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ABSTRACT 
 

Existing IoT threat detection methods lack robustness due to the diverse array of potential 

attack vectors. Currently, most methods are trained and tested using simulated datasets and do 

not perform well with unseen samples in real-world applications. In this project, we propose a 

novel few short learning leveraging Large Language Models (LLMs) to improve model 

robustness in IoT threat detection. Firstly, we develop two specialized LLM models: a text 

classification model based on DistilBERT and the few shots learning model using Sentence 

Transformer Fine-Tuning model (SetFit) framework. The DistilBERT threats detection model 

method performed well with an accuracy of 99.998% due to better semantics and contextual 

understanding as compared to existing flow statistical analysis. The few-shot learning model 

demonstrated remarkable performance with an accuracy of 0.89%, despite being trained on a 

limited amount of data. For unseen samples, we designed a few-shot retraining (FSR) 

methodology to adapt and learn new attack vectors across multiple variants using transfer 

learning. The experimental results showed a 90% improvement in accuracy on unseen threats 

when implemented in a real-world NIDS.   
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Chapter 1 Introduction 

1.1 Problem Statement and Motivation 

In recent years, the proliferation of Internet of Things (IoT) devices has led to the 

unprecedented levels of connectivity and convenience to various aspects of our lives. 

These devices are seamlessly integrated into everyday environments, spanning from 

smart homes and industrial sectors to healthcare, transportation systems and smart 

cities. However, the rapid expansion of the IoT landscape has also opened the door to 

a new wave of security challenges. Traditional security approaches often fall short in 

addressing the unique and evolving threats posed by IoT environments, leaving critical 

systems vulnerable to breaches, data leaks, and unauthorized access. 

 

One of the most pressing issues within the realm of IoT security is the efficient and 

accurate detection of threats. Conventional methods rely on predefined signatures or 

rules, which struggle to keep pace with the ever-changing tactics employed by 

malicious actors. Moreover, it is too costly to keep generating millions of datasets for 

new types of threats in IoT environments and labelling them accordingly to train an AI 

threat detection model. 

 

The motivation behind this project stems from the urgent need to establish effective and 

adaptive security mechanisms for IoT ecosystems. Few-shot learning as a subset of 

machine learning which can train models to recognize IoT threats with only a limited 

amount of labeled data has emerged as a promising paradigm to provide an adaptive 

mechanism. The project takes on the challenge to perform IoT threat detection with 

few-shot learning and the implementation with Transformer-based model. The goal is 

to seek enhancement for the security mechanism of IoT environments while mitigating 

the costing issue to label extensive number of datasets. 
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1.2 Objectives 

This project should achieve the following objectives: 
 

I. Generating unseen network threats to evaluate models’ performance in 

classifying realistic, unseen realistic network threats. 

The subsequent objective is to assess the effectiveness of the developed models 

in accurately classifying unseen, real-world network threats. Through rigorous 

evaluation on diverse and authentic threat data, the objective aims to gauge the 

models' ability to generalize and adapt to different attack. By employing 

standard performance metrics, this evaluation provides crucial insights into the 

models' reliability, ultimately informing their suitability for practical 

deployment in enhancing IoT threat detection capabilities. 

 
II. Develop an innovative Transformer-based model tailored specifically for 

IoT threat detection, leveraging advanced Natural Language Processing 
(NLP) techniques. 
 
In this research, the focus will be on exploring a methodology for representing 

network traffic logs as sentences, enabling the classification of datasets using 

Transformer-based text classification models. The Transformer, a powerful 

deep learning model renowned for its effectiveness in natural language 

processing tasks, will be investigated to assess its classification capabilities 

specifically in the domain of classifying IoT network threats. 

 

III. Develop the novel few-shot learning model for IoT threat classification. 

The exploration of few-shot learning is an essential component of this research 

focused on AI-based solutions for classifying IoT threats. The utilization of few-

shot learning can help mitigate the need for extensive resources in producing 

and labelling new datasets specific to IoT threats. As a result, the development 

and performance evaluation of a few-shot learning model will be undertaken. 

 
 

IV. Implement model retraining using transfer learning approaches to 

enhance prediction accuracy for unseen attacks. 
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In the realm of IoT threat classification, the susceptibility of deep learning 

classifiers to previously unseen attack vectors pose a significant challenge. To 

mitigate this vulnerability, the exploration of transfer learning methods emerges 

as a promising avenue. Transfer learning techniques leverage knowledge gained 

from pre-existing tasks or domains to enhance the performance of classifiers on 

new, related tasks. By adapting pre-trained models to accommodate the unique 

characteristics of IoT threat landscapes, transfer learning holds the potential to 

bolster the resilience of classifiers against previously unseen attacks. 

1.3 Project Scope and Direction  

This research project focuses on the development and evaluation of two innovative 

methods for detecting threats in IoT environments. The first method involves using a 

DistilBERT-based text classification model to analyze text-based network information 

and classify IoT network threats. The second method explores the use of the Sentence 

Transformer Fine-Tuning model (SetFit) to enhance the performance of threat 

classification, particularly when dealing with limited training datasets. By investigating 

the effectiveness of these approaches, the project aims to improve the accuracy and 

efficiency of IoT threat detection. 

In addition to utilizing publicly available IoT network datasets, this research project 

will establish an experimental network testbed to gather attack data under controlled 

conditions. The testbed will simulate a realistic small-scale network environment, 

enabling the collection of authentic attack traffic logs for assessing model performance 

across various network architectures and attack types. By employing this controlled 

data collection approach, the aim is to generate a labeled dataset of IoT threat logs that 

accurately represent real-world unseen attack scenarios. This dataset will serve as the 

basis for evaluating the multiclass IoT threats classifier's ability to predict unseen 

threats. Furthermore, it will be instrumental in the model retraining process, facilitating 

adaptation to new data and enhancing overall model effectiveness. 

In addition to the development and evaluation of the previously mentioned approaches, 

this research project will explore model retraining methods to mitigate the vulnerability 

of deep learning classifiers to unseen attacks. Transfer learning techniques will be 

employed to leverage knowledge from pre-existing models, thereby enhancing 
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classifier performance on new, related tasks. By adapting pre-trained models to suit the 

distinct characteristics of IoT threat landscapes, model retraining offers the potential to 

enhance the resilience of classifiers against previously unseen attacks. This endeavor 

aims to improve the overall effectiveness of threat detection systems by ensuring their 

ability to accurately identify emerging threats.  

1.4 Contribution 

This research significantly advances the field of IoT security by developing a first-of-

its-kind few-shot learning model for threat detection using limited labelled data. The 

proposed approach leverages the powerful natural language processing abilities of 

Transformer architectures to analyse IoT network traffic logs. This eliminates the need 

for extensive pre-processing of real-world IoT data, increasing the model's applicability 

to diverse network environments. 

The integration of few-shot learning techniques with a Transformer-based classification 

framework represents a significant advancement in the field of IoT security. This 

innovative approach enables the model to achieve remarkably accurate threat detection, 

even when trained on small, labelled datasets. Few-shot learning techniques empower 

the model to rapidly adapt and generalize from limited examples, making it highly 

effective at identifying new and emerging threats in IoT environments. By leveraging 

the natural language processing capabilities of Transformer architectures, the model 

gains a deeper understanding of complex patterns in IoT network traffic data, enhancing 

its ability to discern between normal and malicious activities. Overall, the integration 

of few-shot learning with Transformer-based classification frameworks represents a 

significant step forward in advancing the capabilities of AI-driven threat detection 

systems for IoT ecosystems. 

Another novel contribution of the research is the effort on generating network threats 

logs dataset labelled with contemporary threat classes. This dataset aims to test the 

model performance on different attacks in real world situations. Importantly, such 

efforts are relatively rare in the research community, as many existing datasets may not 

adequately represent the evolving landscape of IoT threats. By filling this gap, the 

research facilitates more accurate and meaningful evaluations of IoT security solutions, 
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ultimately contributing to the development of more effective threat detection 

mechanisms. 

Besides that, another novel contribution is the exploration of the adaptability of the 

models to perform retraining using transfer learning approaches represents a novel and 

significant contribution to the research. A model that lacks the ability to continually 

improve and adapt to new network threats is not suitable for practical use. Transfer 

learning techniques have gained considerable attention in machine learning and deep 

learning fields for their ability to leverage knowledge from pre-existing tasks or 

domains to enhance the performance of models on new, related tasks. In the context of 

IoT security, where the threat landscape is constantly evolving, transfer learning offers 

a promising approach to improve the robustness and adaptability of threat detection 

model efficiently. 

The powerful yet data-efficient few-shot Transformer model and comprehensive 

evaluation dataset are expected to create a complete model building ecosystem. Overall, 

the work establishes a new benchmark for handling limited labelled data scenarios 

through synergistic applications of NLP and few-shot learning. 

1.5 Report Organization 

The research consists of several chapters that provide a comprehensive examination of 

the topic. Chapter 2 delves into related backgrounds by reviewing relevant literature 

and previous studies, establishing a foundation of knowledge in the field. In Chapter 3, 

the proposed research methodology is described in detail, outlining the methods or 

approaches developed to address the research problem. Chapter 4 of the dissertation 

delves into the illustration of the system model, elucidating the development and 

utilization of the model. Chapter 5 focuses on experiments and simulation performed 

to test the developed model. Next, Chapter 6 states all the evaluation on the 

performance of the IoT threats detection models. Finally, Chapter 7 concludes the 

research by summarizing the key findings, implications, and contributions.
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Chapter 2 Literature Review 

2.1 Previous works on Generating IoT Threats Datasets 

There are several datasets being published in the past few years for the IoT security domain. 

These datasets are important for researchers to create and test new AI intrusion detection 

models that are more robust. Therefore, a high-quality dataset becomes an important factor to 

ensure the reliability of models. The datasets are generated using different testbed 

environments and different features are collected in every dataset. Below are some of the works 

on generating IoT datasets. 

 

2.1.1 ToN-IoT 

The ToN-IoT datasets were specifically developed to address the limitations of previous 

datasets in the field. These datasets are designed using an orchestrated architecture that 

illustrates the interconnectedness of edge, fog, and cloud layers within an IoT environment [1]. 

The testbed environment in ToN-IoT is carefully constructed based on interactive network 

elements, aiming to simulate a realistic representation of IoT and IIoT network configurations 

[2]. One important aspect of ToN-IoT is its heterogeneity, which is a key property of modern 

IoT network intrusion detection datasets [3]. The datasets encompass diverse data sources, 

including telemetry data from IoT and IIoT sensors, datasets from Windows and Linux, as well 

as network traffic datasets. This heterogeneity enhances the realism and complexity of the 

datasets, making them more representative of real-world IoT network scenarios. Figure 2.1.1.1 

shows the testbed environment for ToN-IoT: 
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Figure 2.1.1.1: Testbed Environment for ToN-IoT Datasets Generation [1] 
 

ToN-IoT network datasets contain a total of 43 features that description the network packets 

which contain mainly connectivity features information, layer 4 HTTP and DNS information, 

and layer 3 SSL information. Besides that, ToN-IoT also contains other types of datasets 

including Windows log, Linux log, and logs from IoT devices. The ToN-IoT datasets comprise 

a collection of normal scenarios and eight distinct main attack scenarios, covering a range of 

common cybersecurity threats encountered in IoT settings. The attacks encompass scanning, 

cross-site scripting (XSS), denial of service (DoS), ransomware, injection attack, password 

cracking, backdoor and man-in-the-middle (MITM) attack. However, ToN-IoT datasets consist 

of simulated environment, it may be questioned whether it can be applied to realistic IoT 

environments. It does not implement IoT devices as attackers which is one of the important 

threats that IoT environments face. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours) 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    8 
 

2.1.2 CICIoT2023 

CICIoT2023 dataset is a new IoT attack dataset which is created from a massive amount of real 

IoT devices. The topology of the network used in the research consists of a total of 105 IoT 

devices. Out of these devices, 67 IoT devices were involved in the attacks, while the remaining 

38 devices were Zigbee and Z-Wave devices connected to 5 hubs. The configuration of the 

network closely resembles a real-world smart-home environment, complete with various smart 

home devices, sensors, cameras, and micro-controllers [4]. The novel part of this dataset is that 

IoT devices are being used as malicious agents where other datasets seldom perform this.  

