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ABSTRACT 

 

Multi-Agent Systems (MAS) facilitate complex systems by enabling self-

governing agents to collaborate towards common goals. Within MAS, 

coverage control plays a vital role in optimizing agent deployment for area 

coverage. Hence, this research addresses the development and evaluation of a 

Three-Dimensional (3D) coverage control algorithm for Multi Unmanned 

Aerial Vehicle (MUAV). This project aims to model and simulate a group of 

quadrotors for area coverage in 3D space with the objectives of reviewing 

existing MUAV coverage methods, algorithm development, and assessing 

computational load, convergence, path length, coverage quality, and scalability 

in both Two-Dimensional (2D) and 3D spaces. The study begins with a 

literature review categorizing coverage problems into barrier, blanket, and 

sweeping coverage, alongside different coverage control strategies such as 

centralized, decentralized, and hybrid approaches. The transition from 2D to 

3D algorithms is highlighted as a contemporary trend, as 2D coverage 

algorithms are sufficient for simple coverage tasks but lack the ability to 

handle complex coverage tasks. The Multi-step Broadcast Control (MBC) 

scheme emerges as a key reference due to its effectiveness in scalability and 

computational efficiency. This study proposes a 3D coverage control 

algorithm to address complex real-world scenarios, wherein the 3D control 

algorithm will be developed based on the 2D MBC scheme. The performance 

of the transitioned 3D algorithm is evaluated against the original 2D MBC 

algorithm in terms of computational load, convergence analysis, path length, 

coverage quality, and scalability. Results indicate that while the 3D algorithm 

exhibits higher computational load, it surpasses the 2D algorithm in 

convergence analysis and path length, maintaining consistent coverage quality 

and scalability. Objectives of this project are achieved by reviewing existing 

coverage control methods, developing, and evaluating the proposed 3D 

coverage control algorithm, demonstrating its effectiveness, and potential 

applicability in real-life scenarios. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Multi-Agent Systems (MAS) offer a robust framework for designing and 

modelling complex systems, where multiple self-governing agents interact and 

cooperate to achieve mutual objectives (Wooldridge, 2011). Within a MAS, 

each agent possesses unique knowledge, skills, and decision-making 

capabilities, empowering them to function both independently and 

collaboratively to resolve challenges and navigate in dynamic environments. 

Agents within a MAS can display a wide range of behaviours, 

communication patterns, and strategies, enabling them to adapt and interact 

with other agents in a flexible and dynamic manner. This adaptability renders 

MAS particularly suitable for real-world applications, where uncertainties, 

complexities, and the necessity for cooperation and coordination are prevalent. 

As MAS research advances, it has led to the development of sophisticated 

algorithms, negotiation protocols, and decision-making mechanisms, fostering 

agent collaboration, information sharing, and collective problem-solving. 

Additionally, the study of MAS provides valuable insights into the emergent 

behaviours and system-level phenomena that arise from the interactions of 

individual agents, illuminating complex systems that may be challenging to 

comprehend using traditional reductionist methods. 

The versatility and efficacy of MAS have made it a favoured approach 

for addressing a wide spectrum of problems in diverse domains, including 

robotics, artificial intelligence, economics, transportation, and social sciences 

(Jennings, 2000). By capitalizing on distributed intelligence and coordination 

among agents, MAS is equipped to tackle tasks that may surpass the 

capabilities of individual agents or traditional centralized systems in term of 

efficiency, fault tolerance, scalability, enhanced problem solving, and 

flexibility as well as adaptability. In MAS, agents can separate tasks and work 

in parallel, leading to higher efficiency with shorter execution time since the 

system can settle numerous objectives simultaneously. Implementation of 

MAS can improve the robustness of unmanned vehicles by ensuring smooth 
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operation flow, where the other agents will continue the function or replace the 

agents that encounter issues or fails. Besides, scalability of MAS allows the 

overall system to scale up to fit with the increase demand due to the 

complexity and enhanced problem solving, as increasing number of agents 

allow the system to explore different solutions, resulting in near optimal 

results. Multiple agents can collaborate and coordinate their actions in MAS, 

such as combining and coordinating agents with different abilities, allowing 

the system to handle complex tasks. Decentralization is discovered with the 

exploration of MAS, where multiple agents are in decentralized control, 

greatly reduce the computational burden of global central controller (Jiménez 

et al., 2018). 

Usually, MAS will be implemented in unmanned vehicles. There are 

several types of unmanned vehicles, and each is designed for specific tasks 

and applications. The type of unmanned vehicle mainly can be categories as 

Unmanned Ground Vehicles (UGVs), Unmanned Underwater Vehicles 

(UUVs), Unmanned Aerial Vehicles (UAVs), and Unmanned Surface 

Vehicles (USVs).  

Coverage control is a fundamental concept in robotics and autonomous 

systems, aiming to optimize the deployment and movement of agents to 

achieve efficient and comprehensive coverage of a given area or region 

(Cortés et al., 2004). The objective of coverage control is to control an agent 

or multiple agents to ensure the entire target space is covered to perform 

exploration, monitoring, and network coverage supply tasks in a coordinated 

manner. Coverage controls are widely used nowadays in various domains such 

as unmanned vehicles, environmental and disaster monitoring, robotics, 

agriculture, and surveillance. 

The research and development of coverage control began in the early 

2000s (Tan and Zheng, 2013). It has undergone significant advancements 

lately and become a pivotal area of research in robotics and autonomous 

systems. The challenges of the research fall in coverage control falls in various 

factors such as complexity of the target area, capabilities and mobility of 

agents, real-time adaptation to dynamic environmental conditions, as well as 

the presence of static and dynamic obstacles. To this day, fellow researchers 

are still trying their best to developed sophisticated algorithms to improve its 
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optimization and coordination abilities to achieve comprehensive coverage 

efficiently. 

 

1.2 Importance of the Study 

In this era of industry revolution 4.0, the relentless advancement of technology 

has led to remarkable breakthroughs in various industries, especially in 

automation and robotics. As a result of the significant advances made in 

automation and robotics, Unmanned Aerial Vehicles (UAVs) can accomplish a 

variety of tasks in a more effective, efficient, and secure manner (Jayanthi et 

al., 2023). Hence, research on the control of UAVs is widely done by the 

researcher and is still ongoing due to its profound impact on various 

applications that required data gathering, surveillance, and monitoring. Not 

only that, fellow researchers also further improve the control strategy by 

developing algorithms that allow controllers to autonomously control multiple 

UAVs. 

 Coverage control is a control strategy and coordination mechanism 

for directing single or multiple agents to cover a given space with the optimum 

performance, ensuring the space or area of interest is fully under covered by 

the agents (muro, n.d.). The coverage control can be applied to either Two-

dimensional (2D) or Three-dimensional (3D) regions in space. This technique 

can be implemented in various field such as environmental monitoring, 

agriculture, disaster response, infrastructure inspection, and more. Multi 

Unmanned Aerial Vehicle (MUAV) equipped with sensors can efficiently 

perform task such as surveillance, data gathering, and monitoring. 

 As mentioned earlier, MUAV can efficiently perform a variety of 

tasks, but without a proper and robust control algorithm, MAS cannot optimize 

coordination among agents to perform required tasks. Thus, a 2D algorithm 

might not be as robust as a 3D algorithm for MAS in most coverage tasks. A 

3D coverage control enables MUAV that are equipped with multiple sensors 

to capture data with varying altitudes and providing a more holistic view of 

ecological control. In a search and rescue operations, a 3D algorithm allows 

MUAV to search through complex terrains, hazardous environments, assess 

the level of destruction due to disaster as well as to locate the survivors. The 

ability to cover with different altitudes minimizes the risk of rescuers and 
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improve the success probability while reducing response time. Moreover, a 3D 

algorithm can adjust the altitude of MUAV for data collection from multiple 

layers of environments, providing a comprehensive understanding of 

ecosystems that allows researchers to study the patterns of ecosystems. 

Furthermore, coverage control in 3D space provides the room for 

improvement, as the real-life situation is in 3D space. Hence, a 3D coverage 

control will comply with the situation tackled, whereas 2D coverage control is 

limited. 

 In short, developing a coverage control algorithm in 3D space 

enhances data collection and decision-making by providing deeper insights, 

improving operational efficiency, and enabling the tackling of complex tasks 

and environments. 

 

1.3 Problem Statement 

Multi Unmanned Aerial Vehicle (MUAV) face challenges during Two-

dimensional (2D) static coverage tasks, as coverage control to achieve optimal 

path planning in a 2D environment can be complex. This involves efficient 

coverage patterns, kinematic constraints of the agents, and coordination among 

MUAV to avoid collisions. 

 The data processing of a MUAV system is important as it transforms 

raw sensor data collected by the Unmanned Aerial Vehicles (UAVs) into 

actionable information and insights. The process of data processing involves 

various steps such as filtering, fusion, analysis, and interpretation to extract 

valuable information from the collected data. Hence, real-time data processing 

impacts the output quality, while slow data processing will affect the 

robustness of the MUAV system in performing coverage tasks. Speed in 

decision-making is challenging as it can perform flight path adjustion to 

quickly avoid collisions and overcome the limitation in maneuverability of 

UAVs. Hence, it is important to ensure the algorithm developed will have a 

lower computational cost as well as higher convergence value in optimization 

as it will causes the system to have a slow reaction time and low position 

accuracy which will lead to inequality in coverage control. 

 Furthermore, an algorithm for coverage control that uses 2D as the 

environment boundary is not realistic, as the real world is in Three-
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dimensional (3D). Transitioning from a 2D algorithm to a 3D algorithm for 

multi-UAV coverage control is essential, as it could solve several challenges 

that are specific to 2D scenarios. For example, MUAV's view coverage is 

restricted to the horizontal plane in 2D space, limiting obstacle avoidance to 

the horizontal plane. Transitioning from 2D to 3D allows MUAV to navigate 

more efficiently, safely, and smoothly in cluttered environments with varying 

object altitudes. 

 Next, transitioning from 2D to 3D provides more comprehensive 

environmental sensing. 2D restricted the capabilities to detect certain 

environmental features or hazards such as complex structures, terrains, forests, 

buildings, and mountains. 3D environment provides adaptability to cover 

complex environment for coverage control and it allows the UAVs to have the 

ability to detect object with full freedom of movement instead of just object 

with a horizontal motion. Lastly, the transition from a 2D algorithm to a 3D 

one is crucial, as it will reduce the overlapping paths that cause redundant 

coverage. 3D environment provides platform for the MUAV to optimize their 

trajectories and altitudes to reduce overlap issue and improve coverage 

efficient. The algorithm cannot be said to be complete and precise if it is not 

model in 3D environment due to the distance travel will not be Euclidean 

distance which is the optimal distance for an agent to travel from initial spot to 

targeted spot. When the 2D coverage control algorithm is implemented in real 

world applications, the agents will have to depart with raising altitude to 

certain height then only starts to perform coverage task to travel to the 

assigned location. This against the objective for Multi Agent System (MAS) in 

coverage control which the agents will perform task in an optimal way. The 

route for agents to travel is not the shortest pathway. Modeling and developing 

the algorithm in 3D will solve the issues that arise, as 3D allows the agents to 

optimize their route travel in an optimal way, which is based on the Euclidean 

distance. 

 Moreover, a 2D algorithm cannot be as efficient as a 3D algorithm 

when implemented in a real-life application. If a 2D algorithm for MUAV 

coverage control is implemented in real life, the MUAV system will require all 

the agents to raise their altitude at the same time in the form of a horizontal 

plane. To raise the MUAV to a desired altitude, a large and empty open area 
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are required for the departure of MUAV without any obstacle when rising 

altitude. This is due to the control limitation of 2D algorithm which does not 

have the ability to adjust the dimensions of 3 axis. Therefore, a 3D algorithm 

is important, as it provides better coverage control for the MUAV system, 

allowing the MUAV to depart from complex environments where obstacles 

exist. 

 Besides, there are many limitations to a 2D coverage control 

algorithm, as it limits the details of sensor capabilities and the ability to deal 

with complex and challenging environments. A 2D algorithm decreases the 

adaptability of the MUAV system to changing conditions, whereas a 3D 

algorithm can be extended by adjusting the MUAV's altitude for better 

efficiency and stability. A 2D algorithm will have a higher deviation when 

implemented in a real-life application, as the model used for the 2D algorithm 

does not exactly replicate the circumstances of real-world operations. Dynamic 

tasks are limited in 2D, as the MUAVs are unable to adjust their altitude to 

perform tasks of varying importance in the environment. Lowering the altitude 

of UAVs allows for detailed inspection, while some other UAVs with higher 

altitude cover a broad area. 

 

1.4 Aim and Objectives 

Multi Unmanned Aerial Vehicle (MUAV) team are beneficial for number of 

tasks including providing coverage for monitoring and mapping. This project 

aims to model and simulate a group of Unmanned Aerial Vehicles (UAVs) to 

perform an area coverage task with smooth motion planning to overcome the 

kinematic constraints of UAVs under 3D space. The UAVs should 

intelligently allocate their efforts evenly while maintaining collision-free 

trajectories. The simulation should demonstrate the UAVs’ team coordination 

in a preset 3D environment, smooth motion of the MUAV while moving to the 

allocated spot. To review MUAV coverage control methods in Two-

dimensional (2D) space and Three-dimensional (3D) space. 

• To review existing MUAV coverage control methods. 

• To develop a 3D coverage control algorithm for static coverage task. 
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• To evaluate the performance of the algorithm in 2D and 3D space in 

terms of computational load, convergence analysis, path length, 

coverage quality, and scalability. 

