

Plant Disease Detection using Deep Learning

Cheng Jung Yin

UNIVERSITI TUNKU ABDUL RAHMAN

Plant Disease Detection using Deep Learning

Cheng Jung Yin

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronic

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Cheng Jung Yin

ID No. : 19UEB02674

Date : 15 May 2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PLANT DISEASE DETECTION

USING DEEP LEARNING” was prepared by CHENG JUNG YIN has met

the required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Mechatronic Engineering with Honours at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date : 15 May 2024

Signature :

Co-Supervisor :

Date : 15 May 2024

Tham Mau Luen

kwan_
Text Box
Kwan Ban Hoe

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, Cheng Jung Yin. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Ir.Ts. Dr. Tham Mau Luen and Dr. Kwan Ban Hoe for their invaluable advice,

guidance, technical support and their enormous patience throughout the

development of the research.

In addition, I would also like to express my gratitude to my loving

parents and course mate who had helped and given me encouragement,

motivation and support while I have been conducting this project.

v

ABSTRACT

The success of deep learning (DL) has greatly promoted the use of computer

vision technology in smart agriculture. Many developments in this area are

focusing on timely and accurate recognition of plant disease, with the goals of

increasing crop productivity and fostering economic growth. This project aims

to explore the potential of two popular DL architectures namely You Only Look

Once (YOLO) and transformer for recognizing 70 distinct classes of plant leaf

health conditions. Specifically, a total of six models namely Vision

Transformer-B/16 (ViT-B/16), ViT-B/32, ViT-L/16, YOLOv8n-cls,

YOLOv8s-cls and YOLOv8m-cls are implemented and compared. In the

training stage where graphics processing unit (GPU) is utilized, ViT-B/32 yields

the shortest training time, which is at least 80% faster than all YOLOv8-cls

variants. However, when deploying these trained models on a central processing

unit (CPU), YOLOv8 models consistently outperform ViT algorithms in terms

of speed and accuracy. Experiment results indicate that YOLOv8n-cls attains

the highest frames per second (FPS) of 31, whereas YOLOv8m-cls achieves a

test accuracy of 97.7 %. Such findings suggest that YOLOv8 appears to be more

promising for real-time object classification tasks..

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 4

1.3 Problem Statement 5

1.4 Aim and Objectives 5

1.5 Scope and Limitation of the Study 6

1.6 Contribution of the Study 8

1.7 Outline of the Report 9

2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Computer Vision and Machine Learning 10

2.3 Steps in Machine Learning Workflow 13

2.3.1 Data Collection (Image Acquisition) 13

2.3.2 Pre-processing of Dataset 15

2.3.3 Data Splitting 17

2.3.4 Model Selection 18

2.3.5 Training of Model 20

2.3.6 Model Evaluation and Finalization 21

vii

2.4 Application of Shallow Learning on Plant Disease

Detection 25

2.4.1 Support Vector Machine Classifier 25

2.4.2 Artificial Neural Network 29

2.5 Application of Deep Learning in Plant Disease

Detection 32

2.5.1 Introduction to Convolutional Neural

Network 32

2.5.2 CNN in Plant Disease Detection 35

2.5.3 YOLO in Plant Disease Detection 40

2.5.4 Research History on Application of YOLO 41

2.6 Introduction to Vision Transformer 45

2.6.1 ViT Architecture: Patch Embedding 46

2.6.2 ViT Architecture: Linear Embedding and

Position Embedding 47

2.6.3 ViT Architecture: Transformer Encoder

Layer 47

2.6.4 Transformer-Based Model in Plant Disease

Detection 48

2.7 Summary 52

3 METHODOLOGY AND WORK PLAN 56

3.1 Introduction 56

3.2 Dataset 56

3.2.1 Data Augmentation 57

3.3 Application of Vision Transformer in Image

Classification 58

3.3.1 Training Hyperparameter on Vision

Transformer 58

3.3.2 ViT models Variants 59

3.4 Application of YOLO in Image Classification 63

3.4.1 Training hyperparameter of YOLOv8 63

3.4.2 YOLOv8 Model Variants 65

3.5 Programming Flow Chart for Real-Time Webcam

Inference 66

viii

3.6 Software Overview 67

3.7 Hardware Overview 67

3.8 Gantt Chart 68

3.9 Summary 70

4 RESULTS AND DISCUSSION 71

4.1 Introduction 71

4.2 Result from Vision Transformer for Image

Classification 71

4.2.1 Results of ViT on Google Colab 72

4.3 Result of YOLOv8 in Image Classification 74

4.3.1 Result of YOLOv8 on Google Colab 74

4.4 Result for ViT and YOLOv8 on Local Hardware

Device 77

4.4.1 Training and Testing Performance of ViT

and YOLOv8 77

4.4.2 Real-Time Inference of ViT and YOLOv8 79

4.5 Limitations and Troubleshooting 81

4.6 Summary 82

5 CONCLUSIONS AND RECOMMENDATIONS 84

5.1 Conclusions 84

5.2 Recommendations for future work 85

REFERENCES 86

ix

LIST OF TABLES

Table 2.1. Confusion Matrix for SIFT using SVM. (source: Mohan,

2016) 27

Table 2.2. Experimental result of healthy and unhealthy dataset with

MLP and RBF (source: Syafiqah Ishak et al. 2015) 31

Table 2.3. ANN classification result (Kumari et al., 2019) 32

Table 2.4. Description of training hyperparameter. (Source: Guo et

al., 2022) 37

Table 2.5. Test results of YOLOv5 and YOLOv5-CAcT (source: Dai

& Fan, 2022) 44

Table 2.6. Comparison of evaluation indicators between YOLOv5

and YOLOv7 (source: Soeb et al., 2023) 45

Table 2.7. Performance of CST (Guo et al., 2022) 52

Table 2.8. Performance Summary of Shallow Learning in Plant

Disease Recognition 53

Table 2.9. Performance Summary of CNN and YOLO in Plant

Disease Recognition 54

Table 2.10. Performance Summary of Transformer-Based Model in

Plant Disease Recognition 54

Table 3.1. Information and statistical data of training dataset images 57

Table 3.2. Training hyperparameters of ViT on Google Colab 58

Table 3.3. Training Hyperparameter of YOLOv8 in Google Colab 64

Table 4.1. Model Performance on Testing Dataset 78

Table 4.2. Performance of YOLOv8 and ViT on Training and

Testing 78

Table 4.3. Comparison of Model Size and Inference Speed between

YOLOv8 and ViT 80

x

LIST OF FIGURES

Figure 1.1. Accuracy of Developed Model in ImageNet (source: Paper

With Code, 2023) 3

Figure 1.2 Performance of Transformer Model (source: Paper With

code, 2023) 3

Figure 2.1. Output of Pre-processed Image (source: Koerich, 2018) 16

Figure 2.2. Performance of Evaluated Feature (source: Kusumo et al.,

2018) 29

Figure 2.3. RGB Image Processing in CNN (source: Saha, 2018) 33

Figure 2.4. Convolutional Layers in CNN (source: Saha, 2018) 34

Figure 2.5. Model Overview of Vision Transformer (source:

Dosovitskiy et al., 2021) 46

Figure 3.1. Model Architecture of ViT-B/16 61

Figure 3.2. Model Architecture of ViT-B/32 62

Figure 3.3. Model Architecture of ViT-L/32 63

Figure 4.1. Performance of ViT-B/16 73

Figure 4.2. Performance of ViT-B/32 73

Figure 4.3. Performance of ViT-L/32 73

Figure 4.4. YOLOv8n Training Performance 75

Figure 4.5. YOLOv8s Training Performance 76

Figure 4.6. YOLOv8m Training Performance 76

Figure 4.7. YOLOv8m-cls Inference 80

Figure 4.8. YOLOv8m-cls Inference 80

Figure 4.9. ViT-L/16 inference 81

Figure 4.10. ViT-L/16 inference 81

xi

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

SVM Support Vector Machine

ANN Artificial Neural Network

NB Naïve Bayes

DL Deep Learning

CNN Convolutional Neural Network

NLP Natural Language Processing

ViT Vision Transformer

CV Computer Vision

DT Decision Tree

ML Machine Learning

TPR True Positive Rate

API Application Programming Interfaces

SIFT Scaled Invariant Feature Transform

RBF Radial Basic Function

SURF Speeded Up Robust Features

ORB Oriented FAST and rotated BRIEF

HOG Histogram of Oriented Gradients

MLP Multi-Layer Perceptron

VGG16 Visual Geometry Group 16

YOLO You Only Look Once

mAP Mean Average Precision

IoU Intersection over Union

AcTNN Activation Compression

PANet Path Aggregation Network

RA Refinement Anchor

FL Focal Loss

Smooth BCE Smooth Binary Cross Entropy

BCELoss Binary Cross-Entropy Loss

SGD Stochastic Gradient Descent

MHA Multi-Head Attention

xii

CST Convolutional Swim Transformer

TP True Positive

TN True Negative

FP False Positive

FN False Negative

WQ Queries

WK Keys

WV Values

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Over the course of the previous decades, agriculture becomes one of the main

economic activities for several countries for example China which produces 500

million tons of vegetable every year and this amount equivalent to half of the

world's crops production (Edeh,S.C, 2023). Based on the statistic which is shared

by Food and Agriculture Organization of the United Nations (2020), world

production of primary crops was 9.2 billion tons, and this led to the increase of

the sum of agriculture value. According to the statistic, the agriculture value

increase by 68% from year 2000 to year 2018. Therefore, it is important to have

the method to eliminate the crops and plants from the pets and disease so that

can increase the food production and can also deal with the food demand issue.

To solve the problem, many vision and Artificial Intelligence (AI) based

machine learning algorithm for classification and identification of real-time

image of the plants and crops have been invented. The development of the deep

learning system for plant illnesses has facilitated the timely identification and

management of diseases, hence mitigating crop losses resulting from such

ailments. Convolutional neural network (CNN) now is being utilised under

novel applications within the sector of Machine Learning (ML) to detect and

diagnose plant illnesses. This development is a direct result of advancements in

Deep Learning (DL) technologies. The progress in DL technology facilitated

the creation of a robust CNN model for purpose of detecting and classifying

plant diseases. For past decade, the convolution neural network occupied a

dominant position in machine learning and perform well in image classification.

Several research regarding to the machine learning has been carried out

over years. Within their past research, researchers have been developing several

popular methods for machine learning Examples of machine learning

algorithms often used in various fields include the SVM, ANN, and NB. and k-

means clustering. DL algorithms have come into greater prominence recently

due to the widespread availability of vast quantities of data and the capabilities

2

of advanced computational systems, also effective training methods. CNN

architectures' robust feature learning capabilities have provided noticeable

outcomes for identifying plant diseases. Then, customized CNN architectures

have been proposed in addition to common designs like AlexNet, GoogleNet,

VGG16, and ResNet with transfer learning techniques which can be applied in

the plant disease detection (Poornima et al., 2022).

 Although the CNN architecture is leading the machine learning in

image classification, but in the recent year, Transformer become the new focus

for the researcher to be explored in the machine learning based image

classification. According to Chay Nandam (2023), the transformer at first is

mainly focus on the natura language processing (NLP) task. After that, it come

to the initial publication that introduces a Transformer encoder trained on the

ImageNet dataset which is the Vision Transformer ViT by Dosovitskiy et al.

(2020). The success of Transformers in computer vision is because it allows the

management of vast data amount and perform well on tasks involving picture

context interpretation. For example, due to its self-attention mechanism,

transformers have been utilized to enhance object identification and image

captioning by helping the model to better comprehend connections between

items in an image.

The accuracy of the model generated on the ImageNet dataset is depicted

in Figure 1.1. ImageNet is a huge database with more than 14 million pictures

that was organised into 21,841 subcategories since 2010 (Devopedia, 2021).

The developer will access the ImageNet to get the image set that can be used in

their algorithm. The figure 1.1 listed out the performance of ML model in image

classification under ImageNet database. The statistics show the improvement of

the top-1 accuracy of the model in ImageNet. In statistic below, the model that

achieves the highest top-1 Accuracy is the model named BASIC-L. The concept

of top-1 accuracy is a criterion commonly employed to evaluate the efficacy of

an image classification model. The model BASIC-L demonstrates a top-1

accuracy of 91.1% in the ImageNet database, thereby exhibiting superior

performance compared to other models. BASIC-L is a model that has been

proposed in the article “Symbolic Discovery of Optimization Algorithms” by

Xiangning Chen, Chen Liang and their team. BASIC-L is the combination of

3

the CNN with the transformer. It proved that the transformer could help in

boosting the performance of the CNN model.

Figure 1.1. Accuracy of Developed Model in ImageNet (source: Paper With

Code, 2023)

The figure 1.2 below shows the performance of the all of the transformer

model in ImageNet classification and it is clear to see that the top-1 accuracy of

the model was boosted to above 90% after few years of research and developing

focus on the application of transformer in Computer Vision (CV) task.

Figure 1.2 Performance of Transformer Model (source: Paper With code,

2023)

4

1.2 Importance of the Study

Plant diseases is always a significant threat to global food security which

causing the economic and yield losses. With the rise of AI and 5G technology,

the implementation of ML into the agricultural sector with lower cost is

becoming possible. In the recent year, the performance of YOLOv8 and ViT is

gaining the attention due to their unique ML architecture and effectiveness on

the image analysis.

 However, while both YOLOv8 and ViT demonstrated great success in

various machine vision applications, their comparative performance on the tasks

of plant disease detection from plant leaf images and the effectiveness of

running real-time inference still remains huge potential to be explored.

Therefore, this study is importance in measuring the accuracy and effectiveness

of the proposed model. With the understanding of the model performance, we

can find direction on how the development of the model can go in order to be

implemented in real life applications.

 Besides that, this project is important to showcase the potential of ML

models on enhancing the agricultural practice. ML models are frequently

considered the best option for jobs that need to be performed repeatedly and in

difficult settings without sacrificing effectiveness. They are the best options for

handling agricultural difficulties because of their capacity to process vast

amounts of data, adjust to changing situations, and generate precise predictions

in the face of adversity. With the involvement of ML model on agriculture

practices, people are able to locate the best solutions on the plant diseases which

can help to minimize the production loss and optimize the productivity.

 This study can also show the generalization and adaptability of ML on

the task of plant disease detection. This is because the self-learning and deep

learning algorithm of ML model can provide the fast study speed and good

memories on the studied knowledge which is comparable with human brain.

This feature enables the generated model to be easily and effectively adjusted

for different model parameters, learning datasets, and computational resources.

This ability to scale helps the model to acquire knowledge and efficiently

manage a wide range of plant diseases. The ability to share machine learning

models worldwide through internet platforms is an essential aspect of creating

these models, since it facilitates international collaboration and the spread of

5

information. The accessibility of improvements in plant disease detection

enables rapid dissemination and assistance to agricultural communities

worldwide. This expedites the development process and maximizes potential

benefits.

1.3 Problem Statement

To develop a machine learning model for the purpose of detecting plant diseases.

The evaluation of the ML model has always involved conducting a comparative

analysis with another model. This analysis entails the examination of important

metrics, such as precision, accuracy, F-1 score, and recall. Once the real-time

plant disease detection is implemented, the model will possess the capability to

differentiate between different sorts of diseases that impact plants. The primary

objective of the project is to construct a real-time system for detecting plant

diseases. This system will serve as a realistic demonstration of the machine

learning model that has been developed. The system will be built to efficiently

analyse the input video streams and instantly provide precise disease

identification across different disease categories.

1.4 Aim and Objectives

This project aims to develop a ML algorithm that can be used to identify and

classify the plant diseases from the leaf image. To approach this aim, two ML

algorithms are proposed in this research which are Vision Transformer and

YOLOv8. Another aim is to compare the performance of the proposed model

on the task plant disease classification and detection and understanding the

factors that will affect the performance of the model during the real-time

inference with the webcam.

 The objectives of this project are listed as below:

1. To develop a transformer-based and YOLO based plant disease

detection.

2. To compare the performance of Vision Transformer and YOLO

ML model.

3. To implement the real-time plant disease detection on webcam.

6

1.5 Scope and Limitation of the Study

The scope of the project is to develop YOLOv8 and ViT models on the task

plant disease detection and recognition. Furthermore, I will carry out a thorough

performance assessment of these models, namely by comparing their accuracy,

efficiency, and resilience in the classification of plant diseases. In addition, the

research aims to enhance the use of these models by putting plant disease

detection on a live webcam stream. Finally, a crucial goal is to guarantee the

feasibility and availability of the created ML models by producing a version that

can run on a CPU, thus enabling general acceptance and use in various

computing contexts.

 In the research, one of the limitations is the limited resource. This

project requires Graphics Processing Unit (GPU) for the model training. Model

training, especially for deep learning algorithms like Vision Transformer and

YOLOv8, necessitates the use of Graphics Processing Units (GPUs) and other

specialized hardware due to the substantial computational power needed.

However, as student, I lack access to GPU due to the high cost of the GPU

hardware. This constraint has the potential to impact the speed and ability to

scale up model construction and experimentation. Additionally, it may provide

challenges in efficiently analyzing larger and more complex datasets. Thus,

while the research aims to utilize state-of-the-art machine learning techniques

for plant disease identification, the extent and scale of the study may be

influenced by its reliance on GPU resources.

 The second limitation in this study is faced during the training of ML

models on online platform Google Collaboration. Although the platform

provides the free GPU resource which is available for model training, but there

are limited resources and also runtime for the free version. Google Collab only

provides the connecting runtime for 12 hours free for GPU usage. Although this

is enough to do training on smaller dataset but for it is not enough for the

research purpose which is because with the limited training resources, it will

affect the performance of the ML models on real time applications.

 Moreover, in this study, the duration that is provided is only two

semesters which is not more than 1 year. Therefore, one of the limitations is the

dataset collection. Due to the time limitation, I can only collect the dataset online

which the picture formats, environment background and leaf conditions. The

7

process of obtaining desired dataset is a time consuming and resource-intensive

process, especially to eliminate the errors sometimes we need the expert domain

knowledge during dataset arrangement and sorting.

 While the ML algorithms developed demonstrate potential in

controlled laboratory settings, there are numerous uncertainties regarding their

performance in real-world scenarios. One major concern is the extent to which

these models can apply their knowledge to new situations and datasets beyond

their initial training. The training data lacked certain environmental

characteristics that contribute significantly to the variability observed in real-

world circumstances. These elements encompass variables such as illumination

levels, variations in weather patterns, and the stages of plant development. In

novel environments or when encountering previously unknown disease types,

the algorithms may struggle to accurately identify and classify illnesses.