 

Figure 2.1.2.1: Topology Chart of CICIoT2023 [4] 
 

While the basic attack framework can be seen in the Figure 2.1.2.2: 
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Figure 2.1.2.2: Basic Attack Framework for CICIoT2023 [4] 
 

This dataset has collected 46 different features which consists of mainly of protocol 

information and some packet information. 33 attacks are performed during the production of 

dataset, and it is classified into 7 main classes. The 7 main classes include DDoS, Brute Force, 

Spoofing, DoS, Recon, Web-based and Mirai. However, the limitation of this datasets is that 

they do not include cloud and fog layer in their topology. 
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2.1.3 IoT-23 

The IoT-23 dataset was specifically developed to provide researchers with a substantial dataset 

containing real instances of IoT malware infections as well as benign IoT traffic. The dataset 

serves as a valuable resource for the development and evaluation of AI-based threat detection 

models [5]. In the process of capturing the traffic data for the dataset, three IoT devices were 

utilized: a Philips HUE smart LED lamp, an Amazon Echo home intelligent personal assistant, 

and a Somfy smart door lock. This hardware ensures that the real network behaviour is captured 

and not simulated network behaviour. Figures below shows the hardware that is used in the 

dataset generation. 

 

Figure 2.1.3.1: Amazon Echo Device Used in IoT-23 [5] 
 

 

Figure 2.1.3.2: Philips Hue Device Used in IoT-23 [5] 
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Figure 2.1.3.3: Somfy Door Lock Device Used in IoT-23 [5] 
 

There are 20 malware attacks performed in the datasets collection. The dataset is specifically 

labelled after the malware captures analysis to provide a detailed information of the malwares. 

The data captures are classified with 10 different labels which is attack, benign, Mirai, 

FileDownload, C&C, HeartBeat, DDoS, Okiru, PartofAHorizontalPortScan, and Torii. The 

limitation for this dataset is that it does not shows high heterogeneity because its testbed devices 

are limited. 

 

2.1.4 Edge-IIoTSet 

Edge-IIoTSet is also a realistic cybersecurity dataset of IoT and IIoT which aims to design a 

dataset that suits the training for centralized and federated models [6]. Other datasets seldom 

cover the Industrial Internet of Things (IIoT) field whereas Edge-IIoTSet does.  Its testbed is 

designed to consists of 7 interconnected layers which is edge layer, Blockchain layer, fog layer, 

NFV layer, cloud computing layer, SDN layer, and IoT/IIoT perception layer. Figure 2.1.4.1 

shows about the testbed architecture for Edge-IIoTSet and the proposed dataset generation 

framework. 
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Figure 2.1.4.1: Testbed Architecture of Edge-IIoTSet [6] 
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Figure 2.1.4.2: Dataset Generation Framework of Edge-IIoTSet [6] 
 

There are a total 14 different classes of attacks being executed in the collection of datasets and 

it can be specified into 5 main classes which is DDoS, Injection, MITM, Malware, and 

Scanning. The dataset undergoes feature selection and there are 61 features left in the csv files 

that consists of mainly layer featured information. However, the number of malicious scenarios 

in the datasets is lesser when compared to other datasets. 
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2.2 Previous Works on IoT Threat Detection Model 

Machine learning and deep learning methods are continuously discovered by researchers in 

their abilities on IoT threat detection. IoT threat detection models that are built from various 

AI techniques will be discussed in the section below. 

 

2.2.1 Machine learning Methods 

There are various machine learning models that were developed and tested on IoT threat 

detection datasets such as ToN-IoT, Edge-IIoTSet, and IoT-23. Machine learning techniques 

are discovered in the papers [2], [7], [8], [9], [10].  

In [2], Support Vector Machine (SVM),  k-Nearest Neighbour (kNN), Random Forest (RF), 

Classification and Regression Trees (CART), Logistic Regression (LR), Linear Discriminant 

Analysis (LDA),Naïve Bayes (NB), and Long Short-Term Memory (LSTM) are performed and 

evaluated. It uses all of the models stated to perform classification on the IoT datasets. Both 

binary classification and multiclass classification are evaluated in the paper with k-fold cross-

validation method (k = 4). The Classification and Regression Trees (CART) model 

outperformed al others model in the paper and get an accuracy of 0.88 in binary classification 

and 0.77 accuracy in multiclass classification. However, this is an approach of Machine 

Learning in the IoT log datasets but not a network dataset. It gets a lower accuracy compared 

with the network dataset approach with ToN-IoT. 

 

In the paper [10], the authors also used ML techniques to perform multiclass classification on 

the ToN-IoT network dataset. In this paper, only 14 out of 46 features are used in the model 

after the feature extraction. All of the feature selected is about the connection features of 

network packets only. Random Forest (RF), Naïve Bayes (NB) and k-Nearest Neighbour 

(kNN) are trained and validated. Among the ML techniques used, k-Nearest Neighbour (kNN) 

had outperformed the other models and get an accuracy of 98.2%. Whereas Naïve Bayes (NB) 

was the model with worst accuracy. Password cracking threats were among the hardest threats 

to be recognized compared to other threats. The limitation of this approach is that there is no 

binary classification being performed and there is no proper data preprocessing features to 

handle the imbalance dataset. 
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The authors in [9] suggests 8 ML models which is Support Vector Machine (SVM), Decision 

Tree (DT), Logistic Regression (LR), k-Nearest Neighbour (kNN), naïve bayes (NB), Random 

Forest (RF), AdaBoost and XGBoost to classify the ToN-IoT network dataset. The authors 

address the class imbalance issue and feature selection issue in the ToN-IoT dataset. Therefore, 

Synthetic minority oversampling technique (SMOTE) and Chi2 are being adopted and tested 

for their effectiveness. 4 types of processed data were being fed to the model for training which 

includes original featured data, data after Chi2 operation, data after SMOTE operation and data 

after both Chi2 and SMOTE were applied. For binary classification, XGBoost model with 

original featured data outperformed other models and achieved an accuracy of 0.991%. While 

XGBoost model with SMOTE also get 0.990% which is similar, but it had proven that SMOTE 

and Chi2 do not improve the accuracy of model well. For multiclass classification, XGBoost 

model Was still the best performer by achieving 0.983% in accuracy for original featured data. 

Similarly, it proved that SOMTE and Chi2 do not improve the accuracy of model. 

 

2.2.2 Deep Learning Methods 

In the paper [11], the authors had proposed a new deep learning model to perform cyber threat 

classification task. 3 different trending IoT threat datasets which are Edge-IIoTset, ToN-IoT, 

and UNSW_NB15 are selected to perform validation on the proposed deep learning model. 

The proposed model contains 3 blocks which are the temporal representation block (TRB), the 

residual-based spatial representation (RSR) block, and the detection block (DB). 
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Figure 2.2.2.1: Residual Block of the Proposed Model [11] 
 

The residual-based spatial-representation block is composed of five residual blocks, each 

containing four parallel convolutional layers. In addition, it incorporates a skip connection to 

mitigate the vanishing gradient problem. This block functions as a mechanism to extract spatial 

representations from the output of the preceding layer, effectively capturing significant spatial 

features that are inherent in the data. 
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Figure 2.2.2.2: Temporal Representation Block of DeepAK-IoT Model [11] 
 

The temporal representation block takes the output from the residual-based spatial-

representation (RSR) block and feeds it into three parallel paths. This block is designed to learn 

and capture temporal representations, allowing for more accurate detection of cyber threats. 

 

Figure 2.2.2.3: Detection Block of DeepAK-IoT Model [11] 
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The detection block, the final component of the model, is comprised of two layers. The first 

layer is a fully connected layer with 32 neurons, followed by a second fully connected layer 

responsible for estimating the cyber threat class. These layers are connected to a SoftMax 

activation function, which outputs the probability score for each class. 

The model has achieved impressive accuracy rates, with a reported accuracy of 90.57% for the 

ToN-IoT dataset, 94.96% for the Edge-IIoT dataset, and 98.41% for the UNSW-NB15 dataset. 

These results surpass the performance of alternative models, such as the 1DCNN model, CNN-

LSTM model, and LSTM, indicating the effectiveness and superiority of the proposed model 

in detecting and classifying cyber threats in IoT and IIoT environments. 

In the research described in [12], two CNN models, namely the Inception Time model and the 

DenseNet model, were proposed and evaluated using three distinct datasets focused on IoT 

threats: ToN-IoT, Edge-IIoT, and UNSW-NB15. The DenseNet model, specifically the state-

of-the-art DenseNet121 model, was utilized. DenseNet differs from traditional CNNs by 

incorporating direct connections between any two layers, facilitating improved information 

flow within the network. This model requires fewer parameters compared to conventional 

CNNs, making it more efficient, and allows for reusability of features. 

The DenseNet architecture involves a sequence of connected layers called a dense block. In 

this block, the dimensions of the feature maps remain consistent, while the number of filters 

used varies. Each dense block consists of multiple interconnected layers, where each layer 

comprises a 1D convolution, batch normalization, and ReLU activation. Transition layers are 

positioned between adjacent dense blocks to link them together. These transition layers serve 

the purpose of reducing the dimensions of the feature map, followed by average pooling. Their 

role is to gather the outputs or blocks from the preceding block. 

The architecture concludes with fully connected softmax and output layers, which are 

responsible for generating the final predictions based on the learned features. This 

comprehensive architecture, leveraging DenseNet121, provides an effective and robust 

approach for detecting and classifying IoT threats in the datasets considered in the research. 

The architecture of DenseNet121 is illustrated in Figure 12. 
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Figure 2.2.2.4: Architecture diagram of DenseNet121 [12] 
 

Next, in the study described in [12], the Inception Time model was also investigated. This 

model optimizes computational resources while minimizing additional computational burdens. 

It achieves high-performance output by extracting features from input data across multiple 

scales using convolutional filters of varying sizes. The Inception Time model is employed in 

two configurations within the inception network: one with 1D input vector shape and another 

with 2D input shape obtained through the sliding window technique for time-series data. 

Each block in the Inception Time model consists of three inception modules. To reduce input 

dimensions, a bottleneck layer is utilized, which helps decrease parameters and computational 

costs. A 1D convolutional layer acts as a sliding filter, enabling discrimination of regions in 

the time series and enhancing training speed and generalization. The output from the bottleneck 

layer is then fed into three one-dimensional convolutional layers with kernel sizes of 10, 20, 

and 40, respectively. 

In addition, the inputs of the inception module pass through a max-pooling layer with a size of 

3, facilitated by the bottleneck layer. The outputs from the four convolutional layers are 

concatenated along the depth dimension using a depth concatenation layer. All layers, except 

the concatenation layer, share the same stride and padding. Each convolutional layer employs 

32 filters, and residual connections are incorporated into every third inception module. 

The network consists of successive inception modules, followed by a batch normalization 

layer, a GlobalAveragePooling1D layer, and a dense layer with softmax activation for 
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classification purposes. This architecture enables effective feature extraction and classification 

of IoT threats using the Inception Time model. 

 

Figure 2.2.2.5: Architecture of Inception Time model [12] 
 

Both of the models are evaluated using ToN-IoT datasets which includes windows 7, windows 

10, network and combination of windows 10 and network datasets, UBSW-NB15 dataset, and 

Edge-IIoT dataset. Multiclass classification was being performed and evaluated for all the 

datasets. The Inception Time model achieved the highest, 100% accuracy on combination of 

Windows 10 and Network dataset. The results of the validation will be summarized in the Table 

2.2.3.1. However, Inception Time model had outperformed the DenseNet model in all of the 

results. 

