

IoT Threats Detection using Few-Shots Learning

BY

Chua Cheng Han

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: IoT Threats Detection using Few-Shots Learning

Academic Session: __202401_____

 I _____________________CHUA CHENG HAN ________________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 _86, Jalan Tempua 3_________

 _Bandar Puchong Jaya________ _________________________

 _47100, Puchong, Selangor____ Supervisor’s name

 Date: ___24/4/2024__________ Date: ____________________ 26/04/2024

Aun Yichiet

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __24/4/2024_______

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Chua Cheng Han_____________ (ID No: __20ACB01761) has

completed this final year project/ dissertation/ thesis* entitled “IoT Threats Detection using Few-

Shots Learning_” under the supervision of ____Aun YiChiet___________________ (Supervisor)

from the Department of __Computer and Communication Technology__, Faculty/Institute* of

_Information and Communication Technology__ .

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Student Name)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “IoT Threats Detection using Few-Shots Learning” is my

own work except as cited in the references. The report has not been accepted for any degree

and is not being submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : ___Chua Cheng Han________

Date : ____24/4/2024_____________

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Dr. Aun Yichiet

who has given me this bright opportunity to engage in the IoT threats detection project. It is

my first step to establish a career in the cybersecurity field. A million thanks to you.

To a very special person in my life, Leong Yong Xin, for her patience, unconditional support,

and love, and for standing by my side during hard times. Finally, I must say thanks to my

parents and my family for their love, support, and continuous encouragement throughout the

course.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

Existing IoT threat detection methods lack robustness due to the diverse array of potential

attack vectors. Currently, most methods are trained and tested using simulated datasets and do

not perform well with unseen samples in real-world applications. In this project, we propose a

novel few short learning leveraging Large Language Models (LLMs) to improve model

robustness in IoT threat detection. Firstly, we develop two specialized LLM models: a text

classification model based on DistilBERT and the few shots learning model using Sentence

Transformer Fine-Tuning model (SetFit) framework. The DistilBERT threats detection model

method performed well with an accuracy of 99.998% due to better semantics and contextual

understanding as compared to existing flow statistical analysis. The few-shot learning model

demonstrated remarkable performance with an accuracy of 0.89%, despite being trained on a

limited amount of data. For unseen samples, we designed a few-shot retraining (FSR)

methodology to adapt and learn new attack vectors across multiple variants using transfer

learning. The experimental results showed a 90% improvement in accuracy on unseen threats

when implemented in a real-world NIDS.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE I

REPORT STATUS DECLARATION FORM II

FYP THESIS SUBMISSION FORM III

DECLARATION OF ORIGINALITY IV

ACKNOWLEDGEMENTS V

ABSTRACT VI

LIST OF FIGURES X

LIST OF TABLES XII

LIST OF ABBREVIATIONS XIII

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation .. 1

1.2 Objectives ... 2

1.3 Project Scope and Direction.. 3

1.4 Contribution .. 4

1.5 Report Organization .. 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Previous works on Generating IoT Threats Datasets .. 6
2.1.1 ToN-IoT ... 6
2.1.2 CICIoT2023 ... 8
2.1.3 IoT-23 .. 10
2.1.4 Edge-IIoTSet .. 11

2.2 Previous Works on IoT Threat Detection Model .. 14
2.2.1 Machine learning Methods .. 14
2.2.2 Deep Learning Methods ... 15
2.2.3 Deep Learning with Transformer Architecture...................................... 22
2.2.4 Summarization ... 28
2.2.5 Unknown Threat Detection .. 29

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 3 RESEARCH METHODOLOGY 31

3.1 Research Methodology Diagram .. 31

3.2 System Methodology Explanation .. 32
3.2.1 Dataset Acquisition .. 32
3.2.2 Dataset Preprocessing .. 38
3.2.3 Tokenizer ... 42
3.2.4 DistilBert-based IoT Threats Classification Model 43
3.2.5 SetFit-based Few-Shot Learning IoT Threats Classification Model 44
3.2.6 Model Evaluation ... 47
3.2.7 Designing IoT Network Testbed .. 49
3.2.8 Discovering IoT vulnerabilities and Intrusion Planning 51
3.2.9 Perform attack and capture the attack network flow 52
3.2.10 Generating Network Logs with Zeek and Converting to CSV 52
3.2.11 Evaluation of Model Performance on Generated Data 54
3.2.12 Performing retraining of model with combined dataset (Transfer Learning)

... 54

CHAPTER 4 SYSTEM MODEL 56

4.1 System Implementation Modeling .. 56

4.2 IoT Threat Detection Model Flow .. 57

4.3 Models Architecture.. 58
4.3.1 DistilBert-based IoT Threat Classification Architecture 58
4.3.2 SetFit-based IoT Threat Classification Architecture 60

CHAPTER 5 EXPERIMENT 62

5.1 Hardware Setup ... 62

5.2 Software Setup .. 62

5.3 Setting and Configuration ... 63

5.3.1 Setting Up Vulnerable IoT Device .. 63
5.3.2 Setting Up Kali Linux VM .. 66
5.3.3 Setting Up Wireshark ... 67

5.4 System Operation .. 68
5.4.1 Performing Network Attacks & Capturing Network Packets 68
5.4.2 Create Network Logs from Network Flow .. 70
5.4.3 Preprocessing Network Logs into CSV ... 71
5.4.4 Detecting and Classifying Threats ... 73

5.5 Implementation Issues and Challenges ... 75

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 76

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

6.1 Models testing and Performance Metrics ... 76
6.1.1 Evaluation Cases .. 76
6.1.2 Evaluation Metrics ... 76

6.2 Testing Setup and Result .. 77
6.2.1 Hardware .. 77
6.2.2 Software ... 78
6.2.3 Result Analysis .. 78

6.3 Project Challenges .. 84

6.4 Objectives Evaluation ... 85

6.5 Concluding Remark .. 86

CHAPTER 7 CONCLUSION AND RECOMMENDATION 88

7.1 Conclusion .. 88

7.2 Recommendation .. 88

REFERENCES 90

FINAL YEAR PROJECT WEEKLY REPORT 92

POSTER 98

PLAGIARISM CHECK RESULT 99

CHECKLIST FOR FYP2 THESIS SUBMISSION 102

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Testbed Environment for ToN-IoT Datasets Generation 7

Figure 2.1.2.1 Topology Chart of CICIoT2023 8

Figure 2.1.2.2 Basic Attack Framework for CICIoT2023 9

Figure 2.1.3.1 Amazon Echo Device Used in IoT-23 10

Figure 2.1.3.2 Philips Hue Device Used in IoT-23 10

Figure 2.1.3.3 Somfy Door Lock Device Used in IoT-23 11

Figure 2.1.4.1 Testbed Architecture of Edge-IIoTSet 12

Figure 2.1.4.2 Dataset Generation Framework of Edge-IIoTSet 13

Figure 2.2.2.1 Residual Block of the Proposed Model 16

Figure 2.2.2.2 Temporal Representation Block of DeepAK-IoT Model 17

Figure 2.2.2.3 Detection Block of DeepAK-IoT Model 17

Figure 2.2.2.4 Architecture diagram of DenseNet121 19

Figure 2.2.2.5 Architecture of Inception Time model 20

Figure 2.2.2.6 Architecture of the original IDS model 22

Figure 2.2.3.1 Architecture of TransIDS model 23

Figure 2.2.3.2 IoMT intrusion detection 25

Figure 2.2.3.3 Overview of FT-Transformer 26

Figure 2.2.5.1 Result on detecting unseen threats for binary classification 30

Figure 3.1.1 Flowchart for Research Stage 1 31

Figure 3.1.2 Flowchart for Research Stage 2 32

Figure 3.2.1.1 Distribution of Attack Types in ToN-IoT 34

Figure 3.2.2.1 Visualization of Preprocessing 41

Figure 3.2.5.1 SetFit Framework 46

Figure 3.2.7.1 IoT Network Testbed 49

Figure 4.1.1 System Implementation Model 56

Figure 4.2.1 IoT Threat Detection Model Flow 57

Figure 4.3.1 DistilBert-based IoT Threat Classification Model

Architecture

58

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 4.3.2 SetFit-based IoT Threat Classification Model Architecture 60

Figure 5.3.1.1 Setting Up Vulnerable IoT Device 1 63

Figure 5.3.1.2 Setting Up Vulnerable IoT Device 2 64

Figure 5.3.1.3 Setting Up Vulnerable IoT Device 3 64

Figure 5.3.1.4 Setting Up Vulnerable IoT Device 4 65

Figure 5.3.1.5 Setting Up Vulnerable IoT Device 5 65

Figure 5.3.2.1 Setting Up Kali Linux VM 1 66

Figure 5.3.2.2 Setting Up Kali Linux VM 2 66

Figure 5.3.2.3 Setting Up Kali Linux VM 3 67

Figure 5.3.2.4 Setting Up Kali Linux VM 4 67

Figure 5.3.3.1 Setting Up Wireshark 68

Figure 5.4.1.1 Capturing Attack Network Flow 1 69

Figure 5.4.1.2 Capturing Attack Network Flow 2 69

Figure 5.4.1.3 Capturing Attack Network Flow 3 70

Figure 5.4.1.4 Capturing Attack Network Flow 4 70

Figure 5.4.2.1 Generating Network Flow Logs 1 71

Figure 5.4.2.2 Generating Network Flow Logs 2 71

Figure 5.4.3.1 Converting Logs to CSV Dataset 1 72

Figure 5.4.3.2 Converting Logs to CSV Dataset 2 73

Figure 5.4.4.1 Generating Predictions with SetFit Classification Model 1 74

Figure 5.4.4.2 Generating Predictions with SetFit Classification Model 2 74

Figure 5.4.4.3 Generating Predictions with SetFit Classification Model 3 75

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.2.4.1 Comparison of Reviewed Model 28

Table 3.2.1.1 Attack types and counts 33

Table 3.2.1.2 Features in ToN-IoT Datasets 34

Table 3.2.2.1 Features Comparison for Set 1 and Set 2 38

Table 3.2.2.2 Numerical Representations of Attack Classes 40

Table 3.2.10.1 Features Visualization for Generated Dataset 53

Table 5.1.1 Specifications of laptop 62

Table 5.1.2 Specifications of Raspberry Pi 3 Model B 62

Table 6.2.1.1 Specifications of laptop 77

Table 6.2.3.1 Accuracy Evaluation on ToN-IoT Testset 78

Table 6.2.3.2 DistilBert-based (All features) classifier per-class

evaluation on ToN-IoT Testset

79

Table 6.2.3.3 DistilBert-based (Conn features) classifier per-class

evaluation on ToN-IoT Testset

80

Table 6.2.3.4 SetFit (All features) classifier per-class evaluation on ToN-

IoT Testset

80

Table 6.2.3.5 SetFit (Conn features) classifier per-class evaluation on

ToN-IoT Testset

81

Table 6.2.3.6 Accuracy Evaluation on Unseen Dataset 81

Table 6.2.3.7 DistilBert-based (Transfer Learning) (Conn features)

classifier per-class evaluation on Unseen Dataset

82

Table 6.2.3.8 SetFit (Transfer Learning) (Conn features) classifier per-

class evaluation on Unseen Dataset

82

Table 6.2.3.9 Accuracy Evaluation on Combined Dataset 82

Table 6.2.3.10 DistilBert-based (Transfer Learning) (Conn features)

classifier per-class evaluation on Combined Dataset

83

Table 6.2.3.11 SetFit (Transfer Learning) (Conn features) classifier per-

class evaluation on Combined Dataset

83

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

DL Deep Learning

FSL Few-shot Learning

AI Artificial Intelligence

IDS Intrusion Detection System

IoT Internet of Things

ML Machine Learning

TL Transfer Learning

BERT Bidirectional Encoder Representations from Transformers

SetFit Sentence Transformer Fine Tuning

Adam Adaptive Moment Estimation

NLP Natural Language Processing

RAM Random Access Memory

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1 Introduction

1.1 Problem Statement and Motivation

In recent years, the proliferation of Internet of Things (IoT) devices has led to the

unprecedented levels of connectivity and convenience to various aspects of our lives.

These devices are seamlessly integrated into everyday environments, spanning from

smart homes and industrial sectors to healthcare, transportation systems and smart

cities. However, the rapid expansion of the IoT landscape has also opened the door to

a new wave of security challenges. Traditional security approaches often fall short in

addressing the unique and evolving threats posed by IoT environments, leaving critical

systems vulnerable to breaches, data leaks, and unauthorized access.

One of the most pressing issues within the realm of IoT security is the efficient and

accurate detection of threats. Conventional methods rely on predefined signatures or

rules, which struggle to keep pace with the ever-changing tactics employed by

malicious actors. Moreover, it is too costly to keep generating millions of datasets for

new types of threats in IoT environments and labelling them accordingly to train an AI

threat detection model.

The motivation behind this project stems from the urgent need to establish effective and

adaptive security mechanisms for IoT ecosystems. Few-shot learning as a subset of

machine learning which can train models to recognize IoT threats with only a limited

amount of labeled data has emerged as a promising paradigm to provide an adaptive

mechanism. The project takes on the challenge to perform IoT threat detection with

few-shot learning and the implementation with Transformer-based model. The goal is

to seek enhancement for the security mechanism of IoT environments while mitigating

the costing issue to label extensive number of datasets.

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.2 Objectives

This project should achieve the following objectives:

I. Generating unseen network threats to evaluate models’ performance in

classifying realistic, unseen realistic network threats.

The subsequent objective is to assess the effectiveness of the developed models

in accurately classifying unseen, real-world network threats. Through rigorous

evaluation on diverse and authentic threat data, the objective aims to gauge the

models' ability to generalize and adapt to different attack. By employing

standard performance metrics, this evaluation provides crucial insights into the

models' reliability, ultimately informing their suitability for practical

deployment in enhancing IoT threat detection capabilities.

II. Develop an innovative Transformer-based model tailored specifically for

IoT threat detection, leveraging advanced Natural Language Processing
(NLP) techniques.

In this research, the focus will be on exploring a methodology for representing

network traffic logs as sentences, enabling the classification of datasets using

Transformer-based text classification models. The Transformer, a powerful

deep learning model renowned for its effectiveness in natural language

processing tasks, will be investigated to assess its classification capabilities

specifically in the domain of classifying IoT network threats.

