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ABSTRACT 

 

LEVERAGING 3D SKELETON VIDEO EXTRACTION AND DEEP 

LEARNING FOR REAL-TIME SIGN LANGUAGE RECOGNITION 

MODEL 

ANG ZI YING 

 

Sign language recognition is recognized as key research for reducing 

communication barriers between deaf and hearing people. Over the past two 

decades, researchers have shown great interest in sign language recognition due 

to technological advances. Researchers have conducted extensive studies on 

sign language recognition, but developing a highly accurate real-time model is 

still difficult due to the time-consuming nature of sign language video 

recognition. Due to the lack of a Malaysian Sign Language dataset, a video-

based Malaysian Sign Language dataset (MSL10) was created and will further 

validate the results with the Argentinean Sign Language dataset (LSA64). This 

study aims to propose a combination that maintains high accuracy and reduces 

computational time, which consists of key points of important features, and a 

deep learning recurrent neural network model, a high-accuracy and low-

computational model suitable for real-time sign language recognition. 

MediaPipe's 3D skeleton video helps in removing unnecessary information 

while reducing computation time. Compared to whole-body feature analysis, 

this study shows that hand features can effectively reduce computation time and 

improve accuracy. In the study, it was also found that the two-layer BiLSTM 
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model has the best performance in terms of accuracy and computation time as 

compared to the LSTM and three-layer BiLSTM models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

 

I am pleased to undertake the final year project entitled “Leveraging 3D Skeleton 

Video Extraction and Deep Learning for Real-Time Sign Language Recognition 

Model”. I would like to take this opportunity to thank every individual involved 

in this project. High appreciation is given to my supervisor, Ms. Chin Fung Yuen, 

a lecturer at the Faculty of Science at Universiti Tunku Abdul Rahman, for her 

strong and timely support in developing my project and writing this report. I 

would like to express my deepest gratitude to my external consultant, Dr. Lim 

Foo Weng, for providing me with his invaluable guidance throughout this 

project. Most importantly, I am grateful to Universiti Tunku Abdul Rahman, for 

allowing me to study for the program Bachelor of Science (Hons) in Statistical 

Computing and Operations Research. Lastly, special thanks to my family 

members and friends who encourage me to complete this project. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

DECLARATION 

 

I hereby declare that the project report is based on my original work except for 

quotations and citations which have been duly acknowledged. I also declare that 

it has not been previously or concurrently submitted for any other degree at 

UTAR or other institutions. 

 

 

 

 

 

 

 

 

 

 

 

                                    

                           

ANG ZI YING 

 

 

 

 



vii 
 

APPROVAL SHEET 

 

 

This project report entitled “LEVERAGING 3D SKELETON VIDEO 

EXTRACTION AND DEEP LEARNING FOR REAL-TIME SIGN 

LANGUAGE RECOGNITION MODEL” was prepared by ANG ZI YING 

and submitted as partial fulfilment of the requirements for the degree of Bachelor 

of Science (Hons) Statistical Computing and Operations Research at Universiti 

Tunku Abdul Rahman. 

 

 

Approved by: 

 

 

(Ms. Chin Fung Yuen)                       Date: 14 Apr 2024 

Supervisor 

Department of Physical and Mathematical Science 

Faculty of Science 

Universiti Tunku Abdul Rahman 

 

 

 

 

 



viii 
 

 

FACULTY OF SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

Date: 26/02/2024 

PERMISSION SHEET 

 

It is hereby certified that ANG ZI YING (ID No: 19ADB01751) has completed 

this final year project entitled “LEVERAGING 3D SKELETON VIDEO 

EXTRACTION AND DEEP LEARNING FOR REAL-TIME SIGN 

LANGUAGE RECOGNITION MODEL” under the supervision of Ms. Chin 

Fung Yuen (Supervisor) from the Department of Physical and Mathematical 

Science, Faculty of Science. 

 

I hereby give permission to the University to upload the softcopy of my final 

year project in pdf format into the UTAR Institutional Repository, which may 

be made accessible to the UTAR community and public. 

 

Yours truly, 

 

 

(ANG ZI YING) 

 

 

 



ix 
 

TABLE OF CONTENTS 

 

                  Page 

ABSTRACT         iii 

ACKNOWLEDGEMENTS       v 

DECLARATION        vi 

APPROVAL SHEET       vii 

PERMISSION SHEET       viii 

TABLE OF CONTENTS       ix 

LIST OF TABLES        xi 

LIST OF FIGURES        xiii 

LIST OF ABBREVIATIONS      xvi 

 

CHAPTERS 

INTRODUCTION ............................................................................................ 1 

1.1 Background of Study ................................................................................ 1 

1.2 Problem Statement .................................................................................... 3 

1.3 Objective of Research ............................................................................... 5 

1.4 Significance of Study ................................................................................ 6 

LITERATURE REVIEW ................................................................................ 8 

2.1 Evolution of Sign Language Recognition (SLR) ...................................... 8 

2.2 Deep Learning Models ............................................................................ 14 

2.2.1 Deep Neural Network (DNN) and Convolutional Neural Network 

(CNN) ........................................................................................................... 14 

2.2.2 Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term 

Memory (Bi-LSTM) ..................................................................................... 16 

METHODOLOGY ......................................................................................... 20 

3.1 Dataset Introduction ................................................................................ 20 

3.2 3D Skeleton Video Creation ................................................................... 24 

3.3 Data Preprocessing .................................................................................. 31 

3.4 RNN models ............................................................................................ 32 

3.5 Model Evaluation Metrics ....................................................................... 40 

3.6 Flowchart of the Proposed Method ......................................................... 41 

RESULTS AND DISCUSSION...................................................................... 43 

4.1 Results ..................................................................................................... 43 

4.2 Discussion ............................................................................................... 53 

 



x 
 

CONCLUSION ............................................................................................... 55 

5.1 Summary of Research ............................................................................. 55 

5.2 Limitations and Recommendations ......................................................... 58 

REFERENCES ............................................................................................... 59 

APPENDICES ................................................................................................. 65 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF TABLES 

 

Table                   Page 

3.4.1 Structure of LSTM (3 layers)       37 

3.4.2 Structure of BiLSTM (2 layers)      37 

3.4.3 Structure of BiLSTM (3 layers)      38 

4.1.1 Overall Accuracy and Computation Time Performance of the  44 

3D Skeleton Video on RNN Models of the MSL10 dataset  

and LSA64 dataset        

4.1.2 The Average of Accuracy and Computation Time Performance  45 

of the MSL10 dataset with 1662 key points and LSTM model  

4.1.3 The Average Accuracy and Computation Time Performance of  46 

the MSL10 dataset with 1662 key points and 2-layer BiLSTM  

model          

4.1.4 The Average Accuracy and Computation Time Performance of  46 

the MSL10 dataset with 1662 key points and 3-layer BiLSTM  

model          

4.1.5 The Average Accuracy and Computation Time Performance of  47 

the MSL10 dataset with 126 key points and LSTM model   

4.1.6 The Average Accuracy and Computation Time Performance of  47 

the MSL10 dataset with 126 key points and 2-layer BiLSTM  

model          

4.1.7 The Average Accuracy and Computation Time Performance of  48 

the MSL10 dataset with 126 key points and 3-layer BiLSTM  

model          



xii 
 

4.1.8 The Average Accuracy and Computation Time Performance of  48 

the LSA64 dataset with 1662 key points and LSTM model   

4.1.9 The Average Accuracy and Computation Time Performance of  49 

the LSA64 dataset with 1662 key points and 2-layer BiLSTM  

model          

4.1.10 The Average Accuracy and Computation Time Performance of  49 

the LSA64 dataset with 1662 key points and 3-layer BiLSTM  

model          

4.1.11 The Average Accuracy and Computation Time Performance of  50 

the LSA64 dataset with 126 key points and LSTM model   

4.1.12 The Average Accuracy and Computation Time Performance of  50 

the LSA64 dataset with 126 key points and 2-layer BiLSTM  

model          

4.1.13 The Average Accuracy and Computation Time Performance of  51 

the LSA64 dataset with 126 key points and 3-layer BiLSTM  

model  

4.1.14  Overall Average Accuracy and Computation Time Performance  52 

of 3D Skeleton Videos on RNN models with 5 repetitions on  

MSL10 dataset and LSA64 dataset 

  



xiii 
 

LIST OF FIGURES 

Figure                   Page

   

