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ABSTRACT 

 

The success of deep learning (DL) has greatly promoted the use of computer 

vision technology in smart agriculture. Many developments in this area are 

focusing on timely and accurate recognition of plant disease, with the goals of 

increasing crop productivity and fostering economic growth. This project aims 

to explore the potential of two popular DL architectures namely You Only Look 

Once (YOLO) and transformer for recognizing 70 distinct classes of plant leaf 

health conditions. Specifically, a total of six models namely Vision 

Transformer-B/16 (ViT-B/16), ViT-B/32, ViT-L/16, YOLOv8n-cls, 

YOLOv8s-cls and YOLOv8m-cls are implemented and compared. In the 

training stage where graphics processing unit (GPU) is utilized, ViT-B/32 yields 

the shortest training time, which is at least 80% faster than all YOLOv8-cls 

variants. However, when deploying these trained models on a central processing 

unit (CPU), YOLOv8 models consistently outperform ViT algorithms in terms 

of speed and accuracy. Experiment results indicate that YOLOv8n-cls attains 

the highest frames per second (FPS) of 31, whereas YOLOv8m-cls achieves a 

test accuracy of 97.7 %. Such findings suggest that YOLOv8 appears to be more 

promising for real-time object classification tasks.. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Over the course of the previous decades, agriculture becomes one of the main 

economic activities for several countries for example China which produces 500 

million tons of vegetable every year and this amount equivalent to half of the 

world's crops production (Edeh,S.C, 2023). Based on the statistic which is shared 

by Food and Agriculture Organization of the United Nations (2020), world 

production of primary crops was 9.2 billion tons, and this led to the increase of 

the sum of agriculture value. According to the statistic, the agriculture value 

increase by 68% from year 2000 to year 2018. Therefore, it is important to have 

the method to eliminate the crops and plants from the pets and disease so that 

can increase the food production and can also deal with the food demand issue. 

To solve the problem, many vision and Artificial Intelligence (AI) based 

machine learning algorithm for classification and identification of real-time 

image of the plants and crops have been invented. The development of the deep 

learning system for plant illnesses has facilitated the timely identification and 

management of diseases, hence mitigating crop losses resulting from such 

ailments. Convolutional neural network (CNN) now is being utilised under 

novel applications within the sector of Machine Learning (ML) to detect and 

diagnose plant illnesses. This development is a direct result of advancements in 

Deep Learning (DL) technologies. The progress in DL technology facilitated 

the creation of a robust CNN model for purpose of detecting and classifying 

plant diseases. For past decade, the convolution neural network occupied a 

dominant position in machine learning and perform well in image classification. 

Several research regarding to the machine learning has been carried out 

over years. Within their past research, researchers have been developing several 

popular methods for machine learning Examples of machine learning 

algorithms often used in various fields include the SVM, ANN, and NB. and k-

means clustering. DL algorithms have come into greater prominence recently 

due to the widespread availability of vast quantities of data and the capabilities 
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of advanced computational systems, also effective training methods. CNN 

architectures' robust feature learning capabilities have provided noticeable 

outcomes for identifying plant diseases. Then, customized CNN architectures 

have been proposed in addition to common designs like AlexNet, GoogleNet, 

VGG16, and ResNet with transfer learning techniques which can be applied in 

the plant disease detection (Poornima et al., 2022). 

 Although the CNN architecture is leading the machine learning in 

image classification, but in the recent year, Transformer become the new focus 

for the researcher to be explored in the machine learning based image 

classification. According to Chay Nandam (2023), the transformer at first is 

mainly focus on the natura language processing (NLP) task. After that, it come 

to the initial publication that introduces a Transformer encoder trained on the 

ImageNet dataset which is the Vision Transformer ViT by Dosovitskiy et al. 

(2020). The success of Transformers in computer vision is because it allows the 

management of vast data amount and perform well on tasks involving picture 

context interpretation. For example, due to its self-attention mechanism, 

transformers have been utilized to enhance object identification and image 

captioning by helping the model to better comprehend connections between 

items in an image.  

The accuracy of the model generated on the ImageNet dataset is depicted 

in Figure 1.1. ImageNet is a huge database with more than 14 million pictures 

that was organised into 21,841 subcategories since 2010 (Devopedia, 2021). 

The developer will access the ImageNet to get the image set that can be used in 

their algorithm. The figure 1.1 listed out the performance of ML model in image 

classification under ImageNet database. The statistics show the improvement of 

the top-1 accuracy of the model in ImageNet. In statistic below, the model that 

achieves the highest top-1 Accuracy is the model named BASIC-L. The concept 

of top-1 accuracy is a criterion commonly employed to evaluate the efficacy of 

an image classification model. The model BASIC-L demonstrates a top-1 

accuracy of 91.1% in the ImageNet database, thereby exhibiting superior 

performance compared to other models. BASIC-L is a model that has been 

proposed in the article “Symbolic Discovery of Optimization Algorithms” by 

Xiangning Chen, Chen Liang and their team. BASIC-L is the combination of 
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the CNN with the transformer. It proved that the transformer could help in 

boosting the performance of the CNN model.  

 

 

Figure 1.1. Accuracy of Developed Model in ImageNet (source: Paper With 

Code, 2023) 

 

The figure 1.2 below shows the performance of the all of the transformer 

model in ImageNet classification and it is clear to see that the top-1 accuracy of 

the model was boosted to above 90% after few years of research and developing 

focus on the application of transformer in Computer Vision (CV) task.  

 

 

Figure 1.2 Performance of Transformer Model (source: Paper With code, 

2023) 
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1.2 Importance of the Study 

Plant diseases is always a significant threat to global food security which 

causing the economic and yield losses. With the rise of AI and 5G technology, 

the implementation of ML into the agricultural sector with lower cost is 

becoming possible. In the recent year, the performance of YOLOv8 and ViT is 

gaining the attention due to their unique ML architecture and effectiveness on 

the image analysis.  

 However, while both YOLOv8 and ViT demonstrated great success in 

various machine vision applications, their comparative performance on the tasks 

of plant disease detection from plant leaf images and the effectiveness of 

running real-time inference still remains huge potential to be explored. 

Therefore, this study is importance in measuring the accuracy and effectiveness 

of the proposed model. With the understanding of the model performance, we 

can find direction on how the development of the model can go in order to be 

implemented in real life applications. 

 Besides that, this project is important to showcase the potential of ML 

models on enhancing the agricultural practice. ML models are frequently 

considered the best option for jobs that need to be performed repeatedly and in 

difficult settings without sacrificing effectiveness. They are the best options for 

handling agricultural difficulties because of their capacity to process vast 

amounts of data, adjust to changing situations, and generate precise predictions 

in the face of adversity. With the involvement of ML model on agriculture 

practices, people are able to locate the best solutions on the plant diseases which 

can help to minimize the production loss and optimize the productivity. 

 This study can also show the generalization and adaptability of ML on 

the task of plant disease detection. This is because the self-learning and deep 

learning algorithm of ML model can provide the fast study speed and good 

memories on the studied knowledge which is comparable with human brain. 

This feature enables the generated model to be easily and effectively adjusted 

for different model parameters, learning datasets, and computational resources. 

This ability to scale helps the model to acquire knowledge and efficiently 

manage a wide range of plant diseases. The ability to share machine learning 

models worldwide through internet platforms is an essential aspect of creating 

these models, since it facilitates international collaboration and the spread of 
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information. The accessibility of improvements in plant disease detection 

enables rapid dissemination and assistance to agricultural communities 

worldwide. This expedites the development process and maximizes potential 

benefits. 

 

1.3 Problem Statement 

To develop a machine learning model for the purpose of detecting plant diseases. 

The evaluation of the ML model has always involved conducting a comparative 

analysis with another model. This analysis entails the examination of important 

metrics, such as precision, accuracy, F-1 score, and recall. Once the real-time 

plant disease detection is implemented, the model will possess the capability to 

differentiate between different sorts of diseases that impact plants. The primary 

objective of the project is to construct a real-time system for detecting plant 

diseases. This system will serve as a realistic demonstration of the machine 

learning model that has been developed. The system will be built to efficiently 

analyse the input video streams and instantly provide precise disease 

identification across different disease categories. 

 

1.4 Aim and Objectives 

This project aims to develop a ML algorithm that can be used to identify and 

classify the plant diseases from the leaf image. To approach this aim, two ML 

algorithms are proposed in this research which are Vision Transformer and 

YOLOv8. Another aim is to compare the performance of the proposed model 

on the task plant disease classification and detection and understanding the 

factors that will affect the performance of the model during the real-time 

inference with the webcam. 

 The objectives of this project are listed as below: 

1. To develop a transformer-based and YOLO based plant disease 

detection. 

2. To compare the performance of Vision Transformer and YOLO 

ML model. 

3. To implement the real-time plant disease detection on webcam. 
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1.5 Scope and Limitation of the Study 

The scope of the project is to develop YOLOv8 and ViT models on the task 

plant disease detection and recognition. Furthermore, I will carry out a thorough 

performance assessment of these models, namely by comparing their accuracy, 

efficiency, and resilience in the classification of plant diseases. In addition, the 

research aims to enhance the use of these models by putting plant disease 

detection on a live webcam stream. Finally, a crucial goal is to guarantee the 

feasibility and availability of the created ML models by producing a version that 

can run on a CPU, thus enabling general acceptance and use in various 

computing contexts. 

 In the research, one of the limitations is the limited resource. This 

project requires Graphics Processing Unit (GPU) for the model training. Model 

training, especially for deep learning algorithms like Vision Transformer and 

YOLOv8, necessitates the use of Graphics Processing Units (GPUs) and other 

specialized hardware due to the substantial computational power needed. 

However, as student, I lack access to GPU due to the high cost of the GPU 

hardware. This constraint has the potential to impact the speed and ability to 

scale up model construction and experimentation. Additionally, it may provide 

challenges in efficiently analyzing larger and more complex datasets. Thus, 

while the research aims to utilize state-of-the-art machine learning techniques 

for plant disease identification, the extent and scale of the study may be 

influenced by its reliance on GPU resources. 

 The second limitation in this study is faced during the training of ML 

models on online platform Google Collaboration. Although the platform 

provides the free GPU resource which is available for model training, but there 

are limited resources and also runtime for the free version. Google Collab only 

provides the connecting runtime for 12 hours free for GPU usage. Although this 

is enough to do training on smaller dataset but for it is not enough for the 

research purpose which is because with the limited training resources, it will 

affect the performance of the ML models on real time applications. 

 Moreover, in this study, the duration that is provided is only two 

semesters which is not more than 1 year. Therefore, one of the limitations is the 

dataset collection. Due to the time limitation, I can only collect the dataset online 

which the picture formats, environment background and leaf conditions. The 
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process of obtaining desired dataset is a time consuming and resource-intensive 

process, especially to eliminate the errors sometimes we need the expert domain 

knowledge during dataset arrangement and sorting. 

 While the ML algorithms developed demonstrate potential in 

controlled laboratory settings, there are numerous uncertainties regarding their 

performance in real-world scenarios. One major concern is the extent to which 

these models can apply their knowledge to new situations and datasets beyond 

their initial training. The training data lacked certain environmental 

characteristics that contribute significantly to the variability observed in real-

world circumstances. These elements encompass variables such as illumination 

levels, variations in weather patterns, and the stages of plant development. In 

novel environments or when encountering previously unknown disease types, 

the algorithms may struggle to accurately identify and classify illnesses. 

Furthermore, machine learning models always face the difficulties posed by the 

dynamic nature of plant diseases, encompassing the emergence of novel 

pathogens and shifting disease patterns. Hence, the performance of the trained 

models will be limited on the real-time application. 
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1.6 Contribution of the Study 

The main contribution of the study is it will emphasize the potential of state-of-

the-art machine learning models on revolutionizing plant disease detection and 

recognition which has potential in advancing digital agriculture. The real-world 

uses of ML in agriculture of YOLOv8 and ViT are significantly impacted by 

their proven efficacy in identifying plant diseases. The research emphasizes how 

these models could be applied in practical settings to facilitate prompt and 

precise illness diagnosis, precision farming methods, and proactive disease 

control approaches. 

 Besides that, the study can also provide a deep insight into the 

performance and also the characteristic of YOLOv8 and ViT ML models. By 

comparing the models, the research can magnify their strength and limitations 

which can help other practitioners in informed model selection and deployment 

decisions. 

 Moreover, precision agriculture techniques, early and accurate disease 

diagnosis, and proactive disease management methods are made possible by the 

proven efficacy of YOLOv8 and ViT in plant disease detection. These findings 

have important applications on real-world agricultural applications. To promote 

reproducibility and facilitate future research in the field, the study also offers 

open-source implementations of the trained YOLOv8 and ViT models for plant 

disease identification. Through the unrestricted dissemination of these materials 

to the scientific community, the study fosters cooperation, exchange of 

information, and joint progress in the field of plant pathology and agricultural 

technology. 
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1.7 Outline of the Report 

The outline of the report is structured into the following chapters. 

Introduction: 

• Present a succinct and precise summary of the AI model for 

license plate detection and recognition. 

• Emphasize the significance of the study and states the problem 

that it addresses.  

• Outline the goals and objectives of the project. 

• Highlight the scope, limitations, and contribution of the study. 

Literature Review: 

• Analyse and categorize all the methodologies and 

advancements that are relevant to the project. 

• Evaluate the current models. 

• Identify the selected methodology to be employed in this 

project. 

Methodology and Work Plan: 

• Develop a comprehensive project timeline and identify key 

milestones. 

• Analyse and outline the hardware and software components 

involved in this project. 

• Describe the sequence of the design process. 

Results and Discussion: 

• Present the results of the research. 

• Describe and explain the results. 

• Show the results of the real-time inference and explain it. 

Conclusion: 

• Summarize all the main findings. 

• Conclude the whole process in this research. 

• Identify the limitations and restrictions in this research. 

• Identify the future enhancements. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The field of ML has come a long way in the past few years, especially in the 

area of CV. The purpose of this literature review is to explain what ML and CV 

is and how they work together. Besides that, this chapter also listed out the 

review on what tasks and steps are needed to train ML models. The focus will 

also be on teaching both shallow learning and deep learning methods. In 

particular, past studies that used machine learning models to find and classify 

plant diseases will be looked at, with a focus on how deep learning and shallow 

learning methods compare. While YOLO and Transformer-based systems are 

unique and new in machine learning, it is important to learn not only about their 

structures and what they can do, but also about how to train and test models in 

a complex way. A model's performance depends on more than just its structure. 

It also depends on the quality of the training data, refining methods, and 

assessment metrics that are used. 

This literature review also looks at a wider range of machine learning 

techniques than just YOLO and Transformer-based models. These include 

shallow learning, deep learning and Convolutional Neural Networks (CNNs). 

Finding out what each method does well and what it doesn't do well helps us 

understand their roles and how they can be used in finding and classifying plant 

diseases. By looking at things as a whole, we can find the best machine learning 

methods for dealing with the specific problems that come up when trying to 

develop YOLOv8 and ViT for the task plant disease detection and recognition. 

 

2.2 Computer Vision and Machine Learning 

CV is well known as research and development of the methods and techniques 

which enable computers to detect and interpret visual information from the real 

world. This entails techniques for gathering, handling, analysing, and 

comprehending digital pictures as well as the collection of information-

producing data from the actual world. It seeks to automate tasks that human 

vision can achieve. Therefore, with the technology of computer vision, 
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computer can easily understand and recognize the videos, objects, words, and 

images just like our human eyes and brain. That means the computer must have 

abilities to understand the location of targeted object under a scenario or in an 

image. With the understanding, the computer must be able to categorize the 

objects perfectly since it has its own understanding on the object by learning 

and interpret the relationship and the context of the scene (Oliver et al., 2000). 

 According to Serokell (2000), to make the machine or a system to have 

abilities to recognize visual object from images or videos, it first has to been 

trained with grouped sample and this we name it as supervised learning. This 

theory is similar to our human when we need to recognize new object from real 

life, which human also require time to learn the recognizing factor of an object. 

For example, when human need to recognize a cat from real life or picture, 

mostly the brain will extract out the common feature of a cat such as whiskers, 

sharp and pointed ears and large, almond-shaped eyes. That information that our 

brain obtain will help the brain to give conclusion that the object is a cat. The 

human eye will act as sensor which similar to a computer vision system, there 

will be a method or device to obtain the image which is called input. Then, 

interpreting device has function that is similar to human brain which is 

understanding the image context and give the final result which categorize the 

image to the grouped categories. 

ML is known as a branch of AI, encompasses the investigation on 

algorithms and statistical models. In the absence of explicit instructions, systems 

utilise it as a means to execute a task and instead depend on patterns and 

inference. Thus, it is applicable to the domains of pattern recognition, software 

engineering, and computer vision.  Typically, computers autonomously engage 

in machine learning, relying on minimal intervention from software developers. 

