

HOME ENERGY MONITORING SOFTWARE

SYSTEM (HEMS) - MOBILE APPLICATION

AND WEB-BASED DASHBOARD

WONG KE XIN

UNIVERSITI TUNKU ABDUL RAHMAN

HOME ENERGY MONITORING SOFTWARE SYSTEM (HEMS)-

MOBILE APPLICATION AND WEB-BASED DASHBOARD

WONG KE XIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science (Honours) Software

Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Wong Ke Xin

ID No. : 2001293

Date : 16/05/2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “HOME ENERGY MONITORING

SOFTWARE SYSTEM (HEMS) - MOBILE APPLICATION AND WEB-

BASED DASHBOARD” was prepared by WONG KE XIN has met the

required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Science (Honours) Software Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Ms Beh Hooi Ching, Michelle

16th May 2024

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, Wong Ke Xin. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Ms Beh Hooi Ching for her invaluable advice, guidance and her

enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement.

Lastly, I would like to thank all MIMOS staff who helped me with this

project during my internship period for guidance and support.

v

ABSTRACT

The increasing energy demand driven by economic expansion, population

growth, and urbanization in Malaysia poses environmental challenges due to

the heavy reliance on non-renewable fossil fuels to generate electricity, which

contributes to greenhouse gas emissions and global warming. The proposed

Home Energy Monitoring System (HEMS) leveraging IoT technology has been

developed to address these challenges by empowering residents to actively

monitor, analyze, and optimize their electricity consumption through mobile

applications to foster sustainable energy practices and mitigate carbon

emissions in Malaysia. The project aims to determine project requirements,

develop a mobile application for monitoring residential energy usage, create a

web-based dashboard for visualizing energy consumption data, and evaluate

functionalities through various tests. The target user for the mobile application

is the residents in Malaysia who have home energy monitoring devices installed

in their residences, and the target user for the web-based dashboard is an

administrator who manages the accounts for residents. The functionalities of

both mobile applications and web-based dashboards, such as monitoring real-

time energy consumption, viewing historical energy consumption, setting

thresholds to manage energy consumption, managing user profiles and viewing

resident dashboards, are successfully developed using iterative and incremental

development methodologies to develop different functionalities in phases.

Testing such as unit testing, integration testing, system testing, code quality

analysis and system usability scale evaluation were conducted throughout

development to ensure a smooth user experience. The system has achieved As

in maintainability, reliability, security and usability indicating its suitability for

routine operations. Through collaboration with MIMOS Berhad, the goal and

objectives of the project have been achieved successfully within the timeline,

with the mobile application and web-based dashboard prototype as the final

deliverables.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xii

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xxiii

LIST OF APPENDICES xxiv

CHAPTER

1 INTRODUCTION 25

1.1 General Introduction 25

1.2 Problem Background 27

1.3 Problem Statement 28

1.3.1 Increasing energy demand 28

1.3.2 Inefficient Use of Electronic Gadgets and

Limited Information on Energy

Consumption 29

1.4 Aim and Objectives 30

1.4.1 Aim 30

1.4.2 Objectives 30

1.5 Proposed Solution 31

1.6 Project Approach 33

1.6.1 Research Approach 33

1.6.2 Development Approach 34

vii

1.7 Scope 36

1.7.1 Target Users 36

1.7.2 Modules Covered 36

1.7.3 Things that not covered in this project 37

2 LITERATURE REVIEW 38

2.1 Introduction 38

2.2 Energy Consumption in Malaysia 39

2.2.1 Total electricity consumption by sector 39

2.2.2 The National Energy Efficiency Action

Plan 40

2.2.3 Adoption of energy monitoring in Malaysia

 40

2.3 Home Energy Monitoring and Management 43

2.4 Real-Time System 44

2.4.1 Characteristic of real time system 45

2.5 Internet of Things 46

2.5.1 Fundamental Basis for Smart Homes

Monitoring 46

2.5.2 Potential of IoT in Manufacturing for

Energy Management and Monitoring 47

2.6 Smart Meters of TNB 48

2.6.1 Introduction to Smart Meters 48

2.6.2 Security and Safety 49

2.6.3 Benefits of Smart Meters 49

2.6.4 Smart Meter Rollout Phases 49

2.7 AI-Based Residential Energy Monitoring

(AIREM) 51

2.8 Appliance Load Monitoring 52

General Framework of NILM Approach 54

Load Identification 55

Simulator for System Training 55

2.9 Review of Similar Systems 57

2.10 Summary 71

3 METHODOLOGY AND WORK PLAN 72

viii

3.1 Introduction 72

3.2 Project Methodology 72

3.2.1 Development Methodology 72

3.2.2 Initial Planning 74

3.2.3 Analysis and Design 76

3.2.4 Implementation and testing 76

3.2.5 System Usability Scale Evaluation and

Code Quality Analysis 79

3.2.6 Deployment 79

3.3 Work Breakdown Structure 80

3.4 Gantt Chart 89

3.5 Development tools 95

3.5.1 Software 95

3.5.2 Programming Language and Markup

Languages 96

3.5.3 Framework 97

3.5.4 Service 97

3.5.5 Design architecture style 99

3.6 System Architecture Workflow 100

3.7 Summary 102

4 PROJECT SPECIFICATION 103

4.1 Introduction 103

4.2 Findings 103

4.2.1 Questionnaire 103

4.2.2 Summary of Informal Interview and Site

Visit 105

4.3 Requirements Specification 107

4.3.1 Mobile Application 107

4.3.2 Web Based Dashboard 118

4.3.3 Interface Flow Diagram 123

4.4 Initial Low Fidelity Prototypes 124

4.4.1 Mobile Application 124

4.4.2 Web Based Dashboard 132

4.5 Summary 132

ix

5 SYSTEM DESIGN 133

5.1 Introduction 133

5.2 System Architecture Design 133

5.3 Analysis Class Diagram 138

5.4 Entity Relationship Diagram 139

5.5 Table Description 140

5.6 Data Flow Diagram 140

5.7 User Interface Design 142

5.7.1 Web Application 142

5.7.2 Mobile Application 145

6 SYSTEM IMPLEMENTATION 164

6.1 Introduction 164

6.2 Energy Consumption Simulator Provided by

MIMOS Bhd 164

6.2.1 Description of the Energy Consumption

Simulator 164

6.3 Sending Data from Simulator to DynamoDB

database 168

6.3.1 Send data from energy monitoring

simulator to DynamoDB by setting up

AWS IoT Core and configuring the IoT

device to communicate with AWS services 168

6.4 Retrieve Realtime Energy Consumption Data

from DynamoDB Table to Mobile Application via

WebSocket API 174

6.4.1 Set DynamoDB stream 174

6.4.2 Create connection DynamoDB table 174

6.4.3 WebSocket API Management 175

6.4.4 Integration of AWS Lambda functions,

Amazon DynamoDB, and Amazon API

Gateway to handle WebSocket

communication 177

6.5 Perform authentication using AWS Amplify,

AWS Cognito 188

x

6.5.1 Setup AWS Account and Install AWS

Amplify CLI 188

6.5.2 Create AWS Cognito User Pool and

Identity Pool 189

6.6 Retrieve Historical Energy Consumption Data to

Web-based Dashboard and Mobile Application 194

6.6.1 Retrieve Past Week Energy Consumption

Data 194

6.6.2 Retrieve Past 6 Months Energy

Consumption Data 200

6.6.3 Calculate Monthly Peak Usage Hours and

Total Carbon Emissions 206

6.6.4 Detach Integration with HTTP Routes 214

6.6.5 Connect HTTP API to Retrieve Energy

Consumption Data 215

6.7 Send Email Notification if Resident’s Energy

Consumption Data Exceed Threshold Defined 220

6.7.1 Create Threshold DynamoDB Table 221

6.7.2 Use AWS AppSync GraphQL Schema to

Create Threshold DynamoDB table 222

6.7.3 Create GraphQL schema 223

6.7.4 Create Mutation and Query 224

6.7.5 Create Retrieve, Create, Update and Delete

functions in Mobile Application 229

6.7.6 Create Identity via AWS SES 235

6.7.7 Create AWS Lambda Function to Detect

Threshold and Send Email Notification 235

6.7.8 Set CloudWatch Rule to trigger AWS

Lambda Function Periodically 241

7 SYSTEM TESTING 243

7.1 Introduction 243

7.2 Unit Testing 243

7.3 Integration Testing 261

7.4 System Testing 275

xi

7.5 Code Quality Analysis 288

7.6 System Usability Scale Evaluation 290

8 CONCLUSION 294

8.1 Conclusions 294

8.2 Recommendations 295

REFERENCES 297

APPENDICES 303

xii

LIST OF TABLES

Table 2.9.1: Comparison of Home Energy Monitoring Application 68

Table 4.3.1: Register User Account 110

Table 4.3.2: View Dashboard 121

Table 5.2.1: List of Components Used in System 133

Table 5.5.1: Description of Entity Relationship Table 140

Table 6.2.1: Home Appliances in Laboratory 164

Table 7.2.1: Unit Test Case for Register Screen 1 243

Table 7.2.2: Unit Test Case for Register Screen 2 244

Table 7.2.3 : Unit Test Case for Login Screen 1 245

Table 7.2.4: Unit Test Case for Login Screen 2 246

Table 7.2.5: Unit Test Case for Login Screen 3 246

Table 7.2.6: Unit Test Case for Login Screen 4 247

Table 7.2.7: Unit Test Case for Login Screen 5 248

Table 7.2.8: Unit Test Case for Real Time Graph 248

Table 7.2.9: Unit Test Case for Home Screen 249

Table 7.2.10: Unit Test Case for Historical Energy Consumption Screen 250

Table 7.2.11: Unit Test Case for Energy Monitoring Screen 251

Table 7.2.12: Unit Test Case for Start Screen 1 251

Table 7.2.13: Unit Test Case for Start Screen 2 252

xiii

Table 7.2.14: Unit Test Case for Setting Screen 253

Table 7.2.15: Unit Test Case for User Profile Screen 254

Table 7.2.16: Unit Test Case for Help and Support Screen 254

Table 7.2.17: Unit Test Case for Term and Policy Screen 255

Table 7.2.18: Unit Test Case for Help and Support Screen 256

Table 7.2.19: Unit Test Case for Report Problem Screen 257

Table 7.2.20: Unit Test Case for Web-based Dashboard Page 257

Table 7.2.21: Unit Test Case for Web-based Manage User Page 258

Table 7.2.22: Unit Test Case for Web-based Administrator Login Page 258

Table 7.2.23: Unit Test Case for Web-based Administrator Register

Page 259

Table 7.3.1: Integration Test Case for Login Screen 261

Table 7.3.2: Integration Test Case for Login Screen 2 262

Table 7.3.3: Integration Test Case for Register Screen 263

Table 7.3.4: Integration Test Case for Home Screen 264

Table 7.3.5 : Integration Test Case for Energy Monitoring Screen 1 266

Table 7.3.6: Integration Test Case for Energy Monitoring Screen 2 266

Table 7.3.7: Integration Test Case for User Profile Screen 267

Table 7.3.8: Integration Test Case for Logout 268

Table 7.3.9: Integration Test Case for Historical Energy Consumption

Screen 268

xiv

Table 7.3.10: Integration Test Case for displaying Cognito Users Data 270

Table 7.3.11: Integration Test Case for Dashboard Component 271

Table 7.3.12: Integration Test Case for Register Administrator Account 272

Table 7.3.13: Integration Test Case for Login Administrator 273

Table 7.4.1: System Test Case for Create User Account 275

Table 7.4.2: System Test Case for Login User Account 276

Table 7.4.3: System Test Case for Displaying Real Time Energy

Consumption 276

Table 7.4.4: System Test Case for Viewing Historical Energy

Consumption 276

Table 7.4.5: System Test Case for Showing Weekly Energy

Consumption 277

Table 7.4.6: System Test Case for Showing Monthly Energy

Consumption 278

Table 7.4.7: System Test Case for Historical Energy Consumption Data

Point 278

Table 7.4.8: System Test Case for Most Frequent Period 279

Table 7.4.9: System Test Case for Total Carbon Emission Fetching 280

Table 7.4.10: System Test Case for Fetching User Data 280

Table 7.4.11: System Test Case for Updating User Data 281

Table 7.4.12: System Test Case for Updating User DynamoDB Table 281

Table 7.4.13: System Test Case for Loading Threshold 282

xv

Table 7.4.14: System Test Case for Create Threshold 282

Table 7.4.15: System Test Case for Remove Threshold 283

Table 7.4.16: System Test Case for Edit Threshold 283

Table 7.4.17: System Test Case for View User Cognito Data 284

Table 7.4.18: System Test Case for User Dashboard Functionalities 285

Table 7.4.19: System Test Case for Login 287

Table 7.6.1: System Usability Scale Evaluation Questions 290

Table 7.6.2: System Usability Scale Evaluation Result 292

xvi

LIST OF FIGURES

Figure 1.5.1: Overview of the Proposed Solution 31

Figure 1.6.1: Iterative and Incremental Development Model (Jevon,

2009) 34

Figure 2.2.1: Total Electricity Consumption by Sector in Malaysia 2023

(International Energy Agency [IEA], 2023) 39

Figure 2.4.1: Schematic Representation of an Automated Car Assembly

Plant (Mall, 2009) 44

Figure 2.6.1: Smart meters of TNB (Smart meters - Tenaga Nasional

Berhad, 2023) 48

Figure 2.8.1: Different type of energy consumption patterns (Zoha, et

al., 2012) 54

Figure 2.9.1: myTNB Interface for Checking Monthly Electric Bill 57

Figure 2.9.2: myTNB Interface for Real-Time Monitoring Feature 57

Figure 2.9.3: myTNB Interface for Calculating Monthly Electric Bills 58

Figure 2.9.4: mySunPower Web-based Interface 61

Figure 2.9.5: mySunPower Mobile Application Real-time Monitoring

Feature 62

Figure 2.9.6: mySunPower Data Analysis Feature 63

Figure 3.2.1: Iterative and Incremental Development Model (Jevon,

2009) 72

Figure 3.4.1: Overview of Work Breakdown Structure 89

Figure 3.4.2: Planning Phase Timeline 89

xvii

Figure 3.4.3: Planning Phase Timeline (Continued) 89

Figure 3.4.4: Planning Phase Timeline (Continued) 90

Figure 3.4.5: Planning Phase Timeline (Continued) 90

Figure 3.4.6: Planning Phase Timeline (Continued) 90

Figure 3.4.7: Analysis and Design Phase Timeline 91

Figure 3.4.8: Development Iteration 1 Timeline 91

Figure 3.4.9: Development Iteration 1 Timeline (Continued) 91

Figure 3.4.10: Development Iteration 1 Timeline (Continued) 91

Figure 3.4.11: Development Iteration 2 Timeline 92

Figure 3.4.12: Development Iteration 2 Timeline (Continued) 92

Figure 3.4.13: Development Iteration 2 Timeline (Continued) 92

Figure 3.4.14: Development Iteration 3 Timeline 92

Figure 3.4.15: Development Iteration 3 Timeline (Continued) 93

Figure 3.4.16: Development Iteration 3 Timeline (Continued) 93

Figure 3.4.17: Development Iteration 4 Timeline 93

Figure 3.4.18: Development Iteration 4 Timeline (Continued) 93

Figure 3.4.19: Closing Phase Timeline 94

Figure 4.3.1: Mobile Application Use Case Diagram 109

Figure 4.3.2: Web Dashboard Use Case Diagram 120

Figure 4.3.3: Mobile Application Interface Flow Diagram 123

xviii

Figure 4.3.4: Web Dashboard Interface Flow Diagram 123

Figure 4.4.1: Low Fidelity Prototype- Register Page 124

Figure 4.4.2: Low Fidelity Prototype- Manage User Account Page 125

Figure 4.4.3: Low Fidelity Prototype- Manage User Account Page

(Continued) 126

Figure 4.4.4: Low Fidelity Prototype- Energy Monitoring Page 127

Figure 4.4.5: Low Fidelity Prototype- Energy Monitoring Page

(Continued) 128

Figure 4.4.6: Low Fidelity Prototype- Energy History Page 129

Figure 4.4.7: Low Fidelity Prototype- Notification and Alert Page 130

Figure 4.4.8: Low Fidelity Prototype- Notification and Alert Page

(Continued) 131

Figure 4.4.9: Low Fidelity Prototype- Web Based Dashboard 132

Figure 5.2.1: System Architecture Overview 136

Figure 5.3.1: Analysis Class Diagram 138

Figure 5.4.1: Entity Relationship Diagram 139

Figure 5.6.1: Data Flow Diagram Context Diagram 140

Figure 5.6.2: Data Flow Diagram Level 0 141

Figure 5.7.1: Administrator Register Screen 142

Figure 5.7.2: Administrator Login Screen 143

Figure 5.7.3: Manage User Screen 143

xix

Figure 5.7.4: Edit User Screen 144

Figure 5.7.5: User Dashboard 1 144

Figure 5.7.6: User Dashboard 2 145

Figure 5.7.7: Start Page 146

Figure 5.7.8: Login Page 147

Figure 5.7.9: Create Account Page 148

Figure 5.7.10: Confirmation Page 149

Figure 5.7.11: Home Page 150

Figure 5.7.12: Historical Energy Consumption Page (Weekly) 151

Figure 5.7.13: Historical Energy Consumption Page Zoom In (Weekly) 152

Figure 5.7.14: Historical Energy Consumption Page (Monthly) 153

Figure 5.7.15: Historical Energy Consumption Page Zoom In (Monthly) 154

Figure 5.7.16: User Profile Page 155

Figure 5.7.17: Energy Monitoring Page 156

Figure 5.7.18: Energy Monitoring Page Introduction 157

Figure 5.7.19: Energy Monitoring Page Edit Mode 158

Figure 5.7.20: Setting Page 159

Figure 5.7.21: Term and Policy Page 160

Figure 5.7.22: Help and Support Page 161

Figure 5.7.23: Report Problem Page 162

xx

Figure 5.7.24: Report Problem Page -Send Email 163

Figure 6.2.1: Web Interface of Energy Monitoring Simulator 167

Figure 6.3.1: Send Data to DynamoDB Workflow 168

Figure 6.3.2: Creation of Energy Consumption DynamoDB Table 170

Figure 6.3.3: Created Things in AWS IoT Core 171

Figure 6.3.4: Settings in AWS IoT Core 172

Figure 6.3.5: Creation of Rules in AWS IoT Core 173

Figure 6.4.1: Retrieve Realtime Energy Consumption Data from

DynamoDB Table to Mobile Application Workflow 174

Figure 6.4.2: $connect route in WebSocket API 175

Figure 6.4.3: $disconnect route in WebSocket API 176

Figure 6.4.4: Stage of WebSocket API 176

Figure 6.4.5: Lambda Function to Fetch Connection and Send Data to

Mobile Application 181

Figure 6.4.6: Code to Connect WebSocket API 186

Figure 6.5.1: AWS Amplify Setup in React Native 188

Figure 6.5.2: Add Authentication in AWS Amplify 189

Figure 6.5.3: AWS Cognito User Pool 190

Figure 6.5.4: AWS Cognito Identity Pool 190

Figure 6.5.5: Code to Implement SignUp Function in React Native 191

Figure 6.5.6: Code to Implement Sign In Function in React Native 192

xxi

Figure 6.5.7: Created Users in AWS Cognito User Pool 193

Figure 6.6.1: Retrieve Historical Energy Consumption Data to Web-

based Dashboard and Mobile Application Workflow 194

Figure 6.6.2: Lambda Function to Retrieve Historical Data 199

Figure 6.6.3: Lambda Function to Retrieve Past Six Month Data 205

Figure 6.6.4: Calculate Peak Month Usage 213

Figure 6.6.5: HTTP Route with Lambda Function 214

Figure 6.6.6: Retrieve User Data from React Native 215

Figure 6.6.7: Fetch HTTP API Response 219

Figure 6.7.1: Send Email Notification if Resident’s Energy

Consumption Data Exceed Threshold Defined Workflow 220

Figure 6.7.2: Create DynamoDB Table in React Native 222

Figure 6.7.3: GraphQL Schema 223

Figure 6.7.4: GraphQL Mutation 226

Figure 6.7.5: GraphQL Queries 228

Figure 6.7.6: CRUD Code for Threshold in DynamoDB 233

Figure 6.7.7: Identities Created in AWS SES 235

Figure 6.7.8: Lambda Function to Detect Threshold 241

Figure 6.7.9: CloudWatch Rule Setting 241

Figure 6.7.10: CloudWatch Rule Schedule Details 242

Figure 7.2.1: Result of Unit Testing 260

xxii

Figure 7.3.1: Result of Integration Testing 274

Figure 7.5.1: Result of Code Quality Analysis 289

xxiii

LIST OF ABBREVIATIONS

API Application Programming Interface

API Gateway Amazon API Gateway

Amplify AWS Amplify

AppSync AWS AppSync

AWS Amazon Web Services

CloudFront Amazon CloudFront

CloudWatch AWS CloudWatch

Cognito AWS Cognito

DynamoDB Amazon DynamoDB

HEMS Home Energy Monitoring System

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

Lambda AWS Lambda

MQTT Message Queuing Telemetry Transport

NIALM Non-intrusive Appliance Load Monitoring

S3 Simple Storage Service

SES Simple Email Service

SNS Simple Notification Service

SUS System Usability Scale

TNB Tenaga Nasional Berhad

https://www.energy.gov/sites/prod/files/2013/12/f6/nonintrusive_load_monitor.pdf
https://www.energy.gov/sites/prod/files/2013/12/f6/nonintrusive_load_monitor.pdf

xxiv

LIST OF APPENDICES

Appendix A: Site Visit with MIMOS Berhad 303

Appendix B: Results and Discussion of Questionnaire 306

Appendix C: System Usability Scale Evaluation Result 318

25

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

 The expanding economy, population growth, and rapid urbanization are

expected to drive a rise in energy demand in Malaysia by increasing by 2%

annually until 2050 (Ministry of Economy, 2023). This increasing energy

demand has led to a heavy reliance on non-renewable fossil fuel-based resources,

causing greenhouse gas emissions and contributing to global warming (Amin,

et al., 2022). To address these environmental issues by lowering the energy

consumption of residents in Malaysia, the implementation of a Home Energy

Monitoring System (HEMS) is proposed to encourage residents to monitor their

electricity consumption via mobile or web applications. With the goal of

creating a fully functional prototype for a cutting-edge Home Energy

Monitoring System (HEMS) utilising IoT technology, this project represents a

key industry link collaboration with MIMOS Berhad. By enabling residents to

actively monitor, analyse, and optimise their electricity use, the HEMS system

will promote sustainable energy practises and lessen dependency on resources

derived from fossil fuels to reduce reliance on fossil fuels and lower carbon

emissions.

The scope of this study covers modules including real-time energy

monitoring, historical data analysis, notification alerts, and user management to

encourage residents to utilise sustainable energy sources. The targeted

respondents are residents in Malaysia who own smart meters in their households

for energy monitoring.

Moreover, the research approach for this project is quantitative, using a

questionnaire to understand residents' electricity consumption patterns, energy-

saving behaviours and preferences towards HEMS features. The methodology

used in the development process is incremental and iterative, facilitating the

prioritisation of important functionality and accommodating requirement

modifications in response to user feedback.

26

Next, the proposed solution for this project is an IoT-based HEMS that

includes both a mobile application and a web-based dashboard. Electricity

consumption data will be collected by energy monitoring devices and stored in

the cloud database so that the mobile application and web application are able

to retrieve it in real time. Thanks to the mobile app's on-the-go energy

consumption tracking and real-time alerts, users may view their energy

consumption statistics whenever and wherever they want.. Malaysian citizens

can learn more about their electricity usage, spot inefficiencies, and adopt

energy-saving habits to lessen their environmental impact by integrating smart

home appliances and energy monitoring systems.

This project is expected to be done by April 2024, with the Home Energy

Monitoring Mobile and Web application as the final deliverable.

27

1.2 Problem Background

Fossil fuel-based energy resources, such as natural gas, crude oil, and coal,

dominate Malaysia's energy landscape with proportions of 42.0%, 33.3%, and

21.3% respectively, while renewable energy sources like hydropower and solar

make up a significantly smaller portion (SURUHANJAYA TENAGA

(ENERGY COMMISSION), 2021). The rapid growth of the population,

coupled with an expanding economy and improving standards of living, is

driving up a constant increase in the demand for electricity for residences. In

2017, Malaysia's renewable energy capacity under the Feed-in Tariff program

reached 528.06 MW, significantly lagging behind Vietnam, Indonesia, and

Thailand, which had installed capacities of 2569 MW, 3833 MW, and 6766 MW

respectively (Sustainable Energy Development Authority Malaysia [SEDA],

2019). The continuously expanding renewable electricity capacity is unable to

meet the high electricity demand driven by a densely populated population and

extensive industrial activities. Energy generation using coal stands as the largest

contributor to CO2 and N2O emissions, while the natural gas transport and the

process of coal mining for energy generation cause leakage of most CH4

emissions (Abdul Latif, et al., 2021). The emissions of greenhouse gases from

energy generation contribute to global warming and climate change, causing the

greenhouse effect and resulting in rising sea levels due to the rapid melting of

ice caps. This poses a significant risk of floods and displacement of low-lying

areas. Malaysia, being an island nation facing an immediate threat from rising

water levels, is particularly vulnerable to the impacts of increased global

warming. Given Malaysia's challenges to quickly satisfy its rising energy needs

using only alternative energy sources, it is critical to solve the greenhouse

effect's environmental issue. Optimising household energy use that allows user

to monitor their own energy consumption can help mitigate greenhouse gas

emissions by lowering the demand for energy derived from fossil fuels.

28

1.3 Problem Statement

1.3.1 Increasing energy demand

The production, use, and emissions of electricity are strongly influenced by

several variables, including economic growth, population changes, energy

prices, technological innovation, exports, foreign direct investment, and human-

related variables like socioeconomic status, psychology, and housing

characteristics (Ali, Razman and Awang, 2019). The rapid growth of the

population, coupled with an expanding economy and improving standards of

living, is driving up a constant increase in residence electricity demand.

Therefore, to meet the energy demand, more expensive fossil fuels,

including natural gas and coal, are used due to the restricted capacity of

renewable energy sources. Malaysia's electricity demand projected to increase

at an annual rate of 3% from 2010 to 2030, the reliance on expensive coal and

natural gas, coupled with supply constraints, has emerged as a pressing concern

(Tenaga Nasional Berhad, 2011). The price of these fossil fuels is frequently

erratic, which raises the price of electricity production and finally causes high

cost of electricity. By maximising electricity use, incorporating renewable

energy sources, and encouraging energy-efficient practises, the implementation

of the HEMS (Home Energy Management System) can assist in addressing the

rising demand for energy by monitoring residents’ energy consumption. This

will reduce reliance on costly fossil fuels and will lessen the impact of price

fluctuations on electricity costs.

29

1.3.2 Inefficient Use of Electronic Gadgets and Limited Information on

Energy Consumption

Inefficient use of electronic gadgets by Malaysian residents in their household

will cause high energy consumption resulting in high electricity bills. Growing

urban electricity consumption creates challenges in performing energy-saving

strategies due to limited information on residential energy use (Ali, et al., 2021).

However, Nasir, et al. (2020) highlighted Malaysians’ complaints about energy

services issues such as lacking information about monthly electricity consumed

and difficulties in tracking everyday routines corresponding to long-term energy

use to perform energy practices. Normative feedback that enhances

communication motivates high consuming households to reduce energy

consumption, leading to sustained reductions in energy usage (Dominicis, et al.,

2019). Therefore, smart energy monitoring systems can provide customized real

time energy consumption feedback for more efficient energy use, reducing

financial stress and fostering sustainability.

30

1.4 Aim and Objectives

1.4.1 Aim

The aim of the project is to develop a working prototype which reflects the

overall application of Home Energy Monitoring System (HEMS).

1.4.2 Objectives

1. To determine project requirements and investigate existing home energy

monitoring systems that align with company needs.

2. To develop a mobile application which monitors the energy usage

consumption.

3. To develop a web-based dashboard that visualizes the energy

consumption data for the residents.

4. To evaluate mobile application and web-based dashboard functionalities

by using unit testing, integration testing, system testing and system

usability scale evaluation with less than 10% error result.

31

1.5 Proposed Solution

Figure 1.5.1: Overview of the Proposed Solution

The proposed solution is to develop an IoT energy consumption mobile

application and web application.

The Home Energy Monitoring System (HEMS) should use both mobile

and web applications since this will appeal to a wider user base with a range of

device preferences and usage scenarios. Mobile applications offer the

convenience of on-the-go monitoring and real-time alerts, while web

applications provide flexibility for administrators to monitor different residents'

energy consumption by allowing access from any device with a web browser.

This strategy improves user happiness with the energy monitoring system in

terms of engagement, accessibility, and all-around user pleasure.

React Native and Expo are ultilized to develop the user interface of

mobile applications for both Android and iOS. Besides, HTML5, CSS, Laravel

and JavaScript frameworks will be selected for developing the front-end view

of web-based applications. Next, Amazon DynamoDB is selected to handle real-

time data collection retrieved via mobile application and web application from

households as its high performance and low latency characteristics are well

suited to store real-time energy consumption data, handle frequent data updates

and retrieve data quickly to user. The company will provide energy monitoring

simulator to provide energy consumption data to the database selected.

32

Firstly, real-time energy consumption data collected by energy

monitoring devices are transmitted to the DynamoDB table via MQTT protocol

from the AWS IoT core. A WebSocket is established to send the energy

consumption data from DynamoDB to mobile applications in real time. Besides,

the historical data stored inside DynamoDB will be retrieved using AWS

Lambda functions by performing calculations.

Section 3.5 of Chapter 3 and Chapter 6 provide detailed insights into this

proposed solution to offer a comprehensive understanding of this solution to

develop a Home Energy Monitoring System.

33

1.6 Project Approach

1.6.1 Research Approach

The chosen research methodology is the qualitative research approach as the

qualitative approach focuses on gathering insight and understanding the home

energy monitoring system user's experiences, attitudes, and motivations for

energy monitoring. Engineers can select the most appropriate qualitative

techniques based on their unique requirements because the use of graph theory,

expert systems, and qualitative simulation does not necessarily require a

mathematical model or considerable measurement data. Large inputs from

residents in Malaysia are required to understand their needs for energy

consumption (Cheng, 2022). The qualitative research approach enables a

contextually rich understanding of the socio-cultural elements that influence the

energy consumption behaviours of people in Malaysia in addition to facilitating

a comprehensive investigation of users' perceptions of home energy monitoring

devices.