2.1.1 Architecture for recognizing faces based on local features   8 

2.1.2 Overview of the Hand PointNet-based technique for    10 

estimating 3D hand poses in single-depth pictures 

2.1.3 The left picture shows the OpenPose 25 key points, and the   12 

right picture shows multi-person pose estimation with  

OpenPose 

2.2.1.1 Deep Neural Network (DNN) with a single computational neuron 14 

2.2.1.2 Convolution Neural Network      15 

3.1.1 MSL10 dataset “Benar”                                                           21 

3.1.2 MSL10 dataset “Maaf”                                 21 

3.1.3 MSL10 dataset “Kenyang”      21 

3.1.4 MSL10 dataset “Makan”      22 

3.1.5 The cropped images from LSA64 videos    23 

3.2.1 Overview of MediaPipe holistic      24 

3.2.2 MediaPipe hands key points label     25 

3.2.3 MediaPipe poses key points label     25 

3.2.4 MediaPipe facial key points label     26 

3.2.5 Shape of MSL10 dataset      29 

3.2.6 Shape of LSA64 dataset       30 



xiv 
 

3.4.1 Standard Recurrent Neural Network (RNN) and unfolded RNN 32 

3.4.2 Long Short-Term Memory      34 

3.4.5 2-layer Bidirectional Long Short-Term Memory   36 

3.6.1. Flowchart of the proposed method     41 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

LIST OF ABBREVIATIONS 

 

LSTM          Long Short-Term Memory 

SVM            Support Vector Machine 

RFE              Recursive Feature Elimination 

BiLSTM       Bidirectional Long Short-Term Memory 

CNN             Convolutional Neural Network 

RNN             Recurrent Neural Network 

MSL  Malaysian Sign Language 

ASL   American Sign Language 

KNNOR K Nearest Neighbor Oversampling  

LogitBoost Logit Boosting 

CSLR  Continuous Sign Language Model  

ISLR  Isolated Sign Language Recognition Model 

MFD  Malaysian Federation of the Deaf 

SLR  Sign Language Recognition 

AUTSL Ankara University Turkish  

GRU  Gated Recurrent Unit 

ResNet  Residual Network  



xvi 
 

VGG   Visual Geometry Group  

PCA   Principal Component Analysis 

FLD  Fisher’s Linear Discriminant  

k-NN  K-nearest neighbor  

HHMs  hidden Markov models  

RGB   Red, Green and Blue 

OBB  Oriented Bounding Box  

3D  Three-dimensional space 

1D  One-dimensional space 

DNN  Deep Neural Network 

VGP   Vanishing Gradient Problem  

OpenCV  Open-Source Computer Vision Library 

ANNs  Artificial Neural Networks  

Adam   Adaptive Moment Estimation 

BIM  Bahasa Isyarat Malaysia



1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Deaf people use sign language to express their emotions and needs, and these 

sign languages include body language, facial expressions, and gestures. 

Communication barriers still exist between the deaf community and the public 

due to the limited understanding of sign language. Therefore, there is a need for 

a technology that facilitates communication between hearing and deaf people. 

Real-time gesture detection in sign language video streams requires a model 

with fast and accurate gesture recognition techniques. Computer vision 

technology has come a long way in the last 20 years, improving human pose 

estimation, vision-based sign language, and gesture recognition. 

The Continuous Sign Language Recognition Model (CSLR) and the Isolated 

Sign Language Recognition Model (ISLR) are two models used for recognizing 

sign language (Sharma, Gupta, and Kumar, 2021). The difference between ISLR 

and CSLR is that the first uses a single image to represent specific hand shapes 

and poses, while the second uses a sequence of images to represent a moving 

gesture (Aloysius and Geetha, 2020). CSLR is also known as dynamic gesture 

recognition (Abdalla and Hemayed, 2013). There are several methods for 

solving CSLR recognition problems, and most of the methods fall into two 

stages (Liao et al., 2019). First, explore algorithms for computing hand and 

gesture movement trajectories. Second, the implementation of each sign 

language picture sequence. 
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The deaf population in Malaysia primarily uses Malaysian Sign Language 

(MSL), which is also known as Bahasa Isyarat Malaysia (BIM), as their main 

form of communication. The establishment of the Malaysian Federation of the 

Deaf (MFD) in 1998 marked the starting point of Malaysian Sign Language 

(MSL), which has gained significant popularity within deaf organizations (Hafit 

et al., 2019). Malaysian Sign Language (MSL) originates from American Sign 

Language (ASL) (Qodri, Rini Akmeliawati, and Mohammed, 2012). As MSL 

originated from ASL, numerous local signs from ASL have been added to the 

MSL, and MSL currently has roughly 75% similarity with ASL (SIL 

International, 2022). There is no global sign language; hence, different sign 

languages are used in different countries or areas. 
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1.2 Problem Statement 

Most deep learning models that use images or video data take a longer time to 

process. On top of that, the noise of the background will lower the accuracy of 

sign language recognition. The goal of all sign language recognition researchers 

is to develop a real-time system that accurately translates sign language into 

words, enabling the deaf-mute community to connect with the hearing 

community. The real-time sign language recognition model needs to respond 

quickly, so computation time as well as the accuracy of the real-time sign 

language recognition model are important. 

 

Features extracted from the video can be a drawback. Extracting unwanted 

features during the training process decreases accuracy and increases 

computation time (Rahman et al., 2020). Key points built from the MediaPipe 

holistic model will include face, pose, and hand key points (Indriani, Harris, and 

Agoes, 2021). MediaPipe holistic model can create a complete landmark for the 

human body and enables analysis tasks to cover full-body gestures, poses, and 

actions. It is crucial to consider how the face and pose features in the dataset 

impact the computation time and accuracy. 

 

Currently, Long Short-Term Memory (LSTM) is widely used in sign language. 

Unfortunately, LSTM networks struggle to capture complex temporal 

dependencies inherent in sign language gestures, resulting in poor performance, 

especially when capturing bidirectional contexts (Telmo Adão et al., 2023). The 

LSTM model should be replaced. 
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Deep learning models have been formed by many layers of neurons; the layers 

of neurons have also been known as neural networks. The number of layers is 

selective; a high number of layers will increase the model complexity and enable 

the ability to learn more information from the dataset, but at the same time, the 

computation time will increase. Increasing the number of layers in a deep 

learning model can make the neural network more complex and difficult to train 

(Dumitru Erhan et al., 2009). A too-high number of layers will lead the deep 

learning model to be overfitted; if overfitting happens, the model accuracy will 

drop, and the computation time will increase as much unwanted information has 

been learned by the model in the training stage. Therefore, it is crucial to 

determine the number of layers that can maintain high accuracy and low 

computation time. 

 

It was found that there is a lack of video-based Malaysian Sign Language (MSL) 

datasets in Malaysia. The exploitation of real-time continuous Malaysian Sign 

Language (MSL) recognition models is also crucial for the development of 

Malaysian Sign Language (MSL). Although MSL real-time recognition systems 

are available on the market, the algorithms for real-time recognition systems are 

not open source. For real-time recognition models, high accuracy, and low 

computation time for detecting the correct sign language are very important. 

Therefore, it is crucial to develop an open-source MSL real-time recognition 

model that can be the basis for researchers in MSL real-time recognition systems. 
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1.3 Objectives of Research 

The main research objective for this project is: 

• To create a fast and high-accuracy real-time Malaysian sign language 

recognition model. 

The subsequent research objective for this project is: 

• To convert the video-based dataset to 3D skeleton key points and exclude 

background information. 

• To compare the performance of LSTM networks and Bidirectional Long 

Short-Term Memory (BiLSTM). 

• To compare the performance of hands, posture, and facial key points with 

solely hand key points. 

• To evaluate the effectiveness of deep learning models with varying 

numbers of layers. 

