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ABSTRACT 

 

The field of robotics has witnessed a growing interest in multi-robot system 

for coverage task such as static coverage, which presenting a new set of 

challenges to table. One of the key aspects in multi-robot coverage is dynamic 

obstacle handling, which involves robots avoiding dynamic obstacle during 

coverage task while reaching their respective goal positions. This report 

focuses on developing a multi-robot coverage algorithm with dynamic 

obstacle handling abilities, known as the Modified Lloyd’s algorithm with 

Velocity Obstacle (VO). This modified algorithm introduces the Velocity 

Obstacle which calculates avoidance velocities for robots to avoid dynamic 

obstacle. Unlike the existing Lloyd’s algorithm which primarily focuses on 

achieving complete coverage, the Modified Lloyd’s algorithm with VO can 

determine the time to collision based on the relative distances and velocities of 

robots and dynamic obstacle. It then generates a new avoidance velocity for 

robots, enabling them to avoid dynamic obstacles while achieving complete 

coverage. The simulations were conducted by using MATLAB to demonstrate 

the superiority of Modified Lloyd’s algorithm with VO over existing Lloyd’s 

algorithm in terms of average of total number of collisions between robots and 

dynamic obstacle during coverage task. All five robots successfully avoided 

dynamic obstacle during coverage tasks, achieving complete coverage with 

zero collisions. The Modified Lloyd’s algorithm was also tested under two 

different scenarios to evaluate its functionality. In first scenario, as the 

aggressiveness of dynamic obstacle increased, the algorithm remained capable 

of handling them, although there were occasional collisions at very high 

aggression levels. In the second scenario, where the starting position of 

dynamic obstacle varied, the modified algorithm consistently handled dynamic 

obstacle and achieved zero collisions during coverage tasks. The impacts of 

the modified algorithm’s parameters on simulation results were also studied to 

determine the optimal parameters for achieving better performance. It was 

found that with number of 500 iterations and a safety margin of 5, the 

algorithm provided better performance in terms of shorter execution time and 

lower average number of collisions.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Fourth industrial revolution, Industry 4.0 had ushered in an era of extreme 

digital transformation on a global scale (Ghobakhloo, 2020). The genesis of 

this transformation can be traced back to Industry 1.0, which emerged in the 

late 18th century, and was marked by the utilization of water and steam power 

to drive mechanized production facilities. Industry 2.0, which arose in the 

early 20th century, utilized electrical power, catalysing rapid advancements in 

industrial sectors during that era. Industry 3.0, taking shape in the early 1970s, 

introduced the fields of electronics and information technology, thereby 

paving the way for automation in production and manufacturing processes 

(Sherwani,Asad and Ibrahim, 2020). In the modern landscape, Industry 4.0 is 

the prevailing paradigm, witnessing the advancement of diverse robotic 

technologies designed to streamline and enhance various aspects of human life 

across numerous fields. Although automation was introduced during industry 

3.0, it only underwent development during industry 4.0 (Karabegovic, 2017).  

 

 

Figure 1.1: Four Phases of Industrialization (Sherwani,Asad and Ibrahim, 

2020). 

 

Industry 4.0 had brought a swift and remarkable progression in 

development of robotics. There are some well-known robots used in industry 

4.0 which are industrial robot and collaborative robots. The use of these robots 
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instead of humans, especially in agriculture and search and rescue field, brings 

several benefits. It helps save costs, conserves energy, reduces human 

mistakes, and allows for continuous work around the clock. Robots can take 

over risky jobs like pesticide spreading, ensuring worker safety and speeding 

up work. This also reduces the chances of worker’s injuries from hazardous 

tasks. Industrial robot and collaborative robots are both experience same 

similarities which are programmable and self-controlled device which consist 

of mechanical, electric, electronic and hydraulic units to perform a specific 

complex action. However, industrial robot is huge, large and heavy and used 

to employed for tasks that involve significant risks, therefore industrial robot 

usually isolated from human-operated areas and usually only utilized within 

expansive warehouses and sizeable manufacturing facilities. Collaborative 

robot or known as co-bot are usually lighter and provides higher mobility and 

flexibility (Sherwani,Asad and Ibrahim, 2020).  Mobile robot, a type of 

collaborative robot is mostly used in various field because the tasks involve 

coverage task with dynamic obstacle which require high mobility of robot. 

 

1.1.1 Application of Robots 

In modern times, a diverse array of fields has incorporated the utilization of 

robotics, and agriculture stands prominently among them. Agriculture is 

holding important significance in human society because it provides humans 

source of food and maintain society activities. The integration of robots into 

the search and rescue field also has gained importance due to the imperative 

nature of this field. In search and rescue field, there is zero tolerance for 

human errors and necessitating a continuous and nonstop work effort. Hence, 

the implementation of automation becomes imperative as it holds the potential 

to enhance productivity and operational efficiency. Presently, numerous 

countries, including Liberia and Niger, suffering with food shortages due to 

poor and inadequacies in agricultural management. Certain countries have also 

faced shortages problem in farm labour, causing a direct impact on agricultural 

production. Agriculture become the most vital providers of occupations and 

had played an important role in fight against hunger and poverty (Sud et al., 

2015). Insufficient consumption of food will lead to an inactive and unhealthy 

life (Mcguire, 2015).  



3 

 Traditional agriculture method mainly relies of human labour, and 

this is a factor that can lead to decrease the productivity of agriculture. Human 

labourers are constrained by the need for regular daily rest, which can leave 

crops vulnerable to various risks. These include potential damage from 

animals like birds. Human also cannot consistently maintain to monitor health 

status of each individual crop to ensure their well-being and protect them 

against diseases. Spreading pesticide also is a dangerous and hazardous task 

for human because accidental inhalation of toxic particles can lead to 

immediate illness and potentially yield adverse long-term effects (Kim and 

Son, 2020). Therefore, robotics technology has been implemented in 

agriculture field as a solution to these issues. 

  

1.1.2 Type of Robots 

Numerous categories of robots find application across a wide spectrum of 

industries and domains. Robots come in diverse forms, ranging from 

substantial and robust robots designed for heavy-duty tasks, such as lifting 

heavy objects, to more lightweight and agile robots which ideal for tasks like 

transportation. Unambiguously, for coverage tasks involving dynamic obstacle, 

mobile robots emerge as the suitable choice. The advancement of sensors and 

technologies, including machine vision and artificial intelligence, has 

undergone significant development which lead to robotics had been 

successfully implemented in many fields and one of it is agricultural task 

which enable to reduce workload and increase productivity of agriculture 

(Moorehead et al., 2010). Mobile robots have gained widespread adoption in 

the various sector due to their higher mobility and flexibility, interpreting them 

particularly well-suited for the dynamic working environments. In contrast to 

humans, mobile robots exhibit the capability to consistently execute tasks as 

well as minimizing errors. This capacity of mobile robot contributes to 

increasing productivity and efficiencies. Additionally, mobile robots can used 

in undertaking hazardous tasks, to prevent potential human injuries. Therefore, 

implementation robot in working environment can grant solutions to difficult 

problems, increase process productivity and lesser work load 

(Vasconez,Kantor and Cheein, 2019).  
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Currently, there are a lot of type of mobile robot has been deployed in 

coverage task to tailor for different working environment and tasks such as 

aerial, ground based and aquatic configurations. Unmanned group vehicles 

(UGV) can be utilized for water distribution and continuous monitoring of 

individual victims. Through repeated coverage of the same work areas, UGVs 

can ensure consistent and effective irrigation. Meanwhile, unmanned aerial 

vehicle (UAV) plays a pivotal role in enhancing security. By repeatedly 

coverage designated regions, UAVs can prevent unauthorized individuals and 

safeguarding the working space.  

Nonetheless, deploying a single robot in industrial or agriculture field 

is a high-cost application. This is because designing a singular robot capable 

of executing an extensive array of tasks, the single robot needs to invent and 

involve a lot of complex application and development. Furthermore, any 

operational failures encountered by the single robot, it will cause the process 

force to stop. To address these limitations and drawbacks of single mobile 

robot, implementation of multi-robot systems can solve these issues.  

 

1.1.3 Multi-robot Systems 

In recent years, multi-robot systems have gained substantial attention. This 

multi-robot systems involve the utilization of multiple robots to collectively 

address complex and large-scale problems. Communication of multi-robot 

systems plays a vital role in coordinating the multi-robots. Integrating 

enhanced communication capabilities into these systems contributes to 

expedited responsiveness among the robots. There are a lots of factors why 

multi-robot systems become famous due to their robustness and effectiveness. 

By employing a multi-robot approach, coverage task can be significantly 

accelerated and reducing the coverage time. Moreover, the multi-robot 

configuration facilitates repetitive coverage of the same area within a 

condensed frame of time. Multirobot systems have excellent advantages 

compare to single robot in the aspects of resilience and versatility. For instance, 

a group of multi-robots, each equipped with various types of actuators, sensors 

and communication devices, can work together to collectively monitor their 

surroundings (Liu et al., 2023). In pesticide spreading task, large area of 

agriculture can be divided into few small pieces by using Voronoi diagram and 
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the multi-robot can be deployed to the spraying task through communication 

to improve performance (Kim and Son, 2020). Sizable sprayers for individual 

single robot now can be reduced into more lightweight counterparts. This 

advancement not only yields cost savings but also enhances operational 

efficiency. 

 

1.1.4 Coverage Task with Dynamic Obstacle 

The tasks of mobile robots in various field are mostly involved in coverage 

task. For instance, mobile robots in agriculture field, their tasks such as water 

distribution, pesticide dispersal, and health status monitoring necessitate the 

robot's repetitive coverage of specified areas over extended periods. This 

requirement arises from the robots for uninterrupted and continuous operation 

to ensure optimal performance efficiency. The working environment can be 

segmented into different sections, and multi-robot system is strategically 

deployed to allocate individual robots to cover each designated area. This 

collaborative approach involves continuous communication among the robots, 

resulting in improved productivity and operational efficiency. The coverage 

task that addressed in this project will be static coverage. Static coverage 

typically refers to the coverage achieved by stationary robots or agents in a 

given area over a period of time. It also widely uses in various filed such as 

surveillance, environmental monitoring and so on. In static coverage, the 

robots will move to a position and remain stationary position throughout the 

coverage period. The primary objective of static coverage is to ensure that 

every point within the designated area of interest is covered or monitored by at 

least one robot or agent. The static coverage can be uniform, where robots are 

evenly distributed across the coverage area, or it could be optimized based on 

specific criteria such as maximizing observation efficiency. It implies 

continuous observation over time with robots or agents remain in fixed 

positions to monitor the environment or collecting data without movement. 

 Nevertheless, within the robots working environment, obstacles pose 

typical challenges. These obstacles can be categorized into two primary types: 

static obstacles and dynamic obstacles. Static obstacles are defined as 

obstacles that remain stationary over time, retaining their fixed positions. In 

response to address these static obstacles, multi-robots are capable of initially 
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identifying their locations during their initial coverage phase. Subsequently, 

this positional information is communicated to other robots within the same 

multi-robot system, enabling coordinated avoidance of these static obstacles. 

Dynamic obstacles are characterized by their continuous motion within the 

designated area. This movement of dynamic obstacles can be either 

predictable or random in nature. For instance, the predictable movement in 

dynamic obstacles, consider a multi-robot system comprising five robots. 

From the perspective of Robot 1, Robots 2, 3, 4, and 5 are considered dynamic 

obstacles. These robots’ path and coverage are predefined and result in 

predictable movement. Consequently, the robots must possess the capability to 

continuously detect the dynamic obstacle as they navigate and cover the area 

over time and, when necessary, adjust their paths to avoid collisions. 

 

1.2 Importance of the Study 

Technological advancements have progressed rapidly nowadays, leading to the 

widespread integration of automation in various field. Automation serves as an 

effective solution for mitigating human errors, enhancing operational 

efficiency, increasing productivity, and addressing a numerous of challenges. 

In agriculture, many nations are currently suffering with dual challenges which 

are a shortage of food supply and a shortage of labour. In search and rescue 

field, mobile robot can use to help rescuer to help the victim by keep covering 

a designated region. Hence, it becomes of importance to prioritize the advance 

of dynamic obstacle handling in multi-robot coverage as a means to mitigate 

these critical issues. 

Aerial robots (UAV), ground robots (UGV) have been vigorously 

introduced for automation (Zhang and Kovacs, 2012). The employment of 

these automated robots, which can address optimize long-term cost and labour 

shortages (Pedersen et al., 2006). UAVs can use to protection over large areas 

and inspection rapidly. Hence, application such as monitoring health status 

involve a lot of UAVs. Besides, UGVs in agriculture are applied for replacing 

traditional tractors which by combine transplanters and harvesters into a 

multipurpose UGV system  for transplanting, seeding and mapping of various 

crops (Ju et al., 2022). The multi-robot systems are playing an important role 

in various field; therefore, it is a need to handling dynamic obstacle in multi-
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robot coverage to improve its efficiency and productivity to address the issues 

encountered in task. 

    

1.3 Problem Statement 

The prevailing shortages in labour and supply have given rise to a variety of 

challenges. Consequently, the implementation of robotic automation emerges 

as a viable and necessary solution to address these pressing issues. However, 

single robot is not enough to fulfil the work requirement, therefore multirobot 

is used instead of single robot. Although single robot is low in cost and high 

scalability, but it is less used in working field due to its short communication 

range and small processing capacity. In the other hand, multirobot is more 

robust and higher efficiency compared to single robot but with higher cost. 

Multirobot also limited due to restricted reliability for computational purposes 

and understandability. The adoption of multi-robot systems brings forwards a 

variety of advantages. Nevertheless, the implementation process is remarkably 

intricate due to several complexities. These complexities include the 

establishment of communication networks among multi-robot systems, 

complex decision-making processes, the recognition and navigation around 

static and dynamic obstacles and the precise determination of coverage areas 

for each individual robot.  

The initial challenge that arises pertains to the partitioning of the 

working environment into different sections. This imposes a precise allocation 

of each robot in their designated position and the corresponding area to be 

covered within that section. The process of subdividing a large working 

environment into smaller and manageable sections serves to increase 

operational efficiency. Moreover, it simplifies the deployment of multi-robot 

systems in coverage task. Following the distribution of specific working 

environment for each robot, an algorithm becomes essential for guiding these 

robots from their initial positions or origins, towards a common goal. In this 

research, the goal is typically represented by the centroid of the designated 

coverage area. These robots will engage in repeated coverage of their assigned 

areas until a stop command is issued. During the coverage process, a 

significant challenge lies in enabling the robots to accurately differentiate the 

static and dynamic obstacles. Failure to do so can lead to collisions between 
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the robots and these obstacles and resulting in potential losses and disruptions. 

In real-world working environments, the presence of numerous obstacles 

necessitates a crucial consideration. Therefore, the implementation of obstacle 

avoidance mechanisms is important when introducing robots into coverage 

task. The efficiency of deployment of the multi robots for coverage task in 

dynamic environments with dynamic obstacle is a big challenge nowadays. 

  

1.4 Aim and Objectives 

Aim of this project is to develop a robust and efficient model for multi-robot 

systems to accomplish coverage tasks in environments with dynamic obstacle. 

 The specific objectives of this project are listed below: 

1. To conduct literature review on existing algorithms for coverage 

tasks in multi-robot systems, specifically focusing on dynamic 

obstacle handling. 

2. To develop a coverage control algorithm with dynamic obstacle 

avoidance technique. 

3. To evaluate the performance of proposed algorithm through 

MATLAB simulation. 

 

1.5 Scope and Limitation of the Study 

The development of multi-robot systems for comprehensive area coverage 

presents a difficult and complicated effort. This project’s scope will be 

focusing on developing a multi-robot system model to cover a given area with 

dynamic obstacle avoidance ability. The multi-robot coverage task will be 

simulated by using MATLAB.  

 The study is subject to certain limitations which are lacking available 

research sources on coverage control with dynamic obstacle avoidance in 

current literature.  Consequently, the development of an algorithm has been 

rendered a challenging task. In order to simply the task and simulation, there 

has been a cautious reduction in the computational complexity of the multi-

robot system. Instead of utilization of heterogeneous systems involving 

various types of robots, this project will focus on homogeneous systems which 

comprising solely same type of robots. Additionally, in order to simplify the 
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simulation process, aspects relating to communication and collaboration 

among the multi-robots have been omitted from consideration. 