In [13], a deep learning-based intrusion detection system (IDS) with a transfer learning 

approach is proposed. The paper utilizes transfer learning by freezing most of the layers and 

training only the last layers using a convolutional neural network (CNN) on the Bot-IoT and 

ToN-IoT datasets. The CNN-based IDS is initially trained on the Bot-IoT dataset, and then the 

ToN-IoT dataset is used to update the model. 
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The update operation involves freezing the pre-trained convolutional base and using its output 

as input to the classifier. The classifier is then retrained on a combined training dataset, which 

comprises 50% of the ToN-IoT dataset and 10% of the Bot-IoT dataset. This approach helps 

prevent the model from being solely influenced by the behavior of the new dataset. 

The model architecture is characterized by several components. It starts with an input layer 

consisting of 16 input neurons, corresponding to the number of features. The model includes 

five hidden layers which is the Convolution1D layer, MaxPooling1D layer, Flatten layer, ReLU 

layer, and Dense layer. Finally, it concludes with an output layer. 

During the initial training phase, the model undergoes 10 epochs, which means the complete 

dataset passes through the neural network 10 times. Each training iteration involves batches of 

32 samples, with the batch size indicating the number of samples processed in each iteration. 

The neural network comprises a total of 16 input neurons, aligned with the number of features. 

It consists of four intermediate (hidden) layers, with the following number of neurons in each 

layer: 16 in the Convolution1D layer, 8 in the MaxPooling1D layer, 256 in the Flatten layer, 

256 in the ReLU layer, and 44 in the Dense layer. The output layer consisted of 4 neurons, 

corresponding to the multiclass classification requirement, as visually depicted in Figure 

2.2.2.6. 
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Figure 2.2.2.6: Architecture of the original IDS model [13] 
 

During the updating operation, the convolutional base which includes the stack of 

Convolution1D layer, MaxPooling1D layer, Flatten layer, and ReLU layer will be frozen. Only 

the 2 Dense layers at the bottom will be retrained. This model is only created to predict 4 classes 

of threats which are DDoS, Dos, Reconnaissance, and Theft. A validation dataset which 

consists of 15% of the TON-IoT dataset concatenated with 5% of BoT-IoT dataset. The updated 

model can achieve an accuracy of 99.47% on the validation test. In this transfer learning 

approach, it also decreases the time needed to train the model. Updating the model only require 

170 seconds for 10 epochs while training the whole model takes 31590 seconds for every epoch. 

 

2.2.3 Deep Learning with Transformer Architecture 

In the research presented in [14], the application of the Transformer model in IoT intrusion 

detection was investigated. The proposed system, called TransIDS, leverages the Transformer's 

capabilities to adaptively adjust attention to IoT network traffic features and effectively utilize 
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deep global information from these features. To enhance the generalization ability of the model, 

Label Smoothing Regularization was implemented in the IDS framework. This technique adds 

fuzzy noise to the training label samples, helping the model to better handle uncertainties and 

improve its performance. The paper also analyzes and compares the effectiveness of different 

hyperparameters in the TransIDS framework. Specifically, the multi-headed attention 

mechanism and self-attention mechanism are studied to determine their impact on the model's 

performance and intrusion detection capabilities. 

 

Figure 2.2.3.1: Architecture of TransIDS model [14] 
 

Transformers use an encoder to extract deep features from time series data. The encoder 

computes the correlation between time steps using self-attention. However, it cannot 

effectively capture the positional information within the time series. Since the ordering and 

position of each time step is important for time series data, transformers rely on positional 

encodings. By embedding positional encodings for each time step, the self-attention 

mechanism can learn correlations that account for positional information when processing the 

time series. This allows it to effectively model the time series while also considering the 

ordered position of each time step within the sequence. The multi-head attention mechanism 

extracts multiple global temporal patterns from the time series through parallel self-attention 

networks. This provides a more abundant set of temporal features. To preserve the original 

features, the multi-head attention mechanism in TransIDS utilizes the outputs from parallel 
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self-attention networks. Residual connections and layer normalization are then applied after 

the multi-head attention step. This allows the model to retain important information from 

previous layers and normalize the outputs. Finally, a feed-forward neural network processes 

the normalized outputs, capturing complex patterns and relationships in the data.  The multi-

layer encoder stack processes the inputs in this way to produce deep global features as the 

output. A softmax function in equation 7 then calculates the probability of each feature 

belonging to each category. The non-numeric features in the dataset are converted into 

numerical data with one-hot-encoding and label encoding for data preprocessing. Min-max 

normalization was also being implemented to convert all the data between 0 and 1. The 

processed data is then used to train and evaluate the Transformer model. The limitation of this 

approach is that data is still being converted numerically same as the traditional approaches. 

 

Not only that, the authors in  [15] proposed a BERT-based Transformer model for IoT threat 

classification for textual data. This transformer approach concatenates all the textual data and 

does not perform preprocessing on textual data to encode and normalize it. While LightBGM 

model are proposed for numerical data. Figure 2.2.3.2 shows the complete framework for a 

secured IoMT network. 
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Figure 2.2.3.2: IoMT intrusion detection proposed in [15] 
 

As a complex IoMT environment, it will have heterogeneous network flow. Therefore, the 

authors have classified it into 2 different types which network flows that consists textual 

features and network flows that consists mainly of numerical features and categorical features. 

3 network datasets are being used in this paper to evaluate all of the models which includes 

ECU-IoHT, ToN-IoT, and Edge-IIoT. In the evaluation, BERT-based transformers had 

achieved 100% accuracy on the classification of ECU-IoHT because its network information 

is in textual form. However, LightBGM performs just slightly better than BERT on ToN-IoT 

dataset. Besides that, LightBGM also performed better than BiLSTM and DNN in comparison 

with Edge-IIoT dataset. This paper had proved that Transformer models are robust in text data 

classification, and it can be applied to threat detection field also. 

 

In [16], the authors propose a Transformer-based IoT Network Intrusion Detection System 

(NIDS) method. They process the data from the ToN-IoT dataset by combining IoT telemetry 

data with network data. This combined data is then utilized to evaluate the FT-Transformer-

based model. To prepare the data for the model, it is split into numerical data and categorical 

data. These two types of data are tokenized separately using different functions in the feature 

tokenizer. This tokenization process transforms the data into learnable embeddings, which can 

be understood by the model. The output of the feature tokenizer, consisting of the numerical 

and categorical embeddings, is then fed into multiple Transformer encoder blocks. In this 
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particular study, the authors employ N=6 stacked encoder blocks. Each encoder block includes 

a multi-head attention (MHA) layer and a fully connected feed-forward network. After each 

MHA layer and feed-forward network, a residual connection and normalization layer are 

applied. The key component of the Transformer encoder is the MHA layer. It allows the model 

to dynamically learn information from different feature embeddings. The MHA layer calculates 

M=8 heads of self-attention, which is also known as scaled dot-product attention. The input 

embedding is used to compute query (Q), key (K), and value (V) vectors. The weighted sums 

of the value vectors are then calculated by taking the dot product of Q with K and applying the 

softmax function to obtain the weights. 

For classification, only the learned embedding from the input is fed to the final MLP layers. 

As an independent third-party embedding extracted via attention, it is more suitable for final 

classification compared to the numerical or categorical feature embeddings. 

 

Figure 2.2.3.3: Overview of FT-Transformer proposed in [16] 
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The Transformer model is being evaluated with binary and multi-classes classification with 

ToN-IoT pure network data with combination of network and telemetry sensor data. The results 

were evaluated using accuracy, precision, recall, false alarm and F1 score. The accuracy of 

multiclass classification is tabled in table 2.2.4.1. 
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2.2.4 Summarization 

Table 2.2.4.1: Comparison of Reviewed Model 
Citation Datasets Methods Accuracy 

(%) 

[2] ToN-IoT 

IoT Dataset 

Logistic Regression (LR)  

Linear Discriminant Analysis (LDA) 

 k-Nearest Neighbour (kNN) 

Classification and Regression Trees (CART) 

Random Forest (RF) 

Naïve Bayes (NB) 

Support Vector Machine (SVM) 

Long Short-Term Memory (LSTM) 

0.61 

0.68 

0.84 

0.85 

0.88 

0.62 

0.61 

0.81 

[10] ToN-IoT 

Network 

Dataset 

Random Forest 

Naïve bayes 

K-Nearest Neighbour 

94 

70 

98.2 

[9] ToN-IoT 

(Network) 

Logistic Regression (LR)  

Naïve Bayes (NB) 

Decision Tree (DT) 

Random Forest (RF) 

K-Nearest Neighbour (kNN) 

Support Vector Machine (SVM) 

AdaBoost 

XGBoost 

77.7 

71.2 

93.4 

93.7 

97.9 

77.9 

39.9 

98.3 

[11] ToN-IoT 

Edge-

IIoTset 

UNSW-

NB15 

DeepAK-IoT 

DeepAK-IoT 

 

DeepAK-IoT 

90.57 

94.96 

 

98.41 

[12] ToN-IoT 

(Network) 

ToN-IoT 

(Win10) 

ToN-IoT 

(Win7) 

ToN-IoT 

(Win10–N) 

DenseNet 

Inception Time 

DenseNet 

Inception Time 

DenseNet 

Inception Time 

DenseNet 

Inception Time 

98.57 

99.65 

97.87 

98.30 

98.36 

99.21 

99.95 

100 
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UNSW-

NB15 

Edge-IIoT 

 

Inception Time 

 

Inception Time 

 

98.60 

 

94.94 

[14] ToN-IoT 

(Network) 

TransIDS 99.46 

[15] ECU-IoHT 

 

 

ToN-IoT 

(Network) 

 

Edge-

IIoTset 

LightBGM 

BERT 

BiLSTM 

LightBGM 

BERT 

BiLSTM 

LightBGM 

BERT 

BiLSTM 

98.4182 

100 

97.8301 

99.9934 

99.9852 

97.3293 

100 

99.5659 

100 

[16] ToN-IoT 

(Network) 

ToN-IoT 

(Combined 

Network & 

IoT) 

FT-Transformer 

 

FT-Transformer 

95.78 

 

97.06 

 

2.2.5 Unknown Threat Detection 

The paper[17] tested the unknown threat detection using binary IoT threat classifiers. We can 
note that although the known threats classification gets an 100% accuracy, the unknown threats 
classification does not perform well at an average accuracy of 46 % (which is the prediction on 
IoT-2 until IoT-8).  
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Figure 2.2.5.1: Result on detecting unseen threats for binary classification [17] 
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Chapter 3 Research Methodology 

3.1 Research Methodology Diagram 

Stage 1: Research on IoT Threat Classification Models 

 
Figure 3.1.1 Flowchart for Research Stage 1 

 
Stage 2: Generating Unseen Dataset for Model Evaluation 
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Figure 3.1.2 Flowchart for Research Stage 2 

 

3.2 System Methodology Explanation 

3.2.1 Dataset Acquisition 

The ToN IoT dataset represents the next generation of Industry 4.0/Internet of Things (IoT) 

datasets, derived from a methodical testbed within a laboratory setting. It encompasses a variety 

of data sources, including sensor data, network data, and log data, all gathered from a single 

expansive and authentic network environment. This diverse nature of the ToN IoT dataset 

accurately mirrors the complexities inherent in IoT environments. 

 

The ToN-IoT dataset has been chosen as the primary dataset for the model training task in this 

project due to its various advantages. One notable advantage is its resilience in terms of 
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heterogeneity. In contrast to numerous other datasets that transform textual information into 

numerical data and standardize the data, the ToN-IoT dataset preserves the original textual 

information from its network dataset. This characteristic facilitates a more thorough analysis 

of the dataset and safeguards against the loss of information during the transformation. 

 

Additionally, the ToN-IoT dataset stands out for its inclusion of benign network data and 9 

different types of attacks:  Scanning, Dos, Injection, Ddos, Password, Xss, Ransomware, 

Backdoor, and Mitm. To represent these attack types, two attributes have been created in the 

dataset. The first is a binary column that indicates whether a record is a threat, and the second 

is a string value denoting the specific attack type. This comprehensive coverage of attack types, 

including the incorporation of ransomware attacks, sets the ToN-IoT dataset apart from many 

other datasets that lack such diversity. 