Questionnaires is selected to gain insights about the residents’ electricity

consumption awareness, energy usage behaviours, knowledge about energy-

saving practices, and their familiarity with Home Energy Management Systems

(HEMS) and smart meters. Besides, the residents’ barriers and preferences using

HEMS are also being collected to understand and develop HEMS with desired

features that fulfil the residents’ needs. Target users’ attitude towards energy

consumption is expected to support the problem statements clarified to make

sure that the development of HEMS can help to solve the target users’ problems.

The result and analysis of the collected questionnaires are presented in Chapter

4, Section 4.2.1 for further discussion.

34

1.6.2 Development Approach

Figure 1.6.1: Iterative and Incremental Development Model (Jevon, 2009)

The proposed methodology for this project is iterative and incremental

methodology. The iterative and incremental development (IID) approach entails

sequentially identifying requirements, analysing requirement, producing design

specification and coding based on the design until final product is delivered

(Nonyelum, 2020).

Firstly, the biggest advantage of choosing this methodology is the

prioritize development requirements. Since the functionalities of the system had

been completely stated by the company, the important requirement can be

developed first followed by other minor requirements. The company can get top

priority requirement deliverables early that is real-time energy monitoring while

the minor functionality such as historical data and analytic and notification and

alert will be added in the next iteration.

Besides, this methodology allows easy accommodated requirements

changes. Mimos is able to provide feedbacks to each product increment to make

sure that the final deliverable fulfils its expectation. The developed system is

able to change based on the feedback at the next iteration until end of product

development to ensure the system aligns with user needs with continuous

improvement.

35

The in-depth examination of specific tasks performed during each phase

are discussed in Chapter 3, Section 3.2 to offer a comprehensive understanding

of the development process.

36

1.7 Scope

This project is aimed to develop IoT energy consumption mobile application

and Web-based dashboard called "HEMS” (Home Energy Monitoring System)

which integrate with smart household devices. This system is accessible to users

through mobile application and internet browser.

1.7.1 Target Users

The target users of this project are the residents in Malaysia who have home

energy monitoring devices installed in their residences. They can install the

home energy monitoring device and monitor their electricity usage using mobile

application and view energy consumption dashboard using a web browser. The

target audience is likely made up of eco-aware people who want to keep an eye

on and control how much electricity they consume. They might want to cut back

on their energy use to save money, lessen their impact on the environment, or

both. The intended users are anticipated to be able to access the internet via their

cell phones or PCs because the project combines a mobile application and a web

dashboard.

1.7.2 Modules Covered

• Real-time Energy Monitoring Module

This module includes visualizing residents’ total energy consumption

patterns on a daily, weekly or monthly basis, offering intuitive and

informative charts, graphs.

• Historical Data and Analytics Module

This module provides detailed insights and analytics on energy

consumption pattern over time based on historical data collected.

• Notification and Alert Module

This module includes real-time notification and alerts to be sent to the

residents when the energy consumption exceed predefined level by

residents.

• User Management Module

37

This module is for creating resident’s individual accounts, managing

profile and performing personalization on energy usage settings

including setting preferences, notification, energy consumption level.

1.7.3 Things that not covered in this project

The disaggregation of total energy consumption to specific household energy

consumption will not be included in the HEMS's real-time monitoring function.

38

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The global energy landscape stands at a crucial turning point as world energy

consumption is unrelenting. The growth in global energy consumption is driven

by population growth, urbanization, and industrialization, which brings

environmental issues such as fossil fuel depletion and climate change.

International agreements such as the Paris Climate Agreement have signified

the importance of taking coordinated actions to tackle energy-related challenges

in energy management to preserve the environment and climate change (Sachs,

2016). International agreements like the Paris Climate Agreement have

recognised the crucial need for international coordination to address energy-

related challenges in effective energy management. Residential contributed

26.6 % to electricity consumption in 2019, which is slightly lower than the top

electricity contributor in the industry, which was 41.9 % (IEA, 2019). As the

global population expands, the demand for electricity in residential areas will

also expand.

Energy monitoring systems for residential areas have become the

linchpin for worldwide understanding, managing and reducing their energy

consumption, providing data for policies and driving conservation efforts in

environmental protection. Technological breakthroughs like IoT integration and

the adoption of smart grids have transformed energy management, allowing us

to collect and analyse data in real-time and distribute energy more efficiently

with fewer losses and more reliability. This literature review tends to unravel

the relationship between the Home Energy Management System and energy

consumption in Malaysia by highlighting the potential of this system to

encourage energy efficiency in residential areas. Therefore, the following

sections will explore the dimensions of Malaysia's energy consumption, the

39

transformative role of the Internet of Things, the characteristics of real-time

systems and the significance of smart meters for energy management.

2.2 Energy Consumption in Malaysia

2.2.1 Total electricity consumption by sector

Figure 2.2.1: Total Electricity Consumption by Sector in Malaysia 2023

(International Energy Agency [IEA], 2023)

The industry, residential, and commercial sectors are the top three electricity

consumption sectors in Malaysia from 1990 until 2023 (International Energy

Agency [IEA], 2023). Since Malaysia is a developing country with industrial

sectors such as manufacturing, construction, agriculture, and others that are the

largest consumers of electricity, the residential and commercial sectors also play

important roles in Malaysia's overall electricity consumption. More than 70%

of all households have an air conditioner. Therefore, cooling demand is still

rather high even though the contribution of the domestic electricity consumption

sector is lower (DOSM, 2020). Energy consumption in residential areas, which

is closely related to the usage of household devices, plays a crucial role in

controlling electricity demand and provides an opportunity for effective energy

management through an energy monitoring system.

In Malaysia, the descending order of electricity-generated resources is

coal, oil, natural gas, hydropower, solar energy, biofuels, and waste (IEA, 2022).

The consumption of renewable and non-renewable energy sources plays a

40

central role in driving Malaysia's economic growth and supporting a variety of

economic sectors, such as services, manufacturing, and agriculture, while also

affecting commodity prices and inflation dynamics (Talha, 2021). However, the

underutilization of renewable resources is unable to fulfil the growing demand

for electricity needs in Malaysia.

Malaysia's government is actively involved in energy monitoring and

optimization, especially in sectors such as commercial buildings, utilities, and

manufacturing.

2.2.2 The National Energy Efficiency Action Plan

According to the Ministry of Energy, Green Technology and Water (2019), this

policy aims to optimise electricity use while understanding its restricted

application within the larger energy sector, with the goal of achieving

sustainable development, greater welfare, and competitiveness. Malaysia's

heightened attention to energy use and consumption is a response to the

problems brought on by an increase in energy demand, which is mostly satisfied

by non-renewable sources that raise greenhouse gas emissions. This strategy

indicates a rising awareness of the significance of sustainable energy practices

and the necessity of addressing environmental issues.

2.2.3 Adoption of energy monitoring in Malaysia

In order to track and manage energy use and comply with regulations, Malaysian

industries are adopting energy monitoring and optimisation practises in greater

numbers through energy management technology and systems. The energy

management system is used to track and analyse energy consumption across

different production processes in the industry.

2.2.3.1 Manufacturing sector

The integration of smart sensors in Malaysia's IoT ecosystem encourages remote

monitoring of factory energy consumption data, makes it easier to deliver

transparent supply chain information in real-time and empowers decision-

making for energy resource optimisation by IoT-enabled manufacturers,

suppliers, and clients (Ling, et al., 2022). These sensors are the foundation of

41

real-time data collecting as they can detect variables including temperature,

weight, motion, vibration, acceleration, humidity, and location. As a result,

goods are identifiable to track of their movement through the supply chain.

2.2.3.2 Buildings

2.2.3.2.1 Educational aspect

The efficient and affordable energy monitoring system developed and deployed

across the campus of Universiti Teknikal Malaysia Melaka successfully

demonstrates the potential of the Internet of Things (IoT) to provide energy

managers with useful insights for efficient energy-saving measures in buildings

(Shamshiri, et al., 2019). The installation of an energy monitoring system at

UTeM demonstrates that energy monitoring heralding a change towards more

proactive and data-driven energy management practices in Malaysia. Besides,

this case study demonstrates Malaysia's efforts to adopt cutting-edge technical

solutions for resolving energy issues and emphasises the significance of energy

monitoring tools in creating a sustainable future.

2.2.3.2.2 Energy Monitoring and Management System

According to the Malaysian Green Technology and Climate Chante Centre

(2020), a building energy management system (BEMS) is a web-enabled system

that integrates the logging of energy data and monitoring of building

performance. Next, MyCES EMARS, provided by MyCES SDN BHD, is a

sustainable energy monitoring system that enables users to monitor, analyse and

report on the building’s energy consumption. As listed on the company’s

website, clients from various sectors such as healthcare, manufacturing,

administrative, and education, including institutions like University Teknologi

Mara, University Malaya Specialist Centre, and Kayaku Safety Systems

Malaysia Sdn Bhd has implemented this system to monitor their building's

energy consumption (Myces Sdn Bhd, 2023). The effective adoption and

deployment of energy monitoring systems in Malaysia demonstrate a dedication

to energy conservation and sustainable practices in a variety of industries.

42

2.2.3.2.3 Centralised Premium AI Smart Home System

With the help of a mobile application, users of the SmartZone Malaysia system

may control household appliances, including air conditioners, lights, gates, and

other equipment, while keeping an eye on their energy usage. Users can watch

energy use, read data on energy generation from their home solar energy system,

and view calculations for their electric bills. However, the comparatively

expensive implementation costs led to a low adoption rate, which made the

system less suitable for Malaysian citizens.

The adoption of advanced energy monitoring systems in industries and

commercial buildings gave insight into the ways similar home energy

monitoring systems can be adopted in residential areas. It showcased the

potential benefits of this system to households.

43

2.3 Home Energy Monitoring and Management

Monitoring energy simplifies means providing feedback considering the level

of feedback and type of feedback provided to the end consumers for

visualization purposes only (Zhou, et al., 2014). Therefore, home energy

monitoring refers to the practice of tracking and analysing energy consumption

within a household to understand energy usage patterns using appropriate charts.

Besides, managing energy consumption can be defined as the

involvement of Home Energy Management Systems (HEMS) in the demand

response mechanism, which allows end-use customers to modify their

electricity usage from their typical consumption behaviour in response to

changes in electricity prices that vary over time (Zhou, et al., 2014).

The effectiveness of HEMS is highly dependent on highly motivated

consumer's habits around HEMS to encourage rapid and regular use of the

HEMS system, so providing timely feedback and ensuring the system's

simplicity to motivate engagement of home energy monitoring system should

be considered during developments of energy monitoring system (Dam, et al.,

2010). Therefore, real-time feedback on energy consumption provided by real-

time systems empowers residents to make energy usage decisions and promotes

active user engagement to ensure energy consumption practices within

residential.

44

2.4 Real-Time System

A real-time system is a system that must stick to explicit (bounded) response-

time requirements and risk negative consequences, including failure to function

properly (Laplante, 2004). This means that the system needs to satisfy

requirements stated in the system specification by receiving a set of inputs and

mapping them into a set of outputs within the required response time. The

purpose of the system determines the response time set.

Real-time systems are usually used widely in different sectors such as

industries, automotive and transportation, peripheral equipment, medical,

customer electronics and the Internet.

Figure 2.4.1: Schematic Representation of an Automated Car Assembly Plant

(Mall, 2009)

Based on Mall (2009), the automated car assembly plant is categorized

as real-time system due to its time constraints imposed on each workstation in

a few hundred milliseconds.

The figure above shows the production of car assembly; the assembled

car will move on a conveyor belt to each workstation for different purposes,

such as fitting doors, fitting wheels, and so on. The sensors plugged into each

station will sense the arrival of the assembled products, and the workstation will

perform its tasks in a strict time-bound. To maintain a smooth and effective

production line flow, the car assembly process depends on exact timing. The

maintenance of the intended production pace and ensuring that the built

automobiles move over the conveyor belt without interruptions depend on the

coordination and synchronization of duties at each workstation.

45

2.4.1 Characteristic of real time system

2.4.1.1 Type of real time system

The real-time concept can be categorized into three parts: soft, firm, and hard

real-time systems. A hard real-time system faces catastrophic consequences if a

single deadline is missed, a firm real-time system allows for a few missed

deadlines without total failure. However, it risks catastrophic consequences if

multiple deadlines are not met. A soft real-time system is characterized by

performance degradation rather than complete failure when response-time

constraints are not met (Laplante, 2004). In this case, a home energy monitoring

system is considered a firm real-time system because a few mistakes in real-

time energy consumption data will not cause any issues that would affect the

resident's ability to visualize the overall energy consumption data.

2.4.1.2 Synchronous and Asynchronous Events

Synchronous events usually happen at predictable times in the flow of control,

while asynchronous event occurrences cannot be predicted and are commonly

caused by external sources (Laplante, 2004). Home energy monitoring systems

(HEMS) tend to be designed to identify synchronous events, which take place

at predictable times in the flow of control.

46

2.5 Internet of Things

Internet of Things (IoT) continues to be eagerly anticipated and actively

discussed in the evolving IT world. However, the global user community is

currently lacking in agreement on what Internet of Things exactly means due to

its consideration of a wide range of interconnected devices and applications.

This makes it difficult to establish a universally agreed-upon definition that

accommodates the variety of interpretations and applications across different

industries and stakeholders. According to Madakam, Ramaswamy and Tripathi

(2015), all the proposed definitions of the Internet of Things share the common

idea that is the focus of the Internet was on data generated by humans and on

data produced by things. In general, the Internet of Things is an open and

extensive network of intelligent objects that can auto-organize and share

information, resources, and data, responding to and taking action in response to

situations and environmental changes. In this research context, IoT can be

defined as linking devices such as actuators and sensors, which are embedded

in physical home devices linked through a wired and wireless network that can

communicate and react to environmental change that monitors energy

consumption.

Main Components of IoT

According to Nettikadan and Raj (2018), the main components include sensors

that collect data, connectivity for sensors to connect to the Internet for

communication, a platform to enable the integration of IoT applications,

analytics for data, and a user interface for presenting data to users.

2.5.1 Fundamental Basis for Smart Homes Monitoring

The fundamental basis for smart homes within the IoT framework is the

seamless integration of sensors, actuators, and devices through a wireless home

automation network, giving consumers the opportunity to remotely monitor and

control their networked items and devices (Lee, Teng and Hou, 2016). For

example, turning on and off air conditioners, gates, and light switches using

47

voice commands or mobile applications. To relate this concept to home energy

monitoring systems, smart irrigation systems with individualized schedules and

IoT-enabled thermostats for adaptive temperature control and energy reporting

are a few examples of how IoT can improve resource management and energy

efficiency in residential settings (Gunge and Yalagi, 2016). This reporting

feature concept can be implemented into the Home Energy Monitoring System

to monitor and optimize residents’ energy consumption while contributing to

overall sustainability.

2.5.2 Potential of IoT in Manufacturing for Energy Management and

Monitoring

The slow progress of Industry 4.0 adoption in developing nations like Malaysia,

as opposed to countries like Germany, is attributed to factors including the

predominance of small and medium-sized industries, outdated manual

machinery, limited automation, time-consuming data collection, and the

economic challenges of upgrading to modern Industry 4.0-compatible

equipment (Lee, et al., 2022). However, there are still companies that implement

IoT in their production line to manage their working procedures to gain a

streamlined-controlled manufacturing process. The integration of cutting-edge

technology by Proton in their advanced engine assembly line establishes a

precedent for the use of IoT in the automotive industry. It demonstrates their

dedication to innovation, quality assurance, and efficiency enhancement in

manufacturing (Proton unveils a new hi-tech engine assembly line in Tanjung

Malim, 2022). Through this integration, Proton can make use of the real-time

data insights, predictive maintenance capability, and quality monitoring offered

by IoT. Consequently, operations are streamlined, downtime is decreased, and

consistently high-quality products are produced.

48

2.6 Smart Meters of TNB

Figure 2.6.1: Smart meters of TNB (Smart meters - Tenaga Nasional Berhad,

2023)

2.6.1 Introduction to Smart Meters

myTNB had implemented a smart meter for Malaysians to get meter readings

of their own energy consumption. It is a tool used to measure electrical

consumption by enabling two-way communication between the smart meter and

TNB via radio-frequency waves. Smart meters will record the reading every 30

minutes and send data automatically to the utility provider, which is TNB daily

(Smart meters - Tenaga Nasional Berhad, 2023). Anomalies and disruptions in

electrical supply can also be detected by smart meters and reported to TNB.

Moreover, these smart meters provide detailed energy consumption data such

as electric cost usage in kilowatts per hour. The residents can access this

information via myTNB mobile application or myTNB self-service portals.

Although these installed smart meters are not capable of analysing the break of

the electricity consumption pattern of home appliances, they successfully

grabbed Malaysians’ attention to energy-saving sectors (Janardhana and

Deekshit Shashikala, 2016).

49

2.6.2 Security and Safety

According to TENAGAofficial (2019), their smart meters have proved to fulfil

the standards of the Energy Commission and the Malaysian Communications

and Multimedia Commission (MCMC) for wireless communication. In terms of

security, TNB protects residents’ data and improves network cybersecurity to

prevent system compromise by following the Personal Data Protection Act

(PDPA). Resident data and account details are synchronized during installation

to ensure the accuracy of data sent to specific resident accounts. Furthermore,

smart meters are manufactured to meet the standards set by the Energy

Commission and are tested by the manufacturer to avoid the risk of fire or

explosion.

2.6.3 Benefits of Smart Meters

Smart meters enable automatic billing, which allows residents to monitor their

energy consumption data on time using their mobile phones. Residents can plan

and control their energy usage by having a direct view of their energy

consumption in interactive charts.

Besides, the use of smart meters contributes to environmental benefits

by promoting efficient energy consumption, which will indirectly reduce carbon

emissions. Smart meters did not cause a decrease in electricity demands, but

their real-time feedback display contributed to the behavioural change of

residents in performing energy-saving activities (Torriti, 2020). Residents will

perform according to the real-time energy feedback to reduce energy

consumption and energy costs.

2.6.4 Smart Meter Rollout Phases

TNB planned to replace all existing meters with smart meters in 4 phases

starting from Melaka, which had successfully replaced 340,000 residential

meters during phase 1 (Subhi, 2020). In phase 2, from the year 2019 to 2021,

1.5 million smart meters were installed in Putrajaya, Melaka, and various

locations in Klang Valley. Currently, TNB is conducting phase 3, starting in the

year 2022 and beyond, for the deployment of smart meters in Penang, Johor,

Langkawi and Ipoh. TNB is planning to install 9.1 million smart meters in

50

Peninsula Malaysia by the year 2026. The installation of smart meters is free of

charge and is performed by certified meter installers who cooperate with TNB.

Residential and small businesses will receive smart meters in stage by following

replacement standards set by the Energy Commission of Malaysia, which is in

line with the Malaysia Electricity Supply Act of 1994.

51

2.7 AI-Based Residential Energy Monitoring (AIREM)

This project falls under the MIMOS AI-Based Residential Energy Monitoring

(AIREM) project, which is part of the Strategic Research Fund under the

MOSTI program.

 The program's objective is to expedite the advancement of products and

technologies in renewable energy and the future electricity grid, with a focus on

maximizing local content and contributing to national energy sustainability. The

project has a duration of 36 months, spanning from 2022 to 2024.

 The primary goal of AIREM is to propose a digitized measurement

system powered by artificial intelligence or machine learning. This system aims

to capture transient signals from the home distribution board, enabling non-

intrusive monitoring (NILM) of residential energy for self-administered power

management. The overarching aim is to mitigate energy usage and costs, which

directly impact climate change, by empowering residents to calculate their

return on investment monthly.

 The project's key objectives include developing extraction

methodologies for electrical appliances, implementing non-intrusive

mechanisms for monitoring home energy usage, and creating a reporting system

for assessing the efficiency and health of appliances for maintenance purposes.

The major components of this AI-based residential energy monitoring initiative

include:

1. NIALM (Non-intrusive Appliance Load Monitoring) Smart Energy

Device:

• This component serves as the core technology capturing and

processing transient signals from the home distribution board.

2. Analytics Operation Center:

• The analytics operation center is the hub where data collected by

the NIALM device is analyzed, interpreted, and transformed into

actionable insights.

52

3. End-User Application:

• The end-user application is the interface through which residents

interact with the monitoring system. It provides information on

energy consumption, efficiency reports, and tools for self-

administered power management.

 Through the integration of these components, the AIREM

project aims to revolutionize residential energy monitoring, contributing

to both environmental sustainability and cost-effective power

management for residents.

2.8 Appliance Load Monitoring

The Appliance Load Monitoring (ALM) system is a smart energy management

framework that guarantees the effective stability of energy consumption

management (Fagiani, 2019). It consists of two categories: Intrusive Load

Monitoring (ILM) and Non-Intrusive Load Monitoring.

Intrusive Load Monitoring records data for each single appliance, while

Non-Intrusive Load Monitoring collects total energy consumption and analyzes

the energy consumption of each appliance based on the data collected. Although

Intrusive Load Monitoring offers higher accuracy in measuring energy

consumption of appliances, practical problems such as the high cost of

implementation and complex meter configuration caused by Intrusive Load

Monitoring make people tend to seek solutions with Non-Intrusive Load

Monitoring, which does not require monitoring each appliance's power

separately (Ramadan, et al., 2022).

Non-Intrusive Load Monitoring (NILM)

53

According to Faustine, et al. (2017), non-intrusive load monitoring (NILM),

non-intrusive appliance load monitoring (NIALM), or energy disaggregation is

a technique that enables the estimation of power consumption attributed to

individual appliances from residential aggregate power consumption recorded

by smart meters in real-time. It is non-intrusive as the data acquisition is done

from the smart meter outside the building without any additional equipment

installation inside residential. By providing a breakdown of energy consumption

for each household appliance, it helps residents understand their energy

consumption patterns. It has been proven that real-time actionable feedback

promotes awareness of energy consumption and encourages positive behavioral

changes toward more sustainable energy consumption (United Nations

Environment Programme, 2009).

Energy Consumption Pattern

Every appliance has its own distinct energy usage pattern that is useful for

machine learning algorithms in recognizing the operation of each appliance

from the overall energy consumption. According to Hart (1992), residential

appliances can be classified according to their operational states in the following

manner:

Type-I: The appliances with two states of operation (ON/OFF) such as kettle,

lamp and toaster.

Type-II: Multi-state appliances with different operating state (finite State

Machines (FSM)) such as washing machine.

Type-III: Continuously Variable Devices (CVD) with no fixed number of states

such as power drill. Its power consumption pattern is not repeatable.

Type-IV: Appliances that stay turned on for weeks or days, consistently using

energy at a steady rate such as smoke detector (Zeifman and Roth, 2011).

54

Figure 2.8.1: Different type of energy consumption patterns (Zoha, et al.,

2012)

Figure above shows the 3 types of energy consumption patterns listed above that

will be transformed to appliance feature for different appliance categories

classification.

General Framework of NILM Approach

Figure 2.8.1: NILM Approach Architecture

55

Power Signal Acquisition

Different smart meters are designed to collect aggregated power data at different

sampling frequency that is determined by the measurement and electrical

characteristics used by NILM algorithm.

Feature Extraction

Figure 2.8.3: Result of Steady-State Identification

The raw data is process for power metrics computation such as from power to

active and reactive power. Next, event detection is performed to detect appliance

state transition (On to Off) by analyzing the changes in power levels using event

detection module. Feature extraction methods, including steady-state

identification of appliances based on variations in steady-state signatures during

on/off transitions, and transient event-based recognition of appliance state

transitions using features like duration, size, and shape of transient waveforms

(Norford and Leeb, 1996). Figure 2.8.3 shows the event detected using steady-

state identification for vacuum by detecting the on and off state of the vacuum.

Load Identification

Load identification algorithms are used to further analyze the extracted

appliance features, identifying appliance-specific states through supervised

machine learning techniques, which require labeled data to train the model.

Pattern recognition approach is a common way for load aggregation by

comparing extracted features with load signatures to identify events associated

with appliance operations (Liang, et al., 2010).

Simulator for System Training

NILM system requires training or a pre-learning phase before deployment.

Supervised disaggregation algorithms depend on labelled data for model

training, in context of NILM, obtaining labelled data involves identifying and

56

annotating the ON/OFF states of each appliance within a dataset. However, the

manual labelling process for each appliance state can be time-consuming when

dealing with a large number of appliances and high-frequency data collection

(Hart, 1992). For example, with over 6000 data points collected per second,

setting up data collection devices for different appliances will become both

costly and time-consuming.

To address this issue, a simulation platform is proposed to simulate the

behaviour of various household appliances, allowing the analysis of energy

consumption patterns without the costly installation of a smart meter for

recording the specific consumption pattern of each appliance (Park, et al., 2010).

The simulator provided by MIMOS Berhad tend to mimic the energy

consumption data from various household devices and generate synthetic

datasets to reduce the manual effort required for training supervised

disaggregation algorithms and analyze energy consumption patterns of different

home appliances.

57

2.9 Review of Similar Systems

1) myTNB

Figure 2.9.1: myTNB Interface for Checking Monthly Electric Bills

Figure 2.9.2: myTNB Interface for Real-Time Monitoring Feature

58

Figure 2.9.3: myTNB Interface for Calculating Monthly Electric Bills

Main Features

• View electricity bills

User can view total cost of electricity bills and specific electricity bills

in same registered account. View details feature is provided for user by

selecting specific bill to view and download specific electricity bills

inside their own devices.

• Monitor electricity consumption

Users can monitor electricity consumed and expenditure using

interactive usage dashboard which allow users to visualize and track

energy consumption or bills in daily or monthly basic.

• Make payment for electricity bill

59

Users can make payments directly through app without getting

redirected to another platform. The payment methods provided are

online banking payments and credit/debit card.

• Submit feedback for any bills related matters

Users can submit questions via application and get response by Careline

agent.

• Apply Self Meter Reading service

Users can make application for self-meter reading service directly and

track the application progress via myTNB.

• Receive personalised notifications

Users can receive on time customized updates when their electricity bills

are ready, payment reminders and read meter reminders. Besides, users

can set their energy budget and receive timely notification once the

energy budget is nearly reached.

• Manage multiple TNB accounts

Users can manage and link all TNB accounts on one platform.

Review

myTNB is an energy monitoring application that enables users (residents in

Malaysia that own TNB account) to track their energy consumption and

conveniently pay their electricity bills. It is available on iOS, Android, and the

web. However, the web version primarily serves as an information platform,

providing general details about electricity bills and applications for smart meters.

The mobile-based application offers additional features and functionality

beyond what the web version provides.

60

Advantages

The "Check Bills" feature enables users to access and view their electricity bills

conveniently, anytime and anywhere, without the need for a hardcopy. This

feature simplifies the process of checking electricity bills at the telecom

company in case the user has misplaced the hardcopy. Moreover, the feature

allows the owner to check multiple TNB accounts, ensuring that tenants pay

their electricity bills on time.

Electric charges are displayed clearly based on electricity consumption,

indicating different grid charging levels. This transparent presentation allows

users to understand their billing structure and the corresponding costs associated

with various levels of electricity usage.

Drawbacks

Only the account holder, who is the owner, is allowed to view the complete

details of the electricity bills, while tenants are unable to directly check their

own bills. The electricity bills downloaded by tenants lack personal information

such as account number and address, which makes it difficult for companies to

record their expenses accurately.

The unstable application also causes delays in receiving electricity bills and

notifications of successful payments. Consequently, users are hesitant to pay via

the application due to concerns about the payment not being recorded correctly.

61

2) mySunPower

Figure 2.9.4: mySunPower Web-based Interface

62

Figure 2.9.5: mySunPower Mobile Application Real-time Monitoring Feature

63

Figure 2.9.6: mySunPower Data Analysis Feature

Main Features:

• Monitor solar production, home consumption and battery power

flows

Visualize energy and power consumption using real-time graphs which

allows users to select information in daily, monthly, yearly and lifetime

basis.

• Check historical system performance such as energy consumption

data for home with energy consumption meters

64

Users can analyze the performance of each solar panel with real-time,

life reporting on energy production, updating every 5 minutes. This

allows them to explore how different parts of the system are affected by

the sun, weather conditions, and seasons.

• Show live weather data and system alerts for energy decisions

Users can analyze the relationship between solar production and the

weather by visualizing real-time energy production alongside the current

weather conditions. This feature allows them to understand how weather

changes impact the energy generated by the solar panels at any given

moment. Moreover, users will receive system alerts if the panels are not

functioning well. Users can also change the solar panel battery mode

based on the system alert.

Review

This application is similar to myTNB as it also provides informative dashboards

displaying energy consumption. However, there are notable differences. This

application goes beyond and tracks the energy production of solar panels,

offering insights into solar power generation.

While myTNB describes electricity costs based on electricity

consumption, this application takes a different approach. It primarily focuses on

the usage of solar energy, showcasing the total estimated cost savings. This

emphasis on solar energy is due to its ability to replace electricity consumption

from power stations, resulting in potential savings for users.

Advantages

Interactive infographics show energy production, energy consumption, energy

mix, and energy bill saving estimations. They utilize suitable charts, such as a

combination of line chart and bar chart, to provide direct insights into the

comparison of solar production and home consumption. Additionally, a pie

chart is used to display the contribution of solar energy to home usage in the

energy mix. These infographics offer an informative and visually engaging way

to understand the dynamics of energy usage and savings in a home.

65

Drawbacks

This application is exclusively designed for SunPower Equinox customers who

have purchased their home solar systems. While users can visualize energy

consumption, the notifications or alerts provided are limited. For instance, users

may receive notifications for switching battery modes or when reaching a

certain threshold of energy usage. However, the description below the solar

panel feature is not clear enough for users to comprehend or take appropriate

actions without contacting a person in charge for assistance.

66

3) Energy Monitor

• Monitor real time data about power generation, income and saving

The information of current power, daily energy, total energy, daily

income and total energy are shown to help user to understand financial

benefits of utilizing energy resource.

• View historical energy consumption data on daily, monthly and

yearly basic

The users can visualize their energy consumption data using line graph

that enable users to gain better understanding on the energy consumption

pattern throughout different period.

• Promote green environment by showing resources saved

The total number of trees planted today, the overall count of trees planted,

the carbon offset realised today, and the overall carbon offset are all

included in the report. Users can clearly see the beneficial effect their

eco-friendly behaviours are having on the environment because these

metrics are shown in terms of both trees and tonnes.

Review

The interface design and energy data visualisation techniques of the application

contribute to its relative lack of attractiveness when compared to earlier

applications. The user experience and pleasure could be impacted if the user

interface is not as engaging or intuitive.

In addition, several elements of the application provide information that

users may find unneeded or meaningless for an accurate analysis of their energy

usage. Such information may be confusing or prevent customers from learning

important information about their energy usage habits.