 

1.6 Contribution of the Study 

This project outlines the examination and comparison on the existing coverage 

control algorithm and dynamic obstacle avoidance technique for multi-robot 

coverage task with dynamic obstacle. The existing algorithm are evaluated, 

and a better algorithm will be selected and further developed with the aims to 

generate an algorithm that can handling and avoid dynamic obstacle in multi-

robot coverage. The proposed algorithm was modified and fine-tuned to 

enhance the final simulation results. The results obtained from the MATLAB 

simulations will demonstrate that proposed algorithm successfully achieves 

this project aims and objectives. 

 

1.7 Outline of the Report 

This report comprises five chapters which are Chapter 1, Chapter 2, Chapter 3, 

Chapter 4 and Chapter 5. In Chapter 1, the introduction of whole project is 

discussed. There are several subsections included in Chapter 1 which are 

general introduction of robots, the importance of study, problem statement, 

aims and objectives, scopes and limitations of the study, contribution of the 

study and the outline of the report of this project. 

 Chapter 2 delves into the literature review of this project. It examines 

the existing multi-robot coverage control algorithm such as broadcast control, 

Lloyd’s algorithm and spanning tree-based methods. It also evaluates the 

existing dynamic obstacle avoidance techniques such as model predictive 

control, artificial potential field and velocity obstacle. Additionally, the 

Gaussian distribution for optimizing criteria is also discussed. 

 Chapter 3 outlines the methodology and work plan for the whole 

project. The methodology of the proposed Lloyd’s algorithm with velocity 

obstacle avoidance techniques is explained step by step including necessary 

information and equations. The mathematical formula of the proposed 

algorithm is also discussed in this chapter for a deeper understanding. Besides 

that, Gantt charts for planning of this project part 1 and part 2 are also attached 

in this chapter. 
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 Chapter 4 presents the results and discussions. The results generated 

by MATLAB simulations with the proposed algorithm and existing algorithm 

are evaluated and compared in different scenarios to determine the superior 

algorithm among the two algorithms. The performance for the proposed 

algorithm in different scenarios is also compared to determine the suitable 

parameters in the simulation. Additionally, the impact of proposed algorithm 

parameters on the simulation results is also included in this chapter. 

 Chapter 5 discusses the conclusion of the whole report. In this chapter, 

a short conclusion is constructed, and the limitations of the whole project are 

presented. The recommendations for future works are included throughout this 

chapter.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Handling dynamic obstacle in multi-robot coverage plays a pivotal role in 

advancing the utilization of multi-robot system across various fields such as 

industrial field, agriculture field and so on. This handling enables multi-robot 

system to efficiently cover designated areas over time while mitigating the risk 

of obstacle collisions. In working environment, the presence of obstacles 

especially dynamic obstacles is an inescapable reality. Therefore, it is crucial 

to implement a dynamic obstacle avoidance technique into the coverage 

algorithm. This augmentation empowers multiple robots to adeptly avoid 

obstacle to ensure uninterrupted operation in coverage environment. 

 Numerous coverage control algorithms for multi-robot systems to 

deploy a group of robots to cover a designated area or region are available. 

The overall coverage control algorithms can be categorized into six general 

groups, each with its unique approach. They are grid-based approaches, 

decentralized approaches, frontier-based approaches, sampling-based 

approaches, centralized approaches and learning-based approaches. The 

notably prominent method that used in coverage of multirobot is grid-based 

approaches which utilizes of cell decomposition and Voronoi based 

approaches. Cell decomposition involves in division of the workspace into 

grid cells with each robot will be assigned to cover specific cells then assign 

each robot to cover specific cell. In the other hand, Voronoi-based approaches 

is dividing the workspace into Voronoi regions based on position of multi-

robots. In the decentralized approaches, swarm intelligence draws inspiration 

by natural swarm behaviours to enable multi-robots to collaborate collectively 

in a covering a designated area. Frontier exploration, an example of the 

frontier-based approaches which robots will explore the frontier areas within 

their workspace to maximize the coverage efficiency. Sampling-based 

approach, one of famous method from randomized algorithms. Randomized 

algorithms are utilizing robot in random movement to explore and cover an 

area. Reinforcement learning, a novel coverage algorithm that based on 
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learning-based approaches. Reinforcement learning enables to train the robot 

through reinforcement learning to learn the coverage patterns to adapt the 

changing environment. Centralized coordination, an algorithm falling under 

centralized approaches, employs a central controller to allocates coverage task 

for each robot and regulate their movements to achieve maximum of coverage. 

These diverse coverage control algorithms offer a wide range of strategies to 

address specific coverage problem across various applications and 

environments. 

 In addition to coverage algorithms, the task of prevent multi-robot 

systems collide with dynamic obstacle during coverage task necessitate the 

incorporation of obstacle avoidance techniques. Several dynamic obstacles 

techniques are employed for this purpose which including velocity obstacles 

method (VO), model predictive control (MPC) and artificial potential field-

based methods (APF). These techniques are seamlessly integrated with 

coverage control algorithms to construct a comprehensive model for multi-

robot systems to be employed in coverage tasks within dynamic obstacle-rich 

environments. 

 Numerous researchers have made significant contributions to this 

field by introducing a numerous coverage control algorithms and dynamic 

obstacle avoidance techniques for multi-robot systems. In this chapter, 

different main types of algorithms will be discussed, evaluated and compared.   

 

2.2 Multi-robot Coverage Control Algorithm 

As previously mentioned, a diverse array of coverage control algorithms and 

dynamic obstacle avoidance techniques are available for multi-robot systems. 

In the following subsections of this chapter, commonly used algorithms will be 

researched, discussed, evaluated and compared to facilitate an informed 

selection. 

 

2.2.1 Broadcast Control 

The concept of broadcast control was initially introduced or proposed by Ueda, 

Odhner and Asada (Ueda,Odhner and Asada, 2007), and initially it had been 

applied to the context of a biosystem in lactose regulation system (Julius et al., 

2008). The first implementation of broadcast control in multi-agent systems 
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was occurred in 2009, introduced by Das and Ghose (Das and Ghose, 2009). 

Broadcast control refers to the management of multi-robot systems by sending 

identical and uniform communication signals to all the robots via a centre 

controller or decision-making unit. Broadcast control is mainly used in 

addressing problems about motion-coordination for robots to complete a 

coverage task. Broadcast control is one- to- all broadcast communication 

instead of agent-to-agent communication. According to Figure 2.1, it is shown 

that distinction between one-to-all broadcast communication and agent-to-

agent communication lies in the manner and direction of information that 

transmitted during the task. In one -to-all broadcast communication, the multi-

robot may not necessitate additional devices and energy for information 

transmission. This efficiency translated to cost savings and represents a 

substantial hardware advantage (Azuma,Yoshimura and Sugie, 2013).  

Although there is advantage in method of information transmission, but this 

method also introduces a challenge. When a signal is broadcasted from the 

central control unit to an agent or robot, it can inadvertently affect 

neighbouring agents, potentially leading to unintended consequences and 

undesirable situations.  

 

 

Figure 2.1: Types of Information Transmission between Multi-agent (Azuma, 

Yoshimura and Sugie, 2013). 

 

 In paper of Azuma, Yoshimura and Sugie in 2013, they proposed a 

broadcast control which composed of multi-agents, local controller and global 

controller. The role of local controller is to determine local actions of multi-

agents while function of global controller is to observce performance of 

system and broadcasts a signal to control global behaviourIn the context of 

solving the coverage task, the local controller directs agents to alternate 



14 

between random walk and deterministic walk strategies. Meanwhile, the 

global controller's role is to broadcast the progress or degree of achievement in 

the coverage task to all agents (Azuma, Yoshimura and Sugie, 2013). The 

necessatity of randomness in local controller plays an important role because it 

will affect the effectiveness of broadcast control. In this paper, the researchers 

conduct an experiment with several mobile robots to evaluate the performance 

of broadcast control. 

 

 

Figure 2.2: Broadcast Control with Local and Global Controller (Azuma, 

Yoshimura and Sugie, 2013). 

 

The authors handled the experiment in systematic manner, with the 

first step author overseeing the coverage and local controller aspects. There are 

four steps which are first step is coverage. Coverage means strategically 

positioning multi-agent or multi-robot within the environment to ensure 

occupied coverage area are equal size. In this paper, authors were using 

objective function and technique of Voronoi diagram. In the second step, the 

experiment determined the precise locations for each agent by facilitating their 

convergence at specific rendezvous points. The third step focused on the 

assignment of individual agent to each designated area without overlap to 

ensure the efficient coverage distribution. To promote scalability, the last step 

was assuming local controllers are same for scalability. The consistency in 

local controllers is essential for large-scale multi-agent systems, as non-

identical controllers can pose significant challenges. These local controllers 

are responsible for directing agents in both random and deterministic 

movements.  



15 

 

 

Figure 2.3: Motion of Agents by Local Controller (Azuma, Yoshimura and 

Sugie, 2013). 

 

Following the configuration of parameters, both numerical 

simulations and physical experiments were conducted. In Figure 2.4, the 

circles within the illustration represent the agents, while the lines presented the 

boundaries of the Voronoi cells assigned to each agent. These simulation 

results clearly demonstrate the successful achievement of coverage through the 

proposed broadcast controller. The time evolution of objective function also 

shown in Figure 2.5, providing further insights into the effectiveness of the 

approach. After numerical simulation, authors also carried out the experiment 

in physical mobile robot as depicted in Figure 2.6 with corresponding results 

was shown in Figure 2.7. 

 

 

Figure 2.4: Snapshot of Group Position of Multi-agent (Azuma, Yoshimura 

and Sugie, 2013). 
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Figure 2.5: Time Evolution of Objective Function (Azuma, Yoshimura and 

Sugie, 2013). 

 

 

Figure 2.6: Physical Experiment Setup (Azuma, Yoshimura and Sugie, 2013). 

 

 

Figure 2.7: Snapshot of Group Position of Multi-agent in Physical Experiment 

(Azuma, Yoshimura and Sugie, 2013). 
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 Nonetheless, standard broadcast control is susceptible to stability 

issues in specific motion-coordination tasks related to coverage task. To 

address this challenge, a modified broadcast control is propesed by Mohamad 

NorIsmail and Ahmad in 2020. In this research endevor, authors modified 

standard broadcast control. This modification entails constraining the 

magnitude of the update vector for the positions of robots to a constant value. 

Authors also conducted a numerical simulation and performed a comparative 

analysis involving three methods: standard broadcast control, the modified 

broadcast control, and constant-distance random movement (CDRM) 

(Mohamad Nor,Ismail and Ahmad, 2020). The results of these numerical 

simulations provided compelling evidence that the modified broadcast control 

method achieved convergence with a high degree of success. 

 

 

Figure 2.8: Evolution of Cost Function or Objective Function (Mohamad 

Nor,Ismail and Ahmad, 2020). 

 

 

Figure 2.9: Convergence Time for Standard, Modified and CDRM Broadcast 

Controllers (Mohamad Nor,Ismail and Ahmad, 2020). 
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During numerical experiment, authors defined the convergence time 

as the number of iterations required for the objective function to reach its 

minimum value, which is set at 5. From the Figure 2.8, modified broadcast 

controller is coverges faster than standard but slower than CDRM broadcast 

controller. However, from the Figure 2.9, modified and CDRM are better than 

standard broadcast controller but standard deviation of modified broadcast 

controller is lower than CDRM. This means that the values does not varies 

much from average which is better than CDRM broadcast controller 

(Mohamad Nor,Ismail and Ahmad, 2020). 

 

2.2.2 Lloyd’s Algorithm 

The Lloyd’s algorithm is a coverage algorithm which based on Voronoi-cell 

approaches. To comprehend the Lloyd’s algorithm fully, it is essential to first 

explore into the concept of Centroidal Voronoi Tessellations (CVT) because 

CVT is fundamental part of Lloyd’s algorithm. Voronoi-based approach is a 

method to divide the working environment into several regions and each 

region will have their own mass centre. CVTs represent a special form of 

Voronoi tessellations within a bounded geometric domain and these domains 

are generating the points of the tessellations, often refer as centroids or mass 

centres within. These points were determined with respect to given density 

function (Du,Emelianenko and Ju, 2006). The natural optimization properties 

of Centroidal Voronoi tessellation make this concept have been widely used in 

various applications across in diverse field such as modelling, engineering, 

data analysis and so on. They are also utilized in the design of optimal vector 

quantizers. The underlying concept of CVTs shares similarities with the k-

means clustering method. Given the modern applications of CVTs in large-

scale multi-robot systems, the development of robust and efficient algorithms 

becomes imperative. 

 Throughout history, there were numerous of algorithm have been 

developed, studied and applied across various field (Du,Faber and Gunzburger, 

1999). The first algorithm was developed was in 1960s at Bell Laboratories by 

S. Lloyd which retaining its popularity due to its inherent simplicity and 

effectiveness (Du, Emelianenko and Ju, 2006). The algorithm later is officiall 

published and is now commonly known as Lloyd’s algorithm (Lloyd, 1982).  
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Lloyd’s algorithm is one of the famous algorithms that utilize the concept of 

CVTs. Lloyd’s algorithm employs a centre-to-cluster and cluster-to-centre 

iterative process to guide the robots toward the mass centre of their respective 

Voronoi region points, commonly known as centroid. Initially, the Lloyd’s 

algorithm could only converge to local optima convergence. However, with 

advancements in technology, it can now achieve both local and global 

convergence, expanding its utility and applicability.  

In paper of Du, Emelianenko and Ju in 2006, authors had presented a 

comprehensive analysis of the local and global convergence properties of 

Lloyd’s algorithm through analtical results and numerical experiments. The 

paper's focus was on investigating the convergence characteristics of this 

algorithm within the context of Centroidal Voronoi Tessellations (CVTs). The 

methodology employed in this research involved the generation points based 

on predefined density function. The iterative algorithm used in this study 

involves straightforward steps, starting with the initialization of an initial 

Voronoi tessellation that corresponds to a previous set of generators. The new 

set of generators was defined by the centroids of Voronoi regions, and this 

iterative process continued until a specified stopping criterion was met. In this 

paper, authors were focused on local and global convergences properties of 

Lloyd’s algorithm. This paper presents new findings regarding global 

convergence, including global convergence under specific non-degeneracy 

conditions, the overall sequence's global convergence within one-dimensional 

space and the convergence of subsequence based on density functions. For 

local convergence, authors studied for estimating on convergence rates. As 

part of their exploration, authors had introduced a concept called constrained 

centroidal Voronoi tessellation (CCVT). To validate that the energy defined in 

CVTs remained applicable to CCVT, two experiments were conducted. The 

first experiment involved six generators constrained to a circular path (1D 

curve), while the second experiment featured 162 generators constrained to a 

spherical surface (2D). According to Figure 2.10 ,results of experiments shows 

that both correspond to the constant density. 
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Figure 2.10: CCVTs for One Dimensional and Two Dimensional (Du, 

Emelianenko and Ju, 2006).   

 

These findings demonstrate that the Lloyd’s algorithm, when applied 

to compute CCVTs, achieves global convergence when dealing with positive 

and smooth density functions within the bounds of a smooth curve. 

 Building upon the research conducted by Du, Emelianenko and Ju in 

2006, another group of researchers introduced a technique for achieving 

Voronoi coverage in non-convex environments using a network of 

interconnected robots. In this paper, the authors introduced a solution for 

decentralized Voronoi coverage tasks in polygonal environments with non-

convex shapes. The algorithm they proposed ensures that it converges to a 

local optimal solution. In this study, the algorithm utilized was a combination 

of the classical Voronoi coverage approach, the Lloyd’s algorithm, and a local 

path planning algorithm known as Tangent Bug (Breitenmoser et al., 2010). 

TangentBug algorithm is originally from family of Bug algorithm and its 

features is to ensure and compute the motion of multi-robots around obstacles  

(Kamon,Rimon and Rivlin, 1998). The concept of this novelalgorithm is, 

Lloyd’s algorithm will update the goal position of each robot while 

TangentBug will responsible to plan a path to the given goal. The 

collaboration between two algorithms will result in global convergence of 

multi-robot system to each Voronoi region that optimizes the cost function or 

objective function. According to Figure 2.11, it showed that Lloyd’s algorithm 

will compute the Voronoi region and updated the current target (level 1) 

Simultaneously, the local path planning algorithm, Tangent Bug algorithm will 

computes the path to the taregt to perform obstacle avoidance (level 2). This 
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interaction forms Loop 1 between Level 1 and Level 2, with another Loop 2 

occurring within Level 2. 

