

OPTIMISED MULTI-ROBOT PATH PLANNING

VIA SMOOTH TRAJECTORY GENERATION

LOKE ZHI YU

UNIVERSITI TUNKU ABDUL RAHMAN

OPTIMISED MULTI-ROBOT PATH PLANNING

VIA SMOOTH TRAJECTORY GENERATION

LOKE ZHI YU

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Loke Zhi Yu

ID No. : 1903026

Date : 24 April 2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “OPTIMISED MULTI-ROBOT

PATH PLANNING VIA SMOOTH TRAJECTORY GENERATION”

was prepared by LOKE ZHI YU has met the required standard for submission

in partial fulfilment of the requirements for the award of Bachelor of

Mechatronics Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Dr Shalini a/p Darmaraju

14 May 2024

kwan_
Text Box
Kwan Ban Hoe

kwan_
Text Box
14 May 2024

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2024, Loke Zhi Yu. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to everyone who helped me with this

project. First, I am deeply grateful to my supervisor, Dr. Shalini Darmaraju

and co-supervisor, Dr. Kwan Ban Hoe, for their valuable guidance, patience,

and support throughout the project. Their advice and weekly meetings were

extremely helpful in overcoming challenges and completing the project

successfully.

I am also thankful to my parents and friends for their constant

encouragement and support during this entire journey. Their belief in me kept

me motivated and determined. The completion of this project would not have

been possible without the collective efforts and contributions of these

individuals. I am truly grateful for their guidance, support, and belief in me.

v

ABSTRACT

The deployment of multi-robot system (MRS) in real-world applications like

warehouses and manufacturing plants has increased the importance of path

planning algorithms for MRS. Compared to a single robot, an MRS is more

effective and robust in completing tasks, even when one robot breaks down.

Particle swarm optimization (PSO) outperforms conventional methods like

artificial potential fields (APF), the Dijkstra algorithm, and the A* algorithm

in path planning for mobile robots. PSO focuses on finding the local and

global best position of each particle through iterations, calculated based on a

fitness function whereby the Euclidean distance between a particle's next

waypoint and the target point is calculated. However, there is a need for

optimizing smooth trajectory generation in multi-robot path planning. The

application of parametric curves like the Bezier curve, Dubin's curve, and non-

uniform rational B-spline (NURBS) curve is common for generating smooth

trajectories. This project uses the Bezier curve equation for smooth trajectory

generation as it is computationally inexpensive and easy to form desired

curves. Smooth trajectories enable efficient traversal, shorter travel times, and

energy conservation by limiting unnecessary movements and abrupt changes

in direction. Collision avoidance is achievable through careful coordination of

robot trajectories, preventing collisions and improving MRS safety. This

project develops an enhanced PSO algorithm (EPSO) for smooth trajectory

generation of MRS, aiming to reduce path length, execution time, and turn

points, thereby increasing efficiency and conserving energy. A MPSO

algorithm, without path smoothening, is used for comparison. EPSO

parameters like swarm size, control points, inertia weight, and acceleration

coefficients are tuned appropriately. Simulations for MPSO and EPSO are

conducted five times for average results. In conclusion, EPSO outperforms

MPSO in generating pathways with shorter path length, lower execution time,

and fewer turn points, making it an effective solution for optimizing multi-

robot path planning.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.1.1 Multi-Robot Path Planning 2

1.1.2 Multi-Robot Trajectory Smoothing 3

1.2 Importance of the Study 5

1.3 Problem Statement 6

1.4 Aim and Objectives 7

1.5 Scope and Limitation of the Study 7

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 AI-Based Approaches 9

2.3 Artificial Neural Network 10

2.4 Bio-Inspired Algorithms 11

2.4.1 Genetic Algorithm (GA) 11

2.4.2 Particle Swarm Optimization Algorithm (PSO) 14

2.4.3 Ant Colony Optimization Algorithm (ACO) 20

2.4.4 Artificial Fish Swarm Algorithm (AFSA) 22

2.5 Path Planning via Smooth Trajectory Generation 25

2.6 Summary 42

vii

3 METHODOLOGY AND WORK PLAN 45

3.1 Introduction 45

3.2 Modified Particle Swarm Optimization (MPSO) 45

3.3 Proposed Enhanced Particle Swarm Optimization

(EPSO) 48

3.3.1 Assumptions 48

3.3.2 Path Planning Scheme 48

3.3.3 Trajectory Smoothing with Bezier Curve 50

3.3.4 Flowchart of EPSO Path Planning Algorithm 55

3.4 Planning and Managing of Project Activity 56

3.4.1 Gantt Chart of FYP 1 58

3.4.2 Gantt Chart of FYP 2 59

3.4.3 Summary 60

4 RESULTS AND DISCUSSION 61

4.1 Introduction 61

4.2 EPSO Parameters 61

4.2.1 Swarm size 61

4.2.2 Number of Control Points of Bezier Curve 64

4.2.3 Inertia weight, Cognitive and Social Acceleration

Coefficients 66

4.3 Simulation Results of MPSO and EPSO 71

4.3.1 Comparison between MPSO and EPSO in

Environment 1 73

4.3.2 Comparison between MPSO and EPSO in

Environment 2 85

4.3.3 Comparison between MPSO and EPSO in

Environment 3 97

4.4 Summary 110

5 CONCLUSIONS AND RECOMMENDATIONS 112

5.1 Conclusions 112

5.2 Recommendations for Future Work 113

REFERENCES 114

APPENDICES 119

viii

LIST OF TABLES

Table 2.1 : Path Length (m) under Different Parameters of

Simulation Environments. 38

Table 2.2 : Advantaged and Disadvantages of Different Path

Planning Algorithms. 43

Table 3.1 : Gantt Chart of FYP 1. 58

Table 3.2 : Gantt Chart of FYP 2. 59

Table 4.1 : Simulation Results for Different Swarm Size. 62

Table 4.2 : Simulation Result for Different Control Points. 65

Table 4.3 : Simulation Result for Different 𝑐1, 𝑐2, and 𝜔 Values. 70

Table 4.4 : Parameters of EPSO and MPSO. 73

Table 4.5 : Starting Position and Ending Position for each Robots. 73

Table 4.6 : Results of MPSO and EPSO in Environment 1. 83

Table 4.7 : Result of MPSO for each Simulation in Environment 1. 83

Table 4.8 : Result of EPSO for each Simulation in Environment 1. 84

Table 4.9 : Result of MPSO and EPSO in Environment 2. 95

Table 4.10: Result of MPSO for each Simulation in Environment 2. 96

Table 4.11: Result of EPSO for each Simulation in Environment 2. 96

Table 4.12: Result of MPSO and EPSO of Environment 3. 108

Table 4.13: Result of MPSO for each Simulation in Environment 3. 109

Table 4.14: Result of EPSO for each Simulation in Environment 3. 109

ix

LIST OF FIGURES

Figure 1.1 : Taxonomy of a MRS (Farinelli, Iocchi and Nardi, 2004). 2

Figure 1.2 : Comparison of Straight and Smooth Path (Ravankar et al.,

2018). 4

Figure 1.3 : MRS formed by UAVs (Madridano et al., 2021a). 5

Figure 1.4 : MRS formed by UGVs (Madridano et al., 2021a). 5

Figure 2.1 : Classification of Path Planning Techniques. 9

Figure 2.2 : A Simplified Neural Network Model (Yi-Wen and Wei-

Yu, 2015) 11

Figure 2.3 : The Architecture of Path Planning via GA (Shuhua,

Yantao and Jinfang, 2004). 13

Figure 2.4 : Free-Space Histogram (Bilbeisi Ghaith, Al-Madi and

Awad, 2015). 16

Figure 2.5 : Free-Space Force (Bilbeisi Ghaith, Al-Madi and Awad,

2015). 16

Figure 2.6 : Robot Swarm Navigation (Paez et al., 2021). 19

Figure 2.7 : PRM Construction (Mbemba, Chen and Shu, 2022). 20

Figure 2.8 : The Step Size Range of 16-Direction 24-Neighbourhood

(Li, Du and Jia, 2022). 24

Figure 2.9 : The Step Size Range of 4-Direction 4-Neighbourhood (Li,

Du and Jia, 2022). 25

Figure 2.10: Bezier Curve (Ravankar et al., 2018). 26

Figure 2.11: Path Smoothing using Dubin’s Curve (Ravankar et al.,

2018). 27

Figure 2.12: Pathway Generated by Traditional Path Planning Method

(Jianwei et al., 2020). 30

Figure 2.13: Pathway Generated by Bezier Curve Smoothing (BCA)

Algorithm (Jianwei et al., 2020). 30

Figure 2.14: Bezier Transition Curves (Xu, Song and Cao, 2021). 34

x

Figure 2.15: Smooth Path Produced by PCBC + PSO-ADV (Xu, Song

and Cao, 2021). 36

Figure 2.16: Smooth Path Produced by SBC + MDPSO (Xu, Song and

Cao, 2021). 36

Figure 2.17: Path Smoothed by Bezier Curve (Mbemba, Chen and

Shu, 2022). 38

Figure 2.18: The Bezier Curve Model (Li, Du and Jia, 2022). 40

Figure 3.2 : Kinematics of a TMR (Yang, Lee and Ryuh, 2013). 51

Figure 3.3 : Bezier Curve-based Path Planning (Yang, Lee and Ryuh,

2013). 52

Figure 3.4 : Flowchart of EPSO Path Planning Algorithm. 55

Figure 4.1 : Chart of Result for Different Swarm Sizes. 63

Figure 4.2 : Line Graph of Result of Different Number of Control

Points. 66

Figure 4.3 : Path Generated from high 𝑐1, low 𝑐2, and high 𝜔. 68

Figure 4.4 : Path Generated from high 𝑐1, low 𝑐2, and low 𝜔. 68

Figure 4.5 : Line Graph of Results for Different 𝑐1, 𝑐2, and 𝜔 Values. 70

Figure 4.6 : Environment 1. 74

Figure 4.7 : Pathway Generated for Robot 1 of MPSO. 75

Figure 4.8 : Pathway Generated for Robot 2 of MPSO. 75

Figure 4.9 : Pathway Generated for Robot 3 of MPSO. 76

Figure 4.10: Simulation of Robots Travelling Acoording to MPSO

Pathway. 77

Figure 4.11: Plotting of MPSO Waypoints of all Robots. 77

Figure 4.12: Graph of Global Best Fitness Vs. Iterations of MPSO

Algorithm. 78

Figure 4.13: Pathways Generated for Robot 1 of EPSO. 79

Figure 4.14: Pathways Generated for Robot 2 of EPSO. 79

Figure 4.15: Pathways Generated for Robot 3 of EPSO. 80

xi

Figure 4.16: Simulation of Robots Travelling According to EPSO

Pathway. 81

Figure 4.17: Plotting of EPSO Waypoints of all Robots. 81

Figure 4.18: Graph of Global Best Fitness Vs. Iterations of EPSO

Algorithm. 82

Figure 4.19: Error Bar of EPSO Path Length for Robot 1, 2, and 3. 84

Figure 4.20: Error Bar of EPSO Execution Time for Robot 1, 2, and 3. 85

Figure 4.21: Environment 2. 86

Figure 4.22: Pathway Generated for Robot 1 of MPSO. 87

Figure 4.23: Pathway Generated for Robot 2 of MPSO. 87

Figure 4.24: Pathway Generated for Robot 3 of MPSO. 88

Figure 4.25: Simulation of Robots Travelling According to MPSO

Pathway. 89

Figure 4.26: Plotting of MPSO Waypoints of all Robots. 89

Figure 4.27: Graph of Global Best Fitness Vs. Iterations of MPSO

Algorithm. 90

Figure 4.28: Pathways Generated for Robot 1 of EPSO. 91

Figure 4.29: Pathways Generated for Robot 2 of EPSO. 91

Figure 4.30: Pathways Generated for Robot 3 of EPSO. 92

Figure 4.31: Simulation of Robots Travelling According to EPSO

Pathway. 93

Figure 4.32: Plotting of EPSO Waypoints of all Robots. 93

Figure 4.33: Graph of Global Best Fitness Vs. Iterations of EPSO

Algorithm. 94

Figure 4.34: Error Bar of EPSO Path Length for Robot 1, 2, and 3. 97

Figure 4.35: Error Bar of EPSO Execution Time for Robot 1, 2, and 3. 97

Figure 4.36: Environment 3. 98

Figure 4.37: Pathway Generated for Robot 1 of MPSO. 99

xii

Figure 4.38: Pathway Generated for Robot 2 of MPSO. 100

Figure 4.39: Pathway Generated for Robot 3 of MPSO. 100

Figure 4.40: Simulation of Robots Travelling According to MPSO

Pathway. 101

Figure 4.41: Plotting of MPSO Waypoints of all Robots. 102

Figure 4.42: Graph of Global Best Fitness Vs. Iterations of MPSO

Algorithm. 103

Figure 4.43: Pathways Generated for Robot 1 of EPSO. 104

Figure 4.44: Pathways Generated for Robot 2 of EPSO. 104

Figure 4.45: Pathways Generated for Robot 3 of EPSO. 105

Figure 4.46: Simulation of Robots Travelling According to EPSO

Pathway. 106

Figure 4.47: Plotting of EPSO Waypoints of all Robots. 106

Figure 4.48: Graph of Global Best Fitness Vs. Iterations of EPSO

Algorithm. 107

Figure 4.49: Error Bar of EPSO Path Length for Robot 1, 2, and 3. 110

Figure 4.50: Error Bar of EPSO Execution Time for Robot 1, 2, and 3. 110

xiii

LIST OF SYMBOLS / ABBREVIATIONS

MRS Multi-robot system

UAV Unmanned aerial vehicle

AGV Automated Guided Vehicle

UGV Unmanned Ground Vehicle

AUV Autonomous Underwater Vehicle

APF Artificial potential field

EPSO Enhanced particle swarm optimisation

MILP Mixed integer linear program method

OC optimal control method

MIQP Mixed integer quadratic program

ANN Artificial neural network

MPCNN Modified pulse-coupled neural network

AFSA Artificial fish swarm algorithm

GA Genetic algorithm

ACO Ant colony optimisation algorithm

TC Time complexity

BCA Bezier curve smoothing algorithm

AG Agoraphilic algorithm

FSH Free-space histogram

FSF Free-space force

D2PSO Dynamic distributed particle swarm optimization

D-PSO Distributed particle swarm optimization

PSO-ADV Particle swarm optimization with adaptive delayed velocity

PCBC Parametric cubic bezier curve

SBC Square bezier curve

PRM Probabilistic roadmap

Gi Geometric continuity

Ci Parametric continuity

NURBS Non-uniform rational B-spline curve

MPSO Modified particle swarm optimisation algorithm

TMR Two-wheeled mobile robot

xiv

LIST OF APPENDICES

Appendix A : Matlab Coding 119

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Researchers have been motivated by the concept of creating robot groups that

can work together on certain tasks since the late 1980s. Scientists have studied

how groups of distinct organisms may work together to pursue shared goals by

referring to natural occurrences like swarms of bees, ant colonies, schools of

fish, and even human groupings. This knowledge has been used to a number of

practical fields, such as item transportation, foraging, exploration, search and

rescue operations, and surveillance in the real world (N. Darmanin and K.

Bugeja, 2017).

 Coordination and communication are the core components of a multi-

robot system (MRS), as shown in Figure 1.1. The cooperation level is located

on the top level of the hierarchy. In this level, robots work together within a

cooperative system to complete global tasks. MRS may be considered as a

group of cooperative robots. The knowledge level is the second level of the

hierarchy. Robots that are "Aware" have some knowledge of their groupmates,

but "Unaware" robots do not possess any knowledge of other robots in the

system. A MRS can nevertheless be aware even when there is no direct inter-

robot communication. The coordination level corresponds to the third level.

Depending on whether it relies on a coordination protocol, coordination might

be rated as strong or weak. In simple terms, a coordination protocol is a

collection of rules that specify how robots should interact with one another in

their environment. The organization level, which explores the MRS's decision-

making architecture, is the subject of the fourth level. A centralized system is a

system whereby the team's decision-making process is coordinated and

directed by the leader, and other team members follow instructions. A

distributed system, on the other hand, consists of autonomous agents that act

independently of one another. There is no leader position in the system. Robot

cooperation typically involves the use of a communication system that allows

for the exchange of messages which can be classified as direct and indirect

2

communication. Direct communication calls for the use of specialized onboard

hardware, which is more expensive and less dependable, to develop robot

coordination. Conversely, stigmergy is used in indirect communication.

Stigmergic communication creates a decentralized, concurrent framework for

group communication that is readily accessible to each agent. The requirement

for agent synchronization is eliminated by this architecture (Farinelli, Iocchi

and Nardi, 2004).

Figure 1.1: Taxonomy of a MRS (Farinelli, Iocchi and Nardi, 2004).

1.1.1 Multi-Robot Path Planning

Path planning is a crucial step in any multi-robot system (MRS). The goal of

path planning is to compute a series of obstacle-free configurations that begin

at a specified beginning point and conclude at the desired location. While

smoothness is not always prioritised, finding a raw solution is the main goal,

which then has to be optimised using cost function to get the optimal outcome.

Smooth trajectory generation is the next step in optimum path planning. This

establishes not just the paths that robots take but also considers parameters like

speed, acceleration, and kinodynamic constraints as the robots travel the

paths (Madridano et al., 2021a).

There are several ways to measure a path planning algorithm's

performance. Path length, computational speed, path smoothness, energy

efficiency, and safety are a few of the widely acknowledged measures. The

3

optimal path planning algorithm should provide a high-quality path with the

shortest length and better smoothness while consuming the least amount of

energy and taking the shortest amount of time to execute. But concurrently

improving these indicators is a difficult challenge. Iterative processes are a

common method used by path planning algorithms, and as the number of

iterations increases, shorter and smoother pathways are produced. The map's

resolution is another aspect that affects the path planning algorithm’s

performance. The use of higher map resolutions might result in greater path

quality but at the same time increases the processing time (Abujabal et al.,

2023a). Feasibility and optimality are two distinct approaches used to assess

path planning results. Feasibility places less emphasis on efficiency and more

on finding a safe path for robots. Optimality concentrates on developing

optimal and efficient paths to reach the goal (Madridano et al., 2021a).

In a two-dimensional or three-dimensional workspace, the robots and

obstacles are presented. To estimate their current position, robots need to be

able to locate themselves in the workspace. Simultaneous Localization and

Mapping (SLAM) is in charge of creating a workspace of the

environment while also determining the location of the robot inside it. The

robot will navigate to the given target point using a variety of path planning

algorithms, beginning from the current robot position (Ravankar et al., 2018).

Then, the configuration space will store all all possible configurations. The

obstacle space corresponds to configurations located within obstacle areas.The

obstacle-free space, on the other hand, is the complement of the obstacle space

and includes configurations located within free spaces where the robot may

move through them safely. The desired configuration is described by the goal

space, which is a subset of the obstacle-free space (Abujabal et al., 2023a).

1.1.2 Multi-Robot Trajectory Smoothing

Sharp turns and straight segments are common characteristics of the paths

produced by various path planning algorithms. Consider a robot with its

specified target position, as shown in Figure 1.2, the green path serves as an

example of a path with straight segments. However, since the robot is unable

to execute abrupt direction change instantaneously, such a path is

4

inappropriate for its mobility. Executing quick turns may even be difficult in

specific circumstances, depending on the robot's kinematics (Ravankar et al.,

2018).

In contrast, the red path in Figure 1.2, is ideal for efficient robot

navigation. This kind of path prevents abrupt and quick shifts in direction,

allowing the robot to move forward without stopping. Smooth trajectories

must meet a set of requirements that include tangential continuity, curvature

continuity, safety, compliance to robot motion models, and taking robot

kinematics into account. Safety is ensured by making sure that the path

produced does not intercept with obstacles. The motion model of a robot

describes how its position and orientation change over time as it moves

through the environment, allowing one to predict the robot's future positions

based on its current state (Ravankar et al., 2018).

The differential drive model, holonomic model, kinematic bicycle

model, and dynamic model are common categories of robot motion models.

