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ABSTRACT 

 

EXPLORING DISTANCE MEASURES FOR TIME SERIES DATA: A 

COMPARATIVE ANALYSIS 

 

LEE JIA YEE 

 

Time series similarity search is a method used to identify the identical pattern 

within two sets of time series data, finds widespread utility in clustering, 

anomaly detection, and forecasting. In real-world scenarios, vibration data are 

often vast, intricate, and noisy, with adjustments in time, amplitude, and phase 

shifting direct influence on search outcomes. Through a systematic evaluation, 

various distance measurement methods including Euclidean distance, 

Dynamic Time Warping, Fast Fourier Transform, Symbolic Aggregate 

Approximation, and Matrix Profile are performed under diverse conditions 

such as frequency shifting, amplitude scaling, state change, and noise. The 

comparative study encompasses not only quantitative assessments of accuracy 

but also considerations of computational efficiency and robustness. The 

findings reveal Matrix Profile generally outperforms classic measures like 

Euclidean distance, Dynamic Time Warping, and Fast Fourier Transform in 

accuracy, but performs poorly compared to Symbolic Aggregate 

Approximation. While Matrix Profile exhibits shorter computational time than 

Symbolic Aggregate Approximation, it slightly extends beyond other classic 

measures. Thus, Matrix Profile presents competitive advantages among 
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distance measurement methodologies. By providing a comprehensive 

examination of similarity measurement techniques, this study equips the idea 

for the strength and weaknesses of distance measures, providing valuable 

insight for decision-making in time series data mining activities. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

A time series is a form of data that records the observation in the sequence of 

time and they can reflect various phenomena and events that change over time 

(Hu et al., 2023). Nowadays, with the rapid development of Internet of Things 

(IoT) technology, time series data are widely deployed in various fields, ranging 

from industrial manufacturing to medical care or even biological studies, 

economics and geology. Examples of time series data can be the stock market 

price, sensor readings for temperature, heart rate, etc. The data is generated 

constantly in a large amount with high speed. Over time, massive amounts of 

time series data are being generated and increase the complexity of the data. The 

massive volume and complexity bring greater challenges for data analysis. 

Therefore, time series data mining is needed to assist in extracting useful 

information from the data. 

Time series data mining is a field of study that focuses on extracting meaningful 

patterns, trends, and insights from time series data (Mörchen and Fabian 

Mörchen aus Dillenburg, 2006). In essence, it deals with analyzing data points 

collected at successive time intervals to uncover hidden relationships, forecast 

future values, and understand underlying structures within the data. In actual life, 

there is a massive dataset that could make the computation difficult and costly. 

Thus, time series data mining is essential for us to perform the study in a large 

dataset. Time Series similarity search is a technique of data mining that can assist 

in extracting information from enormous datasets by determining the degree of 

similarity between two datasets. Theoretically, if the time series has the same 
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pattern or same sources, they have a high similarity. Otherwise, if the two-time 

series look very different, they have high dissimilarity or distance. Time series 

similarity search has claimed wide usage in a variety of fields including 

economics, medicine, industry and even music. Numerous functions can be 

performed with similarity search and have been discovered by researchers such 

as anomaly detection, clustering, rules discovery, classification and forecasting. 

 

1.2 Problem Statement 

In time series data analysis, selecting an appropriate similarity measure from a 

range of choices is crucial for accurately assessing the resemblance between data 

readings recorded at different times or under varying conditions. However, the 

effectiveness of similarity measures can vary significantly depending on 

external factors. Any changes to the data in frequency, amplitude, or presence 

of noise will result in different outcomes and this will lead to a differ in 

performance for each similarity measures. Thus, how to select a suitable 

similarity measure will become the main concern in this study. 
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1.3 Research Objective 

The objective of this study is to conduct an analysis of similarity measures in 

the context of  

1. To evaluate the accuracy and efficiency of a range of similarity measures, 

including Euclidean Distance, Dynamic Time Warping, Fast Fourier 

Transform, Symbolic Aggregate Approximation and Matrix profile to 

detect the changes in time series in terms of frequency, amplitude and 

stages. 

2. To evaluate the precision of Euclidean Distance, Dynamic Time 

Warping, Fast Fourier Transform, Symbolic Aggregate Approximation 

and Matrix profile in computing the distance for time series under the 

disturbance of noise. 
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1.4 Significance of Study 

This study is significant as it can serve as a reference for other researchers. It 

helps identify the most suitable distance measures for similarity search 

experiments and tasks in various scenarios based on their needs. It can lead to 

cost reduction and time savings for the research procedure by ensuring a 

desirable result is obtained. By choosing the best similarity measures in sensor 

data, organizations from various fields can optimize their resources, enhance 

data quality, and improve the overall performance of the time series data 

network. 

 

1.5 Chapter Layout 

This report will review journals relevant to the similarity search including their 

application and list of studies involving the comparison of similarity measures 

in Chapter 2. Then, Chapter 3 will discuss the methodology of this study as well 

as the data used in this study while the result obtained in this study will be 

discussed in Chapter 4. Lastly, Chapter 5 will conclude the findings of this study 

and the future scope is discussed.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, we will discuss the previous study done by researchers on time 

series similarity search, including their views and findings. Also, to access the 

functionality of distance measure, some commonly used applications of the 

similarity search are explored. 

Similarity search is widely used for clustering purposes in which clustering is a 

technique of grouping sets of data points into clusters or groups based on the 

similarity between the data points. The purpose of clustering is to find a 

homogeneous group by partitioning the data in such a way that data points within 

the same cluster are more similar to each other than to those in other clusters 

while maximizing the dissimilarity between clusters (Kleist, 2015; Komitova et 

al., 2022). For instance, Yohansa, Notodiputro and Erfiani have described the 

time series clustering of COVID-19 cases in Daerah Khusus Ibukota (DKI) 

Jakarta by using Dynamic Time Warping (DTW). By measuring the distance 

between daily case data of COVID-19 cases, the author enables clustering covid-

19 cases into different districts to identify the spread and distribution patterns of 

the virus across DKI Jakarta. They have successfully identified 6 clusters from 

the cases. The clustering proved to be efficient and showed the Mean Absolute 

Percentage Error (MAPE) values ranging from 10% to 20% while comparing to 

the clustering result from Autoregressive Integrated Moving Average (ARIMA) 

models (Yohansa, Notodiputro and Erfiani, 2022). 
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Next, Similarity Search can also be used for classification. Classification is a 

fundamental task in supervised machine learning to predict the categorical class 

label of new instances based on past observations or labelled data (Kleist, 2015; 

Dove et al., 2023). In similarity search, classification is achieved by mapping 

the new instance with the item in predefined classes. Then the object will be 

classified as the classes that have the lowest distance from it. Silva et al. (2015) 

have proof of the usage of similarity search for music recognition in 2015. In 

this study, the authors design a new model, Similarity Matrix Profile (SiMPle) 

to study the similarity in music. By comparing the audio recordings based on 

their structural and melodic similarities, SiMPle is proven to be effective in 

various tasks within the field of Music Information Retrieval including cover 

song recognition and audio thumbnailing even from multiple audio streams. 

Time series similarity searches are also very powerful in detecting the 

regularities or patterns within data. In the context of time series data, there will 

be a wide range of unpredictable pattern occurs. The pattern might include trends, 

seasonal variation, cyclic behaviour and others (Kleist, 2015). From the 

undulated time series, the repeated pattern or the optimal value may give some 

meaningful information. The search for repeated patterns is called motif 

detection, where a motif is a replicated subsequence that occurs within a time 

series dataset  (Komitova et al., 2022). Motif detection can be used as a 

subroutine in other data mining tasks such as clustering and classification 

(Mörchen and Fabian Mörchen aus Dillenburg, 2006). This is because we can 

segmentize the long series of signals into multiple frequently repeating patterns 

that each pattern representing the same activities. 
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Searching for the optimal pattern is known as anomaly detection can also 

achieved by similarity search, where anomalies are the data points that differ 

significantly from the typical behaviour of the system such as sudden spikes, 

drops or shifts in the time series (Komitova et al., 2022). Recently, there has 

been an increased interest of researchers in the field of anomaly detection in a 

diverse range of domain applications. Anomaly detection is found to be useful 

in indicating unusual events, errors, faults or any fraudulent activities. For 

example, Sivaraks and Ratanamahatana (2015) proposed a robust and accurate 

anomaly detection algorithm (RAAD) in the medical area to compare the 

heartbeats to identify the anomaly candidates. 