Furthermore, machine learning models always face the difficulties posed by the

dynamic nature of plant diseases, encompassing the emergence of novel

pathogens and shifting disease patterns. Hence, the performance of the trained

models will be limited on the real-time application.

8

1.6 Contribution of the Study

The main contribution of the study is it will emphasize the potential of state-of-

the-art machine learning models on revolutionizing plant disease detection and

recognition which has potential in advancing digital agriculture. The real-world

uses of ML in agriculture of YOLOv8 and ViT are significantly impacted by

their proven efficacy in identifying plant diseases. The research emphasizes how

these models could be applied in practical settings to facilitate prompt and

precise illness diagnosis, precision farming methods, and proactive disease

control approaches.

 Besides that, the study can also provide a deep insight into the

performance and also the characteristic of YOLOv8 and ViT ML models. By

comparing the models, the research can magnify their strength and limitations

which can help other practitioners in informed model selection and deployment

decisions.

 Moreover, precision agriculture techniques, early and accurate disease

diagnosis, and proactive disease management methods are made possible by the

proven efficacy of YOLOv8 and ViT in plant disease detection. These findings

have important applications on real-world agricultural applications. To promote

reproducibility and facilitate future research in the field, the study also offers

open-source implementations of the trained YOLOv8 and ViT models for plant

disease identification. Through the unrestricted dissemination of these materials

to the scientific community, the study fosters cooperation, exchange of

information, and joint progress in the field of plant pathology and agricultural

technology.

9

1.7 Outline of the Report

The outline of the report is structured into the following chapters.

Introduction:

• Present a succinct and precise summary of the AI model for

license plate detection and recognition.

• Emphasize the significance of the study and states the problem

that it addresses.

• Outline the goals and objectives of the project.

• Highlight the scope, limitations, and contribution of the study.

Literature Review:

• Analyse and categorize all the methodologies and

advancements that are relevant to the project.

• Evaluate the current models.

• Identify the selected methodology to be employed in this

project.

Methodology and Work Plan:

• Develop a comprehensive project timeline and identify key

milestones.

• Analyse and outline the hardware and software components

involved in this project.

• Describe the sequence of the design process.

Results and Discussion:

• Present the results of the research.

• Describe and explain the results.

• Show the results of the real-time inference and explain it.

Conclusion:

• Summarize all the main findings.

• Conclude the whole process in this research.

• Identify the limitations and restrictions in this research.

• Identify the future enhancements.

10

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The field of ML has come a long way in the past few years, especially in the

area of CV. The purpose of this literature review is to explain what ML and CV

is and how they work together. Besides that, this chapter also listed out the

review on what tasks and steps are needed to train ML models. The focus will

also be on teaching both shallow learning and deep learning methods. In

particular, past studies that used machine learning models to find and classify

plant diseases will be looked at, with a focus on how deep learning and shallow

learning methods compare. While YOLO and Transformer-based systems are

unique and new in machine learning, it is important to learn not only about their

structures and what they can do, but also about how to train and test models in

a complex way. A model's performance depends on more than just its structure.

It also depends on the quality of the training data, refining methods, and

assessment metrics that are used.

This literature review also looks at a wider range of machine learning

techniques than just YOLO and Transformer-based models. These include

shallow learning, deep learning and Convolutional Neural Networks (CNNs).

Finding out what each method does well and what it doesn't do well helps us

understand their roles and how they can be used in finding and classifying plant

diseases. By looking at things as a whole, we can find the best machine learning

methods for dealing with the specific problems that come up when trying to

develop YOLOv8 and ViT for the task plant disease detection and recognition.

2.2 Computer Vision and Machine Learning

CV is well known as research and development of the methods and techniques

which enable computers to detect and interpret visual information from the real

world. This entails techniques for gathering, handling, analysing, and

comprehending digital pictures as well as the collection of information-

producing data from the actual world. It seeks to automate tasks that human

vision can achieve. Therefore, with the technology of computer vision,

11

computer can easily understand and recognize the videos, objects, words, and

images just like our human eyes and brain. That means the computer must have

abilities to understand the location of targeted object under a scenario or in an

image. With the understanding, the computer must be able to categorize the

objects perfectly since it has its own understanding on the object by learning

and interpret the relationship and the context of the scene (Oliver et al., 2000).

 According to Serokell (2000), to make the machine or a system to have

abilities to recognize visual object from images or videos, it first has to been

trained with grouped sample and this we name it as supervised learning. This

theory is similar to our human when we need to recognize new object from real

life, which human also require time to learn the recognizing factor of an object.

For example, when human need to recognize a cat from real life or picture,

mostly the brain will extract out the common feature of a cat such as whiskers,

sharp and pointed ears and large, almond-shaped eyes. That information that our

brain obtain will help the brain to give conclusion that the object is a cat. The

human eye will act as sensor which similar to a computer vision system, there

will be a method or device to obtain the image which is called input. Then,

interpreting device has function that is similar to human brain which is

understanding the image context and give the final result which categorize the

image to the grouped categories.

ML is known as a branch of AI, encompasses the investigation on

algorithms and statistical models. In the absence of explicit instructions, systems

utilise it as a means to execute a task and instead depend on patterns and

inference. Thus, it is applicable to the domains of pattern recognition, software

engineering, and computer vision. Typically, computers autonomously engage

in machine learning, relying on minimal intervention from software developers.

This process involves leveraging data to inform decision-making and

facilitating the utilisation of information in innovative ways across various

industries. The methodology including three distinct types of categories which

are supervised learning, semi-supervised learning, and unsupervised learning.

(Mahesh, 2019)

The machine learning can help computer to do decision by applying

supervised learning, unsupervised learning, or semi-supervised learning. For

plant disease classification, most of the model is applying supervised learning

12

to solve the problem. It is known as a sub-category of machine learning.

According to Mahesh (2019), the discipline of machine learning involves the

use of labelled datasets for the purpose of training algorithms that are capable

of effectively classifying input and anticipating outputs. The process of cross-

validation involves the model adjusting its weights in response to new input data,

and these adjustments endure until the model achieves a satisfactory alignment

with the data.

 Supervised learning encompasses two distinct issue types, namely

classification and regression. Classification is a computational procedure used

to accurately assign test data to specific categories. The process involves the

identification of distinct entities present in the dataset and subsequently drawing

inferences on the appropriate labelling or description of such entities. Linear

classifiers, SVM, DT, k-nearest neighbour, and RF are among the often-

employed classification approaches. Regression analysis is a statistical

technique employed to ascertain the association between variables that are

dependent and independent in nature. The regression techniques that are often

employed include linear regression, logistic regression, and also polynomial

regression. (Steven, 1998).

 According to Mahesh (2019), supervised machine learning, a function

is inferred using labelled training data, which is made up of a set of training

samples. Normally, input dataset will be divided to training and testing subsets

during supervise machine learning. The training dataset includes an output

variable that serves as the target for prediction or classification. These

algorithms will employ this information to create predictions or classifications

on the test dataset after methodically extracting patterns from the training

dataset.

In Mahesh’s paper (2019), he discussed the utilisation of unlabelled

data in the context of unsupervised learning. The algorithm discerns regularities

within the dataset that facilitate the resolution of challenges related to clustering

or association. In summary, unsupervised learning algorithms are tasked with

autonomously discovering and presenting the intricate patterns and organisation

inside the given dataset. Unsupervised learning algorithms will acquire various

attributes from the data. Upon the introduction of new data, the system identifies

the class of the data by leveraging the features that were previously learned. The

13

integration of supervised and unsupervised learning techniques gives rise to a

semi-supervised learning algorithm. The presence of unlabelled data in data

mining and machine learning applications might be advantageous when

acquiring labelled data is a laborious and time-intensive task. In the context of

supervised machine learning methods that are widely used, an algorithm

undergoes training using a dataset that is "labelled", meaning that each record

in the dataset includes the corresponding result data.

2.3 Steps in Machine Learning Workflow

The steps in Machine Learning can be divided into data collection, data

preprocessing, data splitting, model selection, model training, model evaluation

and model finalization. Machine learning is a set of carefully planned activities

that help create and deploy effective models. Collection of relevant datasets

from various sources sets the stage for analysis. Data preparation cleans,

standardizes, and prepares data for model training. The dataset is divided into

training, validation, and testing subsets for rigorous model evaluation. A

suitable model architecture is chosen based on task difficulty and processing

resources after data preparation. The chosen model is iteratively trained on the

training dataset to capture patterns and correlations. Evaluation on the validation

dataset assures model generality and directs refinement. Finally, the model is

verified on the test dataset to assess its real-world performance impartially. This

methodical methodology produces strong, accurate models for varied

applications.

2.3.1 Data Collection (Image Acquisition)

The first step of developing an efficient ML model is data collection. Data

collection is a process which the developer will gather specific amount of

relevant data and categorize the data to create dataset for machine learning. The

quality and quantity of the data (image, video, patterns, etc) collected for ML

model is very important in optimize the performance of a model because

collected data will affect the decision made by ML model during decision-

making process (Gaudenz. B, 2022). This is because the good quality image can

reduce the unnecessary information and noise which will cause the model to get

false information during training process.

14

 To enhance the performance of ML models, developer often rely on

large datasets containing relevant and informative information. However,

obtaining such datasets can be a complex and laborious process. In the context

of image classification research, developer strive to find high-quality and

relevant images online, as image quality significantly impacts the accuracy of

ML model predictions (Gaudenz. B, 2022). To make the data collection process

easier, developer can use approaches such as web scraping, data augmentation,

and data synthesis. Web scraping is the process of obtaining relevant photos

from multiple online sources, whereas data augmentation is the process of

making variants of existing photographs using transformations such as rotations,

flips, or zooms to enlarge the dataset.

 According to Gaudenz (2022), to have great performance of computer-

vision model, it must be trained with data that consist of thousand or even more

images. There are a few characteristics of image need to be given attention to

increase the accuracy of a computer vision system. First characteristic of the

images in the dataset, must be of excellent quality. To put it another way, the

image should be detailed enough for the AI model to recognise and find the

target item. In most situations, AI algorithms on computer vision tasks do not

yet approach human-level accuracy. As a result, if you can't recognise an item

in a picture at first look, you can't expect your machine learning model to

produce correct results.

Second, the picture data acquired must be diverse. The more diverse the

training dataset, the more resilient the AI system and its performance in varied

scenarios. The computer vision model will struggle to retain consistency in its

predictions unless it has a robust collection of objects, situations, or even groups.

Thirdly, quantity is a critical aspect. In general, your data collection should

include many photographs - the more, the better! Training your models on a

huge amount of precisely labelled data (supervised learning) can increase their

odds of making accurate predictions. A decent data collection requires not only

the quantity of photographs but also the density of target objects within the

images.

After years of development, developers and researchers have created

several large-scale online databases which consist of vast amount of structured

and unstructured data. These databases are typically designed to serve specific

15

purpose and cater to various fields of study and industrial applications. The

famous databases which have huge collection of images are ImageNet,

PlantVillage, Leafsnap, Cifar-10, Cifar-100 and several others. Sharada P.

Mohanty et al. (2016) used PlantVillage database to get 54, 306 of plant leaf

images that was categorized to 34 classes for model training and validation in

their research.

2.3.2 Pre-processing of Dataset

After collecting enough data, to build a highly effective machine learning model

for image classification, it is essential to perform data pre-processing. This step

significantly enhances the model's performance and ensures superior results.

Data pre-processing is an important step to make sure the image data that we

feed to the model has better quality which the pre-processing can eliminate

useless information and noise in the images. This can help to boost the

performance of the machine learning model. According to Delorme, P, J (2021),

The images need to be minimal in size so that the number of features is not

overfitting when fed to a Neural Network. As an example, if a coloured image

is 600X800 in size, the Neural Network must manage 600*800*3 = 1,440,000

parameters, which is huge. Any coloured image of 64X64 dimensions, on the

other hand, requires just 64*64*3 = 12,288 parameters, which is quite little and

will be computationally fast.

 In the research conducted by Alessandro L. Koerich (2018), the

significance of image preprocessing in their topic was highlighted. The primary

objective of the image preprocessing stage was to eliminate any unwanted

structures from the images, such as leaf stems. To achieve this, the images were

converted to greyscale, and Otsu's approach was employed to effectively

separate the leaves from the background. Additionally, the top-hat approach was

utilized to successfully remove the leaf petioles, further enhancing the quality

of photos that has been processed. The output of the image pre-processing is

showed in figure 2.1, which (a) showed the original image, (b) showed the

greyscale image which set each pixel to a single intensity value then (c) showed

the thresholding operation which had removed the background of the image.

After thresholding, (d) is the product after top-hat operation that can help to

remove the unwanted parts of the image and further refine the image. Lastly, (e)

16

showed the final image after bounding box which a bounding box was applied

around the leaf region while removing any unnecessary or background features.

Figure 2.1. Output of Pre-processed Image (source: Koerich, 2018)

Besides that, there are many more data pre-processing methods such as

randomly crop. This method can produce image that contain randomly parts of

the original image. This has advantage for the model to have different features

to be focused on during training process. Niventhitha et al. (2022) used image

segmentation as in their image pre-processing. Image segmentation is a method

which the image will be separated to form subgroup or segment and normally is

being carry out through k-means clustering. With k-means clustering, it can

form cluster by grouping similar between data items.

 Rather than image segmentation, image scaling or image resizing is

also one of the fundamental of image processing which most of the ML model

will use this method to reduce the pixel of an image so that it can reduce the

image computational complexity during image processing task. For most of the

ML model, image scaling is their first choice during image pre-processing. This

is because it can reduce the image resolution by change the value of the pixels

in an image thus can reduce the information of an image and this can reduce the

training period without affecting the model’s accuracy.

 For vision transformer, the model has different process of data

processing which involve image scaling, normalization, and data augmentation.

Data normalisation is an essential process that assures the data distribution for

every parameter that is input. These speeds up convergence while training the

network. Ali and Faraj (2014) propose that the process of normalising data

involves the extraction of the mean value from each pixel, followed by the

division of the obtained result by the standard deviation. The data in question

17

would exhibit a distribution that closely approximates a Gaussian curve with its

mean centred at zero. In order to ensure that picture inputs consist of positive

pixel counts, it is possible to opt for scaling the normalised data within the range

of [0,1] or [0, 255]. For transformer model, data augumentation is a way to add

more information to a model by making new data points from existing data and

this mostly involve in Natural Language Processing (NLP) task, which will

increase the accuracy of the model by adding extra information into the existing

data.

2.3.3 Data Splitting

After image data pre-processing, the next step is data splitting. Data splitting is

a process that split the collected data to two or three subset which are training,

testing and validation data (Gillis, A.S, 2022). To train a model, a training

dataset will be generated and applied which allow the model to estimate by

recognising the underlying patterns and interactions within the processed data.

When generating training data from raw data, it is better to

have greater representativeness of the data. This means that the extracted data

should have a sufficient population for each data class. With this quality, it is

also necessary to guarantee that the extracted data is impartial since biased data

might generate an inaccurate model.

The validation dataset is used by the model when undergo the validating

process. Validation is the method of evaluating the performance and

generalisation capabilities of a trained model. It entails utilising a second dataset,

known as the validation dataset, to assess the model's performance on data

which cannot being observe as well as training of model is under progress.

Validation dataset will be used on purpose to modify hyperparameters, evaluate

model performance, also avoid overfitting. While, test data will be used after

the model finishes training, validating and selection of optimum model. The

forming of testing dataset needs to be careful because it may lead to overfitting

and unreliable performance during testing progress. Generally, test data is the

dataset that will be used to do the final evaluation on the selected model.

According to Nguyen et al. (2021), there is lots of influence of various

training and testing data ratio. In his paper, he mentioned that the optimum ratio

during train-test data split is 70/30. Once the ratio of the training data over 70

18

percent, the error will occur. This is due to the overfitting. When there is too

much data is sent for ML model training, it will lead to generating noise and

outlier which may change the prediction on the testing dataset. Besides that, too

high ratio of training dataset means that testing dataset has lower ratio, this will

cause the model to do lesser prediction on the testing data, or the variation of

characteristics of the testing dataset is limited in smaller zone, thus developer

cannot make sure the performance of the model when it comes to the real-world

scenario although the model may perform well in the smaller testing dataset. In

other words, if there is too less ratio of training dataset, this means that the model

does not receive enough training and learning, and this may lead to the poor

performance when it comes to make predictions, which is also known as

underfitting.

2.3.4 Model Selection

In the workflow of implement ML, model selection is a step that cannot be

ignored in creating robust and accurate prediction models. The process of

choosing which method and model architecture is best suited for a specific job

or dataset is known as model selection. It comprises contrasting multiple models,

evaluating their effectiveness, and selecting the one that best resolves the current

situation. This is because each models have their own complexity, fundamental

presumption, and abilities. If a model which is very complicated may overfit

the data thus be unable to generalize, whereas if a model that is overly basic

may underfit the data and do badly in terms of prediction.

 In a selection of model, there are a few factors that must be considered.

Firstly, developer need to clear about the problem and issue need to be solved

before proposing a suitable model for the issue. After problem identification,

researcher can choose a collection of models that are relevant to the problem at

hand. These models will range from simple approaches like decision trees or

linear regression to more complex models. Shailendra Chauhan (2023)

discussed when choosing a machine learning model, there are several various

crucial factors to consider which can help to ensure that the chosen model is

successful in resolving the fundamental issue and has the potential for

remarkable performance (Chauhan, 2023).

19

 The primary factor influencing model selection is the complexity of

both the problem being addressed and the data being processed, necessitating

an evaluation of the problem's intricacy. Simple models may be sufficient in

certain cases, but when dealing with complex data linkages, more complicated

models may be required. When establishing the optimal amount of model

complexity, considering factors including the size of the dataset, the complexity

of input characteristics, and the possibility of non-linear relationships. This

assessment makes sure the model of choice appropriately captures the

underlying patterns and delivers superior insights and forecasts. When choosing

the model, it is also important to consider the important of interpretability. As

example, Decision trees and linear regression models able to give unambiguous

conclusions about the correlations between input data and intended outcomes,

making them simply interpretable. More complicated models, such as neural

networks, may provide improved performance with the downside of poorer

interpretability. Striking the right balance between interpretability and

performance is essential, particularly in domains where understanding the

model's decision-making process is crucial, such as healthcare, finance, or legal

applications (Chauhan, 2023).