To predict changes in position and orientation, the differential drive model

takes into account the robot's linear and angular velocities, wheelbase, and

wheel radius. In contrast, robot kinematics focus on comprehending how the

robot's joints move to direct its end effector. For example, turning radius

differs for differential drive robots, Ackermann steering robots, and omni-

directional robots. This turning radius controls how sharply a robot can turn or

change its direction, which affects the trajectory that the robot can travel. A

robot that can maneuver through narrow spaces and make accurate turns is one

that has a smaller turning radius (Ravankar et al., 2018).

Figure 1.2: Comparison of Straight and Smooth Path (Ravankar et al., 2018).

5

1.2 Importance of the Study

Applications for robots have been widely used in a variety of fields, including

industry, agriculture, surveillance, search and rescue work, environmental

monitoring, and traffic management. An AI system that combines

microelectronics, communication, computer science, and optics is referred to

as a robot. Unmanned aerial vehicles (UAVs) for airspace as shown in Figure

1.3 (Madridano et al., 2021a), Automated Guided Vehicles (AGVs) for

manufacturing plants, Unmanned Ground Vehicles (UGVs) for ground

mission as shown by Figure 1.4 (Madridano et al., 2021a), and Autonomous

Underwater Vehicles (AUVs) for underwater exploration are a few examples

of mobile robots that have been deployed as a result of advancements in

robotics technology.

Figure 1.3: MRS formed by UAVs (Madridano et al., 2021a).

Figure 1.4: MRS formed by UGVs (Madridano et al., 2021a).

It is apparent that using multi-robot system (MRS) is more cost-

effective than building a single, costly robot that is capable of performing

every task. These systems are frequently decentralized, distributed, and

intrinsically redundant, which promotes system reliability and robustness and

provides fault tolerance (Gautam and Mohan, 2012). Robots have the ability to

cover large regions while working simultaneously. Benefits including

robustness, flexibility, scalability, and spatial dispersion are demonstrated by

the system's capacity to continue operating even if one robot breaks

6

down. Each robot in a multi-robot system has unique coordinates and

autonomous behaviour, enabling it to imitate the cooperative behaviour

observed in real-world situations (Lin et al., 2022).

Particle swarm optimisation and genetic algorithm outperform more

conventional methods like artificial potential fields (APF), graph-based

searches (Dijkstra, A*, and D*), and sampling-based strategies in path

planning to create a smooth trajectory for mobile robots inside a workspace.

The main objective of modern metaheuristic techniques is to avoid being

captured in local minimum traps (Dian et al., 2022). But there has been a

noticeable shift towards the increasing importance of optimizing path planning

in multi-robot system through smooth trajectory generation. The application of

suitable parametric curve to determine the trajectory is a common component

of optimization techniques for generating smooth trajectories. Due to its deep

influence on the overall performance, efficiency, safety, and scalability of such

systems, researching the area of smooth trajectory generation within multi-

robot system is of utmost importance. The use of smooth trajectories enables

robots to traverse with increased efficiency, resulting in shorter travel times

and the conservation of energy resources by limiting unnecessary movements,

sudden changes in direction, and halts. Furthermore, collision avoidance is

achievable as path planning via smooth trajectory generation is used to

carefully coordinate the trajectories of various robots, preventing collisions

and thus improving the safety of a multi-robot system. Moreover, effective

resource utilization results from the implementation of smooth trajectory path

planning in a multi-robot system. This is because smooth trajectory reduces

unnecessary movements and idle times for robots, optimizing the use of

resources, including battery life and computational capacity. As a result,

operational durations are increased, and system performance is improved.

1.3 Problem Statement

The development of Unmanned Ground and Aerial Vehicles (UGVs and

UAVs) has led to a significant increase in the deployment of multi-robot

system (MRS) in real-world applications in recent years. This development

has made it possible to employ many robots simultaneously and autonomously,

7

increasing their usefulness in crucial missions by providing better efficiency,

persistence, and reliability. Path planning is a crucial component of efficient

coordination and navigation in MRS. Creating pathways that allow robots to

independently proceed from their starting point to their destination without

requiring human intervention is known as path planning. It is essential for

them to find a feasible and optimal pathway to reach their goal while ensuring

the smoothness of path generated (Rao and Sodhi, 2022).

Hence, other features like path length, travel time and energy

expenditure can be optimised for MRS deployment in the real world. There is

many path planning algorithms that may be used to find the optimal route for a

single robot that travels with the minimum amount of distance or time in

polynomial time. However, when multiple robots are engaged, the

computational complexity of finding optimal paths has been proven to be

(non-deterministic polynomial-time) NP-complete which indicates that there is

no known efficient method, that runs in polynomial time, for finding optimal

pathways with smooth trajectories for multi-robot path planning in all

situations (Rao and Sodhi, 2022).

1.4 Aim and Objectives

This project's goal is to provide an enhanced particle swarm optimisation

(EPSO) method as a possible solution for multi-robot path planning via

smooth trajectory generation. Reduction of path length, execution time, and

number of turn points of robots will be focused in this project. The objectives

of this project are shown as below:

1) To review on existing multi-robot path planning algorithms.

2) To develop an enhanced PSO (EPSO) algorithm for smooth

trajectory generation of multi-robot system.

3) To evaluate performance of the enhanced PSO (EPSO) algorithm

through simulation.

1.5 Scope and Limitation of the Study

Multi-robot path planning via smooth trajectory generation has several

constraints and challenges. When more robots are implemented in the

8

environment, the computational time for robot pathways will increase. As a

result, there can not be too many robots, and a 2D environment is used to

reduce computational complexity. Additionally, each robot will have a

different turning radius and kinematics constraints if it is of a different model

(non-homogeneous), which will affect the degree to which it can turn and

rotate. Therefore, it could be challenging to guarantee that non-homogeneous

robots can successfully follow the smooth trajctories created by the same path

planning algorithm. To simplify the case, homogeneous differential-drive two-

wheeled robots are used in this project. Furthermore, the combination of static

and dynamic obstacles in the workspace will increase the path planning

complexity. In this project, a multi-robot system (MRS) will function in a

static environment with just static obstacles to make the situation simpler.

9

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, different path planning algorithms for multi-robot system

(MRS) are classified, discussed, and compared in details. The current path

planning techniques for MRS, as shown in Figure 2.1, can be divided into

classical approaches, mathematical model based approaches, and AI-based

approaches. The classical approaches can be further divided into

decomposition graph-based methods, sampling based methods and artificial

potential field (APF) method. Next, the mathematical model based methods

can also be separated into mixed integer linear program (MILP) method,

optimal control (OC) method, and mixed integer quadratic program (MIQP).

Bioinspired algorithms and artificial neural network (ANN) are classified

under the AI-based methods (Madridano et al., 2021b).

Figure 2.1: Classification of Path Planning Techniques.

2.2 AI-Based Approaches

This section discusses AI-based techniques, such as artificial neural network

(ANN) and the bio-inspired algorithms. Robotic planning of paths makes

notable use of AI to make it easier for robots to independently navigate

through diverse surroundings to perform duties (Rao et al., 2017). Robots

frequently use methods like machine learning and computer vision to build on

their path planning skills while gaining knowledge from what they have

10

previously learned. Furthermore, computer vision algorithms are applied to

provide robots insight into their surroundings, enabling real-time and

dynamic obstacle identification and avoidance (Abujabal et al., 2023b).

2.3 Artificial Neural Network

ANN serves as a functional framework made up of a large number of linked

nodes, where each node corresponds to an activation function that delivers a

particular output function. The artificial neural network's memory is denoted

by the connections between nodes, which indicate the weighted values

employed to the signals traversing through them (Tang and Ma, 2021).

 A modified pulse-coupled neural network (MPCNN) algorithm is

introduced to generate pathways for multiple robots in a warehouse or

hypermarket. This modified algorithm will receive inputs, such as the origin,

destination, static obstacles, which is transformed into a grid-based map by a

map building algorithm. Then, the optimal path with the lowest required

travelling time can be obtained through the modified MPCNN algorithm,

which allows for the rapid map data processing. Meanwhile, dynamic

obstacles can be avoided by installing infrared sensors on the robots. When

there are dynamic obstacles such as human or other robots, the emitted

infrared ray will get reflected back from the obstacles, thus the robot is able to

determine the distance of obstacles through frequency changes in infrared

waves. The robot will stop its motion to avoid collision with dynamic

obstacles. Figure 2.2 showcases a simplified neural network model of the

modified MPCNN algorithm. Point i represents the destination point, and 𝑌𝑖

stands for the status of point i. When 𝑌𝑖 reach an output of 1, the processing of

point i is completed. If it is equal to zero, the processing of point i is awaited

to be processed. The total distance of the pathway is 𝑑𝑎𝑙𝑙,𝑖 . 𝑅𝑖 is the

neighbouring points of point i. As seen in Figure 2.2, the modified MPCNN

receives inputs such as the beginning point, obstacles, adjacent points, and

destination point (Yi-Wen and Wei-Yu, 2015).

11

Figure 2.2: A Simplified Neural Network Model (Yi-Wen and Wei-Yu, 2015)

2.4 Bio-Inspired Algorithms

With the goal to build optimal pathways, bio-inspired algorithms try to mimic

the behaviour and activities of biological creatures. These techniques have a

number of important qualities, including parallel structures, flexibility, and

quasi deterministic. These characteristics enable these algorithms to offer ideal

solutions for path-finding issues without necessitating a thorough

comprehension of the mission's surroundings. As a result, they are successful

at solving multi-objective tasks (Guzmán and Peña, 2013).

 Bio-inspired algorithms have an established procedure. In the

beginning, potential solutions are chosen at random to create the first

generation. The next phase is taking into account elements including the

robot's capabilities, the goal, and any existing constraints in the environment

or system as a whole. Then, a selection of the first generation's parents are

picked to produce a new generation. The last phase involves repeating a

mutation and crossover procedure until the desired outcome is achieved. Most

outstanding individuals are ultimately translated and used as nodes to create

the ideal pathway. The Particle Swarm Optimisation (PSO), Artificial Fish

Swarm Algorithm (AFSA), Genetic Algorithm (GA), and Ant Colony

Optimisation Algorithm (ACO) are a few examples of the methods that fall

within the category of bio-inspired algorithms. The GA was the first bio-

inspired algorithm that came to light, and as time went on, more approaches

that drew influence from other natural processes also emerged (Madridano et

al., 2021b).

2.4.1 Genetic Algorithm (GA)

The genetic algorithm (GA) utilises the based-knowledge genetic operators in

robots path planning. Each robot independently plans its route using GA from

12

its initial location to the goal position which is also known as the decoupled

planning technique. During this phase of individual planning, the existence of

other robots is ignored. The resultant pathways are then mixed, and any

possible collisions are dealt with by employing a reactive strategy. It

is essential to recognise that algorithms using this technique are frequently

insufficient, which means that even if a solution exists, they cannot guarantee

to discover it. Also, GA has high computational complexity due to its genetic

operators so the execution time of GA is often longer. However, the

algorithm’s complexity will not be affected when more robots are engaged.

GA is also able to handle large and complicated maps (Shuhua, Yantao and

Jinfang, 2004).

 Figure 2.3 depicts the architecture of path planning using a genetic

algorithm (GA). In the beginning, path planners—one for each goal—use GA

to create paths for every robot to undertake in order to reach that goal and then

transmit that information to every robot. There are four phases in this

procedure. First, by including an active constraint, an initial population of

chromosomes representing pathways is generated. The two dimension

coordinates (i,j) are used to represent each chromosome. Second, two

individuals are chosen using a roulette wheel selection process with an elitist

model. Thirdly, two new individuals are formed using a crossover operator,

making sure the crossover location is chosen outside of any connected part of

a path. Finally, the two new individuals go through mutations respectively. To

guarantee that the developed pathways remain linked based on the

chromosomes' two-dimensional coordinates (i,j), multi-point crossover and

variable crossover rates are applied. Elitist selection is then used on the newly

created population. The better individuals can be ensured to advance to the

next generation by replacing the weaker individuals of the current generation

with the superior individuals of the parent generation. Then, depending on its

given goal and the field of vision, each local navigator, allocated to each robot,

chooses a steering direction. By doing this, the robot is protected from running

into any obstacles in the environment (Shuhua, Yantao and Jinfang, 2004).

13

Figure 2.3 : The Architecture of Path Planning via GA (Shuhua, Yantao and

Jinfang, 2004).

 Genetic algorithm-based robot path planning (GA-RPP)

technique often encounters the problem of premature convergence, where a

solution pathway may become unfeasible upon termination, as an impact of

its stochastic characteristic. It is essential to meticulously plan the evaluation

and natural selection steps in order to ensure the population converges well to

become a feasible and optimal solution pathway. A quick GA-RPP approach

can be used to address this issue without increasing time complexity (TC) of

GA. Since the fast GA-RPP is both straightforward and effective, it may be

used right away in fields where commercial robots are now used, such as lawn

trimming robots, medical robots, and service robots for life-saving rescue.

Initialization, reproduction, proposed evaluation, and proposed natural

selection are the stages included in the proposed method's workflow. An initial

population P(t) is created during initialization by random in order to represent

a route as a list of nodes. For instance, a path, Z = {z1,...,zn}. By

applying crossover and mutation, reproduction can produce an offspring set

N(t). Then, using two evaluation functions, F(Z) as stated in Equation 2.1 and

D(Z) as shown in Equation 2.2, respectively, the quantity of possible subpaths

in P(t) and the length of each path can be evaluated. The last stage of natural

14

selection is the formation of P(t+1), where pathways with lower F(Z) and D(Z)

values are preferred over others. The fast GA-RPP method can increase the

success rate to find a feasible path and shorten execution time without a raise

in time complexity (TC) as compared to traditional GA (Lee, Kang and Kim,

2013).

𝐹(𝑍) =
𝛼(𝑒𝑖)

|𝑍|−1
 (2.1)

where

𝐹(𝑍) = infeasibility evaluation function

𝛼(𝑒𝑖) = number of subpaths

Z = available paths

𝐷(𝑍) = ∑ 𝑒𝑢𝑐(𝑒𝑖)𝑒𝑖∈𝑍 (2.2)

where

𝐷(𝑍) = distance evaluation function

𝑒𝑢𝑐(𝑒𝑖) = Euclidean distance of the subpaths

2.4.2 Particle Swarm Optimization Algorithm (PSO)

The path planning of multi-robot systems was addressed in 2015 by the PSO-

AG algorithm, which combines the benefits of the agoraphilic (AG) algorithm

with particle swarm optimisation (PSO), with PSO serves as the robot's path

planner, and AG serves as its regulator, guiding the robot down the path while

making sure it avoids obstacles. The evolutionary computation technique

known as particle swarm optimisation (PSO) was motivated by the cooperative

behaviour of natural swarms, such as bird flocks, which work together to

obtain a global optimum or goal location. The PSO method begins with a start

phase that randomly disperses particles throughout the search area, giving each

one an initial velocity that is within the permissible range. Fitness assessments

are carried out to identify the swarm's leader. The process then enters an

iterative phase, updating particle velocities, positions, and fitness values at

each step till the predetermined number of iterations is attained. The updated

15

velocity of particles is shown in Equation 2.3. Each particle modifies its

position based on Equation 2.4 and reevaluates fitness based on the objective

function as shown in Equation 2.5 in response to velocity changes. The new

position is then evaluated to see if it can become its personal best position.

Each particle uses its own best position to move towards the target while

searching for a path that ultimately leads to the global best position (Bilbeisi

Ghaith, Al-Madi and Awad, 2015).

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖) (2.3)

where

𝑣𝑖 = updated velocity of the robot

𝑤𝑣𝑖 = inertia weight set to the velocity of the particle before update

𝑐1 = parameter for setting weight of own best position

𝑝𝑖 = the particle’s own best fitness

𝑥𝑖 = current position of the robot

𝑐2 = parameter for setting weight of global best position

𝑝𝑔 = the particle’s global best fitness

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (2.4)

where

𝑥𝑖 = current position of the robot

 𝑣𝑖 = current velocity of the robot

𝐷 = √(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2 (2.5)

where

D = the Euclidian distance from the target

(𝑥𝑖, 𝑦𝑖) = coordinates of the robot

(𝑥𝑡, 𝑦𝑡) = coordinates of the target location

16

 AG first guides the robot to the new location by detecting

surroundings within its sensor coverage. If the path is clear, the robot may go

right away in the direction of the new point. However, AG employs a method

to get to the new point when the robot is blocked by an obstacle. As seen in

Figure 2.4, the Free-Space Histogram (FSH) is created by measuring the

distances between the robot and the obstacles in its immediate environment.

This map shows the distance profile of the robot's surroundings. To drive the

robot, initial forces are calculated for every component in the FSH, and

the magnitude of free-space forces (FSF) is directly correlated with the square

of the distance measured as shown in Figure 2.5 (Bilbeisi Ghaith, Al-Madi and

Awad, 2015).

Figure 2.4: Free-Space Histogram (Bilbeisi Ghaith, Al-Madi and Awad, 2015).

Figure 2.5: Free-Space Force (Bilbeisi Ghaith, Al-Madi and Awad, 2015).

 The ideal route for a distributed multi-robot system is determined

using another innovative approach called Dynamic Distributed Particle Swarm

Optimisation (D2PSO). Every robot in this system fulfils the duties of a

mobile, independent agent. D2PSO strives to preserve swift convergence

capabilities while addressing the challenges associated with local optima and

stagnation that bother the conventional PSO algorithms. Meanwhile, it also

17

maintains and applies the fundamental principles of PSO. It also shows

scalability, being able to control multiple robots without increasing their need

for communication. To achieve these enhancements, D2PSO adds two

additional parameters to the PSO which are the Local Optima Detector for

personal best and the Local Optima Detector for global best. The number of

iterations whereby there has been no improvement for the particles'

personal bests and the global best is tracked by these parameters. When

particles fail to improvise on their personal best, they lose their potential to

find the overall optimum solution. To combat this, D2PSO steers particles in

the direction of potentially unknown areas, varying the search area and giving

them an external force to increase their ability to search. Likewise, if the

global best does not evolve after a specific number of repetitions, it could

indicate that the system is stuck in a local optimum that is misdirecting other

particles. In order to alleviate such negative effects, D2PSO solves this

problem by using external force to relocate the trapped particle away from the

position of the local optima (IEEE Robotics and Automation Society and

Institute of Electrical and Electronics Engineers, n.d.).

 Next, a distributed particle swarm optimization (D-PSO) is proposed

in 2021. Around the central robot point, each member of the swarm is

originally distributed at arbitrary in compliance with the Gaussian distribution

function N(𝜇, 𝜎). Here, the robot's localization point is represented by 𝜇, and

its size is shown by 𝜎. In order to create attractive forces towards unknown

areas and nearby victims that have been detected by robots, artificial potential

functions are utilised. Contrary to conventional PSO theory, a novel strategy is

used, involving the introduction of a repulsion vector between particles in the

same swarm as they get closer to a minimum distance as shown in Equation

2.6. This repulsion vector prohibits particles from converging at the same

position. The addition of a repulsion vector between different swarms as

shown in Equation 2.7 also makes a substantial contribution. A minimal

distance between robots is maintained by the action of this repulsion vector

between a swarm's centre point and particles from other swarms. Without this

method, different swarms would converge towards the same place, increasing

18

the probability of robot collisions. The D-PSO equation is shown in Equation

2.8 (Paez et al., 2021).