This process involves leveraging data to inform decision-making and 

facilitating the utilisation of information in innovative ways across various 

industries. The methodology including three distinct types of categories which 

are supervised learning, semi-supervised learning, and unsupervised learning. 

(Mahesh, 2019)  

The machine learning can help computer to do decision by applying 

supervised learning, unsupervised learning, or semi-supervised learning. For 

plant disease classification, most of the model is applying supervised learning 
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to solve the problem. It is known as a sub-category of machine learning. 

According to Mahesh (2019), the discipline of machine learning involves the 

use of labelled datasets for the purpose of training algorithms that are capable 

of effectively classifying input and anticipating outputs. The process of cross-

validation involves the model adjusting its weights in response to new input data, 

and these adjustments endure until the model achieves a satisfactory alignment 

with the data. 

 Supervised learning encompasses two distinct issue types, namely 

classification and regression. Classification is a computational procedure used 

to accurately assign test data to specific categories. The process involves the 

identification of distinct entities present in the dataset and subsequently drawing 

inferences on the appropriate labelling or description of such entities. Linear 

classifiers, SVM, DT, k-nearest neighbour, and RF are among the often-

employed classification approaches. Regression analysis is a statistical 

technique employed to ascertain the association between variables that are 

dependent and independent in nature.  The regression techniques that are often 

employed include linear regression, logistic regression, and also polynomial 

regression. (Steven, 1998). 

 According to Mahesh (2019), supervised machine learning, a function 

is inferred using labelled training data, which is made up of a set of training 

samples. Normally, input dataset will be divided to training and testing subsets 

during supervise machine learning. The training dataset includes an output 

variable that serves as the target for prediction or classification. These 

algorithms will employ this information to create predictions or classifications 

on the test dataset after methodically extracting patterns from the training 

dataset.   

In Mahesh’s paper (2019), he discussed the utilisation of unlabelled 

data in the context of unsupervised learning. The algorithm discerns regularities 

within the dataset that facilitate the resolution of challenges related to clustering 

or association. In summary, unsupervised learning algorithms are tasked with 

autonomously discovering and presenting the intricate patterns and organisation 

inside the given dataset. Unsupervised learning algorithms will acquire various 

attributes from the data. Upon the introduction of new data, the system identifies 

the class of the data by leveraging the features that were previously learned. The 
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integration of supervised and unsupervised learning techniques gives rise to a 

semi-supervised learning algorithm. The presence of unlabelled data in data 

mining and machine learning applications might be advantageous when 

acquiring labelled data is a laborious and time-intensive task. In the context of 

supervised machine learning methods that are widely used, an algorithm 

undergoes training using a dataset that is "labelled", meaning that each record 

in the dataset includes the corresponding result data. 

 

2.3 Steps in Machine Learning Workflow 

The steps in Machine Learning can be divided into data collection, data 

preprocessing, data splitting, model selection, model training, model evaluation 

and model finalization. Machine learning is a set of carefully planned activities 

that help create and deploy effective models. Collection of relevant datasets 

from various sources sets the stage for analysis. Data preparation cleans, 

standardizes, and prepares data for model training. The dataset is divided into 

training, validation, and testing subsets for rigorous model evaluation. A 

suitable model architecture is chosen based on task difficulty and processing 

resources after data preparation. The chosen model is iteratively trained on the 

training dataset to capture patterns and correlations. Evaluation on the validation 

dataset assures model generality and directs refinement. Finally, the model is 

verified on the test dataset to assess its real-world performance impartially. This 

methodical methodology produces strong, accurate models for varied 

applications. 

 

2.3.1 Data Collection (Image Acquisition) 

The first step of developing an efficient ML model is data collection. Data 

collection is a process which the developer will gather specific amount of 

relevant data and categorize the data to create dataset for machine learning. The 

quality and quantity of the data (image, video, patterns, etc) collected for ML 

model is very important in optimize the performance of a model because 

collected data will affect the decision made by ML model during decision-

making process (Gaudenz. B, 2022). This is because the good quality image can 

reduce the unnecessary information and noise which will cause the model to get 

false information during training process. 
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 To enhance the performance of ML models, developer often rely on 

large datasets containing relevant and informative information. However, 

obtaining such datasets can be a complex and laborious process. In the context 

of image classification research, developer strive to find high-quality and 

relevant images online, as image quality significantly impacts the accuracy of 

ML model predictions (Gaudenz. B, 2022). To make the data collection process 

easier, developer can use approaches such as web scraping, data augmentation, 

and data synthesis. Web scraping is the process of obtaining relevant photos 

from multiple online sources, whereas data augmentation is the process of 

making variants of existing photographs using transformations such as rotations, 

flips, or zooms to enlarge the dataset. 

 According to Gaudenz (2022), to have great performance of computer-

vision model, it must be trained with data that consist of thousand or even more 

images. There are a few characteristics of image need to be given attention to 

increase the accuracy of a computer vision system. First characteristic of the 

images in the dataset, must be of excellent quality. To put it another way, the 

image should be detailed enough for the AI model to recognise and find the 

target item. In most situations, AI algorithms on computer vision tasks do not 

yet approach human-level accuracy. As a result, if you can't recognise an item 

in a picture at first look, you can't expect your machine learning model to 

produce correct results.  

Second, the picture data acquired must be diverse. The more diverse the 

training dataset, the more resilient the AI system and its performance in varied 

scenarios. The computer vision model will struggle to retain consistency in its 

predictions unless it has a robust collection of objects, situations, or even groups. 

Thirdly, quantity is a critical aspect. In general, your data collection should 

include many photographs - the more, the better! Training your models on a 

huge amount of precisely labelled data (supervised learning) can increase their 

odds of making accurate predictions. A decent data collection requires not only 

the quantity of photographs but also the density of target objects within the 

images.  

After years of development, developers and researchers have created 

several large-scale online databases which consist of vast amount of structured 

and unstructured data. These databases are typically designed to serve specific 
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purpose and cater to various fields of study and industrial applications. The 

famous databases which have huge collection of images are ImageNet, 

PlantVillage, Leafsnap, Cifar-10, Cifar-100 and several others. Sharada P. 

Mohanty et al. (2016) used PlantVillage database to get 54, 306 of plant leaf 

images that was categorized to 34 classes for model training and validation in 

their research. 

 

2.3.2 Pre-processing of Dataset 

After collecting enough data, to build a highly effective machine learning model 

for image classification, it is essential to perform data pre-processing. This step 

significantly enhances the model's performance and ensures superior results. 

Data pre-processing is an important step to make sure the image data that we 

feed to the model has better quality which the pre-processing can eliminate 

useless information and noise in the images. This can help to boost the 

performance of the machine learning model. According to Delorme, P, J (2021), 

The images need to be minimal in size so that the number of features is not 

overfitting when fed to a Neural Network. As an example, if a coloured image 

is 600X800 in size, the Neural Network must manage 600*800*3 = 1,440,000 

parameters, which is huge. Any coloured image of 64X64 dimensions, on the 

other hand, requires just 64*64*3 = 12,288 parameters, which is quite little and 

will be computationally fast. 

 In the research conducted by Alessandro L. Koerich (2018), the 

significance of image preprocessing in their topic was highlighted. The primary 

objective of the image preprocessing stage was to eliminate any unwanted 

structures from the images, such as leaf stems. To achieve this, the images were 

converted to greyscale, and Otsu's approach was employed to effectively 

separate the leaves from the background. Additionally, the top-hat approach was 

utilized to successfully remove the leaf petioles, further enhancing the quality 

of photos that has been processed. The output of the image pre-processing is 

showed in figure 2.1, which (a) showed the original image, (b) showed the 

greyscale image which set each pixel to a single intensity value then (c) showed 

the thresholding operation which had removed the background of the image. 

After thresholding, (d) is the product after top-hat operation that can help to 

remove the unwanted parts of the image and further refine the image. Lastly, (e) 
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showed the final image after bounding box which a bounding box was applied 

around the leaf region while removing any unnecessary or background features. 

 

 

Figure 2.1. Output of Pre-processed Image (source: Koerich, 2018) 

 

Besides that, there are many more data pre-processing methods such as 

randomly crop. This method can produce image that contain randomly parts of 

the original image. This has advantage for the model to have different features 

to be focused on during training process. Niventhitha et al. (2022) used image 

segmentation as in their image pre-processing. Image segmentation is a method 

which the image will be separated to form subgroup or segment and normally is 

being carry out through k-means clustering. With k-means clustering, it can 

form cluster by grouping similar between data items. 

 Rather than image segmentation, image scaling or image resizing is 

also one of the fundamental of image processing which most of the ML model 

will use this method to reduce the pixel of an image so that it can reduce the 

image computational complexity during image processing task. For most of the 

ML model, image scaling is their first choice during image pre-processing. This 

is because it can reduce the image resolution by change the value of the pixels 

in an image thus can reduce the information of an image and this can reduce the 

training period without affecting the model’s accuracy. 

 For vision transformer, the model has different process of data 

processing which involve image scaling, normalization, and data augmentation. 

Data normalisation is an essential process that assures the data distribution for 

every parameter that is input. These speeds up convergence while training the 

network. Ali and Faraj (2014) propose that the process of normalising data 

involves the extraction of the mean value from each pixel, followed by the 

division of the obtained result by the standard deviation. The data in question 
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would exhibit a distribution that closely approximates a Gaussian curve with its 

mean centred at zero. In order to ensure that picture inputs consist of positive 

pixel counts, it is possible to opt for scaling the normalised data within the range 

of [0,1] or [0, 255].  For transformer model, data augumentation is a way to add 

more information to a model by making new data points from existing data and 

this mostly involve in Natural Language Processing (NLP) task, which will 

increase the accuracy of the model by adding extra information into the existing 

data. 

 

2.3.3 Data Splitting 

After image data pre-processing, the next step is data splitting. Data splitting is 

a process that split the collected data to two or three subset which are training, 

testing and validation data (Gillis, A.S, 2022). To train a model, a training 

dataset will be generated and applied which allow the model to estimate by 

recognising the underlying patterns and interactions within the processed data. 

When generating training data from raw data, it is better to 

have greater representativeness of the data. This means that the extracted data 

should have a sufficient population for each data class. With this quality, it is 

also necessary to guarantee that the extracted data is impartial since biased data 

might generate an inaccurate model. 

The validation dataset is used by the model when undergo the validating 

process. Validation is the method of evaluating the performance and 

generalisation capabilities of a trained model. It entails utilising a second dataset, 

known as the validation dataset, to assess the model's performance on data 

which cannot being observe as well as training of model is under progress. 

Validation dataset will be used on purpose to modify hyperparameters, evaluate 

model performance, also avoid overfitting. While, test data will be used after 

the model finishes training, validating and selection of optimum model. The 

forming of testing dataset needs to be careful because it may lead to overfitting 

and unreliable performance during testing progress. Generally, test data is the 

dataset that will be used to do the final evaluation on the selected model. 

According to Nguyen et al. (2021), there is lots of influence of various 

training and testing data ratio. In his paper, he mentioned that the optimum ratio 

during train-test data split is 70/30. Once the ratio of the training data over 70 
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percent, the error will occur. This is due to the overfitting. When there is too 

much data is sent for ML model training, it will lead to generating noise and 

outlier which may change the prediction on the testing dataset. Besides that, too 

high ratio of training dataset means that testing dataset has lower ratio, this will 

cause the model to do lesser prediction on the testing data, or the variation of 

characteristics of the testing dataset is limited in smaller zone, thus developer 

cannot make sure the performance of the model when it comes to the real-world 

scenario although the model may perform well in the smaller testing dataset. In 

other words, if there is too less ratio of training dataset, this means that the model 

does not receive enough training and learning, and this may lead to the poor 

performance when it comes to make predictions, which is also known as 

underfitting. 

 

2.3.4 Model Selection 

In the workflow of implement ML, model selection is a step that cannot be 

ignored in creating robust and accurate prediction models. The process of 

choosing which method and model architecture is best suited for a specific job 

or dataset is known as model selection. It comprises contrasting multiple models, 

evaluating their effectiveness, and selecting the one that best resolves the current 

situation. This is because each models have their own complexity, fundamental 

presumption, and abilities.  If a model which is very complicated may overfit 

the data thus be unable to generalize, whereas if a model that is overly basic 

may underfit the data and do badly in terms of prediction. 

 In a selection of model, there are a few factors that must be considered. 

Firstly, developer need to clear about the problem and issue need to be solved 

before proposing a suitable model for the issue. After problem identification, 

researcher can choose a collection of models that are relevant to the problem at 

hand. These models will range from simple approaches like decision trees or 

linear regression to more complex models. Shailendra Chauhan (2023) 

discussed when choosing a machine learning model, there are several various 

crucial factors to consider which can help to ensure that the chosen model is 

successful in resolving the fundamental issue and has the potential for 

remarkable performance (Chauhan, 2023). 
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 The primary factor influencing model selection is the complexity of 

both the problem being addressed and the data being processed, necessitating 

an evaluation of the problem's intricacy. Simple models may be sufficient in 

certain cases, but when dealing with complex data linkages, more complicated 

models may be required. When establishing the optimal amount of model 

complexity, considering factors including the size of the dataset, the complexity 

of input characteristics, and the possibility of non-linear relationships. This 

assessment makes sure the model of choice appropriately captures the 

underlying patterns and delivers superior insights and forecasts. When choosing 

the model, it is also important to consider the important of interpretability. As 

example, Decision trees and linear regression models able to give unambiguous 

conclusions about the correlations between input data and intended outcomes, 

making them simply interpretable. More complicated models, such as neural 

networks, may provide improved performance with the downside of poorer 

interpretability. Striking the right balance between interpretability and 

performance is essential, particularly in domains where understanding the 

model's decision-making process is crucial, such as healthcare, finance, or legal 

applications (Chauhan, 2023). 

 Besides that, the interpretability of a model is also one of the important 

factors during the model selection. Several model such as decision trees and 

linear regression will give detailed insights on the relationship between the input 

data with the results, causing the model more interpretable. Then, for the 

complex model for example neural network will provide better performance at 

the expense of diminished interpretability. This is because the complex model 

normally consists of many hidden layers and millions of parameters, and this 

will provide complex model better performance but trade-off their 

interpretability. Most application of ML model will trade-off their 

interpretability to have better performance but in the case of legal decisions and 

finance, the decision which are made by model often require transparency so 

that people will know the elements that influence model’s recommendation. But 

for NLP and image classification, performance is more prioritized than 

interpretability (Chauhan, 2023). 

 Lastly, always consider the resource constraints during model selection. 

This is because resource constraints include limited memory space, processor 
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speed or implementation time. Given the limited resources, it is difficult to make 

sure the chosen model can be effectively implemented and used efficiently. 

Some machine learning models will require larger computational resources 

during training or inference, causing them unsuitable to be implied under limited 

resources. Therefore, to achieve greatest results and successful implementation, 

it is crucial to achieve balancing between model performance and resource 

efficiency. 

 The selection of a suitable machine learning model is a pivotal stage in 

the development of a machine learning model, contingent upon the 

aforementioned elements. Software developers have the ability to choose an 

appropriate model that aligns with the specific requirements of the situation at 

hand. Algorithms can generally be classified into two main categories: shallow 

learning, which includes conventional machine learning models such as Support 

Vector Machine (SVM), Decision Tree (DT), and Artificial Neural Network 

(ANN), and deep learning. Shallow learning normally has lower cost but in 

certain tasks they have low performance, while the deep learning is inspired by 

the brain function which allow the developer to boost the performance of ML 

model with enough dataset for learning and exhibit powerful performance on 

the specific tasks and conditions for examples image classification, natural 

language processing and speech recognition. 

 

2.3.5 Training of Model 

Model Training is a process which we need to feed data to a parametrized 

machine learning algorithm to allow it to give the desired output which is 

making prediction and show high performance. Generally, it is the process of 

feeding the training data into the selected algorithm. Every machine learning 

model is dependent on the data it gets as input. Irrespective of the intricacy of 

the model, its performance is inherently linked to the calibre of the input data. 

The underlying idea that emphasises the significance of feature engineering in 

the training process is the fundamental notion that the quality of input directly 

influences the quality of output. 

In a model training, there is one part that is very important which is 

parametrize the machine learning algorithm. Machine learning (ML) algorithms 

are encapsulated as coordinated sequences of code, consisting of a group of 



21 

instructions, and coordinated by a predetermined group of input parameters, 

commonly referred to as "hyperparameters." Developers can artistically fine-

tune the learning trajectory of the algorithm using these malleable 

hyperparameters, carefully tailoring it to the specifics of the relevant dataset and 

the specific nuances of the usage context. In this orchestration, the 

documentation that accompanies each algorithm assumes a paramount role. 

Generally, in the domain of latest neural networks, the learning revolves around 

fine-tuning the weights associated with the activation functions within each 

layer, orchestrating a symphony of calculations to unveil intricate patterns in the 

data. This individuality in learning mechanisms underscores the diversity and 

adaptability inherent in machine learning, allowing each algorithm to flex its 

own set of trainable parameters to craft solutions tailored to specific challenges 

(Jing Wei et al. 2019) 

 

2.3.6 Model Evaluation and Finalization 

According to Japkowicz (2006), model evaluation is a process which allow the 

developer to understand the characteristic and completion of a ML model. 