 

Considering these factors, the ToN-IoT dataset is an ideal choice as the initial dataset for this 

project. It offers the advantages of preserving textual information, providing a comprehensive 

representation of attack types, providing a well-prepared train test dataset and including unique 

attack types like ransomware. These qualities make the ToN-IoT dataset well-suited for the 

model training task and enhance its value for the research project. 

 

In our research, we employ the network data sourced from the ToN-IoT dataset, specifically 

from the Train_Test_Network.csv file. This dataset is a condensed version extracted from the 

larger datasets. The purpose of using this simplified version is to mitigate the consumption of 

excessive resources and time that would be required when working with the complete dataset. 

Table 3 provides a summary of the number of records for each classification type, offering a 

concise overview of the dataset's composition. 

Table 3.2.1.1: Attack types and counts 

Type Value Count 

Normal 300000 

Scanning 20000 

Dos 20000 

Injection 20000 

Ddos 20000 

Password 20000 
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Xss 20000 

Ransomware 20000 

Backdoor 20000 

Mitm 1043 

 

 

Figure 3.2.1.1: Distribution of Attack Types in ToN-IoT 

 

Besides that, the dataset contains a total of 43 features and 2 label columns. The features will 

be recorded on table 3.2.1.2. 

 

Table 3.2.1.2: Features in ToN-IoT Datasets 

300000, 
65%

20000, 5%

20000, 5%

20000, 5%

20000, 4%

20000, 4%

20000, 4%

20000, 4% 20000, 4% 1043, 0%

Distribution of Attack Types in ToN-IoT

Normal Scanning Dos Injection Ddos

Password Xss Ransomware Backdoor Mitm

No. Feature  Data Type Description 

1 ts int64 Timestamp of connection between flow 

identifiers. 

2 src_ip object IP addresses originating endpoints' IP 

addresses. 

3 src_port int64 TCP/UDP ports originating endpoint's 

traffic. 

4 dst_ip object Destination IP addresses responding to 

endpoint's IP addresses. 

5 dst_port int64 Destination ports which respond to 

endpoint’s TCP/UDP ports. 
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6 proto object Transport layer protocols of flow 

connections. 

7 service object Dynamically detected protocols like DNS, 

HTTP, and SSL. 

8 duration float64 Time of the packet connections, estimated 

by subtracting the 'time of the last packet 

seen' from the 'time of the first packet 

seen'. 

9 src_bytes int64 Source bytes which are originated from 

payload bytes of TCP sequence numbers. 

10 dst_bytes int64 Destination bytes which are responded 

payload bytes from TCP sequence 

numbers. 

11 conn_state Object Various connection states such as S0, S1, 

and REJ. 

12 missed_bytes int64 Number of bytes that are absent in content 

gaps. 

13 src_pkts int64 Number of original packets estimated 

from source systems. 

14 src_ip_bytes int64 Total length of IP header field of source 

systems. 

15 dst_pkts int64 Number of packets sent from the 

destination. 

16 dst_ip_bytes int64 Total number of bytes sent from the 

destination. 

17 dns_query Object Domain name subjects of DNS queries. 

18 dns_qclass int64 Values specifying DNS query classes. 

19 dns_qtype int64 Value specifying DNS query types. 

20 dns_rcode int64 Response code values in DNS responses. 

21 dns_AA object DNS authoritative answer flag (True 

denotes server is authoritative for query). 

22 dns_RD object DNS recursion desired flag (True denotes 

request recursive lookup of query). 

23 dns_RA object DNS recursion available flag (True 

denotes server supports recursive queries). 
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24 dns_rejected object DNS rejected flag (True denotes DNS 

queries are rejected by the server). 

25 ssl_version object SSL/TLS version offered by the server. 

26 ssl_cipher object SSL/TLS cipher suite used by the 

connection (if applicable). 

27 ssl_resumed object SSL flag indicating the session that can be 

used to initiate new connections. 

28 ssl_established object SSL/TLS established session flag. 

29 ssl_subject object Subject of the X.509 certificate offered by 

the server. 

30 ssl_issuer object SSL/TLS issuer name of the certificate (if 

applicable). 

31 http_trans_depth object Depth of the HTTP transaction (i.e., how 

many redirects were followed). 

32 http_method object HTTP request method (e.g., GET, POST, 

PUT). 

33 http_uri object URIs used in the HTTP request. 

34 http_version object HTTP protocol version used by the client 

and server. 

35 http_request_body_len int64 Actual uncompressed content sizes of data 

transferred from the HTTP client. 

36 http_response_body_len int64 Actual uncompressed content sizes of data 

transferred from the HTTP server. 

37 http_status_code int64 HTTP status code returned by the server 

(e.g., 200, 404, 500). 

38 http_user_agent object User agent string sent by the client. 

39 http_orig_mime_types object Original MIME types of the HTTP request 

and response bodies. 

40 http_resp_mime_types object Response MIME types of the HTTP 

request and response bodies. 

41 weird_name object Name of the weird event detected by Zeek 

(e.g., " DNS_RR_unknown_type"). 

42 weird_addl object Additional information about the weird 

event. 
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43 weird_notice object Indication of whether a violation or 

anomaly has been converted into a 

notification or alert. 

44 label int64 Label assigned to tag normal and attack 

records (e.g., "0", "1"). 

45 type object Type of attack class. 
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3.2.2 Dataset Preprocessing 

Removing Features 

The initial step in the process involves identifying and eliminating specific features that could 

potentially impede the model's ability to generalize effectively. For instance, IP addresses, port 

numbers, and timestamps are prone to change within different network environments. By 

excluding these variables from the dataset, we can minimize any noise or irrelevant information 

that may impact the model's performance in real-world deployments.  

Furthermore, a substantial portion of the dataset's features were found to contain null values 

for over 80% of the records. Recognizing the computational burden associated with processing 

such features, we opted to remove them from consideration. Specifically, features related to 

DNS, SSL, HTTP, and violation information were eliminated to streamline the dataset and 

reduce computational complexity. We will only use connection features as the dataset input. 

In summary, our approach involves training models based on two distinct sets of features, 

allowing us to explore and evaluate the impact of feature selection on model performance. This 

strategic approach aims to enhance the efficiency and effectiveness of our models in addressing 

real-world challenges in IoT threat detection. 

Table 3.2.2.1: Features Comparison for Set 1 and Set 2 

No. Feature  Set 1 Features Set 2 Features 

1 ts   

2 src_ip   

3 src_port   

4 dst_ip   

5 dst_port   

6 proto   

7 service   

8 duration   

9 src_bytes   

10 dst_bytes   

11 conn_state   

12 missed_bytes   

13 src_pkts   

14 src_ip_bytes   
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15 dst_pkts   

16 dst_ip_bytes   

17 dns_query   

18 dns_qclass   

19 dns_qtype   

20 dns_rcode   

21 dns_AA   

22 dns_RD   

23 dns_RA   

24 dns_rejected   

25 ssl_version   

26 ssl_cipher   

27 ssl_resumed   

28 ssl_established   

29 ssl_subject   

30 ssl_issuer   

31 http_trans_depth   

32 http_method   

33 http_uri   

34 http_version   

35 http_request_body_len   

36 http_response_body_len   

37 http_status_code   

38 http_user_agent   

39 http_orig_mime_types   

40 http_resp_mime_types   

41 weird_name   

42 weird_addl   

43 weird_notice   
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Encode Categorical Labels 

The dataset contains 10 distinct classes of categorical labels, each representing different 

categories or classifications within the data. To effectively utilize this categorical information 

for analysis or model training, it is essential to convert these labels into a numerical format. 

This transformation enables computational algorithms to process and interpret the categorical 

information, which is crucial for performing classification tasks. By converting categorical 

labels into numerical representations, we ensure compatibility with machine learning 

algorithms, thereby enabling more accurate predictions and insights to be extracted from the 

dataset. To achieve this transformation, tools such as Label Encoder from libraries like scikit-

learn in Python are employed. This process ensures that the categorical labels are appropriately 

encoded into numerical values, facilitating the subsequent analysis and modelling steps. 

Table 3.2.2.2: Numerical Representations of Attack Classes 

Attack Type Numerical representation 

Backdoor 0 

Ddos 1 

Dos 2 

Injection 3 

Mitm 4 

Normal 5 

Password 6 

Ransomware 7 

Scanning 8 

Xss 9 

 

Forming Sentences using Dataset Records 

In the next stage of preprocessing, we proceed with forming coherent sentences from the 

remaining network feature data. This involves concatenating all relevant features of a record 

together and separating them with white space. By doing so, we consolidate the diverse aspects 
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of the network data into a unified sentence-like structure. This approach simplifies the 

information for the model to process and comprehend effectively. By presenting the data in a 

structured and cohesive manner, we enhance the model's ability to extract meaningful patterns 

and insights from the dataset. This step plays a crucial role in preparing the data for subsequent 

analysis and model training, facilitating more accurate and reliable predictions of network 

threats. 

 

Figure 3.2.2.1: Visualization of Preprocessing 

Partitioning Datasets 
 
DistilBert Model 

For the DistilBERT-based classification model, the dataset is partitioned into three distinct sets: 

the training set, validation set, and testing set. This partitioning is essential to facilitate the 

model's training with cross validation, evaluation, and testing processes, ensuring robust 

performance and generalization. 

SetFit Model 

The dataset is partitioned into training set, validation set, and testing set also for the training 

process. On the other hand, the SetFit model, requiring only a small number of records for 

training, follows a different approach. To optimize accuracy, various numbers of shots are 

attempted, specifically 8, 16, 32 and 64 shots. The remaining records not used for shots are 

allocated as testing data for the SetFit model.  

 

By automating these preprocessing steps, we streamline the dataset and create a more refined 

input for the subsequent stages of the modeling process. This systematic approach ensures 
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efficient utilization of data and enhances the model's performance across different architectures 

and training methodologies. 

 

3.2.3 Tokenizer 

DistilBert Model 

The textual data obtained from the previous preprocessing stage cannot be directly fed into the 

text classification model. To make the data compatible with the model, an additional step is 

required, which involves tokenization. Tokenization involves splitting the text into smaller 

units called WordPieces. This process allows the text to be converted into embeddings, which 

are numerical representations that the model can process. 

In addition to tokenize the text, special classification tokens are added to the sentences to 

provide contextual information. These tokens include [CLS] for sequence classification and 

[SEP] for separating paragraphs. By including these classification tokens, the model can better 

understand the structure and context of the text. 

For example, the record of  

“[CLS] 1554287870, 57546, 15600, udp, -, 0. 0, 0, 0, 0, S0, 0, 1, 63, 0, 0, -, 0, 0, 0, -, -, -, -, -, 

-, - [SEP]”  

is converted into: 

 ([101, 14168,  2575, 22407,  2575,  2581, 21619,  1010,  4583, 26187, 

2575,  1010,  3770,  1010, 22975,  2361,  1010,  8299,  1010,  1014, 

1012,  5890, 24087,  2692,  2683,  1010, 14168,  1010,  4891,  1010, 

16420,  1010,  1014,  1010,  1019,  1010, 18034,  1010,  1018,  1010, 

10630,  2692,  1010,  1011,  1010,  1014,  1010,  1014,  1010,  1014, 

1010,  1011,  1010,  1011,  1010,  1011,  1010,  1011,  1010,  1011, 

1010,  1011,  1010,   102]) 

 

Furthermore, the tokenizer assigns unique integer IDs to each token and generates an attention 

mask. The attention mask is a binary mask that indicates which tokens should be attended to 
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and which ones can be ignored during processing. This information, along with the tokenized 

text, is then converted into embeddings, which are numerical representations of the tokens that 

capture their meaning and relationships. 

Ultimately, the tokenized text, integer IDs, and attention mask are ready to be inputted into the 

DistilBERT model for further processing and classification. By following this tokenization 

process, we ensure that the textual data is appropriately prepared for effective analysis and 

classification by the model. 

SetFit Model 

In the case of the SetFit model, there is no need to manually create a tokenizer as it is already 

integrated within the model's Sentence Transformer module. The Sentence Transformer library 

provides a comprehensive set of functionalities, including a tokenizer that can automatically 

tokenize and embed the sentences before the sentences is inputted to the Transformer block. 

