
i

SCHOOL TEACHER-SUBJECT ALLOCATION

MANAGEMENT SYSTEM

DENNIS YAP JIAN YUAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Software

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for citations and

quotations which have been duly acknowledged. I also declare that it has not been previously

and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature :

Name : Dennis Yap Jian Yuan

ID No. : 20UEB03334

Date : 25/04/2024

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SCHOOL TEACHER-SUBJECT ALLOCATION

MANAGEMENT SYSTEM” was prepared by DENNIS YAP JIAN YUAN has met the

required standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Software Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Too Chian Wen

Date : 25/04/2024

Signature : -

Co-Supervisor : -

Date : -

iv

The copyright of this report belongs to the author under the terms of the copyright Act

1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due

acknowledgement shall always be made of the use of any material contained in, or derived

from, this report.

© 2024, Dennis Yap Jian Yuan. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Too Chian

Wen for her invaluable advice, guidance, and her enormous patience throughout the

development of the research.

In addition, I would also like to express my gratitude to my loving parents and friends

who had helped and given me encouragement.

vi

ABSTRACT

The timetable systems for allocating teachers to subjects have improved from only

digitalizing the management of timetable data to fully automating the timetabling process.

However, the timetabling solutions available in the market are still having some shortcomings,

leading to various issues that require solutions. So, the primary objective of this project is to

identify the existing problems in the similarly School Teacher Subject Allocation Management

Systems (STSAMS) used in public schools. Then, the project aims to propose optimal solutions

to enhance these systems, solving any weaknesses or issues they may currently face. This

project will build STSAMS as a web-based application in React.js that is equipped with API

server, database, and the allotment algorithm with the Scrum methodology. The algorithm that

will be used is Genetic Algorithm which has NP level of difficulty. So, requirement gathering

using multiple methods like interviews and system analysis will be performed the narrow down

the constraints used in the algorithm, while also lowering the complexity of the Genetic

Algorithm to reduce the time complexity. Not just that, Genetic Algorithm, a meta-heuristic is

also used to solve the clashing problem faced by existing system using deterministic algorithm.

The STSAMS in this project is evaluated by using user acceptance test and unit test. The UAT

results showed that STSAMS reached 75% user satisfaction level when the users are using the

application.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

CHAPTER

1 INTRODUCTION 1

1.0 Introduction 1

1.1 Background of The Problem 3

1.1.1 Literature Review 3

1.1.2 School System Analysis 3

1.2 Problem Statements 4

1.2.1 Problem Statement 1 4

1.2.1.1 Lack of Teacher’s Preferences 4

1.2.1.2 Proposed Solution 4

1.2.2 Problem Statement 2 6

1.2.2.1 Not Developed into Web Application 6

1.2.2.2 Proposed Solution 6

1.2.3 Problem Statement 3 8

1.2.3.1 Vague Functionality of Existing System 8

1.2.3.2 Proposed Solution 8

1.2.4 Problem Statement 4 9

1.2.4.1 Clashing Problem during Allocation Process 9

1.2.4.2 Proposed Solution 10

viii

1.3 Project Objectives 12

1.4 Proposed Approach 13

1.5 Project Scope 14

1.5.1 Teacher’s Modules 14

1.5.2 System Administrators’ Modules 14

2 LITERATURE REVIEW 15

2.1 Assessing the Determinants of Quality Allotment 15

2.1.1 Class Size and Composition 16

2.1.2 School Policy 17

2.1.3 Subject Area 18

2.1.4 Abilities 18

2.1.5 Summary 20

2.2 Allocation and Timetabling Algorithms 21

2.2.1 Existing Design Solutions 21

2.2.1.1 Brute Force Approach 21

2.2.1.2 Particle Swarm Optimization 21

2.2.1.3 Maximum Flow with Edmunds-Karp Algorithm 25

2.2.1.4 EA, Genetic Algorithm 28

2.2.2 Analysis and Comparison between Algorithms 33

2.3 Similar Existing Systems 36

2.3.1 FCVAC Course Allocation System 36

2.3.1.1 System Description 36

2.3.1.2 System Design 36

2.3.1.3 Application 37

2.3.2 WinJaws5 39

2.3.2.1 System Description 39

2.3.2.2 System Functionalities 39

2.3.2.3 Application 44

3 DEVELOPMENT METHODOLOGY & TOOLS 45

3.1 Introduction 45

3.2 Project Methodology 45

ix

3.3 Project Management Plan & Schedule 48

3.4 Verification / Test Plan 55

3.4.1 Objectives 55

3.4.2 Scope 55

3.4.3 Test Items 56

3.4.3.1 Frontend Web Pages 56

3.4.3.2 Backend API Routes 56

3.4.4 Features to be tested. 57

3.4.4.1 Allotment Sets 57

3.4.4.2 Annoucements 57

3.4.4.3 Classes 57

3.4.4.4 Static Timeslots 58

3.4.4.5 Study Hours 58

3.4.4.6 Subjects 58

3.4.4.7 Subject Distributions 59

3.4.4.8 Teachers 59

3.4.4.9 Teacher Preferences 60

3.4.4.10 Timetable Generations 60

3.4.4.11 Utilities 60

3.4.4.12 Venues 61

3.4.4.13 Venue Settings 61

3.4.5 Features not to be tested. 62

3.4.6 Entry Criteria 62

3.4.7 Exit Criteria 62

3.5 Project Tools 63

3.5.1 Hardware 63

3.5.2 Software 63

4 PROJECT SPECIFICATION 66

4.1 Requirement Discovery 66

4.1.1 Questionnaires 66

4.1.2 Virtual Interview 71

x

4.2 Functional Requirements Specification 72

4.3 Non-Functional Requirements Specification 81

5 SYSTEM DESIGN 82

5.1 Requirement Modelling 82

5.1.1 Use Case Diagram 82

5.1.2 Use Case Descriptions 83

5.2 User Interface Modelling 103

5.2.1 Storyboards 103

5.2.2 System UI Flow 112

5.3 Data Persistence Design 113

5.3.1 Entity Relationship Diagram (ERD) 114

5.3.2 Table Descriptions in ERD 115

5.4 Algorithm Design 124

5.4.1 Class Definition 124

5.4.2 Execution Flow 125

5.4.3 Execution Steps 126

5.4.3.1 Initialization 126

5.4.3.2 Fitness Evaluation 131

5.4.3.3 Selection 133

5.4.3.4 Crossover 135

5.4.3.5 Mutation 136

5.5 API Routes Design 137

5.5.1 Admins Tag 137

5.5.2 Announcements Tag 138

5.5.3 Classes Tag 141

5.5.4 Subject Distributions Tag 144

5.5.5 Dynamic Timetables Tag 146

5.5.6 Dynamic Timetabling Algorithm 147

5.5.7 Preferences Tag 149

xi

5.5.8 Allotment Sets Tag 150

5.5.9 Static Timeslots Tag 152

5.5.10 Static Timetables Tag 154

5.5.11 Static Timetabling Algorithm 155

5.5.12 Study Hours 156

5.5.13 Subjects Tag 158

5.5.14 Teachers Tag 162

5.5.15 Teaching Classes Tag 166

5.5.16 Venue Usages Tag 167

5.5.17 Venues Tag 168

6 SYSTEM IMPLEMENTATION 171

6.1 Authentication & Authorization 171

6.2 Data Management 174

6.3 Allotment Sets & Constraint Settings 184

6.4 Teacher’s Module 191

7 SYSTEM TESTING 193

7.1 Test Cases and Results for Frontend Webpages 193

7.2 API Testing 233

7.2.1 Overview 233

7.2.2 Test Executions and Results 235

7.2.2.1 Admins 235

7.2.2.2 Announcements 237

7.2.2.3 Classes 240

7.2.2.4 Subject Distribution 242

7.2.2.5 Dynamic Timetables 245

7.2.2.6 Static Timetables 246

7.2.2.7 Static Timetabling Algorithm 247

7.2.2.8 Study Hours 248

7.2.2.9 Subjects 252

7.2.2.10 Teachers 256

xii

7.2.2.11 Teaching Classes 261

7.2.2.12 Venue Usages 262

7.2.2.13 Venues 263

7.2.2.14 Allotment Sets 266

7.3 User Acceptance Test 268

7.3.1 Customer Satisfaction Survey 269

7.3.2 Test Results 270

7.3.2.1 Inexperienced User 270

7.3.2.2 Experienced User 272

8 CONCLUSIONS & RECOMMENDATIONS 274

8.1 Achievements 274

8.2 Limitations & Recommendation for Future Development. 275

REFERENCES 277

APPENDICES 283

1

1

CHAPTER 1

INTRODUCTION

1.0 Introduction

Living in a Fast-Paced World, the human population is increasingly adapting to the

automation methodology of solving problems optimally and sparking innovations. By taking

an example from the 4th industrial revolution, it utilizes robots to automatically produce goods.

This approach can be proven to improve productivity and provide economic benefits (Trauth-

Goik, 2021). Not just that, big data analytics are also one of the major components of Industry

4.0. It allows businesses to view trends and patterns from unstructured data. From this

processed information, companies can prepare in advance to prevent risk and take the initiative

to solve problems that are going to happen (Minellim, 2013). To further illustrate, problems

can be as simple as dropping sales. The companies will be aware of the issues so that they are

able to strategize and make decisions to mitigate or completely avoid loss of profit with these

trends. Despite the benefits that automation provides, there is still a minority who prefer the

old ways of completing tasks such as manual document filing, although it takes a lot of time

to retrieve desired information (MESHDS, 2021).

By referring to the previously mentioned statement, there are still a lot of management

systems that adopt semi-automated models. For example, the system that makes use of

machinery by integrating with human labor. Its purpose is to act as a catalyst to speed up the

work of an employee (Oosthuizen, 2022; jacqueline, 2022). Considering the School Teacher

Subject Allocation Management System (STSAMS), its traditional form of allocation is

dependent on the system administrators. This causes an issue to arise in which the teacher

doesn't have a role in affecting the teaching of subjects (Jain, 2019). For example, the system

administrator still has to manage the allotment manually as there is still a lack of automation

even though the traditional form of STSAMS provides digitalization for its user. However, this

is proven wrong by the rise of embedding algorithms into the STSAMS. For example, the most

widely used algorithm for timetabling issues is a genetic algorithm, a meta-heuristic algorithm.

The genetic algorithm is used due to its flexible nature as its design depends on its genetic

encoding which is the smallest unit of the algorithm.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301265/#B75

2

2

In a nutshell, the main direction of this project is to scout out the problems of existing

STSAMS in the market and in use by public schools. Then, an optimal solution can be proposed

to improve the systems in this study, while also solving its weaknesses or issues.

3

3

1.1 Background of The Problem

1.1.1 Literature Review

The problems are defined by studying similar STSAMS on the internet as there will be

a possibility in which there is not a solution yet to be introduced as a resolution specifically for

the allocation between teachers and subjects. For instance, by comparing the ideality and

reality, weaknesses of similar systems can be analyzed to determine the issues that will lower

the workflow efficiency and cause inconvenience to the users. Following that, solutions can be

implemented to solve the problems identified from the existing systems.

1.1.2 School System Analysis

 To get an insight into the real trend, the STSAMS of a school is studied and analyzed.

As an illustration, questionnaires can be distributed to the teachers to come out with a statically

proven problem faced by the teachers when using the school’s STSAMS. Other than that, an

interview can be done with the representative of the school to acquire the workflow on how

the school manages the allotment of teachers and subjects. From that, the workflow then can

be analyzed to find out the flaws so that it can be enhanced.

4

4

1.2 Problem Statements

1.2.1 Problem Statement 1

1.2.1.1 Lack of Teacher’s Preferences

Around the world today, people seek to have the freedom to choose; the power to make

decisions from multiple courses of action before them (Averill, 1973; von Neumann &

Morgenstern, 1944; Botti et al., 2023). The whole purpose of choice freedom is to let someone

be in control, to express free will, and without the influence of outsiders to decide their options

(Deci & Ryan, 1985; Wertenbroch et al., 2020). Despite that, the current existing School

Teacher Subject Allocation Management System (STSAMS) such as Free Evolutionary

Timetabling (FET) does not consider the role of teachers to affect the outcome of the

generated timetables. In the aforementioned systems, the system administrators are only the

ones that can decide teachers’ teaching subjects based on their expertise. So, this problem

statement considers what if the teachers have a more preferred subject to teach because their

teaching performance is affected by dissatisfaction and doubt about their ability to teach the

allocated subjects (Ayeni & Amanekwe, 2018).

1.2.1.2 Proposed Solution

As an illustration, a teacher can teach English, Mathematics, and History subjects, but

they have an ordered preference list of History, English, and Mathematics in descending order.

So, a new constraint regarding the consideration of teacher’s subject preferences will be added

to the implementation of the STSAMS managing algorithm, as a means to allow the teachers

to have a higher chance to teach their favored subjects. Instead of only allowing the teacher to

check for their allotment, functionality to decide their preferred subjects can be implemented

in the teacher’s view in the system.

5

5

Figure 1.2.1.2.1: Process of setting preferences.

As shown in Figure 1.2.1.1, firstly, the STSAMS is designed to enable the system to

get accessed from two sides such as the administrator’s login and teacher’s login. The users

will have an account to log into the system. After the users log into the system as a teacher, the

system will display the teacher’s user interface instead of the administrators. Then, the user

interface will include the options to choose between viewing allotment results or setting the

teaching preferences. Lastly, the saved preferences will be updated in the database, so that the

preference of each teacher can be seen and considered by the system administrator during the

allotment process.

6

6

1.2.2 Problem Statement 2

1.2.2.1 Not Developed into Web Application

Furthermore, it is becoming more common that organizations to make use of web

applications to run their business operations. This is due to the alluring benefits that it can

provide. For example, web applications allow their users to access the system concurrently as

it supports multi-user. Not just that, users can access the applications with different platforms

such as desktops, laptops, and mobiles which improves flexibility and mobility; the users can

access the system anytime and anywhere (SearchSoftwareQuality, n.d). In spite of that, there

are still a lot of existing systems such as FET that are running as local applications. For

STSAMS, this problem will affect the accessibility of its users including the teachers and

system administrators. This is because local applications require the system administrators to

save their changes on their computer as project files which causes them to be reliant and

dependent on the file saved on the device. Transfer of files is required when the system

administrators want to do their allocation work on other devices. Not to mention, sharing the

allocated subject with the teacher is difficult as the teachers need to get access to the device

that is installed with the system in order to view the subjects allocated to them. This is due to

the fact that the data is not stored on a central server.

1.2.2.2 Proposed Solution

A web application can be developed for the STSAMS using the client-server

architecture to support multi-user accessing, so that information can be shared between the

system administrator and teachers. This is actually because of the client-server model that

allows multiple users to get access to the same database simultaneously (Oluwatosin, 2014).

As can be seen in Figure 1.2.2.1 (Hamid, Abdulrahman & Khamees, 2020), there are a

total of 3 layers in the client-server architecture. For further illustration, the client layer will be

the devices that are being used by the teachers and system administrators to get access to the

application layer. This layer allows multiple users to access the STSAMS at the same time. In

addition, the application server layer of the architecture enables the teacher and system

administrator to do CRUD operations on the central server and the changes will be reflected

on each user’s side so that the data and information being accessed by users are the same and

unified. However, permission must be granted to the user wisely to ensure data integrity. For

7

7

example, teachers are only allowed to view the allotment result but are not allowed to modify

data in the database.

Figure 1.2.2.1: Client-server architecture

8

8

1.2.3 Problem Statement 3

1.2.3.1 Vague Functionality of Existing System

 The quality and the feasibility of a system are of the utmost importance to secure

customer satisfaction. The reason is that the quality of a system is determined by the

requirements that will satisfy them (Hussain et al, 2015). Nonetheless, the existing systems

such as both FET and aSc TimeTables have implemented a lot of functionalities into the

management systems. To give an example, the functionalities are including class-subject

allocation and teacher-subject allocation. For STSAMS, the class-subject allocation part of the

system is not necessary as it only focuses on the management between the teachers and

subjects. This is due to the fact that the class-subject allocation module can be said to be a

reverse requirement: the requirements that are preferred not to be added to the STSAMS by

the users (Mkpojiogu et al, 2016). As both Hussain et al. (2015) and Matzler et al. (1996) stated

that these requirements will cause user satisfaction to decrease. For instance, the extra

functionality in the system is not suitable for the school’s workflow, at the same time increasing

the learning curve of STSAMS’s users as there are more functionalities required to be

understood. Because of that, it will indirectly worsen the memory load of the users.

1.2.3.2 Proposed Solution

Therefore, interviews, questionnaires, and surveys can be prepared and done in public

schools to uncover the school policy and guidelines on the allocation of teacher-subject and

their workflow. Not just that, a study can be done to analyze the system that is currently being

used by the school to acquire its implemented modules and set both hard constraints and soft

constraints. The reason is that user requirements and system requirements can be designed

using the findings from the schools; they are vital to understanding the user’s needs. This is

because every school has a big difference in terms of timetable scheduling rules. For example,

some schools may allow two subjects to happen in the class at the same time. To further

illustrate, in some schools, the non-muslim students will usually attend the Moral Education

subject, while the Muslim students are taking the Islamic Studies subject. Covering users’

needs can be also defined as satisfying the client’s use cases or making sure that the developed

system is compatible with the workflow of the client. In other words, the documents are to be

used as a scope or control to ensure that the developed STSAMS is not unfinished or overdone.

9

9

1.2.4 Problem Statement 4

1.2.4.1 Clashing Problem during Allocation Process

In the 4th industrial revolution, humans utilize robots to automatically produce goods.

This approach can be proven to improve productivity and provide economic benefits (Trauth-

Goik, 2021). Big data analytics is one of the major components of Industry 4.0. It allows

businesses to view trends and patterns from unstructured data. From this processed

information, companies can prepare in advance to prevent risk and take the initiative to solve

the problem that is going to happen (Minellim, 2013). Nonetheless, a preliminary study done

at one of the public secondary schools in Malaysia which is the Sekolah Menengah

Kebangsaan Taman Ehsan (SMKTE) concludes that the system being used by the school;

WinJaws5 incorporated a type of deterministic algorithm. As stated by Rouse (2019) and Black

(2009), the deterministic algorithm does not include randomness and its solutions are always

similar when the inputs do not change. For example, using Winjaws5, two different generated

timetables have the same outcome with the same dataset as shown in Figure 1.2.3.1 and Figure

1.2.3.2 below.

Figure 1.2.3.1: First-Generated Timetable for Class 1PA.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301265/#B75

10

10

Figure 1.2.3.2: Second-Generated Timetable for Class 1PA.

Hence, a deterministic approach may or may not be able to address timetabling

problems effectively. If a deterministic method is applied to solve a problem but the solution

causes clashing, it could happen again if the algorithm is run again. This is because the system

administrator in SMKTE responsible to generate the timetables argued that the final result is

always needed to be modified to solve clashing problems. Because of that, the school has

decided to migrate to utilizing aSc Timetables.

1.2.4.2 Proposed Solution

1. A digitalized manual approach

The CRUD operations in STSAMS are not enough to improve users’ task completion

efficiency and effectiveness for the STSAMS. As for task completion efficiency and

effectiveness, CRUD provides better efficiency in completing tasks compared to distributing

teaching by paper. This is because doing addition, deletion, and modification to STSAMS is

much faster. Not to mention, the system administrator can view the information in a more

structured and cleaner way. However, it is not practical in scenarios where there are a lot of

11

11

subjects and teachers in the school. This is because the allocation process will become a lot

more complex as there are more combinations of subjects and teachers to be managed.

2. Inclusion of metaheuristic algorithm

 As an improvement, a type of metaheuristic algorithm can be built in the STSAMS to

do the scheduling for Teacher-Subject allocation. This is because, the truth is, creating an

optimal solution to the time management problem is a challenging endeavor (Osorio &

Esquivel, 2020). Similarly, Brownlee (2005) also mentioned that scheduling problems can be

classified as NP-hard, restrictive, and combinatorial optimization issues. So, it is difficult to

solve the timetabling problem if a determinist algorithm is used. As for solutions proposed by

people, Brownlee (2005), and Awad et al. (2022) used a metaheuristic algorithm to solve the

problem of scheduling, while Rossi-doria et al. (2003) compared the performance of multiple

metaheuristic algorithms.

12

12

1.3 Project Objectives

The project objectives are separated into two parts which are Part 1 and Part 2. Part 2

cannot start if Part 1 is still not completed. Then, the two parts have different starting times as

Part 2 starts after Part 1 ends. This project is directed to realize the following objective stated

below: -

Part 1:

1. Design and implement a prototype that shows the overall system modules stated on the

project scope in 12 weeks.

2. Compare different allotment algorithms to select the optimal algorithm for the allocation

process in STSAMS by 8 September 2023.

3. Examine systems that are similar to STSAMS to distinguish the problems that can be

enhanced by 8 September 2023.

4. Interview a public school to get an insight into the teacher-subject allocation in the school’s

context by 8 September 2023.

5. Assess different development methodologies to decide the suitable approach to development

for this project by 8 September 2023.

Part 2:

1. Design the important components of STSAMS such as the modules and user interfaces by

using UML diagrams, storyboards, and flowlines; used to show the navigation of different

pages on the website within 12 weeks.

2. Develop the STSAMS with the completed proposed modules both in teachers' and admins’

views within 12 weeks.

3. Test the STSAMS using unit tests, and user acceptance tests within 12 weeks.

13

13

1.4 Proposed Approach

This project will be using the Agile software development methodology specifically

the Scrum method to develop the STSAMS.

Figure 1.4.1: Scrum method life cycle

Figure 1.4.1 (Alsaqqa et al., 2020) illustrates the entire life cycle of the Scrum strategy.

The Scrum method is the optimal development methodology for this project because it is

compatible with the Work Breakdown Structure of this project. To explain why, Alutbi (2020)

has mentioned in the guidelines the Work Breakdown Structure is involving the process of

breaking down project activities or sub-activities into simpler, easier-to-handle tasks until the

activities are described in enough depth to facilitate project management and development.

Similarly, Mnkandla et al. (2004), and Cohen et al. (2003) stated that one of the advantages of

Scrum is that it can dismantle the software product tasks into smaller components to be brought

into the product backlog. For instance, STSAMS has a login module that can be broken down

into more details parts such as the login page for system administrators and teachers. Even

further, they can be divided into user interface design and backend which can include database

design and data validation for password inputs. As for the bad side of Scrum, it does not

provide any guidelines, practices, or application methods (Williams, 2010; Boehm and Turner,

2004). However, it can be turned into an opportunity because it can be tailored and modified

to fits the practitioner’s needs.

14

14

1.5 Project Scope

The project targets to realize a School Teacher-Subject Allocation Management System

(STSAMS) that encompasses a few modules in a web-based environment. Based on the

existing system on the market and analysis done on the Malaysian public schools’ timetabling

software, enhancement can be made to further improve the efficiency and effectiveness of

STSAM; the algorithm introduced is the core module that decides the quality of STSAM. This

system will allow the users to get access using the internet browser as it was mentioned

STSAMS will be developed in a web-based environment. The user that will be using the system

is the teachers and the system administrator.

1.5.1 Teacher’s Modules

The teachers can log in to the system through a teacher account. After logging in, the

teachers are able to update their information such as name, date of birth, majors, and so on in

their profile. These changes then will be reflected in the database for the system administrators

to manage and analyze teacher’s data. Other than that, teachers can also set their teaching

preferences in the system to ensure a higher chance of teaching the selected subjects ordered

by priority.

1.5.2 System Administrators’ Modules

As for the system administrators, they can log into the system using an administrator’s

account which is a superuser account. They are to access the system to view the list of teachers,

subjects, and classes. Then, they are responsible to create a teacher’s account for the new

teachers to log in with. After creation, the teacher’s information will be left empty for the

teachers to fill. If the teacher is logging in for the first time, they are required to set a new

password to ensure security. Furthermore, the system administrators can change the content of

this system. For example, they can add, update, and delete teachers, subjects, and classes. On

top of that, the system will also provide filtering and sorting of the information for the system

administrator to do analysis and searching. As for the most important part of the system; the

scheduling, the system administrator can generate allocations by setting the hard constraints

and software constraints for the algorithm in the system to consider while generating the

allocation. For instance, constraints can be the maximum of subjects that a teacher can teach

per day or the number of consecutive teaching subjects at the time. After the generation, the

system administrator can export the results and also confirm to display the results to all teachers

using the system in the teacher’s user interface.

15

15

CHAPTER 2

LITERATURE REVIEW

2.1 Assessing the Determinants of Quality Allotment

Before diving into the details of scheduling methodologies, functionalities of the

system, as well as how scheduling systems are enhanced to increase the productivity of its

users, it is a must to first consider the theory and the factors behind the workload of teachers

that affects teaching’s performance, in which that is also directly related to the quality of the

arranged schedule of teachers. To further illustrate my point, Ayeni et al (2018) stated that

there are six components of related workload determinants as shown in Figure 2.1.1 below.

Figure 2.1.1: Conceptual framework of workload determinants.

To ensure the quality of teachers’ subject scheduling, it is of utmost importance that

the assigned tasks to the teacher must be both efficient and effective to the teachers. In this

project, there are four factors that we will put our scope on, which are the class size and

composition, school policy, subject area, and abilities. Why the other two factors are not

considered as the factor in the study due to reasons firstly, STSAMS’s main aim is not to

increase or evaluate scheduling quality based on the working condition and teaching staff

strength. This is due to the fact that working conditions vary from school to school in different

locations such as in rural or urban areas, while also teaching staff strength is dependent on the

16

16

quality of teachers hired and trained by different schools. Henceforth, STSAMS will only take

into consideration the constraint that may affect the quality of scheduling outcomes

significantly.

