

END-TO-END OBJECT DETECTION

 WITH TRANSFORMERS

EDDY LAI THIN JUN

UNIVERSITI TUNKU ABDUL RAHMAN

END-TO-END OBJECT DETECTION

 WITH TRANSFORMERS

EDDY LAI THIN JUN

A project report submitted in partial fulfillment of the

requirements for the award of Bachelor of Mechatronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2024

 i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Eddy Lai Thin Jun

ID No. : 19UEB01182

Date : 20th May 2024

 ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “TITLE TO BE THE SAME AS

FRONT COVER, CAPITAL LETTER, BOLD” was prepared by

STUDENT’S NAME has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Mechatronics

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Ts. Dr. Tham Mau Luen

Date :

Signature :

Co-Supervisor : Dr. Kwan Ban Hoe

Date :

20 May 2024

20 May 2024

 iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, Eddy Lai Thin Jun. All right reserved.

 iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Ir. Ts. Dr.

Tham Mau Luen. With his invaluable advice and hardware support, I can do the

research well and implement the models successfully. I also thank my co-

supervisor, Dr. Kwan Ban Hoe for his guidance and support in the study, and

also helping make my conference paper be submitted successfully. Lastly, I am

also grateful to my fellow friends who have helped me during the training of

models. With their contribution, my study can be conducted well and finished

faster.

 v

ABSTRACT

In the past decade, You Only Look Once (YOLO) series has become the most

prevalent framework for object detection owing to its superiority in terms of

accuracy and speed. However, with the advent of transformer-based architecture,

there has been a paradigm shift in developing real-time detector models. This

thesis aims to investigate the performance of YOLOv8 and Real-Time

DEtection TRansformer (RT-DETR) variants in the context of urban zone aerial

object detection tasks. Specifically, a total of five models namely YOLOv8n,

YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50 are trained using an

expensive graphics processing unit (GPU) and subsequently executed on a

central processing unit (CPU), which is more relevant for power-hungry drone

applications. Experiment results reveal that RT-DETR-r50 stands out with the

highest mean average precision 50-95 (mAP 50-95) of 0.598, whereas

YOLOv8n achieves the fastest inference speed of 30.4 frames per second (FPS).

Such benefits come at the expense of slow speed (1.7 FPS) and poor accuracy

(mAP 50-95 of 0.440), respectively. In this sense, YOLOv8s emerges as the

most promising model due to its ability in striving the best tradeoff between

accuracy (mAP 50-95 of 0.529) and speed (11.4 FPS).

 vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS ix

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 3

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.5 Scope of the Study 5

1.6 Limitation of the Study 5

1.7 Contribution of the Study 6

1.8 Outline of the Report 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Convolutional Neural Network (CNN) 8

2.3 Overview of Faster R-CNN 9

2.4 Overview of YOLO 10

2.4.1 YOLOv5 11

2.4.2 YOLOv8 12

2.5 Overview of Transformer 14

2.5.1 Self-Attention Mechanism in Transformer 15

 vi

2.5.2 Pipeline of Transformer 16

2.6 Residual Network (ResNet) 19

2.7 Detection Transformers (DETR) 21

2.7.1 Pipeline of DETR 21

2.7.2 Loss Function 23

2.8 Real-Time Detection Transformers (RT-DETR) 25

2.9 Summary 26

3 METHODOLOGY AND WORK PLAN 28

3.1 Introduction 28

3.2 Work Plan 28

3.3 Methodology 29

3.3.1 Similar Studies 30

3.3.2 Hardware 30

3.3.3 Software 30

3.3.4 Datasets 32

3.3.5 Training Configuration 33

3.3.6 Testbed 35

3.4 Unified Pipeline of Real-Time Object Detection 36

3.5 Gantt Chart 38

3.6 Summary 38

4 RESULTS AND DISCUSSION 40

4.1 Introduction 40

4.2 Evaluation Metrics 40

4.3 Performance of Models in Evaluation Test 42

4.4 Performance of Models in Video Processing 44

4.5 Impact of FPS in Real-Time Object Detection 48

4.6 Analysis on the Evaluation Results 49

4.7 Summary 50

5 CONCLUSIONS AND RECOMMENDATIONS 51

5.1 Conclusion 51

5.2 Recommendations for future work 51

REFERENCES 53

APPENDICES 58

 vi

LIST OF TABLES

Table 2.1: YOLOv8 Models Information 13

Table 3.1: Table of Specification of Training Platform 32

Table 3.2: Training Models Information 33

Table 3.3: Configuration of Traning Parameters 34

Table 4.1: Results of Each Models 43

Table 4.2: mAP(50) of Object Classes in Each Model 44

Table 4.3: FPS in Each Model 48

 ix

LIST OF FIGURES

Figure 2.1: Network Architecture of YOLOv5 (Xu, et al., 2021) 12

Figure 2.2: Basic Architecture of YOLOv8 (Agarwal, et al., 2023) 14

Figure 2.3: Architecture of Transformer (Vaswani, et al., 2023) 17

Figure 2.4: Architecture of ImageNet (He, et al. 2016) 21

Figure 2.5: Architecture of DETR (Carison, et al., 2020) 21

Figure 2.6: Architecture of DETR’s Transformer (Carison, et al., 2020)
 23

Figure 2.7: Pipeline of DETR (Carison, et al. 2020) 23

Figure 2.8: Basic Architecture of RT-DETR (Lv, et al. 2023) 26

Figure 3.1: Methodology of the Study 29

Figure 3.2: Flowchart of Models’ Training 35

Figure 3.4: Gantt Chart Phase 1 38

Figure 3.5: Gantt Chart Phase 2 38

Figure 4.1: Chart of Results of Each Models 43

Figure 4.2: Chart of mAP(50) of Object Classes in Each Model 44

Figure 4.3: YOLOv8n Aerial Object Detection in Video 45

Figure 4.4: YOLOv8s Aerial Object Detection in Video 45

Figure 4.5: YOLOv8m Aerial Object Detection in Video 46

Figure 4.6: RT-DETR-r18 Aerial Object Detection in Video 46

Figure 4.7: RT-DETR-r50 Aerial Object Detection in Video 47

Figure 4.8: Chart of FPS in Each Model 48

 x

LIST OF SYMBOLS / ABBREVIATIONS

𝑏𝑏𝑖𝑖 ground truth bounding box vector

𝑏𝑏�𝑖𝑖 predicted bounding box vector

𝑐𝑐𝑖𝑖 target class label vector

�̂�𝑐𝑖𝑖 predicted class vector

ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ pairwise matching cost

�̂�𝑝 probability

𝒴𝒴𝑖𝑖 ground truth index

𝒴𝒴�𝜎𝜎(𝑖𝑖) prediction with index

𝜎𝜎(𝑖𝑖) index within a particular permutation of N elements

Adam Adaptive Moment Estimation optimizer

AdamW Adam with Weight Decay Regularization

AI Artificial Intelligence

AP Average Precision

BCE Binary Cross Entropy

ChatGPT Chat Generative Pre-training Transformer

CIoU Complete Intersection over Union

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CSPNet Cross Stage Partial Network

CUDA Compute Unified Device Architecture

cuDNN NVIDIA CUDA Deep Neural Network library

DETR Detection Transformer

eGPU External Graphics Processing Unit

FAIR Facebook's AI Research lab

Faster R-CNN Faster Region-based Convolutional Neural Networks

FFN Feed-forward Network

FN False Negative

FP False Positive

FPS Frames Per Second

 xi

GPU Graphics Processing Unit

GB GigaByte

HSV Hue Saturation Value

IoU Intersection over Union

mAP Mean Average Precision

OpenCV Open Source Computer Vision Library

P Precision

PANet Path Aggregation Network

R Recall Value

RAM Random Access Memory

R-CNN Region-based Convolutional Neural Networks

ReLu Rectified Linear Unit

ResNet Residual Neural Network

RoI Region of Interest

RPN Region Proposal Network

RT-DETR Real-Time Detection Transformer

RT-DETR-r18 Real-Time Detection Transformer with Resnet-18

RT-DETR-r50 Real-Time Detection Transformer with Resnet-50

SGD Stochastic gradient descent

SiLU Sigmoid Linear Unit

SPP Spatial Pyramid Pooling

SSD Single Shot Detector

TP True Positive

VGG Visual Geometry Group

YOLO You Only Look Once

YOLOv5 You Only Look Once version 5

YOLOv7 You Only Look Once version 7

YOLOv8 You Only Look Once version 8

YOLOv9 You Only Look Once version 9

 xi

LIST OF APPENDICES

Appendix A: Figures 58

Appendix B: Graphs 62

 1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In the past few years, with the advancement of technology, computer vision has

become more and more important. It can be used in many fields, such as

transportation, communication, medicine etc. One of the elements is object

detection, which is the identification and localization of objects of interest in

images or video streams. Traditionally, the traditional object detection approach

is using machine learning to detect objects. However, it needs a human to

intervene and gives less accuracy. Then, deep learning is coming. Deep learning

requires more data to train but has a lot of improvement in accuracy compared

to machine learning. One of the famous examples is convolutional neural

networks (CNN). It relies on its own strength, demonstrating impressive results

in various applications and becoming the main approach of object detection now.

In particular, the CNN-based YOLO (You Only Look Once) appearance

subverts the previous object detection models. It has a faster detection speed and

higher accuracy, so it has been applied to many object detection fields,

implemented in many real-time object detection applications and occupied for

a long time (Jason, et al., 2022).

Nowadays, the drone's technology has also significantly advanced.

They are no longer just capable of flying, now most of the drones have their

own camera so that they can also capture photos and videos. Due to this

capability, they can effectively manage a city, especially in terms of traffic

management, urban planning and law enforcement. Therefore, aerial detection

of objects on land is becoming increasingly important.

In order to detect objects, there are many powerful object detection

models now, such as YOLO and DETR (Detection Transformer). They both

have high accuracy object detection performance and have thus attracted great

attention. Among all the YOLO models, YOLOv8 represents the latest

advancement in the YOLO series, known for its good real-time object detection

performance with a high accuracy result. Because of its advanced architecture

and algorithms, accurate and efficient object detection makes it widely used in

 2

industries like robotics, video surveillance, and autonomous driving. Hence, this

makes it positioned nearly at the pinnacle of real-time object detection models.

Conversely, DETR, a new member to the object detection landscape,

was introduced in a paper “End-to-End Object Detection with Transformers” in

2020 (Carison, et al., 2020). The emergence of DETR has surprised researchers

in the field of computer vision and given a new way for implementing object

detection applications. Unlike traditional CNN object detection methods that

use anchor generation or non -maximum suppressors, DETR uses a fully

attention-based mechanism to predict object instances directly from the input

image (Carison, et al., 2020). Originally, Transformer was only used for natural

language processing tasks, but it was later found that it could be used for object

detection, and it seems to have excellent potential behind them.