 

1.5 Scope and Limitation of the Study 

To study the control algorithm to perform static coverage task for Multi 

Unmanned Aerial Vehicle (MUAV) in Three-dimensional (3D) environment is 

the scope of this study. The performance of the coverage control in both Two-

dimensional (2D) and 3D will be evaluated based on the computation cost and 

the distance travelled by each agent. Since there will be missing dimension for 

2D when compared to 3D, the distance travelled by each agent in 2D will 

include the rising altitude distance to ensure that the comparison is done fairly 

under the same circumstances. 

 Constructing a Multi Agent System (MAS) to conduct the experiment 

is very challenging; this project will mainly focus on the development of the 

coverage control algorithm and simulate the operation using MATLAB from a 

defined departure point to the assigned locations for each agent. Since this 

project will mainly focus on the development of coverage control algorithm 

for MUAV in 3D space, the MAS will be designed as a homogeneous system 

instead of a heterogeneous system where all the agents involved will be the 

same, which is same characteristics of MUAV with quadrotor as the type of 

vehicle. This is because a heterogeneous system involved multiple various 

type of unmanned mobile vehicles cooperating with each other, which will 

increase the complexity and difficulty of this project. Additionally, the 

simulation environment is assumed to be an empty open-air space where there 

will be no static or dynamic obstacles. The environment is a self-defined 

environment which it is assumed to be a known environment where the 

departure points and the target locations for the MUAV are defined before the 

operation of coverage starts. Since it is assumed to be an empty open-air space, 

obstacle avoidance for the MUAV will be ignored during the algorithm 

development phase. However, the developed coverage control algorithm shall 

have the ability to perform smooth operation of coverage task without 

collision between agents. 
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1.6 Contribution of the Study 

This project outlines existing coverage control methods and briefly describes 

how they are categorized. The existing coverage control methods will be 

evaluated, and a control algorithm will be selected as the main reference for 

developing Three-dimensional (3D) coverage control algorithms. The aim of 

this project is to develop a 3D coverage control algorithm that maintains or 

exceeds the performance benchmarks set by the original algorithm. The 

developed 3D coverage control algorithm will serve as a framework for other 

researchers to implement additional features related to coverage in 3D, 

enriching the algorithm for deployment in real-life scenarios. 

 

1.7 Outline of the Report 

In this report, there will be 5 chapters of content in this final year project 

report. The focus of Chapter 1 will be the introduction of Multi Agent System 

(MAS) in coverage control. Chapter 2 will comprise the literature review, 

encompassing an examination of existing research to gain insights into the 

coverage problem, coverage control, and methods for performing coverage 

tasks. Chapter 3 will provide a detailed explanation of how the selected 

method achieves the project's objectives. Chapter 4 will focus on the 

performance evaluation of the developed Three-dimensional (3D) algorithm, 

with a brief discussion on its application. Chapter 5 will serve as the 

conclusion for the report, where future work that can be implemented in the 

project will also be discussed. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Multi Unmanned Aerial Vehicle (MUAV) have gained significant attention in 

recent years for their diverse applications, including surveillance, monitoring, 

search and rescue, agriculture, and environmental data collection. While a 

single Unmanned Aerial Vehicle (UAV) can undoubtedly offer valuable 

capabilities, it inevitably encounters limitations when tasked with complex 

missions and extensive coverage requirements. To address these constraints 

and enhance mission effectiveness, the deployment of MUAV becomes 

imperative. When considering the deployment of a substantial number of 

vehicles concurrently, it becomes evident that this arrangement forms a Multi 

Agent System (MAS). While the concept of leveraging numerous agents holds 

immense potential for various applications, it introduces numerous sets of 

significant challenges related to the efficient and cost-effective control of such 

a fleet.  

The main problem when dealing with MAS is the coordination and 

control of multiple agents operating within the system simultaneously. It is an 

intricate task to control each individual agent in a well-coordinated manner, 

ensuring that the agent achieve the intended objectives while maintaining 

optimal resource allocation. The complexity of this task escalates as the 

number of agents within the MAS increases, handling more agents is harder 

than handling fewer. Scaling up in MAS does not equate to being able to 

handle more agents (Durfee, 2004). There is increment in complexity as the 

inherent trade-off between the number of agents deployed and the control 

overhead required for their effective operation. The scalability of the control 

algorithms and decision-making processes becomes an essential issue in the 

context of a large-scale MAS. Some developed control algorithms might not 

be suitable for large scale MAS as when the number of agents increases, the 

computation cost and efficiency will vary differently according to different 

algorithm. Besides, the communication within the MAS is important to ensure 

efficient operation. Establishment of a robust communication networks and 
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real-time data exchange mechanism can greatly reduce the computational cost 

of a MAS. 

A coverage control system for MAS places its emphasis on efficiently 

organizing the movement of multiple dynamic agents to ensure adequate 

sensor coverage within a specific bounded area(Kennedy et al., 2019). 

According to (Kennedy et al., 2019), the primary objective of the optimal 

coverage problem is to strategically position these agents in a manner that 

minimizes a designated coverage cost. Typically, this coverage cost is 

determined with reference to a density function, which is employed to steer the 

network towards desired arrangements. Cooperative in MAS can be classified 

into homogeneous and heterogeneous and the cooperative between agents is 

important as it shows the cumulative impact of combining 1 and 1 exceeds the 

value of 2. 

In the world of MAS, homogeneous groups of agents represent agents 

that have the same actions available, and it does not care which agent will 

perform the action given, but only concern on how many agents will perform 

the action given (Pedersen and Dyrkolbotn, 2013).  

In conjunction, heterogeneous groups of agents indicates that the 

system achieve its objectives in a way that the tasks are done collaboratively 

from different agents having different roles (Lee and Shim, 2022). 

To simplify further, a MAS will be classified based on the agents’ 

abilities. However, In the realm of Multi-Agent Reinforcement Learning 

(MARL) systems, it's important to note that MAS can exhibit both 

homogeneity and heterogeneity. According to (Fernandez et al., 2021), 

research delves into the consequences of employing both homogeneous and 

heterogeneous strategies within a MARL framework. In the context of MARL, 

the agents initially possess uniform capabilities, but they adapt to become 

heterogeneous. The results obtained from employing either uniform or diverse 

learning strategies are markedly distinct from those of agents adhering to fixed 

strategies, and these distinctions are precisely outlined through analytical 

definitions. 

In the realm of coverage control, 2 distinct approaches have emerged, 

each with its own set of methodologies and characteristics. These 2 primary 

types of coverage control include Coverage Path Planning (CPP) and static 
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coverage control. Static coverage control which is one of the fundamental 

strategies for optimizing the spatial coverage of autonomous systems, can be 

further categorized into 2 category which is centralized and decentralized 

coverage control. These classifications represent how the static coverage 

control strategy is executed and how decisions are made within the system.  

 

2.2 Coverage Control Methods 

Coverage control can be classified as Coverage Path Planning (CPP) and static 

coverage control. Static coverage control can be further classified into 

centralized coverage control and decentralized coverage control. The details of 

the control approaches used in the coverage task for different types of 

coverage control will be evaluated in this subsection. 

 

2.2.1 Coverage Path Planning 

Coverage Path Planning (CPP) aims to cover the total area of interest with 

minimum overlapping (Fevgas et al., 2022). Besides, (Galceran and Carreras, 

2013) mention that CPP can be described as the task of finding a route that 

covers all specified points within a defined area or volume, all while 

navigating around obstacles effectively. This algorithm that drives the CPP 

plays a crucial role in numerous robotic applications, spanning a wide range of 

domains. These encompass a wide range of applications, including vacuum-

cleaning robots, painting robots, autonomous underwater vehicles dedicated to 

creating image mosaics, demining robots, lawn mowing machines, automated 

harvesters, window-cleaning devices, and the inspection of complex structures, 

among others. The effectiveness of a CPP algorithm is typically assessed 

based on several key metrics, including the overall coverage ratio, the time 

required to complete the task, the total distance traveled, and the count of turns 

made during the path planning (Khan et al., 2017). In short, CPP produces a 

seamless and uninterrupted path that spans a designated area of interest, all 

while effectively steering clear of obstacles. (Galceran and Carreras, 2013). 

 CPP can be performed in multiple regions with multiple agents as 

well. A large-scale region may be presented in the form of disjoint sub-regions 

and its usually apply in cases like disaster management, numerous surveillance 

area and more (Kumar and Kumar, 2023). 
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Figure 2.1: Multiple Region Coverage Task (Kumar and Kumar, 2023) 

 

Grid-based CPP is a foundational approach in the field of robotics and 

autonomous systems. Grid-based methods simplify coverage in a defined area 

of interest by employing cellular decomposition by overlaying a grid structure 

onto the area, streamlining the coverage process. (Cabreira et al., 2019).  

 

 

Figure 2.2: Grid that is Implemented on the Area of Interest (Galceran and 

Carreras, 2013).  

 

The concept of utilizing a grid-based representation was first 

introduced by (Moravec and Elfes, 1985) for the purpose of mapping indoor 

environments with implementation of a sonar ring mounted on a mobile robot 

to fulfill the grid-based mapping approach. In this approach, each grid cell is 

assigned with a value that indicates the presence of obstacles or the absence of 

obstacles and the value representing whether the cell corresponds to occupied 

or free space. Typically, the value that are assigned to each grid are either 

probability or binary (Elfes, 1987). In most cases, the grid will be a square, yet 

it does not limit to square only, a polygon shape such as triangle and convex 
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shapes can also be used which (Oh et al., 2004) introduced grid-based 

technique in a control algorithm which implement triangular boundary cells 

but with a higher resolution compared to rectangular boundary cells. 

 

 

Figure 2.3: Implementation of Grid-Based Technique on a Tree (Ghaddar and 

Merei, 2020). 

 

Figure 2.3 shows the example of implementation of grid-based 

technique on tree with probability value attached which the boundary cell with 

‘0’ value indicates a free space, while the boundary cell with ‘1’ value 

indicates that boundary falls within the obstacle area. Grid-based method are 

usually ‘resolution complete’ which the completeness of the grid is greatly 

dependent on the resolution of the grid map and the grid will only provide an 

approximation of the target area and the obstacle within the area of interest. 

Hence, Grid-based method is classified as approximate cellular 

decompositions (Choset, 2001). The grid size and resolution can significantly 

affect the accuracy of path planning, but a fine grid might cause excessive 

computational load. When the complexity of the environment increases with 

constant grid resolution, grid-based tend to experience exponential growth in 

memory requirement (Thrun, 1998). Grid-based approach might face 

limitations in the flexibility when dealing with dynamic obstacles as it is an 

approximate approach. However, the simplicity and ease of implementation 

making it accessible for researchers as it’s advantageous for rapid prototyping 

and deployment. 

 The implementation of grid-based into CPP was first proposed by 

Zelinsky et al by using wavefront algorithm in grid-based CPP (Galceran and 

Carreras, 2013). According to (Zelinsky et al., 2007), start point and goal point 
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for the grid map will be pre-determined and a distance will be labelled 

propagates a wavefront from goal point to start point which the goal will be 

marked as ‘0’, the surrounding cells will be marked as ‘1’ and the neighboring 

cells to ‘1’ will be marked as '2’. This process repeated from goal point to start 

point by the wavefront as shown in Figure 2.4. 

 

 

Figure 2.4: Wavefront Distance Transform from the Goal Point to Start Point 

(Zelinsky et al., 2007).  

 

The path can be generated once the distance transform is done labelled. 

The path will be generated according to the value assigned to the cell by 

starting with the start point and selecting the neighboring cells that are labelled 

with the highest value that are unselected before. If there are 2 or more cells 

that are with the same value and unselected, the system will select the cell 

randomly which this type of CPP is similar to pseudo-gradient descent 

(Galceran and Carreras, 2013).  

 

 

Figure 2.5: The coverage path form by selecting the highest value neighboring 

cells (Zelinsky et al., 2007). 
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Moreover, Spiral-Spanning Tree Coverage algorithm with grid-based 

approach was introduced by (Gabriely and Rimon, 2002). For Spiral-Spanning 

Tree Coverage algorithm, each grid cells are divided into 4 subsection which 

quarter of the cell size must be larger than the agent’s size.  

 

 

Figure 2.6: The Grid Cells are divided into 4 Subsections (Galceran and 

Carreras, 2013).  

 

The coverage begins by starting from the starting point and select the 

new path from the small subsection of a grid cell according to anti-clockwise 

direction. From this point, the agents will never visit the subsection of the grid 

cell twice which minimize the coverage time. 

 

 

Figure 2.7: The Coverage Path is Formed according to Anti-clockwise 

Direction (Gabriely and Rimon, 2002). 
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Battery endurance, camera sensing, and more are the limitations of 

Unmanned Aerial Vehicle (UAV). Hence, due to the limitations of UAV, it is 

difficult to obtain efficient coverage using grid-based methods as there will be 

an increase in the computational time as the number of grids cells increase 

(Cho et al., 2021). As the area of interest widen, single UAV will find it 

struggle to cover the targeted area, so multiple UAV operating simultaneously 

is essential as it greatly reduces the completion time and efficiency (Barrientos 

et al., 2011; Modares et al., 2017; Li et al., 2018). Hence, the CPP that with 

multiple agents involved in the system can be defined as dynamic multi agent 

coverage which agents travel continuously throughout the environment so that 

every single point within the space is intermittently observed (Patel et al., 

2020). The implementation of MAS into CPP is a very strategic control 

method that can perform the tasks efficiently with overcoming the constraints 

of UAV. 