2.1.1 Class Size and Composition

 First and foremost, class sizes are vital to the success of a quality allotment. This is

because Ayeni et al (2018) argued that a large ratio between teachers and students may lead to

poor performance in both students and teachers. Other than that, it will cause an ineffective

workflow in the school. As to why teachers will have poor performance, Peter and Ligembe

(2022) analyzed that in a total of 30 teachers, 83% of them voiced out that their performance

is affected by larger class sizes as shown in Figure 2.1.2.

Figure 2.1.2: Perception of Teachers on the Effects of Large Class Size

This is because they found out that teachers face difficulty managing and teaching

effectively in large classes, as they are unable to focus on every student in the class. For

instance, teachers are hardly able to remember the students' names in a large class (Ayeni et

al., 2018). Directly, the students are not properly guided in all classes as there is also a limited

number of times each class period, leading to bad academic achievements. In another study,

Nakamura and Dev (2022) similarly stated it is known to teachers and parents that smaller

classes benefit students in terms of attention. Furthermore, it is discovered that the parents are

more likely to have a one-on-one meeting with the teachers to solve student curriculum

problems in a less crowded classroom, while also improving the bond between teachers and

parents (Bascia et al., 2010).

17

17

2.1.2 School Policy

 The school policy also plays a crucial role in determining the quality of the teacher-

subject allotment. To give a few examples, the school officials are responsible for setting the

policies such as the following: -

- Minimum or maximum teaching hours per week.

- Duration of each class period.

- Student study hours or teacher teaching hours per day.

It is necessary to take these school policies into account in the process of allotment, as

a result of a study done by Stacey et al. (2023) has shown in Figure 2.1.3 that 89 out of 100

teachers agreed and strongly agreed that teaching and learning are affected by the heavy

workload. This is because school policies of teachers or teachers’ job scope can also include

administrative jobs, and different positions in school such as the treasurer, secretary, subject

coordinator, and teacher-in-charge for co-curricular societies and clubs.

Figure 2.1.3: Work reported to hinder teaching and learning.

 Hence, over-assignment will lead to career dissatisfaction, and eventually teachers will

lose interest to focus on teaching the student. To support my point, Jomuad et al. (2021)

concluded that teachers will face burnout by working more than the expected time, mostly

affecting their career satisfaction in the result shown in Figure 2.1.4. Nonetheless, the teachers

still tried their best to finish their assignments, producing a good performance. As a suggestion,

a balanced workload should be given to the teachers by the school authorities to ensure work-

life balance even though the teachers are able to cope with the intense working environment.

18

18

Figure 2.1.4: Level of Burnout Experience of the Teachers

2.1.3 Subject Area

 To better understand the subject area, it can be defined as the level of cognition that a

certain subject requires. Because of the high cognition, putting gap periods in between these

subjects could increase the quality of a schedule and also be less tiring to teach. Ayeni et al.

(2018) claimed that subjects such as Science, Mathematics, and English are exhausting for

teachers to undertake as it is very complex and requires higher cognitive power compared to

subjects such as Physical Education. This is because these highly cognitive subjects are based

on Bloom’s Taxonomy as shown in Figure 2.1.5 sketched by Adams (2015). For example,

Howley-Rouse (2021) showed that Science and Mathematics subjects require an understanding

of certain concepts. By understanding the basics, the learners are able to integrate different

small solutions to solve complex problems that will vary in context.

Figure 2.1.5: Bloom’s Taxonomy

Other than the three subjects, Lavrijisen, et al. (2021) also classified more subjects such

as Engineering, History, Economics, and many more in their research. As to why these subjects

are exhausting to be taught, teachers are required to prepare more learning materials such as

visualizations, mind-mapping, and remembering techniques for students to ease learning

(Ayeni et al., 2018). Lazarides et al. (2019) said that teachers that are passionate about their

subjects are likely to increase their pupils’ interest in these subjects. Long story short, adopting

resting times between cognitive-heavy subjects benefits both teachers’ teaching and students’

learning, thus improving the standard of the Teacher-Subject allocation.

2.1.4 Abilities

Lastly, assigning the right person to the right post is the most vital item to further

increase schedule quality. As it ensures tasks are completed effectively and in a fast manner.

19

19

For example, Guerriero (2017) argued that a teacher's knowledge of the subject matter and

instructional material plays a crucial role in ensuring that the students receive excellent

guidance and information; hence achieving excellent academic performance. From this, we

can know that Science teachers, for instance, are unable to teach Science subjects if they do

not have the fundamentals of it or specialized in it. Similarly, Jeschke et al (2021) also stated

that Mathematic teachers have a specialized understanding of the subject, encompassing both

teaching and content knowledge. Their comprehensive knowledge of the topic enables them to

adapt training to each student's requirements and successfully teach difficult mathematical

concepts. Not just that, Math instructors have training and experience in teaching mathematics

as they need to pass teaching school, which includes an understanding of successful teaching

practices, evaluation processes, and subject-specific classroom management procedures. They

can design exciting and successful learning experiences for pupils thanks to their knowledge.

To realize the aforementioned factor, a module to sort teachers into compatible teaching

subjects should be designed according to their major in their studies.

20

20

2.1.5 Summary

 After diving into the necessary factors that define a quality allotment, a few constraints

that can be included to the timetabling algorithm design of STSAMS can be came out with.

Not just that, the system administrators are also allowed to make some value adjustments to

the constraints. The possible constraints are shown in Table 2.1.1 below:

Table 2.1.1: Possible constraints that can be derived from the factors.

Factors Constraints

Class Size & Composition - Number of students per class.

School Policy - Minimum or maximum teaching hours

per week.

- Duration of each class period.

- Student study hours per day.

- School teaching starting time & ending

time.

- School Non-Teaching Time (e.g., Recess

Time, Rollcall)

- Teacher’s empty time for activities

outside of teaching.

- Maximum number of consecutive class

periods.

Subject Area - Gaps between class periods for certain

subjects.

Abilities - Subjects that can be taught by each

teacher.

21

21

 2.2 Allocation and Timetabling Algorithms

Although the adoption of digitalization of teacher-subject allocation workflow has

bring convenience to the schools, but it is still not efficient enough to support scalability. To

give an illustration, using the 2 to the power of N, if there were 5 subjects in a school, the total

number of timetable combinations would be 32. However, what if there will be 100 subjects

in a school to be taught? It is impossible for the school to allocate all of them. Hence, to make

the system more efficient, algorithms can be implemented in the process of subject allocation

to find the best allocation. For example, genetic algorithms are very popular in solving

scheduling problems.

2.2.1 Existing Design Solutions

Before making decisions on the selection of algorithms, it is fair that existing algorithm

design solutions must be first thoroughly studied and compared to find out the resolution that

best fits STSAMS. At the same time, clever designs can be also extracted from the studied

solutions to create great ideas for STSAMS.

2.2.1.1 Brute Force Approach

 Brute Force is a popular and commonly used algorithm to solve many kinds of

problems including timetable scheduling as it is very simple to be developed. For example,

brute force technique is also used in password cracking by assessing all combinations of

passwords until the solution is found. Generate all possible combinations of allocating the

teacher to different subjects. Not an optimal solution to find the best combination as brute force

algorithms scale significantly more than genetic algorithms with the population size, in this

case total classes assigned with teachers.

2.2.1.2 Particle Swarm Optimization

 Particle Swarm Optimization is a type of meta-heuristic algorithm that is simulating

the flocking of birds and schooling of fishes. Tassopoulos, et al. (2012) has designed and

showed their implementation of PSO in school timetabling system for teachers and subjects.

The implementation of the algorithm is accomplished with the help of hard constraints & soft

constraints to achieve optimal scheduling. In their context, the school will be changing their

timetable every week by using the timetable scheduling. It defines “time period” as each

22

22

teaching hour in a week. For an instance, if school time is starting at 9 a.m.to 5 p.m., that means

there are a total of 8 time periods. In another study, Chu, et al. (2012) have shown results to

prove that PSO has significantly reduced the computational time needed to find the solution

than the commonly used Genetic Algorithm. This is due to the fact that it can produce almost

the optimal solution in lesser evolution compared to other heuristic algorithms. However, there

will not be an algorithm that is without its cons, as the main concern of the system that

embedding PSO is the business rules. Tassopoulos, et al (2012) categorized constraints; also,

can be seen as business rules into two components which are the hard constraints and soft

constraints. The constraints are segregated as below in Table 2.2.1.2.1:

Table 2.2.1.2.1: Constraints used.

Type of Constraint Constraints

Hard Constraint - Teachers’ day availability.

- Teachers’ hour availability.

- Classes’ hour availability.

- Classes’ empty hours.

- Teachers-classes-lesson assignment.

- Co-teaching cases.

- Subclasses cases.

Soft Constraint - Teachers’ teaching hours’ dispersion

- Teachers’ empty hours

- Teachers’ empty hours’ dispersion

- Classes-lessons dispersion

To keep track of all record defining the relations between lessons, teachers, and classes,

they have utilized multidimensional arrays by storing binary values. The integer 1 or Boolean

of true will be used to represent hitting the constraints, otherwise integer 0 or Boolean of false

shows off-target. Other than that, costing system also been used to calculate the seriousness of

constraints violations. These costing systems usually are only applied to the soft constraints,

as soft constraints decide the quality of a schedule, while hard constraints adherence is a must

to display the schedule feasibility.

23

23

2.2.1.2.1 Algorithm Design

Figure 2.2.1.2.1: Particle encoding.

1. Initializing the population of particles. In this case, the system designed the particle

encoding to be a complete timetable allocation in a matrix form as shown in Figure

2.2.1.2.1 (Tassopoulos, 2012). For example, X is an array of particles, P is the number

of currently accessing particle, C is the classroom number, and finally T representing

the timeslot number in the timetable. To access the 3rd timetable slot of class number

10 and the 5th particle, the array is called as “X [5][10][3]”. Then, value of the array is

the teacher assigned to the timeslot of a particular class.

2. Deciding stop condition such as number of generations need to be iterated.

3. Evaluating the particle’s fitness. Then, eliminate “weak” particles using a defined

tolerance factor.

Tolerance = xx1 + xx2 * global_best_fitness

xx1 = ((current generation*10 + 1) *10.0)/ (10000 − current generation)

xx2 = xx2 + 0.002375

If particle’s fitness is more than tolerance, then it will be deactivated. A deactivation of

a particle means that the particle is eliminated. This approach is documented by the

authors that it is the fastest way to get rid of the non-fit particles.

4. Updating personal best matrix, personal best fitness of current active particles if the

fitness is better than previously set fitness. Then, if the fitness is better than the global

fitness, update it as the best global matrix and fitness. As to how the better fitness

particles are measured, the fitness particles in lower value are seen as the better ones.

5. Applying transformation to the active particles to produce a potentially better particle.

24

24

- S = Transform the particles by swapping two randomly chosen timetable slots for

current active particle.

- W = Transform S with its own personal best matrix of current active particle.

- Perform other necessary transformations with the global best matrix to produce the

new global best.

6. Evaluating fitness of the particle. Then, update global fitness value if it is better than

the previous best global fitness.

7. Repeating 3rd-6th process until stop condition.

Long story short, it is applying the main concept of PSO by implementing the

encodings, then deciding the methodology to evaluate the fitness of the encodings. Iterating

through all of the encodings to find the best among them, while also implementing variation

with mutations, swapping, and transformations to increase the chance of producing best new

solutions. Finally, it is decided by the algorithm creator as when to stop the algorithm.

2.2.1.2.2 Algorithm Application

 In relation to the use case in Malaysia, classes’ empty hours which also means time

period that a classes does not have lessons can be applied with the rollcall time every first

period of school on Monday, recess time provided by the school; usually happening in between

lessons, and Muslims prayer time on Friday that will mandate finishing morning classes early

at 12:30p.m as well as starting afternoon classes late at 2:30p.m. In Malaysian education

culture, it is not common to have a teacher co-teaching a class after preschool. So, it is hardly

applicable in Malaysian public-school settings. However, there are cases in Malaysian public

school separating Islam education and Moral education and P.E. to boys and girls to

incorporate the subclasses cases. As for the classes-lessons dispersion, it is true that lessons

need to have same teaching hours for each class, but different classes can have varying number

of subjects taken. So, some classes may end their day sooner than others. For example, classes

in Malaysia public school will be focusing on different specialties such Science classes,

Computer Science classes, Art Classes as well as the Accounting, Business and Economics

during Form 4 and Form 5 which are 11th grader and 12th grader in the United States.

25

25

2.2.1.3 Maximum Flow with Edmunds-Karp Algorithm

 The next assessing technique will be on the concept of maximum flow, simulating

water travelling from the source through the pipeline with limited flow to the sink. A study has

been done by Asano, et al. (2000) on the algorithms that has been used to pair with the

maximum flow concept. For example, the list includes two commonly used deterministic

algorithms such as the Edmunds-Karp algorithm and Ford-Fulkerson algorithm. Other that

that, they also explained how they were implemented to suits the implementation of maximum

flow. According to Jain (2019), he has proposed a subject-teachers allocation algorithm that is

similar to Hospital-Patient distribution based on maximum flow that involves Edmunds-Karp

algorithm and Bipartite Matching with visualization of Bipartite graph shown by Angelidakis

(2020) in Figure 2.2.1.3.1.

Figure 2.2.1.3.1: Bipartite Graph

 The main objective of the resolution given by Jain (2019) is in the traditional method,

teachers are given subjects to teach from the choices provided by the institution, but some

subjects will be left not getting picked up. Hence, this solution is to satisfy as much teachers

as possible while also prevent subject vacancies by automation.

2.2.1.3.1 Algorithm Design

1. Prepare a list of available subjects and teachers.

⮚ For example, available subjects list is referring to the subjects that can be chosen by

the teachers to teach. Each subjects have capacities that can be defined. If a subject has

capacity of 2, that means two teachers can teach the subjects.

26

26

⮚ The list of available teachers can have their preferred subject to teach. So, the teachers

can be allocated to the preferred subjects in the bipartite matching process.

Figure 2.2.1.3.2: Bipartite Graph

2. Use the bipartite matching technique to form a bipartite graph as shown in Figure 2.2.1.3.2

prepared by Jain (2019) that maps the teachers to the at least one preferred subject.

3. Then, Edmunds-Karp algorithm is used to allocate the teachers to their preferred subjects

at the same time producing the max-flow based on the maximum capacity of subjects can

be chose, producing possible result like in Figure 2.2.1.3.3, showing input flow of 6 in total

and also 6 to output.

Figure 2.2.1.3.3: Allocation Result after Applying Edmunds-Karp algorithm.

4. When iterating through the subjects, if there are no teachers left to be assigned, brute-force

algorithm is used to backtrack and do necessary reassigning to optimize the scheduling.

5. Then, print the max flow paths for visualization.

27

27

2.2.1.3.2 Algorithm Application

Table 2.2.1.3.1: Benefits and Problems of the Implementation.

Benefits Problems

Prevention of unallocated teachers and

subject vacancies

The matching is not efficient in terms of

preference treatment. For example, teacher

can’t decide what subjects are more

preferred than others. The algorithm treats

of preferences equally and is not weighted.

Autonomous and efficient Teachers are required to choose the

preferences of teaching subjects from an

available list of subjects. As a solution,

default preferences values can be set to

teachers.

Teachers/Lecturer has more freedom as they

are allowed to give their preferred subjects

to teach.

Consideration of time clashing between

subjects is not done.

28

28

2.2.1.4 EA, Genetic Algorithm

 Implementation of Genetic Algorithm is very similar to PSO as they share the same

traits in terms of processes and techniques. For example, both includes the encoding but in

different wordings which is chromosomes and mutations. In terms of techniques, Genetic

Algorithm also simulates the behavior of biological lifeforms. This is because the process of

natural selection is simulated in order to identify the best answers to optimization and search

issues. It is a kind of evolutionary algorithm that is founded on the ideas of natural selection

and genetics. In this section, we will be discussing and summarizing two existing solutions for

timetabling using Genetic Algorithms.

2.2.1.4.1 Research 1 (Chan, et al., 2006)

Table 2.2.1.4.1: Analysis of Genetic Algorithm for Research 1.

Attributes Descriptions

Settings NTU university – student & course

Problem with

Existing System

- Tedious

- Students are required to plan ahead for the registration.

- Planning which lecture group, they want to enroll, then the tutorial

and practical classes.

- Some courses are very popular, while some are not due to undesirable

time periods.

Proposed EA

System

It can automatically allocate timetable according to student’s preferences.

Descriptions: -

a) Hard Constraint & Soft Constraints

b) Hard Constraints (timetable clashes & total credit hour), Soft

Constraints (preferences)

c) Timetable clash issues are resolved at the data entry level.

d) System tries to satisfy student’s first choice & second choice.

e) System will not provide alternative for allocations as usually students

will reject it.

29

29

Design 1) Generate population (decided by first & second choices given by

the students)

2) Sort the population by the fitness.

3) Crossover – higher fitness value = higher chance to be picked

4) Choose 2 randomly from the population.

5) For each population, higher weight / fitness means higher chance

to be chosen.

6) 1, 2, 3, 4, 5 ,6 – 5 and 6 have more chance to be chosen

7) Use 2 chosen numbers to do crossover.

8) For example, 101110 & 110110

9) Randomly generate where to cut,

a. 1 0 | 1 1 1 0 & 1 1 | 0 1 1 0

Result:

b. 1 1 | 1 1 1 0 & 1 0 | 0 1 1 0

10) Mutation

11) Pick new generation.

For example, if there is a population of 10 combinations. The system

will randomly pick 2 combinations from the population and do

crossover. After the crossover, mutation will happen to the

combination, where a binary can be flipped in the combination. We

will pick the two newly generated combination and the top 8 of the

previous generation as population for the next generation. Then,

repeat until finding the best solution.

30

30

2.2.1.4.2 Research 2 (Pambudi, et al., 2019)

Table 2.2.1.4.2: Analysis of Genetic Algorithm for Research 2.

Attributes Descriptions

Settings Lecturer & Course/Subject

Goals - To improve the quality and academic abilities of its students due to the

lecturer’s high performance and self-confident teaching style.

- To allow lecturers to teach certain subject according to their interests. For

example, a lecturer who is experienced in networking teaches TCP/IP.

- To find the optional subject allocation so lecturer/teacher’s performance

in teaching is as high as possible, while satisfying their interests.

Design Assigning lecturer/teacher according to their preferences.

1. Prepare information about course details including course code, course

name, credit & number of classes needed to be taught.

2. Collect the preferences of teacher of each course.

3. Propose design of the biological representation/encoding. For example,

there is 10 classes in total for a total of 5 courses and 5 lecturers.

1 3 2 4 4 5 2 5 3 1

Course 1 Course 2 Course 3 Course 4 Course 5

Note: The encodings are generated before the simulation. The number of

encodings can be different.

4. Fitness function. It is used to evaluate how good as a solution an encoding

is. Its design depends on the business model. For example, a weight

system can be implemented. For courses that is preferred by the lecturer

will contribute lower weight to the total weight. So, lower weight means

higher fitness, which is the better solution.

5. Crossover. This phase is to select 2 random parent encodings. Then,

decide the cut points to do crossover. 1|1 & 2|2 >>> 1|2 2|1

6. Mutation. Same as the biological theory, each crossover has the chance

to cause mutation. In this case, swap mutation can be used to swap two

31

31

teachers from different class. (Not necessary in the different classes,

swapping only lecturer from same course code could happen.)

7. Selection. Sort all possibilities according to the fitness. Eliminate few

encodings that has the lowest fitness. Repeat 5th step until break condition,

for example maximum of 100 generations (loops).

33

33

2.2.2 Analysis and Comparison between Algorithms

Table 2.2.2.1: Comparison between studied algorithms.

Researching Algorithm Spee

d

Advantages Disadvantages Combination with

other techniques

Model

Brute Force Algorithm

(Baturu et al., 2020 and

Mohammad et al., 2006)

Slow 1. High problem-solving

range.

2. Low complexity and simple

for understanding.

3. Good at solving searching,

sorting, string matching, or

matrix multiplication

problem.

4. Can be implemented in any

programming languages.

1. Most algorithms

using brute force

algorithm are

inefficient.

2. Brute force

algorithms are clumsy

and slow.

3. Lack of creativity

compared to other

algorithms at problem

solving.

- -

Particle Swarm Optimization

(Palupi et al., 2011)

Fast 1. Adaptable to suit teachers’

preferences.

2. Able to please a variety of

niche constraints, to better

1. Impossible to work

out the scattering and

optimization problem.

Timetable slot

swapping.

Simulates bird

flocking and fish

shoaling.

34

34

match the workflow of

specific schools.

2. Unable to be applied

non-coordinate

system problems.

Bipartite Matching Slow 1. Prevention of unallocated

teachers and subject

vacancies.

2. Prevention of clashes in

timetable scheduling.

1. The matching is not

efficient in terms of

preference treatment.

2. Usage of brute force

algorithm for

backtracking.

Edmunds Karp

Algorithm & Brute

Force Algorithm.

Using bipartite

graph, with

source and sink.

Genetic Algorithm -

Research 1 (Chan et al.,

2006)

Mod

erate

1. Mostly used for complex

timetable scheduling

problems.

2. Problem can be solved in a

parallel manner.

3. Support for multiple

parameters.

1. High time and

computational

complexity.

2. Requires the need to

convert real-world

problems into genetic

encodings.

Crossover &

Mutation using Bit

Flip Mutation.

Simulates

biological

evolution.

Genetic Algorithm -

Research 2 (Pambudi at al.,

2019)

 Crossover &

Mutation using

Swap Mutation.

35

35

Based on Table 2.2.2.1, Genetic Algorithm will be the perfect candidate for the timetabling algorithm for STSAMS as it is widely used for

complex timetable scheduling problem. Genetic algorithms will be slower compared to PSO, but it is easier to be come out with using genetic

algorithms as it allows the STSAMS to solve timetable problems for multiple teachers concurrently. So, it is worth while to sacrifice some of the

generation speed for the shorter implementation time. As why to not choosing Brute Force Algorithm and Bipartite Matching, because complex

problems like timetable problems has too many parameters and constraints to be consider. If there were to be implemented in STSAMS, it will

take a very long time to finish generating timetables of many teachers.

36

36

2.3 Similar Existing Systems

2.3.1 FCVAC Course Allocation System

2.3.1.1 System Description

Rauf, et al. (2018) has only written about their concept about developing the system

including the system design, but unfortunately there is no evidence of the developed system to

be tested and played around with. The main objective of this study is to come out with a basic

system design to act as a guidance for future works.

2.3.1.2 System Design

Figure 2.3.1.2.1: Use Case Diagram (Rauf, et al., 2018).

It is proposed that Administrator should be having the ultimate control on the entire

system. So, A superuser account should be assigned to the system administrator to do operation

on the allocation system (Rauf, et al., 2018). For example, by referring to the use case diagram

in Figure 2.3.1.2.1, the system administrator is allowed to log in to the system, view on course

assigned of all lecturers, create lecturer’s profile, adding course, while removing it and

changing the lecturer in which the course is assigned to. Subsequently, the lecturers are only

able to log in using lecturer account and view courses that are assigned to them.

37

37

2.3.1.3 Application

Figure 2.3.1.2.2: Home Page (Rauf, et al., 2018).

In terms of usability, some textual contents in the home page shown in Figure 2.3.1.2.2

are hardly readable as there is no clear color contrast between the texts in yellow and white

with the background. However, the black texts are acceptable as it is noticeable from the bright

background image. As a solution, black background with opacity but not completely

transparent or without opacity can be added behind those text to show the color contrast to

make it legible. Other than that, different text colors and a plain background instead of image

background also used to make the texts readable.

Figure 2.3.1.2.3: Administrator Login Page (Rauf, et al., 2018).

38

38

As for the administrator login page in Figure 2.3.1.2.3, the white box has shown a clear

grouping of text input fields. Then, a clear contrast of color is used to differentiate the login

buttons and the other components, and also it is the most important button to initiate the login

functionality after the home hyperlink. Nonetheless, the labels for the login credentials should

be placed on top of the data input boxes, to clearly define the type of value to be entered in the

text boxes instead of just specifying “Please enter username and password:” on top.

39

39

2.3.2 WinJaws5

2.3.2.1 System Description

WinJaws5 is developed by DMH Technology, and the current system version of

assessment is Version 5.0.4.7. WinJaw5 is specifically developed from public schools in

Malaysia as one of the interviewing schools which is SMK Taman Ehsan in this project is also

using WinJaw5 to manage their school. Before getting into details, it is vital to first get an

overview of the system. The main concept the system is to input necessary information, set the

generation constraints, generate the timetables, finally print them out. Nonetheless, there are

some limitations and unnecessary step are included the system, making the school workflow

slower. So, we will address them in the later section.

2.3.2.2 System Functionalities

Figure 2.3.2.2.1: Screenshot of the sub-menus under the Module selection

 Under the sub-menu of the Module section shown in Figure 2.3.2.2.1, the system

administrators are able to do operations on system managements, basic school information

management, two different timetabling generations such as basic generation and merged

generation, timetable modification, displaying and printing, replacement timetable, and

timetable analysis.

 First and foremost, the system administrators are allowed to import and export their

current WinJaws5 project using the Microsoft Database (.mdb) file format under system

management. This is useful for the system administrators when they want to save their progress

on the project to save it for another day or transfer their work to another system administrator.

40

40

To make it secure, WinJaw5 actually allows password to be set on the project just in case the

project is gotten into the wrong hands as there are personal data can be directly mapped to the

teachers, and also school information regarding the subjects, classes, and student’s data. Then,

type of institution can be also selected along with the school badge to give a clear definition of

a school as there are some cases in Malaysia that different schools such as primary and

secondary school are sharing the same top management.