However, DETR lacks the speed required for real-time inference even

with its innovative approach. To overcome this limitation, Baidu introduced a

new DETR model, RT-DETR (Real-Time Detection Transformer), by a paper

“DETRs Beat YOLOs on Real-time Object Detection” in 2023. It is designed

for the implementation of real-time end-to-end object detection based on the

architecture of Transformer. In order to do so, it uses an IoU-aware query and

an efficient hybrid encoder mechanism to support its real-time object detection

performance. The paper shows the supremacy of RT-DETR, by comparing RT-

DETR against real-time end-to-end object detectors like YOLO, PPYOLOE,

and Efficient-DETR. Based on the paper, RT-DETR-L achieves an average

precision (AP) of 53.0% and operates at 114 frames per second (FPS), while

RT-DETR-X attains 54.8% AP and 74 FPS, showing a better performance than

YOLO.

Hence, in this study, RT-DETR is utilized for comparison with YOLO

in object detection tasks using the Urban Zone Aerial Object Detection Dataset

(UZAODD). In this dataset, there are four primary classes of objects, which are

persons, small vehicles, medium vehicles, and large vehicles. All these classes

commonly appeared in urban zones. By evaluating the performance of RT-

DETR and YOLOv8 on this standard dataset, their strengths and limitations can

be identified so that the best object detection method can be determined.

 3

1.2 Importance of the Study

Object detection can be said as a cornerstone of computer vision applications. It

can be used in many applications, such as facial recognition, industrial quality

checking, people counting etc. Thus, as the domain of computer vision

progresses, it is very important to understand the current limitations of object

detection approaches, such as the YOLOv8 model which is based on the CNN

architecture.

Nowadays, many applications need a more accurate and faster response

object detection model, efficient and accurate object detection is a needed for

enabling machines to interact intelligently with their environment and make

informed decisions. If a more efficient and accurate object detection model is

found, it will be a huge improvement in many sectors, such as transportation,

communication, and medicine, when object detection is applied to those sectors.

Thus, it is very important to investigate and improve current object detection

technology. Currently, the mature object detection technology is the CNN-based

YOLOv8 model (Hussain, 2023). It is fast in the response speed and accurate in

the result of object detection. A new object detection approach, DETR, has been

introduced, which is based on the Transformer architecture. It is different from

the traditional CNN object detection approach (Carison, et al., 2020). Now, the

newest of the Transformer-based architecture object detection models is RT-

DETR (Lv, et al., 2023). Hence, a comparative analysis study has been carried

out between the traditional CNN approach object detection model, YOLOv8

model and the Transformer-based architecture object detection model, RT-

DETR. Besides the limitations, it is also important to know the difference

between new object detection technology and mature object detection

technology, so that the object detection technology can be improved.

1.3 Problem Statement

Object detection is getting important in these few years. However, current object

detection technology is still not perfect, even using the mature object detection

technology such as the YOLOv8 model. Although the YOLOv8 model has

demonstrated considerable success in object detection, it is not without

limitations.

 4

Nowadays, object detection is facing some challenges such as accuracy,

speed, and complexity. Although the CNN-based models like YOLOv8 are the

popular model for doing real-time object detection, they are still not perfect in

accuracy and inference speed. Moreover, CNN-based models also heavily rely

on anchor boxes and complex post-processing steps, which can be cumbersome

and less intuitive. Additionally, the architecture of CNN is complex and makes

it challenging to scale it effectively to different sizes of datasets.

Currently, a new object detection technology, the RT-DETR model

based on Transformer architecture, may beat the YOLOv8 model in object

detection in the form of accuracy and speed. Thus, a study is carried out to

investigate the difference between both models in object detection.

1.4 Aim and Objectives

This study aims to implement two object detection models, the YOLOv8 model

based on CNN architecture and the RT-DETR model based on Transformer

architecture. This project is focused on analyzing the results between them in

real-time object detection performance, whether the Transformer-based

architectures with their self-attention mechanisms can overcome the current

object detection’s limitations and offer superior performance in object detection

tasks. The objectives of the study are as follows:

(i) To study Transformer-based architectures, including both the

encoder and decoder components.

(ii) To implement an end-to-end object detection model using

Transformer architecture.

(iii) To evaluate and compare the performance of Transformer-

based object detection models with traditional CNN-based

approach models on a standard dataset.

All the objectives in this study were achieved successfully. The

Transformer architecture, including both the encoder and decoder components,

were well known before implementing the object detection models. The RT-

DETR models based on Transformer architecture, and the YOLOv8 model

based on CNN architecture, were implemented successfully on a Urban Zone

 5

Aerial Object Detection Dataset. Lastly, a comparative analysis of RT-DETR

and YOLOv8 was successfully conducted which compared their performance.

1.5 Scope of the Study

This project covers the implementation of object detection model by using RT-

DETR based on Transformer architecture and YOLOv8 based on CNN

architecture. First, this study discusses the details of current object detection

situation. YOLO is the most mature and popular model for real-time object

detection now. Then, a new object detection model, RT-DETR was released

which is based on Transformer architecture. Then, the details of Transformer is

discussed including the encoder and decoder. The details of DETR and RT-

DETR are also covered in the literature review. Beside the Transformer, this

study also covers the overview of CNN, YOLO, ResNet, etc.

 There are variant weights of RT-DETR models have been released,

RT-DETR-r18 and RT-DETR-r50 are choosing as the training models. On the

YOLO side, YOLOv8n, YOLOv8s, and YOLOv8m are selecting as the

compared models as they are the lightest weight models. The dataset is an Urban

Zone Aerial Object Detection Dataset which is downloaded from Kaggle

(Sganderla, 2021). After all the models done training, some evaluation metrics

are used to evaluate the models’ performance such as FPS, mAP, and recall rate.

1.6 Limitation of the Study

There are some limitations to this study. First, the limitation of GPU memory.

The GPU of the training platform has only 10GB. It is not sufficient to train

high batch-size training in heavier models like YOLOv8m. This means the batch

size of training YOLOv8m cannot be consistent with YOLOv8n and YOLOv8s.

Therefore, the training rate cannot be the optimum unless a huge memory of

GPU is provided for training.

Besides that, the RT-DETR and YOLOv8 models may not be the

newest Transformer-based architectures and CNN-based architecture object

detection models as they are evolving rapidly in deep learning research.

Furthermore, the evaluation might be limited due to time and resource

constraints. The training datasets may not be good enough to train the models.

 6

Hence, a further exploration of various model configurations is left for future

research.

1.7 Contribution of the Study

The main contribution of this project is the development of two Urban Zone

Aerial Object Detection models that are able to detect person, small vehicle,

medium vehicle, and large vehicle in an urban zone. One of the models is trained

by using RT-DETR and another one is trained by using YOLOv8. Another

contribution lies in the comparative analysis of the Transformer-based RT-

DETR model and the traditional CNN-based YOLOv8 model for end-to-end

object detection. Through the evaluation of performance metrics and a detailed

discussion on the strengths and weaknesses inherent in each approach, a

thorough comparison of the RT-DETR and YOLOv8 models becomes feasible.

This facilitates the determination of which model excels in Urban Zone Aerial

Object Detection.

1.8 Outline of the Report

The report first covers the introduction of the report, which includes the problem

statement, aim and objectives, contribution, limitation, and scope of study. In

Chapter 2, a literature review of a particular topic which discusses the details of

current object detection, CNN, YOLOv8, Transformer, DETR and the RT-

DETR. Then, in chapter 3, the methodology and approach of the study are

reviewed. In this chapter, the method of implementation of the models, the

parameters details of the models, details of the training datasets and the work

plan are introduced in detail. The next chapter is followed by results and

discussion. It discusses the evaluation results and analyzes the performance

between the models. Lastly, the conclusion and recommendations of the study

are discussed in the last chapter. In this chapter, the summary of the whole study

and recommendations for future work are sorted out. The references are listed

after the chapter.

 7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Nowadays, object detection has become more important in computer vision.

This is because more and more people see that it has achieved many applications,

such as object tracking, image captioning, instance segmentation, and many

others. Now, pedestrian, animal, vehicle, and face detection are popular projects

in the object detection field. Besides that, object detection is the main mission

in computer vision, which requires locating and identifying objects in videos or

images. Its main goal is not just object recognition, but also the precise object's

location via the bounding boxes. Therefore, object detection is significantly

more challenging than image classification, in addition to accurately classifying

the object but also simultaneously predicting its location on the image (Arkin,

et al., 2022).

Currently, deep learning has changed the object detection past primary

models and algorithms, bringing the computer vision to a new era. Among the

contemporary state-of-the-art models, prominent deep learning architectures

have surfaced, yielding remarkable outcomes in object detection endeavors. For

example, YOLO (You Only Look Once), SSD (Single Shot Detector), and R-

CNN (Region-based Convolutional Neural Networks). These models are

becoming more popular because of their effectiveness in detecting objects

(Jason, et al., 2022).

Before entering the era of deep learning, object detection basically

relied on handcrafted features and traditional machine learning techniques. The

integration of deep learning algorithms, like CNN, has transformed the field of

object detection. One- and two-stage object detection algorithms, exemplified

by models like YOLO, SSD, and R-CNN have become standard approaches in

the field now (Jason, et al., 2022).

Before, almost all object detection algorithms used CNN as their

backbone until the paper for Transformers was published. Transformer in AI is

a deep learning architecture. It has first prominence in the natural language

processing (NLP) field, getting some good achievements in the NLP field, such

 8

as the introduction of ChatGPT. Recently, Transformer-based object detection

methods have shown some good potential, indicating that they may replace

traditional CNN object detection methods (Arkin, et al., 2022). For example, the

paper 'End-to-End Object Detection with Transformers' introduces a new target

detection model, DETR, based on the Transformer architecture. The key idea

behind DETR is to approach object detection as a direct ensemble prediction

problem, where the model predicts bounding boxes and their corresponding

object classes simultaneously in an end-to-end manner (Carison, et al., 2020).

Now, many new DETR object detection models are developed, like RT-DETR,

Efficient DETR, Deformable DETR, etc.

2.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN), is one of the deep learning algorithms.

It is found that it was excellently tailored for tasks in recognition and image

processing. Thus, it is used in many sectors about image analysis, such as facial

recognition, image classification and object detection (Alzibaidi, et al., 2023).

CNN consist of several layers, which are fully connected layers, pooling layers,

and convolutional layers. All these layers are used to help in the extraction of

image features, empower CNN to recognize objects or characteristics within

images without being reliant on their specific positions, thereby effectively

diminishing the intricacy of the network (Patel and Patel, 2020).

The core concept of CNN lies in convolution and filter utilization.

Convolutional layer filters are applied to the input images, then these filters will

move across the images to generate feature maps that capture specific attributes

of the images. All these filters worked together simultaneously to detect diverse

visual features in order to get the complete attributes' information of the input

images. Besides that, pooling techniques are used to decrease the dimensions of

feature maps but retain the critical features of the input images. Not only that,

some pooling like average and max pooling are also used to achieve spatial

down-sampling, improving computational efficiency and avoid the over-fitting

problem. Furthermore, activation functions introduce non-linearity into the

system, it allows the CNN to handle some complex feature connections. Popular

activation functions like tanh, sigmoid, and ReLU have different benefits,

 9

limitations, and characteristics, affecting the network's learning process (Zhao,

et al., 2019).

