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ABSTRACT 

 

In the past decade, You Only Look Once (YOLO) series has become the most 

prevalent framework for object detection owing to its superiority in terms of 

accuracy and speed. However, with the advent of transformer-based architecture, 

there has been a paradigm shift in developing real-time detector models. This 

thesis aims to investigate the performance of YOLOv8 and Real-Time 

DEtection TRansformer (RT-DETR) variants in the context of urban zone aerial 

object detection tasks. Specifically, a total of five models namely YOLOv8n, 

YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50 are trained using an 

expensive graphics processing unit (GPU) and subsequently executed on a 

central processing unit (CPU), which is more relevant for power-hungry drone 

applications. Experiment results reveal that RT-DETR-r50 stands out with the 

highest mean average precision 50-95 (mAP 50-95) of 0.598, whereas 

YOLOv8n achieves the fastest inference speed of 30.4 frames per second (FPS). 

Such benefits come at the expense of slow speed (1.7 FPS) and poor accuracy 

(mAP 50-95 of 0.440), respectively. In this sense, YOLOv8s emerges as the 

most promising model due to its ability in striving the best tradeoff between 

accuracy (mAP 50-95 of 0.529) and speed (11.4 FPS).
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In the past few years, with the advancement of technology, computer vision has 

become more and more important. It can be used in many fields, such as 

transportation, communication, medicine etc. One of the elements is object 

detection, which is the identification and localization of objects of interest in 

images or video streams. Traditionally, the traditional object detection approach 

is using machine learning to detect objects. However, it needs a human to 

intervene and gives less accuracy. Then, deep learning is coming. Deep learning 

requires more data to train but has a lot of improvement in accuracy compared 

to machine learning. One of the famous examples is convolutional neural 

networks (CNN). It relies on its own strength, demonstrating impressive results 

in various applications and becoming the main approach of object detection now. 

In particular, the CNN-based YOLO (You Only Look Once) appearance 

subverts the previous object detection models. It has a faster detection speed and 

higher accuracy, so it has been applied to many object detection fields, 

implemented in many real-time object detection applications and occupied for 

a long time (Jason, et al., 2022).   

Nowadays, the drone's technology has also significantly advanced. 

They are no longer just capable of flying, now most of the drones have their 

own camera so that they can also capture photos and videos. Due to this 

capability, they can effectively manage a city, especially in terms of traffic 

management, urban planning and law enforcement. Therefore, aerial detection 

of objects on land is becoming increasingly important.  

In order to detect objects, there are many powerful object detection 

models now, such as YOLO and DETR (Detection Transformer). They both 

have high accuracy object detection performance and have thus attracted great 

attention. Among all the YOLO models, YOLOv8 represents the latest 

advancement in the YOLO series, known for its good real-time object detection 

performance with a high accuracy result. Because of its advanced architecture 

and algorithms, accurate and efficient object detection makes it widely used in 
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industries like robotics, video surveillance, and autonomous driving. Hence, this 

makes it positioned nearly at the pinnacle of real-time object detection models. 

Conversely, DETR, a new member to the object detection landscape, 

was introduced in a paper “End-to-End Object Detection with Transformers” in 

2020 (Carison, et al., 2020). The emergence of DETR has surprised researchers 

in the field of computer vision and given a new way for implementing object 

detection applications. Unlike traditional CNN object detection methods that 

use anchor generation or non -maximum suppressors, DETR uses a fully 

attention-based mechanism to predict object instances directly from the input 

image (Carison, et al., 2020). Originally, Transformer was only used for natural 

language processing tasks, but it was later found that it could be used for object 

detection, and it seems to have excellent potential behind them.  

However, DETR lacks the speed required for real-time inference even 

with its innovative approach. To overcome this limitation, Baidu introduced a 

new DETR model, RT-DETR (Real-Time Detection Transformer), by a paper 

“DETRs Beat YOLOs on Real-time Object Detection” in 2023. It is designed 

for the implementation of real-time end-to-end object detection based on the 

architecture of Transformer. In order to do so, it uses an IoU-aware query and 

an efficient hybrid encoder mechanism to support its real-time object detection 

performance. The paper shows the supremacy of RT-DETR, by comparing RT-

DETR against real-time end-to-end object detectors like YOLO, PPYOLOE, 

and Efficient-DETR. Based on the paper, RT-DETR-L achieves an average 

precision (AP) of 53.0% and operates at 114 frames per second (FPS), while 

RT-DETR-X attains 54.8% AP and 74 FPS, showing a better performance than 

YOLO. 

Hence, in this study, RT-DETR is utilized for comparison with YOLO 

in object detection tasks using the Urban Zone Aerial Object Detection Dataset 

(UZAODD). In this dataset, there are four primary classes of objects, which are 

persons, small vehicles, medium vehicles, and large vehicles. All these classes 

commonly appeared in urban zones. By evaluating the performance of RT-

DETR and YOLOv8 on this standard dataset, their strengths and limitations can 

be identified so that the best object detection method can be determined.  
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1.2 Importance of the Study 

Object detection can be said as a cornerstone of computer vision applications. It 

can be used in many applications, such as facial recognition, industrial quality 

checking, people counting etc. Thus, as the domain of computer vision 

progresses, it is very important to understand the current limitations of object 

detection approaches, such as the YOLOv8 model which is based on the CNN 

architecture.  

Nowadays, many applications need a more accurate and faster response 

object detection model, efficient and accurate object detection is a needed for 

enabling machines to interact intelligently with their environment and make 

informed decisions. If a more efficient and accurate object detection model is 

found, it will be a huge improvement in many sectors, such as transportation, 

communication, and medicine, when object detection is applied to those sectors. 

Thus, it is very important to investigate and improve current object detection 

technology. Currently, the mature object detection technology is the CNN-based 

YOLOv8 model (Hussain, 2023). It is fast in the response speed and accurate in 

the result of object detection. A new object detection approach, DETR, has been 

introduced, which is based on the Transformer architecture. It is different from 

the traditional CNN object detection approach (Carison, et al., 2020). Now, the 

newest of the Transformer-based architecture object detection models is RT-

DETR (Lv, et al., 2023). Hence, a comparative analysis study has been carried 

out between the traditional CNN approach object detection model, YOLOv8 

model and the Transformer-based architecture object detection model, RT-

DETR. Besides the limitations, it is also important to know the difference 

between new object detection technology and mature object detection 

technology, so that the object detection technology can be improved. 

 

1.3 Problem Statement 

Object detection is getting important in these few years. However, current object 

detection technology is still not perfect, even using the mature object detection 

technology such as the YOLOv8 model. Although the YOLOv8 model has 

demonstrated considerable success in object detection, it is not without 

limitations.  
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Nowadays, object detection is facing some challenges such as accuracy, 

speed, and complexity. Although the CNN-based models like YOLOv8 are the 

popular model for doing real-time object detection, they are still not perfect in 

accuracy and inference speed. Moreover, CNN-based models also heavily rely 

on anchor boxes and complex post-processing steps, which can be cumbersome 

and less intuitive. Additionally, the architecture of CNN is complex and makes 

it challenging to scale it effectively to different sizes of datasets. 

Currently, a new object detection technology, the RT-DETR model 

based on Transformer architecture, may beat the YOLOv8 model in object 

detection in the form of accuracy and speed. Thus, a study is carried out to 

investigate the difference between both models in object detection. 

 

1.4 Aim and Objectives 

This study aims to implement two object detection models, the YOLOv8 model 

based on CNN architecture and the RT-DETR model based on Transformer 

architecture. This project is focused on analyzing the results between them in 

real-time object detection performance, whether the Transformer-based 

architectures with their self-attention mechanisms can overcome the current 

object detection’s limitations and offer superior performance in object detection 

tasks. The objectives of the study are as follows: 

(i) To study Transformer-based architectures, including both the 

encoder and decoder components. 

(ii) To implement an end-to-end object detection model using 

Transformer architecture. 

(iii) To evaluate and compare the performance of Transformer-

based object detection models with traditional CNN-based 

approach models on a standard dataset. 

 

All the objectives in this study were achieved successfully. The 

Transformer architecture, including both the encoder and decoder components, 

were well known before implementing the object detection models. The RT-

DETR models based on Transformer architecture, and the YOLOv8 model 

based on CNN architecture, were implemented successfully on a Urban Zone 
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Aerial Object Detection Dataset. Lastly, a comparative analysis of RT-DETR 

and YOLOv8 was successfully conducted which compared their performance. 

 

1.5 Scope of the Study 

This project covers the implementation of object detection model by using RT-

DETR based on Transformer architecture and YOLOv8 based on CNN 

architecture. First, this study discusses the details of current object detection 

situation. YOLO is the most mature and popular model for real-time object 

detection now. Then, a new object detection model, RT-DETR was released 

which is based on Transformer architecture. Then, the details of Transformer is 

discussed including the encoder and decoder. The details of DETR and RT-

DETR are also covered in the literature review. Beside the Transformer, this 

study also covers the overview of CNN, YOLO, ResNet, etc.  