 Besides that, the interpretability of a model is also one of the important

factors during the model selection. Several model such as decision trees and

linear regression will give detailed insights on the relationship between the input

data with the results, causing the model more interpretable. Then, for the

complex model for example neural network will provide better performance at

the expense of diminished interpretability. This is because the complex model

normally consists of many hidden layers and millions of parameters, and this

will provide complex model better performance but trade-off their

interpretability. Most application of ML model will trade-off their

interpretability to have better performance but in the case of legal decisions and

finance, the decision which are made by model often require transparency so

that people will know the elements that influence model’s recommendation. But

for NLP and image classification, performance is more prioritized than

interpretability (Chauhan, 2023).

 Lastly, always consider the resource constraints during model selection.

This is because resource constraints include limited memory space, processor

20

speed or implementation time. Given the limited resources, it is difficult to make

sure the chosen model can be effectively implemented and used efficiently.

Some machine learning models will require larger computational resources

during training or inference, causing them unsuitable to be implied under limited

resources. Therefore, to achieve greatest results and successful implementation,

it is crucial to achieve balancing between model performance and resource

efficiency.

 The selection of a suitable machine learning model is a pivotal stage in

the development of a machine learning model, contingent upon the

aforementioned elements. Software developers have the ability to choose an

appropriate model that aligns with the specific requirements of the situation at

hand. Algorithms can generally be classified into two main categories: shallow

learning, which includes conventional machine learning models such as Support

Vector Machine (SVM), Decision Tree (DT), and Artificial Neural Network

(ANN), and deep learning. Shallow learning normally has lower cost but in

certain tasks they have low performance, while the deep learning is inspired by

the brain function which allow the developer to boost the performance of ML

model with enough dataset for learning and exhibit powerful performance on

the specific tasks and conditions for examples image classification, natural

language processing and speech recognition.

2.3.5 Training of Model

Model Training is a process which we need to feed data to a parametrized

machine learning algorithm to allow it to give the desired output which is

making prediction and show high performance. Generally, it is the process of

feeding the training data into the selected algorithm. Every machine learning

model is dependent on the data it gets as input. Irrespective of the intricacy of

the model, its performance is inherently linked to the calibre of the input data.

The underlying idea that emphasises the significance of feature engineering in

the training process is the fundamental notion that the quality of input directly

influences the quality of output.

In a model training, there is one part that is very important which is

parametrize the machine learning algorithm. Machine learning (ML) algorithms

are encapsulated as coordinated sequences of code, consisting of a group of

21

instructions, and coordinated by a predetermined group of input parameters,

commonly referred to as "hyperparameters." Developers can artistically fine-

tune the learning trajectory of the algorithm using these malleable

hyperparameters, carefully tailoring it to the specifics of the relevant dataset and

the specific nuances of the usage context. In this orchestration, the

documentation that accompanies each algorithm assumes a paramount role.

Generally, in the domain of latest neural networks, the learning revolves around

fine-tuning the weights associated with the activation functions within each

layer, orchestrating a symphony of calculations to unveil intricate patterns in the

data. This individuality in learning mechanisms underscores the diversity and

adaptability inherent in machine learning, allowing each algorithm to flex its

own set of trainable parameters to craft solutions tailored to specific challenges

(Jing Wei et al. 2019)

2.3.6 Model Evaluation and Finalization

According to Japkowicz (2006), model evaluation is a process which allow the

developer to understand the characteristic and completion of a ML model.

Model evaluation process encompasses the application of various performance

metrics, which can be carried out through two distinct approaches: offline and

online assessments. The offline assessment is the evaluation method that is

carried out based on the historical data or result from the model. In the approach,

the model will be provided a fixed dataset, and the evaluation will not involve

any interaction of real-time data. The most common matrices used for offline

evaluation is accuracy, precision, recall, F1-score, and confusion matrix. The

offline evaluation approach is primarily employed in scenarios involving

classification metrics, particularly in supervised learning. In this method, the

model's predictions are compared with the labelled dataset, and any

discrepancies are recorded and calculated to determine the model's performance

metrics.

In this study, which focusing the development of ML learning model

to plant disease detection and recognition, the method of evaluation that will be

focused on is the offline assessment on the supervised learning. Guo, Lan and

Chen (2022) have their model evaluation by calculating the Top-1 accuracy,

precision and F-1 score in their research.

22

The Top-1 accuracy refer to the convolutional accuracy that shows the

top accuracy of the model prediction which the prediction outcome with the

highest probability to be correct. The formula of the Top-1 accuracy as follow:

𝑇𝑜𝑝1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Precision serves as a frequently employed metric for assessing model

performance. It signifies the proportion of accurately predicted positive

instances within a given sample (Guo et al., 2022). Higher precision means that

the model is accurate in the positive predictions and there are fewer false

positive. Precision is calculated as below:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

Rather than precision, we also can have recall as one of the evaluation

matric for a machine learning model. Recall, also known as sensitivity or True

Positive Rate (TPR), quantifies the ability of the model to accurately detect true

positive instances. A more advanced model demonstrates increased recall by

efficiently collecting a substantial proportion of positive cases. The formula for

calculating recall is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

According to Guo et al. (2022), F1-score is also used in their research as

a metric to evaluate the ML model performance. F1-score is also known as F1-

measurement or F1-beta score. It is obtained by combines the different

weighting of precision and recall. A higher F1-score indicates superior

performance of the machine learning model. The formula for calculating F-1

score as follows.:

23

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Evaluation of ML model very important during the creation and

implementation of machine learning algorithms. This is because we can make

sure that the final models perform as well as they possibly can. By the

comparing different model through their performance and determine which

model obtaining an ideal level of performance which can give the better solution

to the proposed assignment. Therefore, model evaluation provides standard

matrices for developer to choose the model that is best at tackling the problem

at hand thorough comparisons with other trained models. Besides that, the ML

model evaluation can also determine the productionized models' dependability.

This is done by seeking the performance of the model under different conditions

during model evaluation and the purpose is to make sure the ML model achieve

consistence performance under different condition. (Japkowicz, 2006).

 To add to that, model evaluation is important because it can provide

insights into the errors the model makes. Thus, model evaluation allow

developer to conduct error analysis and the information that is obtained from

the evaluation allows the developer to understand the limitations of their ML

model. For example, model evaluation allows us to identify the model is more

prone to false positive or false negative. By understanding the limitation or error

in the model, developer can propose solution to improve the model in order to

provide better user experience. The model improvement or troubleshoot can be

done by hyperparameter tuning of the model or we named it as fine-tuning,

while the model evaluation can help the developer to identify the model

performance by assessing how different the hyperparameter will affect the

model’s effectiveness. On top of that, model evaluation allows the continuous

improvement of the model as well as the model has been developed into the

real-world application. This is because the requirement of the user will increase

by the time, therefore model evaluation allows the model to always have best

performance after every update.

 After the process of model evaluation, the developer can prove to user

that the model has been boosted to its best performance when the ML model is

proposed to specific task or issue. Therefore, the next step after the model

24

evaluation is the model finalization. In the final step of a model construction, it

is about model deploying and continuously monitoring on the developed model.

According to Pruneski et al. (2022), the developed model can be shared via

online repositories, fostering future collaboration and knowledge exchange.

With the model deployment, the well-trained model can be put into practice in

the real world. To put the developed model into real world, developer need to

choose the deployment environment according to the needs of users. For

example, developer can deploy the model through cloud services. Cloud

services such as AWS, Azure, and Google Cloud, on the other hand, provide

adaptable and flexible environments for the deployment of models. Besides that,

developer can also build Application Programming Interfaces (API) to deploy

their model. APIs allow input of real-world data, predictions, and results

retrieval by allowing smooth connection between the model and other software

applications or systems.

Pruneski et al. (2022) in his paper mentioned about after the deployment

of the model, that is not the end of the model construction. This is because one

of the common challenges that will be faced by every ML model is they will

become out-date when the models were exposed to changes in real-world data.

Therefore, we need continuous monitoring on the deployed model. It is a

technique or process for keeping the ML learning model in the real-world

settings. In the process, continuous model performance monitoring, tracking of

features and hyperparameters used for retraining, and smooth management of

the full model lifetime (Pruneski et al., 2022).

Model retraining is the main part of continuous monitoring of a ML

model. Under real-world scenario, data that will be fed to the ML model will

change over time and there will be a scheduled task after the model has been

deployed (Pruneski et al., 2022). The changes of the fed data and scheduled task

will deteriorate the performance of the model. Therefore, it is crucial to

implement an automate system that is using an automated model pipeline during

the finalization, so that ML engineer can do hyperparameter tuning to help

remain the completion of developed model. In the realm of ML, it is of utmost

importance to consistently assess the performance of the model and include

fresh training data in order to maintain its efficacy. The task at hand necessitates

the formation of a team responsible for overseeing the influx of data, inputting

25

it into the existing model, and occasionally developing a novel model that can

consistently surpass or match the performance of previous models. This is done

with the objective of enhancing the outcomes of the model or the relevant

professional field.

2.4 Application of Shallow Learning on Plant Disease Detection

Ahead of the development of DL, researchers relied heavily on shallow learning

approaches due to hardware restrictions that could not support computing

requirements of DL models. Shallow learning approaches, such as linear

regression and decision trees, performed well on basic tasks but struggled to

catch complicated patterns in huge datasets. However, when advances in

hardware technology, notably the introduction of GPUs, made it possible to

handle deep learning's massive processing needs, academics began to

investigate its possibilities. DL has subsequently transformed computer

vision by allowing models to learn complicated patterns and representations

from large volumes of data, resulting in important breakthroughs and advances

in these areas.

2.4.1 Support Vector Machine Classifier

SVM have been widely employed in the fields of image identification and object

detection due to its ability to perform pattern classification and nonlinear

regression tasks. The SVM constructs a linear model that incorporates non-

linear class boundaries and support vectors in order to assess the predictive

function. SVM utilizes linear models to find the best hyperplane for effectively

separating data, while also maximizing the margin between the hyperplane and

the nearest training data points. This method operates on the assumption that

data can be perfectly separated using straight lines. Support vectors, which are

the training points closest to the ideal separation hyperplane, are instrumental in

defining and determining this hyperplane. SVM employs a nonlinear mapping

technique to transform the input image to a higher-dimensional space of features.

As a result, SVM functions as a linear classifier within the parameter space.

However, it exhibits nonlinearity as a classifier by virtue of the nonlinear

mapping that is applied to patterns of data within the feature space of higher

dimensions (Mohan, Balasubramanian, & Palanivel, 2016).

26

Mohan et al. (2016) apply Haar-like features and AdaBoost classifier to

classify the paddy plant image that has disease before determining the type of

disease using SVM classification. But there is the disadvantage of shallow

learning, which is it require more feature extraction or feature engineering and

data preprocessing before being fed into the machine learning algorithm for

training. This is because the shallow learning normally has limited

representation, which lesser capacity to represent the complex patterns and

relationship in data. Therefore, before feeding the image into the SVM for

training and learning, it's essential to perform information extraction to

eliminate extraneous noise that doesn't contribute to SVM classification.

In the research paper, the authors applied Scaled Invariant Feature

Transform (SIFT) as the filter to capture abrupt changes in intensity within the

input image, the approach involves filtering the images at various scales and

patch sizes to extract relevant features. The features that have sudden changes

of image intensities may represent the disease of the plant image, and with the

SIFT filter, SVM only needs to learn from the extracted parts or features (Mohan,

Balasubramanian, & Palanivel, 2016). SVM will optimize the separation

boundary for grouping the paddy plant disease based on the difference from the

input image. The critical properties from the input images will be extract by

using SIFT and it will output seven-dimensional feature vector to SVM model

when training SIFT. The seven-dimensional features are x and y coordinates,

sub-level scale, picture feature size, edge flag, edge orientation, and response

curvature throughout scale space (Mohan, Balasubramanian, & Palanivel, 2016).

When the dimensional features are fed to SVM, the displacement between

feature vector and the hyperplane of SVM are calculated. Then from the

calculated distance, they obtained average distance, and it is used to identify the

paddy plant disease by grouping the nearest value of average distance into

groups.

 From the research paper by Mohan (2016), the accuracy of the paddy

plant disease detection achieves 91.10% by applying SIFT feature extraction

with SVM model for paddy plant disease classification. The model has precision

of 86.66%, recall of 86.66%, accuracy of 91.10% and F-1 score of 86.66%.

Below table shows the confusion matrix of the model from Mohan:

27

Table 2.1. Confusion Matrix for SIFT using SVM. (source: Mohan, 2016)

The study conducted by K. Rajesh Babu in 2019 explores the application

of Support Vector Machine (SVM) classification for identifying plant diseases.

The research assesses the efficacy of the SVM model in classifying plant

diseases by examining various selections of kernel parameters and soft margin

parameters. Initially, the author compiled an input database of photos

comprising several plant diseases such as Alternaria alternative (a fungal

infection), Anthracnose, Bacterial Blight (caused by bacteria), Cercospora Leaf

Spot, Bacterial leaf spot, frog eye leaf spot, sun burn disease, as well as

photographs of healthy leaves. Babu utilised the SVM model to incorporate the

database, opting not to employ feature selection. However, K-means was

utilised for the purpose of picture segmentation, resulting in an accuracy rate of

90%. In the SVM model, a linear kernel was utilised, yielding an accuracy rate

of 89%. The classification accuracy of the SVM model using the kernel of RBF

and polynomial kernel achieved 88.8% and 90.2%, respectively.

According to Babu (2019), the effectiveness of SVM highly depends on

selection of kernel and soft margin parameters, so he proposed the feature

selection into SVM model with linear kernel, RBF kernel and polynomial kernel

to investigate how well can feature extraction in improving SVM models. The

author proposed "colour co-occurrence" technique is to extract features from

photos depicting plant diseases. In particular, the conversion process involves

transforming RGB images into the HIS (Hue, Saturation, Intensity) colour space

representation. Within this particular colour space, a total of 14 distinct

measurement feature measures are computed based on the co-occurrence matrix.

After the adding of algorithm of proposed feature extraction, the performance

of SVM model with linear kernel, RBF kernel and polynomial kernel

classification accuracy increase to 95.63%, 94.23% and 95.87% respectively.

28

The increasing of the performance shows that SVM model is highly dependent

on image processing especially segmentation and feature engineering.

The study conducted by Kusumo, Heryana, Mahendra, and Pardede

(2018) focuses on assessing the effectiveness of shallow learning techniques in

detecting corn-plant diseases. The researchers employ a dataset consisting of

corn plant leaves and investigate the impact of various image processing

features and feature extraction methods, including RGB, and SIFT. The research

team is primarily dedicated to the advancement of plant disease identification

by the use of established machine learning methodologies.

 In research paper by Kusumo et al. (2018) explain how those feature

extraction function. RGB is the feature extraction method that will extract the

colour information and turn them into the values from 1 to 255 according to the

intensity to allow pattern recognition. SIFT algorithm is designed to find and

recognise distinctive key features within an image. It achieves this by

identifying stable and recurring structures that exist across various scales. The

process entails performing a convolution operation on the picture using

Gaussian filters at various scales, resulting in the generation of a scale-space

representation and also exhibit a localised orientation of the features. SUFT

feature extraction is similar with SIFT which is it is also a method for detecting

interest points in images by analysing distinctive points in an image by

identifying areas where the intensity pattern changes significantly in both scale

and orientation. HOG is the technique that will calculate and divide the image

into small cells and computing the orientation of gradient and creating

histograms to represent the local object and shapes in an image. Lastly, ORB

extracts the features by firstly detects salient features inside an image by

employing a modified version of the FAST algorithm, which is specifically

designed to locate points that possess high distinctiveness.

 The author prepares the dataset in 4 categories which are corn gray leaf

spot with 513 images, corn common rust with 1192 images, corn nothern leaf

blight with 985 images and healthy leaf with 1162 images. Kusumo et al. (2018)

proposed their processing procedures undertaken, specifically the resizing of

images from their initial dimensions of 256x256 to 64x64 pixels. Additionally,

they highlight the extraction of multiple features, encompassing RGB, HOG

(with 34,020 dimensions), SIFT (with 12,800 dimensions), SURF (with 12,800

29

dimensions), and ORB (with 8,000 dimensions). The analysis utilises various

classifiers, including Gaussian Naive Bayes, SVM with linear and RBF kernels,

and Random Forest with 1,000 trees. Kusumo et al. (2018) propose the

classification algorithm with the combination of the proposed feature extraction

methods and compare the accuracy and the best performance of each

combination is taken. From the research, RGB feature extraction can give best

assist to in improving the classification algorithm which as shown in the

histogram below:

Figure 2.2. Performance of Evaluated Feature (source: Kusumo et al., 2018)

From the figure above, the performance of the classification metric

reached the best performance under RGB feature extraction where RGB with

SVM (linear kernel) reached accuracy of approximately 88%, RGB with SVM

(RBF kernel) reached accuracy of approximately 85%, RGB with NB reached

accuracy of approximately 78%, RGB with DT reached accuracy of

approximately 76%, and RGB with RF reached accuracy or approximately 87%.

2.4.2 Artificial Neural Network

ANN is classified under shallow machine learning which is proven can be

effectively utilised for the categorization of leaf diseases. ANNs commonly

known as neural networks, are a class of machine learning models that draw

inspiration from the physiological and functional characteristics of the human

brain. Artificial Neural Networks (ANNs) incorporate interconnected nodes,

also known as artificial neurons, that are organised in layers. A standard neural

network setup usually consists of several layers, which include an initial input

layer, one or more intermediary hidden layers, and a concluding output layer. In

30

a study conducted by Syafiqah Ishak et al. (2015), the authors presented a

research paper titled "Leaf Disease Classification using Artificial Neural

Network." In this publication, the authors established a feed-forward Neural

Network and utilised back-propagation technique.

 The Back-propagation algorithm well-known as commonly employed

method for purpose of training of multi-layer perceptron (MLPs) and Radial

RBF. MLP is a class of artificial neural networks that find utility in diverse fields.