• To create a dataset of Malaysian sign language videos. 
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1.4. Significance of Study 

This study is crucial because it will enhance the understanding of sign language 

recognition while also improving accessibility and communication for the deaf 

community and promoting assistive technology research. This study is 

significant in various ways: 

1. Bridging the communication gap. By developing a real-time recognition 

model of Malaysian Sign Language (MSL), this study contributes to 

bridging the communication gap between the deaf and normal 

communities in Malaysia. Accessible communication tools are essential 

to promote understanding between different linguistic groups. 

2. Create the MSL10 dataset. The MSL10 dataset addresses the lack of an 

open-source MSL video dataset. This dataset can provide a foundation 

for developers and researchers working on real-time MSL recognition. 

3. Cross-language transferability. The presence of the LSA64 dataset in this 

study proves that the proposed model applies not only to MSL but also 

to Argentinian Sign Language, which helps the cross-lingual 

transferability of the sign language recognition model. The real-time 

recognition model enhances its applicability to other national sign 

languages and shows its potential for multilingual understanding. 

4. Deep learning model evaluation. By evaluating the performance of 

various deep learning designs such as LSTM and BiLSTM models, this 

study can provide insights into how well the models match the dataset so 

that the optimal models can be selected for forming real-time recognition 

algorithms for the MSL10 dataset. 
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5. Optimizing the number of layers in the model. The performance of the 

model can be optimized by comparing the number of layers in the 

BiLSTM model. Finding the right balance between computation time 

and accuracy is crucial for building real-time recognition models. 

6. Focus on hand key points only. Selecting only hand key points highlights 

the importance of hand key points, whereas pose and face key points the 

excessive information, which will increase computation time and 

decrease accuracy. The selection of hand key points highlights the 

importance of feature selection in sign language recognition. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Evolution of Sign Language Recognition (SLR) 

Sign language recognition can be implemented with one or both hands, and the 

method can be classified into two main groups: feature-based systems and deep 

learning systems (Alsharif et al., 2023). 

 

Tsakanikas and Dagiuklas (2018) define feature-based systems as those that 

extract specific features from input data, such as images or videos. In feature-

based systems, local features are implemented into a multilayered model that 

incorporates face identification, preprocessing, feature extraction, dimension 

reduction, and classification, as shown in Figure 2.1.1 (Nguyen, 2014). 

 

Figure 2.1.1: Architecture for recognizing faces based on local 

features  (Nguyen, 2014) 
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Nguyen (2014) demonstrated the entire feature-based system process using a 

face detection framework as a starting point. The image is initially taken by a 

camera, and the algorithm will have to recognize the presence or absence of a 

face. Then, the image is cropped according to the eye coordinates to find the 

face to reduce the unwanted information and obtain a good frontal face image. 

The next stage is image normalization, where the cropped images will be 

processed using a preprocessing technique to eliminate light intensity. The 

feature extraction method is applied to the images to extract the most important 

features for classification. The dimension reduction task is carried out by 

Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD). 

The final stage is the classification process, which uses Support Vector 

Machines (SVM) and K-nearest neighbor (k-NN).  

 

Other than feature-based systems that focus on face detection, hand-detection 

feature-based systems have also been highly used in sign language recognition. 

Chen, Fu, and Huang (2003) implemented a hand gesture recognition system to 

recognize continuous gestures. As mentioned by Chen, Fu, and Huang (2003), 

the first stage in building a gesture recognition system is to extract the hand 

region and track the moving hand. Then spatial and temporal features are 

characterized and combined into feature vectors. Lastly, hidden Markov models 

(HHMs) are applied to recognize the feature vectors based on different scores. 
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The assessment of hand-shaped features serves as the foundation for certain 

related research. Kim et al. (2017) used deep neural networks to solve the Arabic 

finger spelling recognition problem based on hand form characteristics. 

Nevertheless, as handshape rather than hand movements are considered for deep 

neural networks, the system is still restricted to simple action gestures. 

Furthermore, there is always a calculation delay when photos or videos are used 

as model inputs.  

 

Ge et al. first proposed the Hand PointNet method for feature extraction by 

transforming data types in 2018. The method estimates hand pose by directly 

analyzing 3D point cloud data representing the visible surface of the hand. 

Including the fingertip refinement network, the method outperforms existing 

methods. Ge et al. (2018) illustrated how the method can accurately predict the 

3D shape and position of the entire hand based on a single RGB image in Figure 

2.1.2. 

 

 

Figure 2.1.2: Overview of the Hand PointNet-based technique for estimating 

3D hand poses in single-depth pictures (Ge et al., 2018) 
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MediaPipe is a library invented by Google. It is a tool that creates 3D skeleton 

videos by extracting critical points in 3 dimensions from the face, pose, and hand. 

The difference between PointNet and MediaPipe is that PointNet is designed 

especially for processing point cloud data (A. Garcia-Garcia et al., 2016), 

whereas MediaPipe is a tool to handle 3D data in a large framework of computer 

vision tasks (Bora et al., 2023). Researchers have changed their focus to 

employing MediaPipe since MediaPipe was introduced. 

 

Other than MediaPipe Holistic, other libraries have been used for sign language 

recognition. Kavana et al. (2022) adopted the hand landmark model and a palm 

detector model from the MediaPipe hands library for sign language recognition. 

Although there are other libraries for sign language recognition, MediaPipe is 

still the most popular library for sign language recognition. 

 

There are a few studies that employ MediaPipe Holistic for feature extraction. 

Marais et al. (2022) compared a few feature extraction methods and concluded 

that the model that uses MediaPipe Holistic to extract hand key points has higher 

computational efficiency. Other than that, Selvaraj et al. (2021) used the 75 key 

points in MediaPipe holistic pose extraction for pose estimation, further proving 

that MediaPipe is highly used for different functions. 
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A study was conducted to compare MediaPipe holistic models with and without 

facial key points (Samaan et al., 2022). Without facial key points, the model can 

achieve higher accuracy in dynamic sign language recognition. 

 

Other than PointNet, MediaPipe has also frequently been compared because they 

are famous for computer vision for human posture estimation. OpenPose is 

famous for multi-person human pose estimation. Figure 2.1.3 shows the 

OpenPose 25 key points, and the multi-person pose estimation with OpenPose.  

 

 

Figure 2.1.3: The left picture shows the OpenPose 25 key points, and the right 

picture shows multi-person pose estimation with OpenPose (Namburi & 

Hengsanankun, 2022). 
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There are a few comparison studies conducted between MediaPipe and 

OpenPose, including one comparing the MediaPipe overall pose estimation 

framework to the OpenPose single network whole body posture estimation by 

Amit Moryossef et al. (2021). Other than that, Necati Cihan Camgoz et al. (2020) 

presented the SLR transformer in the OpenPose model and the MediaPipe 

system with a two-layer BiLSTM system. The results of the study show that the 

accuracy attained by combining MediaPipe and BiLSTM is higher than that of 

OpenPose and SLR. According to Lin, Jiao, and Zhao (2023), OpenPose fails to 

recognize 3D human posture data. Its robustness is poor, and the demands for 

computer graphics card hardware are costly as well. Therefore, in this study, 

MediaPipe is used for the key point construction. From many MediaPipe 

libraries, MediaPipe holistic is selected because of the high number of key points 

that can be collected from the model. 
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2.2  Deep Learning Models 

The early stage of deep learning began with McCulloch and Pitts (1943), who 

studied the logic underpinning neural activity and the complex interactions 

between brain events and logical propositions.  

 

2.2.1 Deep Neural Network (DNN) and Convolutional Neural Network 

(CNN) 

A Deep Neural Network (DNN) uses feature learning to map input features and 

outputs, and the mapping process occurs within multiple connected layers. Each 

layer contains multiple interconnected neutrons to learn the relationship between 

inputs and outputs. Figure 2.2.1.1 shows the DNN with a single computational 

neuron. 