III. Develop the novel few-shot learning model for IoT threat classification.

The exploration of few-shot learning is an essential component of this research

focused on AI-based solutions for classifying IoT threats. The utilization of few-

shot learning can help mitigate the need for extensive resources in producing

and labelling new datasets specific to IoT threats. As a result, the development

and performance evaluation of a few-shot learning model will be undertaken.

IV. Implement model retraining using transfer learning approaches to

enhance prediction accuracy for unseen attacks.

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

In the realm of IoT threat classification, the susceptibility of deep learning

classifiers to previously unseen attack vectors pose a significant challenge. To

mitigate this vulnerability, the exploration of transfer learning methods emerges

as a promising avenue. Transfer learning techniques leverage knowledge gained

from pre-existing tasks or domains to enhance the performance of classifiers on

new, related tasks. By adapting pre-trained models to accommodate the unique

characteristics of IoT threat landscapes, transfer learning holds the potential to

bolster the resilience of classifiers against previously unseen attacks.

1.3 Project Scope and Direction

This research project focuses on the development and evaluation of two innovative

methods for detecting threats in IoT environments. The first method involves using a

DistilBERT-based text classification model to analyze text-based network information

and classify IoT network threats. The second method explores the use of the Sentence

Transformer Fine-Tuning model (SetFit) to enhance the performance of threat

classification, particularly when dealing with limited training datasets. By investigating

the effectiveness of these approaches, the project aims to improve the accuracy and

efficiency of IoT threat detection.

In addition to utilizing publicly available IoT network datasets, this research project

will establish an experimental network testbed to gather attack data under controlled

conditions. The testbed will simulate a realistic small-scale network environment,

enabling the collection of authentic attack traffic logs for assessing model performance

across various network architectures and attack types. By employing this controlled

data collection approach, the aim is to generate a labeled dataset of IoT threat logs that

accurately represent real-world unseen attack scenarios. This dataset will serve as the

basis for evaluating the multiclass IoT threats classifier's ability to predict unseen

threats. Furthermore, it will be instrumental in the model retraining process, facilitating

adaptation to new data and enhancing overall model effectiveness.

In addition to the development and evaluation of the previously mentioned approaches,

this research project will explore model retraining methods to mitigate the vulnerability

of deep learning classifiers to unseen attacks. Transfer learning techniques will be

employed to leverage knowledge from pre-existing models, thereby enhancing

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

classifier performance on new, related tasks. By adapting pre-trained models to suit the

distinct characteristics of IoT threat landscapes, model retraining offers the potential to

enhance the resilience of classifiers against previously unseen attacks. This endeavor

aims to improve the overall effectiveness of threat detection systems by ensuring their

ability to accurately identify emerging threats.

1.4 Contribution

This research significantly advances the field of IoT security by developing a first-of-

its-kind few-shot learning model for threat detection using limited labelled data. The

proposed approach leverages the powerful natural language processing abilities of

Transformer architectures to analyse IoT network traffic logs. This eliminates the need

for extensive pre-processing of real-world IoT data, increasing the model's applicability

to diverse network environments.

The integration of few-shot learning techniques with a Transformer-based classification

framework represents a significant advancement in the field of IoT security. This

innovative approach enables the model to achieve remarkably accurate threat detection,

even when trained on small, labelled datasets. Few-shot learning techniques empower

the model to rapidly adapt and generalize from limited examples, making it highly

effective at identifying new and emerging threats in IoT environments. By leveraging

the natural language processing capabilities of Transformer architectures, the model

gains a deeper understanding of complex patterns in IoT network traffic data, enhancing

its ability to discern between normal and malicious activities. Overall, the integration

of few-shot learning with Transformer-based classification frameworks represents a

significant step forward in advancing the capabilities of AI-driven threat detection

systems for IoT ecosystems.

Another novel contribution of the research is the effort on generating network threats

logs dataset labelled with contemporary threat classes. This dataset aims to test the

model performance on different attacks in real world situations. Importantly, such

efforts are relatively rare in the research community, as many existing datasets may not

adequately represent the evolving landscape of IoT threats. By filling this gap, the

research facilitates more accurate and meaningful evaluations of IoT security solutions,

CHAPTER 1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

ultimately contributing to the development of more effective threat detection

mechanisms.

Besides that, another novel contribution is the exploration of the adaptability of the

models to perform retraining using transfer learning approaches represents a novel and

significant contribution to the research. A model that lacks the ability to continually

improve and adapt to new network threats is not suitable for practical use. Transfer

learning techniques have gained considerable attention in machine learning and deep

learning fields for their ability to leverage knowledge from pre-existing tasks or

domains to enhance the performance of models on new, related tasks. In the context of

IoT security, where the threat landscape is constantly evolving, transfer learning offers

a promising approach to improve the robustness and adaptability of threat detection

model efficiently.

The powerful yet data-efficient few-shot Transformer model and comprehensive

evaluation dataset are expected to create a complete model building ecosystem. Overall,

the work establishes a new benchmark for handling limited labelled data scenarios

through synergistic applications of NLP and few-shot learning.

1.5 Report Organization

The research consists of several chapters that provide a comprehensive examination of

the topic. Chapter 2 delves into related backgrounds by reviewing relevant literature

and previous studies, establishing a foundation of knowledge in the field. In Chapter 3,

the proposed research methodology is described in detail, outlining the methods or

approaches developed to address the research problem. Chapter 4 of the dissertation

delves into the illustration of the system model, elucidating the development and

utilization of the model. Chapter 5 focuses on experiments and simulation performed

to test the developed model. Next, Chapter 6 states all the evaluation on the

performance of the IoT threats detection models. Finally, Chapter 7 concludes the

research by summarizing the key findings, implications, and contributions.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Chapter 2 Literature Review

2.1 Previous works on Generating IoT Threats Datasets

There are several datasets being published in the past few years for the IoT security domain.

These datasets are important for researchers to create and test new AI intrusion detection

models that are more robust. Therefore, a high-quality dataset becomes an important factor to

ensure the reliability of models. The datasets are generated using different testbed

environments and different features are collected in every dataset. Below are some of the works

on generating IoT datasets.

2.1.1 ToN-IoT

The ToN-IoT datasets were specifically developed to address the limitations of previous

datasets in the field. These datasets are designed using an orchestrated architecture that

illustrates the interconnectedness of edge, fog, and cloud layers within an IoT environment [1].

The testbed environment in ToN-IoT is carefully constructed based on interactive network

elements, aiming to simulate a realistic representation of IoT and IIoT network configurations

[2]. One important aspect of ToN-IoT is its heterogeneity, which is a key property of modern

IoT network intrusion detection datasets [3]. The datasets encompass diverse data sources,

including telemetry data from IoT and IIoT sensors, datasets from Windows and Linux, as well

as network traffic datasets. This heterogeneity enhances the realism and complexity of the

datasets, making them more representative of real-world IoT network scenarios. Figure 2.1.1.1

shows the testbed environment for ToN-IoT:

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Figure 2.1.1.1: Testbed Environment for ToN-IoT Datasets Generation [1]

ToN-IoT network datasets contain a total of 43 features that description the network packets

which contain mainly connectivity features information, layer 4 HTTP and DNS information,

and layer 3 SSL information. Besides that, ToN-IoT also contains other types of datasets

including Windows log, Linux log, and logs from IoT devices. The ToN-IoT datasets comprise

a collection of normal scenarios and eight distinct main attack scenarios, covering a range of

common cybersecurity threats encountered in IoT settings. The attacks encompass scanning,

cross-site scripting (XSS), denial of service (DoS), ransomware, injection attack, password

cracking, backdoor and man-in-the-middle (MITM) attack. However, ToN-IoT datasets consist

of simulated environment, it may be questioned whether it can be applied to realistic IoT

environments. It does not implement IoT devices as attackers which is one of the important

threats that IoT environments face.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

2.1.2 CICIoT2023

CICIoT2023 dataset is a new IoT attack dataset which is created from a massive amount of real

IoT devices. The topology of the network used in the research consists of a total of 105 IoT

devices. Out of these devices, 67 IoT devices were involved in the attacks, while the remaining

38 devices were Zigbee and Z-Wave devices connected to 5 hubs. The configuration of the

network closely resembles a real-world smart-home environment, complete with various smart

home devices, sensors, cameras, and micro-controllers [4]. The novel part of this dataset is that

IoT devices are being used as malicious agents where other datasets seldom perform this.

Figure 2.1.2.1: Topology Chart of CICIoT2023 [4]

While the basic attack framework can be seen in the Figure 2.1.2.2:

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Figure 2.1.2.2: Basic Attack Framework for CICIoT2023 [4]

This dataset has collected 46 different features which consists of mainly of protocol

information and some packet information. 33 attacks are performed during the production of

dataset, and it is classified into 7 main classes. The 7 main classes include DDoS, Brute Force,

Spoofing, DoS, Recon, Web-based and Mirai. However, the limitation of this datasets is that

they do not include cloud and fog layer in their topology.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.1.3 IoT-23

The IoT-23 dataset was specifically developed to provide researchers with a substantial dataset

containing real instances of IoT malware infections as well as benign IoT traffic. The dataset

serves as a valuable resource for the development and evaluation of AI-based threat detection

models [5]. In the process of capturing the traffic data for the dataset, three IoT devices were

utilized: a Philips HUE smart LED lamp, an Amazon Echo home intelligent personal assistant,

and a Somfy smart door lock. This hardware ensures that the real network behaviour is captured

and not simulated network behaviour. Figures below shows the hardware that is used in the

dataset generation.

Figure 2.1.3.1: Amazon Echo Device Used in IoT-23 [5]

Figure 2.1.3.2: Philips Hue Device Used in IoT-23 [5]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Figure 2.1.3.3: Somfy Door Lock Device Used in IoT-23 [5]

There are 20 malware attacks performed in the datasets collection. The dataset is specifically

labelled after the malware captures analysis to provide a detailed information of the malwares.

The data captures are classified with 10 different labels which is attack, benign, Mirai,

FileDownload, C&C, HeartBeat, DDoS, Okiru, PartofAHorizontalPortScan, and Torii. The

limitation for this dataset is that it does not shows high heterogeneity because its testbed devices

are limited.

2.1.4 Edge-IIoTSet

Edge-IIoTSet is also a realistic cybersecurity dataset of IoT and IIoT which aims to design a

dataset that suits the training for centralized and federated models [6]. Other datasets seldom

cover the Industrial Internet of Things (IIoT) field whereas Edge-IIoTSet does. Its testbed is

designed to consists of 7 interconnected layers which is edge layer, Blockchain layer, fog layer,

NFV layer, cloud computing layer, SDN layer, and IoT/IIoT perception layer. Figure 2.1.4.1

shows about the testbed architecture for Edge-IIoTSet and the proposed dataset generation

framework.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Figure 2.1.4.1: Testbed Architecture of Edge-IIoTSet [6]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 2.1.4.2: Dataset Generation Framework of Edge-IIoTSet [6]

There are a total 14 different classes of attacks being executed in the collection of datasets and

it can be specified into 5 main classes which is DDoS, Injection, MITM, Malware, and

Scanning. The dataset undergoes feature selection and there are 61 features left in the csv files

that consists of mainly layer featured information. However, the number of malicious scenarios

in the datasets is lesser when compared to other datasets.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

2.2 Previous Works on IoT Threat Detection Model

Machine learning and deep learning methods are continuously discovered by researchers in

their abilities on IoT threat detection. IoT threat detection models that are built from various

AI techniques will be discussed in the section below.

2.2.1 Machine learning Methods

There are various machine learning models that were developed and tested on IoT threat

detection datasets such as ToN-IoT, Edge-IIoTSet, and IoT-23. Machine learning techniques

are discovered in the papers [2], [7], [8], [9], [10].

In [2], Support Vector Machine (SVM), k-Nearest Neighbour (kNN), Random Forest (RF),

Classification and Regression Trees (CART), Logistic Regression (LR), Linear Discriminant

Analysis (LDA),Naïve Bayes (NB), and Long Short-Term Memory (LSTM) are performed and

evaluated. It uses all of the models stated to perform classification on the IoT datasets. Both

binary classification and multiclass classification are evaluated in the paper with k-fold cross-

validation method (k = 4). The Classification and Regression Trees (CART) model

outperformed al others model in the paper and get an accuracy of 0.88 in binary classification

and 0.77 accuracy in multiclass classification. However, this is an approach of Machine

Learning in the IoT log datasets but not a network dataset. It gets a lower accuracy compared

with the network dataset approach with ToN-IoT.

In the paper [10], the authors also used ML techniques to perform multiclass classification on

the ToN-IoT network dataset. In this paper, only 14 out of 46 features are used in the model

after the feature extraction. All of the feature selected is about the connection features of

network packets only. Random Forest (RF), Naïve Bayes (NB) and k-Nearest Neighbour

(kNN) are trained and validated. Among the ML techniques used, k-Nearest Neighbour (kNN)

had outperformed the other models and get an accuracy of 98.2%. Whereas Naïve Bayes (NB)

was the model with worst accuracy. Password cracking threats were among the hardest threats

to be recognized compared to other threats. The limitation of this approach is that there is no

binary classification being performed and there is no proper data preprocessing features to

handle the imbalance dataset.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

The authors in [9] suggests 8 ML models which is Support Vector Machine (SVM), Decision

Tree (DT), Logistic Regression (LR), k-Nearest Neighbour (kNN), naïve bayes (NB), Random

Forest (RF), AdaBoost and XGBoost to classify the ToN-IoT network dataset. The authors

address the class imbalance issue and feature selection issue in the ToN-IoT dataset. Therefore,

Synthetic minority oversampling technique (SMOTE) and Chi2 are being adopted and tested

for their effectiveness. 4 types of processed data were being fed to the model for training which

includes original featured data, data after Chi2 operation, data after SMOTE operation and data

after both Chi2 and SMOTE were applied. For binary classification, XGBoost model with

original featured data outperformed other models and achieved an accuracy of 0.991%. While

XGBoost model with SMOTE also get 0.990% which is similar, but it had proven that SMOTE

and Chi2 do not improve the accuracy of model well. For multiclass classification, XGBoost

model Was still the best performer by achieving 0.983% in accuracy for original featured data.

Similarly, it proved that SOMTE and Chi2 do not improve the accuracy of model.

2.2.2 Deep Learning Methods

In the paper [11], the authors had proposed a new deep learning model to perform cyber threat

classification task. 3 different trending IoT threat datasets which are Edge-IIoTset, ToN-IoT,

and UNSW_NB15 are selected to perform validation on the proposed deep learning model.