The algorithm proceeds through three main stages. Initially, it executes a feed-

forward pass to process input patterns. Subsequently, it undertakes a back-

propagation phase to trace and assess prediction errors in a reverse manner

throughout the network. Finally, it iteratively adjusts weights and biases using

error information to enhance the accuracy of predictions. A standard multi-layer

perceptron is composed of input, output, and hidden layers, where each neuron

in these levels is equipped with biases that resemble weights. The Back-

propagation algorithm is based on the generalized delta rule and aims to

minimize the total squared error through the use of gradient descent and can

improve the network's efficiency (Syafiqah Ishak et al., 2015). Unlike MLP,

RBF artificial neural networks have a simpler topology. An input layer, a hidden

layer with Gaussian radial basis functions, and an output layer make up RBF

networks. Function approximation and pattern recognition employ them,

notably for nonlinear input-output interactions. RBF networks employ radial

basis functions in the hidden layer to compare incoming data to established

prototypes, capturing complicated data patterns.

 The very first step is collecting the images, which 50 photos of healthy

leaves and fifty images of unhealthy leaves are collected. After that, the images

will undergo image processing consists of contrast enhancement, segmentation,

and feature extraction. Then, the classification of healthy and unhealthy leaves

will be completed with MLP and RBF, the performance will be compared. The

table 2.2 below show the result of classification accuracy of MLP model with

RBF model and the RBF shows better performance that the MLP. This shows

that the ANN can also has ability to be train and get identify healthy and

unhealthy leaves.

31

Table 2.2. Experimental result of healthy and unhealthy dataset with MLP

and RBF (source: Syafiqah Ishak et al. 2015)

Training Samples Testing Samples Classification Efficiency (MLP)

90 10 99.15%

80 20 94.05%

30 70 90.3%

Training Samples Testing Samples Classification Efficiency (RBF)

90 10 98.85%

80 20 99.1%

30 70 99.2%

Kumari, Prasad, and Mounika (2019) identified and categorized healthy and

diseased leaves using a neural network classifier in order to advance research

on the detection of leaf diseases. The investigation begins with the acquisition

or collection of photographs, which consists of two sets: twenty images

representing diseased tomato leaves affected by Septoria leaf spot and leaf mold

diseases, and twenty images depicting afflicted cotton leaves afflicted with

diseases including bacterial leaf spot and target spot. The k-means clustering

technique is subsequently implemented for image processing tasks including

image segmentation and clustering. It may be beneficial to eliminate the

discoloration portion of the diseased leaf. As illustrated in the figure below, the

image is concentrated. The objective of performing image clustering is to

eliminate the spotted regions of the leaf. Feature extraction will subsequently be

executed on the segmented images. Kumari et al. (2019) suggests using

extracted features to detect and classify leaf diseases.

The proposition put forth by Kumari et al. (2019) involves the

application of extracted features in order to detect and classify leaf diseases. The

classification process is executed utilizing an algorithm called ANN. The

extracted features, including Contrast, Correlation, Energy, Homogeneity,

Mean, Standard Deviation, and Variance, will comprise the input to the neural

network. As a class vector, the target data for the neural network will be supplied.

Following this, Kumari et al. (2019) implemented a back propagation neural

network in order to classify the data. The operational results of the model are

detailed in the table that follows.

32

Table 2.3. ANN classification result (Kumari et al., 2019)

2.5 Application of Deep Learning in Plant Disease Detection

Application of DL to recognize the plant diseases is a big step forward on the

modern farming technology. Due to the growing problem of plant diseases and

the pressing need for more ecologically friendly farming practices, there is an

immediate need for rapid and precise techniques of identifying these illnesses.

One potential method for satisfying this demand is DL, a subfield of ML that

use numerous-layers networks to extract intricate patterns and features from

data. Using massive volumes of picture data from both healthy and diseased

plants, deep learning algorithms may learn to distinguish between various

disease indicators and correctly categorise a plant's health status. The various

applications of DL in the recognition of plant diseases are discussed in first

section. It delves into the processes, challenges, and potential advantages of

implementing these cutting-edge approaches in agricultural practices.

2.5.1 Introduction to Convolutional Neural Network

Jing Wei (2019) classifies Convolution Neural Network (CNN) as a DL method

that integrates discrete convolution techniques for image processing with

principles derived from artificial neural networks (ANNs). The approach

employed in this study draws inspiration from the fundamental principles

governing the functioning of simple and complex cells observed in the field of

visual neuroscience. The utilisation of this technique enables the network to

efficiently analyse images without requiring computationally intensive

procedures such as feature extraction and data reconstruction, which are

commonly performed in conventional image recognition systems.

33

 Within CNNs, there is a considerable difference in the makeup of the

neurons. These neurons have a three-dimensional structure that includes both

the depth and length of the incoming data (height and width). In contrast to

traditional ANNs, neurons in a particular CNN layer only link to a small portion

of the layer above. For example, in a real-world situation, the input "volume"

would include the following measurements: 64 64 3 (indicating height, width,

and depth). This results in an output layer that is eventually 1 1 n in size, 'n'

represents the possible class number.

Convolution Neural Network normally have three core layers, which are

convolutional layer, pooling layer, also fully connected layer. Inside each layers,

there are several hidden layers that bind together to form one type of layer. The

convolutional layer is an important component of CNNs, and its key element is

its learnable kernels (Shea & Nash, 2015).

Figure 2.3. RGB Image Processing in CNN (source: Saha, 2018)

From the figure above, we can observe that normally an image will be

converted to RGB image which only consist of three colour panes which are

Red, Green Blue before it enter to the convolutional layer. In the figure above,

an input image consists of M x N x 1 image matrix with 3 x 3 x 3 of kernel or

filter. The kernel will move horizontally by a until it completely fills the width.

Then, using the same Stride Value, it goes down to the picture's beginning place

34

on the left and continues the procedure until it has scanned the entire image

(Saha, 2018).

Figure 2.4. Convolutional Layers in CNN (source: Saha, 2018)

As shown in the figure, the pooling layer follows the convolutional layer.

Pooling layers are implemented with the aim of reducing the dimension of

images, thereby minimising the number of variables and computational

complexity. In addition to employing activation maps, these layers frequently

utilise max pooling with 2x2 kernels and a stride of 2. A 25% reduction is

applied to the dimensions of the activation map, while the depth volume remains

unchanged. There are two typical ways to max-pooling: one use 2x2 stride-2

filters that cover the whole spatial dimension associated with the input image

data, and the other employs overlapping pooling with a 2x2 stride and a 3x3

kernel. Larger kernel sizes are often avoided since they degrade model

performance (Shea & Nash, 2015).

While for the last layer is named as fully connected layer. This specific

layer is the most critical component in CNN topologies. It is made up of neurons

that only make connections with neurons in the two neighbouring layers.

various neurons are critical in the transmission and translation of information

across various surrounding layers, allowing the network to extract detailed

characteristics and patterns. These direct connections let the layer to capture

intricate linkages and dependencies within the input data, which helps the

network generate more accurate predictions (Shea & Nash, 2015). In other

35

hands, those hidden and multiple layers allow the deep learning to have better

machine learning performance and allow us to deal with more complicated task.

2.5.2 CNN in Plant Disease Detection

In the research that is conducted by Mohanty et al. (2016), they dig into a

comparative comparison of two well-known deep learning algorithms, namely

AlexNet and GoogleNet. Both of these algorithms are classified as CNNs,

which is another name for the category of neural networks. The research makes

use of a significant dataset that was obtained from the PlantVillage dataset,

which is accessible to the general public. This collection has an astounding

54,306 photos that are separated into 38 different categories. The sheer volume

and diversity of this dataset highlight the considerable complexity inherent in

deep learning tasks, setting them apart from the more manageable challenges

addressed by shallow learning approaches.

 According to Mohanty et al. (2016), the research starts with the

preprocessing of data to resize the images to the size of 256 x 256 pixels. They

divide the experiment into different version to get the best performance among

different settings. The experiment involves a variety of essential criteria. Firstly,

this study investigates and compare the results from two DL systems,

specifically AlexNet and GoogleNet. Additionally, this study examines several

training methodologies, such as transfer learning and training from the ground

up. Additionally, the analysis considers the different sorts of datasets, such as

those containing color images, grayscale images, and images specifically

focused on leaf segmentation. The experiment examines various test-train split

scenarios, encompassing different distributions of training and testing sets,

namely 80-20%, 60-40%, 50-50%, 40-60%, and 20-80%. The research was

focusing on the getting the hyperparameter setup that will have the best results

in the proposed tasks. (Mohanty et al, 2016)

 AlexNet is categorized under CNN because it is built under the theory

of CNN. The model structure of AlexNet is built up of a total of five

convolutional layers and three totally connected layers. and is activated by

softmax activation function or in other word last layer is softmax. The network

comprises several critical layers: the initial two convolutional layers, denoted as

conv1 and conv2, are immediately followed by normalization and pooling

36

layers. The neural network is finalised by a crucial fully connected layer known

as fc8. This layer produces 38 output nodes, each of which corresponds to a

distinct class within the dataset. These outputs subsequently serve as input to a

softmax layer, whose role is to perform exponential normalization (Mohanty et

al, 2016).

 While The GoogleNet design is characterised by its increased depth

and width, consisting of 22 convolution layers. Despite this expansion, it is

noteworthy that GoogleNet manages to retain a relatively lower parameter count

of 5 million, in contrast to AlexNet's substantially higher parameter count of 60

million. One notable characteristic of GoogleNet is its implementation of the

"network-in-network" architecture using inception modules. The modules under

consideration incorporate parallel combinations of 1x1, 3x3, and 5x5

convolutions together with max-pooling layers, enabling the model to

effectively capture diverse input concurrently. To enhance computational

efficiency, the use of 1x1 convolutions is implemented both before to and

subsequent to the bigger convolutions. Additionally, the merging of outputs

from these parallel layers is achieved using filter concatenation layers (Mohanty

et al, 2016).

 In the result of research, the GoogleNet is performing better than the

AlexNet. This is because GoogleNet has more convolutional layer compared to

AlexNet. Then the transfer learning is always having better performance than

the training from scratch because of Transfer learning is a prominent machine

learning approach that involves the adaptation of a pre-trained model from one

task to another activity that is similar, though distinct. This methodology proves

to be especially advantageous in situations when there is a scarcity of annotated

data accessible for the intended objective, since it enables the model to use the

extensive information acquired during the reference work. Then the dataset

which has color based can provide better performance to the model because the

model can also learn from the color and relate the information. The optimal

setup among the proposed parameters which is demonstrating the highest

performance, involves utilizing the color-based database in conjunction with

GoogleNet for transfer learning, and employing an 80-20 train-test split which

achieved accuracy of 99.34% (Mohanty et al, 2016).

37

 Zaki et al. in 2020, employed the MobileNetV2 CNN model for the

task of recognition and classification of tomato plant illness for their research.

According to Zaki et al. (2020), MobileNet is deep learning framework

specifically developed to cater to the computing constraints of mobile devices.

Google later produced a refined version of the technology, referred to as

MobileNet V2, which featured slight modifications compared to the MobileNet

V1. The fundamental component of the network, known as separable

convolution, stays unchanged. In an independent investigation, the utilisation of

MobileNet version 2, which had been pre-trained on ImageNet datasets, was

employed to extract characteristics from photos of fruits. The study posited that

the parameters of the model were decreased from 4.24 million to a mere 3.47

million, resulting in enhanced accuracy. The advantages of MobileNet V2

compared to other CNN models is it can be easily fit into mobile or embedded

system use.

Table 2.4. Description of training hyperparameter. (Source: Guo et al., 2022)

The Table 2.4.2.1 shows the description of training hyperparameter in a

deep learning model. In the research of MobileNet V2, Zaki et al. (2020)

collected PlantVillage dataset that consists of 4671 images which consists of a

total of 1590 photos depicting healthy tomato leaves, 952 images representing

leaf mold, and 1756 images showcasing late blight, and 373 mosaic virus images

with size of 224 x 224 pixels for training and testing. Then, the team applid

training from scratch on MobileV2 and research on the performance of

MobileNet V2 under different setup of hyperparameter and choose the best

among them. Zaki et al. (2020) did a thorough investigation on the performance

38

of MobileNet, employing a range of optimisation techniques such as Adagrad,

Adam, SGD, RMSprop, and Nadam. In addition, the researchers conducted an

evaluation of the model's performance using several learning rates, namely

0.00001, 0.0001, and 0.001. The study also examined the effects of several test-

train split ratios, including ratios of 9:1, 4:1, 7:3, and 3:2. Moreover, the

investigation examined the impact of varying batch sizes (48, 32, and 16) on the

performance of the model. After all comparison and matching, the team obtain

the optimum accuracy of 95.94% when MobileNet V2 is trained with Adagrad

optimization algorithm, with a batch size of 16, a learning rate of 0.001, and a

4:1 data split between training and testing.

The study conducted by Menon, V. et al. (2021) investigated the efficacy

of CNN models, which areVGG16, Inception V3, and Xception, in tasks of plant

disease detection. The researchers evaluated the performance of these models

using two separate datasets. One dataset was made of laboratory photographs

that were utilized for the purpose of training, which is collected from

PlantVillage, whereas the other dataset consisted of images that were captured

under natural lighting settings and included environmental backgrounds, which

is collected from PlantDoc. Visual Geometry Group 16 (VGG16) is a deep

learning CNN architecture. It is distinguished by its composition of 16 weight

layers, comprising of 13 convolutional layers and 3 fully linked layers. The

VGG16 model is widely recognized for its simplicity and efficacy in the domain

of picture classification. It has served as a fundamental model in the field of

computer vision, frequently employed as a pre-trained framework for transfer

learning across many applications.

While the Inception V3 architecture is recognized because it has extreme

good performance in challenges related to image identification. The network

incorporates an innovative "Inception module" which utilizes numerous

concurrent convolutional processes with varying kernel sizes. In details,

Inception V3 is a deep neural network architecture that has exceptional efficacy

in image classification tasks due to its extensive depth of 48 layers and a vast

number of parameters. Lastly, Xception, also named as "Extreme Inception", a

CNN structure renowned for its utilization of depth wise separable convolutions.

These convolutions are designed to decrease computational complexity while

maintaining a high level of expressive capability. The purpose of its design was

39

to optimize the effeciency of CNNs through the substitution of different and

multiple convolutional layers with depthwise separable convolutions. These

convolutions are composed of a depth-wise convolution then a pointwise

convolution (Menon, V. et al., 2021).

In the study by Menon et al. (2021) discovered that their convolutional

neural network (CNN) models exhibited superior performance compared to

alternative models when they were trained using photos from the PlantVillage

database. The VGG16 model demonstrated superior performance, attaining a

notable training accuracy of 92% and an equivalent validation accuracy of 92%.

The Xception model had a strong performance, achieving an 88% training

accuracy and an 88% validation accuracy. The Inception V3 model

demonstrated satisfactory performance on the PlantVillage database, with an 85%

accuracy during training and an 87% accuracy during validation. But the

performance of the CNN models is bad with the PlantDocs database, and

according to Menon, V. et al. (2021), PlantVillage dataset demonstrates

enhanced accuracy as a result of its controlled experimental conditions;

nonetheless, its applicability for real-time field implementation is limited. This

potential is particularly evident in the enhancement of picture resolution, which

can lead to enhanced accuracy in disease detection.

Rather than that, in the research paper by Saxena, O. et al. (2021). The research

introduces a method on CNN models that will achieve accuracy of above 95%

on the task identifying and classifying early blight and late blight disease on

potato leaves. The research started by collecting the images from Kaggle, where

the dataset consists of 900 images that was divided into 3 groups which are

healthy potato leaf, early blight, and late blight. Before the training of the CNN

models, Saxena, O. et al. (2021) proposed the image preprocessing on the

dataset because the amount of the training dataset is too less to allow the model

to have accuracy more than 95%. The team applied image resizing that convert

the images to size 256 x 256 x 3 pixels, then color adjustment using RGB

channel, orientation, and image augmentation. The image preprocessing can

remove the noise from the dataset. After the preprocessing of image data,

segmentation and feature extraction on database, the result of the CNN models

is able to achieve better performance where AlexNet reached accuracy of

98.51%, while GoogleNet reached accuracy of 99.10%.

40

2.5.3 YOLO in Plant Disease Detection

The CNN model named as YOLO is initially and mainly designed for the

purpose of real-time identification and computer vision applications. What

distinguishes it is its capacity to rapidly identify several objects in a single

iteration of the neural network. This is achieved by partitioning an image into a

grid and generating predictions for bounding boxes and class probabilities

within each individual grid cell. The YOLO algorithm has garnered significant

attention and widespread acclaim owing to its exceptional characteristics, such

as its notable efficiency, precision, and speed, rendering it highly applicable

across a diverse array of domains. The scholarly article entitled "Object

detection utilizing YOLO: obstacles, architectural advancements, datasets, and

applications" produced by Diwan, T. et al. (2021), explores the architectural

framework of YOLO.

The architectural architecture of YOLO is influenced by GoogLeNet and

is subsequently implemented for the purpose of object detection, utilizing the

VOC Pascal Dataset from 2007 and 2012. In contrast to the utilization of

inception modules in GoogLeNet, YOLO employs a combination of (1 × 1) and

(3 × 3) convolutional filters. The initial convolutional layer in the YOLO model

utilizes a filter with dimensions of (7 × 7). YOLO's architecture comprises two

fully connected layers and twenty-four convolutional layers in total. Following

four convolutional layers in succession, the architecture executes a max-pooling

operation. The model incorporates two crucial components: a (1 × 1)

convolution operation and global average pooling. Diwan et al. (2021) assert

that YOLO possesses inherent characteristics that make it exceptionally well-

suited for tasks involving real-time object detection and can be modified to

function in applications other than GPUs.

Generally, the YOLOv8 is a model that is developed under ultralytics.

The development of YOLOv8 is referred to YOLOv8 and several updates and

improvement is applied to YOLOv5 in order to create YOLOv8. YOLOv8

consist of three main parts in its structure which are Backbone, Neck, and Head.

The backbone of YOLOv8 is named as CSPDarknet-53 which is the core section

that can extract the image features. It used 53 convolutional layers and applied

cross-stage partial (CSP) connections to increase the speed of data transfer. The

41

layers and specific structures build up a lightweight and powerful filter that can

extract more details from complex image.