 

 

Figure 2.2.1.1: Deep Neural Network (DNN) with a single computational 

neuron (Georgevici and Terblanche, 2019). 
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After the development of DNN, the Convolutional Neural Network (CNN) was 

created as an obvious choice for picture recognition. It is a multi-layer network 

trained with gradient descent to learn complicated, high-dimensional, non-linear 

mappings from vast collections of samples (Lecun et al., 1998). CNNs have 

demonstrated exceptional performance in picture segmentation, classification, 

detection, and retrieval-related tasks, making them one of the best learning 

algorithms for comprehending image content (Cireşan et al., 2012; Liu, Deng, 

and Yang, 2018). Figure 2.2.1.2 shows the structure of the CNN proposed by 

Muhammad Mizanur Rahaman et al. (2019). 

 

 

Figure 2.2.1.2: Convolution Neural Network (Muhammad Mizanur Rahaman 

et al., 2019) 
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2.2.2 Long Short-Term Memory (LSTM) and Bidirectional Long Short-

Term Memory (Bi-LSTM) 

Standard neural networks are limited because they assume that training and test 

examples are independent of one another, and the examples are vectors with a 

fixed length (Lipton, Berkowitz, and Elkan, 2015). To handle sequential data, 

Recurrent Neural Networks (RNN) are built upon recent and historical data, and 

in this way, RNN can handle sequential data hierarchically (Avraam Tsantekidis, 

Nikolaos Passalis, and Anastasios Tefas, 2022). In long-term dependencies, 

RNNs are vulnerable to the vanishing gradient problem (VGP), which stops the 

network from learning and results in low prediction accuracy (Eshraghian et al., 

2023). However, this weakness poses no issues for RNN as it can be easily 

solved using gated recurrent units (GRU) and long short-term memory (LSTM) 

(Safwan Mahmood Al-Selwi et al., 2023). 

After Hochreiter and Schmidhuber (1997) showed how recurrent network 

algorithms learning superiority over Long Short-Term Memory (LSTM) was 

invented, RNNs' efficacy grew considerably. Extensions to LSTM-style 

algorithms include bidirectional LSTM, hierarchical LSTM, and hierarchical 

attention GRU (Huang et al., 2018). Many sequence modeling tasks, including 

language translation, time-series forecasting, and speech recognition, have seen 

the successful application of LSTMs. Because LSTM networks can learn long-

term dependencies, they have been explored and applied to the classification of 

sign language data. Research was conducted to translate Indian Sign Language's 

static and dynamic signals into speech (Abraham, Nayak and Iqbal, 2019). 

LSTM models require less computational time compared to CNN models.  



17 
 

The axis-independent architecture of the LSTM model is recognized as AI-

LSTM. According to Al Amin Hosain et al. (2019), training AI-LSTM took an 

average of 25 minutes, and training spatial AI-LSTM took an average of 30 

minutes, whereas training 3DCNN and Max3DCNN models required over 20 

hours per model. Although LSTM is faster than CNN models, the computation 

time of LSTM models is also considered to be too slow for large amounts of 

data. The great gain in recognition accuracy provided by LSTM comes at the 

cost of increased computational complexity when the size of the model increases 

(Gers and Schmidhuber, 2000). 

 

The BiLSTM network not only uses LSTM to cope with long-term dependencies 

but also utilizes future information by architecturally incorporating two forward 

and backward LSTM layers (Peng et al., 2021). Abduljabbar, Dia, and Tsai 

(2021) also mentioned that BiLSTM trains the input data in both forward and 

backward directions. Inspired by the "coarse-to-fine" technique and predictive 

coding theory, Ling, Zhong, and Li (2022) suggest a multi-scale prediction 

model for video prediction. By fusing top-down and bottom-up information 

flows, the model seeks to increase prediction ability while reducing reliance on 

input data. The BiLSTM design comprises an encoder-decoder network. Smaller 

BiLSTM hidden states are used to avoid computational overhead and prediction 

difficulty. Adversarial training is a component of the training strategy that 

addresses the instability of long-term predictions and sharpens the generated 

images. 
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Researchers have extensively used 2-layer BiLSTM models and 3-layer 

BiLSTM models in sign language recognition. A two-layer Bidirectional LSTM 

(BiLSTM) network enhances pre-trained networks by tracking temporal 

dependencies, thus improving the accuracy of the system used (Jella Sandhya 

and KANCHARLA ANITHASHEELA, 2024). Li et al. (2020) propose a three-

layer BiLSTM in their study to search for key actions of their sign language 

recognition. Researchers often discuss the number of layers appropriate for deep 

learning models. Increasing the number of hidden layers can enhance training 

set accuracy; however, additional layers are expected to cause overfitting 

problems (Li et al., 2020).  

 

In summary, previous studies have involved experiments to reduce facial 

expressions in the overall MediaPipe key points but have not involved 

experiments to reduce facial and postural key points in the overall MediaPipe 

landmarks. The results of the previous study suggest that facial key points are 

not necessary for sign language recognition. In addition to this, no study 

provides a step-by-step approach to model a real-time recognition model for 

Malaysian sign language. Based on what has not been covered in previous 

studies, this study will experiment with using only hands key points to reduce 

unnecessary features and computation time. Due to the lack of video based MSL 

datasets and to create a real-time recognition model, the MSL dataset must be 

created first. MediaPipe will be used as a tool to convert the video dataset to 3D 

skeletal coordinates to reduce background noise and retain only 3D key points. 

The performance of the LSTM model can be further improved by the BiLSTM 
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model. Since the BiLSTM model has 2 and 3 layers, the performance of both 

models will be evaluated with a different number of layers. Finally, the best 

model will be selected based on the results of this study to form a real-time 

recognition model. 
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CHAPTER 3 

METHODOLOGY 

3.1 Dataset Introduction 

Due to the lack of a Malaysian Sign Language (MSL) video dataset, the MSL10 

dataset was recorded to study Malaysian Sign Language (MSL). The dataset 

focused on ten words selected from the Malaysian Sign Language dictionary. 

These words include familiar ones such as "Beli" (to buy), "Benar" (correct), 

"Kenyang" (full), "Maaf" (sorry), "Makan" (to eat), "Mana" (where), "Minum" 

(to drink), "Salah" (wrong), "Tandas" (bathroom), and "Tidur" (to sleep). 

 

Each word chosen from the MSL is associated with a specific action. These signs 

are learned from instructional videos on YouTube, as the MSL books are not 

cost-free. The dataset consists of 1000 videos in total, with each word repeated 

100 times. In the 100 times recording for each word, 50 signs will be recorded 

using the left hand, while 50 times will be recorded using the right hand to make 

sure that when changing hands, the sign can still be detected. Throughout the 

whole recording, only one signer is included in this dataset. A few screenshots 

illustrating how MSL will be presented are shown in Figures 3.1.1, 3.1.2, 3.1.3, 

and 3.1.4. 
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Figure 3.1.1: MSL10 dataset “Benar” 

 

Figure 3.1.2: MSL10 dataset “Maaf” 

 

Figure 3.1.3: MSL10 dataset “Kenyang” 
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Figure 3.1.4: MSL10 dataset “Makan” 

 

The MSL10 dataset is a valuable resource for researchers performing sign 

language recognition in deep learning training by providing a set of MSL video 

datasets. In addition, the creation of the MSL10 dataset pushes the pace of 

research to allow researchers to improve their findings on Malaysian sign 

language interpreting technology and ultimately create a complete real-time sign 

language recognition model that will bridge the communication gap between the 

deaf and normal communities in Malaysia. 

 

Since the MSL10 dataset is self-created data and is small, the LSA64 dataset 

will be used to represent the large volume of data with multiple signers. The 

LSA64 dataset contains a wider range of Argentine sign languages which 

consists of 64 different words. The dataset is open-source data that contains a 

total of 3200 videos. The LSA64 dataset can be downloaded from 

https://facundoq.github.io/datasets/lsa64/. 
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The LSA64 dataset is unique in inviting non-experts in sign language. 

Specifically, 10 non-experts participated in the creation of the dataset, each 

repeating 64 different sign language words five times. Each video in the LSA64 

dataset captures a specific gesture to facilitate the training of deep learning 

models. Compared with the MSL10 dataset, this dataset provides a higher 

number of types of sign language, enabling the study to handle a larger amount 

of data and study more complex information in the dataset. Figure 3.1.5 shows 

the cropped image from LSA64 videos. 