67

However, this application shows its efforts on persuading users to

protect environment by lowering energy consumption which is not performed

by other application.

Advantages

Through its savings feature, this application motivates users to use energy

resources and protect the environment. Users obtain a clear and direct awareness

of the significance of their own personal energy consumption habits as well as

how their energy consumption behaviour is strongly tied to environmental

issues. The programme seeks to empower users to make thoughtful decisions

and embrace more sustainable energy consumption practises, contributing to a

greener and healthier planet by drawing attention to the possible savings and

environmental impact.

Drawbacks

Most real-time information about electricity generation is supplied in numerical

format only, without any visual aids. Users find it challenging to understand the

trends of energy usage over time and contrast it with their prior data due to the

absence of visualisation. Additionally, without context or comparisons, the

statistics on daily and overall energy use may not be meaningful enough for

people to understand.

Since the system design just provides a straightforward line graph to

represent energy consumption, it lacks interactive functionalities such as

notification and alert or goal setting for energy consumption.

68

Table 2.9.1: Comparison of Home Energy Monitoring Application

Aspect myTNB mySunPower Energy Monitor

Platform Android, iOS Android, iOS iOS, web app

Used In Malaysia More than 100

countries

United States

Bill Viewing View and

download

electricity bills

Not applicable Not applicable

Consumption

Monitoring

Track energy

usage and

expenditure

Not applicable Monitor real-time

data

Payment

Methods

Online banking,

credit/debit card

Not applicable Not applicable

Feedback

Submission

Submit

questions and

get responses

Not applicable Not applicable

Self-Meter

Reading

Apply for self-

meter reading

service

Yes Yes

Notifications Receive

personalized

updates

Yes Yes

69

Multi-Account

Management

Manage multiple

TNB accounts

Not applicable Not applicable

Solar

Production

Tracking

Not applicable Monitor solar

production and

battery flows

Not applicable

Historical

Performance

Yes Yes Yes

Weather

Integration

Not applicable Show live

weather data and

system alerts

Not applicable

Sharing and

Alerts

Yes Share solar

insights, change

battery mode

Not applicable

Focus Energy

consumption and

payment

Solar energy

production and

consumption

Overall energy

monitoring and eco-

friendliness

Advantages Convenient bill

viewing,

transparent

billing structure,

multi-account

management

Real-time solar

data tracking,

insight into

energy

generation,

savings

Encourages eco-

friendly behavior,

clear savings

visualization

Drawbacks Limited access

for tenants,

Exclusive for

SunPower

Less engaging UI,

unnecessary

70

unstable app,

payment

concerns

customers,

limited

notifications

clarity

information, lack of

visualization

71

2.10 Summary

This literature review focuses on energy consumption and monitoring in

Malaysia by highlighting key sectors like industry, residential, and commercial

contributing to electricity consumption. Overall, the Malaysian government has

actively participated in sustainable energy development through policies such

as the National Energy Efficiency Action Plan. The successful integration of

energy monitoring systems in manufacturing and commercial buildings has

brought confidence in the adoption of Home Energy Monitoring adoption and

the potential for residents to manage energy consumption effectively. Next, the

role of the Home Energy Monitoring System in empowering residents to

perform energy practices through real-time feedback and user engagement is

discussed.

Besides, the review covers the importance of real-time systems,

particularly in manufacturing and their characteristics, which are in line with the

real-time energy monitoring features in Home Energy Monitoring Systems.

Furthermore, it also introduces the role of IoT in energy monitoring and

management and its adoption in various sectors.

Next, the AI-Based Residential Monitoring project is introduced to

understand the connection of this project with the industry-linked company

project.

Moreover, similar applications, including myTNB, mySunPower and

Energy Monitor, are being compared by showcasing their features and

drawbacks.

Finally, smart meters provide the foundation for seamless integration

with the home energy monitoring system to collect real-time energy

consumption data. Therefore, this literature review shows the overview of

TNB’s smart meter implementation in Malaysia by emphasizing benefits,

security, and safety, as well as its phased rollout across the country to enhance

energy monitoring among Malaysian residents.

72

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter provides exploration of chosen development and research

methodology employed within this project. Besides, work break-down structure

and Grant Chart will be provided to describe the overall project workflow.

Lastly, the technologies and tools involved including hardware, software

programming language, application and frameworks selected will be discussed.

3.2 Project Methodology

3.2.1 Development Methodology

Figure 3.2.1: Iterative and Incremental Development Model (Jevon, 2009)

The development methodology selected for this project is an iterative and

incremental development methodology. As shown in Figure 3.2.1.1, the main

phases of this methodology including planning, analysing and designing,

implementing, testing, evaluating and deploying. After the initial planning

73

stages, planning, analysis and design, implementation, testing and evaluation

phases were conducted by the researcher iteratively until all requirements were

fulfilled and ready for deployment. This allowed the project to develop

iteratively, responding to adjustments and revisions based on the results of each

cycle.

Iterative development of the Home Energy Monitoring System meant

that high-priority elements were prioritised first, and then lower-priority

features were incorporated. This methodology was chosen for HEMS because

it can adapt to changing requirements while guaranteeing that higher-priority

functionalities are handled first. The researcher was instructed to report progress

on development to the cooperating company for further improvement and

modification of system functionalities. The iterative technique permitted

adaptation as user needs and energy consumption patterns can change. The

methodology's feedback-driven design allowed for ongoing improvement,

which aided in the development of an improved and optimised system.

Additionally, the resulting product was assessed and improved upon with each

iteration, aiding in the continuous improvement of the user experience. The

incremental technique made it possible to integrate these complicated features

gradually, ensuring that each component was fully created, examined, and

improved before being combined. This reduced the risks brought on by system

complexity and made it possible to thoroughly test the system at every level, so

ensuring its dependability.

74

3.2.2 Initial Planning

3.2.2.1 Requirement Gathering and Elicitation

Home Energy Monitoring system requirements were gathered and elicited using

a combination of company-provided specifications, in-depth discussions with

the supervisor, site visits, and informal interviews with company representatives.

Moreover, questionnaire was distributed starting from 20 August 2023 to 30

September 2023 to get residents’ viewpoint on Home Energy Monitoring

system. Furthermore, relevant research papers and application comparisons

were used to confirm the system's originality. Finally, the requirements were

finalized based on the analysis of collected results.

3.2.2.2 Informal Interview and Questionnaire

The site visit and informal interview both offered insightful perspectives into

the viewpoint of the organisation. Through these encounters, it was possible to

gain a deeper understanding of what they needed from the Home Energy

Monitoring System (HEMS) and what they wanted to achieve with it.

Discussions revealed that they considered real-time energy monitoring to be

essential functionality. It became clear that the company wanted to spread

knowledge about energy and environmental practices, placing a big emphasis

on user-friendly interfaces. These exchanges further highlight the significance

of post-deployment support for system maintenance and upgrades. Through

these discussions, the company's goals for the HEMS and its particular

requirements were made clear, effectively driving the project's development.

The questionnaire was conducted using Google Forms to collect large

numbers of respondents from Malaysia within one month, starting from 13

August 2023 to 13 September 2023. The extensive questionnaire probed into

factors like housing type, occupants, awareness of consumption patterns,

energy-saving practises, familiarity with Home Energy Management Systems

(HEMS), use of smart metres, and preferences for HEMS features. It covered

various aspects of electricity consumption and energy management behaviours.

Responses from participants revealed information about their knowledge of

energy consumption, usage patterns, past exposure to energy management

75

technologies, and openness to implementing HEMS. This questionnaire was

distributed to residents of the existing myTNB smart meter and residents who

had never used a smart meter before. The respondents of smart meter users need

to be improved due to the limited deployment of TNB smart meters in selected

locations of Peninsular Malaysia, mainly at Melaka, Putrajaya, and Klang

Valley. This extensive analysis revealed potential obstacles, driving forces, and

desired HEMS features, providing important information for the creation of a

powerful and user-centred home energy monitoring system.

3.2.2.3 Internship with Industry Linked Company

The developer had been given the opportunity to conduct an internship with the

project industry-linked company MIMOS Bhd for 3 months and was involved

in its project named AI Based Residential Energy Monitoring (AIREM) project.

The mobile application and web-based dashboard developed by the researcher

were part of this project and aimed to deliver energy consumption data from IoT

devices in residential areas. The developer gained an understanding of the entire

project, starting from the development of the home energy monitoring device to

detect household energy consumption. This includes the processing and

transformation of data into readable energy consumption data, the AI algorithms

used to disaggregate the energy consumption, and finally, the presentation of

energy consumption data, all of which align with the aim of developing this

mobile application and web-based dashboard. Additionally, the developer had

several discussions with the company team to understand their requirements for

user interface and functionalities, ensuring that the proposed software meets

their needs.

3.2.2.4 Review on Existing Systems

Three comparable applications were examined and compared to understand the

workflow of energy monitoring from energy monitoring devices to the

applications. The common energy monitoring devices are smart meters and

solar power panels. Moreover, the presentation of real time energy data was also

76

being investigated. Most of the applications from app stores and research papers

used bar charts to present these data with specific period.

3.2.2.5 Schedule Project

A comprehensive work breakdown structure was painstakingly created for the

Home Energy Monitoring System (HEMS) project to define the numerous

activities inside each project phase and milestone. This breakdown ensured a

detailed comprehension of all crucial actions taken. A Gantt chart was

constructed and synced with the work breakdown structure to visually represent

task start dates, end dates, and durations for each phase. The development team

was given a visual depiction via this dynamic technology to continuously track

and manage work progress, allowing for the prompt completion of project

deliverables. Thus, the effective management of the HEMS project towards its

successful execution was made possible by the integrated use of the WBS and

Gantt chart.

3.2.3 Analysis and Design

Project scope was analysed using several diagrams including use case diagram,

entity relationship diagram, class diagram and data flow diagram to understand

system’s structure and architecture before conducting implementation started.

Use case description for every listed use case were also being prepared to

understand the workflow of every functionality provided.

Simple system prototypes for both web based, and mobile based

application were generated to visualize the design of the system before actual

implementation to have a general view on the final deliverable.

3.2.4 Implementation and testing

3.2.4.1 Identified High-Priority Features

77

The critical and high-priority features of HEMS that offer immediate value to

user were identified. The sequence of functionality implementation was based

on the priority of the features.

3.2.4.2 Iteration 1: Initial iteration

The core functionalities of the HEMS were being developed as identified. The

basic version of the mobile application and web-based dashboard were crafted.

The basic backend architecture of this project was implemented using AWS

Amplify, AWS DynamoDB and AWS AppSync. The connection between the

energy monitoring device simulator that acts as the IoT device with AWS

DynamoDB and the real-time connection of energy consumption table with the

mobile application were established using MQTT protocol and WebSocket.

Functionalities such as visualization of real-time data and view historical data

and analysis were implemented for energy consumption tracking. Unit testing

and integration testing were conducted to verify the functionality of the core

features.

3.2.4.2.1 Gathered User Feedback for Evaluation

After completing the initial iteration, the developer conducted a meeting with

the cooperated company representatives to gather feedback for further

improvement. The company team had reviewed the project and provided

recommendations on further improvements of the presentation of energy

consumption data.

3.2.4.3 Iteration 2: Functionalities Enhancement and Development

The developer prioritized feature improvements and adjustments based on

gathered feedback from stakeholder. Proposed solutions for improvement were

presented to the company for approval, ensuring alignment with project goals

and objectives. She modified the presentation of energy consumption data based

78

on recommendation such as refining the selection of attributes to enhance

understanding and introducing more complex data visualizations.

3.2.4.4 Iteration 3: Advanced Functionalities

The developer introduced advanced notification and alert feature aimed at

notifying users about their energy consumption pattern in real-time. The unit

testing was done for this notification and alert feature to make sure that seamless

integration of mobile application and AWS services on minimizing latency. The

developer implemented modifications to the configuration of the code to

maintain the consistency in the backend architecture across both Android and

iOS platforms. Next, testing was conducted to verify the functionality of the

updated configuration across different operating systems.

3.2.4.5 Iteration 4: Iterative Enhancements

The system's functionalities and user interfaces were further improved by the

developer based on the results of user testing. Added features and enhancements

were added as a result of user suggestions such as user profile page, setting page

and report problem page. The user interface design was improved by

collaborating with friends from a design course to make it more user-friendly.

79

3.2.4.6 Final Iteration and Testing

To verify the system's coherence and seamlessness, the developer thoroughly

tested the final version and included any remaining functionality with unit

testing, integration testing and system testing.

3.2.5 System Usability Scale Evaluation and Code Quality Analysis

System Usability Scale (SUS) evaluation and code quality analysis were

conducted by gathering both expert and novice users to assess the usability of

the system.

3.2.6 Deployment

The fully developed and tested HEMS was deployed to production servers and

is accessible to users. Next, the documentation of the system was created

including the explanation of architecture of the system, the introduction of the

functionalities, the screenshot of the system output and the presentation slide.

80

3.3 Work Breakdown Structure

1 Planning

 1.1 Analyze Project Title

 1.2 Conduct Informal Interview with Company Representative

 1.2.1 Analyze Company Project Background

 1.3 Study Background of the Problem

 1.3.1 Relate Company Problem to Project Problem

 1.4 Define Problem Statement

 1.5 Define Project Objective

 1.6 Propose Project Solution

 1.6.1 Investigate Existing Energy Monitoring Applications

 1.6.2 Study Similar HEMS Research Papers

 1.6.3 Consider Company Support Tools

 1.6.4 Select Appropriate Tools

 1.6.5 Conclude Project Solution

 1.7 Suggest Project Approach

 1.7.1 Suggest Research Approach

 1.7.1.1 Draft Questionnaire for Residents

 1.7.2 Suggest Development Approach

 1.8 Define Project Scope

 1.8.1 Recognize Target Users

81

 1.8.2 Define System Scope

 1.8.3 Identify Modules Covered

 1.9 Gather and Elicit Requirements

 1.9.1 Conduct Questionnaire

 1.9.1.1 Distribute Questionnaire

 1.9.1.2 Collect Questionnaire

 1.9.1.3 Analyze Questionnaire Result

 1.9.2 Conduct Informal Interview

 1.9.2.1 Prepare Interview Questions

 1.9.2.2 Conduct Interview with Company Representative

 1.9.2.2.1 Record and Analyze Interview Result

 1.9.2.3 Conduct Site Visit with Company

 1.9.2.3.1 Understand Energy Monitoring Device

 1.9.2.3.2 View Demonstration of Energy Monitoring Device

 1.9.3 Review Similar Systems

 1.9.3.1 Review Similar Home Energy Monitoring System Research Papers

 1.9.3.2 Review Home Energy Monitoring System on Apple Store

 1.9.3.3 Review Similar Home Energy Monitoring System on Google Play

 1.9.3.4 Review Other Energy Monitoring Systems

 1.9.3.5 Identify Common HEMS Features

 1.9.3.6 Identify Ways of Real-Time Energy Visualization

82

 1.9.3.7 Identify Type of Energy Monitoring Devices

 1.9.3.8 Compare System Developed in Malaysia with Others

 1.9.4 Literature Review

 1.9.4.1 Understand Energy Consumption in Malaysia

 1.9.4.2 Identify Energy Monitoring in Malaysia

 1.9.4.3 Identify Real-Time System

 1.9.4.3.1 Define Real-Time Concept for HEMS

 1.9.4.4 Understand Internet of Things

 1.9.4.5 Identify Energy Consumption and Monitoring Globally

 1.9.5 Enhance Provided Features

 1.9.6 Draft Requirements

 1.10 Schedule Project

 1.10.1 Establish Work Breakdown Structure

 1.10.1.1 Define Main Activities for Different Phases

 1.10.1.2 Subdivide Activities within Key Activities

 1.10.2 Develop Gantt Chart

 1.10.2.1 Determine Duration

 1.10.2.2 Determine Task Dependencies

 1.10.2.3 Draw Gantt Chart

 1.10.2.4 Schedule Timeline

83

2 Analysis and Design

 2.1 Draw Use Case Diagrams

 2.2 Write Use Case Descriptions

 2.3 Design User Interface Diagrams

 2.4 Design Data Flow Diagrams

 2.5 Create Low-Level Prototype

 2.5.1 Prepare Wireframe for Mobile Application

 2.5.2 Prepare Wireframe for Web Application

 2.6 Create High-Level Prototype

 2.6.1 Prepare Design Prototype for Mobile Application

 2.6.2 Prepare Design Prototype for Web Application

3 Iteration 1 (Core Functionalities Development)

 3.1 Project Initiation and Planning

 3.2 Design and Analyze Core Functionalities Architecture

 3.3 Implement Core Functionalities

 3.3.1 Setup Database

 3.3.2 Implement Register User Account Functionality

 3.3.3 Implement Login User Account Functionalities

 3.3.4 Implement Manage User Account Functionality

 3.3.5 Develop Real-Time Data Collection Mechanism

84

 3.3.6 Implement Visualization of Real-Time Data

 3.3.7 Integrate Historical Data Analysis

 3.3.8 Craft Mobile Application and Dashboard

 3.4 Testing and Quality Assurance

 3.4.1 Unit Testing of Core Functionalities

 3.4.1.1 Unit Testing for Register User Account Functionality

 3.4.1.2 Unit Testing for Login Account Functionality

 3.4.1.3 Unit Testing for Manage User Account Functionality

 3.4.1.4 Unit Testing for Real-Time Energy Monitoring Function

 3.4.1.5 Unit Testing for View Historical Data and Analysis Function

 3.4.2 Integration Testing of Core Functionalities

 3.4.3 Verify Real-Time Data Collection and Visualization

 3.4.4 Ensure Historical Data Analysis Accuracy

 3.5 Report and Documentation

 3.5.1 Document Core Functionality Specification

 3.6 Iteration 1 Review and Feedback

 3.6.1 Demonstrate Initial Iteration HEMS Product to Stakeholders

 3.6.2 Collect Stakeholder Feedback and Suggestions

 3.6.3 Evaluate and Incorporate Feedback for Iteration 2

4 Iteration 2 (Functionalities Enhancement and Development)

85

 4.1 Review and Analysis of Stakeholders' Feedback

 4.1.1 Prioritize Functionalities and Adjustments

 4.2 Implement Energy Consumption Optimization Functionality

 4.2.1 Define Criteria for Personalized Advice Generation

 4.2.2 Develop Algorithms for Energy Usage Recommendations

 4.2.3 Implement User-Specific Energy Saving Tips

 4.2.4 Integrate Personalized Advice into Mobile App and Dashboard

 4.3 Complex Data Visualizations for Dashboard

 4.3.1 Identify Data Elements for Complex Visualization

 4.3.2 Design Enhanced Data Visualization Components

 4.3.3 Develop Interactive Charts and Graphs

 4.3.4 Integrate Complex Data Visualizations into Dashboard

 4.4 Usability Testing and Interface Improvement

 4.4.1 Plan Usability Testing Scenarios

 4.4.2 Conduct Usability Testing with Real Users

 4.4.3 Analyze Usability Testing Results and Feedback

 4.4.4 Identify UI/UX Improvement Areas

 4.4.5 Implement Interface Enhancements based on Testing Results

 4.5 Report and Documentation

 4.5.1 Document Enhanced Features and Functionalities

 4.6 Iteration Review and Feedback

86

 4.6.1 Demonstrate Functionalities Enhancement to Stakeholders

 4.6.2 Collect Stakeholder Feedback and Suggestions

 4.6.3 Evaluate and Incorporate Feedback for Subsequent Phases

5 Iteration 3 (Advanced Functionalities)

 5.1 Device-Specific Consumption Tracking

 5.1.1 Define Data Collection Mechanism for Device Consumption

 5.1.2 Develop Device Consumption Visualization Components

 5.1.3 Integrate Device-Specific Consumption Tracking

 5.2 Notification and Alert for Energy Consumption

 5.2.1 Design Energy Consumption Thresholds for Notifications

 5.2.2 Develop Real-time Monitoring for Alert Triggering

 5.2.3 Implement Notification and Alert Mechanisms

 5.2.4 Incorporate Notifications and Alerts into Mobile App

 5.3 User Testing and Feedback Collection

 5.3.1 Plan Comprehensive User Testing Scenarios

 5.3.2 Invite Larger User Base for Testing

 5.3.3 Collect Detailed User Feedback and Observations

 5.3.4 Analyze Testing Results and Feedback

 5.3.5 Address Identified Issues and Concerns

 5.3.6 Enhance System Based on User Testing Insights

87

 5.4 Documentation and Reporting

 5.4.1 Document Advanced Functionalities and Features

 5.5 Iteration Review and Feedback

 5.5.1 Demonstrate Advanced Functionalities to Stakeholders

 5.5.2 Collect Stakeholder Feedback and Suggestions

 5.5.3 Evaluate and Incorporate Feedback for Further Phases

6 Iteration 4 (Enhancements)

 6.1 User Testing Feedback Incorporation

 6.1.1 Review User Testing Results and Feedback

 6.1.2 Identify Key Areas for Enhancements

 6.1.3 Incorporate User Feedback into Functionality and UI

 6.2 Added Features and User-Suggested Enhancements

 6.2.1 Gather and Evaluate User Suggestions and Ideas

 6.2.2 Prioritize and Select Functionalities for Improvement

 6.3 Usability and Performance Improvements

 6.3.1 Identify Usability and Performance Metrics

 6.3.2 Analyze and Assess Current Usability and Performance

 6.3.3 Plan and Execute Usability and Performance Improvements

 6.4 Final Testing

 6.4.1 Test Final Version of HEMS

88

 6.4.2 Verify Coherence and Functionality Alignment

7 Closing

 7.1 Conduct System Usability Scale Evaluation

 7.2 Finalize System Documentation

 7.3 Prepare Presentation Slide

 7.4 Create System Poster

89

3.4 Gantt Chart

Figure 3.4.1: Overview of Work Breakdown Structure

Figure 3.4.2: Planning Phase Timeline

Figure 3.4.3: Planning Phase Timeline (Continued)

90

Figure 3.4.4: Planning Phase Timeline (Continued)

Figure 3.4.5: Planning Phase Timeline (Continued)

Figure 3.4.6: Planning Phase Timeline (Continued)

91

Figure 3.4.7: Analysis and Design Phase Timeline

Figure 3.4.8: Development Iteration 1 Timeline

Figure 3.4.9: Development Iteration 1 Timeline (Continued)

Figure 3.4.10: Development Iteration 1 Timeline (Continued)

92

Figure 3.4.11: Development Iteration 2 Timeline

Figure 3.4.12: Development Iteration 2 Timeline (Continued)

Figure 3.4.13: Development Iteration 2 Timeline (Continued)

Figure 3.4.14: Development Iteration 3 Timeline

93

Figure 3.4.15: Development Iteration 3 Timeline (Continued)

Figure 3.4.16: Development Iteration 3 Timeline (Continued)

Figure 3.4.17: Development Iteration 4 Timeline

Figure 3.4.18: Development Iteration 4 Timeline (Continued)

94

Figure 3.4.19: Closing Phase Timeline

95

3.5 Development tools

3.5.1 Software

3.5.1.1 Visual Studio

Visual Studio is used in integrated development environment by supporting

various types of development project such as mobile application and web

application with different languages and framework. It is used to develop web

application of Home Energy Monitoring System and APIs.

3.5.1.2 Android Studio

Android Studio provides integrated development environment for building

Android application by providing tools to design, code, test and debug

application. Android Studio will be used to emulate mobile application using

Android Virtual Device Manager function provided to show the interface of the

project in Android application.

3.5.1.3 Microsoft Project

Microsoft Project acts as a project management software for managing project

flow. It is used to create Work Breakdown Structure by creating project schedule,

defining milestones for each phase, tracking progress and managing timeline of

the project.

3.5.1.4 Axure

Axure is a prototyping tool that help to create prototypes for software

application. It is used to create prototypes for web dashboard and mobile

application to visualize and validate the design with the supervisor and industry

before actual development to ensure the outcome is satisfied.

3.5.1.5 Enterprise Architect

Enterprise Architect is used to create models for software system, business

process, dataflow and others. It is used to create use cases, data flow diagrams,

sequence diagrams and others that help in visualizing the Home Energy

96

Monitoring System’s structure to enhance communication among stakeholders

in this project.

3.5.1.6 Expo

Expo is a development tool and platform for building universal React

applications that target both iOS and Android platforms. Its development

environment simplifies the setup and configuration of React Native project to

build applications quickly. In this project, Expo is used to build cross-platform

mobile applications by scanning the QR code provided inside the terminal using

iOS and Android devices after launching the project repository for checking

different configurations of code on different platforms.

3.5.2 Programming Language and Markup Languages

3.5.2.1 HTML

HTML is a markup language for structuring web content using various elements

like heading, lists, paragraphs, tables and more. It is used in this project to define

the elements on web dashboard such as charts, graphs and form for user to

interact and view their energy consumption data.

3.5.2.2 CSS

Cascading Style Sheets is a stylesheet language to design visual presentation of

HTML elements by defining appearance of web pages. It is used to style the

web-based dashboard and mobile application to ensure an interactive design for

application.

3.5.2.3 JavaScript

JavaScript is a powerful programming language that may be used to add

dynamic components, interactivity, and behaviour to web sites. Web

applications become more responsive and engaging because it is carried out on

the client side. It is selected to manage user inputs, run calculations, update real-

time data, and produce animations.

97

3.5.2.4 Python

High-level programming language Python is renowned for its readability and

adaptability. It is used for many kinds of development, including machine

learning, data analysis, and web applications. Python can be utilised for a variety

of backend project activities, including data processing, database

communication, and RESTful API implementation. It is suitable for a variety of

server-side activities due to its simplicity and vast libraries.

3.5.3 Framework

3.5.3.1 Angular

Angular is a popular open-source front-end framework that is used for building

dynamic web application. It is used to create user interfaces for both mobile

application and web-based dashboard by using UI components to display real-

time energy consumption data and suer setting in user-friendly mode.

3.5.3.2 GitHub

GitHub is used to host and manage source code repositories, track changes over

time and collaboration with other developers. In this case, a Home Energy

Monitoring System repository will be created in GitHub to store its source code

and documentation. Since this project is an industry link project, having a

GitHub repository will enable others to keep track on the current work progress

and provide guidance directly.

3.5.4 Service

3.5.4.1 Amazon DynamoDB

Amazon DynamoDB is a NoSQL database service offered by Amazon Web

Services (AWS) to handle low-latency and high velocity workloads. It is used

to handle real-time energy consumption data collected from energy monitoring

devices and allow quick retrieval of information to mobile application and web

application for real time energy monitoring.

98

3.5.4.2 AWS IoT Core

AWS IoT Core is a cloud services that connect IoT devices to other devices and

AWS cloud services. The energy monitoring simulator will be connected to

AWS IoT so that AWS IoT can connect this simulator to the other cloud services

such as AWS DynamoDB and AWS Cognito.

3.5.4.3 AWS Lambda

AWS Lambda is a compute services that runs code in response to events such

as DynamoDB stream events and automatically manages the compute resources.

It is used to perform calculations on DynamoDB table data and integrate with

different service such as AWS API Gateway and AWS AppSync in this project.

3.5.4.4 AWS API Gateway

AWS API Gateway is an AWS service for creating, publishing, maintaining and

monitoring HTTP, REST and WebSocket APIs. This project will use this

service to create HTTP API and WebSocket API for retrieving and transmitting

data from DynamoDB to both mobile and web application.

3.5.4.5 AWS AppSync

AWS AppSync creates serverless GraphQL for mobile application development

through a single point to perform retrieve, update, delete and create data on

different storage such as AWS DynamoDB and AWS S3. It is used to perform

certain part of DynamoDB table management in mobile application in this

project for residents to perform CRUD functions directly using their mobile

devices.

3.5.4.6 AWS Amplify

AWS Amplify is used to build cloud-enabled application which integrates with

different AWS resources. It is installed inside this project mobile application to

quickly set up backend services such as APIs, authentication, storage, and

databases using AWS resources.

3.5.4.7 AWS Cognito

AWS Cognito provides user sign-up and authentication to mobile and web

applications in simple way. It also enables the system to authenticate users

through external identity such as email by sending verification code. It is used

99

to integrate with AWS Amplify to streamlines the development process of

mobile applications with the implementation of authentication workflows by

providing tools and libraries to interact with AWS services in this project.

3.5.4.8 AWS SES (Simple Mail Service)

AWS SES is an email service developed by Amazon.com to send transactional

emails, marketing messages and other customize email to users. It is used in this

project to send notifications to residents when their energy consumption exceeds

thresholds set.

3.5.4.9 AWS CloudWatch

AWS CloudWatch is a performance monitoring tools to monitor the execution

of different AWS services. It is used to check the execution results of different

AWS services resources and trigger lambda function to detect energy

consumption threshold in specific period.

3.5.5 Design architecture style

3.5.5.1 HTTP API

HTTP APIs are used to send requests to AWS Lambda functions so that the

AWS Lambda function can perform calculations based on the data retrieved

from the DynamoDB table and return the function response to the mobile and

web applications in this project.

3.5.5.2 WebSocket

WebSocket is a computer communication protocol used to broadcast the same

data to multiple recipients simultaneously. It is selected for real-time data

transmission from home energy monitoring devices to mobile applications, web

applications and databases using WebSocket. WebSocket is useful for

continuous connection between applications and the server to provide users with

immediate and continuous data updates without frequent API requests.

100

3.6 System Architecture Workflow

Figure 3.2: Overview of the Proposed Solution

The process of Home Energy Monitoring System is broken down into 5 steps.

The implementation of this proposed solution is presented in Chapter 6 in detail

with code and figure.

1. Real-Time Energy Consumption Data Collection

The home energy monitoring simulator collect real-time energy consumption

data such as apparent power and device ID. This simulator will mimic real-

world energy consumption patterns and behaviours accurately.

2. Energy Consumption Data Transmission

Home energy consumption data generated by the simulator is inserted into the

AWS DynamoDB table via MQTT protocol and integrated with AWS IoT Core.

3. Energy Consumption Data Retrieval

At the same time, when the home energy consumption data are inserted into the

AWS DynamoDB table, this data will be retrieved from the DynamoDB table

via DynamoDB stream to WebSocket for real-time data streaming. The

WebSocket will receive the data from the DynamoDB stream and send it to the

mobile application.

4. Historical Energy Consumption Data Calculation

101

The historical energy consumption data on a daily, weekly and monthly basis

are being retrieved from the DynamoDB table using AWS Lambda. The average

energy consumption data is calculated and sent to the residents’ mobile

application using HTTP API.

5. Energy Consumption Data Threshold Detection

The energy consumption data in the DynamoDB table will be checked every 20

minutes based on the threshold set by the residents in their mobile application.