Lastly, another famous application for similarity search is to deal with 

forecasting. Prediction or forecasting, in the context of time series data mining, 

refers to the process of estimating future values or trends based on historical 

observation (Kleist, 2015). To deal with forecasting, the trends, patterns or 

events from the previous data are studied. The frequently used method was the 

autoregressive integrated moving average (ARIMA) model or Hidden Markov 

Model (HMM). By forecasting future trends, patterns or events, organizations 

can make informed decisions, plan resources, manage risks and optimize 

strategies earlier. As an example, Mishra et al. use DTW to forecast hydrological 

data (Mishra et al., 2015). Using similarity search, Liang, Wang and Wu. and 

Zhao et al. are also analyzing to forecast the stock market with the help of 

similarity search (Liang, Wang and Wu, 2021; Zhao et al., 2021). 

In the various fields of study, distance measurement has proven its importance 

and its implications. For different situations, researchers are choosing different 
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distance measures for help. So this raises the problem of whether the distance 

measures chosen can lead to an accurate analysis. 

2.2 Distance Measures in Time Series 

The distance measure is the main component in the similarity search. It serves 

the purpose of quantifying the similarity or dissimilarity between two or 

more objects. Some researchers also named them similarity measures or time 

series representation methods. The only difference is that time series 

representation methods include the transformation of the raw time series data 

before calculating the dissimilarities (Komitova et al., 2022). The distance 

obtained from the distance measure must follow several criteria, such as 1) 

Uniqueness: d(x, x) = 0 ,2) Symmetry: d(x, y) = d(y, x) ,3) Non-negativity: d(x, 

y) ≥ 0 (Dove et al., 2023). 

In general, the distance measure can be categorised into four categories which 

are shape-based, edit-based, feature-based and structural-based (Dove et al., 

2023). A shape-based similarity measure is a technique used to quantify the 

similarity between two-time series based on the shapes of their temporal patterns, 

such as Lp-norms distance, Dynamic Time Warping (DTW), Spatial 

Assembling Distance (SpADe) and Threshold Queries (TQuEST). Edit-based is 

focused on quantifying the distance by considering the minimal steps of 

transformation. The measures used edit-based theorem are Edit Distance with 

Real Penalty (ERP), Edit Distance on Real Sequences (EDR), the Longest 

Common Subsequence (LCSS) and Time Warp Edit Distance (TWED) (Kleist, 

2015; Dove et al., 2023).  Feature-based similarity measures concentrate on 

comparing the similarity between time series data by extracting and comparing 
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specific features or attributes of the data. The measures included Discrete 

Fourier Transform (DFT) or Discrete Wavelet Transform (DWT) (Senthil and 

Suseendran, 2019; Dove et al., 2023). Lastly, model-based similarity measures 

involve comparing time series data based on the similarity of the underlying 

models that represent them such as Autoregressive Integrated Moving Average 

(ARIMA), Hidden Markov Model (HMM) and Compression-based Similarity 

Measure (CDM). Instead of directly comparing the raw data points or extracted 

features, these methods assess how well different models capture the behaviour 

of the time series (Senthil and Suseendran, 2019; Dove et al., 2023). 

There are plenty of distance measures that have been developed and refined by 

researchers to date. While every strategy can accomplish the desired goal, each 

performs differently depending on the circumstances. There is no a perfect 

option that works in every situation. Each similarity measure has benefits and 

drawbacks of its own. Also as the number of methods used grows, we are curious 

about how well each way works. Thus, many studies focusing on studying the 

efficiency of similarity measures are done. Ding et al. compared eight 

representation methods and nine similarity measures on 38-time series datasets 

in 2008 to determine their accuracy in classifying varying sizes with the help of 

a 1-NN classifier (Hui Ding et al., 2008). Although the author suggests that no 

single similarity measure is superior for time series, an interesting discovery was 

that the accuracy of elastic measures decreases with larger data sizes. 

Senthil and Suseendran compare six different similarity measures for trajectory 

clustering in outdoor surveillance scenes. The measures include Euclidean 

distance (ED), PCA+Euclidean distance (PCA+ED), Hausdorff distance, 
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Hidden Markov Model (HMM), Longest Common Subsequence (LCSS) 

distance, and Dynamic Time Warping (DTW) distance. The performance is 

evaluated using the Correct Clustering Rate (CCR) and Time Cost (TC). In his 

study, he concluded that the Hausdorff and HMM distances are found to be 

ineffective for trajectory clustering in outdoor surveillance scenes. While LCSS 

and DTW distances measure shape similarity well, their high computational cost 

weakens their competitive ability. The PCA+ED produces better results at a 

lower cost, but it has limitations in distinguishing speed variation. (Senthil and 

Suseendran, 2019) 

Sivaraks and Ratanamahatana also investigated six different measures of 

trajectory similarity and their application in clustering GPS trajectories of 

foraging trips made by birds. The measures included Dynamic Time Warping 

(DTW), Fréchet distance, Nearest Neighbor Distance (NND), Longest Common 

Subsequence (LCSS), and Edit Distance on Real Sequences (EDR). The author 

suggested that DTW and Fréchet distance performed the best while NND had 

the worst performance in this study (Sivaraks and Ratanamahatana, 2015). 

In clustering, another researcher focused on selecting suitable distance measures 

for accurate clustering against low and high-dimension datasets (Shirkhorshidi, 

Aghabozorgi and Ying Wah, 2015). The author has evaluated the performance 

of 14 distance measures in his study. The concept of the Rand index is used to 

measure the clustering accuracy. Overall, the authors recommend the Average 

Distance measure across different scenarios. The result of this research also 

proved that the performance of similarity search will be varied according to the 

dimension of the dataset.  
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Kianimajd et al. present an additional concept for evaluating the resilience of 

similarity search in cardiovascular disease (CVD) diagnosis data under various 

conditions, including baseline variation, time scaling and shift, amplitude 

scaling and shifting, and white Gaussian noise. In his findings, he states that the 

robustness of the similarity measure is based on insensitivity. Among them, 

Fourier transform and Euclidean distance showed higher sensitivity to amplitude 

shift, time scale and shifting. Also, Dynamic time warping is insensitive to 

White Gaussian Noise and Discrete Wavelet transform is insensitive to 

amplitude shift (Kianimajd et al., 2017). Thus, this study shows the impact of 

different variations on the similarity search.   

Kljun, Teršek and Erikštrumbelj conducted a study that is somewhat similar in 

that they examine and contrast the effectiveness of 12-time series similarity 

measures in clustering concerning warping, scaling, and datasets varying in 

length. The evaluation of clustering is done by using the Rand index (Kljun, 

Teršek and Erikštrumbelj, 2020). In contrast to the others, they discovered that 

Piccolo distance performed well overall. Due to the different similarity measures 

selected by researchers, this study gives a different suggestion regarding the 

effect of variation. However, a similar pattern is found in previous studies, where 

similarity measures are performed differently while considering warping, 

scaling, and datasets varying in length. 

The summary of the analysis is tabulated and shown below: 
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Table 2.2: Summary of comparison studies 

Author Title Distance Measures 

Hui Ding et al. 