After YOLO was introduced, many researchers give significant attention

contribute to optimize the completion of ML model’s functionalities to make it

suitable for real-life task. In the research paper “Crop Disease Detection Using

YOLO” by Morbeka, Parihar and Jadhav (2020) proposed research regarding to

the comparison of YOLOv3 with the ANN models. Dataset which is used for

model testing and training comprises 25,044 images distributed across nine

distinct plant classes YOLOv3, the third iteration of the YOLO, object

recognition model which has a number of significant enhancements. The system

employs a logistic classifier for efficient computation of item probabilities in a

multi-label classification setting. According to YOLOv3 model incorporates

residual skip connections, up sampling techniques, and operates on three distinct

scales in order to facilitate object detection. Detection kernels are subsequently

applied to feature maps that have been derived from three distinct locations

within the network. This process yields detections that possess diverse

dimensions and classes. The architecture of YOLOv3 incorporates a feature

extractor called Darknet-53 and a multi-scaled detector that is capable of

processing feature vectors from various scales. The ultimate result comprises of

detections at various scales, denoted as tuples that indicate the dimensions and

probabilities of different classes According to Morbeka, Parihar and Jadhav

(2020), they proposed the research to investigate and compare the performance

between ANN with SUFT, FOANN with SURF OANN with SUFT and the

YOLOv3. In the research, YOLOv3 obtained the greatest performance with

mean accuracy of 99.50%, recall of 0.88 and precision of 0.933.

2.5.4 Research History on Application of YOLO

In the year 2021, Shill and Rahman, they propose an experiment to do

comparison between YOLOv3 and YOLOv4. According to Shill and Rahman

(2021), YOLOv4 is an updated version of YOLOv3. The main difference of

YOLOv4 compared to YOLOv3 is it has a backbone network which consist of

CSPDarknet53 architecture. The CSPDarknet53, which serves as the backbone

network in YOLOv4, plays a crucial role in extracting features for object

detection. The technology serves a dual function, as it is capable of capturing

42

complex patterns, edges, textures, and structures present in an image, while also

understanding both detailed and overarching contextual information. The design

of CSPDarknet53 aims to mitigate challenges commonly seen in deep networks,

such as the vanishing gradient problem. Significantly, the concept of a "cross-

stage hierarchy" is introduced, wherein feature maps are divided at distinct

stages to undergo individual processing before their outputs are combined. This

facilitates the transmission of information and the dissemination of gradients,

hence fostering efficient comprehension of objects in various settings. The

outcome is an enhanced feature representation that effectively handles

fluctuations in object scale, orientation, and surroundings, hence leading to an

improvement in the accuracy of object detection.

In YOLOv3 and YOLOv4, image preprocessing is more complicated

than image categorization. Resizing the images to 416x416 yields 52x52x3x

(4+1+number of classes) and 13x13x3x (5+number of classes) network outputs

for both models. Creating a model-training format using data labels is critical.

Random flipping, cropping, translating, Mosaic data augmentation, and

DropBlock regularisation were used to diversity the training dataset and reduce

class imbalance. The training phase was subsequently carried out on a single

GPU using Google Colab. During the training, they set batch size to 64, with

0.001 learning rate, and also momentum value of 0.9, and the decay rate is 0.005.

In the course of the training procedure, a total of 9 anchors and 105 filters were

employed. The selection of these values was based on a formula, specifically 3

multiplied by the sum of 5 and the number of classes (C). In this particular case,

the number of classes was 30. The training process consisted of a total of 60,000

batches, each executed with precise step sizes. The evaluation on the

performance of the model is focused on the Mean Average Precision (mAP)

metric, which considers the Intersection over Union (IoU) with a threshold of

0.5. The evaluation process involves doing 10,000 iterations to determine the

ideal parameters. To gauge the model's performance, mAP was employed to

assess the accuracy of object predictions by determining the IoU threshold

between the ground truth and the anchor for each detection. The formula of mAP

as shown in below:

43

𝑚𝐴𝑃 = (
1

𝑁
) ∑(𝑝(𝑟))

1

𝑟=0

(5)

The performance of the YOLOv4 is better than YOLOv3 which is

proven in the result of the research by Shill and Rahman (2021) with 𝑚𝐴𝑃 is

55.45 for YOLOv4 while 53.08 for YOLOv3.

 The research produced by Dai and Fan (2022) presents the introduction

of a unique network architecture known as YOLOv5-CAcT. The study

incorporates a comparison evaluation with the original model, YOLOv5, to

gauge the system performance. YOLOv5 is an advanced target detection

method that falls within the One-Stage category. YOLOv5 presents numerous

advantages in comparison to its previous iterations, notably a substantially

reduced weight file, rendering it well-suited for real-time detection on

embedded devices. The YOLOv5 framework consists of three essential

components, namely the Neck Network, the Backbone Network, and the Detect

Network. These components collaborate to extract meaningful information,

minimize computational requirements, and enable effective training.

While for the YOLOv5-CAcT which are proposed by Dai and Fan (2022)

based on YOLOv5 and they have different features, for example, YOLOv5 use

CSPDarknet53 as its backbone but modified YOLOv5 add Activation

Compression (AcTNN) on top of CSPDarknet53 to decrease the number of

parameters without effect its performance, while for the neck of the architecture,

original YOLOv5 applied Path Aggregation Network (PANet) while modified

YOLOv5 added Refinement Anchor (RA) to improve the accuracy of object

detecting by refining anchor boxes. Then the YOLOv5-CAcT is also apply

Focal Loss (FL) and Smooth Binary Cross Entropy (Smooth BCE) to help

reduce the imbalance between positive and negative sample. The dataset used is

taken from PlantVillage and consists of 52,589 images with 59 diseases from

10 different crops species with size 512 x 512 pixels. (Dai & Fan, 2022)

Before training of the models, both models are set to their own

hyperparameter that will provide optimum performance. YOLOv5 utilizes

BCELoss (Binary Cross-Entropy Loss) in conjunction with SGD (Stochastic

Gradient Descent) optimization. The model is trained using a batch size of 128

44

with size of 384 pixels. Initial learning rate is set at 0.0032, which is then

adjusted to 0.12. The momentum parameter is assigned a value of 0.843, and

the weight decay is configured to be 0.00036. A preheating parameter of 5 is

utilized. In contrast, the YOLOv5-CAcT model incorporates AcTNN, model

pruning, also knowledge distillation techniques. It utilizes the same loss

function and optimizer as the original YOLOv5 model, but with a batch size of

64 and a bigger input image size of 512 pixels (Dai & Fan, 2022). The remaining

hyperparameters are kept consistent with the pre-training phase. From the result

of the research, YOLOv5-CAcT has better performance compared to YOLO V5.

The below table shows the results of proposed YOLO models:

Table 2.5. Test results of YOLOv5 and YOLOv5-CAcT (source: Dai & Fan,

2022)

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)

YOLOv5 87.2 92.6 89.8 94.3

YOLOv5-CAcT 90.7 92.3 91.5 95.6

In the research paper titled "Tea leaf disease detection and

identification based on YOLOv7 (YOLO‑T)” by Soeb et al. (2023), they

compared the performance of YOLOv5 and YOLOv7. They prepared a dataset

that consisted of 4000 of tea leaf images and all capture from the tea field with

640 x 640 pixels size with camera. The images are divided to 5 categories

consist of leaves infected by red spides, tea mosquito bugs, black rot, brown

blight and leaf rust. According to Soeb et al. (2023), YOLOv7 is a progressive

advancement in the realm of model structures, building upon the foundations

laid by YOLOv4, Scaled YOLOv4, and YOLO-R. The architecture of YOLOv7

incorporates an enlarged ELAN (E-ELAN) backbone that utilises several

techniques like as expansion, shuffling, merge cardinality, and group

convolution. These approaches are employed to augment the learning capacity

of the model while ensuring the preservation of gradient flow. Additionally, the

incorporation of compound model scaling is employed to withstand the

fundamental characteristics of the model. Furthermore, YOLOv7 integrates

"bag-of-freebies" (BoF) methodologies in order to enhance performance while

keeping training expenses at a minimum. The result as shown as below:

45

Table 2.6. Comparison of evaluation indicators between YOLOv5 and

YOLOv7 (source: Soeb et al., 2023)

Model Precision (%) Recall (%) F1-score Accuracy (%)

YOLOv5 95.4 96.4 0.958 96.1

YOLOv7 96.7 96.4 0.965 97.3

In the research proposed by Susa et al. (2022), they proposed an

investigation to figure out how YOLOv3 perform in the task detection of cotton

and leaf classification. The research introduced a crucial step for YOLO which

is image annotation. Image annotation refers to the procedure of incorporating

labels, metadata, or visual indicators onto photographs in order to elucidate and

ascertain the items, regions, or features present within them. Various annotation

approaches commonly employed in computer vision tasks include bounding

boxes, segmentation masks, key point markers, and text labels. The inclusion of

annotations is crucial in the training of YOLO models, as it facilitates the

recognition and comprehension of picture content. After the training of the

model with dataset that consists of 400 images with healthy and disease leave,

the proposed YOLOv3 obtain 95.09% of accuracy. Subsequently, the

performance of the model was assessed by utilising a video consisting of eight

images, with two images representing each class. This movie had a total

duration of 16 seconds and had 480 individual image frames. The system

effectively identified and categorised objects inside the video frames, attaining

notable accuracy rates of 98% and 99%. Furthermore, the utilisation of a camera

for live stream detection exhibited exceptional performance, as where accuracy

rates that varied between 74% and 100%. This observation demonstrates the

efficacy of the model in accurately identifying and categorising items inside

dynamic, real-world situations.

2.6 Introduction to Vision Transformer

The Transformer model was initially introduced for natural language processing

tasks, where it achieved remarkable success. Encouraged by its prowess in

language-related tasks, researchers have sought to extend the Transformer's

capabilities to image classification tasks. Their objective has been to

46

demonstrate that Transformers can excel in tasks beyond NLP, including image

classification and object detection. In the year 2021, the first transformer named

“Vision Transformer” (ViT) model that can be used for image classification is

proposed by Dosovitskiy et al. (2021). The main innovation of VITin order to

fit transformer model into image classification task is the ability to handle image

data as sequence without increasing computing complexity. In the paper, author

mentioned that the team proved the performance of transformer by comparing

Vit with ResNet, while ResNet is a very well performed CNN model in image

classification. The model architecture overview is shown in Figure 2.5 below.

Figure 2.5. Model Overview of Vision Transformer (source: Dosovitskiy et

al., 2021)

2.6.1 ViT Architecture: Patch Embedding

According to Dosovitskiy et al. (2021), the images will firstly proceed with the

layer of patch embedding, where it will split the image to equally sized patches,

then the patches will be flattened. The patches were set to the size of 16 x 16 x

3 within the whole image. The first patch is derived directly from upper left

corner of the input image, while the final patch is obtained from the lower right

corner. In this manner, the patches have the capability to be organised in a linear

configuration, which is specifically delineated as the num-patches.

47

2.6.2 ViT Architecture: Linear Embedding and Position Embedding

Linear embeddings are constructed from every patch in the picture, and these

embeddings are known as "Patch Embeddings." As a consequence, each patch

is represented by a vector of dimensions 1 by 768 (16 x 16 x 3). Following the

division of the original image into 196 smaller image patches, each measuring

14 by 14 pixels, the aforementioned alteration can be implemented.

Subsequently, a linear projection layer is employed to process the

aforementioned patches and generate the matrix representing the embedding of

the image. This subsequent phase occurs subsequent to the preceding stage. The

patch embeddings, which have dimensions of 196 by 768 pixels, function as

representations for the diverse patches that constitute the entirety of the image.

Once the identification of a patch creation as a layer was made, the Patch

Encoder layer was constructed. In addition, the projected vector incorporates a

learnable position embedding. The learnable class token is used to generate as a

global representation of the input image of the input image, which can allow the

model to understand the whole image.

2.6.3 ViT Architecture: Transformer Encoder Layer

After the position embedding and patch application processes are completed,

the image patches are transferred to transformer encoder layer. Three primary

components comprise a transformer encoder layer: layer normalisation, multi-

head attention, and a multi-layer perceptron. The Transformer Encoder Layer is

an integral component of the image patch processing pipeline within a Vision

Transformer (ViT). At the outset, the input will be passed through the Multi-

Head Attention block after being filtered through a Layer Norm within that layer.

The input is subsequently supplied to the MLP Block. In addition to two linear

layers, the MLP block includes a GELU nonlinearity. To derive the final output

from a solitary layer of the Transformer Encoder, the initial inputs and outputs

from the Multilayer Perceptron (MLP) block are merged once more. The

employment of multi-head self-attention to capture interdependencies among

the patches, while the employment of layer normalisation and residual

connections serves to stabilise and enhance the learning process. The stacking

of Encoder Layers in ViT facilitates the capturing of hierarchical characteristics

48

and dependencies among patches, hence serving as the foundation for picture

classification and other computer vision tasks.

2.6.4 Transformer-Based Model in Plant Disease Detection

In the research paper titled by Boukabouya et al. (2022). The research team fine

tune the hyperparameter of a ViT model to optimize its performance toward the

function of the plant disease classification. Dataset from the PlantVillage is

taken for model training and it consists of 18,345 of tomato leave images that

consist of 10 different disease samples.

 From Boukabouya et al. (2022), the input is initially divided to several

patches, each measuring 16 by 16 pixels and including RGB channels. The

patches are arranged linearly, covering the entirety of the image. Subsequently,

linear embeddings are calculated for every patch, resulting in vectors of size 1

x 768 (16 × 16 x 3). The embeddings in question integrate positional information.

The input embeddings are taken as input by the Transformer Encoder, which

has 12 similar layers. Each layer in the architecture consists of a Multi-Head

Attention block, Layer Normalisation, and an MLP block with two linear layers

and GELU nonlinearity. Furthermore, the Patch Encoder layer applies a linear

transformation to each patch, incorporating a position embedding that may be

adjusted through learning. In the end, the extracted characteristics are inputted

into a Multi-Layer Perceptron in order to classify images. Lastly, the research

obtained the ViT employs a patch size of 16, a projection dimension of 128, 4

attention heads, 16 layers, 512 MLP units, a learning rate of 0.0005, Adam

optimizer, and Gelu activation function has the optimum performance which is

up to accuracy of 99.7%.

 In their study publication, Thakur et al. (2022) presented the

PlantXViT model as a solution for the task of detecting and recognising plant

diseases. The PlantXViT model represents an innovative hybrid methodology

that combines the functionalities of Vision Transformers (ViT) and

Convolutional Neural Networks (CNN) in order to accurately detect and classify

plant diseases. The model is built by combining two convolutional blocks from

the VGG16 architecture, an Inception block, and the ViT architecture. The

proposed model accepts input pictures with dimensions of 224x224x3. It

incorporates Convolution blocks derived from VGG16 and Inception v7,

49

together with components from the Vision Transformer (ViT) architecture.

These ViT components consist of MHA and MLP modules that employ linear

projections. The VGG16 Convolutional blocks are employed as the initial stage

for processing the input picture. Subsequently, an Inception-like multi-level

feature extraction block is utilised to improve the learning of local features. The

feature map is transformed into patches, which are then subjected to linear

projection to produce feature vectors. These feature vectors are subsequently

processed by four transformer blocks. The classification result is generated by

using a global pooling layer with fully linked layer with softmax activation.

 From the research, several datasets are used to do training and testing

on the PlantXViT model such as PlantVillage dataset that has total of 54,305

images under 38 different classes, Embrapa dataset that has total of 46,379

images under 93 classes, Apple dataset, Maize dataset and Rice dataset. The

model gets the best performance when it is trained with PlantVillage dataset

with patch size of 5 and Nadam optimizer. With the setup of PlantXViT model

achieved impressive performance metrics, including a low loss of 0.04, high

accuracy at 98.86%, excellent precision, recall, and F1 score at 98.90%, 98.81%,

and 98.85%, respectively, along with a remarkable AUC of 99.92% and a kappa

score of 0.99.

 Yu, Xie, and Huang (2023) introduced a more advanced model called

the Inception Convolutional Vision Transformer (ICVT) based on the ViT

model. ICVT comprises several stages, including soft split embedding, depth-

wise convolutional transformer block, and inception transformer block, making

it a more complex model than both CNNs and ViTs. The utilisation of soft split

token embedding is a method employed to effectively collect localised

information derived from neighbouring pixels and patches within a transformer

block. The process involves dividing the input tokens into smaller sub tokens

and subsequently representing each sub token’s local environment through

vector embedding. The inclusion of the transformer block enables the

acquisition of associations between distinct segments of the input, regardless of

their immediate proximity. While the depth-wise convolution transformer block

is a variant of the transformer block that use depth-wise convolutions in lieu of

conventional convolutions. Depth-wise convolutions refer to a specific sort of

convolution operation wherein a singular filter is exclusively applied to each

50

individual input channel. This characteristic renders them more effective in

comparison to conventional convolutions, and additionally enables them to

acquire localised information from neighbouring pixels and patches.

 The research used four different datasets to investigate the performance

of the ICVT in the plant disease detection and classification. The first dataset,

referred to as PlantVillage, consisted of a total of 55,448 photos that were

categorised into 38 distinct plant disease classes. These classes encompassed a

wide range of plant species, amounting to a total of 14 different types of plants.

The second dataset, known as the ibean leaf image dataset, has photos that have

been classified into three distinct categories. However, the specific quantity of

photographs within each category has not been explicitly stated. The third

dataset, referred to as AI2018, consisted of a total of 31,718 training photos and

4,540 validation images. These images were categorised into eleven plant

categories, which were further broken into 61 subcategories based on illness,

degree, and species. The fourth dataset, referred to as PlantDoc, comprised a

total of 2598 photos. These images were selected to represent 13 distinct plant

categories, each associated with 27 different species affected by various

diseases. The ICVT model obtain the mean accuracy of 99.94%, average

precision of 0.9989, average recall of 0.9988, and average F-1 score of 0.9989.

 Guo, Lan, and Chen (2022) introduced a more advance and effective

model than ViT, which is Convolutional Swin Transformer (CST) that can help

in image classification and plant disease detection. Before training, Guo et al.

(2022) prepared datasets that are provided with encompass various plant

diseases. The first dataset, known as the Cucumber Plant Diseases Dataset,

contains a total of 679 photographs. These images depict both healthy cucumber

leaves and leaves affected by rust. The second dataset, named the Banana Leaf

Disease Images dataset, comprises 1,288 images. These images showcase

healthy banana leaves, as well as leaves infected with 'Xanthomonas' and

'Sigatoka'. The third dataset, referred to as the Potato Disease Leaf Dataset,

consists of 4,062 images. The leaves depicted in these images are categorized

as follows: healthy leaves, foliage impacted by early blight, and leaves impacted

by late blight. In conclusion, the Plant Village dataset comprises a subset

comprising 4,021 images. These images are distributed among ten distinct

categories, each representing a different plant disease.