 

 

Figure 2.11: Mixture of the Tangent Bug algorithm and Lloyd’s algorithm as 

Control Approach (Breitenmoser et al., 2010). 

 

The authors proposed this new algorithm in response to limitations 

encountered in previous research involving Lloyd’s algorithm. Previous 

studies focused on convex regions, which posed complex and challenging 

problems when applied to non-convex regions. Additionally, prior research 

also did not propose obstacle avoidance technique for Lloyd’s algorithm 

making it unsuitable for realistic physical models. In this paper, authors had 

created centroid of Voronoi tessellation by using CVTs and described the 

importance (weighing) of different areas in environment by different density 

functions (Breitenmoser et al., 2010). Before explored into non-convex 

environments, authors had presented a series of steps to solve for convex 

environments. First step constructed the Voronoi partition for generating 

points for goal of multi-robot systems. Second step was computing the 

centroids of Voronoi regions, and third step was assigning new locations to the 

centroids and repeated the process until Voronoi coverage based on Lloyd’s 

algorithm was completed. However, when transitioning to non-convex 

environments, several potential difficulties arise and cause the coverage 

problem to become complex. Figure 2.12 shows the possible difficulties faced 

by robot by using Lloyd’s algorithm in non-convex environments. 

 



22 

 

Figure 2.12: Example of Non-convex Environment (Breitenmoser et al., 2010). 

 

In Figure 2.12, certain elements are represented: the white circle 

indicates the initial position of the robot, the red circle represents the robot's 

final position, the red cross signifies the Centroidal Voronoi Tessellation 

(CVT), which serves as the goal or target and the grey region represents 

obstacles within the environment. Figure 2.12 (a) showed the robot 

successfully reaches the goal by following a reasonable path calculated based 

on geodesic distance. The region covered has an L-shape. Figure 2.12 (b) 

showed the region formed a U-shape, but the robot converged to a minimum 

point located far from the goal, which is within the obstacle. Figure 2.12 (c) 

This demonstrates a scenario where the coverage region contained a 

standalone obstacle, yet the robot became obstructed on its path to the goal. 

Figure 2.12 (d), similar to (a), this scenario involved a L-shaped region, but 

the robot departs from the region due to non-gradient sums (Breitenmoser et 

al., 2010). These issues emerged due to the constraints in non-convex 

environments of Voronoi coverage when employing geodesic distance. While 

geodesic distance aids in computing distances along boundaries and avoiding 

obstacles, as illustrated effectively in Figure 2.12 (a), it simultaneously 

introduces trade-offs and limitations. For an example robot get trapped in 

figure 2.12 (b). In this paper, the authors introduce a novel approach for 

achieving Voronoi coverage in non-convex environments. This approach is 

constructed upon the foundation of the Lloyd’s algorithm and the Tangent Bug 

algorithm (Breitenmoser et al., 2010). The numerical results are shown in 

figure below. 
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Figure 2.13: Voronoi Coverage in Non-convex U-shaped Environments 

(Obstacle is represented as Black Colour) (Breitenmoser et al., 

2010). 

 

From Figure 2.13, it shows that robots (blue circles) departed from 

initial position to current target position (red cross) and when it reached the 

target, Lloyd’s algorithm will compute new target for the robot until 

convergence is done. The green line represented trajectories of virtual 

generators.  

 The Lloyd’s algorithm has gained increasing popularity and there are 

many researchers are continually developing more advanced versions of 

Lloyd’s algorithm to adapt it to various situations. In 2019, a research explored 

the use of multiple sensor for multi-robot system in coverage task with Lloyd’s 

algorithm, particularly focusing on high order Voronoi (Jiang et al., 2019). 

Another recent research was carried out in 2021 which the authors introduced 

the modified version of Voronoi tessellation. The novel Voronoi tessellation 

was known as Obstacle -Aware Voronoi Cells (OVAC) This research 

integrated OVAC with the Lloyd’s algorithm to facilitate coverage control 

while ensuring obstacle avoidance and addressing low-level coverage issues 

(Abdulghafoor and Bakolas, 2021). In this year 2023, there was a novel 

approach to dynamic environments coverage based on Lloyd’s algorithm. This 

approach incorporates Density Function Path (DFP) and a series of Gaussian 

distribution functions. Authors presented this new approach because they 

motivated by multi-robot system is widely used in industrial field and some 

clusters in the working environment need attracted extensive attention by more 

repeated coverage by multi-robot systems (Yang et al., 2023). 
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2.2.3 Spanning Tree-Based Methods  

Spanning tree-based is an algorithm employed to ensure comprehensive 

coverage of every point within the approximate working environment. It finds 

application in various tasks such as floor cleaning and lawn mowing (Gabriely 

and Rimon, 2001). The fundamental working principle of Spanning tree-based 

algorithm (STC) is diving the environment into different cells corresponding 

to multi-robot systems and the robots will follow the spanning tree of graph 

induced by the cell while covering every point in environment precisely 

(Gabriely and Rimon, 2001). In this paper of 2001, authors presented and 

analysed three version of STC which are first version is off-line where robot 

possessed prior knowledge of the working environment, its pre-plans its 

coverage strategy based on this information. The second version was on-line 

where the robots utilized their sensor to detect obstacles in real-time and 

constructed the spanning tree of environments while covering the area. The 

third version was ant-like where robots operate without prior knowledge of the 

environment. However, as they traversed and covered the area, they left 

markings, akin to the trail left by ants. These markings guide their future 

coverage actions. 

 

 

Figure 2.14: (a) Grid Approximation of given Working Environment. (b) A 

Spanning Tree of Grid of given Working Environment (Gabriely 

and Rimon, 2001). 

 

 In 2008, there were authors presented spanning tree-based algorithms 

in terrain coverage algorithms. The authors introduced an innovative real-time 

online coverage strategy for multiple robots, designed to guarantee thorough 
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and dependable coverage of both terrain and unknown environments. Multi-

robots will leave marking in the terrain and these marking will sensed by all 

robots without direct communication with each other (Senthilkumar and 

Bharadwaj, 2008). In this study, the robots employed a Depth-First Search 

(DFS) approach to gradually create a spanning tree. This tree was used to track 

the cells that had been visited and explored during the application of the 

spanning tree-based algorithm. These explorations were recorded and 

represented in a matrix format, facilitating subsequent simulation and analysis. 

 

 

Figure 2.15: The Count of Steps taken and Cells covered in a Terrain Devoid 

of Obstacles (Senthilkumar and Bharadwaj, 2008). 

 

 

Figure 2.16: Generated Four Spanning Trees in a Terrain with Obstacles 

(Senthilkumar and Bharadwaj, 2008). 

 

Figure 2.15 clearly illustrates that the initial positions of the robots 

have a direct impact on the number of cells they can effectively cover. This 

observation highlights the necessity of optimizing the initial placement of the 

robots to enhance coverage efficiency. Figure 2.16 presents the resulting 

spanning tree generated by four robots operating in a terrain that includes 
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obstacles. The application of Depth-First Search (DFS) is shown to 

successfully achieve complete terrain coverage. 

 

2.3 Dynamic Obstacle Avoidance Techniques 

When handling dynamic obstacle in multi-robot coverage, it is crucial to 

consider both coverage control algorithms and dynamic obstacle avoidance 

techniques. In this sub-chapter, three dynamic obstacle avoidance techniques 

will be presented, discussed, evaluated and compared. 

 

2.3.1 Model Predictive Control (MPC) for Robot Navigation 

Model Predictive Control (MPC) is employed as an obstacle avoidance 

strategy for robots and autonomous vehicles, enhancing safety in unfamiliar 

environments (Park et al., 2009). The concept of model predictive control 

(MPC) is generating safe trajectories through non-linear model predictive 

frameworks. These frameworks employ simplified robot dynamics to forecast 

the robot's state over a specified look-ahead horizon (Park et al., 2009). The 

performance index should integrate with the local obstacle information to 

ensure safety by using a parallax-based method within the framework of non-

linear model predictive control. One of the strengths of MPC is its lookahead 

capabilities, which help reduce the risk of getting trapped in local minima, a 

common issue encountered with potential field-based methods. 

 In paper of Park et al in 2009, authors proposed an improved MPC 

scheme with a controller designated to navigate the vehicle safety to a 

predefined goal point while avoiding collision with unknown obstacle within 

the coverage environemnt (Park et al., 2009). The controller consists of two 

primary components which are first part is focusing on generating safe 

trajectories for vehicle based on MPC. The second step involves generating 

actual control inputs for the vehicle based on the safe trajectories generated in 

the first step. The tracking controller comprises two distinct controllers which 

are one for handling longitudinal dynamics and the other for managing lateral 

dynamics. The longitudinal dynamics is using PID controller while lateral 

dynamics is using LQR controller (Park et al., 2009).  
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Figure 2.17: Overall Layout of Controller for MPC (Park et al., 2009). 

 

The concept of a finite horizon, initiated at each time step, refers to 

the receding horizon principle (Park et al., 2009). This principle is crucial as it 

aids in generating safe trajectories by integrating sensor-based obstacle 

information with the performance index. The resulting trajectories may vary 

each time based on the obstacle information incorporated. While the distance-

based method is a common approach to penalize proximity to adjacent 

obstacles, this paper employs a parallax-based obstacle avoidance technique, 

which is chosen for its advantages over distance-based approaches. In 

parallax-based, although the distance between obstacles and vehicle is the 

same, but the parallax angle will be different depending on the angle. 

 

 

Figure 2.18: Comparing the Parallax Angles of Two Obstacles equidistant 

from the Vehicle's centre of Gravity, the Obstacle situated in front 

of the Vehicle exhibits a Larger Parallax Angle. (Park et al., 2009). 
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Figure 2.19: Simulation Results in a Static Environment with a Constant 

Velocity of 20 km/h: (a) Depicts the resulting trajectory, (b) Shows 

the input history, (c) Displays the heading history, (d) Illustrates 

the yaw rate history, (e) Demonstrates the longitudinal velocity 

history, and (f) Presents the instantaneous turning radius along the 

trajectory (Park et al., 2009). 

 

Figure 2.19 shows the results in numerical simulation in a static 

environment with constant velocity of vehicle. From Figure 2.19 (a), it is 

clearly shown that the vehicle is successfully avoid the obstacle. 

 

2.3.2 Artificial Potential Field 

Collision avoidance is the realm of high-level planning problem. There was an 

approach introduced by Khatib in 1986 which known as artificial potential 

field (Khatib, 1986). This method introduces a real-time obstacle avoidance 

strategy for mobile robots, rooted in the concept of artificial potential fields 

(Khatib, 1986). Artificial potential field is often referred as virtual force field 

approach. Artificial potential field find application in various domains 
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including path planning, coverage path planning and coverage control of 

multi-robot systems. Artificial potential field has the advantages of little 

calculation amount, simple model and high flexibility (Wu,Su and Li, 2019). 

The basic idea of artificial potential field is control the movement of robots in 

the environment as the motion in a virtual potential field (Pradhan et al., 2006). 

 Artificial potential field (APF) will construct different potential field 

towards the goal and obstacles in the working environment by controlling the 

agents or robots through calculating the resultant forces of all potential fields 

on the robots (Wu, Su and Li 2019). However, APF does have its limitations, 

one of which is its susceptibility to getting trapped in local minimum. To 

address these shortcomings, an improved version of APF was proposed in the 

paper by Wu, Su and Li in 2019. This enhancement focused on two main 

fields. Firstly, a gain constraint was added to the repulsive potential field 

model. Secondly, a random factor was introducted to avoid falling into local 

minimum. Additionally, the concept of B-spline curve was also introduced as 

optimization to tackle the issues associated with traditional APF. In this 

research, authors considered a scenario with homogeneous robots operating in 

a 2D area with the predefined goal and obstacles. Each robot had a unique 

initial start position, and a predefined goal and obstacles were present in the 

environment. A threshold distance between the goal and the robots was also 

established as part of the problem description. 

 

 

Figure 2.20: Schematic Diagram of the Initial Position of Robots, Position of 

Obstacles and Goal (Wu, Su and Li 2019). 
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The concept behind the artificial potential field approach involves the 

creation of virtual potential field within the space. This field will generate 

gravitational forces to the robots and influence the movement of robots 

towards the goals. However, when obstacles are present in the working 

environment, they generate repulsive forces on the robots to steer them away 

from potential collisions. The direction of movement of robots can be either 

deterministic or random, depending on the specific implementation. In the 

context of the research presented in this paper, the movement direction of 

multi-robot system is deterministic. It is determined by calculating the 

resultant force acting on each robot, which is the summation of gravitational 

forces pulling them towards their goals and repulsive forces pushing them 

away from obstacles (Wu, Su and Li 2019).  

 

 

Figure 2.21: Force Analysis of Robot in Potential Field (Wu, Su and Li 2019). 

 

In this paper, the authors had proposed an improved version of the 

artificial potential field. In the standard APF, the original repulsion model was 

positively correlated with distance of robots from the goal to ensure robots can 

still reach their goals even when they are close to them. In contrast, when 

distance of robots was far from the goal, the distance will have large gain on 

the repulsive force. If the angle between the gravitational force and the 

repulsive force is approximately 180 degrees, the oscillation of robots will 

occur. This is because when robot approaches an obstacle closely, a large and 

strong repulsive force will be generated due to APF, and this caused repulsive 

force is larger than the gravitational force. As a result, robot will move away 

from obstacle due to larger repulsive force. However, the gravitational force is 
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still acting towards the goal, leading the robot to return towards the obstacle, 

creating a repetitive back-and-forth motion until the angle becomes smaller, 

allowing the robot to bypass the obstacle smoothly (Wu, Su and Li 2019).  

To address this issue in the standard APF, authors proposed a 

constraint can be added in improved APF which acted as reduction to the 

angle between the repulsive force and gravitational forces rapidly. 

Additionally, the standard APF had a drawback which is robot will converge 

into local minimum. This problem arises because the attraction force by the 

goal and repulsive force by the obstacle are totally opposite in the angle of 

robot. This will cause the movement of robot limited to a straight line for 

round-trip motion (Wu, Su and Li 2019). In this case, robot cannot move to 

goal without any external force. To mitigate this problem, the authors 

incorporated a random factor into the resultant force acting on the robot. This 

random factor introduces variability in the direction and magnitude of the 

force, helping the robot escape from local minima and enabling more flexible 

movement (Wu, Su and Li 2019). 

 

 

Figure 2.22: Force Analysis after Adding with a Random Factor (Wu, Su and 

Li 2019). 

 

Authors had also proposed optimization of APF by using B-spline 

Curve which one of generalization of the Bezier curve. This B-spline curve 

can reduce variation, geometric invariance and convexity. The results of 

proposed algorithms are shown in numerical simulation. 
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Figure 2.23: Path for Three Algorithms (Wu, Su and Li 2019). 

 

 

Figure 2.24: Comparison of Angular Velocity for Three Algorithms (Wu, Su 

and Li 2019). 

 

 

Figure 2.25: Comparison of Evaluation Function of Three Algorithms (Wu, Su 

and Li 2019). 

 

Figure 2.23 provides a comparison of simulation results among APF, 

IAPF, and B-spline curve optimization. It is evident that IAPF effectively 

mitigates the oscillation issues compared to standard APF. However, when 
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comparing IAPF to B-spline optimization, it becomes clear that B-spline 

optimization offers further reductions in oscillations and overall improved 

performance. In Figure 2.24, the angular velocities of four robots (R1, R2, R3, 

and R4) are displayed. It can be observed that B-spline optimization results in 

the lowest angular velocity, indicating that it consumes less energy compared 

to the other methods. Figure 2.25 illustrates the evaluation function for the 

three algorithms: APF, IAPF, and B-spline. Both IAPF and B-spline exhibit 

significantly lower evaluation function values compared to APF. This 

demonstrates that IAPF and B-spline effectively enhance the performance of 

the APF approach. The proposed algorithms achieve smoother paths and 

reduce the angular velocity of robots by guiding them along smaller circles 

(Wu, Su, and Li, 2019). 