 Other than that, all the information about the generated timetables, classes, subjects,

teachers, classroom, and timetabling constraints. The basic CRUD functions can be done on

the aforementioned information. To give an illustration, Figure 2.3.2.2.2 is showing the

addition of new subjects to the list with data field of subject code and name, as well as the

weight of the subjects as some subjects require higher cognition. Then, Figures 2.3.2.2.3 and

2.3.2.2.4 visualize the system interface for the modification and deletion functionalities, while

also providing a confirmation dialog to the user before making any changes. As for the

timetabling constraints, WinJaws5 is designed in such a way that classes must be attached to

the created constraints. For example, the teaching hours of classes are first to be set as shown

in Figure 2.3.2.2.5. It can also be defined under the status column to decide if the time period

has classes. In this case, the unchecked box states that the first period and sixth period have

morning rollcall and recess. After that, classes such as 4FA, 4NE, 5FA, and 5NE can be

attached to the set constraints as shown in Figure 2.3.2.2.6.

Figure 2.3.2.2.2: Screenshot of new subject creation.

41

41

Figure 2.3.2.2.3: Screenshot of existing subject data modification.

Figure 2.3.2.2.4: Screenshot of existing subject data deletion.

42

42

Figure 2.3.2.2.5: Screenshot of teaching hours of classes.

Figure 2.3.2.2.6: Screenshot of attaching classes to a constraint.

 Using the same concept, the distribution of the subjects can be also defined as shown

in Figure 2.3.2.2.7. To ensure better understanding, time periods can be seen as blocks. Then,

the time periods for subjects can be determined if the system mandate the subjects’ periods to

be combined as double blocks or triple blocks for consecutive classes when timetable

generation happens. So, the subject’s periods would not be scattered all over the place. As for

the subclasses, WinJaws5 allows some classes to be merged into one class or separating a

subject to be held in two classes.

43

43

Figure 2.3.2.2.7: Screenshot of subject distribution constraint.

 Furthermore, the system administrators can then generate the timetables automatically

by using generation functionality in the system. However, it is separated into two modules such

as basic generation and merged generation. They are actually not different kind of generation

methods for the timetables, but actually basic generation is just generation without constraint

and merged generation is with the consideration of the constraints. It is a rule set by the

developers that the timetables must be first generated using the basic generation, followed by

the merging generation after that. Then, if the system administrators feel that the generated

timetables are unsatisfactory, they can choose to manually edit it themselves while using the

timetabling analysis function provided by WinJaws5. Then, they can view specific teacher’s

timetables then print them out. Finally, WinJaw5 also implemented an isolated replacement

timetable from the main timetable to assign replacement teachers to replace absent teachers.

44

44

2.3.2.3 Application

Table 2.3.2.2.1: Strength and Weakness of WinJaw5 system.

Strengths of WinJaws5 Weaknesses of WinJaw5

It allows modification on generated

timetables for final touches.

It does not support multiple language and it

is only in the Malay language

It allows progress to be saved in .mdb file

format.

It does technically support multiusers with

project importing and exporting but does

not allow them to work concurrently.

It can generate timetables for the system

administrator automatically.

It does not allow teachers to view the

scheduled timetable themselves unless the

system administrator upload the timetable to

WinJaw5 web.

Object-oriented approach on the design of

constraints by using the attaching technique

of classes to the created constraints.

Longer workflow or time taken for the

system administrator to print out the

timetables to distribute among teachers.

It provides a structured data of the generated

timetables for the system administrators to

do analysis.

It is also stated in the project problem

statement that WinJaw5 uses deterministic

algorithm which is not effective to solve

clashing problems.

45

45

CHAPTER 3

DEVELOPMENT METHODOLOGY & TOOLS

3.1 Introduction

 It is utmost important to plan and implement an organized methodology to develop a

system. By following the properly designed development guidelines, it ensures what the things

that need to be done in each of the development phases. Not just that, every progress in

development process will be recorded, so that version control can be done on the developing

system to trace back on what and when of components that has been added to the system

feature. This is because we will not remember everything that we added to the system deep

into the system development, especially when the system is near completion, and it is already

very complex. Other than that, tasks must be broken down into as small as possible to clearly

understand what needs to be done in each module in the system. This is due to the fact that the

task will be unachievable and too large in scale if tasks are decided by only modules, but not

each small components in the modules. Then, there are modules that has higher priority to

finish earlier than other modules, else the dependent modules cannot be developed as it requires

some function from other modules. Therefore, a schedule will be created for the project as well

as the development methodology with application in each phase of production and supporting

tools for the project.

3.2 Project Methodology

 This project will be using the Scrum methodology to develop STSAMS. However, the

project team as well as the development team are clueless when it comes to tailor a software

process according to Xu, et al. (2008) as there are no proper guidelines on the practice of the

Scrum methodology. So, Akbar (2019) has proposed his framework for customizing software

development processes that is specifically agile based. In his work, the process framework is

formulated by him mentioned that the sub-processes of the three key processes such as resource

management, communication, and requirement management can be tailored to fit each project

as revealed in Figure 3.2.1. In this case, the main development phases of the project will be

planning, design, implementation, and deployment.

46

46

 First and foremost, the planning phase of this project can be including the three key

processes mentioned by Akbar (2019). For resource management, a schedule will be drafted

along with the work breakdown structure of the entire project. This is because the schedule will

have the information regarding the resources required such as time and cost for each project

tasks. The sub-processes in the schedule with the generally adopted project life cycles only can

be modified to fit this project’s needs and requirements. To further illustrate, web application

developments and system migrations may have the same project life cycle such as initiation,

planning, execution, and closure but each smaller tasks that need to be done can be completely

varies as their system requirements are different. Not just that, it is important to involve the

users in the planning phase of the project which is the earliest stage as this is the phase that

requires minimum cost for each system requirement modifications (Saif, et al., 2021). So, the

system requirements can be formulated by studying the system manuals, testing the existing

systems, holding surveys and virtual interview on the teachers and system administrators of a

public school in Malaysia. To ease the communication of the project, the gathered requirements

can be organized in a requirements traceability matrix.

 Furthermore, the implementation and deployment phases of the project can be

combined with each iteration of project using the Scrum methodology. For example, Schwaber

(2004) has shown the detail Scrum flow for software development using Figure 3.2.2. The

product backlog in the Scrum methodology can be seen as the system requirements for the

STSAMS which is defined in the planning phase of the project. However, planning phase can

also be done or repeated at every time in the project development as emerging or new system

requirements can be added into the product backlog. When there are new requirements added

into the product backlog, the requirement modelling for STSAMS needs to be updated during

the designing phase, so it reflects the latest update of the system. Not just that, version control

must be done on the models to show the changes made to each model updates.

 Last but not least, before each iteration of Scrum, components of the system that needs

to be done can be selected from the product backlog into the sprint backlog. Then, sprints will

be initiated to complete each requirement and user interface for STSAM that are stated in the

sprint backlog. After each sprint are completed, each newly developed functionalities are to be

demonstrated after deployment to the project supervisor to ensure the quality of the system.

There are solution two outcomes of each iteration. Firstly, the next iteration will be start

instantly if the previous sprint is completed as there will be less coordination because of the

one-man team. Next, if there are items that is not completed in time in previous iterations, it

47

47

can be nominated as a candidate for the next sprint. These processes will be done iteratively

until the STSAMS is completed development and ready for full deployment.

Figure 3.2.1: Theoretical process tailoring framework.

Figure 3.2.2: Scrum flow for software development.

48

48

3.3 Project Management Plan & Schedule

Figure 3.3.1: Schedule focusing on Initialization Phase.

49

49

Figure 3.3.2: Schedule focusing on Planning Phase.

Figure 3.3.3: Schedule focusing on Iteration 1 in Development Phase.

50

50

Figure 3.3.4: Schedule focusing on Iteration 2 in Development Phase.

51

51

Figure 3.3.5: Schedule focusing on Iteration 3 in Development Phase.

52

52

Figure 3.3.6: Schedule focusing on Iteration 4 in Development Phase.

53

53

Figure 3.3.7: Schedule focusing on Iteration 5 in Development Phase.

54

54

Figure 3.3.8: Schedule focusing on Closure Phase.

55

55

3.4 Verification / Test Plan

3.4.1 Objectives

The objective of testing the application is to:

1. To reduce the risk arising from the bugs in the system under test.

2. To find the existence of the bugs in the application so that we can acquire information

to fixing the bugs.

3. To build confidence in the level of quality of the application.

4. To ensure that the API routes are called properly in the STSAMS frontend.

5. To verify that the allocation algorithm for STSAMS is working with specified

constraints.

6. To reduce the logic error by testing the logic of the functions in the API server.

3.4.2 Scope

The scope refers to the breadth and depth of testing that will perform on the application.

Test scope in this application is:

1. Functionality in STSAMS frontend: Functionality refers to the specific functionality of

the application to be tested including features and workflows.

- Routing helper functions to communicate with the API server.

- Utility functions: The other functionalities that do additional logic operations in the

frontend.

2. Functionality in STSAMS backend.

- Route functions: The functions that will receive requests from the frontend, do

necessary operations on the database, and send a response back to the frontend as

feedback.

3. Constraints in STSAMS allocation algorithm: Constraints refers to the chosen

conditions that need to be considered during the timetable allocations to produce varied

results.

56

56

3.4.3 Test Items

3.4.3.1 Frontend Web Pages

1. Allotment Sets Page

2. Announcements Page

3. Classes Page

4. Static Timeslot Page

5. Study Hours Page

6. Subjects Page

7. Subject Distributions Page

8. Teachers Page

9. Teacher Preferences Page

10. Timetable Generations Page

11. Venues Page

12. Venue Usages Page

3.4.3.2 Backend API Routes

1. Allotment Sets

2. Announcements

3. Classes

4. Dynamic Timetables

5. Static Timetables

6. Static Timetabling Algorithm

7. Study Hours

8. Subject Distributions

9. Subjects

10. Teachers

11. Teaching Classes

12. Venue Usages

13. Venues

57

57

3.4.4 Features to be tested.

3.4.4.1 Allotment Sets

- postAllotmentSet function which sends JSON data to the API server to create a new allotment

set.

- getAllotmentSet function which sends ID to the API server to receive the allotment set details

with the specified ID.

- getAllotmentSets function which receives all allotment sets from the API server.

- deleteAllotmentSet function which sends ID to the API server to delete allotment set with the

specified ID.

3.4.4.2 Annoucements

- postAnnouncement function which sends JSON data to the API server to create a new

announcement.

- getAnnouncements function which receives all announcements from the API server.

- getAnnouncement function which sends ID to the API server to receive the announcement

details with the specified ID.

- putAnnouncement function which sends ID and JSON data to the API server to update

existing announcement with the specified ID.

- deleteAnnouncement function which sends ID to the API server to delete announcement with

the specified ID.

3.4.4.3 Classes

- postClass function which sends JSON data to the API server to create a new class.

- getClasses function which receives all classes from the API server.

- getClass function which sends ID to the API server to receive the class details with the

specified ID.

- putClass function which sends ID and JSON data to the API server to update existing class

with the specified ID.

- deleteClass function which sends ID to the API server to delete class with the specified ID.

- handleSorting function which switch the sorting modes for a specific table column name.

- handleFilterAndSort function which filters and sorts out classes according to the sorting

mode.

58

58

3.4.4.4 Static Timeslots

- postStaticTimeslot function which sends JSON data to the API server to create a new static

timeslot.

- getStaticTimeslots function which receives all static timeslots from the API server.

- getStaticTimeslot function which sends ID to the API server to receive the static timeslot

details with the specified ID.

- putStaticTimeslot function which sends ID and JSON data to the API server to update existing

static timeslot with the specified ID.

- deleteStaticTimeslot function which sends ID to the API server to delete static timeslot with

the specified ID.

3.4.4.5 Study Hours

- postStudyHour function which sends JSON data to the API server to create a new study hour.

- getStudyHours function which receives all study hours from the API server.

- putStudyHour function which sends ID and JSON data to the API server to update existing

study hour with the specified ID.

- deleteStudyHour function which sends ID to the API server to delete study hour with the

specified ID.

3.4.4.6 Subjects

- postSubjects function which sends JSON data to the API server to create a new subject.

- getSubjects function which receives all subjects from the API server.

- getSubject function which sends ID to the API server to receive the subject details with the

specified ID.

- putSubject function which sends ID and JSON data to the API server to update existing

subject with the specified ID.

- deleteSubject function which sends ID to the API server to delete subject with the specified

ID.

- handleSorting function which switch the sorting modes for a specific table column name.

- handleFilterAndSort function which filters and sorts out subjects according to the sorting

mode.

59

59

3.4.4.7 Subject Distributions

- postDistribution function which sends JSON data to the API server to create a new subject

distribution.

- getDistributions function which receives all subject distributions from the API server.

- putDistribution function which sends ID and JSON data to the API server to update existing

subject distribution with the specified ID.

- deleteDistribution function which sends ID to the API server to delete subject distribution

with the specified ID.

- validateInputData function which will if check name, subjects and classes are empty.

3.4.4.8 Teachers

- postTeacher function which sends JSON data to the API server to create a new teacher.

- getTeachers function which receives all teachers from the API server.

- getTeacherDetails function which sends ID to the API server to receive the teacher details

with the specified ID.

- putTeacher function which sends ID and JSON data to the API server to update existing

teacher with the specified ID.

- deleteTeacher function which sends ID to the API server to delete teacher with the specified

ID.

- getTeachingSubjects function which sends ID to the API server to receive the teaching

subjects of a teacher with the specified ID.

- putTeachingSubjects function which sends ID and JSON data to the API server to update

existing teaching subjects of a teacher with the specified ID.

- postEmail function which sends JSON data to the API server to create to send an email.

- getTeacher function which sends access token to the API server to receive the first-time login

teacher details.

- teacherLogin function which sends credentials to the API server to authenticate a teacher

login.

60

60

3.4.4.9 Teacher Preferences

- getPreferences function which sends ID to the API server to receive the teacher preferences

with the specified ID.

- putPreferences function which sends ID and JSON data to the API server to update existing

teacher preferences with the specified ID.

- getTeachingClasses function which sends ID to the API server to receive the teaching classes

of a teacher with the specified ID.

- getOrdinal function which receives an integer then return the ordinal of the integer.

3.4.4.10 Timetable Generations

- generateStaticTimetable function which sends the timetabling settings to the API server to

generate and receive generated static timetable.

- getStaticProgress function which receives the current generation progress of the static

timetable.

- postStaticTimetable function which sends the generated static timetable to the API server to

save it.

- generateDynamicTimetable function which sends the timetabling settings to the API server

to generate and receive generated dynamic timetable.

- getDynamicProgress function which receives the current generation progress of the dynamic

timetable.

- getConsoleMessages function which receives the console messages of the generating dynamic

timetable.

- postDynamicTimetable function which sends the generated dynamic timetable to the API

server to save it.

3.4.4.11 Utilities

- generateDigitCode function which generate a randomized 6-digit code.

- generatePassword function which generate a randomized default password with inputted

length of the required password.

- randomNumberInRange function which generate a random number between two inputted

minimum and maximum values.

61

61

3.4.4.12 Venues

- postVenues function which sends JSON data to the API server to create a new venue.

- getVenues function which receives all venues from the API server.

- getVenue function which sends ID to the API server to receive the venue details with the

specified ID.

- putVenue function which sends ID and JSON data to the API server to update existing venue

with the specified ID.

- deleteVenue function which sends ID to the API server to delete venue with the specified ID.

- handleSorting function which switch the sorting modes for a specific table column name.

- handleFilterAndSort function which filters and sorts out venues according to the sorting

mode.

3.4.4.13 Venue Settings

- getVenueUsages function which receives all venue usages from the API server.

- putVenueUsages function which sends ID and JSON data to the API server to update existing

venue usages with the specified ID.

62

62

3.4.5 Features not to be tested.

- Components rendered by web pages.

- Utility functions for allocation genetic algorithm.

- Features other than specified features that are to be tested.

3.4.6 Entry Criteria

1. Test team readiness - The testing team at this point are prepared to perform software

testing tasks. The member in the project is all equipped with the knowledge and skillsets to

create test cases, use automation tools.

2. Completed code development – The software in question has been completed and is ready

for testing.

3. Test environment readiness - The test environment for the software is properly set up which

includes the installation of the test automation tools for faster test execution.

5. Test data availability - The test data such as the input data, expected results and the

scenarios are made available and validated.

3.4.7 Exit Criteria

1. All the planned tests have been carried.

2. The software has reached the required level of quality as determined by the team member.

3. All the required documentation needed for the project has been completed, such as the test

cases.

4. Reached the final phase of the project life cycle.

63

63

3.5 Project Tools

3.5.1 Hardware

 A laptop computer will be used in developing STSAMS which includes the following

hardware.

Table 3.5.1.1: Components of laptop computer.

Components Specifications

Model Dell Inspiron 15 3000

Processor Intel® Core™ i5-1035G1

Operating System Window 11 64-bit

Graphic Intel® UHD Graphics

Memory 20GB RAM

Storage 512 GB SSD

3.5.2 Software

 The main development software for STSAMS will be Visual Studio Code as it provides

the correct format of indentations also built in with autocompletion for curly brackets as

JavaScript will be used for this development. Other than that, VS Code also allows developers

to add extension on language supports, local server hosting, and code snippets to autocomplete

the lengthy syntaxes. Other software and tools used in this project are listed as below:

Table 3.5.2.1: Software and Tools to be used in the project.

Attributes Software/Tools Justifications

Document

Preparations

MS Word 1. MS Word will be used in preparing the reports for

the project including the proposal reports, and

final report.

2. Other document related to STSAMS such

requirement traceability matrix, use case

description will be recorded in MS Word.

 Google Form 1. It is a free software to design questionnaires so

that the survey for requirement discovery can be

done virtually without printing papers.

64

64

2. It also provides data analysis for the data collected

from questionnaires using charts and spreadsheet.

 Draw.io 1. Draw.io is an open-source software that provide

its users to do requirements modelling and draw

storyboards.

2. It is also very easy to learn and beginner friendly

as software such as Enterprise Architect requires

practices to master it.

3. Reserve the time to learn modelling for

developing the system.

 MS Project 1. It is used to create a schedule for this project.

2. It provides management of tasks with indentation

and numbering. Other than that, information such

as start and end date, completion percentage, and

cost can also be added.

Frontend

Languages

HTML 1. Add elements to the website.

2. Form functionality for login, searching, basically

the user interfaces for CRUD operations on

managing courses, subjects, teacher’s

information, and admin’s profile. For example,

multiple components in React project that can be

used such as view, button, and text.

 CSS 1. Beautify the contents, strife for usability concept

in designing the user interface.

2. Provide support for multiple devices such as

desktop, laptop, tablet, mobile phone with

different display resolution which is a responsive

web design.

 JavaScript 1. JavaScript is main language that is being used in

React projects. It can be used in most operations of

the system such as data validation, SQLite database

connections, SQL querying.

65

65

2. Capture user events on for example buttons to do

tasks, such as adding, updating new contents, and

deleting existing contents.

3. JavaScript is also used to manage states in

components using the setState,

componentDidMount, componentWillUpdate,

and componentWillUnmount methods.

Database SQLite 1. SQLite is an embedded, server-less relational

database. So, an external server is not required to

host the database for the website as the local data

storage is built into the application.

 MySQL 1. MySQL is the query language will used in pair

with SQLite to do operations on the database such

as defining table data fields and constraints,

inserting, updating, and deleting data.

Libraries React 1. React is an open-source library, so there are

various custom-built components that can be used

in the development of STSAMS.

2. Other than that, the React library is designed to be

used in web application development, and it

provides the easy way to convert a web

application to mobile app just in case it needs to

be built in mobile application.

 Jest 1. Jest is open source and suitable for this project as

it is a framework for JavaScript unit testing.

66

66

CHAPTER 4

PROJECT SPECIFICATIONS

In this chapter, we will be discussing the requirement discovery techniques, proposed

initial system design using requirement specifications and requirement modelling, as well as

the system flow of the entire STSAMS.

4.1 Requirement Discovery

4.1.1 Questionnaires

To understand the preferences of teachers regarding the STSAMS, surveys have been

distributed to 10 teachers in SMK Taman Ehsan to obtain their opinions on the school’s current

system and workflow. The following shows the questions asked, the answers provided by the

teachers, as well as the conclusions that can be done on those responds: -

Figure 4.1.1.1: Survey Question 1.

From the results of this question, we can know that majority of teachers are able to

select their preferences of teaching. However, the timetable system, WinJaws5 that being used

by the school is not actually providing the section for the teachers to set the teaching subjects

priorities to their likings. For example, this result is showing that teachers are able to choose

few subjects from their teachable list of subjects, but not able to set the priorities between them.

The priority will decide whether a subject will occur more often than other lower priority

67

67

subjects in a timetable. Then, it is a responsibility of the system administrators to key in the

teaching subjects given by the teacher to the system. Using this approach, it requires a lot of

communication between teachers and system administrators, hence it is wiser to automate this

process by allowing the teacher to directly set their teaching priorities to the constraint of the

timetabling algorithm. By the time the system administrators are generating a new timetable,

the priorities set by the teachers can be directly fetched from the database without any

communications needed.

Figure 4.1.1.2: Survey Question 2.

Figure 4.1.1.3: Survey Question 3.

 From Figure 4.1.1.2, we found that 70% of teachers that participated in this survey ever

felt dissatisfied with the timetable allocation result. To clarify as to why there are 10 answers

68

68

in question 3 shown in Figure 4.1.1.3, because it allows the teachers to pick more than one

answer. We can know that the most chosen reason by the teachers is having too many

consecutive classes from Figure 4.1.1.3. This is because there are few gaps in between classes

for the teachers to take a break. As mentioned in the literature review, it is tiring for the teachers

to have high cognitive subjects consecutively as they require more preparation and thinking

power. Then, there is an equal score of 3 teachers for both timetable clashing problems and less

preferrable subjects to teach. The timetable clashing problems are the result of the usage of

deterministic method for the timetabling algorithm as mentioned with details in Section 1.2.4.

As for the problem with less preferrable subjects to teach, it is also a priority of this project to

implement the constraint for the timetabling algorithm to give teachers more freedom to choose

as mentioned in Section 1.2.1. The followings are the functional requirements included in

STSAMS: -

Table 4.1.1.1: Problems converted as functional requirements of STSAMS.

Problems Functional Requirement ID

Too many consecutive classes. FR49

Timetable classing problems. FR48

Less preferable subjects to teach. FR19

Figure 4.1.1.4: Survey Question 4.

69

69

Figure 4.1.1.5: Survey Question 5.

Figure 4.1.1.6: Survey Question 9.

Similarly, question in Figure 4.1.1.4 also allow the teacher to give more than one

answer. It is obvious that files are being sent through social apps by the system administrator

to distribute the timetable allocation results as 9 out of the total 10 teachers voted for the “PDF,

Word, Image files through social apps” option. Therefore, STSAMS should filter out the

distribution process of the system administrators as results in Figure 4.1.1.6 revealed that it

takes about 1 to 3 weeks for the timetable results to be passed to the teachers. As a resolution,

the system should directly allow the results to be displayed to the teachers as soon as the system

administrators have generated the timetables, so that the time taken for the timetables

70

70

distribution will be as close as instant. To give more authority to the system administrators,

they can decide if the generated timetables are displayed to the teacher as there might be

mistakes occurring after generating the timetables. Then, both system administrators and

teachers are able to view the timetables in the allotment module. This is because the teachers

still prefer to view their timetables online as indicated in Figure 4.1.1.5. Long story short, the

followings are the functional requirements included in STSAMS: -

Table 4.1.1.2: Problems converted as functional requirements of STSAMS.

Problems Functional Requirement ID

Set timetables to be shown FR51

Less preferable subjects to teach. FR19

71

71

4.1.2 Virtual Interview

 To get insight into the workflow of teacher-subject management in SMK Taman Ehsan,

a system administrator has been chosen as a candidate to hold the virtual interview to know

more about the system administrator’s side of the perspective and workflow. From the

questions asked, we can know that the school is using WinJaw5 to allocate the subjects. Then,

surface-level information about the system has been collected from the interviewee. On top of

that, an in-depth understanding and analysis of the system has been done by following the

system manual prepared by WinJaws5 (n.d.) and testing the system itself in Section 2.3.2.

Table 4.1.2.1: Interview questions with answers from interviewee.

No. Question Asked Answers

1 Does the school use a software to manage

allocation between teachers and subjects? If yes,

what is the software name?

Yes, WinJaws5, but we are

going to migrate to using

AscTimetables.

2. Does the system allocate subjects to teachers

automatically (when generating timetable)?

Yes, but the adjustment after the

generation is done manually.

3. Do you face problems when you are generating

timetables for teachers? Why? If not, what is the

benefit the software provides?

Yes. WinJaw5 are not able to

settle a lot of automatic

problems like clashing

problems. I must have to adjust

the timetables manually after

each generation.

4. Does the software include AI to do data analysis?

e.g., Teachers Subjects, and Allocations.

No.

5. What are the criterions that is being considered by

the software while allocating the subjects to

teachers?

Teacher’s Day Availability,

Teacher's Hour Availability,

Class's Hour Availability,

Class's Empty Hours, Teacher

Teaching Gaps between

Classes, Maximum Teaching

Hour per Week

6. Does the replacement class allocation affect the

original time schedule?

No.

72

72

4.2 Functional Requirements Specification

The functional requirements of STSAMS are organized in accordance with the requirements traceability matrix to ease tracing back of

requirements from different requirement models such as the use case id, storyboard labelling, and the work breakdown structure of the project.

The following is the functional requirements of STSAMS in an organized fashion:

Table 4.2.1: Requirement Traceability Matrix for STSAMS.

Unique Req.

ID

Requirement Description Use Case ID Status Remarks

Login Page

FR1 The system should allow the system administrators and

teachers to log into the system.