51

 According to Guo et al. (2022), CST is the incorporation of transformer

and convolutional blocks that can enhances the efficacy of plant disease

detection. The backbone of the CST is using the original Swin Transformer

architecture which are organised in pairs along with patch merging layers in

each step. The CST model has 4 stages where each stage consists of patch

merging and a Swin Transformer block. The model first extracts local features

from the image and subsequently use self-attention to collect long-range

dependencies among these features. The patch merging layer is an essential

component within the design as it performs the critical function of unifying

feature maps from the preceding level through the process of averaging. The

self-attention mechanism plays a crucial role in facilitating the model's ability

to identify connections between various regions of the image. In the CST model,

this mechanism is influenced by the window-based self-attention process

observed in the Swin Transformer. In order to enhance the acquisition of

complex attributes, the CST model employs residual learning. The proposed

methodology leverages existing features by including the output of the patch

merging layer with the output of the Swin Transformer block. Additionally, in

order to mitigate the issue of overfitting, the model utilises label smoothing

cross-entropy as its loss function. The implementation of label smoothing serves

as a preventive measure against the potential issue of the model overfitting to

the training data. Lastly, by incorporating label smoothing, the model is

encouraged to acquire more generalised features that transcend the specific

characteristics of the training.

 According to Guo et al. (2022), the self-attention processes that is

proposed in the CST will process the entire information form the image to ontain

three learnable matrices where are Queries (WQ), Keys (WK) and Values (WV).

The sequence is first started with the multiplication of the matrices to get Q =

IWQ, K = TWK, V = IWV, where I is the input sequence. Then the attention score

can be calculated with the following equation:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑞

) (6)

52

The training procedure of the model employed a configuration

consisting of predetermined parameters. The training method consisted of 150

epochs, where each epoch encompassed a full iteration through the whole

training dataset. During each epoch, batches of 20 images were simultaneously

processed. The utilisation of the AdamW optimizer was implemented to

minimise the loss function of the model, while a cyclic learning rate scheduler

was utilised to dynamically adapt the learning rate throughout the training

process. The upper bound for the learning rate was established at 0.0001, whilst

the optimal learning rate of 0.000001 was identified using the CyclicLR

scheduler's parameters. The employed loss function for training purposes was

label smoothing cross entropy, which functioned as a metric to measure the

discrepancy between the expected and actual values in the model's predictions.

The below table is the result of the performance of CST:

Table 2.7. Performance of CST (Guo et al., 2022)

Model Accuracy Precision

CST-small 0.937 0.938

CST-base 0.942 0.942

CST-large 0.924 0.924

From the table above, The CST architecture comprises three distinct

variants: CST-small, CST-base, and CST-large. CST-small is characterized by

96 channels in its initial stage, accompanied by 2 Swin Transformer blocks in

each stage, and a patch size of 4x4. In contrast, CST-base features 96 channels

in its first stage, incorporates 6 Swin Transformer blocks within each stage, and

maintains a patch size of 4x4. Lastly, CST-large exhibits a configuration with

128 channels in its initial stage, integrates a substantial 18 Swin Transformer

blocks per stage, and continues to employ a patch size of 4x4.

2.7 Summary

The table below concludes the performance of the related research on shallow

learning model in the field of plant leaves disease detection and also

classification. Although shallow ML approaches are recognised for their user-

friendly nature and reduced computational demands, they may not presently

53

constitute the central area of research in the field of ML. However, shallow

learning approaches continue to hold significance and worth in particular

situations, such as when there are limitations on processing resources or when

the importance of interpretability and transparency cannot be compromised.

Table 2.8. Performance Summary of Shallow Learning in Plant Disease

Recognition

References Backbone
Image

Classes

Accuracy

(%)

Mohan et al. (2016) SIFT + SVM 3 91.1

Babu (2019) SVM (linear kernel) 8 95.63

Babu (2019) SVM (RBF kernel) 8 94.23

Babu (2019) SVM (polynomial kernel) 8 95.87

Syafiqah Ishak et al.

(2015)

ANN (MLPS) 2 99.15

Syafiqah Ishak et al.

(2015)

ANN (RBF) 2 99.2

Kumari et al. (2019) Neural Network (ANN) 2 92.5

Kusumo et al. (2018) RGB with SVM (linear) 4 88

Kusumo et al. (2018) RGB with SVM (RBF) 4 85

Kusumo et al. (2018) RGB with NB 4 78

Kusumo et al. (2018) RGB with DT 4 76

Kusumo et al. (2018) RGB with RF 4 87

 Table 2.9 below summarize the performance of the CNN and also

YOLO from the past research on the topic of plant disease classification and

detection. Compared to shallow learning, deep learning has its own advantages

which can obtain better accuracy in the task. DL models particularly CNN and

YOLO, excel in the self-extracting features and patterns from the image data,

which allow the models achieved superior accuracy. Rather than that, with the

advance technology, ML models nowadays is able to be trained with the support

of greater computer resource with higher complexity which means that DL

models also excel in learning from larger dataset which can directly boost their

performance.

54

Table 2.9. Performance Summary of CNN and YOLO in Plant Disease

Recognition

Reference Backbone Image classes Accuracy (%)

Mohanty et al. (2016) AlexNet 38 98.1

Mohanty et al. (2016) GoogleNet 38 99.54

Saxena et al.(2021) AlexNet 3 98.51

Saxena et al.(2021) GoogleNet 3 99.1

Zaki et al. (2020) MobileNet V2 4 95.94

Menon et al. (2020) VGG 16 38 92

Menon et al. (2020) Xception 38 88

Morbeka et al.(2020) YOLO V3 24 99.55

Shill & Rahman (2021) YOLO V3 30 53.08 (mAP)

Shill & Rahman (2021) YOLO V4 30 55.45 (mAP)

Dai & Fan (2022) YOLO V5 59 94.3

Dai & Fan (2022) YOLO V5CACT 59 95.6

Soeb et al. (2023) YOLO V5 3 96.1

Soeb et al. (2023) YOLO V7 3 97.3

 The table 2.10 below summarizes the performance of Transformer-

Based models from the reviewed past research. Transformer-Based models has

the performance that is similar to CNN and YOLO models from the comparison

of table 2.10 and 2.9. This signifies a noteworthy accomplishment in the

advancement of Transformer-Based models, which were initially introduced in

the field of NLP. The efficacy and adaptability of Transformer-Based

architectures, which were initially developed for NLP, are now being applied to

the field of image processing, demonstrating their versatility. This transition

signifies a substantial turning point in the progression of deep learning

methodologies, creating fresh opportunities for advancement and

implementation in diverse sectors outside their initial domains.

Table 2.10. Performance Summary of Transformer-Based Model in Plant

Disease Recognition

Reference Backbone Image classes Accuracy (%)

Boukabouya et al. (2022) VIT 10 99.7

55

Yu et al. (2023) ICVT 101 99.94

Guo et al. (2022) CST-Small 17 93.7

Guo et al. (2022) CST- Base 17 94.2

Guo et al. (2022) CST-Large 17 92.4

Thakur et al. (2022) PlantXViT 131 98.86

56

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In response to the critical need for enhanced food security, this project

leverages advancements in artificial intelligence to combat the insidious threat

of plant diseases, safeguarding agricultural prosperity. To achieve this

objective, two state-of-the-art models, YOLOv8 and ViT, will be utilized as

specialized diagnostic tools. YOLOv8, characterized by its swiftness and

vigilance, will efficiently scan leaf surfaces, identifying potential anomalies

with hawk-like precision. Through comprehensive performance evaluations,

the model demonstrating superior proficiency in both speed and accuracy will

be designated the champion. Subsequently, this champion model will be

disseminated across online and offline platforms, democratizing access to this

potent disease-fighting arsenal. Empowered by this technology, even

geographically remote farmers, unconstrained by internet connectivity, will be

equipped to instantly diagnose their crops, enabling prompt and effective

intervention strategies. Throughout the project, the photo will be collected

online from Kaggle while the chili plant leaves picture will be collected

individually from the planted chili. The photo will be prepared with two

categories which are diseased leaves and healthy leaves.

3.2 Dataset

The dataset utilized in this study was sourced from Kaggle. The dataset

obtained for analysis comprises a collection of plant leaf photos belonging to

various classes and exhibiting different types of illnesses. Each image in the

dataset has a resolution of 256x256 pixels. The training and testing dataset are

separated into different folder paths. To reduce the training and testing time

taken, the dataset is reduced in size by removing extra classes out from the

prepared dataset.

The table below lists the classes and amount of the images that are

contained in the dataset. The data is taken from the dataset named as New Plant

Disease Dataset, which is taken from Kaggle, the dataset is divided into 8

57

classes to minimize the computation time and resource used during the training

of the models.

Table 3.1. Information and statistical data of training dataset images

Class Name Number

00 Apple Scab 2016

01 Apple Rust 1760

02 Corn Common Rust 1907

03 Potato Early Blight 1939

04 Potato Healthy 1825

05 Tomato Early Blight 1920

06 Tomato Healthy 1926

07 Tomato Yellow Leaf Curl Virus 1961

After that the dataset is generated, it will be import into Google Drive,

so that coding in Google Colab can access the image dataset. The setup of the

used Cloud device in the Google Colab is Python 3 with Tesla, T4 GPU with

16GB of memory and 2,560 CUDA cores.

The second stage of the model training will be done under the support

of device GPU RTX 3080. The dataset that will be use for the second stage

model training is extended New Plant Disease dataset which contain 70 classes

of plant leaves condition categories. In the second stage of model training, I

prepared the dataset that is containing 121,975 images from 25 types of plants.

This dataset is a combination of the dataset that can found online such as

PlantVillage and PlantDoc dataset and also self-collected image dataset.

3.2.1 Data Augmentation

One of the issues during the data collection is some of the dataset size is too

small for models training which is around few hundreds. Therefore, it is

important to have dataset augmentation which can help to enhance the size of

the dataset for better training and testing performance. From the data

augmentation, we can generate the new training samples extra from the original

pictures from several transformation such as image resizing, brightness

changing, image rotation or orientation changing, increasing noise and also

58

exposure of the images. The one of the precautions during the image

augmentation is the changing of the image contrast and also colour is not

recommended in this specific task which is because it is important to have

original colour of leaf in order to recognize its original condition.

3.3 Application of Vision Transformer in Image Classification

In the application of the vision transformer to the task of plant disease detection

and classification, the path of the training and testing dataset is located and

stored into a directory. After that, all of the images will be resized to 224x224

pixels which is the standard input size that can help to maintain the compatibility

and consistency, also prevent the loss of information. Then, the training and

testing data loader is created. Data loader is important in a vision transformer

model because it can allow the larger dataset can proceed with data batching

smoothly during the processing of image data. Then, a PyTorch function

‘tourch.randn’ is used to generate a random tensor filled with numbers drawn

from a standard deviation distribution. From the function, batch size is defined

to 32, with 3 colour channels and image height and width of 224 pixels.

3.3.1 Training Hyperparameter on Vision Transformer

The vision transformer model that is used in the coding is ViT-Base. The Vit-

Base model consists of 12 layers of transformer encoder layer and each layer

consist of 768 embedding dimension, MLP size of 3072 and also 12 Multi-Head

Attention. After that, the model of ViT architecture is turned to a pretrained

model by applying pretrained ViT_B_16_Weights.IMAGENET1K from the

pytorch. Table below shows the hyperparameter of the ViT model.

Table 3.2. Training hyperparameters of ViT on Google Colab

Parameter Value

Epochs 15

Batch Size 32

Optimizer Adam

Dropout 0.1

Learning rate 0.0001

59

Activation function GeLu

Evaluation method will follow the description in Chapter Error! Reference

source not found. Model Evaluation and Finalization.

3.3.2 ViT models Variants

In the development of a ViT model on image classification, the focus is to

optimize the performance of the model. Therefore, it is important to train the

different variants of the ViT model to investigate the performance of the model

on our specific tasks. The model size denoted as “Base”, “Large” and “Huge”

based on the different model size and parameters. Each different model sizes

can also be divided into different input patch size in each ViT models, which

are 16 x 16 and 32 x 32 patch size. From the model design, it is observed that

the transformer sequence length exhibits an inverse proportionality to the square

of the patch size. Consequently, computational resources escalate with

diminishing patch sizes. In summary, the optimal-performing model is chosen

from the following options: ViT-B/16, denoting the "Base" variant with a 16 x

16 input patch size; ViT-B/32, representing the "Base" variant with a 32 x 32

input patch size; ViT-L/16, signifying the "Large" variant with a 16 x 16 input

patch size; ViT-L/32, indicating the "Large" variant with a 32 x 32 input patch

size; and ViT-H/16, which corresponds to the "Huge" variant with a 16 x 16

input patch size.

3.3.2.1 Vision Transformer-B/16

Vision Transformer “Base” variant consists of two main type which is model

with input patch size 16 x 16 pixels and 32 x 32 pixels input patch size. This

represents one image will be divided into patches with each patch consist of 16

x 16 pixels or 32 x 32 pixels. One of the focus of the research is to observe the

performance of the ViT models with different input patch sizes.

Generally, the smaller input patch sizes will help the models to capture

finer details because the patches are focusing on smaller area of the image. This

may help to improve the accuracy of the models but it will occupy larger

computation resource in order to train the model. With the input patch size of

32 x 32 pixels, the models was able to capture the broader context of the image,

60

potentially improve the global understanding between the features. Rather than

that, the larger input patch size will also reduce the computation resource and

make the model to be faster and efficient.

Figure 3.3.2.1.1 below shows the architecture of ViT-Base with input

patch size of 16 x 16 pixels. Figure belows summarizes that the ViT-Base model

will have consist of total parameter of 87,461,384 with 6,162 trainable

parameters and 87,455,232 of non-trainable parameters. The trainable

parameters can help the models to understand the task from the training dataset

while the non-trainable parameters is the fixed parameters for example the

parameters from the pretrained components and also the positional information

which can encode the relative positions of patches within the image, helpng the

model to understand spatial relationships.

Figure 3.3.2.1.1 below also summarizes the the input shape of the

images from the dataset which is [1, 3, 224, 224] which represent 1 image, 3

color channels (RGB) and resolution of 224 x 224 with output shape of [1, 8]

representing 1 vector of 8 elements, each representing a predicted probability

for one of the 8 distinct classes. Within the model artchitecture of ViT-Base, the

model consists of 12 stacks of identical Encoder Blocks which each containing

multi-head self attention that allows the model to understand the relationships

between patches in the image. MLP block is also one of the main component in

the Ecoder blocks which can adds non-linearity to the model’s predictions.

In each encoder layer, the input shape of the ViT model is set to be [1,197,768]

in the figure below. This represents that the image will pass through 12 layers

of encoder layers with every images will be divided into 197 pathes as well as

the input image is set to be size of 224 x 224 pixels. Lastly, the figure also

summarizes the estimated total size of the whole model which is around 333.91

MB.

61

Figure 3.1. Model Architecture of ViT-B/16

3.3.2.2 Vision Transformer-B/32

Figure 3.2 below shows the model architecture of the model ViT-B/32. The

figure shows that the model consists total of 87,461,384 parameters and 6,152

parameters are trainable and 87,455,232 parameters are non-trainable. The

model architecture with input shape of each image in RGB three color channels

and is set to be 224 x 224 pixels. Then the output shape is [1, 8] representing 1

vector of 8 elements, each representing a predicted probability for one of the 8

distinct classes. Within the model artchitecture of ViT-Base, the model consists

of 12 stacks of identical Encoder Blocks which each containing multi-head self

attention and also MLP block within the model connection.

In each encoder layer, the input shape of the ViT model is set to be

[1,50,768] in the figure below. This represents that the image will pass through

encoder layers with every images will divide into 50 pathes as well as the input

image is set to be size of 224 x 224 pixels. Lastly, the figure also summarizes

the estimated total size of the whole model which is around 263.31 MB.

 From the figure 3.1 and figure 3.2, model ViT-B/16 and ViT-B/32 has

same model architecture, but the model ViT-B/32 require the image to be

divided into lesser patches within the block for training and learning. This will

result in the smaller model size of the model ViT-B/32.

62

Figure 3.2. Model Architecture of ViT-B/32

3.3.2.3 Vision Transformer-L/32

Figure 3.3 below shows the model architecture of ViT “Large” with input patch

size 32 pixels. The figure shows that the model consists total of 305,518,600

parameters and 8,200 parameters are trainable and 305,510,400 parameters are

non-trainable. The model architecture with input shape of each image in RGB

three color channels and is set to be 224 x 224 pixels. Then the output shape is

[1, 8] representing 1 vector of 8 elements, each representing a predicted

probability for one of the 8 distinct classes. Within the model artchitecture of

ViT-Base, the model consists of 24 stacks of identical Encoder Blocks which

each containing multi-head self attention and also MLP block within the model

connection.

In each encoder layer, the input shape of the ViT model is set to be

[1,50,1024] in the figure below. This represents that the image will pass through

encoder layers with every images will divide into 50 pathes as well as the input

image is set to be size of 224 x 224 pixels. Lastly, the figure also summarizes

the estimated total size of the whole model which is around 889.05 MB.

63

Figure 3.3. Model Architecture of ViT-L/32

3.4 Application of YOLO in Image Classification

In the application of YOLOv8 model in the task of plant disease classification,

firstly the path of the training, testing and validation dataset is stored and located

in a directory. Then the YOLOv8 model is installed with pip from ultralytics.

After that, prepare the data.yaml file that contain the information of the training,

testing and validation dataset directory locations. The training of YOLOv8 can

be started by export the data.yaml with YOLOv8. Different from application of

detection with YOLOv8, for classification we need to specify the task to classify

in order to train the model for classification. The training of YOLOv8 will be

focus on the pre-trained YOLOv8 model for classification from the ImageNet.

The one of the differences of the YOLOv8 from ViT is the hyperparameter setup.

During the YOLOv8 model training, the hyperparameter is defaulted and

optimized for their pre-trained model. Changing of the hyperparameter setup is

capable but not necessary.

3.4.1 Training hyperparameter of YOLOv8

Since the hyperparameter is optimized and default in the pre-trained model, the

only setting that is changeable is the training epochs. In this research, the

training epochs are set to be 15 epochs during the training on the Google Colab

64

but approach of early stopping is applicable during the model training as well

as the model training reach its optimum accuracy. Below table shows the

hyperparameter setup for YOLOv8 for all of the model branches.