(2008) 

Querying and Mining of 

Time Series Data: 

Experimental 

Comparison of 

Representations and 

Distance Measures 

ED, DTW, LCSS, ERP, EDR, 

Swale, SpADe, TQuEST, DFT, 

SVD, DCT, PAA, APCA, CHEB, 

SAX, and IPLA 

Senthil and 

Suseendran 

(2019) 

Data mining techniques 

using time series research 

ED, PCA+ED, Hausdorff 

distance, HMM-based distance, 

LCSS, and DTW  

Sivaraks and 

Ratanamahata

na (2015) 

Robust and accurate 

anomaly detection in 

ECG artifacts using time 

series motif discovery 

DTW, Fréchet distance, NND, 

LCSS, and EDR 

Shirkhorshidi, 

Aghabozorgi 

and Ying Wah 

(2015) 

A Comparison study on 

similarity and 

dissimilarity measures in 

clustering continuous 

data 

ED, Average Distance, Weighted 

ED, Chord, Mahalanobis, Cosine 

Measure, Manhattan, Mean 

Character Difference, Index of 

Association, Canberra Metric, 

Czekanowski Coefficient, 

Coefficient of Divergence, 

Pearson Coefficient 

Kianimajd et 

al. (2017) 

Comparison of different 

methods of measuring 

similarity in physiologic 

time series 

Minkowski, ED, DTW, Pearson 

Correlation Coefficient, 

Mahalanobis, DFT, DWT 

Kljun, Teršek 

and 

Erikštrumbelj 

(2020) 

A review and comparison 

of time series similarity 

measures 

Lp norms, DISSIM, DTW, EDR, 

ERP, LCSS, TQuEST, Cross-

correlation, CDM, Piccolo 

distance, Prediction-based 

distance, and embedding-based 

similarity 
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From the list of comparisons done, we found that some famous similarity 

measures are frequently used. Thus, based on previous analysis, five distance 

measures are selected for this research. The first similarity measure is Euclidean 

Distance (ED). Although ED has limitations in handling unequal-length datasets 

and is sensitive to time shifting and noise, it is widely used due to being 

parameter-free and having low computational complexity (Hui Ding et al., 2008; 

Shirkhorshidi, Aghabozorgi and Ying Wah, 2015). At the same time, ED can 

maintain a reliable result. Next, Dynamic Time Warping (DTW) is selected. As 

an advanced method from ED, DTW allows the comparison of unequal-length 

datasets through its warping ability. This feature provides a competitive 

advantage in analyzing time-shifted and noisy datasets (Kianimajd et al., 2017).  

Next, Discrete Fourier Transform (DFT) and Symbolic Aggregate 

Approximation (SAX) are also famous feature-based similarity measures that 

are frequently found in research. This is because both methods allow 

dimensionality reduction and thus have efficient computation complexity (Dove 

et al., 2023). Also, due to its transformation characteristics, they are insensitive 

to amplitude shifting or scaling (Kianimajd et al., 2017). In this research, a 

derivative method from Fourier analysis called Fast Fourier Transform (FFT) is 

chosen because it inherits characteristics from Discrete Fourier Transform (DFT) 

but with a faster algorithm (Brigham and Morrow, 1967). 

Lastly, the Matrix Profile has been studied in this experiment. While the Matrix 

Profile is not widely included in performance comparisons, it is considered 

advantageous due to its ability to handle various situations effectively. This is 

attributed to its scalability, simplicity, and versatility (Michael Yeh et al., 2016). 
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Here is also a successful application of Matrix Profile done by Pizon, Kulisz and 

Lipski conducted Matrix Profile in the maintenance systems with high levels of 

output satisfaction (Pizon, Kulisz and Lipski, 2021). Li et al. demonstrated the 

successful application of Matrix Profile in enhancing the performance of a 

planetary gearbox (Li et al., 2023). 

From the analysis, it is found that the Rand Index is commonly used for 

evaluating the performance of similarity measures (Kljun, Teršek and 

Erikštrumbelj, 2020; Shirkhorshidi, Aghabozorgi and Ying Wah, 2015). 

However, the Rand Index is only accessible for clustering purposes. In the case 

of Yohansa, Notodiputro and Erfiani (2022), time series clustering of COVID-

19 cases in DKI Jakarta, another evaluation method MAPE is used to compare 

the result from DTW and ARIMA model providing a possible way for 

evaluation(Yohansa, Notodiputro and Erfiani, 2022). Thus, based on the 

evidence, MAPE is chosen as the evaluation metric for assessing the 

performance of similarity measures 

 

2.3 Summary 

Previous studies have demonstrated the varied performance of similarity 

measures depending on the dataset and environment. While some measures 

perform well in specific tasks or conditions, there is no universal solution for all 

cases. From the literature review, we found some powerful distance measures 

with different strengths. Although a comparison is done, the choice of distance 

measure leads to varying conclusions. Most of the research only addresses one 
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or two scenarios, lacking comprehensive coverage. Matrix profiles are not 

commonly included in comparisons of distance measures. Thus, this study aims 

to compare the performance of commonly used and powerful distance measures 

which are Euclidean distance, Dynamic Time Warping, Fast Fourier Transform, 

Symbolic Aggregate Approximation and Matrix Profile along with different 

scenarios like frequency shifting, amplitude scaling, stage change, and noise. 

The evaluation will focus on using Mean Absolute Percentage Error (MAPE) to 

assess performance comprehensively. Cases of scenarios are made available in 

studies for a wide range of discovery. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

The goal of this study is to identify the performance of distance measures in 

terms of robustness and time complexity. In this chapter, we define the six 

similarity measures on the concept of how the distance measures worked in 

identifying the dissimilarity in time series data. The distance measures included 

Euclidean Distance (ED), Dynamic Time Warping (DTW), Fast Fourier 

Transform with Euclidean Distance (FED), Fast Fourier Transform with 

Dynamic Time Warping (FDTW), Symbolic Aggregate Approximation (SAX) 

and Matrix Profile (MP).  

This chapter also introduced the methodology procedure, starting from the 

introduction of the datasets used, data processing steps taken and the whole 

experimental steps to come out with the results. In order to obtain a fair result 

for the performance of distance measures, some scenarios like frequency shifting, 

amplitude scaling, phase change and noise have been introduced to our datasets. 

Therefore, the theory of how these scenarios could be applied to the datasets has 

been discussed here. 
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3.2 Datasets 

The dataset considered in this research is secondary data retrieved from Ooi et 

al. as stated in their journal (Ooi et al., 2022). The dataset consists of vibration 

data collected continuously from real-world observations. The data is obtained 

from an 18-inch industrial fan operating at a low speed and using the ESP8266 

wireless vibration sensor. The raw data consists of the fan's acceleration records 

in three dimensions, with an average sampling rate of 350 Hz. This data was 

collected using a direct read-and-send approach detailed in the journal (Ooi et 

al., 2022). However, in this experiment, we are specifically 1-dimensional 

movement which is the x-axis movement dataset. The dataset therefore 

contained only one variable, that is x-axis acceleration order in time manner. 

This dataset contained 75000 observations in total. Since the dataset does not 

have a clearly defined data collection period, we can only plot the time series 

data using the index. The overview of the dataset is provided below: 

  

Figure 3.2: Overview of Dataset  
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To enable all similarity measures in this experiment, a similarity search of equal 

length is conducted. The dataset is divided into seven equal Chunks, each 

consisting of 10,000 observations for comparing similarities. In other words, the 

last 5000 observations are not being considered in this case. To obtain a semantic 

meaning of the result, the datasets are smoothed by normalising each Chunk 

according to their mean and standard deviation (Attig and Perner, 2011). The 

summary of the dataset is attached below: 
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Table 3.2: Summary of datasets in Chunk 

 Chunk1 Chunk2 Chunk3 Chunk4 Chunk5 Chunk6 Chunk7 

count 10000 10000 10000 10000 10000 10000 10000 

mean -1.16E-14 6.18E-15 -8.68E-15 -5.25E-15 -4.00E-15 -1.02E-14 3.44E-15 

std 1 1 1 1 1 1 1 

min -2.87071 -3.19823 -3.23409 -3.12145 -3.05413 -3.0466 -2.84328 

25% -0.714 -0.65888 -0.68331 -0.75825 -0.6856 -0.64793 -0.71687 

50% 0.087063 0.08435 0.081918 0.063735 0.0654 0.065185 -0.00807 

75% 0.764888 0.641769 0.719611 0.731596 0.700861 0.713473 0.784124 

max 2.79836 3.181124 2.887769 2.889303 3.011626 3.176968 2.993923 
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3.3 Scenario 

In real life, there is a lot of variation that could change the time series data. Here 

we state the variation as the scenario occurs to the time series data. The changes 

in time series data will lead to varied outcomes in similarity search. Thus, 

distance measures should be selected based on their sensitivity to various 

scenarios. By learning the theory in this section, we could understand how the 

scenario affects datasets and the dissimilarity results. 

 

3.3.1 Frequency Shift 

Frequency Shift refers to the shifting of data in time resulting in a time variation 

in the data. The time variation may cause a delay or advance the data in time by 

a constant time interval without changing its original shape (Chaparro et al., 

2015). Meanwhile adding to the time variable will shift the data to the left 

(advance) and subtracting a constant number from the time variable will shift 

the data to the right (delay) (Chaparro et al., 2015). Frequency shifting often 

occurs in real life such as the audio signal, sonar signal, electrocardiogram data, 

and others. Any variation in speed, latency, or temporal misalignment might be 

the cause of frequency shifting.  

