhou, J. and Nazir, M.S. (2021). An integrated framework

of Bi-directional long-short term memory (BiLSTM) based on sine cosine

algorithm for hourly solar radiation forecasting. Energy, 221, p.119887. doi:

https://doi.org/10.1016/j.energy.2021.119887.

Pigou, L., Oord, A. van den, Dieleman, S., Van Herreweghe, M. and Dambre, J.

(2016). Beyond Temporal Pooling: Recurrence and Temporal Convolutions for

Gesture Recognition in Video. [online] arXiv.org. doi:

https://doi.org/10.48550/arXiv.1506.01911.

Qodri, A., Rini Akmeliawati and Mohammed, S. (2012). Malaysian Sign

Language database for research. doi:

https://doi.org/10.1109/iccce.2012.6271327.

Rahman, M.M., Manik, Md.M.H., Islam, Md.M., Mahmud, S. and Kim, J.-H.

(2020). An Automated System to Limit COVID-19 Using Facial Mask

Detection in Smart City Network. [online] IEEE Xplore. doi:

https://doi.org/10.1109/IEMTRONICS51293.2020.9216386.

Rahman, R. and Aris Rakhmadi, S.T. (2023). Implementation Of Hand

Recognition Using Convolutional Neural Network For Sign Language. [online]

eprints.ums.ac.id. Available at: http://eprints.ums.ac.id/id/eprint/110235

[Accessed 29 Mar. 2024].

Safwan Mahmood Al-Selwi, Mohd Fadzil Hassan, Said Jadid Abdulkadir and

Amgad Muneer (2023). LSTM Inefficiency in Long-Term Dependencies

Regression Problems. Journal of Advanced Research in Applied Sciences and

Engineering Technology, 30(3), pp.16–31. doi:

https://doi.org/10.37934/araset.30.3.1631.

Samaan, G.H., Wadie, A.R., Attia, A.K., Asaad, A.M., Kamel, A.E., Slim, S.O.,

Abdallah, M.S. and Cho, Y.-I. (2022). MediaPipe’s Landmarks with RNN for

Dynamic Sign Language Recognition. Electronics, 11(19), p.3228. doi:

https://doi.org/10.3390/electronics11193228.

SCI, J.H. (2020). Relu Deep Neural Networks and Linear Finite

Elements. Journal of Computational Mathematics, 38(3), pp.502–527. doi:

https://doi.org/10.4208/jcm.1901-m2018-0160.

Selvaraj, P., Gokul NC, Kumar, P. and Khapra, M.M. (2021). OpenHands:

Making Sign Language Recognition Accessible with Pose-based Pretrained

Models across Languages. arXiv (Cornell University). doi:

https://doi.org/10.48550/arxiv.2110.05877.

Sharma, S., Gupta, R. and Kumar, A. (2021). Continuous sign language

recognition using isolated signs data and deep transfer learning. Journal of

Ambient Intelligence and Humanized Computing. doi:

https://doi.org/10.1007/s12652-021-03418-z.

64

SIL International. (2022). Malaysian Sign Language: A phonological statement.

[online] Available at: https://www.sil.org/resources/archives/57953 [Accessed

30 Mar. 2024].

Subramanian, B., Olimov, B., Naik, S.M., Kim, S., Park, K.-H. and Kim, J.

(2022). An integrated mediapipe-optimized GRU model for Indian sign

language recognition. Scientific Reports, [online] 12(1), p.11964. doi:

https://doi.org/10.1038/s41598-022-15998-7.

Sundar, B. and Bagyammal, T. (2022). American Sign Language Recognition

for Alphabets Using MediaPipe and LSTM. Procedia Computer Science, 215,

pp.642–651. doi: https://doi.org/10.1016/j.procs.2022.12.066.

Telmo Adão, Oliveira, J., Somayeh Shahrabadi, Jesus, H., Fernandes, M., Costa,

Ferreira, V., Martinho Fradeira Gonçalves, Guevara, M.A., Peres, E. and Luís

Gonzaga Magalhães (2023). Empowering Deaf-Hearing Communication:

Exploring Synergies between Predictive and Generative AI-Based Strategies

towards (Portuguese) Sign Language Interpretation. Journal of Imaging, 9(11),

pp.235–235. doi: https://doi.org/10.3390/jimaging9110235.

Tsakanikas, V. and Dagiuklas, T. (2018). Video surveillance systems-current

status and future trends. Computers & Electrical Engineering, [online] 70,

pp.736–753. doi: https://doi.org/10.1016/j.compeleceng.2017.11.011.

Yury Kartynnik, Artsiom Ablavatski, Grishchenko, I. and Grundmann, M.

(2019). Real-time Facial Surface Geometry from Monocular Video on Mobile

GPUs. arXiv (Cornell University). doi:

https://doi.org/10.48550/arxiv.1907.06724.

Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-

L. and Grundmann, M. (2020). MediaPipe Hands: On-device Real-time Hand

Tracking. arXiv:2006.10214 [cs]. [online] Available at:

https://arxiv.org/abs/2006.10214.

https://arxiv.org/abs/2006.10214

65

APPENDIX A

Gmail Notification of Paper Under-Review.

66

APPENDIX A

First Page of Journal Publication.

66

APPENDIX B

Turnitin Originality Report

67

68

APPENDIX C

Pseudocode for MSL10 data collection.