 UC01 Done -

FR2 The system should allow the system administrators and

teachers to fill in their email and password to log in to

the system.

 UC01 Done -

FR3 The system should validate the login credentials entered

by the system administrators and teachers.

 UC01 Done -

FR4 The system should provide an option for the teachers to

reset their passwords.

 UC01 Done -

73

73

FR5 The system should have an announcements section in

the login page to display school announcements, and

news.

 - Done -

Forget Password Page

FR6 The system should allow the teachers to reset their

passwords.

 UC02 Done -

FR7 The system should allow the teachers to reset their

password by validating through email addresses.

 UC02 Done -

FR8 The system should check if the verification code entered

by the teachers is valid.

 UC02 Done

FR9 The system should allow the system teachers to send

password reset requests to their email addresses bound

to the system account to attain the verification code.

 UC02 Done -

FR10 The system should provide a new password and confirm

new password input for the teachers to enter.

 UC02 Done -

FR11 The system should check the matching of the entered

new password and confirm the new password.

 - Done -

74

74

Create Teacher Page

FR12 The system should allow the system administrators to

create new teacher accounts for new teachers.

 UC05 Done -

FR13 The system should be able to set randomly generated

default passwords for each newly created teacher

account.

 UC05 Done -

First Login Page

FR14 The system should prompt the teachers to complete their

account profile for the first-time login.

 UC01 Done -

FR15 The system should allow the teachers to skip the profile

completion process so that it can be set later.

 - Done -

FR16 The system must prompt the teachers to change the

default password to their new password.

 UC01 Done -

Teacher Profile Page

FR17 The system should allow the teachers to update their

profile credentials such as name, dob, and address

 UC03 Done -

75

75

FR18 The system should display the profile credentials of

teachers.

 UC03 Done -

FR19 The system should allow the teachers to set their priority

and sequence of subjects they preferred to teach.

 UC03 Done -

FR20 The system should display the sequence of subjects set

by the teachers.

 UC03 Done -

Teacher Timetable Page

FR21 The system should allow teachers to view the timetable

or teacher-subject allocation results.

 UC04 Done -

View Teachers Page

FR22 The system should allow the system administrators to

view the details of teachers in a list.

 UC06 Done -

FR23 The system should display the list of teachers using the

paging technique.

 UC06 Done -

FR24 The system should allow the system administrators to

specify the number of teachers a page should display.

 UC06 Done -

76

76

FR25 The system should allow the system administrators to

search teacher information by teacher’s name keyword.

 UC06 Done -

FR26 The system should allow the system administrators to

sort the list of teachers by data fields alphabetically and

numerically.

 UC06 Done -

FR27 The system should allow the system administrators to

filter the list of teachers by data fields such as number

range, and data types.

 UC06 Done -

View Teacher Details Page

FR28 The system should display all the data fields related to a

selected teacher.

 UC07 Done -

FR29 The system should allow the system administrators to

enter the update state to make and save changes to the

teacher information.

 UC07 Done -

FR30 The system should allow the system administrators to

delete the teacher’s information.

 UC07 Done -

FR31 The system should allow the system administrators to

delete the teacher’s account.

 UC07 Done -

77

77

View Subjects Page

FR32 The system should allow the system administrators to

view the details of subjects in a list.

 UC08 Done -

FR33 The system should display the list of subjects using the

paging method.

 UC08 Done -

FR34 The system should allow the system administrator to

specify the number of subjects a page should display.

 UC08 Done -

FR35 The system should allow the system administrator to

search for subjects by subject name keyword.

 UC08 Done -

FR36 The system should allow the system administrators to

sort the list of subjects by data fields alphabetically and

numerically.

 UC08 Done -

FR37 The system should allow the system administrators to

filter the list of teachers of subject types.

 UC08 Done -

FR38 The system should allow the system administrators to

delete subjects.

 UC08 Done -

78

78

FR39 The system should display box to prompt for the

confirmation of system administrators to delete subjects.

 UC08 Done -

FR40 The system should allow the system administrators to

make updates the subjects data fields.

 UC08 Done -

View Class Page

FR41 The system should display the list of created classes. UC09 Done -

FR42 The system should allow the system administrators to

add new classes.

 UC09 Done -

FR43 The system should allow the system administrators to

make changes to a selected class.

 UC09 Done -

FR44 The system should allow the system administrators to

delete classes.

 UC09 Done -

Administrator Home Page

FR45 The system should display dashboard showing the total

of classes, subjects, and teachers.

 - Done -

79

79

Subject Allotment Page

FR46 The system should allow the system administrators to

create multiple sets of allotments of teachers and

subjects.

 UC10 Done -

FR47 The system should allow the system administrators to

navigate to every existing allotment sets.

 UC10 Done -

FR48 The system should allow the system administrators to

generate teacher-subject allotment results.

 UC10 Done The algorithm will be

genetic algorithm which is a

meta-heuristic type.

FR49 The system should allow the system administrators to

set hard constraints as well as the soft constraints for the

allotment algorithm to consider.

 UC10 Done -

FR50 The system should allow the system administrator to

view the allocation results of multiple teachers.

 UC10 Done -

FR51 The system should allow the system administrator to

toggle if the teacher could view the current set of

allocation results.

 UC10 Done -

Announcement Management Page

80

80

FR52 The system should allow the system administrator to add

new announcements to the login page.

 UC11 Done -

FR53 The system should allow the system administrators to

delete existing announcements.

 UC11 Done -

FR54 The system should allow the system administrators to

update the contents in an announcement.

 UC11 Done -

FR55 The system should display all the created existing

announcements to the system administrators.

 UC11 Done -

FR56 The system should give the system administrators to

select which announcements to be selected to display on

the login page.

 UC11 Done -

81

81

4.3 Non-Functional Requirements Specification

Table 4.3.1: Non-Functional Requirements of STSAMS.

Types Non-Functional Requirements

Scalability NFR01 – The STSAMS should be able to work with more than 15 subjects,

classes, and teachers.

Security NFR02 – The STSAMS will first check the verification code from users

before changing new passwords.

NFR03 – The STSAMS will prevent users from accessing unauthorized

pages.

Usability NFR04 – The STSAMS will display confirmation dialog before making any

changes to their accounts or system data.

Portability NFR05 – The STSAMS should allow its users to access the system using

laptops and desktops through the web.

Compatibility NFR06 – The STSAMS will work on multiple browsers such as Edge,

Google Chrome, and OperaGX.

82

82

CHAPTER 5

SYSTEM DESIGN

In this chapter, we will be discussing the requirement modelling, as well as the system

flow of the entire STSAMS.

5.1 Requirement Modelling

5.1.1 Use Case Diagram

Figure 5.1.1.1: Use Case Diagram for STSAMS.

83

83

5.1.2 Use Case Descriptions

Use Case Name: Log in account. ID: UC01 Importance Level: High

Primary Actor: Teachers, System

Administrators

Use Case Type: Detail, Essential

Stakeholders and Interests:

Teachers - logs in to STSAMS using a teacher account.

System Administrator - logs in to STSAMS using system administrator account which

is the super account with highest permission.

Brief Description: This use case describes how account is logged in by different users.

Trigger: Users (Teachers & System Administrators) want to log into STSAMS.

Relationships:

 Association: Teachers, System Administrator

 Include: N/A

 Extend: UC02 – Recover account

 Generalization: N/A

Normal Flow of Events:

1. Users wants to log into STSAMS.

2. Perform use case UC02-Recover account if teachers forget their password.

3. Continue to Sub-flow 3.1 or 3.2.

4. The system asks for the account ID and account password.

5. Continue to Sub-flow 5.1 or 5.2.

6. The user logged into STSAMS.

Sub-flows:

3.1 If the user is a teacher first logging in,

3.1.1 The teacher logs into STSAMS using their email and the default

password provided by system administrator.

3.1.2 The teacher will be prompted to complete their profile and change

default account password.

84

84

3.1.3 The teacher completes their user profiles and change new account

passwords.

3.1.4 The teacher confirms on their changes made to their profile. Continue to

Main Flow 2.

3.2 If the users are not first logging in, Continue to Main Flow 2.

 5.1 If the login credentials are valid, the users will be brought to their respective

home screens. Continue Main Flow 6.

5.2 If the login credentials are invalid, wrong password message will be displayed.

Continue Main Flow 4.

85

85

Use Case Name: Recover account. ID: UC02 Importance Level: High

Primary Actor: Teachers Use Case Type: Detail, Essential

Stakeholders and Interests:

Teachers - recovers their lost STSAMS teacher account.

Brief Description: This use case describes how account is recovered by teachers.

Trigger: Teachers want to recover their STSAMS accounts.

Relationships:

 Association: Teachers

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. Users wants to recover their STSAMS account.

2. Users choose the forget your password option to recover their account.

3. Users are prompted by STSAMS to enter their email.

4. STSAMS will send a verification code to the users through email.

5. STSAMS prompts the users for verification code.

6. The users enter the verification code.

7. Continue to Sub-flow 8.1 or 8.2.

8. STSAMS will set a new password for the user account.

Sub-flows:

8.1 If the verification code entered by users are valid,

8.1.1 STSAMS will prompt the users for the new password.

8.1.2 Users enter and confirm their new password for their account.

8.2 If the verification code entered by users are invalid,

86

86

8.2.1 STSAMS will display invalid code message to the users. Continue to Main

Flow 6.

87

87

Use Case Name: Manage user profile. ID: UC03 Importance Level: High

Primary Actor: Teachers Use Case Type: Detail, Essential

Stakeholders and Interests:

Teachers – make changes to their information in their user profiles.

Brief Description: This use case describes how the teachers view and make changes to

their information in their user profiles.

Trigger: Teachers want to make view and make modification on their user profiles.

Relationships:

 Association: Teachers

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. Teachers want to manage their user profiles.

2. STSAMS displays the user profiles to the teachers.

3. Continue to Sub-flow 3.1 or 3.2.

4. Teachers made changes to their user profiles.

Sub-flows:

3.1 If teachers want to edit the information in user profile,

3.1.1 Teachers choose to edit their user profile.

3.1.2 Teachers make changes to the information in their user profile.

3.1.3 Teachers choose to save to confirm their modification to the user profile.

Continue to Main Flow 4.

3.2 If teachers want to set their preferences of subject to teach,

3.2.1 Teachers choose to set their preferences.

3.2.2 STSAMS displays the subjects priorities previously set by teachers.

3.2.3 Teachers set the priorities of subjects they are able and want to teach.

Continue to Main Flow 4.

88

88

Use Case Name: View timetable. ID: UC04 Importance Level: High

Primary Actor: Teachers Use Case Type: Detail, Essential

Stakeholders and Interests:

Teachers – view timetables generated by system administrator.

Brief Description: This use case describes how the teachers view timetables generated

by the system administrators.

Trigger: Teachers want to view the generated timetables.

Relationships:

 Association: Teachers

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. Teachers want to view the generated timetables.

2. Teachers choose to view the generated timetables.

3. Teachers select a certain timetable to view from the multiple timetables.

4. Continue to Sub-flow 4.1 or 4.2.

Sub-flows:

4.1 If teacher want to print the timetable,

4.1.1 Teachers choose to print the timetable using their printer.

4.2 If teacher want to export the timetable using file format,

4.2.1 Teachers choose either PDF or image file format to export the timetable.

89

89

Use Case Name: Create teacher account. ID: UC05 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – create teacher account for newly enrolled teacher in the

school.

Brief Description: This use case describes how the system administrator create teacher

account.

Trigger: System Administrator want to create new teacher account for new teachers.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to create new teacher account.

2. System administrators choose the option to create new teacher account.

3. STSAMS prompts system administrators to enter the new email.

4. System administrators enter the new email for the teacher.

5. System administrators choose to generate password randomly by STSAMS.

6. System administrators choose to copy the generated password for future use.

7. System administrators confirm and create the new account for teacher.

Sub-flows:

90

90

Use Case Name: View teachers. ID: UC06 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – view all of the teachers exist in the STSAMS.

Brief Description: This use case describes how the system administrator view all

teachers in the STSAMS.

Trigger: System Administrator want to view all teachers in STSAMS.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: UC07 – Manage teacher details

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to view all teachers.

2. System administrators choose the option to view teachers.

3. STSAMS displays all of the existing teachers by pages.

4. If system administrators found their desired teacher to view details, perform

use case UC07-Manage teacher details.

5. If not found, Continue to Sub-flow 5.1, 5.2, 5.3, 5.4 or 5.5.

Sub-flows:

5.1 If system administrators want to filter some teacher out,

5.1.1 System administrators set the filtered to be done on the list of teachers.

5.1.2 STSAMS displays the teachers according to the filter set by system

administrators.

5.2 If system administrators want to sort the teachers,

5.2.1 System administrators sort the list of teachers by the data column of table

either alphabetically or numerically.

91

91

5.2.2 STSAMS displays the teachers according to the sorting done by system

administrators.

5.3 If system administrators want to change items shown per page,

5.3.1 System administrators changes the number of teachers shown per page.

5.3.2 STSAMS shows the list of teachers by based on the items per page set by

system administrators.

5.4 If system administrators want to navigate to another page of the shown list of

teachers,

5.4.1 System administrators choose another page to display the teachers.

5.4.2 STSAMS displays only the specific page selected by system administrators.

5.5 If system administrators want to search for specific teachers.

5.5.1 System administrators enter teacher name keyword into the search box.

5.5.2 STSAMS displays only the teachers with names containing the keyword.

5.6 Continue to Main Flow 4 or 5.

92

92

Use Case Name: Manage teacher details. ID: UC07 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – manage teacher details by viewing, modifying, and deleting

teacher user profile.

Brief Description: This use case describes how the system administrator manage

teacher details by viewing, modifying, and deleting teacher user

profile.

Trigger: System Administrator want to manage teacher details.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to manage teacher details.

2. STSAMS displays the complete information of the selected teacher.

3. Continue to sub-flow 3.1 or 3.2.

Sub-flows:

3.1 If system administrators want to modify the content in teacher details,

3.1.1 System administrators choose to edit the profile of the selected teacher.

3.1.2 STSAMS will enter into update state for the system administrator to make

changes to the teacher profile.

3.1.3 System administrators enter data for the teacher details.

3.1.4 System administrators confirm and choose to save changes.

93

93

3.1.5 STSAMS reflects the changes made.

3.2 If system administrators want to delete the teacher profile,

3.2.1 System administrators choose to delete the teacher profile.

3.2.2 STSAMS will prompt the confirmation of deletion to the system

administrator.

3.2.3 System administrators confirm their decision, and the teacher account will

be deleted from the STSAMS.

94

94

Use Case Name: Manage subject details. ID: UC08 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – manage subject details by viewing, modifying, and deleting

subjects.

Brief Description: This use case describes how the system administrator manage subject

details by viewing, modifying, and deleting subjects.

Trigger: System Administrator want to manage subject details.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to view all subjects.

2. System administrators choose the option to view subjects.

3. STSAMS displays all of the existing subjects by pages.

4. If system administrators found their desired teacher to view details, continue to

main flow 6.

5. If not found, Continue to Sub-flow 5.1, 5.2, 5.3, 5.4 or 5.5.

6. Continue to Sub-flow 6.1, 6.2 or 6.3.

Sub-flows:

5.1 If system administrators want to filter some subjects out,

5.1.1 System administrators set the filtered to be done on the list of subjects.

5.1.2 STSAMS displays the subjects according to the filter set by system

administrators.

5.2 If system administrators want to sort the subjects,

95

95

5.2.1 System administrators sort the list of subjects by the data column of table

either alphabetically or numerically.

5.2.2 STSAMS displays the subjects according to the sorting done by system

administrators.

5.3 If system administrators want to change items shown per page,

5.3.1 System administrators changes the number of subjects shown per page.

5.3.2 STSAMS shows the list of subjects by based on the items per page set by

system administrators.

5.4 If system administrators want to navigate to another page of the shown list of

subjects,

5.4.1 System administrators choose another page to display the subjects.

5.4.2 STSAMS displays only the specific page selected by system administrators.

5.5 If system administrators want to search for specific subjects,

5.5.1 System administrators enter subject name keyword into the search box.

5.5.2 STSAMS displays only the subjects with names containing the keyword.

5.6 Continue to Main Flow 4 or 5.

6.1 If system administrators want to modify the content in subject details,

6.1.1 System administrators choose to edit the desired subject.

6.1.2 STSAMS will enter into update state for the system administrator to make

changes to the subject details.

6.1.3 System administrators enter data for the subject details.

6.1.4 System administrators confirm and choose to save changes.

6.1.5 STSAMS reflects the changes made.

6.2 If system administrators want to delete the existing subject,

96

96

6.2.1 System administrators choose to delete desired subject.

6.2.2 STSAMS will prompt the confirmation of deletion to the system

administrator.

6.2.3 System administrators confirm their decision, and the subject will be

deleted from the STSAMS.

6.3 If system administrators want to create new subject,

6.3.1 System administrators choose to create new subject,

6.3.2 STSAMS will prompt the details regarding the new subject.

6.3.3 System administrators confirm on the creation of new subject.

6.3.4 New subject is added to the STSAMS.

97

97

Use Case Name: Manage class details. ID: UC09 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – manage class details by viewing, modifying, and deleting

classes.

Brief Description: This use case describes how the system administrator manage class

details by viewing, modifying, and deleting classes.

Trigger: System Administrator want to manage class details.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to view all classes.

2. System administrators choose the option to view classes.

3. STSAMS displays all of the existing classes.

4. Continue to Sub-flow 4.1, 4.2 or 4.3.

Sub-flows:

4.1 If system administrators want to modify the content in class details,

4.1.1 System administrators choose to edit the desired class.

4.1.2 STSAMS will enter into update state for the system administrator to make

changes to the class details.

4.1.3 System administrators enter data for the class details.

4.1.4 System administrators confirm and choose to save changes.

4.1.5 STSAMS reflects the changes made.

98

98

4.2 If system administrators want to delete the existing class,

4.2.1 System administrators choose to delete desired class.

4.2.2 STSAMS will prompt the confirmation of deletion to the system

administrator.

4.2.3 System administrators confirm their decision, and the class will be deleted

from the STSAMS.

4.3 If system administrators want to create new class,

4.3.1 System administrators choose to create new class,

4.3.2 STSAMS will prompt the details regarding the new class.

4.3.3 System administrators confirm on the creation of new class.

4.3.4 New class is added to the STSAMS.

99

99

Use Case Name: Manage allotments. ID: UC10 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – manage allotments by choosing currently selected timetable

sets, viewing teacher timetables, setting constraints, generating timetables, and

toggling teacher permission to view them.

Brief Description: This use case describes how the system administrator manage

allotments by choosing currently selected timetable sets, viewing

teacher timetables, setting constraints, generating timetables, and

toggling teacher permission to view them.

Trigger: System Administrator want to manage timetable allotments.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to manage timetable allotments.

2. System administrators choose the option to manage allotments.

3. Continue to Sub-flow 3.1, 3.2 or 3.3.

Sub-flows:

3.1 If system administrators want to generate new timetable results,

3.1.1 The system administrators choose the option to create new allotment set.

3.1.2 System administrators fill up the necessary constraints for allocation

algorithm to consider.

3.1.3 System administrators choose the option to generate timetables.

3.2 If system administrators want to allow teachers to view the timetables,

3.2.1 System administrators select the desired allotment set.

100

100

3.2.2 System administrators toggle the option to allow teachers to view their

allocation results.

3.3 If system administrators want to view the timetable results,

3.3.1 System administrators select the desired allotment set.

3.3.2 System administrators choose the option to view allocated results.

101

101

Use Case Name: Manage announcements. ID: UC11 Importance Level: High

Primary Actor: System Administrators Use Case Type: Detail, Essential

Stakeholders and Interests:

System Administrator – manage announcements by selecting currently active

announcements to be displayed in login page, adding, deleting, and updating

announcements.

Brief Description: This use case describes how the system administrator manage

announcements by selecting currently active announcements to be

displayed in login page, adding, deleting, and updating

announcements.

Trigger: System Administrator want to manage announcements.

Relationships:

 Association: System Administrator

 Include: N/A

 Extend: N/A

 Generalization: N/A

Normal Flow of Events:

1. System administrators want to manage announcements.

2. System administrators choose the option to manage announcements.

3. STSAMS displays all of the existing announcements.

4. Continue to Sub-flow 4.1, 4.2 or 4.3.

Sub-flows:

4.1 If system administrators want to modify the content in announcement,

4.1.1 System administrators choose to edit the announcement.

4.1.2 STSAMS will enter into update state for the system administrator to make

changes to the announcement.

102

102

4.1.3 System administrators enter data for the announcement.

4.1.4 System administrators confirm and choose to save changes.

4.1.5 STSAMS reflects the changes made.

4.2 If system administrators want to delete the existing announcement,

4.2.1 System administrators choose to delete desired announcement.

4.2.2 STSAMS will prompt the confirmation of deletion to the system

administrator.

4.2.3 System administrators confirm their decision, and the announcement will

be deleted from the STSAMS.

4.3 If system administrators want to create new announcement,

4.3.1 System administrators choose to create new announcement,

4.3.2 STSAMS will prompt the details regarding the new announcement.

4.3.3 System administrators confirm on the creation of new announcement.

4.3.4 New announcement is added to the STSAMS.

4.4 If system administrators want an announcement to be displayed in login page,

4.4.1 System administrators select announcements to be active.

4.4.2 STSAMS will display all announcements that are currently active in the

login page.

103

103

5.2 User Interface Modelling

5.2.1 Storyboards

Figure 4.4.3.1: Storyboard for Login Page.

104

104

Figure 4.4.3.2: Storyboard for Forget Password Page.

105

105

Figure 4.4.3.3: Storyboard for Create Teacher Page.

Figure 4.4.3.4: Storyboard for Admin Home Page.

106

106

Figure 4.4.3.5: Storyboard for Allotment Page.

107

107

Figure 4.4.3.6: Storyboard for View Class Page.

Figure 4.4.3.7: Storyboard for View Subjects Page.

Figure 4.4.3.8: Storyboard for View Teacher Page.

108

108

Figure 4.4.3.9: Storyboard for View Teacher Details Page

109

109

 Figure 4.4.3.10: Part 1 Storyboard for Teacher Profile Page.

110

110

Figure 4.4.3.10: Part 2 Storyboard for Teacher Profile Page.

111

111

Figure 4.4.3.11: Storyboard for Announcement Management Page.

112

112

5.2.2 System UI Flow

Figure 4.5.1: Proposed System Flow for STSAMS.

113

113

5.3 Data Persistence Design

 In STSAMS, all data regarding to account credentials, timetabling constraint settings,

generated timetables, and other data like subjects, classes, teachers, and venues will be saved

in a Relational Database Management System (RDBMS) which is SQLite3. SQLite3 is chosen

due to its lightweighted nature, and it is widely used when the backend is developed in the

Python language. The frontend will be able to get access to the data in the database by

communicating with an API server that is powered by Flask. The API server will handle all the

requests sent from the frontend, do some operations on the database, ultimately return only the

related data back to the frontend.

114

114

5.3.1 Entity Relationship Diagram (ERD)

Figure 5.3.1.1: ERD for the database in STSAMS.

115

115

5.3.2 Table Descriptions in ERD

The description will be provided for tables in the database to explain what each of the

columns’ name represents and what are the columns’ data type.

Announcements Table

Table 5.3.2.1: Description of columns in Announcements table.

Columns Data Types Descriptions

ann_id INTEGER Unique ID that represents an announcement detail.

ann_msg TEXT The message content of the announcement.

creation_date DATETIME The creation date of the announcement.

modification_date DATETIME The date and time the announcement detail is

modified.

is_active CHAR Decides if the announcement detail will be shown

in certain pages.

Subjects Table

Table 5.3.2.2: Description of columns in Subjects table.

Columns Data Types Descriptions

sub_id INTEGER Unique ID that represents a subject detail.

sub_name TEXT The name of the subject.

sub_code TEXT The abbreviation of the subject name.

sub_type TEXT The weight of the subject.

Classes Table

Table 5.3.2.3: Description of columns in Classes table.

Columns Data Types Descriptions

class_id INTEGER Unique ID that represents a class detail.

class_name TEXT The name of the class.

116

116

Venues Table

Table 5.3.2.4: Description of columns in Venues table.

Columns Data Types Descriptions

venue_id INTEGER Unique ID that represents a venue detail.

venue_name TEXT The name of the venue.

Teachers Table

Table 5.3.2.5: Description of columns in Teachers table.

Columns Data Types Descriptions

teacher_id INTEGER Unique ID that represents a teacher detail.

teacher_name TEXT The name of the teacher.

teacher_dob TEXT The date of birth of the teacher.

teacher_address TEXT The address of the teacher.

T_accounts Table

Table 5.3.2.6: Description of columns in T_accounts table.

Columns Data Types Descriptions

t_acc_id INTEGER Unique ID that represents a teacher account.

t_acc_email TEXT The email of the teacher account.

t_acc_password TEXT The password of the teacher account.

t_acc_status CHAR The status of the teacher account.

t_acc_creation_date TIMESTAMP The creation date of the teacher account.

t_acc_details_id INTEGER The unique ID of the teacher.

117

117

Allotment_sets Table

Table 5.3.2.7: Description of columns in Allotment_sets table.

Columns Data Types Descriptions

as_id INTEGER Unique ID that represents an allotment set detail.

as_name TEXT The name of the allotment set.

Teacher_teachings Table

Table 5.3.2.8: Description of columns in Teacher_teachings table.

Columns Data Types Descriptions

teacher_id INTEGER The unique ID that represents a teacher.

sub_id INTEGER The unique ID that represents a subject.

Study_hours Table

Table 5.3.2.9: Description of columns in Study_hours table.