 There are variant weights of RT-DETR models have been released, 

RT-DETR-r18 and RT-DETR-r50 are choosing as the training models. On the 

YOLO side, YOLOv8n, YOLOv8s, and YOLOv8m are selecting as the 

compared models as they are the lightest weight models. The dataset is an Urban 

Zone Aerial Object Detection Dataset which is downloaded from Kaggle 

(Sganderla, 2021). After all the models done training, some evaluation metrics 

are used to evaluate the models’ performance such as FPS, mAP, and recall rate.  

 

1.6 Limitation of the Study 

There are some limitations to this study. First, the limitation of GPU memory. 

The GPU of the training platform has only 10GB. It is not sufficient to train 

high batch-size training in heavier models like YOLOv8m. This means the batch 

size of training YOLOv8m cannot be consistent with YOLOv8n and YOLOv8s. 

Therefore, the training rate cannot be the optimum unless a huge memory of 

GPU is provided for training.  

Besides that, the RT-DETR and YOLOv8 models may not be the 

newest Transformer-based architectures and CNN-based architecture object 

detection models as they are evolving rapidly in deep learning research. 

Furthermore, the evaluation might be limited due to time and resource 

constraints. The training datasets may not be good enough to train the models. 
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Hence, a further exploration of various model configurations is left for future 

research. 

 

1.7 Contribution of the Study 

The main contribution of this project is the development of two Urban Zone 

Aerial Object Detection models that are able to detect person, small vehicle, 

medium vehicle, and large vehicle in an urban zone. One of the models is trained 

by using RT-DETR and another one is trained by using YOLOv8. Another 

contribution lies in the comparative analysis of the Transformer-based RT-

DETR model and the traditional CNN-based YOLOv8 model for end-to-end 

object detection. Through the evaluation of performance metrics and a detailed 

discussion on the strengths and weaknesses inherent in each approach, a 

thorough comparison of the RT-DETR and YOLOv8 models becomes feasible. 

This facilitates the determination of which model excels in Urban Zone Aerial 

Object Detection. 

 

1.8 Outline of the Report 

The report first covers the introduction of the report, which includes the problem 

statement, aim and objectives, contribution, limitation, and scope of study. In 

Chapter 2, a literature review of a particular topic which discusses the details of 

current object detection, CNN, YOLOv8, Transformer, DETR and the RT-

DETR. Then, in chapter 3, the methodology and approach of the study are 

reviewed. In this chapter, the method of implementation of the models, the 

parameters details of the models, details of the training datasets and the work 

plan are introduced in detail. The next chapter is followed by results and 

discussion. It discusses the evaluation results and analyzes the performance 

between the models. Lastly, the conclusion and recommendations of the study 

are discussed in the last chapter. In this chapter, the summary of the whole study 

and recommendations for future work are sorted out. The references are listed 

after the chapter.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Nowadays, object detection has become more important in computer vision. 

This is because more and more people see that it has achieved many applications, 

such as object tracking, image captioning, instance segmentation, and many 

others. Now, pedestrian, animal, vehicle, and face detection are popular projects 

in the object detection field. Besides that, object detection is the main mission 

in computer vision, which requires locating and identifying objects in videos or 

images. Its main goal is not just object recognition, but also the precise object's 

location via the bounding boxes. Therefore, object detection is significantly 

more challenging than image classification, in addition to accurately classifying 

the object but also simultaneously predicting its location on the image (Arkin, 

et al., 2022). 

Currently, deep learning has changed the object detection past primary 

models and algorithms, bringing the computer vision to a new era. Among the 

contemporary state-of-the-art models, prominent deep learning architectures 

have surfaced, yielding remarkable outcomes in object detection endeavors. For 

example, YOLO (You Only Look Once), SSD (Single Shot Detector), and R-

CNN (Region-based Convolutional Neural Networks). These models are 

becoming more popular because of their effectiveness in detecting objects 

(Jason, et al., 2022). 

Before entering the era of deep learning, object detection basically 

relied on handcrafted features and traditional machine learning techniques. The 

integration of deep learning algorithms, like CNN, has transformed the field of 

object detection. One- and two-stage object detection algorithms, exemplified 

by models like YOLO, SSD, and R-CNN have become standard approaches in 

the field now (Jason, et al., 2022). 

Before, almost all object detection algorithms used CNN as their 

backbone until the paper for Transformers was published. Transformer in AI is 

a deep learning architecture. It has first prominence in the natural language 

processing (NLP) field, getting some good achievements in the NLP field, such 
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as the introduction of ChatGPT. Recently, Transformer-based object detection 

methods have shown some good potential, indicating that they may replace 

traditional CNN object detection methods (Arkin, et al., 2022). For example, the 

paper 'End-to-End Object Detection with Transformers' introduces a new target 

detection model, DETR, based on the Transformer architecture. The key idea 

behind DETR is to approach object detection as a direct ensemble prediction 

problem, where the model predicts bounding boxes and their corresponding 

object classes simultaneously in an end-to-end manner (Carison, et al., 2020). 

Now, many new DETR object detection models are developed, like RT-DETR, 

Efficient DETR, Deformable DETR, etc. 

 

2.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN), is one of the deep learning algorithms. 

It is found that it was excellently tailored for tasks in recognition and image 

processing. Thus, it is used in many sectors about image analysis, such as facial 

recognition, image classification and object detection (Alzibaidi, et al., 2023). 

CNN consist of several layers, which are fully connected layers, pooling layers, 

and convolutional layers. All these layers are used to help in the extraction of 

image features, empower CNN to recognize objects or characteristics within 

images without being reliant on their specific positions, thereby effectively 

diminishing the intricacy of the network (Patel and Patel, 2020). 

The core concept of CNN lies in convolution and filter utilization. 

Convolutional layer filters are applied to the input images, then these filters will 

move across the images to generate feature maps that capture specific attributes 

of the images. All these filters worked together simultaneously to detect diverse 

visual features in order to get the complete attributes' information of the input 

images. Besides that, pooling techniques are used to decrease the dimensions of 

feature maps but retain the critical features of the input images. Not only that, 

some pooling like average and max pooling are also used to achieve spatial 

down-sampling, improving computational efficiency and avoid the over-fitting 

problem. Furthermore, activation functions introduce non-linearity into the 

system, it allows the CNN to handle some complex feature connections. Popular 

activation functions like tanh, sigmoid, and ReLU have different benefits, 
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limitations, and characteristics, affecting the network's learning process (Zhao, 

et al., 2019). 

Over the years, CNN architecture has been improved a lot. Prominent 

models such as LeNet-5, AlexNet, VGGNet, and ResNet, as well as variations 

like MobileNet, DenseNet, and InceptionNet have played significant roles in the 

field of computer vision (Zhao, et al., 2019). All these architectures are designed 

to solve specific problems of computer vision tasks. Additionally, CNN has also 

found that it can be used in many applications besides image classification. They 

do well in object detection tasks, where they can classify and give the precise 

location of the objects in an image. Besides that, semantic segmentation allows 

CNN to assign class labels to each pixel, facilitating detailed scene analysis 

(Galvez, et al., 2018). 

As a short summary, CNN is very important to the world now as it is 

applied to many applications. These include healthcare, agriculture, retail, 

security, entertainment etc.  

 

2.3 Overview of Faster R-CNN 

Faster R-CNN is a object detection model that improved from its predecessor, 

RCNN (Region-based Convolutional Neural Network). Proposed by Shaoqing 

Ren, and his team in 2015, Faster R-CNN aims to achieve real-time object 

detection performance while maintaining high accuracy. 

Faster R-CNN's primary breakthrough centers on the incorporation of 

the Region Proposal Network (RPN) directly into the object detection 

framework. Unlike RCNN which relied on external region proposal methods 

like selective search, Faster R-CNN seamlessly generates region proposals as 

part of the network, eliminating the need for time-consuming external processes 

(Ren, He, Girshick and Sun, 2016). 

The Faster R-CNN architecture comprises two primary modules: the 

Region of Interest (RoI) Pooling and the Region Proposal Network (RPN). The 

RPN is a streamlined neural network that utilizes an identical backbone as the 

object detection network, such as ResNet. It operates on the feature maps 

extracted from this backbone and adeptly produces region proposals, which 

denote potential bounding boxes expected to encompass objects of interest. 

These proposals are generated based on anchor boxes, predefined bounding box 
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shapes with different aspect ratios and scales. The RPN predicts the offset and 

size adjustments for each anchor box to generate the final region proposals (Ren, 

He, Girshick and Sun, 2016). 

Once the region proposals are generated by the RPN, they are passed 

through RoI pooling, a process that extracts fixed-size feature representations 

from the proposed regions. These RoI features are then fed into fully connected 

layers for object bounding box and regression classification. The classification 

head uses softmax to predict the probability of each proposal belonging to 

specific object classes, while the bounding box regression head refines the 

locations of the proposals to improve localization accuracy (Ren, He, Girshick 

and Sun, 2016). 