When the model is running, it automatically processes the sentences and generates embeddings 

for each sentence using the pretrained tokenizer. This eliminates the need for manual 

tokenization and embedding steps, as the tokenizer handles these tasks seamlessly within the 

SetFit model. 

By utilizing the capabilities of the Sentence Transformer library and its built-in tokenizer, you 

can streamline the preprocessing phase and directly obtain sentence embeddings for your input 

data. This simplifies the overall workflow and ensures that the text is appropriately processed 

and ready for further analysis or classification using the SetFit model. 

3.2.4 DistilBert-based IoT Threats Classification Model 

During the preprocessing stage, we encounter challenges with certain features in the dataset, 

particularly those containing random string values that are difficult to encode. For instance, the 

"weird_name" feature may contain arbitrary strings like "bad_TCP_checksum," which cannot 

be easily transformed into numerical representations using traditional methods like Label 

Encoder. Moreover, Label Encoder lacks the capability to update its dictionary to 

accommodate new string values, such as with the introduction of a new feature like "protocol." 

As a result, we seek to explore the potential of language models in the field of IoT threat 

classification. 

DistilBert is a compact and efficient Transformer model developed through the distillation of 

Bert base. With 40% fewer parameters compared to google-bert/bert-base-uncased, it offers a 
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lightweight alternative that runs 60% faster while retaining over 95% of BERT's performance 

on the GLUE language understanding benchmark. This makes DistilBert an attractive option 

for various natural language processing tasks where speed and resource efficiency are crucial 

especially on IoT environment.The DistilBert pretrained-model will be utilized to build a 

multiclass IoT threats classifier. The tokenized embeddings will be inputted into the model for 

classification. The model will determine which class of threats is the network data records 

belongs to.  

The model will be built using the PyTorch module, which is a popular deep learning framework 

known for its flexibility and ease of use. PyTorch provides a wide range of tools and 

functionalities that make it suitable for building and training neural network models. PyTorch 

offers a dynamic computational graph, allowing for easy model construction and modification. 

The PyTorch module also offers GPU acceleration, enabling efficient training and inference 

on compatible hardware. This can significantly speed up the training process, especially for 

models with large parameter sizes or complex computations. 

During the training of the model, the cross-entropy loss function will be utilized as the objective 

function. The cross-entropy loss is a commonly used metric for multiclass classification tasks 

because it quantifies the disparity between the predicted class probabilities and the actual class 

labels. It is particularly suitable when models generate class probabilities as their output. 

Minimizing the cross-entropy loss allows the model to assign higher probabilities to the correct 

classes, thereby improving its classification performance. 

To prevent overfitting and ensure the model's generalization ability, an early stopping 

mechanism will be implemented. This mechanism involves monitoring the validation loss after 

each epoch of training. If the validation loss fails to improve or starts to increase consistently, 

the training process can be stopped early to prevent the model from overfitting to the training 

data. 

3.2.5 SetFit-based Few-Shot Learning IoT Threats Classification Model 

To enhance the original framework, a few-shot learning technique will be explored. This 

technique aims to improve the model's performance when dealing with limited training data. 

The SetFit architecture, an efficient few-shot learning approach that leverages the Sentence 

Transformer architecture, specifically tailored for IoT threat classification will be explored. 

This innovative framework aims to enhance the model's ability to generalize and classify IoT 

threats accurately, even with limited labelled data. By utilizing the advanced capabilities of the 
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Sentence Transformer architecture, SetFit offers a promising solution to address the challenges 

associated with traditional classification methods in the context of IoT security. 

Sentence transformers are a type of model in natural language processing that aims to encode 

variable length sentences into fixed size numeric vectors in a way that captures the overall 

semantic meaning and intent of the text. This differs from traditional word embeddings which 

only embed individual tokens. By fine-tuning powerful pretrained language models like MPNet 

as encoders, sentence transformers are able to analyse the contextual relationships between 

words in a sentence to understand the concepts being conveyed. These encoders are then 

typically combined with pooling operations to condense the final hidden states into a single 

representative vector for each unique text. The end goal is to be able to measure similarity 

between sentences based on the cosine distance between their embedding vectors, rather than 

just relying on surface form word overlap. This allows applications in areas like semantic 

search, clustering texts by topic, and ranking sentences according to semantic relevance.  

SetFit leverages the capabilities of Sentence Transformer to generate dense embeddings based 

on pairs of sentences. In the Sentence Transformer fine-tuning stage, contrastive training is 

employed to create positive and negative pairs using a limited amount of labelled textual 

network data. The Sentence Transformer model is then trained on these pairs, generating dense 

vectors for each example. 

In the classification head training stage, the classification head is trained using the encoded 

embeddings. This step ensures that the model can map the dense vectors to the corresponding 

classes or labels. During inference, unseen examples are passed through the fine-tuned 

Sentence Transformer, which generates embeddings. These embeddings are then fed to the 

classification head for classification. 

The SetFit framework enables few-shot training for the IoT threats classification model. It 

requires less training data compared to the DistilBERT text classification model mentioned 

earlier. Additionally, SetFit reduces the training time, making it more efficient for training with 

limited labelled data. 

By leveraging Sentence Transformer's ability to generate dense embeddings and combining it 

with contrastive training and a classification head, SetFit demonstrates improved performance 

in few-shot learning scenarios. This framework enables efficient and accurate classification of 

IoT threats, making it a valuable approach for threat detection and mitigation.  
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Figure 3.2.5.1: SetFit Framework [18] 

 

SetFit is a library that facilitates the implementation of the framework without the need for 

extensive model customization. The focus of the work with this model is to fine-tune it by 

identifying the best parameters and shot configurations. The trainer class provided by the 

authors is utilized to train the entire SetFit model, automating the training and testing processes. 

Since SetFit is a few-shot learning method, the model is trained with different numbers of shots. 

Shots refer to the labeled data provided for training the model in each class. 

A higher number of shots generally leads to higher accuracy. However, the objective is to find 

the optimal number of shots that can achieve high performance without requiring a significant 

increase in the amount of labeled data. In this context, basic shots being explored are 8, 16, and 

32. For instance, 8 shots mean that only 8 records from the dataset are used to generate the 

sentence pairs and vice versa. 

By experimenting with different shot configurations, the goal is to determine the appropriate 

balance between accuracy and the amount of labeled data required. The aim is to identify the 

shot configuration that provides high performance without a considerable increase in the 

number of labeled data instances. It is recommended to have a minimum of 8 shots to ensure 

sufficient data for the model's training. 

Besides that, the number of iterations is also an important parameter to consider in the SetFit 

framework. It determines the number of pairs that will be generated during the contrastive 

learning phase. During contrastive learning, positive and negative pairs of sentence 

embeddings are created to train the Sentence Transformer model. The model learns to bring 

the embeddings of positive pairs closer together in the embedding space while pushing the 

embeddings of negative pairs further apart. The number of iterations defines how many pairs 

are generated and used for training during this contrastive learning process. Each iteration 
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typically involves randomly sampling positive and negative pairs from the available labeled 

data. 

The trainer of the model separates the training step into 2 stages which is the fine tuning of the 

Sentence Transformers and the final classifier. Sentence Transformer is being trained by using 

the generated sentence pairs in which contain true pairs and false pairs. The Cosine Similarity 

loss function is being used in the Sentence Transformer training and Adam is chosen as the 

optimizer. While for the classification head uses Cross Entropy Loss as the loss function for 

the training of final classifier. While Adam is also being used as the optimizer.  

In the SetFit framework, the trainer class divides the training process into two stages: fine-

tuning the Sentence Transformers and training the final classifier. 

The Cosine Similarity loss function is typically employed in this training stage. It measures the 

similarity between the embeddings of the positive pairs, aiming to maximize it, while 

minimizing the similarity between the embeddings of the negative pairs. By optimizing this 

loss function, the Sentence Transformers learn to generate embeddings that capture the 

semantic relationships between the sentences. The Adam optimizer is chosen for fine-tuning 

the Sentence Transformers. 

In the second stage, the final classifier is trained using the embeddings generated by the 

Sentence Transformers. Cross Entropy Loss is commonly used as the loss function for training 

the final classifier. The cross-entropy loss measures the dissimilarity between the predicted 

class probabilities and the true class labels. The objective is to minimize this dissimilarity, as 

it corresponds to improving the accuracy of the classification task. Similarly, in the fine-tuning 

stage, the Adam optimizer is utilized for training the final classifier. 

 

3.2.6 Model Evaluation 

In the model evaluation phase, we will comprehensively assess the performance of all four 

models based on key metrics including accuracy, precision, recall, and F1-score. These metrics 

serve as reliable indicators of the models' effectiveness in accurately classifying IoT threats. 

Our analysis will delve into the strengths and limitations of each model, providing valuable 

insights into their respective capabilities and areas for improvement. By examining the 

performance of each model across multiple metrics, we can gain a holistic understanding of 

their overall efficacy in threat detection. Moreover, we plan to implement a KNN (K-Nearest 
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Neighbors) classifier alongside our developed model. This will allow us to assess the 

performance of our model relative to a widely-used baseline classifier in the field of machine 

learning.  
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Stage 2: Implementing model on unseen threats 

During this stage, we are actively generating realistic network attacks to assess the performance 

of the deep learning models. This marks a pioneering effort in research, as it represents the first 

instance of implementing such a step and investigating the feasibility of the model in real-world 

implementation. 

3.2.7 Designing IoT Network Testbed 

 
Figure 3.2.7.1: IoT Network Testbed 

Our network architecture is designed to simulate a realistic IoT environment where a Raspberry 

Pi serves as the IoT device hosting a vulnerable web application, the DVWA (Damn Vulnerable 

Web Application), susceptible to various cyber attacks. The architecture also includes an 

attacker node, represented by a Kali Linux virtual machine, responsible for launching simulated 

attacks, and a packet collector node, hosted on a separate computer, to monitor and analyse 

network traffic. 

 

Components: 

Attacker (Kali VM): 

The Kali Linux virtual machine is configured to function as the attacker node in our network. 

It hosts a suite of penetration testing tools and is responsible for launching simulated attacks 

against the IoT device. 

This node is used to initiate various attack scenarios, including DDoS attacks, SQL injection, 

and cross-site scripting, to assess the vulnerability of the IoT device. 

 

Victim (Raspberry Pi with DVWA): 

The Raspberry Pi serves as the victim device in our network, emulating a typical IoT device 

running a vulnerable web application. 



CHAPTER 3 

Bachelor of Computer Science (Honours) 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    50 
 

It hosts the Damn Vulnerable Web Application (DVWA), a deliberately insecure web 

application used for testing purposes. 

The Raspberry Pi is physically connected to the network and is accessible from the attacker 

node for exploitation. 

 

Packet Collector (Host Computer): 

 

Since the Kali VM is hosted in the computer and is connected through NAT with the host 

computer. The packet collector is hosted on the computer and is responsible for capturing and 

analysing network traffic generated during the attack simulations. 

It is equipped with network monitoring tools such as Wireshark to capture packets traversing 

the network. 

 

Connectivity: 

The host computer and the victim device (Raspberry Pi with DVWA) are connected to the same 

local area network (LAN) through Ethernet. 

The attacker Kali VM is connected to the host with NAT selection in VMware therefore it will 

share the same IP address with the host computer. 

Communication between the attacker and victim nodes occurs over the LAN, allowing the 

attacker to exploit vulnerabilities in the IoT device's web application. 

 

Software Used: 

Kali Linux: Used as the operating system for the attacker node, providing a suite of pre-

installed penetration testing tools. 

Raspbian OS: Installed on the Raspberry Pi to support the DVWA web application. 

DVWA (Damn Vulnerable Web Application): Installed on the Raspberry Pi, serving as the 

target for simulated attacks. 

Wireshark: Utilized on the packet collector node to capture and analyze network traffic. 