Table 3.3. Training Hyperparameter of YOLOv8 in Google Colab

Parameter Value

Epochs 15

Batch Size 16

Optimizer SGD

Decay 0.05

Learning rate 0.001

Momentum 0.9

Evaluation method will follow the description in Chapter 2.3.6 Model

Evaluation and Finalization. From the table above, there are some different

settings compared to the setup of ViT from Table 3.3.

It is important to fine tune YOLOv8 model to achieve optimize

performance. One of the hyperparameter that is different with ViT is decay

(weight decay). This parameter is served to be a regularization approach to

prevent the overfitting during the model training. The optimizer modifies the

weights depending on the computed gradients throughout every iteration of

YOLOv8 training. Weight decay adds a penalty term that somewhat reduces the

weights' distance from zero. This enables the model to acquire more

generalizable properties and lessens its dependence on certain weight values.

While momentum is a key hyperparameter for YOLOv8 training, it's a

general optimization technique applicable beyond the Vision Transformer

architecture. This parameter aids as one of the optimizers which can helps to

navigate the complex loss landscape more effectively. Momentum takes the

direction (gradient) from the previous update into consideration and adds a little

forward velocity to each update. By doing so, the optimizer may be able to

obtain the lowest loss more quickly and obtain updates in a consistent manner.

It comes in very useful while navigating steep inclines or brief gullies.

65

3.4.2 YOLOv8 Model Variants

Similar to ViT, developer of YOLOv8 also designed pre-trained YOLOv8

model in different variants. The design purpose is to optimize the performance

of the model in the different condition such as device setup and environment.

These versions differ primarily between YOLOv8 variants lies in their backbone

network. The size or the number of layers in the backbone of YOLOv8 allows

the model to have variants on the model compatibility and also performance.

The model size denoted as “Nano”, “Small”, “Medium”, “Large” and “X”

which arranged in ascending order. Those model variants in YOLOv8 prioritize

either speed or accuracy, and with the trade-off between two, we need to find

the most suitable choice on our research task need.

 In this research, I chose YOLOv8n-cls, YOLOv8s-cls, YOLOv8-m as

the comparable models to ViT. The smallest model is YOLOv8n-cls which has

the fastest speed but limited performance on its accuracy. This is because the

smaller the model size, the least complexity of the backbone structure which

may affect the model performance. YOLOv8n-cls is a specialized version of the

YOLOv8 model designed specifically for image classification tasks. This model

consists of 2.7 million of parameter with 3.1MB of model size, which is the

smallest model that will be trained in this research. YOLOv8s-cls is one of the

branches under the YOLOv8, which is larger than the YOLOv8-nano. The

model consists of 6.4M parameters with 10.4MB of model size. In our research,

I also employed YOLOv8m-cls, the largest model variant within the YOLOv8

family used in this study. It boasts 17 million parameters and a total model size

of 31.9 MB, indicating its increased complexity compared to smaller YOLOv8

models.

66

3.5 Programming Flow Chart for Real-Time Webcam Inference

67

3.6 Software Overview

Google Colab, sometimes known as Google Colaboratory, is a robust cloud-

based platform that enables users to write, execute, and exchange Python code

with one another which is available on the Google Drive platform. With free

GPU and TPU resources available, it provides a suitable environment for Python

writing, especially for machine learning and data analytic jobs. Without any

setup or installation required, users may create and use Jupyter notebooks

straight in their web browsers with Google Colab. The trial training of ViT and

YOLOv8 is carried out on the platform of Google Colab.

 Google Colab has facilitated the accessibility of GPUs for free, like the

Tesla T4 16 GB, which is good for machine learning development. To use

Google Colab's services, users only need to register for an account. Importantly,

Colab's support for a number of well-known machine-learning libraries such as

PyTorch, TensorFlow, OpenCV, and Keras. However, there are limitations on

how you can use Google Colab's computer resources. With a free Google Colab

account, the Google GPUs are only used for 12 hours every day. Therefore, on

this platform, just to examine the functionality of YOLOv8 and also ViT.

 Other than Google Colab, one of the software platforms used is Virtual

Studio Code (VS Code). Since the development of the models are conducted

with Python language, therefore VS Code is one of the most suitable platforms

for the model development and implementation. Besides that, it is also robust

and free code editor available for Linux, Mac, and Windows platforms. With its

many themes and plugins, VS Code may also be easily customized to meet your

unique coding requirements and also allow the features such as debugging and

code completion.

3.7 Hardware Overview

The research will continue with the upgrade of the hardware. The new session

of model training will be conducted with local computer with external GPU

connected to the system, in order to boost the training performance of the

models and also provide better environment for the model inference and real-

time application with lesser limitation. The research then been continued with

Intel NUC 10th Gen Core i7 Mini PC with external GPU RTX3080. The mini-

PC comes with a soldered-down 10th Gen Intel Core i7 processor which offers

68

6 cores and 12 threads for processing demands. The processor uses a 14-

nanometer manufacturing process and runs at speeds between 1.1GHz and

4.7GHz. It is designed to generate minimal heat with a thermal design power of

25watts. The mini-PC also consists of expandable RAM up to 64GB for

improved performance. The external GPU, Aorus RTX 3080 Gaming Box is

connected to the mini-PC to enhance the performance of the models training

and inference. The GPU can support real-time ray tracking at high resolutions

and frame rates with its 10 GB of GDDR6X memory.

 An additional crucial piece of hardware used in this investigation is a

USB camera with a 1920x1080p maximum resolution and a 30 frames per

second (FPS) frame rate. Throughout the process of inference as well as model

deployment, this high-resolution camera is an essential tool. The study's overall

success is greatly enhanced by its ability to record intricate details at a smooth

frame rate, which guarantees precise and efficient performance in a variety of

settings.

3.8 Gantt Chart

Task

Durati

on

(Week

)

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

W

9

W1

0

W1

1

W1

2

W1

3

W1

4

Final Year Project 1

FYP

Briefing
1

Planning

Project
2

Study on

related

research

10

Image data

rearrange

ment

2

69

Vision

Transform

er

coding

5

YOLO

coding
4

Improve

ML model
3

Report

Submissio

n

1

Presentatio

n
1

Final Year Project 2

Setup on

local

device

1

Model

training

and testing

3

Model

evaluation

and real-

time

inference

4

Preparatio

n of

conference

3

Preparatio

n of FYP

poster

2

Final

report
6

70

writing

and

presention

3.9 Summary

This chapter presents a comprehensive programming flow diagram to

implement the YOLOv8 and Vision Transformer (ViT) models for plant disease

detection and recognition. The primary objective of Chapter 3 is to provide a

comprehensive explanation and coordination of the procedures required to

achieve the project's goals. The process starts with the step of gather and

improve datasets. After that, the chapter explains how to train a model, starting

with trial training sessions in Google Colab for testing and then moving on to

the main training phase on a local CPU with GPU acceleration.

In order to enhance the implementation of trained models in practical

scenarios, this chapter elucidates the methodology for doing real-time inference

by utilising a camera. This chapter establishes the foundation for a systematic

and efficient project process by delineating each phase of development, starting

from dataset preparation to model training and deployment. Additionally, it

offers a structured system for overseeing the progress of implementation and

resolving any issues that may arise, so facilitating the identification and

rectification of mistakes.

71

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

Chapter 4 provides a comprehensive analysis of the real-time inference

outcomes and the findings gained from training models in two separate contexts.

During the early phase of the project, Google Colab was used to train the models

ViT-B/16, ViT-B/32, ViT-L/16, YOLOv8n, YOLOv8s, and YOLOv8m. The

results derived from this training serve as an initial standard for the following

step, which involves more education on a specific instrument. The initial phase

utilised a smaller dataset to assess the feasibility and effectiveness of the

proposed models in achieving their specific machine learning goals. The data

collected during this step will feed the second round of training and help identify

any necessary adjustments to improve the model's performance.

 In the second stage of training, the project will be focused on the

training on the larger self-customised dataset on the local CPU with the support

of GPU. In this stage, the training and also testing performance of the models

will be recorded and evaluated. After that, the well-trained models will be

installed on the local device to be use on the real-time inference. During the real

time inference, the model performance will be recorded and evaluated.

Discussion on every record result will be generated.

4.2 Result from Vision Transformer for Image Classification

As mentioned on the previous chapter, the training of ViT will be divided into

two sections which one is trial training on the platform of Google Colab. Trial

training is intended to minimize the amount of time invested by evaluating the

training procedure, estimating the time needed, and assessing the model's

performance using smaller data sets at first. After that, the second training will

aim to maximize the performance and also the ability of the models by boosting

the sizes of the training dataset by increase the number of classes to investigate

how is the model’s performance when it is trained with numerous of different

classes training datasets. The second stage of training will be held with the

72

support of the hardware devices such as mini-PC and GPU and also external

webcam that are mentioned in Chapter 3.6.

4.2.1 Results of ViT on Google Colab

The training of ViT model in Google Colab started with the training of model

ViT-B /16. The training of the model took the time for around 2 hours and 15

minutes for 15 epochs and the accuracy of the trained model reached 98.8%.

While the model ViT-B/32 took the time for around 1 hour to finish the model

training with 15 epochs in Google Colab, which can reach the testing accuracy

of 99.6%. After that, the training of ViT model is continue with the training of

ViT-L/32, where the pre-trained model ViT-L/16 and ViT-H/16 has too large

parameter and model size which occupy too much memory and is unable to be

trained and evaluated with Google Colab. The model ViT-L/32 took half an

hour to finish the training and the accuracy of the model is 98.2%.

 The evaluation of various trained models revealed ViT-B/32 as the

champion, achieving an impressive 99.6% testing accuracy. However, its path

to further improvement seems obstructed by its reliance on exceptionally small

image patches. This granular approach necessitates an exponential increase in

model parameters, making further gains increasingly resource intensive.

Conversely, while ViT-L/32 boasts a larger model capacity, its immense

parameter count presents a different challenge. Effectively utilizing this

potential hinge on access to a correspondingly vast dataset, a requirement that

currently impedes its performance compared to its smaller counterpart. In

essence, both models face unique roadblocks to achieving even greater accuracy:

ViT-B/32 grapples with scalability due to its finely grained approach, while

ViT-L/32 is bottlenecked by the need for a much larger dataset to fully leverage

its parameter-rich architecture.

73

Figure 4.1. Performance of ViT-B/16

Figure 4.2. Performance of ViT-B/32

Figure 4.3. Performance of ViT-L/32

74

4.3 Result of YOLOv8 in Image Classification

Similar with the training process of ViT, I also conducted a trail training for

YOLOv8 with two section which one is trial training on Google Colab and the

second section is training on local device. With the trial training of YOLOv8

models on Google Colab, we can minimize the amount of time invested by

evaluating the training procedure, estimating the time needed, and assessing the

model's performance using smaller data sets at first. After that, the second

training will aim to maximize the performance and also the ability of the models

by boosting the sizes of the training dataset by increase the number of classes to

investigate how is the model’s performance when it is trained with numerous of

different classes training datasets. The second training will aim to maximize the

performance and also the ability of the models by boosting the sizes of the

training dataset by increase the number of classes to investigate how is the

model’s performance when it is trained with numerous of different classes

training datasets.

4.3.1 Result of YOLOv8 on Google Colab

In this section, YOLOv8n, YOLOv8s and YOLOv8m are chose during the

training on Google Colab. The model size of YOLOv8 models is small, the

training of the models takes lesser time if compared to ViT. For YOLOv8n, the

training time taken is 25 minutes for 15 epochs. While the training of the model

YOLOv8s took the time for around 38 minutes for 15 epochs training in Google

Colab. After that, the training is continued with the model YOLOv8m in Google

Colab which took the time for 50 minutes for 15 epochs training. The result of

training and testing accuracy of YOLOv8 models are likewise if it is compared

to ViT models.

 The training loss, depicted in the subsequent figures, is an essential

metric that provides insight into the model's performance on the training dataset.

Ideally, it ought to diminish as the model acquires greater proficiency in

discerning the patterns within the dataset. Validation loss, conversely, is a

metric that demonstrates the model's performance on untrained data. Overfitting,

which occurs when a model becomes overly specialized to the training data and

performs inadequately on new data, must be avoided. Top-1 accuracy pertains

to the percentage of images in which the model accurately and with the highest

75

degree of confidence classifies the most prominent object category. Top-5

accuracy refers to the percentage of photos in which the right object class is

among the top 5 categories predicted with the highest confidence.

 From the figures 4.4, 4.5, 4.6, the graphs summarized the accuracy of

YOLOv8 models on training and testing dataset. The graphs shown demonstrate

positive trends, with both the training and validation loss consistently

decreasing during the training period. This indicates that the models’

performance is improving, and it has the capacity to make accurate predictions

beyond the training data. We can summarize that the performance of the

YOLOv8s and YOLOv8m have better performance than YOLOv8s on the

custom dataset which their top-1 accuracy is 99.0% and 99.6% respectively

while YOLOv8s has slightly lower top-1 accuracy which is 98.7%. The top-5

accuracy of the models is the same which reached the accuracy of 100% after

15 epochs of training.

Figure 4.4. YOLOv8n Training Performance

76

Figure 4.5. YOLOv8s Training Performance

Figure 4.6. YOLOv8m Training Performance

77

4.4 Result for ViT and YOLOv8 on Local Hardware Device

During the second phase of model training, it is crucial to utilize both local GPU

and CPU resources, as explained in Chapter 3.7 Hardware Overview. This

hardware configuration allows for accelerated training of ViT and YOLOv8

models on large datasets in a considerably shorter time. Using a local GPU

speeds up computational operations, making iterations faster and improving

model performance. As a result, researchers and practitioners may effectively

manage larger datasets and quickly make changes to enhance models, ultimately

resulting in better results for different computer vision applications. The

incorporation of nearby GPU resources represents a notable progress in deep

learning techniques, enabling professionals to address intricate problems with

enhanced efficiency and efficacy.

4.4.1 Training and Testing Performance of ViT and YOLOv8

Tables 4.1 and 4.2 below provide detailed information on the training and

testing performance of the ViT and YOLOv8 designs on the local hardware

infrastructure. The tables present comprehensive data on the duration of training

and the accuracy of assessment. From the table, ViT-B/16 took 12 hours and 50

minutes to train on the specific dataset mentioned in Chapter 3.2, which

consisted of 70 different categories. On the other hand, ViT-B/32 finished its

training in a significantly shorter period of time, specifically 8 hours and 58

minutes. Notably, ViT-L/16, despite its improved capabilities, required a longer

training duration of 36 hours and 18 minutes. This duration indicates the highest

training time among the many study models assessed. Comprehensive

performance metrics provide significant information about the computing needs

and effectiveness of various models. This helps academics and practitioners

make informed choices about model selection and optimization tactics.

 The training durations of YOLOv8 models on the custom dataset

demonstrate their superior efficiency in model completion when compared to

ViT architectures. YOLOv8 models, on average, exhibited faster training times.

More precisely, the training for YOLOv8n-cls was completed in 16 hours and

35 minutes, while YOLOv8m-cls ended shortly after in 17 hours and 10 minutes.

The YOLOv8s-cls, the most compact version, necessitated a slightly longer

training period of 17 hours and 30 minutes. The training times highlight the

78

efficiency of YOLOv8 architectures in handling huge datasets well, providing

competitive performance while minimizing computing burden.

 By evaluating the training and testing accuracies of various models,

one can obtain valuable insights into their effectiveness in handling the given

dataset. Among the ViT designs, ViT-L/16 achieves the best training accuracy,

reaching 99.7%. Both ViT-B/16 and ViT-B/32 have a 99.0% accuracy rate.

Despite this, ViT-L/16 continues to hold its dominance with an impressive

accuracy rate of 93.8% in testing. On the other hand, the YOLOv8 models show

comparable performance. Among them, YOLOv8s-cls achieves the highest

testing accuracy of 97.6%, closely followed by YOLOv8m-cls at 97.7%. It

should be noted that while YOLOv8n-cls and YOLOv8s-cls achieve somewhat

lower training accuracies compared to ViT-L/16, they also achieve training

accuracies of 99.7% and 99.6% respectively. This showcases their capacity to

perceive intricate patterns within the dataset. Overall, whereas ViT-L/16 shows

outstanding accuracy during the training process, YOLOv8s-cls has higher

performance on the testing dataset. From the table 4.1, YOLOv8 models achieve

better accuracy on the testing dataset which they have higher top-1 and top-5

accuracy than ViT models.

Table 4.1. Model Performance on Testing Dataset

Algorithm Top-1

Accuracy

Top-5

Accuracy

ViT-B/16 78.21% 97.6%

ViT-B/32 81.94% 98.2%

ViT-L/16 85.5% 99.0%

YOLOv8n-cls 95.1% 99.7%

YOLOv8s-cls 95.7% 99.6%

YOLOv8m-cls 95.8% 99.6%

Table 4.2. Performance of YOLOv8 and ViT on Training and Testing

Algorithm Train Period Train

Accuracy

Test

Accuracy

ViT-B/16 12hrs 50mins 99.0% 92.0%

ViT-B/32 8hrs 58mins 99.0% 91.0%

ViT-L/16 36hrs 18mins 99.7% 93.8%

YOLOv8n-cls 16hr 35mins 99.7% 96.0%

79

YOLOv8s-cls 17hrs 30mins 99.6% 97.6%

YOLOv8m-cls 17hrs 10mins 99.5% 97.7%

4.4.2 Real-Time Inference of ViT and YOLOv8

The performance comparison of the YOLOv8 and ViT models during real-time

inference after models training is presented in Table 4.3.2.1. After the training

process, both models can be downloaded and saved locally in the '.pt' file type.

After the download procedure is finished, the size of each model is shown and

documented for future reference. The process of real-time inference is simple:

the CPU retrieves the model by supplying the model directory. Afterwards,

through OpenCV, the code establishes connectivity with the webcam in order

to acquire photos. After taking a picture, the code builds a link between the taken

image and the loaded model. Subsequently, the model carries out predictions on

the image, and the resultant predictions are exhibited on the screen utilizing

OpenCV. The process will continue frame by frame with the images captured

with the webcam until the program is stopped.

