

DEVELOPMENT OF OBSTABLE

AVOIDANCE SYSTEM FOR 3D ROBOT

NAVIGATION

ER KAI SHENG

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF OBSTABLE AVOIDANCE SYSTEM FOR 3D

ROBOT NAVIGATION

ER KAI SHENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : ER KAI SHENG

ID No. : 20UEB00934

Date : 26 APRIL 2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF OBSTACLE

AVOIDANCE SYSTEM FOR 3D ROBOT NAVIGATION” was prepared

by ER KAI SHENG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Mechatronics

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : IR DR DANNY NG WEE KIAT

Date : 16 MAY 2024

Signature :

Co-Supervisor : DR KWAN BAN HOE

Date : 16 MAY 2024

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universit i

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, Er Kai Sheng. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Ir. Dr. Danny Ng Wee Kiat and Dr. Kwan Ban Hoe for their

invaluable advice, guidance and their enormous patience throughout the

development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement to complete

this project.

v

ABSTRACT

In this project, an algorithm was developed to implement an obstacle avoidance

system in 3D robot navigation. Before project implementation, extensive

research was conducted to explore the current state of obstacle avoidance

systems for 3D robot navigation. Since 3D robot navigation systems require 3D

environmental data, the study focused on 3D Simultaneous Localization and

Mapping (SLAM) to obtain environmental information and generate a suitable

3D map for navigation. Two popular 3D SLAM methods, OctoMap and RTAB-

Map, were studied, and RTAB-Map was chosen for its ability to directly create

3D maps from depth camera data and its incorporation of odometry error

correction, potentially leading to more accurate 3D maps and occupancy grids.

To prepare for obstacle avoidance algorithm development, a differential drive

robot was constructed, and a URDF description was prepared to ensure correct

odometry data conversion from sensor coordinate frames to the robot

coordinate frame. Rviz2 was utilized for visualizing coordinate frames. The

algorithm was tested in both simulation and on the physical robot. Gazebo

simulation software was used to build a virtual world for testing the obstacle

avoidance system. RTAB-Map was employed to construct the essential 3D map

for navigation. To obtain a good 3D map in RTAB-Map SLAM, it is important

to use a LiDAR to refine the odometry of the robot and improve map quality.

In this project, robot navigation was implemented using packages provided by

Nav2. The voxel layer in the layered cost map provided in Nav2 was utilized to

detect the 3D obstacles that cannot be detected by 2D LiDAR. Additionally, the

planner and controller modules from Nav2 were employed for path planning

and obstacle avoidance. Once the algorithm was fully tested and proven

functional in simulation, it would be implemented on the physical robot. The

performance of the algorithm is discussed in the results and discussion section.

In conclusion, the developed algorithm enables the robot to detect obstacles that

are not on the same plane as the 2D LiDAR and cannot be detected using depth

camera data.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xi

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 4

1.6 Contribution of the Study 4

1.7 Outline of the Report 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Nav2 6

2.3 Mapping 6

2.4 Cost Map 12

2.5 Planners and Controllers 15

2.6 Behaviour Tree 16

2.7 Summary 17

3 METHODOLOGY AND WORK PLAN 19

3.1 Introduction 19

vii

3.2 Requirements 19

3.3 Implementation 19

3.3.1 Construct a physical robot 22

3.3.2 Write Unified Robot Descriptions File

(URDF) for the robot 24

3.3.3 Prepare simulation world to test obstacle

avoidance system algorithm 28

3.3.4 Setup driver for the microcontroller,

LiDAR and depth camera 29

3.3.5 Setup RTAB-Map for 3D SLAM 31

3.3.6 Setup Nav2 for robot navigation 38

3.4 Work Plan 43

3.5 Gantt Chart 44

3.5.1 First Phase 44

3.5.2 Second Phase 44

3.6 Summary 45

4 RESULTS AND DISCUSSIONS 46

4.1 Introduction 46

4.2 Results 46

4.2.1 Mapping 46

4.2.2 Navigation 51

4.3 Discussion 56

4.3.1 Mapping 56

4.3.2 Navigation 57

4.4 Summary 58

5 CONCLUSIONS & RECOMMENDATIONS 59

5.1 Conclusion 59

5.2 Recommendations for future work 59

REFERENCES 61

APPENDICES 64

viii

LIST OF TABLES

Table 2.1: Hardware and software required in the research (K. T. D.
S. De Silva et al., 2018) 10

Table 2.2: Performance of the two 3D mapping methods under
different criterion (K. T. D. S. De Silva et al., 2018) 11

Table 3.1: The drivers for different hardware in simulation and real-
world implementation 30

ix

LIST OF FIGURES

Figure 2.1: Map generated by SLAM Toolbox (Macenski, Moore, et
al., 2023) 8

Figure 2.2: The comparisons among different mapping method: (a)
Point Cloud, (b) elevation map, (c) multi-level surface

map and (d) OctoMap (Hornung et al., 2013) 9

Figure 2.3: The environment setup (K. T. D. S. De Silva et al., 2018) 11

Figure 3.1: The example node graph in ROS2 network 20

Figure 3.2: The flowchart of the implementation of this project 21

Figure 3.3: The robot built for this project 23

Figure 3.4: The coordinate frames of different components on the
robot 25

Figure 3.5: An excerpt of the URDF code (Newans, n.d.) 26

Figure 3.6: The relationship among the base_link, odom and map 27

Figure 3.7: The robot model visualized in Rviz2 28

Figure 3.8: The simulation world prepared for this project 29

Figure 3.9: The depth image captured by the depth camera and
displayed in Rviz2 29

Figure 3.10: The depth images captured by Realsense D455 depth
camera
 31

Figure 3.11: The 3D environment generated in the rtabmap_viz 33

Figure 3.12: The structure of the memory management in RTAB-Map
(Labbe and Michaud, 2013) 34

Figure 3.13: The structure of the rtabmap node in rtabmap_slam
package (Labbé and Michaud, 2019) 35

Figure 3.14: The settings of the rtabmap node in launch file 35

Figure 3.15: The code to remap the topics that the rtabmap node
subscribes to 37

x

Figure 3.16: The example of Bresenham's ray-casting approach
(Macenski, Moore, et al., 2023) 39

Figure 3.17: The code to enable voxel layer in local cost map 40

Figure 3.18: Different zones in the Collision Monitor 41

Figure 3.19: The parameters for voxel layer 42

Figure 3.20: Gantt chart for first phase 44

Figure 3.21: Gantt chart for second phase 44

Figure 4.1: The launching process of the teleop_twist_keyboard
package 47

Figure 4.2: The world prepared in simulation 48

Figure 4.3: The 3D map presented in rtabmap_rviz with the wheel
encoder as the only odometry source 48

Figure 4.4: The 3D map presented in rtabmap_rviz with the
integration of the wheel encoder and LiDAR data as
odometry source 49

Figure 4.5: The real-world environment for the robot's navigation 50

Figure 4.6: The 3D map generated in the real-world environment 50

Figure 4.7: The command to launch navigation.launch with a given
YAML parameter file 51

Figure 4.8: The path of the robot before (a) and after (b) the obstacles
is detected by depth camera 52

Figure 4.9: The path planned (a) underneath an office table (b) 53

Figure 4.10: The parameters to launch the ROS2 driver for D455 depth
camera (IntelRealSense, n.d.) 54

Figure 4.11: The real-world scene (a) and the environment displayed in
Rviz2 (b) 54

Figure 4.12: The real-world navigation results 55

Figure 4.13: The visualization of voxel layer of the local cost map in
Rviz2 55

xi

LIST OF SYMBOLS / ABBREVIATIONS

API Application Programming Interface

CLI Command Line Interface

AGV Automated Guided Vehicle

ROS2 Robot Operating System 2

tf Transform Functions (Library in ROS)

Nav2 ROS2 navigation stack

URDF Unified Robot Description File

YAML Yet Another Markup Language (Programming language)

XML Extensible Markup Language (Programming language)

SLAM Simultaneous Localization and Mapping

3D Three-dimensional

2D Two-dimensional

xii

LIST OF APPENDICES

Appendix A: Code of the differential drive robot's URDF 64

Appendix B: Code of the launch file modified to launch RTAB-Map
SLAM 69

Appendix C: The YAML file for the navigation.launch.py launch file in
nav2_bringup package 71

1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Industry 4.0 represents the fourth industrial revolution, characterized by the

transformation of manufacturing methods from manual labor to machine

automation. This transformation significantly enhances productivity, quality,

and the reproducibility of goods through sophisticated digital control systems.

One of the most vital applications in the industry is the Automated Guided

Vehicle (AGV). An AGV is a vehicle capable of transporting goods from one

designated position to another. Nowadays, AGVs are equipped with various end

effectors, such as robot arms and forklifts, enabling them to perform more

complex tasks beyond simple goods transfer.

Today, trackless AGVs are preferred over tracked AGVs in the

industry. Trackless AGVs do not require pre-installed tracks, unlike their

tracked counterparts. Moreover, trackless AGVs offer greater flexibility, as

tracked AGVs can only follow and travel on pre-installed tracks. However,

trackless AGVs necessitate more sophisticated detection sensors, such as Light

Detection and Ranging devices (LiDAR), Inertial Measurement Units (IMUs),

and depth cameras, to determine their position in an environment. The

integration of these devices is crucial to ensure accurate AGV navigation.

 One of the most popular methods for AGVs to detect their environment

and create maps is by using two-dimensional (2D) LiDAR. A 2D LiDAR is a

sensor that employs a rotating pulsed laser beam to measure distances between

the device and its surroundings. This technology allows a 2D LiDAR to generate

precise information about its environment in the form of point clouds, providing

valuable insights into its surroundings (Wang et al., 2020). Since the 2D LiDAR

emits a rotating pulsed laser beam on a single plane, it can generate a 2D point

clouds map. This map enables easy identification of the distances between the

robot and its surroundings. However, the information provided by a 2D LiDAR

may not be sufficient for a robot to navigate in a complex environment where

obstacles may not be on the same plane as the 2D LiDAR. Consequently, the

robot may miss information about obstacles and potentially collide with them.

2

To address this issue, a 3-dimensional (3D) obstacle avoidance system has been

proposed.

The 3D obstacle avoidance system consists of several crucial

components, including sensors to detect the surroundings and output three-

dimensional spatial information in point clouds, such as 3D LiDAR and depth

cameras. Middleware facilitates the exchange of information between the

sensors and the computer (ROS2), and there is a post-processing step for the

data obtained from the sensors. The robot's current surrounding environment is

represented in a cost map. A cost map is a standard 2D grid composed of cells,

each containing information regarding costs associated with unknown, free,

occupied, or inflated areas. This cost map is subsequently analyzed during the

search process to calculate a global plan or sampled to determine local control

efforts. (Macenski, Moore, et al., 2023) In this project, a 3D map will be

established to implement the 3D obstacle avoidance system.

1.2 Importance of the Study

In the industry, a 2D obstacle detection and avoidance system is widely used

due to its popularity and stability. However, the information provided by a 2D

LiDAR may not be sufficient for a robot to navigate in a complex environment

where obstacles may not be on the same plane as the 2D LiDAR. The 3D

obstacle detection and avoidance system has become increasingly important in

the industry to overcome the challenges that robots must face in complex

working environments. A 3D obstacle avoidance system provides more options

for robots to avoid obstacles blocking their path and travel to the target

destination without human interference. Since a 3D obstacle avoidance system

can offer more information about the environment around the robots,

conducting studies on 3D obstacle avoidance systems for robots to enable them

to operate effectively in complex environments is crucial.

The results of this present study may have significant implications for both robot

navigation and understanding the theory behind:

• The construction of a 3D map using the 3D environmental

information provided by sensors.

• The algorithm for detecting obstacles from the cost map.

3

• Global and local path planning to generate a new path when the

original path is blocked by obstacles.

1.3 Problem Statement

Problem statement for the current study of obstacle avoidance system for 3D

robot navigation is summarized below:

A cost map is a standard 2D grid composed of cells, each containing information

about the environment. Consequently, cost maps are essential for robots to

perform obstacle detection and path planning. However, when dealing with an

obstacle avoidance system in 3D robot navigation, complications arise due to

the inherent 2D nature of generated cost maps.

• The information provided by a 2D LiDAR may not be sufficient for

a robot to navigate in a complex environment where obstacles may

not be on the same plane as the 2D LiDAR and cannot be detected

by the robot.

• In the Nav2 library, the 2D cost map is generated using 3D

environmental data sent from sensors. The algorithm compresses the

z-axis data projects the z-axis data to a planar cost map. If any voxel

along the z-axis is occupied, the corresponding grid cell in the 2D

cost map is marked as occupied. However, when robots need to

traverse specific terrains such as tunnels, the compressed and

missing z-axis data causes the robots to mistakenly perceive the

entire tunnel as an obstacle, hindering their ability to navigate

through the terrain.

1.4 Aim and Objectives

The main aim of this study is to propose an algorithm to implement the obstacle

avoidance system for 3D robot navigation. The specific objectives of this

research were to:

• Investigate and find a method to construct a 3D map.

• Implement the 3D obstacle detection system from 3D map.

4

• Integrate the 3D obstacle detection system and path planning system

in Nav2 to produce the obstacle avoidance system for 3D robot

navigation.

1.5 Scope and Limitation of the Study

The scope of the study is to design a 3D obstacle avoidance system for land

wheeled autonomous robots. Hence, the robot will move in a 2D plane and

equipped with sensors that can provide information of the environment in 3D.

The limitations of the study are:

• The algorithm designed for the 3D obstacle avoidance system is

only portable for land wheeled autonomous robots. The obstacle

avoidance system is not applicable to unmanned aircraft vehicles

(UAV).

• The planned path to avoid the obstacle is different with the type of

robots. For example, car-type robots and differential drive robots

have different paths to avoid obstacles due to their type of motions.

Hence, the obstacle avoidance system is only designed to the robots

with specific motion type.

1.6 Contribution of the Study

This study proposed a potential solution for implementing an obstacle avoidance

system for 3D robot navigation. Nowadays, the most popular and mature robot

navigation system is a model that uses only 2D LiDAR. The robot with a pure

2D LiDAR system can only detect obstacles that are in the same plane as the

LiDAR. The solution proposed addressed the limits of the robot's navigation by

presenting a 3D visual SLAM method that can store 3D environmental data and

an obstacle avoidance system that can detect 3D obstacles that 2D LiDAR

cannot. As a result, the suggested obstacle avoidance algorithm allows the robot

to safely explore a complicated 3D environment.