Model evaluation process encompasses the application of various performance 

metrics, which can be carried out through two distinct approaches: offline and 

online assessments. The offline assessment is the evaluation method that is 

carried out based on the historical data or result from the model. In the approach, 

the model will be provided a fixed dataset, and the evaluation will not involve 

any interaction of real-time data. The most common matrices used for offline 

evaluation is accuracy, precision, recall, F1-score, and confusion matrix. The 

offline evaluation approach is primarily employed in scenarios involving 

classification metrics, particularly in supervised learning. In this method, the 

model's predictions are compared with the labelled dataset, and any 

discrepancies are recorded and calculated to determine the model's performance 

metrics. 

In this study, which focusing the development of ML learning model 

to plant disease detection and recognition, the method of evaluation that will be 

focused on is the offline assessment on the supervised learning. Guo, Lan and 

Chen (2022) have their model evaluation by calculating the Top-1 accuracy, 

precision and F-1 score in their research. 



22 

The Top-1 accuracy refer to the convolutional accuracy that shows the 

top accuracy of the model prediction which the prediction outcome with the 

highest probability to be correct. The formula of the Top-1 accuracy as follow: 

 

𝑇𝑜𝑝1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

Precision serves as a frequently employed metric for assessing model 

performance. It signifies the proportion of accurately predicted positive 

instances within a given sample (Guo et al., 2022). Higher precision means that 

the model is accurate in the positive predictions and there are fewer false 

positive. Precision is calculated as below: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 

Rather than precision, we also can have recall as one of the evaluation 

matric for a machine learning model. Recall, also known as sensitivity or True 

Positive Rate (TPR), quantifies the ability of the model to accurately detect true 

positive instances. A more advanced model demonstrates increased recall by 

efficiently collecting a substantial proportion of positive cases. The formula for 

calculating recall is as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

According to Guo et al. (2022), F1-score is also used in their research as 

a metric to evaluate the ML model performance. F1-score is also known as F1-

measurement or F1-beta score. It is obtained by combines the different 

weighting of precision and recall. A higher F1-score indicates superior 

performance of the machine learning model. The formula for calculating F-1 

score as follows.: 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

 

Evaluation of ML model very important during the creation and 

implementation of machine learning algorithms. This is because we can make 

sure that the final models perform as well as they possibly can. By the 

comparing different model through their performance and determine which 

model obtaining an ideal level of performance which can give the better solution 

to the proposed assignment. Therefore, model evaluation provides standard 

matrices for developer to choose the model that is best at tackling the problem 

at hand thorough comparisons with other trained models. Besides that, the ML 

model evaluation can also determine the productionized models' dependability. 

This is done by seeking the performance of the model under different conditions 

during model evaluation and the purpose is to make sure the ML model achieve 

consistence performance under different condition. (Japkowicz, 2006). 

 To add to that, model evaluation is important because it can provide 

insights into the errors the model makes. Thus, model evaluation allow 

developer to conduct error analysis and the information that is obtained from 

the evaluation allows the developer to understand the limitations of their ML 

model. For example, model evaluation allows us to identify the model is more 

prone to false positive or false negative. By understanding the limitation or error 

in the model, developer can propose solution to improve the model in order to 

provide better user experience. The model improvement or troubleshoot can be 

done by hyperparameter tuning of the model or we named it as fine-tuning, 

while the model evaluation can help the developer to identify the model 

performance by assessing how different the hyperparameter will affect the 

model’s effectiveness. On top of that, model evaluation allows the continuous 

improvement of the model as well as the model has been developed into the 

real-world application. This is because the requirement of the user will increase 

by the time, therefore model evaluation allows the model to always have best 

performance after every update. 

 After the process of model evaluation, the developer can prove to user 

that the model has been boosted to its best performance when the ML model is 

proposed to specific task or issue. Therefore, the next step after the model 
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evaluation is the model finalization. In the final step of a model construction, it 

is about model deploying and continuously monitoring on the developed model. 

According to Pruneski et al. (2022), the developed model can be shared via 

online repositories, fostering future collaboration and knowledge exchange. 

With the model deployment, the well-trained model can be put into practice in 

the real world. To put the developed model into real world, developer need to 

choose the deployment environment according to the needs of users. For 

example, developer can deploy the model through cloud services. Cloud 

services such as AWS, Azure, and Google Cloud, on the other hand, provide 

adaptable and flexible environments for the deployment of models. Besides that, 

developer can also build Application Programming Interfaces (API) to deploy 

their model. APIs allow input of real-world data, predictions, and results 

retrieval by allowing smooth connection between the model and other software 

applications or systems.  

Pruneski et al. (2022) in his paper mentioned about after the deployment 

of the model, that is not the end of the model construction. This is because one 

of the common challenges that will be faced by every ML model is they will 

become out-date when the models were exposed to changes in real-world data. 

Therefore, we need continuous monitoring on the deployed model. It is a 

technique or process for keeping the ML learning model in the real-world 

settings. In the process, continuous model performance monitoring, tracking of 

features and hyperparameters used for retraining, and smooth management of 

the full model lifetime (Pruneski et al., 2022).  

Model retraining is the main part of continuous monitoring of a ML 

model. Under real-world scenario, data that will be fed to the ML model will 

change over time and there will be a scheduled task after the model has been 

deployed (Pruneski et al., 2022). The changes of the fed data and scheduled task 

will deteriorate the performance of the model. Therefore, it is crucial to 

implement an automate system that is using an automated model pipeline during 

the finalization, so that ML engineer can do hyperparameter tuning to help 

remain the completion of developed model. In the realm of ML, it is of utmost 

importance to consistently assess the performance of the model and include 

fresh training data in order to maintain its efficacy. The task at hand necessitates 

the formation of a team responsible for overseeing the influx of data, inputting 
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it into the existing model, and occasionally developing a novel model that can 

consistently surpass or match the performance of previous models. This is done 

with the objective of enhancing the outcomes of the model or the relevant 

professional field. 

 

2.4 Application of Shallow Learning on Plant Disease Detection 

Ahead of the development of DL, researchers relied heavily on shallow learning 

approaches due to hardware restrictions that could not support computing 

requirements of DL models. Shallow learning approaches, such as linear 

regression and decision trees, performed well on basic tasks but struggled to 

catch complicated patterns in huge datasets. However, when advances in 

hardware technology, notably the introduction of GPUs, made it possible to 

handle deep learning's massive processing needs, academics began to 

investigate its possibilities. DL has subsequently transformed computer 

vision by allowing models to learn complicated patterns and representations 

from large volumes of data, resulting in important breakthroughs and advances 

in these areas. 

 

2.4.1 Support Vector Machine Classifier 

SVM have been widely employed in the fields of image identification and object 

detection due to its ability to perform pattern classification and nonlinear 

regression tasks. The SVM constructs a linear model that incorporates non-

linear class boundaries and support vectors in order to assess the predictive 

function. SVM utilizes linear models to find the best hyperplane for effectively 

separating data, while also maximizing the margin between the hyperplane and 

the nearest training data points. This method operates on the assumption that 

data can be perfectly separated using straight lines. Support vectors, which are 

the training points closest to the ideal separation hyperplane, are instrumental in 

defining and determining this hyperplane. SVM employs a nonlinear mapping 

technique to transform the input image to a higher-dimensional space of features. 

As a result, SVM functions as a linear classifier within the parameter space. 

However, it exhibits nonlinearity as a classifier by virtue of the nonlinear 

mapping that is applied to patterns of data within the feature space of higher 

dimensions (Mohan, Balasubramanian, & Palanivel, 2016). 
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Mohan et al. (2016) apply Haar-like features and AdaBoost classifier to 

classify the paddy plant image that has disease before determining the type of 

disease using SVM classification. But there is the disadvantage of shallow 

learning, which is it require more feature extraction or feature engineering and 

data preprocessing before being fed into the machine learning algorithm for 

training. This is because the shallow learning normally has limited 

representation, which lesser capacity to represent the complex patterns and 

relationship in data. Therefore, before feeding the image into the SVM for 

training and learning, it's essential to perform information extraction to 

eliminate extraneous noise that doesn't contribute to SVM classification. 

In the research paper, the authors applied Scaled Invariant Feature 

Transform (SIFT) as the filter to capture abrupt changes in intensity within the 

input image, the approach involves filtering the images at various scales and 

patch sizes to extract relevant features. The features that have sudden changes 

of image intensities may represent the disease of the plant image, and with the 

SIFT filter, SVM only needs to learn from the extracted parts or features (Mohan, 

Balasubramanian, & Palanivel, 2016). SVM will optimize the separation 

boundary for grouping the paddy plant disease based on the difference from the 

input image. The critical properties from the input images will be extract by 

using SIFT and it will output seven-dimensional feature vector to SVM model 

when training SIFT. The seven-dimensional features are x and y coordinates, 

sub-level scale, picture feature size, edge flag, edge orientation, and response 

curvature throughout scale space (Mohan, Balasubramanian, & Palanivel, 2016). 

When the dimensional features are fed to SVM, the displacement between 

feature vector and the hyperplane of SVM are calculated. Then from the 

calculated distance, they obtained average distance, and it is used to identify the 

paddy plant disease by grouping the nearest value of average distance into 

groups. 

 From the research paper by Mohan (2016), the accuracy of the paddy 

plant disease detection achieves 91.10% by applying SIFT feature extraction 

with SVM model for paddy plant disease classification. The model has precision 

of 86.66%, recall of 86.66%, accuracy of 91.10% and F-1 score of 86.66%. 

Below table shows the confusion matrix of the model from Mohan: 
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Table 2.1. Confusion Matrix for SIFT using SVM. (source: Mohan, 2016) 

 

 

The study conducted by K. Rajesh Babu in 2019 explores the application 

of Support Vector Machine (SVM) classification for identifying plant diseases. 

The research assesses the efficacy of the SVM model in classifying plant 

diseases by examining various selections of kernel parameters and soft margin 

parameters. Initially, the author compiled an input database of photos 

comprising several plant diseases such as Alternaria alternative (a fungal 

infection), Anthracnose, Bacterial Blight (caused by bacteria), Cercospora Leaf 

Spot, Bacterial leaf spot, frog eye leaf spot, sun burn disease, as well as 

photographs of healthy leaves. Babu utilised the SVM model to incorporate the 

database, opting not to employ feature selection. However, K-means was 

utilised for the purpose of picture segmentation, resulting in an accuracy rate of 

90%. In the SVM model, a linear kernel was utilised, yielding an accuracy rate 

of 89%. The classification accuracy of the SVM model using the kernel of RBF 

and polynomial kernel achieved 88.8% and 90.2%, respectively.  

According to Babu (2019), the effectiveness of SVM highly depends on 

selection of kernel and soft margin parameters, so he proposed the feature 

selection into SVM model with linear kernel, RBF kernel and polynomial kernel 

to investigate how well can feature extraction in improving SVM models. The 

author proposed "colour co-occurrence" technique is to extract features from 

photos depicting plant diseases. In particular, the conversion process involves 

transforming RGB images into the HIS (Hue, Saturation, Intensity) colour space 

representation. Within this particular colour space, a total of 14 distinct 

measurement feature measures are computed based on the co-occurrence matrix. 

After the adding of algorithm of proposed feature extraction, the performance 

of SVM model with linear kernel, RBF kernel and polynomial kernel 

classification accuracy increase to 95.63%, 94.23% and 95.87% respectively. 
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The increasing of the performance shows that SVM model is highly dependent 

on image processing especially segmentation and feature engineering. 

The study conducted by Kusumo, Heryana, Mahendra, and Pardede 

(2018) focuses on assessing the effectiveness of shallow learning techniques in 

detecting corn-plant diseases. The researchers employ a dataset consisting of 

corn plant leaves and investigate the impact of various image processing 

features and feature extraction methods, including RGB, and SIFT. The research 

team is primarily dedicated to the advancement of plant disease identification 

by the use of established machine learning methodologies. 

 In research paper by Kusumo et al. (2018) explain how those feature 

extraction function. RGB is the feature extraction method that will extract the 

colour information and turn them into the values from 1 to 255 according to the 

intensity to allow pattern recognition. SIFT algorithm is designed to find and 

recognise distinctive key features within an image. It achieves this by 

identifying stable and recurring structures that exist across various scales. The 

process entails performing a convolution operation on the picture using 

Gaussian filters at various scales, resulting in the generation of a scale-space 

representation and also exhibit a localised orientation of the features. SUFT 

feature extraction is similar with SIFT which is it is also a method for detecting 

interest points in images by analysing distinctive points in an image by 

identifying areas where the intensity pattern changes significantly in both scale 

and orientation. HOG is the technique that will calculate and divide the image 

into small cells and computing the orientation of gradient and creating 

histograms to represent the local object and shapes in an image. Lastly, ORB 

extracts the features by firstly detects salient features inside an image by 

employing a modified version of the FAST algorithm, which is specifically 

designed to locate points that possess high distinctiveness.  

 The author prepares the dataset in 4 categories which are corn gray leaf 

spot with 513 images, corn common rust with 1192 images, corn nothern leaf 

blight with 985 images and healthy leaf with 1162 images. Kusumo et al. (2018) 

proposed their processing procedures undertaken, specifically the resizing of 

images from their initial dimensions of 256x256 to 64x64 pixels. Additionally, 

they highlight the extraction of multiple features, encompassing RGB, HOG 

(with 34,020 dimensions), SIFT (with 12,800 dimensions), SURF (with 12,800 
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dimensions), and ORB (with 8,000 dimensions). The analysis utilises various 

classifiers, including Gaussian Naive Bayes, SVM with linear and RBF kernels, 

and Random Forest with 1,000 trees. Kusumo et al. (2018) propose the 

classification algorithm with the combination of the proposed feature extraction 

methods and compare the accuracy and the best performance of each 

combination is taken. From the research, RGB feature extraction can give best 

assist to in improving the classification algorithm which as shown in the 

histogram below: 

 

 

Figure 2.2. Performance of Evaluated Feature (source: Kusumo et al., 2018) 

 

From the figure above, the performance of the classification metric 

reached the best performance under RGB feature extraction where RGB with 

SVM (linear kernel) reached accuracy of approximately 88%, RGB with SVM 

(RBF kernel) reached accuracy of approximately 85%, RGB with NB reached 

accuracy of approximately 78%, RGB with DT reached accuracy of 

approximately 76%, and RGB with RF reached accuracy or approximately 87%. 

 

2.4.2 Artificial Neural Network 

ANN is classified under shallow machine learning which is proven can be 

effectively utilised for the categorization of leaf diseases. ANNs commonly 

known as neural networks, are a class of machine learning models that draw 

inspiration from the physiological and functional characteristics of the human 

brain. Artificial Neural Networks (ANNs) incorporate interconnected nodes, 

also known as artificial neurons, that are organised in layers. A standard neural 

network setup usually consists of several layers, which include an initial input 

layer, one or more intermediary hidden layers, and a concluding output layer. In 
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a study conducted by Syafiqah Ishak et al. (2015), the authors presented a 

research paper titled "Leaf Disease Classification using Artificial Neural 

Network." In this publication, the authors established a feed-forward Neural 

Network and utilised back-propagation technique. 

 The Back-propagation algorithm well-known as commonly employed 

method for purpose of training of multi-layer perceptron (MLPs) and Radial 

RBF. MLP is a class of artificial neural networks that find utility in diverse fields. 

The algorithm proceeds through three main stages. Initially, it executes a feed-

forward pass to process input patterns. Subsequently, it undertakes a back-

propagation phase to trace and assess prediction errors in a reverse manner 

throughout the network. Finally, it iteratively adjusts weights and biases using 

error information to enhance the accuracy of predictions. A standard multi-layer 

perceptron is composed of input, output, and hidden layers, where each neuron 

in these levels is equipped with biases that resemble weights. The Back-

propagation algorithm is based on the generalized delta rule and aims to 

minimize the total squared error through the use of gradient descent and can 

improve the network's efficiency (Syafiqah Ishak et al., 2015). Unlike MLP, 

RBF artificial neural networks have a simpler topology. An input layer, a hidden 

layer with Gaussian radial basis functions, and an output layer make up RBF 

networks. Function approximation and pattern recognition employ them, 

notably for nonlinear input-output interactions. RBF networks employ radial 

basis functions in the hidden layer to compare incoming data to established 

prototypes, capturing complicated data patterns. 