Over the years, CNN architecture has been improved a lot. Prominent

models such as LeNet-5, AlexNet, VGGNet, and ResNet, as well as variations

like MobileNet, DenseNet, and InceptionNet have played significant roles in the

field of computer vision (Zhao, et al., 2019). All these architectures are designed

to solve specific problems of computer vision tasks. Additionally, CNN has also

found that it can be used in many applications besides image classification. They

do well in object detection tasks, where they can classify and give the precise

location of the objects in an image. Besides that, semantic segmentation allows

CNN to assign class labels to each pixel, facilitating detailed scene analysis

(Galvez, et al., 2018).

As a short summary, CNN is very important to the world now as it is

applied to many applications. These include healthcare, agriculture, retail,

security, entertainment etc.

2.3 Overview of Faster R-CNN

Faster R-CNN is a object detection model that improved from its predecessor,

RCNN (Region-based Convolutional Neural Network). Proposed by Shaoqing

Ren, and his team in 2015, Faster R-CNN aims to achieve real-time object

detection performance while maintaining high accuracy.

Faster R-CNN's primary breakthrough centers on the incorporation of

the Region Proposal Network (RPN) directly into the object detection

framework. Unlike RCNN which relied on external region proposal methods

like selective search, Faster R-CNN seamlessly generates region proposals as

part of the network, eliminating the need for time-consuming external processes

(Ren, He, Girshick and Sun, 2016).

The Faster R-CNN architecture comprises two primary modules: the

Region of Interest (RoI) Pooling and the Region Proposal Network (RPN). The

RPN is a streamlined neural network that utilizes an identical backbone as the

object detection network, such as ResNet. It operates on the feature maps

extracted from this backbone and adeptly produces region proposals, which

denote potential bounding boxes expected to encompass objects of interest.

These proposals are generated based on anchor boxes, predefined bounding box

 10

shapes with different aspect ratios and scales. The RPN predicts the offset and

size adjustments for each anchor box to generate the final region proposals (Ren,

He, Girshick and Sun, 2016).

Once the region proposals are generated by the RPN, they are passed

through RoI pooling, a process that extracts fixed-size feature representations

from the proposed regions. These RoI features are then fed into fully connected

layers for object bounding box and regression classification. The classification

head uses softmax to predict the probability of each proposal belonging to

specific object classes, while the bounding box regression head refines the

locations of the proposals to improve localization accuracy (Ren, He, Girshick

and Sun, 2016).

Faster R-CNN's end-to-end training allows the network to learn region

proposals specific to the task, which enhances its accuracy and efficiency. By

seamlessly integrating the region, proposal steps into the network. As a result,

Faster R-CNN attains real-time object detection capabilities without

compromising its high level of accuracy (Ren, He, Girshick and Sun, 2016).

2.4 Overview of YOLO

“You Only Look Once” (YOLO) is a popular object detection model in the

computer vision field. It was first introduced by Joseph Redmon and his team

with the paper "You Only Look Once: Unified, Real-Time Object Detection" in

2015 (Redmon, et al., 2016). Currently, YOLO models can be said as the most

popular object detection models as it is light weight but high accuracy in

performance. One of its key advantages is that its object detection speed is fast,

making it accessible for predicting the objects in real-time (Gašparović, et al.,

2023).

First, YOLO will divides the image into a grid of NxN cells. In the

each grid, the YOLO will calculate the class probabilities and bounding box

parameters which include x, y coordinates, width and height. Finally, the class

prediction and the confidence score for the bounding box are amalgamated to

generate a conclusive score, signifying the likelihood that the bounding box

encompasses a specific object category (Redmon, et al., 2016).

 11

2.4.1 YOLOv5

YOLOv5 was the most famous version of YOLO until 2023. It was introduced

in 2020, and represents the fifth generation of the YOLO series, which has been

refined and improved to achieve good accuracy in real-time object detection

tasks. Because of its highly efficient and good performance, it quickly gained

popularity in the computer vision and deep learning communities due to its

exceptional speed and accuracy (Jocher, et al., 2022).

There are 3 main components in the YOLOv5 architecture, which are

backbone, neck, and a head. The backbone of YOLOv5 is CSP-Darknet53. This

backbone is essentially the convolutional network Darknet53 applied with a

Cross Stage Partial (CSP) network strategy. The next component is the Neck,

which includes Spatial Pyramid Pooling (SPP) and Path Aggregation Network

(PANet). In YOLOv5, a variant of Spatial Pyramid Pooling is used called SPPF,

and the Path Aggregation Network is modified to incorporate the CSPNet

strategy. Finally, the head component of YOLOv5 is responsible for the

concluding operations. It deploys anchor boxes on the feature maps and

generates the ultimate output, encompassing class predictions, bounding boxes,

and objectness scores. (Xu et al., 2021).

There are 5 models on the YOLOv5 with different sizes, which are n,

s, m, l, and x, followed by increase of parameters. Although the parameters are

different in each model, all the components remain the same in these 5 models.

Also, YOLOv5 makes use of the SiLU and Sigmoid activation functions, and

applies loss functions like Binary Cross Entropy (BCE) and Complete

Intersection over Union (CIoU) to compute different aspects of the model’s

outputs (Al-Smadi et al., 2023).

 12

Figure 2.1: Network Architecture of YOLOv5 (Xu, et al., 2021)

2.4.2 YOLOv8

YOLOv8, is an evolution of the YOLO object detection model, epitomizes a

cutting-edge CNN-based architecture for object detection. Although it does not

have an official paper, it is the latest iteration and integrates advancements in

architecture design and training techniques in order to achieve improved

accuracy and speed compared to its predecessors. YOLOv8 uses a modified

Darknet architecture as its backbone, and a few enhancements such as feature

pyramid networks (FPNs) and advanced data augmentation.

Developed by Jocher et al., YOLOv8 builds upon the foundation of the

YOLOv5 architecture with a series of enhancements and extensions introduced

by Ultralytics. These improvements mainly focus on the model scaling and

architecture adjustments detailed in the code and documentation are available

in the Ultralytics YOLOv8 repository. Furthermore, YOLOv8 also has several

improvements to other YOLO, such as enhanced feature representation, better

handling of small objects, and increased training efficiency. This makes the

YOLOv8 become the famous choice when choosing a real-time object detection

model.

 13

There are two main components in the YOLOv8 architecture, which

are a backbone and a head. The backbone of YOLOv8 is the C2f module,

inspired by the ELAN module. Besides that, a variant of Spatial Pyramid

Pooling is used in the backbone called SPPF. It is used to extract informative

features from images at varying scales. Finally, the head component of

YOLOv8 is responsible for the concluding operations. It deploys anchor boxes

on the feature maps and generates the ultimate output, encompassing class

predictions, bounding boxes, and objectness scores.

There are 5 models in the YOLOv8 with different sizes, which are n, s,

m, l, and x, followed by an increase in parameters. Although the parameters are

different in each model, all the components remain the same in those 5 models.

Below shows the parameters of each YOLOv8 model:

Table 2.1: YOLOv8 Models Information

Model FLOPs (B) Params (M)
mAPval (50-95) on COCO

val2017

YOLOv8n 8.7 3.2 37.3

YOLOv8s 28.6 11.2 44.9

YOLOv8m 78.9 25.9 50.2

YOLOv8s 28.6 11.2 52.9

YOLOv8m 78.9 25.9 53.9

 14

Figure 2.2: Basic Architecture of YOLOv8 (Agarwal, et al., 2023)

2.5 Overview of Transformer

In 2023, the Transformer could be said to be very popular. Maybe some people

haven't heard of it, but everyone definitely knows about ChatGPT. In fact, the

full name of ChatGPT is called Chat Generative Pre-trained Transformer, which

is the AI tool that runs on a Transformer architecture (Liu, et al., 2023).

Transformer is a machine learning model architecture that was first

introduced in the paper ‘Attention Is All You Need’ by Vaswani and his partners

 15

in 2017. There are two main components in the Transformer, which are encoder

and decoder. Unlike RNNs, the Transformer’s encoder and decoder use the

attention system to process the whole input at once and just focus on the interest

parts of the input. This makes the training time of Transformer reduced much

more than the RNNs (Vaswani, et al. 2023).

2.5.1 Self-Attention Mechanism in Transformer

Attention can be said as a key to the Transformer. Without it, the Transformer

would not be formed today. Attention layers are located in the encoder and

decoder parts. Before reaching the attention layer, the input text is first labeled

with a representative embedding. From each embedding, the encoder uses the

attention to generate a representative encoding, while the decoder does the

opposite, outputting the text (Vaswani, et al. 2023).

There are four stages in the attention system. In the first stage, the

embedded words in the sentence act as input and pass through the attention layer.

Then, it will produce 3 output vectors for each word, which are Queries, Keys,

and Values. Thus, there are N Queries, Keys, and Values for N words in the

sentence (Unzueta, 2022). Next, the attention layer calculates the score of each

word in the second stage. In order to calculate the score of all other words related

to each word, the query vector of the word needs to be multiplied by the key

vector to get the dot product. Then, the dot product is divided for the scaling

purpose(Vaswani, et al., 2023).

In the third stage, the dot product is applied a softmax function to make

their value between 0 and 1. After applying the softmax function, Transformer

focused on higher score embedding instead of lower score. Finally, the Value

vectors are multiplied by them to get the attention vector of each word. Because

of the softmax function, the higher scores are still higher, and the model is more

interested in them as the model defines them as more important words. Equation

(2.1) is as follows:

 16

V
d

QKsoftVKQAttention
k

T

)max(),,(=

(2.1)

where

Q = Query vector

K = Key vector

V = Value vector

dk = dimension of key vector

Note that each result vector depends only on the query for that word,

and also on the keys and values of all words in the sentence. This is why

attention is powerful in sequential tasks (Vaswani, et al., 2023).

 Furthermore, the attention system above is just a single-head attention,

there is a multi-head attention layer in the Transformer. The multi-head attention

splits more Value, Key, and Query vectors into six groups. Subsequently, these

six groups undergo identical self-attention procedures, with each procedure

referred to as a "head." Each head generates its own attention vector, which is

later combined into a unified vector before passing through a concluding linear

layer (Vaswani, et al., 2023).

2.5.2 Pipeline of Transformer

There are two main components in Transformer, an encoder and a decoder. In

the encoder, the model takes the sentence and vectorizes it, and then transforms

it using the attention mechanism. Besides that, the decoder does the opposite by

converting vectors to sentences. Here is the Transformer’s architecture:

 17

Figure 2.3: Architecture of Transformer (Vaswani, et al., 2023)

At the beginning, the input which is the sentence is sent to the input

embedding to transform the input word into an input embedding. Since the

Transformer lacks inherent sequential order like RNNs, the concept of

positional encoding is introduced to impart information regarding the specific

position of each word within the input sequence. It allows model to understand

the order of the input data (Gering, et al., 2017). Hence, the Transformer injects

a positional encoding into the word embeddings to determine the position of

each word in the sentences (Vaswani, et al., 2023).