Faster R-CNN's end-to-end training allows the network to learn region 

proposals specific to the task, which enhances its accuracy and efficiency. By 

seamlessly integrating the region, proposal steps into the network. As a result, 

Faster R-CNN attains real-time object detection capabilities without 

compromising its high level of accuracy (Ren, He, Girshick and Sun, 2016). 

 

2.4 Overview of YOLO 

“You Only Look Once” (YOLO) is a popular object detection model in the 

computer vision field. It was first introduced by Joseph Redmon and his team 

with the paper "You Only Look Once: Unified, Real-Time Object Detection" in 

2015 (Redmon, et al., 2016). Currently, YOLO models can be said as the most 

popular object detection models as it is light weight but high accuracy in 

performance. One of its key advantages is that its object detection speed is fast, 

making it accessible for predicting the objects in real-time (Gašparović, et al., 

2023). 

First, YOLO will divides the image into a grid of NxN cells.  In the 

each grid, the YOLO will calculate the class probabilities and bounding box 

parameters which include x, y coordinates, width and height. Finally, the class 

prediction and the confidence score for the bounding box are amalgamated to 

generate a conclusive score, signifying the likelihood that the bounding box 

encompasses a specific object category (Redmon, et al., 2016). 

 



 11 

2.4.1 YOLOv5 

YOLOv5 was the most famous version of YOLO until 2023. It was introduced 

in 2020, and represents the fifth generation of the YOLO series, which has been 

refined and improved to achieve good accuracy in real-time object detection 

tasks. Because of its highly efficient and good performance, it quickly gained 

popularity in the computer vision and deep learning communities due to its 

exceptional speed and accuracy (Jocher, et al., 2022). 

There are 3 main components in the YOLOv5 architecture, which are 

backbone, neck, and a head. The backbone of YOLOv5 is CSP-Darknet53. This 

backbone is essentially the convolutional network Darknet53 applied with a 

Cross Stage Partial (CSP) network strategy.  The next component is the Neck, 

which includes Spatial Pyramid Pooling (SPP) and Path Aggregation Network 

(PANet). In YOLOv5, a variant of Spatial Pyramid Pooling is used called SPPF, 

and the Path Aggregation Network is modified to incorporate the CSPNet 

strategy. Finally, the head component of YOLOv5 is responsible for the 

concluding operations. It deploys anchor boxes on the feature maps and 

generates the ultimate output, encompassing class predictions, bounding boxes, 

and objectness scores. (Xu et al., 2021). 

There are 5 models on the YOLOv5 with different sizes, which are n, 

s, m, l, and x, followed by increase of parameters. Although the parameters are 

different in each model, all the components remain the same in these 5 models. 

Also, YOLOv5 makes use of the SiLU and Sigmoid activation functions, and 

applies loss functions like Binary Cross Entropy (BCE) and Complete 

Intersection over Union (CIoU) to compute different aspects of the model’s 

outputs (Al-Smadi et al., 2023). 
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Figure 2.1: Network Architecture of YOLOv5 (Xu, et al., 2021) 

 

2.4.2 YOLOv8 

YOLOv8, is an evolution of the YOLO object detection model, epitomizes a 

cutting-edge CNN-based architecture for object detection. Although it does not 

have an official paper, it is the latest iteration and integrates advancements in 

architecture design and training techniques in order to achieve improved 

accuracy and speed compared to its predecessors. YOLOv8 uses a modified 

Darknet architecture as its backbone, and a few enhancements such as feature 

pyramid networks (FPNs) and advanced data augmentation. 

Developed by Jocher et al., YOLOv8 builds upon the foundation of the 

YOLOv5 architecture with a series of enhancements and extensions introduced 

by Ultralytics. These improvements mainly focus on the model scaling and 

architecture adjustments detailed in the code and documentation are available 

in the Ultralytics YOLOv8 repository. Furthermore, YOLOv8 also has several 

improvements to other YOLO, such as enhanced feature representation, better 

handling of small objects, and increased training efficiency. This makes the 

YOLOv8 become the famous choice when choosing a real-time object detection 

model. 
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There are two main components in the YOLOv8 architecture, which 

are a backbone and a head. The backbone of YOLOv8 is the C2f module, 

inspired by the ELAN module. Besides that, a variant of Spatial Pyramid 

Pooling is used in the backbone called SPPF. It is used to extract informative 

features from images at varying scales. Finally, the head component of 

YOLOv8 is responsible for the concluding operations. It deploys anchor boxes 

on the feature maps and generates the ultimate output, encompassing class 

predictions, bounding boxes, and objectness scores.  

There are 5 models in the YOLOv8 with different sizes, which are n, s, 

m, l, and x, followed by an increase in parameters. Although the parameters are 

different in each model, all the components remain the same in those 5 models. 

Below shows the parameters of each YOLOv8 model: 

 

Table 2.1: YOLOv8 Models Information 

Model FLOPs (B) Params (M) 
mAPval (50-95) on COCO 

val2017 

YOLOv8n 8.7 3.2 37.3 

YOLOv8s 28.6 11.2 44.9 

YOLOv8m 78.9 25.9 50.2 

YOLOv8s 28.6 11.2 52.9 

YOLOv8m 78.9 25.9 53.9 
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Figure 2.2: Basic Architecture of YOLOv8 (Agarwal, et al., 2023) 

 

2.5 Overview of Transformer  

In 2023, the Transformer could be said to be very popular. Maybe some people 

haven't heard of it, but everyone definitely knows about ChatGPT. In fact, the 

full name of ChatGPT is called Chat Generative Pre-trained Transformer, which 

is the AI tool that runs on a Transformer architecture (Liu, et al., 2023).  

Transformer is a machine learning model architecture that was first 

introduced in the paper ‘Attention Is All You Need’ by Vaswani and his partners 
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in 2017. There are two main components in the Transformer, which are encoder 

and decoder. Unlike RNNs, the Transformer’s encoder and decoder use the 

attention system to process the whole input at once and just focus on the interest 

parts of the input. This makes the training time of Transformer reduced much 

more than the RNNs (Vaswani, et al. 2023).  

  

2.5.1 Self-Attention Mechanism in Transformer 

Attention can be said as a key to the Transformer. Without it, the Transformer 

would not be formed today. Attention layers are located in the encoder and 

decoder parts. Before reaching the attention layer, the input text is first labeled 

with a representative embedding. From each embedding, the encoder uses the 

attention to generate a representative encoding, while the decoder does the 

opposite, outputting the text (Vaswani, et al. 2023). 

There are four stages in the attention system. In the first stage, the 

embedded words in the sentence act as input and pass through the attention layer. 

Then, it will produce 3 output vectors for each word, which are Queries, Keys, 

and Values. Thus, there are N Queries, Keys, and Values for N words in the 

sentence (Unzueta, 2022). Next, the attention layer calculates the score of each 

word in the second stage. In order to calculate the score of all other words related 

to each word, the query vector of the word needs to be multiplied by the key 

vector to get the dot product. Then, the dot product is divided for the scaling 

purpose(Vaswani, et al., 2023).  

In the third stage, the dot product is applied a softmax function to make 

their value between 0 and 1. After applying the softmax function, Transformer 

focused on higher score embedding instead of lower score. Finally, the Value 

vectors are multiplied by them to get the attention vector of each word. Because 

of the softmax function, the higher scores are still higher, and the model is more 

interested in them as the model defines them as more important words. Equation 

(2.1) is as follows: 
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where  

Q = Query vector 

K = Key vector 

V = Value vector 

dk = dimension of key vector 

 

Note that each result vector depends only on the query for that word, 

and also on the keys and values of all words in the sentence. This is why 

attention is powerful in sequential tasks (Vaswani, et al., 2023).  

 Furthermore, the attention system above is just a single-head attention, 

there is a multi-head attention layer in the Transformer. The multi-head attention 

splits more Value, Key, and  Query vectors into six groups. Subsequently, these 

six groups undergo identical self-attention procedures, with each procedure 

referred to as a "head." Each head generates its own attention vector, which is 

later combined into a unified vector before passing through a concluding linear 

layer (Vaswani, et al., 2023). 

    

2.5.2 Pipeline of Transformer 

There are two main components in Transformer, an encoder and a decoder. In 

the encoder, the model takes the sentence and vectorizes it, and then transforms 

it using the attention mechanism. Besides that, the decoder does the opposite by 

converting vectors to sentences. Here is the Transformer’s architecture: 
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Figure 2.3: Architecture of Transformer (Vaswani, et al., 2023) 

 

At the beginning, the input which is the sentence is sent to the input 

embedding to transform the input word into an input embedding.  Since the 

Transformer lacks inherent sequential order like RNNs, the concept of 

positional encoding is introduced to impart information regarding the specific 

position of each word within the input sequence. It allows model to understand 

the order of the input data (Gering, et al., 2017). Hence, the Transformer injects 

a positional encoding into the word embeddings to determine the position of 

each word in the sentences (Vaswani, et al., 2023). 
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Then, the input embedding is sent to the multi-head attention in the 

encoder. With this attention, the encoder employs attention to associate each 

word with all other words and compute a score for each of them. After multi-

head attention, an attention vector is generated and combined with the original 

input. This step is referred to as a residual connection. The output of it is then 

subject to layer normalization, and the output is directed into a point-wise feed-

forward network for additional refinement. This network has two linear layers 

separated by a ReLU activation function. Next, the input of the point-wise feed-

forward network was also added to its output and further normalized. Residual 

connections help the gradients to move directly through the network, thus aiding 

network training. Layer normalization is used to stabilize the network, thus 

consistently yielding the necessary training time, and the attention output is 

further processed using a point-wise feed-forward network, potentially giving it 

a richer representation (Vaswani, et al., 2023). 