The residents will be notified via email if their energy consumption data exceeds

specified thresholds.

102

3.7 Summary

The selected system development methodology is iterative and incremental

development methodology. All of the processes involved in each main stage

were identified and explained through the utilization of a Gantt chart and a work

breakdown structure. Moreover, the development tools ultilized in this project

were being evaluated and the workflow of system architecture was under

investigation.

103

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter covers the analysis of online questionnaire conducted by Google

Form. Moreover, requirement specification, use case diagrams, use case

descriptions and interface flow diagrams are presented to enable an in-depth

understanding of the functionality and user interactions of the project for both

stakeholder communication and development purposes.

4.2 Findings

4.2.1 Questionnaire

A questionnaire was conducted with the residents in Malaysia, both those with

and without home energy monitoring devices in their residential from 13 August

2023 until 13 September 2023. The questionnaire was distributed across

peninsular Malaysia and the gathered responses were analysed and condensed.

As of 29 August 2023, the report received 33 responses and the questionnaire

will be conducted continuously until 13 September 2023. The complete

questionnaire responses and result discussion are included in Appendix B.

4.2.1.1 Demographics

Most respondents fall within the age groups of 21-40 and 41-60 and are mainly

those responsible for their economically stable electricity bills. The gender

distribution among respondents is nearly equal, as this questionnaire was

gender-neutral. Besides, most of the respondents are from Johor, Selangor, and

Melaka, as this questionnaire targeted the respondents who live in the state with

104

my TNB’s smart meter implementation. Next, most respondents have a monthly

household income exceeding RM10000.

4.2.1.2 Energy Consumption Behavior

The respondents commonly live in townhouses, apartments, or single-family

houses, which aligns with my TNB’s focus on these houses for smart meter

installation. Moreover, their monthly electricity bills typically range from RM

101 to RM 250, with 97% of the respondents noticing a significant increase in

electrical bills over the past year. Although many respondents are unaware of

the reasons for high electricity bills, they thought that the factors contributing to

high energy consumption include excessive appliance usage, standby mode

usage, and peak-hour energy consumption.

4.2.1.3 Attitudes Toward HEMS

Many respondents have not previously used energy management or monitoring

tools due to illation costs for smart meters and have a limited understanding of

energy consumption patterns. Furthermore, the respondents who are willing to

use HEMS are more focused on real-time energy monitoring and potential cost

savings by using this system. They are concerned about the initial cost of

implementing HEMS and fear increased electricity bills due to monitoring.

Most prefer smartphone applications for remote monitoring and real-timeenergy

monitoring for HEMS.

4.2.1.4 Conclusion of Questionnaire

Overall, the respondents favor HEMS, which offers real-time

monitoring, cost-saving opportunities, and a user-friendly interface. They are

concerned about the costs of installing the smart meter for electricity monitoring

but are willing to try the system after knowing the benefits of HEMS. Focusing

on the costs of installing smart meters and educating users about HEMS

functionalities should be highlighted for widespread adoption of HEMS in the

future.

105

4.2.2 Summary of Informal Interview and Site Visit

An informal interview session was held with Mr. Yong to gain insights into the

project background and the expected functionalities of the Home Energy

Monitoring System. Mr Yong serves as the Principal Researcher within the

Advanced Intelligence Lab of MIMOS Berhad, and he represents the company

as the project's designated representative. During our informative site visit to

MIMOS, we had the opportunity to capture a memorable moment by taking a

group picture to commemorate our visit. The figure is listed in Figure A-1,

Appendix A.

The research, according to Mr. Yong, is a component of their bigger

Home Energy Monitoring initiative. He clarified that their vast project has been

broken up into several sections, each of which deals with a different element.

Their ambitious project's main goal is to reduce greenhouse gas emissions,

demonstrating their commitment to environmental sustainability and a more

environmentally friendly future.

Additionally, Mr. Yong provided in-depth justifications for each of the

features being supplied, which helped him clarify his expectations for the

project and the resources that will be offered, as well as the anticipated time

frame for project completion. The figure of attending the informal meeting is

listed in Figure A-2, Appendix A.

Next, Mr. Yong proposed that the creation of a real-time energy

monitoring capability should be the main goal of this project. The purpose of

this function is to give detailed insights into energy consumption trends while

highlighting how dynamic power usage patterns are. Users will have access to

real-time data on their energy consumption, allowing them to make informed

choices about their consumption patterns and spot possible areas for

improvement.

A demonstration within the lab was planned during a site visit to display

the energy monitoring device in action. The pictures of visiting the lab and

demonstration are included in Figure A-3, Appendix A and Figure A-4,

Appendix A. The device was used to offer real-time energy consumption

106

information for several items, including a refrigerator and a kettle. The line

graph used to visually portray this data allowed audience members to see how

the amount of energy used changed over time.

The demonstration's emphasis on low-energy-consumption gadgets

deserves special note. The graph's "other devices" category was used to

aggregate represent all the devices with low energy consumption. This method

streamlined the visualisation by emphasising the major energy consumers while

still recognising the presence of smaller energy consumers.

107

4.3 Requirements Specification

4.3.1 Mobile Application

4.3.1.1 Functional Requirements

FR Functional Requirements

FR001 The system shall allow user to register user account.

FR002 The system shall allow user to login user account.

FR003 The system shall allow user to monitor real-time energy by viewing

his current energy consumption in kilowatt-hours (kWh) through

chart visualizations.

FR004 The system shall allow user to view historical data and analysis of

his own energy consumption for different time intervals such as

daily, weekly, monthly, and yearly through graphs, charts and

report.

FR005 The system shall allow user to receive real-time notification and

alert when his energy consumption exceeds predefined thresholds.

FR006 The system shall provide users with comprehensive functionality to

manage thresholds, including the ability to create, delete, and edit

threshold settings for energy consumption according to their

specific requirements and preferences.

FR007 The system shall allow user to manage own user profile to edit

personal data.

108

4.3.1.2 Non-functional requirements

NFR Non-Functional Requirements

NFR001 Performance requirements

1.1. The system shall respond to user input within 1 second.

1.2. The system shall display real-time energy consumption data

within 1 second.

1.3. The system shall handle 98% of the exception without

causing the project to crash.

NFR002 Compatibility requirements

2.1. The system shall run smoothly with Android 8.0 and above.

2.2. The system shall be able to run smoothly using phone and

tablet devices with different display.

NFR003 Security requirements

3.1. The system shall authenticate user with username and

password.

NFR004 Usability requirement

4.1. The system shall have a user-friendly interface.

NFR005 Availability requirement

5.1. The system shall be available 99% of time a week when the

device is connected to Internet.

109

4.3.1.3 Use Case Diagram and Use Case Description for Mobile

Application

Figure 4.3.1: Mobile Application Use Case Diagram

110

Table 4.3.1: Register User Account

Name: Register User Account ID: FR001 Priority: High

Actor: Resident Type: Detail, Real

Stakeholder’s Information:

Resident: User who wants to register user account through mobile application.

Summary of Use Case:

This use case describes the process of registering user account using mobile

application by resident.

Triggering Situation:

The resident wants to register user account using mobile application.

Relationship:

- Association: Resident

- Include: -

- Extend: -

Normal Event Flow:

1. The resident taps the register new user account button.

2. The resident fills in all required field in the registration form.

3. The resident registers new user account.

4. The system directs the residents to confirmation page.

5. The resident fill in the confirmation code to verify his email address.

6. The resident confirms his email account.

111

7. The system redirects the resident back to the login page.

8. If resident want to login to his own account, perform sub-flow 5.1.

Sub Event Flow:

5.1 Resident enters both user email and password to login his account.

5.2 If the user email and password are correct, the system navigates to the real

time monitoring home page.

112

Table 4.2: Monitor Real-Time Energy Consumption

Name: Monitor Real-Time Energy

Consumption

ID: FR003 Priority: High

Actor: Resident Type: Detail, Real

Stakeholder’s Information:

Resident: User who wants to monitor energy consumption through mobile

application.

Summary of Use Case:

This use case describes the process of monitoring real-time energy

consumption using mobile application by resident.

Triggering Situation:

The resident wants to monitor energy consumption using mobile application.

Relationship:

- Association: Resident

- Include: -

- Extend: View Historical Data and Analysis

Normal Event Flow:

1. The resident taps the monitor energy consumption navigation tab icon.

2. The system navigates resident to monitor real-time energy

consumption page.

3. The system displays the default display of real-time energy

consumption over 60 minutes time range.

113

4. If the resident wants to choose a specific time range to view, perform

View Historical Data and Analysis function (FR002).

5. The system redirects the resident back to the home page with default

display of real-time energy consumption.

Sub Event Flow:

114

Table 4.3: View Historical Data and Analysis

Name: View Historical Data and

Analysis

ID: FR004 Priority: High

Actor: Resident Type: Detail, Real

Stakeholder’s Information:

Resident: User who wants to view historical energy consumption data and

analysis through mobile application.

Summary of Use Case:

This use case describes the process of viewing historical energy consumption

data and analysis using mobile application by resident.

Triggering Situation:

The resident wants to view historical energy consumption data and analysis

using mobile application.

Relationship:

- Association: Resident

- Include: -

- Extend: -

Normal Event Flow:

1. The resident taps the view historical energy consumption data

navigation tab icon.

2. The system displays the weekly energy consumption data.

3. If the resident wants to select monthly energy consumption data,

perform sub-flow 3.1.

115

4. The system redirects the resident back to the home page.

Sub Event Flow:

3.1 The resident clicks View Monthly button.

3.2 The system updates the energy consumption data display to show

information relevant to the monthly energy consumption data and analysis.

116

Table 4.4: Receive Notification and Alert

Name: Receive Notification and

Alert

ID: FR005 Priority: High

Actor: Resident Type: Detail, Real

Stakeholder’s Information:

Resident: User who wants to receive notification and alert about energy

consumption through mobile application.

Summary of Use Case:

This use case describes the process of receive notification and alert using

mobile application by resident.

Triggering Situation:

The resident wants to receive notification and alert regarding to his energy

consumption using mobile application.

Relationship:

- Association: Resident

- Include: -

- Extend: -

Normal Event Flow:

1. The resident taps the receive notification and alert navigation tab icon.

2. The system navigates resident to receive notification and alert page for

setting up notifications and alerts.

3. The system displays all thresholds set by residents before.

5. If the resident wants to create new threshold, perform sub-flow 3.1.

117

6. If the resident wants to delete threshold, perform sub-flow 3.3.

7. If the resident wants to update threshold, perform sub-flow 3.4.

Sub Event Flow:

 3.1 The resident enters desired threshold value in kW and time interval for

threshold detection.

 3.2 The resident clicks Add Threshold button to create new threshold.

 3.3 The resident clicks Delete button associated to specific threshold data

to delete threshold.

 3.4 The resident clicks Update button associated to specific threshold data

to delete threshold.

 3.5 The resident enters updated threshold value in kW and time interval for

threshold detection.

 3.6 The resident clicks Save button to update threshold.

118

4.3.2 Web Based Dashboard

4.3.2.1 Functional Requirements

FR Functional Requirements

FR008 The system shall allow administrator to view different residents’

dashboard with comprehensive energy analysis by providing

detailed insights and visualizations encompassing consumption

trends and peak usage times.

FR009 The system shall allow administrator to manage user accounts.

FR010 The system shall allow administrator to login administrator

account.

FR011 The system shall allow administrator to register administrator

account.

4.3.2.2 Non-functional requirements

NFR Non-Functional Requirements

NFR005 Performance requirements

5.1. The system shall respond to user input within 0.1 second.

5.2. The system shall display real-time energy consumption data

within 1 second.

5.3. The system shall handle 98% of the exception without project

crashing.

NFR006 Compatibility requirements

6.1. The system shall run smoothly with Google Chrome.

119

NFR007 Security requirements

7.1. The system shall authenticate user with username and

password.

NFR008 Usability requirement

The system shall have a user-friendly interface.

NFR009 Availability requirement

The system shall be available 99% of time throughout the week

when the device is connected to the Internet.

120

4.3.2.3 Use Case Diagram and Use Case Description for Web Based

Dashboard

Figure 4.3.2: Web Dashboard Use Case Diagram

121

Table 4.3.2: View Dashboard

Name: View Dashboard ID: FR008 Priority: High

Actor: Resident Type: Detail, Real

Stakeholder’s Information:

Resident: Administrator who wants to view specific resident’s dashboard

about energy consumption through web browser.

Summary of Use Case:

This use case describes the process of viewing dashboard using web browser

by administrator.

Triggering Situation:

The administrator wants to view dashboard regarding to specific resident’s

energy consumption using web browser.

Relationship:

- Association: Administrator

- Include: -

- Extend: -

Normal Event Flow:

1. The administrator logins his user account using user account number

and password.

2. The system displays an overall summary of different residents’

account information for administrator to perform view dashboard,

update and delete operation.

3. The administrator selects specific resident dashboard to view.

122

4. The system displays an overall summary of energy consumption for

default selected time interval including key metrics such as total

energy consumed and average energy consumption.

Sub Event Flow:

 -

123

4.3.3 Interface Flow Diagram

4.3.3.1 Mobile Application

Figure 4.3.3: Mobile Application Interface Flow Diagram

4.3.3.2 Web-based Dashboard

Figure 4.3.4: Web Dashboard Interface Flow Diagram

124

4.4 Initial Low Fidelity Prototypes

Both mobile application and web-based dashboard low fidelity prototypes are

being provided to gain better understanding of the workflow of the system.

4.4.1 Mobile Application

Figure 4.4.1: Low Fidelity Prototype- Register Page

125

Figure 4.4.2: Low Fidelity Prototype- Manage User Account Page

126

Figure 4.4.3: Low Fidelity Prototype- Manage User Account Page (Continued)

127

Figure 4.4.4: Low Fidelity Prototype- Energy Monitoring Page

128

Figure 4.4.5: Low Fidelity Prototype- Energy Monitoring Page (Continued)

129

Figure 4.4.6: Low Fidelity Prototype- Energy History Page

130

Figure 4.4.7: Low Fidelity Prototype- Notification and Alert Page

131

Figure 4.4.8: Low Fidelity Prototype- Notification and Alert Page (Continued)

132

4.4.2 Web Based Dashboard

Figure 4.4.9: Low Fidelity Prototype- Web Based Dashboard

4.5 Summary

In short, this chapter analysed the questionnaires results and the findings gained

from informal interview. The data collected are used to support the problem

statement of the project and the features implementation of the system. Next,

the functional requirements and non-functional requirement for both mobile

application and web-based dashboard are listed and evaluated through collected

result. Finally, use case diagrams, use case descriptions, interface flow diagrams

and initial low fidelity prototypes are included to describe the functionalities in

the system.

133

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter will discuss about the system architecture design, class diagram,

entity relationship diagram, data flow design and user interface design.

5.2 System Architecture Design

Introduction of Components Used

Table 5.2.1: List of Components Used in System

 Component General Description

1 Energy Monitoring

Simulator

A simulator which simulates residential energy

consumption data from different household

appliances.

2 MQTT Protocol A lightweight messaging protocol which

connects IoT devices (Energy Monitoring

Simulator) with AWS backend server.

3 AWS IoT Core AWS IoT Core provides secure communication

between energy monitoring simulator and AWS

services via MQTT protocol. AWS IoT Device

Management, AWS IoT Rule are being set to

establish connection with energy monitoring

simulator and insert data to AWS DynamoDB.

4 AWS DynamoDB A fully managed NoSQL database service which

used to store energy consumption data received

134

from energy monitoring simulator, connection

details with WebSocket and user, and threshold

data set by residents.

5 AWS Lambda A serverless computing service is being

implemented to process messages from energy

monitoring devices, perform data

transformation, trigger notifications and alerts,

and handle other backend tasks in response to

events. This service will be used to integrate

with various AWS backend services, including

retrieving data from AWS DynamoDB for use in

WebSocket API, performing calculations on

different energy consumption data, setting

thresholds, sending notifications, and

performing other functions as required.

6 AWS API Gateway A service for creating, publishing, maintaining

and securing APIs. WebSocket API and HTTP

API are being implemented to send and retrieve

energy consumption data between AWS

DynamoDB, web dashboard and mobile

application.

7 AWS AppSync A managed GraphQL service to create scalable

GraphQL API to interact with backed data

sources such as AWS DynamoDB Table that

enables real-time data synchronization for

mobile and web application. GraphQL resolvers

that are functions to resolve the fields in a

GraphQL query is used with AppSync to fetch

data from AWS DynamoDB table and perform

CRUD functions from mobile application.

135

8 AWS Amplify A set of tools and services to build cloud-power

application. It is being implemented inside

mobile application for this project to create

threshold DynamoDB table, perform CRUD

operation, and manage API resources.

9 AWS Cognito A fully managed identity service being used to

handle user authentication, authorization and

user management for mobile application.

10 AWS SES Simple Email Service that sends email

notification is being used to send notification to

specific user according to different thresholds

set and user sign up experiences which required

user to verify email address after register

account.

11 AWS CloudWatch A service to watch the result of each service(log)

and trigger Lambda function execution at

certain period such as setting checking threshold

function being executed each 20 minutes.

136

Figure 5.2.1: System Architecture Overview

The figure above illustrates the high-level architecture of the web-based

dashboard and mobile application, delineating two primary layers: the frontend

layer and the backend layer. The backend layer orchestrates the integration

between the mobile application and the web-based dashboard backend,

interfacing with AWS-backed services. As the database is configured within

AWS infrastructure, the backend layer primarily concentrates on the processing

of business logic, facilitating data transactions, and managing the storage and

retrieval of data from the database. It serves as the intermediary for data

exchange between the frontend and the AWS-backed services.

The assumption being made is that the energy monitoring simulator will

be invoked continuously. As depicted in the figure and table, the energy

monitoring simulator will invoke the passing of data via the MQTT protocol to

AWS IoT Core. AWS IoT Core will receive this data and insert it into

DynamoDB. A DynamoDB stream is configured to detect new entries (energy

consumption data) inserted into the DynamoDB table. Lambda functions, which

interact with the DynamoDB stream, will execute functions that send the

incoming data in real time to the specified WebSocket API connected with

mobile applications. Subsequently, residents using the mobile application will

receive the energy consumption data and display it on their mobile screens.

Mobile application residents will register their own accounts via AWS Cognito

from AWS Amplify and perform a sign-in operation to log in to their accounts

to view specific energy consumption data. AWS SES is configured to send email

137

verification to users once they register a new account. Additionally, residents

can set their own thresholds, which will detect specific energy consumption data

at certain intervals. A Lambda function is set to continuously check the energy

consumption data using AWS CloudWatch, triggering a function within a certain

period and sending emails to specific users when thresholds are exceeded. For

the web-based dashboards, HTTP APIs will be utilized to request the necessary

data from DynamoDB tables through Lambda functions. Additionally, data

retrieval from AWS Cognito and execution of CRUD (Create, Read, Update,

Delete) operations will be performed. Further details regarding this backend

implementation will be elaborated upon in Chapter 6.

The front end of this home energy monitoring application is developed

using Expo, React Native, JavaScript, and AWS frontend components for the

mobile application. Expo facilitates the creation of cross-platform applications

for iOS and Android platforms using a unified codebase, while React Native

leverages JavaScript and React to build native mobile apps. For the web

application, the front end utilizes React, Laravel, HTML, CSS, and JavaScript,

alongside Python. React enables the creation of interactive user interfaces, while

Laravel, following the MVC architecture pattern, manages various databases

based on specifications. AWS frontend components play a crucial role in

managing API resources, user authentication, and authorization, integrating

seamlessly with other AWS services to ensure secure and efficient

communication with the backend.

138

5.3 Analysis Class Diagram

Figure 5.3.1: Analysis Class Diagram

139

5.4 Entity Relationship Diagram

Figure 5.4.1: Entity Relationship Diagram

140

5.5 Table Description

Table 5.5.1: Description of Entity Relationship Table

Table Name Description

Residents Contains resident profile details

EnergyConsumption Contains energy consumption details for specific

resident. Each resident will have own

energyConsumption table

Connections Contains connection details for residents’

mobile application and WebSocket API to send

energy consumption data to correct resident

Thresholds Contains all thresholds set by different residents

Administrators Contains administrator account details for web

application

5.6 Data Flow Diagram

Figure 5.6.1: Data Flow Diagram Context Diagram

141

Figure 5.6.2: Data Flow Diagram Level 0

142

5.7 User Interface Design

This section reported the actual user interface design for the web dashboard and

mobile applications in this project.

5.7.1 Web Application

The web dashboard is designed for the administrator to manage the residents’

account information and view specific resident dashboards. This is because the

administrator is responsible for assigning different WebSocket API and energy

consumption DynamoDB table setups for different residents, which residents

should not perform.

5.7.1.1 Administrator Register Page

Figure 5.7.1: Administrator Register Screen

143

5.7.1.2 Administrator Login Page

Figure 5.7.2: Administrator Login Screen

5.7.1.3 Manage User Page

Figure 5.7.3: Manage User Screen

144

Figure 5.7.4: Edit User Screen

5.7.1.4 User Dashboard

Figure 5.7.5: User Dashboard 1

145

Figure 5.7.6: User Dashboard 2

5.7.2 Mobile Application

This mobile application designed for residents to monitor their energy

consumption includes welcome page, login page, create account page, home

page, historical energy consumption page, user profile page, energy monitoring

page, setting page, term and policy page, help and support page and report

problem page.

146

5.7.2.1 Welcome Page

Figure 5.7.7: Start Page

147

5.7.2.2 Login Page

Figure 5.7.8: Login Page

148

5.7.2.3 Create Account Page

Figure 5.7.9: Create Account Page

149

5.7.2.4 Confirmation Page

Figure 5.7.10: Confirmation Page

150

5.7.2.5 Home Page

Figure 5.7.11: Home Page

151

5.7.2.6 Historical Energy Consumption Page (Weekly)

Figure 5.7.12: Historical Energy Consumption Page (Weekly)

152

Figure 5.7.13: Historical Energy Consumption Page Zoom In (Weekly)

153

5.7.2.7 Historical Energy Consumption Page (Monthly)

Figure 5.7.14: Historical Energy Consumption Page (Monthly)

154

Figure 5.7.15: Historical Energy Consumption Page Zoom In (Monthly)

155

5.7.2.8 User Profile Page

Figure 5.7.16: User Profile Page

156

5.7.2.9 Energy Monitoring Page

Figure 5.7.17: Energy Monitoring Page

157

Figure 5.7.18: Energy Monitoring Page Introduction

158

Figure 5.7.19: Energy Monitoring Page Edit Mode

159

5.7.2.10 Setting Page

Figure 5.7.20: Setting Page

160

5.7.2.11 Term and Policy Page

Figure 5.7.21: Term and Policy Page

161

5.7.2.12 Help and Support Page

Figure 5.7.22: Help and Support Page

162

5.7.2.13 Report Problem Page

Figure 5.7.23: Report Problem Page

163

Figure 5.7.24: Report Problem Page -Send Email

164

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter describes the workflow of the backend architecture of the whole

project using AWS services. It covers the introduction of energy consumption

simulator, the integration of different AWS services listed at the last chapter

with mobile application and web application.

6.2 Energy Consumption Simulator Provided by MIMOS Bhd

6.2.1 Description of the Energy Consumption Simulator

The energy consumption simulator is provided by the industry linked company,

MIMOS Bhd. The company laboratory is equipped with different home

appliances as listed in the table below.

Table 6.2.1: Home Appliances in Laboratory

No Appliance

1 Water Heater

2 Samsung Washing Machine

3 Washing Machine

4 Electrolux Oven (build in)

5 LG Clothes Dryer

6 Samsung Refrigerator (Freezer)

7 Refrigerator (Freezer)

8 Steam Iron

9 Khind Kettle

10 Vacuum Cleaner

11 York Air Conditioner

12 Panasonic Air Conditioner

13 Daikin Air Conditioner

Each of them is plugged into a different socket for data collection in

order to collect data of different appliances in different conditions and modes.

165

Collected data for single appliances and the combination of different appliances

data will be shown in raw data format and be converted to txt file. The company

team performed feature extraction and data transformation so that the readable

summarized data is stored in different csv file. According to these data collected,

the company produced an energy consumption simulator which simulates the

total energy consumption from on off status of different appliances. This

simulator will be used to mimic the actual result of energy monitoring device in

this project.

The energy consumption data are recorded using 13 attributes listed below:

1. Timestamp

The specific time when the energy consumption data was recorded.

2. RMS Current

RMS=1nii=1,2,3xi2

RMS=Root Mean Square

n=Number of Samples

xi=Each Value

It measures the average current flow through the circuit by considering

both magnitudes and the variation of the signal over time.

3. Average Current

The average amount of current flowing through the circuit during a

specific time interval.

4. Peak Current

The maximum current intensity reached by an appliance during its

operation or the highest load the appliance draws.

5. Apparent (VA)

The total power in an electrical circuit which combine both real power

and reactive power.

It is amount of power used to operate appliances during a certain period.

6. Active (W)

The real power used by the appliance to do work.

7. Reactive (VAR)

166

The wasted power that produced during operation without performing

work.

8. Power Factor

The ratio between active power and apparent power.

It indicates the effectiveness of the appliances to convert electricity to

useful work.

9. Fundamental Frequency (50Hz)

Primary frequency of electrical supply

10. Third Harmonics (150Hz)

It is a frequency that is three times the fundamental frequency

It affects the efficiency of devices and the quality of the electrical supply.

11. Fifth (250Hz)

It represents a frequency that is five times over the fundamental

frequency.

It is used to diagnosis the power quality issues.

12. Seventh (350Hz)

It shows a frequency that is seven times over the fundamental frequency.

It can used to detect the overheating of appliances.

13. Ninth (450Hz)

It represents a frequency that is nine times over the fundamental

frequency.

It helps in maintaining the efficiency and longevity of appliances.

167

Figure 6.2.1: Web Interface of Energy Monitoring Simulator

168

6.3 Sending Data from Simulator to DynamoDB database

The details implementation of AWS backend services from energy monitoring

device will be explained with some code segments.

6.3.1 Send data from energy monitoring simulator to DynamoDB by

setting up AWS IoT Core and configuring the IoT device to

communicate with AWS services

Figure 6.3.1: Send Data to DynamoDB Workflow

6.3.1.1 Creating IAM User and Downloading Certificate

Firstly, a new IAM user is created with policies related to AWS IoT Core,

DynamoDB and DataAccess. AmazonRootCA1.pem, certificate.pem.crt and

private.pem.key must be downloaded from this user to place inside IoT device

that is energy monitoring simulator.

6.3.1.2 Create Energy Consumption DynamoDB Table

An Energy Consumption DynamoDB table has been designed within Amazon

DynamoDB to cater for the storage and management of energy consumption

169

data from the energy monitoring simulator. This DynamoDB table serves as a

robust and scalable repository to efficiently handle large volumes of energy

consumption data and integrate it with different AWS services.

The Device_ID attribute, which is the Number type, is designated as the

partition key in this DynamoDB table. This key is instrumental in distributing

data across DynamoDB partitions to enable high-performance and parallel

processing of queries. Furthermore, the Timestamp attribute, defined as a String

type, acts as the sort key within the table to sort energy consumption data,

facilitating temporal analysis and trend identification in AWS Lambda later.

In addition to the key attributes, the DynamoDB table encompasses a

comprehensive set of attributes capturing various aspects of energy

consumption such as ApparentPower, CoefficientReal3H, CoefficientReal5H,

CoefficientReal70Hz, CoefficientReal7H, CoefficientReal9H,

HarmonicDistortionPower, MAIN_PREDICTION, OTHR_PREDICTION,

OTR_POWER, PhaseShift, ReactivePower, and TotalPowerFactor.

170

Figure 6.3.2: Creation of Energy Consumption DynamoDB Table

This figure presents the configuration of DynamoDB table for energy

consumption. The energy consumption DynamoDB table guarantees effective

data storage, retrieval, and analysis by utilizing DynamoDB's adaptable and

scalable architecture. Monitor features included in DynamoDB can be used to

investigate and monitor the CRUD function performed inside DynamoDB table

overtime.

6.3.1.3 Creating a 'Thing' in AWS IoT Core

Moreover, a ‘thing’ is created inside the AWS IoT core to serve as a digital

representation of a physical device. This energy monitoring simulator pretends

to mimic the real performance of the energy monitoring device and sends

detected energy consumption data. This ‘thing’ will act as the endpoint for

171

communication between the energy monitoring simulator and AWS services.

This simulator can communicate with the AWS IoT core using the MQTT

protocol by sending data and interacting with other AWS services.

Figure 6.3.3: Created Things in AWS IoT Core

The figure illustrates the creation of a Thing within AWS IoT Core,

which is a pivotal component utilized in this project. It establishes the

foundation for effective device management, data exchange, and IoT workflow

orchestration to leverage real-time insights and actionable intelligence from the

energy monitoring simulator.

6.3.1.4 Retrieving Device Data Endpoint

Next, the device data endpoint is retrieved via the setting of AWS IoT Core so

that this endpoint can be inserted into the simulator to connect to AWS. The

URL or endpoint that a device can transmit its data to for processing, storing, or

analysis is known as the device data endpoint. The device data endpoint in an

Internet of Things (IoT) project usually refers to a web service or API endpoint

that is offered by a cloud service such as Google Cloud IoT Core, Azure IoT

Hub, or Amazon IoT Core. A device can use different communication protocols,

such as HTTP, MQTT, or WebSocket, to send the data it creates to the device

data endpoint, depending on the features and specifications of the IoT platform

being used.

172

Figure 6.3.4: Settings in AWS IoT Core

The figure shows the location to retrieve Device data endpoint in AWS

IoT Core.

6.3.1.5 Setting Up a Rule

Furthermore, a ‘rule’ is created to specify actions that should be taken when

certain conditions are met and a rule is used to process messages that are

published to MQTT topics by an energy monitoring simulator within the IoT

environment. This means that when new energy consumption data is published

to the defined topic, AWS IoT Core will examine the data against the created

‘rule’ and execute the associated action when the specified conditions have been

fulfilled. In this case, a simple SQL statement is set below to retrieve all data

from the MQTT topic.

SELECT * FROM "simulator_1"

//Tale note that simulator_1 is the topic name for this rule

which will be used later

The action of this ‘rule’ will be set to DynamoDBv2, which will split

energy consumption data into multiple columns of the DynamoDB table, which

173

is the energyConsumption table for the specific residents. This action will be

executed if the SQL statement set has been executed correctly.

Figure 6.3.5: Creation of Rules in AWS IoT Core

This figure demonstrates the creation of Rules with Rules name and Rule

topic that will be used inside energy monitoring simulator.