The proposed model contains 3 blocks which are the temporal representation block (TRB), the

residual-based spatial representation (RSR) block, and the detection block (DB).

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Figure 2.2.2.1: Residual Block of the Proposed Model [11]

The residual-based spatial-representation block is composed of five residual blocks, each

containing four parallel convolutional layers. In addition, it incorporates a skip connection to

mitigate the vanishing gradient problem. This block functions as a mechanism to extract spatial

representations from the output of the preceding layer, effectively capturing significant spatial

features that are inherent in the data.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Figure 2.2.2.2: Temporal Representation Block of DeepAK-IoT Model [11]

The temporal representation block takes the output from the residual-based spatial-

representation (RSR) block and feeds it into three parallel paths. This block is designed to learn

and capture temporal representations, allowing for more accurate detection of cyber threats.

Figure 2.2.2.3: Detection Block of DeepAK-IoT Model [11]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

The detection block, the final component of the model, is comprised of two layers. The first

layer is a fully connected layer with 32 neurons, followed by a second fully connected layer

responsible for estimating the cyber threat class. These layers are connected to a SoftMax

activation function, which outputs the probability score for each class.

The model has achieved impressive accuracy rates, with a reported accuracy of 90.57% for the

ToN-IoT dataset, 94.96% for the Edge-IIoT dataset, and 98.41% for the UNSW-NB15 dataset.

These results surpass the performance of alternative models, such as the 1DCNN model, CNN-

LSTM model, and LSTM, indicating the effectiveness and superiority of the proposed model

in detecting and classifying cyber threats in IoT and IIoT environments.

In the research described in [12], two CNN models, namely the Inception Time model and the

DenseNet model, were proposed and evaluated using three distinct datasets focused on IoT

threats: ToN-IoT, Edge-IIoT, and UNSW-NB15. The DenseNet model, specifically the state-

of-the-art DenseNet121 model, was utilized. DenseNet differs from traditional CNNs by

incorporating direct connections between any two layers, facilitating improved information

flow within the network. This model requires fewer parameters compared to conventional

CNNs, making it more efficient, and allows for reusability of features.

The DenseNet architecture involves a sequence of connected layers called a dense block. In

this block, the dimensions of the feature maps remain consistent, while the number of filters

used varies. Each dense block consists of multiple interconnected layers, where each layer

comprises a 1D convolution, batch normalization, and ReLU activation. Transition layers are

positioned between adjacent dense blocks to link them together. These transition layers serve

the purpose of reducing the dimensions of the feature map, followed by average pooling. Their

role is to gather the outputs or blocks from the preceding block.

The architecture concludes with fully connected softmax and output layers, which are

responsible for generating the final predictions based on the learned features. This

comprehensive architecture, leveraging DenseNet121, provides an effective and robust

approach for detecting and classifying IoT threats in the datasets considered in the research.

The architecture of DenseNet121 is illustrated in Figure 12.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Figure 2.2.2.4: Architecture diagram of DenseNet121 [12]

Next, in the study described in [12], the Inception Time model was also investigated. This

model optimizes computational resources while minimizing additional computational burdens.

It achieves high-performance output by extracting features from input data across multiple

scales using convolutional filters of varying sizes. The Inception Time model is employed in

two configurations within the inception network: one with 1D input vector shape and another

with 2D input shape obtained through the sliding window technique for time-series data.

Each block in the Inception Time model consists of three inception modules. To reduce input

dimensions, a bottleneck layer is utilized, which helps decrease parameters and computational

costs. A 1D convolutional layer acts as a sliding filter, enabling discrimination of regions in

the time series and enhancing training speed and generalization. The output from the bottleneck

layer is then fed into three one-dimensional convolutional layers with kernel sizes of 10, 20,

and 40, respectively.

In addition, the inputs of the inception module pass through a max-pooling layer with a size of

3, facilitated by the bottleneck layer. The outputs from the four convolutional layers are

concatenated along the depth dimension using a depth concatenation layer. All layers, except

the concatenation layer, share the same stride and padding. Each convolutional layer employs

32 filters, and residual connections are incorporated into every third inception module.

The network consists of successive inception modules, followed by a batch normalization

layer, a GlobalAveragePooling1D layer, and a dense layer with softmax activation for

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

classification purposes. This architecture enables effective feature extraction and classification

of IoT threats using the Inception Time model.

Figure 2.2.2.5: Architecture of Inception Time model [12]

Both of the models are evaluated using ToN-IoT datasets which includes windows 7, windows

10, network and combination of windows 10 and network datasets, UBSW-NB15 dataset, and

Edge-IIoT dataset. Multiclass classification was being performed and evaluated for all the

datasets. The Inception Time model achieved the highest, 100% accuracy on combination of

Windows 10 and Network dataset. The results of the validation will be summarized in the Table

2.2.3.1. However, Inception Time model had outperformed the DenseNet model in all of the

results.

In [13], a deep learning-based intrusion detection system (IDS) with a transfer learning

approach is proposed. The paper utilizes transfer learning by freezing most of the layers and

training only the last layers using a convolutional neural network (CNN) on the Bot-IoT and

ToN-IoT datasets. The CNN-based IDS is initially trained on the Bot-IoT dataset, and then the

ToN-IoT dataset is used to update the model.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

The update operation involves freezing the pre-trained convolutional base and using its output

as input to the classifier. The classifier is then retrained on a combined training dataset, which

comprises 50% of the ToN-IoT dataset and 10% of the Bot-IoT dataset. This approach helps

prevent the model from being solely influenced by the behavior of the new dataset.

The model architecture is characterized by several components. It starts with an input layer

consisting of 16 input neurons, corresponding to the number of features. The model includes

five hidden layers which is the Convolution1D layer, MaxPooling1D layer, Flatten layer, ReLU

layer, and Dense layer. Finally, it concludes with an output layer.

During the initial training phase, the model undergoes 10 epochs, which means the complete

dataset passes through the neural network 10 times. Each training iteration involves batches of

32 samples, with the batch size indicating the number of samples processed in each iteration.

The neural network comprises a total of 16 input neurons, aligned with the number of features.

It consists of four intermediate (hidden) layers, with the following number of neurons in each

layer: 16 in the Convolution1D layer, 8 in the MaxPooling1D layer, 256 in the Flatten layer,

256 in the ReLU layer, and 44 in the Dense layer. The output layer consisted of 4 neurons,

corresponding to the multiclass classification requirement, as visually depicted in Figure

2.2.2.6.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Figure 2.2.2.6: Architecture of the original IDS model [13]

During the updating operation, the convolutional base which includes the stack of

Convolution1D layer, MaxPooling1D layer, Flatten layer, and ReLU layer will be frozen. Only

the 2 Dense layers at the bottom will be retrained. This model is only created to predict 4 classes

of threats which are DDoS, Dos, Reconnaissance, and Theft. A validation dataset which

consists of 15% of the TON-IoT dataset concatenated with 5% of BoT-IoT dataset. The updated

model can achieve an accuracy of 99.47% on the validation test. In this transfer learning

approach, it also decreases the time needed to train the model. Updating the model only require

170 seconds for 10 epochs while training the whole model takes 31590 seconds for every epoch.

2.2.3 Deep Learning with Transformer Architecture

In the research presented in [14], the application of the Transformer model in IoT intrusion

detection was investigated. The proposed system, called TransIDS, leverages the Transformer's

capabilities to adaptively adjust attention to IoT network traffic features and effectively utilize

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

deep global information from these features. To enhance the generalization ability of the model,

Label Smoothing Regularization was implemented in the IDS framework. This technique adds

fuzzy noise to the training label samples, helping the model to better handle uncertainties and

improve its performance. The paper also analyzes and compares the effectiveness of different

hyperparameters in the TransIDS framework. Specifically, the multi-headed attention

mechanism and self-attention mechanism are studied to determine their impact on the model's

performance and intrusion detection capabilities.

Figure 2.2.3.1: Architecture of TransIDS model [14]

Transformers use an encoder to extract deep features from time series data. The encoder

computes the correlation between time steps using self-attention. However, it cannot

effectively capture the positional information within the time series. Since the ordering and

position of each time step is important for time series data, transformers rely on positional

encodings. By embedding positional encodings for each time step, the self-attention

mechanism can learn correlations that account for positional information when processing the

time series. This allows it to effectively model the time series while also considering the

ordered position of each time step within the sequence. The multi-head attention mechanism

extracts multiple global temporal patterns from the time series through parallel self-attention

networks. This provides a more abundant set of temporal features. To preserve the original

features, the multi-head attention mechanism in TransIDS utilizes the outputs from parallel

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

self-attention networks. Residual connections and layer normalization are then applied after

the multi-head attention step. This allows the model to retain important information from

previous layers and normalize the outputs. Finally, a feed-forward neural network processes

the normalized outputs, capturing complex patterns and relationships in the data. The multi-

layer encoder stack processes the inputs in this way to produce deep global features as the

output. A softmax function in equation 7 then calculates the probability of each feature

belonging to each category. The non-numeric features in the dataset are converted into

numerical data with one-hot-encoding and label encoding for data preprocessing. Min-max

normalization was also being implemented to convert all the data between 0 and 1. The

processed data is then used to train and evaluate the Transformer model. The limitation of this

approach is that data is still being converted numerically same as the traditional approaches.

Not only that, the authors in [15] proposed a BERT-based Transformer model for IoT threat

classification for textual data. This transformer approach concatenates all the textual data and

does not perform preprocessing on textual data to encode and normalize it. While LightBGM

model are proposed for numerical data. Figure 2.2.3.2 shows the complete framework for a

secured IoMT network.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Figure 2.2.3.2: IoMT intrusion detection proposed in [15]

As a complex IoMT environment, it will have heterogeneous network flow. Therefore, the

authors have classified it into 2 different types which network flows that consists textual

features and network flows that consists mainly of numerical features and categorical features.

3 network datasets are being used in this paper to evaluate all of the models which includes

ECU-IoHT, ToN-IoT, and Edge-IIoT. In the evaluation, BERT-based transformers had

achieved 100% accuracy on the classification of ECU-IoHT because its network information

is in textual form. However, LightBGM performs just slightly better than BERT on ToN-IoT

dataset. Besides that, LightBGM also performed better than BiLSTM and DNN in comparison

with Edge-IIoT dataset. This paper had proved that Transformer models are robust in text data

classification, and it can be applied to threat detection field also.

In [16], the authors propose a Transformer-based IoT Network Intrusion Detection System

(NIDS) method. They process the data from the ToN-IoT dataset by combining IoT telemetry

data with network data. This combined data is then utilized to evaluate the FT-Transformer-

based model. To prepare the data for the model, it is split into numerical data and categorical

data. These two types of data are tokenized separately using different functions in the feature

tokenizer. This tokenization process transforms the data into learnable embeddings, which can

be understood by the model. The output of the feature tokenizer, consisting of the numerical

and categorical embeddings, is then fed into multiple Transformer encoder blocks. In this

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

particular study, the authors employ N=6 stacked encoder blocks. Each encoder block includes

a multi-head attention (MHA) layer and a fully connected feed-forward network. After each

MHA layer and feed-forward network, a residual connection and normalization layer are

applied. The key component of the Transformer encoder is the MHA layer. It allows the model

to dynamically learn information from different feature embeddings. The MHA layer calculates

M=8 heads of self-attention, which is also known as scaled dot-product attention. The input

embedding is used to compute query (Q), key (K), and value (V) vectors. The weighted sums

of the value vectors are then calculated by taking the dot product of Q with K and applying the

softmax function to obtain the weights.

For classification, only the learned embedding from the input is fed to the final MLP layers.

As an independent third-party embedding extracted via attention, it is more suitable for final

classification compared to the numerical or categorical feature embeddings.

Figure 2.2.3.3: Overview of FT-Transformer proposed in [16]

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

The Transformer model is being evaluated with binary and multi-classes classification with

ToN-IoT pure network data with combination of network and telemetry sensor data. The results

were evaluated using accuracy, precision, recall, false alarm and F1 score. The accuracy of

multiclass classification is tabled in table 2.2.4.1.

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

2.2.4 Summarization

Table 2.2.4.1: Comparison of Reviewed Model
Citation Datasets Methods Accuracy

(%)

[2] ToN-IoT

IoT Dataset

Logistic Regression (LR)

Linear Discriminant Analysis (LDA)

 k-Nearest Neighbour (kNN)

Classification and Regression Trees (CART)

Random Forest (RF)

Naïve Bayes (NB)

Support Vector Machine (SVM)

Long Short-Term Memory (LSTM)

0.61

0.68

0.84

0.85

0.88

0.62

0.61

0.81

[10] ToN-IoT

Network

Dataset

Random Forest

Naïve bayes

K-Nearest Neighbour

94

70

98.2

[9] ToN-IoT

(Network)

Logistic Regression (LR)

Naïve Bayes (NB)

Decision Tree (DT)

Random Forest (RF)

K-Nearest Neighbour (kNN)

Support Vector Machine (SVM)

AdaBoost

XGBoost

77.7

71.2

93.4

93.7

97.9

77.9

39.9

98.3

[11] ToN-IoT

Edge-

IIoTset

UNSW-

NB15

DeepAK-IoT

DeepAK-IoT

DeepAK-IoT

90.57

94.96

98.41

[12] ToN-IoT

(Network)

ToN-IoT

(Win10)

ToN-IoT

(Win7)

ToN-IoT

(Win10–N)

DenseNet

Inception Time

DenseNet

Inception Time

DenseNet

Inception Time

DenseNet

Inception Time

98.57

99.65

97.87

98.30

98.36

99.21

99.95

100

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

UNSW-

NB15

Edge-IIoT

Inception Time

Inception Time

98.60

94.94

[14] ToN-IoT

(Network)

TransIDS 99.46

[15] ECU-IoHT

ToN-IoT

(Network)

Edge-

IIoTset

LightBGM

BERT

BiLSTM

LightBGM

BERT

BiLSTM

LightBGM

BERT

BiLSTM

98.4182

100

97.8301

99.9934

99.9852

97.3293

100

99.5659

100

[16] ToN-IoT

(Network)

ToN-IoT

(Combined

Network &

IoT)

FT-Transformer

FT-Transformer

95.78

97.06

2.2.5 Unknown Threat Detection

The paper[17] tested the unknown threat detection using binary IoT threat classifiers. We can
note that although the known threats classification gets an 100% accuracy, the unknown threats
classification does not perform well at an average accuracy of 46 % (which is the prediction on
IoT-2 until IoT-8).