 After the encoder, the output embedding of the encoder, which is 

attention embedding, is sent to the decoder. However, it is sent to the second 

stage attention layer instead of the first stage. In the decoder, there are point-

wise feed-forward network, three layer normalization, and two multi-head 

attention layers that integrates residual connection after each sub layer.  These 

sub-layers exhibit behavior similar to those found in encoders, except for the 

multi-head attention layers, which diverge in function. Since the decoder is 

autoregressive, it takes its previous outputs as inputs, and also the attention 

embedding from the encoder (Vaswani, et al., 2023).  

 At the onset of the decoder phase, an input undergoes processing 

through both an embedding layer and a positional encoding layer to acquire 

positional embeddings. These embeddings are subsequently directed into the 

initial multi-head attention layer, which calculates attention scores for the input 

provided to the decoder. This multi-head attention layer operates with a slight 

variation compared to its counterpart in the encoder. Here, a masking technique 

is applied to prevent the decoder from accessing information about future tokens. 

In this masking process, a matrix serves as a mask, aligning in size with the 

attention scores and filled with values of 0 and negative infinity. When the 

attention scores are combined with this mask, all the future tokens are assigned 

negative infinity values. Thus, after the softmax function, all the negative 
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infinities become zero, the decoder will ignore the future tokens as their scores 

are zero (Vaswani, et al., 2023).   

 In the second stage, the multi-head attention layer, the attention 

embedding from the encoder is passed to here, but just the Query vectors and 

Key vectors. The remaining Value vectors come from the first multi-head 

attention layer. This second stage multi-head attention layer is used to decide 

which encoder input is needed to put focus on. After that, the output embedding 

from this attention layer is sent to the point-wise feed-forward network 

(Vaswani, et al., 2023).  

 Finally, the output of the final feed-forward layer is passed to a final 

linear layer for classification purpose. The output of linear layers goes through 

a softmax function to get a probability score between 0 and 1.  This output of 

the softmax function is sent back to the beginning of the decoder and acts as the 

input of the decoder until an ‘End’ token is predicted (Vaswani, et al., 2023).   

 

2.6 Residual Network (ResNet) 

Nowadays, the Residual Network is getting popular, such as the ResNet-50 

model. ResNet is a type of neural network that was developed by Kaiming He 

and his team at Microsoft Research in 2015. ResNet was introduced to tackle a 

critical issue that had been plaguing the training of very deep neural networks: 

the vanishing gradient problem. 

Deep neural networks consist of multiple layers of neurons, and they 

are exceptionally effective at learning hierarchical representations of data. 

However, as networks get deeper, they become more challenging to train. One 

major issue that arises in deep networks is the vanishing gradient problem. 

During training, the gradients which are derivatives of the loss with respect to 

the network parameters are computed and used to update the model's weights. 

In deep networks, these gradients can become tiny as they are propagated 

backward through the layers. This leads to slow convergence, and in some cases, 

training can stall completely (He, et al. 2016). 

Then, ResNet introduced the concept of residual blocks.  Instead of 

endeavoring to directly learn the desired underlying mapping, residual networks 

learn residual mappings. These residual mappings denote the disparity between 

the sought-after output and the current prediction. By learning these residuals, 
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ResNet aims to make it easier for the network to represent identity mappings 

where the input matches the output. A residual block consists of two main paths: 

the shortcut path and the identity path which is also known as the skip 

connection. Let's break down how a residual block works (He, et al. 2016). 

A typical convolutional layer followed by two Rectified Linear Unit 

(ReLU) activation functions and two batch normalization layers. Instead of 

directly passing the output of this convolutional layer to the next layer, ResNet 

introduces a "skip connection" or "shortcut." This connection directly adds the 

input of the block to the output. Mathematically, it can be represented as: 

 

xxHxF −= )()(

                                         
(2.2) 

 

where  

F(x) = output of residual block 

H(x) = output of the convolutional layers 

x = input to the block.  

 

This architecture allows gradients to flow freely during back 

propagation because, in the worst case, if the convolutional layers fail to learn 

anything useful, the skip connection will pass the identity mapping through, 

ensuring that the gradient doesn't vanish (He, et al. 2016). 

Besides that, ResNet architectures come at different depths, typically 

labeled with numbers like ResNet-18, ResNet-34, ResNet-50, etc. For instance, 

ResNet-18 has 18 layers, while ResNet-50 has 50 layers. The key difference 

between ResNet-50 and ResNet-101 is the network's depth and complexity. 

ResNet-101 has a deeper architecture with more layers and more parameters. 

Although the increased depth can capture more complex features, the demands 

on computing resources and data also increase. While ResNet-50 is already 

known for its exceptional performance and computational efficiency, ResNet-

101 is typically reserved for scenarios where very high accuracy is required, and 

there is access to sufficient datasets and computational resources. In practical, 

ResNet-50 is a more popular choice due to its balance between performance and 

efficiency (He, et al. 2016).  

 



 21 

 
Figure 2.4: Architecture of ImageNet (He, et al. 2016) 

 

2.7 Detection Transformers (DETR) 

DETR stands for "DEtection TRansformer," and it is an end to end object 

detection model based on the Transformer architecture which was introduced in 

the paper "End-to-End Object Detection with Transformers" by Nicolas Carison, 

et al., published in 2020. 

The key idea behind DETR is to approach object detection as a direct 

set prediction problem, where the model predicts the bounding boxes and their 

corresponding object classes simultaneously in an end-to-end manner. Unlike 

traditional object detection methods that use anchor generation or non-

maximum suppressors, DETR uses a fully attention-based mechanism to predict 

object instances directly from the input image (Carison, et al., 2020). 

 

2.7.1 Pipeline of DETR 

Three main components are in the DETR architecture, which are a simple Feed-

forward Network (FFN), Transformer’s Encoder-Decoder, and the 

Convolutional Neural Network (CNN) backbone  (Carison, et al., 2020).  

 

 
Figure 2.5: Architecture of DETR (Carison, et al., 2020) 
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 At the beginning, the pictures are sent to CNN for feature extraction, 

like ResNet-50. Typically, the CNN has five max-pooling layers so that it will 

produce a 2048 x W/32 x H/32 tensor where H and W are the height and width 

of the picture respectively (Carison, et al., 2020). However, the Transformer 

encoders can only process 1D input data instead of 3D input data. So, the feature 

map tensor needs to pass through a 1x1 convolution to become a 2D feature map 

and then collapse the spatial dimension into a single dimension (Carison, et al., 

2020). Thus, the 2D feature map can be transformed into a 1D input data, which 

is a sequence of tokens that is suitable for Transformer encoders.   

 Then, since the Transformer encoder cannot recognize the sequence of 

the tokens, position encoding is added to the flattened feature map tokens before 

entering the encoder. The encoder in DETR is not so different to the original 

Transformer Encoder. However, there is a slight difference in the decoder part. 

In the DETR Decoder, it does not need to do autoregressive like the original 

Transformer’s Decoder. Instead, it just decodes the N objects, which are 

normally 100, by using parallel decoding at each decoder layer (Carison, et al., 

2020).  

 In order to produce the output embeddings from the DETR Decoder, a 

fixed number of trainable inputs, which is normally 100 in DETR, are used for 

the decoder. The trainable inputs are called object queries. These object queries 

act as examiners and ask every certain region of the picture whether there is an 

object in the certain region. Same as the encoder, the positional encoding needs 

to be added to the object queries to differentiate N input embeddings since the 

decoder is also permutation-invariant (Carison, et al., 2020). 

 Lastly, DETR sends these output embeddings to the last stations, which 

are classified FFN and bounding box FFN to classify the object and determine 

the position of bounding boxes. FNN has a 3-layer perceptron which has a linear 

projection, a hidden dimension d, and a ReLU activation function layer. All the 

normalized width, height and center coordinates of the bounding box are 

predicted by the FFN, while the class labels are predicted by its linear layer 

using the softmax function.  Given that the fixed-size set of N bounding boxes 

often significantly exceeds the actual count of objects in the image, the 

remaining objects with no classes are labeled as ‘No Object’ class or 

‘Background’ class (Carison, et al., 2020).  
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Figure 2.6: Architecture of DETR’s Transformer (Carison, et al., 2020) 

 

 
Figure 2.7: Pipeline of DETR (Carison, et al. 2020) 

 

2.7.2 Loss Function 

DETR is a direct set prediction approach, which means that it must find a one-

to-one correspondence between the actual set of objects and the predicted set of 

objects from the ground truth. Thus, DETR incorporates a matching loss 
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designed to identify the optimal alignment between the predicted objects and 

the ground truth objects (Carison, et al., 2020).  