 

Figure 3.1.5: The cropped images from LSA64 videos 
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3.2    3D Skeleton Video Creation with MediaPipe 

MediaPipe holistic is a model that consists of hand landmarks, pose landmarks, 

and face landmarks that give estimations of posture, hand movements, and facial 

expressions (Naz et al., 2023). Figure 3.2.1 shows an overview of MediaPipe 

holistic, Figure 3.2.2 shows the 21 crucial points plotted with MediaPipe for 

every hand, Figure 3.2.3 shows the 33 crucial points plotted with MediaPipe for 

pose estimation, and Figure 3.2.4 shows the 468 crucial points plotted with 

MediaPipe for facial regions. 

 

 

Figure 3.2.1: Overview of MediaPipe Holistic (Subramanian et al., 2022). 
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Figure 3.2.2： MediaPipe hands key points label (Zhang et al., 2020) 

 

Figure 3.2.3: MediaPipe poses key points label (Bazarevsky et al., 2020) 
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Figure 3.2.4： MediaPipe facial key points label (Yury Kartynnik et al., 2019). 

 

MediaPipe can comprehend gestures and tracking actions like hand movements 

from the hand’s key points. To precisely locate and orient important anatomical 

landmarks on the human body, pose estimation is a necessity. At the same time, 

facial key points will also be identified and tracked by MediaPipe, allowing for 

the analysis of facial expressions and the recognition of emotions. 

 

Before the recording of the MSL10 dataset, MediaPipe settings were done to 

plot the key points of the MSL10 dataset while presenting the 1000 sign 

languages. MediaPipe can recognize and monitor 21 different points on each 

hand, 33 critical points for posture estimation, and 468 facial key points 

(Lugaresi et al., 2019). 
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One of the goals is to compare the performance of the hand, pose, and face key 

points versus the hand key points alone. MediaPipe will create the first set of 

key points for the MSL10 dataset, consisting of a combination of hand, pose, 

and face key points. Following the creation of the first set of data, hand-key 

points will be extracted solely from the first set of key points, creating the second 

set of data for the MSL10 dataset. 

 

The calculation of the total number of key points per frame for all features: 

(Hand key points × Three dimensions × No. of hands) + (pose key points × 

Three dimensions + Visibility) + (Face key points × Three dimensions) 

= (21×3×2) + (33 × (3+1)) + (468 ×3) 

= 126 + 132 + 1404 

= 1662 key points. 

 

The calculation of the total number of key points per frame for hands features: 

(Hand key points, three dimensions, number of hands) 

= (21×3×2) 

= 126 key points. 
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OpenCV (Open-Source Computer Vision Library) is useful for a variety of 

image processing and applications related to computer vision (Mohamad et al., 

2015). OpenCV was designed for computational efficiency, with a focus on real-

time applications (Kwon and Kim, 2022). 

 

It has been discovered that MediaPipe and OpenCV can work 

together. According to Almufti and Adnan Mohsin Abdulazeez (2024), 

OpenCV is used to process live video data for gesture recognition, whereas 

MediaPipe can be used for precise hand tracking from live video streams, 

followed by feature extraction and data serialization. 

 

OpenCV is used together with MediaPipe to capture the key points of the 3D 

skeleton videos, and the MSL10 dataset was captured in an indoor setting with 

controlled lighting. One second was split into thirty frames for each 3D skeleton 

movie that was recorded. Every segment of sign language in every video had the 

same number of frames. For the MSL10 dataset, two sets of data have been 

formed with the 3D shape of (1000, 30, 1662) and (1000, 30, 126) as shown in 

Figure 3.2.5. 
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Figure 3.2.5: Shape of MSL10 dataset 

 

Since the LSA64 dataset consists of pre-recorded videos, the method used by 

MSL10 does not apply to the LSA64 dataset. Therefore, a loop is created to open 

each video in the LSA64 dataset and then uses MediaPipe to extract 30 frames 

of key points from each video and arrange them into appropriate shapes. The 

key points plotted in the LSA64 dataset are complete features that include a 

combination of hand, pose, and face key points. Same with the MSL10 dataset, 

another set of only hand key points will be extracted from the LSA64 full-

featured data to form two sets of data with the shapes (3200, 30, 1662) and (3200, 

30, 126), respectively, as shown in Figure 3.2.6. 
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Figure 3.2.6: Shape of LSA64 dataset 
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3.3    Data Preprocessing 

After forming two different sets of data with different characteristics from each 

of the two datasets, the next step is to categorize all the data using words. In the 

previous step, the formation of the dataset followed the sequence of each word 

while collecting the data. For example, if the first word in the MSL10 dataset is 

"Beli," followed by "Benar,” then all the 3D skeleton datasets of "Benar" will 

be sequenced after the entire "Beli" dataset. This arrangement further simplifies 

the labeling of the datasets. For supervised training, each piece of data will be 

labeled with the corresponding sign language word. The MSL10 dataset has ten 

different labels, whereas the LSA64 dataset has 64. 

 

Data splitting will be carried out for each dataset after labeling.  In each dataset, 

75% of the data will be split into a training set and 25% of the data will be split 

into a testing set. 
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3.4    RNN models 

Once the data has been split, the next step is to train the training set with a deep-

learning Recurrent Neural Network (RNN) model. RNNs are a form of Artificial 

Neural Network (ANN) that are created for handling sequential and time-series 

data. RNNs are well-known for having feedback linkages in the networks 

(Chung et al., 2015). 

  

RNNs outperform non-recurrent models in continuous gesture recognition 

because they can learn the hierarchy of actions and foresee the start and end of 

actions (Pigou et al., 2016). Figure 3.4.1 displays the construction of the normal 

Recurrent Neural Network (RNN) and the unfolded RNN presented by Feng et 

al. (2017). 

  

 

Figure 3.4.1: Standard Recurrent Neural Network (RNN) and unfolded 

RNN (Feng et al., 2017) 
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Because RNN has to foresee the next word of a sentence by remembering the 

previous word, it has to consider the output of the previous step as input to the 

current step. 

 

TensorFlow was published by Google in November 2015. It acts as an open-

source deep learning software library that allows developers to define, train, and 

deploy machine learning models (Goldsborough, 2016). MediaPipe can also 

work with TensorFlow. According to Sundar and Bagyammal (2022), 

MediaPipe collects hand key points while TensorFlow trains and detects the 

machine learning algorithm. Therefore, TensorFlow is used in this study to build 

the three RNN models. 

 

In this study, three RNN-related models are used to deal with the sign language 

recognition task, namely the Long Short-Term Memory (LSTM) model, the 2-

layer Bidirectional Long Short-Term Memory (BiLSTM) model, and the 3-layer 

BiLSTM model. These RNN models usually capture the temporal dependencies 

in the data. The LSTM model can solve the gradient vanishing problem, which 

is a possible problem when training traditional RNNs. Figure 3.4.2 shows the 

structure of the LSTM model. 
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Figure 3.4.2: Long Short-Term Memory (Le et al., 2019) 

 

An LSTM network consists of blocks of storage called cells, and cell states and 

hidden states are transferred to the next cell. Data can be added or removed from 

the cell state through sigmoid gates. A gate is analogous to a layer containing 

different weights. 

 

The first step in practicing LSTM is to decide what information to forget from 

the previous memory cell. The input to the gate of forgetting (𝑓𝑡) comes from 

the output of the previous LSTM cell (ℎ𝑡−1) and the current input (𝑋𝑡). The 
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forgetting gate (𝑓𝑡) decides which parts of the old storage cell (𝐶𝑡−1) should be 

forgotten and takes a value ranging from 0 to 1.  

𝑓𝑡 =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓               (1) 

In equation (1), 𝜎 represents the sigmoid function, 𝑊𝑓 the weight matrix and 𝑏𝑓 

the bias of the forget gate. 

  

The LSTM stores and refreshes the storage cell with new information as needed. 

The sigmoid layer determines whether the cell should be updated with the new 

information. The tanh layer assigns weights to new data to judge its relevance. 

The updated information is coupled with the old-stored cell (𝐶𝑡−1) to calculate 

the new cell state (𝐶𝑡).  