5

1.7 Outline of the Report

Chapter 1 introduces the project by outlining the AGV's existing navigation

system and its constraints. The chapter also discusses the aim, objectives and

problem statements of this project.

Chapter 2 provides a literature review of existing research related to

the navigation system of a robot. This chapter presents a comprehensive

overview of the components required to develop an obstacle avoidance system,

such as the mapping process, cost map, controller and behaviour tree.

Chapter 3 outlines the methodology of this project. In this chapter, the

process of starting a robot navigation will be explained in detail. The

methodology consists of five main parts: Construction of a differential drive

robot, preparation of the URDF file for the constructed robot, preparation of the

drivers required for simulation and real-world sensors, setup of RTAB-Map

SLAM to get a 3D map and setup of Nav2 for the obstacle avoidance system.

Chapter 4 presents the results and discussions for this project. The

results section is divided into two sections, which are the evaluation of the

mapping process and the evaluation of the navigation outcome. Both simulation

and real-world navigation results will be presented in the results section. In the

discussion section, the possible errors that will cause the imperfection in the

mapping and navigation process and their possible solutions have been

discussed.

Chapter 5 concludes the project by discussing the findings and their

significance. Additionally, it proposes several enhancements for improving the

performance and applicability of the RTAB-Map 3D SLAM and obstacle

avoidance algorithm in the future.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

A map is required for robots to efficiently recognise obstacles and plan their

paths. It offers the information required for a robot to detect navigable zones

and obstacles to avoid. By analyzing the map, the robot can determine

permissible paths and mark areas to be avoided to facilitate safe and efficient

navigation. The concept of a 3D mapping methods and its related algorithms

has gained the attention of researchers to enable robots to adapt to complex

environments. This literature review has two primary objectives. Firstly, it aims

to provide a deeper understanding of the algorithms and techniques used in

creating a 3D map. Secondly, it investigates the process of integrating the

constructed 3D map into the obstacle avoidance system for 3D robot navigation.

The outline is structured as follows: Firstly, the review provides an overview of

the theory behind constructing a 2D cost map and an obstacle avoidance system.

Secondly, it explores the various methods that researchers have employed to

create the 3D map. Finally, the review offers insights into the obstacle avoidance

system by utilizing the constructed 3D map.

2.2 Nav2

Nav2 is the primary library that provides all the necessary tools and functions

for robot navigation. The tools in Nav2 enable users to create a 2D cost map

from sensor data, utilize various planners and controllers for robot navigation,

and provide a workspace for users to customize their plugins for specific

applications. Therefore, it is essential to study the working principles of Nav2

and the algorithms it uses, as the 3D obstacle avoidance system will be

developed based on Nav2 concepts.

2.3 Mapping

In robot navigation, the robot must first understand its environment through

mapping before it can perform navigation tasks. The sensor data is used to

estimate the state of the robot and create an accurate representation of the

7

environment in a mapping process. The map generated through mapping

process is crucial for tasks like path planning and localization. In ROS2, the

generated map is represented as an occupancy grid, consisting of cells that

represent the probability of occupancy. (Macenski, Moore, et al., 2023)

When conducting mapping, the robot requires knowledge of its own

position to create an accurate global map. Simultaneous Localization and

Mapping (SLAM) is the process in which the robot simultaneously maps and

localizes itself (Macenski et al., 2023). There are two conventional tools for

robots to perform SLAM: Cartographer and SLAM Toolbox.

Real-time SLAM capabilities are offered by Cartographer. It continually

integrates laser scans into submaps over short intervals via pose-graph

optimisation, producing locally accurate maps that show the most recent

measurements. These localised submaps are used for scan matching, whereby

scans are added to the submap at their best-estimated locations. A submap is

improved by going through a loop closure procedure once it has been finalised,

which compares it with other submaps and local scans. However, professional

optimization and high-quality odometry hardware platforms are required in

Cartographer to achieve the accuracy up to 3-5 cm in the mapping process. It's

important to note that development and support for Cartographer have ceased,

making it not recommended for use in SLAM for robots (Macenski et al., 2023).

On the other hand, SLAM Toolbox is one of the 2D SLAM methods that

is designed based on the OpenKarto SLAM library. Like Cartographer, the

pose-graph optimization is used in SLAM Toolbox to match current sensor

readings with previous scans and provide a corrected pose of the robot. The

OpenKarto SLAM library used in SLAM Toolbox has been updated to enhance

scan matching speed and offer greater flexibility in optimization parameters

(Macenski et al., 2023). Figure 2.1 provides an example of a map generated by

SLAM Toolbox. However, it's important to note that SLAM Toolbox is limited

to planar mapping and may not be suitable for 3D navigation in environments

such as climbing ramps between floors.

8

Figure 2.1: Map generated by SLAM Toolbox (Macenski, Moore, et al., 2023)

The information provided by a 2D map obtained from the 2D SLAM

Toolbox is insufficient for a robot to perform 3D navigation tasks, such as

climbing ramps or navigating through tunnels. Additionally, sensors that

provide 3D environmental information, like stereo and RGB-D cameras, have

become more affordable. Therefore, it is essential to implement 3D SLAM to

represent the environment in three dimensions. Two popular 3D mapping

techniques adopted in autonomous robotics systems are OctoMap and RTAB-

Map.

OctoMap, a 3D modeling technique, offers a volumetric representation

of space. This approach relies on octrees and employs probabilistic occupancy

estimation. OctoMap is created under a 3D occupancy grid mapping framework

that recursively divides the information in 3D space into smaller cube-shaped

spaces called octants. These octants indicate whether the space within them is

occupied or free, allowing the construction of a 3D occupancy grid without prior

knowledge of the environment's extent. Octrees and OctoMaps can be updated

dynamically (K. T. D. S. De Silva et al., 2018).

Hornung et al. (2013) compared 3D maps generated using different

methods, including point clouds, elevation maps, multi-level surface maps, and

the OctoMap method. The evaluation was based on probabilistic representation,

modeling of unmapped areas, and efficiency in terms of access time and

memory consumption. Point clouds are memory-inefficient due to the storage

of a large number of measurement points. Furthermore, they cannot distinguish

between areas without obstacles and unmapped regions, nor do they provide a

method for probabilistic fusion of multiple measurements (Hornung et al., 2013).

While elevation maps and multi-level surface maps are memory-efficient, they

9

fail to accurately represent complex 3D environments, such as the example

shown in Figure 2.2. In contrast, OctoMap allows efficient and probabilistic

updates for both occupied and unoccupied spaces while maintaining minimal

memory consumption (Hornung et al., 2013)

Figure 2.2: The comparisons among different mapping method: (a) Point Cloud,

(b) elevation map, (c) multi-level surface map and (d) OctoMap

(Hornung et al., 2013)

The Real-Time Appearance-Based Map (RTAB-Map) one of the 3D

SLAM methods by using the data from a depth camera. RTAB-Map can

represent objects as they appear, preserving the real shapes, features, and colors

of the environment to a significant extent. Additionally, the 3D map generated

from RTAB-Map will record the path travelled and current position of the robot.

The 3D SLAM approach provided by RTAB-Map can support the creation of

incremental maps and facilitates loop closure detection. Loop closure detection

is a process to determine if the robot has previously visited a particular location

in an environment. The loop closure detection is achieved by comparing the

probability of image data originating from the same location and subsequently

updates the map (K. T. D. S. De Silva et al., 2018).

RTAB-Map offers extensive compatibility with various input sensors,

including stereo, RGB-D, odometry and 2D/3D lidar data. Within the Robot

Operating System (ROS), RTAB-Map has long served as a versatile alternative

to 2D SLAM and the 3D map generated from RTAB-Map can be used for 3D

mobile robot navigation. (Merzlyakov and MacEnski, 2021) Unlike

conventional SLAM methods that create feature-based maps, RTAB-Map

generates dense 3D and 2D representations of the environment. These

representations can be utilized similarly to 2D SLAM by using 2D lidar only,

(a) (b) (c) (d)

10

making it a seamless and valuable replacement for the conventional methods

without requiring additional post-processing. (Merzlyakov and MacEnski, 2021)

Consequently, RTAB-Map is a prevailing mapping method used for research

purpose and service robot applications as an "alternative" to 2D SLAM. The

construction of RTAB-Map is often in conjunction with LiDAR or the data of

depth camera. RTAB-Map offers all the essential features required for the

navigation of a robot. (Merzlyakov and MacEnski, 2021)

K. T. D. S. De Silva et al. (2018) conducted a comparison between two

3D mapping methods, OctoMap and RTAB-Map. The hardware and software

used in the research conducted by K. T. D. S. De Silva et al. are listed in Table

2.1. In addition to the required hardware and software, the research environment

for 3D mapping was set up with features such as inclined surfaces, vertical

surfaces, and horizontal surfaces. The setup of the environment is shown in

Figure 2.3.

Table 2.1: Hardware and software required in the research (K. T. D. S. De Silva

et al., 2018)

Hardware Software

Microsoft Kinext for Xbox

360 (RGB-D sensor)

ROS Kinetic Kame

Kobuki, Yujin Robot’s

mobile research base

Kobuki, OctoMap and

rtabmap_ros (software

libraries)

Laptop with intel-i7

processing power

RVIZ (ROS Visualizer)

11

Figure 2.3: The environment setup (K. T. D. S. De Silva et al., 2018)

In the research conducted by K. T. D. S. De Silva et al., several criteria

were used to evaluate the performance of these 3D mapping methods. These

criteria include portability of the software used in the project, real-world

representation in generated 3D map, navigation and path planning, the ability to

handle dynamic obstacles, sharing built maps among other robots and the

potential for odometry error corrections. The performance of these two 3D

mapping methods under different criteria is summarized in Table 2.2 (K. T. D.

S. De Silva et al., 2018).

Table 2.2: Performance of the two 3D mapping methods under different

criterion (K. T. D. S. De Silva et al., 2018)

 OctoMap RTAB-Map

Portability Required extra

procedure

Easier to setup

compared to OctoMap

Real-world

representation

No Yes

Navigation and path

planning

Yes Yes

Capability to handle

dynamic obstacle

Yes Yes

Sharing built maps

among other robots

Provides better method

for detecting the profile

of obstacle

-

12

Potential of odometry

error corrections

- As RTAB-Map is a

SLAM with loop

closure detection, it

can be easily used for

odometry error

correction

In summary, there are benefits and drawbacks to both the OctoMap and

RTAB-Map 3D mapping techniques for mapping and navigating, particularly

in uneven terrain. When it comes to obstacle recognition, collision-free

navigation, and sharing mapping data among robots, OctoMap performs

exceptionally well. This is because the octree structure of the OctoMap provides

a lightweight mathematical solution for these applications. On the other hand,

RTAB-Map offers significant advantages when it comes to real-world

representation in the map. RTAB-Map's real-world representation can play a

crucial role in the decision-making processes of intelligent robots and operators.

Both systems can be integrated to create a robust 3D mapping algorithm.

Initially, RTAB-Map is created directly from the Kinect camera using the

SLAM approach to build the 3D map. Subsequently, the RTAB-Map data can

be used to generate an OctoMap. The OctoMap generated by RTAB-Map can

be utilized while preserving the real-world representation provided by RTAB-

Map as the default 3D map during the robot navigation process and the data

sharing operations. (K. T. D. S. De Silva et al., 2018) The conversion of RTAB-

Map into OctoMap could be achieved as a standalone application for a single

robot. Additionally, the incorporation of odometry error correction by RTAB-

Map may contribute to more precise 3D maps and occupancy grids. Therefore,

it is essential to integrate both mapping methods to generate a robust 3D map

(K. T. D. S. De Silva et al., 2018).

2.4 Cost Map

When a robot navigates in a dynamic environment, it needs to obtain

information about the environment to react effectively. This is referred to as the

reactive behaviour of the robot. In ROS2 (Robot Operating System 2), cost maps,

which is also called risk maps are employed as environmental models to

13

consolidate results from potentially numerous algorithms. Since the

conventional mapping method for robots is in two dimensions, the cost map is

also in 2D, as it is constructed based on the map generated by different mapping

methods. A cost maps is derived from probability-based occupancy grids and

representing the world model as a 2D grid with associated costs. They allow

planning algorithms to select low-cost paths over high-cost ones and include

special values for unknown and occupied cells to ensure robust robot behaviour

(Macenski et al., 2023).

Cost maps serve as the configuration space for planning algorithms,

balancing fidelity and efficiency across multiple computer platforms. However,

they result in linear memory usage as the number of cells increases. Quad-trees

have been proposed for multi-resolution data storage, although they may not

yield significant memory benefits in some scenarios. In practice, cost map cells

are typically 0.05 meters by 0.05 meters in size, striking a compromise between

displaying the environment with appropriate fidelity and managing computing

resources efficiently (Macenski et al., 2023).

Traditionally, the cost map is structured as a monolithic cost map where

all data is stored in a single grid of values. This approach has been popular due

to its simplicity, as there's only one location for reading and writing values.

However, it results in a loss of semantic information about the values in the cost

map, making it challenging to properly maintain the cost map across cycles.

Hence, a new approach to constructing the cost map called layered cost maps

was proposed by Lu et al. The Layered cost map, which provides a systematic

and extendable approach, is used to update and maintain the cost map in ROS

2. (Lu et al., 2014) It consists of a list of dynamically loaded layers that represent

different data sources, methods, or outcomes. The primary cost map is

successively updated by polling these layers to incorporate new information into

the grid during each update cycle. Some important layers in the cost map include

the static layer, obstacle layer, voxel layer, spatio-temporal voxel layer, inflation

layer, keepout layer, and speed limiting layer (Macenski et al., 2023).

The static layer provides information about known obstacles from the

map generated after a mapping process. It serves as the base layer, offering

initial environmental information. Although named "static," it can change over

time due to map sharding or updates to the environment. The obstacle layer

14

stores data recorded from sensors such as LiDAR and depth cameras in a two-

dimensional grid. The obstacle layer is suitable for 2D rangefinder such as

LiDAR but may have limitations when processing 3D data from depth camera.

Pre-filtering may be important for noisy sensor data to reduce noise in the cost

map. The voxel layer is similar to the obstacle layer. It can capture the 3D

information of the environment and 3D ray-traces measurements. It is suitable

for 3D sensors such as depth camera and 3D laser scanners. The voxel layer uses

a voxel grid model to represent the environment in a non-probabilistic manner,

with a limited maximum height. While it conducts 3D raytracing, it is more

computationally intensive than the obstacle layer. Other layers such as the range

layer, inflation layer, keepout layer, and speed limiting layer have their filters to

restrict the regions that the robot can travel to and control the speed of the robot

when traveling through specific regions (Macenski et al., 2023).