  

2.3.3 Velocity Obstacle (VO) Method 

Implementing real-time navigation for multi-robot systems in dynamic 

environments poses a significant challenge, largely because of the presence of 

dynamic obstacles. To navigate safely and avoid collisions with moving 

dynamic obstacles, it becomes essential to define controls that guide the robots 

effectively. Velocity Obstacle approach (VO) has been widely adopted for 

navigation among dynamic obstacles. The advantage of this approach is it 

included constraint to compute a collision-free path for a robot to operate in 

working environments among dynamic obstacles. Velocity Obstacle concept 

was introduced by Fiorini and Shiller in 1998 and has been extended to multi-

agent and multi-robot navigation (Fiorini and Shiller, 1998). 

 In 2009, a significant research paper extended the concept of Velocity 

Obstacle to accommodate robots with kinematic constraints. This work was 

undertaken by Wilkie, Van Den Berg and Manocha (Wilkie,Van Den Berg and 

Manocha, 2009). This research aims to generalized velocity obstacle 

approaches to ensure it is safely to adopt in navigation robots among dynamic 

obstacles. The difference between basic velocity obstacle and generalized 

velocity obstacle lies in their approach to predicting the future positions of 

agents or obstacles. In the basic velocity obstacle, the future position of agent 

or obstacle was assumed approximately as a circle centred at their current 

position. In contrast, the generalized velocity obstacle predicts future 
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trajectories of agent or obstacle based on their current behaviours and intention. 

The initial Velocity Obstacle formulation was designed for multi-agents to 

move along piecewise linear velocities and made an assumption that the 

dynamic obstacles move at a constant velocity. To assess the performance of 

this extension, the authors conducted experiments with various parameters. 

The experiment took place in open environments and the dynamic obstacles 

were distributed randomly within the region, each with random velocities. The 

results obtained from these experiments were used to evaluate the proposed 

approach. 

 

 

Figure 2.26: Results of Simulation based on Three Different Parameters 

(Wilkie,Van Den Berg and Manocha, 2009). 

 

Figure 2.26 illustrates the results of the experiment conducted to 

evaluate the proposed extension of Velocity Obstacle (VO). During the 

experiment, various parameters were adjusted, including the number of 

samples taken, the number of dynamic obstacles and the length of the time 

step. From the figure 2.26, it is shown that when the number of obstacles is 

increased, the required path will take longer in agent time. The second result 

obtained was when number of sample increases, the agent or robot will be 

easier to control the path to the goal. The third result is when the timestep 

increases, the success rate will drop (Wilkie,Van Den Berg and Manocha, 

2009). In this paper, authors successfully generalized the velocity concept for 
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robots to navigate among dynamic obstacles. However, there are some 

limitations which are the calculated minimum distance is by using numerical 

mean which will cause inaccuracy in computation.  The second drawback is 

that due to characteristics of velocity obstacles, the perfect solution may be not 

selected. In real scenarios, there will be existence of noise which will cause the 

distortion to the algorithm to calculate the position and distance of dynamic 

obstacles with robots. The most limitation is this velocity obstacle may not 

suitable for environment with local minima (Wilkie,Van Den Berg and 

Manocha, 2009). Despite these limitations, there have been various improved 

versions and extensions of Velocity Obstacle, including the Reciprocal 

Velocity Obstacle (RVO), which aim to address some of these challenges. 

 Reciprocal Velocity Obstacle (RVO) is aimed to create a collision-

free and oscillation-free motion with multi-robot or agent navigation. In paper 

of Juniastuti et al  in 2016, authors proposed a RVO with steering behaviour 

such as leader following behaviour(Juniastuti et al., 2016). 

 

 

Figure 2.27: Reciprocal Velocity Obstacle from Agent A to B (Juniastuti et al., 

2016). 

 

In RVO, the velocity is chosen from a valid velocity which near to a 

reference velocity. Valid velocity means the velocity which outside of current 

velocity of agent and also outside of obstacle velocity. This concept can be 

using in multiagent navigation through RVO. 
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Figure 2.28: Navigation of Multiagent through RVO (Juniastuti et al., 2016). 

 

Leader following meaning refers to a steering behaviour that used in 

multi-agent system where agents’ movement and motion directed to follow 

leaders. The concept of steering behaviour is originated from Craig W. 

Reynolds in 1999 (Reynolds, 1999). In this idea, it consists of two behaviours 

which are arrival and separation  which are followers will stay close only to 

leader without blocking the movement and accompanied by avoiding collision 

with other followers (Reynolds, 1999).  

 

 

Figure 2.29: Leader-following Behaviour (Juniastuti et al., 2016). 

 

In the simulation, authors had conducted the experiment in two 

situations which are crossroad scenarios and narrow passage scenarios. The 

results of simulation are shown in below. 
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Figure 2.30: Graph of Increase in Agents’ collision (Juniastuti et al., 2016). 

 

 

Figure 2.31: Graph of Simulation Time (Juniastuti et al., 2016). 

 

 

Figure 2.32: Graph of Reduction in Simulation Time by Leader-Follower 

Implementation (Juniastuti et al., 2016). 

 

The simulation results conclude that implementing a leader-follower 

approach in scenarios involving narrow passages and crossroads effectively 

reduces the time required for agents to navigate to their destinations. 

 In 2019, Douthwaite, Zhao, and Mihaylova conducted experiments to 

evaluate the effectiveness of two main extensions of Velocity Obstacle (VO) - 

HRVO and ORCA (Douthwaite,Zhao and Mihaylova, 2019). The evaluation 

focused on assessing the performance of these collision avoidance approaches 

in terms of increasing collision scenarios and the computation time required 

for collision avoidance. 
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Figure 2.33: Performance of Collision Avoidance Approaches 

(Douthwaite,Zhao and Mihaylova, 2019). 

 

From the Figure 2.33, Condition A assumes ideal sensing capabilities 

for the agents, where they have perfect knowledge about the available 

obstacles in their environment. In contrast, Condition B represents a more 

realistic scenario where the agents rely on sensors to detect obstacles. From 

the Figure 2.32, it is clearly shown that HRVO reduced the mean of collision 

compared to VO and RVO, but ORCA had the lowest mean of collision in 

condition A. When in condition B, due to uncertainty of sensors in robots, the 

effectiveness decreasing and cause the mean of collision increase rapidly and 

higher than HRVO. In condition B, RVO also exhibited a high mean of 

collisions. This was attributed to its drawback, which involves exacerbating 

the reciprocal corrections due to the uncertainty in obstacle trajectories 

(Douthwaite,Zhao and Mihaylova, 2019). 
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Figure 2.34: Computation Time against the Increasing Agent Number 

(Douthwaite,Zhao and Mihaylova, 2019). 

 

 

Figure 2.35: Number of Collision against the Increasing Agent Number 

(Douthwaite,Zhao and Mihaylova, 2019). 

 

2.4 Gaussian Distribution 

In recent years, there has been a significant increase in efforts from various 

industries and research fields to efficiently deploy multi-robot systems. These 

systems are composed of multiple robots operating within a designated domain 

such as search and rescue, agriculture and so on (Wang,Xie and Agrawal, 

2008). The primary objective of this distribution is focusing on achieving the 

complete coverage and optimize operation time of collection data. With 

different robots deployed, the coverage and operating time will be different 

which will cause the system not efficient and decrease the productivity. 

One of solution to distribute the multi-robot system in environment 

are Gaussian distribution. Gaussian distribution has advantages of solving the 

non-uniform dissipation of energy to deploy large scale of multi-robot. 
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Figure 2.36: Coverage Probability of Point (Wang,Xie and Agrawal, 2008). 

 

From the Figure 2.36, it is clearly shown that the two points which 

have the same distance will experience same deployment probability. The 

concentration of points around their mean value will be approximately 

estimated by using method of continuous probability distribution. The 

probability density function (pdf) is the mean value when the pdf is located in 

the peak of bell-shaped. 

 

2.5 Summary 

The comparison between overall coverage control algorithms and dynamic 

obstacle avoidance techniques is essential to determine which approach is 

better suited for solving the problem of modelling multi-robot systems for 

coverage tasks in dynamic environments. 

  

 

 

 

 

 

 

 



41 

Table 2.1: Comparison between Coverage Control Algorithms. 

Coverage Control 

Algorithm 

Method Using Advantages Disadvantages 

Broadcast control 

algorithm 

1. One to all communication 

2. Use a centre control unit to 

send signal to agents to perform 

coverage task 

1. Do not necessitate additional devices 

and energy for information 

transmission.  

2. Achieve convergence approximately. 

 

1. Inadvertently affect neighbouring 

agents, leading to unintended 

consequences  

2. Result in an unstable solution in 

specific motion-coordination tasks 

related to coverage 

Lloyd’s algorithm 1. Using centroid Voronoi 

tessellation to generate Voronoi 

partition and assign the centroid 

1. Using k-mean clustering to guide 

robot towards goal 

2. Can combine with Tangent Bug to 

perform obstacle avoidance 

1. Initially only can local optima 

convergence 

2. Tangent Bug only suitable for static 

obstacle 

Spanning Tree Based 

Algorithm 

1. Divide the environment into 

different cells corresponding to 

multi-robot systems 

2. Robots will follow the spanning 

tree of graph induced by the cell 

1. Traversed and covered the area, left 

markings, akin to the trail left by ants. 

These markings guide their future 

coverage actions. 

 

1. More suitable for single robot 

2. More suitable for coverage path 

3. Need modified if applied for coverage 

control 
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Table 2.2: Comparison between Dynamic Obstacle Avoidance Techniques. 

Obstacle  

Avoidance Techniques 

Method Using Advantages Disadvantages 

Model Predictive 

Control (MPC) 

1. Generating safe trajectories 

2. Generating actual control inputs 

for the vehicle based on safe 

trajectories that generated 

1. Look-ahead capabilities 

2. Avoid fall into local minima 

1. Involve with many calculation 

2. Process complex 

Artificial Potential 

Field (APF) 

1. Control the movement of robots in 

the environment as the motion in a 

virtual potential field 

2. Calculating the resultant forces of 

all potential fields on the robots 

1. Little calculation amount 

2. Simple model 

3. High flexibility 

1. Easy fall into local minimum 

2. Oscillation of motion occurs 

Velocity Obstacles 

(VO) 

1. Future position of agent or 

obstacle was assumed approximately 

as a circle centred at their current 

position 

1. Include constraint to compute a 

collision-free path for a robot to 

operate in working environments 

among dynamic obstacles 

1. Calculated minimum distance is by 

using numerical mean which will cause 

inaccuracy in computation 

2. Perfect solution may be not selected 

and cause more time consuming. 
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In summary, the chosen solution for addressing the coverage task 

with dynamic obstacles is a combination of the Lloyd’s algorithm with the 

Velocity Obstacle (VO) technique and known as Modified Lloyd’s algorithm 

with VO. This decision is based on several key factors which are Lloyd’s 

algorithm offers flexibility and simplicity in terms of modification and 

integration with other techniques, including Velocity Obstacle. This 

adaptability is crucial for tackling dynamic obstacle scenarios effectively. 

Lloyd’s algorithm's underlying concept is relatively straightforward to grab 

and implement, making it accessible for practical applications. There are many 

resources available for Lloyd’s algorithm, facilitating its implementation and 

optimization. Velocity Obstacle technique is chosen because it is explicitly 

designed for dynamic obstacle avoidance which suitable to solve the problem 

in this project. VO has various extensions like Reciprocal Velocity Obstacle 

(RVO), which can further enhance its capabilities and adaptability in complex 

modelling scenarios. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this section, the project methodology and work plan will be discussed. The 

methodology used for dynamic obstacle handling in multi-robot coverage will 

be divided into two parts which are first part is algorithm for coverage task and 

another part is dynamic obstacle avoidance technique. These components will 

later be integrated into a unified methodology and implemented in a multi-

robot system to carry out coverage tasks in the presence of dynamic obstacle. 

For the algorithm of coverage task, the algorithm used in this project is 

Lloyd’s algorithm due to its stability and flexibility. For the dynamic obstacle 

avoidance technique, the technique used will be Velocity Obstacle (VO). This 

is because VO is suitable for handling multi-robot with dynamic or moving 

obstacle in the working environment. The combination of both parts will be 

Modified Lloyd’s algorithm with VO. The project flow or work plan also will 

be presented in this section with the detail explanation. Solutions for each 

problem encountered will be stated and discussed in this section. 

 

3.2 Proposed Dynamic Obstacle Handling in Multi-Robot Coverage 

Algorithm 

Lloyd’s algorithm and Velocity Obstacle technique will be discussed in this 

section. The equation, problem setup or assumption will be stated to simply 

the simulation in order to get the results. The implementation of algorithms 

into dynamic obstacle handling in multi-robot coverage will be simulated in 

software MATLAB. 

 

3.2.1 Problem Setup and Assumptions 

The environment is assumed in a convex domain where D ⊂ ℝ², where ℝ is 

the space of dimensional vectors and 2 stands for 2-dimensional (Yang et al., 

2023). The function of the convex domain is to be piecewise continuous 

function. This is to ensure the output value will be finite and not near to zero 

(non-decreasing). The X is denoted as a convex and compact polygon filed to 
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be covered in dimensional vector and φ(q) represents the likelihood of target 

distribution in the environment which means density function. V = { V1, V2, ..., 

Vn } is the partition of X and ‖. ‖ is the Euclidean distance function (Yang et 

al., 2023). Each robot in the multi-robot system will has their own limitation 

on the aspects of communication and sensing capabilities. Therefore, the 

starting positions of robots and dynamic obstacle are assumed known in each 

reference coordinate system. All robots used is assumed to be differential drive 

robot and each of them are identical to each other. To address the limitations, 

the function of domain must differentiable and non-decreasing. The density 

function φ(q) also differentiable continuous function and is called as bounded. 

This is to ensure that density function has higher probability to obtain date in 

the designated domain.  

 

3.2.2 Gaussian Distribution 

The probability density function of a multivariate Gaussian distribution 

characterized by its covariance matrix and mean (Yang et al., 2023). 

 

𝑝𝑁(𝑥, µ, Σ) =
exp(−

1

2
(𝑥 − 𝜇)𝑇Σ−1( 𝑥 − 𝜇))

√det (Σ)(2𝜋)𝑘
 

(3.1) 

where, 

𝑝𝑁 = nth agent’s position in D 

µ = mean ∈ ℝ𝑘  

det (Σ) = determinant of the covariance matrix Σ 

x = data and x ∈ ℝ𝑘  

 

3.2.3 Centroid Voronoi Tessellation (CVT) 

First, to conduct centroid Voronoi tessellation, CVT, Voronoi partition must 

be conducted first to divide the working environment into designated number 

of working areas. The position of agents or robots in the X is represented by x 

= [ xT
1, xT

2, ..., xT
n ] and the Voronoi Partition is defined as V(x) = {V1 (x), ..., 

Vn (x) } (Yang et al., 2023). Voronoi Partition equation is, 
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𝑉𝑖(𝑥) = {𝑞 ∈ X ∣ ‖𝑞 − 𝑥𝑖‖ ≤ ‖𝑞 − 𝑥𝑗‖ , ∀ 𝑗 ≠ 𝑖  

(3.2) 

where, 

𝑉𝑖(𝑥) = Voronoi cell 

 

By denoted that density function, φ(q) is over X, φ(q) will become 

continuous and measurable. The centroid and mass of Voronoi cell are defined as 

below, 

 

𝑀(𝑉𝑖  (𝑥)) = ∫ 𝜑(𝑞)
𝑉𝑖 (𝑥)

𝑑𝑞 

(3.3) 

𝐶(𝑉𝑖  (𝑥)) =
1

𝑀(𝑉𝑖  (𝑥))
∫ 𝑞𝜑(𝑞)

𝑉𝑖 (𝑥)

𝑑𝑞 

(3.4) 

 

The point in Voronoi partition can be said as centroid if the centroid 

of 𝑉𝑖  (𝑥)  is point 𝑥𝑖 . The centroid Voronoi tessellation is successfully 

conducted.  

 

3.2.4 Density Function 

The density function is modelled by Gaussian Distribution Model (3.1), 

 

𝜑(𝑞) =  𝜑(𝑞, µ, Σ) =
exp(−

1

2
(𝑞 − 𝜇)𝑇Σ−1( 𝑞 − 𝜇))

√det (Σ)(2𝜋)𝑘
 

(3.5) 

 

Where, 

K = dimension of the function 

Σ = sigma or standard deviation 

𝜇 = mean 
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The density function is constructed based on the Gaussian distribution 

model (3.1) by its covariance matrix and mean. The density function 

constructed (3.5) is used to locate set of unknow multi-robot in environment to 

obtain specific parameters based on expectation.  