CHAPTER 2

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Figure 2.2.5.1: Result on detecting unseen threats for binary classification [17]

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

Chapter 3 Research Methodology

3.1 Research Methodology Diagram

Stage 1: Research on IoT Threat Classification Models

Figure 3.1.1 Flowchart for Research Stage 1

Stage 2: Generating Unseen Dataset for Model Evaluation

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Figure 3.1.2 Flowchart for Research Stage 2

3.2 System Methodology Explanation

3.2.1 Dataset Acquisition

The ToN IoT dataset represents the next generation of Industry 4.0/Internet of Things (IoT)

datasets, derived from a methodical testbed within a laboratory setting. It encompasses a variety

of data sources, including sensor data, network data, and log data, all gathered from a single

expansive and authentic network environment. This diverse nature of the ToN IoT dataset

accurately mirrors the complexities inherent in IoT environments.

The ToN-IoT dataset has been chosen as the primary dataset for the model training task in this

project due to its various advantages. One notable advantage is its resilience in terms of

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

heterogeneity. In contrast to numerous other datasets that transform textual information into

numerical data and standardize the data, the ToN-IoT dataset preserves the original textual

information from its network dataset. This characteristic facilitates a more thorough analysis

of the dataset and safeguards against the loss of information during the transformation.

Additionally, the ToN-IoT dataset stands out for its inclusion of benign network data and 9

different types of attacks: Scanning, Dos, Injection, Ddos, Password, Xss, Ransomware,

Backdoor, and Mitm. To represent these attack types, two attributes have been created in the

dataset. The first is a binary column that indicates whether a record is a threat, and the second

is a string value denoting the specific attack type. This comprehensive coverage of attack types,

including the incorporation of ransomware attacks, sets the ToN-IoT dataset apart from many

other datasets that lack such diversity.

Considering these factors, the ToN-IoT dataset is an ideal choice as the initial dataset for this

project. It offers the advantages of preserving textual information, providing a comprehensive

representation of attack types, providing a well-prepared train test dataset and including unique

attack types like ransomware. These qualities make the ToN-IoT dataset well-suited for the

model training task and enhance its value for the research project.

In our research, we employ the network data sourced from the ToN-IoT dataset, specifically

from the Train_Test_Network.csv file. This dataset is a condensed version extracted from the

larger datasets. The purpose of using this simplified version is to mitigate the consumption of

excessive resources and time that would be required when working with the complete dataset.

Table 3 provides a summary of the number of records for each classification type, offering a

concise overview of the dataset's composition.

Table 3.2.1.1: Attack types and counts

Type Value Count

Normal 300000

Scanning 20000

Dos 20000

Injection 20000

Ddos 20000

Password 20000

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Xss 20000

Ransomware 20000

Backdoor 20000

Mitm 1043

Figure 3.2.1.1: Distribution of Attack Types in ToN-IoT

Besides that, the dataset contains a total of 43 features and 2 label columns. The features will

be recorded on table 3.2.1.2.

Table 3.2.1.2: Features in ToN-IoT Datasets

300000,
65%

20000, 5%

20000, 5%

20000, 5%

20000, 4%

20000, 4%

20000, 4%

20000, 4% 20000, 4% 1043, 0%

Distribution of Attack Types in ToN-IoT

Normal Scanning Dos Injection Ddos

Password Xss Ransomware Backdoor Mitm

No. Feature Data Type Description

1 ts int64 Timestamp of connection between flow

identifiers.

2 src_ip object IP addresses originating endpoints' IP

addresses.

3 src_port int64 TCP/UDP ports originating endpoint's

traffic.

4 dst_ip object Destination IP addresses responding to

endpoint's IP addresses.

5 dst_port int64 Destination ports which respond to

endpoint’s TCP/UDP ports.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

6 proto object Transport layer protocols of flow

connections.

7 service object Dynamically detected protocols like DNS,

HTTP, and SSL.

8 duration float64 Time of the packet connections, estimated

by subtracting the 'time of the last packet

seen' from the 'time of the first packet

seen'.

9 src_bytes int64 Source bytes which are originated from

payload bytes of TCP sequence numbers.

10 dst_bytes int64 Destination bytes which are responded

payload bytes from TCP sequence

numbers.

11 conn_state Object Various connection states such as S0, S1,

and REJ.

12 missed_bytes int64 Number of bytes that are absent in content

gaps.

13 src_pkts int64 Number of original packets estimated

from source systems.

14 src_ip_bytes int64 Total length of IP header field of source

systems.

15 dst_pkts int64 Number of packets sent from the

destination.

16 dst_ip_bytes int64 Total number of bytes sent from the

destination.

17 dns_query Object Domain name subjects of DNS queries.

18 dns_qclass int64 Values specifying DNS query classes.

19 dns_qtype int64 Value specifying DNS query types.

20 dns_rcode int64 Response code values in DNS responses.

21 dns_AA object DNS authoritative answer flag (True

denotes server is authoritative for query).

22 dns_RD object DNS recursion desired flag (True denotes

request recursive lookup of query).

23 dns_RA object DNS recursion available flag (True

denotes server supports recursive queries).

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

24 dns_rejected object DNS rejected flag (True denotes DNS

queries are rejected by the server).

25 ssl_version object SSL/TLS version offered by the server.

26 ssl_cipher object SSL/TLS cipher suite used by the

connection (if applicable).

27 ssl_resumed object SSL flag indicating the session that can be

used to initiate new connections.

28 ssl_established object SSL/TLS established session flag.

29 ssl_subject object Subject of the X.509 certificate offered by

the server.

30 ssl_issuer object SSL/TLS issuer name of the certificate (if

applicable).

31 http_trans_depth object Depth of the HTTP transaction (i.e., how

many redirects were followed).

32 http_method object HTTP request method (e.g., GET, POST,

PUT).

33 http_uri object URIs used in the HTTP request.

34 http_version object HTTP protocol version used by the client

and server.

35 http_request_body_len int64 Actual uncompressed content sizes of data

transferred from the HTTP client.

36 http_response_body_len int64 Actual uncompressed content sizes of data

transferred from the HTTP server.

37 http_status_code int64 HTTP status code returned by the server

(e.g., 200, 404, 500).

38 http_user_agent object User agent string sent by the client.

39 http_orig_mime_types object Original MIME types of the HTTP request

and response bodies.

40 http_resp_mime_types object Response MIME types of the HTTP

request and response bodies.

41 weird_name object Name of the weird event detected by Zeek

(e.g., " DNS_RR_unknown_type").

42 weird_addl object Additional information about the weird

event.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

43 weird_notice object Indication of whether a violation or

anomaly has been converted into a

notification or alert.

44 label int64 Label assigned to tag normal and attack

records (e.g., "0", "1").

45 type object Type of attack class.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

3.2.2 Dataset Preprocessing

Removing Features

The initial step in the process involves identifying and eliminating specific features that could

potentially impede the model's ability to generalize effectively. For instance, IP addresses, port

numbers, and timestamps are prone to change within different network environments. By

excluding these variables from the dataset, we can minimize any noise or irrelevant information

that may impact the model's performance in real-world deployments.

Furthermore, a substantial portion of the dataset's features were found to contain null values

for over 80% of the records. Recognizing the computational burden associated with processing

such features, we opted to remove them from consideration. Specifically, features related to

DNS, SSL, HTTP, and violation information were eliminated to streamline the dataset and

reduce computational complexity. We will only use connection features as the dataset input.

In summary, our approach involves training models based on two distinct sets of features,

allowing us to explore and evaluate the impact of feature selection on model performance. This

strategic approach aims to enhance the efficiency and effectiveness of our models in addressing

real-world challenges in IoT threat detection.

Table 3.2.2.1: Features Comparison for Set 1 and Set 2

No. Feature Set 1 Features Set 2 Features

1 ts

2 src_ip

3 src_port

4 dst_ip

5 dst_port

6 proto  

7 service  

8 duration  

9 src_bytes  

10 dst_bytes  

11 conn_state  

12 missed_bytes  

13 src_pkts  

14 src_ip_bytes  

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

15 dst_pkts  

16 dst_ip_bytes  

17 dns_query 

18 dns_qclass 

19 dns_qtype 

20 dns_rcode 

21 dns_AA 

22 dns_RD 

23 dns_RA 

24 dns_rejected 

25 ssl_version 

26 ssl_cipher 

27 ssl_resumed 

28 ssl_established 

29 ssl_subject 

30 ssl_issuer 

31 http_trans_depth 

32 http_method 

33 http_uri 

34 http_version 

35 http_request_body_len 

36 http_response_body_len 

37 http_status_code 

38 http_user_agent 

39 http_orig_mime_types 

40 http_resp_mime_types 

41 weird_name 

42 weird_addl 

43 weird_notice 

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Encode Categorical Labels

The dataset contains 10 distinct classes of categorical labels, each representing different

categories or classifications within the data. To effectively utilize this categorical information

for analysis or model training, it is essential to convert these labels into a numerical format.

This transformation enables computational algorithms to process and interpret the categorical

information, which is crucial for performing classification tasks. By converting categorical

labels into numerical representations, we ensure compatibility with machine learning

algorithms, thereby enabling more accurate predictions and insights to be extracted from the

dataset. To achieve this transformation, tools such as Label Encoder from libraries like scikit-

learn in Python are employed. This process ensures that the categorical labels are appropriately

encoded into numerical values, facilitating the subsequent analysis and modelling steps.

Table 3.2.2.2: Numerical Representations of Attack Classes

Attack Type Numerical representation

Backdoor 0

Ddos 1

Dos 2

Injection 3

Mitm 4

Normal 5

Password 6

Ransomware 7

Scanning 8

Xss 9

Forming Sentences using Dataset Records

In the next stage of preprocessing, we proceed with forming coherent sentences from the

remaining network feature data. This involves concatenating all relevant features of a record

together and separating them with white space. By doing so, we consolidate the diverse aspects

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

of the network data into a unified sentence-like structure. This approach simplifies the

information for the model to process and comprehend effectively. By presenting the data in a

structured and cohesive manner, we enhance the model's ability to extract meaningful patterns

and insights from the dataset. This step plays a crucial role in preparing the data for subsequent

analysis and model training, facilitating more accurate and reliable predictions of network

threats.

Figure 3.2.2.1: Visualization of Preprocessing

Partitioning Datasets

DistilBert Model

For the DistilBERT-based classification model, the dataset is partitioned into three distinct sets:

the training set, validation set, and testing set. This partitioning is essential to facilitate the

model's training with cross validation, evaluation, and testing processes, ensuring robust

performance and generalization.

SetFit Model

The dataset is partitioned into training set, validation set, and testing set also for the training

process. On the other hand, the SetFit model, requiring only a small number of records for

training, follows a different approach. To optimize accuracy, various numbers of shots are

attempted, specifically 8, 16, 32 and 64 shots. The remaining records not used for shots are

allocated as testing data for the SetFit model.

By automating these preprocessing steps, we streamline the dataset and create a more refined

input for the subsequent stages of the modeling process. This systematic approach ensures

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

efficient utilization of data and enhances the model's performance across different architectures

and training methodologies.

3.2.3 Tokenizer

DistilBert Model

The textual data obtained from the previous preprocessing stage cannot be directly fed into the

text classification model. To make the data compatible with the model, an additional step is

required, which involves tokenization. Tokenization involves splitting the text into smaller

units called WordPieces. This process allows the text to be converted into embeddings, which

are numerical representations that the model can process.

In addition to tokenize the text, special classification tokens are added to the sentences to

provide contextual information. These tokens include [CLS] for sequence classification and

[SEP] for separating paragraphs. By including these classification tokens, the model can better

understand the structure and context of the text.

For example, the record of

“[CLS] 1554287870, 57546, 15600, udp, -, 0. 0, 0, 0, 0, S0, 0, 1, 63, 0, 0, -, 0, 0, 0, -, -, -, -, -,

-, - [SEP]”

is converted into:

 ([101, 14168, 2575, 22407, 2575, 2581, 21619, 1010, 4583, 26187,

2575, 1010, 3770, 1010, 22975, 2361, 1010, 8299, 1010, 1014,

1012, 5890, 24087, 2692, 2683, 1010, 14168, 1010, 4891, 1010,

16420, 1010, 1014, 1010, 1019, 1010, 18034, 1010, 1018, 1010,

10630, 2692, 1010, 1011, 1010, 1014, 1010, 1014, 1010, 1014,

1010, 1011, 1010, 1011, 1010, 1011, 1010, 1011, 1010, 1011,

1010, 1011, 1010, 102])

Furthermore, the tokenizer assigns unique integer IDs to each token and generates an attention

mask. The attention mask is a binary mask that indicates which tokens should be attended to

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

and which ones can be ignored during processing. This information, along with the tokenized

text, is then converted into embeddings, which are numerical representations of the tokens that

capture their meaning and relationships.

Ultimately, the tokenized text, integer IDs, and attention mask are ready to be inputted into the

DistilBERT model for further processing and classification. By following this tokenization

process, we ensure that the textual data is appropriately prepared for effective analysis and

classification by the model.

SetFit Model

In the case of the SetFit model, there is no need to manually create a tokenizer as it is already

integrated within the model's Sentence Transformer module. The Sentence Transformer library

provides a comprehensive set of functionalities, including a tokenizer that can automatically

tokenize and embed the sentences before the sentences is inputted to the Transformer block.

When the model is running, it automatically processes the sentences and generates embeddings

for each sentence using the pretrained tokenizer. This eliminates the need for manual

tokenization and embedding steps, as the tokenizer handles these tasks seamlessly within the

SetFit model.

By utilizing the capabilities of the Sentence Transformer library and its built-in tokenizer, you

can streamline the preprocessing phase and directly obtain sentence embeddings for your input

data. This simplifies the overall workflow and ensures that the text is appropriately processed

and ready for further analysis or classification using the SetFit model.

3.2.4 DistilBert-based IoT Threats Classification Model

During the preprocessing stage, we encounter challenges with certain features in the dataset,

particularly those containing random string values that are difficult to encode. For instance, the

"weird_name" feature may contain arbitrary strings like "bad_TCP_checksum," which cannot

be easily transformed into numerical representations using traditional methods like Label

Encoder. Moreover, Label Encoder lacks the capability to update its dictionary to

accommodate new string values, such as with the introduction of a new feature like "protocol."