6.3.1.6 Set Up AWS Credential and AWS Host

The client and thing name are the same, which can be retrieved from ‘thing’, the

device data endpoint, and the topic name will be placed inside the script of the

energy monitoring simulator to connect to AWS IoT core using MQTT over

TLS, which publishes messages to the specified topic and insert data into

DynamoDB table.

174

6.4 Retrieve Realtime Energy Consumption Data from DynamoDB

Table to Mobile Application via WebSocket API

Figure 6.4.1: Retrieve Realtime Energy Consumption Data from DynamoDB

Table to Mobile Application Workflow

The energy consumption simulator continues to send energy consumption data

to the Energy Consumption DynamoDB table. A WebSocket API is being

implemented to transmit energy consumption data to the mobile app in real time.

6.4.1 Set DynamoDB stream

A DynamoDB stream is a feature that detects changes to the items in a

DynamoDB table, such as inserting and deleting items. It is enabled in the

energy consumption table to allow real-time processing of these inserted energy

consumption data by triggering events upon modification. AWS Lambda will

consume these event functions to integrate with other AWS services and mobile

applications.

6.4.2 Create connection DynamoDB table

This table with connectionID that will be created for specific user once they

connect to WebSocket API and WebSocket API for each resident.

175

6.4.3 WebSocket API Management

6.4.3.1 Create WebSocket API using AWS API Gateway

A WebSocket API will be created to send real time energy consumption data

from DynamoDB table to mobile application.

Figure 6.4.2: $connect route in WebSocket API

This figure presents the $connect route defined inside WebSocket API.

The $connect route is integrated with an AWS Lambda function that is

responsible for inserting the connectionID into the connection DynamoDB table.

When a resident opens the mobile application, it establishes a connection to the

respective WebSocket API. As part of this connection process, a connectionID

is generated within the response of the WebSocket API invocation. This

connectionID is crucial for the Lambda function that integrates with the

DynamoDB stream event to facilitate the subsequent sending of energy

consumption data.

176

Figure 6.4.3: $disconnect route in WebSocket API

This figure presents the $disconnect route defined inside WebSocket

API. The $disconnect route is integrated with an AWS Lambda function that

deletes the connectionID from the connection DynamoDB table. When the

mobile application disconnects from the WebSocket API, the generated

connectionID will be removed. Each connection with the WebSocketAPI

generates a new connectionID, rendering the old connectionID obsolete.

Figure 6.4.4: Stage of WebSocket API

The WebSocket URL is obtained from the 'Stage' section of the AWS

API Gateway console, allowing the mobile application to establish a connection.

This URL serves as the endpoint through which the application connects to the

WebSocketAPI.

177

6.4.4 Integration of AWS Lambda functions, Amazon DynamoDB, and

Amazon API Gateway to handle WebSocket communication

The energy monitoring simulator will send data to DynamoDB every second,

but the real-time data will only reach residents once they connect to the

WebSocket by opening the mobile application. The energy monitoring

simulator continuously sends data to DynamoDB at regular intervals, ensuring

that the latest information is consistently updated in the database. However, the

delivery of this data to residents occurs only when they establish a connection

to the WebSocket via the mobile application.

This approach ensures efficient resource utilization and guarantees that

the latest energy consumption data is always available in the DynamoDB table.

This is achieved by decoupling data generation (simulator sending data to

DynamoDB) from data consumption (residents retrieving data via WebSocket).

Real-time interaction is facilitated by enabling residents to receive updates only

when they connect to the WebSocket. This strategy reduces overhead and

enhances the overall user experience by minimizing unnecessary network traffic.

const AWS = require('aws-sdk');

const apigatewaymanagementapi = new AWS.ApiGatewayManagementApi({

 apiVersion: '2018-11-29',

 endpoint: 'https://ownWebsocketAPI.execute-api.us-east-

1.amazonaws.com/production/'

});

AWS.config.update({ region: 'us-east-1' });

const ddb = new AWS.DynamoDB.DocumentClient();

178

async function fetchConnectionId() {

 try {

 const params = {

 TableName: 'connectionTb2',

 ScanIndexForward: false, // Sort the items in descending

order

 Limit: 1 // Limit the result to only 1 item

 };

 const data = await ddb.scan(params).promise();

 if (data.Items.length === 0) {

 throw new Error('No connection ID found in the table');

 }

 return data.Items[0].connectionID;

 } catch (error) {

 console.error('Error fetching connection ID:', error);

 throw error;

 }

}

179

exports.handler = async (event) => {

 console.log('Received DynamoDB event:', JSON.stringify(event,

null, 2));

 try {

 const connectionID = await fetchConnectionId();

 for (const record of event.Records) {

 if (record.eventName === 'INSERT') {

 const newItem =

AWS.DynamoDB.Converter.unmarshall(record.dynamodb.NewImage);

 console.log('New Item Inserted:', newItem);

 // Send the newItem to the WebSocket

 await sendToWebSocket(newItem, connectionID);

 } else if (record.eventName === 'MODIFY') {

 const modifiedItem =

AWS.DynamoDB.Converter.unmarshall(record.dynamodb.NewImage);

 console.log('Item Modified:', modifiedItem);

 // Send the modifiedItem to the WebSocket

 await sendToWebSocket(modifiedItem, connectionID);

 } else if (record.eventName === 'REMOVE') {

 const removedItem =

AWS.DynamoDB.Converter.unmarshall(record.dynamodb.OldImage);

180

 console.log('Item Removed:', removedItem);

 // Send the removedItem to the WebSocket

 await sendToWebSocket(removedItem, connectionID);

 }

 }

 return {

 statusCode: 200,

 body: JSON.stringify('Event processed successfully'),

 };

 } catch (error) {

 console.error('Error processing DynamoDB event:', error);

 return {

 statusCode: 500,

 body: JSON.stringify('Error processing event'),

 };

 }

};

async function sendToWebSocket(data, connectionID) {

 const params = {

181

 ConnectionId: connectionID,

 Data: JSON.stringify(data),

 };

 try {

 await

apigatewaymanagementapi.postToConnection(params).promise();

 console.log('Message sent to WebSocket:', data);

 } catch (error) {

 console.error('Error sending message to WebSocket:', error);

 throw error;

 }

}

Figure 6.4.5: Lambda Function to Fetch Connection and Send Data to Mobile

Application

The diagram illustrates an AWS Lambda function tasked with

processing events from the energy consumption DynamoDB table. It is

triggered specifically by inserting events occurring in the DynamoDB table.

This Lambda function logs incoming DynamoDB events and processes each

record within the event.

The connection DynamoDB table stores information regarding

WebSocket connections from mobile applications, utilizing connection IDs for

actively connected clients. This Lambda function interacts with the connection

182

DynamoDB table through the AWS.DynamoDB.DocumentClient enables it to

scan the table and retrieve connection IDs.

Amazon API Gateway's WebSocket feature facilitates bidirectional

communication between this backend Lambda function and connected clients

from mobile applications. The WebSocket URL is acquired from the API

Gateway's 'stage', allowing the Lambda function to communicate with the

WebSocket endpoint effectively.

Within the Lambda function, the exports.handler method is utilized to

process DynamoDB events received as input from the energy consumption

DynamoDB table. It iterates through each energy consumption record in the

event, discerning the type of operation such as insert, modify, or remove.

Subsequently, it extracts pertinent data from the DynamoDB event and

dispatches it to connected WebSocket clients utilizing the sendToWebSocket

function. Additionally, error-handling mechanisms are implemented to manage

any errors encountered during processing or communication with WebSocket

clients.

The sendToWebSocket function is responsible for crafting a message

with data received from the energy consumption DynamoDB and transmitting

it to the designated WebSocket connection ID. This is achieved using the

postToConnection method of apigatewaymanagementapi, ensuring that clients

subscribed to the WebSocket receive real-time updates based on changes in the

DynamoDB table.

const HomeScreen = ({ navigation }) => {

183

 const [connectionStatus, setConnectionStatus] =

useState('Connecting...');

 const [receivedData, setReceivedData] = useState([]);

 const [thresholds, setThresholds] = useState([]);

 const [exceedCount, setExceedCount] = useState(0);

 const [webSocketAddress, setWebSocketAddress] = useState(null);

// New state variable for WebSocket address

 useEffect(() => {

 const loadWebSocketAddress = async () => {

 try {

 const userData = await

Auth.currentAuthenticatedUser({ bypassCache: true });

 console.log('User attributes:', userData.attributes);

 const newTableName = userData.attributes['address']

 setWebSocketAddress(newTableName);

 console.log('WebSocket address:', newTableName);

 } catch (error) {

 console.log('Error getting user data', error);

 }

 };

 loadWebSocketAddress();

 const loadThresholds = async () => {

184

 try {

 const savedThresholds = await

AsyncStorage.getItem('thresholds');

 if (savedThresholds !== null) {

 setThresholds(JSON.parse(savedThresholds));

 }

 } catch (error) {

 console.error('Error loading thresholds: ', error);

 }

 };

 loadThresholds();

 }, []);

 useEffect(() => {

 if (!webSocketAddress) return; // If WebSocket address is not

loaded yet, do nothing

 const checkEnergyConsumption = (energyConsumption) => {

 thresholds.forEach((item) => {

 if (item.status && energyConsumption > item.threshold) {

 setExceedCount(prevCount => prevCount + 1);

 if (exceedCount >= 6000) {

 sendNotification();

185

 }

 }

 });

 };

 const socket = new WebSocket(webSocketAddress); // Use the

WebSocket address from state

 socket.onopen = () => {

 console.log('WebSocket connection opened');

 setConnectionStatus('WebSocket connection opened');

 };

 socket.onmessage = (event) => {

 try {

 const data = JSON.parse(event.data);

 setReceivedData(prevData => [...prevData, data]);

 checkEnergyConsumption(data.energyConsumption);

 } catch (error) {

 console.error('Error parsing JSON data:', error);

 }

 };

186

 socket.onerror = (error) => {

 console.error('WebSocket error:', error);

 setConnectionStatus('Error connecting to WebSocket');

 };

 socket.onclose = (event) => {

 console.log('WebSocket connection closed:', event.code,

event.reason);

 setConnectionStatus('WebSocket connection closed');

 };

 return () => {

 socket.close();

 };

 }, [thresholds, exceedCount, webSocketAddress]);

Figure 6.4.6: Code to Connect WebSocket API

 This figure illustrates the method for handling WebSocket

communication in a React Native environment. The WebSocket address is

asynchronously fetched from AWS Cognito, which associates specific residents

with their respective WebSocket endpoints. Upon retrieval of the WebSocket

address, the code proceeds to establish a WebSocket connection.

 Event handlers such as onopen, onmessage, onerror, and onclose are

utilized to manage WebSocket communications effectively. When the

187

WebSocket connection is successfully opened (onopen), the application updates

its status accordingly. Messages received from the WebSocket (onmessage) are

parsed as JSON data and displayed within the mobile application interface.

 In case of any errors (onerror) during WebSocket communication,

appropriate error handling mechanisms are implemented to provide feedback to

the user or log the error for debugging purposes. Similarly, when the WebSocket

connection is closed (onclose), the application updates its status to reflect the

closure of the connection.

 This approach ensures seamless and real-time communication

between the mobile application and the backend server via WebSocket,

providing residents with up-to-date information and enabling interactive

experiences within the application.

188

6.5 Perform authentication using AWS Amplify, AWS Cognito

6.5.1 Setup AWS Account and Install AWS Amplify CLI

Figure 6.5.1: AWS Amplify Setup in React Native

As shown in the figure, an AWS account is first created to enable access to AWS

services so that the AWS Amplify CLI is integrated into the React Native project

to facilitate seamless integration with AWS services. Initialization of Amplify

within the project is then carried out using the 'amplify init' command to

establish the project's configuration. Additionally, an IAM user role is

established, equipped with access keys (access key ID and secret access key) to

enable secure programmatic access to various AWS services such as AWS

Lambda, AWS Cognito and AWS Amplify. This setup ensures that the React

Native project can interact with AWS resources effectively and securely. The

access key ID and secret access key are inserted into amplify for this project

using the command line when amplify is initiated.

189

6.5.2 Create AWS Cognito User Pool and Identity Pool

Figure 6.5.2: Add Authentication in AWS Amplify

In this figure, the AWS Amplify CLI was used to initialize the project named

'fyp', with the environment set to 'dev' and the default editor configured as

Visual Studio Code. The project, developed in JavaScript using the React Native

framework, specified the source directory path as 'src'. During initialization, the

application was configured to use AWS Cognito as the authentication service.

The default authentication method selected was email-based sign-in, with

advanced settings configured to include required attributes for signing up, such

as Address, Email, Phone Number, and Website. Subsequently, the

authentication resource was successfully added locally to the project, paving the

way for further development and deployment, such as the sign-in function and

sign-up functions.

190

Figure 6.5.3: AWS Cognito User Pool

 The figure above illustrates the user pool created using the ‘amplify

add auth’ command inside the project. A user pool in AWS Cognito represents

a user directory that stores user attributes and credentials, allowing for user

authentication and management. Different authentication settings such as sign-

in methods., multi-factor authentication and password policy can be defined

within the created user pool. This user pool acts as the central repository for user

authentication within this project to manage user identities.

Figure 6.5.4: AWS Cognito Identity Pool

 This figure shows the identify pool created associated with the user

pool. An identity pool in AWS Cognito enables the application to grant

temporary AWS credentials to users, allowing them to access AWS services

securely. The integration between user authentication and access to AWS

resources, such as DynamoDB tables and S3 buckets, can be established by

associating these identity pools.

191

 The authentication screens, such as sign-up and sign-in screens, are

created using React Native components and Amplify’s Auth module to handle

authentication operations.

async function signUpAWS(email, username, password,name) {

 try {

 const { user } = await Auth.signUp({

 username,

 password,

 attributes: {

 email,

 },

 autoSignIn: {

 enabled: false,

 }

 });

 console.log(user);

 } catch (error) {

 console.log('error signing up:', error);

 }

}

Figure 6.5.5: Code to Implement SignUp Function in React Native

192

async function signIn(username, password, {navigation}) {

 try {

 await Auth.signIn(username, password);

 navigation.navigate('HomeTabs', { screen: 'HomeScreen' });

 } catch (error) {

 console.log('error signing in', error);

 }

}

Figure 6.5.6: Code to Implement Sign In Function in React Native

 The 'Auth.signIn' and 'Auth.signUp' functions from the AWS

Amplify authentication module are vital components in managing user

authentication and registration processes securely and efficiently within the

application. 'Auth.signUp' serves the purpose of registering a new user within

the system using parameters such as email and password for user registration.

Amplify then communicates with the configured authentication service, AWS

Cognito, to create a new user account. Additionally, users are prompted to verify

their email through a link sent by AWS Simple Email Service (SES) for added

security. The user needs to enter the verification code inside mobile application

Confirmation screen to verify his email before login. On the other hand,

'Auth.signIn' facilitates the initiation of the sign-in process for users by

necessitating the provision of email and password as initial parameters for user

input. Subsequently, AWSAmplify communicates with AWS Cognito to

authenticate the user's credentials. Upon successful authentication, the user is

granted access to the application and is redirected to the home screen. In case of

authentication failure, an error message is generated to notify user the error. This

193

comprehensive approach ensures a seamless and secure user authentication and

registration experience using AWS Cognito and AWS Amplify and adhering to

best practices in mobile application development.

Figure 6.5.7: Created Users in AWS Cognito User Pool

 The figure illustrates the users within a user pool in AWS Cognito, a

service for managing user identities and authentication in the cloud. In AWS

Cognito, user accounts can have different confirmation statuses, which provide

insights into the authentication status of each user. These confirmation statuses

typically include "Not Verified," "Confirmed," and "Force change password".

When a user signs up for an account in AWS Cognito, their confirmation status

initially appears as "Not Verified". Once a user verifies their email address or

phone number by entering a confirmation code, their confirmation status

changes to "Confirmed". The "Force change password" status indicates that the

user is required to change their password before they can fully access the

application or system.

194

6.6 Retrieve Historical Energy Consumption Data to Web-based

Dashboard and Mobile Application

Figure 6.6.1: Retrieve Historical Energy Consumption Data to Web-based

Dashboard and Mobile Application Workflow

This architecture is designed to retrieve historical data from an Amazon

DynamoDB table, such as daily, weekly, and monthly energy consumption data.

An HTTP API is created using Amazon API Gateway to facilitate the passing

of processed data. AWS Lambda functions are utilized to retrieve specific

period data based on user requests via mobile and web applications,

subsequently sending the requested data to users. This setup ensures efficient

retrieval and delivery of data to users based on their requirements. The methods

used for both web dashboard and mobile applications are almost the same, with

minor modifications due to different configurations of different platforms.

6.6.1 Retrieve Past Week Energy Consumption Data

The provided code is an AWS Lambda function written in Node.js designed to

retrieve energy consumption data from an energy consumption DynamoDB

table for the past week, calculate the average apparent power for each day, and

return this processed data in response to an HTTP request. This AWS Lambda

195

function will integrate with the route of an HTTP API using a POST operation

to receive resident data that specifies the name of the energy consumption table

from which to retrieve data.

const AWS = require('aws-sdk');

// Create DynamoDB Document Client

const docClient = new AWS.DynamoDB.DocumentClient();

exports.handler = async (event) => {

 try {

 // Parse the event body to extract the tableName

 const requestBody = JSON.parse(event.body);

 const tableName = requestBody.tableName;

 // Check if the tableName is provided

 if (!tableName) {

 throw new Error('Missing required parameter: TableName');

 }

 // Calculate the time threshold in milliseconds

 const oneWeekAgo = new Date(Date.now() - 7 * 24 * 60 * 60

* 1000).toISOString(); // One week ago

196

 // Define the params for the DynamoDB query to retrieve the

data for the past week

 const params = {

 TableName: tableName, // Use the table name from the

event payload

 KeyConditionExpression: "Device_ID = :d_id and

#ts > :oneWeekAgo",

 ProjectionExpression: '#ts, ApparentPower', // Use an

alias for Timestamp using ExpressionAttributeNames

 ExpressionAttributeNames: {

 "#ts": "Timestamp" // Alias for Timestamp

 },

 ExpressionAttributeValues: {

 ":oneWeekAgo": oneWeekAgo,

 ":d_id": 1, // Assuming Device_ID is a numeric

attribute, adjust if it's not

 }

 };

 // Query DynamoDB to retrieve the data for the past week

 const data = await docClient.query(params).promise();

 console.log('Retrieved data:', data);

197

 // Process the data and calculate the average apparent

power for each day

 const dailyAverage = calculateDailyAverage(data.Items);

 return {

 statusCode: 200,

 body: JSON.stringify({ dailyAverage })

 };

 } catch (error) {

 console.error('Error:', error);

 return {

 statusCode: 500,

 body: JSON.stringify({ message: error.message ||

'Internal server error' }) // Return error message if available

 };

 }

};

// Function to calculate the average apparent power for each day

function calculateDailyAverage(items) {

 // Create a map to store apparent power values for each day

 const dailyData = new Map();

 // Initialize the date for one week ago

198

 let currentDate = new Date();

 currentDate.setDate(currentDate.getDate() - 7);

 // Iterate through the past week

 for (let i = 0; i < 7; i++) {

 const dateString = currentDate.toISOString().substr(0, 10);

 dailyData.set(dateString, { total: 0, count: 0 });

 currentDate.setDate(currentDate.getDate() + 1);

 }

 // Aggregate apparent power values for each day from retrieved

items

 items.forEach(item => {

 const timestamp = item.Timestamp.substr(0, 10); // Extract

YYYY-MM-DD part of timestamp

 const apparentPower = item.ApparentPower || 0; // If

apparent power is undefined, default to 0

 if (!dailyData.has(timestamp)) {

 dailyData.set(timestamp, { total: 0, count: 0 });

 }

 const dayData = dailyData.get(timestamp);

 dayData.total += apparentPower;

199

 dayData.count++;

 });

 // Calculate average for each day

 const dailyAverage = {};

 dailyData.forEach((value, key) => {

 // Round the average to two decimal places

 dailyAverage[key] = value.count > 0 ?

parseFloat((value.total / value.count).toFixed(2)) : 0;

 });

 return dailyAverage;

}

Figure 6.6.2: Lambda Function to Retrieve Historical Data

The purpose of this AWS Lambda function is to compute the daily

average apparent power by retrieving energy consumption information from an

Amazon DynamoDB table for the previous week. It builds DynamoDB query

parameters upon receiving an HTTP request, parses the request body to identify

the table name, and then runs the query to get the specific data. It then uses the

calculateDailyAverage() function to evaluate the collected data and determine

the daily average apparent power for each day during the previous week. Error

messages and the proper status codes are returned in response to errors. Lastly,

if the processing of the data is successful, a 200 status code is returned in the

response body; if an error occurs, a 500 status code is returned.

200

6.6.2 Retrieve Past 6 Months Energy Consumption Data

The code provided constitutes an AWS Lambda function crafted in Node.js. Its

primary function is to extract energy consumption data from a DynamoDB table

for the preceding six months, compute the average apparent power for each day,

and furnish this processed information in response to an HTTP request. This

Lambda function is engineered to seamlessly integrate with an HTTP API route,

employing a POST operation to acquire resident data. This data includes

specifics regarding the designated energy consumption table.

const AWS = require('aws-sdk');

// Create DynamoDB Document Client

const docClient = new AWS.DynamoDB.DocumentClient();

exports.handler = async (event) => {

 try {

 const requestBody = JSON.parse(event.body);

 const tableName = requestBody.tableName;

 // Check if the tableName is provided

 if (!tableName) {

 throw new Error('Missing required parameter: TableName');

 }

// Get the current date

const currentDate = new Date();

201

// Set the date to the first day of the current month

const firstDayOfMonth = new Date(currentDate.getFullYear(),

currentDate.getMonth(), 1);

// Set the date to six months ago from the first day of the current

month

const sixMonthsAgo = new Date(firstDayOfMonth);

sixMonthsAgo.setMonth(sixMonthsAgo.getMonth() - 6);

// Set hours, minutes, seconds, and milliseconds to the minimum

sixMonthsAgo.setHours(0, 0, 0, 0);

// Set the end date to the last millisecond of the current month

const lastDayOfMonth = new Date(currentDate.getFullYear(),

currentDate.getMonth() + 1, 0);

lastDayOfMonth.setHours(23, 59, 59, 999);

// Convert the dates to ISO string

const localISOTimeStart = sixMonthsAgo.toISOString();

const localISOTimeEnd = lastDayOfMonth.toISOString(); // Use the

last millisecond of the current month as the end date

const params = {

 TableName: tableName,

202

 KeyConditionExpression: "Device_ID = :d_id and #ts

BETWEEN :sixMonthsAgo AND :currentDate",

 ProjectionExpression: '#ts, ApparentPower',

 ExpressionAttributeNames: {

 "#ts": "Timestamp"

 },

 ExpressionAttributeValues: {

 ":sixMonthsAgo": localISOTimeStart,

 ":currentDate": localISOTimeEnd,

 ":d_id": 1

 }

};

 // Query DynamoDB to retrieve the data for the past six

months

 const data = await docClient.query(params).promise();

 console.log('Retrieved data:', data);

 // Process the data and calculate the average apparent

power for each month

 const monthlyAverage = calculateMonthlyAverage(data.Items);

 return {

203

 statusCode: 200,

 body: JSON.stringify({ monthlyAverage })

 };

 } catch (error) {

 console.error('Error:', error);

 return {

 statusCode: 500,

 body: JSON.stringify({ message: 'Internal server

error' })

 };

 }

};

// Function to calculate the average apparent power for each month

function calculateMonthlyAverage(items) {

 // Create a map to store apparent power values for each month

 const monthlyData = new Map();

 // Initialize the date for six months ago

 let currentDate = new Date();

 currentDate.setMonth(currentDate.getMonth() - 5); // Subtract

5 months to get 6 months ago

 // Iterate through the latest six months

204

 for (let i = 0; i < 6; i++) {

 const year = currentDate.getFullYear();

 const month = currentDate.getMonth() + 1; // Month index

starts from 0, so add 1

 const monthKey = `${year}-${month < 10 ? '0' + month :

month}`; // Format month key as YYYY-MM

 monthlyData.set(monthKey, { total: 0, count: 0 });

 currentDate.setMonth(currentDate.getMonth() + 1); // Move

to the next month

 }

 items.forEach(item => {

 // Extract the year and month from the Timestamp

 const date = new Date(item.Timestamp);

 const year = date.getFullYear();

 const month = date.getMonth() + 1; // Month index starts from

0, so add 1

 const timestamp = ̀ ${year}-${month < 10 ? '0' + month : month}`;

// Format as YYYY-MM

 const apparentPower = item.ApparentPower || 0; // If apparent

power is undefined, default to 0

 if (!monthlyData.has(timestamp)) {

 monthlyData.set(timestamp, { total: 0, count: 0 });

205

 }

 const monthData = monthlyData.get(timestamp);

 monthData.total += apparentPower;

 monthData.count++;

});

 // Calculate average for each month

 const monthlyAverage = {};

 monthlyData.forEach((value, key) => {

 const average = value.count > 0 ? (value.total /

value.count).toFixed(2) : 0;

 monthlyAverage[key] = parseFloat(average); // Convert to

number

 });

 return monthlyAverage;

}

Figure 6.6.3: Lambda Function to Retrieve Past Six Month Data

The Node.js-written AWS Lambda function is used to get energy usage

information from a DynamoDB table for the previous six months. It uses the

processed data to reply to HTTP requests and calculates the average apparent

power for each month. It computes the start and end dates for the six months

based on the current date after scanning the request body to retrieve the table

206

name. It builds DynamoDB query parameters using these dates and then runs

the query to retrieve the pertinent data. After the data is retrieved, the function

uses a map to aggregate the results for each month in order to calculate the

monthly average apparent power. Error management techniques are integrated

to provide relevant error messages and status codes. Once data processing is

successful, the response body's computed monthly average apparent power is

returned with a 200 status code; if an error occurs, on the other hand, a 500

status code is returned.

6.6.3 Calculate Monthly Peak Usage Hours and Total Carbon Emissions

The code provided constitutes an AWS Lambda function crafted in Node.js. Its

primary function is to extract energy consumption data from a DynamoDB table

for the preceding six months, compute the average apparent power for each day,

furnish this processed information in response to an HTTP request and calculate

monthly peak usage hours and total carbon emissions. This Lambda function is

engineered to seamlessly integrate with an HTTP API route, employing a POST

operation to acquire resident data. This data includes specifics regarding the

designated energy consumption table.

const AWS = require('aws-sdk');

// Create DynamoDB Document Client

const docClient = new AWS.DynamoDB.DocumentClient();

exports.handler = async (event) => {

 try {

 // Parse the event body to extract the tableName

207

 const requestBody = JSON.parse(event.body);

 const tableName = requestBody.tableName;

 // Check if the tableName is provided

 if (!tableName) {

 throw new Error('Missing required parameter: TableName');

 }

 // Calculate the time threshold for six months ago

 const sixMonthsAgo = new Date();

 sixMonthsAgo.setMonth(sixMonthsAgo.getMonth() - 5); //

Subtract 5 months to get 6 months ago

 const sixMonthsAgoISO = sixMonthsAgo.toISOString(); //

Convert to ISO format

 // Define the params for the DynamoDB query to retrieve the

data for the past six months

 const params = {

 TableName: tableName,

 KeyConditionExpression: "Device_ID = :d_id and

#ts > :sixMonthsAgo",

 ProjectionExpression: '#ts, ApparentPower', // Use an

alias for Timestamp using ExpressionAttributeNames

 ExpressionAttributeNames: {

 "#ts": "Timestamp" // Alias for Timestamp

208

 },

 ExpressionAttributeValues: {

 ":sixMonthsAgo": sixMonthsAgoISO,

 ":d_id": 1, // Assuming Device_ID is a numeric

attribute, adjust if it's not

 }

 };

 // Query DynamoDB to retrieve the data for the past six

months

 const data = await docClient.query(params).promise();

 console.log('Retrieved data:', data);

 // Process the data and calculate the peak usage hours

period for each month

 const peakUsageHours =

calculatePeakUsagePeriodPerDay(data.Items);

 // Calculate the period with the most votes among the peak

usage periods

 const mostFrequentPeriod =

calculateMostFrequentPeakUsagePeriod(peakUsageHours);

 // Calculate total carbon emissions

209

 const totalCarbonEmissions =

calculateTotalCarbonEmissions(data.Items);

 return {

 statusCode: 200,

 body: JSON.stringify({ mostFrequentPeriod,

totalCarbonEmissions })

 };

 } catch (error) {

 console.error('Error:', error);

 return {

 statusCode: 500,

 body: JSON.stringify({ message: 'Internal server

error' })

 };

 }

};

// Function to calculate the period of peak energy consumption for

each day

function calculatePeakUsagePeriodPerDay(items) {

 const peakUsagePerDay = {};

 // Iterate through the items

 items.forEach(item => {

210

 const timestamp = new Date(item.Timestamp);

 const dateKey = timestamp.toISOString().substr(0, 10); //

Extract YYYY-MM-DD part of timestamp

 // Initialize peak usage data for the day if not already

present

 if (!peakUsagePerDay[dateKey]) {

 peakUsagePerDay[dateKey] = {

 peakPeriod: null,

 peakEnergy: -Infinity

 };

 }

 const energyConsumption = item.ApparentPower || 0; // If

apparent power is undefined, default to 0

 // Update peak usage data if current period has higher

energy consumption

 if (energyConsumption > peakUsagePerDay[dateKey].peakEnergy)

{

 peakUsagePerDay[dateKey] = {

 peakPeriod: getPeriodOfDay(timestamp.getHours()),

// Determine the period of the day

 peakEnergy: energyConsumption

 };

211

 }

 });

 return peakUsagePerDay;

}

// Function to determine the period of the day based on the hour

function getPeriodOfDay(hour) {

 if (hour >= 5 && hour < 12) {

 return 'Morning';

 } else if (hour >= 12 && hour < 18) {

 return 'Afternoon';

 } else {

 return 'Evening';

 }

}

// Function to calculate the period with the most votes among the

peak usage periods for each day

function calculateMostFrequentPeakUsagePeriod(peakUsagePerDay) {

 const periodCounts = {

 Morning: 0,

 Afternoon: 0,

212

 Evening: 0

 };

 // Count occurrences of each period

 Object.values(peakUsagePerDay).forEach(({ peakPeriod }) => {

 periodCounts[peakPeriod]++;

 });

 // Find the period with the maximum count

 let maxCount = -Infinity;

 let mostFrequentPeriod = null;

 Object.entries(periodCounts).forEach(([period, count]) => {

 if (count > maxCount) {

 maxCount = count;

 mostFrequentPeriod = period;

 }

 });

 return mostFrequentPeriod;

}

function calculateTotalCarbonEmissions(items) {

 let totalCarbonEmissions = 0;

213

 const carbonEmissionsPerKWh = 0.5; // Hypothetical value for

carbon emissions per kWh

 items.forEach(item => {

 const energyConsumption = item.ApparentPower || 0; // If

apparent power is undefined, default to 0

 const carbonEmissions = energyConsumption *

carbonEmissionsPerKWh; // Calculate carbon emissions for this item

 totalCarbonEmissions += carbonEmissions; // Add to the

total carbon emissions

 });

 // Round up total carbon emissions to nearest whole number

 totalCarbonEmissions = Math.round(totalCarbonEmissions);

 return totalCarbonEmissions;

}

Figure 6.6.4: Calculate Peak Month Usage

This Node.js-based AWS Lambda code retrieves energy consumption

information over a six-month period from a DynamoDB table. It computes the

monthly average apparent power and returns the processed data in response to

HTTP queries. Next, it parses the request body to retrieve the table name, and

then it uses the current date to calculate the start and end dates for the six-month

period. It builds DynamoDB query parameters using these dates and then runs

the query to obtain pertinent data. After retrieval, the function uses a map to

aggregate values and calculates each day's peak energy use period. After that, it

214

determines which of the high usage periods has received the most votes.