 

In this case, bivariate is used, therefore k = 2, 

𝑞 =  𝑥 = [

𝑥1

…
𝑥𝑘

] , 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑥 = [ 
𝑥
𝑦]  

(3.6) 

 

𝜇 = [

𝜇1

…
𝜇𝑘

] , 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝜇 = [ 
𝜇1

𝜇2
]  

(3.7) 

 

Σ =  𝜎 = [
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ] 

(3.8) 

 

By combing equation above which are 3.5, 3.6. 3.7 and 3.8, a new equation is 

formed, 

 

 𝑓(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦√1−𝜌2
exp (−

1

2(1−𝜌2)
[

(𝑥−𝜇𝑥)2

𝜎𝑥
2 − 2𝜌

(𝑥−𝜇𝑥)(𝑦−𝜇𝑦)

𝜎𝑥𝜎𝑦
+

(𝑦−𝜇𝑦)2

𝜎𝑦
2 ]) 

(3.9) 

 

3.2.5 Objective Function 

The objective function is the function to optimize the system, use to minimize 

or maximize to achieve the goal. The function that reduces cost is called cost 

function which is one type of objective function (Lee and Egerstedt, 2013). 

The cost function needs to be as low as possible to make the system become 

efficiency. The objective function is shown below, 
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𝐻(𝑝, 𝑃, 𝑡) = ∑ ∫ 𝑓 ‖𝑞 − 𝑝𝑁 ‖2  𝜑(𝑞, 𝑡)𝑑𝑞

𝑛

𝑖=1

 

(3.10) 

 

where, 

𝐻(𝑝, 𝑃, 𝑡) = The objective function to be evaluated, where: 

• p might represent the current position or state of a particular robot. 

• P might denote the set of all robots' positions or states. 

• t is the time variable. 

𝑛 = The number of robots or sensors involved. 

∫ = Integral over a specified domain, likely representing the entire coverage 

area. 

𝑓 =  A function or a constant factor, potentially representing the influence of 

distance or some form of weighting related to the efficiency of 

coverage or sensor effectiveness. 

𝑞 = A point in the coverage area over which the integration is performed. 

𝑝𝑁 = The position of the N-th robot at time t (possibly an error in your 

equation where you meant 𝑝𝑖  corresponding to the i-th robot). 

‖𝑞 − 𝑝𝑁 ‖2 =  The squared Euclidean distance between a point q in the 

coverage area and the position of the N-th robot, representing how 

well this point q is covered by robot N. 

𝜑(𝑞, 𝑡) =  A density function or a distribution over the coverage area, 

possibly representing the importance or priority of covering 

point q at time t. 

 

The coverage function is also one specific type of objective function. 

It is widely used in problems where primary focus is on measuring and 

optimizing coverage quality. The coverage function is shown below (Yang et 

al., 2023), 

 



49 

𝐻(𝑥; 𝜑(𝑞)) = ∑ ∫ ‖𝑞 − 𝐶 (𝑉𝑖  (𝑥))‖2 𝜑(𝑞)
𝑉𝑖 (𝑥)

𝑑𝑞

𝑛

𝑖=1

 

(3.11) 

 

where, 

x = set of agent positions 

𝜑(𝑞) = density function 

𝐶 (𝑉𝑖  (𝑥) = centroid of Voronoi cell 

When the density function is large value and multi-robot positions are 

distributed in this value, it will be corresponding that position q will be very 

small and this will cause coverage function be small as well. It can be 

concluded that when distribution of robot is closet to density function, 

coverage function is globally minimized (Yang et al., 2023). 

 

3.2.6 Lloyd’s Algorithm 

Lloyd’s algorithm can be illustrated as, 

 

𝑥𝑖
𝐿(𝑘 + 1) = 𝐶 (𝑉𝑖  (𝑥(𝑘)𝐿)) 

(3.12) 

 

where, 

𝑥𝑖
𝐿(𝑘) = position of ith agent after kth iteration  

 

 As outlined in Chapter 2, Lloyd's algorithm is employed to distribute 

a set of robots within a predefined bounded space to accomplish a specific 

coverage objective. In this project, Lloyd's algorithm leverages a density 

function constructed from the Gaussian Distribution Model (3.9) to compute 

the density of the space surrounding each robot's position. Using the calculated 

density function, equations 3.3 and 3.4 are employed to update the weighted 

centroid. The weighted centroid denotes the centre of mass of the space. 

Lloyd's algorithm shares a similar concept with the k-means clustering method, 

utilizing iterations to bring robots closer to the weighted centroid or their 

respectively goal positions (Du, Emelianenko, and Ju, 2006). After a specified 
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number of iterations, robots will reach their respective goals and accomplish 

complete static coverage. Employing a small step or gain helps reduce the 

differential in the initial distribution of robots and mitigates local optimization 

issues. While more advanced versions of Lloyd's algorithm have been 

proposed by other authors, as depicted in Appendix C, for the purposes of this 

project simulation, traditional Lloyd's algorithm is chosen over modified 

version due to its simplicity. The concept of Lloyd’s algorithm is based on 

Appendix A, B and C. 

 

3.2.7 Velocity Obstacle Technique 

Velocity Obstacle Technique (VO) is used to dynamic obstacle handling in 

multi-robot coverage. From the Lloyd’s algorithm, it is clearly shown that 

there is no collision avoidance in the algorithm, therefore velocity obstacle 

technique is implemented with Llyod’s algorithm to create a coverage 

algorithm with dynamic obstacle avoidance.  

 The kinematics of nonholonomic multi-robot systems are shown 

below, 

𝑥̇(𝑡) = 𝑢cos (𝜓(𝑡)) 

(3.13) 

𝑦̇(𝑡) = 𝑢sin (𝜓(𝑡)) 

(3.14) 

𝜓̇(𝑡) = 𝑟(𝑡) = 𝑢
tan 𝑢

𝐿
 

(3.15) 

 

where, 

u = forward speed of robots 

𝜓(𝑡), 𝑟(𝑡) = heading and heading rate 

The position of the robot in plane, p(t)  =  [x(t), y(t)]𝑇 

The velocity of robot in plane, v(t)  =  [𝑥̇(t), 𝑦̇(t)]𝑇 

 

 The kinematics of nonholonomic dynamic obstacles are shown below, 

𝑥̇𝑜(𝑡) = 𝑢𝑜cos (𝜓𝑜(𝑡)) 

(3.16) 
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𝑦̇𝑜(𝑡) = 𝑢𝑜sin (𝜓𝑜(𝑡)) 

(3.17) 

𝜓𝑜̇(𝑡) = 𝑟𝑜(𝑡) =  𝑢𝑜

tan 𝑢𝑜

𝐿
 

(3.18) 

where, 

𝑢𝑜 = forward speed of obstacle 

𝜓𝑜(𝑡), 𝑟𝑜(𝑡) = heading and heading rate 

The position of the robot in plane, 𝑝𝑜(t)  =  [𝑥𝑜(t), 𝑦(t)]𝑇 

The velocity of robot in plane, 𝑣𝑜(t)  =  [𝑥𝑜̇(t), 𝑦𝑜̇(t)]𝑇 

 

Assumed the forward speed of robots and dynamic obstacles are 

constant, where u > 0 and the heading rate is controlled and bounded by 

|𝑟(𝑡)|  ≤  𝑟𝑚𝑎𝑥  (Haraldsen,Wiig and Pettersen, 2020). The objective of 

dynamic obstacle avoidance is making the robots have an acceptable distance 

with obstacles to avoid collisions. The distance can be called as safety distance. 

By assumed that the velocity obstacle for robot A induced by dynamic 

obstacles B, is known as 𝑉𝑂𝐴|𝐵 . 𝑉𝑂𝐴|𝐵 is set of velocities that robot A cannot 

take, if it taken velocities from the set, it will result in collision with B. The 

Minkowski sum is generalized by expressing 𝑝𝐴 𝑎𝑛𝑑 𝑝𝐵 as the centre of A and 

B and 𝛽 is disc centred at 𝑝𝐵 which radius is equal to the sum of radius A and 

B. If obstacle B is static, there is a collision cone, C (Wilkie,Van Den Berg 

and Manocha, 2009). However, to simplify and generalized the simulation, 

cone C is translated by velocity of obstacle B, 𝑣𝐵 . The velocity obstacle 

equation is, 

 

𝑉𝑂𝐴|𝐵 = { 𝑣 |∃𝑡 > 0 ∶ : 𝑝𝐴 + 𝑡(𝑣 − 𝑣𝐵) ∈ 𝛽 

(3.19) 

 

The concept of velocity obstacle for kinematically constrained robot, 

velocity obstacle is achieved over a time interval. However this method cannot 

guarantee is collision free because robots will be at different positions when 

they achieved the selected velocities but the velocity obstacle is based on 
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initial position of robots to implement (Wilkie,Van Den Berg and Manocha, 

2009). To address this issue, the time interval can be decrease to a small value 

nut this may results in robots miss the feasible controls. Therefore, generalized 

velocity obstacle is used and the obstacle in control space is defined as, 

 

{ 𝑢 |∃𝑡 > 0 ∶ : ‖𝐴 (𝑡, 𝑢) − 𝐵(𝑡)‖ <  𝑟𝐴 +  𝑟𝐵} 

(3.20) 

 

where, 

u = set of inputs to the Kino dynamic model 

 

𝑡min(𝑢) = arg min 
𝑡>0

∣∣ 𝐴(𝑡, 𝑢) − 𝐵(𝑡) ∣∣ 

  (3.21) 

 

where, 

𝑡min(𝑢) = time at which the distance between centre of robot and obstacle is 

at its minimum for a given control input, u 

 

A finite time horizon is employed to restrict the application of the 

velocity obstacle to potential collisions that may occur within a specified 

time frame. The time horizon is 𝑡 ∈ [0, 𝑡𝑙𝑖𝑚]  (Wilkie,Van Den Berg and 

Manocha, 2009). The Velocity Obstacle algorithm can refer to Appendix D. 

The u* is the control for robot if the situation is without any moving 

obstacles. u* can be known as preferred control. Preferred control can be 

another algorithm. If robot face dynamic obstacles, it will switch to velocity 

obstacle control which is u. The concept of VO is based on Appendix D. 

 

3.2.8 Dynamic Obstacle Setup 

A dynamic obstacle is introduced in the MATLAB simulation. In order to 

simply the simulation and obtain observable results, only one dynamic 

obstacle is included, and its velocity and size are fixed. Additionally, the 

initial position of the dynamic obstacle remains constant rather than being 
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randomized at each start of the simulation. The trajectory of the dynamic 

obstacle's movement is represented by a fixed function, as shown below, 

 

𝑥(𝑡) =  𝑥0 + 𝑣𝑥  × 𝑡 

(3.22) 

 

𝑦(𝑡) =  𝑦0 +  𝑣𝑦  × 𝑡 

(3.23) 

 

Where, 

𝑥0 𝑎𝑛𝑑 𝑦0 = initial coordinates of the obstacle 

𝑣𝑥 and 𝑣𝑦  = velocities of obstacle in x and y directions respectively 

 

 The trajectory function incorporates random noise to enable the 

dynamic obstacle to move more aggressively. The random noise is controlled 

by the aggressiveness of dynamic obstacle which range from 1 to 10. This 

allows to test whether the robots can effectively avoid collisions when the 

dynamic obstacle is moving aggressively compared to when it moves non-

aggressively. If the dynamic obstacle moves out of the Bound space, it will 

stop moving. 

  

𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐(𝑡) =  𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +   𝑣 × 𝑡 + 𝑛 

(3.24) 

 

Where, 

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = initial position vector of the dynamic obstacle. 

𝑣 = velocity vector of the dynamic obstacle (constant speed). 

𝑡 = time variable 

𝑛 = noise vector (random noise x aggressiveness) 

 

3.2.9 Flowchart of Modified Lloyd’s Algorithm with Velocity Obstacle 

Figure 3.1 illustrates the flowchart for Modified Lloyd’s Algorithm with 

Velocity Obstacle. 
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Figure 3.1: Flowchart of Modified Lloyd’s Algorithm with Velocity Obstacle. 
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3.3 Computer Simulation 

The dynamic obstacle handling in multi-robot coverage will be tested and 

evaluated in simulation. Both the existing Lloyd’s algorithm and the Modified 

Lloyd’s Algorithm with Velocity Obstacle (VO) will be implemented and 

compared in terms of the average total number of collisions between robots 

and the dynamic obstacle. The setup of environment is shown in Figure 3.2, 

where initial positions of robots and dynamic obstacle are fixed. The Modified 

Lloyd’s Algorithm with VO will also be evaluated in two different scenarios to 

assess its functionality. In the first scenario, aggressiveness of dynamic 

obstacle will be varied. Figure 3.3 illustrates the setup environment of first 

scenario. The second scenario involves positioning the dynamic obstacle at 

different initial positions within the environment. Figure 3.4 display the setup 

of second scenario. These simulations will be conducted in MATLAB R2021a 

on Windows Laptop with AMD Ryzen 7 5800H with Radeon Graphics@ 3.20 

GHz processor with 16GB RAM. During these simulations, each robot will 

consider other robots in same environment as dynamic obstacle. In order to 

simplify the simulation, some assumptions are to be made. The shape and size 

of the robots will be denoted as circle while the goal of robots will be 

represented by a cross. The simulation is conducted in a 2-dimensional 

workspace. The core simulation technique employed will be the traditional 

Lloyd’s algorithm coupled with the velocity obstacle approach. If necessary, 

implementing a modified version of the Lloyd’s algorithm to enhance 

performance will be considered. The simulation pseudocode can refer 

Appendix E. 
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Figure 3.2: Setup Environment where the Starting Points of Robots and 

Dynamic Obstacle are Fixed. 

 

 

Figure 3.3: Setup Environment in Scenario 1. 
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Figure 3.4: Setup Environment in Scenario 2. 

 

3.4 Planning and Managing of Project Activities 

In this section, the whole planning and managing of project activities will be 

described. The planning project activities will be represented by Gantt Charts 

as shown in Table 3.1. This project will be carried out through two semesters; 

therefore, the project activities will be divided into two parts. The duration of 

project is total 28 weeks for both part 1 and part 2. 

 

3.4.1 Project Part 1 

The part 1 of the project is conducted in total 14 weeks. There are five main 

objectives needed to be accomplished as shown in Table 3.1. The five main 

objectives are Project Planning, Literature Review, Methodology and Work 

Plan, Progress Report Writing, and Presentation Slide Preparation. The task 

first starts with Project Planning which primarily focus project title decision, 

crafting problem statement, defining aim and objectives and engaging in 

continuous discussions and meetings with supervisor over a 12-week period. 

This to ensure to have a better understanding and knowledge about the topic of 

this project. The second objective, Literature Review, involved an exploration 

of multi-robot coverage algorithms, dynamic obstacle avoidance techniques, 

Gaussian distribution, and the construction of a comparison table to enhance 

the project's knowledge base. The Methodology and Work Plan are the third 
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objective which take approximately six weeks. This involves of research on 

Lloyd’s Algorithm, Velocity Obstacle, dynamic obstacle setup and flowchart 

constructing to guide the project algorithm implementation. Next, the four 

objective is Report Writing. Report writing take over twelve-week period 

while report checking takes two weeks to ensure good quality of report. Lastly, 

Presentation Slide Preparation. Presentation slide preparation and checking 

also encompassed a two-week period. This is to ensure the correctness of 

presentation slide in format and visual appeal. 

 

3.4.2 Project Part 2 

In contrast, part 2 of the project encompasses a more extensive scope, 

comprising five major components that surpass those in part 1. The first 

critical component involves the Development and Deployment of Modified 

Lloyd’s Algorithm with Velocity Obstacle for coverage with dynamic obstacle 

avoidance. This involves coding of Lloyd’s Algorithm, Velocity Obstacle. 