 

2.2.2 Static Coverage Control 

Static Coverage Control aims to develop a control law that drive groups of 

agents from an initial position and distributed into another position such that 

each of the agents are fully cover the given domain (Atınç et al., 2020). In 

conjunction with the cooperative of Multi Agent System (MAS) in Coverage 

Path Planning (CPP), MAS can also be implemented into static coverage 

control and the combination of MAS and static coverage control is named 

static multi agent coverage (Patel et al., 2020). The simplest way in 

differentiate the difference between the MAS in CPP and Static coverage 

control is the use in different applications. For example, static coverage is 

widely used for perimeter monitoring that required to monitor every single 

point of the given space and perform it continuously respect to time (Gupta et 

al., 2019). The difference between CPP and static coverage is CPP requires 

every point in the environment to be swept as frequently as possible according 

to the resources allocated (Wong et al., 2002). 
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Figure 2.8: Example of Static Coverage Control (Wang and Li, 2013).  

 

Figure 2.8 shows that the agents are deployed to a location and perform 

static coverage by maintaining the position continuously to perform the 

assigned task which is to monitor the area of interest. The characteristics of the 

static coverage are the agents’ positions are fixed and the adaptability is 

limited. This type of coverage is favorable for scenario that the coverage 

requirements are relatively stable, yet the coverage algorithms are developed 

to the extent that the limitation of static coverage can be minimized which 

collision avoidance, obstacle avoidance, and changing of environmental are 

taken into account by the researchers. 

 

2.2.2.1 Voronoi Based Voverage Control 

The concept of Voronoi partition, also known as the Voronoi diagram or 

Voronoi Tessellation, has its roots dating back to as early as 1644, when 

philosopher Rene Descartes contemplated it. However, it is commonly 

associated with the name of the Russian mathematician George Voronoi, who 

is credited for its development and formalization. (University of Bristol, n.d.). 

Voronoi partition is the action that forming Voronoi diagram, the diagram can 

be formed by scattering initial points randomly on a Euclidean plane. After the 

points are defined, the plane is then divided into cells which known as 

tessellating polygons and these cells encompass the areas of the plane that are 

closer to that point than to any other (University of Bristol, n.d.). There are 3 

characteristics for a Voronoi partition which is Voronoi cell, Voronoi edge, 

and Voronoi vertex. Voronoi cell refers to the point that is associated with a 

Voronoi cell which the region of space closest to that seed point while a 

Voronoi edge is the edge of Voronoi cell which segments of lines or curve lie 
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exactly equidistant between the neighboring points. Voronoi vertex refer to the 

point where three or more Voronoi edges intersect, and it is essential when 

forming a Voronoi diagram structure. 

 

 

Figure 2.9: Planar Ordinary Voronoi Diagram (Okabe et al., n.d.). 

 

 Voronoi partition has been widely used by the researchers in 

developing the coverage control algorithm. According to (Hayashi et al., 2015), 

the event-triggered control techniques for addressing the centroidal Voronoi 

coverage problem is explores. In this technique, individual agents will update 

their control inputs when discrepancy happen between their current state and 

the centroid of their Voronoi cell, compared to the state at the last triggering 

event, surpasses a predefined threshold (Hayashi et al., 2015). Through this 

technique, centroidal Voronoi coverage can be achieve and the agent’s 

triggering interval will remain positive with the constraint of the velocity of 

the centroid of its Voronoi cell is adequately low. The usage of data processing 

will reduce due to agents can ignore uninterrupted update of the input control. 

 In the early stage of using Voronoi partition, Voronoi partition are 

typically used as a centralized coverage control which is a control strategy that 

achieve coverage task by multiple agents under supervision of a central 

coordinator or global controller. The coordinator is responsible for making 

decisions and providing instructions to the agents which will helps in 

minimizing the coverage objective function. The coordinator will receive 

information from each of the agents such as positions and state of the agents as 

well as environmental data. Data collection and data cleaning will be done in 

global controller and the decision made will be sent to every individual agent 

with one-to-one communication. Basically, centralized coverage control will 

be a one-to-one communication which it will causes a limitation where there 
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will be a high demand for the data usage. Hence, decentralized coverage 

control or also known as distributed coverage control is introduced. The 

difference between both is the centralized coverage control communicate 

between coordinator and agents while decentralized communicate between 

agents. In decentralized coverage control, the agents in Multi Agent System 

(MAS) will spread out over an environment and aggregated in the areas of 

interest as a result which is the same as what centralized coverage control did. 

However, the agents do not know beforehand the information of environment 

and they learn the information by communicating between themselves instead 

of communication between agent and controller (Schwager et al., 2009). The 

traditional Voronoi partition is modified through merging with an adaptive 

decentralized coverage control such that the data gathered by sensor can be 

learnt and shared among agents (Schwager et al., 2009). Voronoi partition with 

distributed coverage is justified as a convex region is covered by Multi 

Unmanned Aerial Vehicle (MUAV) (Chen et al., 2017). According to  (Chen 

et al., 2017), the algorithm repeatedly updates and refines the Voronoi 

partition by exchanging local information with neighboring elements and 

subsequently adjusts its movement based on the calculated direction. 

 Lloyd’s algorithm often paired with Voronoi partition by researchers 

as Lloyd’s algorithm is an iterative technique used to improve the quality and 

regularity of a Voronoi tessellation. This combination is verified by 

(Bhattacharya et al., 2013) as an improved control law based on Voronoi and 

Llyod are generated and implemented to a non-Euclidean metric space with 

non-polygonal obstacles. Besides, detailed proof is provided to support the 

convergence of the Voronoi and Llyod control law (Bhattacharya et al., 2014). 

However, the results shown does not clearly mention the possibility in 

extending the control law to a generalized Three-dimensional (3D) map. With 

the short sensing capabilities of MUAV, the MUAV might not be able to 

detect the whole given environment with the given number of Unmanned 

Aerial Vehicle (UAV) resulting some loss of information due to not entire 

information of the environment is gathered. Hence, a modified Voronoi 

partition is proposed to enhance the coverage performance by making it 

dynamic environment which the agents will move gradually according to the 

motion of area of interest (Li and Liu, 2017). 
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 For Voronoi partition, the agents might not be distributed evenly even 

though the cell of Voronoi diagram is evenly distributed. This problem is due 

to the seed points in every cell of the Voronoi diagram is not located in the 

center of each cell. Thus, further modification on the Voronoi partition is 

presented by (Du et al., 2006). The Voronoi tessellations are modified into 

centroidal Voronoi tessellations which is a bounded geometric domain such 

that the seed points of the Voronoi partition are also the centers of the cells 

with respect to a given density function (Du et al., 2006). The results show that 

the centroidal Voronoi tessellations guarantee the seed point is in the center of 

every Voronoi cell which indicates that the agents are evenly distributed. 

 

2.2.2.2 Potential Field Coverage Control 

Potential field coverage control is a form of coverage control that is based on 

the concept of potential functions. It uses artificial potential fields to guide 

mobile agents to perform coverage task while avoiding obstacle and collisions. 

This technique is inspired by the concept of how objects interact in physical 

field such as gravity and magnetic fields. Potential field coverage usually will 

implement a grid-based technique by dividing the area to be covered into grid 

cells and the grid cells will later form a waypoint for the motion of Multi 

Unmanned Aerial Vehicle (MUAV). Each of the cells will be assigned with a 

virtual potential field value which can also be known as gradient value and this 

value indicates which the agents should move to. Uncovered areas have a 

higher potential value and a lower potential value for the covered areas. The 

value can also be representing the respective grid cells are an obstacle. 

 

 

Figure 2.10: Potential Field for a Covered Area with Obstacle (Julia et al., 

2011).  
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Figure 2.10 shows examples of how global potential field and gradient 

generated are taking in account of the occupancy grip map. Obstacles that are 

assigned with potential value will form a repulsive force that will repel the 

agents from getting nearby. The higher the value, the higher the repulsive 

force and the closer proximity to an obstacle will causes a stronger repulsive 

force. With this repulsive force, the repulsive force between agents will 

increase and lead to the agents move in a direction that is not covered (Miao et 

al., 2021). The agents will detect the current location’s potential value and 

move to a direction based on negative gradient with steepest descent direction 

to minimize the objective function (Huang et al., 2018). In shorts, the potential 

field method is categorized into decentralized coverage control as there exists 

a repulsive force between agents indicates that there is a communication 

between agents. 

 The implementation of potential field in coverage control is first 

proposed by (Howard et al., 2002) where the potential field was generated so 

that each agent repelled by each other (dynamic obstacle) as well as obstacles 

(static obstacle). According to (Wang and Guo, 2008), potential field approach 

is implemented to control the deployed mobile sensors to achieve coverage 

goal with maximum coverage and total communication distance minimized. 

Besides, the decentralized control law exhibits the characteristics to avoid 

potential collision between agents (Wang and Guo, 2008). 

 A distributed welfare game with a designed potential function is 

developed by (Marden and Wierman, 2008) and the method for global 

controller to distribute global welfare to the players are investigated. In this 

case, each of the agents will be represented by the players. The effectiveness 

of the distribution control law is measured based on two criteria which is does 

pure Nash equilibrium exist and the efficiency of Nash equilibria compared to 

global optimum across various scenarios (Marden and Wierman, 2008). 

 Potential field can be modified and hybridized by combining two 

different approaches into one method to achieve the advantages from both 

approaches. The decentralized adaptive solution for coverage problems, 

achieved by combining Lie bracket trajectory approximation with a potential 

game algorithm, operates effectively without the necessity for agents to 
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possess prior information regarding event distribution or detection 

probabilities. (Dürr et al., 2011). 

 

2.2.2.3 Broadcast Coverage Control 

As mentioned earlier, the coverage control is distributed into centralized and 

decentralized coverage. Starting from centralized coverage which all the 

agents are controlled by a global coordinator and found it extensively required 

more computational load when the Multi Agent System (MAS) is scaled up. 

Besides, centralized coverage is highly dependent on the global controller 

which when there is any malfunction for central controller or is compromised, 

the entire MAS will not be in control and results in failure. To overcome this, 

decentralization for coverage control is developed. Nowadays, many existing 

control techniques and algorithms developed for coordinate the motion of 

MAS with the aim of achieving specific tasks primarily emphasize the 

necessity of enabling communication among all the agents involved (Ota, 

2006; Xie and Liu, 2017; Cao et al., 2013). However, decentralized coverage 

might not be perfect in solving the coverage problem. Although changing from 

centralized to decentralized can be more scalable, but this method has no 

information or limited information is given before it performs the task. The 

lack of information might lead to sub-optimal coverage due to the agents are 

not aware of the global state of coverage.  

 

 

Figure 2.11: Sub-optimal coverage with Decentralized Coverage (Huang et al., 

2018).  

 

Figure 2.11 shows the sub optimal coverage that will be resulted by 

decentralized coverage and many decentralized coverage algorithms converge 

to a local minimum solution which is sub-optimal in a global sense, and it has 

a huge negative impact in the application (Huang et al., 2018). Although 
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decentralized coverage is able to handle large number of agents in MAS, but 

there still exist scalability limitations. When the number of agents is large to 

an extent, the complexity of maintaining coordination among them are 

prohibitive as each agent will receive information from its neighboring agent 

and perform calculations before the decision-making process (Darmaraju et al., 

2019). The characteristics of decentralized coverage in communicating and 

receive information with neighboring agents can significantly increase the 

computational load when number in a MAS increase due to highly complex 

network of communication formed (Darmaraju et al., 2019).  

 Hence, to perfectly minimized the problem raises from centralized 

and decentralized coverage, Broadcast Control (BC) algorithms is a unique 

approach that combine both the advantages from centralized and decentralized 

coverage. In the framework of BC algorithms, there will be no communication 

between individual agents except an overall update is received while not the 

individual performance (Darmaraju et al., 2019). The behavior of the BC 

algorithm shows one to all communication.  

The BC was first applied in an artificial cellular actuator system by 

(Ueda et al., 2007). The BC framework is later been applied into MAS by 

(Azuma et al., 2013). BC method is widely used in traffic control due to its 

effectiveness. A modified version from the standard BC framework is 

introduced to solve the instability in MAS during the motion coordination task. 

In the proposed algorithm, the deterministic move of the agents is set with a 

gain with limited value (Nor et al., 2017). The instability of agents in MAS are 

mostly due to the big gap of value in the updates for deterministic move, since 

the deterministic move is set with limited value, the deterministic movement is 

restricted. 
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Figure 2.12: Framework of a Coverage Broadcast Control (Azuma et al., 2013). 

 

From Figure 2.12, it shows that the BC system consists of multi-agents, 

global controller, and local controller. The performance of the agents will be 

evaluated by global controller and broadcast the global behavior signal to the 

local controller to make decision to control the action of agents. 

While integrating BC into MAS has reduced hardware and 

communication requirements, it comes with inherent challenges related to 

broadcasting. One of these challenges is that agents may take unpredictable 

actions because BC relies on stochastic optimization. This randomness in 

agent movements can undermine the effectiveness of the control law, leading 

to subpar coordination performance and potentially resulting in undesirable 

configurations (Darmaraju et al., 2022). The introduction of Pseudo-

perturbation-based Broadcast Control (PBC) law is the solution for this 

drawback. PBC is modified version of BC law by applying single step agent 

movement with predictive move instead of random movement (Ito et al., 2020). 

2 steps of random movement in even time steps and deterministic movement 

in odd time steps from BC is evolved into 1 step which the step included 2 

movement as BC but with a predictive movement instead of random 

movement. This change has improved the performance of traditional BC 

proposed by (Azuma et al., 2013) in terms of decrease in convergence time 

taken and reduce the total distance travelled by agents.  
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The evolution of BC continues with the name of Multi-step Broadcast 

Control (MBC) proposed by (Darmaraju et al., 2022). Traditional BC even 

PBC rely on a single-step perspective of the environment, and they do not 

promptly acknowledge the fluctuating distribution density of the environment 

as perceived by the agents. This phenomenon will cause the coverage 

algorithm to converge into a suboptimal performance result. The forestall this, 

MBC has successfully developed by the researchers from the BC schemes. 