 The optimal bipartite matching function serves as the loss function, 

representing a matching between the ground truth sets of objects and the 

predicted sets of objects, each permuted among N elements, in a manner that 

minimizes the associated cost. This function is defined as follows: 

                     
 

𝜎𝜎� = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖𝑚𝑚∑ ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝒴𝒴𝑖𝑖,𝒴𝒴�𝜎𝜎(𝑖𝑖)),𝜎𝜎 ∈ 𝔖𝔖𝑁𝑁𝑁𝑁
𝑖𝑖         (2.3) 

 

where  

ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝒴𝒴𝑖𝑖,𝒴𝒴�𝜎𝜎(𝑖𝑖))  = pairwise matching cost between ground truth 𝒴𝒴𝑖𝑖  and 

prediction with index 𝒴𝒴�𝜎𝜎(𝑖𝑖)  

𝒴𝒴𝑖𝑖 = (𝑐𝑐𝑖𝑖 ,𝑏𝑏𝑖𝑖) 

𝑐𝑐𝑖𝑖 = target class label 

𝑏𝑏𝑖𝑖 = ground truth box position and size (center coordinates x, y, height and width)  

𝒴𝒴�𝜎𝜎(𝑖𝑖) = (�̂�𝑐𝑖𝑖 , 𝑏𝑏�𝑖𝑖 ) 

�̂�𝑐𝑖𝑖 = predicted class  

𝑏𝑏�𝑖𝑖 = predicted bounding box vector 

𝜎𝜎(𝑖𝑖) = index within permutation of N   

 

 The probability of target class is defined as �̂�𝑝𝜎𝜎(𝑖𝑖)(𝑐𝑐𝑖𝑖) for the prediction 

with the index 𝜎𝜎(𝑖𝑖) , while the predicted bounding box loss is defined as 

ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑖𝑖, 𝑏𝑏�𝜎𝜎(𝑖𝑖)). Thus, a Hungarian Loss function is formed: 

 

ℒ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻𝑖𝑖𝑚𝑚𝐻𝐻(𝒴𝒴,𝒴𝒴�) = ∑ [−𝑙𝑙𝑙𝑙𝑎𝑎�̂�𝑝𝜎𝜎(𝑖𝑖)(𝑐𝑐𝑖𝑖) + 1{𝑚𝑚𝑖𝑖≠0}ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑖𝑖, 𝑏𝑏�𝜎𝜎(𝑖𝑖))]𝑁𝑁
𝑖𝑖=1  (2.4) 

 

In fact, the log-probability has been downweight by the DETR author 

by a factor of 10 when the 𝑐𝑐𝑖𝑖 = ∅, which means ‘No Object’ class. This can 

avoid the imbalance of classes (Carison, et al., 2020).  
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2.8 Real-Time Detection Transformers (RT-DETR) 

RT-DETR is a new real-time target detection model from Baidu, and was 

introduced in a paper ‘DETRs Beat YOLOs on Real-time Object Detection’ in 

2023 (Lv, et al., 2023). It is designed for the implementation of end-to-end real-

time object detection with architecture of Transformer. In order to do so, it uses 

an IoU-aware query selection mechanism and an efficient hybrid encoder, 

resulting in very high performance in terms of accuracy and inference speed. 

First, RT-DETR does not require post-processing steps like NMS, which 

enables it to achieve a stable and efficient inference speed and achieve real-time 

object detection tasks. Besides that, authors of RT-DETR have optimized the 

interaction of AIFI and CCFM modules, improving the efficiency of the 

attention mechanism to achieve faster training convergence. Furthermore, RT-

DETR also supports flexible adjustment of inference speed by changing the 

decoder layer, which allows users to do it without retraining. Not only that, they 

also provide a few versions of RT-DETR with different parameters and FPS, 

allowing users to choose the most suitable version of RT-DETR based on the 

computational power of their training platform.  

In the paper, the authors also present empirical evaluations comparing 

RT-DETR against real-time end-to-end object detectors like YOLO, PPYOLOE, 

and Efficient-DETR, highlighting RT-DETR's superiority. Based on the paper, 

RT-DETR-50 achieves an average precision (AP) of 53.1% and operates at 108 

frames per second (FPS), while RT-DETR-101 attains 54.3% AP and 74 FPS 

on COCO val2017. These results surpass YOLO detectors of comparable scale, 

excelling in both speed and accuracy. Although RT-DETR shows results that 

may beat YOLO, ongoing research and development in the field of object 

detection continues, so YOLOv8 was trained in the study as a comparison for 

RT-DETR. 
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Figure 2.8: Basic Architecture of RT-DETR (Lv, et al. 2023) 

 

2.9 Summary 

Overall, the literature review conducted in this study has enhanced the 

understanding of current object detection technologies. The architecture and 

pipeline of Transformer have been understood clearly and helps the research 
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smoothly. YOLO is one of the famous traditional CNN approach object 

detection models. Then, a new object detection technology, DETR (Detection 

Transformer) has been released which may beat the traditional CNN approach 

object detection models like YOLO. Thus, a comparative analysis is being 

conducted between the newest object detection model of the Transformer-based 

architecture, RT-DETR, and the traditional CNN approach object detection 

model, YOLOv8, which is the latest YOLO model. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter discusses the work plan and the methodology used in this study 

from the implementation of the models with the required software to hardware. 

The flow of the implementation starts with a understanding of implemetation 

method, software and hardware used, datasets exploration, models training for 

object detection and system implementation methodology. Once all the training 

of models finish, the performance of models are evaluated with some evaluation 

metrics, which are recall value, mAP (Mean Average Precision), and FPS 

(Frame Per Second). 

 

3.2 Work Plan 

Before conducting the implementation, the flow of the study is planned well and 

accordingly to ensure the smoothness of the project. At the beginning, the topic 

and objectives of this study are planned to understand successfully first in order 

to do further research. Then, based on the topic and objectives, literature review 

and term explorations will be conducted as planned in the following weeks. 

During the literature review, some teaching guides on implementation models 

on the Internet, like YouTube videos, will be watched to learn the way of 

training the RT-DETR and YOLOv8 models for the custom dataset before 

conducting the actual training. After understanding the implementation method 

of the custom dataset training model, the Urban Zone Aerial Object Detection 

Dataset will be acquired and prepared for model training. Training will 

commence for both RT-DETR models (with ResNet-18 and ResNet-50 

backbones) and YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m) using 

the same standard dataset. Before start the actual traininf, all the parameters of 

models will be fine-tuned first to ensure the models can be trained in the best 

setting. Once all the training are finished, the models will be evaluated using 

some evaluation metrics and their results will be recorded. Based on the results, 

the performance of the models will be compared and discussed, to further 

analyse their pros and cons. After all the models' performance finish evaluating, 
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a poster summarizing the study's objectives, methodology, results, and 

conclusions will be prepared, along with a comprehensive report detailing the 

research process and findings. Both the poster and report will undergo final 

review and refinement before submission. 

 

3.3 Methodology 

The methodology of the study closely follows the outlined work plan. All the 

planned tasks are completed well before the date of schedule. The details of the 

training configurations are introduced in a subchapter titled “Training 

Configuration”. Figure 3.1 shows the overview methodology of the study:   

 

 
Figure 3.1: Methodology of the Study 
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3.3.1 Similar Studies 

In this study, although there are fewer studies directly comparing RT-DETR and 

YOLOv8, especially in the field of aerial object detection in urban areas, some 

comparison of similar studies still provides us with some good insights. For 

example, the study by Bak et al. compared the performance of RT-DETR with 

other real-time object detection models, revealing its efficacy in coastal debris 

monitoring (Bak, et al., 2023). Besides that, Aguilera et al. conducted a study 

focused on evaluating deep learning models, including Mask-RCNN, RT-DETR, 

and YOLOv7, with the aim of detecting and classifying blueberries (Aguilera, 

et al., 2024). Some traditional metrics like mean average precision (mAP) and 

the impact of partial occlusion on models' accuracy have been highlighted in 

their paper. 

 

3.3.2 Hardware 

In order to train the object detection models at higher epochs and batch size, a 

good specification of training platform is required. Hence, the training hardware 

device used in this study is a NUC (Next Unit of Computing) equipped with an 

external GPU RTX3080. The choice of NUC is because of its lightweight and 

easily portable. During the actual testing phase, all the inferences were done by 

CPU solely without the GPU. This is because the object detection models in this 

study will usually be installed in mobile devices like drones which lack 

computational power. This setup helps the inference evaluation be closer to the 

real-world scenario of real-time inference on drones. Although the inferences 

are done by CPU only, the training of the models still requires a GPU, which 

can boost a lot in the training speed, reducing heavy training time.  The eGPU 

RTX3080 of the traning platform has a VRAM of 10 GB of memory. It is good 

enough to train the lightweight object detection models. The specification of the 

training platform is shown in Table 3.1. 