As a result, we seek to explore the potential of language models in the field of IoT threat

classification.

DistilBert is a compact and efficient Transformer model developed through the distillation of

Bert base. With 40% fewer parameters compared to google-bert/bert-base-uncased, it offers a

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

lightweight alternative that runs 60% faster while retaining over 95% of BERT's performance

on the GLUE language understanding benchmark. This makes DistilBert an attractive option

for various natural language processing tasks where speed and resource efficiency are crucial

especially on IoT environment.The DistilBert pretrained-model will be utilized to build a

multiclass IoT threats classifier. The tokenized embeddings will be inputted into the model for

classification. The model will determine which class of threats is the network data records

belongs to.

The model will be built using the PyTorch module, which is a popular deep learning framework

known for its flexibility and ease of use. PyTorch provides a wide range of tools and

functionalities that make it suitable for building and training neural network models. PyTorch

offers a dynamic computational graph, allowing for easy model construction and modification.

The PyTorch module also offers GPU acceleration, enabling efficient training and inference

on compatible hardware. This can significantly speed up the training process, especially for

models with large parameter sizes or complex computations.

During the training of the model, the cross-entropy loss function will be utilized as the objective

function. The cross-entropy loss is a commonly used metric for multiclass classification tasks

because it quantifies the disparity between the predicted class probabilities and the actual class

labels. It is particularly suitable when models generate class probabilities as their output.

Minimizing the cross-entropy loss allows the model to assign higher probabilities to the correct

classes, thereby improving its classification performance.

To prevent overfitting and ensure the model's generalization ability, an early stopping

mechanism will be implemented. This mechanism involves monitoring the validation loss after

each epoch of training. If the validation loss fails to improve or starts to increase consistently,

the training process can be stopped early to prevent the model from overfitting to the training

data.

3.2.5 SetFit-based Few-Shot Learning IoT Threats Classification Model

To enhance the original framework, a few-shot learning technique will be explored. This

technique aims to improve the model's performance when dealing with limited training data.

The SetFit architecture, an efficient few-shot learning approach that leverages the Sentence

Transformer architecture, specifically tailored for IoT threat classification will be explored.

This innovative framework aims to enhance the model's ability to generalize and classify IoT

threats accurately, even with limited labelled data. By utilizing the advanced capabilities of the

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Sentence Transformer architecture, SetFit offers a promising solution to address the challenges

associated with traditional classification methods in the context of IoT security.

Sentence transformers are a type of model in natural language processing that aims to encode

variable length sentences into fixed size numeric vectors in a way that captures the overall

semantic meaning and intent of the text. This differs from traditional word embeddings which

only embed individual tokens. By fine-tuning powerful pretrained language models like MPNet

as encoders, sentence transformers are able to analyse the contextual relationships between

words in a sentence to understand the concepts being conveyed. These encoders are then

typically combined with pooling operations to condense the final hidden states into a single

representative vector for each unique text. The end goal is to be able to measure similarity

between sentences based on the cosine distance between their embedding vectors, rather than

just relying on surface form word overlap. This allows applications in areas like semantic

search, clustering texts by topic, and ranking sentences according to semantic relevance.

SetFit leverages the capabilities of Sentence Transformer to generate dense embeddings based

on pairs of sentences. In the Sentence Transformer fine-tuning stage, contrastive training is

employed to create positive and negative pairs using a limited amount of labelled textual

network data. The Sentence Transformer model is then trained on these pairs, generating dense

vectors for each example.

In the classification head training stage, the classification head is trained using the encoded

embeddings. This step ensures that the model can map the dense vectors to the corresponding

classes or labels. During inference, unseen examples are passed through the fine-tuned

Sentence Transformer, which generates embeddings. These embeddings are then fed to the

classification head for classification.

The SetFit framework enables few-shot training for the IoT threats classification model. It

requires less training data compared to the DistilBERT text classification model mentioned

earlier. Additionally, SetFit reduces the training time, making it more efficient for training with

limited labelled data.

By leveraging Sentence Transformer's ability to generate dense embeddings and combining it

with contrastive training and a classification head, SetFit demonstrates improved performance

in few-shot learning scenarios. This framework enables efficient and accurate classification of

IoT threats, making it a valuable approach for threat detection and mitigation.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Figure 3.2.5.1: SetFit Framework [18]

SetFit is a library that facilitates the implementation of the framework without the need for

extensive model customization. The focus of the work with this model is to fine-tune it by

identifying the best parameters and shot configurations. The trainer class provided by the

authors is utilized to train the entire SetFit model, automating the training and testing processes.

Since SetFit is a few-shot learning method, the model is trained with different numbers of shots.

Shots refer to the labeled data provided for training the model in each class.

A higher number of shots generally leads to higher accuracy. However, the objective is to find

the optimal number of shots that can achieve high performance without requiring a significant

increase in the amount of labeled data. In this context, basic shots being explored are 8, 16, and

32. For instance, 8 shots mean that only 8 records from the dataset are used to generate the

sentence pairs and vice versa.

By experimenting with different shot configurations, the goal is to determine the appropriate

balance between accuracy and the amount of labeled data required. The aim is to identify the

shot configuration that provides high performance without a considerable increase in the

number of labeled data instances. It is recommended to have a minimum of 8 shots to ensure

sufficient data for the model's training.

Besides that, the number of iterations is also an important parameter to consider in the SetFit

framework. It determines the number of pairs that will be generated during the contrastive

learning phase. During contrastive learning, positive and negative pairs of sentence

embeddings are created to train the Sentence Transformer model. The model learns to bring

the embeddings of positive pairs closer together in the embedding space while pushing the

embeddings of negative pairs further apart. The number of iterations defines how many pairs

are generated and used for training during this contrastive learning process. Each iteration

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

typically involves randomly sampling positive and negative pairs from the available labeled

data.

The trainer of the model separates the training step into 2 stages which is the fine tuning of the

Sentence Transformers and the final classifier. Sentence Transformer is being trained by using

the generated sentence pairs in which contain true pairs and false pairs. The Cosine Similarity

loss function is being used in the Sentence Transformer training and Adam is chosen as the

optimizer. While for the classification head uses Cross Entropy Loss as the loss function for

the training of final classifier. While Adam is also being used as the optimizer.

In the SetFit framework, the trainer class divides the training process into two stages: fine-

tuning the Sentence Transformers and training the final classifier.

The Cosine Similarity loss function is typically employed in this training stage. It measures the

similarity between the embeddings of the positive pairs, aiming to maximize it, while

minimizing the similarity between the embeddings of the negative pairs. By optimizing this

loss function, the Sentence Transformers learn to generate embeddings that capture the

semantic relationships between the sentences. The Adam optimizer is chosen for fine-tuning

the Sentence Transformers.

In the second stage, the final classifier is trained using the embeddings generated by the

Sentence Transformers. Cross Entropy Loss is commonly used as the loss function for training

the final classifier. The cross-entropy loss measures the dissimilarity between the predicted

class probabilities and the true class labels. The objective is to minimize this dissimilarity, as

it corresponds to improving the accuracy of the classification task. Similarly, in the fine-tuning

stage, the Adam optimizer is utilized for training the final classifier.

3.2.6 Model Evaluation

In the model evaluation phase, we will comprehensively assess the performance of all four

models based on key metrics including accuracy, precision, recall, and F1-score. These metrics

serve as reliable indicators of the models' effectiveness in accurately classifying IoT threats.

Our analysis will delve into the strengths and limitations of each model, providing valuable

insights into their respective capabilities and areas for improvement. By examining the

performance of each model across multiple metrics, we can gain a holistic understanding of

their overall efficacy in threat detection. Moreover, we plan to implement a KNN (K-Nearest

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Neighbors) classifier alongside our developed model. This will allow us to assess the

performance of our model relative to a widely-used baseline classifier in the field of machine

learning.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Stage 2: Implementing model on unseen threats

During this stage, we are actively generating realistic network attacks to assess the performance

of the deep learning models. This marks a pioneering effort in research, as it represents the first

instance of implementing such a step and investigating the feasibility of the model in real-world

implementation.

3.2.7 Designing IoT Network Testbed

Figure 3.2.7.1: IoT Network Testbed

Our network architecture is designed to simulate a realistic IoT environment where a Raspberry

Pi serves as the IoT device hosting a vulnerable web application, the DVWA (Damn Vulnerable

Web Application), susceptible to various cyber attacks. The architecture also includes an

attacker node, represented by a Kali Linux virtual machine, responsible for launching simulated

attacks, and a packet collector node, hosted on a separate computer, to monitor and analyse

network traffic.

Components:

Attacker (Kali VM):

The Kali Linux virtual machine is configured to function as the attacker node in our network.

It hosts a suite of penetration testing tools and is responsible for launching simulated attacks

against the IoT device.

This node is used to initiate various attack scenarios, including DDoS attacks, SQL injection,

and cross-site scripting, to assess the vulnerability of the IoT device.

Victim (Raspberry Pi with DVWA):

The Raspberry Pi serves as the victim device in our network, emulating a typical IoT device

running a vulnerable web application.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

It hosts the Damn Vulnerable Web Application (DVWA), a deliberately insecure web

application used for testing purposes.

The Raspberry Pi is physically connected to the network and is accessible from the attacker

node for exploitation.

Packet Collector (Host Computer):

Since the Kali VM is hosted in the computer and is connected through NAT with the host

computer. The packet collector is hosted on the computer and is responsible for capturing and

analysing network traffic generated during the attack simulations.

It is equipped with network monitoring tools such as Wireshark to capture packets traversing

the network.

Connectivity:

The host computer and the victim device (Raspberry Pi with DVWA) are connected to the same

local area network (LAN) through Ethernet.

The attacker Kali VM is connected to the host with NAT selection in VMware therefore it will

share the same IP address with the host computer.

Communication between the attacker and victim nodes occurs over the LAN, allowing the

attacker to exploit vulnerabilities in the IoT device's web application.

Software Used:

Kali Linux: Used as the operating system for the attacker node, providing a suite of pre-

installed penetration testing tools.

Raspbian OS: Installed on the Raspberry Pi to support the DVWA web application.

DVWA (Damn Vulnerable Web Application): Installed on the Raspberry Pi, serving as the

target for simulated attacks.

Wireshark: Utilized on the packet collector node to capture and analyze network traffic.

This network architecture facilitates the simulation of realistic attack scenarios in an IoT

environment, enabling the evaluation of few-shot learning techniques for threat detection.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

3.2.8 Discovering IoT vulnerabilities and Intrusion Planning

In the context of our specialized network testbed, where documentation from ToN-IoT is

unavailable, we are tasked with designing and executing network attacks to simulate real-world

threats. These attacks are tailored to be unseen, meaning they are not present in the existing

dataset and therefore represent novel challenges for our threat detection models.

Port Scanning Attack

One of the attacks we will conduct is a port scanning attack using the Nmap tool. This attack

aims to identify open ports on the target device (169.254.237.215) which could potentially

serve as entry points for unauthorized access. The command nmap 169.254.237.215 will be

executed to scan for open ports and gather information about the target's network configuration.

Tools: Nmap

Command: nmap 169.254.237.215

Password Attack

Another attack in our arsenal is a password attack, which involves attempting to gain

unauthorized access to the target device by brute-forcing login credentials. We will utilize the

Hydra tool to perform HTTP-GET-FORM and SSH brute force attacks. These attacks involve

systematically attempting different username-password combinations until a successful login

is achieved.

Tools: Hydra

Hydra SSH brute force

hydra 169.254.237.215 -l pi -P /home/kali/passwordList.txt ssh

XSS Attack

Additionally, we will execute a cross-site scripting (XSS) attack using the xsser tool. This

attack targets web applications running on the target device (at the URL

"http://169.254.237.215/vulnerabilities/xss_r/?name=XSS#") and exploits vulnerabilities to

inject malicious scripts.

Tools: xsser

Command: sudo xsser --url "http://169.254.237.215/vulnerabilities/xss_r/?name=XSS#" --

cookie="PHPSESSID=b6i30vnrgtpfqdn57mp02so790; security=low" –auto

*cookie value must be changed according to session

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

3.2.9 Perform attack and capture the attack network flow

The planned attack is currently underway, and we are actively capturing the network flow using

Wireshark. Wireshark, a powerful network protocol analyser, allows us to monitor and capture

network traffic in real time, providing detailed insights into the data packets traversing the

network during the attack.

As the attack progresses, Wireshark continuously captures and records various network

activities, including packet transmissions, protocol interactions, and communication between

devices. This captured network flow data will serve as valuable input for our analysis and

evaluation of the attack's impact on the network infrastructure. The network flow will be saved

in pcap format.

3.2.10 Generating Network Logs with Zeek and Converting to CSV

The Zeek network analysis tool will be utilized to capture and log network traffic data from

pcap files generated from the simulated attacks. Subsequently, Python scripts were employed

to convert the generated logs into a structured CSV format suitable for further analysis and

model inference process.

Generating Network Logs with Zeek

Deployment: Zeek was deployed on Ubuntu Linux VM. The network flow data generated

during the simulated attacks are transferred into the VM for Zeek analysis and logging. Zeek

passively analyse each packet captured by the Wireshark program and generate comprehensive

logs containing detailed information about network connections, protocol activity, and security

events. Zeek logs various types of network activity, including connection summaries

(conn.log), HTTP requests (http.log), DNS queries (dns.log), SSL/TLS handshakes (ssl.log),

and more, providing a holistic view of the network traffic.

Converting Zeek Logs to CSV Using Python Scripts

Before converting the Zeek logs to CSV, we preprocess the logs to extract relevant fields and

filter out unnecessary information based on the requirements of the model. Since we are unable

to reproduce the way ToN-IoT combining the logs, we only extract the logs information from

conn.log files which consists of all connection information.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

We developed custom Python scripts to parse the Zeek logs and convert them into structured

CSV files. These scripts utilize libraries such as Pandas for data manipulation and for file I/O

operations.The script reads the conn.log file into a Pandas DataFrame, selectively extracting

pertinent columns such as timestamps, IP addresses, port numbers, protocol types, connection

durations, and packet counts. Subsequently, the extracted data is transformed into a new

DataFrame, tailored to include only the essential information relevant to network connections.

Finally, the script exports this refined DataFrame into a CSV file, allowing for seamless

integration with various data analysis tools and workflows. By automating the conversion

process, the script facilitates efficient data preprocessing, The table below shows the features

that is extracted from the conn.log, it is exact same with the set 2 feature.