𝑖𝑡 =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)                        (2) 

𝑁𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛)               (3) 

𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑁𝑡𝑖𝑡                                      (4) 

𝐶𝑡 represents the cell state at time 𝑡, while 𝐶𝑡−1 represents the cell state at 

time 𝑡 − 1. 𝑊 is the weight matrix, while 𝑏 is the cell state bias. 

 

The LSTM creates an output value (ℎ𝑡) based on the updated cell state (𝐶𝑡), but 

filtered. The final output value (ℎ𝑡) is calculated by multiplying the output gate 

(𝑂𝑡)  by the tanh layer value applied to the cell state. 
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𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜                               (5) 

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝐶𝑡)                                      (6) 

𝑊𝑜 is the weight matrix and 𝑏𝑜 is the bias for the output gate. 

 

The BiLSTM model is formed by combining LSTM model and bi-directional 

RNN model (Ameur, Ben Khalifa, and Salim Bouhlel, 2020). The BiLSTM 

model is designed to handle both forward and backward information. Figure 

3.4.5 demonstrates the structure of the two-layer BiLSTM. 

 

Figure 3.4.5: 2-layer Bidirectional Long Short-Term Memory (Li et al., 2020). 
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The input sequences of the LSTMs are processed from time steps 𝑡 = 1 to 𝑡 =

𝑛 . In each time step, the LSTM layer generates a hidden state → ℎ𝑡 . The 

backward LSTM layer output sequence (← ℎ𝑡) is produced by processing the 

input sequences in the reverse order. The combination of → ℎ  and ← ℎ  is 

realized by a sigmoid function (𝜎) to form the final output vector 𝑦𝑡. 𝑦𝑡 contains 

information from the forward and reverse contexts as the final output of the 

BiLSTM layer. 

Tables 3.4.1, 3.4.2, and 3.4.3 list the structural models of the three RNN models. 

Table 3.4.1：Structure of LSTM (3 layers)  

Layer (type) Output Shape 

lstm (LSTM) (None, 30, 64) 

lstm_1 (LSTM) (None, 30, 128) 

lstm_2 (LSTM) (None, 64) 

dense (Dense) (None, 64) 

dense_1 (Dense) (None, 32) 

dense_2 (Dense) (None, 10) 

 

Table 3.4.2：Structure of BiLSTM (2 layers)  

Layer (type) Output Shape 

bidirectional (Bidirectional) (None, 30, 128) 

bidirectional_1 (Bidirectional) (None, 128) 

dense (Dense) (None, 32) 

dense_1 (Dense) (None, 10) 
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Each of the RNN models comprises a consistent number of dense layers in its 

structure. "Relu'' is selected as the activation of the model in a neural network's 

hidden layers to introduce nonlinearity. Rectified Linear Unit (ReLU) is a non-

linear activation function used in deep neural networks (Dureja and Pahwa, 

2018). Nonlinearity is introduced through ReLU in the neural network's hidden 

layers (SCI, 2020). 

 

To estimate the class of an input image, the model's activation in the final layer 

of a neural network is set to "Softmax". Softmax returns the output in 

probabilities (Rahman and Aris Rakhmadi, 2023) and it is frequently used in the 

final layer to determine the output class of the data (Agarap, 2019). 

 

 

Table 3.4.3： Structure of BiLSTM (3 layers) 

Layer (type) Output Shape 

bidirectional (Bidirectional) (None, 30, 512) 

bidirectional_1 (Bidirectional) (None, 30, 1024) 

bidirectional_2 (Bidirectional) (None, 512) 

dense (Dense) (None, 64) 

dense_1 (Dense) (None, 32) 

dense_2 (Dense) (None, 10) 
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The Adaptive Moment Estimation can minimize the loss function during the 

model's training (Dhandapani, Vikranth Lokeshwar, and Jain, 2024). Adaptive 

Moment Estimation which is also known as Adam is chosen as the optimizer in 

this study. 
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3.5    Model Evaluation Metrics 

The model's performance is evaluated with computation time and accuracy. 

Accuracy can be defined in terms of the number of correct classifications over 

the total number of classifications attempted while the computation time is the 

time required to complete the RNN model training and test set fitting process. 

 

The formula for defining accuracy and computation time is given below:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑
                                                     (7) 

 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = RNN model fitting end time -RNN model fitting start time            (8)      

 

The performance and efficiency of deep learning models can be observed by 

evaluating their accuracy and computation time. The desired goal of this study 

is to obtain high accuracy with minimum computation time. 
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3.6 Flowchart of the proposed method 

To give a thorough overview of the suggested technique and all its steps, a full 

flowchart has been constructed and is presented in Figure 3.6.1.  

 

 

Figure 3.6.1:   Flowchart of the proposed method 

 

The first stage of the flowchart is 3D skeleton video formation using MediaPipe 

for the MSL10 dataset and LSA64 dataset. The potting of key points follows the 

holistic mode in MediaPipe, which contains face, pose, and hand key points 

(1662 key points). The second stage is hand-key points (126 key points) that will 

be formed from the holistic model as the second set of data. The third stage is 

the data splitting of the dataset. Each of the datasets is split into training and 

testing sets. The training set comprises 75% of the data, which is used to train 

the models, while the remaining 25% forms the testing set, which is utilized to 

evaluate model performance. In the fourth stage, the training data will be fitted 

into the RNN models (LSTM, 2-layer BiLSTM, and 3-layer BiLSTM). These 
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models are trained to learn patterns and relationships within the data. Lastly, 

after training the RNN models, their performance is evaluated in terms of 

accuracy and computational time. 

 

This flowchart shows the complete process, from data formation to model 

evaluation, giving an easy understanding of the stages involved in the proposed 

technique. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Results 

Table 4.1.1 shows the accuracy and computation time performance of the 3D 

skeleton videos on the RNN models for the MSL10 and LSA64 datasets.
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Table 4.1.1: Overall Accuracy and Computation Time Performance of the 3D Skeleton Video on RNN Models of the MSL10 dataset and 

LSA64 dataset 

 
 MSL10 LSA64 

  LSTM 2-layer BiLSTM 3-layer BiLSTM LSTM 2-layer BiLSTM 3-layer BiLSTM 

1662 key points Accuracy (%): 88.80 96.40 92.40 0.50 76.375 0.75 

Computation Time (s): 192.66 604.32 3945.66 1264.42 1224.65 11022.28 

126 key points Accuracy (%): 96.40 97.60 98.00 79.875 86.875 81.875 

Computation Time (s): 94.88 79.79 2948.88 317.95 255.23 9629.44 
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To improve the accuracy of the data, it is recommended to conduct five repeats 

for each combination to get a total of five sets of data for a single combination. 

The accuracy and computation time will vary due to the random splitting of the 

data. The repeats of 12 combinations in 12 tables are shown below. 

 

Table 4.1.2: The Average of Accuracy and Computation Time Performance 

of the MSL10 dataset with 1662 key points and LSTM model 

 
MSL10, 1662 key points, LSTM 

No. Accuracy (%) Computation Time (s) 

1. 88.80 192.66 

2. 59.20 217.50 

3. 78.00 211.54 

4. 82.00 241.18 

5. 94.40 253.94 

Average: 80.48 223.364 
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Table 4.1.3: The Average Accuracy and Computation Time Performance of 

the MSL10 dataset with 1662 key points and 2-layer BiLSTM model 

 
MSL10, 1662 key points, 2-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 96.4 604.32 

2. 97.6 269.33 

3. 96.4 310.86 

4. 96.8 384.07 

5. 96.8 344.84 

Average: 96.8 382.684 

 

Table 4.1.4: The Average Accuracy and Computation Time Performance of 

the MSL10 dataset with 1662 key points and 3-layer BiLSTM model 

 
MSL10, 1662 key points, 3-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 92.4 3945.66 

2. 87.2 3883.93 

3. 91.2 3611.82 

4. 88.4 4041.65 

5. 84 4173.34 

Average: 88.64 3931.28 
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Table 4.1.5: The Average Accuracy and Computation Time Performance 

of the MSL10 dataset with 126 key points and LSTM model 

 
MSL10, 126 key points, LSTM 

No. Accuracy (%) Computation Time (s) 