This network architecture facilitates the simulation of realistic attack scenarios in an IoT 

environment, enabling the evaluation of few-shot learning techniques for threat detection. 
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3.2.8 Discovering IoT vulnerabilities and Intrusion Planning 

In the context of our specialized network testbed, where documentation from ToN-IoT is 

unavailable, we are tasked with designing and executing network attacks to simulate real-world 

threats. These attacks are tailored to be unseen, meaning they are not present in the existing 

dataset and therefore represent novel challenges for our threat detection models. 

 

Port Scanning Attack 

One of the attacks we will conduct is a port scanning attack using the Nmap tool. This attack 

aims to identify open ports on the target device (169.254.237.215) which could potentially 

serve as entry points for unauthorized access. The command nmap 169.254.237.215 will be 

executed to scan for open ports and gather information about the target's network configuration. 

Tools: Nmap 

Command: nmap 169.254.237.215 

 

Password Attack 

Another attack in our arsenal is a password attack, which involves attempting to gain 

unauthorized access to the target device by brute-forcing login credentials. We will utilize the 

Hydra tool to perform HTTP-GET-FORM and SSH brute force attacks. These attacks involve 

systematically attempting different username-password combinations until a successful login 

is achieved. 

Tools: Hydra 

Hydra SSH brute force 

hydra 169.254.237.215 -l pi -P /home/kali/passwordList.txt ssh 

 

XSS Attack 

Additionally, we will execute a cross-site scripting (XSS) attack using the xsser tool. This 

attack targets web applications running on the target device (at the URL 

"http://169.254.237.215/vulnerabilities/xss_r/?name=XSS#") and exploits vulnerabilities to 

inject malicious scripts. 

Tools: xsser 

Command: sudo xsser --url "http://169.254.237.215/vulnerabilities/xss_r/?name=XSS#" --

cookie="PHPSESSID=b6i30vnrgtpfqdn57mp02so790; security=low" –auto 

*cookie value must be changed according to session 
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3.2.9 Perform attack and capture the attack network flow 

The planned attack is currently underway, and we are actively capturing the network flow using 

Wireshark. Wireshark, a powerful network protocol analyser, allows us to monitor and capture 

network traffic in real time, providing detailed insights into the data packets traversing the 

network during the attack. 

 

As the attack progresses, Wireshark continuously captures and records various network 

activities, including packet transmissions, protocol interactions, and communication between 

devices. This captured network flow data will serve as valuable input for our analysis and 

evaluation of the attack's impact on the network infrastructure. The network flow will be saved 

in pcap format. 

3.2.10 Generating Network Logs with Zeek and Converting to CSV 

The Zeek network analysis tool will be utilized to capture and log network traffic data from 

pcap files generated from the simulated attacks. Subsequently, Python scripts were employed 

to convert the generated logs into a structured CSV format suitable for further analysis and 

model inference process. 

 

Generating Network Logs with Zeek 

Deployment: Zeek was deployed on Ubuntu Linux VM. The network flow data generated 

during the simulated attacks are transferred into the VM for Zeek analysis and logging. Zeek 

passively analyse each packet captured by the Wireshark program and generate comprehensive 

logs containing detailed information about network connections, protocol activity, and security 

events. Zeek logs various types of network activity, including connection summaries 

(conn.log), HTTP requests (http.log), DNS queries (dns.log), SSL/TLS handshakes (ssl.log), 

and more, providing a holistic view of the network traffic. 

 

Converting Zeek Logs to CSV Using Python Scripts 

Before converting the Zeek logs to CSV, we preprocess the logs to extract relevant fields and 

filter out unnecessary information based on the requirements of the model. Since we are unable 

to reproduce the way ToN-IoT combining the logs, we only extract the logs information from 

conn.log files which consists of all connection information. 
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We developed custom Python scripts to parse the Zeek logs and convert them into structured 

CSV files. These scripts utilize libraries such as Pandas for data manipulation and for file I/O 

operations.The script reads the conn.log file into a Pandas DataFrame, selectively extracting 

pertinent columns such as timestamps, IP addresses, port numbers, protocol types, connection 

durations, and packet counts. Subsequently, the extracted data is transformed into a new 

DataFrame, tailored to include only the essential information relevant to network connections. 

Finally, the script exports this refined DataFrame into a CSV file, allowing for seamless 

integration with various data analysis tools and workflows. By automating the conversion 

process, the script facilitates efficient data preprocessing, The table below shows the features 

that is extracted from the conn.log, it is exact same with the set 2 feature. 

 

Table 3.2.10.1: Features Visualization for Generated Dataset 

No. Features 

1. ts 

2. src_ip 

3. src_port 

4. dst_ip 

5. dst_port 

6. proto 

7. service 

8. duration 

9. src_bytes 

10. dst_bytes 

11. conn_state 

12. missed_bytes 

13. src_pkts 

14. src_ip_bytes 

15. dst_pkts 

16. dst_ip_bytes 

 

Dataset Filtering and Labelling 

The csv files generated will then be analysed and filtered out to remove noises from the normal 

network flow. Only the malicious network flow will be remained in the dataset. 
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After that, the ground truth labels will be assigned to each record in the CSV file. These labels 

correspond to the true classification or category of each data instance, providing a reference 

point for training and evaluating machine learning models. 

 

Combining csv into datasets 

We will produce 3 different datasets for evaluation to represent different situation. 

1) ToN-IoT testset 

20% of the ToN-IoT data will be randomly sampled out for testing. 

2) Unseen Logs dataset 

50 samples for each class from the self-generated unseen logs will be randomly 

extracted to form the unseen logs dataset for testing. 

3) Combined dataset 

50 samples for each class will be sampled out from ToN-IoT and 5 samples for each 

class in the unseen log dataset will be combined to form the combined dataset. 

3.2.11 Evaluation of Model Performance on Generated Data 

To assess the effectiveness of the trained model in detecting unseen IoT threats, we conducted 

an evaluation of its performance on the generated data. We utilized the trained models on the 

set 2 features to make inferences on the network log data previously converted into CSV 

format. The model analysed each network connection represented in the CSV file, leveraging 

its learned representations of normal and anomalous network behaviour to classify connections 

as benign or malicious. Subsequently, we evaluated the model's predictions against ground 

truth labels. By comparing the model's predictions with actual observations, we gained insights 

into its ability to effectively identify and classify security threats in the IoT environment. This 

evaluation process serves as a critical step in validating the model's performance and assessing 

its readiness for real-world deployment in enhancing network security and threat detection 

capabilities. 

3.2.12 Performing retraining of model with combined dataset (Transfer Learning) 

In our exploration of model capabilities, a significant aspect we delved into was the potential 

of model adaptability towards unseen threats. Transfer learning, a technique widely employed 

in machine learning, involves leveraging knowledge gained from training on one task to 

improve performance on a different but related task. By fine-tuning the previously trained 

model on the unseen self-generated dataset, we aimed to evaluate its adaptability and 
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effectiveness in detecting threats across different IoT environments. Through this process, we 

sought to uncover insights into the model's ability to generalize and transfer learned knowledge, 

ultimately enhancing its utility in addressing diverse cybersecurity challenges in IoT 

ecosystems. This investigation into transfer learning capabilities represents a crucial step in 

harnessing the full potential of machine learning models for cybersecurity applications, paving 

the way for more robust and adaptable threat detection systems. 

 

The DistilBert-based model will undergo retraining using a hybrid dataset comprised of 

samples from the ToN-IoT training set and training samples from the unseen dataset. The ToN-

IoT training set will be randomly subsampled to include 50 samples per class, which will then 

be combined with manually sampled unseen data containing 5 samples per class to augment 

the training dataset for the SetFit model. The retraining process follows the standard training 

methodology outlined earlier, with the exception of reducing the number of training epochs to 

5 for both models
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Chapter 4 System Model 

4.1 System Implementation Modeling 

 

Figure 4.1.1: System Implementation Model 

The model that has been created will play a crucial role within the Network Intrusion Detection 

System, specifically tailored for detecting potential threats within IoT network setups. Its 

function is to analyze the connection logs received from the Zeek logging server, a platform 

designed for network traffic analysis. Upon receiving these logs, the model will apply its 

classification capabilities to assess each connection and determine whether it represents normal 

network activity or poses a potential security threat. This process enables the system to swiftly 

identify and respond to any suspicious or malicious behavior occurring within the IoT network 

environment, thereby enhancing overall network security. 
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4.2 IoT Threat Detection Model Flow 

 
Figure 4.2.1: IoT Threat Detection Model Flow 

 

The acquired network log data undergoes preprocessing to extract relevant features essential 

for the models. These features are then concatenated into a sentence-like structure. For the 

DistilBert model, tokenization of the sentences precedes their input into the model.  

 

This research develops two distinct models: SetFit, a few-shot learning model, and DistilBert, 

which lacks few-shot learning capability. Both models engage in multiclass classification of 

the log sentences to determine whether they belong to attack classes or represent normal traffic 

flow. 
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Following model classification, evaluation ensues to scrutinize model performance. In cases 

where new, unrecognized attacks emerge, model adaptation is initiated. This adaptation 

involves employing transfer learning on the existing model using a combined dataset 

containing the new, unseen log samples and the old samples. Through model retraining, the 

model efficiently learns the patterns of new threats, enabling it to classify them accurately post-

adaptation. 

4.3 Models Architecture 

4.3.1 DistilBert-based IoT Threat Classification Architecture 

 

 
Figure 4.3.1: DistilBert-based IoT Threat Classification Model Architecture 

 

The threat classification model consists of 4 main components which is the DistilBert layer, 

pre-classifier layer, dropout layer and classifier layer. The DistilBert layer will encode the input 

sequences into a fixed length vector. The vectors will then be input into the pre-classifier, 

dropout layer and classifier to get the prediction.  

The DistilBert layer consists of 2 main components which are the Embeddings block and the 

Transformer block. Embeddings block is responsible for handling the input tokenization and 

embedding processes. It consists of 4 main components which is the word embeddings, position 

embeddings, a normalization layer and dropout layer. Word embeddings layer will represent 

every token by a vector space of (30522, 768) where 30522 is the number of unique tokens in 
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the vocabulary and 768 is the dimensionality of the embedding space. While the position 

embeddings will represent the position in the sequence by a vector of (512, 716) where 512 is 

the maximum sequence length of every token and 716 is the dimensionality of the embeddings 

space. Next, the normalization layer helps to improve the stability and speed up the training 

process and dropout layer prevents overfitting. 

Next, the input is then pass through the DistilBert encoder. It is used to encode the input 

sequences into fixed-length vectors. There are 4 main components in the DistilBert encoder 

block which consists of the Multi-Head Self Attention layer, normalization layer, feed-forward 

network layer, and output normalization layer. The multi-head self-attention layer is a 

mechanism allows the model to attend to different parts of the input sequence simultaneously, 

capturing dependencies and relationships between tokens. It consists of linear transformations 

for query (q), key (k), and value (v) projections, followed by dropout and output linear 

transformations. The output will then pass to a normalization layer. The feedforward neural 

network consists of two linear layers with a GELU activation function in between. It transforms 

the attention outputs to a higher-dimensional space and then back to the original dimensionality. 

The output is then pass through the normalization layer again before pass to the next layer for 

classification. 

After being process by the DistilBERT Model, the output vector will then be pass to the 3 

additional classification layers which is the pre-classifier layer, dropout layer, and classifier 

layer. The data will be pass through a pre-classifier first before inputted into the dropout layer 

which randomly drop some activation during training to prevent overfitting and improve 

generalization ability of the model. Finally, the final classifier will output the predicted class 

probability. 
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4.3.2 SetFit-based IoT Threat Classification Architecture 

 
Figure 4.3.2: SetFit-based IoT Threat Classification Model Architecture 

The SetFit framework comprises two main layers: the MPNet Sentence Transformer and the 

classification head. 

The model body consists of two components: the Tokenizer and the MPNet Transformer model. 

The MPNet Sentence Transformer is a transformer-based model that learns contextual 

representations of the input sentences. It captures the relationships and dependencies between 

words or tokens, enabling it to generate meaningful dense embeddings. The MPNet Sentence 

Transformer first tokenizes the input text into individual tokens and maps them to dense vector 

representations using word embeddings. These embeddings are then processed through 

multiple layers of Transformer blocks, which incorporate self-attention and feedforward neural 

networks to capture semantic relationships and contextual information. Additionally, a mean 

pooling layer is applied to aggregate the token-level representations into a single fixed-length 

vector. 