Table 3.2.10.1: Features Visualization for Generated Dataset

No. Features

1. ts

2. src_ip

3. src_port

4. dst_ip

5. dst_port

6. proto

7. service

8. duration

9. src_bytes

10. dst_bytes

11. conn_state

12. missed_bytes

13. src_pkts

14. src_ip_bytes

15. dst_pkts

16. dst_ip_bytes

Dataset Filtering and Labelling

The csv files generated will then be analysed and filtered out to remove noises from the normal

network flow. Only the malicious network flow will be remained in the dataset.

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

After that, the ground truth labels will be assigned to each record in the CSV file. These labels

correspond to the true classification or category of each data instance, providing a reference

point for training and evaluating machine learning models.

Combining csv into datasets

We will produce 3 different datasets for evaluation to represent different situation.

1) ToN-IoT testset

20% of the ToN-IoT data will be randomly sampled out for testing.

2) Unseen Logs dataset

50 samples for each class from the self-generated unseen logs will be randomly

extracted to form the unseen logs dataset for testing.

3) Combined dataset

50 samples for each class will be sampled out from ToN-IoT and 5 samples for each

class in the unseen log dataset will be combined to form the combined dataset.

3.2.11 Evaluation of Model Performance on Generated Data

To assess the effectiveness of the trained model in detecting unseen IoT threats, we conducted

an evaluation of its performance on the generated data. We utilized the trained models on the

set 2 features to make inferences on the network log data previously converted into CSV

format. The model analysed each network connection represented in the CSV file, leveraging

its learned representations of normal and anomalous network behaviour to classify connections

as benign or malicious. Subsequently, we evaluated the model's predictions against ground

truth labels. By comparing the model's predictions with actual observations, we gained insights

into its ability to effectively identify and classify security threats in the IoT environment. This

evaluation process serves as a critical step in validating the model's performance and assessing

its readiness for real-world deployment in enhancing network security and threat detection

capabilities.

3.2.12 Performing retraining of model with combined dataset (Transfer Learning)

In our exploration of model capabilities, a significant aspect we delved into was the potential

of model adaptability towards unseen threats. Transfer learning, a technique widely employed

in machine learning, involves leveraging knowledge gained from training on one task to

improve performance on a different but related task. By fine-tuning the previously trained

model on the unseen self-generated dataset, we aimed to evaluate its adaptability and

CHAPTER 3

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

effectiveness in detecting threats across different IoT environments. Through this process, we

sought to uncover insights into the model's ability to generalize and transfer learned knowledge,

ultimately enhancing its utility in addressing diverse cybersecurity challenges in IoT

ecosystems. This investigation into transfer learning capabilities represents a crucial step in

harnessing the full potential of machine learning models for cybersecurity applications, paving

the way for more robust and adaptable threat detection systems.

The DistilBert-based model will undergo retraining using a hybrid dataset comprised of

samples from the ToN-IoT training set and training samples from the unseen dataset. The ToN-

IoT training set will be randomly subsampled to include 50 samples per class, which will then

be combined with manually sampled unseen data containing 5 samples per class to augment

the training dataset for the SetFit model. The retraining process follows the standard training

methodology outlined earlier, with the exception of reducing the number of training epochs to

5 for both models

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Chapter 4 System Model

4.1 System Implementation Modeling

Figure 4.1.1: System Implementation Model

The model that has been created will play a crucial role within the Network Intrusion Detection

System, specifically tailored for detecting potential threats within IoT network setups. Its

function is to analyze the connection logs received from the Zeek logging server, a platform

designed for network traffic analysis. Upon receiving these logs, the model will apply its

classification capabilities to assess each connection and determine whether it represents normal

network activity or poses a potential security threat. This process enables the system to swiftly

identify and respond to any suspicious or malicious behavior occurring within the IoT network

environment, thereby enhancing overall network security.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

4.2 IoT Threat Detection Model Flow

Figure 4.2.1: IoT Threat Detection Model Flow

The acquired network log data undergoes preprocessing to extract relevant features essential

for the models. These features are then concatenated into a sentence-like structure. For the

DistilBert model, tokenization of the sentences precedes their input into the model.

This research develops two distinct models: SetFit, a few-shot learning model, and DistilBert,

which lacks few-shot learning capability. Both models engage in multiclass classification of

the log sentences to determine whether they belong to attack classes or represent normal traffic

flow.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Following model classification, evaluation ensues to scrutinize model performance. In cases

where new, unrecognized attacks emerge, model adaptation is initiated. This adaptation

involves employing transfer learning on the existing model using a combined dataset

containing the new, unseen log samples and the old samples. Through model retraining, the

model efficiently learns the patterns of new threats, enabling it to classify them accurately post-

adaptation.

4.3 Models Architecture

4.3.1 DistilBert-based IoT Threat Classification Architecture

Figure 4.3.1: DistilBert-based IoT Threat Classification Model Architecture

The threat classification model consists of 4 main components which is the DistilBert layer,

pre-classifier layer, dropout layer and classifier layer. The DistilBert layer will encode the input

sequences into a fixed length vector. The vectors will then be input into the pre-classifier,

dropout layer and classifier to get the prediction.

The DistilBert layer consists of 2 main components which are the Embeddings block and the

Transformer block. Embeddings block is responsible for handling the input tokenization and

embedding processes. It consists of 4 main components which is the word embeddings, position

embeddings, a normalization layer and dropout layer. Word embeddings layer will represent

every token by a vector space of (30522, 768) where 30522 is the number of unique tokens in

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

the vocabulary and 768 is the dimensionality of the embedding space. While the position

embeddings will represent the position in the sequence by a vector of (512, 716) where 512 is

the maximum sequence length of every token and 716 is the dimensionality of the embeddings

space. Next, the normalization layer helps to improve the stability and speed up the training

process and dropout layer prevents overfitting.

Next, the input is then pass through the DistilBert encoder. It is used to encode the input

sequences into fixed-length vectors. There are 4 main components in the DistilBert encoder

block which consists of the Multi-Head Self Attention layer, normalization layer, feed-forward

network layer, and output normalization layer. The multi-head self-attention layer is a

mechanism allows the model to attend to different parts of the input sequence simultaneously,

capturing dependencies and relationships between tokens. It consists of linear transformations

for query (q), key (k), and value (v) projections, followed by dropout and output linear

transformations. The output will then pass to a normalization layer. The feedforward neural

network consists of two linear layers with a GELU activation function in between. It transforms

the attention outputs to a higher-dimensional space and then back to the original dimensionality.

The output is then pass through the normalization layer again before pass to the next layer for

classification.

After being process by the DistilBERT Model, the output vector will then be pass to the 3

additional classification layers which is the pre-classifier layer, dropout layer, and classifier

layer. The data will be pass through a pre-classifier first before inputted into the dropout layer

which randomly drop some activation during training to prevent overfitting and improve

generalization ability of the model. Finally, the final classifier will output the predicted class

probability.

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

4.3.2 SetFit-based IoT Threat Classification Architecture

Figure 4.3.2: SetFit-based IoT Threat Classification Model Architecture

The SetFit framework comprises two main layers: the MPNet Sentence Transformer and the

classification head.

The model body consists of two components: the Tokenizer and the MPNet Transformer model.

The MPNet Sentence Transformer is a transformer-based model that learns contextual

representations of the input sentences. It captures the relationships and dependencies between

words or tokens, enabling it to generate meaningful dense embeddings. The MPNet Sentence

Transformer first tokenizes the input text into individual tokens and maps them to dense vector

representations using word embeddings. These embeddings are then processed through

multiple layers of Transformer blocks, which incorporate self-attention and feedforward neural

networks to capture semantic relationships and contextual information. Additionally, a mean

pooling layer is applied to aggregate the token-level representations into a single fixed-length

vector.

The classification head is a machine learning model that performs the multiclass classification

task. In the SetFit framework, Logistic Regression has been chosen as the classification model.

Logistic Regression is a widely used model for binary or multiclass classification problems. It

learns a set of weights and biases to map the dense embeddings generated by the Sentence

Transformer to the corresponding threat classes. By training the Logistic Regression model on

CHAPTER 4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

the encoded embeddings, it becomes capable of accurately classifying the threats based on the

learned representations.

These embeddings are then processed through multiple layers of Transformer blocks, which

incorporate self-attention and feedforward neural networks to capture semantic relationships

and contextual information.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Chapter 5 Experiment

5.1 Hardware Setup

Several hardware had been used to conduct the experiment to implement it on self-generated

network attacks.

1) Laptop

Table 5.1.1: Specifications of laptop

Description Specifications

Model HP Pavilion Laptop 15-cs3137tx

Processor Intel Core i7-1065G7

Operating System Windows 11

Graphic NVIDIA GeForce MX250 4GB DDR3

Memory 16GB DDR4 RAM

Storage 512 GB NVME SSD

2) Raspberry Pi 3 Model B

Table 5.1.2: Specifications of Raspberry Pi 3 Model B

Description Specifications

Model Raspberry Pi 3 Model B

Processor Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

Operating System Raspbian Buster

Memory 1GB RAM

3) RJ45 Network Cable

5.2 Software Setup

Software on Laptop

1) VMWare Workstation 17 Player

2) Kali Linux VM

a. Hydra

b. Nmap

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

c. xsser

3) Wireshark

4) Zeek Network Analyzer Tools installed in Ubuntu VM

5) RealVNC Viewer

Software on Raspberry Pi

1) Damm Vulnerable Web Application (DVWA)

2) Docker

5.3 Setting and Configuration

5.3.1 Setting Up Vulnerable IoT Device

The Raspberry Pi 3 Model B will be used as the victim in our network testbed. We can access

to the Raspberry Pi interface with RealVNC viewer through the IP address of 169.254.237.215.

This setup enables remote interaction with the Raspberry Pi, allowing for monitoring,

management, and troubleshooting tasks to be performed seamlessly.

Figure 5.3.1.1: Setting Up Vulnerable IoT Device 1

Initially, Docker will be installed on the Raspberry Pi to simplify the process of hosting the

Damn Vulnerable Web Application (DVWA). Subsequently, DVWA will be executed within

a Docker container, leveraging the containerization technology provided by Docker. This

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

approach streamlines the deployment of DVWA on the Raspberry Pi, ensuring efficient

resource utilization and ease of management throughout the hosting process.

Figure 5.3.1.2: Setting Up Vulnerable IoT Device 2

DVWA web page can be access through localhost IP port 80 through web browser.

Figure 5.3.1.3: Setting Up Vulnerable IoT Device 3

Next, we will need to create a database for the DVWA.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Figure 5.3.1.4: Setting Up Vulnerable IoT Device 4

Figure 5.3.1.5: Setting Up Vulnerable IoT Device 5

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

5.3.2 Setting Up Kali Linux VM

1) Download pre-built VMware Kali Image

Figure 5.3.2.1: Setting Up Kali Linux VM 1

2) Open the Kali VM downloaded

Figure 5.3.2.2: Setting Up Kali Linux VM 2

3) Double click to turn on the VM

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Figure 5.3.2.3: Setting Up Kali Linux VM 3

Figure 5.3.2.4: Setting Up Kali Linux VM 4

5.3.3 Setting Up Wireshark

1) Turn on wireshark and sniff the packet on the Ethernet port

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 5.3.3.1: Setting Up Wireshark

5.4 System Operation

5.4.1 Performing Network Attacks & Capturing Network Packets

The Kali Linux virtual machine, equipped with a diverse array of hacking tools, serves as the

platform for launching network attacks against the Raspberry Pi. Installed on a laptop, the Kali

VM is hosted using VMWare Workstation 17 Player. A bash script has been developed to

automate the steps involved in executing the hacking procedures efficiently.

Wireshark, a network protocol analyzer, is employed to capture the flow of network packets.

Prior to launching an attack, Wireshark is activated to monitor the packet flow on the Ethernet

port of the laptop.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 5.4.1.1: Capturing Attack Network Flow 1

Below consists of the screenshots of the network attacks that are launched to the victim:

1) Port Scanning

Figure 5.4.1.2: Capturing Attack Network Flow 2

There are 3 services that have its port open which is SSH on port 22 TCP, HTTP on port 80

TCP and VNC on port 5900 TCP.

2) SSH Brute Force

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Figure 5.4.1.3: Capturing Attack Network Flow 3

The Hydra successfully brute force the SSH password.

3) Cross-site scripting

Figure 5.4.1.4: Capturing Attack Network Flow 4

5.4.2 Create Network Logs from Network Flow

Zeek will be used to analyze the attacking network flow and output their relevant network logs.

All the packet capture will be analyzed by Zeek to get the output logs.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Figure 5.4.2.1: Generating Network Flow Logs 1

Figure 5.4.2.2: Generating Network Flow Logs 2

5.4.3 Preprocessing Network Logs into CSV

The conn.log generated from Zeek will be extracted out for model classification. The 3

conn.log files from the 3 attacks will be process and the connection features will be extracted

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

through a Python script. The logs features will then be converted to csv format and labelled

with their respective attack types.

Figure 5.4.3.1: Converting Logs to CSV Dataset 1

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Figure 5.4.3.2: Converting Logs to CSV Dataset 2

5.4.4 Detecting and Classifying Threats

The generated CSV dataset will subsequently serve as input for the developed models for

classification purposes. Following classification, the output can be effectively visualized using

a pie chart. This visualization method offers users a straightforward means to interpret whether

the network flow comprises any potential threats. By presenting the classification results in a

pie chart format, users can swiftly discern the distribution of normal and threatening network

activities, facilitating quick and informed decision-making regarding network security

measures. This visual representation enhances the usability and accessibility of the

classification results, empowering users to take proactive steps to mitigate identified threats.

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Figure 5.4.4.1: Generating Predictions with SetFit Classification Model 1

Figure 5.4.4.2: Generating Predictions with SetFit Classification Model 2

CHAPTER 5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Figure 5.4.4.3: Generating Predictions with SetFit Classification Model 3

The diagrams provided depict pie charts illustrating the classification results of the SetFit

(Transfer Learning) model when making inferences on CSV files containing their respective

attack classes. It is evident that the majority of logs are accurately classified into their respective

attack categories.