The conventional cost map for robots is a 2D cost map. However, when

a robot needs to perform 3D navigation, the information provided by a 2D cost

map is insufficient. To address this limitation, Withey and Matebese (2021)

proposed a method to construct a 3D cost map based on OctoMap. The

OctoMap-based 3D cost map offers several advantages, including the ability to

classify cells into distinct categories such as Drivable, Obstacle and Unsafe

regions. Furthermore, the features of the OctoMap such as efficient memory

consumption is retained to enable the compression of octants with the same cell

type in all child cells. This hierarchical representation allows for rapid retrieval

of specific cell types within the cost map octree hierarchy.

The construction of the 3D cost map is based on OctoMap, which

employs an octree-based environment representation. In octree structure, a 3D

cubic region is recursively divided to octants and finally form a tree structure.

Starting from the root node, which encompasses the entire volume, and

extending to the finest resolution leaf nodes, each node in the tree represents an

octant. Every parent node has eight child nodes, one for each octant (Withey

and Matebese, 2021).

The construction of a cost map involves several steps. Initially, the

binary OctoMap is parsed, converting occupied cells into Obstacle cells and free

cells into Drivable cells. Subsequently, within a safety radius, Unsafe regions

are delineated by identifying Drivable cells near Obstacle cells. Drivable cells

15

adjacent to unexplored areas are then reclassified as Frontier cells. Lastly, cells

susceptible to WiFi loss are marked as WiFi Loss cells. The resulting cost map

can be used for 3D path planning (Withey and Matebese, 2021).

In summary, the OctoMap-based cost map offers a practical method for

segmenting a 3D environment into discrete regions with consistent attributes,

facilitating tasks such as 3D path planning. It is computationally efficient and

can be greatly compressed for inter-process communication, such as in a ROS

framework. Similar to its 2D counterpart, the 3D cost map represents various

cell types, including Obstacle, Unsafe zones surrounding obstacles, Drivable or

unoccupied cells, Frontier cells at the interface of scanned and unscanned

regions, and WiFi Loss status. These attributes are stored as a pair of bit fields

(Withey and Matebese, 2021).

2.5 Planners and Controllers

When the information of the surrounding environment has been captured and

represented in a cost map, the robot needs to use the constructed map to do the

navigation from beginning to destination. The algorithm to plan the path for the

robots in a pre-constructed map is called planner and controller. According to

the size of region considered during path planning, path planning for a robot can

be classified as global path planning and local path planning. The planner in

Nav2 is the global path planner while the controller in Nav2 is the local

trajectory planner.

Global path planning seeks to determine the best paths through an area

while considering various levels of accuracy, ranging from grid cells to

continuous sequences. Global route planning in Nav2 is focused on kinematic

limitations, whereas local trajectory planning considers system dynamics and

other factors. The goal is to establish a global route through the environment,

which will then be fine-tuned by a local trajectory planner. The optimal path in

global path planning varies depending on the application, however these

techniques are often based on extensions of Dijkstra's algorithm, which seeks

paths with the lowest cost. The described cost map is the primary determinant

of cost in Nav2. Typically, the shortest path that avoids obstacles is the result.

There are two types of global path planners: search-based and sampling-

based. In traditional path planning algorithms, the information of the

16

environment must be known before the path search can be performed. However,

this increases the amount of computation exponentially when doing the path

planning in the high-dimensional and spending more time to generate a path.

Rapidly-exploring random tree (RRT) and other sampling-based planners are

good for higher-dimensional planning issues since they produce nearly optimum

paths. However, the paths generated from sampling-based path planning method

typically require post-processing. In 2D state spaces search-based planners are

faster in creating really optimum pathways with acceptable and consistent

heuristics. They provide predictable execution times, which is critical for

dynamic replanning in large-scale complicated systems. The path planners in

Nav2 mainly use search-based global planning methods, as these planners are

primarily designed for the 2D cost map (Macenski et al., 2023).

The Local Trajectory Planner is used to translate a global path into

velocity commands for a mobile platform. This planner creates collision-free

paths and sends velocity commands to the microcontroller to control the speed

of motors. The local trajectory planners are referred as controllers in Nav2 as

the planners are highly related to the mobile robot base and dependent on the

kinematics of the robot. (Macenski, Moore, et al., 2023) Trajectory planners

vary according to robot type and application. They frequently necessitate

extensive customization to fit the kinematic and dynamic properties of a certain

robot. A variety of local trajectory planners are provided in Nav2 to

accommodate diverse vehicle types, such as differential drive, omnidirectional

drive, and legged robot. The Dynamic Window Approach (DWA) and Model

Predictive Path Integral (MPPI) are some of the popular controllers that are used

for local trajectory planners. (Macenski et al., 2023).

2.6 Behaviour Tree

In Nav2, the planning, control, high-level behaviours, recoveries, and other

internal robot navigation duties are all orchestrated via configurable behaviour

trees (BTs). This differs from earlier methods that utilized state machines and

hard-coded logic. Behaviour trees have grown in popularity thanks to user

surveys and offer more versatility. The BT Navigator is in charge of handling

requests and carrying out actions listed in the behaviour tree. Behaviour trees

are displayed as XML files containing BT nodes that are dynamically loaded at

17

runtime. This enables the system to change to accommodate various behaviours

or tasks as required. For modularity, the majority of BT nodes connect to a

distant server via a ROS 2 interface, but this is not required. In addition to the

rudimentary BT nodes provided by Nav2, users can also build their own nodes

and trees. (Macenski, Moore, et al., 2023)

 The three main categories of behaviour trees offered by Nav2 are

"navigate to pose," "navigate through poses," and "task-specific applications,"

each with configurable options to deal with different circumstances. Basic pose-

to-pose navigation is made easier by the "navigate-to-pose" behaviour trees.

These trees provide reliable replanning at fixed intervals, proportionate to robot

speed, based on distance travelled, or if the goal is modified. Recovery

behaviours are frequently included in practical BTs to address common

navigation problems brought on by changing situations, ambiguity, or

constrained surroundings. For component failures, ROS 2 BTs can launch

context-specific operations, and for system-level failures, they have a global

recovery branch. Advanced BTs integrate characteristics like goal patience and

mixed replanning to overcome problems like oscillations and momentary blocks.

(Macenski, Moore, et al., 2023)

2.7 Summary

In conclusion, the literature concerning essential components in the 3D obstacle

avoidance system, such as mapping methods, types of cost maps, planners, and

controllers, has been thoroughly analyzed. In the mapping method, conventional

2D mapping approaches, such as the SLAM Toolbox, are insufficient for

generating a 3D map. OctoMap and RTAB-Map have emerged as popular

mapping methods for generating 3D maps. These 3D maps need to be

transformed into cost maps to enable the robot to plan paths based on the cost

of each cell in the cost map. To generate paths within an environment, the

planner and controller in Nav2 will be used for global path planning and local

trajectory planning respectively. The BT navigator will also be employed to

handle requests and execute actions listed in the behaviour tree, thereby

facilitating the moderation of navigation tasks. Future research should continue

to explore and develop algorithms capable of constructing 3D maps and local

18

trajectory planners to realize the obstacle avoidance system for 3D robot

navigation.

19

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this section, the methodology employed for the creation of the 3D obstacle

avoidance system will be presented. The primary objective of this study is to

develop a method for the generation of a 3D cost map and the subsequent

implementation of a 3D obstacle avoidance system based on this cost map.

Understanding the underlying principles of cost map formulation and robot

avoidance systems is considered vital for the successful development of our 3D

obstacle avoidance system. The methodology includes a series of preparatory

steps, which include prototype preparations, the setup of the software

environment, and the readiness of sensors for the system.

3.2 Requirements

The development of the cost map and the obstacle avoidance system in three-

dimensional requires:

• A computer with Ubuntu 22.04 LTS (Jammy Jellyfish) operating

system

• Installation of ROS2 Humble

• Installation of library for robot navigation (Nav2)

• A sensor that can generate the 3D environmental data

• Simulation software such as Gazebo and RViz

• A differential drive robot with the computer that preinstalled ROS2

Humble on it.

3.3 Implementation

The ROS2 (Robot Operating System 2) is a collection of software libraries and

tools designed for various robot applications. The fundamental structure of

ROS2 comprises multiple nodes, each serving as a program for specific tasks,

such as sending commands to a microcontroller. These nodes communicate with

20

one another through "communication protocols" provided by ROS2, such as

topics, services, and actions, to facilitate robot applications. In this project, the

3D obstacle avoidance system will be developed on ROS2 Humble. Each

version of ROS2 is best suited for specific operating systems. ROS2 Humble is

highly compatible with the Ubuntu 22.04 Jammy Jellyfish Linux operating

system. Therefore, to implement ROS2 on the robot, the robot must be equipped

with a computer running the Ubuntu 22.04 Jammy Jellyfish Linux operating

system. Figure 3.1 shows the example node graph generated by using the rqt

tool in ROS2.

Figure 3.1: The example node graph in ROS2 network

Similar to ROS2, Nav2 is a collection of software libraries and tools

designed for robot navigation, specifically tailored for ROS2. Nav2's navigation

algorithms are implemented as ROS action server plugins. The primary

components of the navigation stack are the two action servers: the planner and

the controller servers. Each algorithm plugin on these servers is configured for

specific tasks or robot states. The behaviour tree of the navigation system or

application server allows for the selection of planning methods, providing

flexibility in adapting to various robot tasks and environments. Besides the

plugins for planner and controller servers, Nav2 also offers tools for users to

develop plugins for cost maps (2D), behaviour trees and navigation. (Macenski,

Singh, et al., 2023) Each distribution of ROS2 has its own set of Nav2

dependencies. In this project, the Nav2 version compatible with ROS2 Humble

21

was installed on the computer for the development of the 3D obstacle avoidance

system.

Once ROS2 and Nav2 are installed, simulators such as Gazebo and Rviz

in ROS2 will be utilized to simulate robot operations, including mapping,

creating cost maps, and navigation within the created map. Developers can test

algorithms in these simulators and make instant adjustments when issues arise

during simulations. To ensure that simulation results closely resemble real-

world testing results, several crucial components must be configured in the

simulation, including sensors, Unified Robot Description Format (URDF) for

the robots, and navigation plugins. Figure 3.2 shows the flowchart depicting the

implementation of this study.

Figure 3.2: The flowchart of the implementation of this project

Initially, a differential drive robot was constructed for the study.

Subsequently, a Unified Robot Description File (URDF) was created to define

the physical attributes of the real robot and enable visualization of the robot in

22

Rviz2. The URDF contained detailed specifications such as the robot's

dimensions, wheel diameter, and the relative positions of sensors to the robot

base. The robot base, serving as a virtual reference point on the robot's body,

was established to accurately interpret sensor data in relation to the robot's

movements. This ensured precise representation of the robot's motion within

Rviz2. After that, a simulation world was created to evaluate 3D robot

navigation algorithms. Before initiating the robot navigation process, the robot

underwent a mapping procedure to gather environmental data necessary for

navigation. The sensor data obtained during the mapping process was then

utilized to generate a map that will be used in the path planning for robot

navigation. As the robot navigates in an environment, its position on the map

changes over time. Sensors such as the Inertial Measurement Unit (IMU) and

encoders are employed to continuously update the robot's position on the map.

Additionally, LiDAR and depth cameras are utilized to compare the current

environment with the mapped data, enabling the robot to adapt to changes and

accurately localize itself on the map. This iterative process of updating the

robot's position on the map is known as robot localization. Once the map is

generated, it serves as a basis for robot navigation tasks such as path planning

and obstacle avoidance. The functions provided by Nav2, such as the packages

to construct a 2D cost map and controller for obstacle avoidance systems, will

be implemented in the robot navigation process.

3.3.1 Construct a physical robot

In this project, a differential drive robot was constructed. The robot

comprises two driven wheels, two motors, one caster wheel and a chassis made

of aluminium profile and acrylic plate. Typically, the two driven wheels are

positioned at one end of the robot, towards the front, to facilitate climbing slopes.

Figure 3.3 illustrates the physical robot built for this project.

23

Figure 3.3: The robot built for this project

The physical robot is equipped with various components, including a

microprocessor, a microcontroller, a dual-channel motor driver, sensors, and a

battery. An emergency button is installed to cut off power supplied to the motor

driver in case the robot loses control. For safety reasons, the microprocessor and

motor driver are powered separately.

The microprocessor chosen for this robot is the CAPA55R i7, equipped

with 32GB of RAM and a 128GB SSD. Before installing the necessary libraries

for this project, the microprocessor is set up with the ROS2 Humble operating

system, based on Ubuntu 22.04 Jammy Jellyfish Linux. A microcontroller is

employed to communicate with peripherals such as the motor driver and

encoders. This ensures real-time responsiveness, enabling tasks such as sending

PWM signals to motors and receiving encoder pulses. The microcontroller used

in this project is Arduino Nano. The dual-channel motor driver allows the

microcontroller to control two motors by sending PWM signals to the motor

driver.

Sensors play a crucial role in environment detection, mapping, and

localization for the robot navigation. For this project, a 2D LiDAR (RPLiDAR

A1M8) and a depth camera (Realsense D455) are utilized to gather

environmental data. The Realsense D455 depth camera includes a built-in IMU.

Both the LiDAR and depth camera are integrated with ROS2 so that the sensors

can transmit data over the ROS2 network. The depth camera is mounted at the

front of the robot, while the LiDAR is mounted on top. This configuration

ensures optimal data collection without obstruction from the robot's body.

24

3.3.2 Write Unified Robot Descriptions File (URDF) for the robot

When a robot needs to perform a simple operation, like moving forward

by one meter, its location within an environment change. The final position of

the robot must be calculated using data from sensors such as motor encoders.

Therefore, to accurately determine the robot's location after navigating to a

specific point, parameters provided in the URDF file such as wheel diameter

and wheel separation must be precise to minimize errors in distance travelled

during linear or rotational motion. The placement of sensors, such as depth

camera and LiDAR, on the robot relative to its chassis in URDF also affects the

robot's localization on the map. If the sensor locations recorded in the URDF do

not match the actual locations on the physical robot, errors accumulate over time.

The accumulation of errors will ruin the mapping process and hinders

navigation processes like path planning and obstacle avoidance as the robot

cannot accurately position itself within the environment.