For instance, Kianimajd et al. (2017)  have introduced a lot of variation concepts 

in their analysis of the performance of similarity measures in clustering and 

disease classification so that an automated system can efficiently perform 

Cardiac Vascular Diseases personal management. One of their variations was a 

study on the sensitivity of the similarity measures on frequency shifting 

(Kianimajd et al., 2017). Their study successfully drew an image of how the 



21 
 

frequency shifting could be applied in the analysis. Another study has also taken 

into account frequency shifting to introduce a novel method for measuring the 

similarity of time interval datasets for process optimization purposes (Hafiler, 

Jeschke and Meisen, 2017). The authors claim that deviation in time cannot 

always be avoided, and so by considering the frequency shifting, it can make the 

comparison more realistic and in a humanoid fashion (Hafiler, Jeschke and 

Meisen, 2017). 

However, it is clearly understood that advancing is impossible to implement in 

the real-time data but only delaying. Advanced data are only allowable in saved 

data or recorded signals. As both of our datasets are sensor data, where mostly 

implemented in the real-time collection, a delay in the datasets was added to 

demonstrate time shifting in this experiment with the given formulae attached: 

𝑋(𝑡)  =  𝑌(𝑡 + 𝑎)          (1) 

where Y(t) is the original dataset, a is the positive value of the time interval added 

to the original dataset and X(t) represents the new shifted dataset. For instance, 

let Y(t) become a sinusoidal function with frequency =0.5 and amplitude = 1, 

with a = 0.5, the sample of frequency shifting will be like the figure below. 

 



22 
 

 

Figure 3.3.1: Sample for Frequency Shifting  
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3.3.2 Amplitude Scale 

Amplitude Scale is defined as rescaling the amplitude of the data in either 

amplified or attenuated. While implementing amplitude scaling, the shape of the 

data such as the frequency will remain as original but the amplitude is altered. 

To create the amplitude scale, a constant value of a is multiplied by the original 

data If the constant value a is greater than 1 (a>1) then the data will be amplified, 

else if constant value a is smaller than 1, then the data will be attenuated. If a is 

equal to 1, the data will remain the same, where the amplitude scale is not 

formally working. Amplitude sometimes acts as the intensity of activity 

(Mörchen and Fabian Mörchen aus Dillenburg, 2006). The variations in 

amplitude levels could be brought on by various measurement scales or sensor 

sensitivity. Amplitude scale is a powerful technique in time series such that it 

can enlarge the analog signal which is frequently used in medical devices 

(Semmlow, 2018). For instance, we can easily detect the activities produced by 

the heart with the help of amplitude scaling by enlarging the electrical signal 

(Semmlow, 2018). Not only analogue signal, but amplitude scale is also suitable 

to adjust the intensity of sound signals or adopt in the image data to adjust the 

brightness or contrast of the image. Thus, we cannot ignore the effect of 

amplitude scaling while conducting our experiment.  

In the previous study conducted by Kianimajd et al.(2017) , amplitude scale was 

also a factor conducted in his analysis which provided us with insight into the 

adoption of amplitude scaling in our experiment. The formulae to consider the 

amplitude scale are shown below: 

𝑋(𝑡) = 𝑎 𝑌(𝑡)          (2) 
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where Y(t) is the original dataset, a is the positive constant value multiplied by 

the original dataset and X(t) represents the new amplitude scaled dataset. For 

instance, let Y(t) become a sinusoidal function with frequency = 0.5 and 

amplitude = 1, with a = 1.5, the sample of amplitude scaled data will be like the 

figure below. 

 

Figure 1.3.2: Sample for Amplitude Scale 
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3.3.3 Stage Change  

Stage change is an immediate change in the pattern of the data and the moment 

of pattern change is called the change point. Any pattern changes such as 

changes in mean, variance or trend are examples of stage change (Lavielle, 

2005). Stage change in time series data can also represent how a process changes 

over time. In the massive time series dataset, there might be a lot of change 

points present as the behaviour of data could change over time due to external 

events or internal systematic changes in dynamics (Lavielle, 2005). Behavioural 

change sometimes might bring us an important message. For instance, stage 

change can be used in speech recognition to detect audio segmentation and 

recognise boundaries between silence, sentences or words (Aminikhanghahi and 

Cook, 2017). Stage change is also frequently used in climate change detection 

such as identifying the level of greenhouse gases in the atmosphere 

(Aminikhanghahi and Cook, 2017). 

Due to these reasons, change point detection was one of the major applications 

of similarity search. For instance, Liu et al. (2023) have compared various 

methods including Dynamic Time Warping to deal with his study of change-

point detection and anomaly detection (Liu et al., 2023). 

Thus, stage change has been adopted in our experiment to study the effect on the 

performance of distance measures. For an easy demonstration purpose, we have 

applied stage change by only changing the mean of time series for a certain 

segment. The formulae to consider stage change are shown below: 

𝑋(𝑡)  =  {
𝑌(𝑡)           , 𝑏 ≤ 𝑡 < 𝑐
𝑌(𝑡) + 𝑎    , 𝑐 ≤ 𝑡 ≤ 𝑑

        (3) 
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where Y(t) is the original dataset while a is the positive constant value added to 

the original dataset to move the segment of time series data upward. X(t) 

represents the new stage changed dataset which is a combination of two data, 

where one is the same as original data in the time interval of b until c, and another 

is the amplitude shifted data from time interval c until d. For instance, let Y(t) 

become a sinusoidal function with frequency = 0.5 and amplitude = 1, with a = 

0.5, b = 0, c = 6 and d = 10 the sample of amplitude scaled data will be like the 

figure below. 

 

Figure 3.3.3: Sample for Stage Change 
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3.3.4 Noise 

A noise refers to a corruption of data that possibly leads us the meaningless 

information. In fact, noisy data or random processes are happening everywhere 

in real life. For instance, the heartbeat, breathing frequency, weather, or 

catastrophic events are all random and are examples of noise. The noise can be 

caused by environmental issues, hardware failures, programming errors or even 

human spelling errors could be the factor of creating noise (Bunde, 2023). 

Noise can be distributed into a few categories. The most frequently seen noises 

are white noise, gaussian noise, pink noise, brown noise and red noise. Briefly 

explain, a white noise is the random signal with equal intensity added to the 

original data that is uncorrelation in time. Red noise has 0 mean, constant 

variance and a finite range of correlations in time, in which the correlation 

coefficient ranges from 0<r<1 (Bunde, 2023). Else if the correlation range is 

infinite, they are sometimes referred to as pink noise (Bunde, 2023). 

Among the synthetic noise distributions, Gaussian noise may be the best 

simulation of real noise. This is because the noise in real life is particularly 

complex and could be a combination of many different sources. The real noise 

can be regarded as the sum of many independent random variables with different 

probability distributions and their normalized sum tends to increase with the 

number of noise sources close to a Gaussian distribution according to the Central 

Limit Theorem (Huo, 2022). Therefore, Gaussian noise is a simple and good 

approximate simulation when dealing with this complex situation and the 

unknown real noise distribution. 
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Gaussian noise is a statistically independent random process that holds the 

characteristic of stationary which is the noise has zero mean and constant 

variance (Marmarelis, 2004). As the noise is inescapable in real life, many 

researchers have utilised this scenario in their study, especially in the similarity 

search area. One example is the study done by Kianimajd et al.(2017) also 

inspects the performance of distance measures under noisy data. Apart from that, 

Lin et al. also reviewed the effect of Gaussian noise while the authors proposed 

a novel method of partitioning clustering algorithm for time series (Lin et al., 

2004). As an inheritance of ideas from the study, white Gaussian noise is added 

to our dataset while we access the performance of distance measures. The 

formulae to consider white Gaussian noise are shown below: 

𝑋(𝑡) =  𝑌(𝑡) +  𝑊(𝑡),         (4) 

𝑊(𝑡)  = 𝑊𝐺𝑁 ~ 𝑁(0, 𝜎2)        (5)   

 

where Y(t) is the original dataset, W(t) is the white Gaussian noise distribution 

added in this experiment with 0 mean and constant variance σ2.                                                                                          

X(t) represents the new noisy dataset after the white Gaussian noise is added. 

For instance, let Y(t) become a sinusoidal function with frequency = 0.5 and 

amplitude = 1, then set σ =0.2, the sample of the noise-affected data will be like 

the figure below. 
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Figure 3.3.4: Sample for White Noise  
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3.4 Distance Measures 

Distance measures, also known as distance measurement or dissimilarity 

measurement are one the components forming similarity search (Li et al., 2022). 