1. 96.4 94.88 

2. 96 104.48 

3. 93.6 116.55 

4. 96.4 140.32 

5. 84.8 132.75 

Average: 93.08 117.8 

 

Table 4.1.6: The Average Accuracy and Computation Time Performance of 

the MSL10 dataset with 126 key points and 2-layer BiLSTM model 

 
MSL10, 126 key points, 2-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 97.6 79.79 

2. 97.6 87.74 

3. 97.2 84.91 

4. 96.4 79.99 

5. 97.2 84.09 

Average: 97.2 83.3 
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Table 4.1.8: The Average Accuracy and Computation Time Performance of 

the LSA64 dataset with 1662 key points and LSTM model 

 
LSA64, 1662 key points, LSTM 

No. Accuracy (%) Computation Time (s) 

1. 0.50 1264.41 

2. 52.5 667.06 

3. 0.50 735.58 

4. 0.75 792.79 

5. 1.375 725.01 

Average: 11.125 836.97 

 

Table 4.1.7: The Average Accuracy and Computation Time Performance of 

the MSL10 dataset with 126 key points and 3-layer BiLSTM model 

 
MSL10, 126 key points, 3-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 98 2948.88 

2. 97.2 2790.65 

3. 98 3498.97 

4. 94.8 3470.63 

5. 98 3611.51 

Average: 97.2 3264.128 
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Table 4.1.9: The Average Accuracy and Computation Time Performance 

of the LSA64 dataset with 1662 key points and 2-layer BiLSTM model 

 
LSA64, 1662 key points, 2-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 76.375 1224.65 

2. 70.625 957.02 

3. 78.5 845.11 

4. 75.875 1094.49 

5. 76.875 1135.60 

Average: 75.65 1051.374 

 

Table 4.1.10: The Average Accuracy and Computation Time Performance 

of the LSA64 dataset with 1662 key points and 3-layer BiLSTM model 

 
LSA64, 1662 key points, 3-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 0.75 11022.28 

2. 0.75 10451.67 

3. 0.625 10426.82 

4. 0.5 10427.46 

5. 0.625 12703.33 

Average: 0.65 11006.312 
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Table 4.1.11: The Average Accuracy and Computation Time Performance 

of the LSA64 dataset with 126 key points and LSTM model 

 
LSA64, 126 key points, LSTM 

No. Accuracy (%) Computation Time (s) 

1. 79.875 317.95 

2. 79.125 413.32 

3. 0.75 341.44 

4. 81.625 278.72 

5. 78 353.38 

Average: 63.875 340.962 

 

Table 4.1.12: The Average Accuracy and Computation Time Performance of 

the LSA64 dataset with 126 key points and 2-layer BiLSTM model 

 
LSA64, 126 key points, 2-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 86.875 255.23 

2. 85.625 229.07 

3. 87.5 290.62 

4. 84.875 286.45 

5. 86.125 293.56 

Average: 86.2 270.986 
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Table 4.1.13: The Average Accuracy and Computation Time Performance 

of the LSA64 dataset with 126 key points and 3-layer BiLSTM model 

 
LSA64, 126 key points, 3-layer BiLSTM 

No. Accuracy (%) Computation Time (s) 

1. 81.875 9629.44 

2. 81.5 8719.24 

3. 83 9591.64 

4. 79.625 10647.68 

5. 83 9177.39 

Average: 81.3 9481.078 

 

The average accuracy and computational time for five iterations of the 

experiment for every model displayed in Tables 4.1.2 through 4.1.13 were 

substituted into Table 4.1.14 to create the final table. 
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Table 4.1.14: Overall Average Accuracy and Computation Time Performance of 3D Skeleton Videos on RNN models with 5 repetitions on 

MSL10 dataset and LSA64 dataset 

 
 MSL10 LSA64 

  LSTM 2-layer BiLSTM 3-layer BiLSTM LSTM 2-layer BiLSTM 3-layer BiLSTM 

1662 key points Accuracy (%): 80.48 96.8 88.64 11.125 75.65 0.65 

Computation Time (s): 223.364 382.684 3931.28 836.97 1051.374 11006.312 

126 key points Accuracy (%): 93.08 97.2 97.2 63.875 86.2 81.8 

Computation Time (s): 117.8 83.3 3264.128 340.962 270.986 9481.078 
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4.2 Discussion 

From Table 4.1.14, by comparing the performance of LSTM and BiLSTM 

models, we can see that both 2-layer and 3-layer bi-directional LSTM (BiLSTM) 

models outperform the traditional LSTM model in terms of accuracy at different 

key points and on different datasets. Since BiLSTM can read data in both 

directions, BiLSTM models are better at understanding sequence relationships 

than LSTM models. It is worth noting that the accuracy of the LSTM model 

decreases when the dataset capacity increases from the MSL10 dataset to the 

LSA64 dataset. For the 1662 key points, the LSTM model tended to overfit when 

the capacity of the dataset was maximized in this experiment. From Table 4.1.8, 

out of the five replicated experiments, only one experiment did not show 

overfitting, and the accuracy remained low. The reason for the overfitting may 

be that the LSTM model is not capable of handling such a large amount of data. 

In terms of computation time, while the LSTM model performs better at 1662 

key points, the 2-tier BiLSTM model performs better at 126 key points. In this 

case, since 126 key points result in higher accuracy than 1662 key points, it can 

still be concluded that the performance of the 2-layer BiLSTM outperforms the 

LSTM model in terms of computation time. The reason for this situation could 

be that BiLSTM processes input sequences in both directions and therefore 

converges faster during training. 

 

From the results of Table 4.1.14, by comparing the performance of the 2-layer 

BiLSTM model and the 3-layer BiLSTM model, the 2-layer BiLSTM model has 

higher accuracy in the MSL10 and LSA64 datasets. This is because the 3-layer 

BiLSTM model suffers from an overfitting problem. The overfitting problem is 
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when the model captures a lot of noise or irrelevant information from the training 

data. The complex model formed from the training data cannot detect the test 

data well, resulting in low accuracy and long computation time. The 

computation time of the 2-layer BiLSTM model is also shorter compared to the 

3-layer BiLSTM. This is because the 2-layer BiLSTM is simpler as compared 

to 3-layer BiLSTM, so it takes less time to train the model. In addition to this, 

the computation time increases when the model is overfitted. 

 

Throughout the performance from Table 4.1.14, by comparing the 1662 key 

points to the 126 key points, accuracy improves as the number of key points 

decreases. This is because the reduced key points are not important or contain 

noise. Reducing the number of key points improves accuracy by eliminating 

sources that confuse the model. Reducing the number of key points from 1,662 

to 126 will also reduce the computation time of the model as the sample size 

decreases. With fewer key points, the model may become simpler and less likely 

to overfit. Simpler datasets may be easier for the model to learn the relationships 

and patterns in the data, thus reducing computation time. 
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CHAPTER 5 

CONCLUSION 

5.1    Summary of Research 

This research tackles the issue of the model's lengthy processing time while 

utilizing picture or video input, which arises from the deep learning model's 

excessive processing time. The MSL10 dataset was created due to the lack of 

open-source Malaysian sign language videos. To reduce the video dataset to a 

video featuring 3D skeleton key points and excluding background information, 

MediaPipe is used. The 3D skeletal video extracted with MediaPipe can 

precisely represent the semantic meaning of sentences and extract significant 

information, such as the key points of hands, poses, and faces. With the use of 

MediaPipe, the time used to convert the video can be reduced significantly.    

 

Throughout the studies, the BiLSTM model outperformed the LSTM model in 

terms of accuracy and computational time. The 2-layer BiLSTM model also 

consistently outperforms the 3-layer BiLSTM model in terms of accuracy and 

computation time. When all feature key points were compared to only hand key 

points, the accuracy increased while the computation time decreased.      
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In conclusion, a 2-layer BiLSTM model is recommended together with the 

MediaPipe model, which contains only the hand key points. This study 

demonstrates the correlation between the number of layers in the BiLSTM 

model and the performance of the model in terms of computation time and 

accuracy. This study also shows that hand-key points alone are sufficient for 

deep-learning models to recognize sign language.    