5.5 Implementation Issues and Challenges

Difficulties in reproducing the Network Logs preprocessing steps in ToN-IoT

Reproducing the Network Logs preprocessing steps outlined by ToN-IoT proved challenging

due to the absence of comprehensive documentation detailing their process for aggregating and

integrating features from various log files generated by Zeek. This presented a formidable

obstacle to replicating their methodology accurately. To address this issue, we opted to focus

solely on the primary log file, specifically the conn.log features. Despite this limitation, we

were able to demonstrate that this streamlined approach did not result in significant discernible

performance degradation.

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Chapter 6 System Evaluation and Discussion

6.1 Models testing and Performance Metrics

6.1.1 Evaluation Cases

In the evaluation phase, the performance of the developed models—namely, the DistilBert-

based model, SetFit model, and a KNN classifier—will be rigorously tested using various

testing datasets. Initially, these models will undergo evaluation using the ToN-IoT test set,

which has been partitioned out beforehand. Additionally, a self-generated dataset comprising

unseen attack logs will be utilized to further assess the models' capabilities in identifying novel

threats. Furthermore, a combined dataset incorporating both the ToN-IoT test set and the self-

generated unseen dataset will be employed to provide a comprehensive evaluation scenario.

Moreover, the effectiveness of transfer learning will be investigated by applying the technique

to the models using the unseen data. This analysis aims to ascertain whether transfer learning

enhances the models' performance in detecting and mitigating emerging threats. Through these

evaluations, we seek to gain insights into the strengths and limitations of each model and assess

their suitability for practical deployment in real-world IoT security scenarios.

6.1.2 Evaluation Metrics

To evaluate the proposed method's recognition performance, several key evaluation metrics are

utilized: Accuracy (ACC), Recall, Precision, and F1 Score. These metrics assess the model's

performance based on four parameters: True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN).

Accuracy (ACC) measures the proportion of correctly classified samples, both normal and

abnormal. It is calculated by dividing the sum of TP and TN by the total number of samples

(TP + FP + TN + FN).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

Precision, also referred to as the accuracy rate, quantifies the proportion of correctly predicted

normal data out of all predicted normal data. It is determined by dividing TP by the sum of TP

and FP.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall, alternatively known as the check-all rate, represents the proportion of correctly

predicted normal data out of all actual normal data. It is calculated by dividing TP by the sum

of TP and FN.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score serves as a balanced measure of precision and recall, providing a reconciled average

of the two metrics. It is computed by taking the harmonic mean of precision and recall, thereby

accounting for their contradictory nature.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

In summary, these evaluation metrics collectively provide insights into the model's ability to

correctly classify normal and abnormal samples, ensuring a comprehensive assessment of its

recognition performance.

Additionally, confusion matrices will be generated as part of the evaluation process to provide

a detailed analysis of the models' performance. Confusion matrices offer a visual representation

of the classification results, depicting the number of true positives, true negatives, false

positives, and false negatives for each class or category in the dataset.

6.2 Testing Setup and Result

6.2.1 Hardware

The hardware involved in this IoT threat detection project is a computer. A computer is needed

to test the models and conduct evaluation with the datasets.

Table 6.2.1.1: Specifications of laptop

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Description Specifications

Model HP Pavilion Laptop 15-cs3137tx

Processor Intel Core i7-1065G7

Operating System Windows 11

Graphic NVIDIA GeForce MX250 4GB DDR3

Memory 16GB DDR4 RAM

Storage 512 GB NVME SSD

6.2.2 Software

Anaconda is used as the package management system to set up the testing environment. Below

includes the libraries that is needed for the testing environment.

1. PyTorch Library

2. Transformer Library

3. SetFit Library

4. Sentence Transformer Library

5. Pandas Library

Jupyter Notebook is used as the main tool for model evaluation with the dataset.

6.2.3 Result Analysis

Evaluation on ToN-IoT test set

Table 6.2.3.1: Accuracy Evaluation on ToN-IoT Testset

IoT Threat Classification Model Best Accuracy

DistilBert-based (All features) 0.9998

DistilBert-based (Conn features) 0.9802

SetFit (All features) 0.8885

SetFit (Conn features) 0.8807

KNN Classifier 0.9793

Among these models, the DistilBert-based model using all features achieved the highest

accuracy, indicating its effectiveness in accurately classifying IoT threats. Interestingly, even

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

when utilizing only connection features, the DistilBert-based model still performed

exceptionally well, with a slightly lower accuracy score.

Additionally, the few-shot learning models, represented by the SetFit architecture,

demonstrated notable performance, achieving an accuracy of 0.88. This result is particularly

significant considering that the SetFit models were trained with a significantly smaller dataset

of only 64 samples for each class of attack which is 640 altogether, compared to the DistilBert-

based model, which utilized approximately 400,000 samples for training. This highlights the

potential of few-shot learning techniques in achieving competitive performance with limited

training data.

Overall, the SetFit models showcase promising performance, particularly considering their

ability to achieve robust results with a smaller training dataset.

DistilBert-based (All features) classifier per-class evaluation (ToN-IoT test set)

Table 6.2.3.2: DistilBert-based (All features) classifier per-class evaluation on ToN-IoT

Testset

Attack Type Accuracy Precision Recall F1-score

Backdoor 1.00 1.00 1.00 1.00

Ddos 1.00 1.00 1.00 1.00

Dos 1.00 1.00 1.00 1.00

Injection 1.00 1.00 1.00 1.00

mitm 1.00 1.00 1.00 1.00

normal 0.99 0.99 0.99 0.99

password 0.99 0.99 0.99 0.99

ransomware 0.99 1.00 0.99 0.99

scanning 1.00 1.00 1.00 1.00

xss 0.99 0.99 0.99 0.99

The DistilBert-based model with all features showcases outstanding performance in classifying

various types of network threats, demonstrating its effectiveness in accurately identifying and

categorizing different attack types with minimal misclassifications. The consistently high

scores across all evaluation metrics indicate the model's robustness and reliability in threat

detection across a range of attack scenarios.

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

DistilBert-based (Conn features) classifier per-class evaluation (ToN-IoT test set)

Table 6.2.3.3: DistilBert-based (Conn features) classifier per-class evaluation on ToN-IoT

Testset

Attack Type Accuracy Precision Recall F1-score

Backdoor 1.00 1.00 1.00 1.00

Ddos 0.96 0.98 0.96 0.97

Dos 0.98 0.99 0.98 0.98

Injection 0.96 0.98 0.96 0.97

mitm 0.71 0.66 0.71 0.68

normal 0.99 0.99 0.99 0.99

password 0.98 0.99 0.98 0.98

ransomware 0.93 0.84 0.93 0.88

scanning 0.99 0.98 0.99 0.99

xss 0.91 0.93 0.91 0.92

While the DistilBert-based model using connection features demonstrated strong performance

across various attack types, there were some challenges in accurately identifying certain types

of threats such as MitM attacks, leading to lower performance metrics for the categories. The

limitation of MitM which it has extremely less data samples compared to other classes and the

reliance of the attack with dns features may be the cause of this issue. However, the model's

overall performance remained robust, with high accuracy and precision in detecting most types

of network threats.

SetFit (All features) classifier per-class evaluation (ToN-IoT test set)

Table 6.2.3.4: SetFit (All features) classifier per-class evaluation on ToN-IoT Testset

Attack Type Accuracy Precision Recall F1-score

Backdoor 0.98 0.97 0.98 0.98

Ddos 0.92 0.85 0.92 0.88

Dos 0.85 0.97 0.85 0.91

Injection 0.93 0.69 0.93 0.79

mitm 0.88 0.05 0.89 0.10

normal 0.87 1.00 0.87 0.93

password 0.97 0.74 0.97 0.84

ransomware 0.96 0.70 0.96 0.81

scanning 0.98 0.92 0.98 0.95

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

xss 0.82 0.71 0.82 0.76

SetFit (Conn features) classifier per-class evaluation (ToN-IoT test set)

Table 6.2.3.5: SetFit (Conn features) classifier per-class evaluation on ToN-IoT Testset

Attack Type Accuracy Precision Recall F1-score

Backdoor 0.98 1.00 0.98 0.99

Ddos 0.91 0.70 0.91 0.79

Dos 0.95 0.86 0.95 0.90

Injection 0.89 0.64 0.89 0.74

mitm 0.88 0.07 0.88 0.13

normal 0.85 1.00 0.85 0.92

password 0.97 0.72 0.97 0.82

ransomware 0.96 0.67 0.96 0.79

scanning 0.98 0.99 0.98 0.99

xss 0.85 0.78 0.85 0.81

In the SetFit models, there is not a significant difference in performance between the two

models. However, it is noticeable that the "mitm" class exhibits an extremely low precision,

indicating that many instances from other classes are misclassified as "mitm".

6.2.3.2 Evaluation on unseen dataset (Conn Features Only)

Table 6.2.3.6: Accuracy Evaluation on Unseen Dataset

IoT Threat Classification Model Best Accuracy

DistilBert-based 0.0013

DistilBert-based (Transfer Learning) 0.7800

SetFit 0.0000

SetFit (Transfer Learning) 0.9000

KNN Classifier 0.0000 (unable to fit with unseen text data)

The multiclass IoT Threat Classification models struggle to accurately classify unseen logs

into their respective classes. However, the SetFit model demonstrates superior adaptability by

efficiently learning new network threats when retrained with only a few new threat samples.

The DistilBert-based model also attained an accuracy of 0.78%, positioning it as the second-

best performer following the implementation of model retraining. In contrast, the KNN

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

classifier faces limitations in predicting new protocols due to constraints with the label

encoder's ability to accommodate new protocol values.

DistilBert-based (Transfer Learning) (Conn features) classifier per-class evaluation

(unseen dataset)

Table 6.2.3.7: DistilBert-based (Transfer Learning) (Conn features) classifier per-class

evaluation on Unseen Dataset

Attack Type Accuracy Precision Recall F1-score

password 0.80 1.00 0.94 0.97

scanning 0.22 1.00 0.52 0.68

xss 0.56 1.00 0.88 0.94

SetFit (Transfer Learning) (Conn features) classifier per-class evaluation (unseen

dataset)

Table 6.2.3.8: SetFit (Transfer Learning) (Conn features) classifier per-class evaluation on

Unseen Dataset

Attack Type Accuracy Precision Recall F1-score

password 0.98 1.00 0.98 0.99

scanning 0.76 1.00 0.76 0.86

xss 0.96 0.98 0.96 0.97

The assessment of unseen datasets reveals that the SetFit model demonstrates superior

adaptability to new, previously unseen threats following the retraining process, substantially

improving its accuracy from 0% to 90%. Conversely, the DistilBert-based model exhibits

suboptimal performance post-retraining, notably with significantly reduced recall for the

scanning class. More samples are needed to train the DistilBert-based model to fit with the new

threats.

5.2.3.3 Evaluation on combined dataset (Conn Features Only)

Table 6.2.3.9: Accuracy Evaluation on Combined Dataset

IoT Threat Classification Model Best Accuracy

DistilBert-based 0.9359

DistilBert-based (Transfer Learning) 0.9592

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

SetFit 0.8913

SetFit (Transfer Learning) 0.9223

Given that the unseen dataset constitutes only 3% of the overall dataset, the evaluation

conducted on the combined dataset demonstrates the adaptability of both the SetFit and

DistilBert-based models. Through retraining using transfer learning techniques, these models

showcase their ability to effectively adapt to both new and existing threats, thereby improving

their classification performance across the entire dataset.

DistilBert-based (Transfer Learning) (Conn features) classifier per-class evaluation

(combined dataset)

Table 6.2.3.10: DistilBert-based (Transfer Learning) (Conn features) classifier per-class

evaluation on Combined Dataset

Attack Type Accuracy Precision Recall F1-score

Backdoor 1.00 0.94 1.00 0.97

Ddos 0.94 1.00 0.94 0.97

Dos 1.00 0.98 1.00 0.99

Injection 1.00 0.96 1.00 0.98

mitm 0.96 0.98 0.96 0.97

normal 1.00 0.94 1.00 0.97

password 0.98 1.00 0.98 0.99

ransomware 0.94 0.89 0.94 0.91

scanning 0.95 1.00 0.95 0.97

xss 0.91 0.98 0.91 0.94

SetFit (Transfer Learning) (Conn features) classifier per-class evaluation (combined

dataset)

Table 6.2.3.11: SetFit (Transfer Learning) (Conn features) classifier per-class evaluation on

Combined Dataset

Attack Type Accuracy Precision Recall F1-score

Backdoor 1.00 0.96 1.00 0.98

Ddos 0.88 0.92 0.90 0.90

Dos 0.92 0.98 0.95 0.95

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Injection 0.98 0.94 0.96 0.96

mitm 0.76 0.97 0.85 0.85

normal 0.90 0.82 0.86 0.86

password 0.96 0.98 0.97 0.97

ransomware 0.98 0.89 0.93 0.93

scanning 0.95 1.00 0.97 0.97

xss 0.89 0.80 0.84 0.84

According to the evaluation metrics delineated previously, the SetFit model, leveraging transfer

learning, demonstrates commendable performance as the second-best performer, achieving an

accuracy score of 0.9223, with only a marginal 4% difference compared to the DistilBert-based

model, which achieved an accuracy score of 0.9592. It is noteworthy to emphasize that the

SetFit model is specifically designed as a few-shot learning model, indicating its capacity to

achieve competitive results despite its reduced data requirement.

6.3 Project Challenges

The ToN-IoT dataset lacks comprehensive documentation regarding the methodologies

employed during data collection, particularly concerning the specific attacks executed.

Consequently, reproducing these attacks verbatim is unfeasible. To address this limitation, we

devised a bespoke attack methodology tailored to our IoT testbed environment. This approach

enables us to simulate and execute attacks representative of those encountered in real-world

scenarios, thereby compensating for the absence of detailed attack documentation in the ToN-

IoT dataset.

Additionally, the ToN-IoT dataset lacks detailed specifications for all attack types. For

instance, the "dos" class encompasses a broad spectrum of attacks, including UDP floods, SYN

floods, NTP amplification, DNS amplification, SSDP amplification, IP fragmentation, SYN-

ACK floods, Ping of Death, and TCP SYN flood. This lack of granularity impedes further

analysis and extraction of specific attack samples from distinct classes for the purpose of few-

shot learning.