Additionally, it calculates the total carbon emissions based on the energy

consumption data. Error handling mechanisms are incorporated to furnish

appropriate status codes and error messages. In case of successful data

processing, a 200 status code accompanies the calculated most frequent peak

usage period and total carbon emissions in the response body; conversely, a 500

status code is returned in the event of an error.

6.6.4 Detach Integration with HTTP Routes

Figure 6.6.5: HTTP Route with Lambda Function

This figure shows a system architecture in which POST operations on

HTTP routes are not influenced by AWS Lambda functions. In this arrangement,

AWS Lambda functions are separated from particular HTTP endpoints. Instead,

HTTP routes manage incoming requests and responses, and they carry out

background operations, data processing, or other functions. In order to create

real-time bidirectional communication with the backend, the mobile application

also establishes connections with WebSocket API routes. With the help of this

WebSocket integration, the mobile application can quickly receive notifications

or data updates, improving user experience with dynamic and responsive

information.

215

6.6.5 Connect HTTP API to Retrieve Energy Consumption Data

 async function getUserData() {

 try {

 const userData = await

Auth.currentAuthenticatedUser({ bypassCache: true });

 const newTableName = userData.attributes['website'] || '';

 setDynamoDBTableName(newTableName);

 console.log('DynamoDB table name:', newTableName);

 if (newTableName !== '') {

 fetchData(newTableName);

 }

 } catch (error) {

 console.log('Error getting user data', error);

 }

 }

Figure 6.6.6: Retrieve User Data from React Native

This code retrieved specific residents' data, such as the energy

consumption table name, to be sent via HTTP API to the AWS Lambda function

to retrieve energy consumption data for specific residents.After setting up HTTP

API to retrieve energy consumption data and perform calculations, the React

Native mobile application screen is configured to fetch the data required to build

React Native components.

 const fetchData = async (dynamoDBTableName) => {

 try {

216

 // Fetch weekly energy consumption

 try {

 const weeklyResponse = await

fetch('https://n05zth8v53.execute-api.us-east-

1.amazonaws.com/hems_daily_energy_consump_mobile', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ tableName: dynamoDBTableName })

 });

 if (!weeklyResponse.ok) {

 throw new Error('Network response for weekly data was not

ok');

 }

 const weeklyJsonData = await weeklyResponse.json();

 if (weeklyJsonData && weeklyJsonData.dailyAverage) {

 setWeeklyData(weeklyJsonData.dailyAverage);

 } else {

 throw new Error('Weekly data is null or missing

dailyAverage');

 }

 } catch (error) {

 console.error('Error fetching weekly data: ', error);

 }

217

 // Fetch monthly energy consumption

 const monthlyResponse = await fetch('https://n05zth8v53.execute-

api.us-east-

1.amazonaws.com/hems_monthly_energy_consumption_mobile', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ tableName: dynamoDBTableName })

 });

 if (!monthlyResponse.ok) {

 throw new Error('Network response for monthly data was not ok');

 }

 const monthlyJsonData = await monthlyResponse.json();

 setMonthlyData(monthlyJsonData.monthlyAverage);

 // Fetch total carbon emissions

 const carbonResponse = await fetch('https://n05zth8v53.execute-

api.us-east-1.amazonaws.com/hems_monthly_peak_usage_hours_mobile',

{

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ tableName: dynamoDBTableName })

218

 });

 if (!carbonResponse.ok) {

 throw new Error('Network response for total carbon emissions

was not ok');

 }

 const carbonJsonData = await carbonResponse.json();

 setMostFrequentPeriod(carbonJsonData.mostFrequentPeriod);

 setTotalCarbonEmissions(carbonJsonData.totalCarbonEmissions);

 setIsLoading(false);

 } catch (error) {

 console.error('There was a problem with the fetch operation:',

error);

 setIsLoading(false);

 }

 };

 const fetchMostFrequentPeriod = async () => {

 try {

 // Fetch most frequent period data

 const response = await fetch('https://n05zth8v53.execute-

api.us-east-1.amazonaws.com/hems_monthly_peak_usage_hours_mobile',

{

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

219

 },

 body: JSON.stringify({ tableName: dynamoDBTableName })

 });

 if (!response.ok) {

 throw new Error('Network response for most frequent period

data was not ok');

 }

 const jsonData = await response.json();

 setMostFrequentPeriod(jsonData.mostFrequentPeriod);

 } catch (error) {

 console.error('There was a problem with the fetch operation:',

error);

 }

 }

Figure 6.6.7: Fetch HTTP API Response

The goal of this React Native implementation is to leverage HTTP

queries to retrieve statistics and data about energy use from AWS Lambda

functions. The asynchronous fetchData method accepts an argument called

dynamoDBTableName retrieved from AWS Cognito. It starts by attempting to

submit a POST request to the designated AWS Lambda endpoint in order to

retrieve weekly energy consumption data. The function retrieves the JSON data

from the response and uses the setWeeklyData method to update the application

state with the weekly energy consumption statistics if the response is successful,

as indicated by weeklyResponse.ok. The relevant error messages are logged to

the console in the event that any errors occur throughout the procedure, such as

a network problem or missing data.

220

In a similar manner, the function uses different POST requests to the

appropriate AWS Lambda APIs to retrieve statistics on monthly energy use and

overall carbon emissions. Sending the request, verifying the answer, parsing the

JSON data, and changing the application state are the steps that every retrieve

operation consists of.

Additionally, the fetchMostFrequentPeriod function is responsible for

fetching the most frequent period of peak energy usage. It uses the same

protocol as fetchData to handle the result after executing a POST request to the

specified AWS Lambda endpoint. The application state variable

mostFrequentPeriod is updated following the successful retrieval of the most

frequent period data.

6.7 Send Email Notification if Resident’s Energy Consumption Data

Exceed Threshold Defined

Figure 6.7.1: Send Email Notification if Resident’s Energy Consumption Data

Exceed Threshold Defined Workflow

221

As energy consumption data continuously inserts into the energy consumption

DynamoDB table and considering that the mobile application may not always

be connected to the WebSocket API, a solution utilizing AWS Lambda with

DynamoDB is implemented to periodically detect energy consumption data.

This Lambda function is tasked with monitoring the DynamoDB table for any

threshold breaches and triggering email notifications to residents accordingly.

AWS SES (Simple Email Service) is integrated into this solution to facilitate

the sending of email notifications to residents. This approach circumvents the

need for the mobile application to constantly connect to the WebSocket API and

ensures efficient and reliable threshold detection without relying on the mobile

application's connectivity. Additionally, leveraging AWS Lambda and

DynamoDB for this task offers scalability and flexibility, while integrating

AWS SES streamlines the process of sending email notifications. This approach

is particularly advantageous given that the mobile application is developed

using Expo for both IOS and Android platforms, where configuring push

notifications can be complex and platform-specific. By centralizing the

threshold detection and notification process within AWS Lambda and

DynamoDB, the solution achieves simplicity, reliability, and scalability,

enhancing the overall effectiveness of energy consumption monitoring and

notification for residents.

6.7.1 Create Threshold DynamoDB Table

A threshold DynamoDB table has been established to manage various

thresholds designated by individual residents, encompassing attributes such as

"id" (String), "__typename", "createdAt", "email" (for sending notifications to

the corresponding email addresses), "table" (representing the energy

consumption table name retrieved from AWS Cognito), "threshold",

"timeInterval" (determining which historical data period to examine),

"updatedAt", and "username" (derived from AWS Cognito user data). This table

serves as a centralized repository for storing and organizing resident-specific

threshold settings, facilitating streamlined management and configuration of

energy consumption thresholds. By incorporating properties like "createdAt"

and "updatedAt," the table facilitates the recording of threshold entry creation

222

and modification timestamps, guaranteeing precise audit trails and historical

record-keeping. Through the integration of email notifications to the assigned

email addresses, residents are able to monitor and efficiently manage their

energy use since they receive timely alerts regarding threshold breaches. A

smooth connection with the associated data source is also made possible by the

association with the name of the energy consumption table that was obtained

from AWS Cognito. This allows for effective monitoring and analysis of energy

usage patterns based on resident-defined thresholds. This all-encompassing

method optimizes the monitoring and alerting of energy consumption threshold

management for residents by improving its granularity, flexibility, and

functionality.

6.7.2 Use AWS AppSync GraphQL Schema to Create Threshold

DynamoDB table

Figure 6.7.2: Create DynamoDB Table in React Native

This figure illustrates the step to create a DynamoDB table inside the React

Native project. ‘amplify add API’ is executed to create GraphQL API to allow

mobile application users to create, read, update and delete all models or tables

created via an API key. This command facilitates the addition of the DynamoDB

table, enabling its integration and association with the existing Amplify project.

By incorporating this table into the project, it becomes seamlessly linked to the

AppSync service, allowing GraphQLResolvers to execute Create, Read, Update,

223

and Delete (CRUD) operations on the DynamoDB table via the mobile

application utilized by residents. Through GraphQLResolvers, AppSync acts as

a middleware, handling data interactions between the mobile application and the

DynamoDB table. By abstracting away the complexity of direct database

interfaces, this method provides developers with a streamlined and uniform

interface for managing data activities. When Amplify and AppSync collaborate,

developers can effectively incorporate CRUD features into the mobile

application, improving user experience and giving residents convenient access

to data management tools.

6.7.3 Create GraphQL schema

GraphQL schema defines the structure of the threshold data that residents can

query or mutate through the GraphQL API created to create and delete threshold.

Figure 6.7.3: GraphQL Schema

The figure presents that a type named HemsthresholdDev is defined in

the supplied GraphQL schema. Type is a fundamental building block used to

define the shape of data that can be queried or mutated. Its fields correspond to

characteristics of threshold data, including email, table name, threshold value,

time interval, and username. The @model directive instructs AWS AppSync

and AWS Amplify to handle this type as a model, allowing for the automatic

creation of GraphQL CRUD operations and the provisioning of DynamoDB

tables. Although it is stated that this is only for testing, the comments also

propose creating a global permission rule allowing public access to all models

224

in the schema. More particular authorization rules are advised for real-world

circumstances. The overall goals of this schema are to define the threshold data's

structure and allow for easy connection with backend services and GraphQL

operations via Amazon Amplify.

6.7.4 Create Mutation and Query

A mutation in GraphQL is used to modify threshold data on the server-side that

is the threshold energy consumption table which allows residents to perform

creating and deleting operation to data managed by the GraphQL server.

Mutations are analogous to POST, PUT, PATCH, and DELETE requests in

RESTful APIs.

export const createHemsthresholdDev = /* GraphQL */ `

 mutation CreateHemsthresholdDev($input:

CreateHemsthresholdDevInput!) {

 createHemsthresholdDev(input: $input) {

 id

 email

 table

 threshold

 timeinterval

 username

 }

 }

`;

export const deleteHemsthresholdDev = /* GraphQL */ `

225

 mutation DeleteHemsthresholdDev($input:

DeleteHemsthresholdDevInput!) {

 deleteHemsthresholdDev(input: $input) {

 id

 }

 }

`;

export const updateHemsthresholdDev = /* GraphQL */ `

 mutation UpdateHemsthresholdDev(

 $input: UpdateHemsthresholdDevInput!

 $condition: ModelHemsthresholdDevConditionInput

) {

 updateHemsthresholdDev(input: $input, condition: $condition) {

 id

 email

 table

 threshold

 timeinterval

 username

 createdAt

 updatedAt

 __typename

 }

226

 }

`;

Figure 6.7.4: GraphQL Mutation

The figure shows the GraphQL mutations are responsible for creating,

updating and deleting entries in the HemsthresholdDev GraphQL type. The

createHemsthresholdDev mutation takes an input of type

CreateHemsthresholdDevInput, which contains the necessary fields for creating

a new entry. Upon execution, it returns the created entry with fields including

id, email, table, threshold, timeinterval, and username.

The deleteHemsthresholdDev mutation takes an input of type

DeleteHemsthresholdDevInput, specifying the ID of the entry to be deleted.

When executed, it removes the entry from the HemsthresholdDev type based on

the provided ID, and it returns the deleted entry's ID as confirmation.

The updateHemsthresholdDev mutation takes an input of type

UpdateHemsthresholdDevInput, specifying the ID of the entry to be updated

and the new threshold and time interval data. When executed, it returns the

created entry with fields including id, email, table, threshold, timeinterval, and

username.

These mutations provide the necessary functionality to interact with the

HemsthresholdDev type, allowing clients to create and delete entries in the

associated DynamoDB table through the GraphQL API.

A query in GraphQL is to retrieve data from the GraphQL server which

is similar like RESTful APIs’ GET requests so that residents can use queries to

define what data they require and only receive the required data in response.

/* eslint-disable */

// this is an auto generated file. This will be overwritten

227

export const getHemsthresholdDev = /* GraphQL */ `

 query GetHemsthresholdDev($id: ID!) {

 getHemsthresholdDev(id: $id) {

 id

 email

 table

 threshold

 timeinterval

 username

 createdAt

 updatedAt

 __typename

 }

 }

`;

export const listHemsthresholdDevs = /* GraphQL */ `

 query ListHemsthresholdDevs(

 $filter: ModelHemsthresholdDevFilterInput

 $limit: Int

 $nextToken: String

) {

 listHemsthresholdDevs(

228

 filter: $filter

 limit: $limit

 nextToken: $nextToken

) {

 items {

 id

 email

 table

 threshold

 timeinterval

 username

 createdAt

 updatedAt

 __typename

 }

 nextToken

 __typename

 }

 }

`;

Figure 6.7.5: GraphQL Queries

229

This figure presents the GraphQL queries that are auto-generated and

provided by AWS AppSync for interacting with the HemsthresholdDev

GraphQL type.

The getHemsthresholdDev query retrieves a single entry from the

HemsthresholdDev type based on the provided ID. It returns fields including id,

email, table, threshold, timeinterval, username, createdAt, updatedAt, and

__typename.

The listHemsthresholdDevs query retrieves a list of entries from the

HemsthresholdDev type, optionally filtered and paginated. It returns a list of

items with fields including id, email, table, threshold, timeinterval, username,

createdAt, updatedAt, __typename, as well as pagination information such as

nextToken.

These queries enable clients to fetch data from the HemsthresholdDev

type via the GraphQL API, providing both single-item retrieval and listing

capabilities.

6.7.5 Create Retrieve, Create, Update and Delete functions in Mobile

Application

import { listHemsthresholdDevs } from './src/graphql/queries';

import { createHemsthresholdDev, deleteHemsthresholdDev } from

'./src/graphql/mutations';

 const loadThresholds = async () => {

 try {

 setLoading(true);

230

 const currentUser = await Auth.currentAuthenticatedUser();

 const username = currentUser.username;

 const thresholdData = await

API.graphql(graphqlOperation(listHemsthresholdDevs, {

 filter: {

 username: {

 eq: username,

 },

 },

 }));

 const thresholdList =

thresholdData.data.listHemsthresholdDevs.items;

 setThresholds(thresholdList);

 } catch (error) {

 console.log('Error fetching thresholds', error);

 Alert.alert('Error', 'Failed to fetch thresholds. Please try

again later.');

 } finally {

 setLoading(false);

 }

 };

 const handleCreateThreshold = async () => {

 try {

231

 setLoading(true);

 const currentUser = await Auth.currentAuthenticatedUser();

 const username = currentUser.username;

 await API.graphql(graphqlOperation(createHemsthresholdDev, {

 input: {

 username,

 threshold: newThreshold,

 timeinterval: newInterval,

 email: currentUser.attributes['email'],

 table: currentUser.attributes['website']

 }

 }));

 loadThresholds();

 setNewThreshold('');

 setNewInterval('');

 } catch (error) {

 console.log('Error creating new threshold', error);

 Alert.alert('Error', 'Failed to create threshold. Please try

again later.');

 } finally {

 setLoading(false);

 }

 };

232

 const handleRemoveThreshold = async (id) => {

 try {

 setLoading(true);

 await API.graphql(graphqlOperation(deleteHemsthresholdDev,

{ input: { id } }));

 loadThresholds();

 } catch (error) {

 console.log('Error removing threshold', error);

 Alert.alert('Error', 'Failed to remove threshold. Please try

again later.');

 } finally {

 setLoading(false);

 }

 };

const handleUpdateThreshold = async (id, newThreshold, newInterval)

=> {

 try {

 const currentUser = await Auth.currentAuthenticatedUser();

 const username = currentUser.username;

 await API.graphql(graphqlOperation(updateHemsthresholdDev, {

 input: {

 id,

233

 username,

 threshold: newThreshold,

 timeinterval: newInterval,

 }

 }));

 loadThresholds();

 } catch (error) {

 console.log('Error updating threshold', error);

 Alert.alert('Error', 'Failed to update threshold. Please try

again later.');

 }

Figure 6.7.6: CRUD Code for Threshold in DynamoDB

The following example of code offers several functions for handling

thresholds in a HemsthresholdDev DynamoDB table that are linked to a

particular user. The thresholds linked to the currently authorized user are

retrieved by the loadThresholds function. It first changes the loading state to

true and then uses the Amplify Auth module to retrieve the currently

authenticated user. Finally, it uses GraphQL to query the DynamoDB table and

retrieve the thresholds that the username of the current user has filtered. After

the data is fetched, the loading state is changed back to false and the retrieved

thresholds are set in the component's state.

The function handleCreateThreshold is in charge of establishing a new

threshold. It obtains the currently authenticated user and sets the loading state

to true, just like loadThresholds. Then, in order to add a new threshold item to

the DynamoDB table, it calls the createHemsthresholdDev GraphQL mutation

234

operation. The username of the user, the new threshold value (newThreshold),

the time interval, the email address of the user obtained from the current user's

attributes, and the table name obtained from the user's website attribute are the

input parameters for this mutation. It resets the new threshold and interval state

variables and uses the loadThresholds function to reload the thresholds after

they have been created successfully.

The function handleRemoveThreshold eliminates threshold connected

to a certain ID. Like the previous functions, it initializes the loading state to true

and uses the supplied ID to trigger a GraphQL mutation operation

(deleteHemsthresholdDev) that removes the threshold from the DynamoDB

table. It uses the loadThresholds function to reload the thresholds following the

threshold's successful removal.

The function handleUpdateThreshold is responsible for updating a

threshold associated with a specific ID. It follows a similar pattern to previous

functions, starting by fetching the currently authenticated user and extracting

their username. Then, it performs a GraphQL mutation operation

(updateHemsthresholdDev) to update the threshold in the DynamoDB table.

The mutation operation includes the ID of the threshold, the username of the

current user, the new threshold value (newThreshold), and the new time interval

(newInterval).

After successfully updating the threshold, it calls the loadThresholds

function to reload the thresholds to ensure that the UI reflects the updated state.

However, if an error occurs during the process, it catches the error and displays

an alert message informing the user that the update failed, prompting them to

try again later.

235

6.7.6 Create Identity via AWS SES

Figure 6.7.7: Identities Created in AWS SES

This figure illustrates the identities created for sending threshold notifications

via AWS SES email. These identities are essential for establishing sender

reputations and ensuring successful email delivery. By configuring these

identities within AWS SES, such as verifying email addresses or domains, users

can authorize SES to send emails on their behalf. This process enhances email

deliverability and reduces the likelihood of emails being marked as spam by

recipient servers. After setting up an identity with a specific email, this email

can be used to send email notifications to other emails about the threshold

information later.

6.7.7 Create AWS Lambda Function to Detect Threshold and Send

Email Notification

const AWS = require('aws-sdk');

AWS.config.update({ region: 'us-east-1' });

const ddb = new AWS.DynamoDB.DocumentClient();

const ses = new AWS.SES({ apiVersion: '2010-12-01' });

236

exports.handler = async (event) => {

 try {

 const thresholdData = await getAllThresholdData();

 for (const rowData of thresholdData) {

 const { table, email, threshold, timeinterval, username }

= rowData;

 // Calculate the time threshold for the previous time

interval

 const previousTime = Math.floor(Date.now() / 1000) -

timeinterval;

 console.log(rowData);

 console.log(new Date(previousTime *

1000).toISOString());

 const previousTimeDate = new Date(previousTime * 1000);

 const previousTimeFormatted =

`${previousTimeDate.getFullYear()}-${("0" +

(previousTimeDate.getMonth() + 1)).slice(-2)}-${("0" +

previousTimeDate.getDate()).slice(-2)} ${("0" +

previousTimeDate.getHours()).slice(-2)}:${("0" +

previousTimeDate.getMinutes()).slice(-2)}:${("0" +

previousTimeDate.getSeconds()).slice(-2)}`;

 // Define the params for the DynamoDB query to retrieve

the data for the previous time interval

 const params = {

237

 TableName: table,

 KeyConditionExpression: "Device_ID = :d_id and

#ts >= :previousTime",

 ProjectionExpression: '#ts, ApparentPower', // Use

an alias for Timestamp using ExpressionAttributeNames

 ExpressionAttributeNames: {

 "#ts": "Timestamp" // Alias for Timestamp

 },

 ExpressionAttributeValues: {

 ':previousTime': previousTimeFormatted ,

 ":d_id": 1, // Assuming Device_ID is a numeric

attribute, adjust if it's not

 }

 };

 // Query DynamoDB to retrieve the data for the previous

time interval

 const data = await ddb.query(params).promise();

 const records = data.Items;

 console.log(data);

 // Process the data and calculate the average apparent

power for the previous time interval

 if (records.length > 0) {

 let totalApparentPower = 0;

 for (const record of records) {

238

 totalApparentPower += record.ApparentPower ||

0; // If apparent power is undefined, default to 0

 }

 const averageApparentPower = totalApparentPower /

records.length;

 console.log(averageApparentPower);

 if (averageApparentPower > threshold) {

 await

sendEmailNotification({ averageApparentPower, username, email });

 }

 }

 }

 return {

 statusCode: 200,

 body: JSON.stringify('Event processed successfully'),

 };

 } catch (error) {

 console.error('Error processing event:', error);

 return {

 statusCode: 500,

 body: JSON.stringify('Error processing event'),

 };

 }

239

};

async function getAllThresholdData() {

 const params = {

 TableName: 'HemsthresholdDev-arhor534effbdfyibnvcawiq6u-

dev'

 };

 try {

 const data = await ddb.scan(params).promise();

 return data.Items;

 } catch (error) {

 console.error('Error retrieving threshold data:', error);

 return [];

 }

}

async function sendEmailNotification(data) {

 const thresholdExceededMessage = `The average apparent power

over the previous time interval has exceeded the threshold for user

${data.username}. Threshold: ${data.threshold}. Average Apparent

Power: ${data.averageApparentPower}`;

 const emailParams = {

 Destination: {

240

 ToAddresses: [data.email]

 },

 Message: {

 Body: {

 Text: {

 Data: thresholdExceededMessage

 }

 },

 Subject: {

 Data: 'Threshold Exceeded Notification'

 }

 },

 Source: '1742kexin.wong@1utar.my'

 };

 try {

 await ses.sendEmail(emailParams).promise();

 console.log('Email sent successfully');

 } catch (error) {

 console.error('Error sending email:', error);

 throw error;

 }

}

241

Figure 6.7.8: Lambda Function to Detect Threshold

This figure shows AWS Lambda function to monitor energy consumption data

stored in a DynamoDB table and send email notifications when the average

apparent power exceeds predefined thresholds for individual users. Upon

invocation, the function retrieves threshold data for all users and iterates through

each record, querying DynamoDB to fetch energy consumption data for a

specified time interval. If the average apparent power exceeds the threshold, an

email notification is composed and sent using the Simple Email Service (SES).

Error handling is included to manage any exceptions during processing,

ensuring robust operation. Overall, this function provides a proactive approach

to notify users of high energy consumption levels, facilitating timely awareness

and potential mitigation actions.

6.7.8 Set CloudWatch Rule to trigger AWS Lambda Function

Periodically

Figure 6.7.9: CloudWatch Rule Setting

242

Based on the figure, the configuration interface for AWS EventBridge

Scheduler, a schedule named "hems" is being established to trigger a Lambda

function for detecting threshold periodically. The schedule, set within the

'Default' group, is defined as a rate-based schedule with a frequency of every 30

minutes. This schedule is designed to invoke a Lambda function that detects

threshold breaches and sends email notifications accordingly. The time zone is

specified as "(UTC+08:00) Asia/Kuala_Lumpur" to align with the desired time

zone. Additionally, there is an option to configure a flexible time window,

although it's currently set to "Off" in this setup. This schedule is set to start on

April 11, 2024, and continue indefinitely, as no end date is specified.

Figure 6.7.10: CloudWatch Rule Schedule Details

This figure shows the created rule in AWS CloudWatch which will be

invoked each 30 minutes to check the thresholds of different residents and send

email notifications to them if the energy consumption data exceed the thresholds.

243

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter describes various testing methodologies carried out within project

including Unit Testing, Integration Testing, System Testing, Code Quality

Analysis and System Usability Scale Evaluation.

7.2 Unit Testing

The Jest testing framework are used to test the React Native mobile application

in this project to write unit tests and snapshot tests to ensure the correctness and

reliability of the project code. The unit testing conducted covers a range of

scenarios, such as rendering components correctly, navigating between screens,

handling user input, calling external functions, and logging errors, to provide

comprehensive coverage of the project functionalities and prove its reliability

and robustness. Manual testing is also used to test both mobile application and

web-based dashboard to maximize code testing coverage.

Mobile Application

Table 7.2.1: Unit Test Case for Register Screen 1

Test Case ID UC001

Related FR ID FR001

Test Case Navigate to RegisterScreen when SignUp button is

pressed

Test Case

Description

This test case verifies the navigate function is called

with the parameter 'RegisterScreen' when the Sign Up

button is pressed.

244

Test Steps
• Render the Login component.

• Press the Sign Up button.

Expected Result The navigate function should be called with the

parameter 'RegisterScreen'.

Status Pass

Table 7.2.2: Unit Test Case for Register Screen 2

Test Case ID UC002

Related FR ID FR001

Test Case SignUpPage - Call signUpAWS Functionality

Test Case

Description

This test case verifies that the SignUpPage component

correctly calls the signUpAWS function from the aws-

amplify library with the provided email and password

when the Sign Up button is pressed.

Test Steps
• Mock the aws-amplify library using Jest to

provide custom implementations for the signIn

and signUp functions.

• Render the SignUpPage component using the

render function from @testing-library/react-

native.

• Simulate user input by changing the text in the

email and password input fields to

'test@example.com' and 'password123'

respectively.

• Simulate a button press on the Sign Up button.

• Verify that the Auth.signUp function is called

with the following parameters:

username: 'test@example.com'

245

password: 'password123'

attributes: { email: 'test@example.com' }

autoSignIn: { enabled: false }

Expected Result The SignUpPage component should call the

Auth.signUp function with the provided email and

password when the Sign Up button is pressed, ensuring

that the signUp functionality functions correctly.

Status Pass

Table 7.2.3 : Unit Test Case for Login Screen 1

Test Case ID UC003

Related FR ID FR002

Test Case Navigate to LoginScreen

Test Case

Description

This test case verifies that when the button on the

StartScreen is pressed, it navigates to the LoginScreen

component as expected.

Test Steps
• Render the StartScreen component.

• Locate the start image by testID.

Verify that the start image is rendered.

• Locate the title element containing the text

"Welcome to the HEMS".

• Locate the subtitle element containing the text

"Push the Button Below to Begin".

• Verify that both the title and subtitle are

rendered.

• Simulate a press event on the button element

labeled "Begin".

246

Expected Result Pressing the "Begin" button should trigger navigation to

the LoginScreen component.

Status Pass

Table 7.2.4: Unit Test Case for Login Screen 2

Test Case ID UC004

Related FR ID FR002

Test Case Renders Login Screen Components

Test Case

Description

This test case verify that the Login component renders

the textInput fields of username and password and Sign

In and Sign Up buttons.

Test Steps
• Render the Login component.

• Locate the username TextInput field.

• Locate the password TextInput field.

• Locate the Sign In button.

• Locate the Sign Up button.

Expected Result The Login component should render the username and

password TextInput fields, along with the Sign In and

Sign Up buttons.

Status Pass

Table 7.2.5: Unit Test Case for Login Screen 3

Test Case ID UC005

Related FR ID FR002

247

Test Case Calls signIn function with username and password

Test Case

Description

This test case verifies that the signIn function is called

with the provided username and password when the

Sign In button is pressed.

Test Steps
• Render the Login component.

• Enter a username into the username TextInput

field.

• Enter a password into the password TextInput

field.

• Press the Sign In button.

Expected Result The signIn function should be called with the entered

username and password.

Status Pass

Table 7.2.6: Unit Test Case for Login Screen 4

Test Case ID UC006

Related FR ID FR002

Test Case Does not call signIn function when SignIn button is

pressed with empty fields

Test Case

Description

This test case verifies that the signIn function is not

called when the Sign In button is pressed with empty

username and password fields.

Test Steps
• Render the Login component.

• Press the Sign In button without entering any

username or password.

Expected Result The signIn function should not be called.

248

Status Pass

Table 7.2.7: Unit Test Case for Login Screen 5

Test Case ID UC007

Related FR ID FR002

Test Case Logs an error when signIn throws an error

Test Case

Description

This test case verifies that an error is logged when the

signIn function throws an error.

Test Steps
• Render the Login component.

• Enter a username and password into the

respective TextInput fields.

• Press the Sign In button, causing the signIn

function to throw an error.

Expected Result An error should be logged indicating the failure to sign

in.