Columns Data Types Descriptions

sh_id INTEGER Unique ID that represents a study hour detail.

sh_name TEXT The name of the study hour.

as_id INTEGER The unique ID that represents an allotment set.

Study_hour_classes Table

Table 5.3.2.10: Description of columns in Study_hour_classes table.

Columns Data Types Descriptions

sh_c_id INTEGER Unique ID that represents a study hour classes

detail.

class_id INTEGER The unique ID that represents a class.

sh_id INTEGER The unique ID that represents a study hour.

118

118

Study_hour_periods Table

Table 5.3.2.11: Description of columns in Study_hour_periods table.

Columns Data Types Descriptions

sh_p_id INTEGER Unique ID that represents a study hour periods

detail.

p_day INTEGER The day of a period.

p_no INTEGER The position number of a period in a specific day.

p_start TIME The start time of a period.

p_end TIME The end time of a period.

p_is_class TINYINT The Boolean value decide if a period is class type.

p_details TEXT The description of a period.

sh_id INTEGER The unique ID that represents a study hour.

Subject_distribution Table

Table 5.3.2.12: Description of columns in Subject_distribution table.

Columns Data Types Descriptions

sd_id INTEGER Unique ID that represents a subject distribution

detail.

sd_name TEXT The name of the subject distribution.

as_id INTEGER The unique ID that represents an allotment set.

Subject_distribution_classes Table

Table 5.3.2.13: Description of columns in Subject_distribution_classes table.

Columns Data Types Descriptions

sd_c_id INTEGER Unique ID that represents a subject distribution

classes detail.

class_id INTEGER The unique ID that represents a class.

sd_id INTEGER The unique ID that represents a subject

distribution.

119

119

Subject_distribution_blocks Table

Table 5.3.2.14: Description of columns in Subject_distribution_blocks table.

Columns Data Types Descriptions

sd_b_id INTEGER Unique ID that represents a subject distribution

blocks detail.

sub_id INTEGER The unique ID that represents a subject.

single_qty INTEGER The quantity of a subject with single block.

double_qty INTEGER The quantity of a subject with two consecutive

blocks.

triple_qty INTEGER The quantity of a subject with three consecutive

blocks.

sd_id INTEGER The unique ID that represents a subject

distribution.

Venue_usages Table

Table 5.3.2.15: Description of columns in Venue_usages table.

Columns Data Types Descriptions

vs_id INTEGER Unique ID that represents a venue usages detail.

sub_id INTEGER The unique ID that represents a subject.

class_id INTEGER The unique ID that represents a class.

as_id INTEGER The unique ID that represents an allotment set.

Venue_sets Table

Table 5.3.2.16: Description of columns in Venue_sets table.

Columns Data Types Descriptions

vs_id INTEGER The unique ID that represents a venue usage.

venue_id INTEGER The unique ID that represents a venue.

120

120

Teacher_preferences Table

Table 5.3.2.17: Description of columns in Teacher_preferences table.

Columns Data Types Descriptions

tp_id INTEGER The unique ID that represents a teacher preference

detail.

range_start INTEGER The start range of the preferred period position.

range_end INTEGER The end range of the preferred period position.

teacher_id INTEGER The unique ID that represents a teacher.

Teacher_preference_classes Table

Table 5.3.2.18: Description of columns in Teacher_preference_classes table.

Columns Data Types Descriptions

class_id INTEGER The unique ID that represents a class.

tp_id INTEGER The unique ID that represents a teacher preference.

Teacher_preference_subjects Table

Table 5.3.2.19: Description of columns in Teacher_preference_subjects table.

Columns Data Types Descriptions

sub_id INTEGER The unique ID that represents a subject.

tp_id INTEGER The unique ID that represents a teacher preference.

121

121

Static_timeslots Table

Table 5.3.2.20: Description of columns in Static_timeslots table.

Columns Data Types Descriptions

st_id INTEGER The unique ID that represents a static timeslot.

single_qty INTEGER The quantity of a static timeslot with single block.

double_qty INTEGER The quantity of a static timeslot with two

consecutive blocks.

triple_qty INTEGER The quantity of a static timeslot with three

consecutive blocks.

as_id INTEGER The unique ID that represents an allotment set.

Static_timeslot_details Table

Table 5.3.2.21: Description of columns in Static_timeslot_details table.

Columns Data Types Descriptions

sub_id INTEGER The unique ID that represents a subject.

class_id INTEGER The unique ID that represents a class.

st_id INTEGER The unique ID that represents a static timeslot.

Static_timeslot_periods Table

Table 5.3.2.22: Description of columns in Static_timeslot_periods table.

Columns Data Types Descriptions

p_day INTEGER The day of a period.

p_no INTEGER The position number of a period in a specific day.

st_id INTEGER The unique ID that represents a static timeslot.

Static_timetables

Table 5.3.2.23: Description of columns in Static_timetables table.

Columns Data Types Descriptions

id INTEGER The unique ID that represents a static timetable.

name INTEGER The name of a static timetable.

as_id INTEGER The unique ID that represents an allotment set.

122

122

Static_timetable_allotments Table

Table 5.3.2.24: Description of columns in Static_timetable_allotments table.

Columns Data Types Descriptions

id INTEGER The unique ID that represents a static timetable

allotment.

day INTEGER The day of a period.

no INTEGER The position number of a period in a specific day.

teacher_id INTEGER The unique ID that represents a teacher.

class_id INTEGER The unique ID that represents a class.

subject_id INTEGER The unique ID that represents a subject.

static_timetable_id INTEGER The unique ID that represents a static timetable.

Dynamic_timetables

Table 5.3.2.25: Description of columns in Dynamic_timetables table.

Columns Data Types Descriptions

id INTEGER The unique ID that represents a dynamic

timetable.

name INTEGER The name of a dynamic timetable.

as_id INTEGER The unique ID that represents an allotment set.

123

123

Dynamic_timetable_allotments Table

Table 5.3.2.26: Description of columns in Dynamic_timetable_allotments table.

Columns Data Types Descriptions

id INTEGER The unique ID that represents a dynamic

timetable allotment.

day INTEGER The day of a period.

no INTEGER The position number of a period in a specific

day.

teacher_id INTEGER The unique ID that represents a teacher.

class_id INTEGER The unique ID that represents a class.

venue_id INTEGER The unique ID that represents a venue.

subject_id INTEGER The unique ID that represents a subject.

dyanmic_timetable_id INTEGER The unique ID that represents a dynamic

timetable.

Dynamic_timetable_allotments Table

Table 5.3.2.27: Description of columns in Dynamic_timetable_allotments table.

Columns Data Types Descriptions

id INTEGER The unique ID that represents a dynamic

timetable other allotment.

name TEXT The name of the allotted not class-type period.

day INTEGER The day of a period.

no INTEGER The position number of a period in a specific

day.

dyanmic_timetable_id INTEGER The unique ID that represents a dynamic

timetable.

124

124

5.4 Algorithm Design

As there are two types of allocation in STSAMS, which is static allocation and dynamic

allocation, they may have minor different definitions of object classes, fitness evaluation

formula. Besides that, both algorithms are using different constraints during execution. The

objective of this separation is to reduce the complexity of the algorithm as modularizing

functionalities in the system could increase maintainability and learnability. However, the

execution steps of these two algorithms are mostly similar in terms of execution steps and result

structuring.

5.4.1 Class Definition

Figure 5.4.1.1: Class Diagram of STSAMS Algorithm for Dynamic Allocation.

Figure 5.4.1.1: Class Diagram of STSAMS Algorithm for Static Allocation.

125

125

5.4.2 Execution Flow

 The type of meta-heuristic algorithm used in STSAMS is genetic algorithm. The

principle behind genetic algorithm is that the step of execution consists of initialization, fitness

calculation, selection, crossover, and mutation. To visualize the execution process, Figure

5.4.2.1 below shows how the designed genetic algorithm’s flow of allocations.

Figure 5.4.2.1 Execution flow of the STSAMS Genetic Algorithm.

 The genetic algorithm will first be starting with initializing random population of

genomes containing the timetables for the very first time. After that, fitness evaluation will be

conducted on the genomes in the generated timetable populations. The evaluated timetable

population may achieve optimal solution in the first or Nth time of fitness evaluation. So, if the

best result or one of the stop conditions is met, the best genome in the population will be

selected to perform result structuring. This structuring process will make sure that the returned

value feasible to be supported in the frontend and saved in the database. In contrast, the

population timetable genomes will be sent to the Tournament Selection phase to select the

genomes with the best fitness value in a population. Then, the selected genomes are the parent

genomes that will be crossed using the single point crossover method to create offsprings. Like

the nature of genetic crossover, there is a set chance that the offspring may experience

mutations. Hence, the algorithm will mutate the offsprings by shuffling the genes in affected

126

126

genomes. The entire process will be looped until an optimal timetable solution is produced or

stop condition is met.

5.4.3 Execution Steps

 This section will provide the detailed design and explanation of each step in the

algorithm execution flow.

5.4.3.1 Initialization

 The first phase of the generation process is the initialization phase. In this phase,

population of genomes containing timetable allocation will be generated randomly based on

the given population size. This is because increasing the population size could increase the

search range of the algorithm for the optimal solution. Nonetheless, it will cause the algorithm

to slow down due to low computational power resulting from too large of a search space.

5.4.3.1.1 Static Allotment Algorithm (SAA)

 To generate the genomes for each population, the SAA will require the allotment set

identifier to continue. This is because STSAMS has the feature to group the allotments into

different sets to isolate the context of use including constraint settings and class sessions like

morning or afternoon classes. So, SAA will only consider the constrain settings for specific

allotment set. Then, SAA will extract the constrain settings for static timeslots from the

database to initialize the genome. In static timeslot constraint, it contains data of the classes

and subjects. Using the subject information, SAA can extract a list of teachers that could teach

the specific subjects. After that, SSA will find distributions details of the static timeslot from

database to sort out the static timeslots with different block size. For example, if a static timeslot

has 1 single block and 2 triple blocks, the result would be “1, 3, 3”.

During the constraint setting for static timeslot, admins are also required to set the frame

details for each static timeslot. This frame details are referring to the days and period positions

that the static timeslots can be allocated. If there are no spaces left in the static timeslot frame,

the blocks will be allocated randomly in positions stated in the study hour constraint. These

data are then merged into a single class named “Static_Timeslot”. If there is more than one

static timeslot in the allotment set, the process will be repeated to initialize all static timeslots.

Lastly, SSA will do this process again by few numbers of time according to the set population

size. The structure of the genome will look like the figure shown below:

127

127

Figure 5.4.3.1.1.1: Genetic Encoding Design of SAA.

 As stated before, each static timeslot instances will consist of the information regarding

to the involved classes, subjects, and teaching teachers. All teaching teachers are mapped to

the subject identifier stated in the in the list of involved subjects. For example, teachers with

the ID of 1, 2, and 3 can teach the subject with an ID of 1. In the allocation section of the

genetic encoding, it has two different allocation types. The distribution blocks that could fit

into the specified frame for the static timeslot will be stored into the static timeslots list, while

other timeslots list will contain the leftovers. Then, the other timeslots list will have the frame

size based on the study hour constraint set. The example on how the distribution blocks is

allocated into both lists is stated in the explanation below: -

128

128

Static Timeslot Frame Size

Table 5.4.3.1.1.1: Example Frame Size.

3 1 2 - -

Distribution Blocks

Table 5.4.3.1.1.2: Example Distribution Blocks.

2 1 2 1 -

 SSA will first evaluate the static timeslot frame size. Then, the distribution blocks will

be filled into the frame. According to the frame, the first frame could accommodate total

distribution blocks of 3. So, the first and second distribution blocks could fit in it because they

totaled 3, leaving two more blocks to be allocated. The frame size of 1 is now unable to hold

any blocks as the first distribution blocks after allocating 2 and 1 is 2. So, SSA will fill a null

value into the frame. SSA will continue until the distribution blocks list is exhausted. The result

of the allocation will be shown in the following tables: -

Static Timeslot List

Table 5.4.3.1.1.3: Example Static Timeslot List.

2 1 None 2 -

Other Timeslot List

Table 5.4.3.1.1.4: Example Timeslot List.

1 None None None None

Ultimately, the content in the lists will be shuffled to add randomness to the allocation.

As aforementioned, there are two types of algorithms with differ constraints checking. So, the

genetic encodings for both algorithms will be appearing to be mostly similar in its structure.

129

129

5.4.3.1.2 Dynamic Allotment Algorithm (DAA)

 The algorithm will now require two initial important information to continue its

execution which are the allotment set ID and static timetable ID. The allotment set ID will be

the group of different contexts of use for different allocations, while static timetable ID is the

identifier to reference to the saved static timetable that is generated by SAA. The reserved

periods by the static timetable will act as a constraint to prevent slot overlapping in DAA. Like

SAA, DAA will also extract the data of the related constraint settings stated in Table 0. The

table below will show the description of each constraints involved: -

Table 5.4.3.1.2.1: Description of the constraints involved in DAA.

No. Constraint Description

1 Teacher

Preferences

This constraint settings contains data regarding to the preferred range

of period position by the teachers

2 Study Hours This constraint settings contains the frame for timetable allocation

which is the periods that are available to accommodate subject blocks.

3 Subject

Distributions

The constraint settings contain the information on the quantity of

single, double, and triple blocks of subjects.

4 Venue

Usages

The constraint settings decide the venues allocations for different

subjects.

Figure 5.4.3.1.2.1: Genetic Encoding Design of DAA.

130

130

 In DDA, the classes involved are the genes of a genome instead of an information in a

gene. So, the class ID will represent ID of each gene. The information of a gene consists of

venues allocation, teacher assignments, teacher preferences, and distribution block quantities.

Then, the distribution blocks are allocated in slots with different frame size in the allocation

section. The value from the distribution block list will utilize the Queue data structure to pop

out the subject IDs. For instances, if Subject 6 takes 3 spaces, it will completely occupy the

frame. Hence, Subject 2, and Subject 1 will need to fill in the second box. To apply randomness

to the allocations, the order of the subject IDs in the block distribution lists will be shuffled,

then the assignment of frame blocks in allocation section is performed again.

In the scenario shown in Figure 5.4.3.1.2.1, subject with the ID of 6 will have 1 double

and 1 triple distribution blocks. The teacher with the ID of 1 does not prefer to teach Subject 6

since the list of preferred subjects only include Subject 1, Subject 2, and Subject 3. In this case,

Teacher 1 will be satisfied with teaching in the class because Class 3 is in the preferred class

list. In the teacher assignment, it shows that Teacher 1 will teacher only Subject 1 or Subject 3

depending on the allotment. If Teacher 1 was selected to teach Subject 1, the teacher will

conduct the class in Venue 1.

131

131

5.4.3.2 Fitness Evaluation

 In SSA, the genomes will only be evaluated on clashing between teachers and classes.

There is no zero chance that the subjects will experience clashing because same subjects can

be taught in a school at the same time. However, teachers cannot be in the different classes and

classes cannot have more than one lesson happening concurrently unless the subjects and

classes are in the same static timeslot. All the static timeslots in a genome will be collected and

transposed to find clashing. The transposing logic is shown the following steps: -

Table 5.4.3.2.1: Allocation for Static Timeslot 1.

Class: 1, 2 / Teacher: 4, 2

Periods 1 2 3 4 5

Allocated? 0 1 1 0 0

Table 5.4.3.2.2: Allocation for Static Timeslot 2.

Class: 2, 3 / Teacher: 1, 2

Periods 1 2 3 4 5

Allocated? 1 1 0 1 0

First, the allocations for static timeslot 1 and 2 will be transposed, resulting in answer

shown in Table 0. According to the “Allocated?” column is referred to as whether the period

is allocated with the static timeslot.

Table 5.4.3.2.3: Transposed periods of Static Timeslot 1 and 2.

Periods 1 2 3 4 5

Allocated

Classes and

Teachers

Class: 2, 3

Teacher: 1, 2

Class: 1, 2, 2,

3

Teacher: 1, 2,

2, 4

Class: 1, 2

Teacher: 2, 4

Class: 2, 3

Teacher: 1, 2

Class: -

Teacher: -

By looking at the class and teacher lists, clashes are decided by the repetitive values.

To optimize the clash checking, the original size of class list containing 1, 2, and 3 will be

compared to the size of the transposed lists such as class lists with elements of 1, 2, 2, and 3 in

132

132

the second period. It can be deducted that there is clashing if the comparing sizes is different.

Then, the following formula will be used to calculate the fitness value of the genomes.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =
1

(1 + #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝐶𝑙𝑎𝑠ℎ𝑒𝑠 + #𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝐶𝑙𝑎𝑠ℎ𝑒𝑠)

If an optimal solution is found, the fitness value will be 1.

In DAA, the genomes will be evaluated on clashing between venues and teachers. In

this case, classes are not included in evaluate directly because clashes between classes will be

depended on the venue allocated and assigned teachers. Like SAA, DAA will also compile all

the timeslot allocation in the classes to be transposed.

Table 5.4.3.2.4: Allocation for Class 1.

Subject 1: (Teachers: 1, 2 / Venues: -)

Subject 2: (Teachers: 2, 3 / Venues: 1, 2)

Subject 3: (Teachers: 4, 5 / Venues: -)

Subject 4: (Teachers: 4, 6 / Venues: -)

Periods 1 2 3 4 5

Subject 1 3 2 2 4

Table 5.4.3.2.5: Allocation for Class 2.

Subject 1: (Teachers: 1, 2 / Venues: -)

Subject 2: (Teachers: 3, 2 / Venues: 1, 2)

Subject 3: (Teachers: 5, 4 / Venues: -)

Periods 1 2 3 4 5

Subject 1 2 2 1 3

 First, the allocations for static timeslot 1 and 2 will be transposed, resulting in answer

shown in Table 0. The subject column is referring to the ID of a subject. The IDs can be used

to obtain information about the assigning teachers and allocating venues. Following the design

the initialization phase, the first element of both teacher list and venue list will be selected as

the chosen value.

133

133

Table 5.4.3.2.6: Transposed periods of Static Timeslot 1 and 2.

Periods 1 2 3 4 5

Selected

Teachers

1, 1 4, 2 2, 3 2, 3 4, 5

Selected

Venues

-, - -, 1 1, 1 -, - -, -

 By looking at the venue and teacher lists, clashes are decided by the repetitive values.

To optimize the clash checking, the size of selected teacher list containing 1, and 1 will be

compared to the size of the lists after removing the repetitive values. It can be deducted that

there is clashing if the comparing sizes is different. From Table 0, it can be seen that Period 1

is having clashes for Teacher 1 and Period 3 is having clashes for Venue 1. Then, the following

formula will be used to calculate the fitness value of the genomes.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =
1

(1 + #𝑉𝑒𝑛𝑢𝑒 𝐶𝑙𝑎𝑠ℎ𝑒𝑠 + #𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝐶𝑙𝑎𝑠ℎ𝑒𝑠)

5.4.3.3 Selection

 The type of selection used in both algorithms is Roulette Wheel Selection. This

methodology will select the genomes based on their probability. The probability of selection is

provided as fitness value and SAA and DAA. So, the fitness values evaluated in the fitting

phase can be used to represent the probability for each genome to be selected in the Roulette

Wheel. This method of selection will ensure that the most fit timetable solution can be chosen

to perform the cross-over to produce better offspring. By luck, the timetable solutions or

genomes that are worst in fitness can still be chosen as parent genomes. This will enable all

genomes to have the chance to be participating in the selection phase. This randomness will

ensure better results can be produce as it is not confirmed that two best parent genomes will

produce offsprings that are better than the parents.

134

134

Table 5.4.3.3.1: The example genomes with mock fitness value and its percentage of

occupation in the Roulette Wheel.

Genomes Fitness Value Percentage in Roulette

Wheel

A 0.3 30%

B 0.2 20%

C 0.35 35%

D 0.15 15%

Figure 5.4.3.2.1: Pie Chart on the Probability of Genome to be Chosen.

From Figure 5.4.3.2.1, it can be imagined that the wheel is spun. Genome C will have

the highest chance of landing on the wheel’s arrow. So, it is very likely that Genome C will be

chosen to be the parent genomes in the crossover phase. At the same time, the other genomes

may still win the selection and become the parent genome for the crossover phase. The

likeliness of the genomes getting chosen are C > A > B > D.

0.3

0.2

0.35

0.15

Roulette Wheel Selection

A B C D

135

135

5.4.3.4 Crossover

 Single point crossover method will used in the crossover phase. The crossover process

will cut genomes into two parts, switch the parts, and lastly join them back together as shown

in Figure. In SAA and DAA, the cutting point of the genomes are randomized, so that there is

higher probability to create offsprings that are better in fitness.

Figure 5.4.3.4.1: Visualization of Single Point Crossover

 To demonstrate the crossover process, example is shown in Table 0. Parent genome A

and B will have a cutting point. After separating the genomes into two pieces, the back piece

of Genome A will exchange with Genome B’s, creating a completely new offsprings. The

offsprings will have the genes of both parents making them identical to their parents but still

having the genes structured differently. In SAA and DAA the genomes will be first sorted

according to the ID of classes or static timeslots. Different colors of text is used to provide

clearly separations between genes of Parent A and Parent B.

Table 5.4.3.4.1: Example Result of Single Point Crossover.

Parent A 1 3 4 2 1 5

Parent B 2 7 2 8 9 3

Offspring A 1 3 2 8 9 3

Offspring B 2 7 4 2 1 5

136

136

5.4.3.5 Mutation

 In the mutation phase, the shuffle mutation strategy will be applied. This type of

mutation will shuffle the sequence of the genes are ordered in, creating a genome completely

different from its original form. The mutation will only happen after each crossover phase. Just

like in real life, genetic errors may happen during the crossover of chromosomes. The chances

of a genome mutating are 50% and 30% for SAA and DAA respectively.

Table 5.4.3.5.1: Example Result of Shuffle Mutation.

Original Genome 5 2 1 2 3

Mutated Genome 1 5 2 3 2

137

137

5.5 API Routes Design

In this project, Swagger API Documentation tool is utilized to create the design for

every route in STSAMS. Every route will contain information about the parameters used in the

requests and the possible response structure will be frontend receive including the response

codes and example values. The routes will be grouped into different section to ease the reading

and reduce the complexity of the documentation.

5.5.1 Admins Tag

Figure 5.5.1.1: The design of admin login route.

138

138

5.5.2 Announcements Tag

Figure 5.5.2.1: The design of getting all announcements route.

Figure 5.5.2.2: The design of announcement creation route.

139

139

Figure 5.5.2.3: The design of announcement deletion route.

Figure 5.5.2.4: The design of getting specific announcement route.

140

140

Figure 5.5.2.5: The route design for updating specific announcement.

141

141

5.5.3 Classes Tag

Figure 5.5.3.1: The route design for getting all classes.

Figure 5.5.3.2: The route design for creating new classes.

142

142

Figure 5.5.3.3: The route design for deleting existing classes.

Figure 5.5.3.4: The route design for getting a specific class.

143

143

Figure 5.5.3.5: The route design for updating an existing class.

144

144

5.5.4 Subject Distributions Tag

Figure 5.5.4.1: The route design for creating new subject distributions.

Figure 5.5.4.2: The route design for getting specific subject distribution.

145

145

Figure 5.5.4.3: The route design for deleting a subject distribution.

Figure 5.5.4.4: The route design for updating a subject distribution.

146

146

5.5.5 Dynamic Timetables Tag

Figure 5.5.5.1: The route design for adding a dynamic timetable.

Figure 5.5.5.2: The route design for getting a dynamic timetable.

147

147

5.5.6 Dynamic Timetabling Algorithm

Figure 5.5.6.1: The route design for getting console messages during dynamic timetable

generation.

Figure 5.5.6.2: The route design for getting progress of the dynamic timetable generation.

148

148

Figure 5.5.6.3: The route design for running the dynamic timetabling algorithm.

149

149

5.5.7 Preferences Tag

Figure 5.5.7.1: The route design for getting a teacher’s preferences.

Figure 5.5.7.2: The route design for updating a teacher’s preferences.

150

150

5.5.8 Allotment Sets Tag

Figure 5.5.8.1: The route design for getting all allotment sets.

Figure 5.5.8.2: The route design for creating new allotment sets.

151

151

Figure 5.5.8.3: The route design for deleting an allotment set.

Figure 5.5.8.4: The route design for getting an allotment set.

152

152

5.5.9 Static Timeslots Tag

Figure 5.5.9.1: The route design for creating a new static timeslot.

Figure 5.5.9.2: The route design for getting a static timeslot.

153

153

Figure 5.5.9.3: The route design for deleting a static timeslot.

Figure 5.5.9.4: The route design for updating a static timeslot.

154

154

5.5.10 Static Timetables Tag

Figure 5.5.10.1: The route design for creating a new static timetable.

Figure 5.5.10.2: The route design for getting a static timetable.

155

155

5.5.11 Static Timetabling Algorithm

Figure 5.5.11.1: The route design for getting process of the static timetabling algorithm.

Figure 5.5.11.2: The route design for running the static timetabling algorithm.

156

156

5.5.12 Study Hours

Figure 5.5.12.1: The route design for creating a new study hour.

Figure 5.5.12.2: The route design for getting a study hour.

157

157

Figure 5.5.12.3: The route design for deleting a study hour.

Figure 5.5.12.4: The route design for updating a study hour.

158

158

5.5.13 Subjects Tag

Figure 5.5.13.1: The route design for getting all subjects.

Figure 5.5.13.2: The route design for creating a new subject.

159

159

Figure 5.5.13.3: The route design for deleting a subject.

Figure 5.5.13.4: The route design for getting a subject detail.

160

160

Figure 5.5.13.5: The route design for updating a subject.

Figure 5.5.13.6: The route design for adding teaching subjects to a teacher.

161

161

Figure 5.5.13.7: The route design for getting teaching subjects of a teacher.

Figure 5.5.13.8: The route design for updating teaching subjects of a teacher.