Instead of calculating the varying distribution density of the environment one 

step ahead, MBC uses a predictive multi-step view by calculating the varying 

distribution density multiple steps ahead of time. Weighted averaging 

technique is apply into the local controller output and a higher weight is 

assigned to immediate steps (Darmaraju et al., 2022). Addition of this 

technique will contribute to the increase of accuracy as the number of steps 

increase. MBC is justified and is compared with the traditional BC in term of 

efficiency and converge time. 

 

2.3 Three-Dimensional Coverage 

As quadrotors are the agents that work in this project which are related to the 

Three-dimensional (3D) environment. However, the methods to perform 

coverage task for Multi Unmanned Aerial Vehicle (MUAV) mention earlier 

are conducted in a Two-dimensional (2D) preset environment and it shows 

that most of the works concentrate only on 2D, and this limited the behaviors 

of agents with only working on a planar surface or the height for each iteration 

are consider as constant to achieve a 2.5-dimensional work (Yang et al., 2016). 

According to (Yang et al., 2016), the real environment that the coverage 

control is going to implemented are unstructured and full of uncertainties 

which proof that 3D algorithms are urgently needed nowadays and a simple 

2D algorithm will not be qualified in dealing with the real-world complex 

situations. Most of the existing static and dynamic coverage control algorithms 

consider only 2-dimensional field and the literature lacks a proper analysis of 

coverage control in 3D field even though the agents used in the proposed 

method assume the agents are at fixed altitude with planar sensing footprint, 

yet the capabilities of the agents might not be fully utilized (Elmokadem and 

Savkin, 2021). 
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 Coverage algorithm can be classified into centralized, decentralized 

and both but a coverage problem can be classified into static and dynamic. In 

another war, coverage problem can also be divided into blanket coverage, 

barrier coverage, and sweeping coverage (Elmokadem and Savkin, 2021). 

Blanket coverage is done by covering the area in static formation to maximize 

the detection rate and coverage is formed according to the surface of the 

environment. Barrier coverage is done by covering the area of interest with 

maximizing the detection range and minimizing intrusions which the agents 

are located at a constant plane. Sweeping coverage is done by forming a 

dynamic arrangement across the area of interest to explore along the area. 

Typically, Sweeping can only be done with a basic of barrier coverage or 

blanket coverage as a foundation which the agents will have to form up 

blanket or barrier coverage before the sweeping process initiated.  

 

 

Figure 2.13: Sweeping Coverage with Blanket Coverage Basic (Perez-Imaz et 

al., 2016). 

 

 

Figure 2.14: Sweeping Coverage with Blanket Coverage Basic (Elmokadem 

and Savkin, 2021). 
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 A coverage control algorithm can be converts into a 3D coverage 

algorithm. According to (Elmokadem and Savkin, 2021), a 2D decentralized 

prioritized motion planning for MUAV has been converted into a coverage 

control that are able to function in a 3D environment which the algorithm used 

is a hybridized algorithm of A* algorithm with barrier functions-based method. 

The work is then further study for the feature of collision avoidance and the 

efficiency as well as the applicability of the conversion of coverage control 

algorithm is verified with simulation and experimental results using multiple 

quadrotors. 

 The current literature found for coverage control in 3D are mostly 

focusing on Coverage Path Planning (CPP) where CPP in 3D to perform 

inspection of complex 3D structures or formulation of unknown environment. 

Inspection of large scale and complex 3D structures were performed by (Jing 

et al., 2020) with sampling based CPP method. The sampling-based CPP 

method is tested on several complex 3D structures that are extracted from 

OpenStreetMap by combining the proposed method with modified Biased 

Random Key Genetic Algorithm (BRKGA). The results show an outstanding 

performance by reducing the path length up to 48% (Jing et al., 2020). 

 Forming a 3D coverage algorithm is just a framework or foundation 

to realize the idea from researchers. For example, collision avoidance is an 

important feature that cannot be ignored in developing the coverage control 

algorithm. Hence, a coverage control algorithm for 3D space should be 

constructed so that the function such as obstacle avoidance, varying 

importance of environmental, and method to overcome constraint of the agents 

can be implemented into the framework. Distributed coverage control has been 

a popular coverage control in 3D space recently. In (Hu et al., 2020) ‘s 

proposed work, an assignment switch scheme is embedded into a decentralized 

control algorithm to ensure that the asymptotic convergence is achieve without 

the occurrence of collision between agents. The results show the effectiveness 

of proposed control law and have been verified by (Hu et al., 2020) with 

Monte Carlo simulations as well as actual experiments in outdoor environment 

(3D space). Besides, implementation of 3D coverage control algorithms in 

disaster and rescue scenarios has been done by (Perez-Imaz et al., 2016). 



28 

According to (Perez-Imaz et al., 2016), MUAV for sure to have outperform 

advantage over other type of robots in disaster region where the MUAV can 

detect over large area in a short time with privileged view from above. 

Customized cell decomposition algorithm with regular hexagons is proposed 

by (Perez-Imaz et al., 2016) in a 3D area with MUAV and this approach has 

been evaluated in variety of disaster scenarios and the simulation is supported 

by the results conducted in an outdoor environment. 

 

2.4 Summary 

To summarize the literature review, there will be three coverage problem 

which is barrier coverage, blanket coverage, sweeping coverage where the 

three of them can be classified into static coverage or dynamic coverage. The 

coverage control can be divided into four category such as Coverage Path 

Planning (CPP), centralized coverage control, decentralized coverage control, 

and control that are with both characteristics. The coverage control can also be 

further classified into algorithm for Two-dimensional (2D) or Three-

dimensional (3D). From the literature found, the implementation of distributed 

coverage control in 3D is now the trend and most of the 3D coverage 

algorithms are dealing with CPP as the coverage problem. After the study of 

literature, Multi-step Broadcast Control (MBC) is used to as a reference to the 

coverage control algorithm and the static barrier coverage will be the reference 

to the coverage problem in this project. MBC is selected as a reference to this 

project due to its advantages in dealing with the scalability as well as the 

effectiveness in low computational load and convergence time. 2D coverage 

algorithm are sufficient for a simple coverage task but it does not have the 

ability in dealing with complex coverage task. Hence, the development of 3D 

algorithms is crucial as it can implement in application to handle with the 

complex situation faced in real life. BC frameworks have no attempt in 3D 

environment, and it will be great if such a competitive coverage control 

algorithm can be converted to adapt with 3D environment and perform 

coverage task with perfect efficiency. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, the methodology used to achieve the objectives for this project 

will be discussed in detail. Moreover, the additional information such as 

assumptions and environment setting will be stated in this chapter as well as 

the pseudocode and flow chart of the coverage task. 

 

3.2 Proposed Multi Unmanned Aerial Vehicle Coverage Algorithm 

Multi-step Broadcast Control (MBC) is the coverage algorithm chosen to work 

on to achieve the objectives of this project. MBC is selected due to it is neither 

decentralized nor centralized coverage, yet it combined the advantages of both 

decentralized and centralized. Besides, MBC is the latest and efficient 

coverage algorithm within the Broadcast Control (BC) scheme.  

 

3.2.1 Multi-step Broadcast Control (MBC) 

As mentioned earlier in chapter 2, the coverage control methods proposed by 

the researchers are mostly centralized or decentralized coverage method which 

the global task are known for every agent, and it means that all individual 

agents are acknowledge and store the information of other agents. This 

characteristic eventually raises the communication data volume. MBC is an 

evolutionary product from Broadcast Control (BC) schemes. Hence, it is 

important to understand how a BC works as it is a foundation for Multi-step 

Broadcast Control (MBC). The optimization methods applied in the BC 

scheme and its variant are stochastic optimization methods. Stochastic 

optimization is a process in minimizing or maximizing the objective functions 

when facing with stochastic problems which the formulation is attached with 

randomness or uncertainty (Cosma et al., 2017). BC scheme is a one to all 

communication which individual agents will not receive other agents’ state of 

information and a global information is delivered to every individual agent 

(Darmaraju et al., 2022). Since the overall performance of the Multi Agent 

System (MAS) is observed by the global controller and the same information 
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is received by every individual agent, the agents do not require to spare out the 

memory and energy for data transmission. Besides, the agents in BC does not 

have any idea of what the global task and they will only receive current global 

information sent by global controller. BC do have drawback as mentioned 

earlier and its variant, Pseudo-perturbation based Broadcast Control (PBC) has 

overcome the problem and shows a considerable enhancement in the results by 

reducing the convergence time by half.  

 

 

Figure 3.1: Movement Comparison for BC/PBC/MBC Scheme (Darmaraju et 

al., 2022). 

 

BC will have 2 steps which the agents will move in random positions 

in the first step and followed by the deterministic move in the second step as 

shown in Figure 3.1. The agents’ movement sequence is as follow; random 

move will be performed by agents at even time steps followed by deterministic 

move according to the value of objective function in odd time steps. However, 

this is troublesome as it takes up the convergence time. PBC which is the 

variant of BC and it combine the 2 steps into 1 step. Moreover, random 

movement in the BC scheme is replace by a predictive multiple virtual moves 

and followed by the deterministic move as shown in Figure 3.1. This results in 
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the convergence time shorten by half as it initially required 2 steps and in PBC 

the predictive move and deterministic move is done in 1 step.  

MBC is later proposed by (Darmaraju et al., 2022) and this is the 

modified version based on the PBC scheme. The working principle of MBC 

can be visualized from Figure 3.1 which the movement of agents are the same 

as PBC just the predictive move is given certain gain so that there will be 

multiple predictive steps before the deterministic move. In the proposed work 

from (Darmaraju et al., 2022), the MBC scheme is inspired by the varying 

importance of the environmental as well as the model predictive control theory. 

Since the global task are not known for the agents in BC scheme, the 

convergence time will be longer when dealing with coverage task that have 

different density functions. To overcome the issue arise, MBC scheme 

proposed involves making predictions for future variables in an environment 

by considering multiple steps into the future. A greater weight is assigned to 

predict the immediate step and the weight assigned to each step will decrease 

gradually when the number of steps increase. To ensure fair and balanced 

service coverage in an environment with varying population densities, a 

greater number of agents are allocated to areas with high population density 

than to those with lower population density. With the use of multi-step 

forward views, the MBC agents are made aware of the dense sections earlier 

than conventional BC schemes, thereby improving the timeliness of their 

response. MBC outperform BC schemes and its variant in both coverage 

achievement and deployment efficiency as the stochastic accuracy gradient 

accuracy is greatly increase with its noteworthy feature. If the density function 

for the environment is equally distributed, the MBC scheme will perform 

similarly as PBC scheme. 
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 Objective function for the coverage control (Cortés et al., 2004): 

 

𝐽𝑜𝑏𝑗(𝑥) = ∫ 𝑚𝑖𝑛
𝑖∈1,2,…𝑁

𝑓(‖𝑞 − 𝑥𝑖‖)𝜙(𝑞)(𝑑𝑞)
𝑄

 (3.1) 

 

where 

f  = coverage performance function 

q  = uniformly distributed points of the environment.  

𝜙  = weightage function is used to manage the relative significance of 

 the points within the uppercase letter, Q. 

𝑥𝑖  = location of the agents indexed as 'i' in domain ranges up to Nth 

 position. 

 

The objective function for coverage control is consistent and remains 

the same across all coverage control algorithms. Additionally, 'N' represents 

the total count of agents within MAS. 

The objective function with respect to time, 𝐽𝑜𝑏𝑗(𝑥(𝑡)) indicates the 

overall coverage performance and the target is to minimize the objective 

function with equation 3.2. 

 

𝐽(𝑥(𝑡)) = min
𝑥𝜖ℝ𝑛𝒩

𝐽(𝑥) (3.2) 

 

The N agents are strategically positioned within the space when the 

lowest value of objective function, 𝐽𝑜𝑏𝑗(𝑥(𝑡)) is obtained. 

To visualize the performance of coverage achievement, Voronoi 

tessellation method (Fortune, 1992) is used to partition the entire area of 

interest into polygonal cells. Voronoi tessellation method is created by points 

(p1, p2, …pn) while the ideal division of set Q will align with the Voronoi 

partition denoted as V(P), which consists of subsets V1, V2, and so on up to 

Vn. This will result in the equation depicted in equation 3.3. 

 

𝑉𝑖 = {𝑞𝜖𝒬|‖𝑞 − 𝑥𝑖‖ ≤ ‖𝑞 − 𝑥𝑗‖, ∀𝑗 ≠ 𝑖} (3.3) 
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Figure 3.2: Framework for BC/PBC/MBC (Darmaraju et al., 2022). 

 

In Figure 3.2, the illustration displays the framework encompassing BC, 

PBC, and MBC. Within this Multi Agent System (MAS), there exists a 

singular global controller, denoted as Gc. In this MAS, there are N agents, 

each represented as Ai where i ranges from 1 to N. Gc's role involves 

assessing the objective function by considering the overall system 

performance at every step. BC will take a random move followed by the 

deterministic move which the objective function will be evaluated while a 

PBC and MBC will perform the predictive movement and deterministic 

movement in a single step which the objective function will be evaluated in 

every iteration. The Gc will calculate the objective function by calculating the 

difference between the predictive and deterministic move and the evaluated 

results will be broadcasted to the agents represented as σ and the local 

controller, Li will calculate based on the broadcasted control signal to 

determines the control action, ui(t). The local controller, denoted as Li for each 

individual agent Ai, produces a control signal by utilizing the information 

disseminated by Gc, leading to the formation of the following equation: 
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𝐿𝑖: {
𝜁𝑖(𝑡 + 1) = 𝛼(𝜁𝑖(𝑡), 𝜎𝐵(𝑡), 𝑡)

𝑢𝑖(𝑡)        = 𝛽(𝜁𝑖(𝑡), 𝜎𝐵(𝑡), 𝑡)
 (3.4) 

 

where, 

 𝜁i(t)  = state of local controller with initial value of 0. 

 ui(t)  = results generated by local controller.  