 18

Then, the input embedding is sent to the multi-head attention in the

encoder. With this attention, the encoder employs attention to associate each

word with all other words and compute a score for each of them. After multi-

head attention, an attention vector is generated and combined with the original

input. This step is referred to as a residual connection. The output of it is then

subject to layer normalization, and the output is directed into a point-wise feed-

forward network for additional refinement. This network has two linear layers

separated by a ReLU activation function. Next, the input of the point-wise feed-

forward network was also added to its output and further normalized. Residual

connections help the gradients to move directly through the network, thus aiding

network training. Layer normalization is used to stabilize the network, thus

consistently yielding the necessary training time, and the attention output is

further processed using a point-wise feed-forward network, potentially giving it

a richer representation (Vaswani, et al., 2023).

 After the encoder, the output embedding of the encoder, which is

attention embedding, is sent to the decoder. However, it is sent to the second

stage attention layer instead of the first stage. In the decoder, there are point-

wise feed-forward network, three layer normalization, and two multi-head

attention layers that integrates residual connection after each sub layer. These

sub-layers exhibit behavior similar to those found in encoders, except for the

multi-head attention layers, which diverge in function. Since the decoder is

autoregressive, it takes its previous outputs as inputs, and also the attention

embedding from the encoder (Vaswani, et al., 2023).

 At the onset of the decoder phase, an input undergoes processing

through both an embedding layer and a positional encoding layer to acquire

positional embeddings. These embeddings are subsequently directed into the

initial multi-head attention layer, which calculates attention scores for the input

provided to the decoder. This multi-head attention layer operates with a slight

variation compared to its counterpart in the encoder. Here, a masking technique

is applied to prevent the decoder from accessing information about future tokens.

In this masking process, a matrix serves as a mask, aligning in size with the

attention scores and filled with values of 0 and negative infinity. When the

attention scores are combined with this mask, all the future tokens are assigned

negative infinity values. Thus, after the softmax function, all the negative

 19

infinities become zero, the decoder will ignore the future tokens as their scores

are zero (Vaswani, et al., 2023).

 In the second stage, the multi-head attention layer, the attention

embedding from the encoder is passed to here, but just the Query vectors and

Key vectors. The remaining Value vectors come from the first multi-head

attention layer. This second stage multi-head attention layer is used to decide

which encoder input is needed to put focus on. After that, the output embedding

from this attention layer is sent to the point-wise feed-forward network

(Vaswani, et al., 2023).

 Finally, the output of the final feed-forward layer is passed to a final

linear layer for classification purpose. The output of linear layers goes through

a softmax function to get a probability score between 0 and 1. This output of

the softmax function is sent back to the beginning of the decoder and acts as the

input of the decoder until an ‘End’ token is predicted (Vaswani, et al., 2023).

2.6 Residual Network (ResNet)

Nowadays, the Residual Network is getting popular, such as the ResNet-50

model. ResNet is a type of neural network that was developed by Kaiming He

and his team at Microsoft Research in 2015. ResNet was introduced to tackle a

critical issue that had been plaguing the training of very deep neural networks:

the vanishing gradient problem.

Deep neural networks consist of multiple layers of neurons, and they

are exceptionally effective at learning hierarchical representations of data.

However, as networks get deeper, they become more challenging to train. One

major issue that arises in deep networks is the vanishing gradient problem.

During training, the gradients which are derivatives of the loss with respect to

the network parameters are computed and used to update the model's weights.

In deep networks, these gradients can become tiny as they are propagated

backward through the layers. This leads to slow convergence, and in some cases,

training can stall completely (He, et al. 2016).

Then, ResNet introduced the concept of residual blocks. Instead of

endeavoring to directly learn the desired underlying mapping, residual networks

learn residual mappings. These residual mappings denote the disparity between

the sought-after output and the current prediction. By learning these residuals,

 20

ResNet aims to make it easier for the network to represent identity mappings

where the input matches the output. A residual block consists of two main paths:

the shortcut path and the identity path which is also known as the skip

connection. Let's break down how a residual block works (He, et al. 2016).

A typical convolutional layer followed by two Rectified Linear Unit

(ReLU) activation functions and two batch normalization layers. Instead of

directly passing the output of this convolutional layer to the next layer, ResNet

introduces a "skip connection" or "shortcut." This connection directly adds the

input of the block to the output. Mathematically, it can be represented as:

xxHxF −=)()(

(2.2)

where

F(x) = output of residual block

H(x) = output of the convolutional layers

x = input to the block.

This architecture allows gradients to flow freely during back

propagation because, in the worst case, if the convolutional layers fail to learn

anything useful, the skip connection will pass the identity mapping through,

ensuring that the gradient doesn't vanish (He, et al. 2016).

Besides that, ResNet architectures come at different depths, typically

labeled with numbers like ResNet-18, ResNet-34, ResNet-50, etc. For instance,

ResNet-18 has 18 layers, while ResNet-50 has 50 layers. The key difference

between ResNet-50 and ResNet-101 is the network's depth and complexity.

ResNet-101 has a deeper architecture with more layers and more parameters.

Although the increased depth can capture more complex features, the demands

on computing resources and data also increase. While ResNet-50 is already

known for its exceptional performance and computational efficiency, ResNet-

101 is typically reserved for scenarios where very high accuracy is required, and

there is access to sufficient datasets and computational resources. In practical,

ResNet-50 is a more popular choice due to its balance between performance and

efficiency (He, et al. 2016).

 21

Figure 2.4: Architecture of ImageNet (He, et al. 2016)

2.7 Detection Transformers (DETR)

DETR stands for "DEtection TRansformer," and it is an end to end object

detection model based on the Transformer architecture which was introduced in

the paper "End-to-End Object Detection with Transformers" by Nicolas Carison,

et al., published in 2020.

The key idea behind DETR is to approach object detection as a direct

set prediction problem, where the model predicts the bounding boxes and their

corresponding object classes simultaneously in an end-to-end manner. Unlike

traditional object detection methods that use anchor generation or non-

maximum suppressors, DETR uses a fully attention-based mechanism to predict

object instances directly from the input image (Carison, et al., 2020).

2.7.1 Pipeline of DETR

Three main components are in the DETR architecture, which are a simple Feed-

forward Network (FFN), Transformer’s Encoder-Decoder, and the

Convolutional Neural Network (CNN) backbone (Carison, et al., 2020).

Figure 2.5: Architecture of DETR (Carison, et al., 2020)

 22

 At the beginning, the pictures are sent to CNN for feature extraction,

like ResNet-50. Typically, the CNN has five max-pooling layers so that it will

produce a 2048 x W/32 x H/32 tensor where H and W are the height and width

of the picture respectively (Carison, et al., 2020). However, the Transformer

encoders can only process 1D input data instead of 3D input data. So, the feature

map tensor needs to pass through a 1x1 convolution to become a 2D feature map

and then collapse the spatial dimension into a single dimension (Carison, et al.,

2020). Thus, the 2D feature map can be transformed into a 1D input data, which

is a sequence of tokens that is suitable for Transformer encoders.

 Then, since the Transformer encoder cannot recognize the sequence of

the tokens, position encoding is added to the flattened feature map tokens before

entering the encoder. The encoder in DETR is not so different to the original

Transformer Encoder. However, there is a slight difference in the decoder part.

In the DETR Decoder, it does not need to do autoregressive like the original

Transformer’s Decoder. Instead, it just decodes the N objects, which are

normally 100, by using parallel decoding at each decoder layer (Carison, et al.,

2020).

 In order to produce the output embeddings from the DETR Decoder, a

fixed number of trainable inputs, which is normally 100 in DETR, are used for

the decoder. The trainable inputs are called object queries. These object queries

act as examiners and ask every certain region of the picture whether there is an

object in the certain region. Same as the encoder, the positional encoding needs

to be added to the object queries to differentiate N input embeddings since the

decoder is also permutation-invariant (Carison, et al., 2020).

 Lastly, DETR sends these output embeddings to the last stations, which

are classified FFN and bounding box FFN to classify the object and determine

the position of bounding boxes. FNN has a 3-layer perceptron which has a linear

projection, a hidden dimension d, and a ReLU activation function layer. All the

normalized width, height and center coordinates of the bounding box are

predicted by the FFN, while the class labels are predicted by its linear layer

using the softmax function. Given that the fixed-size set of N bounding boxes

often significantly exceeds the actual count of objects in the image, the

remaining objects with no classes are labeled as ‘No Object’ class or

‘Background’ class (Carison, et al., 2020).

 23

Figure 2.6: Architecture of DETR’s Transformer (Carison, et al., 2020)

Figure 2.7: Pipeline of DETR (Carison, et al. 2020)

2.7.2 Loss Function

DETR is a direct set prediction approach, which means that it must find a one-

to-one correspondence between the actual set of objects and the predicted set of

objects from the ground truth. Thus, DETR incorporates a matching loss

 24

designed to identify the optimal alignment between the predicted objects and

the ground truth objects (Carison, et al., 2020).

 The optimal bipartite matching function serves as the loss function,

representing a matching between the ground truth sets of objects and the

predicted sets of objects, each permuted among N elements, in a manner that

minimizes the associated cost. This function is defined as follows:

𝜎𝜎� = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖𝑚𝑚∑ ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝒴𝒴𝑖𝑖,𝒴𝒴�𝜎𝜎(𝑖𝑖)),𝜎𝜎 ∈ 𝔖𝔖𝑁𝑁𝑁𝑁
𝑖𝑖 (2.3)

where

ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝒴𝒴𝑖𝑖,𝒴𝒴�𝜎𝜎(𝑖𝑖)) = pairwise matching cost between ground truth 𝒴𝒴𝑖𝑖 and

prediction with index 𝒴𝒴�𝜎𝜎(𝑖𝑖)

𝒴𝒴𝑖𝑖 = (𝑐𝑐𝑖𝑖 ,𝑏𝑏𝑖𝑖)

𝑐𝑐𝑖𝑖 = target class label

𝑏𝑏𝑖𝑖 = ground truth box position and size (center coordinates x, y, height and width)

𝒴𝒴�𝜎𝜎(𝑖𝑖) = (�̂�𝑐𝑖𝑖 , 𝑏𝑏�𝑖𝑖)

�̂�𝑐𝑖𝑖 = predicted class

𝑏𝑏�𝑖𝑖 = predicted bounding box vector

𝜎𝜎(𝑖𝑖) = index within permutation of N

 The probability of target class is defined as �̂�𝑝𝜎𝜎(𝑖𝑖)(𝑐𝑐𝑖𝑖) for the prediction

with the index 𝜎𝜎(𝑖𝑖) , while the predicted bounding box loss is defined as

ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑖𝑖, 𝑏𝑏�𝜎𝜎(𝑖𝑖)). Thus, a Hungarian Loss function is formed:

ℒ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻𝑖𝑖𝑚𝑚𝐻𝐻(𝒴𝒴,𝒴𝒴�) = ∑ [−𝑙𝑙𝑙𝑙𝑎𝑎�̂�𝑝𝜎𝜎(𝑖𝑖)(𝑐𝑐𝑖𝑖) + 1{𝑚𝑚𝑖𝑖≠0}ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑖𝑖, 𝑏𝑏�𝜎𝜎(𝑖𝑖))]𝑁𝑁
𝑖𝑖=1 (2.4)

In fact, the log-probability has been downweight by the DETR author

by a factor of 10 when the 𝑐𝑐𝑖𝑖 = ∅, which means ‘No Object’ class. This can

avoid the imbalance of classes (Carison, et al., 2020).