𝑅𝑝𝑛 = ∑ ‖𝐺𝑝(𝑝𝑖 − 𝑝𝑛)‖𝑘
𝑖=0 (2.6)

where

𝑅𝑝𝑛 = repulsion between particles in the same swarm

‖𝐺𝑝(𝑝𝑖 − 𝑝𝑛)‖ = artificial repulsion force as a function of distance existed

between the current particle and the rest in the same swarm

𝑅𝑠𝑛 = ∑ ‖𝐺𝑠(𝑔𝑀𝑖 − 𝑝𝑛)‖𝑗
𝑖=0 (2.7)

where

𝑅𝑠𝑛 = inter-swarms repulsion

 ‖𝐺𝑠(𝑔𝑀𝑖 − 𝑝𝑛)‖ = artificial repulsion function which depends on the distance

𝑣𝑛+1 = 𝑤𝑣𝑛 + 𝑐1𝑟1‖𝑝𝐵𝑛 − 𝑝𝑛‖ + 𝑐2𝑟2‖𝑔𝐵𝑛 − 𝑝𝑛‖ +

 𝑐3𝑟3𝑅𝑝𝑛 + 𝑐4𝑟4𝑅𝑠𝑛 (2.8)

where

𝑣𝑛+1 = velocity of each particle in the next iteration

w = inertia constant computer for the velocity of the particle

𝑣𝑛 = velocity of each particle in the current iteration

𝑐1,2,3,4 = learning constant

𝑟1,2,3,4 = random value between 0 and 1

‖𝑝𝐵𝑛 − 𝑝𝑛‖ = error between the historical best position of the swarm

particle and its current position

‖𝑔𝐵𝑛 − 𝑝𝑛‖ = difference between the best position among all particles

swarm and the position of the current particle calculation

𝑅𝑝𝑛 = sum of the repulsion force of the particle with respect to

the particles from the same swarm

19

𝑅𝑠𝑛 = sum of repulsion to the average position of the other

swarms

As indicated by Figure 2.6, 26 robots and three victims was tested in

the simulation using Vrep. The robots arrived at the victims through several

robot groupings, as was to be predicted. The three yellow dotted circles

represent robots that have already discovered victims; these robots were kept

at a safe distance from one another by the inter-swarm repulsive forces. These

repelling factors caused other groups of robots to be driven to investigate and

search for other possible victims once the first victim is discovered by one of

the robot groups. The suggested approach successfully avoided collisions

between the robots even when several approached a victim simultaneously.

The three victims were therefore successfully discovered. The simulation

showed that several robots kept travelling in search for other victims even after

they located all three victims; these robots are depicted in figure 2.6 as circles

with dotted white lines. By the end of the simulation, different groups of nine,

four, and four robots had each located one of the three victims. This result

demonstrates how robots possess an effective repelling mechanism that

can keep them focused on finding victims while maintaining a safe distance

between each other within the same swarm as well as among different swarms

(Paez et al., 2021).

Figure 2.6: Robot Swarm Navigation (Paez et al., 2021).

20

2.4.3 Ant Colony Optimization Algorithm (ACO)

In 2022, a new path planning method that combines ant colony optimisation

(ACO), and probabilistic roadmap (PRM) is presented. There are two basic

steps in the process. Generating a random map using the probabilistic roadmap

approach is the first stage. The path with the shortest distance between the

initial point and destination is discovered in the second step using ant colony

optimisation. A roadmap with edges (E) and nodes (N) represents the way a

probabilistic roadmap (PRM) develops as shown in Figure 2.7. N is made up

of randomly chosen nodes that are guaranteed not to run into any static

obstacles in the surrounding area. These nodes are connected directly by edges

(E), resultizng in the roadmap R = (N, E) . Binary collision check or

incremental collision check can both be used for collision checking. Edges are

divided into numerous steps by incremental collision checking, which then

examines for obstacles that the steps may collide onto. Contrarily, binary

collision checking splits the edge into two parts and determines if the middle

point is collision-free. If this is the case, the operation keeps going by splitting

the edge halves until a specified number of divisions is reached. Then, it

chooses some previously sampled nodes, 𝑞′ to link with when adding each

new node, 𝑞 into N, creating new edges (E). If the gap between two nodes is

wider than Dmax, the present node, 𝑞, is unable to attach to its neighbour, 𝑞′

(Mbemba, Chen and Shu, 2022).

Figure 2.7: PRM Construction (Mbemba, Chen and Shu, 2022).

21

 The ACO algorithm was created to mimic how ants search for

heuristic outcomes to optimisation issues. Pheromones that are left behind by

ants as they forage for food draw other ants to the food source. As a result,

paths with more pheromones are regarded as more desirable since they are

more likely to lead to a food source. However, the pheromones tend to fade

away with time, making pathways with low pheromone levels less appealing.

But the constant deposition process can outweigh evaporation. When

determining its next move, each ant in the ACO algorithm takes into account

the length of edges that can be reached from where it is now as well as the

corresponding pheromone level. Every ant calculates a list of possible

expansions to its present condition during each cycle. The prospect of an ant

transferring from state x (the current node) to state y (neighbour node) is

determined by the attractiveness of the move, 𝜂𝑥𝑦 = 1/𝑑(𝑥, 𝑦), and the trail

level 𝜏𝑥𝑦, as stated in Equation 2.9. The selection probability only depends on

the pheromone level when beta is set to zero, but when alpha is set to zero, it

only depends on the heuristic distance. The trails are normally updated while

all ants have finished their solution. The pheromone update for each trail is

controlled by the global pheromone updating rule, denoted by Equation 2.10.

Then, the level of trails changes to reflect the superiority of its movements in

the solutions (Mbemba, Chen and Shu, 2022).

𝑃𝑥𝑦
𝑘 =

(𝜏𝑥𝑦
𝑘)

𝛼
(𝜂𝑥𝑦

𝑘)
𝛽

∑ (𝜏𝑥𝑗
𝑘)

𝛼
(𝜂𝑥𝑗

𝑘)
𝛽

𝑗∈𝑁𝑥
𝑘

 (2.9)

where

𝑃𝑥𝑦
𝑘 = probability of the kth ant to move from state x to state y

𝜏𝑥𝑦 = quantity of pheromone deposited for the transition from state x to y

𝛼 = control parameter for influence of 𝜏𝑥𝑦

𝜂𝑥𝑦 = the desirability of state transition x to y

 𝛽 = control parameter for influence of 𝜂𝑥𝑦

k = ant number

𝑁𝑥
𝑘 = a collection of adjacent nodes

22

𝜏𝑥𝑦 ← (1 − 𝜑)𝜏𝑥𝑦 + ∑ ∆𝜏𝑥𝑦
𝑘𝐾

𝑘=1 (2.10)

where

𝜏𝑥𝑦 = quantity of pheromone deposited by K ants for a state transition x to

y

𝜑 = pheromone evaporation coefficient

∆𝜏𝑥𝑦
𝑘 = {

𝑄

𝐿𝑘
, 𝐼𝑓 𝑎𝑛𝑡 𝑘 𝑡𝑎𝑘𝑒𝑠 𝑥, 𝑦 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.4.4 Artificial Fish Swarm Algorithm (AFSA)

Artificial Fish Swarm Algorithm (AFSA) provides a number of benefits,

including reliabilty, enormous global search ability, wide parameter tolerance,

and suited for path planning because of its insensitivity to initial values. In this

study, the path planning environment is represented by a grid graph, with

feasible zones represented by white squares and obstacles by black squares.

Preying behaviour, swarming behaviour, following behaviour, and random

behaviour are the behaviours that the AFSA simulates in order to accomplish

optimization. The preying behaviour enables the artificial fish to identify a

new location 𝑋𝑗 that has the higher food concentration, 𝑌𝑗 . Then, random

behaviour is carried out as Equation 2.11 illustrates, if no position with a

greater food concentration than the present position can be identified. Being

closer to the centre of the fish group and having a low degree of crowding

within the fish group are both necessary conditions for swarm behaviour.

Swarming behaviour is activated, if the degree of crowding is less than or

equal to the crowding factor, 𝛿, of the fish swarm and the food concentration

𝑌𝑐 at the centre position is higher than the current position food

concentration, 𝑌𝑖, suggesting a less congested and superior centre position, 𝑋𝑐.

If not, foraging behaviour is performed. The artificial fish can locate and

explore a new spot that has a higher concentration of food than its previous

location while engaging in the follow behaviour (Li, Du and Jia, 2022).

23

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑠𝑡𝑒𝑝 ∗
𝑋𝑗(𝑡)−𝑋𝑖(𝑡)

‖𝑋𝑗(𝑡)−𝑋𝑖(𝑡)‖
∗ 𝑟𝑎𝑛𝑑() (2.11)

where

𝑋𝑖(𝑡 + 1) = the updating function of position vector at t+1 iteration

𝑋𝑖(𝑡) = the current position vector of artificial fish

The field of vision and step size range both have an effect on how

quickly the AFSA algorithm converges. The fish swarm's clustering and

following behaviour are highlighted by a broader field of view, which aids in

identifying the global optimum. Contrarily, a narrower field of view promotes

fish foraging and random activity, driving careful search that may result in

local optimums. A dynamic feedback field of vision, symbolised by Equation

2.12, is developed to overcome these problems. This adaptive approach alters

the field of vision based on how far away the target point is from the current

location. As a result, the fish can quickly approach the target point since they

initially have a wider range of view. The field of vision narrows as the

algorithm advances, enabling a more thorough search to quickly arrive at the

target spot. The step size range of artificial fish is also expanded to [1, 2√2]

using the 16-Direction 24-Neighbourhood moving mode, as shown in Figure

2.8, to speed up reaching the target position, as opposed to the traditional

AFSA using the 4-Direction 4-Neighbourhood moving mode, as shown in

Figure 2.9, with a step size range of [1, √2]. The method can discover shorter

pathways with fewer iterations due to the increase in the step size range, which

accelerates convergence of algorithm. In order to control the step size

according to the field of view, Equation 2.13, which represents an adaptable

step size range, is also included. This modification eliminates step oscillation

which was caused by excessive large range of vision that may otherwise slow

the algorithm's rate of convergence. To put it simply, the AFSA algorithm

starts by initialising the artificial fish’s characteristics, for instance, field of

vision, beginning point, target point, crowding factor and step size range.

Information regarding obstacles is shared among the fish if the conditions of

the sharing mechanism are satisfied. The algorithm then performs random

24

behaviour, preying behaviour, swarming behaviour, and following behaviour.

The locations of the fish are regularly updated and recorded during this

procedure. If the goal point is identified, the algorithm chooses the best option

from all workable options, and the loop is closed. (Li, Du and Jia, 2022)

{
𝑣𝑖𝑠𝑢𝑎𝑙 = 𝑣𝑖𝑠𝑢𝑎𝑙 𝑚𝑎𝑥 ∗ 𝑒−𝜆∗

𝑡

𝑇

𝜆 = 𝑚 ∗ (1 −
𝑑𝑖𝑠𝑡

𝐷𝑖𝑠𝑡𝑀𝑖𝑛
)

 (2.12)

where

visual = dynamic feedback field of vision

𝑣𝑖𝑠𝑢𝑎𝑙 𝑚𝑎𝑥 = maximum field of vision

𝑚 = adjustable parameter

𝑡 = current iteration number

𝑇 = maximum iteration number

dist = Euclidean distance from the target point in the fish swarm

𝐷𝑖𝑠𝑡𝑀𝑖𝑛 = Euclidean distance between the starting point and the

endpoint

𝜆 = feedback factor

Figure 2.8: The Step Size Range of 16-Direction 24-Neighbourhood (Li, Du

and Jia, 2022).

25

Figure 2.9: The Step Size Range of 4-Direction 4-Neighbourhood (Li, Du and

Jia, 2022).

𝑠𝑡𝑒𝑝 = 𝛼 ∗ 𝑠𝑡𝑒𝑝𝑚𝑖𝑛 (2.13)

where

 𝑠𝑡𝑒𝑝 = adaptable step size range

𝑠𝑡𝑒𝑝𝑚𝑖𝑛 = minimum step size range

𝛼 = {
2 𝑣𝑖𝑠𝑢𝑎𝑙 ≥ 𝑠𝑡𝑒𝑝 𝑚𝑎𝑥
1 𝑣𝑖𝑠𝑢𝑎𝑙 < 𝑠𝑡𝑒𝑝 𝑚𝑎𝑥

2.5 Path Planning via Smooth Trajectory Generation

In order to evaluate the concept of path smoothness, continuity is often utilised.

Geometric (𝐺𝑖) and parametric (𝐶𝑖) continuity are the two main categories of

continuity. Geometric continuity ensures that the ends of path segments will

come together and have the same tangent vector directions. Contrarily,

parametric continuity guarantees the convergence of endpoints as well as

identical tangent vector magnitudes and directions. In essence, geometric

continuity provides the smoothness of the robot's path navigation whereas

parametric continuity indicates the smoothness of the curve itself and its

parameterization. For example, 𝐶1 and 𝐶2 continuity denotes the tangent

vector and acceleration vector continuity respectively. 𝐺1 continuity denotes

the slope's continuity while 𝐺2 continuity denotes continuity of curvature

(Ravankar et al., 2018).

 Figure 2.10 shows a Bezier curve, an example of a parametric curve

that uses control points to specify its shape. Equation 2.14 illustrates the use of

Bernstein polynomial functions in these curves. Equation 2.15 may be used to

represent the corresponding Bezier curve (Ravankar et al., 2018).

26

Figure 2.10: Bezier Curve (Ravankar et al., 2018).

𝐵𝑖
𝑛(𝑡) = (𝑛

𝑖
)𝑡𝑖 (1 − 𝑡)𝑛−𝑖, 𝑖 = 0, 1, . . . , 𝑛, (2.14)

where

𝐵𝑖
𝑛(𝑡) = Bernstein polynomial, whereby t is the positional parameter

(𝑛
𝑖
) =

𝑛!

𝑖!(𝑛−1)!

𝐶(𝑡) = ∑ 𝐵𝑖
𝑛(𝑡)𝑃𝑖, 0 ≤ 𝑡 ≤ 1,𝑛

𝑖=0 (2.15)

where

𝐶(𝑡) = Path generated by Bezier curve, t is the positional parameter

𝐵𝑖
𝑛(𝑡) = Bernstein polynomial

𝑃𝑖 = Control point of the Bezier curve

Next, Dubin's curve combines circular arcs with straight line

segments to produce the shortest smoothed route between spots of a bounded

curvature. The red segments in Figure 2.11 are straight components that have

been blended with the green circular arcs (BC and DE), which illustrate

how Dubin's curve is used to smoothen the path. (Ravankar et al., 2018)

27

Figure 2.11: Path Smoothing using Dubin’s Curve (Ravankar et al., 2018).

A non-uniform rational B-spline (NURBS) curve is defined following

Equation 2.16. NURBS exhibit exceptional flexibility as a component for

constructing desired trajectories by allowing the user to alter the control points

and weights (Ravankar et al., 2018).

𝐶(𝑡) =
∑ 𝑁𝑖,𝑝(𝑡)𝑤𝑖𝑃𝑖

𝑛
𝑖=0

∑ 𝑁𝑖,𝑝(𝑡)𝑤𝑖
𝑛
𝑖=0

 (2.16)

where

𝐶(𝑡) = NURBS curve

𝑁𝑖,𝑝 = B-spline basis functions

𝑝 = order

𝑃𝑖 = control points

𝑤𝑖 = weight of 𝑃𝑖

The Bezier curve has the advantage of being computationally

inexpensive, and by modifying the control points, curves with certain desired

features can be formed. Curves with higher degrees can be managed, but as the

degree of the curve rises, so does the computing complexity. As for the

Dubin's curve, the shortest paths are ensured and have the fast computational

speed for a given obstacles configuration. But, these curves lack of curvature

continuity, and the robot encounters abrupt shifts when straight lines and

circles converge. NURBS curves, on the other hand, have robust and

fast computation, making them simple to use. They are also flexible in creating

28

the required trajectories. However, it occupies more memory storage and

might experience problems if weights are initialised improperly, leading to

poor parametrization. Hence, it can be seen that to smoothen robot pathways,

Bezier curve is more suitable than the other two methods as it is simple and

provides curvature continuity for paths generated (Ravankar et al., 2018).

In order to evaluate how the Bezier curve can be implemented to path

planning algorithms to smoothen generated pathways, four research papers are

studied which covers implementation of Bezier curve with GA, PSO, ACO

and AFSA. Firstly, for multi-robot path planning using GA, the Bezier Curve

Smoothing (BCA) algorithm has been suggested. To produce continuous

smooth curves, this approach combines genetic algorithm and Bezier curves.

Equations 2.17 and 2.18 build a Bezier curve from the control points along the

path. The first derivative and second derivative of a Bezier curve are given by

equations 2.19 and 2.20, and both may be calculated using control points to

ensure a smooth transition along the path. Then, the curvature of Bezier curve

on two-dimensional plane can be described using Equation 2.21 (Jianwei et al.,

2020).

𝑃(𝑡) = ∑ 𝐵𝑖
𝑚(𝑡)𝑃𝑖, 0 ≤ 𝑡 ≤ 1,𝑚

𝑖=0 (2.17)

where

𝑃(𝑡) = Path generated by Bezier curve

𝐵𝑖
𝑚(𝑡) = Bernstein polynomial

𝑃𝑖 = ith control point of the Bezier curve

𝐵𝑖
𝑚(𝑡) = (𝑚

𝑖
)𝑡𝑖 (1 − 𝑡)𝑚−𝑖, 𝑖 = 0, 1, . . . , 𝑚, (2.18)

where

𝐵𝑖
𝑚(𝑡) = Bernstein polynomial

29

�̇�(𝑡) =
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑚 ∑ 𝐵𝑖

𝑚−1(𝑡)(𝑃𝑖+1 − 𝑃𝑖)
𝑚−1
𝑖=0 (2.19)

where

�̇�(𝑡) = A Bezier curve’s first derivative

�̈�(𝑡) = 𝑚(𝑚 − 1)∑ 𝐵𝑖
𝑚−2(𝑡)(�̇�𝑖+2 − 2�̇�𝑖+1 + �̇�𝑖)

𝑚−2
𝑖=0 (2.20)

where

�̈�(𝑡) = A Bezier curve’s second derivative

𝑘(𝑡) =
1

𝑅(𝑡)
=

�̇�𝑥(𝑡)�̈�𝑦(𝑡)−�̇�𝑦(𝑡)�̈�𝑥(𝑡)

(�̇�𝑥
2(𝑡) + �̇�𝑦

2(𝑡)
3

2⁄
 (2.21)

where

𝑘(𝑡) = curvature of a Bezier curve

𝑅(𝑡) = radius of curvature

�̇�𝑥(𝑡), �̇�𝑦(𝑡) = X and Y coordinates components of the first derivative

 �̈�𝑥(𝑡), �̈�𝑦(𝑡) = X and Y coordinates components of the second derivative

Conventional path planning techniques typically lead to pathways

with duplicated nodes and lots of abrupt inflection points, as seen in Figure

2.12. Here, S stands for the path's starting point, T for its ends, and P1, P2, P3,

P4, and P5 for its inflection points. Using Equations 2.17 and 2.18, we can

determine the equivalent Bezier curve as shown in Figure 2.13, by using P1,

P2, P3, P4, and P5 as the control points. The chromosome in this algorithm

indicates the Bezier curve's control point sequence. For simplicity and simple

decoding, it is binary encoded before undergoing genetic manipulation

(Jianwei et al., 2020).

30

Figure 2.12: Pathway Generated by Traditional Path Planning Method

(Jianwei et al., 2020).

Figure 2.13: Pathway Generated by Bezier Curve Smoothing (BCA)

Algorithm (Jianwei et al., 2020).

 By using the Bezier curve, a smoother and more reliable planned path

can be created. In this study, the author used the mutation, crossover, and

selection operators to define the control points of the Bezier curve. As a result,

energy lost during robot movement can be minimised. Roulette wheel method

is applied to choose pathways. The probability of a path being selected can be

illustrated by Equation 2.22. Path length will determine the fitness value. For

instance, a lower path length will lead to a higher fitness value, resulting in a

higher probability of the path being selected. A single-point crossover

31

approach was implemented to swap genes across two chromosomes in order to

facilitate chromosomal crossover. Additionally, the mutation operator was

given a probability of 0.1, allowing the mutation of portions of genes in the

chromosome other than the start and end points. This strategy successfully

inhibits premature convergence due to local optimum issue (Jianwei et al.,

2020).

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (2.22)

where

𝑝𝑖 = probability of the selected path

𝑓𝑖𝑡𝑖 = fitness value of the Bezier curve

n = number of Bezier curves

Next, in order to create smooth pathways for mobile robots that

adhere to continuous-curvature requirements, a revolutionary method was

devised in 2021. The technique makes use of particle swarm optimization with

adaptive delayed velocity (PSO-ADV) and a parametric cubic Bezier curve

(PCBC). In conventional path smoothing, there are normally two steps in the

procedure. The first step is to create a linear path using PSO while taking into

constraints like path length and obstacle avoidance. A parametric curve is then

used to smooth the linear path, creating discontinuous curvature at the joints to

connect linear and curved segments. The study presents smooth paths made of

PCBC segments to overcome this drawback by ensuring continuous curvature

throughout the entire route. The improved PSO-ADV technique is also used to

address problems like local trapping and premature convergence (Xu, Song

and Cao, 2021).