 The very first step is collecting the images, which 50 photos of healthy 

leaves and fifty images of unhealthy leaves are collected. After that, the images 

will undergo image processing consists of contrast enhancement, segmentation, 

and feature extraction. Then, the classification of healthy and unhealthy leaves 

will be completed with MLP and RBF, the performance will be compared. The 

table 2.2 below show the result of classification accuracy of MLP model with 

RBF model and the RBF shows better performance that the MLP. This shows 

that the ANN can also has ability to be train and get identify healthy and 

unhealthy leaves. 
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Table 2.2. Experimental result of healthy and unhealthy dataset with MLP 

and RBF (source: Syafiqah Ishak et al. 2015) 

Training Samples Testing Samples Classification Efficiency (MLP) 

90 10 99.15% 

80 20 94.05% 

30 70 90.3% 

Training Samples Testing Samples Classification Efficiency (RBF) 

90 10 98.85% 

80 20 99.1% 

30 70 99.2% 

 

Kumari, Prasad, and Mounika (2019) identified and categorized healthy and 

diseased leaves using a neural network classifier in order to advance research 

on the detection of leaf diseases. The investigation begins with the acquisition 

or collection of photographs, which consists of two sets: twenty images 

representing diseased tomato leaves affected by Septoria leaf spot and leaf mold 

diseases, and twenty images depicting afflicted cotton leaves afflicted with 

diseases including bacterial leaf spot and target spot. The k-means clustering 

technique is subsequently implemented for image processing tasks including 

image segmentation and clustering. It may be beneficial to eliminate the 

discoloration portion of the diseased leaf. As illustrated in the figure below, the 

image is concentrated. The objective of performing image clustering is to 

eliminate the spotted regions of the leaf. Feature extraction will subsequently be 

executed on the segmented images. Kumari et al. (2019) suggests using 

extracted features to detect and classify leaf diseases. 

The proposition put forth by Kumari et al. (2019) involves the 

application of extracted features in order to detect and classify leaf diseases. The 

classification process is executed utilizing an algorithm called ANN. The 

extracted features, including Contrast, Correlation, Energy, Homogeneity, 

Mean, Standard Deviation, and Variance, will comprise the input to the neural 

network. As a class vector, the target data for the neural network will be supplied. 

Following this, Kumari et al. (2019) implemented a back propagation neural 

network in order to classify the data. The operational results of the model are 

detailed in the table that follows. 
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Table 2.3. ANN classification result (Kumari et al., 2019) 

 

 

2.5 Application of Deep Learning in Plant Disease Detection 

Application of DL to recognize the plant diseases is a big step forward on the 

modern farming technology. Due to the growing problem of plant diseases and 

the pressing need for more ecologically friendly farming practices, there is an 

immediate need for rapid and precise techniques of identifying these illnesses. 

One potential method for satisfying this demand is DL, a subfield of ML that 

use numerous-layers networks to extract intricate patterns and features from 

data. Using massive volumes of picture data from both healthy and diseased 

plants, deep learning algorithms may learn to distinguish between various 

disease indicators and correctly categorise a plant's health status. The various 

applications of DL in the recognition of plant diseases are discussed in first 

section. It delves into the processes, challenges, and potential advantages of 

implementing these cutting-edge approaches in agricultural practices.  

2.5.1 Introduction to Convolutional Neural Network 

Jing Wei (2019) classifies Convolution Neural Network (CNN) as a DL method 

that integrates discrete convolution techniques for image processing with 

principles derived from artificial neural networks (ANNs). The approach 

employed in this study draws inspiration from the fundamental principles 

governing the functioning of simple and complex cells observed in the field of 

visual neuroscience. The utilisation of this technique enables the network to 

efficiently analyse images without requiring computationally intensive 

procedures such as feature extraction and data reconstruction, which are 

commonly performed in conventional image recognition systems. 
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 Within CNNs, there is a considerable difference in the makeup of the 

neurons. These neurons have a three-dimensional structure that includes both 

the depth and length of the incoming data (height and width). In contrast to 

traditional ANNs, neurons in a particular CNN layer only link to a small portion 

of the layer above. For example, in a real-world situation, the input "volume" 

would include the following measurements: 64 64 3 (indicating height, width, 

and depth). This results in an output layer that is eventually 1 1 n in size, 'n' 

represents the possible class number.  

Convolution Neural Network normally have three core layers, which are 

convolutional layer, pooling layer, also fully connected layer. Inside each layers, 

there are several hidden layers that bind together to form one type of layer. The 

convolutional layer is an important component of CNNs, and its key element is 

its learnable kernels (Shea & Nash, 2015). 

 

Figure 2.3. RGB Image Processing in CNN (source: Saha, 2018) 

 

From the figure above, we can observe that normally an image will be 

converted to RGB image which only consist of three colour panes which are 

Red, Green Blue before it enter to the convolutional layer. In the figure above, 

an input image consists of M x N x 1 image matrix with 3 x 3 x 3 of kernel or 

filter. The kernel will move horizontally by a until it completely fills the width. 

Then, using the same Stride Value, it goes down to the picture's beginning place 
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on the left and continues the procedure until it has scanned the entire image 

(Saha, 2018). 

 

Figure 2.4. Convolutional Layers in CNN (source: Saha, 2018) 

 

As shown in the figure, the pooling layer follows the convolutional layer. 

Pooling layers are implemented with the aim of reducing the dimension of 

images, thereby minimising the number of variables and computational 

complexity. In addition to employing activation maps, these layers frequently 

utilise max pooling with 2x2 kernels and a stride of 2. A 25% reduction is 

applied to the dimensions of the activation map, while the depth volume remains 

unchanged. There are two typical ways to max-pooling: one use 2x2 stride-2 

filters that cover the whole spatial dimension associated with the input image 

data, and the other employs overlapping pooling with a 2x2 stride and a 3x3 

kernel. Larger kernel sizes are often avoided since they degrade model 

performance (Shea & Nash, 2015). 

While for the last layer is named as fully connected layer. This specific 

layer is the most critical component in CNN topologies. It is made up of neurons 

that only make connections with neurons in the two neighbouring layers. 

various neurons are critical in the transmission and translation of information 

across various surrounding layers, allowing the network to extract detailed 

characteristics and patterns. These direct connections let the layer to capture 

intricate linkages and dependencies within the input data, which helps the 

network generate more accurate predictions (Shea & Nash, 2015). In other 
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hands, those hidden and multiple layers allow the deep learning to have better 

machine learning performance and allow us to deal with more complicated task. 

 

2.5.2 CNN in Plant Disease Detection 

In the research that is conducted by Mohanty et al. (2016), they dig into a 

comparative comparison of two well-known deep learning algorithms, namely 

AlexNet and GoogleNet. Both of these algorithms are classified as CNNs, 

which is another name for the category of neural networks. The research makes 

use of a significant dataset that was obtained from the PlantVillage dataset, 

which is accessible to the general public. This collection has an astounding 

54,306 photos that are separated into 38 different categories. The sheer volume 

and diversity of this dataset highlight the considerable complexity inherent in 

deep learning tasks, setting them apart from the more manageable challenges 

addressed by shallow learning approaches.  

 According to Mohanty et al. (2016), the research starts with the 

preprocessing of data to resize the images to the size of 256 x 256 pixels. They 

divide the experiment into different version to get the best performance among 

different settings. The experiment involves a variety of essential criteria. Firstly, 

this study investigates and compare the results from two DL systems, 

specifically AlexNet and GoogleNet. Additionally, this study examines several 

training methodologies, such as transfer learning and training from the ground 

up. Additionally, the analysis considers the different sorts of datasets, such as 

those containing color images, grayscale images, and images specifically 

focused on leaf segmentation. The experiment examines various test-train split 

scenarios, encompassing different distributions of training and testing sets, 

namely 80-20%, 60-40%, 50-50%, 40-60%, and 20-80%. The research was 

focusing on the getting the hyperparameter setup that will have the best results 

in the proposed tasks. (Mohanty et al, 2016) 

 AlexNet is categorized under CNN because it is built under the theory 

of CNN. The model structure of AlexNet is built up of a total of five 

convolutional layers and three totally connected layers. and is activated by 

softmax activation function or in other word last layer is softmax. The network 

comprises several critical layers: the initial two convolutional layers, denoted as 

conv1 and conv2, are immediately followed by normalization and pooling 
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layers. The neural network is finalised by a crucial fully connected layer known 

as fc8. This layer produces 38 output nodes, each of which corresponds to a 

distinct class within the dataset. These outputs subsequently serve as input to a 

softmax layer, whose role is to perform exponential normalization (Mohanty et 

al, 2016).  

 While The GoogleNet design is characterised by its increased depth 

and width, consisting of 22 convolution layers. Despite this expansion, it is 

noteworthy that GoogleNet manages to retain a relatively lower parameter count 

of 5 million, in contrast to AlexNet's substantially higher parameter count of 60 

million. One notable characteristic of GoogleNet is its implementation of the 

"network-in-network" architecture using inception modules. The modules under 

consideration incorporate parallel combinations of 1x1, 3x3, and 5x5 

convolutions together with max-pooling layers, enabling the model to 

effectively capture diverse input concurrently. To enhance computational 

efficiency, the use of 1x1 convolutions is implemented both before to and 

subsequent to the bigger convolutions. Additionally, the merging of outputs 

from these parallel layers is achieved using filter concatenation layers (Mohanty 

et al, 2016). 

 In the result of research, the GoogleNet is performing better than the 

AlexNet. This is because GoogleNet has more convolutional layer compared to 

AlexNet. Then the transfer learning is always having better performance than 

the training from scratch because of Transfer learning is a prominent machine 

learning approach that involves the adaptation of a pre-trained model from one 

task to another activity that is similar, though distinct. This methodology proves 

to be especially advantageous in situations when there is a scarcity of annotated 

data accessible for the intended objective, since it enables the model to use the 

extensive information acquired during the reference work. Then the dataset 

which has color based can provide better performance to the model because the 

model can also learn from the color and relate the information. The optimal 

setup among the proposed parameters which is demonstrating the highest 

performance, involves utilizing the color-based database in conjunction with 

GoogleNet for transfer learning, and employing an 80-20 train-test split which 

achieved accuracy of 99.34% (Mohanty et al, 2016).  
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 Zaki et al. in 2020, employed the MobileNetV2 CNN model for the 

task of recognition and classification of tomato plant illness for their research. 

According to Zaki et al. (2020), MobileNet is deep learning framework 

specifically developed to cater to the computing constraints of mobile devices. 

Google later produced a refined version of the technology, referred to as 

MobileNet V2, which featured slight modifications compared to the MobileNet 

V1. The fundamental component of the network, known as separable 

convolution, stays unchanged. In an independent investigation, the utilisation of 

MobileNet version 2, which had been pre-trained on ImageNet datasets, was 

employed to extract characteristics from photos of fruits. The study posited that 

the parameters of the model were decreased from 4.24 million to a mere 3.47 

million, resulting in enhanced accuracy. The advantages of MobileNet V2 

compared to other CNN models is it can be easily fit into mobile or embedded 

system use. 

 

Table 2.4. Description of training hyperparameter. (Source: Guo et al., 2022) 

 

 

The Table 2.4.2.1 shows the description of training hyperparameter in a 

deep learning model. In the research of MobileNet V2, Zaki et al. (2020) 

collected PlantVillage dataset that consists of 4671 images which consists of a 

total of 1590 photos depicting healthy tomato leaves, 952 images representing 

leaf mold, and 1756 images showcasing late blight, and 373 mosaic virus images 

with size of 224 x 224 pixels for training and testing. Then, the team applid 

training from scratch on MobileV2 and research on the performance of 

MobileNet V2 under different setup of hyperparameter and choose the best 

among them. Zaki et al. (2020) did a thorough investigation on the performance 
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of MobileNet, employing a range of optimisation techniques such as Adagrad, 

Adam, SGD, RMSprop, and Nadam. In addition, the researchers conducted an 

evaluation of the model's performance using several learning rates, namely 

0.00001, 0.0001, and 0.001. The study also examined the effects of several test-

train split ratios, including ratios of 9:1, 4:1, 7:3, and 3:2. Moreover, the 

investigation examined the impact of varying batch sizes (48, 32, and 16) on the 

performance of the model. After all comparison and matching, the team obtain 

the optimum accuracy of 95.94% when MobileNet V2 is trained with Adagrad 

optimization algorithm, with a batch size of 16, a learning rate of 0.001, and a 

4:1 data split between training and testing. 

The study conducted by Menon, V. et al. (2021) investigated the efficacy 

of CNN models, which areVGG16, Inception V3, and Xception, in tasks of plant 

disease detection. The researchers evaluated the performance of these models 

using two separate datasets. One dataset was made of laboratory photographs 

that were utilized for the purpose of training, which is collected from 

PlantVillage, whereas the other dataset consisted of images that were captured 

under natural lighting settings and included environmental backgrounds, which 

is collected from PlantDoc. Visual Geometry Group 16 (VGG16) is a deep 

learning CNN architecture. It is distinguished by its composition of 16 weight 

layers, comprising of 13 convolutional layers and 3 fully linked layers. The 

VGG16 model is widely recognized for its simplicity and efficacy in the domain 

of picture classification. It has served as a fundamental model in the field of 

computer vision, frequently employed as a pre-trained framework for transfer 

learning across many applications.  

While the Inception V3 architecture is recognized because it has extreme 

good performance in challenges related to image identification. The network 

incorporates an innovative "Inception module" which utilizes numerous 

concurrent convolutional processes with varying kernel sizes. In details, 

Inception V3 is a deep neural network architecture that has exceptional efficacy 

in image classification tasks due to its extensive depth of 48 layers and a vast 

number of parameters. Lastly, Xception, also named as "Extreme Inception", a 

CNN structure renowned for its utilization of depth wise separable convolutions. 

These convolutions are designed to decrease computational complexity while 

maintaining a high level of expressive capability. The purpose of its design was 
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to optimize the effeciency of CNNs through the substitution of different and 

multiple convolutional layers with depthwise separable convolutions. These 

convolutions are composed of a depth-wise convolution then a pointwise 

convolution (Menon, V. et al., 2021). 

In the study by Menon et al. (2021) discovered that their convolutional 

neural network (CNN) models exhibited superior performance compared to 

alternative models when they were trained using photos from the PlantVillage 

database. The VGG16 model demonstrated superior performance, attaining a 

notable training accuracy of 92% and an equivalent validation accuracy of 92%. 

The Xception model had a strong performance, achieving an 88% training 

accuracy and an 88% validation accuracy. The Inception V3 model 

demonstrated satisfactory performance on the PlantVillage database, with an 85% 

accuracy during training and an 87% accuracy during validation. But the 

performance of the CNN models is bad with the PlantDocs database, and 

according to Menon, V. et al. (2021), PlantVillage dataset demonstrates 

enhanced accuracy as a result of its controlled experimental conditions; 

nonetheless, its applicability for real-time field implementation is limited. This 

potential is particularly evident in the enhancement of picture resolution, which 

can lead to enhanced accuracy in disease detection. 

Rather than that, in the research paper by Saxena, O. et al. (2021). The research 

introduces a method on CNN models that will achieve accuracy of above 95% 

on the task identifying and classifying early blight and late blight disease on 

potato leaves. The research started by collecting the images from Kaggle, where 

the dataset consists of 900 images that was divided into 3 groups which are 

healthy potato leaf, early blight, and late blight. Before the training of the CNN 

models, Saxena, O. et al. (2021) proposed the image preprocessing on the 

dataset because the amount of the training dataset is too less to allow the model 

to have accuracy more than 95%. The team applied image resizing that convert 

the images to size 256 x 256 x 3 pixels, then color adjustment using RGB 

channel, orientation, and image augmentation. The image preprocessing can 

remove the noise from the dataset. After the preprocessing of image data, 

segmentation and feature extraction on database, the result of the CNN models 

is able to achieve better performance where AlexNet reached accuracy of 

98.51%, while GoogleNet reached accuracy of 99.10%. 
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2.5.3 YOLO in Plant Disease Detection 

The CNN model named as YOLO is initially and mainly designed for the 

purpose of real-time identification and computer vision applications. What 

distinguishes it is its capacity to rapidly identify several objects in a single 

iteration of the neural network. This is achieved by partitioning an image into a 

grid and generating predictions for bounding boxes and class probabilities 

within each individual grid cell. The YOLO algorithm has garnered significant 

attention and widespread acclaim owing to its exceptional characteristics, such 

as its notable efficiency, precision, and speed, rendering it highly applicable 

across a diverse array of domains. The scholarly article entitled "Object 

detection utilizing YOLO: obstacles, architectural advancements, datasets, and 

applications" produced by Diwan, T. et al. (2021), explores the architectural 

framework of YOLO. 

The architectural architecture of YOLO is influenced by GoogLeNet and 

is subsequently implemented for the purpose of object detection, utilizing the 

VOC Pascal Dataset from 2007 and 2012. In contrast to the utilization of 

inception modules in GoogLeNet, YOLO employs a combination of (1 × 1) and 

(3 × 3) convolutional filters. The initial convolutional layer in the YOLO model 

utilizes a filter with dimensions of (7 × 7). YOLO's architecture comprises two 

fully connected layers and twenty-four convolutional layers in total. Following 

four convolutional layers in succession, the architecture executes a max-pooling 

operation. The model incorporates two crucial components: a (1 × 1) 

convolution operation and global average pooling. Diwan et al. (2021) assert 

that YOLO possesses inherent characteristics that make it exceptionally well-

suited for tasks involving real-time object detection and can be modified to 

function in applications other than GPUs. 