Status Pass

Table 7.2.8: Unit Test Case for Real Time Graph

Test Case ID UC008

Related FR ID FR003

Test Case RealTimeGraph - Render Correctly with Non-empty

receivedData

Test Case

Description

This test case verifies that the RealTimeGraph

component renders correctly when the receivedData

prop is not empty.

249

Test Steps
• Mock the Date object to return a fixed time

('2024-04-13T17:32:27Z') using jest.spyOn and

Date.now.

• Define the receivedData array containing mock

data points with timestamps and values.

• Render the RealTimeGraph component with the

mock receivedData using the render function

from '@testing-library/react-native'.

• Locate the text element displaying the timestamp

in the rendered component.

• Use the expected date string 'April 13th 2024,

11:02:27 PM' in the 'Asia/Kolkata' timezone.

Expected Result The RealTimeGraph component should render correctly

with the provided receivedData, and the timestamp

should be displayed in the expected format ('April 13th

2024, 11:02:27 PM').

Status Pass

Table 7.2.9: Unit Test Case for Home Screen

Test Case ID UC009

Related FR ID FR003

Test Case Renders HomeScreen without crashing

Test Case

Description

This test case verifies that the HomeScreen component

renders without crashing.

Test Steps
• Create a snapshot of the HomeScreen

component using react-test-renderer.

• Convert the snapshot to JSON format.

250

• Verify that the JSON representation of the

HomeScreen component is truthy, indicating that

the component rendered successfully.

Expected Result The JSON representation of the HomeScreen

component should be truthy.

Status Pass

Table 7.2.10: Unit Test Case for Historical Energy Consumption Screen

Test Case ID UC0010

Related FR ID FR004

Test Case Renders Energy Consumption Screen without crashing

Test Case

Description

This test case verifies that the Energy Consumption

Screen component renders without crashing.

Test Steps
• Create a snapshot of the Energy Consumption

Screen using react-test-renderer.

• Convert the snapshot to JSON format.

• Verify that the JSON representation of the

Energy Consumption Screen component is

truthy, indicating that the component rendered

successfully.

Expected Result The JSON representation of the Energy Consumption

Screen component should be truthy.

Status Pass

251

Table 7.2.11: Unit Test Case for Energy Monitoring Screen

Test Case ID UC011

Related FR ID FR005, FR006

Test Case Renders Energy Monitoring Screen without crashing

Test Case

Description

This test case verifies that the Energy Monitoring Screen

component renders without crashing.

Test Steps
• Create a snapshot of the Energy Monitoring

Screen using react-test-renderer.

• Convert the snapshot to JSON format.

• Verify that the JSON representation of the

Energy Monitoring Screen component is truthy,

indicating that the component rendered

successfully.

Expected Result The JSON representation of the Energy Monitoring

Screen component should be truthy.

Status Pass

Table 7.2.12: Unit Test Case for Start Screen 1

Test Case ID UC012

Related FR ID -

Test Case Render Start Screen Components

Test Case

Description

This test case verifies that the StartScreen Component

renders the start image, title, and subtitle correctly.

Test Steps
• Render the StartScreen component.

252

• Locate the start image by testID.

Verify that the start image is rendered.

• Locate the title element containing the text

"Welcome to the HEMS".

• Locate the subtitle element containing the text

"Push the Button Below to Begin".

• Verify that both the title and subtitle are

rendered.

• Simulate a press event on the button element

labeled "Begin".

Expected Result The start image, title, and subtitle should be rendered

successfully.

Status Pass

Table 7.2.13: Unit Test Case for Start Screen 2

Test Case ID UC013

Related FR ID -

Test Case Render Start Screen Components

Test Case

Description

This test case verifies that the StartScreen Component

renders the start image, title, and subtitle correctly.

Test Steps
• Render the StartScreen component.

• Locate the start image by testID.

Verify that the start image is rendered.

• Locate the title element containing the text

"Welcome to the HEMS".

• Locate the subtitle element containing the text

"Push the Button Below to Begin".

253

• Verify that both the title and subtitle are

rendered.

• Simulate a press event on the button element

labeled "Begin".

Expected Result The start image, title, and subtitle should be rendered

successfully.

Status Pass

Table 7.2.14: Unit Test Case for Setting Screen

Test Case ID UC014

Related FR ID -

Test Case Navigation Button Press

Test Case

Description

This test case verifies that the Settings component

correctly navigates to the specified screens when

navigation buttons are pressed.

Test Steps
• Render the Settings component.

• Mock navigation functions for Notifications and

Privacy screens.

• Simulate a button press on the Notifications

button.

• Verify that the navigateToNotifications function

is called.

• Simulate a button press on the Privacy button.

• Verify that the navigateToPrivacy function is

called.

Expected Result When the Notifications button is pressed, the Settings

component should navigate to the Notifications screen

by calling the navigateToNotifications function.

254

When the Privacy button is pressed, the Settings

component should navigate to the Privacy screen by

calling the navigateToPrivacy function.

Status Pass

Table 7.2.15: Unit Test Case for User Profile Screen

Test Case ID UC015

Related FR ID FR007

Test Case Renders User Profile Screen without crashing

Test Case

Description

This test case verifies that the User Profile Screen

component renders without crashing.

Test Steps
• Create a snapshot of the User Profile Screen

using react-test-renderer.

• Convert the snapshot to JSON format.

• Verify that the JSON representation of the User

Profile Screen component is truthy, indicating

that the component rendered successfully.

Expected Result The JSON representation of the User Profile Screen

component should be truthy.

Status Pass

Table 7.2.16: Unit Test Case for Help and Support Screen

Test Case ID UC016

Related FR ID -

Test Case HelpAndSupport - Render Content

255

Test Case

Description

This test case verifies that the HelpAndSupport

component renders its content correctly.

Test Steps
• Render the HelpAndSupport component.

• Locate and verify the presence of the welcome

message: "Welcome to the Help and Support Page

for our Home Energy Monitoring System."

• Locate and verify the presence of the support

contact information: "If you are experiencing any

issues with your system, please contact our

support team at support@homeenergy.com."

• Locate and verify the presence of the website link

for FAQs and troubleshooting: "For FAQs and

troubleshooting, please visit our website at

www.homeenergy.com/help."

Expected Result The HelpAndSupport component should render the

welcome message, support contact information, and

website link for FAQs and troubleshooting.

Status Pass

Table 7.2.17: Unit Test Case for Term and Policy Screen

Test Case ID UC017

Related FR ID -

Test Case Renders Term and Policy Screen without crashing

Test Case

Description

This test case verifies that the Term and Policy Screen

component renders without crashing.

Test Steps
• Create a snapshot of the Term and Policy Screen

using react-test-renderer.

• Convert the snapshot to JSON format.

256

• Verify that the JSON representation of the Term

and Policy component is truthy, indicating that

the component rendered successfully.

Expected Result The JSON representation of the Term and Policy Screen

component should be truthy.

Status Pass

Table 7.2.18: Unit Test Case for Help and Support Screen

Test Case ID UC018

Related FR ID -

Test Case Renders Help and Support Screen without crashing

Test Case

Description

This test case verifies that the Help and Support Screen

component renders without crashing.

Test Steps
• Create a snapshot of the Help and Support

Screen using react-test-renderer.

• Convert the snapshot to JSON format.

• Verify that the JSON representation of the Help

and Support component is truthy, indicating that

the component rendered successfully.

Expected Result The JSON representation of the Help and Support

Screen component should be truthy.

Status Pass

257

Table 7.2.19: Unit Test Case for Report Problem Screen

Test Case ID UC019

Related FR ID -

Test Case Renders Report Problem Screen without crashing

Test Case

Description

This test case verifies that the Report Problem Screen

component renders without crashing.

Test Steps
• Create a snapshot of the Report Problem Screen

using react-test-renderer.

• Convert the snapshot to JSON format.

• Verify that the JSON representation of the

Report Problem component is truthy, indicating

that the component rendered successfully.

Expected Result The JSON representation of the Report Problem Screen

component should be truthy.

Status Pass

Web Based Dashboard

Table 7.2.20: Unit Test Case for Web-based Dashboard Page

Test Case ID UC020

Related FR ID FR008

Test Case Renders User Dashboard Page without crashing

Test Case

Description

This test case verifies that the User Dashboard Page

component renders without crashing.

Test Steps
• Open the web application.

• Navigate to the User Dashboard Page.

258

• Observe if the page loads without any errors or

crashes.

Expected Result The User Dashboard Page should render without any

errors or crashes, displaying all necessary components

and functionality.

Status Pass

Table 7.2.21: Unit Test Case for Web-based Manage User Page

Test Case ID UC021

Related FR ID FR009

Test Case Renders Manage User Page without crashing

Test Case

Description

This test case verifies that the Manage User Page

component renders without crashing.

Test Steps
• Open the web application.

• Navigate to the Manage User Page.

• Observe if the page loads without any errors or

crashes.

Expected Result The Manage User Page should render without any errors

or crashes, displaying all necessary components and

functionality.

Status Pass

Table 7.2.22: Unit Test Case for Web-based Administrator Login Page

Test Case ID UC022

Related FR ID FR010

259

Test Case Renders Administrator Login Page without crashing

Test Case

Description

This test case verifies that the Administrator Login Page

component renders without crashing.

Test Steps
• Open the web application.

• Navigate to the Administrator Login Page.

• Observe if the page loads without any errors or

crashes.

Expected Result The Administrator Login Page should render without

any errors or crashes, displaying all necessary

components and functionality.

Status Pass

Table 7.2.23: Unit Test Case for Web-based Administrator Register Page

Test Case ID UC023

Related FR ID FR011

Test Case Renders Administrator Register Page without crashing

Test Case

Description

This test case verifies that the Administrator Register

Page component renders without crashing.

Test Steps
• Open the web application.

• Navigate to the Administrator Register Page.

• Observe if the page loads without any errors or

crashes.

Expected Result The Administrator Register Page should render without

any errors or crashes, displaying all necessary

components and functionality.

Status Pass

260

Figure 7.2.1: Result of Unit Testing

261

7.3 Integration Testing

Integration testing is done using Jest for automation testing and supplemented

with manual testing to cover integrations that are difficult to test automatically

including user interface interaction.

Mobile Application

Table 7.3.1: Integration Test Case for Login Screen

Test Case ID TC001

Test Case Submit Form and Call Auth.signIn

Test Case

Description

This test case verifies that the LoginScreen component

submits the form correctly and calls the Auth.signIn

function with the provided username and password.

Test Steps 1. Render the LoginScreen component using the

render function from @testing-library/react-

native.

2. Simulate user input by changing the text in the

username and password input fields.

3. Simulate form submission by pressing the Sign

In button.

Wait for a short delay to allow for any

asynchronous operations to complete.

Wait for the promise to resolve using the waitFor

function from @testing-library/react-native and verify

that the Auth.signIn function is called with the expected

username and password.

Test Data Email:"test@example.com"

Password: "password123"

262

Expected Result The LoginScreen component should submit the form

correctly and call the Auth.signIn function with the

provided username and password.

Status Pass

Pass criteria
1. The form submission should be simulated

correctly.

2. The Auth.signIn function should be called with

the expected username and password.

3. Any asynchronous operations should be allowed

to complete before verifying the function call.

4. The test should pass without any errors or

exceptions.

Table 7.3.2: Integration Test Case for Login Screen 2

Test Case ID TC002

Test Case Navigate to LoginScreen on ButtonPress

Test Case

Description

This test case verifies that pressing the "Begin" button

on the StartScreen component navigates the user to the

LoginScreen.

Test Steps Preconditions:

1. The application is running on a test environment.

2. The StartScreen component is rendered with the

mocked navigation object.

Test Steps:

3. Simulate a press event on the "Begin" button.

4. Capture the navigation action triggered by the

button press.

263

Test Data -

Expected Result The application should navigate the user to the

LoginScreen upon pressing the "Begin" button.

Status Pass

Pass criteria The navigate function is called with the correct screen

name.

Table 7.3.3: Integration Test Case for Register Screen

Test Case ID TC003

Test Case User Sign Up

Test Case

Description

This test case verifies that the SignUpPage component

successfully signs up a user when the "Sign Up" button

is pressed.

Test Steps Preconditions:

1. The application is running and the SignUpPage

component is loaded.

2. The aws-amplify library is properly mocked to

simulate the sign-up process.

3. The user has entered valid email and password

information into the input fields.

Test Steps:

User Interaction:

1. Enter a valid email into the email input field.

2. Enter a valid password into the password input

field.

3. Press the "Sign Up" button.

Verification:

264

4. Wait for the asynchronous operations to

complete.

5. Verify that the Auth.signUp function from the

aws-amplify library is called with the correct

parameters:

I. Username should be set to the entered email.

II. Password should match the entered password.

III. Attributes should include the entered email.

IV. Auto sign-in should be disabled.

6. Verify that the navigation function

(navigation.navigate) is called with the correct

screen name ('Confirmation') upon successful

sign-up.

Test Data Email: "test@example.com"

Password: "password123"

Expected Result The SignUpPage component should successfully trigger

the sign-up process with the provided user credentials.

Upon successful sign-up, the user should be navigated to

the 'Confirmation' screen.

Status Pass

Pass criteria The test passes if the navigate function is called with the

correct screen name.

Table 7.3.4: Integration Test Case for Home Screen

Test Case ID TC004

Test Case Renders HomeScreen correctly and opens WebSocket

connection

265

Test Case

Description

This test case verifies that the HomeScreen component

renders correctly and establishes a WebSocket connection

upon loading.

Test Steps Preconditions:

I. Mock the Auth module and the global WebSocket

object.

Test Steps:

1. Mock the Auth.currentAuthenticatedUser

function to return a user with a WebSocket

address.

2. Render the HomeScreen component.

3. Wait for the WebSocket connection to open.

4. Verify that the WebSocket connection is opened

with the correct address.

5. Verify that the text "WebSocket connection

opened" appears on the screen.

Test Data -

Expected Result The HomeScreen component renders correctly,

establishes a WebSocket connection, and displays the

appropriate text indicating that the connection has been

opened.

Status Pass

Pass criteria The test passes if the WebSocket connection is opened

with the correct address and the text "WebSocket

connection opened" is displayed on the screen.

266

Table 7.3.5 : Integration Test Case for Energy Monitoring Screen 1

Test Case ID TC005

Test Case Add Threshold Button Click

Test Case

Description

This test case verifies that a new threshold is added when

the "Add Threshold" button is clicked.

Test Steps
1. Render the EnergyMonitorPage component.

2. Simulate user input for new threshold and

interval.

3. Click the "Add Threshold" button.

4. Wait for component to finish rendering and

async operations to complete.

Test Data New threshold value: '50'

New interval value: '10'

Expected Result The threshold with the value of '50' should be added to

the list.

Status Pass

Pass criteria The test case passes if the threshold with the value of '50'

is successfully added to the list after the component

finishes rendering.

Table 7.3.6: Integration Test Case for Energy Monitoring Screen 2

Test Case ID TC006

Test Case Component Render and loadThresholds Call

Test Case

Description

This test case ensures that the component renders

without crashing and calls the loadThresholds function

on mount.

267

Test Steps
1. Render the EnergyMonitorPage component.

2. Wait for component to finish rendering and async

operations to complete.

Test Data -

Expected Result The component should render successfully without any

errors, and the loadThresholds function should be called

once during mount.

Status Pass

Pass criteria The test case passes if the component renders without

errors and the loadThresholds function is called once

during mount.

Table 7.3.7: Integration Test Case for User Profile Screen

Test Case ID TC007

Test Case Navigation to Edit Profile

Test Case

Description

This test case verifies if clicking "Edit Profile" navigates

to profile screen

Test Steps
1. Render the Settings component.

Test Data -

Expected Result The Settings component should be rendered. "Edit

Profile" button should be present.

Status Pass

Pass criteria Navigation to profile screen is successful.

268

Table 7.3.8: Integration Test Case for Logout

Test Case ID TC008

Test Case Logout

Test Case

Description

This test case verifies if clicking "Log out" logs the user

out.

Test Steps
1. Render the Settings component.

2. Press Logout button.

3. Navigate to Login page.

Test Data -

Expected Result The Settings component should be rendered.

"Log out" button should be present.

The Login component should be rendered.

Status Pass

Pass criteria User is logged out successfully.

Table 7.3.9: Integration Test Case for Historical Energy Consumption Screen

Test Case ID TC009

Test Case Display Month Year Energy Consumption Data

Test Case

Description

This test case verifies that the MonthYear component

displays energy consumption data for the selected month

and year.

Test Steps
1. Navigate to the manageEnergyConsumption

page.

2. Ensure that energy consumption data for the

current month and year is displayed.

269

3. Toggle between viewing weekly and monthly

energy consumption data.

4. Verify that the chart updates accordingly to

display the selected time frame.

5. Click on a data point on the chart.

6. Verify that a pop-up displays the energy

consumption for the selected date.

7. Optionally, navigate to the settings to check if the

most frequent period and total carbon emissions

are displayed correctly.

Test Data -

Expected Result The manageEnergyConsumption component should

render without errors.

Energy consumption data for the current month and year

should be displayed.

The chart should update dynamically when toggling

between weekly and monthly views.

Clicking on a data point on the chart should display a

pop-up showing the energy consumption for the selected

date.

The most frequent period and total carbon emissions

should be displayed correctly in the settings section.

Status Pass

Pass criteria The manageEnergyConsumption component displays

energy consumption data accurately and functions as

expected.

270

Web Based Dashboard

Table 7.3.10: Integration Test Case for displaying Cognito Users Data

Test Case ID TC010

Test Case Display Cognito Users Data

Test Case

Description

This test case verifies that the Cognito users page

displays user data correctly.

Test Steps
1. Navigate to the Cognito users page.

2. Check if the user data is displayed in the table.

Test Data Sample Cognito user data:

- User 1:

 - Username: user1

 - Email: user1@example.com

 - Address: 123 Main St

 - Website: http://example.com

- User 2:

 - Username: user2

 - Email: user2@example.com

 - Address: 456 Elm St

 - Website: http://example.org

Expected Result The Cognito users page should render without errors and

display the user data.

Status Pass

271

Pass criteria The Cognito users page displays user data accurately

and functions as expected.

Table 7.3.11: Integration Test Case for Dashboard Component

Test Case ID TC011

Test Case Verify Integration of User Dashboard Components

Test Case

Description

This test case verifies that the integration of user data,

chart visualization, and dynamic content in the User

Dashboard.

Test Steps
1. Open a web browser.

2. Navigate to the URL of the User Dashboard

page.

3. Observe the layout and elements of the User

Dashboard.

4. Verify the presence and accuracy of user

attributes.

5. Validate the correctness of additional

information.

6. Confirm the presence and functionality of the

daily energy consumption chart.

7. Confirm the presence and functionality of the

monthly energy consumption chart.

Test Data -

Expected Result User attributes, including Username, WebsocketAPI,

and DynamoDB table name, should be displayed

accurately.

Most Frequent Period and Total Carbon Emissions

should be displayed correctly.

272

The daily chart should display accurate energy

consumption data for each day.

The monthly chart should display accurate energy

consumption data for each month.

Status Pass

Pass criteria The User Dashboard page should display user attributes,

additional information, and energy consumption charts

accurately.

Table 7.3.12: Integration Test Case for Register Administrator Account

Test Case ID TC012

Test Case Register Form Integration Test

Test Case

Description

This test case verifies that the integration of the

registration form with the application backend.

Test Steps
1. Open a web browser.

2. Navigate to the URL of the registration page.

3. Fill in the registration form with valid data.

4. Submit the registration form.

5. Verify the registration process by checking the

database.

6. Attempt to register with invalid data (e.g.,

missing required fields, invalid email format,

weak password).

Test Data - Name: "John Doe"

 - Email: "johndoe@example.com"

 - Password: "Password123"

273

Expected Result The form should be submitted successfully without

errors, and the user should be redirected to the Cognito

user page.

Status Pass

Pass criteria Valid user data submitted through the registration form

should result in the creation of a new user account.

Invalid or incomplete data submission should trigger

appropriate error messages.

Table 7.3.13: Integration Test Case for Login Administrator

Test Case ID TC013

Test Case Login Functionality Test

Test Case

Description

This test case verifies that the login functionality works

as expected by allowing users to log in with valid

credentials.

Test Steps
1. Visit the login page.

2. Enter valid email address and password.

3. Click on the "Login" button.

4. Verify the redirection to the Cognito user page.

Test Data Valid email address: test@example.com

Valid password: password123

Expected Result The form should be submitted successfully without

errors, and the user should be redirected to the Cognito

user page.

274

Status Pass

Pass criteria The user successfully logs in and is redirected to the

Cognito user page without any errors.

Figure 7.3.1: Result of Integration Testing

275

7.4 System Testing

Table 7.4.1: System Test Case for Create User Account

Test Case ID: 1

Test Case: Create user account

Test Steps:
1. Press Sign Up button in Login Page.

2. Go to Register Page.

3. Fill in valid Email and Password.

4. Press Sign Up button.

5. Go to Confirmation Page.

6. Get Confirmation Code from email.

7. Fill in Confirmation Code.

8. Press Confirm Account button.

Test Result Expected Result Actual Result

1. Account has been

created and can be used

to sign in account.

2. User returned to Sign

In page automatically

after clicking Confirm

Account button.

1. Account has been

created and can be

used to sign in

account.

2. User returned to

Sign In page

automatically

after clicking

Confirm Account

button.

276

Table 7.4.2: System Test Case for Login User Account

Test Case ID: 2

Test Case: Login user account

Test Steps:
1. Press Begin button in Start Page.

2. Go to Sign In Page.

3. Fill in valid Email and Password.

4. Press Sign In button.

5. Go to Home Page.

Test Result Expected Result Actual Result

Navigate to Home Page. Navigate to Home

Page.

Table 7.4.3: System Test Case for Displaying Real Time Energy Consumption

Test Case ID: 3

Test Case: Display Real Time Energy Consumption Home Page

Test Steps:
1. Go to Home Page.

2. Wait for Connecting… text changed to WebSocket

connection opened.

Test Result Expected Result Actual Result

Real time energy consumption

graph is shown in Home Page.

Real time energy

consumption graph is

shown in Home Page.

Table 7.4.4: System Test Case for Viewing Historical Energy Consumption

Test Case ID: 4

277

Test Case: Historical Energy Consumption Data Fetching

Test Steps:
1. Verify that the component fetches weekly, monthly

energy consumption data, and total carbon

emissions data from the appropriate APIs.

2. Check that the fetched data is stored correctly in the

component state.

Test Result Expected Result Actual Result

The component fetches data

from APIs and stores it

correctly in the component

state.

The component

fetches data from

APIs and stores it

correctly in the

component state.

Table 7.4.5: System Test Case for Showing Weekly Energy Consumption

Test Case ID: 5

Test Case: Show Weekly Energy Consumption Chart

Test Steps:
1. Press tab navigation historical energy consumption

icon.

2. Go to Historical Energy Consumption Page.

3. Verify that the LineChart component displays the

correct data points based on the fetched weekly

data.

Test Result Expected Result Actual Result

The LineChart component

displays the correct data points

and updates the chart title

appropriately.

The LineChart

component displays the

correct data points and

updates the chart title

appropriately.

278

Table 7.4.6: System Test Case for Showing Monthly Energy Consumption

Test Case ID: 6

Test Case: Show Monthly Energy Consumption Chart

Test Steps:
1. Press tab navigation historical energy

consumption icon.

2. Go to Historical Energy Consumption Page.

3. Press View Monthly button to switch to display

monthly energy consumption data.

4. Verify that the LineChart component displays the

correct data points based on the fetched monthly

data.

Test Result Expected Result Actual Result

The LineChart component

displays the correct data points

and updates the chart title

appropriately.

The LineChart

component displays the

correct data points and

updates the chart title

appropriately.

Table 7.4.7: System Test Case for Historical Energy Consumption Data Point

Test Case ID: 7

Test Case: Historical Energy Consumption Data Point Click

Test Steps:
1. Press tab navigation historical energy consumption

icon

2. Go to Historical Energy Consumption Page

3. Click on a data point on the Weekly Energy

Consumption Chart and verify that an alert

displays the correct energy consumption value for

that date

Test Result Expected Result Actual Result

279

Clicking on a data point on the

Weekly Energy Consumption

Chart displays an alert with the

correct energy consumption

value.

Clicking on a data point

on the Weekly Energy

Consumption Chart

displays an alert with

the correct energy

consumption value.

Table 7.4.8: System Test Case for Most Frequent Period

Test Case ID: 8

Test Case: Most Frequent Period Display

Test Steps:
1. Press tab navigation historical energy

consumption icon

2. Go to Historical Energy Consumption Page

3. Verify that the most frequent period (e.g.,

morning, afternoon) is displayed correctly when

viewing monthly data

4. Check that the icon displayed next to the most

frequent period corresponds to the expected

period (e.g., sun icon for morning, moon icon for

night)

Test Result Expected Result Actual Result

The most frequent period is

displayed correctly with the

appropriate icon

The most frequent

period is displayed

correctly with the

appropriate icon

280

Table 7.4.9: System Test Case for Total Carbon Emission Fetching

Test Case ID: 9

Test Case: Total Carbon Emissions Display

Test Steps:
1. Press tab navigation historical energy

consumption icon.

2. Go to Historical Energy Consumption Page

3. Press View Monthly button.

4. Verify that the total carbon emissions value is

displayed correctly when viewing monthly

data.

5. Check that the unit of measurement (tons) is

displayed along with the total carbon

emissions value.

Test Result Expected Result Actual Result

The total carbon emissions

value is displayed

correctly with the unit of

measurement.

The total carbon

emissions value is

displayed correctly with

the unit of

measurement.

Table 7.4.10: System Test Case for Fetching User Data

Test Case ID: 10

Test Case: User Data Fetching

Test Steps:
1. Press tab navigation user profile icon.

2. Go to User Profile Page.

3. Check if user data (username, name,

DynamoDB table name) is fetched and

displayed correctly.

Test Result Expected Result Actual Result

281

1. User data

(username, name,

DynamoDB table

name) is fetched

and displayed

correctly.

1. User data

(username, name,

DynamoDB table

name) is fetched and

displayed correctly.

Table 7.4.11: System Test Case for Updating User Data

Test Case ID: 11

Test Case: Update Name

Test Steps:
1. Press tab navigation user profile icon.

2. Go to User Profile Page.

3. Click on the Update Name button.

4. Enter a new name in the input field.

5. Click on the Confirm button.

6. Check if the name is updated successfully.

Test Result Expected Result Actual Result

1. Username is

updated

successfully.

1. Username is

updated successfully.

Table 7.4.12: System Test Case for Updating User DynamoDB Table

Test Case ID: 12

Test Case: Update DynamoDB Table Name

Test Steps:
1. Press tab navigation user profile icon.

2. Go to User Profile Page.

3. Click on the Update DynamoDB Table

Name button.

282

4. Enter a new DynamoDB table name in the

input field.

5. Click on the Confirm button.

6. Check if the DynamoDB table name is

updated successfully.

Test Result Expected Result Actual Result

The DynamoDB table

name is updated

successfully.

The DynamoDB table

name is updated

successfully.

Table 7.4.13: System Test Case for Loading Threshold

Test Case ID: 13

Test Case: Load Thresholds

Test Steps:
1. Press tab navigation energy monitor icon.

2. Go to Energy Monitor Page.

3. Check if thresholds are fetched and

displayed correctly in the list.

Test Result Expected Result Actual Result

The thresholds are

fetched and displayed

correctly in the list.

The thresholds are

fetched and displayed

correctly in the list.

Table 7.4.14: System Test Case for Create Threshold

Test Case ID: 14

Test Case: Create Threshold Test

Test Steps:
1. Press tab navigation energy monitor icon

2. Go to Energy Monitor Page

3. Enter a new threshold value and interval in

the input fields

283

4. Click on the Add Threshold button

5. Check if the new threshold is added to the

list and displayed correctly

Test Result Expected Result Actual Result

The new threshold is

added to the list and

displayed correctly.

The new threshold is

added to the list and

displayed correctly.

Table 7.4.15: System Test Case for Remove Threshold

Test Case ID: 15

Test Case: Remove Threshold Test

Test Steps:
1. Press tab navigation energy monitor icon

2. Go to Energy Monitor Page

3. Enter a new threshold value and interval in

the input fields

4. Click on the Delete button next to a

threshold in the list

5. Check if the selected threshold is removed

from the list

Test Result Expected Result Actual Result

The selected threshold is

removed from the list.

The selected threshold is

removed from the list.

Table 7.4.16: System Test Case for Edit Threshold

Test Case ID: 16

Test Case: Edit Threshold Test

Test Steps:
1. Press tab navigation energy monitor icon.

2. Go to Energy Monitor Page.

284

3. Press Update button next to a threshold in

the list.

4. Enter updated threshold value and time

interval value.

5. Check if the selected threshold is updated

from the list.

Test Result Expected Result Actual Result

The selected threshold is

updated from the list.

The selected threshold is

updated from the list.

Web Based Dashboard

Table 7.4.17: System Test Case for View User Cognito Data

Test Case ID: 17

Test Case: Verify Display of Cognito Users Data

Test Steps:
1. Open a web browser.

2. Navigate to the URL of the Cognito Users page.

3. Observe the page layout and elements.

4. Confirm the presence and accuracy of user data

within the table.

5. Validate the functionality of the "Edit" button

for each user.

6. Verify the functionality of the "Delete" button

for each user.

7. Evaluate the functionality of the "Dashboard"

button for each user.

Test Result Expected Result Actual Result

1. The table correctly

showcases user

data, including

usernames, email

addresses,

1. The table correctly

showcases user

data, including

usernames, email

addresses,

285

addresses, and

website URLs.

2. Clicking the

"Edit" button

enables inline

editing of the

user's address and

website fields.

3. Selecting the

"Delete" button

prompts a

confirmation

modal, seeking

user confirmation

for deleting the

corresponding

user. The user

should be

successfully

deleted.

4. Clicking the

"Dashboard"

button redirects

the user to their

respective

dashboard page.

addresses, and

website URLs.

2. Clicking the

"Edit" button

enables inline

editing of the

user's address and

website fields.

3. Selecting the

"Delete" button

prompts a

confirmation

modal, seeking

user confirmation

for deleting the

corresponding

user. The user

should be

successfully

deleted.

4. Clicking the

"Dashboard"

button redirects

the user to their

respective

dashboard page.

Table 7.4.18: System Test Case for User Dashboard Functionalities

Test Case ID: 18

Test Case: User Dashboard Functionality Verification

286

Test Steps:
1. Open a web browser.

2. Click the specific user dashboard in Cognito

user page.

3. Navigate to the URL of the User Dashboard

page.

4. Observe the layout and elements of the User

Dashboard.