 An analytical trajectory-smoothing approach that assures continuous

curvature is the parametric cubic Bezier curve (PCBC). It links straight linear

segments smoothly while meeting the continuous-curvature criterion by

adjusting the PCBC parameter. Equations 2.23 and 2.24 may be used to

represent two cubic Bezier curves, as shown in Figure 2.14. The transition

length, 𝑑, is an important factor in PCBC since it influences the overall quality

32

of Bezier transition curves and is directly related to the smooth trajectory

generation criterion. The transition length, 𝑑 is commonly established as 𝑑1 =

‖𝑃2 − 𝐵10‖ and 𝑑2 = ‖𝑃2 − 𝐵20‖ (as illustrated in Figure 2.14). Then, two

constraints, 𝑑 = 𝑑1 = 𝑑2 and 𝛽 = 𝜃/2 are taken into account when

generating the Bezier transition curves by determining their control

points using Equations 2.25, 2.26, 2.27, and 2.28. The PCBC method has

successfully produced continuous curvature at the intersection of 𝐵1(u) and

𝐵2 (u), at point 𝐵𝑖3 . Equation 2.29 may be used to calculate the

maximum curvature, 𝑘𝑚𝑎𝑥 at point 𝐵𝑖3, which is inversely proportional to 𝑑.

When a certain maximum curvature is supplied, it is crucial to ensure that the

control parameter, 𝑑, satisfies the criteria stated in Equation 2.30 (Xu, Song

and Cao, 2021).

𝐵1(𝑢) = ∑ 𝐵1𝑖(
3
𝑖
)𝑢𝑖(1 − 𝑢)3−𝑖, 0 ≤ 𝑢 ≤ 1, 3

𝑖=0 (2.23)

where

𝐵1(𝑢) = the cubic Bezier curve

𝐵1𝑖 = the ith control point

𝐵2(𝑢) = ∑ 𝐵2(3−𝑖)(
3
𝑖
)𝑢𝑖(1 − 𝑢)3−𝑖, 0 ≤ 𝑢 ≤ 1, 3

𝑖=0 (2.24)

where

𝐵2(𝑢) = the cubic Bezier curve

𝐵2(3−𝑖) = the ith control point

33

𝐵𝑖0 = 𝑃2 − 𝑇𝑖𝑑, 𝑖 = 1 𝑎𝑛𝑑 2, (2.25)

𝐵𝑖1 = 𝑃2 − 𝑇𝑖(1 − 𝑐1𝑐3)𝑑, 𝑖 = 1 𝑎𝑛𝑑 2, (2.26)

𝐵𝑖2 = 𝑃2 − 𝑇𝑖(1 − 𝑐1𝑐3 − 𝑐3)𝑑, 𝑖 = 1 𝑎𝑛𝑑 2, (2.27)

𝐵𝑖3 = 𝐵12 + 𝜂𝑑𝑢𝑑 , 𝑖 = 1 𝑎𝑛𝑑 2, (2.28)

where

𝐵𝑖0,1,2,3 = the control point

 𝑃2 = the straight line point

𝑇𝑖 = 𝑃𝑖𝑃2,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ /‖𝑃𝑖𝑃2,3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖

d = the transition length

𝑐1 = 2(√6 − 1)/5

𝑐2 = (𝑐1 + 4)(𝑐1 + 1)

 𝑐3 = (𝑐1 + 4)/(𝑐2 + 6)

𝜂 = 6𝑐3 cos 𝛽/ (𝑐1 + 4)

𝑢𝑑 = 𝐵12𝐵22
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ /‖ 𝐵12𝐵22

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖

𝑘𝑚𝑎𝑥 =
2𝑐3 sin𝛽

3𝑑𝜂2 (2.29)

where

𝑘𝑚𝑎𝑥 = maximum curvature

𝑑 ≥
2𝑐3 sin𝛽

3𝑘𝑚𝑎𝑥𝜂2 (2.30)

where

𝑑 = transition length

34

Figure 2.14: Bezier Transition Curves (Xu, Song and Cao, 2021).

 The workspace is divided into 2𝑛 x 2𝑛 grids, each of which is given a

grid number. The workspace gets increasingly detailed as the parameter n rises,

albeit at the expense of greater computational expenses. The smooth trajectory

generation of routes in this work focuses on identifying control points and

control parameters in order to design a practical and ideal pathway. Obstacle

avoidance, minimized maximum curvature, minimal path length, and

continuity of curvature are the requirements for a practical and ideal smooth

path. Each swarm particles in PSO-ADV represents a probable

optimal solution to smooth path planning issue. Equations 2.31 and 2.32 are

used to determine the position and velocity vectors of particles. Velocity is

updated for the next iteration using the velocity from the previous and current

iteration (Xu, Song and Cao, 2021).

𝑉𝑖(𝑘 + 1) = 𝑤𝑉𝑖(𝑘) + 𝑤1𝑉𝑖(𝑘 − 1) + 𝑐1𝑟1(𝑃𝑖𝑏(𝑘) − 𝑋𝑖(𝑘))

+ 𝑐2𝑟2(𝐺𝑏(𝑘) − 𝑋𝑖(𝑘))

(2.31)

where

𝑉𝑖(𝑘 + 1) = the updating function of velocity at kth iteration

w = inertia weight of velocity

𝑉𝑖(𝑘) = the current velocity of ith particle

𝑤1 = inertia weight of delayed velocity

𝑉𝑖(𝑘 − 1) = the previous / delayed velocity of ith particle

35

𝑐1,2 = acceleration coefficients

𝑟1,2 = random numbers uniformly distributed on [0, 1]

𝑃𝑖𝑏(𝑘) = the particle’s own best position till kth iteration

𝑋𝑖(𝑘) = the current position of the ith particle

𝐺𝑏(𝑘) = the global swarm’s best position till kth iteration

𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) (2.32)

where

𝑋𝑖(𝑘 + 1) = the updating function of position vector at kth iteration

𝑋𝑖(𝑘) = the current position vector of ith particle

𝑉𝑖(𝑘 + 1) = the updating function of velocity at kth iteration

 These illustrations show the convex hulls of the Bezier curves and

their related control points as blue solid lines and blue hollow circles,

respectively. The optimal smooth pathways found are shown by the red solid

curves. Figure 2.16 illustrates the path produced using the square Bezier curve

(SBC) and MDPSO method, whereas Figure 2.15 shows the path produced

using the parametric cubic Bezier curve (PCBC) and PSO-ADV algorithm.

The smooth path in Figure 2.15 is made up of several cubic Bezier transition

curve segments which is able to ensure the continuity of curvatures along the

path. The smooth path in Figure 2.16, on the other hand, is made up of square

Bezier curve segments that fail to keep their joints' curvature continuity. As a

result, the mobile robot's acceleration and velocity are disrupted, necessitating

frequent changes in motion modes. Additionally, this may result in over-

actuation and slippage problems, especially during rapid motions (Xu, Song

and Cao, 2021).

36

Figure 2.15: Smooth Path Produced by PCBC + PSO-ADV (Xu, Song and

Cao, 2021).

Figure 2.16: Smooth Path Produced by SBC + MDPSO (Xu, Song and Cao,

2021).

Thirdly, the integration of ACO with Bezier curve is discussed. The

technique of path planning that is frequently in use produces pathways made

up of segments of straight lines. These pathways are not ideal for many

applications due to a number of concerns, including slippage, localization

errors, mechanical wear, and discontinuity problems. The requirement that

robots come to a complete stop at each turning edge to change their direction,

and thereafter restart forward motion adds additional challenges. Prior

37

attempts integrate lines and circles together using techniques like Dubin, Reed,

and Shepp to fulfill the demand for smoother trajectories with continuous

curvature. These techniques generated smooth paths but also showed

discontinuities. To create continuous curvature paths, it is necessary to use at

least a third-order or cubic Bezier curve with a total of four control points, as

shown in Equation 2.33. A starting point, an ending point, and two control

points that determine the curve's shape make up the Bezier curve's four control

points (Sitong and Tianyi, 2022). The path that the ACO algorithm found in

Figure 2.17 is shown as a black line in simulation. The path's waypoints are

shown by red dots, while the blue curve shows the Bezier curve. The

advantages of using the Bezier curve are shown in Table 2.1, which shows a

decrease in path length under various conditions including the quantity of

obstacles, the threshold, the sample points, and the number of ants. The author

emphasises that the Bezier curve outperforms the Ferguson curve when it

comes to path planning concerns. This advantage results from the enhanced

flexibility of the Bezier curve, which enables changes to the shape of the

pathway generated by adjusting control points (Mbemba, Chen and Shu, 2022).

𝑃 = (1 − 𝑡)3𝑃1 + 3(1 − 𝑡)2𝑡𝑃2 + 3(1 − 𝑡)𝑡2𝑃3 + 𝑡3𝑃4 (2.33)

where

𝑃 = four-points Bezier curve

𝑃𝑖 = control points that define the Bezier curve

𝑡 = parameterization variable that ranges from 0 to 1 for point

interpolation

38

Figure 2.17: Path Smoothed by Bezier Curve (Mbemba, Chen and Shu, 2022).

Table 2.1: Path Length (m) under Different Parameters of Simulation

Environments.

Lastly, the integration of AFSA with Bezier curve is discussed.

Equations 2.34 and 2.35 illustrate the route smoothing procedure for the initial

path generated by the AFSA method, which uses a third-order Bezier curve

with four control points. A x-order Bezier curve is required to have x+1

control points in order to be valid. Folded line segments with abrupt twists that

make up the original path might result in curvature and path orientation

discontinuities. Hence, the segments of the Bezier curve must adhere to

certain requirements as shown by Equation 2.36 to guarantee continuity at

39

turning points. Two Bezier curves with eight control points in Figure 2.18 can

be described using Equations 2.37 to 2.44. The arc created between two

adjacent straight lines must not exceed the maximum rotation curvature, 𝑘𝑚𝑎𝑥,

as shown by Equation 2.45, to lessen the robot's mechanical structural harm..

When transition length, 𝑑 is not equal to 0 or ∠𝐴2𝐵2𝐸1, 𝛼 is not equal to 90°,

the continuity of the third-order Bézier curve is guaranteed. The third-order

Bezier curve's continuous requirement must then also be satisfied by carrying

out collinear optimisation as the last step. After determining the "𝑖" number of

waypoints, the beginning point and the goal point are both remained. Then, the

three points 𝐵𝑥 − 1, 𝐵𝑥, and 𝐵𝑥 + 1 are tested for collinearity using the rank

technique of a matrix, which is depicted by Equation 2.46. If all three of these

points fall along the same straight line, it indicates that they are collinear.

When the nxn matrix's determinant is non-zero, the matrix rank is "𝑛 ". It

denotes collinearity when 𝑛 = 1 or 2, but a rank of 3 denotes non-collinearity.

Given that the middle point Bx alone can define the line on which it lies, 𝐵𝑥 −

1 and 𝐵𝑥 + 1 may be safely eliminated in the event of collinearity since they

become redundant. In a number of manners, the proposed AFSA approach

performed better than the traditional fish swarm algorithm. It had the most

effective alignment with the robot's kinematic features, had the shortest path

length, and had the fewest inflection spots. Additionally, the algorithm's path-

planning performance had a perfect 100% success rate (Li, Du and Jia, 2022).

𝑃(𝑠) = ∑ 𝐵𝑖
𝑛(𝑠)𝑃𝑖, 0 ≤ 𝑠 ≤ 1,𝑛

𝑖=0 (2.34)

where

𝑃(𝑠) = Path generated by Bezier curve, s is the positional parameter

𝐵𝑖
𝑛(𝑠) = Bernstein polynomial

𝑃𝑖 = control point of the Bezier curve

40

𝐵𝑖
𝑛(𝑠) = (𝑛

𝑖
)𝑠𝑖 (1 − 𝑠)𝑛−𝑖, 𝑖 = 0, 1, . . . , 𝑛, (2.35)

where

𝐵𝑖
𝑛(𝑠) = Bernstein polynomial, whereby s is the positional parameter

𝑛 = order of the Bezier curve

𝐹(𝛼) = 𝑐1𝑑 sin 𝛽[𝑐𝑜𝑠2(𝛽 − 𝛼) sin 𝛼 − 𝑐𝑜𝑠2 𝛼 𝑠𝑖𝑛(𝛽 − 𝛼)] + 6𝑑𝑐𝑜𝑠2(𝛽 −

 𝛼) sin 𝛼 [𝑐𝑜𝑠2𝛼 sin 𝛽 − 𝑐𝑜𝑠2 𝛽

2
sin 2𝛼] + 6𝑑𝑐𝑜𝑠2𝛼 sin(𝛽 −

 𝛼) cos(𝛽 − 𝛼)[𝑠𝑖𝑛(𝛽 − 𝛼) − sin 𝛼]

 (2.36)

where

𝐹(𝛼) = Continuous third-order Bezier curve segments

𝑐1 = 7.2364

𝑑 = transition length (distance between 𝐸1𝐵0 𝑜𝑟 𝐸1𝐴0)

𝛽 = ∠𝐸0𝐸1𝐸2

𝛼 = ∠𝐴2𝐵2𝐸1

Figure 2.18: The Bezier Curve Model (Li, Du and Jia, 2022).

41

𝐵0 = 𝐸1 − 𝑑1𝑢1 (2.37)

𝐵1 = 𝐵0 − 𝑝𝑏𝑢1 (2.38)

𝐵2 = 𝐵1 − 𝑞𝑏𝑢1 (2.39)

𝐵3 = 𝐵2 − 𝑓𝑏𝑢𝑑 (2.40)

where

𝐵0,1,2,3 = the control points of first Bezier curve

 𝐸1 = the inflection point of the path

𝑑1 = the transition length between 𝐸1and 𝐵0

𝑢1 = unit vector of 𝐸1𝐸0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑝𝑏 = 𝑐2𝑐3𝑑

𝑐2 =
2

5
(√6 − 1)

𝑐3 =
𝑐2+4

𝑐1+6

𝑐1 = 7.2364

𝑞𝑏 = 𝑐3𝑑

𝑓𝑏 =
6𝑐3 cos𝛼

𝑐2+4
d

𝑢𝑑 = 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵2𝐴2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐴0 = 𝐸1 − 𝑑2𝑢2 (2.41)

𝐴1 = 𝐴0 − 𝑝𝑎𝑢2 (2.42)

𝐴2 = 𝐴1 − 𝑞𝑎𝑢2 (2.43)

𝐴3 = 𝐴2 − 𝑓𝑎𝑢𝑑 (2.44)

where

𝐴0,1,2,3 = the control points of the second Bezier curve

 𝐸1 = the inflection point of the path

𝑑2 = the transition length between 𝐸1and 𝐴0

𝑢2 = unit vector of 𝐸1𝐸2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑝𝑎 = 𝑐2𝑐3𝑑

𝑐2 =
2

5
(√6 − 1)

𝑐3 =
𝑐2+4

𝑐1+6

42

𝑐1 = 7.2364

𝑞𝑎 = 𝑐3𝑑

𝑓𝑎 =
6𝑐3 cos𝛼

𝑐2+4
d

𝑢𝑑 = 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵2𝐴2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑘𝑚𝑎𝑥 = (
(𝑐2+4)3

54𝑐3
)

sin𝛼

𝑑𝑐𝑜𝑠2𝛼
 (2.45)

where

𝑘𝑚𝑎𝑥 = maximum curvature

𝑐2 =
2

5
(√6 − 1)

𝑐3 =
𝑐2+4

𝑐1+6

𝑑 = transition length (distance between 𝐸1𝐵0 𝑜𝑟 𝐸1𝐴0)

𝛼 = ∠𝐴2𝐵2𝐸1

𝑎 = (
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

) (2.46)

where

𝑎 = 𝑟𝑎𝑛𝑘 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥

𝑥𝑛, 𝑦𝑛 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡𝑠, Bx − 1, Bx, and Bx + 1

2.6 Summary

Table 2.2 demonstrates the advantages and disadvantages of various path

planning algorithms discussed in this chapter. Among these path planning

algorithms, particle swarm optimization algorithm (PSO) under the bio-

inspired algorithm is chosen for this project. This is because PSO can provide

optimal result through tuning of PSO parameters such as inertia weight,

population size, cognitive acceleration coefficient and social acceleration

coefficient. The implementation and adjustment of PSO is easy and user-

friendly as it does not involve complicated derivative computations. Besides, it

presents faster convergence to optimal solution due to global and local

43

exploration by particles. Hence, PSO is the most suitable path planning

algorithm for this project.

Table 2.2: Advantaged and Disadvantages of Different Path Planning

Algorithms.

Artificial

Neural

Network

(ANN)

• Good generalization ability to adapt learnt knowledge

and information to new, unknown scenarios.

• Good capacity for learning.

• Time consuming.

• Convergence with the ideal answer may not be

guaranteed by the learning method.

 Genetic

Algorithm

(GA)

• Can be applied for large and complicated

maps.

• High parallelism for multi-robot path

planning.

• High computational complexity due to

its genetic operators.

• Premature convergence of solutions.

Bio-

inspired

Algorithm

Particle

Swarm

Optimization

(PSO)

• Easy implementation because it does not

apply complicated derivative

computations.

• Exploration on a global and local scale

enables it to quickly identify the

optimal solution.

• Easily caught in the local optimum.

• Convergence speed progresses slowly

when there are several local optima.

 Ant Colony

Optimization

(ACO)

• Faster speed of convergence.

• High variation in solution.

• Time-consuming due to the need to tune

various parameters.

• Heavy computational cost due to

44

probability calculation for path selection.

 Artificial

Fish Swarm

Algorithm

(AFSA)

• Robust global searchability.

• Large parameter setting tolerance.

• Time-consuming due to the need to tune

various parameters.

• High computational load for multi-robot

path planning.

45

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter focuses on elaborating and discussing the methodology for

optimised multi-robot path planning via smooth trajectory generation. For

improvement of existing modified particle swarm optimization algorithm

(MPSO), an enhanced particle swarm optimization algorithm (EPSO) is

implemented in this project. The optimization feature focuses on introducing

trajectory smoothing by using Bezier curve for shorter path length, shorter

execution time and lower number of turns in pathways generated for robots.

3.2 Modified Particle Swarm Optimization (MPSO)

Kennedy and Eberhart (1995) first presented the classical PSO, an

evolutionary optimization technique based on stochastic populations that

draws inspiration from biological swarm intelligence. The classical PSO

method treats each member of the population as a particle, and this collection

of particles is known as a swarm (P.K Das et al., 2016). In MPSO, each

particle's initial positions and velocities inside the search space are assigned at

random after the population size is first determined. After that, each particle's

fitness value is determined and contrasted with its prior surpassing

record position. If the fitness value surpasses the previous one, the particle's

current position will shift to become its new individual best position. The

current position will be modified to take on the new global best position if it

has a better fitness value than the previous global best position. The particle's

new position and velocity are updated using the Equations 3.1 and 3.2 below.

Once the specified number of iterations has been reached, the PSO terminates

(Poy, Darmaraju and Kwan, 2023).

46

𝑣𝑖 = 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖) (3.1)

where

𝑣𝑖 = current velocity of the robot

𝜔𝑣𝑖 = inertial weight set to the velocity of the particle before update

𝑐1 = personal acceleration coefficient

𝑝𝑖 = the particle’s own best fitness

𝑥𝑖 = current position of the robot

𝑐2 = global acceleration coefficient

𝑝𝑔 = the particle’s global best fitness

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (3.2)

where

𝑥𝑖 = current position of the robot

 𝑣𝑖 = current velocity of the robot

Next, a method for fine-tuning the three parameters (known as 𝜔, 𝑐1,

and 𝑐2) inside the particle’s velocity equation as shown in Equation 3.1 has

been developed in a study by Poy, Darmaraju and Kwan (2023). To establish

an equilibrium between the particle's local exploration and global exploitation

properties, the inertial weight, 𝜔, is crucial. It has a significant impact on the

PSO algorithm's convergence. With the aid of a well-balanced local

exploration ability, a robot may quickly and accurately determine the optimum

path since a higher amount of 𝜔 supports a complete and global search while

a lower value 𝜔 allows for fine and local search (Poy, Darmaraju and Kwan,

2023).