Generally, the YOLOv8 is a model that is developed under ultralytics. 

The development of YOLOv8 is referred to YOLOv8 and several updates and 

improvement is applied to YOLOv5 in order to create YOLOv8. YOLOv8 

consist of three main parts in its structure which are Backbone, Neck, and Head. 

The backbone of YOLOv8 is named as CSPDarknet-53 which is the core section 

that can extract the image features. It used 53 convolutional layers and applied 

cross-stage partial (CSP) connections to increase the speed of data transfer. The 
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layers and specific structures build up a lightweight and powerful filter that can 

extract more details from complex image. 

After YOLO was introduced, many researchers give significant attention 

contribute to optimize the completion of ML model’s functionalities to make it 

suitable for real-life task. In the research paper “Crop Disease Detection Using 

YOLO” by Morbeka, Parihar and Jadhav (2020) proposed research regarding to 

the comparison of YOLOv3 with the ANN models. Dataset which is used for 

model testing and training comprises 25,044 images distributed across nine 

distinct plant classes YOLOv3, the third iteration of the YOLO, object 

recognition model which has a number of significant enhancements. The system 

employs a logistic classifier for efficient computation of item probabilities in a 

multi-label classification setting. According to YOLOv3 model incorporates 

residual skip connections, up sampling techniques, and operates on three distinct 

scales in order to facilitate object detection. Detection kernels are subsequently 

applied to feature maps that have been derived from three distinct locations 

within the network. This process yields detections that possess diverse 

dimensions and classes. The architecture of YOLOv3 incorporates a feature 

extractor called Darknet-53 and a multi-scaled detector that is capable of 

processing feature vectors from various scales. The ultimate result comprises of 

detections at various scales, denoted as tuples that indicate the dimensions and 

probabilities of different classes According to Morbeka, Parihar and Jadhav 

(2020), they proposed the research to investigate and compare the performance 

between ANN with SUFT, FOANN with SURF OANN with SUFT and the 

YOLOv3. In the research, YOLOv3 obtained the greatest performance with 

mean accuracy of 99.50%, recall of 0.88 and precision of 0.933. 

 

2.5.4 Research History on Application of YOLO 

In the year 2021, Shill and Rahman, they propose an experiment to do 

comparison between YOLOv3 and YOLOv4. According to Shill and Rahman 

(2021), YOLOv4 is an updated version of YOLOv3. The main difference of 

YOLOv4 compared to YOLOv3 is it has a backbone network which consist of 

CSPDarknet53 architecture. The CSPDarknet53, which serves as the backbone 

network in YOLOv4, plays a crucial role in extracting features for object 

detection. The technology serves a dual function, as it is capable of capturing 
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complex patterns, edges, textures, and structures present in an image, while also 

understanding both detailed and overarching contextual information. The design 

of CSPDarknet53 aims to mitigate challenges commonly seen in deep networks, 

such as the vanishing gradient problem. Significantly, the concept of a "cross-

stage hierarchy" is introduced, wherein feature maps are divided at distinct 

stages to undergo individual processing before their outputs are combined. This 

facilitates the transmission of information and the dissemination of gradients, 

hence fostering efficient comprehension of objects in various settings. The 

outcome is an enhanced feature representation that effectively handles 

fluctuations in object scale, orientation, and surroundings, hence leading to an 

improvement in the accuracy of object detection.  

In YOLOv3 and YOLOv4, image preprocessing is more complicated 

than image categorization. Resizing the images to 416x416 yields 52x52x3x 

(4+1+number of classes) and 13x13x3x (5+number of classes) network outputs 

for both models. Creating a model-training format using data labels is critical. 

Random flipping, cropping, translating, Mosaic data augmentation, and 

DropBlock regularisation were used to diversity the training dataset and reduce 

class imbalance. The training phase was subsequently carried out on a single 

GPU using Google Colab. During the training, they set batch size to 64, with 

0.001 learning rate, and also momentum value of 0.9, and the decay rate is 0.005. 

In the course of the training procedure, a total of 9 anchors and 105 filters were 

employed. The selection of these values was based on a formula, specifically 3 

multiplied by the sum of 5 and the number of classes (C). In this particular case, 

the number of classes was 30. The training process consisted of a total of 60,000 

batches, each executed with precise step sizes. The evaluation on the 

performance of the model is focused on the Mean Average Precision (mAP) 

metric, which considers the Intersection over Union (IoU) with a threshold of 

0.5. The evaluation process involves doing 10,000 iterations to determine the 

ideal parameters. To gauge the model's performance, mAP was employed to 

assess the accuracy of object predictions by determining the IoU threshold 

between the ground truth and the anchor for each detection. The formula of mAP 

as shown in below: 
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(5) 

The performance of the YOLOv4 is better than YOLOv3 which is 

proven in the result of the research by Shill and Rahman (2021) with 𝑚𝐴𝑃 is 

55.45 for YOLOv4 while 53.08 for YOLOv3. 

 The research produced by Dai and Fan (2022) presents the introduction 

of a unique network architecture known as YOLOv5-CAcT. The study 

incorporates a comparison evaluation with the original model, YOLOv5, to 

gauge the system performance. YOLOv5 is an advanced target detection 

method that falls within the One-Stage category. YOLOv5 presents numerous 

advantages in comparison to its previous iterations, notably a substantially 

reduced weight file, rendering it well-suited for real-time detection on 

embedded devices. The YOLOv5 framework consists of three essential 

components, namely the Neck Network, the Backbone Network, and the Detect 

Network. These components collaborate to extract meaningful information, 

minimize computational requirements, and enable effective training. 

While for the YOLOv5-CAcT which are proposed by Dai and Fan (2022) 

based on YOLOv5 and they have different features, for example, YOLOv5 use 

CSPDarknet53 as its backbone but modified YOLOv5 add Activation 

Compression (AcTNN) on top of CSPDarknet53 to decrease the number of 

parameters without effect its performance, while for the neck of the architecture, 

original YOLOv5 applied Path Aggregation Network (PANet) while modified 

YOLOv5 added Refinement Anchor (RA) to improve the accuracy of object 

detecting by refining anchor boxes. Then the YOLOv5-CAcT is also apply 

Focal Loss (FL) and Smooth Binary Cross Entropy (Smooth BCE) to help 

reduce the imbalance between positive and negative sample. The dataset used is 

taken from PlantVillage and consists of 52,589 images with 59 diseases from 

10 different crops species with size 512 x 512 pixels. (Dai & Fan, 2022) 

Before training of the models, both models are set to their own 

hyperparameter that will provide optimum performance. YOLOv5 utilizes 

BCELoss (Binary Cross-Entropy Loss) in conjunction with SGD (Stochastic 

Gradient Descent) optimization. The model is trained using a batch size of 128 
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with size of 384 pixels. Initial learning rate is set at 0.0032, which is then 

adjusted to 0.12. The momentum parameter is assigned a value of 0.843, and 

the weight decay is configured to be 0.00036. A preheating parameter of 5 is 

utilized. In contrast, the YOLOv5-CAcT model incorporates AcTNN, model 

pruning, also knowledge distillation techniques. It utilizes the same loss 

function and optimizer as the original YOLOv5 model, but with a batch size of 

64 and a bigger input image size of 512 pixels (Dai & Fan, 2022). The remaining 

hyperparameters are kept consistent with the pre-training phase. From the result 

of the research, YOLOv5-CAcT has better performance compared to YOLO V5. 

The below table shows the results of proposed YOLO models: 

 

Table 2.5. Test results of YOLOv5 and YOLOv5-CAcT (source: Dai & Fan, 

2022) 

Models Precision (%) Recall (%) F1-score (%) Accuracy (%) 

YOLOv5 87.2 92.6 89.8 94.3 

YOLOv5-CAcT 90.7 92.3 91.5 95.6 

 

In the research paper titled "Tea leaf disease detection and 

identification based on YOLOv7 (YOLO‑T)” by Soeb et al. (2023), they 

compared the performance of YOLOv5 and YOLOv7. They prepared a dataset 

that consisted of 4000 of tea leaf images and all capture from the tea field with 

640 x 640 pixels size with camera. The images are divided to 5 categories 

consist of leaves infected by red spides, tea mosquito bugs, black rot, brown 

blight and leaf rust. According to Soeb et al. (2023), YOLOv7 is a progressive 

advancement in the realm of model structures, building upon the foundations 

laid by YOLOv4, Scaled YOLOv4, and YOLO-R. The architecture of YOLOv7 

incorporates an enlarged ELAN (E-ELAN) backbone that utilises several 

techniques like as expansion, shuffling, merge cardinality, and group 

convolution. These approaches are employed to augment the learning capacity 

of the model while ensuring the preservation of gradient flow. Additionally, the 

incorporation of compound model scaling is employed to withstand the 

fundamental characteristics of the model. Furthermore, YOLOv7 integrates 

"bag-of-freebies" (BoF) methodologies in order to enhance performance while 

keeping training expenses at a minimum. The result as shown as below: 
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Table 2.6. Comparison of evaluation indicators between YOLOv5 and 

YOLOv7 (source: Soeb et al., 2023) 

Model Precision (%) Recall (%) F1-score Accuracy (%) 

YOLOv5 95.4 96.4 0.958 96.1 

YOLOv7 96.7 96.4 0.965 97.3 

 

In the research proposed by Susa et al. (2022), they proposed an 

investigation to figure out how YOLOv3 perform in the task detection of cotton 

and leaf classification. The research introduced a crucial step for YOLO which 

is image annotation. Image annotation refers to the procedure of incorporating 

labels, metadata, or visual indicators onto photographs in order to elucidate and 

ascertain the items, regions, or features present within them. Various annotation 

approaches commonly employed in computer vision tasks include bounding 

boxes, segmentation masks, key point markers, and text labels. The inclusion of 

annotations is crucial in the training of YOLO models, as it facilitates the 

recognition and comprehension of picture content. After the training of the 

model with dataset that consists of 400 images with healthy and disease leave, 

the proposed YOLOv3 obtain 95.09% of accuracy. Subsequently, the 

performance of the model was assessed by utilising a video consisting of eight 

images, with two images representing each class. This movie had a total 

duration of 16 seconds and had 480 individual image frames. The system 

effectively identified and categorised objects inside the video frames, attaining 

notable accuracy rates of 98% and 99%. Furthermore, the utilisation of a camera 

for live stream detection exhibited exceptional performance, as where accuracy 

rates that varied between 74% and 100%. This observation demonstrates the 

efficacy of the model in accurately identifying and categorising items inside 

dynamic, real-world situations. 

 

2.6 Introduction to Vision Transformer 

The Transformer model was initially introduced for natural language processing 

tasks, where it achieved remarkable success. Encouraged by its prowess in 

language-related tasks, researchers have sought to extend the Transformer's 

capabilities to image classification tasks. Their objective has been to 
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demonstrate that Transformers can excel in tasks beyond NLP, including image 

classification and object detection. In the year 2021, the first transformer named 

“Vision Transformer” (ViT) model that can be used for image classification is 

proposed by Dosovitskiy et al. (2021). The main innovation of VITin order to 

fit transformer model into image classification task is the ability to handle image 

data as sequence without increasing computing complexity. In the paper, author 

mentioned that the team proved the performance of transformer by comparing 

Vit with ResNet, while ResNet is a very well performed CNN model in image 

classification. The model architecture overview is shown in Figure 2.5 below. 

 

 

Figure 2.5. Model Overview of Vision Transformer (source: Dosovitskiy et 

al., 2021) 

 

2.6.1 ViT Architecture: Patch Embedding 

According to Dosovitskiy et al. (2021), the images will firstly proceed with the 

layer of patch embedding, where it will split the image to equally sized patches, 

then the patches will be flattened. The patches were set to the size of 16 x 16 x 

3 within the whole image. The first patch is derived directly from upper left 

corner of the input image, while the final patch is obtained from the lower right 

corner. In this manner, the patches have the capability to be organised in a linear 

configuration, which is specifically delineated as the num-patches. 
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2.6.2 ViT Architecture: Linear Embedding and Position Embedding 

Linear embeddings are constructed from every patch in the picture, and these 

embeddings are known as "Patch Embeddings." As a consequence, each patch 

is represented by a vector of dimensions 1 by 768 (16 x 16 x 3). Following the 

division of the original image into 196 smaller image patches, each measuring 

14 by 14 pixels, the aforementioned alteration can be implemented. 

Subsequently, a linear projection layer is employed to process the 

aforementioned patches and generate the matrix representing the embedding of 

the image. This subsequent phase occurs subsequent to the preceding stage. The 

patch embeddings, which have dimensions of 196 by 768 pixels, function as 

representations for the diverse patches that constitute the entirety of the image. 

Once the identification of a patch creation as a layer was made, the Patch 

Encoder layer was constructed. In addition, the projected vector incorporates a 

learnable position embedding. The learnable class token is used to generate as a 

global representation of the input image of the input image, which can allow the 

model to understand the whole image. 

 

2.6.3 ViT Architecture: Transformer Encoder Layer 

After the position embedding and patch application processes are completed, 

the image patches are transferred to transformer encoder layer. Three primary 

components comprise a transformer encoder layer: layer normalisation, multi-

head attention, and a multi-layer perceptron. The Transformer Encoder Layer is 

an integral component of the image patch processing pipeline within a Vision 

Transformer (ViT). At the outset, the input will be passed through the Multi-

Head Attention block after being filtered through a Layer Norm within that layer. 

The input is subsequently supplied to the MLP Block. In addition to two linear 

layers, the MLP block includes a GELU nonlinearity. To derive the final output 

from a solitary layer of the Transformer Encoder, the initial inputs and outputs 

from the Multilayer Perceptron (MLP) block are merged once more. The 

employment of multi-head self-attention to capture interdependencies among 

the patches, while the employment of layer normalisation and residual 

connections serves to stabilise and enhance the learning process. The stacking 

of Encoder Layers in ViT facilitates the capturing of hierarchical characteristics 
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and dependencies among patches, hence serving as the foundation for picture 

classification and other computer vision tasks. 

 

2.6.4 Transformer-Based Model in Plant Disease Detection 

In the research paper titled by Boukabouya et al. (2022). The research team fine 

tune the hyperparameter of a ViT model to optimize its performance toward the 

function of the plant disease classification. Dataset from the PlantVillage is 

taken for model training and it consists of 18,345 of tomato leave images that 

consist of 10 different disease samples.  

 From Boukabouya et al. (2022), the input is initially divided to several 

patches, each measuring 16 by 16 pixels and including RGB channels. The 

patches are arranged linearly, covering the entirety of the image. Subsequently, 

linear embeddings are calculated for every patch, resulting in vectors of size 1 

x 768 (16 × 16 x 3). The embeddings in question integrate positional information. 

The input embeddings are taken as input by the Transformer Encoder, which 

has 12 similar layers. Each layer in the architecture consists of a Multi-Head 

Attention block, Layer Normalisation, and an MLP block with two linear layers 

and GELU nonlinearity. Furthermore, the Patch Encoder layer applies a linear 

transformation to each patch, incorporating a position embedding that may be 

adjusted through learning. In the end, the extracted characteristics are inputted 

into a Multi-Layer Perceptron in order to classify images. Lastly, the research 

obtained the ViT employs a patch size of 16, a projection dimension of 128, 4 

attention heads, 16 layers, 512 MLP units, a learning rate of 0.0005, Adam 

optimizer, and Gelu activation function has the optimum performance which is 

up to accuracy of 99.7%. 

 In their study publication, Thakur et al. (2022) presented the 

PlantXViT model as a solution for the task of detecting and recognising plant 

diseases. The PlantXViT model represents an innovative hybrid methodology 

that combines the functionalities of Vision Transformers (ViT) and 

Convolutional Neural Networks (CNN) in order to accurately detect and classify 

plant diseases. The model is built by combining two convolutional blocks from 

the VGG16 architecture, an Inception block, and the ViT architecture. The 

proposed model accepts input pictures with dimensions of 224x224x3. It 

incorporates Convolution blocks derived from VGG16 and Inception v7, 
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together with components from the Vision Transformer (ViT) architecture. 

These ViT components consist of MHA and MLP modules that employ linear 

projections. The VGG16 Convolutional blocks are employed as the initial stage 

for processing the input picture. Subsequently, an Inception-like multi-level 

feature extraction block is utilised to improve the learning of local features. The 

feature map is transformed into patches, which are then subjected to linear 

projection to produce feature vectors. These feature vectors are subsequently 

processed by four transformer blocks. The classification result is generated by 

using a global pooling layer with fully linked layer with softmax activation. 