 25

2.8 Real-Time Detection Transformers (RT-DETR)

RT-DETR is a new real-time target detection model from Baidu, and was

introduced in a paper ‘DETRs Beat YOLOs on Real-time Object Detection’ in

2023 (Lv, et al., 2023). It is designed for the implementation of end-to-end real-

time object detection with architecture of Transformer. In order to do so, it uses

an IoU-aware query selection mechanism and an efficient hybrid encoder,

resulting in very high performance in terms of accuracy and inference speed.

First, RT-DETR does not require post-processing steps like NMS, which

enables it to achieve a stable and efficient inference speed and achieve real-time

object detection tasks. Besides that, authors of RT-DETR have optimized the

interaction of AIFI and CCFM modules, improving the efficiency of the

attention mechanism to achieve faster training convergence. Furthermore, RT-

DETR also supports flexible adjustment of inference speed by changing the

decoder layer, which allows users to do it without retraining. Not only that, they

also provide a few versions of RT-DETR with different parameters and FPS,

allowing users to choose the most suitable version of RT-DETR based on the

computational power of their training platform.

In the paper, the authors also present empirical evaluations comparing

RT-DETR against real-time end-to-end object detectors like YOLO, PPYOLOE,

and Efficient-DETR, highlighting RT-DETR's superiority. Based on the paper,

RT-DETR-50 achieves an average precision (AP) of 53.1% and operates at 108

frames per second (FPS), while RT-DETR-101 attains 54.3% AP and 74 FPS

on COCO val2017. These results surpass YOLO detectors of comparable scale,

excelling in both speed and accuracy. Although RT-DETR shows results that

may beat YOLO, ongoing research and development in the field of object

detection continues, so YOLOv8 was trained in the study as a comparison for

RT-DETR.

 26

Figure 2.8: Basic Architecture of RT-DETR (Lv, et al. 2023)

2.9 Summary

Overall, the literature review conducted in this study has enhanced the

understanding of current object detection technologies. The architecture and

pipeline of Transformer have been understood clearly and helps the research

 27

smoothly. YOLO is one of the famous traditional CNN approach object

detection models. Then, a new object detection technology, DETR (Detection

Transformer) has been released which may beat the traditional CNN approach

object detection models like YOLO. Thus, a comparative analysis is being

conducted between the newest object detection model of the Transformer-based

architecture, RT-DETR, and the traditional CNN approach object detection

model, YOLOv8, which is the latest YOLO model.

 28

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses the work plan and the methodology used in this study

from the implementation of the models with the required software to hardware.

The flow of the implementation starts with a understanding of implemetation

method, software and hardware used, datasets exploration, models training for

object detection and system implementation methodology. Once all the training

of models finish, the performance of models are evaluated with some evaluation

metrics, which are recall value, mAP (Mean Average Precision), and FPS

(Frame Per Second).

3.2 Work Plan

Before conducting the implementation, the flow of the study is planned well and

accordingly to ensure the smoothness of the project. At the beginning, the topic

and objectives of this study are planned to understand successfully first in order

to do further research. Then, based on the topic and objectives, literature review

and term explorations will be conducted as planned in the following weeks.

During the literature review, some teaching guides on implementation models

on the Internet, like YouTube videos, will be watched to learn the way of

training the RT-DETR and YOLOv8 models for the custom dataset before

conducting the actual training. After understanding the implementation method

of the custom dataset training model, the Urban Zone Aerial Object Detection

Dataset will be acquired and prepared for model training. Training will

commence for both RT-DETR models (with ResNet-18 and ResNet-50

backbones) and YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m) using

the same standard dataset. Before start the actual traininf, all the parameters of

models will be fine-tuned first to ensure the models can be trained in the best

setting. Once all the training are finished, the models will be evaluated using

some evaluation metrics and their results will be recorded. Based on the results,

the performance of the models will be compared and discussed, to further

analyse their pros and cons. After all the models' performance finish evaluating,

 29

a poster summarizing the study's objectives, methodology, results, and

conclusions will be prepared, along with a comprehensive report detailing the

research process and findings. Both the poster and report will undergo final

review and refinement before submission.

3.3 Methodology

The methodology of the study closely follows the outlined work plan. All the

planned tasks are completed well before the date of schedule. The details of the

training configurations are introduced in a subchapter titled “Training

Configuration”. Figure 3.1 shows the overview methodology of the study:

Figure 3.1: Methodology of the Study

 30

3.3.1 Similar Studies

In this study, although there are fewer studies directly comparing RT-DETR and

YOLOv8, especially in the field of aerial object detection in urban areas, some

comparison of similar studies still provides us with some good insights. For

example, the study by Bak et al. compared the performance of RT-DETR with

other real-time object detection models, revealing its efficacy in coastal debris

monitoring (Bak, et al., 2023). Besides that, Aguilera et al. conducted a study

focused on evaluating deep learning models, including Mask-RCNN, RT-DETR,

and YOLOv7, with the aim of detecting and classifying blueberries (Aguilera,

et al., 2024). Some traditional metrics like mean average precision (mAP) and

the impact of partial occlusion on models' accuracy have been highlighted in

their paper.

3.3.2 Hardware

In order to train the object detection models at higher epochs and batch size, a

good specification of training platform is required. Hence, the training hardware

device used in this study is a NUC (Next Unit of Computing) equipped with an

external GPU RTX3080. The choice of NUC is because of its lightweight and

easily portable. During the actual testing phase, all the inferences were done by

CPU solely without the GPU. This is because the object detection models in this

study will usually be installed in mobile devices like drones which lack

computational power. This setup helps the inference evaluation be closer to the

real-world scenario of real-time inference on drones. Although the inferences

are done by CPU only, the training of the models still requires a GPU, which

can boost a lot in the training speed, reducing heavy training time. The eGPU

RTX3080 of the traning platform has a VRAM of 10 GB of memory. It is good

enough to train the lightweight object detection models. The specification of the

training platform is shown in Table 3.1.

3.3.3 Software

In the software, the operating system of the training platform is Linux Ubuntu

20.04. All the training and testing are done on the this Ubtuntu 20.04 operating

system. It provides a good deep learning environment for training the object

 31

detection models by offering a lot of tools and libraries associated with artificial

intelligence. Additionally, Ubuntu also supports some popular frameworks such

as TensorFlow, Keras, OpenCV etc.

 The main programming languages that are used in this study are Python

3 PyTorch and PyTorch Lightning. It is an open-source deep learning

framework which was developed by Facebook's AI Research lab (FAIR). It is

widely used in the field of artificial intelligence, especially deep learning. This

is because it provides a flexible computational graph, which makes it

particularly suitable for research and experimentation in artificial intelligence

and machine learning (NVIDIA, n.d.).

 However, bugs may be introduced when using PyTorch in a complex

system or using multi-GPU training. Then, PyTorch Lightning came out. It can

solve the problem by structuring the PyTorch code. PyTorch Lightning was

created by William Falcon and other professional researchers and PhD students.

It is also a lightweight PyTorch that simplifies the deep learning training models.

Thus, it can be used to standardize and organize PyTorch code by providing a

high-level abstraction and automating various engineering tasks so that the

process can be simplified.

Besides that, the GPU Acceleration Library used in the study are

CUDA 12.2 and cuDNN 8.8.1. CUDA is used to allow the GPU to do parallel

computing while cuDNN is used to optimize the deep neural network in deep

learning. Thus, they can improve the efficiency of training and inference. The

specification of the training platform is shown in Table 3.1.

 32

Table 3.1: Table of Specification of Training Platform

Name Specification

Operating System Ubuntu 20.04

GPU Acceleration Library CUDA 12.2, cuDNN 8.8.1

CPU Intel Core i7-10710U CPU @

4.70GHz

Memory 64 GB

GPU NVDIA GeForce RTX 3080 @ 10GB

Memory

3.3.4 Datasets

The training dataset was Urban Zone Aerial Object Detection datasets and

downloaded from the Kaggle. It was combined from three datasets by Sganderla,

which are Unmanned Aerial Vehicles Benchmark Object Detection and

Tracking (Du, et al. 2018), Vision Meets Drones (Zhu, et al. 2021), and Stanford

Drone Dataset (Robicquet, et al. 2016). This dataset has more than 180,000

images, which are split into three groups: "train" (training), "val" (validation),

and "test" (testing) files. The "train" file has a total of 131,119 aerial images

which are used to train the models. During the training, the model will learn

from the "train" (training) dataset, adjusting its parameters to minimize the loss

function. Then, the model is evaluated using the validation dataset for every

epoch of training, which consists of 28,085 not seen aerial images during

training. This validation step is very important as it helps to monitor the model's

generalization and prevent overfitting. The performance of the models can be

clearly observed every epoch whether the performance of model is getting worse

than previous epoch. Lastly, there are 27,934 aerial images in the "test" file.

They were used to further verify the models' performance after the completion

of training to double confirm the performance of the models. All the training

dataset images are captured from urban zones, focusing on four object classes:

person, small vehicle, medium vehicle, and large vehicle (Sganderla, 2021).

 33

3.3.5 Training Configuration

First, RT-DETR with backbone ResNet-18 was selected as primary model. It is

the lightest weight compared to other RT-DETR models. Because of its light

weight, it can do the object detection task well without excessive computing

overhead. Although the accuracy may decrease compared to heavier models, it

can use less computing resources to get the results faster. Hence, it is more well-

suited for deployment on resource-constrained devices commonly used in aerial

surveillance applications, especially doing real-time object detection tasks.

Furthermore, RT-DETR model with a ResNet-50 backbone was also trained to

provide a comparative analysis against RT-DETR-r18 and YOLOv8 models,

serving as a heavy model counterpart. On the other hand, YOLOv8n, YOLOv8s,

and YOLOv8m were chosed as the YOLO compared models as they represent

the three lightest variants in the YOLOv8 series, allowing for a comprehensive

comparison across the YOLOv8 architecture spectrum. Table 3.2 shows the

detailed information of each model parameters and FLOPs.

Table 3.2: Training Models Information

Model FLOPs(B) Parameters(M) Size (pixels)

YOLOv8n 8.7 3.2 640

YOLOv8s 28.6 11.2 640

YOLOv8m 78.9 25.9 640

RT-DETR-r18 60 20 640

RT-DETR-r50 136 42 640

In the training process, all the models were done training on a NUC

equipped with an eGPU RTX3080. All the images are resized to 640x640 pixels

to ensure consistency during the training. In general, a larger batch size of trainin

can result in improved training accuracy and quicker convergence, but it also

introduces a higher risk of overfitting. Based ont the research, YOLOv8 is good

training in batch size of 16 while RT-DETR is batch size of 4. However, due to

 34

insufficiency of GPU memory, only the YOLOv8m was unable to train in the

batch size of 16. Thus, YOLOv8m was trained in batch size of 8. Each model

was trained for 100 epochs equally to learn features relevant to object detection

in urban environments. After the training, all the trained models were evaluated

using the test image dataset, assessing their performance based on the recall

values, mAP (Mean Average Precision), and inference speed or FPS (Frame Per

Second). Based on the result of each model, a discussion of the result was done

to analyze each model's performance and the capability for real-world

deployment. Based on the research, the best optimizer for YOLO is SGD while

the RT-DETR is AdamW. Because of different optimizer, the initial learning

rate is also different. Table 3.3 shows the training parameters in each model.