The classification head is a machine learning model that performs the multiclass classification 

task. In the SetFit framework, Logistic Regression has been chosen as the classification model. 

Logistic Regression is a widely used model for binary or multiclass classification problems. It 

learns a set of weights and biases to map the dense embeddings generated by the Sentence 

Transformer to the corresponding threat classes. By training the Logistic Regression model on 
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the encoded embeddings, it becomes capable of accurately classifying the threats based on the 

learned representations.  

These embeddings are then processed through multiple layers of Transformer blocks, which 

incorporate self-attention and feedforward neural networks to capture semantic relationships 

and contextual information.
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Chapter 5 Experiment 

5.1 Hardware Setup 

Several hardware had been used to conduct the experiment to implement it on self-generated 

network attacks. 

1) Laptop 

Table 5.1.1: Specifications of laptop 

Description Specifications 

Model HP Pavilion Laptop 15-cs3137tx 

Processor Intel Core i7-1065G7 

Operating System Windows 11 

Graphic NVIDIA GeForce MX250 4GB DDR3 

Memory 16GB DDR4 RAM 

Storage 512 GB NVME SSD 

 

2) Raspberry Pi 3 Model B 

Table 5.1.2: Specifications of Raspberry Pi 3 Model B 

Description Specifications 

Model Raspberry Pi 3 Model B 

Processor Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 

Operating System Raspbian Buster 

Memory 1GB RAM 

 

3) RJ45 Network Cable 

5.2 Software Setup 

Software on Laptop 

1) VMWare Workstation 17 Player 

2) Kali Linux VM 

a. Hydra 

b. Nmap 
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c. xsser 

3) Wireshark 

4) Zeek Network Analyzer Tools installed in Ubuntu VM 

5) RealVNC Viewer 

 

Software on Raspberry Pi 

1) Damm Vulnerable Web Application (DVWA) 

2) Docker 

5.3 Setting and Configuration 

5.3.1 Setting Up Vulnerable IoT Device 

The Raspberry Pi 3 Model B will be used as the victim in our network testbed. We can access 

to the Raspberry Pi interface with RealVNC viewer through the IP address of 169.254.237.215. 

This setup enables remote interaction with the Raspberry Pi, allowing for monitoring, 

management, and troubleshooting tasks to be performed seamlessly. 

 

Figure 5.3.1.1: Setting Up Vulnerable IoT Device 1 

Initially, Docker will be installed on the Raspberry Pi to simplify the process of hosting the 

Damn Vulnerable Web Application (DVWA). Subsequently, DVWA will be executed within 

a Docker container, leveraging the containerization technology provided by Docker. This 
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approach streamlines the deployment of DVWA on the Raspberry Pi, ensuring efficient 

resource utilization and ease of management throughout the hosting process. 

 
Figure 5.3.1.2: Setting Up Vulnerable IoT Device 2 

DVWA web page can be access through localhost IP port 80 through web browser. 

 
Figure 5.3.1.3: Setting Up Vulnerable IoT Device 3 

Next, we will need to create a database for the DVWA. 
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Figure 5.3.1.4: Setting Up Vulnerable IoT Device 4 

 
Figure 5.3.1.5: Setting Up Vulnerable IoT Device 5 
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5.3.2 Setting Up Kali Linux VM 

1) Download pre-built VMware Kali Image 

 
Figure 5.3.2.1: Setting Up Kali Linux VM 1 

2) Open the Kali VM downloaded 

 

 
Figure 5.3.2.2: Setting Up Kali Linux VM 2 

 

 
3) Double click to turn on the VM 
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Figure 5.3.2.3: Setting Up Kali Linux VM 3 

 

Figure 5.3.2.4: Setting Up Kali Linux VM 4 

5.3.3 Setting Up Wireshark 

1) Turn on wireshark and sniff the packet on the Ethernet port 
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Figure 5.3.3.1: Setting Up Wireshark 

5.4 System Operation 

5.4.1 Performing Network Attacks & Capturing Network Packets 

The Kali Linux virtual machine, equipped with a diverse array of hacking tools, serves as the 

platform for launching network attacks against the Raspberry Pi. Installed on a laptop, the Kali 

VM is hosted using VMWare Workstation 17 Player. A bash script has been developed to 

automate the steps involved in executing the hacking procedures efficiently. 

 

Wireshark, a network protocol analyzer, is employed to capture the flow of network packets. 

Prior to launching an attack, Wireshark is activated to monitor the packet flow on the Ethernet 

port of the laptop. 
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Figure 5.4.1.1: Capturing Attack Network Flow 1 

 
Below consists of the screenshots of the network attacks that are launched to the victim: 

1) Port Scanning 

 
Figure 5.4.1.2: Capturing Attack Network Flow 2 

 
There are 3 services that have its port open which is SSH on port 22 TCP, HTTP on port 80 

TCP and VNC on port 5900 TCP. 

 

2) SSH Brute Force 
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Figure 5.4.1.3: Capturing Attack Network Flow 3 

 
The Hydra successfully brute force the SSH password. 

 

3) Cross-site scripting  

 
Figure 5.4.1.4: Capturing Attack Network Flow 4 

5.4.2 Create Network Logs from Network Flow 

Zeek will be used to analyze the attacking network flow and output their relevant network logs. 

All the packet capture will be analyzed by Zeek to get the output logs. 
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Figure 5.4.2.1: Generating Network Flow Logs 1 

 

 
Figure 5.4.2.2: Generating Network Flow Logs 2 

 

5.4.3 Preprocessing Network Logs into CSV 

The conn.log generated from Zeek will be extracted out for model classification. The 3 

conn.log files from the 3 attacks will be process and the connection features will be extracted 
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through a Python script. The logs features will then be converted to csv format and labelled 

with their respective attack types.  

 
Figure 5.4.3.1: Converting Logs to CSV Dataset 1 
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Figure 5.4.3.2: Converting Logs to CSV Dataset 2 

5.4.4 Detecting and Classifying Threats 

The generated CSV dataset will subsequently serve as input for the developed models for 

classification purposes. Following classification, the output can be effectively visualized using 

a pie chart. This visualization method offers users a straightforward means to interpret whether 

the network flow comprises any potential threats. By presenting the classification results in a 

pie chart format, users can swiftly discern the distribution of normal and threatening network 

activities, facilitating quick and informed decision-making regarding network security 

measures. This visual representation enhances the usability and accessibility of the 

classification results, empowering users to take proactive steps to mitigate identified threats. 



CHAPTER 5 

Bachelor of Computer Science (Honours) 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    74 
 

 
Figure 5.4.4.1: Generating Predictions with SetFit Classification Model 1 

 

 
Figure 5.4.4.2: Generating Predictions with SetFit Classification Model 2 
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Figure 5.4.4.3: Generating Predictions with SetFit Classification Model 3 

 
The diagrams provided depict pie charts illustrating the classification results of the SetFit 

(Transfer Learning) model when making inferences on CSV files containing their respective 

attack classes. It is evident that the majority of logs are accurately classified into their respective 

attack categories. 

5.5 Implementation Issues and Challenges 

Difficulties in reproducing the Network Logs preprocessing steps in ToN-IoT 

Reproducing the Network Logs preprocessing steps outlined by ToN-IoT proved challenging 

due to the absence of comprehensive documentation detailing their process for aggregating and 

integrating features from various log files generated by Zeek. This presented a formidable 

obstacle to replicating their methodology accurately. To address this issue, we opted to focus 

solely on the primary log file, specifically the conn.log features. Despite this limitation, we 

were able to demonstrate that this streamlined approach did not result in significant discernible 

performance degradation. 



CHAPTER 6 

Bachelor of Computer Science (Honours) 
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    76 
 

Chapter 6 System Evaluation and Discussion 

6.1 Models testing and Performance Metrics 

6.1.1 Evaluation Cases 

In the evaluation phase, the performance of the developed models—namely, the DistilBert-

based model, SetFit model, and a KNN classifier—will be rigorously tested using various 

testing datasets. Initially, these models will undergo evaluation using the ToN-IoT test set, 

which has been partitioned out beforehand. Additionally, a self-generated dataset comprising 

unseen attack logs will be utilized to further assess the models' capabilities in identifying novel 

threats. Furthermore, a combined dataset incorporating both the ToN-IoT test set and the self-

generated unseen dataset will be employed to provide a comprehensive evaluation scenario. 

 

Moreover, the effectiveness of transfer learning will be investigated by applying the technique 

to the models using the unseen data. This analysis aims to ascertain whether transfer learning 

enhances the models' performance in detecting and mitigating emerging threats. Through these 

evaluations, we seek to gain insights into the strengths and limitations of each model and assess 

their suitability for practical deployment in real-world IoT security scenarios. 

 

6.1.2 Evaluation Metrics 

To evaluate the proposed method's recognition performance, several key evaluation metrics are 

utilized: Accuracy (ACC), Recall, Precision, and F1 Score. These metrics assess the model's 

performance based on four parameters: True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). 

 

Accuracy (ACC) measures the proportion of correctly classified samples, both normal and 

abnormal. It is calculated by dividing the sum of TP and TN by the total number of samples 

(TP + FP + TN + FN). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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Precision, also referred to as the accuracy rate, quantifies the proportion of correctly predicted 

normal data out of all predicted normal data. It is determined by dividing TP by the sum of TP 

and FP. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall, alternatively known as the check-all rate, represents the proportion of correctly 

predicted normal data out of all actual normal data. It is calculated by dividing TP by the sum 

of TP and FN. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score serves as a balanced measure of precision and recall, providing a reconciled average 

of the two metrics. It is computed by taking the harmonic mean of precision and recall, thereby 

accounting for their contradictory nature. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

In summary, these evaluation metrics collectively provide insights into the model's ability to 

correctly classify normal and abnormal samples, ensuring a comprehensive assessment of its 

recognition performance. 

 

Additionally, confusion matrices will be generated as part of the evaluation process to provide 

a detailed analysis of the models' performance. Confusion matrices offer a visual representation 

of the classification results, depicting the number of true positives, true negatives, false 

positives, and false negatives for each class or category in the dataset. 

6.2 Testing Setup and Result 

 

6.2.1 Hardware 

The hardware involved in this IoT threat detection project is a computer. A computer is needed 

to test the models and conduct evaluation with the datasets. 

Table 6.2.1.1: Specifications of laptop 
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Description Specifications 

Model HP Pavilion Laptop 15-cs3137tx 

Processor Intel Core i7-1065G7 

Operating System Windows 11 

Graphic NVIDIA GeForce MX250 4GB DDR3 

Memory 16GB DDR4 RAM 

Storage 512 GB NVME SSD 

 

6.2.2 Software 

Anaconda is used as the package management system to set up the testing environment. Below 

includes the libraries that is needed for the testing environment. 

1. PyTorch Library 

2. Transformer Library 

3. SetFit Library 

4. Sentence Transformer Library 

5. Pandas Library 

 

Jupyter Notebook is used as the main tool for model evaluation with the dataset. 

 

6.2.3 Result Analysis 

 

Evaluation on ToN-IoT test set 

Table 6.2.3.1: Accuracy Evaluation on ToN-IoT Testset 

IoT Threat Classification Model Best Accuracy 

DistilBert-based (All features) 0.9998 

DistilBert-based (Conn features) 0.9802 

SetFit (All features) 0.8885 

SetFit (Conn features) 0.8807 

KNN Classifier 0.9793 

 

Among these models, the DistilBert-based model using all features achieved the highest 

accuracy, indicating its effectiveness in accurately classifying IoT threats. Interestingly, even 
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when utilizing only connection features, the DistilBert-based model still performed 

exceptionally well, with a slightly lower accuracy score. 