As per its abbreviation, distance measures are used to evaluate the pairwise 

distance between data points. Similarity between datasets can be formulated by 

computing the distance between them. By evaluating the similarities, 

applications like classification, clustering, pattern recognition or prediction 

could be achieved. Here, we are only focused on several popular distance 

measures, such as Euclidean Distance (ED), Dynamic Time Warping (DTW), 

Fast Fourier Transform (FFT), Symbolic Aggregate Approximation (SAX) and 

Matrix Profile (MP). In this section, we will discuss the concept of how distance 

measures are employed in our experiment. 

 

3.4.1 Euclidean Distance (ED) 

Euclidean Distance (ED) is a matrix that calculates the distance between points 

frequently used since decades years ago. It is also known as L2-norm distance 

and is part of the member of the Lp-norms distance family when p = 2 (Górecki 

and Piasecki, 2018). Meanwhile, ED inherits the characteristics of lock step 

measures which can only quantify the straight line distance between two points. 

Thus, ED is very easy to implement with only the time complexity of O(nd), 

where n stands for the number of data points, and d stands for the dimensionality 

of the dataset  (Kljun, Teršek and Erikštrumbelj, 2020; Shifaz et al., 2021). Since 

our data is only in one dimension in this case, the time complexity will be O(n). 

However, a small limitation of ED is that it only allows the comparison of the 

two datasets with equal length. The demonstration of ED is schematically 
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present in Figure 3.4.1 Due to its characteristics of free-parameter and simplicity, 

It is a very classic distance measure that is commonly included in the field of 

study in similarity search. The formula for constructing Euclidean distance is 

given as: 

𝐸𝐷(𝑋, 𝑌)  = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1       (6) 

Let X(t) ={x0, x1 ,… ,xn } and Y(t) = {y0, y1 ,… ,yn } be the time series data with 

n data points each. Then xi and yi represent the position of vector form data point 

from time series X(t) and time series Y(t) respectively and ED (X, Y) represents 

the distance among time series X and Y. So in this formulae, we will first 

calculate the square of the difference between data points one-to-one. Then, we 

will sum up all the differences before we square root it and obtain the final 

answer. The process will be done with the help of Scikit-learn.euclidean 

packages in Python and the algorithm for calculating ED are given below: 

Table 3.4.1: Algorithm of Euclidean Distance 

Algorithm 1: Euclidean Distance  

 Input: Time series x, time series y 

 Output: Euclidean distance between x and y, processing time 

1 Start ← Get current time 

2 𝑛 ← number of data points in each time series 

3 Set Power_diff equal 0 

For i← 0 to n do: 

     Power_diff = power_diff + pow(x[i]-y[i],2) 

End 

Euc_dist(x,y) = sqrt(power_diff) 

4 End ← Get current time 

5 Processing time ← Difference between start and end 
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In our experiment, we have pre-created the data frame from both of our datasets 

that consist of data distributed in chunks. The chunks act as an attribute for data 

storing, with the chunks' names i given. For instance, the chunk name for the 

dataset in this paper is Chunk 1 until Chunk 7. The chunks are dragged out and 

become the time series x or y continuously to calculate their ED among them by 

the given equation. Since ED is a lock-step measure, time series x and time series 

y will have the same number of data points and the computation is only allowed 

for the same index of data points. At the same time, the processing time is taken 

by considering the start time and end time of calculation. 

 

Figure 3.4.1: Sample of Euclidean Distance  
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3.4.2 Dynamic Time Warping (DTW) 

Dynamic Time Warping (DTW) is another commonly used distance measure 

generically from ED. It has the same working theory as ED which calculates the 

distance between two points by calculating the square root of the sum square 

difference. In contrast to ED, DTW is an elastic distance measure that makes it 

possible to determine the distance between two points at various phases. More 

precisely, this approach allows for the distance computation of two data points 

in one-to-many alignment. The sample of alignment is drawn in Figure 3.4.2. 

However, the computations are only allowed within the warping window. So, 

the warping window is an important parameter to control the elasticity of 

distance measures (Senin, 2008). By minimizing the cumulative distance 

between aligned points within a window, the algorithm determines the best 

warping path. This makes it possible to identify similar patterns even when they 

are in different temporal sequences.  

As warping windows could directly affect the efficiency of distance measures, 

window selection is very critical. This is because the large window leads to a 

high cost for the experiment while the small window may create poor accuracy 

results. When the window is equal to zero, DTW produces a one-to-one 

alignment, which is equivalent to the Euclidean distance (Shifaz et al., 2021). In 

our experiment, the size of datasets is affordable. Thus, full window dynamic 

time warping is taken to ensure the accuracy of distance measures. 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛𝜋√∑ 𝑑(𝑥𝑖 − 𝑦𝑗)2
(𝑖,𝑗)∈𝜋       (7) 

Let X(t) = {x0, x1 ,… ,xn } and Y(t) = {y0, y1 ,… ,yn } is the time series data with 

n datapoint each. Then xi and yj represent the position of vector form data point 
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from time series X(t) and time series Y(t) respectively, π represents all the 

possible combinations of (i,j), and DTW (X, Y) representing the distance among 

time series X and Y. So in this formulae, the ED is calculated for all matching xi 

and yj. The minimum ED from all points is summed up to obtain the DTW 

distance. DTW have the time complexity of O(nm), where n represents the 

length of time series x and m represents the length of time series y (Senin, 2008; 

Shifaz et al., 2021). Since all the chunks have equal lengths in our experiment, 

the time complexity of DTW can be also stated as O(n2). The process will be 

done with the help of dtaidistance.dtw function in Python, and the algorithm for 

calculating DTW is given below: 

Table 3.4.2: Algorithm of Dynamic Time Warping 

Algorithm 2: Dynamic Time Warping  

 Input: Time series x, time series y 

 Output: Distance between x and y, processing time 

1 Start ← Get current time 

2 𝑛 ← number of datapoints in each time series 

3 For i← 0 to n do: 

     DTW[i,0] ← ∞ 

     DTW[0,i] ← ∞ 

End 

For i← 0 to n-1 do: 

     For j← 0 to n-1 do: 

          DTW[i+1,j+1] ←  |x[i]-y[j]|2 +min(DTW[i,j], DTW[i, j+1], 

DTW[i+1,j]) 

     End 

end 

4 End ← Get current time 

5 Processing time ← Difference between start and end 
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Figure 3.4.2: Sample for Dynamic Time Warping 
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3.4.3 Fast Fourier Transform (FFT) 

Fourier analysis also known as harmonic analysis in a time series is a way of 

function that decomposes the series into a sum of periodic components (Peter 

Bloomfield, 2004). The analysis always be done by using the Fourier transform 

to transform the time series data from the time domain to the frequency domain 

by comparing the fluctuation to the sinusoids. The result is created from the 

transformation also called the spectrum. The sample of transformation is shown 

in Figure 3.4.3. The theorem creates the basic Discrete Fourier Transform (DFT) 

where the formula of transformation is given by (Gupta et al., 2022): 

𝐹(𝑘) =
1

√𝑁
∑ 𝑓(𝑥) ∙ 𝑒−

𝑗2𝜋𝑥𝑘

𝑁𝑁−1
𝑥=0          , 0 ≤ 𝑘 ≤ 𝑁     (8) 

In which, 

{F(k)}: F0, F1,…,FN-1 is the sequence of complex number from frequency data 

{f(k)}: f0, f1,…,fN-1 represent the original time series data. 

N: number of data 

K: sample times of function 

However, the transformations are very tedious and require a lot of calculation. 