162

162

5.5.14 Teachers Tag

Figure 5.5.14.1: The route design for getting all teachers.

Figure 5.5.14.2: The route design for creating a new teacher.

163

163

Figure 5.5.14.3: The route design for getting teacher details of first-time login teachers.

Figure 5.5.14.4: The route design for logging in teachers into STSAMS.

164

164

Figure 5.5.14.5: The route design for deleting a teacher.

Figure 5.5.14.6: The route design for getting details of a teacher.

165

165

Figure 5.5.14.7: The route design for updating the details of a teacher.

166

166

5.5.15 Teaching Classes Tag

Figure 5.5.15.1: The route design for getting teaching classes of a teacher.

167

167

5.5.16 Venue Usages Tag

Figure 5.5.16.1: The route design for getting venue usages.

Figure 5.5.16.2: The route design for updating venue usages.

168

168

5.5.17 Venues Tag

Figure 5.5.17.1: The route design for getting all venues.

Figure 5.5.17.2: The route design for creating a venue.

169

169

Figure 5.5.17.3 The route design for deleting a venue.

Figure 5.5.17.4 The route design for getting a venue.

170

170

Figure 5.5.17.5 The route design for updating a venue.

171

171

CHAPTER 6

SYSTEM IMPLEMENTATION

In this chapter, the implementation and functionality of the system will be explained.

Steps and guides on how to use the system will be showed to increase user’s understanding

STSAMS.

6.1 Authentication & Authorization

As there are two different users using STSAMS, two user roles are defined to

implement a clear separation between system admins and teachers. There are a few

functionalities in the system to prevent users from accessing the unauthorized URLs to increase

the security of the system. In STSAMS, there are two login pages either for system

administrators or teacher. In UI design, they share the same structure to ensure consistency.

Visualization for both login pages in shown in Figure 6.1.1 and Figure 6.1.2.

Figure 6.1.1: Login Page for System Administrators.

172

172

Figure 6.1.2: Login Page for Teachers.

 To ease navigating between these two pages, a link is added below the Login button

like Figure 6.1.3. So, the system administrators and teachers will not have to change the URL

to get access to their desired login page.

Figure 6.1.3: Navigation link to Admin Login.

 In both login pages, there is also an announcements section to the show the

announcement set by the system administrators such as Figure 6.1.4. The data management for

announcements will be shown in the later section.

Figure 6.1.4: Announcement Section in the Login Page.

173

173

 Then, imagine a scenario of one of users wanting to log into the system. If the user

entered the wrong credentials or accessed to the wrong login page, the system will show an

alert, displaying an error message of “You entered the invalid credentials.” as shown in the

Figure 6.1.5.

Figure 6.1.5: Alert Message for Invalid Logins.

 Besides that, the system will check for authentications before letting any users to access

any pages. As roles are defined for each type of user, the system will know if the user to

authenticated as a teacher or an administrator. Using this logic, an authenticated teacher will

not be allowed to access the system administrator’s page even though they are authenticated.

This will also apply similarly to the system administrators. If both users try to do so, the system

will simply send them back to the login page if they are not authenticated or their home pages

if they are already authenticated. The example of navigation is shown in Table 6.1.1.

Table 6.1.1: Example of navigation and redirection based on authentication.

User Type Trying to Access Authenticated? Redirection

Admin /teacher/home No /login/teacher

Admin /admin/home No /login/admin

Admin /admin/login Yes /admin/home

Teacher /admin/home Yes /teacher/home

Teacher /teacher/home Yes -

Teacher /teacher/home No /login/teacher

174

174

6.2 Data Management

This data management will only be available to the administrator’s module. This is

because only system administrators are authorized to modify the data in the system. Once a

system administrator is logged in to the system, he/she will be brought to the home page which

can be also called as the Dashboard. The dashboard allows the system administrator to take get

the overview of the data in the system. For example, the data is categorized into 4 sections

which are the subject section, teacher section, classes section, and venues section followed by

the total count of the data as shown in Figure 6.2.1.

Figure 6.2.1: The Dashboard in the Admin Module.

 Then, the system administrators can click on view details to navigate to the page that

shows the detailed list of specific type of data. To illustrate, the administrator will be navigated

to the subject’s management page as shown in Figure 6.2.2 after clicking on “View Details”

link in the subject section.

Figure 6.2.2 Subject Management Page in the Admin Module.

 The functionalities in Figure 6.2.2 will be explained from the left to the right then

progressing downwards. On the top left corner, it shows the current page title the system

administrator is currently accessing, then a brief description below explaining the page context.

175

175

Then, clicking on the button will bring the admin to the subject creation page as shown in

Figure 6.2.3 to enter the details for a new subject.

Figure 6.2.3: Subject Creation Page.

 After filling in the details for a new subject then confirming the subject creation, the

administrator will be brought back to the Subjects page. Then, the administrator will see the

newly created subject in the table content.

Figure 6.2.4: New Subject Added to the Table.

 Then, there is the search bar and type selection input box. Both functionalities will filter

out the subjects in table based on specific conditions. For example, the search bar will filter out

subjects based on its name and the selection input box will filter out subjects by its type. After

filling in the filter section, the English subject will only be displayed as shown in Figure 6.2.5.

176

176

Figure 6.2.5: Filtered Subject Table.

 Other than that, the admin can also sort the subjects by their names, codes, or types. In

Figure 6.2.6, it is showing that the subjects are now sorted based on their names in descending

order. The different types of sorting mode are presented in Table 6.2.1.

Figure 6.2.6: Sorted Subject Table.

Table 6.2.1: The Available Sorting Modes and its Symbol Used.

No. Sort Modes Symbols Used

1. Unsorted

Figure 6.2.7: Symbol for Unsorted

Mode.

2. Sorted in Ascending Order

Figure 6.2.8: Symbol for Ascending

Order Mode.

3. Sorted in Descending Order

Figure 6.2.9: Symbol for Descending

Order Mode.

177

177

If the admins want to edit the details for the subject, they can click on the Edit button.

They will be brought to the edit subject page as shown in Figure 6.2.7 to modify the subject

data like subject name, subject code, and subject type.

Figure 6.2.7: Subject Modification Page.

After changing and confirming the details of the selected subject, the admins will be

navigated back to the Subject Page and the updated subject will be reflected in the subjects

table instantly like in Figure 6.2.8.

Figure 6.2.8: The Newly Update Subject Data.

To delete a subject, the system admins can click on the Delete button. To avoid

accidental deletion, a confirmation dialog like Figure 6.2.9 will be displayed before deleting a

subject.

178

178

Figure 6.2.9: Confirmation Dialog before Deletions.

To prevent information overload and excessive scrolling, the pagination functionality

is implemented and placed at the bottom of the table as shown in Figure 6.2.10. For example,

the system admins can see which range of subjects that are currently being displayed, navigate

through the pages, and set number of subjects will be displayed in one page.

Figure 6.2.10: Pagination in Subject Page.

 This will conclude the guides on subject management. To ensure consistency, all the

other data like classes, venues, teachers, and announcements will be mostly similar to subject

page. However, there are still some explanations need to be made in the teachers and

announcements page.

 The figures below will show in the implementations in the classes page.

Figure 6.2.11: Main Page for Class Management.

179

179

Figure 6.2.12: Class Creation Page.

Figure 6.2.13: Class Modification Page.

Figure 6.2.14: Confirmation Dialog before Class Deletions.

The figures below will show in the implementations in the venues page.

Figure 6.2.15: Main Page for Venue Management.

180

180

Figure 6.2.16: Venue Creation Page.

Figure 6.2.17: Venue Modification Page.

Figure 6.2.14: Confirmation Dialog before Venue Deletions.

The figures below will show in the implementations in the Teacher page.

Figure 6.2.15: Main Page for Teacher Management.

 Then, the system admins can create a new teacher by pressing the Create New Teachers

button. It will navigate the admins to the teacher creation screen as displayed in Figure 6.2.16.

181

181

Figure 6.2.16: Teacher Creation Page.

 The system enables system admins to enter email for the new teacher as well as

generating a default password for the teacher. If the admins are not happy with the generated

password, they can create a new random password by pressing on the Generate Password

button. To copy the password to the clipboard, they can press on the Copy button. After

confirming the new teacher’s details, the Create button can be pressed and an email like in

Figure 6.2.17 will be sent to the teacher to set up his/her account.

Figure 6.2.17: Email Received by the Teacher.

The first-time login page illustrated in Figure 6.2.18 will be opened after the teacher

clicked on the access link.

Figure 6.2.18: First-time Login Page.

The system will require the teacher to update their default password to a new strong

password that will have at least one special, numeric, uppercase, or lowercase character, longer

182

182

than 12 characters. To do further validation, this system will make sure that the password and

password confirmation are matched before allowing the teacher to go to the next page as shown

in Figure 6.2.19.

Figure 6.2.19: Profile Details Form in First-time Login Page.

After filling in the details, clicking on the Complete button will bring the teacher to the

login page. Moreover, the system admins can view and update the details for the teacher.

Figure 6.2.20: View Details Page for Teacher.

Figure 6.2.21: Update Teacher Page.

183

183

If one of the teachers in school is transferred away or retired, the system admins can

choose to delete the profile from the system. To prevent accidental deletion, a confirmation

dialog will also be shown like in Figure 6.2.22.

Figure 6.2.22: Confirmation Dialog before Teacher Profile Deletion.

 As for the announcements management, the announcements’ main page can be

accessed through the top navigation bar as shown in Figure 6.2.23.

Figure 6.2.23: Top Navigation Bar of STSAMS.

The figures below will show in the implementations in the Announcements page.

Figure 6.2.24: Main Page for Announcements Management.

184

184

Figure 6.2.25: Announcement Creation Page.

Once the “Set Active?” switch is enabled, this option will allow the announcement to

be shown in the login page for both teachers and administrators.

Figure 6.2.26: Announcement Modification Page.

6.3 Allotment Sets & Constraint Settings

 This is most important section of the system as the system administrators will define

relationship between the previously created data. To allow the system admins to modularize

their work, allotment used in different context can be grouped into allotment sets. It can be said

that it is very similar to a project file for a software. The page to manage the allotment sets is

shown in Figure 6.3.1.

Figure 6.3.1: Main Page for Allotment Sets Management.

185

185

The system admins can add new allotment set by pressing on the Add Allotment Set

button. Then, a modal illustrated in Figure 6.3.2 will be displayed, requiring the name of the

allotment set. Then, confirmation dialog like in Figure 6.3.3 will also be displayed before

confirming to delete an allotment set.

Figure 6.3.2: Modal for Allotment Set Creation.

Figure 6.3.3: Confirmation Dialog before Deleting Allotment Set.

 After clicking on the name of the newly created allotment set, it will bring the admins

to the Allotments Page that will allow admins to define the constraint settings for Study Hours,

Subject Distributions, Venue Usages and Static Timeslots as well as the timetable generation

options for Static Generation and Dynamic Generation as shown in Figure 6.3.4.

Figure 6.3.4: The Options Available in Allotments Page.

 The constraint setting options are intentionally ordered in the way that admins must

follow to ensure that the process of generating timetables is without any problem. So, the first

186

186

constraint to be set will be the subject distributions. The system admins can add distribution by

pressing on the Add Distribution button. After that, a modal will be popped up for the system

admins to fill in the distribution details for the allotment.

Figure 6.3.5: Content of Subject Distribution Tab.

Figure 6.3.6: Modal of Distribution Creation.

The functionalities are also like the Study Hours constraint and Static Timeslots

constraint.

Figure 6.3.7: Content of Study Hours Tab.

187

187

Figure 6.3.8: Modal of Study Hours Creation.

In Figure 6.3.8, it shows a modal that can allow system admins to set the study hour

frame for specific classes that will be attached to this frame. The usage of the frame is to define

the number of periods that the timetabling algorithm can work with. For example, if the 1st until

the 10th period on Monday is defined as the study hour frame for Class 1A, then the subject

blocks set in the subject distribution will only be allocated in the specified frame and not be

overflowed.

188

188

Figure 6.3.9: Content of Static Timeslots Tab.

Figure 6.3.10: Modal in Blocks Tab for Static Timeslots Creation.

Figure 6.3.11: Modal in Periods Tab for Static Timeslots Creation.

189

189

Furthermore, it can be said that the Static Timeslots constraint is optional. This is

because it will only define the periods containing subjects and classes that happen at the same

time. For example, Class 1A and Class 1B may be having P.E concurrently with the same

teacher. Not just that, Class 1A may have two different subjects taught at the same time with

different teachers like Pendidikan Islam and Bahasa Cina. Then, this static timeslot will also

have its own dedicated block distribution as stated in Figure 6.3.10. The system admins also

can set the specific period that the static timeslot will be allocated in. This will consider

scenario when P.E only will happen in the morning or in the evening.

Figure 6.3.12: Content of Venue Usages Tab.

Figure 6.3.13: Modal to Set Venue Usages.

Figure 6.3.14: Confirmation Modal before Deleting Venue Information.

190

190

On top that, Venue Usages constraint will decide whether a subject for class will have

a venue. For instance, Chemistry subject will not be taught in class but in a chemistry lab. The

unset venue usages for subjects will happen in class by default.

The figures below will show in the implementations in the Timetable Generations page.

Figure 6.3.15: Static Generation Page.

Figure 6.3.16: Dynamic Generation Page.

191

191

6.4 Teacher’s Module

In teacher’s module, teachers can view and modify their profile and set their preferences

in timetable allocation.

Figure 6.4.1: Teacher Profile Page.

Figure 6.4.2: Teacher Preferences Page.

192

192

Figure 6.4.3: Modal to Edit Teacher Preferences.

193

193

CHAPTER 7

SYSTEM TESTING

In this chapter, we will be discussing the testing and verification done on STSAMS to achieve the testing objectives.

7.1 Test Cases and Results for Frontend Webpages

Figure 7.1.1: Unit Test Overall Result using Jest.

194

194

Table 7.1.1: Test Cases and Results for Allotment Sets.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Allotment Sets Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-01 Test

postAllotmentSet

method

Verify that the

postAllotmentSet

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/set

s

Method: POST

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/set

s

Method: POST

Response: {data:

“example”}

Pass -

TC-02 Test

getAllotmentSet

method

Verify that the

getAllotmentSet

method sends

ID: 1 Route:

http://127.0.0.1:5000/set

s/1

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/set

s/1

Pass -

195

195

request to the

correct route &

method and

receives the

response correctly.

Method: GET

Response: {data:

“example”}

Method: GET

Response: {data:

“example”}

TC-03 Test

getAllotmentSets

method

Verify that the

getAllotmentSets

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/set

s

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/set

s

Method: GET

Response: {data:

“example”}

Pass -

TC-04 Test

deleteAllotmentS

ets method

Verify that the

deleteAllotmentSet

s method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/set

s/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/set

s/1

Method: DELETE

Response: {data:

“example”}

Pass -

196

196

Table 7.1.2: Test Cases and Results for Announcements.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Announcements Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-05 Test

postAnnounceme

nt method

Verify that the

postAnnouncemen

t method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/an

nouncements

Method: POST

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/an

nouncements

Method: POST

Response: {data:

“example”}

Pass -

TC-06 Test

getAnnouncemen

ts method

Verify that the

getAnnouncement

method sends

request to the

- Route:

http://127.0.0.1:5000/an

nouncements

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/an

nouncements

Pass -

197

197

correct route &

method and

receives the

response correctly.

Method: GET

Response: {data:

“example”}

Method: GET

Response: {data:

“example”}

TC-07 Test

getAnnouncemen

t method

Verify that the

getAnnouncement

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/an

nouncements/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/an

nouncements/1

Method: GET

Response: {data:

“example”}

Pass -

TC-08 Test

putAnnouncemen

t method

Verify that the

putAnnouncement

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/an

nouncements/1

Method: PUT

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/an

nouncements/1

Method: PUT

Response: {data:

“example”}

Pass -

TC-09 Test

deleteAnnounce

ment method

Verify that the

deleteAnnounceme

nt method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/an

nouncements/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/an

nouncements/1

Method: DELETE

Response: {data:

“example”}

Pass -

198

198

Table 7.1.3: Test Cases and Results for Classes.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Classes Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-10 Test postClass

method

Verify that the

postClass method

sends request to

the correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/cl

asses

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/cl

asses

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

199

199

TC-11 Test getClasses

method

Verify that the

getClasses method

sends request to

the correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/cl

asses

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/cl

asses

Method: GET

Response: {data:

“example”}

Pass -

TC-12 Test getClass

method

Verify that the

getClass method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/cl

asses/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/cl

asses/1

Method: GET

Response: {data:

“example”}

Pass -

TC-13 Test putClass

method

Verify that the

putClass method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/cl

asses/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/cl

asses/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-14 Test deleteClass

method

Verify that the

deleteClass

method sends

request to the

correct route &

method and

ID: 1 Route:

http://127.0.0.1:5000/cl

asses/1

Method: DELETE

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/cl

asses/1

Method: DELETE

Pass -

200

200

receives the

response correctly.

Response: {data:

“example”}

Response: {data:

“example”}

TC-15 Test

handleSorting

method

Verify that the

handleSorting

method swtiches

sorting modes

correctly.

Name: “name”

sortField: { name:

“name”,

Sorts.Ascending }

{ name: “name”,

sort_type:

“Sorts.Descending” }

Actual result is

equals to

Expected Result

{ name: “name”,

sort_type:

“Sorts.Descending” }

Pass

TC-16 Test

handleSorting

method

Verify that the

handleSorting

method swtiches

sorting modes

correctly when

column name

changes.

Name:

“other_name”

sortField: { name:

“name”,

Sorts.Ascending }

{ name: “other_name”,

sort_type:

“Sorts.Ascending” }

Actual result is

equals to

Expected Result

{ name: “other_name”,

sort_type:

“Sorts.Ascending” }

Pass

TC-17 Test

handleFilterAndS

ort method

Verify that the

handleFilterAndSo

rt filter and sorts

out the classes

correctly.

Classes: [{name:

“Class A”, id: 1},

{name: “Class B”,

id: 2}]

sortField: { name:

“name”,

Sorts.Descending }

[{name: “Class B”, id:

2}, {name: “Class A”,

id: 1}]

Actual result is

equals to

Expected Result

[{name: “Class B”, id:

2}, {name: “Class A”,

id: 1}]

Pass

201

201

Table 7.1.4: Test Cases and Results for Static Timeslots.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Static Timeslots Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-18 Test

postStaticTimesl

ot method

Verify that the

postStaticTimeslot

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/sta

tic_timeslots

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timeslots

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

202

202

TC-19 Test

getStaticTimeslot

s method

Verify that the

getClasses method

sends request to

the correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/sta

tic_timeslots

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timeslots

Method: GET

Response: {data:

“example”}

Pass -

TC-20 Test

getStaticTimeslot

method

Verify that the

getStaticTimeslot

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: GET

Response: {data:

“example”}

Pass -

TC-21 Test

putStaticTimeslot

method

Verify that the

putStaticTimeslot

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

203

203

TC-22 Test

deleteStaticTimes

lot method

Verify that the

deleteStaticTimesl

ot method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timeslots/1

Method: DELETE

Response: {data:

“example”}

Pass -

204

204

Table 7.1.5: Test Cases and Results for Study Hours.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Study Hours Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-23 Test

postStudyHours

method

Verify that the

postStudyHours

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/st

udy_hours

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/st

udy_hours

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

205

205

TC-24 Test

getStudyHours

method

Verify that the

getStudyHours

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/st

udy_hours

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/st

udy_hours

Method: GET

Response: {data:

“example”}

Pass -

TC-25 Test

putStudyHour

method

Verify that the

putStudyHour

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/st

udy_hours/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/st

udy_hours/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-26 Test

deleteStudyHour

method

Verify that the

deleteStudyHour

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/st

udy_hours/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/st

udy_hours/1

Method: DELETE

Response: {data:

“example”}

Pass -

206

206

Table 7.1.6: Test Cases and Results for Subjects.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Subjects Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-27 Test postSubject

method

Verify that the

postSubject

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/su

bjects

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/su

bjects

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

207

207

TC-28 Test getSubjects

method

Verify that the

getSubjects

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/su

bjects

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/su

bjects

Method: GET

Response: {data:

“example”}

Pass -

TC-29 Test getSubject

method

Verify that the

getSubject method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/su

bjects/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/su

bjects/1

Method: GET

Response: {data:

“example”}

Pass -

TC-30 Test putSubject

method

Verify that the

putSubject method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/su

bjects/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/su

bjects/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-31 Test

deleteSubject

method

Verify that the

deleteSubject

method sends

request to the

correct route &

method and

ID: 1 Route:

http://127.0.0.1:5000/su

bjects/1

Method: DELETE

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/su

bjects/1

Method: DELETE

Pass -

208

208

receives the

response correctly.

Response: {data:

“example”}

Response: {data:

“example”}

TC-32 Test

handleSorting

method

Verify that the

handleSorting

method swtiches

sorting modes

correctly.

1)

Name: “sub_name”

sortField: { name:

“sub_name”,

Sorts.Ascending }

2)

Name: “sub_code”

sortField: { name:

“sub_code”,

Sorts.Descending }

3)

Name: “sub_type”

sortField: { name:

“sub_type”,

Sorts.Unsorted }

1)

{ name: “sub_name”,

sort_type:

“Sorts.Descending” }

2)

{ name: “sub_code”,

sort_type:

“Sorts.Unsorted” }

3)

{ name: “sub_type”,

sort_type:

“Sorts.Ascending” }

Actual result is

equals to

Expected Result

1)

{ name: “sub_name”,

sort_type:

“Sorts.Descending” }

2)

{ name: “sub_code”,

sort_type:

“Sorts.Unsorted” }

3)

{ name: “sub_type”,

sort_type:

“Sorts.Ascending” }

Pass

TC-33 Test

handleSorting

method

Verify that the

handleSorting

method swtiches

sorting modes

correctly when

column name

changes.

1)

Name: “sub_name”

sortField: { name:

“sub_code”,

Sorts.Descending }

2)

Name: “sub_code”

1)

{ name: “sub_name”,

sort_type:

“Sorts.Ascending” }

2)

Actual result is

equals to

Expected Result

1)

{ name: “sub_name”,

sort_type:

“Sorts.Ascending” }

2)

Pass

209

209

sortField: { name:

“sub_name”,

Sorts.Unsorted }

{ name: “sub_code”,

sort_type:

“Sorts.Ascending” }

{ name: “sub_code”,

sort_type:

“Sorts.Ascending” }

TC-34 Test

handleFilterAndS

ort method

Verify that the

handleFilterAndSo

rt filter and sorts

out the classes

correctly.

1)

[[{sub_id: 1,

sub_name: "Math",

sub_code: "MM",

sub_type:

"heavy"}],

"Mathh", "heavy",

"sub_name"]

2)

[[{sub_id: 2,

sub_name:

"Geografi",

sub_code: "GEO",

sub_type: "light"}],

"gr", "light",

"sub_name"]

3)

[[{sub_id: 1,

sub_name: "Math",

sub_code: "MM",

sub_type:

"heavy"}], "",

"light",

"sub_name"]

1)[]

2) [{sub_id: 2,

sub_name: "Geografi",

sub_code: "GEO",

sub_type: "light"}]

3)[]

Actual result is

equals to

Expected Result

1)[]

2) [{sub_id: 2,

sub_name: "Geografi",

sub_code: "GEO",

sub_type: "light"}]

3)[]

Pass

210

210

4)

[[{sub_id: 2,

sub_name:

"Geografi",

sub_code: "GEO",

sub_type: "light"}],

"", "light",

"sub_name"]

5)

[[{sub_id: 1,

sub_name: "Math",

sub_code: "MM",

sub_type:

"heavy"}, {sub_id:

2, sub_name:

"Geografi",

sub_code: "GEO",

sub_type:

"heavy"}], "",

"heavy", {name:

"sub_name",

sort_type:

Sorts.Ascending}]

6)

[[{sub_id: 3,

sub_name: "Bahasa

Melayu",

sub_code: "BM",

sub_type: "light"},

{sub_id: 4,

4)

[{sub_id: 2, sub_name:

"Geografi", sub_code:

"GEO", sub_type:

"light"}]

5)

[{sub_id: 2, sub_name:

"Geografi", sub_code:

"GEO", sub_type:

"heavy"}, {sub_id: 1,

sub_name: "Math",

sub_code: "MM",

sub_type: "heavy"}]

6)

[{sub_id: 3, sub_name:

"Bahasa Melayu",

sub_code: "BM",

sub_type: "light"},

{sub_id: 4, sub_name:

"Geografi", sub_code:

4)

[{sub_id: 2, sub_name:

"Geografi", sub_code:

"GEO", sub_type:

"light"}]

5)

[{sub_id: 2, sub_name:

"Geografi", sub_code:

"GEO", sub_type:

"heavy"}, {sub_id: 1,

sub_name: "Math",

sub_code: "MM",

sub_type: "heavy"}]

6)

[{sub_id: 3, sub_name:

"Bahasa Melayu",

sub_code: "BM",

sub_type: "light"},

{sub_id: 4, sub_name:

"Geografi", sub_code:

211

211

sub_name:

"Geografi",

sub_code: "GEO",

sub_type: "light"}],

"", "light", {name:

"sub_code",

sort_type:

Sorts.Ascending}]

"GEO", sub_type:

"light"}]

"GEO", sub_type:

"light"}]

212

212

Table 7.1.7: Test Cases and Results for Subject Distributions.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Subject

Distributions

Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-35 Test

postDistribution

method

Verify that the

postDistribution

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/dis

tributions

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dis

tributions

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

213

213

TC-36 Test

getDistributions

method

Verify that the

getDistributions

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/dis

tributions

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dis

tributions

Method: GET

Response: {data:

“example”}

Pass -

TC-37 Test

putDistribution

method

Verify that the

putDistribution

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/dis

tributions/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dis

tributions/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-38 Test

deleteDistribution

method

Verify that the

deleteDistribution

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/dis

tributions/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dis

tributions/1

Method: DELETE

Response: {data:

“example”}

Pass -

TC-39 Test

validateInputData

method

Verify that the

validateInputData

method check if

name, subjects,

1)

Name: “Test

Name”

1)

{name: false, blocks:

true, classes: true}

Actual result is

equals to

Expected Result

1)

{name: false, blocks:

true, classes: true}

Pass -

214

214

and classes are

empty correctly.