 

3.3.3 Software 

In the software, the operating system of the training platform is Linux Ubuntu 

20.04. All the training and testing are done on the this Ubtuntu 20.04 operating 

system. It provides a good deep learning environment for training the object 
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detection models by offering a lot of tools and libraries associated with artificial 

intelligence. Additionally, Ubuntu also supports some popular frameworks such 

as TensorFlow, Keras, OpenCV etc.  

 The main programming languages that are used in this study are Python 

3 PyTorch and PyTorch Lightning. It is an open-source deep learning 

framework which was developed by Facebook's AI Research lab (FAIR). It is 

widely used in the field of artificial intelligence, especially deep learning. This 

is because it provides a flexible computational graph, which makes it 

particularly suitable for research and experimentation in artificial intelligence 

and machine learning (NVIDIA, n.d.).  

 However, bugs may be introduced when using PyTorch in a complex 

system or using multi-GPU training. Then, PyTorch Lightning came out. It can 

solve the problem by structuring the PyTorch code. PyTorch Lightning was 

created by William Falcon and other professional researchers and PhD students. 

It is also a lightweight PyTorch that simplifies the deep learning training models. 

Thus, it can be used to standardize and organize PyTorch code by providing a 

high-level abstraction and automating various engineering tasks so that the 

process can be simplified. 

Besides that, the GPU Acceleration Library used in the study are 

CUDA 12.2 and cuDNN 8.8.1. CUDA is used to allow the GPU to do parallel 

computing while cuDNN is used to optimize the deep neural network in deep 

learning. Thus, they can improve the efficiency of training and inference. The 

specification of the training platform is shown in Table 3.1. 
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Table 3.1: Table of Specification of  Training Platform 

Name Specification 

Operating System Ubuntu 20.04 

GPU Acceleration Library CUDA 12.2, cuDNN 8.8.1 

CPU Intel Core i7-10710U CPU @ 

4.70GHz 

Memory 64 GB 

GPU NVDIA GeForce RTX 3080 @ 10GB 

Memory 

  

3.3.4 Datasets 

The training dataset was Urban Zone Aerial Object Detection datasets and 

downloaded from the Kaggle. It was combined from three datasets by Sganderla, 

which are Unmanned Aerial Vehicles Benchmark Object Detection and 

Tracking (Du, et al. 2018), Vision Meets Drones (Zhu, et al. 2021), and Stanford 

Drone Dataset (Robicquet, et al. 2016). This dataset has more than 180,000 

images, which are split into three groups: "train" (training), "val" (validation), 

and "test" (testing) files. The "train" file has a total of 131,119 aerial images 

which are used to train the models. During the training, the model will learn 

from the "train" (training) dataset, adjusting its parameters to minimize the loss 

function. Then, the model is evaluated using the validation dataset for every 

epoch of training, which consists of 28,085 not seen aerial images during 

training. This validation step is very important as it helps to monitor the model's 

generalization and prevent overfitting. The performance of the models can be 

clearly observed every epoch whether the performance of model is getting worse 

than previous epoch. Lastly, there are 27,934 aerial images in the "test" file. 

They were used to further verify the models' performance after the completion 

of training to double confirm the performance of the models. All the training 

dataset images are captured from urban zones, focusing on four object classes: 

person, small vehicle, medium vehicle, and large vehicle (Sganderla, 2021).  
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3.3.5 Training Configuration 

First, RT-DETR with backbone ResNet-18 was selected as primary model. It is 

the lightest weight compared to other RT-DETR models. Because of its light 

weight, it can do the object detection task well without excessive computing 

overhead. Although the accuracy may decrease compared to heavier models, it 

can use less computing resources to get the results faster. Hence, it is more well-

suited for deployment on resource-constrained devices commonly used in aerial 

surveillance applications, especially doing real-time object detection tasks. 

Furthermore, RT-DETR model with a ResNet-50 backbone was also trained to 

provide a comparative analysis against RT-DETR-r18 and YOLOv8 models, 

serving as a heavy model counterpart. On the other hand, YOLOv8n, YOLOv8s, 

and YOLOv8m were chosed as the YOLO compared models as they represent 

the three lightest variants in the YOLOv8 series, allowing for a comprehensive 

comparison across the YOLOv8 architecture spectrum. Table 3.2 shows the 

detailed information of each model parameters and FLOPs. 

 

Table 3.2: Training Models Information 

Model FLOPs(B) Parameters(M) Size (pixels) 

YOLOv8n 8.7 3.2 640 

YOLOv8s 28.6 11.2 640 

YOLOv8m 78.9 25.9 640 

RT-DETR-r18 60 20 640 

RT-DETR-r50 136 42 640 

 

In the training process, all the models were done training on a NUC 

equipped with an eGPU RTX3080. All the images are resized to 640x640 pixels 

to ensure consistency during the training. In general, a larger batch size of trainin 

can result in improved training accuracy and quicker convergence, but it also 

introduces a higher risk of overfitting. Based ont the research, YOLOv8 is good 

training in batch size of 16 while RT-DETR is batch size of 4. However, due to 
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insufficiency of GPU memory, only the YOLOv8m was unable to train in the 

batch size of 16. Thus, YOLOv8m was trained in batch size of 8. Each model 

was trained for 100 epochs equally to learn features relevant to object detection 

in urban environments. After the training, all the trained models were evaluated 

using the test image dataset, assessing their performance based on the recall 

values, mAP (Mean Average Precision), and inference speed or FPS (Frame Per 

Second). Based on the result of each model, a discussion of the result was done 

to analyze each model's performance and the capability for real-world 

deployment. Based on the research, the best optimizer for YOLO is SGD while 

the RT-DETR is AdamW. Because of different optimizer, the initial learning 

rate is also different. Table 3.3 shows the training parameters in each model. 

 

Table 3.3: Configuration of Traning Parameters 

Model 

Initial 

Learning 

Rate 

Learning 

Rate 

Scheduler 

 

 

Batch 

Size 
Optimizer 

YOLOv8n 0.01 0.01 16 SGD 

YOLOv8s 0.01 0.01 16 SGD 

YOLOv8m 0.01 0.01 8 SGD 

RT-DETR-r18 0.0001 1 4 AdamW 

RT-DETR-r50 0.0001 1 4 AdamW 

  



 35 

 
Figure 3.2: Flowchart of Models’ Training 

 

3.3.6 Testbed 

To simulate real-world deployment scenarios, in the evaluating phase, the 

inference tasks was conducted without the eGPU RTX 3080, relying solely on 

the CPU for processing. The performance of all the models were evaluated using 

the test image datasets. The evaluation metrics used in the evaluating phase are 

Mean Average Precision at an Intersection over Union (IoU) threshold of 0.5 

(mAP(50)), mAP(50-95). Recall (R) and Frames per Second (FPS).  
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Furthermore, a real-world urban zone video was used to further evaluate the 

models' performance. This video was sourced from YouTube (CharlieBo313, et 

al., 2021). The video was trimmed and left the first 30 seconds for testing 

purposes. In the video, the feature footage was captured from a drone 

showcasing a street view in Philadelphia. There are four classes of objects: 

persons, small vehicles, medium vehicles, and large vehicles. The evaluation 

tests were conducted in five models: YOLOv8n, YOLOv8s, YOLOv8m, RT-

DETR-r18, and RT-DETR-R50 to assess their performance with this specific 

video.  

 

3.4 Unified Pipeline of Real-Time Object Detection 

The unified pipeline for aerial object detection in urban zones begins with the 

intake of video sources, which includes aerial footage of urban areas. These 

videos are then fed into RT-DETR or YOLOv8 object detection models, which 

can identify and locate objects of interest, such as persons, small vehicles, and 

large vehicles. Following the detection, the models extract the bounding boxes 

corresponding to their identified objects. Then, a confidence threshold of 0.5 is 

applied to the objects detected. If models detect the object with a confidence 

score above the threshold, its bounding box and corresponding class label (e.g., 

person, small vehicle, or large vehicle) will be displayed. On the other hand, 

objects with confidence scores below 0.5 will be ignored, and their bounding 

boxes and class labels not shown. The whole detecting process continues for 

each detected object, until the video ends. The output video with annotated 

bounding boxes and class labels is then saved and presented as output. Not only 

that, this pipeline also supports video streams as input so that the models can do 

real-time object detection and tracking in urban zones. 
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Figure 3.3: Unified Pipeline of Real Time Aerial Object Detection 
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3.5 Gantt Chart 

Timeline: 26th June 2023 to 19th September 2023 

 

 
Figure 3.4: Gantt Chart Phase 1 

 

Timeline: 29th January 2024 to 24th May 2023 

 
Figure 3.5: Gantt Chart Phase 2 

 

3.6 Summary 

As a short summary, the work plan and the methodology have been successfully 

implemented. There are 5 models being implemented in this study, which are 

YOLOv8n, YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50. The 

dataset used for training is Urban Zone Aerial Object Detection Dataset, which 

is downloaded from Kaggle. This dataset is used to detect four classes, which 

are person, small vehicles, medium vehicles, and large vehicles. It has more than 

100k aerial images, which are sufficient to train the models. All the training 

models are trained in a NUC with RTX 3080 eGPU. The operating system of 
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the training platform is Ubuntu 20.04. All the models are trainied in 100 epochs 

to ensure consistency. After all the models finish training, they are evaluated for 

their performance using evaluation metrics such as recall value, mAP (Mean 

Average Precision) and FPS (Frame Per Second). Lastly, these models were 

further evaluated with a urban zone street view video to further verify their real-

world performance. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

After all the RT-DETR and YOLOv8 models were done training, they were 

tested by doing inference tasks on tthe new test image dataset to evaluate the 

performance of the models. Then, the models were also further assessed by 

doing inference tasks on a street view video to further evaluate their real-world 

performance. There are some evalutaion metrics used during this phase. They 

are recall value, mAP(50), mAP(50-95) and FPS (Frame Per Second). The 

performance results of the models are discussed in this chapter. 