In ROS2, there exists a library known as the tf library, which facilitates

the management of coordinate frames for individual components and the

transformation of data within the entire robot system. This library enables users

to confidently access data within specific frames without needing to understand

all the coordinate frames within the system. By utilizing the tf library, users can

integrate data from various sensors with different coordinate frames to

accurately determine the location of the robot. (Foote, n.d.) The tf library was

initially designed for ROS1 and the tf library designed for ROS2 is called tf2.

In this project, the robot_state_publisher package is used to publish the

state of the entire robot to tf2. A URDF file that defines the coordinate frames

of different components must be prepared and provided as a parameter to the

robot_state_publisher package. The robot_state_publisher processes the URDF

and publishes the state of the robot systems to establish the relationships among

coordinate frames in tf2. The robot_state_publisher will subscribe to the

joint_states topic to update the state of individual joints. For instance, as the

robot moves forward, the state of the chassis relative to the map origin changes

and these joint state changes are monitored by the robot_state_publisher to

ensure that the location of the robot on the map is continuously updated during

navigation. The robot_state_publisher handles two types of joints: fixed and

25

movable. Fixed joints, such as those between the LiDAR and chassis, are

published to the /tf_static topic. The movable joints, like those between the

chassis and wheels, are published to the regular /tf topic whenever the relevant

joint state is updated in the joint_states message. (Sucan et al., n.d.)

URDF files are written in Extensible Markup Language (XML) and

contain essential data such as the robot's dimensions and the positions of its

wheels and sensors. However, extraneous details such as motor dimensions and

the locations of microcontrollers and motor drivers are not required for the

URDF as they do not influence the robot's localization during navigation. The

URDF focuses only on recording the critical coordinate frames affecting

localization, such as those of the depth camera and LiDAR. To simplify the

URDF and enhance maintainability, the robot components are represented by

simple shapes such as boxes, cylinders, and spheres. For example, the depth

camera is approximated by a box, the LiDAR by a cylinder, and the chassis by

a rectangular box. Additionally, the two wheels are directly connected to the

chassis. Figure 3.4 depicts the coordinate frames of different robot components

as outlined in the URDF, while Figure 3.5 displays excerpts of the URDF code.

Figure 3.4: The coordinate frames of different components on the robot

26

Figure 3.5: An excerpt of the URDF code (Newans, n.d.)

In addition to the robot's internal coordinate frames, the relationship

between the robot and its surroundings is critical for successful mapping and

localization operations. The ROS Enhancement Proposal (REP) 105 provides a

complete overview of naming standards and semantic interpretations for

coordinate frames between the robot and its environment. (Meeussen, 2010)

REP 105 helps developers by specifying standards for drivers, models, and

libraries, allowing for the integration and reuse of software components across

several mobile platforms. REP 105 outlines the definitions and properties of

three key coordinate frames: base_link, odom, and map. Base_link is affixed to

the mobile robot base and providing a fundamental point of reference. Odom

serves as a world-fixed frame suitable for short-term local reference, though it

may exhibit some degree of drift over time. Map, another world-fixed frame, is

better suited for long-term global reference, despite the potential for

discontinuous jumps in position estimations. Figure 3.6 shows the relationship

<!-- BASE LINK -->

 <link name="base_link">

 </link>

 <!-- BASE_FOOTPRINT LINK -->

 <joint name="base_footprint_joint" type="fixed">

 <parent link="base_link"/>

 <child link="base_footprint"/>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 </joint>

 <link name="base_footprint">

 </link>

 <!-- CHASSIS LINK -->

 <joint name="chassis_joint" type="fixed">

 <parent link="base_link"/>

 <child link="chassis"/>

 <origin xyz="${-wheel_offset_x} 0 ${-

wheel_offset_z}"/>

 </joint>

27

between the three key coordinate frames in a robot navigation process. It is

important to adhere to the naming conventions outlined in REP 105 as it ensures

compatibility with drivers and libraries developed under this convention,

thereby facilitating seamless integration with the obstacle avoidance system

being developed in this project.

Figure 3.6: The relationship among the base_link, odom and map

After creating the URDF file for the robot, a launch file is necessary to

execute the node provided in the robot_state_publisher package and pass the

URDF file as a parameter to the node. In ROS 2, users can configure their

system and execute it based on that description in the launch file that specifies

arguments and configurations to pass to different nodes. Launch files can be

written in various languages, including Python, XML, or YAML. In this project,

the launch file is written in Python. Upon execution of the launch file, the

'/robot_description' topic is published over the ROS 2 network. Users can then

subscribe to this topic in Rviz2 to visualize the robot model. Figure 3.7

illustrates the robot model visualized in Rviz2.

28

Figure 3.7: The robot model visualized in Rviz2

3.3.3 Prepare simulation world to test obstacle avoidance system

algorithm

Gazebo is a standalone simulation tool that can be used without ROS or ROS2.

Hence, to use the ROS2 algorithm in Gazebo simulation, the gazebo_ros_pkgs

is required to provide a bridge between Gazebo's C++ API and transport system

and ROS 2 messages and services. (Open Source Robotics Foundation, 2014)

The gazebo_ros_pkgs metapackage contains numerous subpackages, one of

which is gazebo_dev, which provides a cmake configuration for the ROS

distribution's default version of Gazebo. In addition, the gazebo_msgs package

defines message and service data structures for interfacing with Gazebo in ROS

2. The gazebo_ros package provides useful C++ classes and functions for other

plugins, whereas gazebo_plugins package includes a variety of Gazebo plugins

that expose sensors and functionality to ROS 2, such as publishing ROS 2

images and providing interfaces for controlling differential drive robots. (Open

Source Robotics Foundation, 2014) Hence, the gazebo_ros_pkgs metapackage

is installed to test the obstacle avoidance algorithm in Gazebo simulation

environment.

Figure 3.8 depicts the simulated world prepared in Gazebo for

algorithm testing in simulation. Various obstacles are strategically placed within

the simulation world to assess the algorithm's performance. The obstacles

positioned lower than the LiDAR detection range is used to test the algorithm's

ability to navigate around objects undetected by the 2D LiDAR. Additionally,

an office table is included in the simulation world to evaluate the algorithm's

29

capability to navigate beneath obstacles, facilitating the shortest traveling

distance.

Figure 3.8: The simulation world prepared for this project

3.3.4 Setup driver for the microcontroller, LiDAR and depth camera

In this project, both the simulation and the physical robot testing are carried out

to examine the functionality of the obstacle avoidance system for 3D robot

navigation. In simulation, there are virtual drivers, which are also called

controllers for the LiDAR and depth camera can be found from

gazebo_ros_pkgs metapackage. The virtual drivers will allow the devices in

Gazebo such as LiDAR and depth camera to function as the real LiDAR and

depth camera and capture the data of the virtual world in Gazebo and publish

the data to ROS2 network. The type of controller needs to be specified in URDF

of the robot to implement the simulation of the LiDAR and depth camera in

Gazebo. Figure 3.9 shows the data in PointCloud2 message type collected by

the depth camera in simulation and presented in Rviz2.

Figure 3.9: The depth image captured by the depth camera and displayed in

Rviz2

30

Before physical sensors such as LiDAR and depth camera can send

environmental data over ROS2 network, it is important to install the ROS2

driver for each sensor so that the driver can convert the environmental data to

the ROS2 message type and publish the data over ROS2 network. A ROS2

message is a single data structure. In ROS2, there are several standard data

structures that are commonly used to publish the data obtained from sensors

over ROS2 network, such as LaserScan type for LiDAR and PointCloud2 for

depth camera. For the sensors that will be used in this project, RPLiDAR A1M8

and Realsense D455 have their own ROS2 driver and the user needs to install it

before integrating the sensors’ data to ROS2 network. The ROS2 driver of the

RPLiDAR A1 M8 and Realsense D455 is constructed as different ROS2

packages. Table 3.1 listed out the drivers of the simulated and real devices that

are used in this project. To use the node provided in the driver packages, two

launch files have been prepared for RPLiDAR and Realsense D455 sensors

respectively.

Table 3.1: The drivers for different hardware in simulation and real-world

implementation

 Simulation Physical robot

Differential
drive

controller

libgazebo_ros_diff_drive.so serial, diff_drive_arduino

LiDAR libgazebo_ros_laser.so rplidar_ros (RPLiDAR A1 M8)

Depth
camera

libgazebo_ros_camera.so

Intel® RealSense™ SDK 2.0,

Intel® RealSense™ ROS2
wrapper (realsense D455 depth

camera)

In the launch file, it is necessary for the user to specify the coordinate

frame of the sensor so that the data of the sensor can be published on the correct

coordinate frame. The RPLiDAR and Realsense D455 sensors may publish the

data on a fixed coordinate frame name by default if there is no coordinate frame

name given. Hence, in this project the coordinate frame of the RPLiDAR and

Realsense D455 depth camera have been remapped to name of the coordinate

frame stated in URDF sketched. Figure 3.10 shows the image captured by

31

Realsense D455 depth camera when the coordinate frame of the data published

by Realsense 455 depth camera is remapped to the existing coordinate frames

stated in URDF file. When the data is collected from sensors and is published

to ROS2 network over ROS2 topic framework, regardless of the source of the

data either it is from virtual world in gazebo or physical environment, if the

message type of sensors’ data is one of the standard message types of ROS2

message, the user can use the data to create a map. In this project, the RTAB-

Map is used as a tool to organize the ROS2 messages published from the sensors

and generate the map.

Figure 3.10: The depth images captured by Realsense D455 depth camera

3.3.5 Setup RTAB-Map for 3D SLAM

The SLAM algorithm that will be used in this project is the Real-Time

Appearance-Based Mapping (RTAB-Map) will be used in this project. RTAB-

Map is an 3D SLAM library that implements loop closure detection using a

memory management approach. It limits the size of the map so that loop closure

detections are always processed within a fixed time limit to fulfill the

requirements for long-term and large-scale environment mapping. (Labbé and

Michaud, n.d.) RTAB-Map is a loop-closure solution based on memory

management, hence it can be supplied with any odometry approach, including

visual, lidar, or wheel odometry. (Labbé and Michaud, 2019) In this project, two

different types of odometry source are fed into the RTAB-Map for mapping

process, which are the odometry provided by wheel encoder only and the

integration of the wheel encoder and LiDAR data as odometry. In this project,

32

the comparison of the mapping method with different odometry sources is

recorded in the results & discussion chapter.

RTAB-Map is a graph-based SLAM technique that has been

incorporated into ROS as the rtabmap_ros package since 2013. In ROS2,

rtabmap_ros has become a meta package and the nodes provided in the ROS1

rtabmap_ros package are moved to several sub packages. (Labbe, 2023) By

using RTAB-Map, SLAM can be performed using any type of odometry that is

acceptable for the application and robot as the odometry in RTAB-Map is an

external input. The map is structured as a graph with nodes and links. A node in

the map is generated by the Short-Term Memory (STM) that contains the

odometry pose, sensor’s raw data and other information that is useful for the

modules such as Loop Closure and Proximity Detection. (Labbé and Michaud,

2019) Figure 3.11 shows the example of the 3D map generated by using RTAB-

Map in the simulation with nodes (blue dot) and the links (the blue line that

connects two nodes) in 3D map to indicate the odometry of the robot. Nodes are

formed at a preset rate, "Rtabmap/DetectionRate" in milliseconds, based on the

amount of data overlap between nodes. (Labbé and Michaud, 2019) A link

represents a stiff transformation between two nodes. The STM adds neighbour

links between consecutive nodes using the odometry recorded in a robot. Loop

Closure and Proximity linkages are added using loop closure or proximity

detection, respectively. (Labbé and Michaud, 2019) To reduce odometry drift,

graph optimisation propagates computed errors to the whole graph after adding

a new loop closure or proximity connection. OctoMap, Point Cloud, and 2D

Occupancy Grid outputs can now be built and published to other modules after

the graph has been optimized.

33

Figure 3.11: The 3D environment generated in the rtabmap_viz

The architecture of the memory management system in RTAB-Map is

designed for large-scale and long-term operation. Loop closure detection is an

important feature in SLAM for localizing a robot in each environment. The

conventional method to perform global loop closure detection involves

comparing a new location recorded by sensors with locations previously

recorded in the map database. A new location is added to the database if no

match is found. However, using this method, loop closure detection is

impractical as the time required to process new observations increases with the

number of locations on the map. If this processing time exceeds the acquisition

time, a delay is introduced, resulting in an obsolete map. Furthermore, the time

delay in loop closure detection worsens if the robot operates in large areas for

extended periods. (Labbé and Michaud, n.d.) To mitigate delays in loop closure

detection, a special memory management system is implemented in RTAB-Map.

A novel approach to enhancing loop closure detection in robotic

navigation systems is used in RTAB-Map. Figure 3.12 shows the structure of

the memory management in RTAB-Map. In RTAB-Map, the memory to store

the data of the nodes and links have been separated into Working Memory (WM)

and Long-Term Memory (LTM), prioritizing recent and frequently observed

locations within WM. The primary aim is to achieve real-time loop closure

detection in expansive environments by dynamically managing the number of

locations utilized for detection. The key features of the approach include the

selective transfer of less critical locations from WM to LTM when processing

time exceeds real-time constraints. This transfer process is guided by the

34

assessment of location importance, which is determined based on the frequency

of occurrence. Locations are assigned weights accordingly, facilitating the

prioritized transfer of locations within the memory system. Furthermore, the

utilization of Short-Term Memory (STM) prevents redundant loop detection on

recently visited locations, ensuring efficient operation. The overarching

objective of this strategy is to strike a balance between real-time processing

demands and the need for comprehensive mapping in long-term robotic

operations. Hence, the robotic navigation systems can achieve enhanced

efficiency and accuracy in loop closure detection, paving the way for more

effective long-term operation in diverse environments.

Figure 3.12: The structure of the memory management in RTAB-Map (Labbe

and Michaud, 2013)

In RTAB-Map, several essential packages are utilized in this project,

including rtabmap_slam, rtabmap_sync, and rtabmap_viz. Figure 3.13

illustrates its main ROS node, rtabmap, within the rtabmap_slam subpackage.

When a loop closure is recognized, the map's graph is progressively created and

optimized. The node's online output is the local graph, which contains the most

recent data contributed to the map. The 3D map generated by RTAB-Map is

stored in a .db file format, indicating the database that stores all sensor data and

node information of the 3D map. By default, the RTAB-Map database is stored

in "~/.ros/rtabmap.db". The rtabmap node can be set to mapping mode or

localization mode according to the parameters provided in the YAML file.

35

Figure 3.14 illustrates the settings of the rtabmap node to initiate SLAM mode

and localization mode, respectively.