 From the research, several datasets are used to do training and testing 

on the PlantXViT model such as PlantVillage dataset that has total of 54,305 

images under 38 different classes, Embrapa dataset that has total of 46,379 

images under 93 classes, Apple dataset, Maize dataset and Rice dataset. The 

model gets the best performance when it is trained with PlantVillage dataset 

with patch size of 5 and Nadam optimizer. With the setup of PlantXViT model 

achieved impressive performance metrics, including a low loss of 0.04, high 

accuracy at 98.86%, excellent precision, recall, and F1 score at 98.90%, 98.81%, 

and 98.85%, respectively, along with a remarkable AUC of 99.92% and a kappa 

score of 0.99. 

 Yu, Xie, and Huang (2023) introduced a more advanced model called 

the Inception Convolutional Vision Transformer (ICVT) based on the ViT 

model. ICVT comprises several stages, including soft split embedding, depth-

wise convolutional transformer block, and inception transformer block, making 

it a more complex model than both CNNs and ViTs. The utilisation of soft split 

token embedding is a method employed to effectively collect localised 

information derived from neighbouring pixels and patches within a transformer 

block. The process involves dividing the input tokens into smaller sub tokens 

and subsequently representing each sub token’s local environment through 

vector embedding. The inclusion of the transformer block enables the 

acquisition of associations between distinct segments of the input, regardless of 

their immediate proximity. While the depth-wise convolution transformer block 

is a variant of the transformer block that use depth-wise convolutions in lieu of 

conventional convolutions. Depth-wise convolutions refer to a specific sort of 

convolution operation wherein a singular filter is exclusively applied to each 
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individual input channel. This characteristic renders them more effective in 

comparison to conventional convolutions, and additionally enables them to 

acquire localised information from neighbouring pixels and patches. 

 The research used four different datasets to investigate the performance 

of the ICVT in the plant disease detection and classification. The first dataset, 

referred to as PlantVillage, consisted of a total of 55,448 photos that were 

categorised into 38 distinct plant disease classes. These classes encompassed a 

wide range of plant species, amounting to a total of 14 different types of plants. 

The second dataset, known as the ibean leaf image dataset, has photos that have 

been classified into three distinct categories. However, the specific quantity of 

photographs within each category has not been explicitly stated. The third 

dataset, referred to as AI2018, consisted of a total of 31,718 training photos and 

4,540 validation images. These images were categorised into eleven plant 

categories, which were further broken into 61 subcategories based on illness, 

degree, and species. The fourth dataset, referred to as PlantDoc, comprised a 

total of 2598 photos. These images were selected to represent 13 distinct plant 

categories, each associated with 27 different species affected by various 

diseases. The ICVT model obtain the mean accuracy of 99.94%, average 

precision of 0.9989, average recall of 0.9988, and average F-1 score of 0.9989. 

  Guo, Lan, and Chen (2022) introduced a more advance and effective 

model than ViT, which is Convolutional Swin Transformer (CST) that can help 

in image classification and plant disease detection. Before training, Guo et al. 

(2022) prepared datasets that are provided with encompass various plant 

diseases. The first dataset, known as the Cucumber Plant Diseases Dataset, 

contains a total of 679 photographs. These images depict both healthy cucumber 

leaves and leaves affected by rust. The second dataset, named the Banana Leaf 

Disease Images dataset, comprises 1,288 images. These images showcase 

healthy banana leaves, as well as leaves infected with 'Xanthomonas' and 

'Sigatoka'. The third dataset, referred to as the Potato Disease Leaf Dataset, 

consists of 4,062 images. The leaves depicted in these images are categorized 

as follows: healthy leaves, foliage impacted by early blight, and leaves impacted 

by late blight. In conclusion, the Plant Village dataset comprises a subset 

comprising 4,021 images. These images are distributed among ten distinct 

categories, each representing a different plant disease. 
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 According to Guo et al. (2022), CST is the incorporation of transformer 

and convolutional blocks that can enhances the efficacy of plant disease 

detection. The backbone of the CST is using the original Swin Transformer 

architecture which are organised in pairs along with patch merging layers in 

each step. The CST model has 4 stages where each stage consists of patch 

merging and a Swin Transformer block. The model first extracts local features 

from the image and subsequently use self-attention to collect long-range 

dependencies among these features. The patch merging layer is an essential 

component within the design as it performs the critical function of unifying 

feature maps from the preceding level through the process of averaging. The 

self-attention mechanism plays a crucial role in facilitating the model's ability 

to identify connections between various regions of the image. In the CST model, 

this mechanism is influenced by the window-based self-attention process 

observed in the Swin Transformer. In order to enhance the acquisition of 

complex attributes, the CST model employs residual learning. The proposed 

methodology leverages existing features by including the output of the patch 

merging layer with the output of the Swin Transformer block. Additionally, in 

order to mitigate the issue of overfitting, the model utilises label smoothing 

cross-entropy as its loss function. The implementation of label smoothing serves 

as a preventive measure against the potential issue of the model overfitting to 

the training data. Lastly, by incorporating label smoothing, the model is 

encouraged to acquire more generalised features that transcend the specific 

characteristics of the training. 

 According to Guo et al. (2022), the self-attention processes that is 

proposed in the CST will process the entire information form the image to ontain 

three learnable matrices where are Queries (WQ), Keys (WK) and Values (WV). 

The sequence is first started with the multiplication of the matrices to get Q = 

IWQ, K = TWK, V = IWV, where I is the input sequence. Then the attention score 

can be calculated with the following equation: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑞

) (6) 
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The training procedure of the model employed a configuration 

consisting of predetermined parameters. The training method consisted of 150 

epochs, where each epoch encompassed a full iteration through the whole 

training dataset. During each epoch, batches of 20 images were simultaneously 

processed. The utilisation of the AdamW optimizer was implemented to 

minimise the loss function of the model, while a cyclic learning rate scheduler 

was utilised to dynamically adapt the learning rate throughout the training 

process. The upper bound for the learning rate was established at 0.0001, whilst 

the optimal learning rate of 0.000001 was identified using the CyclicLR 

scheduler's parameters. The employed loss function for training purposes was 

label smoothing cross entropy, which functioned as a metric to measure the 

discrepancy between the expected and actual values in the model's predictions. 

The below table is the result of the performance of CST: 

 

Table 2.7. Performance of CST (Guo et al., 2022) 

Model Accuracy Precision 

CST-small 0.937 0.938 

CST-base 0.942 0.942 

CST-large 0.924 0.924 

 

From the table above, The CST architecture comprises three distinct 

variants: CST-small, CST-base, and CST-large. CST-small is characterized by 

96 channels in its initial stage, accompanied by 2 Swin Transformer blocks in 

each stage, and a patch size of 4x4. In contrast, CST-base features 96 channels 

in its first stage, incorporates 6 Swin Transformer blocks within each stage, and 

maintains a patch size of 4x4. Lastly, CST-large exhibits a configuration with 

128 channels in its initial stage, integrates a substantial 18 Swin Transformer 

blocks per stage, and continues to employ a patch size of 4x4. 

 

2.7 Summary 

The table below concludes the performance of the related research on shallow 

learning model in the field of plant leaves disease detection and also 

classification. Although shallow ML approaches are recognised for their user-

friendly nature and reduced computational demands, they may not presently 
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constitute the central area of research in the field of ML. However, shallow 

learning approaches continue to hold significance and worth in particular 

situations, such as when there are limitations on processing resources or when 

the importance of interpretability and transparency cannot be compromised.  

 

Table 2.8. Performance Summary of Shallow Learning in Plant Disease 

Recognition 

References Backbone 
Image 

Classes 

Accuracy 

(%) 

Mohan et al. (2016) SIFT + SVM 3 91.1 

Babu (2019) SVM (linear kernel) 8 95.63 

Babu (2019) SVM (RBF kernel) 8 94.23 

Babu (2019) SVM (polynomial kernel) 8 95.87 

Syafiqah Ishak et al. 

(2015) 

ANN (MLPS) 2 99.15 

Syafiqah Ishak et al. 

(2015) 

ANN (RBF) 2 99.2 

Kumari et al. (2019) Neural Network (ANN) 2 92.5 

Kusumo et al. (2018) RGB with SVM (linear) 4 88 

Kusumo et al. (2018) RGB with SVM (RBF) 4 85 

Kusumo et al. (2018) RGB with NB 4 78 

Kusumo et al. (2018) RGB with DT 4 76 

Kusumo et al. (2018) RGB with RF 4 87 

  

 Table 2.9 below summarize the performance of the CNN and also 

YOLO from the past research on the topic of plant disease classification and 

detection. Compared to shallow learning, deep learning has its own advantages 

which can obtain better accuracy in the task. DL models particularly CNN and 

YOLO, excel in the self-extracting features and patterns from the image data, 

which allow the models achieved superior accuracy. Rather than that, with the 

advance technology, ML models nowadays is able to be trained with the support 

of greater computer resource with higher complexity which means that DL 

models also excel in learning from larger dataset which can directly boost their 

performance. 
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Table 2.9. Performance Summary of CNN and YOLO in Plant Disease 

Recognition 

Reference Backbone Image classes Accuracy (%) 

Mohanty et al. (2016) AlexNet 38 98.1 

Mohanty et al. (2016) GoogleNet 38 99.54 

Saxena et al.(2021) AlexNet 3 98.51 

Saxena et al.(2021) GoogleNet 3 99.1 

Zaki et al. (2020) MobileNet V2 4 95.94 

Menon et al. (2020) VGG 16 38 92 

Menon et al. (2020) Xception 38 88 

Morbeka et al.(2020) YOLO V3 24 99.55 

Shill & Rahman (2021) YOLO V3 30 53.08 (mAP) 

Shill & Rahman (2021) YOLO V4 30 55.45 (mAP) 

Dai & Fan (2022) YOLO V5 59 94.3 

Dai & Fan (2022) YOLO V5CACT 59 95.6 

Soeb et al. (2023) YOLO V5 3 96.1 

Soeb et al. (2023) YOLO V7 3 97.3 

 

 The table 2.10 below summarizes the performance of Transformer-

Based models from the reviewed past research. Transformer-Based models has 

the performance that is similar to CNN and YOLO models from the comparison 

of table 2.10 and 2.9. This signifies a noteworthy accomplishment in the 

advancement of Transformer-Based models, which were initially introduced in 

the field of NLP. The efficacy and adaptability of Transformer-Based 

architectures, which were initially developed for NLP, are now being applied to 

the field of image processing, demonstrating their versatility. This transition 

signifies a substantial turning point in the progression of deep learning 

methodologies, creating fresh opportunities for advancement and 

implementation in diverse sectors outside their initial domains. 

 

Table 2.10. Performance Summary of Transformer-Based Model in Plant 

Disease Recognition 

Reference Backbone Image classes Accuracy (%) 

Boukabouya et al. (2022) VIT 10 99.7 
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Yu et al. (2023) ICVT 101 99.94 

Guo et al. (2022) CST-Small 17 93.7 

Guo et al. (2022) CST- Base 17 94.2 

Guo et al. (2022) CST-Large 17 92.4 

Thakur et al. (2022) PlantXViT 131 98.86 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In response to the critical need for enhanced food security, this project 

leverages advancements in artificial intelligence to combat the insidious threat 

of plant diseases, safeguarding agricultural prosperity. To achieve this 

objective, two state-of-the-art models, YOLOv8 and ViT, will be utilized as 

specialized diagnostic tools. YOLOv8, characterized by its swiftness and 

vigilance, will efficiently scan leaf surfaces, identifying potential anomalies 

with hawk-like precision. Through comprehensive performance evaluations, 

the model demonstrating superior proficiency in both speed and accuracy will 

be designated the champion. Subsequently, this champion model will be 

disseminated across online and offline platforms, democratizing access to this 

potent disease-fighting arsenal. Empowered by this technology, even 

geographically remote farmers, unconstrained by internet connectivity, will be 

equipped to instantly diagnose their crops, enabling prompt and effective 

intervention strategies. Throughout the project, the photo will be collected 

online from Kaggle while the chili plant leaves picture will be collected 

individually from the planted chili. The photo will be prepared with two 

categories which are diseased leaves and healthy leaves. 

 

3.2 Dataset 

The dataset utilized in this study was sourced from Kaggle. The dataset 

obtained for analysis comprises a collection of plant leaf photos belonging to 

various classes and exhibiting different types of illnesses. Each image in the 

dataset has a resolution of 256x256 pixels. The training and testing dataset are 

separated into different folder paths. To reduce the training and testing time 

taken, the dataset is reduced in size by removing extra classes out from the 

prepared dataset.  

The table below lists the classes and amount of the images that are 

contained in the dataset. The data is taken from the dataset named as New Plant 

Disease Dataset, which is taken from Kaggle, the dataset is divided into 8 
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classes to minimize the computation time and resource used during the training 

of the models. 

 

Table 3.1. Information and statistical data of training dataset images 

Class Name Number 

00 Apple Scab 2016 

01 Apple Rust 1760 

02 Corn Common Rust 1907 

03 Potato Early Blight 1939 

04 Potato Healthy 1825 

05 Tomato Early Blight 1920 

06 Tomato Healthy 1926 

07 Tomato Yellow Leaf Curl Virus 1961 

 

After that the dataset is generated, it will be import into Google Drive, 

so that coding in Google Colab can access the image dataset. The setup of the 

used Cloud device in the Google Colab is Python 3 with Tesla, T4 GPU with 

16GB of memory and 2,560 CUDA cores.  

The second stage of the model training will be done under the support 

of device GPU RTX 3080. The dataset that will be use for the second stage 

model training is extended New Plant Disease dataset which contain 70 classes 

of plant leaves condition categories. In the second stage of model training, I 

prepared the dataset that is containing 121,975 images from 25 types of plants. 

This dataset is a combination of the dataset that can found online such as 

PlantVillage and PlantDoc dataset and also self-collected image dataset. 

 

3.2.1 Data Augmentation 

One of the issues during the data collection is some of the dataset size is too 

small for models training which is around few hundreds. Therefore, it is 

important to have dataset augmentation which can help to enhance the size of 

the dataset for better training and testing performance. From the data 

augmentation, we can generate the new training samples extra from the original 

pictures from several transformation such as image resizing, brightness 

changing, image rotation or orientation changing, increasing noise and also 
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exposure of the images. The one of the precautions during the image 

augmentation is the changing of the image contrast and also colour is not 

recommended in this specific task which is because it is important to have 

original colour of leaf in order to recognize its original condition. 

 

3.3 Application of Vision Transformer in Image Classification 

In the application of the vision transformer to the task of plant disease detection 

and classification, the path of the training and testing dataset is located and 

stored into a directory. After that, all of the images will be resized to 224x224 

pixels which is the standard input size that can help to maintain the compatibility 

and consistency, also prevent the loss of information.  Then, the training and 

testing data loader is created. Data loader is important in a vision transformer 

model because it can allow the larger dataset can proceed with data batching 

smoothly during the processing of image data. Then, a PyTorch function 

‘tourch.randn’ is used to generate a random tensor filled with numbers drawn 

from a standard deviation distribution. From the function, batch size is defined 

to 32, with 3 colour channels and image height and width of 224 pixels. 

 

3.3.1 Training Hyperparameter on Vision Transformer 

The vision transformer model that is used in the coding is ViT-Base. The Vit-

Base model consists of 12 layers of transformer encoder layer and each layer 

consist of 768 embedding dimension, MLP size of 3072 and also 12 Multi-Head 

Attention. After that, the model of ViT architecture is turned to a pretrained 

model by applying pretrained ViT_B_16_Weights.IMAGENET1K from the 

pytorch. Table below shows the hyperparameter of the ViT model. 

 

Table 3.2. Training hyperparameters of ViT on Google Colab 

Parameter Value 

Epochs 15 

Batch Size 32 

Optimizer Adam 

Dropout 0.1 

Learning rate 0.0001 
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Activation function GeLu 

 

Evaluation method will follow the description in Chapter Error! Reference 

source not found. Model Evaluation and Finalization.  

 

3.3.2 ViT models Variants 

In the development of a ViT model on image classification, the focus is to 

optimize the performance of the model. Therefore, it is important to train the 

different variants of the ViT model to investigate the performance of the model 

on our specific tasks. The model size denoted as “Base”, “Large” and “Huge” 

based on the different model size and parameters. Each different model sizes 

can also be divided into different input patch size in each ViT models, which 

are 16 x 16 and 32 x 32 patch size. From the model design, it is observed that 

the transformer sequence length exhibits an inverse proportionality to the square 

of the patch size. Consequently, computational resources escalate with 

diminishing patch sizes. In summary, the optimal-performing model is chosen 

from the following options: ViT-B/16, denoting the "Base" variant with a 16 x 

16 input patch size; ViT-B/32, representing the "Base" variant with a 32 x 32 

input patch size; ViT-L/16, signifying the "Large" variant with a 16 x 16 input 

patch size; ViT-L/32, indicating the "Large" variant with a 32 x 32 input patch 

size; and ViT-H/16, which corresponds to the "Huge" variant with a 16 x 16 

input patch size. 