 

4.2 Evaluation Metrics 

There are few evaluating metrics used in this study. First, one of the metrics is 

recall rate (R). Recall (R) is a metric that shows how often the models identify 

the true objects among all the current true samples. It is get by dividing the 

number of true positive detections by the total number of ground truth objects 

in the dataset. Conversely, precision (P) measures the proportion of correctly 

identified positive objects out of all objects identified as positive by the model. 

It is calculated by dividing true positives by the sum of false positives and true 

positives. Both Recall (R) and Precision (P) can be expressed as follows: 

 

𝑅𝑅 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁)
                                               (4.1) 

𝑇𝑇 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
                                               (4.2) 

 

where, 
R  : Recall 
P   : Precision 
TP : True Positive 
FN : False Negative 
FP : False Positive 
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Average Precision (AP) can be said as the most important metric for 

evaluating the object detection model's performance. It is determined by 

computing the area below the precision-recall curve, where precision values are 

plotted against corresponding recall values at varying confidence thresholds. In 

object detection, The mAP(50) shows a comprehensive assessment of the 

model's accuracy. It considers a detection to be accurate if the IoU between the 

ground truth and the predicted bounding box equals or more than 0.5. 

 

𝐴𝐴𝑇𝑇 = � 𝑇𝑇(𝑅𝑅)𝑑𝑑𝑅𝑅
1

0
                                             (4.3) 

𝑚𝑚𝐴𝐴𝑇𝑇(50) =
1
𝑁𝑁
� 𝐴𝐴𝑇𝑇𝑖𝑖

𝑁𝑁

𝑖𝑖=1
                                      (4.4) 

 

where, 
N  : Number of Object Class 
 

On the other hand, mAP(50-95) is also the mAP but the range of IoU 

thresholds starts from 0.5 to 0.95, with an increment of 0.05. It corresponds to 

the mean AP for over 10 IoU levels from 0.5 to 0.95 with a step size of 0.05 

(0.5, 0.55, …, 0.95). Since higher IoU thresholds require stricter alignment 

between predicted and ground truth bounding boxes, achieving high precision 

becomes more challenging. By getting all the average precision values across 

this range, it shows a more overall assessment in the performance of models 

across various confidence levels of overlaping between predicted and ground 

truth bounding boxes. 

 

𝑚𝑚𝐴𝐴𝑇𝑇(50 − 95) =
1
𝑁𝑁
� 𝐴𝐴𝑇𝑇(50 − 95)𝑖𝑖

𝑁𝑁

𝑖𝑖=1
                       (4.5) 

 

Lastly, FPS (Frame Per Second) in this study represents the frame 

generated by the models every second. Thus, it is also considered as the model's 

inference speed. During the inference, when a model needs to use a lot of time 

to do the inference for one frame, then its FPS will become lower. When a model 

uses less time to make the inference, it can generate the output frame faster. 
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Hence, its FPS becomes higher. Therefore, the higher the FPS, the faster the 

model's inference speed, the smoother the output video generated. During the 

evaluation, FPS is calculated by using 1000 divided by the total of the time of 

preprocess, inference, and postprocess. 

 

𝐹𝐹𝑇𝑇𝐹𝐹 =
1000 × 𝐹𝐹𝑎𝑎𝑎𝑎𝑚𝑚𝐹𝐹(𝑠𝑠)

𝐹𝐹𝐹𝐹𝑐𝑐𝑙𝑙𝑚𝑚𝑑𝑑(𝑠𝑠)
                                     (4.6) 

 

4.3 Performance of Models in Evaluation Test 

Once all the models are finished training, they are being evaluated their 

performance using the test image dataset. This test image dataset has more than 

27k images and is different from the training image dataset. Thus, it is good to 

use to evaluate the models’ performance. The results of the evaluation are 

collected in Table 4.1. This table compares the performance of each different 

object detection model, including YOLOv8n, YOLOv8s, YOLOv8m, RT-

DETR-r18, and RT-DETR-r50 on the task of aerial object detection in urban 

zones. Obviously, RT-DETR-r50 gets the best results among all the models with 

a recall value of 0.86, mAP(50) of 0.904, and mAP(50-95) of 0.598. 

Furthermore, RT-DETR-r18 exhibited promising results comparable to 

YOLOv8m, yet with recall value of 0.83, mAP(50) of 0.874, mAP(50-95) of 

0.560 and recall value of 0.82, mAP(50) of 0.880, mAP(50-95) of 0.592 

respectively. On the other hand, YOLOv8n yielded the lowest performance 

metrics among the models, getting recall value of 0.70, mAP(50) of 0.756, and 

mAP(50-95) of 0.440. Meanwhile, YOLOv8s showed an enhanced performance 

with recall value of 0.78, mAP(50) of 0.840, and mAP(50-95) of 0.529.   

Additionally, among the detected object classes, the medium vehicle 

class consistently achieved the highest mAP across all five models, followed by 

large vehicle, small vehicle, and person classes. Specifically, the mAP(50) of 

the medium vehicle class exceeded 0.9 in all models: 0.926 in YOLOv8n, 0.948 

in YOLOv8s, 0.959 in YOLOv8m, 0.960 in RT-DETR-r18, and 0.966 in RT-

DETR-r50. However, for the person and small vehicle classes, only YOLOv8m, 

RT-DETR-r18, and RT-DETR-r50 achieved an mAP(50) of over 0.8. The 

mAP(50) for the person class in the five models were: 0.593 in YOLOv8n, 0.735 

in YOLOv8s, 0.803 in YOLOv8m, 0.825 in RT-DETR-r18, and 0.872 in RT-
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DETR-r50. For the small vehicle class, the mAP(50) was: 0.643 in YOLOv8n, 

0.769 in YOLOv8s, 0.829 in YOLOv8m, 0.809 in RT-DETR-r18, and 0.854 in 

RT-DETR-r50. Regarding the large vehicle class, only YOLOv8n fell slightly 

below 0.9 with an mAP(50) of 0.861. The mAP(50) of other models were: 0.909 

in YOLOv8s, 0.928 in YOLOv8m, 0.904 in RT-DETR-r18, and 0.922 in RT-

DETR-r50. Detailed mAP(50) results for each object class in every model are 

presented in Table 4.2. 

 

Table 4.1: Results of Each Models 

Models Architecture 
Metrics 

R mAP(50) mAP(50-95) 

YOLOv8 

n 0.70 0.756 0.440 

s 0.78 0.840 0.529 

m 0.82 0.880 0.592 

RT-

DETR 

r18 0.83 0.874 0.560 

r50 0.86 0.904 0.598 

 

 

 

 
Figure 4.1: Chart of Results of Each Models 
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Table 4.2: mAP(50) of Object Classes in Each Model 

Models 

mAP(50) 

Person 
Small 

Vehicle 

Medium 

Vehicle 

Large 

Vehicle 

YOLOv8n 0.593 0.643 0.926 0.861 

YOLOv8s 0.735 0.769 0.948 0.909 

YOLOv8m 0.803 0.829 0.959 0.928 

RT-DETR-r18 0.825 0.809 0.960 0.904 

RT-DETR-r50 0.872 0.854 0.966 0.922 

 

 

 
Figure 4.2: Chart of mAP(50) of Object Classes in Each Model 

 

4.4 Performance of Models in Video Processing 

Besides the evaluation test using the test image dataset, the models were also 

implemented to do object detection tasks on a video. This video was sourced 

from YouTube, which captured a street view of Philadelphia from a drone. For 

testing purposes, the video was trimmed and left the first 30 seconds. This video 

contains various objects such as persons, small vehicles, medium vehicles, and 

large vehicles, which align with the object classes of the trained models. Hence, 

this video provided a suitable real-world scenario to assess the models' 

performance. 
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Figure 4.3: YOLOv8n Aerial Object Detection in Video 

 

 
Figure 4.4: YOLOv8s Aerial Object Detection in Video 
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Figure 4.5: YOLOv8m Aerial Object Detection in Video 

 

 
Figure 4.6: RT-DETR-r18 Aerial Object Detection in Video 

 



 47 

 
Figure 4.7: RT-DETR-r50 Aerial Object Detection in Video 

 

During the testing of model performance on the video, most of the main 

objects were successfully detected. The most accurate of detected object classes 

in the 5 models is medium vehicle class, then followed by large vehicle, small 

vehicle and person. All the models could detect medium vehicles well, even the 

lightest weight YOLOv8n. However, in YOLOv8n and YOLOv8s, the small 

vehicle and person are not detected so perfectly. Sometimes, the models detect 

the small vehicles as person or detect the person as small vehicles. This problem 

also occurred in other models but with less frequency. In YOLOv8m, RT-

DETR-r18, and RT-DETR-r50, the models were mostly able to detect persons 

and small vehicles, but errors were still present at times. For the large vehicle 

class, YOLOv8n and YOLOv8s can detect a few large vehicles only, while 

YOLOv8m, RT-DETR-r18 and RT-DETR-r50 can detect all the large vehicles 

that appear in the video. However, RT-DETR-r18 and RT-DETR-r50 

sometimes misidentify objects as large vehicles. Overall, the medium vehicles 

can be detected well in all the five models. If the task is just detecting medium 

vehicles on a street view, YOLOv8n and YOLOv8s are good enough to do so. 