Table 3.3: Configuration of Traning Parameters

Model

Initial

Learning

Rate

Learning

Rate

Scheduler

Batch

Size
Optimizer

YOLOv8n 0.01 0.01 16 SGD

YOLOv8s 0.01 0.01 16 SGD

YOLOv8m 0.01 0.01 8 SGD

RT-DETR-r18 0.0001 1 4 AdamW

RT-DETR-r50 0.0001 1 4 AdamW

 35

Figure 3.2: Flowchart of Models’ Training

3.3.6 Testbed

To simulate real-world deployment scenarios, in the evaluating phase, the

inference tasks was conducted without the eGPU RTX 3080, relying solely on

the CPU for processing. The performance of all the models were evaluated using

the test image datasets. The evaluation metrics used in the evaluating phase are

Mean Average Precision at an Intersection over Union (IoU) threshold of 0.5

(mAP(50)), mAP(50-95). Recall (R) and Frames per Second (FPS).

 36

Furthermore, a real-world urban zone video was used to further evaluate the

models' performance. This video was sourced from YouTube (CharlieBo313, et

al., 2021). The video was trimmed and left the first 30 seconds for testing

purposes. In the video, the feature footage was captured from a drone

showcasing a street view in Philadelphia. There are four classes of objects:

persons, small vehicles, medium vehicles, and large vehicles. The evaluation

tests were conducted in five models: YOLOv8n, YOLOv8s, YOLOv8m, RT-

DETR-r18, and RT-DETR-R50 to assess their performance with this specific

video.

3.4 Unified Pipeline of Real-Time Object Detection

The unified pipeline for aerial object detection in urban zones begins with the

intake of video sources, which includes aerial footage of urban areas. These

videos are then fed into RT-DETR or YOLOv8 object detection models, which

can identify and locate objects of interest, such as persons, small vehicles, and

large vehicles. Following the detection, the models extract the bounding boxes

corresponding to their identified objects. Then, a confidence threshold of 0.5 is

applied to the objects detected. If models detect the object with a confidence

score above the threshold, its bounding box and corresponding class label (e.g.,

person, small vehicle, or large vehicle) will be displayed. On the other hand,

objects with confidence scores below 0.5 will be ignored, and their bounding

boxes and class labels not shown. The whole detecting process continues for

each detected object, until the video ends. The output video with annotated

bounding boxes and class labels is then saved and presented as output. Not only

that, this pipeline also supports video streams as input so that the models can do

real-time object detection and tracking in urban zones.

 37

Figure 3.3: Unified Pipeline of Real Time Aerial Object Detection

 38

3.5 Gantt Chart

Timeline: 26th June 2023 to 19th September 2023

Figure 3.4: Gantt Chart Phase 1

Timeline: 29th January 2024 to 24th May 2023

Figure 3.5: Gantt Chart Phase 2

3.6 Summary

As a short summary, the work plan and the methodology have been successfully

implemented. There are 5 models being implemented in this study, which are

YOLOv8n, YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50. The

dataset used for training is Urban Zone Aerial Object Detection Dataset, which

is downloaded from Kaggle. This dataset is used to detect four classes, which

are person, small vehicles, medium vehicles, and large vehicles. It has more than

100k aerial images, which are sufficient to train the models. All the training

models are trained in a NUC with RTX 3080 eGPU. The operating system of

 39

the training platform is Ubuntu 20.04. All the models are trainied in 100 epochs

to ensure consistency. After all the models finish training, they are evaluated for

their performance using evaluation metrics such as recall value, mAP (Mean

Average Precision) and FPS (Frame Per Second). Lastly, these models were

further evaluated with a urban zone street view video to further verify their real-

world performance.

 40

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

After all the RT-DETR and YOLOv8 models were done training, they were

tested by doing inference tasks on tthe new test image dataset to evaluate the

performance of the models. Then, the models were also further assessed by

doing inference tasks on a street view video to further evaluate their real-world

performance. There are some evalutaion metrics used during this phase. They

are recall value, mAP(50), mAP(50-95) and FPS (Frame Per Second). The

performance results of the models are discussed in this chapter.

4.2 Evaluation Metrics

There are few evaluating metrics used in this study. First, one of the metrics is

recall rate (R). Recall (R) is a metric that shows how often the models identify

the true objects among all the current true samples. It is get by dividing the

number of true positive detections by the total number of ground truth objects

in the dataset. Conversely, precision (P) measures the proportion of correctly

identified positive objects out of all objects identified as positive by the model.

It is calculated by dividing true positives by the sum of false positives and true

positives. Both Recall (R) and Precision (P) can be expressed as follows:

𝑅𝑅 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁)
 (4.1)

𝑇𝑇 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
 (4.2)

where,
R : Recall
P : Precision
TP : True Positive
FN : False Negative
FP : False Positive

 41

Average Precision (AP) can be said as the most important metric for

evaluating the object detection model's performance. It is determined by

computing the area below the precision-recall curve, where precision values are

plotted against corresponding recall values at varying confidence thresholds. In

object detection, The mAP(50) shows a comprehensive assessment of the

model's accuracy. It considers a detection to be accurate if the IoU between the

ground truth and the predicted bounding box equals or more than 0.5.

𝐴𝐴𝑇𝑇 = � 𝑇𝑇(𝑅𝑅)𝑑𝑑𝑅𝑅
1

0
 (4.3)

𝑚𝑚𝐴𝐴𝑇𝑇(50) =
1
𝑁𝑁
� 𝐴𝐴𝑇𝑇𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (4.4)

where,
N : Number of Object Class

On the other hand, mAP(50-95) is also the mAP but the range of IoU

thresholds starts from 0.5 to 0.95, with an increment of 0.05. It corresponds to

the mean AP for over 10 IoU levels from 0.5 to 0.95 with a step size of 0.05

(0.5, 0.55, …, 0.95). Since higher IoU thresholds require stricter alignment

between predicted and ground truth bounding boxes, achieving high precision

becomes more challenging. By getting all the average precision values across

this range, it shows a more overall assessment in the performance of models

across various confidence levels of overlaping between predicted and ground

truth bounding boxes.

𝑚𝑚𝐴𝐴𝑇𝑇(50 − 95) =
1
𝑁𝑁
� 𝐴𝐴𝑇𝑇(50 − 95)𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (4.5)

Lastly, FPS (Frame Per Second) in this study represents the frame

generated by the models every second. Thus, it is also considered as the model's

inference speed. During the inference, when a model needs to use a lot of time

to do the inference for one frame, then its FPS will become lower. When a model

uses less time to make the inference, it can generate the output frame faster.

 42

Hence, its FPS becomes higher. Therefore, the higher the FPS, the faster the

model's inference speed, the smoother the output video generated. During the

evaluation, FPS is calculated by using 1000 divided by the total of the time of

preprocess, inference, and postprocess.

𝐹𝐹𝑇𝑇𝐹𝐹 =
1000 × 𝐹𝐹𝑎𝑎𝑎𝑎𝑚𝑚𝐹𝐹(𝑠𝑠)

𝐹𝐹𝐹𝐹𝑐𝑐𝑙𝑙𝑚𝑚𝑑𝑑(𝑠𝑠)
 (4.6)

4.3 Performance of Models in Evaluation Test

Once all the models are finished training, they are being evaluated their

performance using the test image dataset. This test image dataset has more than

27k images and is different from the training image dataset. Thus, it is good to

use to evaluate the models’ performance. The results of the evaluation are

collected in Table 4.1. This table compares the performance of each different

object detection model, including YOLOv8n, YOLOv8s, YOLOv8m, RT-

DETR-r18, and RT-DETR-r50 on the task of aerial object detection in urban

zones. Obviously, RT-DETR-r50 gets the best results among all the models with

a recall value of 0.86, mAP(50) of 0.904, and mAP(50-95) of 0.598.

Furthermore, RT-DETR-r18 exhibited promising results comparable to

YOLOv8m, yet with recall value of 0.83, mAP(50) of 0.874, mAP(50-95) of

0.560 and recall value of 0.82, mAP(50) of 0.880, mAP(50-95) of 0.592

respectively. On the other hand, YOLOv8n yielded the lowest performance

metrics among the models, getting recall value of 0.70, mAP(50) of 0.756, and

mAP(50-95) of 0.440. Meanwhile, YOLOv8s showed an enhanced performance

with recall value of 0.78, mAP(50) of 0.840, and mAP(50-95) of 0.529.

Additionally, among the detected object classes, the medium vehicle

class consistently achieved the highest mAP across all five models, followed by

large vehicle, small vehicle, and person classes. Specifically, the mAP(50) of

the medium vehicle class exceeded 0.9 in all models: 0.926 in YOLOv8n, 0.948

in YOLOv8s, 0.959 in YOLOv8m, 0.960 in RT-DETR-r18, and 0.966 in RT-

DETR-r50. However, for the person and small vehicle classes, only YOLOv8m,

RT-DETR-r18, and RT-DETR-r50 achieved an mAP(50) of over 0.8. The

mAP(50) for the person class in the five models were: 0.593 in YOLOv8n, 0.735

in YOLOv8s, 0.803 in YOLOv8m, 0.825 in RT-DETR-r18, and 0.872 in RT-

 43

DETR-r50. For the small vehicle class, the mAP(50) was: 0.643 in YOLOv8n,

0.769 in YOLOv8s, 0.829 in YOLOv8m, 0.809 in RT-DETR-r18, and 0.854 in

RT-DETR-r50. Regarding the large vehicle class, only YOLOv8n fell slightly

below 0.9 with an mAP(50) of 0.861. The mAP(50) of other models were: 0.909

in YOLOv8s, 0.928 in YOLOv8m, 0.904 in RT-DETR-r18, and 0.922 in RT-

DETR-r50. Detailed mAP(50) results for each object class in every model are

presented in Table 4.2.

Table 4.1: Results of Each Models

Models Architecture
Metrics

R mAP(50) mAP(50-95)

YOLOv8

n 0.70 0.756 0.440

s 0.78 0.840 0.529

m 0.82 0.880 0.592

RT-

DETR

r18 0.83 0.874 0.560

r50 0.86 0.904 0.598

Figure 4.1: Chart of Results of Each Models

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R mAP50 mAP50-95

Results of Each Models

YOLOv8n YOLOv8s YOLOv8m RT-DETR-r18 RT-DETR-r50

 44

Table 4.2: mAP(50) of Object Classes in Each Model

Models

mAP(50)

Person
Small

Vehicle

Medium

Vehicle

Large

Vehicle

YOLOv8n 0.593 0.643 0.926 0.861

YOLOv8s 0.735 0.769 0.948 0.909

YOLOv8m 0.803 0.829 0.959 0.928

RT-DETR-r18 0.825 0.809 0.960 0.904

RT-DETR-r50 0.872 0.854 0.966 0.922

Figure 4.2: Chart of mAP(50) of Object Classes in Each Model

4.4 Performance of Models in Video Processing

Besides the evaluation test using the test image dataset, the models were also

implemented to do object detection tasks on a video. This video was sourced

from YouTube, which captured a street view of Philadelphia from a drone. For

testing purposes, the video was trimmed and left the first 30 seconds. This video

contains various objects such as persons, small vehicles, medium vehicles, and

large vehicles, which align with the object classes of the trained models. Hence,

this video provided a suitable real-world scenario to assess the models'

performance.