Figure 3.13: The structure of the rtabmap node in rtabmap_slam package

(Labbé and Michaud, 2019)

Figure 3.14: The settings of the rtabmap node in launch file

SLAM Mode:

Node(

 condition=UnlessCondition(localization),

 package='rtabmap_slam', executable='rtabmap', output='screen',

name='rtabmap_slam',

 parameters=[rtabmap_config],

 remappings=remappings,

 arguments=['-d']),

Localization mode:

Node(

 condition=IfCondition(localization),

 package='rtabmap_slam', executable='rtabmap', output='screen',

 parameters=[rtabmap_config,

 {'Mem/IncrementalMemory':'False',

 'Mem/InitWMWithAllNodes':'True'}],

 remappings=remappings),

36

Figure 3.14 shows that the discrepancies between the SLAM and

localization modes are due to two parameters: 'Mem/IncrementalMemory' and

'Mem/InitWMWithAllNodes'. By default, the rtabmap node operates in SLAM

mode. To enable localization mode with RTAB-Map, set the

'Mem/IncrementalMemory' parameter to 'False' and

'Mem/InitWMWithAllNodes' to 'True'. The 'database_path' argument is added

to the launch file to allow the user to specify which database to load into the

rtabmap node during localization mode. In SLAM mode, the argument "--

delete_db_on_start" or "-d" tells the system to delete the database before starting.

Otherwise, the previous mapping session from the database is loaded. In

localization mode, rtabmap employs multiple localization techniques: In

localization mode, rtabmap utilizes several localization approaches: It assumes

it is restarted in the map where it shut down previously. Global visual

relocalization is performed using its loop closure detection approach (bag-of-

words). Proximity detection (e.g., scan matching) can be used to refine its

current position with the closest nodes in the map. Different localization modes

provided by the rtabmap node can be used by setting appropriate parameters in

the launch file.

The parameters of the rtabmap node used in this project are the default

parameters stated in the launch file. By default, the rtabmap node subscribes to

the /odom topic for the robot's odometry information. However, the differential

drive controller used in this project publishes the robot odometry information

over the /diff_cont/odom topic. Hence, it is important to remap the odometry

topic that RTAB-Map needs to subscribe to in the RTAB-Map launch file.

Additionally, the topic of the image provided by the depth camera also needs to

be remapped, as the default topic that RTAB-Map subscribes to is not the same

as the topic published by the depth camera. The remapped topics for the

simulation in this project are presented in Figure 3.15.

37

Figure 3.15: The code to remap the topics that the rtabmap node subscribes to

The node provided by rtabmap_viz initializes the RTAB-Map

visualization interface, serving as a wrapper for the RTAB-Map GUI library.

While it shares the same purpose as rviz2, it offers additional settings that aid

users in processing the RTAB-Map database. Users can open an RTAB-Map

database in the rtabmap_viz node to visualize the 3D map generated by the

rtabmap node. The interface of rtabmap_viz is depicted in Figure 3.11.

Synchronization of sensor data is critical for accurate registration and

processing of the nodes and links in RTAB-Map database. ROS2 supports two

types of synchronizations: accurate and approximate. (Labbé and Michaud,

2019) Exact synchronization necessitates matching timestamps for input

subjects that correspond to data from the same sensor (e.g. stereo camera

images). Approximate synchronisation compares timestamps and minimises

delay faults, making it perfect for combining data from several sensors.

However, synchronising issues with varying synchronisation needs, such as

cameras and other sensors, might be difficult. The rtabmap_sync package makes

this possible by combining camera topics into a single subject before processing

with the rtabmap node. The use of the rtabmap_sync package can help to ensure

consistent data alignment even when the timestamp changes. (Labbé and

Michaud, 2019)

In the rtabmap_demos subpackage, there are three example launch files

for starting the mapping process with RTAB-Map using different odometry

sources. In this project, two launch files, turtlebot3_rgbd.launch.py and

turtlebot3_rgbd_sync.launch.py, provided in the rtabmap_demos subpackage

are modified to fit the requirements of 3D mapping. Another launch file,

turtlebot3_scan.launch.py, is not considered in this project as it only receives

2D data from the 2D LiDAR and cannot be used to construct a 3D map. The

remappings=[

 ('/odom', '/diff_cont/odom'),

 ('/rgb/image', '/depth_camera/image_raw'),

 ('/rgb/camera_info', '/depth_camera/camera_info'),

 ('/depth/image', '/depth_camera/depth/image_raw')]

38

difference between the two launch files provided in the rtabmap_demos

subpackage is the odometry source used for the mapping process. In

turtlebot3_rgbd.launch.py, the wheel encoder is the sole odometry source,

whereas in turtlebot3_rgbd_sync.launch.py, the SLAM node is fed with the

integration of wheel encoder and LiDAR data. The 3D map generated by

different methods with be discussed in results & discussion section.

3.3.6 Setup Nav2 for robot navigation

In the obstacle avoidance system, the robot needs to first identify the obstacle

and update the free space region that the robot can travel. After that, the robot

can plan a new path by using the map with the updated free space region. The

process to identify the obstacles and update free space region is achieved by

using the cost map. While the process to replan a path is achieved by the local

trajectory planner in Nav2. The application of the cost map and local trajectory

planner in Nav2 will be explained in the sections below.

3.3.6.1 Cost map

There are two types of cost map in provided in Nav2: global cost map and local

cost map. The global cost map is used for long-term path planning over the

entire environment while the local cost map is used for local planning and

obstacle avoidance. (Open Robotics, n.d.) Both the cost maps are layered cost

map, which consists of several layer plugins such as static layer, obstacle layer

and voxel layer. In this project, the configuration of the local cost map will be

emphasized to develop the obstacle avoidance system and the global cost map

will be created by using 2D LiDAR source only, which means that the global

cost map does not have the ability to record the 3D obstacle and update it in

global cost map. Hence, the global path initially planned based on the global

cost map might traverse through 3D obstacles. A new path will be planned when

obstacles are observed in the local cost map.

The nav2_costmap_2d package is an important package to create the

cost map from the map generated by 3D SLAM algorithms such as RTAB-Map.

To detect the 3D obstacles that cannot be detected using 2D LiDAR, there are

39

two important plugins called obstacle_layer and voxel_layer plugin in 2D cost

map to receive 3D environmental data and update the local cost map.

The obstacle layer organises data from the sensors such as LiDAR and

depth cameras into a 2D grid. Each data point is interpreted as a ray extending

from the sensor's position and traced over the grid via Bresenham's algorithm.

Figure 3.16 illustrates the working principle of the obstacle layer. The ray's end

point is marked as obstacle but its path is labelled as empty region due to direct

visibility. Bresenham's ray-casting approach is used to outline the empty region

between the sensor and the barrier in white, leaving the rest of the grid

unexplored (the grey colour region in Figure 3.16). (Macenski, Moore, et al.,

2023) While this layer is best suited for planar laser scanners due to its two-

dimensional structure, it may be limited when working with 3D data.

Figure 3.16: The example of Bresenham's ray-casting approach (Macenski,

Moore, et al., 2023)

The voxel layer has the function that is similar to obstacle layer, but it

functions in three dimensions and is ideal for tracking environments and taking

ray-tracing data. It is especially useful for depth camera or 3D LiDAR that can

provide the 3D environmental data, as well as sensor streams that are not strictly

two-dimensional. As the height dimension of a voxel layer uses unsigned 32-bit

integers, the maximum height in voxel layer is limited. The resolution of voxels

in vertical direction is often coarser and differs from the resolution of voxels in

horizontal direction. The 3D data in voxel layer is projected onto 2D plane and

included into the primary cost map. Due to 3D raytracing in voxel layer, this

layer requires more processing resources than the obstacle layer. (Macenski,

40

Moore, et al., 2023) As the voxel layer is more suitable for the 3D obstacle

detection, in this project the voxel layer will be used for the 3D obstacle

detection system.

The voxel layer plugin is one of the built-in cost map plugins provided

by the nav2_costmap_2d package. All plugins in nav2_costmap_2d must inherit

from the basic class, nav2_costmap_2d::Layer, to be included in the layered cost

map. This class defines virtual method APIs used to configure plugins,

including onInitialize(), updateBounds(), updateCost(), and reset(). (Nav2, n.d.)

The voxel layer overrides these methods to customize them for its specific use

case. It receives PointCloud2 messages to iteratively calculate data and update

the local cost map. It is crucial to set up the voxel layer correctly to detect 3D

obstacles with specific heights. Parameters for the voxel layer and local

trajectory planner (controller) are typically stored in a YAML file, which is then

loaded into launch files for configuration. The nav2_bringup package provides

example launch files for launching ROS2 actions and services related to robot

navigation. The example YAML file provided by nav2_bringup package can be

modified for different robot system and applications. (ROS Planning, n.d.)

Figure 3.17 shows the example of the code in YAML file to enable the voxel

layer in local cost map.

Figure 3.17: The code to enable voxel layer in local cost map

local_costmap:

 local_costmap:

 ros__parameters:

 update_frequency: 5.0

 publish_frequency: 2.0

 global_frame: odom

 robot_base_frame: base_link

 use_sim_time: True

 rolling_window: true

 width: 3

 height: 3

 resolution: 0.05

 robot_radius: 0.22

 plugins: ["voxel_layer", "inflation_layer"]

41

3.3.6.2 Local trajectory planner

Navigation has two key components: global path planning and local trajectory

planning. After the global path planner has determined a feasible course across

the environment, the local trajectory planner takes over. Its function is to

construct collision-free trajectories and send velocity commands to the robot's

motor controller, guaranteeing smooth navigation while considering collision

avoidance and system limits. Nav2's default local trajectory planner, DWB,

provides flexibility and configuration via plugin-based critique functions and

trajectory generators.

The Collision Monitor plays an important role in preventing collisions

by monitoring zones around the robot with sensors such as point clouds or laser

scans. It identifies breaches in these zones and takes appropriate actions, such

as slowing or stopping the robot to avoid collisions. The Collision Monitor also

has an Approach mode that allows the user to reduce the robot speed and keep

a safe distance from potential impediments. Overall, these components work

together to ensure that the robot can navigate safely and efficiently. Figure 3.18

illustrates the three primitive types of collision monitoring: stop, slowing, and

approach polygons. In this project, the default controller, which is DWB

controller will be used as the algorithm of the obstacle avoidance system.

Figure 3.18: Different zones in the Collision Monitor

3.3.6.3 Nav2 implementation

A YAML file with the modified configuration of the local cost map and local

trajectory planner is prepared for the obstacle avoidance system. The YAML

42

file is modified from the default YAML file provided in nav2_bringup package.

(ROS Planning, n.d.)

 There are two main modifications made for this project. First, the

parameters relate to Adaptive Monte Carlo Localization (AMCL) have been

removed. This is because the localization of the robot navigation is achieved by

setting the rtabmap node from rtabmap_slam subpackage to localization mode

and the AMCL is no longer required for the robot localization.

Another modification of the YAML file is the voxel layer is enabled

for local cost map. The parameters for the voxel layer are adjusted as shown in

Figure 3.19. This ensures that 3D obstacles can be detected and projected onto

the 2D local cost map.

Figure 3.19: The parameters for voxel layer

In this project, the robot detects 3D obstacles using observation sources

provided in the ROS2 PointCloud2 message type. The topic indicated in Figure

3.19 refers to the topic name from which users need to subscribe to obtain data

published by the depth camera in PointCloud2 message type. In the simulation

environment, the depth camera publishes 3D environmental information in

voxel_layer:

 plugin: "nav2_costmap_2d::VoxelLayer"

 enabled: True

 publish_voxel_map: True

 origin_z: 0.0

 z_resolution: 0.05

 z_voxels: 16

 max_obstacle_height: 2.0

 mark_threshold: 0

 observation_sources: pointcloud2

 pointcloud2:

 topic: /depth_camera/points

 data_type: "PointCloud2"

 max_obstacle_height: 2.0

 min_obstacle_height: 0.0

 obstacle_max_range: 2.5

 obstacle_min_range: 0.0

 raytrace_max_range: 3.0

 raytrace_min_range: 0.0

 clearing: True

 marking: True

43

PointCloud2 message type over the /depth_camera/points topic. The voxel layer

utilizes this 3D environmental information to update the local cost map when

obstacles are detected using the depth camera.

The max_obstacle_height parameter specifies the maximum height of

obstacles considered in the voxel layer and labelled as obstacles in the 2D cost

map. This is a crucial parameter that allows the robot to navigate through tunnels

or underneath tables safely. To ensure the robot's safety during operation, the

max_obstacle_height is adjusted to the height of the robot with a certain

clearance.

 The modifications in the YAML can ensure the features provided by

Nav2 libraries are functioning in the environment that is provided by the

parameters in the YAML file.

3.4 Work Plan

The project is divided into two phases. The first phase will primarily involve

research on the 3D cost map and path planning methods for obstacle avoidance.

In the second phase, the 3D obstacle avoidance algorithm will be tested on an

actual robot. The detailed work plan for these two phases is outlined below:

First Phase:

• Conduct research on the theory behind the cost map and local trajectory

planner.

• Install the operating system, ROS2 and Nav2.

• Familiarize oneself with the Command Line Interface (CLI) in Linux.

• Gain a solid understanding of the basic concepts of ROS2 and how to

use it.

• Learn the fundamental concepts of Nav2.

• Fabricate a differential drive robot for hardware testing.

Second Phase:

• Develop the algorithm of the obstacle avoidance system for 3D robot

navigation.

• Implement and apply the algorithm to the robot.

• Conduct thorough testing of the algorithm on the robot.

• Document and record the results of the tests.

44

These phases will encompass the research, software and hardware setup,

learning, algorithm development and testing required for the successful

implementation of the obstacle avoidance system in 3D environment.

3.5 Gantt Chart

3.5.1 First Phase

Figure 3.20: Gantt chart for first phase

3.5.2 Second Phase

Figure 3.21: Gantt chart for second phase

45

3.6 Summary

In this software-based project, thorough preparations are essential for

successfully implementing the obstacle avoidance system for 3D robot

navigation. Prior to the implementation of the obstacle avoidance algorithm,

several prerequisites for robot navigation must be fulfilled. Firstly, a differential

drive robot is constructed for this project. Subsequently, the URDF of the

differential robot is created and ROS2 wrapper packages are installed for the

sensors to enabling them to publish data on the ROS2 network. Additionally,

RTAB-Map is installed to facilitate 3D SLAM and localization of the robot.