5. Verify the functionality of the daily and monthly

energy consumption charts.

Test Result Expected Result Actual Result

1. User attributes,

including

Username,

WebsocketAPI,

and DynamoDB

table name, should

be displayed

accurately.

2. Most Frequent

Period and Total

Carbon Emissions

should be

displayed correctly

as per the provided

data.

3. The daily and

weekly charts

should visualize

energy

consumption data

effectively, and

clicking on data

points should

1. User attributes,

including

Username,

WebsocketAPI,

and DynamoDB

table name, should

be displayed

accurately.

2. Most Frequent

Period and Total

Carbon Emissions

should be

displayed correctly

as per the provided

data.

3. The daily and

weekly charts

should visualize

energy

consumption data

effectively, and

clicking on data

points should

287

provide relevant

details.

provide relevant

details.

Table 7.4.19: System Test Case for Login

Test Case ID: 19

Test Case: Login Test

Test Steps:
1. Open a web browser.

2. Navigate to the login page of the application.

3. Check if the login page is displayed correctly

with the appropriate form fields for email

address, password, and "Remember Me" option.

4. Attempt to log in with valid user credentials.

5. Verify that the login process is successful, and

the user is redirected to the Cognito user page.

6. Check if the "Forgot Your Password?" link is

visible on the login page.

7. Attempt to log in with invalid credentials.

8. Verify that appropriate error messages are

displayed for invalid login attempts.

9. Check if the "Remember Me" functionality

persists the user's session across browser

sessions.

10. Log out from the application.

11. Verify that the user is redirected to the login

page after logging out.

Test Result Expected Result Actual Result

The system should

function correctly which

allows users to log in with

valid credentials and

displaying appropriate

The system functioned

correctly which allows

users to log in with valid

credentials and displaying

appropriate error

288

error messages for invalid

login attempts.

messages for invalid login

attempts.

7.5 Code Quality Analysis

Code quality analysis examines various aspects of the project code, including

security, reliability, maintainability, and duplications. SonarCloud is a cloud-

based code analysis service provided by SonarSource that allows developers to

continuously inspect the quality of their code by identifying bugs,

vulnerabilities, code smells, and other issues that may affect the security,

reliability, and maintainability of the software. It is implemented in this project

to conduct continuous code quality reviews by analyzing the code quality

continuously inside GitHub. SonarCloud will automatically re-examine the

code when changes are detected in GitHub when it detects the latest changes.

The figure displays the code quality analysis score, which evaluates

various aspects such as security, reliability, and maintainability. In this system,

full A grades were achieved in maintainability, security, and reliability,

indicating high performance in these areas. Additionally, the system

demonstrates a low duplication rate of code, at only 0.6%. This suggests that the

system performs exceptionally well in upholding requirements for code quality,

guaranteeing strong security procedures, and offering dependable software. A

low incidence of duplication indicates that the code is well-organized and free

of superfluous repetition, which improves readability and maintainability.

289

Figure 7.5.1: Result of Code Quality Analysis

290

7.6 System Usability Scale Evaluation

System Usability Scale evaluation is performed by administering a

questionnaire to users after they interact with this project system. This

systematic and reliable evaluation can be utilized to examine system usability

which aims to surpass the 68-mark industry standard and achieve high usability

readiness by evaluating the system usability score based on data collected from

novice and expert users (Thomas, 2020). Novice users found for this project

evaluation are individuals who are new to home energy monitoring systems and

have never used the myTNB app provided by TNB before. They have basic

knowledge of energy monitoring but lack proficiency in using such a system.

Clear guidance and instructions are given before using the developed system

due to their limited technical expertise in related systems. Besides, the expert

users found for evaluation are those who have extensive experience with home

energy monitoring systems and possess a deep understanding of energy

monitoring concepts. They are more interested and focus on the backend

configuration and the IoT devices used in this project instead of the user

interface. The SUS questionnaire prepared consists of 10 statements for users to

rate their agreement level on a scale from 1 to 5, with options ranging from

“Strongly Disagree” to Strongly Agree”. The questionnaire is listed below:

Table 7.6.1: System Usability Scale Evaluation Questions

 Question Strongly

Disagree

1

2 3 4 Strongly

Agree

5

1 I think that I would like

to use this system

frequently.

2 I found the system

unnecessarily complex.

291

3 I thought the system was

easy to use.

4 I think that I would need

the support of a technical

person to be able to use

this system.

5 I found the various

functions in this system

were well integrated.

6 I thought there was too

much inconsistency in

this system.

7 I would imagine that

most people would learn

to use this system very

quickly.

8 I found the system very

cumbersome to use.

9 I felt very confident

using the system.

10 I needed to learn a lot of

things before I could get

going with this system.

292

Next, these scores are transformed and aggregated to measure the usability of

this project by formula below:

1. Adjust the score for odd-numbered questions by subtracting 1 from the

user’s score and for even-numbered questions by subtracting the user’s

score from 5.

2. Calculate the total score.

3. Multiply the total score by 2.5 to scale it to a range of 0 to 100.

System Usability Scale Evaluation Result

Table 7.6.2: System Usability Scale Evaluation Result

Question

s

Evaluators Averag

e

 Novic

e 1

Novic

e 2

Novic

e 3

Exper

t 1

Exper

t

2

Exper

t

3

1. 3 4 3 3 4 3 3.3/4.0

2. 3 3 2 3 4 3 3.0/4.0

3. 4 3 4 4 4 3 3.7/4.0

4. 4 4 4 2 3 4 3.5/4.0

5. 3 4 2 4 3 3 3.2/4.0

6. 2 4 3 4 2 3 3.0/4.0

7. 4 2 4 3 4 3 3.3/4.0

8. 4 3 4 3 4 4 3.7/4.0

9. 4 4 3 3 2 4 3.3/4.0

10. 3 2 2 4 3 4 3.0/4.0

Total 34 33 31 33 33 34 33.0/

40.0

SUS

Score

85.0 82.5 75.0 82.5 82.5 85.0 82.5

The average system usability scale score is 82.50 which is higher than the

industry standard of 68 indicating that the system is good enough for normal

293

user and expert user to use without any issue. The result of system usability

evaluation is attached as Appendix C.

 All of these tests, including unit testing, integration testing, and system

testing for the mobile application and web-based dashboard, passed completely

with no errors detected. Additionally, the system usability scale score of 82.50

fulfils the objective of the project.

294

CHAPTER 8

8 CONCLUSION

8.1 Conclusions

The project objectives defined in this project were successfully achieved on time

with the completion of both the mobile application and a web-based dashboard.

The first objective is to determine project requirements and analyse

existing home energy monitoring systems that fulfil company needs. This

objective is achieved through the internship program by being involved in the

industry-linked company project related to home energy monitoring devices,

understanding the company requirements through discussion with their

employees, and learning the background of the project. Besides, existing home

energy monitoring systems were investigated to know the backend algorithms

and user interface for energy consumption visualization.

The second objective is to develop a mobile application that monitors

energy usage and consumption. It was achieved by developing a mobile

application for residents. This mobile application supports features such as real-

time energy consumption monitoring, viewing historical energy consumption

data and setting threshold notifications for residents to monitor their energy

consumption data.

The third objective is to develop a web-based dashboard that visualizes

the energy consumption data of the residents. This objective was fulfilled by

developing a web-based dashboard for administrators to manage residents’ data

and visualize energy consumption data for different residents.

The last objective is to assess the functionalities of mobile application

and web-based dashboard through unit testing, integration testing, system

testing and system usability scale evaluation while aiming for less than 10%

error. This objective was achieved by incorporating users’ ratings and feedback

from SUS evaluation and collective findings from unit testing, integration

295

testing, and system testing. This contributed to achieving less than 10% error

in the evaluation process.

8.2 Recommendations

Despite this project fulfils specifications listed, there are still some limitations

in the project.

Firstly, the residents receive notifications via email that is not

convenience enough due to this project was developed using Expo for both iOS

and Android platforms. However, the push notification function can be

implemented in Android platforms but not iOS platform due to the expensive

enrolment in Apple Developer Program Membership for iOS signing

certificates to implement push notifications functionality. The push notification

in Android was removed to maintain consistency in AWS backend architecture

across different platforms. It is recommended to purchase Apple Developer

Program Membership in future to enable push notifications functionality as this

enhancement would significantly improve the suer experience by allowing

residents to receive notification directly on their mobile devices.

Next, the AI algorithm designed to predict the residents’ energy

consumption was removed from this project due to the idealistic data collected

from the energy consumption simulator is impractical for commercial use. It is

advisable to consider developing AI algorithms which predict residents’ energy

consumption data collected in DynamoDB table by developing different AI

models for specific users with different AWS resources such as AWS Artificial

Intelligence service and AWS Lambda.

Furthermore, the details analysis on residents’ energy consumption data

were not completed as this details analysis was developed inside AWS Quick

Sight. This service integrates with AWS S3 and AWS DynamoDB to retrieve

latest data automatically and display in both web and mobile component. User

can work around on own energy consumption data and select to visualize the

data in different format like Excel. However, it is removed from this project due

to budget limitation as AWS Quick Sight required around RM 114.96 ringgit

monthly to export the chart component out for web dashboard and mobile

296

application. It is recommended to consider integrating this service with AWS

backend architecture to offer this function to user in the future.

Lastly, the total energy consumption data can be disaggregated using AI

algorithm such is Non-Intrusive Load Monitoring. Different home appliances

energy consumption data can be collected with the total energy consumption

data to train the AI model to predict the break down energy consumption of each

home appliances for further visualization of energy consumption data.

297

REFERENCES

Abdul Latif, S.N., Chiong, M.S., Rajoo, S., Takada, A., Chun, Y.Y., Tahara, K. and Ikegami,

Y., 2021. The trend and status of energy resources and greenhouse gas emissions in the

Malaysia Power Generation Mix. Energies, [e-journal] 14(8), p. 2200.

https://doi.org/10.3390/en14082200.

Ali, S. S. S., 2020. The nexus of population, GDP growth, electricity generation, electricity

consumption and carbon emissions output in Malaysia. International Journal of Energy

Economics and Policy.

Ali, S.S.S., Razman, M.R., Awang, A., Asyraf, M.R.M., Ishak, M.R., Ilyas, R.A. and Lawrence,

R.J., 2021. Critical determinants of household electricity consumption in a rapidly growing

city. Sustainability, 13(8), p.4441.

Amin, M., Shah, H. H., Fareed, A. G., Khan, W. U., Chung, E., Zia, A. and Lee, C., 2022.

Hydrogen production through renewable and non-renewable energy processes and their impact

on climate change. International Journal of Hydrogen Energy, 47(77), 33112-33134.

Apuke, O. D., 2017. Quantitative research methods: A synopsis approach. Kuwait Chapter of

Arabian Journal of Business and Management Review, 33(5471), 1-8.

Cheng, C., Wang, J., Zhou, Z., Teng, W., Sun, Z., and Zhang, B., 2022. A BRB-Based Effective

Fault Diagnosis Model for High-Speed Trains Running Gear Systems. IEEE Transactions on

Intelligent Transportation Systems, 23(1), pp. 110-121.

Dam, S. S. van, C. A. Bakker, and J. D. M. van Hal., 2010. Home Energy Monitors: Impact

over the Medium-Term. Building Research & Information, [e-journal] 38(5), 458–469.

https://doi.org/10.1080/09613218.2010.494832.

Dominicis, S., Sokoloski, R., Jaeger, C. M. and Schultz, P. W., 2019. Making the smart meter

social promotes long-term energy conservation. Palgrave Communications, 5(1).

DOSM, 2020. Household Income and Basic Amenities Survey Report 2019. [online] Malaysia:

Department of Statistics Malaysia. Available at:

<www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=TU00TmRhQ

1N5TUxHVWN0T2

298

VjbXJYZz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09> [Accessed 22

July 2023].

Fagiani, M., Bonfigli, R., Principi, E., Squartini, S. and Mandolini, L., 2019. A non-intrusive

load monitoring algorithm based on non-uniform sampling of power data and deep neural

networks. Energies, 12(7), p.1371.

Faustine, A., Mvungi, N.H., Kaijage, S. and Michael, K., 2017. A survey on non-intrusive load

monitoring methodies and techniques for energy disaggregation problem. arXiv preprint

arXiv:1703.00785.

Gunge, V. S., Yalagi, P. S., 2016. Smart home automation: a literature review. International

Journal of Computer Applications, 975(8887-8891).

Hart, G.W., 1992. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12),

pp.1870-1891.

IEA., 2022. Final consumption – Key World Energy Statistics 2021 – Analysis. [online] Paris:

International Energy Agency. Available at: <https://www.iea.org/reports/key-world-energy-

statistics-2021/final-consumption> [Accessed 10 August 2023].

IEA., 2022. Electricity Information - Data product, IEA. [online] Paris: International Energy

Agency. Available at: <https://www.iea.org/data-and-statistics/data-product/electricity-

information> [Accessed: 10 August 2023].

IEA, 2023. International Energy Agency. [online] Paris: International Energy Agency.

Available at: <https://www.iea.org/countries> [Accessed 22 July 2023].

Janardhana, S. and Deekshit Shashikala, M. S., 2016. Challenges of smart meter systems.

International Conference on Electrical, Electronics, Communication, Computer and

Optimization Techniques (ICEECCOT), pp. 78-82.

Laplante, P A., 2004. Real-time systems design and analysis[M]. New York: Wiley.

Ling, Y. M., Hamid, N. A. A., and Te Chuan, L., 2020. Is Malaysia ready for Industry 4.0?

Issues and challenges in manufacturing industry. International Journal of Integrated

Engineering, 12(7), 134-150.

299

Lee, K., Teng, W. and Hou, T., 2016. Point-n-Press: An Intelligent Universal Remote Control

System for Home Appliances. IEEE Transactions on Automation Science and Engineering,

13(3), pp. 1308-1317. http://dx.doi.org/10.1109/TASE.2016.2539381.

Lee, K., Romzi, P., Hanaysha, J., Alzoubi, H., and Alshurideh, M., 2022. Investigating the

impact of benefits and challenges of IOT adoption on supply chain performance and

organizational performance: An empirical study in Malaysia. Uncertain Supply Chain

Management, 10(2), 537-550.

Liang, J., Ng, S.K., Kendall, G. and Cheng, J.W., 2009. Load signature study—Part I: Basic

concept, structure, and methodology. IEEE transactions on power Delivery, 25(2), pp.551-

560.

Madakam, S., Ramaswamy, R., Tripathi, S., 2015. Internet of Things (IoT): A literature review.

Journal of Computer and Communications, 3(05), 164.

Malaysian Green Technology and Climate Change Centre, 2020. Energising Sustainability

Annual Report 2020. [pdf] Selangor: Malaysian Green Technology and Climate Change Centre.

Available at: < https://www.mgtc.gov.my/wp-

content/uploads/2022/06/AnnualReport2020.pdf> [Accessed 14 July 2023].

Mall, R., 2009. Real-time systems: theory and practice. Pearson Education India.

Ministry of Economy, 2023. National Energy Transition Roadmap. [online] Malaysia:

Putrajaya Ministry of Economy. Available at:

<https://www.ekonomi.gov.my/sites/default/files/2023-

09/National%20Energy%20Transition%20Roadmap_0.pdf > [Accessed 22 April 2024].

Ministry of Energy, Green Technology and Water., 2019. National Energy Efficiency Action

Plan. [pdf] Putrajaya: Prime Minister's Office of Malaysia. Available at: <

https://www.pmo.gov.my/wp-content/uploads/2019/07/National-Energy-Efficiency-Action-

Plan.pdf> [Accessed 14 July 2023].

Myces Sdn Bhd, 2023. Monitoring System (MyCES EMARS). [online] Available at:

<https://www.mycesgroup.com/service/monitoring-system/> [Accessed 3 September 2023].

300

Nasir, S. R. M., Ibrahim, A., Hassan, R., Haron, H., Hassan, S. H., Garieb, S. L. S., and Busrah,

A., 2020. Awareness and acceptance in using smart meter by energy customers in Malaysia.

Environment-Behaviour Proceedings Journal, 5(SI2), 35-41.

Nettikadan, D. and Raj, S., 2018. Smart community monitoring system using Thingspeak IoT

platform. International Journal of Applied Engineering Research, 13(17), pp.13402-13408.

Nonyelum, O. F., 2020. Iterative and incremental development analysis study of vocational

career information systems. International Journal of Software Engineering & Applications

(IJSEA), 11(5).

Norford, L.K. and Leeb, S.B., 1996. Non-intrusive electrical load monitoring in commercial

buildings based on steady-state and transient load-detection algorithms. Energy and

Buildings, 24(1), pp.51-64.

Park, S., Kim, H., Moon, H., Heo, J. and Yoon, S., 2010. Concurrent simulation platform for

energy-aware smart metering systems. IEEE transactions on Consumer Electronics, 56(3),

pp.1918-1926.

Proton unveils new hi-tech engine assembly line in Tanjung Malim., 2022. PROTON. Available

at: <https://www.proton.com/en/press-release/2022/july/new-hi-tech-engine-assembly-line-

in-tanjung-malim> [Accessed 14 July 2023].

Ramadan, R., Huang, Q., Bamisile, O. and Zalhaf, A.S., 2022. Intelligent home energy

management using Internet of Things platform based on NILM technique. Sustainable Energy,

Grids and Networks, 31, p.100785.

Sachs, J. D., 2016. Implementing the Paris Climate Agreement. Horizons: Journal of

International Relations and Sustainable Development, (6), 34-47.

Shamshiri, M., Gan, C. K., Baharin, K. A., and Azman, M. A. M., 2019. IoT-based electricity

energy monitoring system at Universiti Teknikal Malaysia Melaka. Bulletin of Electrical

Engineering and Informatics, 8(2), 683-689.

Smart meters - tenaga nasional berhad., 2023. Welcome to myTNB Portal. [online] Available

at: <https://www.tnb.com.my/residential/smartmeters> [Accessed 14 July 2023].

301

SEDA, 2019. Sustainable Energy Development Authority Malaysia. [online] Putrajaya: SEDA.

Available at: <http://www.seda.gov.my/ > [Accessed 14 July 2023].

SmartZone Smart Home Malaysia | Building Automation System | Fully customise with in-

house programmer., 2023. SmartZone Smart Home Malaysia | Building Automation System |

Fully customise with in-house programmer. [online] Available at:

<https://www.smartzone.info/> [Accessed 3 Sep. 2023].

Subhi, M. H. F. M., 2020. Communication Technology Options for Better Customer

Experience–The Case of Advanced Metering Infrastructure (AMI) at TNB. iLEARNed, 1(1),

16-24.

SURUHANJAYA TENAGA (ENERGY COMMISSION), 2021. Malaysia Energy Statistics

Handbook 2021- Malaysia Energy Information Hub. [online] Malaysia: SURUHANJAYA

TENAGA (ENERGY COMMISSION). Available at:

<https://meih.st.gov.my/documents/10620/0112cea0-c76e-4ed0-a1f0-8d920c59c50f>

[Accessed 14 July 2023].

Talha, M., Sohail, M., Tariq, R., and Ahmad, M. T., 2021. Impact of oil prices, energy

consumption and economic growth on the inflation rate in Malaysia. Cuadernos de

Economía, 44(124), 26-32.

Tenaga Nasional Berhad, 2011. Tenaga Link, the newsletter. Malaysia: Tenaga Nasional

Berhad.

TENAGAofficial., 2019. What Is Smart Meter [Video]. YouTube. Available at:

<https://www.youtube.com/watch?v=Dq_fGDd_nsc>

TENAGAofficial., 2019. How Does Smart Meter Works [Video]. YouTube. Available at:

<https://www.youtube.com/watch?v=Dq_fGDd_nsc>

Thomas, N., 2020. How To Use The System Usability Scale (SUS) To Evaluate The

Usability Of Your Website. [online] Available at: <https://usabilitygeek.com/how-to

use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/>.

Torriti, J., 2020. Appraising the economics of smart meters: Costs and benefits. Routledge.

302

United Nations Environment Programme, 2009. Buildings and Climate Change: Summary for

Decision Makers. Available at: <https://wedocs.unep.org/20.500.11822/32152> [Accessed: 23

April 2024].

Yusoff, N. S., Kaman, Z. K., Zahari, A. R., Norafi, W. H. W. M., and Abdullah, A. B., 2021.

Examining Smart Meter Users' Experience on Continuance Intention in Adopting Smart Meter

in Malaysia-Result from a Pilot Study. Asia Proceedings of Social Sciences, 7(2), 110-113.

Zeifman, M. and Roth, K., 2011. Nonintrusive appliance load monitoring: Review and

outlook. IEEE transactions on Consumer Electronics, 57(1), pp.76-84.

Zoha, A., Gluhak, A., Imran, M.A. and Rajasegarar, S., 2012. Non-intrusive load monitoring

approaches for disaggregated energy sensing: A survey. Sensors, 12(12), pp.16838-16866.

303

APPENDICES

Appendix A: Site Visit with MIMOS Berhad

Figure A-1: Group Photo with MIMOS Representatives, Supervisors, and Students

304

Figure A-2: Informal Interview with MIMOS Representative

Figure A-3: Demonstration of Home Energy Monitoring Devices

305

Figure A-4: Demonstration of Home Energy Monitoring Devices Interface

306

Appendix B: Results and Discussion of Questionnaire

Figure B-1 shows the distribution of age group of respondents from questionnaire. Majority of

respondents are from 21 to 40 or 41 to 60 age groups followed by minority age group range

from 1 to 20 and 61 to 100. This is because the questionnaire is purposely distributed among

residents with own residential or is responsible for paying electricity bills. Most of the

respondents in these 2-age range are in economic stable condition with houses and are paying

electricity bills themselves.

Figure B-1: Different Age Group of Respondents

Next, Figure B-2 describes the gender distribution of the respondents. The number of

male and female respondents are close as the questionnaire is sent without concerning the

gender of the respondents.

307

Figure B-2: Different Age Group of Respondents

Gender of Respondents

Moreover, Figure B-8.2.1 presents the states of the respondents collected. Majority of

the respondents are from Johor followed by Selangor and Melaka that are 60.6%, 21.2% and

12.1%. The questionnaire tends to distribute among these 3 states as myTNB started to

implement its smart meter device to the residents in these 3 states selectively. The residents in

these states are more likely to know Home Energy Monitoring System and have a higher

potential to use this kind of energy monitoring device before.

Figure B-8.2.2: Respondents’ State

Figure B-4: Monthly household income of respondents

Furthermore, Figure B-4 shows that the monthly household income that is higher than

RM10000 stands as majority among all respondents while other respondents are equally

308

distributed among RM 0 to RM 3000, RM 3001 to RM 6000, RM 6001 to RM10000 income

groups.

It is known that household income will impact energy consumption pattern as high-

income residents might contribute to high energy consumption while low-income households

might prioritize energy consumption due to budget constraints. Therefore, it is significant to

investigate the relationship between household income, energy consumption, and energy

monitoring behaviour.

Next, Figure B-5 presents the number of occupants in respondents’ household. 33.3 %

of respondents reported that there are 5 people in their household, while 27.3% of respondents

are having 3 people living together. As the majority of respondents fall in 21 to 60 age groups,

most of them are residing with their family members.

Figure B-5: Occupants in household

Electricity Consumption Awareness and Energy Usage Behaviors

In Figure B-6, majority 36.4% of the respondents are living in town house followed by 30.3%

for apartment or condominiums and 27.3% for single-family house. The questionnaire focuses

on the respondents who are eligible for implementing Home Energy Monitoring System as

these 3 types of housing are having high potential being the target of myTNB to install smart

meters in their household.

309

Figure B-6: Type of Respondents’ Housing

Figure B-7 indicates that the majority monthly electricity bills amount falls on RM 101

to RM 250 while Figure B-8 shows that almost 97% of the respondents felt that their electricity

bills had increased significantly in past year. However, 60.6% of respondents are not aware of

the reason of getting high electricity bills while 24.2% of them are having some unconfirmed

conjectures about the reasons for the high electricity bills.

Figure B-10 describes that 39.4 % of the respondents will monitor their electricity

consumption monthly while 27.3% and 18.2% of respondents rarely and never monitor their

electricity consumption. There is a little number of respondents monitor their electricity

consumption daily and weekly as the number of respondents who currently using Home Energy

Monitoring System is lesser than those without it. The large size of respondents who monitor

their energy consumption monthly are viewing their energy usage via monthly electricity bills

sent by TNB. From these figures, the developer found that although the respondents feel that

their energy consumption is too high, but they rarely seek to find the reasons that contribute to

this issue and are less likely to monitor their energy consumption without systematic ways.

310

Figure B-7: Monthly Electricity Bills of Respondents

Figure B-8: Awareness of Increasing Electricity Bills

Figure B-9: Awareness of Factors of High Electricity Consumption

311

Figure B-10: Period of Monitoring Electricity Usage

Figure B-11 presents the factors that contribute to high electricity consumption. The

top 3 factors that cause high electricity usage are excessive usage of energy intensive

appliances, leaving electronic appliances in standby mode and high energy usage during peak

demand hours. This is because Malaysia is an equatorial country and the weather is generally

hot, so the high energy consumption devices such as air conditioners had become an essential

household device in Malaysian residential. Besides, significant number of respondents tend to

consume more energy during peak hours. Figure 4.12 shows that the majority of the

respondents aware of the high electricity consumption device although some of them did not

really sure about that.

Figure B-13 indicates that 60.6% of respondents conduct energy practice behaviour

sometimes, 21.2 % of them never perform energy practice while 18.2 % of them rarely do this

action. This had proved the result above as most of them did not perform energy practices as

they leave the electronic devices in standby mode without realizing it can lead to a substantial

cumulative energy drain over time. Although they know the reason of high electricity

consumption, but the respondents act negatively toward energy-saving practices due to unable

to keep track their energy saving behaviour which incline with their energy consumption in

standard and easy visualize format.

312

Figure B-11: Factors that contribute to high electricity consumption

Figure B-12: Awareness of High Electricity Consumption Household Appliances

Figure B-13: Practice of Energy-Saving Habits at Home

313

Home Energy Monitoring System

Figure B-14 indicates that 78.8% of respondents did not use energy management or monitoring

tools before while 21.2 % of respondents had experiences in using energy management tools.

This is because these kinds of tools are not popular in Malaysia due to high initial

implementation cost and neglection of high energy consumption behaviours among residents.

Half of the respondents claimed that these kinds of tools did not help them to understand their

electricity consumption patterns better while 28.6% of them claimed that they understand their

electricity usage patterns better and 21.4% of them thought that it did help slightly in

understanding energy usage patterns. This is because the energy management tools provided

in market rarely perform analysis on energy usage patterns or it only show a direct energy

consumption value to the residents which is hard to investigate and understand without proper

knowledge about electricity. Figure B-16 shows that 50% of the respondents thought that the

implementation of Home Energy Monitoring System improved their overall energy efficiency

while 7.1% of respondents claimed that it helps in identifying high-consumption devices.

Home Energy Monitoring System can help residents to visualize their energy consumption data

which indirectly motivates them to perform energy saving practices by providing real-time

energy consumption feedback.

Figure B-14: Use of Energy Monitoring or Management Tools

314

Figure B-15: View on Energy Monitoring Tools

Figure B-16: Effectiveness of Energy Management Tools

Behaviours toward Home Energy Monitoring System

According to Figure B-17, factors encouraged respondents to use Home Energy Monitoring

System are presented. 90.9% of the respondents claimed that Real-time monitoring of energy

consumption may attract them to use this system most. This indicates that respondents are

interested in having immediate insights into their energy consumption. Implementing real-time

energy consumption monitoring features can greatly improve the usage of Home Energy

Monitoring System. Besides, 72.7% of them believed that potential cost savings on electricity

bills will encourage them to use Home Energy Monitoring System. Residents are motivated by

potential financial savings to understand own energy usage habits that impact their electricity

bills and suggestions to reduce electricity cost. Next, 60.6% respondents thought that energy-

savings recommendations provided will be an essential benefit that should be provided by

315

Home Energy Monitoring System. Respondents tend to seek guidance on the ways to reduce

their energy consumption so feature that analyse residents’ energy usage pattern and provides

tailored recommendation for energy-saving habits will be crucial in this project. These 3 factors

will be incorporated in this project with features that can fulfil this factor will be implemented

in this system.

Figure B-17: Factors that Encourage Respondents to Use Home Energy Monitoring System

Figure B-18 shows the respondents’ concern on using Home Energy Monitoring

System. 78.8% of them considered the initial cost of implementing HEMS. This concern is

understandable as Figure B-19 and Figure B-20 proved that majority of respondents are not

familiar with Home Energy Monitoring System and having no or limited knowledge about it.

Next, 48.5 % of the respondents are afraid that implementing Home Energy Monitoring System

might potentially increase their electricity bills due to monitoring as they did not know the

workflow of this system. If the respondents are not well-informed about the benefits and

workflow of this system, respondents are not willing to spend cost on this system due to

uncertainty of returns. It is crucial to address the misconception of Home Energy Monitoring

System by emphasizing the importance of addressing respondents’ fears of increased electricity

bills due to monitoring. As reported in previous session, most of the respondents gained energy

saving information online or are not interested in it at all, due to lack of information about

Home Energy Monitoring System in Internet and uninterested behaviour towards this issue,

the lack of information lead to apprehension and hesitation among potential users. A simple

user guide and user-friendly designs might be implemented to ensure that the residents

acknowledge about the use and benefit of Home Energy Monitoring System.

316

Figure B-18: Respondents’ Concern on using Home Energy Monitoring System

Figure B-19: Familiarity of Home Energy Monitoring System

Figure B-20: Knowledges about Home Energy Monitoring System

317

Figure B-21 reported that 93.21% respondents indicated that smartphone app for remote

monitoring is most important aspect for a Home Energy Monitoring System. Next, 84.8% of

them highlighted that the most important feature of this system is real-time energy monitoring.

A real-time energy monitoring smartphone app will be selected to implemented in this project.

Figure B-21: Important Indicators for Home Energy Monitoring System Feature

Figure B-22: Willingness of Using Home Energy Monitoring System

In conclusion, majority of the respondents reacted positively toward the

implementation of Home Energy Monitoring System if it really helps them in energy efficiency.

318

Appendix C: System Usability Scale Evaluation Result

Figure C-1: System Usability Scale Q1

Figure C-2: System Usability Scale Q2

319

Figure C-3: System Usability Scale Q3

Figure C-4: System Usability Scale Q4

320

Figure C-5: System Usability Scale Q5

Figure C-6: System Usability Scale Q6

321

Figure C-7: System Usability Scale Q7

Figure C-8: System Usability Scale Q8

322

Figure C-9: System Usability Scale Q9

Figure C-10: System Usability Scale Q10