0

0.2

0.4

0.6

0.8

1

1.2

YOLOv8n YOLOv8s YOLOv8m RT-DETR-r18 RT-DETR-r50

m
AP

(5
0)

Object Detection Models

mAP(50) of Object Classes in Each Model

mAP(50) Person mAP(50) Small Vehicle

mAP(50) Medium Vehicle mAP(50) Large Vehicle

 45

Figure 4.3: YOLOv8n Aerial Object Detection in Video

Figure 4.4: YOLOv8s Aerial Object Detection in Video

 46

Figure 4.5: YOLOv8m Aerial Object Detection in Video

Figure 4.6: RT-DETR-r18 Aerial Object Detection in Video

 47

Figure 4.7: RT-DETR-r50 Aerial Object Detection in Video

During the testing of model performance on the video, most of the main

objects were successfully detected. The most accurate of detected object classes

in the 5 models is medium vehicle class, then followed by large vehicle, small

vehicle and person. All the models could detect medium vehicles well, even the

lightest weight YOLOv8n. However, in YOLOv8n and YOLOv8s, the small

vehicle and person are not detected so perfectly. Sometimes, the models detect

the small vehicles as person or detect the person as small vehicles. This problem

also occurred in other models but with less frequency. In YOLOv8m, RT-

DETR-r18, and RT-DETR-r50, the models were mostly able to detect persons

and small vehicles, but errors were still present at times. For the large vehicle

class, YOLOv8n and YOLOv8s can detect a few large vehicles only, while

YOLOv8m, RT-DETR-r18 and RT-DETR-r50 can detect all the large vehicles

that appear in the video. However, RT-DETR-r18 and RT-DETR-r50

sometimes misidentify objects as large vehicles. Overall, the medium vehicles

can be detected well in all the five models. If the task is just detecting medium

vehicles on a street view, YOLOv8n and YOLOv8s are good enough to do so.

For detecting persons, small vehicles, and large vehicles, YOLOv8m, RT-

DETR-r18, and RT-DETR-r50 are preferable choices.

 Besides that, the FPS of each model was evaluated in this video testing.

The FPS was calculated by using 1000 divided by the total of the time of

preprocess, inference, and postprocess. After calculating, YOLOv8n had the

 48

highest FPS among all the models, which was 30.4 FPS. This was followed by

YOLOv8s, YOLOv8m, RT-DETR-r18, and RT-DETR-r50. Their FPS are 11.4,

5.5, 4.0, and 1.7 respectively. The RT-DETR-r50 had the lowest FPS among all

the models. The results of FPS are recorded in Table 4.2.

Table 4.3: FPS in Each Model

Models Architecture FPS

YOLOv8

n 30.4

s 11.4

m 5.5

RT-DETR
r18 4.0

r50 1.7

Figure 4.8: Chart of FPS in Each Model

4.5 Impact of FPS in Real-Time Object Detection

On the video processing, all the output videos of models are smooth even if their

FPS is low. This is because the models can do the inference tasks for all the

30.4

11.4

5.5
4

1.7

0

5

10

15

20

25

30

35

YOLOv8n YOLOv8s YOLOv8m RT-DETR-r18 RT-DETR-r50

FP
S

Training Models

FPS in Each Model

 49

frames of the video, albeit taking longer compared to models with higher FPS.

However, when FPS is low during real-time object detection tasks, the models’

inference speed may not be fast enough to follow the speed of video capturing.

As a result, the bounding boxes may blink, appear and disappear on the targeted

objects. This makes it more challenging for users to track moving objects,

especially considering these real-time object detection models are typically

installed on moving drones. Given that drones are in motion, all objects captured

by the drone appear to be moving as well.

4.6 Analysis on the Evaluation Results

According to the evaluation results, the RT-DETR-r50 has the highest

mAP and recall value but the lowest in FPS. This is because the RT-DETR-r50

is the heaviest model compared to others, it has more parameters and FLOPs,

resulting in more computational resources being required to progress. Hence, it

can detect objects more accurately but needs a longer time during the inference.

This phenomenon is also observed in all other models. The heavier the model

size, the longer the time taken for inference. Although the heavier models can

give a better performance in accuracy, the FPS of them are low due to their

slower inference speed. As a result, the YOLOv8n and YOLOv8s act as

lightweight models, their FPS could get higher than heavier models like

YOLOv8m, RT-DETR-r18, and RT-DETR-r50. Thus, YOLOv8n and

YOLOv8s are more preferable in real-time object detection applications since

their FPS are high enough to do real-time inference. However, the most

recommended model for real-time object detection applications is YOLOv8s as

it has high accuracy performance and sufficient inference speed. Because of

poor accuracy, the YOLOv8n is not a good choice for object detection tasks. On

the other hand, although heavier models like YOLOv8m, RT-DETR-r18 and

RT-DETR-r50 are not suitable for real-time object detection applications, they

are still preferable, especially in standard object detection tasks which focus on

accuracy rather than real-time processing speed.

Besides that, the reason why the medium vehicle class had the highest

mAP value is because of the dataset. The training dataset, Urban Zone Aerial

Object Detection Dataset used for training, contains a larger number of medium

vehicle objects compared to other classes. This larger number of medium

 50

vehicles in the training dataset allows the training models to learn effectively

and perform well in inference of medium vehicles. However, the performance

of the person and small vehicle classes was not as strong, especially the

YOLOv8n and YOLOv8s. This may be because the dataset contains fewer

people and small vehicle objects, causing the models to not train enough for

inference of these two classes. Another reason may be the person and small

vehicle objects are relatively small in the training image dataset. Because of

their small size, the training models are hard to extract useful feature maps from

the targeted objects, impacting their ability to train effectively. Furthermore, the

number of training epochs could not be high enough due to the time constraints.

The models have not yet reached the optimum performance. Luckily, this can

be easily solved in the future by increasing the training epochs in future studies.

4.7 Summary

Overall, all the RT-DETR and YOLOv8 models have their own pros and cons.

RT-DETR models show comparable results to YOLO models. Although the

lightweight models such as YOLOv8n and YOLOv8s show a supremacy

oinFPS performance, only the YOLOv8s has good performance in accuracy.

Hence, among all the five models, only YOLOv8s are well-suited to real-time

object detection applications. On the other hand, the heavyweight models like

YOLOv8m, RT-DETR-r18 and RT-DETR-r50 are preferable for standard

object detection tasks which prioritize accuracy over real-time processing speed.

The trade-off between recall value, precision score, and FPS becomes evident,

the strategy of selecting models are needed to be determined based on the

specific scenario requirements. Last but not least, RT-DETR and YOLOv8

models can be further integrated to get better performance, such as increasing

the training epochs, changing the model’s architecture, fine-tuning the training

hyperparameters, etc.

51

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the study successfully implemented two different models, RT-

DETR and YOLOv8, for aerial object detection. All the objectives of the study

have been achieved successfully. According to the results, YOLOv8s is the most

preferable real-time object detection model as it has high accuracy performance

(mAP 50-95 of 0.529) and sufficient inference speed (11.4 FPS) in real-time

object detection. In contrast, heavier models like YOLOv8m, RT-DETR-r18,

and RT-DETR-r50 are not suitable for doing real-time detection tasks as their

inference speeds are not fast enough to capture the speed of video capturing.

Although like that, the RT-DETR-r50 and RT-DETR-r18 models achieve high

mAP scores which are almost the same as YOLOv8m. Therefore, RT-DETR

showcases its potential for accuracy, which may beat YOLO, as indicated by

the title of the RT-DETR paper, "DETRs Beat YOLOs on Real-time Object

Detection". RT-DETR, although its inference speed is slower than YOLO, its

Transformer architecture shows a huge potential compared to tranditional CNN

approaches in object detecion, especially in accuacy performance. Therefore,

object detection models of Transformer's architecture still have high

development possibilities. They are just around the corner.

5.2 Recommendations for future work

Although the RT-DETR and YOLOv8 models have good performance in

accuracy, their performance can still be further improved. With the recent

release of YOLOv9, YOLOv8 is not the newest model of YOLO anymore. Once

the YOLOv9 becomes mature, it should have better performance than YOLOv8.

Thus, it is a good choice for training on the YOLOv9 model.

Besides that, because of time constraints, the training epochs of models

were set as 100 epochs only. Higher epochs of training are recommended as the

models may not have reached their optimal performance. Next, fine-tuning

hyperparameters of models is also recommended in future research, like tuning

52

the learning rate or optimizer. Furthermore, in future exploration, some AI

toolkit like OpenVINO is recommended as it can compress and simplify the

deep learning models so that these models can be installed in low computational

power devices.

Lastly, variant types of DETR models are released currently, like RT-

DETR, Efficient DETR, and Deformable DETR. Considering that DETR is an

evolving technology, ongoing research and development efforts may introduce

new features and optimizations. Thus, it is recommended to do research on a

new DETR model once it is released, as it has a huge potential to be evolved.

53

REFERENCES

Aitken, K., Ramesesh, V., Cao, Y. and Maheswaranathan, N., 2021.
Understanding How Encoder-Decoder Architectures Attend. arXiv preprint
arXiv:2110.15253.

Agarwal, K., Ashik Sanyo, M. S., Bakshi, S., Vinay, M., Jayapriya, J., & Deepa,
S. (2023). Performance Analysis of YOLOv7 and YOLOv8 Models for Drone
Detection. 2023 International Conference on Network, Multimedia and
Information Technology (NMITCON), 1-10.
doi:10.1109/NMITCON58196.2023.10276343.

Aguilera, C.A., Figueroa-Flores, C., Aguilera, C., & Navarrete, C. 2024.
Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity
Classification: Identifying Limitations and Proposing Future Improvements in
Agricultural Monitoring. Agriculture, 14(1), 18. doi:
10.3390/agriculture14010018.

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma,
O., Santamaria, J., A.Fadhel, M., Al-Amidie, M., and Farhan, L., 2021. Review
of deep learning: concepts, CNN architectures, challenges, applications, future
directions. Journal of Big Data, 8(5). https://doi.org/10.1186/s40537-021-
00444-8

Arkin, E., Yadikar, N., Muhtar, Y. and Ubul, K., 2021. A Survey of Object
Detection Based on CNN and Transformer. 2021 IEEE 2nd International
Conference on Pattern Recognition and Machine Learning (PRML), pp. 99-108,
doi: 10.1109/PRML52754.2021.9520732. IEEE.