Finally, Nav2 local trajectory planner is introduced to utilize the map generated

by RTAB-Map and produce a cost map for the obstacle avoidance system.

46

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

There are two main parts in this section: results and discussion. The findings of

this project will be presented in the results section while the evaluation of the

findings will be presented in the discussion section.

4.2 Results

The results for this project are separated into two parts: mapping and navigation.

In the mapping section, the 3D map generated by the RTAB-Map SLAM will

be analyzed to determine the quality suitable for robot navigation. In the

navigation section, the performance of the obstacle avoidance system will be

presented. The mapping and navigation results will be provided for both

simulation and real-world applications to assess the feasibility of the mapping

and navigation systems.

4.2.1 Mapping

Mapping is a prerequisite for initiating the robot navigation process. In this

project, the mapping results from both simulation and real-world applications

have been recorded in this chapter. Two odometry sources have been fed to the

RTAB-Map SLAM tool to generate the 3D map. The quality of the generated

3D map will be analyzed and the map with the best quality will be selected for

the robot navigation process. The criteria for evaluating the quality of the

generated 3D map include the accuracy of obstacle positioning and the

similarity between the real environment and the generated map. The simulation

results and actual results will be presented in the following sections.

4.2.1.1 Simulation result

Before starting the mapping process, it is crucial to follow the following steps

to avoid conflicts in the ROS2 environment. First, the robot_state_publisher

node should be launched to ensure proper setup of coordinate frames in the robot

47

and the drivers for the simulation sensors. After that, Gazebo is launched, where

the robot will be spawned in the prepared simulation world. Once Gazebo is

ready, the RTAB-Map node is launched to initiate the mapping process. Figure

4.2 shows the environment in which the robot will carry out the navigation

process in the simulation. The launch files to start the node for the mapping

process are provided in the RTAB-Map meta package and can be obtained from

the rtabmap_demos subpackage. After that, the node in the

teleop_twist_keyboard package is launched to manually control the robot using

the keyboard to navigate around the environment for mapping purposes. Figure

4.1 illustrates the command to launch the node in the teleop_twist_keyboard

package in the CLI. During this process, the odometry data that represents the

distance travelled by the robot and sensor data are recorded in the RTAB-Map

database to construct a 3D map. It is important to ensure that the robot's travel

speed is slow enough to prevent the loss of environmental information and

inaccurate odometry during the mapping process. In this project, the robot's

speed is set to 0.2 m/s throughout the mapping process.

Figure 4.1: The launching process of the teleop_twist_keyboard package

48

Figure 4.2: The world prepared in simulation

The resultant 3D map generated with only the wheel encoder as the

odometry source for the mapping process is shown in Figure 4.3. From Figure

4.3, it can be observed that when the wheel encoder is the sole odometry source

for the mapping process, the generated map exhibits very poor quality. The

obstacles are misaligned with the environment constructed in the Gazebo

simulation. Additionally, there is a noticeable ghosting effect, where the same

object appears multiple times around specific positions. The 3D map fails to

meet the evaluation criteria, which include the accuracy of obstacle positioning

and the similarity between the real environment and the generated map.

Consequently, the wheel encoder as the sole odometry source is deemed

unsuitable for the 3D mapping process.

Figure 4.3: The 3D map presented in rtabmap_rviz with the wheel encoder as

the only odometry source

49

The resultant 3D map generated with the integration of the wheel

encoder and LiDAR data as odometry sources is shown in Figure 4.4. From

Figure 4.4, it can be observed that the quality of the generated 3D map has

significantly improved compared to the map generated using only the wheel

encoder as the odometry source. Although some ghosting issues persist in the

map, the overall quality of the 3D map is acceptable. Besides, the 3D map has

higher accuracy in obstacle positioning and greater similarity to the given

environment in the Gazebo world. Consequently, the integration of the wheel

encoder and LiDAR data will be utilized as the odometry source for the mapping

process to generate a 3D map with better quality.

Figure 4.4: The 3D map presented in rtabmap_rviz with the integration of the

wheel encoder and LiDAR data as odometry source

4.2.1.2 Real world result

The steps to initiate the mapping process for a real robot are almost identical to

those in the simulation. The user must first launch the robot_state_publisher

node for the transform function on the robot. After that,

rtabmap_sync_node.launch.py is launched to set up the nodes provided in

rtabmap_ros metapackage. Finally, the teleop_twist_keyboard node is started to

enable manual control of the robot using the keyboard. However, there are some

differences in the setup process between the simulation and real-world

implementation for the mapping process. For instance, in real-world

applications, the user does not need to start the Gazebo simulation application.

Additionally, unlike in the simulation, the drivers for the RPLiDAR and

50

Realsense D455 depth camera have not been integrated into the ros2_control

package. Therefore, for real-world applications, the user needs to manually

launch the drivers for the sensors one by one in the command-line interface

(CLI). Additionally, the parameter ‘use_sim_time’ in the launch file must be set

to 'false' since the robot is now navigating in the real-world application. The

environment in which the robot will navigate is depicted in Figure 4.5.

Figure 4.5: The real-world environment for the robot's navigation

The 3D map generated by the RTAB-Map tool is shown in Figure 4.6.

It can be observed that the quality of the 3D map generated in the real-world

application is sufficient for robot navigation. This is evidenced by the higher

accuracy in obstacle positioning and greater similarity to the real-world

environment. The robot's speed is set to 0.2 m/s, which is the same as in the

simulation to ensure the production of a high-quality 3D map.

Figure 4.6: The 3D map generated in the real-world environment

51

4.2.2 Navigation

After generating the 3D map using the RTAB-Map tool, the robot can start the

navigation process based on the map recorded in the database. The results of

robot navigation will be divided into two parts: simulation and real-world results.

The navigation results will primarily focus on detecting obstacles that cannot be

detected by the 2D LiDAR. When the Nav2 library detects obstacles, it will

update the cost map accordingly and, if necessary, replan the path to avoid the

obstacles.

4.2.2.1 Simulation result

Once the YAML file for the Nav2 launch file, namely

navigation.launch file, is prepared, the Nav2 node can be launched in the

command-line interface (CLI) using the command shown in Figure 4.7. The

‘use_sim_time’ parameter is set to true as the robot navigates in the simulation

world. The params_file parameter specifies the path to access the YAML file,

which depends on the user's chosen location. As long as the path to the YAML

file is correct, users can place the YAML file in any location.

Figure 4.7: The command to launch navigation.launch with a given YAML

parameter file

The preparation steps before starting robot navigation are same as the

steps of the mapping process. Initially, the robot_state_publisher node must be

launched to properly set up the coordinate frames in the robot and configure the

sensor drivers in the simulation environment. After that, Gazebo is launched to

spawn the robot in the prepared simulation world. Once Gazebo is ready, the

RTAB-Map node is launched to localize the robot within a map and publish the

2D occupancy grid map over the /map topic in the ROS2 network. The main

difference between mapping and navigation lies in configuring the

rtabmap_slam node, which needs to be set to localization mode during

52

navigation to utilize the 3D map recorded in the database. Once all

configurations are complete, the navigation.launch.py file in nav2_bringup is

launched with the parameters recorded in the YAML file. Robot navigation can

start once navigation.launch.py is successfully launched. Figure 4.8 illustrates

the path before and after obstacles, undetectable by LiDAR, are identified by

the depth camera. The green line represents the path planned by using Nav2.

Figure 4.8: The path of the robot before (a) and after (b) the obstacles is detected

by depth camera

The data published by the 2D LiDAR, represented as LaserScan, is the

sole observation source in the global cost map. Consequently, obstacles located

lower than the position of the 2D LiDAR cannot be directly detected, and thus

are not depicted in the global cost map. As a result, the nav2 planner calculates

the shortest path, typically a straight line from the starting point to the

destination based on the global cost map. When the robot approaches an obstacle

undetected by the 2D LiDAR, the local cost map with the voxel layer enabled,

can detect the obstacle and projects it onto the 2D cost map. Subsequently, the

robot's path is replanned using the controller plugin in nav2 to navigate around

the obstacle. Additionally, the robot's navigation underneath a table was tested

in the simulation. Figure 4.9 illustrates the robot's operation as it travels beneath

an office table. The robot successfully plans its path underneath the table if the

available height and space allow for passage to ensure the shortest travel

distance.

 (a) (b)

53

Figure 4.9: The path planned (a) underneath an office table (b)

4.2.2.2 Real world result

The method of starting navigation for a real robot is very similar to the

simulation. Users start by launching the robot_state_publisher node to enable

robot transforms, then rtabmap_sync_node.launch.py to enable RTAB-Map

localization, and finally the Nav2 server. However, there are variations in setting

up navigation for real-world navigation compared to simulations. In real-world

circumstances, users do not run the Gazebo simulation application. Furthermore,

users must run drivers for RPLiDAR, Realsense D455 depth camera, and

microcontroller separately via the CLI as the drivers are not integrated to

ros2_control package. Numerous parameters in the Nav2 package's YAML file

require adjustment for the real-world navigation. Specifically, the use_sim_time

parameter is set to false to simulate real-world navigation. Additionally, the

pointcloud.enable parameter in the launch file given by the Realsense ROS2

Wrapper (IntelRealSense, n.d.) is set to true (the default value is false) to allow

the Realsense D455 depth camera broadcasts 3D environmental data in

PointCloud2 message format over the ROS2 network. The 3D environmental

data will be fed to voxel layer and the local cost map will be updated when

obstacles are detected using the depth camera. Figure 4.10 displays a portion of

the parameters from the example launch file provided by the Realsense ROS2

Wrapper package.

 (a) (b)

54

Figure 4.10: The parameters to launch the ROS2 driver for D455 depth camera

(IntelRealSense, n.d.)

When the robot is properly set up by following all the procedures as

stated, the navigation of the real robot can begin. Figure 4.11 (a) shows the

support leg of the notice board, which cannot be detected by the 2D LiDAR, is

captured by the depth camera and updated in the local cost map.

Figure 4.11: The real-world scene (a) and the environment displayed in Rviz2

(b)

Figure 4.12 shows the real-world results of the obstacle avoidance

algorithm. Figure 4.12 (a) shows the cardboard obstacle that has been placed on

the floor as the obstacle that the 2D LiDAR cannot detect. In the global cost

map, the obstacle is not detected as the global cost map is constructed by the 2D

LiDAR source only. Hence, the global path planning algorithm plans the path

on the obstacle for the shortest distance, as shown in Figure 4.12 (b). When the

robot approaches the obstacle, it is captured by the depth camera and updated in

the local cost map, as shown in Figure 4.12 (c). The obstacle in the global cost

 (a) (b)

55

map is represented in colour, while in the local cost map, it is depicted in black

and white. It is proven that the algorithm developed for this project can detect

obstacles that cannot be detected by 2D LiDAR and replan the path to avoid the

obstacle. The obstacle behind the robot represents the examiner who needs to

follow the robot and monitor the navigation process of the robot in Rviz2 from

the screen installed on the robot. Figure 4.13 shows the visualization of the voxel

layer used in the project. The voxels shown in Figure 4.13 are up to the

maximum obstacle height set in the YAML file. Hence, the robot can go beneath

the obstacle that has the enough clearance.

Figure 4.12: The real-world navigation results

Figure 4.13: The visualization of voxel layer of the local cost map in Rviz2

 (a) (b) (c)

 (a) (b)

56

4.3 Discussion

In this section, the performance of the mapping process and the navigation

process will be discussed. In the mapping process, the possible factors that

might lead to the bad map quality has been discussed. In the navigation process,

the performance of the obstacle avoidance system designed for this project will

be discussed.

4.3.1 Mapping

From the results, it can be found that the quality of the generated 3D map with

the integration of wheel odometry and LiDAR as odometry source has is better

than the map generated using only the wheel encoder as the odometry source.

There are several possible reasons that might cause the difference in two

mapping process. First, the odometry obtained from the wheel encoder will drift

over the distance travelled. Hence, when the robot travelled around the map, the

error in the odometry provided by wheel encoder will accumulate and causing

the drift of the map, which will affect the quality of the map. Besides, the update

rate of the rtabmap node in SLAM mode is a possible factor that lead to the

ghosting issue in the SLAM process. The RTAB-Map database consists of

nodes and links with the 3D environmental data. When the robot travels too fast,

the successive node may not have enough time to overlap the current node,

which cause the incorrect node information and finally lead to ghosting issue in

3D mapping. (Labbé and Michaud, 2019)

 Labbé and Michaud (2018) stated that the data of a LiDAR is used to

refine the odometry of the robot by the Proximity Detection module in the

SLAM process. When the robot revisits areas in the opposite direction or in

environments lacking visual features within the depth range of the RGB-D

camera, the appearance-based loop closure cannot be detected. This limitation

can hinder path planning capabilities and navigation as the loop closure cannot

be detected. The limitation of the appearance-based loop closure detection in

rtabmap node is the main reason that cause the ghosting issue in the 3D map as

the loop closure cannot be detected when the robot revisits the world in the

opposite direction. Hence, the Proximity Detection module is used to overcome

57

the limitation of appearance-based loop closure detection in RTAB-Map. To

overcome this issue, the Proximity Detection module uses LiDAR to

compensate for odometry drift in places where the camera cannot identify loop

closures. To fix the map, proximity linkages are created by aligning laser scans

in the reverse direction. (Labbé and Michaud, 2018)

 Due to the limitations of the appearance-based loop closure detection

in RTAB-Map SLAM, it is necessary for the robot to be equipped with a LiDAR

to provide the laser rangefinder data to Proximity Detection module and

improve the 3D map quality.

4.3.2 Navigation

From the results, it can be found that the robot navigation by using the default

controller in Nav2, which is DWB, has successfully achieved the function to

avoid the 3D obstacles. The DWB (Dynamic Window Approach) trajectory

planner is now the default local trajectory planner in Navigator 2. The DWB

architecture is a development of prior Navigation Stack controllers, providing

more flexibility through plugin-based critic functions and trajectory generators.