 As shown in Table 4.3.2.1 below, Varied levels of efficacy are

observed among the models that were examined. Using the CPU, the ViT-B/16

model obtains 15 FPS inference performance, while GPU support enables 29

FPS. The model's file size is 333.91MB. In a similar fashion, the ViT-B/32

variant exhibits a processing speed of 5FPS on the CPU and 27 FPS on the

GPU despite its 263.31MB smaller model size. The inference performance of

the ViT-L/16 model is 2 FPS on the CPU and 30 FPS with GPU assistance,

despite its larger size of 1084.58MB. Moreover, YOLOv8n-cls, YOLOv8s-cls,

and YOLOv8m-cls are variants of the YOLOv8 model that are incorporated into

our research. Among the various variations, YOLOv8n-cls possesses the least

model size which is 3.1MB, while YOLOv8s-cls along with YOLOv8m-cls

each have a larger size of 10.4MB and 31.9MB, respectively. But the average

model size of YOLOv8 models still smaller than ViT modes. With combination

of GPU and a CPU efficiency of 31 FPS, YOLOv8n-cls exhibits exceptional

inference performance, attaining 30 FPS. Inference rates on the CPU are

marginally slower for YOLOv8s-cls and YOLOv8m-cls, at 27 FPS and 19 FPS,

80

respectively. These models with the support of GPU still remain competitive

which obtained inference speed at 29 and 32 FPS.

Table 4.3. Comparison of Model Size and Inference Speed between YOLOv8

and ViT

Algorithm Model Size Inference

Speed

(CPU)

Inference

Speed (GPU)

ViT-B/16 333.91MB 15 FPS 29 FPS

ViT-B/32 263.31MB 5 FPS 27 FPS

ViT-L/16 1084.58MB 2 FPS 30 FPS

YOLOv8n-cls 3.1MB 31 FPS 30 FPS

YOLOv8s-cls 10.4MB 27 FPS 29 FPS

YOLOv8m-cls 31.9MB 19 FPS 32 FPS

The monitor screen exhibits the outcomes captured through the

webcam feed, as illustrated in Figures 4.3.2.1 and 4.3.2.2. After conducting a

thorough assessment of multiple YOLOv8 model variants, it has been

concluded that the YOLOv8m-cls model demonstrates the highest level of

performance. Because of this, this model was chosen for the purpose of

inference. Significantly, the anticipated outcomes are conspicuously exhibited

in the upper-left corner of every figure. The top five most confident predictions

generated by the YOLOv8 models are displayed with the predicted class

followed by its confidence in an up-left corner on the display from webcam.

Notably, the forecasts generated by the model correspond precisely with the

images that were observed. Both the healthy grape leaf in Figure 4.3.2.1 and the

healthy blueberry leaf in Figure 4.3.2.2 were accurately classified by the model.

Figure 4.7.YOLOv8m-cls Inference

Figure 4.8. YOLOv8m-cls Inference

81

Among ViT models, ViT-L/16 achieved the best testing accuracy, so it

is chosen for the inference on the webcam. From the figure 4.3.2.3 and figure

4.3.2.4 below is the results from the ViT-L/16 on the real time inference.

However, the model has bad performance on the inference speed with CPU,

which is only 2FPS and this is impossible for the model to run real time

inference test and show the result smoothly. Therefore, the inference of this

model is supported with GPU. From the figures below, the model exhibited

remarkable prognostic capabilities by precisely distinguishing between a

healthy blueberry leaf and a leaf affected by apple rot.

Figure 4.9.ViT-L/16 inference

Figure 4.10.ViT-L/16 inference

4.5 Limitations and Troubleshooting

During the research, there are several limitations and the drawbacks that is

observed throughout the research. To maximize the performance and the results

of the proposed research, several solutions and enhancements have been

proposed to solve the drawbacks and problems during the research. Recognizing

the importance of maximizing the performance of the proposed ML models, I

devised a comprehensive set of solutions aimed to mitigate the identified

limitations. These solutions encompassed a spectrum of strategies, including

algorithms refinements and hardware enhancements.

From the result that is obtained from this chapter, there are several

limitations and drawbacks during the development and testing of the models.

For example, there is always false detection during the real-time inference. False

detection is when the ML models do the wrong prediction. This seldom happen

82

when the models are used to predict an image, but this is a major problem when

come to the real time inference on the webcam.

One of the factors that causing the false detection is lack of training.

When come to the real time webcam inference, there is too many uncertainties

that will affect the model performance for example the hardware which will

affect the quality of the input images and the smoothness of the prediction. For

ViT models, they have one common weakness which they require larger

computing resources to run prediction on real-time webcam, which means it is

almost impossible to be run under CPU without support of GPU. This make

YOLOv8 models better which it can be run with the CPU with good

performance. In the other words, ViT has larger demand on the computing

resource compared to YOLOv8.

Rather than that, YOLOv8 and ViT models required large training

dataset to achieve better performance, and the quality of the training dataset and

also variety of the fed data is also determine factor for the model performance.

This makes the data collection and sorting process become a very time and

resources consuming process. Although the process of a ML development is not

simple, but they still can bring valuable benefits and convenience to human life.

4.6 Summary

In short, from this chapter results prove that the YLOv8 achieved better

performance if compared with ViT. YOLOv8 models, specifically YOLOv8m

has better testing accuracy compared to ViT models, achieving testing accuracy

of 97.7%. Moreover, YOLOv8m model also exhibit better performance when

the model is deployed for the real time inference, maintaining its speed even

when deployed on a CPU.

 The biggest reason that causing the performance difference between

the models is model size and the model complexity. From the result, we can

conclude that the model complexity is directly proportional to the model size.

Which means that with a larger model size, the model structure is more complex.

This will affect the calculation time during the real time prediction which will

cause lagging and low FPS during the inference. Besides that, the complexity

of the high complexity of model will cause the model to be more sensitivity to

the hyperparameter setup and also quality of the training source. This is because

83

the complex models often have larger number of hyperparameters and slightly

changes and modify may cause different outcome. Thus, this may be the reason

of the performance of ViT models is slightly lesser than YOLOv8.

84

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this study, the objectives have been achieved. The comparison between

YOLOv8 models with ViT models is ended with YOLOv8m-cls achieved the

best performance among all of the selected models. All of the developed models

are able to complete the task of plant disease recognition but different

performance. Lastly, the YOLOv8 models all can run smoothly for the real-time

inference with the webcam on CPU which achieved the objective of the project.

 The results from the Chapter 4 proved that YOLOv8 models and ViT

models has similar training performance which is around 99% which their

accuracy difference can be neglected. This proves the high potential of the ML

models in learning process and can learning the information from image data

clearly. Rather than that, the models also achieved high testing accuracy which

is above 90%. This proved that the chose model is well-trained and has the

ability to make the predictions on the testing dataset accurately. Among the

models, YOLOv8m-cls achieved the highest testing accuracy. In the second part

of the evaluation, YOLOv8m-cls showed its lightweight characteristics and can

be run real-time inference with webcam smoothly with satisfying performance

under CPU if compared to other models.

 Although YOLOv8 models shows its superior in the proposed task with

limited computing and graphic resource, but the performance of ViT still

showing the model has great potential in image classification and recognition.

ViT is a transformer-based model and is modified from the NLP task ML model

which make it more complex than most of the CNN models include YOLOv8.

Therefore, ViT model often required more computing power to support the

prediction which can be clearly proved as the ViT can run smoothly with the

support of GPU with 28FPS and can has similar performance with YOLOv8 in

real-time inference.

 In conclusion, this study demonstrates that YOLOv8 models exhibit

superior performance compared to alternative models in terms of precision,

85

learning velocity, and instantaneous deduction, specifically under conditions of

limited computational resources. Despite exhibiting promise, ViT models

require substantial computational resources and meticulously structured

datasets to attain comparable performance. By capitalising on hardware

advancements and increasing data accessibility, ViT models may potentially

enhance their competitiveness. At present, YOLOv8 models represent the most

optimal choice for real-world applications requiring efficient and rapid image

classification.

5.2 Recommendations for future work

Application of ML and AI into the agricultural is still long to go, but from this

project, we can see the progress of the implementation of AI into human’s life.

Nevertheless, there are several recommendations for the future work and

improvement. Firstly, from the research, the most important factors throughout

the development are the quality of training dataset. For ML model, training

dataset is their learning material, therefore it is important to improve the quality

and also quantity of dataset. For example, the future work for this project is to

include wider variety of plant leaf images under different environment to help

increase the diversity of the images for the models to have better learning and

focus on leaf and other important criteria in the image.

 Besides that, to improve the performance of ViT on CPU which to

make the model runs smoothly under CPU, the proposed future modification is

trying to build the model from scratch. In this project, the model taken for both

ViT and YOLOv8 is pretrained with ImageNet, therefore the model will be more

complex and heavier. Therefore, to help improve the prediction speed during

the real-time inference, one of the methods is building the model from scratch

and let it learns on the prepared dataset to reduce the unusable parameters inside

the models.

 Lastly, during the real-time inference the results shows lots of false

detection and this situation is very resource inefficient. The recommendations

on this is to try apply more filter on the system to filter the useless information

from environment and try to fix the webcam on a more stable fixture so that the

information that fed to the model during the real-time inference.

86

REFERENCES

ACMC, E. S. C. (2023, January 7). Countries with the highest agricultural

output 2023: Top 12. Bscholarly. Retrieved from:

https://bscholarly.com/countries-with-the-highest-agricultural-output/.

Arvindpdmn. (2021, April 7). ImageNet. Devopedia. Retrieved from:

https://devopedia.org/imagenet.

Boesch, G. (2022, January 17). A guide to data collection for Computer Vision

in 2022. viso.ai. Retrieved from: https://viso.ai/computer-vision/data-

collection/.

Chauhan, S. (2023, June 1). Model selection for Machine Learning. Live

Training, Prepare for Interviews, and Get Hired. Retrieved from:

https://www.scholarhat.com/tutorial/machinelearning/model-selection-for-

machinelearning#:~:text=Model%20selection%20in%20machine%20learning

%20is%20the%20process%20of%20selecting,data%20%26%20produces%20t

he%20best%20results.

Food and Agriculture Organization of the United Nations. (2020).

STATISTICAL YEARBOOK. STATISTICAL YEARBOOK WORLD FOOD

AND AGRICULTURE 2020. Retrieved from:

https://www.fao.org/3/cb1329en/online/cb1329en.html#.

Machine Learning in computer vision. Full Scale. (2019, May 8). Retrieved

from: https://fullscale.io/blog/machine-learning-computer-vision/.

Papers With Code. (2023). Image Classification on ImageNet. The latest in

Machine Learning. Retrieved from: https://paperswithcode.com/sota/image-

classification-on-imagenet.

Saha, S. (2018, December 15). A comprehensive guide to Convolutional Neural

Networks - the eli5 way. Saturn Cloud Blog. Retrieved from:

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way/.

Delorme, pierre joseph. (2021, May 18). Image preprocessing. Medium.

Retrieved from: https://medium.com/unpackai/image-preprocessing-

6654d1bb4daa.

Peshawa J. Muhammad Ali, Rezhna H. Faraj; “Data Normalization and

Standardization: A Technical Report”, Machine Learning Technical Reports,

2014, 1(1), pp 1-6.

https://docs.google.com/document/d/1x0A1nUz1WWtMCZb5oVzF0SVMY7a

_58KQulqQVT8LaVA/edit#.

Babu, R. (2019, February). Plant disease identification and classification using

image processing. Plant Disease Identification and Classification using Image

87

Processing.

https://www.researchgate.net/publication/337023535_Plant_Disease_Identific

ation_and_Classification_using_Image_Processing

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,

Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,

J., & Houlsby, N. (2021, June 3). An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv.org.

https://doi.org/10.48550/arXiv.2010.11929

Guo, Y., Lan, Y., & Chen, X. (2022). CST: Convolutional Swin Transformer

for detecting the degree and types of plant diseases. Computers and Electronics

in Agriculture, 202, 107407. https://doi.org/10.1016/j.compag.2022.107407

Jagan, K., Balasubramanian, M., & Palanivel, S. (2016). Detection and

recognition of diseases from Paddy Plant Leaf Images. International Journal of

Computer Applications, 144(12), 34–41.

https://doi.org/10.5120/ijca2016910505

Oliver, N., Rosario, B., & Pentland, A. (2000). A Bayesian computer vision

system for modeling human interactions. Lecture Notes in Computer Science,

255–272. https://doi.org/10.1007/3-540-49256-9_16

O’Shea, K., & Nash, R. (2015, December 2). An introduction to Convolutional

Neural Networks. arXiv.org. https://doi.org/10.48550/arXiv.1511.08458

Saxena, O., Agrawal, S., & Silakari, S. (2021). Disease detection in plant leaves

using deep learning models: Alexnet and googlenet. 2021 IEEE International

Conference on Technology, Research, and Innovation for Betterment of Society

(TRIBES). https://doi.org/10.1109/tribes52498.2021.9751620

Susa, J. A., Nombrefia, W. C., Abustan, A. S., Macalisang, J., & Maaliw, R. R.

(2022). Deep learning technique detection for cotton and leaf classification

using the Yolo algorithm. 2022 International Conference on Smart Information

Systems and Technologies (SIST).

https://doi.org/10.1109/sist54437.2022.9945757

T, N., Vijayalakshmi, P., Jaya, J., & S, S. (2022). A review on coconut tree and

plant disease detection using various deep learning and convolutional neural

network models. 2022 International Conference on Smart and Sustainable

Technologies in Energy and Power Sectors (SSTEPS).

https://doi.org/10.1109/ssteps57475.2022.00042

Zaki, S. Z., Asyraf Zulkifley, M., Mohd Stofa, M., Kamari, N. A., & Ayuni

Mohamed, N. (2020). Classification of tomato leaf diseases using MobileNet

V2. IAES International Journal of Artificial Intelligence (IJ-AI), 9(2), 290.

https://doi.org/10.11591/ijai.v9.i2.pp290-296

Batta, M. (2019, January). Abstract of machine learning ALG, IJSR, call for

papers, online journal. International Journal of Science and Research (IJSR).

http://dx.doi.org/10.21275/ART20203995

88

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2022). Object detection using yolo:

Challenges, architectural successors, datasets and applications. Multimedia

Tools and Applications, 82(6), 9243–9275. https://doi.org/10.1007/s11042-022-

13644-y

Ishak, S., Fazalul Rahiman, M. H., Mohd Kanafiah, S. N., & Saad, H. (2015).

Leaf disease classification using Artificial Neural Network. Jurnal Teknologi,

77(17). https://doi.org/10.11113/jt.v77.6463

Kumari, Ch. U., Jeevan Prasad, S., & Mounika, G. (2019). Leaf disease

detection: Feature extraction with K-means clustering and classification with

ann. 2019 3rd International Conference on Computing Methodologies and

Communication (ICCMC). https://doi.org/10.1109/iccmc.2019.8819750

Kusumo, B. S., Heryana, A., Mahendra, O., & Pardede, H. F. (2018). Machine

learning-based for automatic detection of corn-plant diseases using image

processing. 2018 International Conference on Computer, Control, Informatics

and Its Applications (IC3INA). https://doi.org/10.1109/ic3ina.2018.8629507

Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q.,

Prakash, I., & Pham, B. T. (2021). Influence of data splitting on performance of

machine learning models in prediction of shear strength of Soil. Mathematical

Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/4832864

Wei, J., Chu, X., Sun, X., Xu, K., Deng, H., Chen, J., Wei, Z., & Lei, M. (2019).

Machine learning in materials science. InfoMat, 1(3), 338–358.

https://doi.org/10.1002/inf2.12028

Yu, S., Xie, L., & Huang, Q. (2023). Inception Convolutional Vision

Transformers for Plant Disease Identification. Internet of Things, 21, 100650.

https://doi.org/10.1016/j.iot.2022.100650

Araujo, V., Britto, A. S., Brun, A. L., Koerich, A. L., & Palate, R. (2017).

Multiple classifier system for plant leaf recognition. 2017 IEEE International

Conference on Systems, Man, and Cybernetics (SMC).

https://doi.org/10.1109/smc.2017.8122891

Boukabouya, R. A., Moussaoui, A., & Berrimi, M. (2022). Vision transformer-

based models for plant disease detection and diagnosis. 2022 5th International

Symposium on Informatics and Its Applications (ISIA).

https://doi.org/10.1109/isia55826.2022.9993508

Dai, G., & Fan, J. (2022). An industrial-grade solution for crop disease image

detection tasks. Frontiers in Plant Science, 13.

https://doi.org/10.3389/fpls.2022.921057

K R, C. L., B, P., G, S., J, N. J., T, G., & Hashim, M. (2023). Yolo for detecting

plant diseases. 2023 Third International Conference on Artificial Intelligence

and Smart Energy (ICAIS). https://doi.org/10.1109/icais56108.2023.10073875

89

Menon, V., Ashwin, V., & Deepa, R. K. (2021). Plant disease detection using

CNN and transfer learning. 2021 International Conference on Communication,

Control and Information Sciences (ICCISc).

https://doi.org/10.1109/iccisc52257.2021.9484957

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for

image-based plant disease detection. Frontiers in Plant Science, 7.

https://doi.org/10.3389/fpls.2016.01419

Pruneski, J. A., Williams, R. J., Nwachukwu, B. U., Ramkumar, P. N., Kiapour,

A. M., Martin, R. K., Karlsson, J., & Pareek, A. (2022). The development and

deployment of Machine Learning Models. Knee Surgery, Sports Traumatology,

Arthroscopy, 30(12), 3917–3923. https://doi.org/10.1007/s00167-022-07155-4

Shah, R. S. (2010). Support Vector Machines for classification and regression.

Library and Archives Canada = Bibliothèque et Archives Canada.

Shill, A., & Rahman, Md. A. (2021). Plant disease detection based on Yolov3

and Yolov4. 2021 International Conference on Automation, Control and

Mechatronics for Industry 4.0 (ACMI).

https://doi.org/10.1109/acmi53878.2021.9528179

Soeb, Md. J., Jubayer, Md. F., Tarin, T. A., Al Mamun, M. R., Ruhad, F. M.,

Parven, A., Mubarak, N. M., Karri, S. L., & Meftaul, I. Md. (2023). Tea leaf

disease detection and identification based on Yolov7 (YOLO-T). Scientific

Reports, 13(1). https://doi.org/10.1038/s41598-023-33270-4

Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022, July 16). Explainable

vision transformer enabled convolutional neural network for Plant Disease

Identification: Plantxvit. arXiv.org. https://doi.org/10.48550/arXiv.2207.07919

Japkowicz, N. (2006). Why Question Machine Learning Evaluation Methods?

https://cdn.aaai.org/Workshops/2006/WS-06-06/WS06-06-003.pdf