To tackle the issue, Cooley and Tukey (1965) discovered a faster algorithm for 

the transformation. By reducing the number of complex multiplication and 

addition, it speeds up the computational complexity of DFT from O(n2) to O(n 

log n) (Cooley and Tukey, 1965; Brigham and Morrow, 1967). For example, 

when n=100, the number of multiplication for DFT is 10000 while FFT only left 

200 multiplications needed. As FFTs have a lower computational complexity, 

this makes them an essential tool for handling big datasets.  
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While FFT is only a tool for data transformation, it shall work with other 

distance measures to compute the distance. Therefore, in our experiment, the 

FFT is performed to transfer data using np.fft.fft built-in function. After we 

obtain the frequency data, two approaches of Euclidean Distance (FED) and 

Dynamic Time Warping (FDTW) are performed to complete a full similarity 

search to ensure the robustness of FFT works in different situations. The 

algorithm to apply FED or FDTW are shown below: 

Table 3.4.3: Algorithm of Fast Fourier Transform 

Algorithm 3: Fast Fourier Transform  

 Input: Dataset in DataFrame (chunks_df) 

 Output: Distance between x and y, processing time 

1 Start ← Get current time 

2 Transform chunks_df to frequency data by FFT 

3 magnitude_spectra ← get the magnitude of frequency data 

4 Calculate Euclidean distance between magnitude spectra 

5 Calculate Dynamic Time Warping between magnitude spectra 

6 End ← Get current time 

7 Processing time ← Difference between start and end 
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3.4.4 Symbolic Aggregate Approximation (SAX) 

Symbolic Aggregate Approximation (SAX) is another well-known distance 

measure in data mining. This framework was proposed by Lin et al.in 2003 to 

compute the distance from the symbolic representation of data. SAX drills the 

concept from Piecewise Aggregate Approximation (PAA) to lower the 

dimensionality of the datasets. The general concept of SAX implementation 

shall begin by dividing the normalized datasets into a few equal-length segments 

and grouping them according to their segment mean. Subsequently, while 

ensuring our datasets satisfy a Gaussian distribution via a normal probability 

plot, we can make SAX discretize the segment into a collection of discrete 

alphabetic symbols depending on the SAX breakpoints search table shown in 

Table 3.4.4. (Lin et al., 2003). The sample of SAX working theory is 

demonstrated in Figure 3.4.4 

Following that, let X and Y become the original time series data with the n signal. 

x and y are the discretised data in alphabetic symbols, and w is the window of 

segment. The distance for SAX is calculated by the given formula Lin et al. 

(2003): 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑋, 𝑌) = √
𝑛

𝑤
√∑ (𝑑𝑖𝑠𝑡(𝑥, 𝑦))2𝑤

𝑖=1        (9) 

where dist(x,y) is the sum of the breakpoint difference between time series X and 

time series Y follows: 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = {
0 , 𝑖𝑓 |𝑟 − 𝑐| ≤ 1

βmax(𝑟,𝑐)−1 −  βmax(𝑟,𝑐), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (10) 

Given r is the numeric value for the alphabetical symbols from x and c is the 

numeric value for the alphabetical symbols from y. For instance, a=1, b=2, c=3 
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etc. While β is obtained from the Table 4. For example, x ={aabc} and y={bcba}, 

the breakpoint distance among them is 0+0+0+0.43=0.43. 

As we can see, SAX is highly dependent on the alphabetical size to decide how 

it discretizes the datasets, the results are easily affected by this factor. 

Theoretically, the alphabetical size, a shall not be too small nor too large, as it 

will produce a meaningless comparison, nor it shall not be too large. The range 

of alphabetical size must be an integer that lies within 2<a<20 (Lin et al.,2003). 

The best alphabetical size will give the highest Tightness of the Lower Bound 

which is the ratio of SAX distance, MINDIST(X, Y) to the Euclidean distance, 

D(X, Y) as shown: 

𝑇𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 =
𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑋,𝑌)

𝐷(𝑋,𝑌)
       (11) 

Therefore, SAX allows n arbitrary time series data reduced to a string of 

arbitrary length w (w<<n) and it serves a lower bound to the Euclidean distance 

while maintaining the quality of the result (He et al., 2020). 

Attached is the algorithm to implement the SAX in this experiment with the help 

of the saxpy packages in Python: 
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Table 3.4.4: Algorithm of Symbolic Aggregate Approximation 

Algorithm 4: Symbolic Aggregate Approximation 

 Input: Dataset in DataFrame (chunks_df) 

 Output: Distance between x and y, processing time 

1 Start ← Get current time 

2 Initialize min_segments to 2 and max_segments to 20 

3 Initialize best_segment to None 

4 For n_segments in range (min_segments, max_segments + 1): 

a. Initialize total_tlb to 0 

b. Initialize value to 0 

c. Initialize distances matrix of size (len(selected)) filled with zeros 

d. Initialize sdist matrix of size (len(selected)) filled with zeros 

e. Set chunk1 to the data from chunks_df corresponding to the first chunk 

f. For i, chunk2_column in enumerate(selected): 

i. Extract the data for chunk2 from chunks_df 

ii. Convert chunk1 and chunk2 to SAX representation with n_segments 

iii. Calculate Euclidean distance between chunk1 and chunk2 

iv. Calculate the minimum distance between SAX representations of 

chunk1 and chunk2 

v. Calculate the Tight Lower Bound (TLB) using the minimum distance 

and Euclidean distance 

vi. Add TLB to total_tlb 

g. If value < total_tlb: 

i. Update value with total_tlb 

ii. Update best_segment with n_segments 

5 Get sdist when n_segments equals to best_segment 

6 End ← Get current time 

7 Processing time ← Difference between start and end 

  

The best segment for both datasets found as 20 via the algorithm given. 
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Table 3.4.4: SAX breakpoints search table 

βi 2 3 4 5 6 7 8 9 10 11 

β1 0 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 -1.34 

β2  0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 -0.91 

β3   0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 -0.6 

β4    0.84 0.43 0.18 0 -0.14 -0.25 -0.35 

β5     0.97 0.57 0.32 0.14 0 -0.11 

β6      1.07 0.67 0.43 0.25 0.11 

β7       1.15 0.76 0.52 0.35 

β8        1.22 0.84 0.6 

β9         1.28 0.91 

β10          1.34 
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Table 3.4.4 Continue: SAX breakpoints search table 

βi 12 13 14 15 16 17 18 19 20 

β1 -1.38 -1.43 -1.47 -1.5 -1.53 1.56 1.59 1.62 1.64 

β2 -0.97 -1.02 -1.07 -1.11 -1.15 1.19 1.22 1.25 1.28 

β3 -0.67 -0.74 -0.79 -0.84 -0.89 0.93 0.97 1 1.04 

β4 -0.43 -0.5 -0.57 -0.62 -0.67 0.72 0.76 0.8 0.84 

β5 -0.21 -0.29 -0.37 -0.43 -0.49 0.54 0.59 0.63 0.67 

β6 0 -0.1 -0.18 -0.25 -0.32 0.38 0.43 0.48 0.52 

β7 0.21 0.1 0 -0.08 -0.16 0.22 0.28 0.34 0.39 

β8 0.43 0.29 0.18 0.08 0 0.07 0.14 0.2 0.25 

β9 0.67 0.5 0.37 0.25 0.16 0.07 0 0.07 0.13 

β10 0.97 0.74 0.57 0.43 0.32 0.22 0.14 0.07 0 

β11 1.38 1.02 0.79 0.64 0.49 0.38 0.28 0.2 0.13 

β12  1.43 1.07 0.84 0.67 0.54 0.43 0.34 0.25 

β13   1.47 1.11 0.89 0.72 0.59 0.48 0.39 

β14    1,5 1.15 0.93 0.76 0.63 0.52 

β15     1.53 1.19 0.97 0.8 0.67 

β16      1.56 1.22 1 0.84 

β17       1.59 1.25 1.04 

β18        1.62 1.28 

β19         1.64 
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3.4.5 Matrix Profile (MP) 

In comparison to the other methods, the Matrix Profile is a relatively fresh 

distance measure recently proposed by Yeh et al. in 2016. Ideally, Matrix Profile 

offers a novel method for determining the separation between two data sets via 

a sliding window technique. First, a sliding window of size m will be created to 

provide insight into any inherent structure of the data. This is because any 

abnormal pattern or anomalies will result in a high distance value that can warn 

us of this situation. In this instance, we assume M is 1000 out of 10000 data 

points in each chunk. For each subsequence created by the sliding window, the 

Matrix Profile computes the nearest neighbours within the time series by 1NN 

and stores in a matrix called similarity join set JAB (Yeh et al., 2016).  Given that 

A and B ={T1,m, T2,m,…, Tn-m+1,m}, is all the possible sub-sequences of T obtained 

from the sliding window from time series X and Y respectively, in which n 

represent the length of time series X and m is the length of time series Y. 