 In general, 𝜔 is set to either 1 or a number between 0 and 1. When

it is set to 1, the particle's movement is fully determined by the direction of its

previous motion, thus prompting it to continue moving in the same direction.

In order to allow the particle to navigate through more of the search area, 𝜔

must be set to a value between 0 and 1. This reduces the impact of prior

motion. The algorithm's searching ability is improved as a result (Gadhgadhi,

47

Hachaichi and Zairi, 2022). Equation 3.3, in which a linearly decreasing 𝜔

technique is employed, is designated as the equation for calculating the value

of 𝜔. The value of 𝜔 starts at 0.95, gradually reduces as more iterations are

carried out, and finally ends at 0.4 for this algorithm (Poy, Darmaraju and

Kwan, 2023).

𝜔 = 𝜔𝑠𝑡𝑎𝑟𝑡 −
𝜔𝑠𝑡𝑎𝑟𝑡−𝜔𝑒𝑛𝑑

𝐾
 𝑘 (3.3)

where

𝜔𝑠𝑡𝑎𝑟𝑡 = start value of inertial weight

 𝜔𝑒𝑛𝑑 = end value of inertial weight

𝐾 = maximum number of iterations

𝑘 = current iteration

 Then, the algorithm's performance is improved by implementing the

tuning of the personal acceleration coefficient, 𝑐1 for the cognitive component

and the global acceleration coefficient, 𝑐2 for the social component. The

𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) in the Equation 3.1 stands for the cognitive component, whereas

𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖) refers to the social component. Higher 𝑐1 values draw particles

towards their individual best positions, while higher 𝑐2 values drive them

towards the global best positions. This is because the algorithm's ability for

local exploration is determined by 𝑐1, while its ability for global exploration is

determined by 𝑐2. The adjustment of 𝑐1 and 𝑐2 values is carried out using the

corresponding Equations 3.4 and 3.5, by referring to Poy, Darmaraju and

Kwan (2023). The superiority of the results that the algorithm creates

gradually improves as the cognitive component gradually decreases and the

social component gradually increases. The above strategy works because there

is typically a desire to move towards convergence as the iterations progress.

Increasing 𝑐2 can encourage convergence to optimal solution due to the ability

of 𝑐2 value to promote the drive to global best position. However, in contrast

to the Enhanced Particle Swarm Optimisation method (EPSO) covered in

Section 3.3, the MPSO paths developed do not take trajectory smoothness into

consideration.

48

𝑐1 = 𝑐1𝑖 − (
𝑐1𝑖−𝑐1𝑓

𝐾
) 𝑘 (3.4)

𝑐2 = 𝑐2𝑖 − (
𝑐2𝑖−𝑐2𝑓

𝐾
) 𝑘 (3.5)

where

𝑐1𝑖 = initial value of personal acceleration coefficient

𝑐1𝑓 = final value of personal acceleration coefficient

𝑐2𝑖 = initial value of global acceleration coefficient

𝑐2𝑓 = final value of global acceleration coefficient

3.3 Proposed Enhanced Particle Swarm Optimization (EPSO)

3.3.1 Assumptions

• The initial positions, current positions, and goal positions for all robots

are known in the 2D simulated environment.

• Robots will be operated in a static environment whereby there will

only exist static obstacles.

• The complete paths from the initial position to goal position for all

robots are calculated before navigation.

• Differential drive robots are used and all robots are homogeneous.

• The Bezier curve trajectory smoothing mechanism is incorporated

separately from the PSO path planning algorithm.

3.3.2 Path Planning Scheme

The Enhanced Particle Swarm Optimization (EPSO) path planning strategy

uses the Modified Particle Swarm Optimisation (MPSO) algorithm, which was

first introduced by Poy, Darmaraju, and Kwan in 2023. This methodology

focuses on identifying individual waypoints rather than creating the entire

route with several waypoints in one algorithm run. As a result, the EPSO

algorithm will be executed five times, each time with a few iterations

to determine a single waypoint, for a robot's whole route comprising five

waypoints. It uses a global path planning technique, planning all of the robots'

49

pathways completely before they begin travelling through a known simulation

environment (Poy, Darmaraju and Kwan, 2023).

Furthermore, the swarm of particles is not initiated at the initial robot

location, but within a predefined search space. To solve the problem of path

planning, a fitness function has been created. This fitness function's

fundamental goal is to produce the shortest possible path for all robots. The

pursuit of the global optimum position becomes crucial to achieve the shortest

possible path. The spot in the local search zone where the particle swarm is

able to compute the shortest path to the target is known as the global optimum

position. The main fitness function, designated as 𝐹1 in Equation 3.6, is used

to complete this task. By computing the Euclidean distance between the

robot's consecutive waypoint and the goal position, this function selects the

subsequent waypoint that is closest to the robots' goal position. The weight

factor, 𝜆1 of the fitness function is incorporated into the overall objective

function, as seen in Equation 3.7. Due to the need to minimise the Euclidean

distance between the robot's present position and the goal position, decreasing

the fitness value in this scenario can produce an optimal path (Poy, Darmaraju

and Kwan, 2023).

𝐹1 = ∑ √(𝑥𝑗
 𝑛𝑒𝑥𝑡 − 𝑥𝑗

 𝑔𝑜𝑎𝑙
)
2

+ (𝑦𝑗
 𝑛𝑒𝑥𝑡 − 𝑦𝑗

 𝑔𝑜𝑎𝑙
)
2

𝑛𝑟
𝑗=1 (3.6)

where

𝑛𝑟 = number of robots

𝑥𝑗
 𝑛𝑒𝑥𝑡 = x-coordinate of next waypoint for 𝑗𝑡ℎ 𝑟𝑜𝑏𝑜𝑡

(with minimum Euclidean distance)

𝑦𝑗
 𝑛𝑒𝑥𝑡 = y-coordinate of next waypoint for 𝑗𝑡ℎ 𝑟𝑜𝑏𝑜𝑡

(with minimum Euclidean distance)

𝑥𝑗
 𝑔𝑜𝑎𝑙

 = x-coordinate of target position for 𝑗𝑡ℎ 𝑟𝑜𝑏𝑜𝑡

𝑦𝑗
 𝑔𝑜𝑎𝑙

 = y-coordinate of target position for 𝑗𝑡ℎ 𝑟𝑜𝑏𝑜𝑡

50

𝐹 = 𝜆1𝐹1 (3.7)

where

𝜆1 = weight factor of 𝐹1

 Moreover, the obstacle avoidance algorithm is implemented in the

EPSO by referencing the MPSO algorithm, which was presented by Poy,

Darmaraju, and Kwan in 2023. Three robots will move from their starting

positions to their designated target positions during the simulation, and it is

possible for their paths to cross. Hence, each robot is equipped with LIDAR

sensors, which are used by the obstacle avoidance algorithm to identify

obstructions that are within sensor range. Each robot has three sensors

connected to it, each with a 60-degree field of view. This allows the robot to

identify static and dynamic impediments for a total of 180 degrees in the

direction it is heading. This allows the robot to avoid any potential

obstructions in its path. When the sensor detects an obstruction, it sends a

logic value of 1 to the robot control system, causing the robot to rotate its

heading in another direction in search of a free area to resume its navigation

(Poy, Darmaraju and Kwan, 2023).

3.3.3 Trajectory Smoothing with Bezier Curve

The EPSO algorithm includes smooth trajectory generation after the path

planning is completed. The method integrates the use of differential drive two-

wheeled mobile robots (TMRs) for smooth trajectory generation by

referencing the work of Yang, Lee and Ryuh from 2013. The differential drive,

which involves the use of two drive wheels positioned along a common axis, is

the driving mechanism used by these TMRs. Motion can be made forward or

backward by separately operating each wheel. The TMR is illustrated in

Figure 3.2 within a coordinate system that makes use of the robot's central

position and directional angle. This positioning takes into account both the

robot frame and the world frame coordinate systems. The position of the TMR,

abbreviated as 𝑃𝑐, is described mathematically by Equation 3.8. Equation 3.9

can be used to illustrate the TMR's kinematic model (Yang, Lee and Ryuh,

2013).

51

Figure 3.1: Kinematics of a TMR (Yang, Lee and Ryuh, 2013).

𝑃𝑐 = [𝑥𝑐, 𝑦𝑐 , 𝜃𝑐]
𝑇 (3.8)

where

𝑥𝑐 = x-coordinate of robot’s position

𝑦𝑐 = y-coordinate of robot’s position

𝜃𝑐 = direction angle of robot

𝑃𝑐 =

[

𝑟

2
cos 𝜃𝑐

𝑟

2
cos 𝜃𝑐

𝑟

2
sin 𝜃𝑐

𝑟

2
sin 𝜃𝑐

𝑟

𝐷
 −

𝑟

𝐷]

[
𝜔𝑟

𝜔𝑙
] (3.9)

where

𝑟 = radius of a robot’s wheels

𝐷 = distance between its two wheels

𝜔𝑟 = right wheel’s angular velocity

𝜔𝑙 = left wheel’s angular velocity

Robots have been designed with trajectories that have the

characteristic of changing direction after stopping which causes discontinuity

of movement. This can cause slippage or veering off the desired path of robots.

In this paper, the technique integrates PSO path planning algorithm and Bezier

52

curve trajectory smoothing algorithm to steer the robot in order to eliminate

this concern. Bezier curves are frequently used to create curved trajectories.

Figure 3.3 shows how a cubic Bezier curve is used to create a trajectory using

a start point 𝑃𝑖 (𝐴0, 𝐵0), an end point 𝑃𝑓 (𝐴3, 𝐵3), and control points 𝐶1 (𝐴1,

𝐵1) and 𝐶2 (𝐴2, 𝐵2) (Yang, Lee and Ryuh, 2013).

Figure 3.2: Bezier Curve-based Path Planning (Yang, Lee and Ryuh, 2013).

 A cubic Bezier curve has a polynomial of third degree with four

control points (𝑃𝑖, 𝐶1, 𝐶2, 𝑃𝑓), as shown in Figure 3.3. The path is divided into

three unique segments that connect these control points along this curve,

which has two directional transitions. In simple terms, 𝐶1 and 𝐶2 's duties

include exerting gravitational pull on the pathway, enabling the construction of

a smooth S-shaped curve, as illustrated in Figure 3.3. The smooth Bezier curve

generated by taking into account the control points and Bernstein

polynomials is represented by Equation 3.10. A more accurate Bezier curve

can be created by decreasing each successive increment of 𝑢 from 0 to 1. For

instance, 𝑢 can be set to have a step of 0.001 in between 0 to 1 then the

number of control points of Bezier curve will be 100. The Bernstein

polynomial is computed using Equation 3.11, which is particularly designed

for the cubic Bezier curve. This cubic Bezier curve is then broken down into

its x-component and y-component, which are described in Equations 3.12 and

3.13 respectively (Yang, Lee and Ryuh, 2013).

53

𝐵(𝑢) = ∑ 𝐵𝑖(
3
𝑖
)𝑢𝑖(1 − 𝑢)3−𝑖, 0 ≤ 𝑢 ≤ 1, 3

𝑖=0 (3.10)

where

𝐵(𝑢) = the cubic Bezier curve

𝐵𝑖 = the ith control point present on the curve

(3
𝑖
)𝑢𝑖(1 − 𝑢)3−𝑖 = Bernstein polynomial

𝐵𝑖=0
3 (𝑢) = (3

𝑖
)𝑢𝑖 (1 − 𝑢)3−𝑖, 𝑖 = 0, 1, 2, 3 (3.11)

where

𝐵𝑖=0
3 (𝑢) = Bernstein polynomial for cubic Bezier curve

(3
𝑖
) =

3!

𝑖!(3−𝑖)!
 , the binomial coefficient value

 𝑥(𝑢) = ∑𝐴𝑖𝐵𝑖=0
3 (𝑢)

3

𝑖=0

 = 𝐴0(1 − 𝑢)3 + 3𝐴1𝑢(1 − 𝑢)2 + 3𝐴2𝑢
2(1 − 𝑢) + 𝐴3𝑢

3 (3.12)

where

𝐴𝑖 = x-coordinates of point 𝑃𝑖, 𝐶1, 𝐶2, and 𝑃𝑓

𝐵𝑖=0
3 (𝑢) = Bernstein polynomial for cubic Bezier curve

 𝑦(𝑢) = ∑𝐵𝑖𝐵𝑖=0
3 (𝑢)

3

𝑖=0

 = 𝐵0(1 − 𝑢)3 + 3𝐵1𝑢(1 − 𝑢)2 + 3𝐵2𝑢
2(1 − 𝑢) + 𝐵3𝑢

3 (3.13)

where

𝐵𝑖 = y-coordinates of point 𝑃𝑖, 𝐶1, 𝐶2, and 𝑃𝑓

𝐵𝑖=0
3 (𝑢) = Bernstein polynomial for cubic Bezier curve

54

 In this paper, the waypoints of the robot pathway established by the

PSO algorithm are extracted to calculate the coordinates of the Bezier curve

smooth trajectory. Before that, the Bernstein basis function is calculated for

each robot. Then, the coordinates of Bezier curve control points for smooth

trajectory generation are calculated by summing the element-wise product of

the robot’s waypoints and Bernstein Basis function. Finally, the Bezier curve

points are plotted on the figure for each robot, and in the simulation of the

robot pathway, the robot will travel from the start position to the target

position by taking a smooth trajectory generated by the Bezier curve algorithm.

55

3.3.4 Flowchart of EPSO Path Planning Algorithm

Figure 3.3: Flowchart of EPSO Path Planning Algorithm.

56

3.4 Planning and Managing of Project Activity

This section explains the detailed scheduling process that was used to finish

this one-year project. It is represented by two Gantt charts, which are

illustrated in Tables 3.1 and 3.2. To maximise the likelihood of a successful

completion, the project was divided into two distinct sections, each lasting one

semester. In a total of 28 weeks, Parts I and II of the project were finished

from beginning to end. This project had no costs because it solely used

software resources like Matlab.

The Gantt chart for FYP I is shown in Table 3.1. It lasts for a total of

14 weeks. Problem-formulating and project planning are done from week 1 to

week 2. The broad outcomes that should be fulfilled at the end of the project

are defined. The particular procedures and outputs needed to attain the

outcomes are then specified. For the purpose of achieving the objectives, a 14-

week work schedule outlining the tasks to be completed is established.

Relevant research articles and publications have begun to be collected and

read. From week 2 to week 8, literature review writing for different path

planning algorithms for multi-robot systems is carried out. There are a total of

5 path planning algorithms written for this chapter, which include Artificial

Neural Network (ANN), Particle Swarm Optimization (PSO) Algorithm,

Genetic Algorithm (GA), Artificial Fish Swarm Algorithm (AFSA), and Ant

Colony Optimization (ACO) Algorithm,. The different trajectory smoothing

techniques are also explored and evaluated their advantages and disadvantages,

which include non-uniform rational B-spline (NURBS) curve, Bezier curve,

and Dubin’s curve. Then, from week 9 to week 13, methodology research

writing is carried out. It is based on the Enhanced Particle Swarm

Optimization (EPSO) algorithm, which combines Bezier curve trajectory

smoothing with the Particle Swarm Optimization method. Furthermore, from

week 11 to week 14, report writing and presentation is carried out. The

progress report writing and formatting is performed. The presentation slides

are prepared for a face-to-face presentation with the FYP moderator and

supervisor.

Table 3.2 shows the Gantt chart for FYP 2. From week 1 to week 6,

the EPSO algorithm will be developed and simuated in Matlab. From week 5

to week 10, result and discussion writing of FYP report will be carried out to

57

evaluate whether the objectives set during FYP 1 are completed. From week 9

to week 10, poster for the final year project will be prepared. Moreover, from

week 9 to week 14, final report for final year project will be prepared and

finalised for submission.

58

3.4.1 Gantt Chart of FYP 1

Table 3.1: Gantt Chart of FYP 1.

No. Week

Activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Problem formulation and project

planning

2 Literature review

3 Methodology Research

4 Report writing and presentation

59

3.4.2 Gantt Chart of FYP 2

Table 3.2: Gantt Chart of FYP 2.

No. Week

Activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 EPSO Algorithm Development and

Matlab Simulation

2 Result and Discussion Writing

3 Poster Preparation

4 Final Report Preparation

60

3.4.3 Summary

The proposed Enhanced Particle Swarm Optimisation (EPSO) method for

optimised multi-robot path planning via smooth trajectory generation is clearly

explained in this chapter. To increase effectiveness, shorten execution times,

and encourage the conservation of energy resources, this novel method

integrates the Modified Particle Swarm Optimisation (MPSO) algorithm with

Bezier curve trajectory smoothing technique.

Unlike the traditional PSO method, the EPSO algorithm starts by

developing equations to compute global acceleration coefficient, inertia weight,

and personal acceleration coefficient. The modifications are intended to

gradually improve the quality of the algorithm's solutions over its iterations.

The path planning technique adopted here prioritizes the identification of

individual waypoints, with each waypoint decided by a single run of the PSO

algorithm. It uses a global path planning approach to carefully plan each

robot's route before it sets off on its journey within a known simulated

environment.

 A fitness function is also developed to produce the shortest path for

each robot. To reach an ideal outcome, the fitness value is decreased just as the

iterations increases. After all robot pathways have been established, Bezier

curve trajectory smoothing algorithm is carried out. The waypoints the PSO

algorithm selects for the robot pathway in this case define the outline of the

Bezier curve. Once convergence has been reached or stopping criteria have

been met, the PSO algorithm determines the waypoints from the global best

particle. Then, the coordinates of Bezier curve control points for smooth

trajectory generation are calculated by summing the element-wise product of

the robot’s waypoints and the Bernstein Basis function. Finally, the Bezier

curve points are plotted on figure for each robot and in simulation of robot

pathway, the robot will travel from start position to target position by taking

smooth trajectory generated by Bezier curve algorithm.

61

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

The focus of this chapter is to present the result of an Enhanced Particle

Swarm Optimization algorithm (EPSO) in three different warehouse

environments. Section 4.2 presents the tuning of three EPSO parameters

including swarm size, number of control points of the Bezier curve, and inertia

weight, cognitive, and social acceleration coefficients. Then, section 4.3

presents the result of EPSO and Modified Particle Swarm Optimization

algorithm (MPSO) based on path length, execution time, and number of turn

points of three robots. Results of EPSO and MPSO are compared and

evaluated through simulation.

4.2 EPSO Parameters

4.2.1 Swarm size

Swarm size, which is also called population size or number of particles, is one

of the control parameters in PSO that need to be tuned by the user. A larger

swarm size in EPSO multi-robot route planning suggests the algorithm will

carry out a wider search. The number of times the fitness function is evaluated

rises with each iteration as the population grows. To determine each particle's

fitness value, the fitness function is given parameters about the particle,

including its current location and its target position. Next, the robot's local best

fitness will be compared with the fitness value of each particle. A particle's

location will be kept as the best solution discovered until now inside its

neighbourhood if its fitness value exceeds the local best fitness. Other particles

will keep comparing their fitness values with the new local best fitness value,

and in the meantime, the particle's fitness value will become the new local best

fitness for its neighbourhood. Additionally, the local best position will be

modified to become the new global best position for other particles to comply

with if it is discovered that the local best fitness value exceeds the global best

fitness value. As a result, anytime a better solution is discovered, the particles

62

can converge towards the goal location by continually updating the global best

position.

 As EPSO is directed by the global best solution, growing the

population size could be advantageous. This is because a bigger population

size suggests that more particles may be used to investigate the surroundings,

thereby increasing the possibility that the PSO algorithm's performance will

increase. Furthermore, a larger population will decrease the likelihood of

particles becoming trapped in a local minimum as larger swarms show a

greater ability to withstand noise by weakening the effects of individual

particles' noise. However, because the fitness function is assessed for each

particle more frequently with a larger population, the execution time will also

become longer. Conversely, a smaller population number suggests that fewer

particles may be employed to scout the surroundings and choose the best route.

The likelihood of an early convergence to the local minimum solution will

therefore be increased. However, because there will be fewer PSO equation

calculations made during each iteration, the execution time will be shorter for

smaller swarm sizes.