For detecting persons, small vehicles, and large vehicles, YOLOv8m, RT-

DETR-r18, and RT-DETR-r50 are preferable choices. 

 Besides that, the FPS of each model was evaluated in this video testing. 

The FPS was calculated by using 1000 divided by the total of the time of 

preprocess, inference, and postprocess. After calculating, YOLOv8n had the 
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highest FPS among all the models, which was 30.4 FPS. This was followed by 

YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50. Their FPS are 11.4, 

5.5, 4.0, and 1.7 respectively. The RT-DETR-r50 had the lowest FPS among all 

the models. The results of FPS are recorded in Table 4.2.  

 

Table 4.3: FPS in Each Model 

Models Architecture FPS 

YOLOv8 

n 30.4 

s 11.4 

m 5.5 

RT-DETR 
r18 4.0 

r50 1.7 

 

 
Figure 4.8: Chart of FPS in Each Model 

 

4.5 Impact of FPS in Real-Time Object Detection 

On the video processing, all the output videos of models are smooth even if their 

FPS is low. This is because the models can do the inference tasks for all the 
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frames of the video, albeit taking longer compared to models with higher FPS. 

However, when FPS is low during real-time object detection tasks, the models’ 

inference speed may not be fast enough to follow the speed of video capturing. 

As a result, the bounding boxes may blink, appear and disappear on the targeted 

objects. This makes it more challenging for users to track moving objects, 

especially considering these real-time object detection models are typically 

installed on moving drones. Given that drones are in motion, all objects captured 

by the drone appear to be moving as well. 

 

4.6 Analysis on the Evaluation Results 

According to the evaluation results, the RT-DETR-r50 has the highest 

mAP and recall value but the lowest in FPS. This is because the RT-DETR-r50 

is the heaviest model compared to others, it has more parameters and FLOPs, 

resulting in more computational resources being required to progress. Hence, it 

can detect objects more accurately but needs a longer time during the inference. 

This phenomenon is also observed in all other models. The heavier the model 

size, the longer the time taken for inference. Although the heavier models can 

give a better performance in accuracy, the FPS of them are low due to their 

slower inference speed. As a result, the YOLOv8n and YOLOv8s act as 

lightweight models, their FPS could get higher than heavier models like 

YOLOv8m, RT-DETR-r18, and RT-DETR-r50. Thus, YOLOv8n and 

YOLOv8s are more preferable in real-time object detection applications since 

their FPS are high enough to do real-time inference. However, the most 

recommended model for real-time object detection applications is YOLOv8s as 

it has high accuracy performance and sufficient inference speed. Because of 

poor accuracy, the YOLOv8n is not a good choice for object detection tasks. On 

the other hand, although heavier models like YOLOv8m, RT-DETR-r18 and 

RT-DETR-r50 are not suitable for real-time object detection applications, they 

are still preferable, especially in standard object detection tasks which focus on 

accuracy rather than real-time processing speed.  

Besides that, the reason why the medium vehicle class had the highest 

mAP value is because of the dataset. The training dataset, Urban Zone Aerial 

Object Detection Dataset used for training, contains a larger number of medium 

vehicle objects compared to other classes. This larger number of medium 
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vehicles in the training dataset allows the training models to learn effectively 

and perform well in inference of medium vehicles. However, the performance 

of the person and small vehicle classes was not as strong, especially the 

YOLOv8n and YOLOv8s. This may be because the dataset contains fewer 

people and small vehicle objects, causing the models to not train enough for 

inference of these two classes. Another reason may be the person and small 

vehicle objects are relatively small in the training image dataset. Because of 

their small size, the training models are hard to extract useful feature maps from 

the targeted objects, impacting their ability to train effectively. Furthermore, the 

number of training epochs could not be high enough due to the time constraints. 

The models have not yet reached the optimum performance. Luckily, this can 

be easily solved in the future by increasing the training epochs in future studies. 

 

4.7 Summary 

Overall, all the RT-DETR and YOLOv8 models have their own pros and cons. 

RT-DETR models show comparable results to YOLO models. Although the 

lightweight models such as YOLOv8n and YOLOv8s show a supremacy 

oinFPS performance, only the YOLOv8s has good performance in accuracy. 

Hence, among all the five models, only YOLOv8s are well-suited to real-time 

object detection applications. On the other hand, the heavyweight models like 

YOLOv8m, RT-DETR-r18 and RT-DETR-r50 are preferable for standard 

object detection tasks which prioritize accuracy over real-time processing speed. 

The trade-off between recall value, precision score, and FPS becomes evident, 

the strategy of selecting models are needed to be determined based on the 

specific scenario requirements. Last but not least, RT-DETR and YOLOv8 

models can be further integrated to get better performance, such as increasing 

the training epochs, changing the model’s architecture, fine-tuning the training 

hyperparameters, etc.     
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

In conclusion, the study successfully implemented two different models, RT-

DETR and YOLOv8, for aerial object detection.  All the objectives of the study 

have been achieved successfully. According to the results, YOLOv8s is the most 

preferable real-time object detection model as it has high accuracy performance 

(mAP 50-95 of 0.529) and sufficient inference speed (11.4 FPS) in real-time 

object detection. In contrast, heavier models like YOLOv8m, RT-DETR-r18, 

and RT-DETR-r50 are not suitable for doing real-time detection tasks as their 

inference speeds are not fast enough to capture the speed of video capturing. 

Although like that, the RT-DETR-r50 and RT-DETR-r18 models achieve high 

mAP scores which are almost the same as YOLOv8m. Therefore, RT-DETR 

showcases its potential for accuracy, which may beat YOLO, as indicated by 

the title of the RT-DETR paper, "DETRs Beat YOLOs on Real-time Object 

Detection". RT-DETR, although its inference speed is slower than YOLO, its 

Transformer architecture shows a huge potential compared to tranditional CNN 

approaches in object detecion, especially in accuacy performance. Therefore, 

object detection models of Transformer's architecture still have high 

development possibilities. They are just around the corner. 

 

5.2 Recommendations for future work 

Although the RT-DETR and YOLOv8 models have good performance in 

accuracy, their performance can still be further improved. With the recent 

release of YOLOv9, YOLOv8 is not the newest model of YOLO anymore. Once 

the YOLOv9 becomes mature, it should have better performance than YOLOv8. 

Thus, it is a good choice for training on the YOLOv9 model.  

Besides that, because of time constraints, the training epochs of models 

were set as 100 epochs only. Higher epochs of training are recommended as the 

models may not have reached their optimal performance. Next, fine-tuning 

hyperparameters of models is also recommended in future research, like tuning 
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the learning rate or optimizer. Furthermore, in future exploration, some AI 

toolkit like OpenVINO is recommended as it can compress and simplify the 

deep learning models so that these models can be installed in low computational 

power devices.   

Lastly, variant types of DETR models are released currently, like RT-

DETR, Efficient DETR, and Deformable DETR. Considering that DETR is an 

evolving technology, ongoing research and development efforts may introduce 

new features and optimizations. Thus, it is recommended to do research on a 

new DETR model once it is released, as it has a huge potential to be evolved.   
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Appendix A: Figures 

 

 
Appendix A-1: Training Code of RT-DETR 
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Appendix A-2: Training Code of YOLOv8 

 

 
Appendix A-3: Evaluation Code of RT-DETR on Test Image Dataset 
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Appendix A-4: Evaluation Code of Yolov8 on Test Image Dataset 

 

 
Appendix A-5: Detection Code of RT-DETR on Video 
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Appendix A-6: Detection Code of YOLOv8 on Video 
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Appendix B: Graphs 

 

 
Appendix B-1: Precision-Recall Curve of YOLOv8n 

 

 
Appendix B-2: Precision-Recall Curve of YOLOv8s 
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Appendix B-3: Precision-Recall Curve of YOLOv8m 

 

 
Appendix B-4: Precision-Recall Curve of RT-DETR-r18 
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Appendix B-5: Precision-Recall Curve of RT-DETR-r50 
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