Bahdanau, D., Cho, K. and Bengio, Y., 2016. Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473v7.

Bak, S. et al. 2023. Applicability Evaluation of Deep Learning-Based Object
Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8
and RT-DETR. Korean Journal of Remote Sensing. 대한원격탐사학회,
39(6_1), pp. 1195–1210. doi: 10.7780/KJRS.2023.39.6.1.2

Brüngel, R. and Friedrich, C., 2021. DETR and YOLOv5: Exploring
Performance and Self-Training for Diabetic Foot Ulcer Detection. 2021 IEEE
34th International Symposium on Computer-Based Medical Systems (CBMS),
pp. 148-153, doi: 10.1109/CBMS52027.2021.00063. IEEE.

Carison, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A. and Zagoruyko,
S., 2020. End-to-End Object Detection with Transformers. arXiv preprint
arXiv:2005.12872.

https://doi.org/10.3390/agriculture14010018.
https://doi.org/10.3390/agriculture14010018.
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8

54

CharlieBo313. 2021. Philadelphia Most Dangerous Area / Drone Footage.
YouTube. Retrieved from
https://youtu.be/nPTO6uxt1aE?si=iBVshvHwTccuiKVV.

Cordonnier, J., Loukas, A. and Jaggi, M., 2020. On the Relationship between
Self-Attention and Convolutional Layers. arXiv preprint arXiv:1911.03584v2.

Dosovitskiy, A., Beyer, B., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., and Jaggi, M., Heigold, G., Gelly,
S., Uszkoreit, J. and Houlsby, N., 2021. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. arXiv preprint
arXiv:2010.11929v2.

Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., Tian,
Q. 2018. The unmanned aerial vehicle benchmark: Object detection and
tracking. Proceedings of the European Conference on Computer Vision (ECCV),
Volume 1, pp. 370-386.

Fang, Y., Liao, B., Wang, X., Fang, J., Qi, J., Niu, J. and Liu, W., 2021. You
Only Look at One Sequence: Rethinking Transformer in Vision through Object
Detection. arXiv preprint arXiv:2106.00666v3.

Gašparović, B., Mauša, G., Rukavina, J., and Lerga, J., 2023. Evaluating
YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is
There Real Improvement?. 2023 8th International Conference on Smart and
Sustainable Technologies (SpliTech), pp. 1-4, doi:
10.23919/SpliTech58164.2023.10193505. IEEE.

Galvez, R., Bandala, A., Dadios, E., Vicerra, R. and Maningo, J., 2018. Object
Detection Using Convolutional Neural Networks, TENCON 2018 - 2018 IEEE
Region 10 Conference, Jeju, pp. 2023-2027. https://doi:
10.1109/TENCON.2018.8650517.

Gehring, J., Auli, M., Grangier, D., Yarats, D. and Dauphin, Y., 2017.
Convolutional Sequence to Sequence Learning. arXiv preprint
arXiv:1705.03122v3

He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778, doi: 10.1109/CVPR.2016.90.

Hussain, M., 2023. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its
Complementary Nature toward Digital Manufacturing and Industrial Defect
Detection. Machines , 11(7): 677. https://doi.org/10.3390/machines11070677

Jason, J., Anderies, Leonico, K., Islamey, J. and Iswanto, I., 2022. Investigating
The Best Pre-Trained Object Detection Model for Flutter Framework. 2022
IEEE International Conference on Internet of Things and Intelligence Systems
(IoTaIS), pp. 235-239, doi: 10.1109/IoTaIS56727.2022.9976010.

https://youtu.be/nPTO6uxt1aE?si=iBVshvHwTccuiKVV.
https://doi.org/10.3390/machines11070677

55

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y.,
Michael, K., TaoXie, Fang, J., imyhxy, Lorna, Zeng, Y., Wong, C., Abhiram V,
Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, … Jain, M., 2022.
ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation
(v7.0). Zenodo. https://doi.org/10.5281/zenodo.7347926

Kumar, A. and Srivastava, S., 2020. Object Detection System Based on
Convolution Neural Networks Using Single Shot Multi-Box Detector. Procedia
Computer Science, 171, pp. 2610-2617.
https://doi.org/10.1016/j.procs.2020.04.283.

Li, Z., Tian, X., Liu, X., Liu, Y. and Shi, X., 2022. A Two-Stage Industrial
Defect Detection Framework Based on Improved-YOLOv5 and Optimized-
Inception-ResnetV2 Models. Applied Sciences 2022, 12(2): 834.
https://doi.org/10.3390/app12020834

Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., He, H., Li, A., He, M.,
Liu, Z., Wu, Z., Zhu, D., Li, X., Qiang, N., Shen, D., Liu, T. and Ge, B., 2023.
Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of
Large Language Models. arXiv preprint arXiv:2304.01852v3.

Luong, M., Pham, H. and Manning, C., 2015. Effective Approaches to
Attention-based Neural Machine Translation. arXiv preprint
arXiv:1508.04025v5.

Lv, W., Zhao, Y., Xu, S., Wei, J., Wang, G., Cui, C., Du, Y., Dang, Q. and Liu,
L., 2023. DETRs Beat YOLOs on Real-time Object Detection. arXiv preprint
arXiv:2304.08069v2.

NVDIA. n.d. PyTorch. Available at: https://www.nvidia.com/en-
us/glossary/data-science/pytorch/ (Accessed: 11 September 2023))

O’Shea, K., and Nash, R., 2015. An Introduction to Convolutional Neural
Networks. arXiv preprint arXiv:1511.08458v2
Padala, A. and Malathi, P., 2022. An Optimized Object Detection System using
You Only Look Once Algorithm and Compare with Deep Neural Networks with
increased, 2022 International Conference on Sustainable Computing and Data
Communication Systems (ICSCDS), pp. 528-532, doi:
10.1109/ICSCDS53736.2022.9760988.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury Google, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang,
E., Devito, Z., Raison Nabla, M., Tejani, A., Chilamkurthy, S., Ai, Q., Steiner,
B. and Facebook, L., 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. arXiv preprint arXiv:1912.01703.

Patel, S., and Patel, A., 2021. In: Joshi, A., Khosravy, M., Gupta, N. (eds)
Machine Learning for Predictive Analysis. Lecture Notes in Networks and
Systems, vol 141. Springer. https://doi.org/10.1007/978-981-15-7106-0_52

https://doi.org/10.5281/zenodo.7347926
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://doi.org/10.1007/978-981-15-7106-0_52

56

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You Only Look
Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779-788, doi:
10.1109/CVPR.2016.91. IEEE.

Ren, S., He, K., Ross, G., and Sun, J., 2016. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. arXiv preprint
arXiv:1506.01497v3.

Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S. 2016. Learning social
etiquette: Human trajectory understanding in crowded scenes. European
Conference on Computer Vision, Volume 1, pp. 549-565. doi: 10.1007/978-3-
319-46484-8_33.

Sganderla. 2021. Urban Zone Aerial Object Detection Dataset. Kaggle.
Retrieved from https://www.kaggle.com/datasets/sganderla/urban-zone-aerial-
object-detection-dataset.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.,
Kaiser, L and Polosukhin, I., 2023. Attention Is All You Need. arXiv preprint
arXiv:1706.03762v7.

Wang, G., Chen, Y., An, P., Hong, H., Hu, J. and Huang, T., 2023. UAV-
YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for
UAV Aerial Photography Scenarios. Sensors, 23(16):7190.
https://doi.org/10.3390/s23167190

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan,
Y., Wang, L., and Liu, T., 2020. On Layer Normalization in the Transformer
Architecture. arXiv preprint arXiv:2002.04745v2.

Xu, R., Lin, H., Lu, K., Cao, L. and Liu, Y., 2021. A forest fire detection system
based on ensemble learning. Forests, 12(2), p.217.

Yao, Z., Ai, J., Li, B., and Zhang, C. 2021, Efficient DETR: Improving End-to-
End Object Detector with Dense Prior. arXiv preprint arXiv:2104.01318.

Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L. and Shum, H., 2022.
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object
Detection. arXiv preprint arXiv:2203.03605v4 .

Zhao, Z., Zheng, P., Xu, S., and Wu, X., 2019. Object Detection with Deep
Learning: A Review. arXiv preprint arXiv:1807.05511v2.

Zheng, D., Dong, W., Hu, H., Chen, X. and Wang, Y., 2023. Less is More:
Focus Attention for Efficient DETR. arXiv preprint arXiv:2307.12612.

Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling, H. 2021. Detection and
Tracking Meet Drones Challenge. arXiv preprint arXiv:2001.06303v3.

https://youtu.be/nPTO6uxt1aE?si=iBVshvHwTccuiKVV.
https://youtu.be/nPTO6uxt1aE?si=iBVshvHwTccuiKVV.
https://doi.org/10.3390/s23167190

57

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J., 2021. Deformable DETR:
Deformable Transformers for End-to-End Object Detection. arXiv preprint
arXiv:2010.04159v4.

58

APPENDICES

Appendix A: Figures

Appendix A-1: Training Code of RT-DETR

59

Appendix A-2: Training Code of YOLOv8

Appendix A-3: Evaluation Code of RT-DETR on Test Image Dataset

60

Appendix A-4: Evaluation Code of Yolov8 on Test Image Dataset

Appendix A-5: Detection Code of RT-DETR on Video

61

Appendix A-6: Detection Code of YOLOv8 on Video

62

Appendix B: Graphs

Appendix B-1: Precision-Recall Curve of YOLOv8n

Appendix B-2: Precision-Recall Curve of YOLOv8s

63

Appendix B-3: Precision-Recall Curve of YOLOv8m

Appendix B-4: Precision-Recall Curve of RT-DETR-r18

64

Appendix B-5: Precision-Recall Curve of RT-DETR-r50

	April 2024
	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES

	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope of the Study
	1.6 Limitation of the Study
	1.7 Contribution of the Study
	1.8 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Convolutional Neural Network (CNN)
	2.3 Overview of Faster R-CNN
	2.4 Overview of YOLO
	2.4.1 YOLOv5
	2.4.2 YOLOv8

	2.5 Overview of Transformer
	2.5.1 Self-Attention Mechanism in Transformer
	2.5.2 Pipeline of Transformer

	2.6 Residual Network (ResNet)
	2.7 Detection Transformers (DETR)
	2.7.1 Pipeline of DETR
	2.7.2 Loss Function

	2.8 Real-Time Detection Transformers (RT-DETR)
	2.9 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Work Plan
	3.3 Methodology
	3.3.1 Similar Studies
	3.3.2 Hardware
	3.3.3 Software
	3.3.4 Datasets
	3.3.5 Training Configuration
	3.3.6 Testbed

	3.4 Unified Pipeline of Real-Time Object Detection
	3.5 Gantt Chart
	3.6 Summary

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Evaluation Metrics
	4.3 Performance of Models in Evaluation Test
	4.4 Performance of Models in Video Processing
	4.5 Impact of FPS in Real-Time Object Detection
	4.6 Analysis on the Evaluation Results
	4.7 Summary

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations for future work

	REFERENCES
	APPENDICES