 Hence, there must be careful calibration of population size to balance

between the algorithm’s convergence speed and optimality of solution to

ensure EPSO can achieve its best performance. Table 4.1 below shows the

simulation results for different swarm sizes of 20, 50, 80, 100, and 150. For

each swarm size, the average path length and average execution time for three

robots are evaluated respectively. The simulation is repeated 3 times to obtain

the average path length and average execution time for different swarm sizes.

Table 4.1: Simulation Results for Different Swarm Size.

Swarm

Size

Average Path Length (m) Average Execution Time (s)

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

20 104.97 103.38 79.25 51.07 50.28 40.57

50 104.39 104.12 79.16 77.58 78.64 59.36

80 104.78 104.12 79.10 91.55 93.41 73.12

100 104.75 104.73 79.25 112.03 113.02 93.38

150 104.26 103.67 79.26 155.51 158.53 124.02

63

The result from Table 4.1 indicates that the average path length for all

three robots will only have slight differences for different swarm sizes. This is

due to the implementation of the Bezier curve trajectory smoothing algorithm.

The original pathways of robots are now controlled and modified by the Bezier

curve equation which can provide adequate trajectory smoothing effect for

different swarm sizes. For average execution time, it can be observed that as

swarm size increases, the average execution time for all three robots also

increases. For instance, Robot 1 only requires 51.07 seconds when the swarm

size is 20 but the execution time increases to 155.51 seconds when the swarm

size becomes 150. Among these swarm sizes, 80 are chosen for further

simulation. This is because, at a swarm size of 80, it can be observed that

Robot 3 marks the shortest path length achieved, which is 79.10m. Further

increase of swarm size beyond 80 will lead to an increase in path length for

Robot 3. Consequently, it may be concluded that an excessively high swarm

size may increase the computing resources required rather than necessarily

improving the quality of the solution.

Figure 4.1: Chart of Result for Different Swarm Sizes.

 From Figure 4.1, it can also be observed that the execution time of all

robots for the swarm size of 150 is the highest among swarm sizes of 20, 50,

80, and 100. This illustrates that an increment in swarm size will increase the

execution time greatly. For path length, the increment in swarm size will not

0

100

200

300

400

500

600

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

Swarm

Size

Average Path Length (m) Average Execution Time (s)

Result for Different Swarm Sizes

Series5

Series4

Series3

Series2

Series1

64

bring about large changes due to the implementation of the Bezier curve

trajectory smoothing algorithm.

4.2.2 Number of Control Points of Bezier Curve

In EPSO multi-robot path planning, the trajectory smoothing process via the

Bezier curve comes after the path planning process is completed. This is

because trajectory smoothing requires the robots’ waypoints generated through

path planning. For each robot, the waypoints refer to the coordinates in which

the robot will travel from the start position to the target position. A parametric

curve defined by a collection of control points is called a Bezier curve. The

waypoints that the robots created throughout the path planning process will be

used to generate smooth trajectory through the Bezier curve equation. The

robots' waypoints are then interpolated to provide more intermediate control

points between them, which are subsequently used to build a Bezier curve path.

The Bernstein basis functions are used in the Bezier curve computation

process. These functions take the number of control points and waypoints as

input and output the coordinates of a smooth path. It is possible to adjust the

number of intermediate control points to create a pathway with fewer turn

points and greater smoothness. This is because number of control points will

affect the step size, 𝑡 of the Bezier curve equation. A larger number of control

points will produce a smaller step size. For instance, with 100 control points,

the step size becomes 0.01, and with 200 control points, the step size becomes

0.005. A smaller step size produces a more precise depiction of the curve,

resulting in smoother and more detailed routes.

 There is a direct relationship between the number of control points of

the Bezier curve and number of turn points generated. The number of turn

points of robots represents the changes in the direction of the path traveled by

robots when the direction change is more than 5 degrees for the robot to travel

from its current waypoint to the next waypoint. Increasing the number of

control points of the Bezier curve will result in the reduction of the number of

turn points along the robots’ pathway. This indicates an increase in trajectory

smoothness as robots do not need to make abrupt direction changes to deal

with each turning point and can travel according to a smooth trajectory. On the

other hand, decreasing the number of control points will result in an increment

65

of the number of turn points along the pathway. This is because fewer control

points along the path will result in an underfit to the complexity of the path

and make it unable to sufficiently improve trajectory smoothness.

 Hence, there must be careful tuning of the number of control points of

the Bezier curve so that an optimal solution can be generated to fit the current

environment. In the simulation, the threshold angle for a point to be considered

as a turn point is set to be 5 degrees and the swarm size is set to be 80. The

simulation is repeated 3 times to get the average number of turn points for the

different number of control points.

Table 4.2: Simulation Result for Different Control Points.

No. of Control

Points

Average no. of Turn Points

Robot 1 Robot 2 Robot 3

20 9 14 3

50 18 12 4

75 13 1 4

100 3 0 1

200 3 0 0

The result in Table 4.2 shows that there is a decrease in the average

number of turn points in the pathway as the number of control points increases.

For 20 control points, the percentage of turn points that occurred in 20 control

points is 45%, 70%, and 15% for Robot 1, Robot 2, and Robot 3 respectively.

For 50 control points, the percentage of turn points that occurred in 50 control

points decreased to 36%, 24%, and 8% for Robot 1, Robot 2, and Robot 3

respectively. Then, at 100 control points, the percentage of turn points that

occurred in 100 control points further decreases to 3%, 0%, and 1% for Robot

1, Robot 2, and Robot 3 respectively. If control points are increased further to

200 points, the percentage of turn points that occurred in 200 control points

only shows a slight decrease to 1.5%, 0%, and 0% for Robot 1, Robot 2, and

Robot 3 respectively. Hence, it has been concluded that using a control point

of 100 is already enough to generate a smooth trajectory with the lowest turn

points in the environment.

66

Figure 4.2: Line Graph of Result of Different Number of Control Points.

 From Figure 4.2, it can be observed that for Robot 1, Robot 2, and

Robot 3, as the number of control points increases, the number of turn points

decreases. For instance, at 20 control points, the number of turn points for

three robots is 9, 14, and 3 respectively while at 200 control points, the

number of turn points decreases to 3, 0, and 0.

4.2.3 Inertia weight, Cognitive and Social Acceleration Coefficients

 The Particle Swarm Optimisation (PSO) algorithm uses numerous parameters

to balance global exploration and local exploitation. One important parameter

is the inertia weight, denoted by 𝜔. This weight determines how a particle's

prior velocity affects its current course. A larger 𝜔 value encourages

exploitation by retaining the particle's previous velocity, allowing it to

continue along its current path. While this method can speed up convergence

to local optima, it also risks locking the algorithm in suboptimal regions,

preventing it from finding the global optimum. In contrast, a smaller 𝜔 value

stimulates exploration by minimising the impact of a particle's previous

velocity, allowing for greater directional shifts. This method allows particles to

escape local optima and explore other parts of the search space. However,

extensive exploration may hinder convergence, thereby extending the

optimisation process. In addition to the inertia weight, the cognitive

acceleration coefficient (𝑐1) and the social acceleration coefficient (𝑐2) are

0

2

4

6

8

10

12

14

16

18

20

20 50 75 100 200

N
u
m

b
er

 o
f

T
u
rn

 P
o

in
ts

Number of Control Points

Result of Different Number of Control Points

Robot 1

Robot 2

Robot 3

67

critical components of the PSO algorithm. The cognitive coefficient

determines how a particle's personal best solution affects its velocity update. A

greater 𝑐1 value increases the particle's attraction to the individual optimal

position, promoting exploitation in the area of that solution. In contrast, the

social acceleration coefficient determines the particle's tendency to drift

towards the global optimal solution discovered by the entire swarm. Increasing

𝑐2 encourages swarm convergence and exploitation in the globally optimal

area, potentially speeding up the algorithm's convergence. By carefully

modifying these parameters, the PSO algorithm may strike a delicate balance

between exploration and exploitation, and swiftly traverse the search space

while refining promising solutions for optimal path planning.

 A higher 𝑐1 value, along with a lower 𝑐2 and a larger 𝜔, promotes

strong individual exploitation while limiting exploration due to the high inertia

weight. Figure 4.3 shows how this structure encourages local refinement of

path lengths around the individual particles' best solutions. As a result of its

large inertia weight and strong cognitive component, the algorithm achieves

faster convergence and shorter execution times. Maintaining a higher 𝑐1 value

while decreasing 𝑐2 and 𝜔 can result in a shorter path length. The decreased

inertia weight allows for greater exploration in the environment, which may

lead to longer execution time and more directional shifts in the path, as shown

in Figure 4.4. A comparison of Figures 4.3 and 4.4 demonstrates a clear

contrast in generated trajectories. The high 𝜔 value setup creates smoother

pathway with good local refinement, whereas the low 𝜔 value strategy

produces trajectory with sharper twists and less refined segments, indicating

that the particles are exploring more thoroughly.

68

Figure 4.3: Path Generated from high 𝑐1, low 𝑐2, and high 𝜔.

Figure 4.4: Path Generated from high 𝑐1, low 𝑐2, and low 𝜔.

A configuration with a lower 𝑐1 , a higher 𝑐2 , and a higher 𝜔

encourages significant swarm convergence to the global optimal solution

while restricting individual exploration due to the low cognitive coefficient

and high inertia weight. This setting may result in reduced path lengths if the

69

swarm converges on an ideal solution. Furthermore, the high inertia weight

and social coefficient may speed up convergence, resulting in shorter

execution time. In contrast, a parameter combination with a lower 𝑐1, higher 𝑐2,

and lower 𝜔 also promotes swarm convergence to the global best solution.

However, the low inertia weight allows for vigorous individual exploration,

whereas the low cognitive coefficient prevents local path refining, resulting in

longer path length. Furthermore, the low inertia weight and higher exploration

can slow convergence, increasing execution time. A comparison of the data in

Table 4.3 shows that a high 𝑐1 value, a low 𝑐2 value, and a low 𝜔 value result

in shorter path length than a configuration with a high 𝑐1, a low 𝑐2, and a high

𝜔 value. This is due to the combined effect of the high 𝑐1 value, which allows

for better exploitation of previously discovered good solutions, and the low 𝜔

value allows for greater exploration because particles' current velocities are

less bound by their previous trajectories. A high 𝑐1, low 𝑐2, and high 𝜔 value

method takes less time to execute. This is because the high 𝜔 value restricts

exploration, as particles' current velocities are more bound by their previous

trajectories, causing them to proceed in the same direction, promoting faster

convergence and lowering execution time, albeit at the expense of greater path

length. When a PSO algorithm with a low 𝑐1, a high 𝑐2, and a high 𝜔 value is

analysed, it is found to have a shorter path length and a lower execution time

than an algorithm with a low 𝑐1 , a high 𝑐2 , and a low 𝜔 value. This

phenomenon can be attributed to the combined effect of the high 𝑐2 value,

which leads particles to quickly converge on the global best solution

discovered by the swarm, lowering execution time and path length and the

high 𝜔 value, which restricts the particles' exploring capabilities, potentially

reducing path length.

70

Table 4.3: Simulation Result for Different 𝑐1, 𝑐2, and 𝜔 Values.

𝑐1 𝑐2 𝜔 Path Length (m) Execution Time (s)

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

2 0 0.4 104.64 103.57 79.05 242.40 268.57 137.72

2 0 1.2 105.27 105.94 79.41 79.21 86.16 60.15

0 2 0.4 104.19 104.74 79.43 179.67 167.92 154.69

0 2 1.2 103.84 101.93 79.24 77.25 75.19 64.43

Figure 4.5: Line Graph of Results for Different 𝑐1, 𝑐2, and 𝜔 Values.

 Figure 4.5 gives a clearer illustration of results for different 𝑐1, 𝑐2,

and 𝜔 values. It can be observed that the path length and execution time is

higher when 𝑐1 = 2, 𝑐2 = 0, and 𝜔 = 1.2 than when 𝑐1 = 2, 𝑐2 = 0, and 𝜔 = 0.4.

Additionally, the path length and execution time is also higher when 𝑐1 = 0, 𝑐2

= 2, and 𝜔 = 1.2 than when 𝑐1 = 0, 𝑐2 = 2, and 𝜔 = 0.4. Hence, it concludes

that PSO should use a linearly decreasing inertia weight approach, whereby

the value of 𝜔 begins at 0.95 and steadily decreases to 0.4 over iterations.

Initially, the PSO method allows particles to explore the environment and

locate the ideal solution with a higher 𝜔 value. As iterations rise, the 𝜔 value

steadily drops, allowing particles to converge faster towards the optimum

104.64 103.57
79.05

242.4
268.57

137.72

105.27 105.94

79.41

79.21
86.16

60.15

104.19 104.74

79.43

179.67
167.92

154.69

103.84 101.93

79.24

77.25
75.19

64.43

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

Path Length (m) Execution Time (s)

Results for Different c1, c2, and w values

c1 = 2 c2 = 0 w = 0.4 c1 = 2 c2 = 0 w = 1.2

c1 = 0 c2 = 2 w = 0.4 c1 = 0 c2 = 2 w = 1.2

71

solution with less constraint from past velocities. The 𝑐1 and 𝑐2 values are

adjusted gradually, with the 𝑐1 value decreasing and the 𝑐2value increasing as

iterations progress. This is because, at the start of the PSO algorithm, particles

rely mostly on their personal best solution; however, as iteration progresses, a

rise in 𝑐2value encourages convergence towards the global best position.

4.3 Simulation Results of MPSO and EPSO

EPSO and MPSO both apply the same path planning scheme and obstacle

avoidance scheme during the optimization process to reach the target position.

In the simulation, a total of three robots are utilized whereby if two robots

encounter each other within their sensing range, they will avoid each other by

activating an obstacle avoidance algorithm. Both robots will start rotating their

heading direction to search for an unblocked direction so that they can slowly

pass through the intersection point without colliding with each other. For the

path planning scheme, the particles are initially placed within a fixed search

region around the starting position. Within this search region, all particles start

to search for the global best position. This is done by calculating the fitness

value for each particle. To determine the fitness value of each particle, two

factors will be affecting it. First, the Euclidean distance between particles’

position and target position, and second, the distance between particles’

position with surrounding obstacles. A shorter distance between the particles’

position and target position as well as a longer distance between the particles’

position and surrounding obstacles will generate a higher fitness value. Out of

all particles’ fitness values, the highest will be the local best fitness. When the

local best fitness is higher than the global best fitness, the global best fitness

will be replaced by the local best fitness. Then, the velocity and position of

each particle are updated based on the equation 𝑣𝑖 = 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) +

𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖) and 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 . The global best position from this iteration of

the algorithm is determined by the particles’ search and is set as one of the

waypoints for robots to follow through. The next iteration of the algorithm will

then commence to search for the next waypoints for robots until reaching the

target position.

72

 The main difference between EPSO and MPSO is that EPSO applies

the Bezier curve trajectory smoothing algorithm after the path planning

scheme terminates while the MPSO does not include the trajectory smoothing

scheme. Firstly, the number of control points on the Bezier curve pathway is

set as 100 with a spacing, 𝑡 of 0.01 from 0 to 1. The shape and smoothness of

the path will be defined by the number of control points. Then, the algorithm

will loop over each robot to extract each robot’s generated waypoints from the

path planning scheme. Bernstein basis function is calculated for each robot

based on 𝐵𝑖=0
𝑛𝑜.𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡𝑠−1

(𝑢) = (3
𝑖
)𝑡𝑖 (1 − 𝑡)3−𝑖 . The Bezier curve

points are then calculated by summing element-wise product of waypoints and

Bernstein basis function and plotted on the figure for each robot. All Bezier

curve points generated will shape the smooth trajectory for each robot.

 The environment in which the simulation will be conducted is in a

warehouse layout. Three robots will be placed at different starting locations

and travel across the warehouse environment to reach their respective

destination. Due to the reason that randomness of each particle's starting

location within the fixed region around the start point, it will cause changes to

each particle’s fitness value and hence cause slight changes in the result of the

EPSO algorithm in terms of path length, execution time, and number of turn

points. To tackle this issue, each environment is simulated five times to get the

average result. Average path length, average execution time, and number of

turn points of the three robots will be the evaluation criteria of EPSO and

MPSO in three different warehouse environments. The parameters of EPSO

and MPSO are fixed in all simulations conducted, as shown in Table 4.4. Each

robot has a fixed starting point and ending point in all three warehouse

environments as well, as shown in Table 4.5.

73

Table 4.4: Parameters of EPSO and MPSO.

Parameters of EPSO and MPSO Value

Swarm size 80

Number of iterations 30

Maximum cognitive/social acceleration coefficient 2.0

Minimum cognitive/social acceleration coefficient 0.5

Maximum inertial weight 0.95

Minimum inertial weight 0.4

Number of robots 3

Environment size (𝑚2) 100 x 100

Number of control points 100

Table 4.5: Starting Position and Ending Position for each Robots.

 Starting Coordinate Ending Coordinate

Robot 1 (90,50) (10,10)

Robot 2 (10,50) (90,10)

Robot 3 (10,90) (90,90)

4.3.1 Comparison between MPSO and EPSO in Environment 1

The first environment, as shown in Figure 4.6, is designed based on a

warehouse layout. This environment contains three shelves located around the

center of the space, a loading station at the bottom left corner, and two

unloading stations at the right side of the map, which are considered static

obstacles inside the map. Among the three shelves, the first and the third

shelves have rectangular shapes while the second shelf has an L shape. Robot

1 is set to move from the right side of the map towards the target point at the

bottom left side of the map so that it can go towards the loading station to

carry products. Robot 2 is set to move from the left side of the map towards

the target point at the bottom right side of the map so that it can bring the

products from the loading station to the unloading station. Then, Robot 3 will

travel from the upper left side of the map towards the upper right side of the

map, passing through shelf 1 and shelf 2.

74

Figure 4.6: Environment 1.

4.3.1.1 Result of MPSO Algorithm

The MPSO algorithm only includes the path planning scheme to generate the

waypoints for a robot to travel from the start point to its target point. Figure

4.7 illustrates a total of 23 waypoints generated through the MPSO algorithm

for Robot 1. Each blue circles that exist along the pathway represents a turn

point in the pathway. There is a total of 15 turn points in the pathway of Robot

1. A waypoint will only be counted as a turning point if the direction exceeds a

threshold angle of five degrees when proceeding to the next waypoint. The

angle between consecutive line segments is counted using dot product based

on angle = acos(dot(vector1, vector2) / (norm(vector1) * norm(vector2))).

Next, Figure 4.8 shows that Robot 2 passes through a total of 23 waypoints to

reach its target point. There are 18 turn points along the pathway of Robot 2.

For Robot 3, Figure 4.9 indicates that it has 18 waypoints and out of the 18

waypoints, there are 12 turn points.

75

Figure 4.7: Pathway Generated for Robot 1 of MPSO.

Figure 4.8: Pathway Generated for Robot 2 of MPSO.

76

Figure 4.9: Pathway Generated for Robot 3 of MPSO.

 Figure 4.10 shows the illustration of three robots traveling from their

start point to their respective target points. Their pathways are all represented

by dash lines in different colours. It can be observed that Robot 1 and Robot 2

intersect with each other along their pathway and both of them rotated their

headings to avoid each other, which can be seen from the sudden change of

direction of dashed lines for both robots. On the other hand, Figure 4.11 gives

a clearer view of waypoints by plotting each waypoint of robots on the figure.

77

Figure 4.10: Simulation of Robots Travelling Acoording to MPSO Pathway.

Figure 4.11: Plotting of MPSO Waypoints of all Robots.

Figure 4.12 shows the graph of global best fitness with respect to

number of iterations. It can be observed that from iteration one, the total

global best fitness of all robots starts from 291.11 and gradually decreases

over the iterations. When iteration 24 is reached, all robots successfully reach

78

their respective target position, and the total global best fitness of all robots

decreases to 32.48. The gradual decrease of the global best fitness value

symbolizes the convergence towards optimal solutions in the search for

optimal pathways.

Figure 4.12: Graph of Global Best Fitness Vs. Iterations of MPSO Algorithm.

4.3.1.2 Result of EPSO Algorithm

As mentioned earlier, the EPSO algorithm implements the Bezier curve

trajectory smoothing algorithm after the path planning scheme is completed.