 

The controller functions for α and β can be described as: 

 

𝛼(𝜁𝑖(𝑡), 𝜎𝐵(𝑡), 𝑡) ≔ [Δ𝑖(𝑡)
𝑡, 𝜎𝐵(𝑡)]𝑇 (3.5) 

𝛽(𝜁𝑖(𝑡), 𝜎𝐵(𝑡), 𝑡)

= {

𝑐(𝑡)∆𝑖(𝑡), 𝑥 < 0

−𝑐(𝑡)𝜁𝑖1(𝑡) − 𝛼(𝑡) (
𝜎𝐵(𝑡) − 𝜁𝑖2(𝑡)

𝑐(𝑡)
) 𝜁𝑖1

[−1](𝑡), 𝑥 ≥ 0
 

(3.6) 

 

The agent's state equation is expressed in the following manner: 

 

𝐴𝑖: 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑢𝑖(𝑡), 𝑖 = 1, 2, …𝑁 (3.7) 

 

where, 

xi(t)  = position in n-dimensional space while  

ui(t)  = control input.  

 

The broadcast signal originating from Gc is characterized as: 

 

𝐺𝑐: 𝜎𝐵(𝑡) = 𝐽(𝑥(𝑡))𝜖ℝ (3.8) 

 

MBC Scheme 

Within MBC scheme, K is designated as the upper limit for the maximum 

number of predictive virtual steps taken within the planning horizon. At every 

iteration, agents transmit their current state, denoted as xi(t), to the global 

controller. The state-space equation for agent, i within the MBC framework is 

presented as follows: 
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𝑥̂𝑖
(𝑘+1)(𝑡): = 𝑥̂𝑖

(𝑘)(𝑡) + 𝑢̂𝑖
(𝑘)(𝑡)  for 𝑘 = 0, 1, 2, … , 𝐾 − 1 (3.9) 

𝑢̂𝑖
(𝑘)(𝑡): = 𝑐(𝑡)∆𝑖

(𝑘)(𝑡)            for 𝑘 = 0, 1, 2, … , 𝐾 − 1 (3.10) 

 

where, 

𝑢̂𝑖
(𝑘)

 = virtual input 

𝑥̂𝑖
(𝑘+1)

 = ccccc 

𝑥̂𝑖
(𝑘)

 = future virtual states 

 

The global controller calculates the broadcast signal, denoted as 𝜎𝑀 

thorough a composite process outlined as follows: 

 

 

𝜎𝑀(𝑡): =

[
 
 
 
 
 
 
 𝐽 (𝑥̂(1)(𝑡)) − 𝐽 (𝑥̂(0)(𝑡))

𝐽 (𝑥̂(2)(𝑡)) − 𝐽 (𝑥̂(1)(𝑡))
.
.
.

𝐽 (𝑥̂(𝐾)(𝑡)) − 𝐽 (𝑥̂(𝐾−1)(𝑡))]
 
 
 
 
 
 
 

∈ ℝ𝐾 (3.11) 

 

where, 

 𝜎𝑀
(𝑘)(𝑡): = 𝐽 (𝑥̂(𝑘+1)(𝑡)) − 𝐽 (𝑥̂(𝑘)(𝑡)) 

𝜎𝑀(𝑡)        = [𝜎𝑀
(0)(𝑡), … , 𝜎𝑀

(𝐾−1)(𝑡)]
𝑇
 . 

 

In MBC scheme, the parameters in the local controller, Li has been 

modified to: 

 

𝜁𝑖(𝑡): = [∆𝑖
(0)(𝑡)𝑇 , … , ∆𝑖

(𝐾−1)(𝑡)𝑇]
𝑇

∈ {−1, 1}𝑛𝐾 (3.12) 

𝑢𝑖(𝑡): = −𝛼(𝑡)
1

∑ 𝜆(𝑘)𝐾−1
𝑘=0

∑
𝜎𝑀

(𝑘)(𝑡)𝜆(𝑘)

𝑐(𝑡)

𝐾−1

𝑘=0

∆𝑖
(𝑘)[−1](𝑡), (3.13) 

 

3.2.2 Pseudocode and Flowchart of Proposed Algorithm 

Pseudocode for Multi-step Coverage Control Algorithm 

• Initialize parameters and data structures. 
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• Create a map matrix representing the environment. 

• for Iterate from 1 to 500: 

Update the map. 

Update agent trajectories and plot them if needed. 

Perform agent movements and optimization using PBC4MPC. 

Update agent positions. 

• Record data. 

• Plot the recorded data. 

• Record the algorithm run time. 

• Create a Voronoi diagram based on agent positions. 

• Calculate mean distance travelled by agents. 

   

Coverage Control Flowchart 

 

Figure 3.3: Flowchart for Coverage Task 

 

The pseudocode and flowchart have briefly shown the overview of 

how the coverage task are going to conducted. 
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3.3 Three-Dimensional Multi-step Broadcast Control 

The proposed project aims to develop a coverage control algorithm that suits 

to be implemented in a Three-dimensional (3D) environment. To do so, the 

algorithm must be converted into a 3D coverage control algorithm. The 

conversion of Two-dimensional (2D) to 3D can be form by adding additional 

z-axis to the original algorithm. The z-axis must be added into the generation 

of map to form up a 3D space. Next, the objective function of the coverage 

algorithm has to be added as well so that the function can be calculated to 

perform decision making. Besides, the output of the local controller will also 

have to ensure that the working dimension is in 3-axis to provide a coverage 

instruction to the agents. Last but not least, the positions of the agents have to 

be in 3 dimensional which is x, y, and z axis. To realize this, the additional of 

z-axis must be added into the state of agents. 

 To evaluate the performance of the proposed approach, the results are 

simulated using MATLAB for 2D space and 3D space. The parameters that 

will determine the performance of the conversion of algorithm is the distance 

of agents travelled and the convergence time taken by the agents. The agents 

that perform coverage task in 3D space should travelled according to 

Euclidean distance and the convergence time should be shorter due to the 

degree of freedom for the agents are not limited. To make the comparison fair, 

the agents that perform coverage task in 2D space will elevate the altitude to 

the specific level before the coverage start. Hence, the distance and time for 

the agents to elevated to the specific level will be considered for comparison. 

 

 

Figure 3.4: Static Coverage for MUAV in 3D (Elmokadem and Savkin, 2021).  
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Figure 3.5: Static Coverage for MUAV in 2D (Elmokadem and Savkin, 2021). 

 

 The expected outcome for the coverage control algorithm should be 

able to visualize as in Figure 3.4, instead of the results shown in Figure 3.5. 
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3.4 Project Planning 

Effective project planning is a cornerstone of project success. A proper project planning is important as this topic has not been gone through in 

the syllabus, and it required more time and effort to complete the project. 

 

Table 3.1: Gantt Chart for Part 1 of Final Year Project 

 

Part-1 Final Year Report 

No. Project Activities W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

M1 Problem Formulation 

& Project Planning 

             

M2 
Literature Review 

       

M3 Algorithm Research 

& Methodology 

          

M4 Preliminary Testing / 

Investigation 

          

M5 Report Writing & 

Presentation 
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Table 3.2: Gantt Chart for Part 2 of Final Year Project 

 

 

 

Part-2 Final Year Report 

No. Project Activities W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

M1 

3D Multi-step Broadcast 

Control Coverage Algorithm 

Development 

       

M2 
Result & Discussion 

      

M3 
Final Report Preparation 

       

M4 
Poster Preparation 
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3.5 Summary 

This chapter provide a detailed description of Multi-step Broadcast Control 

(MBC) Scheme which is a variant of Broadcast Control (BC). Unlike the 

traditional BC, MBC Scheme provides greater stochastic accuracy and better 

coverage achievement as it predicts multi steps ahead before the deterministic 

move. This greatly reduced the convergence time. 

 In this project, the MBC scheme will be converted to a coverage 

control algorithm that are able to function in a Three-dimensioanl (3D) space 

without affecting the coverage performance of the original MBC scheme in a 

Two-dimensional (2D) space. It will be great if the results outperform the 

original approach. 

 The performance of the MBC scheme will be evaluated in both 2D 

and 3D environments. The performance of the MBC scheme in 2D and 3D 

space will be evaluated based on the distance travelled by the agents and the 

convergence time. MATLAB is the simulation tools used with same starting 

and goal positions. Moreover, project planning and time management are 

strictly enforced to ensure the project completed the milestones on time to 

complete the project. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter mainly focus on presenting and discussing the simulation results 

of Three-dimensional (3D) Multi-step Broadcast Control (MBC) algorithm in 

coverage tasks using MATLAB. The results of the developed 3D MBC 

algorithm will be presented in section 4.2 together with the comparison results 

between the Two-dimensional (2D) MBC algorithm and the 3D MBC 

algorithm. In section 4.3, the further development of the 3D MBC algorithm in 

its real-life application will be presented and discussed. 

 

4.2 Comparison Between 2D and 3D MBC Algorithms 

In this section, the results of Three-dimensional (3D) Multi-step Broadcast 

Control (MBC) algorithm will be presented, and comparison will be made to 

evaluate the performance of both Two-dimensional (2D) and 3D algorithms. 

The performance of the algorithms will be evaluated by using the evaluation 

parameters stated in the objective of this research, which is the convergence 

analysis, path length, coverage quality, computational load, and scalability. 

The comparison results will be summarized and tabulated at the end of this 

section.  

 The 3D MBC algorithms, using stochastic optimization method, are 

developed based on the 2D MBC, which is also one of the variants of the 

Broadcast Control (BC) scheme. Therefore, both algorithms will undergo the 

process of minimizing the objective functions to perform coverage control. 

The 2D MBC scheme is inspired by the varying importance of the 

environment as well as the model predictive control theory. Hence, it involves 

making predictions for future variables in an environment by considering 

multiple steps into the future. The weight of the steps to predict the future is 

represented by the variable ‘k’. A higher value that are assigned to the ‘k’ 

variable will results in more steps predicted as ‘k’ is designated as the upper 

limit for the maximum predictive virtual steps taken within the planning 

horizon. This function is crucial, as the MBC scheme will have a higher 
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convergence time when dealing with coverage tasks that have different density 

functions. Thus, predicting steps will allow agents to be aware of dense 

sections earlier than conventional BC schemes. This function is important, as 

the 3D MBC algorithms can be applied to more applications compared to 2D 

MBC algorithms. A 2D MBC algorithm will allow a greater number of agents 

to move to areas with high population density compared to those with low 

population density. This function is greatly inherited in the 3D MBC algorithm, 

as it can perform more than the 2D MBC algorithm by assigning different 

heights to agents with different areas of interest. 

 Moreover, the objective function is the same as the 2D MBC 

algorithm which is the coverage control objective function proposed by 

(Cortés et al., 2004), as mentioned above in section 3.2.1, equation 3.1. The 

equation of 3.2 mentioned in section 3.2.1 is the same for both 2D and 3D 

MBC algorithms, where the target is to minimize the objective function across 

time. A convergence graph can be illustrated with the calculations from 

equation 3.2. Some modifications were made with equations mentioned in 

section 3.2.1, as the calculations for 2D are slightly different compared to 3D, 

with the addition of one axis in n-dimensional space. The addition of one axis 

will have to be incorporated into the equations for local controller equations, 

agents’ state equation, as well as the global controller equation. 

 The Voronoi Tessellation method (Fortune, 1992) used in 3D MBC 

algorithm remains unchanged from the 2D MBC algorithm. The Voronoi 

Tessellation method is remained unchanged as the Voronoi tessellation is used 

to partition the entire environment space into polygonal cells to visualize the 

performance of the coverage achievement. Hence, there is no need to adjust 

the settings for Voronoi, as the coverage achievement for the 3D MBC 

algorithm can be visualized in the X-Y axes similar to the 2D MBC algorithm. 
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Figure 4.1: Agents’ Trajectories in Performing Coverage Task using 3D MBC 

Algorithms for 9 agents. 

 

 The developed 3D MBC algorithm successfully perform coverage 

task in 3D environment as shown in Figure 4.1. The environment is set to be a 

3D space of 200m x 200m x 200m. The starting position of the agents is set in 

within the range of 0 - 25 in Y-axis and 75 - 125 in X-axis. The starting 

positions of the agents will lie within this range regardless of any scenarios 

and the number of agents. 

 The motion of the agents is based on randomness, as mentioned 

earlier, where they are given an initial value of 1 or -1 for direction in the 

random move stage, and the deterministic move stage determines the direction 

of the agents based on the objective function calculated in each iteration. This 

characteristic eventually leads to the results obtained from every attempt being 

unstable. This greatly affects the accuracy of the results obtained, and the 

repeatability of the results will be disputable. To counter the issue, the random 

values generated from the first attempt will be stored in separate empty matrix 

array files for the X, Y, and Z axes. When the sequence of random values from 

the first attempt is stored into the empty matrix array files, the sequence of 

random values stored can be extracted for the following attempts to ensure the 

precision of results. Implementation of this feature minimizes tolerances due 

to the randomly generated values. The precision of the results and repeatability 

of the simulation can be guaranteed since the random values assigned to every 
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iteration for the random movement are the same for every attempt. The 

simulation results for every evaluation parameter will be the same no matter 

how many attempts are given. 