Additional Feature such as avoidance angle and future position prediction also 

included during the development. Next, the second part will be Results and 

Discussion which obtained from MATLAB simulations. These simulations 

serve the purpose of determining the functionality and stability of the 

developed algorithms, eventually contributing to the construction of a 

comprehensive model. The modified algorithm will be compared with existing 

ones and tested under two different scenarios. Additionally, the relationship 

between parameters in simulation results will be studied. This analysis phase is 

expected to take around three weeks and will guide the selection of optimal 

parameters for refining the algorithms. The third component involves Poster 

Preparation which takes around three weeks. The fourth element is Final 

Report Writing which scheduled from Week 3 to Week 14. Report checking 

will be completed within two weeks to ensure its quality. The fifth component 

is preparation of presentation slide. Presentation slide preparation based on the 

content of report and will undergo checking to ensure presentation slide is well 

prepared.  
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Table 3.1: Gantt Chart for Project Activities Part 1. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

1

1.1 25/6/2023 27/6/2023

1.2 28/6/2023 9/7/2023

1.3 25/6/2023 17/9/2023

2

2.1 28/6/2023 21/7/2023

2.2 21/7/2023 11/8/2023

2.3 11/8/2023 15/8/2023

2.4 11/8/2023 15/8/2023

3

3.1 23/7/2023 30/7/2023

3.2 2/8/2023 15/8/2023

3.3 16/8/2023 20/8/2023

3.4 21/8/2023 31/8/2023

4

4.1 3/7/2023 17/9/2023

4.2 13/9/2023 17/9/2023

5

5.1 12/9/2023 19/9/2023

5.2 19/9/2023 20/9/2023

Preparation Slide

Progress Report Writing

Methodology and Work Plan

Dynamic Obstacle Setup

Dynamic Osbatcle Avoidance 

Techniques

Literature Review

Compare algorithms in Table to do 

selection

Project Title

Report Checking

Presentation Slide

Discussion and Meeting with 

Supervisor

Research on Lloyd's Algorithm

Research on Velocity Obstacle

Flowchart of Modified Lloyd's 

Algorithm with Velocity Obstacle

Report Writing

Gaussian Distribution

No.

Multi-robot Coverage Control 

Algorithm

Slide Checking

BEGIN DATE END DATE

Project Planning

Crafting Problem Statement, Aims 

and Objectives

JUNE SEMESTER (FYP1)

Progress Flow

TASK TITLE
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Table 3.2: Gantt Chart for Project Activities Part 2. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

1

1.1 29/1/2024 19/2/2024

1.2 19/2/2024 11/3/2024

1.3 11/3/2024 18/3/2024

2

2.1 25/3/2024 31/3/2024

2.2 1/4/2024 7/4/2024

2.3 8/4/2024 14/4/2024

3

3.1 25/3/2024 6/4/2024

4

4.1 12/2/2024 28/4/2024

4.2 18/4/2024 28/4/2024

5

5.1 28/4/2024 30/4/2024

5.3 30/4/2024 1/5/2024

Preparation Slide

Slide Checking

Poster Preparation

Final Report Writing

Report Writing

Report Checking

Presentation Slide

Results and Discussions

Compare Existing with Modified 

Algorithm

Test Modified Algorithm under 

Two Scenarios

Study Relationship between 

Algorithm Parameters with Results

Poster

Progress Flow

Modified Lloyd'sAlgorithm with   

Velocity Obstacle Development

Coding Lloyd's Algorithm

Coding Velocity Obstacle

Adding Additional Features

No. TASK TITLE BEGIN DATE END DATE
JANUARY SEMESTER (FYP2)
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3.5 Summary 

This chapter elaborates on the methodology adopted, involving the utilization 

of both the Lloyd’s algorithm and Velocity Obstacles (VO). The initial 

implementation will focus on the conventional Lloyd’s algorithm to execute 

coverage tasks, streamlining the simulation process. Subsequently, Velocity 

Obstacles will be integrated with the Lloyd’s algorithm to empower the robots 

with obstacle avoidance capabilities. The deployment of multi-robot systems is 

achieved through a density function approach, employing Gaussian 

distribution principles. 

These simulations will be conducted within the MATLAB 

environment, employing distinct parameters. This encompasses variations in 

the aggressiveness and starting position of dynamic obstacle, the existing and 

proposed algorithm in terms of collision avoidance. The evaluation of 

simulation performance will entail a comparative analysis between these 

different scenarios. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter focuses on presenting and discussing the results obtained from 

the MATLAB simulations using the Modified Lloyd’s Algorithm with 

Velocity Obstacle (VO). This chapter involves comparing the results between 

the existing Lloyd’s algorithm without VO and Modified Lloyd’s Algorithm 

with VO in terms of average total number of collisions between multi-robot 

system and dynamic obstacle during coverage task. The comparison results 

will be presented in Section 4.2. Additionally, it will also discuss the Modified 

Lloyd’s Algorithm with VO in two different scenarios which are first scenario 

is varying aggressiveness of movement of dynamic obstacle and the second 

scenario is different starting position of dynamic obstacle. This discussion will 

be presented in Section 4.3. Furthermore, the impact of Modified Lloyd’s 

Algorithm with VO parameters on the simulation results in Section 4.4. 

 

4.2 Comparison Between Existing and Modified Algorithms 

In this section, the results obtained from the existing Lloyd’s algorithm 

without dynamic obstacle handling and Modified Lloyd’s Algorithm with 

Velocity Obstacle (VO) in terms of total average number of collisions are 

presented. Both algorithms were implemented using centroid Voronoi 

tessellation during the navigation of the robots, ensuring that the robots move 

towards their goal positions during the coverage task. 

The existing Lloyd’s algorithm was implemented without any 

dynamic obstacle handling. In this algorithm, the parameters such as number 

of robots, number of samples, number of iterations, boundary of workspace, 

velocity of robots, size of robots and initial position of robots were initialized. 

Additionally, the other parameters such as gain, number of Gaussian were also 

initialized, while default values were used for others. After initialization, the 

dynamic obstacle was set up. A dynamic obstacle was introduced with a fixed 

initial position and velocity and its trajectory is defined by a function which is 

shown in equation 3.22 and 3.23. During each iteration, the centroid of the 
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Voronoi was calculated based on the equation 3.3 and 3.4. The density 

function of the Bound space was calculated by the equation 3.9. During each 

iteration, the positions of robots were updated to move closer to the centroid of 

the Voronoi diagram based on the density distribution, allowing the robots to 

reach their respective goals. In this algorithm, no dynamic obstacle avoidance 

technique is introduced. The dynamic obstacle moves along its predefined 

trajectory while the robots move towards their goals during the coverage task. 

A collision counter graph was constructed to calculate the number of collisions 

that occur during the coverage task. The collision counter calculated collisions 

by setting a threshold; if the difference between the radii of the robots and the 

dynamic obstacle is lower than the threshold, it indicates a collision, and the 

collision counter records the collision and the iteration in which it occurred. 

On the other hand, Modified Lloyd’s Algorithm with VO, allowing it to handle 

the dynamic obstacle during the coverage task. Similar to the existing Lloyd’s 

algorithm, the parameters were all initialized. However, in this modified 

algorithm, the positions of robots do not move directly towards their goals or 

the centroid of the Voronoi diagram. This is because if robots were to directly 

avoid the dynamic obstacle and reach their goals, theoretically, they would 

remain stationary at their goal positions once they are reached. However, if the 

iterations are not yet finished or other robots have not reached their goals, the 

dynamic obstacle may still be moving and could collide with the stationary 

robots that have reached their goals. Therefore, instead of moving directly 

towards their goals, the robots now move in a circular shape around the goals 

during each iteration, while the dynamic obstacle remains within the bounds of 

the workspace. Once the iteration is nearly complete or the dynamic obstacle 

moves outside of the bounds of the workspace, the robots move towards their 

goals as usual instead of moving in a circular shape. Velocity obstacle is 

introduced to enable robots to avoid the dynamic obstacle during the coverage 

task. 

 In order to compare the performance of both algorithms in terms of 

handling dynamic obstacle which known as dynamic obstacle avoidance, each 

algorithm was simulated five times. They were evaluated based on average 

total number of collision number throughout the entire iteration. Both 

algorithms will be using same parameters as shown in Table 4.1. Besides that, 
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in all scenarios, each robot was assigned a unique colour visualization, as 

illustrated in Table 4.2. 

 

Table 4.1: Simulation Parameters for Both Algorithms. 

Parameters Value 

Bound space [0,0 ; 0,10 ; 10,10 ; 10,0 ] 

Initial position of robots [0.2,0.4 ; 0.4,0.5 ; 0.8,0.3 ; 0.2,0.6 ; 

0.7,0.65] 

Robot radius 1 

Robot velocity 1.5 

Obstacle radius 0.5 

Obstacle velocity 0.05 

Obstacle initial position [1, 4] 

Gain 0.4 

Iteration 500 

Aggressiveness  1 

Safety Margin 5 

 

Table 4.2: Colour of each Robot. 

Robots Colour 

Robot 1 Cyan 

Robot 2 Red 

Robot 3 Green 

Robot 4 Yellow 

Robot 5 Magenta 

 

4.2.1 Existing Lloyd’s Algorithm Results without Velocity Obstacle 

In this simulation, each robot started from different starting positions as 

indicated in Table 4.1, with objective of reaching their respective goal 

positions or centroid of the Voronoi diagram. Figure 4.1 illustrates the final 

positions of robots and their corresponding goals, and the position of dynamic 

obstacle after the iteration ends during the first simulation run. The 

visualization results align with the concept of Lloyd’s algorithm, as proposed 
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by Breitenmoser et al. in 2010. This algorithm involves three steps which are 

constructing the Voronoi partition to generate points for the goals of multi-

robot systems, computing the centroids of the Voronoi regions, and assigning 

new locations to the centroids. This process is repeated until Voronoi coverage, 

based on Lloyd’s algorithm, is completed (Breitenmoser et al., 2010). 

 

 

Figure 4.1: Final Positions of Robots and their Corresponding Goals, and the 

Position of Dynamic Obstacle after Iteration ends during the First 

Simulation Run. 

 

Figure 4.2 illustrates the density function curve obtained from this 

simulation. The x and y axes represent the spatial coordinates in the 

environment, while the z-axis represents the density function value of each 

point in the environment. This surface plot displays the density function as a 

continuous surface. The colour in the density function curve indicates the 

density value of each point. Warmer colours like red indicate higher density, 

suggesting areas of greater importance or priority for coverage. Cooler colours, 

such as blue, indicate lower density values. The colour gradient provides a 

visual representation of the variation in density across different regions of the 

environment. Areas with warmer colours suggest a higher concentration or 

density of robots, obstacles, or features, while cooler colours indicate lower 

density. 
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Figure 4.2: Density Function Curve in Existing Lloyd’s Algorithm. 

 

Figure 4.3 shows the position error graph. Position error graph depicts 

the difference in distance between robots and their respective goals. A higher 

value on the position error graph indicates that the average difference in 

distance between the five robots and their respective goals is greater. This 

suggests that the robots have not yet reached their goals, and the coverage task 

is incomplete. Conversely, a position error graph showing a value of zero 

indicates that the average difference in distance between the robots and their 

goals is zero, signifying that all robots have successfully reached their goals 

and the coverage task is complete. Figure 4.3 shows that the position error 

graph reached zero value which indicates that all five robots had reached their 

corresponding goal positions. Figure 4.4 shows the objective function graph. 

Objective function represents overall coverage error of the robots’ positions 

relative to their respective goals. Figure 4.4 demonstrates that the objective 

function drops from higher value to a lower value, followed by a relatively 

constant trend once a certain value is reached. This trend suggests that the 

robots are maintaining relatively stable performance in terms of achieving 

their goals and covering the area of interest. There is several info can be 

obtained from the objective function. If the objective function remains almost 

constant, it indicates that the robots have reached a stable area coverage. The 
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robots are consistently maintaining their positions to cover the entire 

environment of interest. Additionally, it also indicates that consistent goal 

achievement has been achieved. This suggests that the robots are consistently 

reaching their desired goals (centroid of Voronoi diagram) and maintaining 

their positions over time, demonstrating the effectiveness of the coverage 

control algorithm in guiding the robots towards their goals. 

 

 

Figure 4.3: Position Error Graph of Existing Lloyd’s Algorithm. 
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Figure 4.4: Objective Function Graph of Existing Lloyd’s Algorithm. 

 

Figure 4.5 shows that the collision counter graph from the first run 

simulation. It is obvious from the Figure 4.5 that Robot 2, 3 and 4 had collided 

with dynamic obstacle during the iteration of coverage task. Table 4.3 presents 

the average total number of collisions between five deployed robots and 

dynamic obstacle during the iteration. ‘Sim’ in table represents ‘Simulation’. 
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Figure 4.5: Total Number of Collisions between Five Robots and Dynamic 

Obstacle during Iteration in First Run Simulations in Existing 

Lloyd’s Algorithm. 

 

Table 4.3: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle during Iteration in First Run Simulation in 

Existing Lloyd’s Algorithm. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 41 39 37 41 37 39 

Robot3 11 7 8 4 2 6.4 ≈ 6 

Robot4 7 7 7 8 7 7.2 ≈ 7 

Robot5 0 0 0 0 0 0 

 

 It is obvious that using the existing Lloyd’s algorithm enables the 

complete and successful execution of the multirobot coverage task, as 

indicated by a position error of zero, suggesting that all robots have reached 

their respective goals. Additionally, the relatively constant objective function 

implies that the robots maintain stable performance in achieving their goals 

and covering the area of interest. This comprehensive coverage is further 

confirmed by the visualization of the simulation in Figure 4.1. However, 

without Velocity Obstacle implementation, existing Lloyd’s algorithm fails to 

handle dynamic obstacles during the coverage task. Consequently, robots 
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collide with the dynamic obstacle, posing a risk of damage and interruption to 

their tasks in real-world scenarios. In this simulation, only Robots 2, 3 and 4 

collide with dynamic obstacle, with the average total number of collisions of 

39, 6 and 7 respectively. This outcome arises because the dynamic obstacle's 

starting position is [1, 4], and its trajectory lies along the x-axis, intersecting 

the paths of Robots 2, 3, and 4, leading to collisions. The variability in 

collision numbers is attributed to the random noise introduced into the 

dynamic obstacle's trajectory, causing it to move unpredictably along its 

defined path. 

 

4.2.2 Modified Lloyd’s Algorithm Results with Velocity Obstacle 

In this simulation, Lloyd’s algorithm is configured with the same settings as 

described in section 4.2.1, and all other parameters followed those shown in 

Table 4.1 to ensure a fair comparison. However, in this iteration, the algorithm 

is enhanced with Velocity Obstacle implementation to handle dynamic 

obstacles. Velocity Obstacle enables robots to dynamically avoid obstacles 

during the coverage task. 

Figure 4.6 illustrates the final positions of robots and dynamic 

obstacle after the iteration in this modified algorithm for this first run 

simulation, while Figure 4.7 shows the density function curve obtained from 

this simulation. A notable observation is the less orderly trajectory of robots in 

Figure 4.6 compared to Figure 4.1. This difference arises because, in Figure 

4.1, robots move directly to their goal positions, whereas in Figure 4.6, robots 

move around their goal positions instead of directly advancing towards them 

to continuously navigate around potential obstacles identified by the Velocity 

Obstacle method. By comparing Figure 4.1 and 4.6, it is obvious that different 

robots cover different regions as indicated by the colours of the robots. This 

discrepancy occurs because, while some robots are avoiding the dynamic 

obstacle, others, unaffected by the obstacle, proceed to cover their designated 

regions first. Consequently, the density distribution varies, leading to different 

robots covering different regions. However, the overall shape and size of the 

covered area remain similar between Figures 4.1 and 4.6. Figure 4.7 displays a 

density function curve identical to Figure 4.2, as all settings and parameters 
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remain consistent. Consequently, the density curve exhibits the same pattern in 

both simulations. 

 

 

Figure 4.6: Final Positions of Robots and Dynamic Obstacle in Modified 

Lloyd’s Algorithm with Velocity Obstacle during Iteration in First 

Run Simulation. 

 

 

Figure 4.7: Density Function Curve in Modified Lloyd’s Algorithm with 

Velocity Obstacle during Iteration in First Run Simulation. 
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 Figure 4.8 illustrates the position error graph while Figure 4.9 shows 

the objective function graph during the first-time simulation. In Figure 4.8, it 

is evident that the position error graph does not reach zero but fluctuates 

before iteration 180, indicating continuous variations in the average distance 

between robots and the dynamic obstacle. This fluctuation arises because, 

before iteration 180, the robots navigate around their goal positions instead of 

moving directly towards them. Consequently, the average distance between 

robots and the dynamic obstacle varies as the robots adjust their trajectories. 