Subjects: []

Classes: []

2)

Name: “”,

Subjects: []

Classes: []

2)

{name: true, blocks:

true, classes: true}

2)

{name: true, blocks:

true, classes: true}

215

215

Table 7.1.8: Test Cases and Results for Teachers.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Teachers Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-40 Test postTeacher

method

Verify that the

postTeacher

method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/tea

chers

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

216

216

TC-41 Test postEmail

method

Verify that the

postEmail method

sends request to

the correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:4000/e

mail/send

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/e

mail/send

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-42 Test getTeacher

method

Verify that the

getTeacher method

sends request to

the correct route &

method and

receives the

response correctly.

Access Token:

access_token

Route:

http://127.0.0.1:5000/tea

chers/get-

started/access_token

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers/get-

started/access_token

Method: GET

Response: {data:

“example”}

Pass -

TC-43 Test putTeacher

method

Verify that the

putTeacher method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/tea

chers/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

217

217

TC-44 Test getTeachers

method

Verify that the

getTeachers

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/tea

chers

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers

Method: GET

Response: {data:

“example”}

Pass -

TC-45 Test

getTeacherDetail

s method

Verify that the

getTeacherDetails

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/tea

chers/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers/1

Method: GET

Response: {data:

“example”}

Pass -

TC-46 Test

getTeachingSubje

cts method

Verify that the

getTeachingSubjec

ts method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/tea

ching-subjects/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

ching-subjects/1

Method: GET

Response: {data:

“example”}

Pass -

TC-47 Test

putTeachingSubj

ects method

Verify that the

putTeachingSubjec

ts method sends

request to the

correct route &

method and

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/tea

ching-subjects/1

Method: PUT

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

ching-subjects/1

Method: PUT

Pass -

218

218

receives the

response correctly.

Body: {data:

“example”}

Response: {data:

“example”}

Body: {data:

“example”}

Response: {data:

“example”}

TC-48 Test

deleteTeacher

method

Verify that the

deleteTeacher

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/tea

chers/1

Method: DELETE

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers/1

Method: DELETE

Response: {data:

“example”}

Pass -

TC-49 Test

teacherLogin

method

Verify that the

teacherLogin

method sends

request to the

correct route &

method and

receives the

response correctly.

{username:

“example_usernam

e”, password:

“example_passwor

d}

Route:

http://127.0.0.1:5000/tea

chers/login

Method: POST

Body: {username:

“example_username”,

password:

“example_password}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

chers/login

Method: POST

Body: {username:

“example_username”,

password:

“example_password}

Response: {data:

“example”}

Pass -

219

219

Table 7.1.9: Test Cases and Results for Teacher Preferences.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Teacher

Preferences

Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-50 Test

getPreferences

method

Verify that the

getPreferences

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 123 Route:

http://127.0.0.1:5000/pr

eferences/123

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/pr

eferences/123

Method: GET

Response: {data:

“example”}

Pass -

TC-51 Test

putPreferences

method

Verify that the

putPreferences

method sends

ID: 123 Route:

http://127.0.0.1:5000/pr

eferences/123

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/pr

eferences/123

Pass -

220

220

request to the

correct route &

method and

receives the

response correctly.

JSON: {data:

“example”}

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

TC-52 Test

getTeachingClass

es method

Verify that the

getTeachingClasse

s method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 123 Route:

http://127.0.0.1:5000/tea

ching_classes/123

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/tea

ching_classes/123

Method: GET

Response: {data:

“example”}

Pass -

TC-53 Test getOrdinal

method

Verify that the

getOrdinal method

will return the

ordinal of an

inputted integer

correctly.

1)

Number: 1

2)

Number: 2

3)

Number: 3

4)

Number: 4

5)

Number: 11

6)

1)

Ordinal: “st”

2)

Ordinal: “nd”

3)

Ordinal: “rd”

4)

Ordinal: “th”

5)

Ordinal: “th”

6)

Actual result is

equals to

Expected Result

1)

Ordinal: “st”

2)

Ordinal: “nd”

3)

Ordinal: “rd”

4)

Ordinal: “th”

5)

Ordinal: “th”

6)

Pass -

221

221

Number: 12

7)

Number: 13

Ordinal: “th”

7)

Ordinal: “th”

Ordinal: “th”

7)

Ordinal: “th”

222

222

Table 7.1.10: Test Cases and Results for Timetable Generation.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Timetable

Generation

Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-54 Test

generateStaticTi

metable method

Verify that the

generateStaticTime

table method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/sta

tic_timetabling_algorith

m/run

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timetabling_algorith

m/run

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

223

223

TC-55 Test

getStaticProgress

method

Verify that the

getStaticProgress

method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/sta

tic_timetabling_algorith

m/progress

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timetabling_algorith

m/progress

Method: GET

Response: {data:

“example”}

Pass -

TC-56 Test

postStaticTimeta

ble method

Verify that the

postStaticTimetabl

e method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/sta

tic_timetables

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timetables

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-57 Test

generateDynamic

Timetable

method

Verify that the

generateDynamicT

imetable method

sends request to

the correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/run

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/run

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

224

224

TC-58 Test

getDynamicProgr

ess method

Verify that the

getDynamicProgre

ss method sends

request to the

correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/progress

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/progress

Method: GET

Response: {data:

“example”}

Pass -

TC-59 Test

postDynamicTim

etable method

Verify that the

postDynamicTimet

able method sends

request to the

correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/dy

namic_timetables

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dy

namic_timetables

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-60 Test

getStaticTimetabl

es method

Verify that the

getStaticTimetable

s method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/sta

tic_timetables/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/sta

tic_timetables/1

Method: GET

Response: {data:

“example”}

Pass -

TC-61 Test

getConsoleMessa

ges method

Verify that the

getConsoleMessag

es method sends

request to the

correct route &

- Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/console_messages

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/dy

namic_timetabling_algo

rithm/console_messages

Pass -

225

225

method and

receives the

response correctly.

Method: GET

Response: {data:

“example”}

Method: GET

Response: {data:

“example”}

226

226

Table 7.1.11: Test Cases and Results for Utils Function.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Utils Functions Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-62 Test

generateDigitCod

e method

Verify that the

generateDigitCode

method will

generate 6-digit

random code

correctly.

1,2,3,4,5,6 Code Length: 6

Generated Code:

123456

Actual result is

equals to

Expected Result

Code Length: 6

Generated Code:

123456

Pass -

TC-63 Test

generatePassword

method

Verify that the

generatePassword

method generate

random password

1)

Length: 20

2)

1)Generated Password

Length: 20

2) Generated Password

Length: 10

Actual result is

equals to

Expected Result

1)Generated Password

Length: 20

2) Generated Password

Length: 10

Pass -

227

227

with the correct

length.

Length: 10

3)

Length: 5

3) Generate Password

Length: 5

3) Generate Password

Length: 5

TC-64 Test

generatePassword

method

Verify that the

generatePassword

method generate

random password

with the correct

formatting.

1)

Regex: /[a-z]/

2)

Regex: /[A-Z]/

3)

Regex: /[!$*+-]/

1)

Matched: True

2)

Matched: True

3)

Matched: True

Actual result is

equals to

Expected Result

1)

Matched: True

2)

Matched: True

3)

Matched: True

Pass -

TC-65 Test

generatePassword

method

Verify that the

generatePassword

method generate

random password

each time.

Password1:

generatePassword()

Password2:

generatedPassword

()

Password1 !=

Password2

Actual result is

equals to

Expected Result

Password1 !=

Password2

Pass -

TC-66 Test

randomNumberIn

Range method

Verify that the

randomNumberIn

Range method will

value between

specified min and

max integer

correctly.

1)

Min: 0, Max: 10

2)

Min: -42, Max:-1

3)

Min: 23, Max: 60

Random Number > Min

Integer: True

Random Number < Max

Integer: True

Actual result is

equals to

Expected Result

Random Number > Min

Integer: True

Random Number < Max

Integer: True

Pass -

228

228

Table 7.1.12: Test Cases and Results for Venues.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Venues Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-67 Test postVenue

method

Verify that the

postVenue method

sends request to

the correct route &

method and

receives the

response correctly.

{data: “example”} Route:

http://127.0.0.1:5000/ve

nues

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nues

Method: POST

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

229

229

TC-68 Test getVenues

method

Verify that the

getVenues method

sends request to

the correct route &

method and

receives the

response correctly.

- Route:

http://127.0.0.1:5000/ve

nues

Method: GET

Response: [{ id: 1,

venue_name: 'Venue

A' }, { id: 2,

venue_name: 'Venue

B' }]

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nues

Method: GET

Response: [{ id: 1,

venue_name: 'Venue

A' }, { id: 2,

venue_name: 'Venue

B' }]

Pass -

TC-69 Test getVenue

method

Verify that the

getVenue method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/ve

nues/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nues/1

Method: GET

Response: {data:

“example”}

Pass -

TC-70 Test putVenue

method

Verify that the

putClass method

sends request to

the correct route &

method and

receives the

response correctly.

ID: 1

JSON: {data:

“example”}

Route:

http://127.0.0.1:5000/ve

nues/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nues/1

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Pass -

TC-71 Test deleteVenue

method

Verify that the

deleteVenue

method sends

ID: 1 Route:

http://127.0.0.1:5000/ve

nues/1

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/

venues /1

Pass -

230

230

request to the

correct route &

method and

receives the

response correctly.

Method: DELETE

Response: {data:

“example”}

Method: DELETE

Response: {data:

“example”}

TC-72 Test

handleSorting

method

Verify that the

handleSorting

method swtiches

sorting modes

correctly.

Name:

“venue_name”

sortField: { name:

“venue_name”,

Sorts.Ascending }

{ name: “venue_name”,

sort_type:

“Sorts.Descending” }

Actual result is

equals to

Expected Result

{ name: “venue_name”,

sort_type:

“Sorts.Descending” }

Pass

TC-73 Test

handleFilterAndS

ort method

Verify that the

handleFilterAndSo

rt filter and sorts

out the venues

correctly.

Venues:[{ venue_n

ame: 'Venue

A' },{ venue_name:

'Venue

B' },{ venue_name:

'Venue C' }]

sortField: { name:

“venue_name”,

Sorts.Descending }

[{ venue_name: 'Venue

C' },{ venue_name:

'Venue

B' },{ venue_name:

'Venue A' }]

Actual result is

equals to

Expected Result

[{ venue_name: 'Venue

C' },{ venue_name:

'Venue

B' },{ venue_name:

'Venue A' }]

Pass

231

231

Table 7.1.13: Test Cases and Results for Venue Settings.

Project Name: STSAMS Test Designed by: Dennis Yap Jian Yuan

Module Name: Venue Settings Test Designed

date:

15th April 2024

Release

Version:

1 Test Executed by: Dennis Yap Jian Yuan

Test Execution

date:

22nd April 2024

Pre-condition Input value is valid.

Dependencies:

Test Priority Medium

Test Case# Test Title Test Summary Test Data Expected Result Post-condition Actual Result Status Notes

TC-74 Test

getVenueUsages

method

Verify that the

getPreferences

method sends

request to the

correct route &

method and

receives the

response correctly.

ID: 1 Route:

http://127.0.0.1:5000/ve

nue_usages/1

Method: GET

Response: {data:

“example”}

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nue_usages/1

Method: GET

Response: {data:

“example”}

Pass -

TC-75 Test

putVenueUsages

method

Verify that the

putVenueUsages

method sends

ID: 1 Route:

http://127.0.0.1:5000/ve

nue_usages/1

Actual result is

equals to

Expected Result

Route:

http://127.0.0.1:5000/ve

nue_usages/1

Pass -

232

232

request to the

correct route &

method and

receives the

response correctly.

JSON: {data:

“example”}

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

Method: PUT

Body: {data:

“example”}

Response: {data:

“example”}

233

233

7.2 API Testing

7.2.1 Overview

After ensuring that the helper functions in the frontend are sending requests to the API

server with the correct route paths, HTTP request methods, and request bodies, it is also

required that the logic of the route handler functions must be tested. This is because these

functions are playing a crucial part in the system such as CRUD operations will be performed

to manipulate the data in the database.

Test Method: Documentation-driven testing.

 As Swagger, an API documentation tool is being used to document all the available

routes in the API server, its “Try it out” function can be utilized to perform a comprehensive

test on the route handler functions. By referring to each item in the API documentation, it can

be certain that high testing coverage will be achieved. To illustrate, test data can first be

prepared. Then, the test for each documented routes will be executed using the listed test data.

Lastly, the returned results are captured and recorded to indicate the test outcomes.

 To ease the testing, the API routes will be tested according to the order as such: posting,

putting, getting, and deleting. The test data will be first filled into the parameters required, then

screenshots of the returned response data will be screenshot as a prove for the test results. A

new database will be created to isolate the API test from the real data. In this test, some of the

sections of API routes will be omitted because of the infeasibility of sending request body to

the route because the route handle function process does not support sending through Swagger

or the request body is too complex. To recap, the documentations are modularized as follows:

234

234

Table 7.2.1.1 All the modules that will be tested in the API test.

Announcements Classes Subject Distributions

Dynamic Timetables Dynamic Timetabling

Algorithm

Preferences

Allotment Sets Static Timeslots Static Timetables

Static Timetabling

Algorithm

Study Hours Subjects

Teachers Teaching Classes Venue Usages

Venues Admins

235

235

7.2.2 Test Executions and Results

7.2.2.1 Admins

Since there is no creation function for admin accounts, a mock email and password for the admin will be created manually in the database to

simulate the default admin account in the system.

Figure 7.2.2.1.1: Created Admin Account in the Database.

236

236

Table 7.2.2.1.1: API Request Information for Admins Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /admins/login POST {

 "credentials": {

 "admin_email":

"admin@gmail.com",

 "admin_password":

"admin123456789"

 }

}

Login successfully,

then return admin info

and access token.

Figure 7.2.2.1.2: Testing result for successful

login.

Pass

2 /admins/login POST {

 "credentials": {

 "admin_email":

"user@gmail.com",

 "admin_password":

"admin123456789"

 }

}

Login failed, then

return failing message.

Figure 7.2.2.1.3: Test result for failed login.

Pass

237

237

7.2.2.2 Announcements

Table 7.2.2.2.1: API Request Information for Announcements Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /announcements POST {

 "ann_msg":

"example message",

 "creation_date":

"01/01/2022",

 "is_active": "Y",

"modification_date":

"01/01/2022"

}

Announcement

added to

announcements

database table

successfully.

Figure 7.2.2.2.1: Testing result upon

successful announcement creation.

Pass

2 /announcements/{ann} PUT ann: 1

JSON: {

 "ann_msg": "new

message",

 "creation_date":

"02/02/2023",

Update class in

database

successfully.

Figure 7.2.2.2.2: Test result upon successful

announcement update.

Pass

238

238

 "is_active": "N",

"modification_date":

"02/02/2023"

}

3 /announcements GET - Get all

announcements

successfully.

Figure 7.2.2.2.3: Test result upon reading all

announcements successfully.

Pass

4 /announcements/{ann} GET ann: 1 Get

announcement

with ID of 1

successfully.

Figure 7.2.2.2.4: Test result upon reading

announcement with id of 1 successfully.

Pass

239

239

5 /announcements/{ann} DELETE ann: 1 Delete

announcement

with ID of 1

successfully.

Figure 7.2.2.2.5: Test result upon deleting

announcement with id of 1 successfully.

Pass

240

240

7.2.2.3 Classes

Table 7.2.2.3.1: API Request Information for Classes Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /classes POST {

 "class_name": "1A"

}

Class added to

classes database

table successfully.

Figure 7.2.2.3.1: Testing result upon

successful class creation.

Pass

2 /classes/{cls} PUT cls: 1

JSON: {

 "class_name": "2B"

}

Update class in

database

successfully.

Figure 7.2.2.3.2: Test result upon successful

class update.

Pass

3 /classes GET - Get all classes

successfully.

Pass

241

241

Figure 7.2.2.3.3: Test result for reading all

classes successfully.

4 /classes/{cls} GET cls: 1 Get class with ID

of 1 successfully.

Figure 7.2.2.3.4: Test result of reading class

with id of 1 successfully.

Pass

5 /classes/{cls} DELETE cls: 1 Delete class with

ID of 1

successfully.

Figure 7.2.2.3.5: Test result of deleting class

with id of 1 successfully.

Pass

242

242

7.2.2.4 Subject Distribution

Table 7.2.2.4.1: API Request Information for Subject Distributions Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /distributions POST {

 "as_id": 1,

 "classes": [

 {

 "class_id": 1

 }

],

 "sd_name":

"distribution 1",

 "subjects": [

 {

 "double_qty": 1,

 "single_qty": 0,

 "sub_id": 1,

 "triple_qty": 0

 }

]

Distribution added

to database

successfully.

Figure 7.2.2.4.1: Testing result upon

successful distribution creation.

Pass

243

243

}

2 /distributions/{sd_id} PUT sd_id: 1

JSON: {

 "classes": [

 {

 "class_id": 2

 }

],

 "sd_name": "new

name",

 "subjects": [

 {

 "double_qty": 2,

 "single_qty": 0,

 "sub_id": 2,

 "triple_qty": 0

 }

]

}

Update distribution

in database

successfully.

Figure 7.2.2.4.2: Test result upon

successful distribution update.

Pass

244

244

3 /distributions/{as_id} GET as_id: 1 Get all distribution

in an allotment set

successfully. If

class_id or

subject_id is empty,

it will return empty

list.

Figure 7.2.2.4.3: Test result for reading all

distributions successfully.

Pass

4 /distributions/{sd_id} DELETE sd_id: 1 Delete distribution

with ID of

successfully.

Figure 7.2.2.4.4: Test result of deleting

distribution with id of 1 successfully.

Pass

245

245

7.2.2.5 Dynamic Timetables

Table 7.2.2.5.1: API Request Information for Dynamic Timetables Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /dynamic_timetables POST {

 "allotment": {"1":

{"0_0": {"teacher":

"1", "subject": "1",

"venue": "1"}}},

 "as_id": 0,

 "name": "string"

}

Dynamic timetable

added to database

successfully.

Figure 7.2.2.5.1: Testing result upon

successful dynamic timetable creation.

Pass

2 /dynamic_timetables/{

as_id}

GET as_id: 1 Get all dynamic

timetable details in

an allotment set

successfully.

Figure 7.2.2.5.2: Test result for reading all

dynamic timetable details in specific

allotment set successfully.

Pass

246

246

7.2.2.6 Static Timetables

Table 7.2.2.6.1: API Request Information for Static Timetables Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /static_timetables POST {

 "allotment": {},

 "as_id": 0,

 "name": "string"

}

Static timetable

added to database

successfully.

Figure 7.2.2.6.1: Testing result upon

successful static timetables creation.

Pass

2 /static_timetables/{as_

id}

GET as_id: 0 Get static

timetables with

ID of 0

successfully.

Figure 7.2.2.6.2: Test result of reading static

timetables with as_id of 0 successfully.

Pass

247

247

7.2.2.7 Static Timetabling Algorithm

Table 7.2.2.7.1: API Request Information for Static Timetabling Algorithm Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /static_timetabling_alg

orithm/run

POST {

 "as_id": 0,

 "generation_limit":

0

}

Static timetabling

algorithm ran

successfully.

Figure 7.2.2.7.1: Testing result upon

successful running the algorithm.

Pass

2 /static_timetables/{as_

id}

GET - Get progress of a

static timetabling

algorithm

successfully.

Figure 7.2.2.7.2: Test result of reading the

progress of a running algorithm

Pass

248

248

7.2.2.8 Study Hours

Table 7.2.2.8.1: API Request Information for Study Hours Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /study_hours POST {

 "as_id": 0,

 "classes": [

 {

 "class_id": 1

 }

],

 "periods": [

 [

 {

 "p_day": 0,

 "p_details":

"Rollcall",

 "p_end":

"07:30",

 "p_is_class":

true,

Study hour added

to database

successfully.

Figure 7.2.2.8.1: Testing result upon

successful study hour creation.

Pass

249

249

 "p_no": 0,

 "p_start":

"07:00"

 }

]

],

 "sh_name": "name"

}

2 /study_hours/{sh_id} PUT sh_id: 10

{

 "classes": [

 {

 "class_id": 3

 }

],

 "periods": [

 [

 {

 "p_day": 0,

 "p_details":

"Recess",

Update study

hour in database

successfully.

Figure 7.2.2.8.2: Test result upon successful

study hour update.

Pass

250

250

 "p_end":

"09:00",

 "p_is_class":

true,

 "p_no": 0,

 "p_start":

"08:30"

 }

]

],

 "sh_name": "string"

}

251

251

3 /study_hours/{as_id} GET - Get all study

hours

successfully.

Figure 7.2.2.8.3: Test result upon reading all

study hours successfully.

Pass

4 /study_hours/{sh_id} DELETE sh_id: 10 Delete study hour

with ID of

successfully.

Figure 7.2.2.8.4: Test result upon deleting

study hour with id of 10 successfully.

Pass

252

252

7.2.2.9 Subjects

Table 7.2.2.9.1: API Request Information for Subjects Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /subjects POST {

 "sub_code": "SN",

 "sub_name":

"Science",

 "sub_type": "heavy"

}

Subject added to

database

successfully.

Figure 7.2.2.9.1: Testing result upon

successful subject creation.

Pass

2 /subjects/{sub} PUT sub: 23

{

 "sub_code": "ML",

 "sub_name":

"Malay Language",

 "sub_type": "light"

}

Update subject in

database

successfully.

Figure 7.2.2.9.2: Test result upon successful

subject update.

Pass

253

253

3 /subjects GET - Get all subjects

successfully.

Figure 7.2.2.9.3: Test result upon reading all

subjects successfully.

Pass

4 /subjects/{sub} GET sub: 23 Get subject

details with

specific ID

successfully.

Pass

254

254

Figure 7.2.2.9.4: Test result upon reading all

subjects successfully.

5 /subjects/{sub} DELETE sub: 23 Delete subject

with ID of

successfully.

Figure 7.2.2.9.5: Test result upon deleting

subject with id of 23 successfully.

Pass

6 /teaching-subjects POST {

 "teacher_id": 1,

 "teaching_subjects":

[

 {

 "sub_id": 1

 }

]

}

Teaching subjects

added to the

database

successfully.

Figure 7.2.2.9.6: Test result upon added

teaching subjects successfully.

7 /teaching-

subjects/{teacher_id}

PUT teacher_id: 1

{

 "teaching_subjects":

[

Update teaching

subjects in

database

successfully.

255

255

 {

 "sub_id": 2

 }

]

}

Figure 7.2.2.9.7: Test result upon updating

teaching subjects successfully.

8 /teaching-

subjects/{teacher_id}

GET teacher_id: 1 Get teaching

subjects with

specific ID

successfully.

Figure 7.2.2.9.8: Test result upon reading

teaching subjects successfully.

256

256

7.2.2.10 Teachers

Table 7.2.2.10.1: API Request Information for Teachers Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /teachers POST {

 "teacher_details": {

 "teacher_address":

"26, Jalan 64, KL",

 "teacher_dob":

"2024-04-24",

 "teacher_email":

"teacher@gmail.com

",

 "teacher_name":

"teacher",

"teacher_password":

"teacher123"

 }

}

Teacher added to

database

successfully.

Figure 7.2.2.10.1: Testing result upon

successful teacher creation.

Pass

257

257

2 /teacher/{teacher_id} PUT teacher_id: 44

{

 "teacher_details": {

 "teacher_acc_id":

47,

 "teacher_address":

"26",

 "teacher_dob":

"2024-04-24",

 "teacher_email":

"teacher123@gmail.c

om",

 "teacher_name":

"teacher new",

"teacher_password":

"teacher123"

 }

}

Update teacher

details in database

successfully.

Figure 7.2.2.10.2: Test result upon successful

teacher update.

Pass

258

258

3 /teachers GET - Get all teachers

successfully.

Figure 7.2.2.10.3: Test result upon reading all

teachers successfully.

Pass

4 /teachers/{teacher} GET teacher: 44 Get teacher

details with

specific ID

successfully.

Pass

259

259

Figure 7.2.2.10.4: Test result upon reading a

teacher’s details successfully.

5 /teachers/get-

started/{access_token}

GET access_token: KPeU-

Vaip-oT-!eiE$Jj

Get details of new

teacher

successfully.

Figure 7.2.2.10.5: Test result upon getting

details of new teacher.

Pass

6 /teachers/login POST {

 "credentials": {

 "teacher_email":

"teacher@gmail.com

",

"teacher_password":

"teacher123"

 }

}

Log into a teacher

account

successfully.

Figure 7.2.2.10.6: Test result upon logging

into a teacher account.

260

260

7 /teachers/{teacher_id} DELETE teacher_id: 44 Delete teacher

with ID of 44

successfully.

Figure 7.2.2.10.7: Test result upon deleting

teacher with id of 44 successfully.

Pass

261

261

7.2.2.11 Teaching Classes

Table 7.2.2.11.1: API Request Information for Teaching Classes Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /teaching_classes/{tea

cher_id}

GET teacher_id: 2 Get teaching

classes of a

teacher in

database

successfully.

Figure 7.2.2.11.1: Test result upon reading

teaching classes of a teacher successfully.