 To evaluate the performance of the 3D MBC algorithm, several 

evaluation parameters have been determined. There are 5 evaluation 

parameters: convergence analysis, path length, coverage quality, 

computational load, and scalability. The comparison between 2D and 3D 

MBC algorithms allows for a clear identification of superiority. By employing 

evaluation parameters, we can discern the performance of both algorithms. 

 

4.2.1 Convergence Analysis 

Convergence analysis focuses on the convergence rate, where the higher the 

convergence rate, the shorter the convergence time. Convergence time can be 

described as the time required for the multi-robots to form cooperative 

formations, and the smaller the convergence time, the better the algorithm 

(Zhuang et al., 2022). This has a direct correlation with the effectiveness and 

efficiency of the algorithm, making convergence time a crucial metric in 

Multi-Agent Systems (MAS). The ability of a group of Unmanned Aerial 

Vehicle (UAV) to converge to a certain formation or complete a task affects 

operational efficiency. A shorter convergence time indicates less time spent 

waiting for agents to coordinate, leading to faster task execution and improved 

overall efficiency in every application. 

 Besides, shorter convergence time will help in resource utilization. 

The resources such as computational power and energy will be utilized in a 

more efficient way. For example, if the agents can form cooperative 

formations quickly, lesser time spending will be required in idling or 

redundantly performing actions, thereby extending the operational lifespan by 

conserving valuable resources. 

 Moreover, a shorter convergence time is equivalent to a shorter 

response time, which is crucial in MAS applied in dynamic environments or 

time-sensitive scenarios such as search and rescue or surveillance. In such 

applications, rapid convergence to environmental changes is paramount. A 

MAS with a shorter convergence time can respond more promptly to dynamic 

environments, thereby improving its effectiveness in real-life situations. 
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Figure 4.2: 2D MBC Algorithm’s Convergence Graph for 9 Agents 

 

 

Figure 4.3: 3D MBC Algorithm’s Convergence Graph for 9 Agents 

 

 Figure 4.2 and Figure 4.3 show the Two-dimensional (2D) and Three-

dimensional (3D) Multi-step Broadcast Control (MBC) Convergence graphs 

of the objective function against time for 9 agents. The 't' on the graph 

represents the iteration. For both Figure 4.2 and Figure 4.3, the total number of 

iterations run is 500. The purpose of showing these graphs is to identify at 

which iteration the MAS achieves the desired formation. The x-axis is 
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represented in 't' because it also represents the convergence time, as the 

number of iterations can be multiplied by the time required for each iteration 

to obtain the convergence time for the system. However, time is not focused 

on in this section, as the time per iteration can be affected by the 

computational load required to run the algorithm. In this section, the 

convergence rate will be highlighted by observing the shortest iteration 

required for the system to achieve stability and complete the given task. 

 From Figure 4.2, it can be observed that the calculation results for the 

objective function start to be consistent at approximately 100 iterations. After 

100 iterations, the graph shows a consistent trend, with no changes in the 

value for the Y-axis (calculated objective function). This indicates that the 2D 

MBC algorithm will complete the operation formation for performing the 

coverage task at approximately 100 iterations. 

Figure 4.3 indicates that the results of the objective function become 

stable at approximately 60 iterations. Beyond this point, there is a consistent 

trend in the graph, showing no further changes in the calculated objective 

function value per iteration on the Y-axis. This suggests that the 3D MBC 

algorithm achieves completion of the operation formation for the coverage 

task within approximately 60 iterations. 

In short, the convergence analysis of Figure 4.2 and Figure 4.3 

provides valuable insights into the convergence behavior of the 2D MBC 

algorithm and the 3D MBC algorithm. Both the 2D and 3D MBC demonstrate 

efficient convergence behavior, with the 3D variant exhibiting better 

convergence behavior. This indicates that, with the condition of other 

variables remaining constant, the 3D MBC algorithm will have a faster 

convergence time and response time compared to the 2D MBC algorithm. 

 

4.2.2 Computational Load 

Computational load can also be known as computational complexity, which is 

a measure of the amount of computing resources in term of time and space 

needed for a particular algorithm to run (Anon, n.d.). To be exact, 

computational complexity can be divided into two aspects, which is time 

complexity and space complexity. 
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  Time complexity is the total amount of time the system requires to 

run the algorithm until the operation is complete with varying input size. In 

layman terms, it means the number of operation perform, or the number of 

iteration done to complete the task by an algotithm. Different algorithms will 

have different time complexities, and the performance of the algorithm on 

inputs of different sizes will be impacted. 

 Space complexity commonly refers to the amount of memory space 

an algorithm requires with varying size of the input. Space complexity varies 

depending on factors such as data structures, recursion depth, and temporary 

storage used. Hence, simplifying the code will eventually reduce memory 

consumption. Unnecessary code should be eliminated and simplified to 

prevent quality degradation, and efficient memory consumption is critical and 

should be emphasized. 

In this section, the computational load of the algorithm can be 

observed by using the time consumed by the algorithm to run the required 

iterations. Computational complexity can be identified by calculating the time 

consumed by the algorithm starting from the first iteration to the final iteration. 

More time required to complete the operation indicates that the algorithm 

consumes more memory space. The time complexity will be focused in this 

section as the memory used by the algorithm is not being measured and tested. 

Time complexity describes the amount of time taken for the algorithm to 

finish its operation, with size of input as a variable function, while the results 

were obtained with a consistent input size of 9 agents. Hence, this indicates 

that there is differing time complexity between the Two-dimensional (2D) 

Multi-step Broadcast Control (MBC) algorithm and the Three-dimensional 

(3D) algorithm as the observed results were different. 

 

 

Figure 4.4: Computational Time Required for 2D MBC Algorithm with 9 

Agents 
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Figure 4.5: Computational Time Required for 3D MBC Algorithm with 9 

Agents 

 

 Figure 4.4 indicates that it took 3.8622 seconds for the 2D MBC 

algorithm to complete its execution fully, whereas Figure 4.5 demonstrates 

that the 3D MBC algorithm required 2046.0367 seconds to achieve full 

execution completion. Both Figure 4.4 and Figure 4.5 show the time 

complexity for their respective algorithms, and the comparison results show 

that the 3D MBC algorithm has a larger computational load than the 2D MBC 

algorithm. It is undeniable that running a 3D algorithm in 3D space demands a 

significant amount of time for execution due to the increased calculations 

required. This is because there's an additional axis compared to the 2D 

scenario, leading to a greater computational load. 

 

4.2.3 Coverage Quality 

In Multi Agent System (MAS), coverage quality can be defined as the 

effectiveness and completeness with which a group of agents explore and 

monitor the given space or environment. Coverage quality assesses how 

effectively and thoroughly a MAS explore and covers the target area by 

considering the aspects of percentage of area covered and uniformity of 

coverage distribution. Besides, minimal coverage gaps are crucial as gaps can 

lead to missed observations or incomplete task fulfillment. 
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Figure 4.6: Coverage Quality for 2D MBC Algorithm with 9 Agents 

 

 

Figure 4.7: Coverage Quality for 3D MBC Algorithm with 9 Agents 

 

 Figure 4.6 and Figure 4.7 show the coverage quality for 9 agents with 

the Two-dimensional (2D) Multi-step Broadcast Control (MBC) algorithm and 

Three-dimensional (3D) MBC algorithm respectively. The coverage quality 

can be observed through Voronoi partitioning. The evenly distributed partition 

proves the quality of the coverage status, and the characteristics of Voronoi 

partition ensure that the percentage of cover area is maximized.  
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In Figure 4.6, it is a complete coverage task done by the 2D MBC 

algorithm, with the agents evenly distributed with 3 agents in a column and 3 

agents in a row aligned with each other to form a 9-agent coverage network. 

Similarly, Figure 4.7 showcases a complete coverage network done by 

the 3D MBC algorithm, with the agents evenly distributed with 9 agents 

arranged in a similar grid pattern as the 2D MBC algorithm. From Figure 4.7, 

it can be observed that the agents’ path is more complex compared to the 

agent’s path in Figure 4.6, where the agents’ paths are shorter. This scenario 

happens due to the results taken in Figure 4.7 being a slice of the 2D view of 

the X and Y axes. The agents in Figure 4.7 seem to have longer paths because 

the agents are rising in altitude, and the captured 2D view is from the top of 

the 3D space, which might result in a misconception of extended agents’ paths. 

Assessing coverage quality in a 3D space can be challenging, necessitating a 

top view for accurate evaluation. Hence, a slice of 2D view is captured along 

with Voronoi partition to visualize the coverage quality achieved by the 3D 

MBC algorithm. 

 Both Figure 4.6 and Figure 4.7 exhibit comparable coverage quality, 

as both agents are evenly distributed with each other and aligned to form a 3x3 

static coverage network. Both achieve full percentage of area cover with the 

help of Voronoi partition, ensuring the completeness of static coverage. 

 

4.2.4 Path Length 

In Multi Agent System (MAS), path length usually refers to the total distance 

traveled by the agents while executing a task or covering a certain area. Path 

length is a crucial metric that will directly impact the overall performance of 

MAS. Path length can be separated into individual agent paths and cumulative 

path lengths. 

 The individual agent path is the distance traveled by each individual 

agent from its starting point to its destination, including all intermediate 

waypoints or extra paths needed due to the obstacles encountered along the 

way. Cumulative path length will be the sum of all individual agent paths. In 

this section, the method used to calculate the path length is by using the 

cumulative path length divided by the number of agents involved. The mean 

distance traveled by each individual agent will be calculated. Implementing 
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individual agent paths in this study proves challenging due to variations in the 

distances between starting locations and ending points for each agent. To 

obtain an accurate path length result, the mean distance traveled by the agents 

is calculated with the aid of MATLAB. 

 

 

Figure 4.8: Travelling Route for Agents with 2D MBC algorithm. 

 

 

Figure 4.9: Travelling Route for Agents with 3D MBC algorithm. 
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 In this study, the path length traveled by the agents in the Two-

dimensional (2D) Multi-step Broadcast Control (MBC) algorithm and the 

Three-dimensional (3D) MBC algorithm will be compared. To meet the 

comparison requirement, an additional 200m must be added to the distance 

traveled by the 2D MBC algorithm. This adjustment compensates for the fact 

that the mean distance calculated for the 2D MBC algorithm operates within a 

single layer of 2D, where all agents are at the same altitude. This scenario can 

be simulated by augmenting the mean distance traveled by 200m, effectively 

simulating the scenario of the agents for the 2D MBC algorithm ascending to 

200m, which is the desired altitude before commencing the coverage operation. 

Figure 4.8 highlights the necessity of adding the extra 200 meters for altitude, 

as the original path length generated in 2D cannot be directly compared to the 

path length generated in 3D. Thus, the 2D view can be converted into a 3D 

view with the agents rising to 200m in altitude and starting their coverage task, 

during which the agents will be moving in Manhattan distance. Whereas 

Figure 4.9 illustrates the path traveled by agents in the 3D MBC algorithm, 

where the agents are moving in Euclidean distance, which is a direct straight 

linear line from the start point to the end point. Figure 4.8 and Figure 4.9 

depict the same starting point at point A and ending point at point B, 

representing the destination. However, they employ different metrics for 

measuring the traveling distance. 

 

 

Figure 4.10: Path Length for 9 Agents using 2D MBC Algorithm Without 

Altitude Length 
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Figure 4.11: Path Length for 9 Agents using 3D MBC Algorithm 

 

Figure 4.10 illustrates the mean distance traveled by the 9 agents using 

the 2D MBC algorithm in a 2D space. Additionally, the mean distance 

calculated must be augmented by an additional 200m, as mentioned earlier, to 

allow for comparison in a 3D space. Figure 4.11 depicts the mean distance 

traveled by the agents using the 3D MBC algorithm in a 3D space. To enable a 

valid comparison, the mean distance traveled using the 2D MBC algorithm 

must be increased by 200m, allowing for comparison with the mean distance 

traveled using the 3D MBC algorithm in the form of Manhattan distance, as 

shown in Figure 4.8. 

 

Table 4.1: Summarized Table for Mean Distance Travelled by 9 Agents 

Algorithm Mean Distance Travelled by 9 Agents Distance Metrics 

2D MBC 87.0964 m + 200 m = 287.0964 m Manhattan 

3D MBC 284.0383 m Euclidean 

 

Technically, the Euclidean distance will be shorter than the Manhattan 

distance, as the Euclidean distance forms a straight line between the initial 

point and the destination, while the Manhattan distance sums up all the real 

distances between the initial point and the destination. Table 4.1 presents a 

summarized table for the mean distance traveled by agents using both 

algorithms. From the table, it can be observed that the path length using the 

3D MBC algorithm is slightly shorter than the path length using the 2D MBC 

algorithm. 
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Figure 4.12: Right Angle Triangle (Represent Distances for 3 Points) 

 

The Euclidean distance, represented as 'c' in Figure 4.12, is calculated 

using the Pythagorean theorem, while the Manhattan distance simply sums up 

the distances of 'a' and 'b' from Figure 4.12. The formula for the Pythagorean 

theorem to calculate the length of 'c' is: 

 

𝑐 = √𝑎2 + 𝑏2, (4.1) 

 

 Hence, if 'a' and 'b' both have a value of 2, the Manhattan distance 

will total 4, while the Euclidean distance will be 2.83, calculated using 

equation 4.1. The results shown in Table 4.1 do not seem ideal, as there is only 

a small difference between the Euclidean distance and the Manhattan distance. 

This phenomenon occurs because the traveling path for the agents is 

sufficiently smooth to form a straight line, rather than the agents moving in a 

zigzag style, which would increase the path length. The distance traveled by 

agents using the 3D MBC algorithm can be further shortened in the future 

through enhancements in path-smoothing techniques. In short, the path length 

using the 3D MBC algorithm is shorter than the path length using the 2D 

MBC algorithm, justifying the need for the 3D MBC algorithm. 