However, after iteration 180, the dynamic obstacle moves outside the Bound 

space, removing the obstacle from the robots' coverage environment. 

Consequently, the robots proceed to move directly towards their respective 

goal positions, resulting in the position error graph reaching zero. Figure 4.9 

shows the objective function obtained from the modified algorithm. Unlike the 

smooth curve observed in Figure 4.4, the objective function graph in Figure 

4.9 exhibits fluctuations before iteration 180. This irregularity is attributed to 

the dynamic obstacle's presence within the coverage environment, 

necessitating continuous Velocity Obstacle manoeuvres by the robots to avoid 

collisions. Additionally, before iteration 180, the robots cannot reach their goal 

positions directly but instead move in circular trajectories around them to 

maintain avoidance manoeuvres. However, after iteration 180, the objective 

function remains almost constant and smooth, indicating that the robots have 

achieved complete coverage of the area of interest. 
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Figure 4.8: Position Error Graph of Modified Lloyd’s Algorithm with 

Velocity Obstacle. 

 

 

Figure 4.9: Objective Function Graph of Modified Lloyd’s Algorithm with 

Velocity Obstacle. 
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 Figure 4.10 shows the total number of collisions between five 

deployed robots and dynamic obstacle during the first-time simulation. It is 

obvious that all five robots successfully avoid the dynamic obstacle during the 

coverage task. This outcome indicates that the Velocity Obstacle technique has 

effectively handled the dynamic obstacle in multi-robot coverage, enabling the 

robots to navigate around the obstacle without collisions. Table 4.4 presents 

the average total number of collisions between robots and the dynamic 

obstacle across five simulations using the modified Lloyd’s algorithm with 

Velocity Obstacle. ‘Sim’ in table represents ‘Simulation’. Remarkably, no 

collisions occurred between the robots and the dynamic obstacle in any of the 

five simulations. This consistent avoidance of collisions demonstrates the 

efficacy of the Velocity Obstacle approach in ensuring safe and collision-free 

multi-robot navigation in the presence of dynamic obstacle. 

 

 

Figure 4.10: Total Number of Collisions between Five Robots and Dynamic 

Obstacle during Iteration in First Run Simulation in Modified 

Lloyd’s algorithm with Velocity Obstacle. 
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Table 4.4: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle during Iteration in First Run Simulation in 

Modified Lloyd’s algorithm with Velocity Obstacle. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 0 0 0 0 0 0 

 

The results from the five simulations employing the Modified Lloyd’s 

algorithm with Velocity Obstacle demonstrate its success in achieving 

complete coverage. The position error remains at zero, and the objective 

function maintains smooth and constant values throughout the iterations. 

Moreover, the Velocity Obstacle technique effectively handles dynamic 

obstacle, as evidenced by all robots successfully avoiding collisions during the 

coverage task. These findings highlight the potential of Velocity Obstacle in 

real-world scenarios, where it can help prevent damage to robots by enabling 

collision avoidance. 

 

4.3 Modified Lloyd’s Algorithm with Velocity Obstacle under Two 

Different Scenarios 

In this section, the Modified Lloyd’s algorithm with Velocity Obstacle (VO) 

will be tested under two different scenarios and the results will be compared in 

terms of the average total number of collisions. This simulation aims to 

determine effectiveness of velocity obstacles in handling dynamic obstacles in 

multi-robot coverage across various scenarios. In the first scenario, the 

aggressiveness of dynamic obstacle will be increased from 1 to 5 and 9. In the 

second scenario, the starting position of dynamic obstacle will be changed. 

Each scenario will involve five simulations to ensure the accuracy of the 

results obtained. 
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4.3.1 Aggressiveness of Dynamic Obstacle (Scenario 1) 

In this section, the aggressiveness of the dynamic obstacle's movement will be 

varied. Higher aggressiveness implies that the dynamic obstacle will move 

more erratically along its trajectory, while lower aggressiveness indicates 

smoother movement without much deviation along the trajectory. The 

aggressiveness of the dynamic obstacle will be adjusted from the original 

value of 1 to 5 and 9. Each level of aggressiveness will undergo a total of five 

simulations to calculate the average value. Table 4.5 displays the average total 

number of collisions observed in the proposed Lloyd’s algorithm with velocity 

obstacle under an aggressiveness of 5, while Table 4.6 presents the 

corresponding data for an aggressiveness of 9. ‘Sim’ in each table represents 

‘Simulation’. 

 

Table 4.5: Average Total Number of Collisions when Aggressiveness of 

Dynamic Obstacle is 5. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 0 0 0 0 0 0 

 

Table 4.6: Average Total Number of Collisions when Aggressiveness of 

Dynamic Obstacle is 9. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 1 0 1 0 1 0.6 ≈ 1 

Robot2 2 2 2 1 1 1.6 ≈ 2 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 1 3 1 1 1 1.4 ≈ 1 
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From Table 4.5, it's evident that even with an increase in 

aggressiveness from 1 to 5, the velocity obstacle remains effective in handling 

the dynamic obstacle. This effectiveness stems from the future position 

prediction capability inherent in velocity obstacle methodology. By assessing 

the relative distance between robots and the dynamic obstacle, along with their 

relative velocities, velocity obstacle algorithms can calculate the time to 

collision. Leveraging this information, the algorithm can estimate the likely 

future movements of the dynamic obstacle. This predictive approach is akin to 

the methodology employed by Wilkie, Van Den Berg, and Manocha in their 

research, where they assumed the future positions of agents or obstacles to be 

approximately circular, centred at their current positions (Wilkie, Van Den 

Berg, and Manocha, 2009). The introduction of a safety margin in the velocity 

obstacle further enhances the ability of robots to avoid collisions, even with 

increased aggressiveness. The safety margin, also referred to as the safety 

distance, represents the minimum distance between robots and the dynamic 

obstacle necessary to prevent a collision. While a larger safety margin ensures 

safer avoidance of dynamic obstacles, it may lead to energy wastage or 

premature avoidance manoeuvres when the dynamic obstacle is still relatively 

distant. 

From Table 4.6, it is obvious that an increase in aggressiveness from 

1 to 9 results in collisions between robots and the dynamic obstacle. This 

occurs because, at an aggressiveness level of 9, the dynamic obstacle exhibits 

highly erratic movements at high speeds, leaving the robots utilizing the 

velocity obstacle technique insufficient time to calculate avoidance 

manoeuvres. Consequently, collisions occur between robots and the dynamic 

obstacle. However, as indicated in Table 4.6, the average number of collisions 

remains relatively small, ranging from 1 to 2. This is because, despite the 

increased aggressiveness, the velocity obstacle algorithm promptly calculates 

avoidance strategies, minimizing the occurrence of collisions. The results from 

this scenario demonstrate the efficiency of the velocity obstacle technique in 

handling dynamic obstacles, enabling robots to avoid collisions during the 

coverage task, even with heightened aggressiveness levels. However, when 

aggressiveness reaches excessively high levels, such as 9, the limited time 
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available for calculation may result in some collisions, albeit in small numbers. 

Nevertheless, once the calculations are completed, robots can successfully 

avoid the dynamic obstacle in subsequent iterations. 

Figure 4.11 shows the final position of robots and dynamic obstacle, 

along with their trajectory when aggressiveness level is 5. Similarly, Figure 

4.12 illustrates the results obtained when the aggressiveness level is 9. A 

noticeable difference in the trajectories of robots compared to Figure 4.6 is 

observed in both figures. This variation is attributed to the velocity obstacle 

algorithm guiding the robots in alternative directions to evade the dynamic 

obstacle, particularly under higher aggressiveness levels. Furthermore, Figure 

4.13 showcases the position error graph and objective function graph for the 

scenario with an aggressiveness level of 5, while Figure 4.14 presents the 

corresponding graphs for an aggressiveness level of 9. From both sets of 

graphs, it is evident that despite the increased aggressiveness of the dynamic 

obstacle, the multi-robot system still can achieve complete coverage while 

successfully avoiding collisions. 

 

 

Figure 4.11: Final Positions of Five Robots and Dynamic Obstacle along with 

their Trajectories when Aggressiveness is 5. 
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Figure 4.12: Final Positions of Five Robots and Dynamic Obstacle along with 

their Trajectories when Aggressiveness is 9. 

 

 

Figure 4.13: Position Error Graph and Objective Function Graph when 

Aggressiveness is 5. 
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Figure 4.14: Position Error Graph and Objective Function Graph when 

Aggressiveness is 9. 

 

4.3.2 Different Starting Positions of Dynamic Obstacle (Scenario 2) 

In this scenario, the dynamic obstacle is initialized with different starting 

positions during iterations, as indicated in Table 4.7. The parameters such as 

aggressiveness, number of iterations, and other parameters remain consistent 

with those presented in Table 4.1. The objective of this simulation is to 

examine the relationship between the starting position of the dynamic obstacle 

and the average total number of collisions between robots and the obstacle. By 

varying the starting position, this simulation aims to assess whether the 

velocity obstacle algorithm can effectively handle the dynamic obstacle and 

enable the robots to avoid collisions during the coverage task. Table 4.8 

presents the results of the average number of collisions between the five robots 

and the dynamic obstacle under Case 1 starting positions of the dynamic 

obstacle. Similarly, Table 4.9 displays the results under Case 2 starting 

positions. ‘Sim’ in each table represents ‘Simulation’. 

 

Table 4.7: Starting Positions of Dynamic Obstacle for Case 1 and Case 2. 

Cases Starting Position of Dynamic 

Obstacle 

1 [2, 3] 

2 [0, 8] 
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Table 4.8: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle under Case 1. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 0 0 0 0 0 0 

 

Table 4.9: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle under Case 2. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 5 0 4 0 5 2.8 ≈ 3 

 

 From Table 4.8, it is evident that even when the starting position of 

the dynamic obstacle changes, the robots can still avoid collisions effectively 

using the velocity obstacle technique. However, as shown in Table 4.9, Robot 

5 collided with the dynamic obstacle when its starting position was [0, 8]. This 

occurred because Robot 5's initial position was too close to that of the dynamic 

obstacle, resulting in an immediate collision at the start of the iteration. In such 

a scenario, the velocity obstacle algorithm did not have sufficient time to 

perform calculations before the collision. However, as the simulation 

progressed, Robot 5 managed to avoid further collisions with the dynamic 

obstacle, demonstrating the effectiveness of the velocity obstacle technique in 

handling dynamic obstacles during multi-robot coverage tasks. Consequently, 

the number of collisions remained relatively low.  
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Figure 4.15 shows the final position of robots and dynamic obstacle 

along with their trajectory in Case 1, while Figure 4.16 shows the results in 

Case 2. It is clearly shows that in Figure 4.15, the entire visualization is 

different compared to Figure 4.6. This is due to variation in the starting 

position of dynamic obstacle causing the density distribution different. This 

will result in different goal positions were assigned to robots, and causing the 

final position of robots is different as well as dynamic obstacle final position 

In Figure 4.16, the trajectories of robots were different compared to Figure 4.1. 

This is because the starting point of dynamic obstacle is different, and it will 

affect movement of robots. However, the robots are still able to avoid dynamic 

obstacle by using velocity obstacle technique. In Figure 4.16, the trajectory of 

Robot 5 forms a triangular shape. Initially, Robot 5 moves toward its goal and 

travels in a circular path. However, leveraging the future position prediction 

feature of the velocity obstacle technique, Robot 5 anticipates a collision with 

the dynamic obstacle in subsequent iterations if it remains in its current 

position, close to the goal. Consequently, Robot 5 adjusts its trajectory, 

moving backward at an avoidance angle and direction with the avoidance 

velocity calculated by the velocity obstacle algorithm, thereby successfully 

avoiding the dynamic obstacle during the coverage task.  

Figure 4.17 displays the position error graph and objective function 

graph for case 1, while Figure 4.18 illustrates the same graphs for case 2. In 

both figures, it is evident that complete coverage is achieved by all five robots, 

despite the variation in the starting position of the dynamic obstacle. This 

indicates that the multi-robots successfully accomplish full coverage while 

effectively avoiding the dynamic obstacle. 
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Figure 4.15: Final Positions of Five Robots and Dynamic Obstacle along with 

their Trajectories in Case 1. 

 

 

Figure 4.16: Final Positions of Five Robots and Dynamic Obstacle along with 

their Trajectories in Case 2. 
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Figure 4.17: Position Error Graph and Objective Function Graph obtained 

from Simulation in Case 1. 

 

 

Figure 4.18: Position Error Graph and Objective Function Graph obtained 

from Simulation in Case 2. 

 

4.4 Modified Lloyd’s Algorithm with Velocity Obstacle Parameters 

This section discusses the impact of parameters of modified algorithm on the 

simulation result. Various parameters, such as the number of iterations and 

safety margin, play crucial roles in determining the effectiveness of dynamic 

obstacle handling. Therefore, it is essential to carefully tune these parameters 

to enhance performance. In order to assess the influence of the number of 

iterations and safety margin parameters, the remaining parameters in the 

simulation are kept fixed based on Table 4.1. This approach allows for the 
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evaluation of how changes in the number of iterations and safety margin affect 

the simulation results. 

 

4.4.1 Number of Iterations 

In multi-robot coverage, the number of iterations is a crucial parameter that 

significantly influences algorithm performance. In Lloyd’s algorithm, the 

number of iterations determines the convergence of the algorithm. During each 

iteration, the centroids of Voronoi regions are recalculated based on the mean 

of the points assigned to each region. As successive iterations progress, these 

centroids gradually move towards an optimal position that minimizes the 

variance within each Voronoi region. Therefore, the number of iterations 

affects how accurately the centroids represent the centres of the Voronoi 

regions. Sufficient iterations allow ample time for the robots to converge 

towards the centroids of Voronoi regions, also known as goal positions. In 

each iteration, robots are constrained to move within specific steps, determined 

by the gain parameter. The algorithm should stop iterating when there is no 

change in the Voronoi assignment from one iteration to the next, indicating 

full convergence. Insufficient iterations may lead to incomplete convergence 

and failure to accomplish the coverage task. However, increasing the number 

of iterations also escalates computational costs. Each iteration involves 

computing distances between points and centroids and updating centroids 

based on the current Voronoi assignment, requiring more computation time 

and resources. The simulation was conducted with varying numbers of 

iterations as shown in Table 4.10. Figure 4.19 shows the final positions of 

robots and dynamic obstacle when the end of iteration in case 1 while Figure 

4.20 shows the same for case 2. Additionally, Figure 4.21 and Figure 4.22 

present the position error graphs and objective function graphs for Case 1 and 

Case 2 respectively. 

 From Figure 4.19, it is clear that with the 50 number of iterations, the 

robots have not enough time to reach their goal positions. They are forced to 

halt halfway when the iteration ends. This indicates that if the number of 

iterations is too low, Lloyd’s algorithm will fail to fully converge, leading to 

the failure of the multi-robot coverage task. Furthermore, the position error 

graph in Figure 4.21 not being zero and the objective function graph not 
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remaining constant in case 1 also indicate that the coverage task is incomplete, 

with the robots failing to reach their respective goal positions within 50 

iterations. 

 From Figure 4.20, it is evident that the robots have reached their 

respective goal positions. However, in Figure 4.22, it is clear that after 180 

iterations, the robots have achieved complete coverage, as indicated by the 

position error graph showing zero error and the objective function graph 

remaining constant value beyond 180 iterations. Thus, iterations beyond 180 

are considered excessive and would waste resources. However, to ensure 

complete coverage and full convergence of Lloyd’s algorithm, the iterations 

cannot stop immediately after 180 iterations. This is because parameters such 

as the dynamic obstacle's velocity, random noise, and predefined 

aggressiveness determine how quickly the dynamic obstacle leaves the Bound 

space. Only after the dynamic obstacle leaves the Bound space, the robots will 

proceed to move to reach their respective goal positions, rather than moving in 

a circular shape around them. Therefore, it is necessary to allow for an 

additional 2 to 3 times the number of iterations beyond 180, totalling 360 to 

540 iterations, to ensure full convergence of Lloyd’s algorithm and 

achievement of complete coverage. Iterations beyond 540 can be considered 

excessive, as they increase computational load, time, and resource usage 

unnecessarily. In Case 2, it can be inferred that an excessively large number of 

iterations, which is 1000 iterations, does not necessarily improve the solution; 

instead, it increases the computational power required. Although the number 

of iterations fluctuates in this simulation, it does not affect the effectiveness of 

the velocity obstacle technique. It still allowing all robots to successfully avoid 

the dynamic obstacle during the coverage task in both Case 1 and Case 2. 