 

3.3.2.1 Vision Transformer-B/16 

Vision Transformer “Base” variant consists of two main type which is model 

with input patch size 16 x 16 pixels and 32 x 32 pixels input patch size. This 

represents one image will be divided into patches with each patch consist of 16 

x 16 pixels or 32 x 32 pixels. One of the focus of the research is to observe the 

performance of the ViT models with different input patch sizes.  

Generally, the smaller input patch sizes will help the models to capture 

finer details because the patches are focusing on smaller area of the image. This 

may help to improve the accuracy of the models but it will occupy larger 

computation resource in order to train the model. With the input patch size of 

32 x 32 pixels, the models was able to capture the broader context of the image, 
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potentially improve the global understanding between the features. Rather than 

that, the larger input patch size will also reduce the computation resource and 

make the model to be faster and efficient. 

Figure 3.3.2.1.1 below shows the architecture of ViT-Base with input 

patch size of 16 x 16 pixels. Figure belows summarizes that the ViT-Base model 

will have consist of total parameter of 87,461,384 with 6,162 trainable 

parameters and 87,455,232 of non-trainable parameters. The trainable 

parameters can help the models to understand the task from the training dataset 

while the non-trainable parameters is the fixed parameters for example the 

parameters from the pretrained components and also the positional information 

which can encode the relative positions of patches within the image, helpng the 

model to understand spatial relationships. 

Figure 3.3.2.1.1 below also summarizes the the input shape of the 

images from the dataset which is [1, 3, 224, 224] which represent 1 image, 3 

color channels (RGB) and resolution of 224 x 224 with output shape of [1, 8] 

representing 1 vector of 8 elements, each representing a predicted probability 

for one of the 8 distinct classes. Within the model artchitecture of ViT-Base, the 

model consists of 12 stacks of identical Encoder Blocks which each containing 

multi-head self attention that allows the model to understand the relationships 

between patches in the image. MLP block is also one of the main component in 

the Ecoder blocks which can adds non-linearity to the model’s predictions.  

In each encoder layer, the input shape of the ViT model is set to be [1,197,768] 

in the figure below. This represents that the image will pass through 12 layers 

of encoder layers with every images will be divided into 197 pathes as well as 

the input image is set to be size of 224 x 224 pixels. Lastly, the figure also 

summarizes the estimated total size of the whole model which is around 333.91 

MB. 
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Figure 3.1. Model Architecture of ViT-B/16 

 

3.3.2.2 Vision Transformer-B/32 

Figure 3.2 below shows the model architecture of the model ViT-B/32. The 

figure shows that the model consists total of 87,461,384 parameters and 6,152 

parameters are trainable and 87,455,232 parameters are non-trainable. The 

model architecture with input shape of each image in RGB three color channels 

and is set to be 224 x 224 pixels. Then the output shape is [1, 8] representing 1 

vector of 8 elements, each representing a predicted probability for one of the 8 

distinct classes. Within the model artchitecture of ViT-Base, the model consists 

of 12 stacks of identical Encoder Blocks which each containing multi-head self 

attention and also MLP block within the model connection. 

In each encoder layer, the input shape of the ViT model is set to be 

[1,50,768] in the figure below. This represents that the image will pass through 

encoder layers with every images will divide into 50 pathes as well as the input 

image is set to be size of 224 x 224 pixels. Lastly, the figure also summarizes 

the estimated total size of the whole model which is around 263.31 MB. 

 From the figure 3.1 and figure 3.2, model ViT-B/16 and ViT-B/32 has 

same model architecture, but the model ViT-B/32 require the image to be 

divided into lesser patches within the block for training and learning. This will 

result in the smaller model size of the model ViT-B/32. 
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Figure 3.2. Model Architecture of ViT-B/32 

 

3.3.2.3 Vision Transformer-L/32 

Figure 3.3 below shows the model architecture of ViT “Large” with input patch 

size 32 pixels. The figure shows that the model consists total of 305,518,600 

parameters and 8,200 parameters are trainable and 305,510,400 parameters are 

non-trainable. The model architecture with input shape of each image in RGB 

three color channels and is set to be 224 x 224 pixels. Then the output shape is 

[1, 8] representing 1 vector of 8 elements, each representing a predicted 

probability for one of the 8 distinct classes. Within the model artchitecture of 

ViT-Base, the model consists of 24 stacks of identical Encoder Blocks which 

each containing multi-head self attention and also MLP block within the model 

connection. 

In each encoder layer, the input shape of the ViT model is set to be 

[1,50,1024] in the figure below. This represents that the image will pass through 

encoder layers with every images will divide into 50 pathes as well as the input 

image is set to be size of 224 x 224 pixels. Lastly, the figure also summarizes 

the estimated total size of the whole model which is around 889.05 MB. 
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Figure 3.3. Model Architecture of ViT-L/32 

 

3.4 Application of YOLO in Image Classification 

In the application of YOLOv8 model in the task of plant disease classification, 

firstly the path of the training, testing and validation dataset is stored and located 

in a directory. Then the YOLOv8 model is installed with pip from ultralytics. 

After that, prepare the data.yaml file that contain the information of the training, 

testing and validation dataset directory locations. The training of YOLOv8 can 

be started by export the data.yaml with YOLOv8. Different from application of 

detection with YOLOv8, for classification we need to specify the task to classify 

in order to train the model for classification. The training of YOLOv8 will be 

focus on the pre-trained YOLOv8 model for classification from the ImageNet. 

The one of the differences of the YOLOv8 from ViT is the hyperparameter setup. 

During the YOLOv8 model training, the hyperparameter is defaulted and 

optimized for their pre-trained model. Changing of the hyperparameter setup is 

capable but not necessary. 

 

3.4.1 Training hyperparameter of YOLOv8  

Since the hyperparameter is optimized and default in the pre-trained model, the 

only setting that is changeable is the training epochs. In this research, the 

training epochs are set to be 15 epochs during the training on the Google Colab 
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but approach of early stopping is applicable during the model training as well 

as the model training reach its optimum accuracy. Below table shows the 

hyperparameter setup for YOLOv8 for all of the model branches. 

 

Table 3.3. Training Hyperparameter of YOLOv8 in Google Colab 

Parameter Value 

Epochs 15 

Batch Size 16 

Optimizer SGD 

Decay 0.05 

Learning rate 0.001 

Momentum 0.9 

 

Evaluation method will follow the description in Chapter 2.3.6 Model 

Evaluation and Finalization. From the table above, there are some different 

settings compared to the setup of ViT from Table 3.3.  

It is important to fine tune YOLOv8 model to achieve optimize 

performance. One of the hyperparameter that is different with ViT is decay 

(weight decay). This parameter is served to be a regularization approach to 

prevent the overfitting during the model training. The optimizer modifies the 

weights depending on the computed gradients throughout every iteration of 

YOLOv8 training. Weight decay adds a penalty term that somewhat reduces the 

weights' distance from zero. This enables the model to acquire more 

generalizable properties and lessens its dependence on certain weight values. 

While momentum is a key hyperparameter for YOLOv8 training, it's a 

general optimization technique applicable beyond the Vision Transformer 

architecture.  This parameter aids as one of the optimizers which can helps to 

navigate the complex loss landscape more effectively. Momentum takes the 

direction (gradient) from the previous update into consideration and adds a little 

forward velocity to each update. By doing so, the optimizer may be able to 

obtain the lowest loss more quickly and obtain updates in a consistent manner. 

It comes in very useful while navigating steep inclines or brief gullies. 
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3.4.2 YOLOv8 Model Variants 

Similar to ViT, developer of YOLOv8 also designed pre-trained YOLOv8 

model in different variants. The design purpose is to optimize the performance 

of the model in the different condition such as device setup and environment. 

These versions differ primarily between YOLOv8 variants lies in their backbone 

network. The size or the number of layers in the backbone of YOLOv8 allows 

the model to have variants on the model compatibility and also performance. 

The model size denoted as “Nano”, “Small”, “Medium”, “Large” and “X” 

which arranged in ascending order. Those model variants in YOLOv8 prioritize 

either speed or accuracy, and with the trade-off between two, we need to find 

the most suitable choice on our research task need. 

 In this research, I chose YOLOv8n-cls, YOLOv8s-cls, YOLOv8-m as 

the comparable models to ViT. The smallest model is YOLOv8n-cls which has 

the fastest speed but limited performance on its accuracy. This is because the 

smaller the model size, the least complexity of the backbone structure which 

may affect the model performance. YOLOv8n-cls is a specialized version of the 

YOLOv8 model designed specifically for image classification tasks. This model 

consists of 2.7 million of parameter with 3.1MB of model size, which is the 

smallest model that will be trained in this research. YOLOv8s-cls is one of the 

branches under the YOLOv8, which is larger than the YOLOv8-nano. The 

model consists of 6.4M parameters with 10.4MB of model size. In our research, 

I also employed YOLOv8m-cls, the largest model variant within the YOLOv8 

family used in this study. It boasts 17 million parameters and a total model size 

of 31.9 MB, indicating its increased complexity compared to smaller YOLOv8 

models. 
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3.5 Programming Flow Chart for Real-Time Webcam Inference 
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3.6 Software Overview 

Google Colab, sometimes known as Google Colaboratory, is a robust cloud-

based platform that enables users to write, execute, and exchange Python code 

with one another which is available on the Google Drive platform. With free 

GPU and TPU resources available, it provides a suitable environment for Python 

writing, especially for machine learning and data analytic jobs. Without any 

setup or installation required, users may create and use Jupyter notebooks 

straight in their web browsers with Google Colab. The trial training of ViT and 

YOLOv8 is carried out on the platform of Google Colab. 

 Google Colab has facilitated the accessibility of GPUs for free, like the 

Tesla T4 16 GB, which is good for machine learning development. To use 

Google Colab's services, users only need to register for an account. Importantly, 

Colab's support for a number of well-known machine-learning libraries such as 

PyTorch, TensorFlow, OpenCV, and Keras. However, there are limitations on 

how you can use Google Colab's computer resources. With a free Google Colab 

account, the Google GPUs are only used for 12 hours every day. Therefore, on 

this platform, just to examine the functionality of YOLOv8 and also ViT. 

 Other than Google Colab, one of the software platforms used is Virtual 

Studio Code (VS Code). Since the development of the models are conducted 

with Python language, therefore VS Code is one of the most suitable platforms 

for the model development and implementation. Besides that, it is also robust 

and free code editor available for Linux, Mac, and Windows platforms. With its 

many themes and plugins, VS Code may also be easily customized to meet your 

unique coding requirements and also allow the features such as debugging and 

code completion. 

 

3.7 Hardware Overview 

The research will continue with the upgrade of the hardware. The new session 

of model training will be conducted with local computer with external GPU 

connected to the system, in order to boost the training performance of the 

models and also provide better environment for the model inference and real-

time application with lesser limitation. The research then been continued with 

Intel NUC 10th Gen Core i7 Mini PC with external GPU RTX3080. The mini-

PC comes with a soldered-down 10th Gen Intel Core i7 processor which offers 
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6 cores and 12 threads for processing demands. The processor uses a 14-

nanometer manufacturing process and runs at speeds between 1.1GHz and 

4.7GHz. It is designed to generate minimal heat with a thermal design power of 

25watts. The mini-PC also consists of expandable RAM up to 64GB for 

improved performance. The external GPU, Aorus RTX 3080 Gaming Box is 

connected to the mini-PC to enhance the performance of the models training 

and inference. The GPU can support real-time ray tracking at high resolutions 

and frame rates with its 10 GB of GDDR6X memory.  

 An additional crucial piece of hardware used in this investigation is a 

USB camera with a 1920x1080p maximum resolution and a 30 frames per 

second (FPS) frame rate. Throughout the process of inference as well as model 

deployment, this high-resolution camera is an essential tool. The study's overall 

success is greatly enhanced by its ability to record intricate details at a smooth 

frame rate, which guarantees precise and efficient performance in a variety of 

settings. 

 

3.8 Gantt Chart 
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3.9 Summary 

This chapter presents a comprehensive programming flow diagram to 

implement the YOLOv8 and Vision Transformer (ViT) models for plant disease 

detection and recognition. The primary objective of Chapter 3 is to provide a 

comprehensive explanation and coordination of the procedures required to 

achieve the project's goals. The process starts with the step of gather and 

improve datasets. After that, the chapter explains how to train a model, starting 

with trial training sessions in Google Colab for testing and then moving on to 

the main training phase on a local CPU with GPU acceleration. 

In order to enhance the implementation of trained models in practical 

scenarios, this chapter elucidates the methodology for doing real-time inference 

by utilising a camera. This chapter establishes the foundation for a systematic 

and efficient project process by delineating each phase of development, starting 

from dataset preparation to model training and deployment. Additionally, it 

offers a structured system for overseeing the progress of implementation and 

resolving any issues that may arise, so facilitating the identification and 

rectification of mistakes. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

Chapter 4 provides a comprehensive analysis of the real-time inference 

outcomes and the findings gained from training models in two separate contexts. 

During the early phase of the project, Google Colab was used to train the models 

ViT-B/16, ViT-B/32, ViT-L/16, YOLOv8n, YOLOv8s, and YOLOv8m. The 

results derived from this training serve as an initial standard for the following 

step, which involves more education on a specific instrument. The initial phase 

utilised a smaller dataset to assess the feasibility and effectiveness of the 

proposed models in achieving their specific machine learning goals. The data 

collected during this step will feed the second round of training and help identify 

any necessary adjustments to improve the model's performance. 

 In the second stage of training, the project will be focused on the 

training on the larger self-customised dataset on the local CPU with the support 

of GPU. In this stage, the training and also testing performance of the models 

will be recorded and evaluated. After that, the well-trained models will be 

installed on the local device to be use on the real-time inference. During the real 

time inference, the model performance will be recorded and evaluated. 

Discussion on every record result will be generated. 

 

4.2 Result from Vision Transformer for Image Classification 

As mentioned on the previous chapter, the training of ViT will be divided into 

two sections which one is trial training on the platform of Google Colab. Trial 

training is intended to minimize the amount of time invested by evaluating the 

training procedure, estimating the time needed, and assessing the model's 

performance using smaller data sets at first. After that, the second training will 

aim to maximize the performance and also the ability of the models by boosting 

the sizes of the training dataset by increase the number of classes to investigate 

how is the model’s performance when it is trained with numerous of different 

classes training datasets. The second stage of training will be held with the 
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support of the hardware devices such as mini-PC and GPU and also external 

webcam that are mentioned in Chapter 3.6. 

 

4.2.1 Results of ViT on Google Colab 

The training of ViT model in Google Colab started with the training of model 

ViT-B /16. The training of the model took the time for around 2 hours and 15 

minutes for 15 epochs and the accuracy of the trained model reached 98.8%. 

While the model ViT-B/32 took the time for around 1 hour to finish the model 

training with 15 epochs in Google Colab, which can reach the testing accuracy 

of 99.6%. After that, the training of ViT model is continue with the training of 

ViT-L/32, where the pre-trained model ViT-L/16 and ViT-H/16 has too large 

parameter and model size which occupy too much memory and is unable to be 

trained and evaluated with Google Colab. The model ViT-L/32 took half an 

hour to finish the training and the accuracy of the model is 98.2%.  

 The evaluation of various trained models revealed ViT-B/32 as the 

champion, achieving an impressive 99.6% testing accuracy. However, its path 

to further improvement seems obstructed by its reliance on exceptionally small 

image patches. This granular approach necessitates an exponential increase in 

model parameters, making further gains increasingly resource intensive. 

Conversely, while ViT-L/32 boasts a larger model capacity, its immense 

parameter count presents a different challenge. Effectively utilizing this 

potential hinge on access to a correspondingly vast dataset, a requirement that 

currently impedes its performance compared to its smaller counterpart. In 

essence, both models face unique roadblocks to achieving even greater accuracy: 

ViT-B/32 grapples with scalability due to its finely grained approach, while 

ViT-L/32 is bottlenecked by the need for a much larger dataset to fully leverage 

its parameter-rich architecture. 
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Figure 4.1. Performance of ViT-B/16 

 

 

Figure 4.2. Performance of ViT-B/32 

 

Figure 4.3. Performance of ViT-L/32 
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4.3 Result of YOLOv8 in Image Classification 

Similar with the training process of ViT, I also conducted a trail training for 

YOLOv8 with two section which one is trial training on Google Colab and the 

second section is training on local device. With the trial training of YOLOv8 

models on Google Colab, we can minimize the amount of time invested by 

evaluating the training procedure, estimating the time needed, and assessing the 

model's performance using smaller data sets at first. After that, the second 

training will aim to maximize the performance and also the ability of the models 

by boosting the sizes of the training dataset by increase the number of classes to 

investigate how is the model’s performance when it is trained with numerous of 

different classes training datasets. The second training will aim to maximize the 

performance and also the ability of the models by boosting the sizes of the 

training dataset by increase the number of classes to investigate how is the 

model’s performance when it is trained with numerous of different classes 

training datasets. 