From Figure 4.13, it can be observed that the blue line, which is produced

from the Bezier curve trajectory smoothing algorithm, possesses greater

smoothness and a lesser number of turn points than the red line, which is

generated from the path planning scheme. Each red circle along the blue line

represents each turn point present along the pathway. From Figure 4.14, and

Figure 4.15, it can be observed that there is no turn point present along the

pathway at all. This indicates that among 100 control points, there is not a

single waypoint that has exceeded the threshold angle of five degrees when

proceeding to the next waypoint. The angle of the line segment between each

two waypoints can be calculated using angle = acos(dot(vector1, vector2) /

(norm(vector1) * norm(vector2))). The shelves, loading station, and unloading

79

station, which are treated as static obstacles, will also be avoided when

updating the velocities and positions of particles.

Figure 4.13: Pathways Generated for Robot 1 of EPSO.

Figure 4.14: Pathways Generated for Robot 2 of EPSO.

80

Figure 4.15: Pathways Generated for Robot 3 of EPSO.

 The simulation of robots traveling according to the smooth

trajectories generated from the Bezier curve trajectory smoothing algorithm

can be observed in Figure 4.16. Robot 1’s pathway is represented in purple

colour, Robot 2’s pathway has green colour and Robot 3’s pathway is coloured

in red. Figure 4.17 gives a clearer picture of all 100 control points of the

Bezier Curve pathway, which are now treated as waypoints for each robot to

follow.

81

Figure 4.16: Simulation of Robots Travelling According to EPSO Pathway.

Figure 4.17: Plotting of EPSO Waypoints of all Robots.

 The global best fitness graph concerning the number of iterations is

displayed in Figure 4.18. It is evident that the total global best fitness of all

robots begins at 291.11 in iteration one and progressively declines throughout

the iterations. All robots successfully achieve their designated goal positions

82

by iteration 24, at which point the total global best fitness of all robots drops to

32.21. The progressive decline in the global best fitness value represents the

convergence of the search for the optimum pathway toward the ideal solution.

Figure 4.18: Graph of Global Best Fitness Vs. Iterations of EPSO Algorithm.

 The evaluation criteria of MPSO and EPSO are based on the average

path length, average execution time, and number of turn points of robots in the

environment. The result can be shown in Table 4.6. From Table 4.6, it can be

observed that for all three robots, the average path length, average execution

time, and the number of turn points of the EPSO algorithm are lower than the

MPSO algorithm. This clearly shows the positive effect of EPSO having a

Bezier curve trajectory smoothing algorithm in the reduction of robots’ path

length, execution time, and number of turn points. Both the MPSO and EPSO

algorithm is run for a total of five times in the same environment to tackle the

randomness of the PSO algorithm. The result of MPSO and EPSO for each

simulation in Environment 1 can be shown in Table 4.7 and Table 4.8

respectively. Figure 4.19 showcases the error bar of the path length of EPSO

for all robots in Environment 1 and it can be observed that the length of the

error bar is very short and nearly cannot be seen. This means that the data has

a low standard deviation and is tightly clustered around the average value.

83

Next, Figure 4.20 displays the error bar of the execution time of EPSO for all

robots in Environment 1. The standard deviation for execution time data of

Robot 1, Robot 2, and Robot 3 are 3.49, 5.09, and 7 respectively. This

indicates that execution time data obtained from every simulation differs

slightly from the average execution time.

Table 4.6: Results of MPSO and EPSO in Environment 1.

 Average

Path Length (meters)

Average Execution

Time (s)

Number of Turn

Points

MPSO EPSO MPSO EPSO MPSO EPSO

Robot 1 117.51 104.42 112.90 95.25 15 7

Robot 2 114.92 103.51 105.55 101.31 18 0

Robot 3 81.82 79.24 77.92 77.48 12 0

Table 4.7: Result of MPSO for each Simulation in Environment 1.

MPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

114.76 105.83 110.03 98.76 81.54 74.86

Second

Simulation

115.94 112.48 117.92 104.19 82.04 76.51

Third

Simulation

116.54 121.05 120.35 121.14 81.99 79.67

Fourth

Simulation

115.21 114.83 114.52 108.59 82.00 83.21

Fifth

Simulation

125.10 110.30 111.79 95.05 81.51 75.37

84

Table 4.8: Result of EPSO for each Simulation in Environment 1.

EPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

104.91 93.46 105.19 96.99 79.19 69.56

Second

Simulation

103.79 92.65 104.63 108.80 79.36 74.40

Third

Simulation

104.50 100.38 103.23 104.39 79.24 77.09

Fourth

Simulation

104.85 92.41 101.61 98.11 79.26 77.79

Fifth

Simulation

104.07 97.34 102.88 98.25 79.14 88.59

Figure 4.19: Error Bar of EPSO Path Length for Robot 1, 2, and 3.

104.42 103.51

79.24

0

20

40

60

80

100

120

0 1 2 3 4A
v
er

ag
e

P
at

h
 L

en
g
th

 f
o

r
ea

ch
 R

o
b

o
t

Robot

Error Bar of Path Length for Robot 1, 2, and 3.

85

Figure 4.20: Error Bar of EPSO Execution Time for Robot 1, 2, and 3.

4.3.2 Comparison between MPSO and EPSO in Environment 2

Figure 4.21 shows the warehouse layout of Environment 2. In Environment 2,

there is a T-shaped loading station, a T-shaped unloading station, two L-

shaped shelves, which are shelf 1 and shelf 5, a square shelf 2, a circular shelf,

and shelf 4. These shelves, loading station, and unloading station are treated as

static obstacles in the environment by which robots shall not collide with them.

Robot 1 starts from the unloading station at the right side of the map and will

travel across the map to reach its target point of the loading station at the

bottom left corner of the map. Robot 2 will travel from the loading station and

pass by shelf 4 to reach its target point beside shelf 5. Robot 3 starts at the

upper left corner of the map and it will pass by shelf 1 and shelf 2 to reach its

target point beside the unloading station. In Environment 2, the number of

obstacles increases to 7 compared to Environment 1 which has 6 obstacles.

Also, the obstacles’ shapes become more varied compared to Environment 1 in

which most of the obstacles are rectangular and T-shape.

95.25
101.31

77.48

0

20

40

60

80

100

120

0 1 2 3 4

A
v
er

ag
e

P
at

h
 L

en
g
th

 f
o

r
ea

ch
 R

o
b

o
t

Robot

Error Bar of Execution Time for Robot 1, 2, and

3.

86

Figure 4.21: Environment 2.

4.3.2.1 Result of MPSO Algorithm

MPSO algorithm searches for and plans each robot’s pathway from its

respective starting position to its ending position without considering the

smoothness of the trajectory. Figure 4.22 showcases the pathway generated for

Robot 1 to travel towards its target point. When the algorithm detects that it is

blocked by shelf 4 in its path, it detours around the obstacle to avoid colliding

with it. There is a total of 22 waypoints, represented by the red cross, exist in

the path generated for Robot 1, and among the 22 waypoints, 14 turn points

are detected. The turn points are represented by blue circles on the waypoints.

For Robot 2, as shown in Figure 4.23, there are 23 waypoints generated for it

to reach its target point. Among the 23 waypoints, there are 15 turn points for

Robot 2. Next, there are 17 waypoints in the pathway generated and eight turn

points out of all waypoints for Robot 3 in Figure 4.24.

87

Figure 4.22: Pathway Generated for Robot 1 of MPSO.

Figure 4.23: Pathway Generated for Robot 2 of MPSO.

88

Figure 4.24: Pathway Generated for Robot 3 of MPSO.

 In Figure 4.25, the pathways for each robot are represented in dotted

lines with different colours. For Robot 1, its pathway is represented by purple

colour. Robot 2 is represented by a green colour and red colour for Robot 3. It

can be observed that there is an intersection of pathways between Robot 1 and

Robot 2. However, when both robots detect each other within their sensor

range, they will turn their headings to other directions to find a space to move

forward so that both robots will not collide with each other. Figure 4.26 plots

all the waypoints of pathways for all robots to give a clearer insight into each

path.

89

Figure 4.25: Simulation of Robots Travelling According to MPSO Pathway.

Figure 4.26: Plotting of MPSO Waypoints of all Robots.

 From Figure 4.27, it can be observed that the total global best fitness

for all three robots decreases as the iterations increase. At iteration one, the

total global best fitness is 291.11 and the value decreases to 34.06 at iteration

90

23. This indicates that at iteration 23, all three robots completed their

optimization process and reached their respective destinations.

Figure 4.27: Graph of Global Best Fitness Vs. Iterations of MPSO Algorithm.

4.3.2.2 Result of EPSO Algorithm

As stated earlier, the EPSO algorithm integrates the Bezier curve trajectory

smoothing algorithm after the completion of path planning. The paths

generated from the trajectory smoothing algorithm are represented by blue

colour and it has 100 control points present in the paths. Figure 4.28 shows the

two paths generated for Robot 1. The red colour path is generated by the path

planning scheme and each waypoint is represented by the red cross, and the

path is connected with red solid lines. Then, by importing these waypoints into

the Bezier curve trajectory smoothing algorithm, a new smooth path can be

generated, which is represented by blue solid lines. It can be observed that

there is no turn points exist along the smooth path of Robot 1. For Robot 2, its

pathway is illustrated in Figure 4.29. From Figure 4.29, it can be seen that

there are four turn points, represented by red circles, exist in the smooth

pathway generated. These turn points are located towards the end of the

pathway when the robot is about to reach its target point. Next, from Figure

4.30, it can be seen that the smooth path generated transforms the sharp turn at

91

the middle of the original red pathway with a straight and smooth path for the

robot to travel. There are also no turn points in Robot 3’s pathway.

Figure 4.28: Pathways Generated for Robot 1 of EPSO.

Figure 4.29: Pathways Generated for Robot 2 of EPSO.

92

Figure 4.30: Pathways Generated for Robot 3 of EPSO.

 The simulation of robots traveling according to the EPSO pathway is

illustrated in Figure 4.31. The path of Robot 1 is coloured purple, the path of

Robot 2 is green, and the path of Robot 3 is coloured red. The pathways

followed by the robots present greater smoothness compared to MPSO. A

more accurate depiction of the 100 control points of the Bezier Curve pathway

is shown in Figure 4.32. These points are now regarded as path indicators that

each robot must follow.

93

Figure 4.31: Simulation of Robots Travelling According to EPSO Pathway.

Figure 4.32: Plotting of EPSO Waypoints of all Robots.

 Figure 4.33 showcases the graph of global best fitness versus

iterations of the EPSO algorithm for Environment 2. At iteration one, the total

global best fitness for all three robots is at a maximum value of 291.11. As the

94

iteration progresses, the global best fitness value decreases and finally at

iteration 22, it reaches a minimum value of 35.01.

Figure 4.33: Graph of Global Best Fitness Vs. Iterations of EPSO Algorithm.

 To compare the result between MPSO and EPSO in Environment 2,

each algorithm is evaluated based on path length, execution time, and number

of turn points of robots as shown in Table 4.9. From Table 4.9, it can be

observed that the average path length of all robots for EPSO is shorter than

MPSO. For the average execution time, the average execution time of Robot 1

for EPSO is longer than MPSO by 4.49 seconds. The average execution time

of Robot 2 for EPSO is longer than MPSO by 6.82 seconds. This is because

the pathways of Robot 1 and Robot 2 intersect with each other in the middle of

the path. This intersection causes both robots to activate their obstacle

avoidance algorithm. Both robots will turn their headings to other directions to

try to search for a direction free of obstacles. However, the directions to which

the robots will turn are determined randomly and in some cases, this will cause

the robots to take more time to find a direction without obstacle. Hence, this

causes the execution time of EPSO for Robot 1 and Robot 2 to exceed the

execution time of MPSO. The average execution time of Robot 3 for EPSO is

shorter than MPSO by 4.76 seconds because the pathway of Robot 3 is not

95

blocked by any obstacles. For the number of turn points, it can be observed

that for all robots, the number of turn points of EPSO is lower than MPSO.

Next, Table 4.10 displays the result of MPSO for each simulation of each

robot in Environment 2. Table 4.11 shows the result of EPSO for each

simulation of each robot in Environment 2. The simulation is repeated for five

times for both EPSO and MPSO so that the average result can be obtained.

Moreover, Figure 4.34 and Figure 4.35 illustrate the error bar of path length

and execution time respectively for all robots of the EPSO algorithm. From

Figure 4.34, it can be observed that the length of the error bar is very short,

which indicates that the data is tightly clustered around the average value of

path length and only has low standard deviations. Furthermore, from Figure

4.35, it can also be observed that the length of the error bar for Robot 1 is

longer than for Robot 2 and Robot 3. A longer length of the error bar indicates

that the execution time has a higher standard deviation of 15.12 and that the

execution time data is more spread out for Robot 1.

Table 4.9: Result of MPSO and EPSO in Environment 2.

 Average

Path Length (meters)

Average Execution

Time (s)

Number of Turn

Points

MPSO EPSO MPSO EPSO MPSO EPSO

Robot 1 124.25 116.50 114.30 118.79 14 0

Robot 2 118.60 114.83 115.30 122.12 15 4

Robot 3 79.63 78.31 81.65 76.89 8 0

96

Table 4.10: Result of MPSO for each Simulation in Environment 2.

MPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

124.13 134.15 118.44 137.16 79.63 86.43

Second

Simulation

124.13 117.81 118.44 121.68 79.63 83.18

Third

Simulation

124.73 108.08 119.26 100.16 79.63 68.47

Fourth

Simulation

124.13 103.46 118.44 106.73 79.63 72.32

Fifth

Simulation

124.13 107.99 118.44 110.79 79.63 97.84

Table 4.11: Result of EPSO for each Simulation in Environment 2.

EPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

117.75 140.96 116.41 126.15 78.39 80.50

Second

Simulation

120.36 121.94 114.62 133.46 78.30 81.22

Third

Simulation

112.3 104.75 111.62 109.92 78.33 72.63

Fourth

Simulation

120.36 121.85 114.62 127.83 78.30 76.20

Fifth

Simulation

111.7 104.43 116.9 113.24 78.23 73.91

97

Figure 4.34: Error Bar of EPSO Path Length for Robot 1, 2, and 3.

Figure 4.35: Error Bar of EPSO Execution Time for Robot 1, 2, and 3.

4.3.3 Comparison between MPSO and EPSO in Environment 3

Figure 4.36 displays the warehouse layout of Environment 3. In Environment

3, there is a T-shaped loading station, a rectangular unloading station, five

rectangular shelves, and a circular shelf at the center. They are treated as static

obstacles for all three robots and the pathways generated should not intersect

the obstacles’ position. Environment 3 has the most obstacles which are eight

static obstacles in the environment, whereas Environment 1 has six obstacles

116.49 114.83

78.31

0

20

40

60

80

100

120

140

0 1 2 3 4

A
v
er

ag
e

P
at

h
 L

en
g
th

 f
o

r
ea

ch
 R

o
b

o
t

Robot

Error Bar of Path Length for Robot 1, 2 and 3.

118.79 122.12

76.89

0

20

40

60

80

100

120

140

160

0 1 2 3 4

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

fo
r

ea
ch

 R
o

b
o

t

Robot

Error Bar of Execution Time for Robot 1, 2, and

3.

98

and Environment 2 has seven obstacles. From Environment 3, it can be

observed that Robot 1 is situated at the right side of the map and it needs to

cross the map to reach its target point beside the loading station at the bottom

left corner. Robot 2 has to travel from the left side to the target point beside

the unloading station, which is situated at the bottom right corner of the map.

Robot 3 is situated at the upper left side of the map and will only need to travel

straight towards its target point at the upper right corner of the map by passing

through several shelves.

Figure 4.36: Environment 3.

4.3.3.1 Result of MPSO Algorithm

The modified particle swarm optimization algorithm (MPSO) only implements

path planning for all three robots in Environment 3 without considering the

smoothness of pathways compared to EPSO. Figure 4.37 displays the pathway

generated for Robot 1 through the MPSO algorithm. It has a total of 22

waypoints, which are represented by the red cross along the pathway. These

waypoints are generated by the searches of particles of the MPSO algorithm.

Out of the 22 waypoints, there are 13 turn points, which are labeled as blue

circles along the path. It can be observed that for MPSO, the pathway

generated has more twists and turns and is not beneficial for the robot’s

99

movement. From Figure 4.38, Robot 2’s pathway can be observed to have 23

waypoints, represented by red cross along the pathway. Out of the waypoints,

there are 17 turn points for Robot 2. For Robot 3, its pathway can be seen in

Figure 4.39. Pathway of Robot 3 has 17 waypoints and out of them, 10 turn

points are recorded as represented by blue circles label.

Figure 4.37: Pathway Generated for Robot 1 of MPSO.

100

Figure 4.38: Pathway Generated for Robot 2 of MPSO.

Figure 4.39: Pathway Generated for Robot 3 of MPSO.

 Next, Figure 4.40 displays different pathways generated for all three

robots according to MPSO in Environment 3. For Robot 1, the pathway is

represented by a purple dotted line whereas Robot 2’s pathway is represented

by the dotted green line. It can be observed that there is an intersection of

101

Robot 1 and Robot 2’s pathways near the circular shelf. When both robots

enter each other’s sensor range, the obstacle avoidance algorithm will be

activated and both robots turn their headings toward the other direction in

search of a direction without obstacles. Then, as Robot 1 can continue with its

pathway, Robot 2 will also resume its original pathway towards their

respective target points. For Robot 3, its pathway is represented by a red

dotted line and it does not face any obstacles along its pathway. Then, Figure

4.41 shows the plotting of MPSO waypoints for all three robots. This gives a

clearer view of each waypoint traveled by each robot.

Figure 4.40: Simulation of Robots Travelling According to MPSO Pathway.

102

Figure 4.41: Plotting of MPSO Waypoints of all Robots.

 Furthermore, Figure 4.42 showcases the graph of global best fitness

concerning the iterations of the MPSO algorithm. As the number of iterations

increases, the total global best fitness for all three robots decreases. At

iteration one, the total global best fitness is 291.11 and the value decreases to

32.70 at iteration 23. This indicates that at iteration 23, all three robots

completed their optimization process and reached their respective destinations.

103

Figure 4.42: Graph of Global Best Fitness Vs. Iterations of MPSO Algorithm.

4.3.3.2 Result of EPSO Algorithm

The enhanced particle swarm optimization algorithm (EPSO) implemented the

Bezier curve trajectory smoothing algorithm after the path planning algorithm

was completed. The waypoints generated from the path planning algorithm are

input into the trajectory smoothing algorithm to generate control points that

can be connected to become a smooth pathway for robots to travel. Figure 4.43

shows the smooth pathway generated, as represented by a blue solid line, for

Robot 1 to travel from its start point to the target points. It can be observed

that the blue pathway presents greater smoothness and fewer twists and turns

as compared to the red pathway generated from the path planning algorithm.

As stated earlier, the control points generated are set to be 100, and out of all

control points, there are only two turn points, labeled by the red circle, present

along the blue pathway of Robot 1. Next, Figure 4.44 displays the smooth

pathway, as represented by a blue solid line, generated for Robot 2 from its

start point to the target point. There is only one turn point present along the

blue pathway of Robot 2. Moreover, Figure 4.45 showcases the pathway

generated for Robot 3. As Robot 3 only needs to travel straight towards its

endpoint, the twist and turn of the pathway are not obvious. However, it can be

observed that the blue pathway possesses greater smoothness than the red

104

pathway generated from the path planning algorithm. There is no turn point

present along the blue pathway generated from the Bezier curve trajectory

smoothing algorithm.

Figure 4.43: Pathways Generated for Robot 1 of EPSO.

Figure 4.44: Pathways Generated for Robot 2 of EPSO.

105

Figure 4.45: Pathways Generated for Robot 3 of EPSO.

 Next, Figure 4.46 displays the simulation of robots traveling

according to the EPSO pathway. Robot 1 travels from the right side of the map

to the bottom left corner of the map beside the loading station. The pathway of

Robot 1 is represented by a purple dotted line. For Robot 2, its pathway is

indicated by a green dotted line and it travels from the left side to the bottom

right corner of the map beside the unloading station. As for Robot 3, it travels

straight towards its target point at the upper right corner of the map, in which

its pathway is labeled as the red dotted line. It can be observed that the EPSO

pathways followed by the three robots during simulation are smoother than the

MPSO pathway. Then, Figure 4.47 displays the EPSO waypoints of all robots

to provide a clearer insight into the 100 control points generated by the Bezier

curve trajectory smoothing algorithm.