Then, Pairwise Euclidean Distance is used to calculate the windowed sub-

sequence's distance within the join set (Yeh et al., 2016). The distance obtained 

is denoted by PAB as the matrix profile distance. To stop the pointless matches, 

an exclusion zone is also created at the same time. Finally, the Matrix Profile is 

constructed and the minimum value is changed in the distance profile. (Yeh et 

al., 2016). By computing the distance layer by layer, we can somehow reduce 

computational complexity and make it insensitive to the noise. 

In fact, Matrix profiles contain various algorithms such as STAMP, STOMP, 

SCRIMP and others. Although all of them utilize the same concept as we 

discussed, their steps of implementation might differ. In our experiment, mpdist 

was selected to become the algorithm we employed in this study due to its 
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strength of being able to support invariances to amplitude, offset, phase, order, 

linear trend, and stutter also robust to various types of data irregularities and 

noise (Gharghabi et al., 2018). 

The highlight of mpdist is that it does not stop once we obtain the matrix profile 

value (PAB), but a novelty step is added on by combining the distance profiles 

PAB and PBA to become a join matrix profile, PABBA. Lastly, the distance measure 

considers the k-th smallest value in PABBA, where k=0. As a result, it will only 

yield a time complexity of O(SubseqNum × m) (Gharghabi et al., 2018).  

Attached is the algorithm of mpdist implementation in this experiment. The 

packages of matrixprofile. algorithms can be found in Python for the 

implementation. 

Table 3.4.5: Algorithm of Matrix Profile (mpdist) 

Algorithm 5: mpdist 

 Input: Dataset in DataFrame (chunks_df) 

 Output: Distance between x and y, processing time 

1 Start ← Get current time 

2 Initialize an empty dictionary mpdist_distances 

3 For each pair of chunk columns chunk1_column and chunk2_column in 

selected: 

     a. If chunk1_column is not equal to chunk2_column: 

          i. Extract the data for chunk1 and chunk2 from chunks_df 

          ii. Calculate the MPdist distance between chunk1 and chunk2 with 

a window size of 1000 

          iii. Store the distance in the mpdist_distances dictionary with key 

as 'chunk1_column - chunk2_column' 
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4 Convert the mpdist_distances dictionary into a DataFrame 

mpdist_distances_df with column name 'Distance' 

5 End ← Get current time 

6 Processing time ← Difference between start and end 

 

 

3.5 Experimental Flow 

 

Figure 3.5: Progress Flow 

In this experiment, we prepared our dataset as introduced in section 3.1. The 

distance between Chunk 1 and the other Chunk is calculated by using the 

distance measure we described in section 3.3. The distance obtained acts as a 

benchmark, which is when there is no disruption, the actual value that distance 

measure should obtain. At the same time, Chunk 1 has been added with four 

cases of scenario independently, noise, frequency shifting, amplitude scaling, 
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and stage change as stated in section 3.2. The computation of the distance 

between Chunk 1 data with the other Chunks is repeated once after adding the 

variation using the same distance measure. The performance of distance measure 

under the effect of the scenario is present by two measurements: 

1. Efficiency: Efficiency in this case refers to how fast the distance 

measures can return an output. It is often related to the time complexity 

of distance measures. The processing time is determined in this 

experiment to represent its efficiency. The shorter the processing time, 

the more efficient the distance measure is. 

2. Accuracy: In this experiment, we prefer distance measures that are 

insensitive to the scenario, in which the results are not easily affected by 

surrounding issues. Thus, the accuracy indicates how the later distance 

is different from the actual distance. Here, we use Mean Absolute 

Percentage Error (MAPE) for the accuracy measurement. MAPE is a 

measurement to identify the magnitude of error produced for a model in 

percentage with the given formula: 

𝑀𝐴𝑃𝐸 =  ∑ |
actual value−Predicted 𝑉𝑎𝑙𝑢𝑒

actual 𝑣𝑎𝑙𝑢𝑒
|     (12)           

where the actual value represents the distance calculated from the 

original standardized data where the predicted value represents the 

predicted distance if variation occurs. As for our prediction, if MAPE is 

high, represent the distance measures are sensitive to the variation and 

create high leverage with the original data. Else, the distance measure 

performed stably in the variation. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this experiment, the accuracy and efficiency of a total of six similarity 

measures are defined in the four scenarios, which are stage change, noise, 

amplitude scale, and frequency shift. The six similarity measures are Euclidean 

Distance (ED), Dynamic Time Warping (DTW), Fast Fourier Transform with 

Euclidean Distance (FED), Fast Fourier Transform with Dynamic Time 

Warping (FDTW), Symbolic Aggregate Approximation (SAX), and Matrix 

Profile (MP). The accuracy is defined by using MAPE in section 4.2 while 

efficiency is determined by computing the processing time in section 4.3.  

 

4.2 Robustness Test (Accuracy) 

4.2.1 Frequency Shift 

To determine the effect of frequency shifting, the Chunk 1 standardized data is 

delayed by n pieces of data. Originally, Chunk 1 held data with index 0 to 9999, 

now Chunk 1 data are holding data with index n to 9999+n. For an easily 

understood purpose, the n is named as frequency shifted level, which is the 

number of data that have shifted. To study the robustness of distance measure 

thoroughly, the MAPE is calculated in five variations of frequency shifted level, 

which are 200, 400, 600, 800 and 1000 respectively. The line chart below 

illustrates the performance of six distinct similarity measures across varying 

frequency shifted levels (X-axis) based on Mean Absolute Percentage Error 

(MAPE) values (Y-axis). Each line corresponds to a specific distance measure, 

as identified by the color-coded legends. 
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Figure 4.2.1: Graph of Frequency Shift Accuracy 

Table 4.2.1: Average MAPE for Frequency Shift 

Distance 

Measure 

ED DTW FED FDTW SAX MP 

Average 

MAPE 

3.090980 1.234967 2.348933 1.959600 

 

1.656800 

 

0.458637 

 

In frequency shift, all distance measures perform well when the data points are 

shifted by up to 1000. The overall MAPE performance of frequency shifting for 

all measures is below 5%. Yet, there is no obvious pattern in the accuracy for 

different levels of frequency shifted across distance measures. However, Matrix 

Profile is found to perform well in frequency-shifted data when the frequency 

shift level is below 600. After that, the MAPE value for the Matrix profile has a 

slight increase but still has the lowest error rate. Euclidean distance performs the 

worst in frequency shifting. The performance of FED and FDTW is close but 

FDTW performs better than FED in this case. A special case is that FDTW 

experiences a significant drop in MAPE value when n=400. SAX maintains a 



49 
 

relatively consistent MAPE value across all frequency shift levels, ranging 

between 1% to 2%. Also, while dynamic time warping performs better than 

Euclidean distance, the MAPE of DTW increases obviously while the frequency 

shift level increases. On average, the accuracy ranking of MAPE measures 

should be MP > DTW > SAX > FDTW > FED > ED. 
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4.2.2 Amplitude Scale 

In amplitude scaling, the original chunk 1 standardised data has been enlarged 

by an amplitude scaling factor to demonstrate the scenario. The scaling factors 

of 1.5, 2, 2.5, and 3 are applied respectively to assess the performance of distance 

measures at various levels of enlargement. The line chart below illustrates the 

performance of six distinct similarity measures across different levels of 

enlargement (X-axis) based on Mean Absolute Percentage Error (MAPE) values 

(Y-axis). Each line corresponds to a specific distance measure, as identified by 

the color-coded legends 

.  

Figure 4.2.2: Graph of Amplitude Scale Accuracy 

Table 4.2.2: Average MAPE for Amplitude Scale 

Distance 

Measure 

ED DTW FED FDTW SAX MP 

Average 

MAPE 

1.958653 5.779699 0.331957 0.498645 0.079410 3.993286 
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In the amplitude scale, the MAPE of all distance measures increases gradually 

while the amplitude scale factor increases. Although there is a slight increase in 

MAPE, the performance of SAX, FED and FDTW is considered stable with low 

MAPE values all of the time. Meanwhile, the insensitivity of distance measures 

is followed by ED, MP and DTW. The impact on ED is most significant with 

higher amplitude scaling factors. The sensitivity of distance measures for all 

amplitude scaling factors constantly follows the order of 

SAX>FED>FDTW>ED>MP>DTW. 
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4.2.3 Stage Change  

To create a stage change data, the first chunk of standardized data has been 

added by a constant value. The constant value acts as the stage change factor to 

identify the distance with other chunks. The distance is compared to the original 

distance obtained by using MAPE to investigate the sensitivity of the distance 

measures when stage change occurs. The experiments are conducted with five 

different stage change factors (0.2, 0.4, 0.6, 0.8, and 1) to assess how distance 

measures perform under various conditions. The line chart below shows how six 

different similarity measures perform under different stage change factors (X-

axis) using Mean Absolute Percentage Error (MAPE) values (Y-axis). Each line 

corresponds to a specific distance measure, as identified by the color-coded 

legends. 