 

4.3.1 Result of YOLOv8 on Google Colab 

In this section, YOLOv8n, YOLOv8s and YOLOv8m are chose during the 

training on Google Colab. The model size of YOLOv8 models is small, the 

training of the models takes lesser time if compared to ViT. For YOLOv8n, the 

training time taken is 25 minutes for 15 epochs. While the training of the model 

YOLOv8s took the time for around 38 minutes for 15 epochs training in Google 

Colab. After that, the training is continued with the model YOLOv8m in Google 

Colab which took the time for 50 minutes for 15 epochs training. The result of 

training and testing accuracy of YOLOv8 models are likewise if it is compared 

to ViT models.  

 The training loss, depicted in the subsequent figures, is an essential 

metric that provides insight into the model's performance on the training dataset. 

Ideally, it ought to diminish as the model acquires greater proficiency in 

discerning the patterns within the dataset. Validation loss, conversely, is a 

metric that demonstrates the model's performance on untrained data. Overfitting, 

which occurs when a model becomes overly specialized to the training data and 

performs inadequately on new data, must be avoided. Top-1 accuracy pertains 

to the percentage of images in which the model accurately and with the highest 
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degree of confidence classifies the most prominent object category. Top-5 

accuracy refers to the percentage of photos in which the right object class is 

among the top 5 categories predicted with the highest confidence. 

 From the figures 4.4, 4.5, 4.6, the graphs summarized the accuracy of 

YOLOv8 models on training and testing dataset. The graphs shown demonstrate 

positive trends, with both the training and validation loss consistently 

decreasing during the training period. This indicates that the models’ 

performance is improving, and it has the capacity to make accurate predictions 

beyond the training data. We can summarize that the performance of the 

YOLOv8s and YOLOv8m have better performance than YOLOv8s on the 

custom dataset which their top-1 accuracy is 99.0% and 99.6% respectively 

while YOLOv8s has slightly lower top-1 accuracy which is 98.7%. The top-5 

accuracy of the models is the same which reached the accuracy of 100% after 

15 epochs of training. 

 

Figure 4.4. YOLOv8n Training Performance 
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Figure 4.5. YOLOv8s Training Performance 

 

 

Figure 4.6. YOLOv8m Training Performance 
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4.4 Result for ViT and YOLOv8 on Local Hardware Device 

During the second phase of model training, it is crucial to utilize both local GPU 

and CPU resources, as explained in Chapter 3.7 Hardware Overview. This 

hardware configuration allows for accelerated training of ViT and YOLOv8 

models on large datasets in a considerably shorter time. Using a local GPU 

speeds up computational operations, making iterations faster and improving 

model performance. As a result, researchers and practitioners may effectively 

manage larger datasets and quickly make changes to enhance models, ultimately 

resulting in better results for different computer vision applications. The 

incorporation of nearby GPU resources represents a notable progress in deep 

learning techniques, enabling professionals to address intricate problems with 

enhanced efficiency and efficacy.  

 

4.4.1 Training and Testing Performance of ViT and YOLOv8 

Tables 4.1 and 4.2 below provide detailed information on the training and 

testing performance of the ViT and YOLOv8 designs on the local hardware 

infrastructure. The tables present comprehensive data on the duration of training 

and the accuracy of assessment. From the table, ViT-B/16 took 12 hours and 50 

minutes to train on the specific dataset mentioned in Chapter 3.2, which 

consisted of 70 different categories. On the other hand, ViT-B/32 finished its 

training in a significantly shorter period of time, specifically 8 hours and 58 

minutes. Notably, ViT-L/16, despite its improved capabilities, required a longer 

training duration of 36 hours and 18 minutes. This duration indicates the highest 

training time among the many study models assessed. Comprehensive 

performance metrics provide significant information about the computing needs 

and effectiveness of various models. This helps academics and practitioners 

make informed choices about model selection and optimization tactics. 

 The training durations of YOLOv8 models on the custom dataset 

demonstrate their superior efficiency in model completion when compared to 

ViT architectures. YOLOv8 models, on average, exhibited faster training times. 

More precisely, the training for YOLOv8n-cls was completed in 16 hours and 

35 minutes, while YOLOv8m-cls ended shortly after in 17 hours and 10 minutes. 

The YOLOv8s-cls, the most compact version, necessitated a slightly longer 

training period of 17 hours and 30 minutes. The training times highlight the 
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efficiency of YOLOv8 architectures in handling huge datasets well, providing 

competitive performance while minimizing computing burden. 

 By evaluating the training and testing accuracies of various models, 

one can obtain valuable insights into their effectiveness in handling the given 

dataset. Among the ViT designs, ViT-L/16 achieves the best training accuracy, 

reaching 99.7%. Both ViT-B/16 and ViT-B/32 have a 99.0% accuracy rate. 

Despite this, ViT-L/16 continues to hold its dominance with an impressive 

accuracy rate of 93.8% in testing. On the other hand, the YOLOv8 models show 

comparable performance. Among them, YOLOv8s-cls achieves the highest 

testing accuracy of 97.6%, closely followed by YOLOv8m-cls at 97.7%. It 

should be noted that while YOLOv8n-cls and YOLOv8s-cls achieve somewhat 

lower training accuracies compared to ViT-L/16, they also achieve training 

accuracies of 99.7% and 99.6% respectively. This showcases their capacity to 

perceive intricate patterns within the dataset. Overall, whereas ViT-L/16 shows 

outstanding accuracy during the training process, YOLOv8s-cls has higher 

performance on the testing dataset. From the table 4.1, YOLOv8 models achieve 

better accuracy on the testing dataset which they have higher top-1 and top-5 

accuracy than ViT models. 

 

Table 4.1. Model Performance on Testing Dataset 

Algorithm Top-1 

Accuracy 

Top-5 

Accuracy 

ViT-B/16 78.21% 97.6% 

ViT-B/32 81.94% 98.2% 

ViT-L/16 85.5% 99.0% 

YOLOv8n-cls 95.1% 99.7% 

YOLOv8s-cls 95.7% 99.6% 

YOLOv8m-cls 95.8% 99.6% 

 

Table 4.2. Performance of YOLOv8 and ViT on Training and Testing 

Algorithm Train Period Train 

Accuracy 

Test 

Accuracy 

ViT-B/16 12hrs 50mins 99.0% 92.0% 

ViT-B/32 8hrs 58mins 99.0% 91.0% 

ViT-L/16 36hrs 18mins 99.7% 93.8% 

YOLOv8n-cls 16hr 35mins 99.7% 96.0% 
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YOLOv8s-cls 17hrs 30mins 99.6% 97.6% 

YOLOv8m-cls 17hrs 10mins 99.5% 97.7% 

 

 

4.4.2 Real-Time Inference of ViT and YOLOv8 

The performance comparison of the YOLOv8 and ViT models during real-time 

inference after models training is presented in Table 4.3.2.1. After the training 

process, both models can be downloaded and saved locally in the '.pt' file type. 

After the download procedure is finished, the size of each model is shown and 

documented for future reference. The process of real-time inference is simple: 

the CPU retrieves the model by supplying the model directory. Afterwards, 

through OpenCV, the code establishes connectivity with the webcam in order 

to acquire photos. After taking a picture, the code builds a link between the taken 

image and the loaded model. Subsequently, the model carries out predictions on 

the image, and the resultant predictions are exhibited on the screen utilizing 

OpenCV. The process will continue frame by frame with the images captured 

with the webcam until the program is stopped. 

 As shown in Table 4.3.2.1 below, Varied levels of efficacy are 

observed among the models that were examined. Using the CPU, the ViT-B/16 

model obtains 15 FPS inference performance, while GPU support enables 29 

FPS. The model's file size is 333.91MB. In a similar fashion, the ViT-B/32 

variant exhibits a processing speed of 5FPS on the CPU and 27 FPS on the 

GPU despite its 263.31MB smaller model size. The inference performance of 

the ViT-L/16 model is 2 FPS on the CPU and 30 FPS with GPU assistance, 

despite its larger size of 1084.58MB. Moreover, YOLOv8n-cls, YOLOv8s-cls, 

and YOLOv8m-cls are variants of the YOLOv8 model that are incorporated into 

our research. Among the various variations, YOLOv8n-cls possesses the least 

model size which is 3.1MB, while YOLOv8s-cls along with YOLOv8m-cls 

each have a larger size of 10.4MB and 31.9MB, respectively. But the average 

model size of YOLOv8 models still smaller than ViT modes. With combination 

of GPU and a CPU efficiency of 31 FPS, YOLOv8n-cls exhibits exceptional 

inference performance, attaining 30 FPS. Inference rates on the CPU are 

marginally slower for YOLOv8s-cls and YOLOv8m-cls, at 27 FPS and 19 FPS, 
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respectively. These models with the support of GPU still remain competitive 

which obtained inference speed at 29 and 32 FPS. 

 

Table 4.3. Comparison of Model Size and Inference Speed between YOLOv8 

and ViT 

Algorithm Model Size Inference 

Speed 

(CPU) 

Inference 

Speed (GPU) 

ViT-B/16 333.91MB 15 FPS 29 FPS 

ViT-B/32 263.31MB 5 FPS 27 FPS 

ViT-L/16 1084.58MB 2 FPS 30 FPS 

YOLOv8n-cls 3.1MB 31 FPS 30 FPS 

YOLOv8s-cls 10.4MB 27 FPS 29 FPS 

YOLOv8m-cls 31.9MB 19 FPS 32 FPS 

 

The monitor screen exhibits the outcomes captured through the 

webcam feed, as illustrated in Figures 4.3.2.1 and 4.3.2.2. After conducting a 

thorough assessment of multiple YOLOv8 model variants, it has been 

concluded that the YOLOv8m-cls model demonstrates the highest level of 

performance. Because of this, this model was chosen for the purpose of 

inference. Significantly, the anticipated outcomes are conspicuously exhibited 

in the upper-left corner of every figure. The top five most confident predictions 

generated by the YOLOv8 models are displayed with the predicted class 

followed by its confidence in an up-left corner on the display from webcam. 

Notably, the forecasts generated by the model correspond precisely with the 

images that were observed. Both the healthy grape leaf in Figure 4.3.2.1 and the 

healthy blueberry leaf in Figure 4.3.2.2 were accurately classified by the model.  

 

 

Figure 4.7.YOLOv8m-cls Inference 

 

Figure 4.8. YOLOv8m-cls Inference 

 



81 

Among ViT models, ViT-L/16 achieved the best testing accuracy, so it 

is chosen for the inference on the webcam. From the figure 4.3.2.3 and figure 

4.3.2.4 below is the results from the ViT-L/16 on the real time inference. 

However, the model has bad performance on the inference speed with CPU, 

which is only 2FPS and this is impossible for the model to run real time 

inference test and show the result smoothly. Therefore, the inference of this 

model is supported with GPU. From the figures below, the model exhibited 

remarkable prognostic capabilities by precisely distinguishing between a 

healthy blueberry leaf and a leaf affected by apple rot. 

 

 

Figure 4.9.ViT-L/16 inference 

 

Figure 4.10.ViT-L/16 inference 

 

4.5 Limitations and Troubleshooting 

During the research, there are several limitations and the drawbacks that is 

observed throughout the research. To maximize the performance and the results 

of the proposed research, several solutions and enhancements have been 

proposed to solve the drawbacks and problems during the research. Recognizing 

the importance of maximizing the performance of the proposed ML models, I 

devised a comprehensive set of solutions aimed to mitigate the identified 

limitations. These solutions encompassed a spectrum of strategies, including 

algorithms refinements and hardware enhancements. 

From the result that is obtained from this chapter, there are several 

limitations and drawbacks during the development and testing of the models. 

For example, there is always false detection during the real-time inference. False 

detection is when the ML models do the wrong prediction. This seldom happen 
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when the models are used to predict an image, but this is a major problem when 

come to the real time inference on the webcam.  

One of the factors that causing the false detection is lack of training. 

When come to the real time webcam inference, there is too many uncertainties 

that will affect the model performance for example the hardware which will 

affect the quality of the input images and the smoothness of the prediction. For 

ViT models, they have one common weakness which they require larger 

computing resources to run prediction on real-time webcam, which means it is 

almost impossible to be run under CPU without support of GPU. This make 

YOLOv8 models better which it can be run with the CPU with good 

performance. In the other words, ViT has larger demand on the computing 

resource compared to YOLOv8. 

Rather than that, YOLOv8 and ViT models required large training 

dataset to achieve better performance, and the quality of the training dataset and 

also variety of the fed data is also determine factor for the model performance. 

This makes the data collection and sorting process become a very time and 

resources consuming process. Although the process of a ML development is not 

simple, but they still can bring valuable benefits and convenience to human life. 

 

4.6 Summary 

In short, from this chapter results prove that the YLOv8 achieved better 

performance if compared with ViT. YOLOv8 models, specifically YOLOv8m 

has better testing accuracy compared to ViT models, achieving testing accuracy 

of 97.7%. Moreover, YOLOv8m model also exhibit better performance when 

the model is deployed for the real time inference, maintaining its speed even 

when deployed on a CPU. 

 The biggest reason that causing the performance difference between 

the models is model size and the model complexity. From the result, we can 

conclude that the model complexity is directly proportional to the model size. 

Which means that with a larger model size, the model structure is more complex. 

This will affect the calculation time during the real time prediction which will 

cause lagging and low FPS during the inference. Besides that, the complexity 

of the high complexity of model will cause the model to be more sensitivity to 

the hyperparameter setup and also quality of the training source. This is because 
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the complex models often have larger number of hyperparameters and slightly 

changes and modify may cause different outcome. Thus, this may be the reason 

of the performance of ViT models is slightly lesser than YOLOv8. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this study, the objectives have been achieved. The comparison between 

YOLOv8 models with ViT models is ended with YOLOv8m-cls achieved the 

best performance among all of the selected models. All of the developed models 

are able to complete the task of plant disease recognition but different 

performance. Lastly, the YOLOv8 models all can run smoothly for the real-time 

inference with the webcam on CPU which achieved the objective of the project. 

 The results from the Chapter 4 proved that YOLOv8 models and ViT 

models has similar training performance which is around 99% which their 

accuracy difference can be neglected. This proves the high potential of the ML 

models in learning process and can learning the information from image data 

clearly. Rather than that, the models also achieved high testing accuracy which 

is above 90%. This proved that the chose model is well-trained and has the 

ability to make the predictions on the testing dataset accurately. Among the 

models, YOLOv8m-cls achieved the highest testing accuracy. In the second part 

of the evaluation, YOLOv8m-cls showed its lightweight characteristics and can 

be run real-time inference with webcam smoothly with satisfying performance 

under CPU if compared to other models. 

 Although YOLOv8 models shows its superior in the proposed task with 

limited computing and graphic resource, but the performance of ViT still 

showing the model has great potential in image classification and recognition. 

ViT is a transformer-based model and is modified from the NLP task ML model 

which make it more complex than most of the CNN models include YOLOv8. 

Therefore, ViT model often required more computing power to support the 

prediction which can be clearly proved as the ViT can run smoothly with the 

support of GPU with 28FPS and can has similar performance with YOLOv8 in 

real-time inference. 

 In conclusion, this study demonstrates that YOLOv8 models exhibit 

superior performance compared to alternative models in terms of precision, 
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learning velocity, and instantaneous deduction, specifically under conditions of 

limited computational resources. Despite exhibiting promise, ViT models 

require substantial computational resources and meticulously structured 

datasets to attain comparable performance. By capitalising on hardware 

advancements and increasing data accessibility, ViT models may potentially 

enhance their competitiveness. At present, YOLOv8 models represent the most 

optimal choice for real-world applications requiring efficient and rapid image 

classification. 

 

5.2 Recommendations for future work 

Application of ML and AI into the agricultural is still long to go, but from this 

project, we can see the progress of the implementation of AI into human’s life. 

Nevertheless, there are several recommendations for the future work and 

improvement. Firstly, from the research, the most important factors throughout 

the development are the quality of training dataset. For ML model, training 

dataset is their learning material, therefore it is important to improve the quality 

and also quantity of dataset. For example, the future work for this project is to 

include wider variety of plant leaf images under different environment to help 

increase the diversity of the images for the models to have better learning and 

focus on leaf and other important criteria in the image. 

 Besides that, to improve the performance of ViT on CPU which to 

make the model runs smoothly under CPU, the proposed future modification is 

trying to build the model from scratch. In this project, the model taken for both 

ViT and YOLOv8 is pretrained with ImageNet, therefore the model will be more 

complex and heavier. Therefore, to help improve the prediction speed during 

the real-time inference, one of the methods is building the model from scratch 

and let it learns on the prepared dataset to reduce the unusable parameters inside 

the models. 

 Lastly, during the real-time inference the results shows lots of false 

detection and this situation is very resource inefficient. The recommendations 

on this is to try apply more filter on the system to filter the useless information 

from environment and try to fix the webcam on a more stable fixture so that the 

information that fed to the model during the real-time inference. 
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