 

Using OpenCV and Python, a real-time recognition model has been developed. 

The MediaPipe library is used by the real-time recognition algorithm to identify 

hand landmarks on the webcam. The system constantly records webcam frames 

and uses MediaPipe's holistic model to process them to identify landmarks. After 

landmarks have been identified, key points are extracted and fed into a machine 

learning model that has already been trained for prediction. Predicting the sign 

being performed involves maintaining track of a series of important points over 

time and applying this sequence to prediction logic. The algorithm updates a 

sentence variable with the detected sign if the predicted sign exceeds a 

predetermined threshold, hence guaranteeing seamless transitions between signs 

in the recognized phrase. Lastly, the algorithm uses OpenCV to display the 

sentence and symbol that have been identified on the screen. With this 

configuration, real-time sign language recognition can be done straight from a 

camera stream, which opens a wide range of useful applications. 
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In conclusion, the 2-layer BiLSTM model, hand key point extraction, and 3D 

skeleton videos may all be used to achieve the fastest computation time without 

sacrificing the model's accuracy. The final approach combines the 2-layer 

BiLSTM deep learning model with MediaPipe 126 hands key points. Using the 

resulting technique, a real-time model for the MSL10 dataset has been 

developed. 
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5.2    Limitations and Recommendations 

Since Malaysian Sign Language (MSL) is not an open-source sign language, it 

is a difficult task to gather enough high-quality data on MSL, thus limiting the 

dataset's representativeness and variety. It will have an impact on how broadly 

the findings can be applied. Sign languages can differ between communities and 

between regions, and peculiarities of culture can influence how signs are 

understood and recognized.  

 

The technique of selecting important point features will be the focus of future 

studies in this study. The process of Recursive Feature Elimination (RFE) 

includes prioritizing each feature and determining the most crucial elements 

(Arif Mudi Priyatno and Triyanna Widiyaningtyas, 2024). Using RFE, key 

points can be ranked according to their importance in sign language recognition. 

RFE iteratively removes the least important features until the desired number of 

features is reached. To increase accuracy, researchers might conduct 

experiments to find the ideal number of important points to choose from. There 

will be a continuous process involved in choosing features based on high-level 

features.  
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APPENDIX C 

Pseudocode for MSL10 data collection. 

Import necessary libraries (OpenCV, numpy, os, matplotlib, t
ime, mediapipe) 
 
Define a function mediapipe_detection(image, model): 
    Convert image from BGR to RGB 
    Make image unwriteable 
    Process the image using the provided model 
    Make image writeable again 
    Convert image from RGB to BGR 
    Return the modified image and results 
 
Define a function draw_landmarks(image, results): 
    Draw landmarks for left and right hand connections on th
e image 
 
Define a function draw_styled_landmarks(image, results): 
    Draw styled landmarks for face, left hand, and right han
d connections on the image 
 
Initialize the webcam feed using cv2.VideoCapture(0) 
 
Set up the mediapipe holistic model with minimum detection a
nd tracking confidence 
 
Start a loop to capture frames from the webcam: 
    Read a frame from the webcam feed 
    Use mediapipe_detection function to process the frame an
d get results 
    Draw styled landmarks on the image using draw_styled_lan
dmarks function 
    Display the image with landmarks on the screen 
    Check for the 'q' key press to exit the loop 
 
Extract key points for pose, face, left hand, and right hand
 landmarks from the results 
 
Define a function extract_keypoints(results): 
    Extract pose, face, left hand, and right hand landmarks 
from results 
    Return the concatenated array of all landmarks 
 
Save the extracted keypoints from results as a numpy array 
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APPENDIX D 

Pseudocode for extracting key points from pre-recorded LSA64 dataset. 

Import necessary libraries (OpenCV, numpy, os, mediapipe) 
 
Initialize MediaPipe holistic model and drawing utilities 
 
Define a function to perform MediaPipe detection on an image
 using the provided model 
    Convert the image to RGB format 
    Process the image with the model 
    Convert the image back to BGR format 
    Return the modified image and detection results 
 
Define a function to draw styled landmarks on the image base
d on the detection results 
    Draw face, pose, left hand, and right hand connections o
n the image with specified colors and thickness 
 
Define a function to extract keypoints from the detection re
sults 
    Extract pose, face, left hand, and right hand keypoints 
from the results 
    Return the concatenated array of keypoints 
 
Set up MediaPipe holistic model with minimum detection and t
racking confidence 
 
Define the path to the folder containing video files 
 
List all video files in the folder 
 
Initialize a label count 
 
Loop over each video file in the folder: 
    Get the full path of the video file 
    Extract the video name 
    Open the video file for capturing frames 
 
    Initialize frame count and set the maximum number of fra
mes to capture 
 
    While the video capture is open and the frame count is l
ess than the maximum frames: 
        Read a frame from the video 
        Perform MediaPipe detection on the frame 
        Draw styled landmarks on the image 
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        Show the image with landmarks on the screen 
        Export the extracted keypoints from the detection re
sults and save as a numpy array 
 
        Increment the frame count 
 
        Check for the 'q' key press to break out of the loop
 gracefully 
 
    Release the video capture object and close any open wind
ows 
 
    Increment the label count after processing each video 
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APPENDIX E 

Pseudocode for MSL10 dataset with 126 key points in 3-layer BiLSTM 

model. 

Import necessary libraries (OpenCV, numpy, os, matplotlib, t
ime, mediapipe, train_test_split, to_categorical from tensor
flow.keras.utils) 
 
Define the data path for exported numpy arrays 
 
Define the actions to be detected and the number of sequence
s 
 
Define the sequence length for videos 
 
Create directories for each action and sequence in the data 
path 
 
Create a label map for actions 
 
Initialize lists to store sequences and labels 
 
Loop over actions and sequences: 
    For each action and sequence, load the saved numpy array
s for each frame 
    Extract the last 126 keypoints from each frame 
    Append the extracted keypoints to a window 
    Append the window and corresponding label to sequences a
nd labels lists 
 
Convert sequences and labels to numpy arrays 
 
Split the data into training and testing sets using train_te
st_split 
 
Import necessary libraries (tensorflow, Sequential, Bidirect
ional, LSTM, Dense from tensorflow.keras.models, TensorBoard
 from tensorflow.keras.callbacks) 
 
Set up the model architecture with Bidirectional LSTM layers
 and Dense layers 
 
Compile the model with optimizer, loss function, and metrics 
 
Start recording time for model training 
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Train the model on the training data with a specified number
 of epochs and TensorBoard callback 
 
End recording time for model training 
 
Print the computational time for model training 
 
Display the model summary 
 
Make predictions on the test data using the trained model 
 
Calculate accuracy using accuracy_score from sklearn.metrics 
 
Print the accuracy score 
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APPENDIX F 

Pseudocode for real-time recognition algorithm. 

Initialize an empty list 'sequence' to store keypoints and a
n empty list 'sentence' to store detected actions 
Set a confidence threshold for action prediction 
 
Open a video capture object for webcam feed 
 
Set up MediaPipe holistic model with minimum detection and t
racking confidence 
 
Start a loop to continuously capture frames from the webcam 
feed 
    Read a frame from the webcam feed 
    Perform MediaPipe detection on the frame 
    Print the detection results 
 
    Draw styled landmarks on the image based on the detectio
n results 
 
    Extract keypoints from the detection results 
    Append the keypoints to the 'sequence' list and maintain
 only the last 30 sequences 
 
    Check if the 'sequence' list has 30 elements 
        Make a prediction using the model on the 'sequence' 
list 
        Print the predicted action 
 
        Update the 'sentence' list based on the predicted ac
tion and confidence threshold 
            If the predicted action is different from the la
st action in 'sentence', add the predicted action to 'senten
ce' 
            Limit the 'sentence' list to a maximum of 10 act
ions 
 
        Visualize the action probabilities on the image 
 
    Draw a rectangle and display the detected sentence on th
e image 
    Show the image with the detected landmarks and sentence 
on the screen 
 
    Check for the 'q' key press to break out of the loop 
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Release the video capture object and close all windows          
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APPENDIX G 

MSL10 Real-time Recognition Model Screenshots. 

 

 