The multifaceted nature of network threats poses a formidable challenge for current datasets to

encompass the full spectrum of attack variations across all classes. This limitation significantly

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

impedes the ability of multiclass classification models to achieve comprehensive generalization

across diverse network attack threats. Hence, deploying the multiclass IoT threat classification

model in real-life scenarios presents a substantial challenge. As such, this challenge

underscores the critical need for innovative methodologies that can effectively address the

inherent complexities and variations inherent in IoT threat landscapes. Overcoming this

obstacle is paramount to advancing the efficacy and reliability of threat detection and

classification systems in safeguarding IoT networks against evolving security risks.

Time and processing power constraints have imposed limitations on our ability to conduct

extensive model fine-tuning and experimentation, particularly considering the complexity of

developing two distinct models. These constraints have hindered our capacity to explore

various hyperparameters, optimization techniques, and model architectures comprehensively.

As a result, our experimentation scope has been constrained, potentially impacting the depth

of our model optimization efforts and the breadth of our findings. Despite the constraints, we

have managed to achieve high-performance results for our models. This underscores the

effectiveness of our approaches and highlights the robustness of the methodologies employed.

6.4 Objectives Evaluation

Objective 1 Evaluation:

The establishment of an IoT network testbed for generating and capturing unseen network

threats represents a significant milestone in the research objectives of generating unseen

network threats to evaluate models’ performance in classifying realistic, unseen realistic

network threats. By leveraging this testbed, the captured dataset was utilized to

comprehensively evaluate the performance of the developed models. However, the evaluation

results revealed that the multiclass IoT threats classification model exhibited limitations in

accurately predicting unseen samples. This finding highlights the challenges inherent in

addressing the complexity and variability of real-world network threat scenarios especially

when we are performing multiclass classification for 10 different attack classes.

Objective 2 Evaluation:

The research successfully achieved the objective of developing innovative Transformer-based

model tailored specifically for IoT threat detection, leveraging advanced Natural Language

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

Processing (NLP) techniques. Two Transformer-based language classification models were

meticulously developed, trained, and rigorously tested to evaluate their performance. Both

models demonstrated commendable performance in accurately classifying a wide range of IoT

network threats, indicating the effectiveness of the novel methodology in enhancing threat

detection capabilities in IoT environments.

Objective 3 Evaluation:

The successful development of the SetFit-based IoT threats classification model represents a

significant achievement in the research objectives of developing the novel few-shot learning

model for IoT threat classification. By leveraging few-shot learning techniques, the model has

demonstrated its efficacy in detecting and classifying network threats in IoT environments.

This accomplishment underscores the effectiveness of adopting innovative methodologies to

enhance the capabilities of threat detection models, particularly in scenarios where limited

labeled data is available.

Objective 4 Evaluation:

The implementation of model retraining using transfer learning approaches represents a pivotal

step towards enhancing the prediction accuracy of the classification model for unseen attacks.

Through this process, the model underwent adaptation to incorporate knowledge from pre-

existing model, thereby enhancing its ability to classify novel threat vectors encountered in the

network. The results of the retraining efforts demonstrate a notable improvement in the model's

performance, reaffirming the efficacy of transfer learning as a valuable strategy for enabling

the model to adapt and evolve in response to emerging threats. This successful implementation

underscores the importance of ongoing refinement and optimization to ensure the model

remains robust and effective in safeguarding IoT networks against evolving security

challenges.

6.5 Concluding Remark

In conclusion, this research endeavor has led to significant advancements in the domain of IoT

threat detection and classification. Through the development and evaluation of novel

methodologies and models, we have made substantial strides towards enhancing the security

posture of IoT networks. The successful implementation of Transformer-based language

classification models, coupled with the innovative utilization of few-shot learning techniques,

CHAPTER 6

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

underscores the effectiveness of advanced AI-driven approaches in mitigating emerging

threats.

Furthermore, the establishment of an IoT network testbed for generating and evaluating unseen

network threats has provided invaluable insights into the capabilities and limitations of our

models. While challenges persist in accurately predicting unseen threats, the utilization of

transfer learning approaches has demonstrated promising results in bolstering the models'

adaptability and prediction accuracy.

This research stands as a pioneering endeavor in the field, marking the first instance of testing

a multiclass threat classification model with a self-generated unseen dataset. By undertaking

this approach, we have pushed the boundaries of current methodologies and expanded the

scope of research in IoT threat detection and classification. This groundbreaking work not only

fills a crucial gap in existing literature but also lays the foundation for future studies to build

upon. The insights gained from this research are invaluable, providing a roadmap for further

advancements in the realm of IoT security.

Looking ahead, continued research and development efforts are warranted to further refine and

optimize our models, ensuring their efficacy in addressing the evolving threat landscape of IoT

networks. By leveraging cutting-edge technologies and methodologies, we remain committed

to advancing the state-of-the-art in IoT threat detection and classification, ultimately fostering

a more secure and resilient IoT ecosystem.

CHAPTER 7

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Chapter 7 Conclusion and Recommendation

7.1 Conclusion

In conclusion, this research project has successfully devised and assessed an innovative

methodology for detecting IoT threats utilizing limited labeled textual datasets leveraging

Large Language Model (LLM). The SetFit architecture has demonstrated notable efficacy in

accurately classifying threats, even when confronted with scant training data. This addresses

the pressing need for adaptive security frameworks capable of promptly responding to

emergent IoT vulnerabilities. Comparative analysis underscores the superiority of the proposed

SetFit approach over conventional techniques, particularly in scenarios characterized by sparse

data availability. The investigation underscores the potential of leveraging deep contextual

representations from Sentence Transformer for facilitating few-shot learning, thereby enabling

the construction of robust models on resource-constrained edge devices commonly

encountered in IoT environments. Furthermore, the elucidation of the model adaptation process

underscores the capability of the SetFit-based IoT Threat Classification model to undergo

retraining with limited samples and adeptly accommodate new, previously unseen threats.

Additionally, our research has showcased the efficacy of LLM models in detecting IoT threats,

as evidenced by the outstanding performance of the DistilBert-based IoT threat classification

model, achieving an accuracy of 99.98%.

7.2 Recommendation

Future endeavors could address the limitations of multiclass IoT threat classification models

by exploring alternative approaches. Prior studies have demonstrated that binary classification,

distinguishing between logs indicative of threats and those that are not, may exhibit better

generalization capabilities in detecting unseen samples. Integrating a hybrid pipeline

encompassing both binary and multiclass models could potentially offer a solution to this

challenge.

Moreover, future endeavors could center on exploring enhanced network flow features capable

of encapsulating diverse attack characteristics. The identification of representative features

holds promise for advancing the efficacy of IoT threat classification models. By utilizing on

CHAPTER 7

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

features that aptly capture nuanced attack information, the models' classification capabilities

can be further refined, thereby augmenting their effectiveness in discerning and mitigating IoT-

related security risks.

REFERENCES

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

REFERENCES

[1] N. Moustafa, ‘A new distributed architecture for evaluating AI-based security systems
at the edge: Network TON_IoT datasets’, Sustain Cities Soc, vol. 72, Sep. 2021, doi:
10.1016/j.scs.2021.102994.

[2] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and Adna N Anwar, ‘TON-IoT
telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion
detection systems’, IEEE Access, vol. 8, pp. 165130–165150, 2020, doi:
10.1109/ACCESS.2020.3022862.

[3] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T. H. D. Hartog,
‘ToN_IoT: The Role of Heterogeneity and the Need for Standardization of Features
and Attack Types in IoT Network Intrusion Data Sets’, IEEE Internet Things J, vol. 9,
no. 1, pp. 485–496, Jan. 2022, doi: 10.1109/JIOT.2021.3085194.

[4] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A. Ghorbani,
‘CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT
Environment’, Sensors, vol. 23, no. 13, p. 5941, Jun. 2023, doi: 10.3390/s23135941.

[5] A. P. & M. J. E. Sebastian Garcia, ‘IoT-23: A labeled dataset with malicious and
benign IoT network traffic’, Zenodo.

[6] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, ‘Edge-IIoTset: A
New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications
for Centralized and Federated Learning’, IEEE Access, vol. 10, pp. 40281–40306,
2022, doi: 10.1109/ACCESS.2022.3165809.

[7] G. Guo, X. Pan, H. Liu, F. Li, L. Pei, and K. Hu, ‘An IoT Intrusion Detection System
Based on TON IoT Network Dataset’, in 2023 IEEE 13th Annual Computing and
Communication Workshop and Conference, CCWC 2023, Institute of Electrical and
Electronics Engineers Inc., 2023, pp. 333–338. doi:
10.1109/CCWC57344.2023.10099144.

[8] A. R. Gad, M. Haggag, A. A. Nashat, and T. M. Barakat, ‘A Distributed Intrusion
Detection System using Machine Learning for IoT based on ToN-IoT Dataset’,
International Journal of Advanced Computer Science and Applications, vol. 13, no. 6,
2022, doi: 10.14569/IJACSA.2022.0130667.

[9] A. R. Gad, A. A. Nashat, and T. M. Barkat, ‘Intrusion Detection System Using
Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset’, IEEE
Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3120626.

[10] A. Sharma, H. Babbar, and A. Sharma, ‘TON-IoT: Detection of Attacks on Internet of
Things in Vehicular Networks’, in 6th International Conference on Electronics,
Communication and Aerospace Technology, ICECA 2022 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., 2022, pp. 539–545. doi:
10.1109/ICECA55336.2022.10009070.

[11] W. Ding, M. Abdel-Basset, and R. Mohamed, ‘DeepAK-IoT: An effective deep
learning model for cyberattack detection in IoT networks’, Inf Sci (N Y), vol. 634, pp.
157–171, Jul. 2023, doi: 10.1016/j.ins.2023.03.052.

[12] I. Tareq, B. M. Elbagoury, S. El-Regaily, and E. S. M. El-Horbaty, ‘Analysis of ToN-
IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT’,
Applied Sciences (Switzerland), vol. 12, no. 19, Oct. 2022, doi: 10.3390/app12199572.

[13] I. Idrissi, M. Azizi, and O. Moussaoui, ‘Accelerating the update of a DL-based IDS for
IoT using deep transfer learning’, Indonesian Journal of Electrical Engineering and

REFERENCES

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

Computer Science, vol. 23, no. 2, pp. 1059–1067, Aug. 2021, doi:
10.11591/ijeecs.v23.i2.pp1059-1067.

[14] P. Wang, X. Wang, Y. Song, J. Huang, P. Ding, and Z. Yang, ‘TransIDS: A
Transformer-based approach for intrusion detection in Internet of Things using Label
Smoothing’, in 2023 4th International Conference on Computer Engineering and
Application, ICCEA 2023, Institute of Electrical and Electronics Engineers Inc., 2023,
pp. 216–222. doi: 10.1109/ICCEA58433.2023.10135426.

[15] A. Ghourabi, ‘A Security Model Based on LightGBM and Transformer to Protect
Healthcare Systems From Cyberattacks’, IEEE Access, vol. 10, pp. 48890–48903,
2022, doi: 10.1109/ACCESS.2022.3172432.

[16] M. Wang, N. Yang, and N. Weng, ‘Securing a Smart Home with a Transformer-Based
IoT Intrusion Detection System’, Electronics (Switzerland), vol. 12, no. 9, May 2023,
doi: 10.3390/electronics12092100.

[17] P. Anand, Y. Singh, H. Singh, M. D. Alshehri, and S. Tanwar, ‘SALT: transfer
learning-based threat model for attack detection in smart home’, Sci Rep, vol. 12, no.
1, Dec. 2022, doi: 10.1038/s41598-022-16261-9.

[18] L. Tunstall et al., ‘Efficient Few-Shot Learning Without Prompts’, Sep. 2022.

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: 3, 3 Study week no.:2
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Research on the methods on improving SetFit model.

2. WORK TO BE DONE
Discover the feasibility of information gain.

3. PROBLEMS ENCOUNTERED
The performance of SetFit model cannot be improved through extensive fine-tuning.

4. SELF EVALUATION OF THE PROGRESS
In the progress, looks ok.

 _________________________ _________________________
 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 3, 3 Study week no.:4
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Begin the planning to set up IoT testbed for model deployment.

2. WORK TO BE DONE
Get Raspberry Pi from UTAR.

3. PROBLEMS ENCOUNTERED
Information gain is not suitable to implement in SetFit.

4. SELF EVALUATION OF THE PROGRESS
Remained the SetFit architecture as it is already robust. Move towards stage 2 of the
project.

 _________________________ _________________________
 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 3, 3 Study week no.:6
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Discovering the network testbed and start to perform network attacks to the environment.

2. WORK TO BE DONE
Finalize the attacks to be performed. Discovering the process of generating logs and
covert it to dataset.

3. PROBLEMS ENCOUNTERED
-

4. SELF EVALUATION OF THE PROGRESS
Everything under the planning.

 _________________________ _________________________
 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 3, 3 Study week no.:8
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Collected all the attacks network flow.

2. WORK TO BE DONE
Converts all the attacks into dataset.

3. PROBLEMS ENCOUNTERED
Discovering the process of streamlining generated logs to Kafka failed. Change to
manual method.

4. SELF EVALUATION OF THE PROGRESS
Need to be faster.

 _________________________ _________________________
 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 3, 3 Study week no.:10
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Test the models with the generated dataset and found that the model cannot accurately
predict.

2. WORK TO BE DONE
Research on the way of model retraining to adapt new threats.

3. PROBLEMS ENCOUNTERED
Models are vulnerable to unseen threats.

4. SELF EVALUATION OF THE PROGRESS
Need to be faster.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 3, 3 Study week no.:12
Student Name & ID: Chua Cheng Han 2001761
Supervisor: Aun Yichiet
Project Title: IoT Threats Detection using Few-Shots Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Finalize the evaluation on the model after the model adaptation process. The result is
acceptable.

2. WORK TO BE DONE
Continue to fine tune the model retraining methods.

3. PROBLEMS ENCOUNTERED
-

4. SELF EVALUATION OF THE PROGRESS
Almost in the process of finalizing FYP2.

 _________________________ _________________________
 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

POSTER

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

PLAGIARISM CHECK RESULT

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

 Chua Cheng Han

ID Number(s)

 20ACB01761

Programme / Course CS

Title of Final Year Project IoT Threats Detection using Few Shots Learning

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 16_ %

Similarity by source
Internet Sources: ______11_______%
Publications: ___12____ %
Student Papers: _____6___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Aun Yichiet

26/04/2024

CHECKLIST

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY
(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB01761
Student Name Chua Cheng Han
Supervisor Name Aun YiChiet

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
 Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 25/4/2024