Despite its configurable nature, DWB requires challenging parameter tuning to

obtain optimal performance, which can be complex and time-consuming. Poorly

calibrated setups can result in inferior robot behaviours, prompting criticism

from the ROS mobile robotics community. The maintainers intend to replace

DWB with MPPI (Model Predictive Path Integral Control) once it has reached

a sufficient degree of maturity, citing its potential for enhanced performance

and reliability. (Macenski, Moore, et al., 2023)

 MPPI generates a large number of modified trajectory samples based

on the prior optimal trajectory, then scores each sample to determine the optimal

trajectory. This method eliminates the necessity for non-linear optimisation,

giving designers more freedom in designing system behaviour because cost

functions are not required to be differentiable or convex. MPPI iteratively

refines the trajectory between time steps as the robot travels towards its goal,

demonstrating effectiveness in a variety of contexts, including aggressive

outdoor driving and commercial robotics. MPPI outperforms reactive

approaches by reacting intelligently to dynamic impediments even when not

58

explicitly modelled. It rarely requires active recovery behaviours, because to its

predictive back-out manoeuvres, which are especially useful in high-traffic or

limited situations to keep the robot from being trapped. (Macenski, Moore, et

al., 2023) Hence, the MPPI controller needs to be studied in the future to

improve the performance of the controller for the obstacle avoidance system.

4.4 Summary

In this section, the results of the obstacle avoidance algorithm in the simulation

and real-world navigation have been presented. It can be found that the quality

of the 3D map generated by the RTAB-Map SLAM with the integration of

wheel encoder and LiDAR as odometry source is better than the quality of the

3D map generated by the RTAB-Map SLAM with the wheel encoder as the only

odometry source. This is because the application of the LiDAR in RTAB-Map

3D SLAM can be a source to refine the odometry of the robot by using the

Proximity Detection module. Besides, the simulation and real-world navigation

results have proved that the obstacle avoidance system developed is feasible and

applicable in real-world usage.

59

CHAPTER 5

5 CONCLUSIONS & RECOMMENDATIONS

5.1 Conclusion

In conclusion, the objectives of this project have been successfully achieved,

marking significant progress in the development of an effective obstacle

avoidance system for 3D robot navigation. Throughout the project, RTAB-Map

played a central role in constructing a high-quality 3D map of the environment.

A crucial step in achieving this was the incorporation of LiDAR data for

odometry refinement within the RTAB-Map SLAM process, ensuring accurate

mapping and localization. Additionally, the integration of depth camera data

into the voxel layer of the local cost map enabled the detection of 3D obstacles

that were not identifiable by the 2D LiDAR alone, further enhancing the

system's obstacle avoidance capabilities.

Moreover, the selection of the DWB local trajectory planner as the

default controller proved to be effective in meeting the project's requirements.

It is also important to emphasize the significance of maintaining a robust

transformation tree (tf) throughout the system. A well-configured tf

infrastructure ensures accurate spatial relationships between various

components to enable seamless coordination and navigation of the robot within

its environment.

5.2 Recommendations for future work

Due to the nature of the voxel layer in the local cost map, the obstacle avoidance

system developed in this project will consider the ramp as an obstacle. Hence,

in the future, the obstacle avoidance system needs to be improved so that the

algorithm does not consider the ramp as an obstacle. This improvement is

important because if the robot does not consider the ramp as an obstacle, it can

plan a path on it so that the robot can navigate on the path.

Possible solutions for improving the obstacle avoidance system in the

future include using the waypoint following plugin provided in Nav2 and

creating a new cost map plugin for the local cost map. RTAB-Map can be built

60

with OctoMap. In OctoMap, there is a filter called octomap_ground which will

produce a point cloud of the ground of the OctoMap (Labbe, n.d.). Hence, the

point cloud of the ground can be used to create a new cost map plugin by

defining the points in the point cloud of octomap_ground as an empty region

that the robot can travel. However, creating the new cost map plugin requires

understanding of Object-Oriented Programming (OOP) language and extensive

testing to verify the feasibility of this method to detect a ramp.

61

REFERENCES

Foote, T., tf: The Transform Library,

Hornung, A. et al., 2013. OctoMap: An efficient probabilistic 3D mapping

framework based on octrees. Autonomous Robots, 34(3), pp.189–206.

IntelRealSense (no date) Realsense-

ros/realsense2_camera/launch/rs_launch.py at ros2-

development · IntelRealSense/Realsense-Ros, GitHub. Available at:

https://github.com/IntelRealSense/realsense-ros/blob/ros2-

development/realsense2_camera/launch/rs_launch.py (Accessed: 28

April 2024).

Labbe, M. (2023) Rtabmap_ros - Ros Wiki. Available at:

http://wiki.ros.org/rtabmap_ros (Accessed: 28 April 2024).

Labbe, M. (no date) Wiki, ros.org. Available at:

https://wiki.ros.org/rtabmap_slam (Accessed: 28 April 2024).

Labbe, M. and Michaud, F., 2013. Appearance-based loop closure detection for

online large-scale and long-term operation. IEEE Transactions on

Robotics, 29(3), pp.734–745.

Labbé, M. and Michaud, F., 2018. Long-term online multi-session graph-based

SPLAM with memory management. Autonomous Robots, 42(6),

pp.1133–1150.

Labbé, M. and Michaud, F., 2019. RTAB-Map as an open-source lidar and

visual simultaneous localization and mapping library for large-scale

and long-term online operation. Journal of Field Robotics, 36(2),

pp.416–446.

Labbé, M. and Michaud, F., Memory Management for Real-Time Appearance-

Based Loop Closure Detection,

Lu, D. V., Hershberger, D. and Smart, W.D., 2014. Layered costmaps for

context-sensitive navigation. IEEE International Conference on

Intelligent Robots and Systems. 31 October 2014 Institute of Electrical

and Electronics Engineers Inc., pp. 709–715.

Macenski, S., Moore, T., et al., 2023. From the Desks of ROS Maintainers: A

Survey of Modern & Capable Mobile Robotics Algorithms in the

62

Robot Operating System 2. Available at:

http://arxiv.org/abs/2307.15236.

Macenski, S., Singh, S., Martin, F. and Gines, J., 2023. Regulated Pure Pursuit

for Robot Path Tracking. Available at: http://arxiv.org/abs/2305.20026.

Merzlyakov, A. and MacEnski, S., 2021. A Comparison of Modern General-

Purpose Visual SLAM Approaches. IEEE International Conference on

Intelligent Robots and Systems. 2021 Institute of Electrical and

Electronics Engineers Inc., pp. 9190–9197.

Nav2 (no date) Writing a new Costmap2D plugin, Writing a New Costmap2D

Plugin - Nav2 1.0.0 documentation. Available at:

https://navigation.ros.org/plugin_tutorials/docs/writing_new_costmap

2d_plugin.html (Accessed: 28 April 2024).

Newans, J. (no date) Joshnewans/articubot_one at humble, GitHub. Available

at: https://github.com/joshnewans/articubot_one/tree/humble

(Accessed: 28 April 2024).

Open Robotics (no date) Setup and Configuration of the Navigation Stack on a

Robot, ros.org. Available at:

https://wiki.ros.org/navigation/Tutorials/RobotSetup#Global_Configu

ration (Accessed: 28 April 2024).

Open Source Robotics Foundation (2014) Ros 2 overview, gazebo. Available at:

https://classic.gazebosim.org/tutorials/?tut=ros2_overview (Accessed:

15 April 2024).

ROS Planning (no date) Navigation2/nav2_bringup at main · Ros-

planning/navigation2, GitHub. Available at: https://github.com/ros-

planning/navigation2/tree/main/nav2_bringup (Accessed: 28 April

2024).

Sucan, I., Kay, J. and Meeussen, W. (no date) Ros/robot_state_publisher,

GitHub. Available at:

https://github.com/ros/robot_state_publisher?tab=readme-ov-file

(Accessed: 28 April 2024).

Wang, X. et al., 2020. The evolution of LiDAR and its application in high

precision measurement. IOP Conference Series: Earth and

Environmental Science. 1 June 2020 Institute of Physics Publishing.

63

Withey, D.J. and Matebese, B.T., 2021. An OctoMap-based 3D CostMap. 2021

Rapid Product Development Association of South Africa - Robotics

and Mechatronics - Pattern Recognition Association of South Africa:

Digital Manufacturing: Industrialising Africa, RAPDASA-RobMech-

PRASA 2021. 2021 Institute of Electrical and Electronics Engineers Inc.

64

5 APPENDICES

Appendix A Code of the differential drive robot's URDF

<?xml version="1.0"?>

<robot xmlns:xacro="http://www.ros.org/wiki/xacro" >

 <xacro:include filename="inertial_macros.xacro"/>

 <xacro:property name="chassis_length" value="0.41"/>

 <xacro:property name="chassis_width" value="0.31"/>

 <xacro:property name="chassis_height" value="0.06"/>

 <xacro:property name="chassis_mass" value="1.0"/>

 <xacro:property name="wheel_radius" value="0.0635"/>

 <xacro:property name="wheel_thickness" value="0.04"/>

 <xacro:property name="wheel_mass" value="0.05"/>

 <xacro:property name="wheel_offset_x" value="0.31"/>

 <xacro:property name="wheel_offset_y" value="0.155"/>

 <xacro:property name="wheel_offset_z" value="0.00"/>

 <xacro:property name="caster_wheel_radius" value="0.0635"/>

 <xacro:property name="caster_wheel_mass" value="0.01"/>

 <xacro:property name="caster_wheel_offset_x" value="0.075"/>

 <xacro:property name="caster_wheel_offset_z"

value="${wheel_offset_z - wheel_radius + caster_wheel_radius}"/>

 <material name="white">

 <color rgba="1 1 1 1" />

 </material>

 <material name="orange">

 <color rgba="1 0.3 0.1 1"/>

 </material>

 <material name="blue">

 <color rgba="0.2 0.2 1 1"/>

 </material>

 <material name="black">

 <color rgba="0 0 0 1"/>

 </material>

 <material name="red">

 <color rgba="1 0 0 1"/>

 </material>

 <!-- BASE LINK -->

65

 <link name="base_link">

 </link>

 <!-- BASE_FOOTPRINT LINK -->

 <joint name="base_footprint_joint" type="fixed">

 <parent link="base_link"/>

 <child link="base_footprint"/>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 </joint>

 <link name="base_footprint">

 </link>

 <!-- CHASSIS LINK -->

 <joint name="chassis_joint" type="fixed">

 <parent link="base_link"/>

 <child link="chassis"/>

 <origin xyz="${-wheel_offset_x} 0 ${-wheel_offset_z}"/>

 </joint>

 <link name="chassis">

 <visual>

 <origin xyz="${chassis_length/2} 0

${chassis_height/2}"/>

 <geometry>

 <box size="${chassis_length} ${chassis_width}

${chassis_height}"/>

 </geometry>

 <material name="orange"/>

 </visual>

 <collision>

 <origin xyz="${chassis_length/2} 0

${chassis_height/2}"/>

 <geometry>

 <box size="${chassis_length} ${chassis_width}

${chassis_height}"/>

 </geometry>

 </collision>

 <xacro:inertial_box mass="0.5" x="${chassis_length}"

y="${chassis_width}" z="${chassis_height}">

 <origin xyz="${chassis_length/2} 0

${chassis_height/2}" rpy="0 0 0"/>

 </xacro:inertial_box>

66

 </link>

 <gazebo reference="chassis">

 <material>Gazebo/Orange</material>

 </gazebo>

 <!-- LEFT WHEEL LINK -->

 <joint name="left_wheel_joint" type="continuous">

 <parent link="base_link"/>

 <child link="left_wheel"/>

 <origin xyz="0 ${wheel_offset_y} 0" rpy="-${pi/2} 0 0" />

 <axis xyz="0 0 1"/>

 </joint>

 <link name="left_wheel">

 <visual>

 <geometry>

 <cylinder radius="${wheel_radius}"

length="${wheel_thickness}"/>

 </geometry>

 <material name="blue"/>

 </visual>

 <collision>

 <geometry>

 <sphere radius="${wheel_radius}"/>

 </geometry>

 </collision>

 <xacro:inertial_cylinder mass="${wheel_mass}"

length="${wheel_thickness}" radius="${wheel_radius}">

 <origin xyz="0 0 0" rpy="0 0 0"/>

 </xacro:inertial_cylinder>

 </link>

 <gazebo reference="left_wheel">

 <material>Gazebo/Blue</material>

</gazebo>

 <!-- RIGHT WHEEL LINK -->

 <joint name="right_wheel_joint" type="continuous">

 <parent link="base_link"/>

 <child link="right_wheel"/>

 <origin xyz="0 ${-wheel_offset_y} 0" rpy="${pi/2} 0 0" />

 <axis xyz="0 0 -1"/>

 </joint>

 <link name="right_wheel">

67

 <visual>

 <geometry>

 <cylinder radius="${wheel_radius}"

length="${wheel_thickness}"/>

 </geometry>

 <material name="blue"/>

 </visual>

 <collision>

 <geometry>

 <sphere radius="${wheel_radius}"/>

 </geometry>

 </collision>

 <xacro:inertial_cylinder mass="${wheel_mass}"

length="${wheel_thickness}" radius="${wheel_radius}">

 <origin xyz="0 0 0" rpy="0 0 0"/>

 </xacro:inertial_cylinder>

 </link>

 <gazebo reference="right_wheel">

 <material>Gazebo/Blue</material>

 </gazebo>

 <!-- CASTER WHEEL LINK -->

 <joint name="caster_wheel_joint" type="fixed">

 <parent link="chassis"/>

 <child link="caster_wheel"/>

 <origin xyz="${caster_wheel_offset_x} 0

${caster_wheel_offset_z}"/>

 </joint>

 <link name="caster_wheel">

 <visual>

 <geometry>

 <sphere radius="${caster_wheel_radius}"/>

 </geometry>

 <material name="white"/>

 </visual>

 <collision>

 <geometry>

 <sphere radius="${caster_wheel_radius}"/>

 </geometry>

 </collision>

 <xacro:inertial_sphere mass="${caster_wheel_mass}"

radius="${caster_wheel_radius}">

 <origin xyz="0 0 0" rpy="0 0 0"/>

 </xacro:inertial_sphere>

68

 </link>

 <gazebo reference="caster_wheel">

 <material>Gazebo/White</material>

 <mu1 value="0.001"/>

 <mu2 value="0.001"/>

 </gazebo>

 <!-- Add in joint_state_publisher so the wheel can be

displayed -->

 <gazebo>

 <plugin name="joint_state_publisher"

filename="libgazebo_ros_joint_state_publisher.so">

 <jointName>left_wheel,right_wheel</jointName>

 </plugin>

</gazebo>

</robot>

69

Appendix B Code of the launch file modified to launch RTAB-Map SLAM

import os

from ament_index_python.packages import

get_package_share_directory

from launch import LaunchDescription

from launch.actions import DeclareLaunchArgument,

SetEnvironmentVariable

from launch.substitutions import LaunchConfiguration

from launch.conditions import IfCondition, UnlessCondition

from launch_ros.actions import Node

def generate_launch_description():