 

Figure 4.2.3: Graph of Stage Change Accuracy 
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Table 4.2.3: Average MAPE for Stage Change 

Distance 

Measure 

ED DTW FED FDTW SAX MP 

Average 

MAPE 

10.198166 19.31905 

 

3.10839 

 

1.171329 

 

1.034995 

 

3.52E-

14 

 

The stage change accuracy graph revealed that as the stage change factor in the 

data increases, the error percentage (MAPE) also increases for all distance 

measures. However, MP performed steadily and was the best in all cases. At the 

same time, SAX has a result very close to the MP. FFT is also insensitive to 

stage change. FFT, FED, and FDTW have slightly higher MAPE values 

compared to SAX and MP. Besides, ED performed poorly in this case while 

DTW performed the worst. Also, DTW and ED are claimed that very sensitive 

to stage changes, where the MAPE gradually increases as the stage change factor 

increases. The average MAPE for distance measures consistently ranks in the 

order of MP > SAX > FDTW > FED > ED > DTW. 
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4.2.4 Noise 

White noise is introduced into the original Chunk 1 standardized data to 

illustrate how sensor data can be affected by noise. The white noise created is 

followed by 0 mean and a constant standard deviation. This section examines 

how distance measures perform at various standard deviation levels. The 

standard deviations considered are 0.1, 0.15, 0.2, and 0.25. The following line 

chart shows how six different similarity measures perform as the standard 

deviation varies (X-axis) using Mean Absolute Percentage Error (MAPE) values 

(Y-axis). Each line corresponds to a specific distance measure, as identified by 

the color-coded legends. 

 

Figure 4.2.4: Graph of Noise Accuracy 

Table 4.2.4: Average MAPE for Noise 

Distance 

Measure 

ED DTW FED FDTW SAX MP 

Average 

MAPE 

0.772869 

 

24.26806 

 

0.65666 

 

0.981739 

 

0.839368 

 

54.28727 
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In noise-affected data, the Fast Fourier transform (FED and FDTW), Symbolic 

Aggregate Approximation and Euclidean Distance show consistent performance 

as the standard deviation increases These four methods exhibit high insensitivity 

to white noise when the standard deviation is below 0.25. In contrast, Matrix 

Profile and dynamic time warping are responsive to any existing noise. With a 

higher standard deviation, the error percentage rises. Among them, Matrix 

Profile performs the worst in the presence of Noise. The accuracy is followed 

by DTW, FDTW, SAX, ED and FED. 
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4.2.5 Time Complexity 

The processing time for Python to run out the distance for each distance measure 

in different situations has been summarized. Generally, the performance of the 

distance measures is performed steadily in all situations with very little 

fluctuation. However, when the data has been scaled by amplitude, the 

processing time for DTW, FDTW, SAX, and MP has increased significantly.  

Besides, the processing time for ED and FED are very short indicating the 

highest efficiency. The efficiency is then followed by DTW and FDTW. In this 

case, we found that the performance of ED and FED also DTW and FDTW are 

very close. This might claim that FFT may not significantly affect the processing 

time in this case and its performance depends on the distance measures 

accompanied. While MP requires a longer time compared to ED, DTW, FED 

and FDTW, it however takes much shorter time compared to SAX. Also, the 

processing time for MP falls within the range of 26s to 40s to compute 70000 

data points. This is still reasonable, and the method still holds high efficiency. 

However, SAX has a processing time that differs hugely compared to the other 

distance measures and proves that the method lacks efficiency. In summary, the 

efficiency of distance measures is followed by the order of ED> FED > DTW > 

FDTW> MP> SAX. 



57 
 

Table 4.2.5: Average Processing Time 

 Distance Measures 

Average Processing 

Time (s) 

ED DTW FED FDTW SAX MP 

Stage  

Change 

0.003523 9.673528 0.006259 9.801108 1291.142947 26.93634 

Noise 0.004151 9.992925 0.003905 10.84566 1406.09986 27.85925 

Frequency Shifting 0.000761 9.815669 0.003126 10.01978 1291.14295 27.30177 

Amplitude Scaling 0.000756 14.14587 0.003251 14.45454 1321.69096 39.29264 
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CHAPTER 5 

CONCLUSION 

5.1 Summary of Research 

In this paper, we tackle the issue of calculating the efficiency and accuracy of 

several well-known distance measures in various scenarios, such as the SAX, 

DTW, FFT, and ED. The scenario includes time shift, amplitude scale stage 

change and noise. Based on the result, the MP performs best in frequency shift 

and amplitude scale scenarios but shows poor performance in the presence of 

white noise. DTW, FED, FDTW, and ED yield similar results when white noise 

is present. SAX is recommended to select when there is a stage change present 

in the data. Nevertheless, ED is easily influenced by frequency shifting, whereas 

DTW struggles with stage-changed data and data with amplitude scale. For 

maximizing efficiency in distance measures without compromising accuracy, 

ED may be the optimal selection. When considering both efficiency and 

accuracy, MP provides substantial competitive advantages over most other 

distance measures. These results are applicable to the majority of large datasets 

and can serve as a valuable reference for determining the distance measures to 

be employed. 
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5.2 Significance and Implication of Study  

This study consolidates findings from prior research to analyze distance 

measures across various categories and scenarios. The empirical finding in this 

study provides a new understanding of the strengths and weaknesses of distance 

measures in different scenarios. Overall, this study reinforces the importance of 

choosing the most appropriate distance measure based on specific situations, 

aiding researchers in their work. The choice of distance measures is relevant not 

only in manufacturing but also in other fields that deal with processing extensive 

time series data. This study offers insights that could optimize outcomes in 

practical applications. 
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5.3 Limitations and Recommendations 

There are a lot of distance measures discoveries by researchers. This study is 

only focusing on the performance of limited distance measures. One limitation 

is that other distance measures may outperform the selected ones. The paper 

suggests a methodology selection based on the chosen measures. Additionally, 

this study focuses solely on comparing datasets of the same length and faces 

challenges related to data length requirements. Furthermore, the study's findings 

are limited to single-dimensional datasets and do not extend to multi-

dimensional datasets. As an immediate expansion, additional circumstances in 

which subsequent research will examine the performance of distance measures 

for datasets with uneven lengths and multi-dimension could be considered. 

Additionally, expanding the comparison by including more distance measures 

could offer valuable insights for future studies. 
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ABSTRACT  

Abstract. In the domain of vibration analysis, precise evaluation of similarity among sensor 

data is crucial for various applications ranging from fault detection to structural health 

monitoring. Time series similarity search is a method used to identify the identical pattern 

within two sets of time series data, finds widespread utility in clustering, anomaly detection, 

and forecasting. In real-world scenarios, vibration data are often vast, intricate, and noisy, with 

adjustments in time, amplitude, and phase shifting direct influence on search outcomes. 

Through a systematic evaluation, various distance measurement methods including Euclidean 

distance, Dynamic Time Warping, Fast Fourier Transform, Symbolic Aggregate 

Approximation, and Matrix Profile are performed under diverse conditions such as frequency 

shifting, amplitude scaling, state change, and noise. The comparative study encompasses not 

only quantitative assessments of accuracy but also considerations of computational efficiency 

and robustness. The findings reveal Matrix Profile generally outperforms classic measures like 

Euclidean distance, Dynamic Time Warping, and Fast Fourier Transform in accuracy, but 

performs poorly compared to Symbolic Aggregate Approximation. While Matrix Profile 

exhibits shorter computational time than Symbolic Aggregate Approximation, it slightly 

extends beyond other classic measures. Thus, Matrix Profile presents competitive advantages 

among distance measurement methodologies. By providing a comprehensive examination of 

similarity measurement techniques, this study equips practitioners with valuable insights for 

informed decision-making in vibration sensor data analysis, ultimately contributing to 

advancements in fault diagnosis, condition monitoring, and predictive maintenance in various 

engineering domains. 

Keywords: Vibration sensor data, Similarity measurement techniques, Comparative 

analysis 
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