Pass

262

262

7.2.2.12 Venue Usages

Table 7.2.2.12.1: API Request Information for Venue Usages Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /venues_usages/{as_id

}

GET as_id: 0 Get venue usages

successfully from

database.

Figure 7.2.2.12.1 Test result upon getting

venue usages successfully.

Pass

2 /venue_usages/{as_id} PUT as_id: 2

{

 "venue_usages": [

 {

 "class_id": 33,

 "sub_id": 10,

 "venue_ids": [

 3

]

 }

]

}

Update venue

usages in

database

successfully.

Figure 7.2.2.12.2: Test result upon updating

venue successfully.

Pass

263

263

7.2.2.13 Venues

Table 7.2.2.13.1: API Request Information for Venues Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /venues POST {

 "venue_name":

"Lab 1"

}

Venue added to

venues database

table successfully.

Figure 7.2.2.13.1: Testing result upon

successful venue creation.

Pass

2 /venues/{venue} PUT venue: 9

{

 "venue_name":

"Lab 2"

}

Update venue in

database

successfully.

Figure 7.2.2.13.2: Test result upon successful

venue update.

Pass

264

264

3 /venues GET - Get all venues

successfully.

Figure 7.2.2.13.3: Test result upon reading all

venues successfully.

Pass

4 /venues/{venue} GET venue: 9 Get

announcement

with ID of

19successfully.

Figure 7.2.2.13.4: Test result upon reading

venue with id of 9 successfully.

Pass

265

265

5 /venues/{venue} DELETE venue: 9 Delete venue with

ID of 9

successfully.

Figure 7.2.2.13.5: Test result upon deleting

venue with id of 9 successfully.

Pass

266

266

7.2.2.14 Allotment Sets

Table 7.2.2.14.1: API Request Information for Allotment Sets Category.

No. Route Method Test Data Expected Result Actual Result Status

1 /sets POST {

 "as_name": "set 1"

}

Allotment set

added to database

successfully.

Figure 7.2.2.14.1: Testing result upon

successful allotment set creation.

Pass

2 /sets GET - Get all allotment

sets successfully.

Figure 7.2.2.14.2: Test result for reading all

allotment sets successfully.

Pass

3 /sets/{as_id} GET as_id: 1 Get allotment set

with ID of 1

successfully.

Pass

267

267

Figure 7.2.2.14.3: Test result of reading

allotment set with id of 1 successfully.

4 /sets/{as_id} DELETE as_id: 1 Delete allotment

set with ID of 1

successfully.

Figure 7.2.2.14.3: Test result of deleting

allotment set with id of 1 successfully.

Pass

268

268

7.3 User Acceptance Test

 In this section, the UAT done on two types of users will be explained. To illustrate, an

experienced user who is an educator and an inexperienced user who never use the system

before. But first, a set of 10 questions will be prepared to evaluate customer satisfaction on the

system.

269

269

7.3.1 Customer Satisfaction Survey

Table 7.3.1.1: List of Question Used in the Customer Satisfaction Survey.

No. Question Scoring

1 How satisfied are you with the overall user interface of the system.

(Easy to use?)

1 to 5

2 How well do you able to understand the functionalities in the

system? (Easy to learn?)

3 On a scale of 1 to 5, how much is system able to fulfill your objective

to allocate timetables for a school?

4 How satisfied are you with the data management module in the

system? (Add, delete, sort, and filter subjects, classes, ...)

5 How much do you think that the system is able to reduce the time

taken to allocate timetables compared to the manual approach?

(Automated vs Manual)

6 Rate your overall experience while using the system to achieve your

objectives. (Happy? Annoyed?)

7 If you want to rate STSAMS, what is the score that you will give?

8 How well do you think the teacher's satisfaction level calculated

after each dynamic timetable generations are able to improve system

admin's decision to create better quality timetables? (Teacher's

satisfaction fulfillment reflected from the preference settings in

teacher's module)

9 Are you able clearly identify the separation between the system

admin's module and the teacher's module?

10 What is your reliability level on the authentication and authorization

of the system? (Login modules, prevent unauthorized access)

270

270

7.3.2 Test Results

7.3.2.1 Inexperienced User

 The inexperienced user in a school would be a student. So, a student has been chosen

as a respondent to evaluate STSAMS. The gotten scores of the evaluation are stated in Table

7.3.2.1.1.

Table 7.3.2.1.1: Evaluation Scores given by a Student to STSAMS.

No. Question Score Given

1 How satisfied are you with the overall user interface of the system.

(Easy to use?)

3

2 How well do you able to understand the functionalities in the

system? (Easy to learn?)

3

3 On a scale of 1 to 5, how much is system able to fulfill your objective

to allocate timetables for a school?

4

4 How satisfied are you with the data management module in the

system? (Add, delete, sort, and filter subjects, classes, ...)

5

5 How much do you think that the system is able to reduce the time

taken to allocate timetables compared to the manual approach?

(Automated vs Manual)

3

6 Rate your overall experience while using the system to achieve your

objectives. (Happy? Annoyed?)

3

7 If you want to rate STSAMS, what is the score that you will give? 3

8 How well do you think the teacher's satisfaction level calculated

after each dynamic timetable generations are able to improve system

admin's decision to create better quality timetables? (Teacher's

satisfaction fulfillment reflected from the preference settings in

teacher's module)

3

9 Are you able clearly identify the separation between the system

admin's module and the teacher's module?

5

10 What is your reliability level on the authentication and authorization

of the system? (Login modules, prevent unauthorized access)

5

271

271

To calculate the average score or average satisfaction level given by the student, the

formula below will be used: -

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 𝐺𝑖𝑣𝑒𝑛

#𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 ∗ 𝑀𝑎𝑥 𝑆𝑐𝑜𝑟𝑖𝑛𝑔
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
37

10 ∗ 5
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
37

50
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 74%

272

272

7.3.2.2 Experienced User

 The experienced user in a school would be a teacher. So, a teacher has been chosen as

a respondent to evaluate STSAMS. The gotten scores of the evaluation are stated in Table

7.3.2.2.1.

Table 7.3.2.2.1: Evaluation Scores given by a Teacher to STSAMS.

No. Question Score Given

1 How satisfied are you with the overall user interface of the system.

(Easy to use?)

3

2 How well do you able to understand the functionalities in the

system? (Easy to learn?)

3

3 On a scale of 1 to 5, how much is system able to fulfill your objective

to allocate timetables for a school?

3

4 How satisfied are you with the data management module in the

system? (Add, delete, sort, and filter subjects, classes, ...)

5

5 How much do you think that the system is able to reduce the time

taken to allocate timetables compared to the manual approach?

(Automated vs Manual)

4

6 Rate your overall experience while using the system to achieve your

objectives. (Happy? Annoyed?)

3

7 If you want to rate STSAMS, what is the score that you will give? 3

8 How well do you think the teacher's satisfaction level calculated

after each dynamic timetable generations are able to improve system

admin's decision to create better quality timetables? (Teacher's

satisfaction fulfillment reflected from the preference settings in

teacher's module)

4

9 Are you able clearly identify the separation between the system

admin's module and the teacher's module?

5

10 What is your reliability level on the authentication and authorization

of the system? (Login modules, prevent unauthorized access)

5

To calculate the average score or average satisfaction level given by the teacher, the

formula below will be used: -

273

273

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 𝐺𝑖𝑣𝑒𝑛

#𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 ∗ 𝑀𝑎𝑥 𝑆𝑐𝑜𝑟𝑖𝑛𝑔
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
38

10 ∗ 5
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
38

50
∗ 100%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 76%

In conclusion, if the average satisfaction percentage of both users is found, the overall

user’s satisfaction of STSAMS is 75%.

274

274

CHAPTER 8

CONCLUSION & RECOMMENDATIONS

8.1 Achievements

 It was stated in the project objectives that the developed system must be prepared

alongside the design documents to give a high-level view of the STSAMS. This objective was

achieved through preparing the use case diagram and use case descriptions to describe the

involvement of users in different STSAMS’s functionalities. Not just that, the design for data

persistence was also shown using the entity relationship diagram (ERD) equipped with the

description explaining what kind of data exactly for each column in database table. As for API

routes, every parameter or request body and the response body is shown to get better

understanding of the routes in API server. Before the development of the genetic algorithms,

the genetic encodings for both algorithms were sketched out with a clear explanation on the

execution steps. By doing so, the STSAMS was able to be developed into a web-based

application within the specified period which is 12 weeks for the development phase. To solve

the problems from existing software that is like STSAMS, the system including functions like

calculating teacher’s satisfaction level with constraints like preferred teaching class, subjects

and time period for each timetable generation, hence the considering teacher’s preferences in

timetabling.

 Moreover, the development methodologies for the project were also assessed, resulting

in applying the Scrum methodology for the project executions. The Scrum methodology

recommended the practitioners to separate the development process into iteration. So, unit tests

were able to be created for the developed components to evaluate the correctness of the system.

During the early iteration of the project, different types of allocation algorithms such as PSO,

GA, Bipartite Matching, and Brute Force Approach were compared to select the suitable

algorithm for timetabling which is the Genetic Algorithm that is meta-heuristic in nature. So,

it could solve the problem of clashing better than the deterministic algorithms. As for

requirements of STSAMS, questionnaires were sent to the public-school teachers and interview

were conducted with a system administrator to gather insight of the teacher-subject allocation

in the school’s context. Using this requirement seeking approach, the important requirements

can be focused on, so that the functionalities of the STSAMS won’t be too vague but still able

to the achieve the objectives of generating a timetable.

275

275

8.2 Limitations & Recommendation for Future Development.

 STSAMS will be able to help system administrators in public schools to generate their

timetable yearly without the need of manually assigning teachers to teach specific subjects or

have lessons in different classes. This is because STSAMS provided the data management

module to the system administrators to manage data like subjects, classes, venues, and teachers.

Not just that, the system administrator can also generate the timetable automatically. By doing

so, STSAMS can save the admins’ time because they will not need to compare different

timetable combinations and finding clashing manually. The time saved can be used in other

more productive activities in the school.

 Nonetheless, every coin has two sides. STSAMS is still immature in terms of usage as

most of the modules like user interfaces, API server, and the algorithms were built from scratch.

The system users may encounter usability issue in the user interface of STSAMS, since

usability testing is not performed during this project execution. Not just that, STSAMS’s user

cases are only tailored to a specific public school. So, system administrators from other public

schools may discover that only some of the functionalities can be used by them, resulting in

finding other better solution for their use case. For example, functionalities that may pose

problems are the algorithm constraints as different schools may treat their timetabling process

differently. Due to time constraints, the STSAMS is still not completely teacher centered due

to teacher preference settings. This is because the current version of STSAMS is only able to

calculate the satisfaction level of teachers by mapping the preferences with a timetable result,

hence calculating the number of satisfied constraints set by the teachers. Although this function

can provide the satisfaction level, it is still depended to the system administrators to decide

whether they want to ignore the low satisfaction count. However, the teacher preferences were

seen as a soft constraint for the algorithm, thus it is optional that it need to be achieved.

 So, there are future improvements that can be done to eliminate the limitations. To solve

usability problem, usability testing can be conduct consistently to find out the root cause that

will increase retention and system learnability. Not just that, the user interface design that may

found out to be troublesome to the users can be improve by satisfying their feedback during

the usability testing. Moreover, requirement seeking scope can also be increased to find out the

constraints used by different school. So, the STSAMS functionalities can be more generalized

and are able cater to more public schools in Malaysia. As for a teacher centered STSAMS, the

teacher preferences can also be evaluated in a way that the algorithms will have a history of

276

276

satisfied teachers in previously timetable generations. Based on the history, the previously

satisfied will have a lower chance to get their preferred constraints, hence making way for the

unsatisfied teacher to have a chance to teach their preferred subjects, classes, and time periods.

This will ensure fairer evaluation of teacher preference, hence making the constraints more

dynamic.

277

277

REFERENCES

Adams, N. E., 2015. Bloom’s taxonomy of cognitive learning objectives. Journal of the

Medical Library Association: JMLA, [online] 103(3), pp.152–153. doi:

<https://doi.org/10.3163/1536-5050.103.3.010>.

Akbar, R., 2019. Tailoring Agile-Based Software Development Processes. IEEE Access, 7,

pp.139852–139869. doi: <https://doi.org/10.1109/access.2019.2944122>.

Alutbi, M., 2020. Work Breakdown Structure (WBS). [online] ResearchGate. Available at:

<https://www.researchgate.net/publication/342163727>.

Alsaqqa, S., Sawalha, S. and Abdel-Nabi, H., 2020. Agile Software Development:

Methodologies and Trends. International Journal of Interactive Mobile Technologies, 14(11),

pp.246–270.

Angelidakis, H., 2020. Bipartite graph. Available at:

<https://www.cantorsparadise.com/matchings-in-bipartite-graphs-and-the-kőnig-egerváry-

theorem-via-lp-duality-ff943454431> [Accessed 1 Sept. 2023].

Asano, T. and Asano, Y., 2000. RECENT DEVELOPMENTS IN MAXIMUM FLOW

ALGORITHMS. Journal of the Operations Research Society of Japan, 43(1), pp.2–31. doi:

https://doi.org/10.15807/jorsj.43.2.

Awad, F.H., Al-kubaisi, A. and Mahmood, M., 2022. Large-scale timetabling problems with

adaptive tabu search. Journal of Intelligent Systems, 31(1), pp.168–176. doi:

<https://doi.org/10.1515/jisys-2022-0003>.

278

278

Ayeni, A. J. and Amanekwe, A. P., 2018. Teachers’ Instructional Workload Management and

Students’ Academic Performance in Public and Private Secondary Schools in Akoko North-

East Local Government, Ondo State, Nigeria, American International Journal of Education

and Linguistics Research, 1(1), pp. 9–23. doi: <https://10.46545/aijelr.v1i1.135>.

Bascia, N., Chindalo, P., Connelly, C., Faubert, B., Flessa, J., Fredua-Kwarteng, E., Leung, J.,

Mascall, B. and Rottmann, C., n.d. Reducing Class Size: What Do We Know? [online]

Available at: <https://www.classsizematters.org/wp-content/uploads/2012/11/Reducing-

Class-Size-What-do-we-Know.pdf>.

Baturu, C. and Naufal abdi., 2020. Brute Force Algorithm Implementation Of Dictionary

Search. Jurnal Info Sains: Informatika dan Sains, 10(1), pp.24–30. doi:

<https://doi.org/10.54209/infosains.v10i1.29>.

Botti, S., Iyengar, S.S. and McGill, A.L., 2023. Choice freedom. Journal of Consumer

Psychology. doi: <https://doi.org/10.1002/jcpy.1325>.

Boehm, B. and Turner, R., 2004. Balancing agility and discipline: evaluating and integrating

agile and plan-driven methods. [online] IEEE Xplore. doi:

<https://doi.org/10.1109/ICSE.2004.1317503>.

Black, E, P., 2009."deterministic algorithm", in Dictionary of Algorithms and Data Structures

[online]. Available from: <https://www.nist.gov/dads/HTML/deterministicAlgorithm.html>

Brownlee, A., 2005. An application of genetic algorithms to university timetabling. Available

at: <https://www.cs.stir.ac.uk/~sbr/files/Report3.pdf>

Chan, C.K., Gooi, H.B. and Lim, M.H., 2006. An evolutionary algorithm based subject

allocation system. Journal of the Chinese Institute of Engineers, 29(3), pp.415–422. doi:

<https://doi.org/10.1080/02533839.2006.9671137>.

Cohen, D. & Lindvall, M. & Costa, Pierpaolo., 2003. Agile Software Development A DACS

State-of-the-Art Report. A DACS State-of-the-art Report.

Engelbrecht, A. P., 2013. Particle Swarm Optimization: Global Best or Local Best? [online]

IEEE Xplore. doi: <https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31>.

Guerriero, S., 2017. Teachers’ Pedagogical Knowledge and the Teaching Profession

Background Report and Project Objectives. [online] Available at:

<https://www.oecd.org/education/ceri/Background_document_to_Symposium_ITEL-

FINAL.pdf>.

https://www.nist.gov/dads/
https://www.nist.gov/dads/HTML/deterministicAlgorithm.html
https://www.cs.stir.ac.uk/~sbr/files/Report3.pdf

279

279

Hussain, A., Mkpojiogu, E.O.C. and Kamal, F., 2015. Eliciting User Satisfying Requirements

for an e-Health Awareness System Using Kano Model. [online] Available at:

<http://www.wseas.us/e-library/conferences/2015/Malaysia/COMP/COMP-20.pdf>.

Hamid, S.A., Abdulrahman, R.A. and Khamees, D.R.A., 2020. What is Client-Server System:

Architecture, Issues and Challenge of Client -Server System (Review). Recent Trends in Cloud

Computing and Web Engineering, [online] 2(1), pp.1–6. doi:

<https://doi.org/10.5281/zenodo.3673071>.

Howley-Rouse, A., 2021. An introduction to cognitive load theory. [online] THE

EDUCATION HUB. Available at: <https://theeducationhub.org.nz/an-introduction-to-

cognitive-load-theory/>.

Jacqueline., 2022. Everything To Know About Semi-Automated Material Handling Systems.

[online] REB Storage Systems International. Available at: <https://rebstorage.com/articles-

white-papers/semi-automated-material-handling-systems/>.

Jain, N., 2019. Subject-Teacher-Allocation. [online] ResearchGate. Available at:

<https://www.researchgate.net/publication/330290028_Subject-Teacher-Allocation>

[Accessed 6 Jul. 2023].

Jeschke, C., Kuhn, C., Heinze, A., Zlatkin-Troitschanskaia, O., Saas, H. and Lindmeier, A. M.

(2021). Teachers’ Ability to Apply Their Subject-Specific Knowledge in Instructional

Settings—A Qualitative Comparative Study in the Subjects Mathematics and Economics.

Frontiers in Education, [online] 6. doi: <https://doi.org/10.3389/feduc.2021.683962>.

Jomuad, P., Leah, M., Cericos, E., Bacus, J., Vallejo, J., Dionio, B., Bazar, J., Cocolan, J. and

Clarin, A., 2021. Teachers’ workload in relation to burnout and work

performance. International Journal of Educational Policy Research and Review, 8(2), pp.48–

53. doi: <https://doi.org/10.15739/IJEPRR.21.007>.

Lavrijsen, J., Tracey, T. J. G., Verachtert, P., De Vroede, T., Soenens, B. and Verschueren, K.,

2021. Understanding school subject preferences: The role of trait interests, cognitive abilities

and perceived engaging teaching. Personality and Individual Differences, 174, p.110685. doi:

<https://doi.org/10.1016/j.paid.2021.110685>.

Likourezos, V., 2021. An introduction to cognitive load theory. [online] THE EDUCATION

HUB. Available at: <https://theeducationhub.org.nz/an-introduction-to-cognitive-load-

theory/>.

280

280

Lazarides, R., Gaspard, H. and Dicke, A.-L., 2019. Dynamics of classroom motivation:

Teacher enthusiasm and the development of math interest and teacher support. Learning and

Instruction, [online] 60, pp.126–137. doi:

<https://doi.org/10.1016/j.learninstruc.2018.01.012>.

Minellim, M., Chambers, M. and Dhiraj, A., 2013. Big Data, Big Analytics: Emerging Business

Intelligence and Analytic Trends for Today’s Businesses. [online] Google Books. John Wiley

& Sons. Available at:

<https://books.google.com.my/books?hl=en&lr=&id=HYYaX9dsZsYC&oi=fnd&pg=

PR13&dq=Big+Data> [Accessed 9 Aug. 2023].

MESHDS, 2021. The Disadvantages of Manual Document Filing Processes. [online]

blog.mesltd.ca. Available at: <https://blog.mesltd.ca/the-disadvantages-of-manual-document-

filing-processes-1>.

Mkpojiogu, E.O.C. and Hashim, N. L., 2016. Understanding the relationship between Kano

model’s customer satisfaction scores and self-stated requirements importance. SpringerPlus,

5(1). doi: <https://doi.org/10.1186/s40064-016-1860-y>

Matzler K, Hinterhuber HH, Bailom F, Sauermein E., 1996. How to delight your customer. J

Product Brand Manag 5(2):6–18

Mnkandla, Ernest & Dwolatzky, Barry., 2004. A Survey of Agile Methodologies. Transactions

of the South African Institute of Electrical Engineers. 95. 236-247.

Mohammad, A., Saleh, O. and Abdeen, R.A., 2006. Occurrences algorithm for string searching

based on brute-force algorithm. Journal of Computer Science, 2(1), pp.82-85.

Nakamura, Y. and Dev, S., 2022. Effects of Class-Size Reduction on Students’ Performance.

Pertanika Journal of Social Sciences and Humanities, 30(2), pp.797–812. doi:

<https://doi.org/10.47836/pjssh.30.2.20>.

Oluwatosin, H.S., 2014. Client-Server Model. IOSR Journal of Computer Engineering, 16(1),

pp.57–71. doi: <https://doi.org/10.9790/0661-16195771>

Osorio A, Esquivel M. A., 2020. A solution to the university course timetabling problem using

a hybrid method based on genetic algorithms. DYNA, 87(215), pp.47–56. doi:

<https://doi.org/10.15446/dyna.v87n215.85933>.

281

281

Oosthuizen, R. M., 2022. The Fourth Industrial Revolution – Smart Technology, Artificial

Intelligence, Robotics and Algorithms: Industrial Psychologists in Future Workplaces.

Frontiers in Artificial Intelligence, 5. doi: <https://doi.org/10.3389/frai.2022.913168>.

Palupi Rini, D., Mariyam Shamsuddin, S. and Sophiyati Yuhaniz, S., 2011. Particle Swarm

Optimization: Technique, System and Challenges. International Journal of Computer

Applications, 14(1), pp.19–27. doi: <https://doi.org/10.5120/1810-2331>.

Pambudi, R.A., Lubis, W., Saputra, F.R., Maulidina, H.P. and Wijayaningrum, V.N., 2019.

Genetic Algorithm for Teaching Distribution based on Lecturers’ Expertise. Kinetik: Game

Technology, Information System, Computer Network, Computing, Electronics, and Control,

[online] pp.297–304. doi: <https://doi.org/10.22219/kinetik.v4i4.859>.

Patel, G.M., Jora, A., Singh, A., Arya, J. and Vashistha, B., 2021. Fault Tolerant Classroom

Allocation System. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3833703.

Rauf, F., Kalai, Y. and Adnan, Z., 2018. Course Allocation System for Lecturers. International

Journal of Computer Applications, [online] 180(22), pp.9–14. doi:

<https://doi.org/10.5120/ijca2018916344>.

Peter, B. and Ligembe, N., 2022. Impact of class size and students’ academic performance in

public secondary schools in Kwimba district Council , Mwanza – Tanzania. Direct Research

Journal of Education and Vocational Studies, [online] 4(3), pp.109–122. Available at:

<https://www.mendeley.com/catalogue/bf020591-e4ed-3256-94dd-c0f190e69442/>

[Accessed 18 Aug. 2023].

Rouse, M., 2019. What is Deterministic Algorithm? - Definition from Techopedia. [online]

Available at: <https://www.techopedia.com/definition/18830/deterministic-algorithm>.

Rossi-doria, O., Sampels, M., Birattari, M., Chiar, M., Dorigo, M., Gambardella, L. M.

Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stützle, T., 2003. A

Comparison of the Performance of Different Metaheuristics on the Timetabling Problem.

Available at:

<https://www.researchgate.net/publication/2561838_A_Comparison_of_the_Performance_of

_Different_Metaheuristics_on_the_Timetabling_Problem>.

Safi, N., Almohawes, M. and Mohd Jamail, N.S. (2021). The impact of user involvement in

software development process. Indonesian Journal of Electrical Engineering and Computer

Science, 21(1), p.354. doi: <https://doi.org/10.11591/ijeecs.v21.i1.pp354-359>.

282

282

Shu-Chuan Chu, Yi-Tin Chen and Jiun-Huei Ho., 2006. Timetable Scheduling Using Particle

Swarm Optimization. First International Conference on Innovative Computing, Information

and Control - Volume I (ICICIC’06). doi: <https://doi.org/10.1109/icicic.2006.541>.

SearchSoftwareQuality., n.d. What is Web Application (Web Apps) and its Benefits. [online]

Available at: <https://www.techtarget.com/searchsoftwarequality/definition/Web-application-

Web-app>.

Stacey, M., McGrath-Champ, S. and Wilson, R., 2023. Teacher attributions of workload

increase in public sector schools: Reflections on change and policy development. Journal of

Educational Change. doi: <https://doi.org/10.1007/s10833-022-09476-0>.

Tassopoulos, I. X. and Beligiannis, G. N., 2012. Solving effectively the school timetabling

problem using particle swarm optimization. Expert Systems with Applications, 39(5), pp.6029–

6040. doi: <https://doi.org/10.1016/j.eswa.2011.12.013>.

Trauth-Goik, A., 2020. Repudiating the Fourth Industrial Revolution Discourse: A New

Episteme of Technological Progress. World Futures, pp.1–24. doi:

<https://doi.org/10.1080/02604027.2020.1788357>.

WinJaws5. (n.d.). ‘winjaw5manual’ [PowerPoint presentation]. Available at:

<https://www.winjaws.com/Content/documents/winjaws5manual.pdf> [Accessed: 5

September 2014].

Williams, L., 2010. "Agile software development methodologies and practices". Advances in

Computers (Vol. 80, pp. 1-44). Elsevier.

Xu, P. and Ramesh, B., 2008. Using Process Tailoring to Manage Software Development

Challenges. IT Professional, 10(4), pp.39–45. doi: <https://doi.org/10.1109/mitp.2008.81>.

283

283

APPENDICES

Appendix A: Plagiarism Check Report Page 1

284

284

Appendix: B Plagiarism Check Report Page 2

285

285

Appendix C: FYP Poster