 # package_name = 'articubot_one'

 # rtabmap_config =

os.path.join(get_package_share_directory(package_name), 'config',

'rtabmap_sync_node.yaml')

 use_sim_time = LaunchConfiguration('use_sim_time')

 qos = LaunchConfiguration('qos')

 localization = LaunchConfiguration('localization')

 rtabmap_config={

 'frame_id':'base_link',

 'use_sim_time':use_sim_time,

 'subscribe_rgbd':True,

 'subscribe_scan':True,

 'use_action_for_goal':True,

 'qos_scan':qos,

 'qos_image':qos,

 'qos_imu':qos,

 # RTAB-Map's parameters should be strings:

 'Reg/Strategy':'1',

 #'Reg/Force3DoF':'true',

 'RGBD/NeighborLinkRefining':'True',

 'Grid/RangeMin':'0.2', # ignore laser scan points on

the robot itself

 #'Optimizer/GravitySigma':'0' # Disable imu constraints

(we are already in 2D)

 }

 remappings=[

 ('/odom', '/diff_cont/odom'),

 ('/rgb/image', '/depth_camera/image_raw'),

 ('/rgb/camera_info', '/depth_camera/camera_info'),

 ('/depth/image', '/depth_camera/depth/image_raw')]

70

 return LaunchDescription([

 # Launch arguments

 DeclareLaunchArgument(

 'use_sim_time', default_value='true',

 description='Use simulation (Gazebo) clock if true'),

 DeclareLaunchArgument(

 'qos', default_value='2',

 description='QoS used for input sensor topics'),

 DeclareLaunchArgument(

 'localization', default_value='false',

 description='Launch in localization mode.'),

 # Nodes to launch

 Node(

 package='rtabmap_sync', executable='rgbd_sync',

output='screen', name='rtabmap_slam',

 parameters=[{'approx_sync':True,

'use_sim_time':use_sim_time, 'qos':qos}],

 remappings=remappings),

 # SLAM Mode:

 Node(

 condition=UnlessCondition(localization),

 package='rtabmap_slam', executable='rtabmap',

output='screen', name='rtabmap_slam',

 parameters=[rtabmap_config],

 remappings=remappings,

 arguments=['-d']),

 # Localization mode:

 Node(

 condition=IfCondition(localization),

 package='rtabmap_slam', executable='rtabmap',

output='screen',

 parameters=[rtabmap_config,

 {'Mem/IncrementalMemory':'False',

 'Mem/InitWMWithAllNodes':'True'}],

 remappings=remappings),

 Node(

 package='rtabmap_viz', executable='rtabmap_viz',

output='screen',

 parameters=[rtabmap_config],

 remappings=remappings),])

71

Appendix C The YAML file for the navigation.launch.py launch file in

nav2_bringup package

bt_navigator:

 ros__parameters:

 use_sim_time: True

 global_frame: map

 robot_base_frame: base_link

 odom_topic: /diff_cont/odom

 bt_loop_duration: 10

 default_server_timeout: 20

 # 'default_nav_through_poses_bt_xml' and

'default_nav_to_pose_bt_xml' are use defaults:

 #

nav2_bt_navigator/navigate_to_pose_w_replanning_and_recovery.xml

 #

nav2_bt_navigator/navigate_through_poses_w_replanning_and_recover

y.xml

 # They can be set here or via a RewrittenYaml remap from a

parent launch file to Nav2.

 plugin_lib_names:

 - nav2_compute_path_to_pose_action_bt_node

 - nav2_compute_path_through_poses_action_bt_node

 - nav2_smooth_path_action_bt_node

 - nav2_follow_path_action_bt_node

 - nav2_spin_action_bt_node

 - nav2_wait_action_bt_node

 - nav2_assisted_teleop_action_bt_node

 - nav2_back_up_action_bt_node

 - nav2_drive_on_heading_bt_node

 - nav2_clear_costmap_service_bt_node

 - nav2_is_stuck_condition_bt_node

 - nav2_goal_reached_condition_bt_node

 - nav2_goal_updated_condition_bt_node

 - nav2_globally_updated_goal_condition_bt_node

 - nav2_is_path_valid_condition_bt_node

 - nav2_initial_pose_received_condition_bt_node

 - nav2_reinitialize_global_localization_service_bt_node

 - nav2_rate_controller_bt_node

 - nav2_distance_controller_bt_node

 - nav2_speed_controller_bt_node

 - nav2_truncate_path_action_bt_node

 - nav2_truncate_path_local_action_bt_node

 - nav2_goal_updater_node_bt_node

 - nav2_recovery_node_bt_node

 - nav2_pipeline_sequence_bt_node

 - nav2_round_robin_node_bt_node

 - nav2_transform_available_condition_bt_node

72

 - nav2_time_expired_condition_bt_node

 - nav2_path_expiring_timer_condition

 - nav2_distance_traveled_condition_bt_node

 - nav2_single_trigger_bt_node

 - nav2_goal_updated_controller_bt_node

 - nav2_is_battery_low_condition_bt_node

 - nav2_navigate_through_poses_action_bt_node

 - nav2_navigate_to_pose_action_bt_node

 - nav2_remove_passed_goals_action_bt_node

 - nav2_planner_selector_bt_node

 - nav2_controller_selector_bt_node

 - nav2_goal_checker_selector_bt_node

 - nav2_controller_cancel_bt_node

 - nav2_path_longer_on_approach_bt_node

 - nav2_wait_cancel_bt_node

 - nav2_spin_cancel_bt_node

 - nav2_back_up_cancel_bt_node

 - nav2_assisted_teleop_cancel_bt_node

 - nav2_drive_on_heading_cancel_bt_node

bt_navigator_navigate_through_poses_rclcpp_node:

 ros__parameters:

 use_sim_time: True

bt_navigator_navigate_to_pose_rclcpp_node:

 ros__parameters:

 use_sim_time: True

controller_server:

 ros__parameters:

 use_sim_time: True

 controller_frequency: 20.0

 min_x_velocity_threshold: 0.001

 min_y_velocity_threshold: 0.5

 min_theta_velocity_threshold: 0.001

 failure_tolerance: 0.3

 progress_checker_plugin: "progress_checker"

 goal_checker_plugins: ["general_goal_checker"] #

"precise_goal_checker"

 controller_plugins: ["FollowPath"]

 # Progress checker parameters

 progress_checker:

 plugin: "nav2_controller::SimpleProgressChecker"

 required_movement_radius: 0.5

 movement_time_allowance: 10.0

 # Goal checker parameters

 #precise_goal_checker:

73

 # plugin: "nav2_controller::SimpleGoalChecker"

 # xy_goal_tolerance: 0.25

 # yaw_goal_tolerance: 0.25

 # stateful: True

 general_goal_checker:

 stateful: True

 plugin: "nav2_controller::SimpleGoalChecker"

 xy_goal_tolerance: 0.25

 yaw_goal_tolerance: 0.25

 # DWB parameters

 FollowPath:

 plugin: "dwb_core::DWBLocalPlanner"

 debug_trajectory_details: True

 min_vel_x: 0.0

 min_vel_y: 0.0

 max_vel_x: 0.26

 max_vel_y: 0.0

 max_vel_theta: 1.0

 min_speed_xy: 0.0

 max_speed_xy: 0.26

 min_speed_theta: 0.0

 # Add high threshold velocity for turtlebot 3 issue.

 # https://github.com/ROBOTIS-

GIT/turtlebot3_simulations/issues/75

 acc_lim_x: 2.5

 acc_lim_y: 0.0

 acc_lim_theta: 3.2

 decel_lim_x: -2.5

 decel_lim_y: 0.0

 decel_lim_theta: -3.2

 vx_samples: 20

 vy_samples: 5

 vtheta_samples: 20

 sim_time: 1.7

 linear_granularity: 0.05

 angular_granularity: 0.025

 transform_tolerance: 0.2

 xy_goal_tolerance: 0.25

 trans_stopped_velocity: 0.25

 short_circuit_trajectory_evaluation: True

 stateful: True

 critics: ["RotateToGoal", "Oscillation", "BaseObstacle",

"GoalAlign", "PathAlign", "PathDist", "GoalDist"]

 BaseObstacle.scale: 0.02

 PathAlign.scale: 32.0

 PathAlign.forward_point_distance: 0.1

 GoalAlign.scale: 24.0

 GoalAlign.forward_point_distance: 0.1

74

 PathDist.scale: 32.0

 GoalDist.scale: 24.0

 RotateToGoal.scale: 32.0

 RotateToGoal.slowing_factor: 5.0

 RotateToGoal.lookahead_time: -1.0

local_costmap:

 local_costmap:

 ros__parameters:

 update_frequency: 5.0

 publish_frequency: 2.0

 global_frame: odom

 robot_base_frame: base_link

 use_sim_time: True

 rolling_window: true

 width: 3

 height: 3

 resolution: 0.05

 robot_radius: 0.22

 plugins: ["voxel_layer", "inflation_layer"]

 inflation_layer:

 plugin: "nav2_costmap_2d::InflationLayer"

 cost_scaling_factor: 3.0

 inflation_radius: 0.55

 voxel_layer:

 plugin: "nav2_costmap_2d::VoxelLayer"

 enabled: True

 publish_voxel_map: True

 origin_z: 0.0

 z_resolution: 0.05

 z_voxels: 16

 max_obstacle_height: 2.0

 mark_threshold: 0

 observation_sources: pointcloud2

 pointcloud2:

 topic: /depth_camera/points

 data_type: "PointCloud2"

 max_obstacle_height: 2.0

 min_obstacle_height: 0.0

 obstacle_max_range: 2.5

 obstacle_min_range: 0.0

 raytrace_max_range: 3.0

 raytrace_min_range: 0.0

 clearing: True

 marking: True

 static_layer:

 plugin: "nav2_costmap_2d::StaticLayer"

 map_subscribe_transient_local: True

75

 always_send_full_costmap: True

global_costmap:

 global_costmap:

 ros__parameters:

 update_frequency: 1.0

 publish_frequency: 1.0

 global_frame: map

 robot_base_frame: base_link

 use_sim_time: True

 robot_radius: 0.22

 resolution: 0.05

 track_unknown_space: true

 plugins: ["static_layer", "obstacle_layer", "voxel_layer",

"inflation_layer"]

 obstacle_layer:

 plugin: "nav2_costmap_2d::ObstacleLayer"

 enabled: True

 observation_sources: scan

 scan:

 topic: /scan

 max_obstacle_height: 2.0

 clearing: True

 marking: True

 data_type: "LaserScan"

 raytrace_max_range: 3.0

 raytrace_min_range: 0.0

 obstacle_max_range: 2.5

 obstacle_min_range: 0.0

 static_layer:

 plugin: "nav2_costmap_2d::StaticLayer"

 map_subscribe_transient_local: True

 voxel_layer:

 plugin: "nav2_costmap_2d::VoxelLayer"

 enabled: True

 publish_voxel_map: True

 origin_z: 0.0

 z_resolution: 0.05

 z_voxels: 16

 max_obstacle_height: 2.0

 mark_threshold: 0

 observation_sources: pointcloud2

 pointcloud2:

 topic: /depth_camera/points

 data_type: "PointCloud2"

 max_obstacle_height: 2.0

 min_obstacle_height: 0.0

 obstacle_max_range: 2.5

76

 obstacle_min_range: 0.0

 raytrace_max_range: 3.0

 raytrace_min_range: 0.0

 clearing: True

 marking: True

 inflation_layer:

 plugin: "nav2_costmap_2d::InflationLayer"

 cost_scaling_factor: 3.0

 inflation_radius: 0.55

 always_send_full_costmap: True

map_server:

 ros__parameters:

 use_sim_time: True

 # Overridden in launch by the "map" launch configuration or

provided default value.

 # To use in yaml, remove the default "map" value in the

tb3_simulation_launch.py file & provide full path to map below.

 yaml_filename: ""

map_saver:

 ros__parameters:

 use_sim_time: True

 save_map_timeout: 5.0

 free_thresh_default: 0.25

 occupied_thresh_default: 0.65

 map_subscribe_transient_local: True

planner_server:

 ros__parameters:

 expected_planner_frequency: 20.0

 use_sim_time: True

 planner_plugins: ["GridBased"]

 GridBased:

 plugin: "nav2_navfn_planner/NavfnPlanner"

 tolerance: 0.5

 use_astar: false

 allow_unknown: true

smoother_server:

 ros__parameters:

 use_sim_time: True

 smoother_plugins: ["simple_smoother"]

 simple_smoother:

 plugin: "nav2_smoother::SimpleSmoother"

 tolerance: 1.0e-10

 max_its: 1000

 do_refinement: True

77

behavior_server:

 ros__parameters:

 costmap_topic: local_costmap/costmap_raw

 footprint_topic: local_costmap/published_footprint

 cycle_frequency: 10.0

 behavior_plugins: ["spin", "backup", "drive_on_heading",

"assisted_teleop", "wait"]

 spin:

 plugin: "nav2_behaviors/Spin"

 backup:

 plugin: "nav2_behaviors/BackUp"

 drive_on_heading:

 plugin: "nav2_behaviors/DriveOnHeading"

 wait:

 plugin: "nav2_behaviors/Wait"

 assisted_teleop:

 plugin: "nav2_behaviors/AssistedTeleop"

 global_frame: odom

 robot_base_frame: base_link

 transform_tolerance: 0.1

 use_sim_time: true

 simulate_ahead_time: 2.0

 max_rotational_vel: 1.0

 min_rotational_vel: 0.4

 rotational_acc_lim: 3.2

robot_state_publisher:

 ros__parameters:

 use_sim_time: True

waypoint_follower:

 ros__parameters:

 use_sim_time: True

 loop_rate: 20

 stop_on_failure: false

 waypoint_task_executor_plugin: "wait_at_waypoint"

 wait_at_waypoint:

 plugin: "nav2_waypoint_follower::WaitAtWaypoint"

 enabled: True

 waypoint_pause_duration: 200

velocity_smoother:

 ros__parameters:

 use_sim_time: True

 smoothing_frequency: 20.0

 scale_velocities: False

 feedback: "OPEN_LOOP"

78

 max_velocity: [0.26, 0.0, 1.0]

 min_velocity: [-0.26, 0.0, -1.0]

 max_accel: [2.5, 0.0, 3.2]

 max_decel: [-2.5, 0.0, -3.2]

 odom_topic: "/diff_cont/odom"

 odom_duration: 0.1

 deadband_velocity: [0.0, 0.0, 0.0]

 velocity_timeout: 1.0