106

Figure 4.46: Simulation of Robots Travelling According to EPSO Pathway.

Figure 4.47: Plotting of EPSO Waypoints of all Robots.

 Furthermore, Figure 4.48 showcases the relationship between global

best fitness concerning the number of iterations of the EPSO algorithm. At the

first iteration, all robots are still in their start point so their total global best

fitness value is 291.11. As the iteration increases, the total global best fitness

107

of all robots decreases. At iteration 23, all three robots have successfully

arrived at their respective target points and the total global best fitness value

decreases to 32.74.

Figure 4.48: Graph of Global Best Fitness Vs. Iterations of EPSO Algorithm.

 To provide a clear comparison of the result of MPSO and EPSO,

Table 4.12 has tabulated the average path length, average execution time, and

number of turn points of MPSO and EPSO for all three robots in Environment

3. It can be observed that the average path length of EPSO is shorter than

MPSO for all three robots. Next, the average execution time of EPSO is also

lower than MPSO. The number of turn points of robots that follow the EPSO

pathway is also significantly reduced as compared to the number of turn points

in the MPSO pathway. The simulation is repeated a total of five times to

obtain the average result for path length and execution time for all three robots.

Next, Table 4.13 showcases the result of MPSO for each simulation conducted

in Environment 3. The longest path lengths achieved for Robot 1, Robot 2, and

Robot 3 are 120.83 m, 117.72m, and 79.93m respectively. The shortest path

lengths recorded for Robot 1, Robot 2, and Robot 3 are 110.73m, 111.04m,

and 79.74m respectively. Then, the greatest execution time recorded is 128.64s,

140.73s, and 95.28s with the shortest execution time recorded to be 117.48s,

108

117.78s, and 67.81s respectively for Robot 1, Robot 2, and Robot 3. Moreover,

Table 4.14 displays the result of EPSO for each simulation conducted in

Environment 3. The longest path lengths recorded are 107.47m, 106.16m, and

79.14m while the shortest path lengths recorded are 100.50m, 99.51m, and

78.33m respectively for Robot 1, Robot 2, and Robot 3. As for the execution

time, the highest execution time recorded is 119.23s, 111.56s, and 78.38s with

the lowest execution time recorded to be 102.19s, 103.32s, and 69.05s

respectively for Robot 1, Robot 2, and Robot 3. Apart from that, Figure 4.49

and Figure 4.50 showcase the error bars of path length and execution time for

Robot 1, Robot 2, and Robot 3 of the EPSO algorithm based on standard

deviation. From Figure 4.49, it can be observed that the error bars for all three

robots only have a short length, which implies that the path lengths obtained

through repeated simulations five times are all tightly clustered around the

average value of path length. Hence, it has a low standard deviation. Then,

from Figure 4.50, it can be observed that the error bar of execution time for

Robot 1 has a longer length than for Robot 2 and Robot 3. This is because, for

Robot 1, the highest execution time recorded is 119.23s while the lowest

execution time recorded is 102.19. It has the highest standard deviation of 6.56

compared to 4.23 for Robot 2 and 4.09 for Robot 3. This implies that the

execution time data is more spread out for Robot 1.

Table 4.12: Result of MPSO and EPSO of Environment 3.

 Average

Path Length (meters)

Average Execution

Time (s)

Number of Turn

Points

MPSO EPSO MPSO EPSO MPSO EPSO

Robot 1 115.18 103.98 122.87 107.97 13 2

Robot 2 114.06 102.32 132.88 106.50 17 1

Robot 3 79.85 78.69 80.44 73.30 10 0

109

Table 4.13: Result of MPSO for each Simulation in Environment 3.

MPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

112.24 128.64 111.04 140.73 79.93 79.53

Second

Simulation

120.83 123.82 117.72 125.90 79.84 71.72

Third

Simulation

110.73 124.41 112.32 139.46 79.90 95.28

Fourth

Simulation

111.26 120.00 111.52 140.52 79.74 87.84

Fifth

Simulation

120.83 117.48 117.72 117.78 79.84 67.81

Table 4.14: Result of EPSO for each Simulation in Environment 3.

EPSO Robot 1 Robot 2 Robot 3

 Path

Length

Execution

Time

Path

Length

Execution

Time

Path

Length

Execution

Time

First

Simulation

106.75 119.23 102.39 111.56 78.33 78.38

Second

Simulation

100.79 102.19 100.69 103.38 78.69 69.05

Third

Simulation

104.38 106.32 102.84 103.32 79.14 70.97

Fourth

Simulation

107.47 106.95 99.51 103.56 78.87 71.19

Fifth

Simulation

100.50 105.14 106.16 110.70 78.43 76.93

110

Figure 4.49: Error Bar of EPSO Path Length for Robot 1, 2, and 3.

Figure 4.50: Error Bar of EPSO Execution Time for Robot 1, 2, and 3.

4.4 Summary

The tuning of EPSO parameters showcases the impact of each parameter on

the result of the EPSO algorithm. For the first parameter, careful calibration of

swarm size is important to balance between convergence speed and optimality

of solution, and hence, a swarm size of 80 is chosen for simulation. For the

second parameter, the number of control points is set to 100 to generate a

smooth trajectory with the lowest turn points for each robot. For the third

parameter, a linearly decreasing inertia weight approach is implemented as a

103.978 102.3174

78.6902

0

20

40

60

80

100

120

0 1 2 3 4A
v
er

ag
e

P
at

h
 L

en
g
th

 f
o

r
ea

ch
 R

o
b

o
t

Robot

Error Bar of Path Length for Robot 1, 2, and 3.

107.966 106.504

73.304

0

20

40

60

80

100

120

140

0 1 2 3 4

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

fo
r

ea
ch

 R
o

b
o

t

Robot

Error Bar of Execution Time for Robot 1, 2, and

3.

111

higher inertia weight promotes the exploitation of particles then a lower inertia

weight promotes convergence toward the optimal solution with lower

constraints from previous velocities. Next, the cognitive acceleration

coefficient is set to decrease and the social acceleration coefficient is set to

increase as iterations increase. This is because a decrease in the cognitive

acceleration coefficient will reduce the reliance of particles on their personal

best solution and an increase in the social acceleration coefficient will

encourage convergence towards the global best position.

 Furthermore, the results of MPSO and EPSO algorithms are evaluated

and compared based on path length, execution time, and number of turn points

that exist along the pathway. From each aspect, it can be concluded that the

EPSO algorithm outperforms the MPSO algorithm as it can generate pathways

with shorter path lengths, travel using shorter execution time, and a lower

number of turn points exist on the EPSO pathway for every robot in all three

warehouse environments.

112

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, this project aims to provide an enhanced particle

swarm optimization (EPSO) algorithm as a possible solution for multi-robot

path planning optimised through smooth trajectory generation via the Bezier

curve. There are three objectives in this project. The first one is to review on

existing multi-robot path planning algorithm. There are five multi-robot path

planning algorithms discussed including artificial neural network (ANN),

genetic algorithm (GA), particle swarm optimization (PSO), ant colony

optimization (ACO), and artificial fish swarm algorithm (AFSA). PSO is

chosen compared to the other four algorithms due to easy implementation of

the algorithm, fast convergence speed due to exploration on both global and

local scales, and the ability to generate robust results by parameter tuning.

Then, the second objective is to develop an enhanced PSO (EPSO)

algorithm for smooth trajectory generation of a multi-robot system. The

methodology of EPSO includes initialization, optimization process through

iterations, and path generation with smooth trajectory. Moreover, the third

objective is to evaluate the performance of EPSO through simulation. Before

the evaluation of performance, parameter tuning is carried out to tune five

parameters, including swarm size, number of control points of the Bezier

curve algorithm, inertia weight, and cognitive and social acceleration

coefficients. A swarm size of 80, control points of 100, and a linearly

decreasing inertia weight approach from 0.95 to 0.4 as iterations increase are

chosen as the required parameter values to generate optimal results. As

iteration progresses, the cognitive acceleration coefficient is set to decrease

and the social acceleration coefficient is set to increase.

To evaluate the performance of the EPSO algorithm, the result of the

EPSO algorithm is compared with the MPSO algorithm based on path length,

execution time, and number of turn points of robots. The simulations for both

EPSO and MPSO are conducted repeatedly five times to obtain average results

113

for each of the three environments. It can be found that EPSO outperforms

MPSO with a shorter path length, shorter execution time, and lower number of

turn points along the pathways of all robots. Overall, this project has

successfully proposed a new EPSO algorithm that integrates the Bezier curve

trajectory smoothing algorithm with the PSO path planning algorithm. The

EPSO algorithm implemented in multi-robot path planning can efficiently

shorten path length, and execution time, and decrease the number of turn

points of pathways generated. All objectives of this project have been

accomplished.

5.2 Recommendations for Future Work

In this project, two recommendations can be made for further enhancement of

the algorithm. The first one is to achieve smooth path planning of robots’

pathways as PSO iterations progress. Smooth path planning refers to the

implementation of a smooth function in the PSO algorithm to set trajectory

constraints based on control points. This enables particles to generate

waypoints that can directly construct a smooth path as iteration terminates.

Setting the trajectory constraint based on control points will limit the particles

to choose waypoints that can generate smooth paths for robots.

 The second improvement that can be made is to implement the EPSO

algorithm in real-life environment. Currently, the EPSO algorithm is only

evaluated and tested using simulation, and its effectiveness in real-life

situations remains unknown. A Robotics Operating System (ROS) can be used

to implement the EPSO algorithm in real-life situations to evaluate the

effectiveness of the algorithm in reducing path length, execution time, and

number of turn points of robots.

 In a nutshell, the recommendation for future work includes adding a

smooth function in the PSO algorithm to achieve smooth path planning as

iterations terminate, and to implement the EPSO algorithm in real life

environment using ROS.

114

REFERENCES

Abujabal, N., Fareh, R., Sinan, S., Baziyad, M. and Bettayeb, M., 2023a. A

comprehensive review of the latest path planning developments for multi-

robot formation systems. Robotica, 41(7), pp.2079–2104.

https://doi.org/10.1017/s0263574723000322.

Abujabal, N., Fareh, R., Sinan, S., Baziyad, M. and Bettayeb, M., 2023b. A

comprehensive review of the latest path planning developments for multi-

robot formation systems. Robotica, [online] 41(7), pp.2079–2104.

https://doi.org/10.1017/S0263574723000322.

Bilbeisi Ghaith, Al-Madi, N. and Awad, F., 2015. PSO-AG: A Multi-Robot

Path Planning and Obstacle Avoidance Algorithm. In: 2015 IEEE Jordan

Conference on Applied Electrical Engineering and Computing Technologies

(AEECT). [online] Amman, Jordan: IEEE. pp.1–6.

https://doi.org/https://doi.org/10.1109/AEECT.2015.7360565.

Dian, S., Zhong, J., Guo, B., Liu, J. and Guo, R., 2022. A smooth path

planning method for mobile robot using a BES-incorporated modified QPSO

algorithm. Expert Systems with Applications, 208, pp.1–15.

https://doi.org/10.1016/j.eswa.2022.118256.

Farinelli, A., Iocchi, L. and Nardi, D., 2004. Multirobot systems: A

classification focused on coordination. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 34(5), pp.2015–2028.

https://doi.org/10.1109/TSMCB.2004.832155.

Gadhgadhi, A., Hachaichi, Y. and Zairi, H., 2022. Tuning PSO Parameters For

the Path Planning Problem. In: 2022 IEEE Information Technologies and

Smart Industrial Systems, ITSIS 2022. Institute of Electrical and Electronics

Engineers Inc. pp.1–6. https://doi.org/10.1109/ITSIS56166.2022.10118408.

https://doi.org/10.1017/s0263574723000322
https://doi.org/10.1017/S0263574723000322
https://doi.org/https:/doi.org/10.1109/AEECT.2015.7360565
https://doi.org/10.1016/j.eswa.2022.118256
https://doi.org/10.1109/TSMCB.2004.832155
https://doi.org/10.1109/ITSIS56166.2022.10118408

115

Gautam, A. and Mohan, S., 2012. A Review of Research in Multi-Robot

Systems. In: 2017 IEEE 7th International Conference on Industrial and

Information Systems (ICIIS)). IEEE. pp.1–5.

https://doi.org/10.1109/ICIInfS.2012.6304778.

Guzmán, M.A. and Peña, C.A., 2013. Algoritmos bioinspirados en la

planeación off-line de trayectorias de robots seriales Bio-inspired algorithms

in serial-robot path off-line planning. https://doi.org/10.14483/22484728.4390.

Jianwei, M., Yang, L., Shaofei, Z. and Wang, L., 2020. Robot Path Planning

Based on Genetic Algorithm Fused with Continuous Bezier Optimization.

Computational Intelligence and Neuroscience, pp.1–10.

https://doi.org/10.1155/2020/9813040.

Lee, J., Kang, B.Y. and Kim, D.W., 2013. Fast genetic algorithm for robot

path planning. Electronics Letters, 49(23), pp.1449–1451.

https://doi.org/10.1049/el.2013.3143.

Li, F.F., Du, Y. and Jia, K.J., 2022. Path planning and smoothing of mobile

robot based on improved artificial fish swarm algorithm. Scientific Reports,

12(1), pp.1–16. https://doi.org/10.1038/s41598-021-04506-y.

Lin, S., Liu, A., Wang, J. and Kong, X., 2022. A Review of Path-Planning

Approaches for Multiple Mobile Robots. Machines, 10(9), pp.1–27.

https://doi.org/10.3390/machines10090773.

Madridano, Á., Al-Kaff, A., Martín, D. and de la Escalera, A., 2021a.

Trajectory planning for multi-robot systems: Methods and applications. Expert

Systems with Applications, 173, pp.1–14.

https://doi.org/10.1016/j.eswa.2021.114660.

https://doi.org/10.1109/ICIInfS.2012.6304778
https://doi.org/10.14483/22484728.4390
https://doi.org/10.1155/2020/9813040
https://doi.org/10.1049/el.2013.3143
https://doi.org/10.1038/s41598-021-04506-y
https://doi.org/10.3390/machines10090773
https://doi.org/10.1016/j.eswa.2021.114660

116

Madridano, Á., Al-Kaff, A., Martín, D. and de la Escalera, A., 2021b.

Trajectory planning for multi-robot systems: Methods and applications.

Expert Systems with Applications, https://doi.org/10.1016/j.eswa.2021.114660.

Mbemba, B., Chen, Y. and Shu, Y., 2022. Path Planning Based on

Probabilistic Roadmap and Ant Colony Optimization. In: 5th International

Conference on Intelligent Autonomous Systems, ICoIAS 2022. Institute of

Electrical and Electronics Engineers Inc. pp.102–108.

https://doi.org/10.1109/ICoIAS56028.2022.9931206.

N. Darmanin, R. and K. Bugeja, M., 2017. A Review on Multi-Robot Systems

Categorised by Application Domain. 2017 25th Mediterranean Conference on

Control and Automation (MED), pp.1–6.

https://doi.org/10.1109/MED.2017.7984200.

Paez, D., Romero, J.P., Noriega, B., Cardona, G.A. and Calderon, J.M., 2021.

Distributed particle swarm optimization for multi-robot system in search and

rescue operations. In: IFAC-PapersOnLine. Elsevier B.V. pp.1–6.

https://doi.org/10.1016/j.ifacol.2021.10.001.

P.K Das, B.M. Sahoo, H.S. Behera and S Vashisht, 2016. An Improved

Particle Swarm Optimization for Multi-Robot Path Planning. In: 2016 1st

International Conference on Innovation and Challenges in Cyber Security

(ICICCS 2016). IEEE. pp.1–10.

https://doi.org/10.1109/ICICCS.2016.7542324.

Poy, Y.L., Darmaraju, S. and Kwan, B.H., 2023. Multi-robot Path Planning

using Modified Particle Swarm Optimization. In: 2023 IEEE International

Conference on Automatic Control and Intelligent Systems, I2CACIS 2023 -

Proceedings. Institute of Electrical and Electronics Engineers Inc. pp.225–230.

https://doi.org/10.1109/I2CACIS57635.2023.10193290.

https://doi.org/10.1016/j.eswa.2021.114660
https://doi.org/10.1109/ICoIAS56028.2022.9931206
https://doi.org/10.1109/MED.2017.7984200
https://doi.org/10.1016/j.ifacol.2021.10.001
https://doi.org/10.1109/ICICCS.2016.7542324
https://doi.org/10.1109/I2CACIS57635.2023.10193290

117

Rao, Dr.S.V.A., Kondaiah, Dr.K., Chandra, Dr.G.R. and Kumar, Dr.K.K.,

2017. A Survey on Machine Learning: Concept, Algorithms and Applications.

In: International Conference on Innovative Research in Computer and

Communication Engineering A Survey on Machine Learning: Concept,

Algorithms and Applications. SMEC. pp.1–9.

https://doi.org/10.15680/IJIRCCE.2017. 0502001.

Rao, P.U. and Sodhi, B., 2022. Collision-free Path Planning in Multi-vehicle

Deployments - A Quantum Approach. In: Proceedings - 2022 IEEE

International Conference on Quantum Computing and Engineering, QCE

2022. Institute of Electrical and Electronics Engineers Inc. pp.13–21.

https://doi.org/10.1109/QCE53715.2022.00019.

Ravankar, A., Ravankar, A.A., Kobayashi, Y., Hoshino, Y. and Peng, C.C.,

2018. Path smoothing techniques in robot navigation: State-of-the-art, current

and future challenges. Sensors (Switzerland), 18(9), pp.1–30.

https://doi.org/10.3390/s18093170.

Shuhua, L., Yantao, T. and Jinfang, L., 2004. Multi Mobile Robot Path

Planning Based on Genetic Algorithm*. In: 5th World Congress on intelligent

Control and Automation. HangZhou: IEEE. pp.1–4.

https://doi.org/10.1109/WCICA.2004.1342412.

Sitong, Z. and Tianyi, Z., 2022. Mobile Robot Path Planning in 2D Space: A

Survey. Highlights in Science, Engineering and Technology AMMSAC, 16,

pp.1–11. https://doi.org/10.54097/hset.v16i.2508.

Tang, Z. and Ma, H., 2021. An overview of path planning algorithms. In: IOP

Conference Series: Earth and Environmental Science. IOP Publishing Ltd.

pp.1–11. https://doi.org/10.1088/1755-1315/804/2/022024.

https://doi.org/10.1109/QCE53715.2022.00019
https://doi.org/10.3390/s18093170
https://doi.org/10.1109/WCICA.2004.1342412
https://doi.org/10.54097/hset.v16i.2508
https://doi.org/10.1088/1755-1315/804/2/022024

118

Xu, L., Song, B. and Cao, M., 2021. A new approach to optimal smooth path

planning of mobile robots with continuous-curvature constraint. Systems

Science and Control Engineering, 9(1), pp.138–149.

https://doi.org/10.1080/21642583.2021.1880985.

Yang, G.H., Lee, H. and Ryuh, Y., 2013. Development of a 3-DOF Fish Robot

ICHTHUS V5’. Studies in Computational Intelligence, 466, pp.225–234.

https://doi.org/10.1007/978-3-642-35485-4_18.

Yi-Wen, C. and Wei-Yu, C., 2015. Optimal Robot Path Planning System by

Using a Neural Network-Based Approach. In: Y.-W. Chen and W.-Y. Chiu,

eds. 2015 International Automatic Control Conference (CACS). Yilan, Taiwan:

IEEE. pp.1–6. https://doi.org/10.1109/CACS.2015.7378370.

https://doi.org/10.1080/21642583.2021.1880985
https://doi.org/10.1007/978-3-642-35485-4_18
https://doi.org/10.1109/CACS.2015.7378370

119

APPENDICES

Appendix A: Matlab Codes

CodeA-1: Function of Bezier Curve Trajectory Smoothing Algorithm Code.

120

CodeA-2: Bezier Curve Trajectory Smoothing Algorithm Code in Main EPSO Program.

121

CodeA-3a: Environment Generation Code.

122

CodeA-3b: Environment Generation Code.

123

CodeA-3c: Environment Generation Code.