 

4.2.5 Scalability 

Scalability describes the ability of a system, technology, or network to handle 

an increasing workload or resource demands while maintaining or improving 

efficiency, performance, and reliability. In Multi Agent System (MAS), 

scalability measures the capacity of the system to effectively accommodate 

changes or growth in usage without significant modifications or negative 

impacts on its functionality and performance. Scalability is important as it 
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serves as an indicator of the system's ability to scale up and down in response 

to changes in demand, workload, or operational factors while continuing to 

meet desired performance and specifications. In this study, varying scales of 

operation may include changes in the number of agents, dimensions of the 

environment, and the complexity of tasks. 

  A scalable MAS can accommodate an increasing number of robots 

without degradation in performance, such as coordination efficiency, 

communication, and task allocation mechanisms. A scalable system must have 

the capability to handle both small and large agent systems effectively. 

 The scalability of a system extends beyond just the input size and can 

also encompass factors such as the dimensions of the environment when 

assessing the system's ability to adapt and perform efficiently. A scalable 

MAS should be able to operate effectively in environments of different sizes, 

ranging from indoor confined spaces to vast outdoor areas. The system should 

be able to adapt to changes in the size of the environment and specific 

characteristics to ensure efficient task execution and comprehensive coverage. 

 Moreover, MAS should be able to handle tasks of varying complexity, 

from simple coverage to specific formations, and even cooperate in 

performing multiple objectives simultaneously. The computational, sensing, 

and decision-making capabilities should meet the demands of increasingly 

challenging tasks without losing performance. 

 In this section, the scalability of the system will be justified by 

arranging 4 agents and 16 agents to act as scale-down and scale-up, 

respectively. The key focus of this section is to compare the scalability of the 

Two-dimensional (2D) Multi-step Broadcast Control (MBC) algorithm and the 

Three-dimensional (3D) MBC algorithm. 

 

3D Simulation Model for Coverage Task using 3D MBC Algorithm. 
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Figure 4.13: Agents’ Trajectories in Performing Coverage Task using 3D 

MBC Algorithms for 4 agents. 

 

 

Figure 4.14: Agents’ Trajectories in Performing Coverage Task using 3D 

MBC Algorithms for 16 agents. 

 

 Figure 4.13 and Figure 4.14 show that the development of the 3D 

MBC algorithm successfully simulated the coverage operation for 4 agents 

and 16 agents, respectively. Both figures demonstrate that the 3D MBC 

algorithm can scale down and scale up to accommodate 16 agents. Further 

research can be done to investigate the maximum scale-up limit of the 3D 

MBC algorithm. 
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Coverage Quality for 4 Agents and 16 Agents using Both Algorithm. 

 

 

Figure 4.15: Coverage Quality for 2D MBC Algorithm with 4 Agents 

 

 

Figure 4.16: Coverage Quality for 3D MBC Algorithm with 4 Agents in X-Y 

Axes View 

 

 Figure 4.15 and Figure 4.16 depict scaled-down versions for both the 

2D MBC algorithm and the 3D MBC algorithm. It is evident that the coverage 

quality generated by both algorithms is similar, with agents aligned to form a 

2x2 formation consisting of two agents in a row and two in a column. This 
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demonstrates that the coverage quality remains consistent even when 

transitioning from the 2D MBC algorithm to the 3D MBC algorithm. 

 

 

Figure 4.17: Coverage Quality for 2D MBC Algorithm with 16 Agents 

 

 

Figure 4.18: Coverage Quality for 3D MBC Algorithm with 16 Agents in X-Y 

Axes View 

 

 Similarly, both Figure 4.17 and Figure 4.18 show the coverage 

quality generated by the 2D MBC algorithm and the 3D MBC algorithm, 

respectively. In terms of coverage quality, both algorithms achieve good 

coverage, with the agents evenly distributed and covering approximately the 
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same area. However, there is a slight degradation in Figure 4.18 due to the 

misalignment of agents in the row and column. This misalignment can be 

further resolved by implementing fine-tuning optimization to adjust the gains, 

as there are a few gains that need to be tuned when scaling is performed. In 

short, the coverage quality remains consistent when scaling up the system, 

whether using the 2D MBC algorithm or the 3D MBC algorithm. 

 

Coverage Analysis for 4 Agents and 16 Agents using Both Algorithm. 

 

 

Figure 4.19: 2D MBC Algorithm’s Convergence Graph for 4 Agents 
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Figure 4.20: 3D MBC Algorithm’s Convergence Graph for 4 Agents 

 

 

Figure 4.21: 2D MBC Algorithm’s Convergence Graph for 16 Agents 
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Figure 4.22: 3D MBC Algorithm’s Convergence Graph for 16 Agents 

 

 Figure 4.19 and Figure 4.20 depict the 2D MBC system and 3D MBC 

system scaled down to 4 agents, while Figure 4.21 and Figure 4.22 show the 

2D MBC system and 3D MBC system scaled up to 16 agents. 

 In Figure 4.20, there is a shorter convergence time of approximately 

45 compared to the convergence time in Figure 4.19, which is approximately 

55. Figure 4.20 illustrates a significant decrease in the calculated value for the 

objective function, making it evident when the system converges and 

stabilizes. 

 Figure 4.21 and Figure 4.22 take longer to converge and stabilize. 

Figure 4.21 demonstrates that the convergence graph from the 2D MBC 

algorithm reaches convergence and stability around 130 iterations, whereas 

Figure 4.22 illustrates that the convergence graph from the 3D MBC algorithm 

achieves convergence and stability at approximately 110 iterations. The 

system takes longer to converge and stabilize compared to the system with 4 

agents and 9 agents. 

 Although the convergence time for the systems with 4 agents, 9 

agents, and 16 agents varies, the scalability of the systems remains as the 

focus of this section is to compare the scalability of the 2D MBC algorithm 

and the 3D MBC algorithm. Despite the change in scale, the characteristics of 

the systems remain consistent, indicating that the performance of the systems 
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in 2D and in 3D are the same. This indicates that the performance for both 

algorithms is robust and consistent across different agent quantities, 

demonstrating their scalability in handling varying system input sizes. 

 

Path Length & Computational Time Required for 4 Agents and 16 Agents 

using Both Algorithm. 

 

 

Figure 4.23: Path Length and Computational Time Required for 4 Agents 

Using 2D MBC Algorithm. 

 

 

Figure 4.24: Path Length and Computational Time Required for 4 Agents 

Using 3D MBC Algorithm. 
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Figure 4.25: Path Length and Computational Time Required for 16 Agents 

Using 2D MBC Algorithm. 

 

 

Figure 4.26: Path Length and Computational Time Required for 16 Agents 

Using 3D MBC Algorithm. 

 

Table 4.2: Summarized Table for System Scalability in Path Length and 

Computational load 

Algorithm 
Number 

of Agents 

Computational 

Load, s 
Mean Path Length, m 

2D MBC 

4 1.9372 87.5983 + 200 = 287.5983 

9 3.8622 87.0964 + 200 = 287.0964 

16 14.4200 87.4820 + 200 = 287.4820 

3D MBC 

4 1088.0381 286.6854 

9 2046.0367 284.0383 

16 3762.6098 272.3628 

 

 The results obtained from Figure 4.23, Figure 4.24, Figure 4.25, and 

Figure 4.26 were summarized and tabulated in Table 4.2. From Table 4.2, the 

scalability of the system for 2D MBC and 3D MBC exhibit similar 

performance when scaling up to 16 agents and scaling down to 4 agents. It can 
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be observed that the mean distance traveled by the agents is approximately the 

same. This phenomenon occurs because the coverage quality is approximately 

the same, and the distance traveled by the agents is calculated as the mean, 

which is the sum of all the real distances traveled by each agent divided by the 

number of agents. In an ideal case, the mean distance traveled by the system 

shall have the same value to ensure the coverage performance. This fact is 

valid only when the environment is obstacle-free, and the dimensions of the 

environment are the same when scaling up and down. 

 When the number of agents increases in both 2D MBC algorithm and 

3D MBC algorithm, the computational load also increases in an untraceable 

sequence. Hence, enhancements are required for the scalability of both the 2D 

MBC algorithm and the 3D MBC algorithm. 

 Although the scalability for both algorithms need improvement, the 

primary focus of this section is to compare the scalability between the 2D 

MBC algorithm and the 3D MBC algorithm. With this aim in mind, the 

scalability of the 3D MBC algorithm remains consistent even after the 

transition from the 2D MBC algorithm since both algorithms have the same 

scalability characteristic. 

 

4.3 Application of 3D Multi-step Broadcast Control 

As mentioned earlier, implementing algorithms in a Three-dimensional (3D) 

space can indeed increase computational complexity and resource 

requirements. However, transitioning from Two-dimensional (2D) to 3D is 

still required due to several reasons that support the research extension from 

2D to 3D, which can be valuable. 

 The reason supporting the need for 3D algorithms is realism and 

applicability. While a Multi Agent System (MAS) with a 2D algorithm may be 

sufficient for some applications, if the agents involved in the MAS are either 

Unmanned Aerial Vehicles (UAVs) or Unmanned Underwater Vehicles 

(UUVs), a 2D algorithm may not be enough to handle applications involving 

UAVs and UUVs. Real-world scenarios exist in 3D environments, and the 

development of 3D algorithms will ensure that the study is more aligned with 

practical applications, increasing its potential in real-life deployments. Unlike 

in 2D environments where altitude is assumed to be constant, Multi 
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Unmanned Aerial Vehicle (MUAV) in 3D environments must navigate 

through varying altitude levels as they encounter obstacles at different 

altitudes. A 2D algorithm may not adequately account for obstacles above or 

below the MUAV’s flight path, leading to inefficient navigation, path planning, 

and potential collisions. Moreover, UAVs in the system can achieve optimal 

path planning as it involves not only horizontal movements but also vertical 

maneuvers. The real world is a dynamic environment where varying weather 

conditions, target locations, and terrain exist. A 3D algorithm can control the 

MUAV to adapt to evolving conditions by adjusting speed, altitude, and 

direction. A 2D algorithm may lack the flexibility to respond to the dynamic 

environment effectively. 

 The algorithms developed for 3D environments are more robust and 

versatile as they must include additional factors such as the elevation of the 

agents, altitude of the system, changes in the environment, and obstacles in 3D 

space. Algorithms for 3D space can offer improved performance and 

adaptability in challenging environments compared to 2D algorithms, even 

though the algorithms are more computationally intensive. 

 Exploring and developing 3D coverage control for MAS opens new 

avenues for research and innovation. Opportunities and possibilities exist to 

develop novel algorithms, optimization techniques, and coordination strategies 

that may not be realizable or necessary in a 2D setting when dealing with the 

complexities of 3D space. Besides, advancing research in the field of static 

coverage for MUAV in 3D contributes to the academic community’s 

understanding of complex systems and algorithms. 

 This study opens a framework of 3D for MUAV in static coverage, 

and more elements can be added to this framework for greater efficiency and 

realism that can be deployed in real-life applications. In this research, several 

functions were implemented to prove the effectiveness of 3D algorithms. 
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Figure 4.27: 3D MBC Algorithm with Collision Avoidance for 4 Agents 

 

 

Figure 4.28: 3D MBC Algorithm with Collision Avoidance for 9 Agents 
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Figure 4.29: 3D MBC Algorithm with Collision Avoidance for 16 Agents. 

 

 Figure 4.27, Figure 4.28, and Figure 4.29 depict the agents 

performing coverage tasks with collision avoidance using the 3D Multi-step 

Broadcast Control (MBC) Algorithm. The collision avoidance implemented in 

the 3D MBC is against static obstacles. The rectangular prisms shown in the 

figures represent buildings and high-rises. The environment map is grid-based, 

with the map sliced into smaller cubic pieces. Initially, the weightage for each 

grid of the map is the same. However, a negative value was assigned to the 

grid covered by the blue rectangular prism to indicate that the area is 

prohibited, and the agents will not move to that area. A higher positive value 

assigned to a grid will result in attracting more agents to that area. Hence, the 

area of interest mentioned in the study of the 2D algorithm often adjusts the 

density function for the grid to attract more agents to that area. The successful 

implementation of obstacle avoidance for static obstacles is illustrated in 

Figures 4.27, 4.28, and 4.29. These figures depict the agents navigating 

through the environment without colliding with the buildings, which are 

represented by rectangular prisms. 

 



69 

 

Figure 4.30: 3D MBC Algorithm with Different Altitude Based on Area of 

Interest. 

 

 Figure 4.30 shows the agents completing the coverage task with 

different heights as results using the 3D MBC algorithm. There are two 

heights for the agents: 200m and 100m. The agents within the area of interest 

will have a maximum height of 100m, as the height for the area of interest was 

preset. If the agents lie within the area of interest, they will have a height of 

100m, while others will have a normal height of 200m. For Figure 4.30, the 

area of interest was set to be in the range of 0-135 for both the X-axis and Y-

axis. 

 

 

Figure 4.31: Concept of the Coverage Area of UAV (Peng et al., 2022) 



70 

 

 In 2D, the concept of the area of interest in the context of multi-agent 

systems usually focuses on dividing the area and assigning higher density 

weights to certain regions to attract more agents. However, this approach may 

not be sufficient for real-life applications, as simply stacking agents in the area 

of interest does not necessarily lead to significant improvements in the 

obtained data. While having more agents in the area of interest eliminates 

coverage gaps, it may not contribute to achieving high-resolution accuracy in 

the data collected. 