Import necessary libraries (OpenCV, numpy, os, matplotlib, t
ime, mediapipe)

Define a function mediapipe_detection(image, model):
 Convert image from BGR to RGB
 Make image unwriteable
 Process the image using the provided model
 Make image writeable again
 Convert image from RGB to BGR
 Return the modified image and results

Define a function draw_landmarks(image, results):
 Draw landmarks for left and right hand connections on th
e image

Define a function draw_styled_landmarks(image, results):
 Draw styled landmarks for face, left hand, and right han
d connections on the image

Initialize the webcam feed using cv2.VideoCapture(0)

Set up the mediapipe holistic model with minimum detection a
nd tracking confidence

Start a loop to capture frames from the webcam:
 Read a frame from the webcam feed
 Use mediapipe_detection function to process the frame an
d get results
 Draw styled landmarks on the image using draw_styled_lan
dmarks function
 Display the image with landmarks on the screen
 Check for the 'q' key press to exit the loop

Extract key points for pose, face, left hand, and right hand
 landmarks from the results

Define a function extract_keypoints(results):
 Extract pose, face, left hand, and right hand landmarks
from results
 Return the concatenated array of all landmarks

Save the extracted keypoints from results as a numpy array

69

APPENDIX D

Pseudocode for extracting key points from pre-recorded LSA64 dataset.

Import necessary libraries (OpenCV, numpy, os, mediapipe)

Initialize MediaPipe holistic model and drawing utilities

Define a function to perform MediaPipe detection on an image
 using the provided model
 Convert the image to RGB format
 Process the image with the model
 Convert the image back to BGR format
 Return the modified image and detection results

Define a function to draw styled landmarks on the image base
d on the detection results
 Draw face, pose, left hand, and right hand connections o
n the image with specified colors and thickness

Define a function to extract keypoints from the detection re
sults
 Extract pose, face, left hand, and right hand keypoints
from the results
 Return the concatenated array of keypoints

Set up MediaPipe holistic model with minimum detection and t
racking confidence

Define the path to the folder containing video files

List all video files in the folder

Initialize a label count

Loop over each video file in the folder:
 Get the full path of the video file
 Extract the video name
 Open the video file for capturing frames

 Initialize frame count and set the maximum number of fra
mes to capture

 While the video capture is open and the frame count is l
ess than the maximum frames:
 Read a frame from the video
 Perform MediaPipe detection on the frame
 Draw styled landmarks on the image

70

 Show the image with landmarks on the screen
 Export the extracted keypoints from the detection re
sults and save as a numpy array

 Increment the frame count

 Check for the 'q' key press to break out of the loop
 gracefully

 Release the video capture object and close any open wind
ows

 Increment the label count after processing each video

71

APPENDIX E

Pseudocode for MSL10 dataset with 126 key points in 3-layer BiLSTM

model.

Import necessary libraries (OpenCV, numpy, os, matplotlib, t
ime, mediapipe, train_test_split, to_categorical from tensor
flow.keras.utils)

Define the data path for exported numpy arrays

Define the actions to be detected and the number of sequence
s

Define the sequence length for videos

Create directories for each action and sequence in the data
path

Create a label map for actions

Initialize lists to store sequences and labels

Loop over actions and sequences:
 For each action and sequence, load the saved numpy array
s for each frame
 Extract the last 126 keypoints from each frame
 Append the extracted keypoints to a window
 Append the window and corresponding label to sequences a
nd labels lists

Convert sequences and labels to numpy arrays

Split the data into training and testing sets using train_te
st_split

Import necessary libraries (tensorflow, Sequential, Bidirect
ional, LSTM, Dense from tensorflow.keras.models, TensorBoard
 from tensorflow.keras.callbacks)

Set up the model architecture with Bidirectional LSTM layers
 and Dense layers

Compile the model with optimizer, loss function, and metrics

Start recording time for model training

72

Train the model on the training data with a specified number
 of epochs and TensorBoard callback

End recording time for model training

Print the computational time for model training

Display the model summary

Make predictions on the test data using the trained model

Calculate accuracy using accuracy_score from sklearn.metrics

Print the accuracy score

73

APPENDIX F

Pseudocode for real-time recognition algorithm.

Initialize an empty list 'sequence' to store keypoints and a
n empty list 'sentence' to store detected actions
Set a confidence threshold for action prediction

Open a video capture object for webcam feed

Set up MediaPipe holistic model with minimum detection and t
racking confidence

Start a loop to continuously capture frames from the webcam
feed
 Read a frame from the webcam feed
 Perform MediaPipe detection on the frame
 Print the detection results

 Draw styled landmarks on the image based on the detectio
n results

 Extract keypoints from the detection results
 Append the keypoints to the 'sequence' list and maintain
 only the last 30 sequences

 Check if the 'sequence' list has 30 elements
 Make a prediction using the model on the 'sequence'
list
 Print the predicted action

 Update the 'sentence' list based on the predicted ac
tion and confidence threshold
 If the predicted action is different from the la
st action in 'sentence', add the predicted action to 'senten
ce'
 Limit the 'sentence' list to a maximum of 10 act
ions

 Visualize the action probabilities on the image

 Draw a rectangle and display the detected sentence on th
e image
 Show the image with the detected landmarks and sentence
on the screen

 Check for the 'q' key press to break out of the loop

74

Release the video capture object and close all windows

75

APPENDIX G

MSL10 Real-time Recognition Model Screenshots.