  

Table 4.10: Number of Iterations in Case 1 and Case 2. 

Cases Number of Iterations 

1 50 

2 1000 
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Figure 4.19: Final Positions of Five Robots and Dynamic Obstacle with 

Corresponding Trajectories at the End of Iteration in Case 1. 

 

 

Figure 4.20: Position Error Graph and Objective Function Graph obtained 

from Simulation in Case 1. 
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Figure 4.21: Final Positions of Five Robots and Dynamic Obstacle with 

Corresponding Trajectories at the End of Iteration in Case 2. 

 

 

Figure 4.22: Position Error Graph and Objective Function Graph obtained 

from Simulation in Case 2. 

 

4.4.2 Safety Margin 

Safety margin, also known as the safety distance between robots and dynamic 

obstacles, plays a crucial role in ensuring effective collision avoidance. It 

provides a buffer zone that allows robots and obstacles to avoid collisions even 

if they are not on a direct collision course. By incorporating a safety margin 

into the Velocity Obstacle technique, robots have sufficient time and space to 
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steer away from dynamic obstacles, reducing the risk of collision. The 

adjustment of safety margin is based on uncertainty in robots’ motion, 

dynamic obstacle motion, aggressiveness and so on. By introducing safety 

margin into velocity obstacle, it ensures that robots start avoiding obstacle well 

before a potential collision would occur. However, the size of safety margin 

should be adjusted wisely based on requirements of scenario. Higher safety 

margins provide more conservative avoidance behaviour, while smaller safety 

margins allow robots to navigate closer to obstacles before initiating avoidance 

manoeuvres. The optimal safety margin depends on various factors such as 

robot velocity, dynamic obstacle velocity, and the aggressiveness of the 

dynamic obstacle.  

In this section, simulations are conducted based on the safety margin 

values provided in Table 4.11. Other parameters remain consistent with those 

listed in Table 4.1. Table 4.12 presents the average total number of collisions 

between robots and dynamic obstacles in Case 1, while Table 4.13 shows the 

corresponding results for Case 2. ‘Sim’ in each table represents ‘Simulation’. 

 

Table 4.11: Safety Margin for Case 1 and Case 2. 

Cases Number of Iterations 

1 1 

2 20 

 

Table 4.12: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle under case 1. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 2 1 1 3 2 1.8 ≈ 2 

Robot5 25 24 28 25 23 25 
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Table 4.13: Average Total Number of Collisions between Five Robots and 

Dynamic Obstacle under case 2. 

Robots 

 

Number of Collisions 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Average 

Robot1 0 0 0 0 0 0 

Robot2 0 0 0 0 0 0 

Robot3 0 0 0 0 0 0 

Robot4 0 0 0 0 0 0 

Robot5 0 0 0 0 0 0 

 

 

Figure 4.23: Final Positions of Five Robots and Dynamic Obstacle with 

Corresponding Trajectories at the End of Iteration in Case 2. 

 

From Table 4.12, it's evident that a very small safety margin leads to 

collisions, with a significant number of collisions occurring, such as 25 

collisions for Robot 5. However, Table 4.13 indicates that with a higher safety 

margin, the average number of collisions is zero, demonstrating successful 

avoidance of dynamic obstacles by all robots using the Velocity Obstacle 

technique.  

However, setting the safety margin to a very high value can have 

adverse effects. Figure 4.23 shows the final positions of robots and dynamic 

obstacle with their trajectories. It is clear that in Figure 4.23, the trajectories of 
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robots are not smooth as trajectories of robots in Figure 4.6. This is because 

safety margin is excessively large and causing robots need to continuously 

maintain a large distance between robots and dynamic obstacle. Therefore, 

when dynamic obstacle moves closer to robots, robots will avoid by using 

velocity obstacle in a large distance at all times which is not necessarily, 

leading to unnecessary energy and time consumption. In order to handle the 

dynamic obstacle, a small distance is enough to avoid dynamic obstacle. A 

high value of safety margin allows the particles to move more freely and have 

more space and time to avoid dynamic obstacle which at the same time 

decrease the chance of collision. However, it should be noted that higher 

safety margin may cause the robots to overreact the distance and increase the 

power, time and resources required. On the other hand, a low value of safety 

margin can lead to lesser waste of power, energy and time but has higher risk 

in collision occurred between robots and dynamic obstacle during the coverage. 

 

4.5 Summary 

The performance for both existing Lloyd’s algorithm without Velocity 

Obstacle and Modified Lloyd’s algorithm with Velocity Obstacle (VO) was 

evaluated in terms of average total number of collisions between robots and 

dynamic obstacle and achievement of complete coverage. The Modified 

Lloyd’s algorithm with VO was also further assessed under two different 

scenarios which are aggressiveness and different starting positions of dynamic 

obstacle, with a focus on average total number of collisions and complete 

coverage by referring to position graph and objective function graph.  

The biggest difference between two algorithms is Modified Lloyd’s 

algorithm is implemented with Velocity Obstacle, which is a dynamic obstacle 

avoidance technique, it can help to handle dynamic obstacle and enable robots 

avoid it during multi-robot coverage. From the results obtained, existing 

Lloyd’s algorithm that lack of VO, it can still achieve complete coverage, but 

during the coverage task, robots will collide with dynamic obstacle. On the 

other hand, Modified Lloyd’s algorithm with VO outperforms and no 

collisions occurred within five simulations. Besides that, the impact of 

algorithm parameters on the simulation results were examined. It revealed that 

modified algorithm has the better performance in terms of achieving of 
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complete coverage and zero average number of collisions with number of 

iteration 500 and safety margin of 5.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, the project has successfully achieved its aim and objectives. A 

comprehensive literature review of existing algorithms for dynamic obstacle 

handling in multi-robot coverage has been conducted, accompanied by a 

summary comparison table. Furthermore, a Modified Lloyd’s Algorithm 

incorporating Velocity Obstacle has been successfully developed. Its 

performance had been evaluated using MATLAB. This project aimed to solve 

the challenges that faced by multi-robot during coverage task, particularly 

collisions with dynamic obstacles. The significance of this project stems from 

the increasing demand for multi-robot systems across various fields, 

necessitating a solution to mitigate collision risks. To achieve this goal, a 

modified version of Lloyd’s algorithm is introduced which is Modified 

Lloyd’s algorithm with Velocity Obstacle (VO). Unlike the existing Lloyd’s 

algorithm which focuses solely on achieving complete coverage without 

dynamic obstacle avoidance, the modified algorithm with VO incorporates 

calculations to determine the time to collision. This calculation involves 

assessing the relative distances and velocities of robots with respect to 

dynamic obstacles. By utilizing the time to collision and the calculated 

avoidance direction, an avoidance velocity is calculated and selected. The 

algorithm determines an avoidance velocity, allowing robots to steer clear of 

dynamic obstacles effectively. Moreover, VO anticipates the future positions 

of dynamic obstacles in subsequent iterations, enabling the algorithm to 

compute the future distance and pre-emptively plan avoidance manoeuvres. 

The concept of safety margin is integral to this approach, as it determines the 

minimum safe distance between robots and dynamic obstacles. This ensures 

that robots have sufficient time to execute avoidance manoeuvres using VO 

effectively. Overall, the Modified Lloyd’s Algorithm with Velocity Obstacle 

presents a comprehensive solution to the challenge of dynamic obstacle 
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avoidance in multi-robot systems, enhancing safety and efficiency during 

coverage tasks. 

 Simulations were conducted using both existing and modified Lloyd’s 

algorithm in same scenario, repeated for five times. The results demonstrated 

that modified Lloyd’s algorithm with VO outperformed the existing Lloyd’s 

algorithm without VO in terms of average total number of collisions between 

multi-robot and dynamic obstacle. Furthermore, the Modified Lloyd’s 

algorithm was also simulated under two different scenarios which are 

aggressiveness and different starting positions of dynamic obstacle with five 

simulations each. The results show that even in different scenarios, modified 

Lloyd’s algorithm with VO still can performed well and effectively handling 

dynamic obstacles by enabling multi-robots to avoid them. Moreover, the 

impact of modified Lloyd’s algorithm with VO parameters on simulation 

results was also evaluated. It was found that number of iterations cannot be too 

less, as this would prevent achieving complete coverage. At the same time 

having too many iterations would lead to a waste of computational resources. 

Thus, the suitable number of iterations for the modified Lloyd’s algorithm 

with VO was determined to be between 360 and 540 iterations. Additionally, it 

was observed that the modified Lloyd’s algorithm with VO achieved better 

performance with a safety margin of 5. Overall, the findings of this project 

suggest that the modified Lloyd’s algorithm with VO is capable of effectively 

handling dynamic obstacles during multi-robot coverage, allowing robots to 

avoid dynamic obstacles and achieve complete coverage. 

 

5.2 Recommendations for Future Work 

This project can be improved in many ways due to the project’s limitations to 

enhance its effectiveness. For instance, incorporating the orientation of robots 

during the coverage task would make the simulation more realistic. In real-life 

scenarios, robots must be oriented appropriately to detect dynamic obstacles 

and avoid collisions. To simulate this accurately, sensors with a 360-degree 

viewing angle could be attached to the robots. This would enable them to 

detect dynamic obstacles from all directions, ensuring more comprehensive 

coverage and collision avoidance. Additionally, while the project focused on a 
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single dynamic obstacle due to time constraints and complexity considerations, 

incorporating multiple dynamic obstacles would provide a more realistic 

simulation. Dealing with multiple dynamic obstacles introduces additional 

challenges, such as coordinating avoidance manoeuvres and optimizing 

navigation paths. However, addressing these challenges would lead to a more 

robust algorithm capable of handling complex real-world scenarios involving 

multiple moving obstacles. 

 Additionally, Velocity Obstacle (VO) is a dynamic obstacle 

avoidance technique which specifically designed to avoid dynamic obstacle. 

However, when confronted with static obstacles, VO may not be as effective. 

In the presence of static obstacles, VO may cause robots to move very slowly 

or nearly come to a stop while introducing avoidance angles and directions. 

This can result in a large number of iterations being required for successful 

obstacle avoidance, which is not an efficient approach. Increasing the 

avoidance angle and direction could potentially reduce the number of 

iterations needed, but it may also risk driving robots out of the Bound space if 

they are facing a static obstacle behind them. To address static obstacles, 

alternative obstacle avoidance techniques such as Artificial Potential Field 

(APF) or other methods suitable for static obstacles (Khatib, 1986) can be 

integrated. These techniques can complement VO in scenarios involving both 

static and dynamic obstacles, ensuring effective obstacle avoidance while 

minimizing computational overhead.  

 Moreover, the algorithm’s performance in a physical environment or 

real-life environment remains untested, as it has only been simulated and 

evaluated in simulations by using MATLAB. Thus, the performance of the 

algorithm can be further evaluated in the physical environment with Robotics 

Operating System (ROS). Furthermore, it is also important that for an efficient 

dynamic obstacle handling in multi-robot coverage need to considered 

multiple aspects such as smoothness of trajectory, execution time, task 

allocation and so on. In this project, only dynamic obstacle handling and 

avoiding is considered due to time limitation. 

 Therefore, recommendations for future work will be involving 

introducing a greater number of dynamic obstacles and robots, implementing 
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static obstacle avoidance into algorithm, adding 360-degree viewing sensors 

and extending the algorithm to physical experiment using Robotics Operating 

System (ROS) to validate its performance and functionality in real-world 

applications.
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Appendix B: Traditional Lloyd’s Algorithm(Yang et al., 

2023). 

APPENDICES 

 

 

Appendix A: Structure chart of the deployment strategy of Lloyd’s algorithm 

(Yang et al., 2023). 

 

 

 

 

Algorithm 1 Traditional Lloyd’s Algorithm 

Require: 

Domain X, initial agents’ position are set to x(0), the threshold is set 

to 𝜖. 

Ensure: 

 The set of agents’ position by x = [ xT
1, xT

2, ..., xT
n ] 

1. Let 𝑒𝑚𝑎𝑥 = 𝜀  

2. Compute 𝑒𝑖 =   |𝐶 (𝑉𝑖  (𝑥)) −  𝑥𝑖|  

3. while 𝑒𝑖 >  𝜖 𝒅𝒐 

4.       Generate Voronoi Partition V(x) based on Equation 3.3 

5.       for i = 1: n do 

6.             Compute 𝑀(𝑉𝑖) and 𝐶(𝑉𝑖  ) 

7.             Update 𝑥𝑖 =  𝐶(𝑉𝑖  ) 

8.             Compute 𝑒𝑖 =  ‖𝑥𝑖 −  𝑐𝑖‖ 

9.       end for 

10.       Update 𝑒𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑒𝑖 

11.  end while 

12.  return x = [𝑥1
𝑇, … , 𝑥𝑛

𝑇]𝑇 
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Appendix C: An Advanced Version of Lloyd’s Algorithm (Yang et 

al., 2023). 

 

 

Algorithm 2 A Modified Lloyd’s Algorithm 

Require: 

Domain X, number of agents n, time step ∆𝜏, coefficient of Gaussian 

function G, a, b α, r, 𝜖  ,initial agents’ position are set to x(0), the 

threshold is set to 𝜖, k is number of iterations while K is upper limit 

of iterations. 

Ensure: 

 The set of agents’ position by x = [ xT
1, xT

2, ..., xT
n ] 

1. Let 𝑒𝑚𝑎𝑥 = 𝜀 , k = 0, m = 0 

2. Find 𝜇0, Σ0 and let 𝜑(𝑞):= 𝜑(𝑞, 𝜇0, Σ0) 

3. while 𝑘 <  𝐾 𝒅𝒐 

4.       while 𝑒𝑚𝑎𝑥 > 𝜀 do 

5.           Let t = 𝜏𝑘 = k∆𝜏 

6.           Compute Φ(𝑞, 𝑡) based on 𝜑(𝑞) 

7.            Replace density function with Φ(𝑞, 𝑡) when t = 𝜏𝑘 

8.           Generate Voronoi Partition V(x) based on Φ(𝑞, 𝑡) 

9.           for i = 1: n do 

10.             Compute 𝑀(𝑉𝑖) and 𝐶(𝑉𝑖  ) 

11.             Update 𝑥𝑖 =  𝐶(𝑉𝑖  ) 

12.             Compute 𝑒𝑖 =  ‖𝑥𝑖 −  𝑐𝑖‖ 

13.           end for 

14.           Update 𝑒𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑒𝑖 

15.       end while 

16.       Update k = k+1 (increment by 1) 

17. end while 

18.  return x = [𝑥1
𝑇, … , 𝑥𝑛

𝑇]𝑇 
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Appendix D: Velocity Obstacle to Find Best Feasible Control (D. Wilkie, 

J. Van Den Berg and D. Manocha, 2003). 

 

 

Algorithm 3 Velocity Obstacle to find best feasible control. 

1. for i = 0: n do  

2.       u ← sample controls from set of all controls U 

3.       𝑡𝑙𝑖𝑚  ← sample time limit ∈ (0, max) 

4.       free ← true 

5.       min ← ∞ 

6.       for all Moving Obstacles B do 

7.           let D(t) = distance between A(t,u) and B(t) 

8.           𝑡𝑚𝑖𝑛  ← solve min (D(t)) for t ∈ [0, 𝑡𝑙𝑖𝑚] 

9.           d ← D (𝑡𝑚𝑖𝑛) 

10.           if d < 𝑟𝐴 + 𝑟𝐵 then 

11.                free ← false 

12.           end if 

13.         end for 

14.         if ‖𝑢 −  𝑢∗‖ < min then 

15.             min ←  ‖𝑢 −  𝑢∗‖ 

16.             argmin ← u 

17.          end if 

18.  end for 

19.  return argmin 
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Appendix E: Pseudocode of Modified Lloyd’s Algorithm with Velocity 

Obstacle. 
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Appendix F: Command Window that shows Total Number of Collisions 

between Robots and Dynamic Obstacle. 

 

 