 The limitations of the area of interest in 2D MAS can be addressed by 

transitioning from a 2D to a 3D algorithm and incorporating the area of 

interest concept from 2D, along with the feature shown in Figure 4.30. In a 3D 

MAS, when agents within the area of interest lower their altitude, they reduce 

their coverage radius, as illustrated in Figure 4.31. Therefore, implementing 

the area of interest feature from 2D into a 3D algorithm provides an optimal 

solution for performing coverage tasks with an area of interest. Lowering the 

altitude of agents within the area of interest allows for obtaining high-

resolution data, while having more agents gather in the area of interest ensures 

full coverage without gaps. 

 

 

Figure 4.32: 3D MBC Algorithm with Different Altitude Based on Agents’ ID. 
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 Similarly to the previously introduced feature, Figure 4.32 illustrates 

agents with different altitudes based on their ID, using the 3D MBC algorithm. 

Unlike Figure 4.30, where altitude changes were dependent on the area of 

interest, in Figure 4.32, altitude changes are based on the agents' ID. Agents 

with IDs 1, 2, 3, 4, and 5 will have a maximum height of 100m. This feature 

allows users to directly control the altitude of agents based on their ID to 

obtain higher-resolution data. 

 With the successful development of the 3D MBC algorithm, several 

potential applications can benefit from its deployment to complete various 

tasks. In search and rescue operations, MUAV are often deployed to locate 

and assist individuals in remote or hazardous locations. Surveillance 

capabilities can be enhanced by adjusting the height based on areas with 

potential signs of life or distress signals. Additionally, dynamically adjusting 

the height of agents can optimize surveillance capabilities, providing 

emergency responders with critical information for disaster management. 

Other applications of the 3D MBC algorithm include border security and 

surveillance, environmental monitoring, infrastructure inspections, and event 

monitoring. 

 Altitude adjustment ensures that MUAV can continue operating 

effectively despite environmental factors. For example, if a UAV in a MAS 

experiences misalignment or displacement from its designated working station 

due to factors like wind flow, systems equipped with altitude adjustment 

capabilities can execute repositioning maneuvers. This involves altering 

altitude or horizontal direction to compensate for the displacement. The 3D 

MBC algorithm is well-suited to these applications, as static coverage 

objectives can be achieved with altitude adjustments, optimizing surveillance, 

improving data collection quality, and supporting decision-making in 

challenging environments. 

 

4.4 Summary 

The performance for both Two-dimenstional (2D) Multi-step Broadcast 

Control (MBC) algorithm and Three-dimensional (3D) MBC algorithm are 

evaluated in terms of computational load, convergence analysis, path length, 

coverage quality, and scalability.  
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Table 4.3: Summarized Table for Performance of Algorithm 

Evaluation Parameter 
Algorithm 

2D MBC 3D MBC 

Computational Load 
☑ 

(3.8622 s) 

☐ 

(2046.0367 s) 

Convergence Analysis 
☐ 

(100 iteration) 

☑ 

(60 iteration) 

Path Length 
☐  

(287.0964 m) 

☑ 

(284.0383 m) 

Coverage Quality ☑ ☑ 

Scalability ☑ ☑ 

 

 Table 4.3 summarizes the evaluation performance for both the 2D 

MBC algorithm and the 3D algorithm. The primary evaluation focuses on 

comparing the performance of both algorithms to verify that the transitioned 

3D MBC algorithm maintains or exceeds its performance level and does not 

deteriorate in effectiveness. From Table 4.3, there are no changes in 

performance in terms of coverage quality and scalability for both the 2D and 

3D algorithms. It indicates that the algorithm is well developed without 

degradation. The 2D MBC algorithm demonstrates superior performance 

compared to the 3D MBC algorithm in terms of computational load. This is 

attributed to the inherent complexity of calculations in three-dimensional 

space, where the system must account for an additional axis compared to two-

dimensional calculations.  

 However, the 3D MBC algorithm outperforms the 2D MBC 

algorithm in convergence analysis and path length. The Multi-Agent Systems 

(MAS) operating with the 3D MBC algorithm exhibit quicker convergence 

times, as evidenced by the convergence graph indicating that 3D requires 

fewer iterations compared to 2D. The convergence analysis attributes the 

superiority of 3D over 2D to the comparison of iterations needed to 

accomplish the coverage task, without factoring in computational load. If 
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computational load were included in the analysis of convergence time, the 

convergence time for 3D would likely be higher than that of 2D.  

 According to the findings in Table 4.3, the shorter path length 

observed in the 3D scenario compared to the 2D scenario can be attributed to 

the fact that the ideal path route in 3D follows Euclidean distance, whereas in 

2D it adheres to Manhattan distance. However, despite the shorter path length 

in 3D, the improvement over 2D is marginal, as the 3D path appears to be 

zigzag rather than a straight line. This indicates a lack of smooth path planning 

in the 3D MBC algorithm, which affects the efficiency of the path compared 

to 2D.  

 Besides comparing the 2D and 3D algorithms, the application for the 

3D MBC algorithm was discussed. In summary, the application scope of the 

3D MBC algorithm surpasses that of the 2D MBC algorithm due to the 

limitations inherent in 2D environments. The ability of the 3D MBC algorithm 

to adjust altitude expands its applicability to a wider range of real-life 

scenarios. While the capabilities of the 2D MBC algorithm can generally be 

replicated by the 3D version, the reverse is not true. In other words, tasks 

achievable with the 2D MBC algorithm can typically be performed by the 3D 

MBC algorithm as well, but there are certain functionalities unique to the 3D 

version that the 2D algorithm cannot replicate. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project aimed to develop a control algorithm for a Multi-Agent System 

(MAS) performing coverage tasks in a Three-dimensional (3D) environment. 

To achieve this, an extensive literature search on existing Multi Unmanned 

Aerial Vehicle (MUAV) coverage control methods was conducted. Among 

these methods, the Multi-step Broadcast Control (MBC) algorithm was 

selected due to its advantages of combining characteristics of both centralized 

and decentralized coverage. The MBC algorithm minimizes issues associated 

with centralized and decentralized approaches, with relatively low 

computational load due to its one-to-all communication nature, eliminating the 

need for communication between individual agents. 

 To adapt the MBC algorithm for use in a 3D space, it was necessary 

to convert it from its original Two-dimensional (2D) design. Thus, the 3D 

MBC algorithm was developed using MATLAB. In the coverage control task, 

nine agents were deployed to cover a 200 x 200 x 200 unit area. 

 The newly developed 3D MBC algorithm was then utilized to assess 

its performance in comparison to the original 2D MBC algorithm across 

various metrics such as computational load, convergence analysis, path length, 

coverage quality, and scalability. The evaluation conducted using these 

metrics, yielded results indicating that the 3D MBC algorithm surpasses the 

2D MBC algorithm in convergence analysis and path length. However, due to 

the inherent complexities of 3D calculations, the computational load is notably 

higher. Yet, both the coverage quality and scalability performances remain 

consistent between the 2D and 3D MBC algorithms. Overall, the transitioned 

3D MBC algorithm not only maintains but also exceeds the performance 

benchmark established by the 2D MBC algorithm. 

 In summary, the objectives of the project have been achieved, as 

existing coverage methods were reviewed, and a 3D coverage control 

algorithm for static coverage tasks was developed. The performance of the 
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developed coverage algorithm was then evaluated in terms of computational 

load, convergence analysis, path length, coverage quality, and scalability. 

 

5.2 Recommendations for Future Work 

There are numerous avenues for enhancing this project, as it establishes a 

framework for Multi-step Broadcast Control (MBC) algorithms in Three-

dimensional (3D). Additionally, there is ample opportunity to incorporate 

additional elements to enrich the coverage control algorithm. It was noted that 

there was only a marginal reduction in the mean distance traveled during the 

evaluation phase, indicating that the achieved results were less than optimal. 

This issue arises because the path generated by the algorithm lacks 

smoothness. Incorporating path smoothing techniques into the coverage 

algorithm can significantly decrease the path length by ensuring more direct 

travel in Euclidean distance. 

 Furthermore, the performance of the algorithm has not been tested in 

a physical environment due to time constraints. The performance indices have 

only been evaluated in simulations. To evaluate the algorithm's performance in 

physical environments, the algorithm must be further developed with the 

Robotics Operating System (ROS). The algorithm's success can be validated 

through testing in real-world physical environments. 

 

Therefore, future work could involve dynamic obstacles in the environment. 

Further research on 3D dynamic obstacle avoidance must be done to 

implement the method into the algorithm. Integrating dynamic obstacle 

avoidance into the algorithm in 3D can enhance its suitability for real-life 

scenarios, mitigating the risk of operational failures. 

 Moreover, this study can be further evolved into blanket coverage. 

Blanket coverage is the same as static coverage but with the difference that the 

altitude for every agent might not be the same. Blanket coverage adapts to the 

terrain by encompassing areas of varying heights, reflecting the typical 

diversity found in terrain features. 

 The future work for this project can also involve improving the 

scalability of the algorithm. Big O notation can be used to analyze the 
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scalability of the 3D MBC algorithm by providing an upper bound on its time 

or space complexity as the input size grows. The inefficiencies in the 

algorithm can be addressed and identified, allowing optimization and 

improvement in scalability. 

 Furthermore, since computational load is the biggest drawback for the 

3D MBC algorithm, the code and calculations for the algorithm can be 

reviewed, simplified, and unnecessary calculations minimized to streamline 

processes without sacrificing performance quality. Researching alternative 

data structures to identify efficient options that can be customized to meet the 

specific needs of the 3D MBC algorithm is also important. Implementing these 

enhancements will minimize memory consumption. Additionally, developing 

an optimized algorithm to integrate into the 3D MBC algorithm to ascertain 

the optimal value for the gains, ensuring the highest quality outcomes are 

achieved.
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APPENDICES 

 

Appendix A: Main MBC Code 

 

1. Initialize parameters: 
   - cPJ = 0 
   - FrameNo = 1, YY = 200, XX = 200, ZZ = 200, N = 3, M = 3, P = 1 
   - Y = linspace(0,25,M), X = linspace(75,125,N), Z = linspace(0,0,P) 
   - R = empty array for agents, Record = empty array 
   - RnXY = [-1 -1; -1 +1; +1 -1; +1 +1] 
   - T = zero vector of appropriate size 
   - Define Xgrid, Ygrid, Zgrid using meshgrid 
   - QT = 0.25 for each element 
   - Tau = 2 
   - V = sum of size(Xgrid) 
 
2. Set up mode of simulation: 
   - Mode = 2 
 
3. Load random numbers from file "randnum1000" 
 
4. Loop for 200 iterations: 
   a. Update parameters a and c based on current iteration 
   b. Loop through each agent: 
      i. Record current position in agent's trajectory 
   c. Optimize using PBC4MPC 
   d. Update agent positions based on calculated velocities 
   e. Record data for current iteration 
 
5. Plot recorded data 
 
6. Plot agent trajectories, Voronoi diagram, and histograms 
 
7. Calculate total distances traveled by each agent: 
   a. Iterate through each agent's trajectory 
   b. Calculate distances between consecutive points 
   c. Sum up distances to get total distance traveled by each agent 
   d. Calculate mean distance traveled by all agents 
 
8. Display mean distance traveled by the agents 
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Appendix B: PBC4MPC Code 

 

1. Loop for each iteration from 1 to Horizon: 

a. Compute dX1 and dY1 using random numbers rx, ry, and constant c 

b. Calculate eX1 and eY1 based on dX1 and dY1 

c. Initialize dGrid matrix and other variables 

d. Loop for each agent: 

i. Compute distance between agent and each point in the grid 

ii. Update dGrid1 with minimum distances for each agent 

e. Calculate JG for each iteration 

f. If Iterate2 is 1, set JGi0 to JG(1) 

g. Define TargetAltitude and b 

h. Initialize arrays for velocities (UxT, UyT, UzT) and weights (Wt, Wt1, 

dJG1) 

i. Loop for each timestep: 

i. Update weights Wt and Wt1 

ii. Calculate change in JG for each agent 

iii. Compute velocities UxT, UyT, and UzT for each agent 

k. Compute average velocities RUx, RUy, and RUz for all agents 

l. Handle NaN values in velocities 

m. Apply smoothing factor f to velocities 

n. Update positions RX, RY, and RZ for all agents 

o. Bound positions within the environment limits 

 

2. Perform additional smoothing on velocities for each agent 
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Appendix C: Agent Code 

 

class Agent:  # Define the Agent class 

    properties: 

        ID: integer  # Unique identifier for the agent 

        X: float  # X-coordinate of the agent's current position 

        Y: float  # Y-coordinate of the agent's current position 

        Z: float  # Z-coordinate of the agent's current position 

        T: float  # Time at which the agent exists 

        Ux: float  # X-component of the agent's velocity 

        Uy: float  # Y-component of the agent's velocity 

        Uz: float  # Z-component of the agent's velocity 

        X2: float  # Additional property for future use 

        Y2: float  # Additional property for future use 

        Z2: float  # Additional property for future use 

        Uxa: float  # Moving average recorded for X-component of velocity 

        Uya: float  # Moving average recorded for Y-component of velocity 

        Uza: float  # Moving average recorded for Z-component of velocity 

        Uxx: float  # Velocity-related property for future use 

        Uyy: float  # Velocity-related property for future use 

        Uzz: float  # Velocity-related property for future use 

        Trj: array  # Empty array intended to store the trajectory or path of the 

agent over time 

    methods: 

        function Agent(ID, X, Y, Z, T):  # Constructor method to initialize an 

Agent object 

            Set ID, X, Y, Z, and T properties of the Agent object 

 

# The Agent class represents individual agents with properties such as position, 

velocity, and trajectory.  

 

# Instances of this class can be created with a unique identifier and initial 

position coordinates. 