 

Additionally, the few-shot learning models, represented by the SetFit architecture, 

demonstrated notable performance, achieving an accuracy of 0.88. This result is particularly 

significant considering that the SetFit models were trained with a significantly smaller dataset 

of only 64 samples for each class of attack which is 640 altogether, compared to the DistilBert-

based model, which utilized approximately 400,000 samples for training. This highlights the 

potential of few-shot learning techniques in achieving competitive performance with limited 

training data. 

 

Overall, the SetFit models showcase promising performance, particularly considering their 

ability to achieve robust results with a smaller training dataset. 

 

DistilBert-based (All features) classifier per-class evaluation (ToN-IoT test set) 

Table 6.2.3.2: DistilBert-based (All features) classifier per-class evaluation on ToN-IoT 

Testset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 1.00 1.00 1.00 1.00 

Ddos 1.00 1.00 1.00 1.00 

Dos 1.00 1.00 1.00 1.00 

Injection 1.00 1.00 1.00 1.00 

mitm 1.00 1.00 1.00 1.00 

normal 0.99 0.99 0.99 0.99 

password 0.99 0.99 0.99 0.99 

ransomware 0.99 1.00 0.99 0.99 

scanning 1.00 1.00 1.00 1.00 

xss 0.99 0.99 0.99 0.99 

The DistilBert-based model with all features showcases outstanding performance in classifying 

various types of network threats, demonstrating its effectiveness in accurately identifying and 

categorizing different attack types with minimal misclassifications. The consistently high 

scores across all evaluation metrics indicate the model's robustness and reliability in threat 

detection across a range of attack scenarios. 
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DistilBert-based (Conn features) classifier per-class evaluation (ToN-IoT test set) 

Table 6.2.3.3: DistilBert-based (Conn features) classifier per-class evaluation on ToN-IoT 

Testset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 1.00 1.00 1.00 1.00 

Ddos 0.96 0.98 0.96 0.97 

Dos 0.98 0.99 0.98 0.98 

Injection 0.96 0.98 0.96 0.97 

mitm 0.71 0.66 0.71 0.68 

normal 0.99 0.99 0.99 0.99 

password 0.98 0.99 0.98 0.98 

ransomware 0.93 0.84 0.93 0.88 

scanning 0.99 0.98 0.99 0.99 

xss 0.91 0.93 0.91 0.92 

While the DistilBert-based model using connection features demonstrated strong performance 

across various attack types, there were some challenges in accurately identifying certain types 

of threats such as MitM attacks, leading to lower performance metrics for the categories. The 

limitation of MitM which it has extremely less data samples compared to other classes and the 

reliance of the attack with dns features may be the cause of this issue. However, the model's 

overall performance remained robust, with high accuracy and precision in detecting most types 

of network threats. 

 

SetFit (All features) classifier per-class evaluation (ToN-IoT test set) 

Table 6.2.3.4: SetFit (All features) classifier per-class evaluation on ToN-IoT Testset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 0.98 0.97 0.98 0.98 

Ddos 0.92 0.85 0.92 0.88 

Dos 0.85 0.97 0.85 0.91 

Injection 0.93 0.69 0.93 0.79 

mitm 0.88 0.05 0.89 0.10 

normal 0.87 1.00 0.87 0.93 

password 0.97 0.74 0.97 0.84 

ransomware 0.96 0.70 0.96 0.81 

scanning 0.98 0.92 0.98 0.95 
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xss 0.82 0.71 0.82 0.76 

 

SetFit (Conn features) classifier per-class evaluation (ToN-IoT test set) 

Table 6.2.3.5: SetFit (Conn features) classifier per-class evaluation on ToN-IoT Testset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 0.98 1.00 0.98 0.99 

Ddos 0.91 0.70 0.91 0.79 

Dos 0.95 0.86 0.95 0.90 

Injection 0.89 0.64 0.89 0.74 

mitm 0.88 0.07 0.88 0.13 

normal 0.85 1.00 0.85 0.92 

password 0.97 0.72 0.97 0.82 

ransomware 0.96 0.67 0.96 0.79 

scanning 0.98 0.99 0.98 0.99 

xss 0.85 0.78 0.85 0.81 

 

In the SetFit models, there is not a significant difference in performance between the two 

models. However, it is noticeable that the "mitm" class exhibits an extremely low precision, 

indicating that many instances from other classes are misclassified as "mitm". 

 

6.2.3.2 Evaluation on unseen dataset (Conn Features Only) 

Table 6.2.3.6: Accuracy Evaluation on Unseen Dataset 

IoT Threat Classification Model Best Accuracy 

DistilBert-based 0.0013 

DistilBert-based (Transfer Learning) 0.7800 

SetFit 0.0000 

SetFit (Transfer Learning) 0.9000 

KNN Classifier 0.0000 (unable to fit with unseen text data) 

 

The multiclass IoT Threat Classification models struggle to accurately classify unseen logs 

into their respective classes. However, the SetFit model demonstrates superior adaptability by 

efficiently learning new network threats when retrained with only a few new threat samples.  

The DistilBert-based model also attained an accuracy of 0.78%, positioning it as the second-

best performer following the implementation of model retraining. In contrast, the KNN 
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classifier faces limitations in predicting new protocols due to constraints with the label 

encoder's ability to accommodate new protocol values. 

 

DistilBert-based (Transfer Learning) (Conn features) classifier per-class evaluation 

(unseen dataset) 

Table 6.2.3.7: DistilBert-based (Transfer Learning) (Conn features) classifier per-class 

evaluation on Unseen Dataset 

Attack Type Accuracy Precision Recall F1-score 

password 0.80 1.00 0.94 0.97 

scanning 0.22 1.00 0.52 0.68 

xss 0.56 1.00 0.88 0.94 

 

SetFit (Transfer Learning) (Conn features) classifier per-class evaluation (unseen 

dataset) 

Table 6.2.3.8: SetFit (Transfer Learning) (Conn features) classifier per-class evaluation on 

Unseen Dataset 

Attack Type Accuracy Precision Recall F1-score 

password 0.98 1.00 0.98 0.99 

scanning 0.76 1.00 0.76 0.86 

xss 0.96 0.98 0.96 0.97 

 

The assessment of unseen datasets reveals that the SetFit model demonstrates superior 

adaptability to new, previously unseen threats following the retraining process, substantially 

improving its accuracy from 0% to 90%. Conversely, the DistilBert-based model exhibits 

suboptimal performance post-retraining, notably with significantly reduced recall for the 

scanning class. More samples are needed to train the DistilBert-based model to fit with the new 

threats. 

 

5.2.3.3 Evaluation on combined dataset (Conn Features Only) 

Table 6.2.3.9: Accuracy Evaluation on Combined Dataset 

IoT Threat Classification Model Best Accuracy 

DistilBert-based 0.9359 

DistilBert-based (Transfer Learning) 0.9592 
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SetFit  0.8913 

SetFit (Transfer Learning) 0.9223 

 

 

Given that the unseen dataset constitutes only 3% of the overall dataset, the evaluation 

conducted on the combined dataset demonstrates the adaptability of both the SetFit and 

DistilBert-based models. Through retraining using transfer learning techniques, these models 

showcase their ability to effectively adapt to both new and existing threats, thereby improving 

their classification performance across the entire dataset. 

 

DistilBert-based (Transfer Learning) (Conn features) classifier per-class evaluation 

(combined dataset) 

Table 6.2.3.10: DistilBert-based (Transfer Learning) (Conn features) classifier per-class 

evaluation on Combined Dataset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 1.00 0.94 1.00 0.97 

Ddos 0.94 1.00 0.94 0.97 

Dos 1.00 0.98 1.00 0.99 

Injection 1.00 0.96 1.00 0.98 

mitm 0.96 0.98 0.96 0.97 

normal 1.00 0.94 1.00 0.97 

password 0.98 1.00 0.98 0.99 

ransomware 0.94 0.89 0.94 0.91 

scanning 0.95 1.00 0.95 0.97 

xss 0.91 0.98 0.91 0.94 

 

SetFit (Transfer Learning) (Conn features) classifier per-class evaluation (combined 

dataset) 

Table 6.2.3.11: SetFit (Transfer Learning) (Conn features) classifier per-class evaluation on 

Combined Dataset 

Attack Type Accuracy Precision Recall F1-score 

Backdoor 1.00 0.96 1.00 0.98 

Ddos 0.88 0.92 0.90 0.90 

Dos 0.92 0.98 0.95 0.95 
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Injection 0.98 0.94 0.96 0.96 

mitm 0.76 0.97 0.85 0.85 

normal 0.90 0.82 0.86 0.86 

password 0.96 0.98 0.97 0.97 

ransomware 0.98 0.89 0.93 0.93 

scanning 0.95 1.00 0.97 0.97 

xss 0.89 0.80 0.84 0.84 

 

According to the evaluation metrics delineated previously, the SetFit model, leveraging transfer 

learning, demonstrates commendable performance as the second-best performer, achieving an 

accuracy score of 0.9223, with only a marginal 4% difference compared to the DistilBert-based 

model, which achieved an accuracy score of 0.9592. It is noteworthy to emphasize that the 

SetFit model is specifically designed as a few-shot learning model, indicating its capacity to 

achieve competitive results despite its reduced data requirement. 

6.3 Project Challenges 

The ToN-IoT dataset lacks comprehensive documentation regarding the methodologies 

employed during data collection, particularly concerning the specific attacks executed. 

Consequently, reproducing these attacks verbatim is unfeasible. To address this limitation, we 

devised a bespoke attack methodology tailored to our IoT testbed environment. This approach 

enables us to simulate and execute attacks representative of those encountered in real-world 

scenarios, thereby compensating for the absence of detailed attack documentation in the ToN-

IoT dataset. 

 

Additionally, the ToN-IoT dataset lacks detailed specifications for all attack types. For 

instance, the "dos" class encompasses a broad spectrum of attacks, including UDP floods, SYN 

floods, NTP amplification, DNS amplification, SSDP amplification, IP fragmentation, SYN-

ACK floods, Ping of Death, and TCP SYN flood. This lack of granularity impedes further 

analysis and extraction of specific attack samples from distinct classes for the purpose of few-

shot learning. 

 

The multifaceted nature of network threats poses a formidable challenge for current datasets to 

encompass the full spectrum of attack variations across all classes. This limitation significantly 
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impedes the ability of multiclass classification models to achieve comprehensive generalization 

across diverse network attack threats. Hence, deploying the multiclass IoT threat classification 

model in real-life scenarios presents a substantial challenge. As such, this challenge 

underscores the critical need for innovative methodologies that can effectively address the 

inherent complexities and variations inherent in IoT threat landscapes. Overcoming this 

obstacle is paramount to advancing the efficacy and reliability of threat detection and 

classification systems in safeguarding IoT networks against evolving security risks. 

 

Time and processing power constraints have imposed limitations on our ability to conduct 

extensive model fine-tuning and experimentation, particularly considering the complexity of 

developing two distinct models. These constraints have hindered our capacity to explore 

various hyperparameters, optimization techniques, and model architectures comprehensively. 

As a result, our experimentation scope has been constrained, potentially impacting the depth 

of our model optimization efforts and the breadth of our findings. Despite the constraints, we 

have managed to achieve high-performance results for our models. This underscores the 

effectiveness of our approaches and highlights the robustness of the methodologies employed. 

 

6.4 Objectives Evaluation 

Objective 1 Evaluation: 

The establishment of an IoT network testbed for generating and capturing unseen network 

threats represents a significant milestone in the research objectives of generating unseen 

network threats to evaluate models’ performance in classifying realistic, unseen realistic 

network threats. By leveraging this testbed, the captured dataset was utilized to 

comprehensively evaluate the performance of the developed models. However, the evaluation 

results revealed that the multiclass IoT threats classification model exhibited limitations in 

accurately predicting unseen samples. This finding highlights the challenges inherent in 

addressing the complexity and variability of real-world network threat scenarios especially 

when we are performing multiclass classification for 10 different attack classes. 

 
Objective 2 Evaluation: 

The research successfully achieved the objective of developing innovative Transformer-based 

model tailored specifically for IoT threat detection, leveraging advanced Natural Language 
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Processing (NLP) techniques. Two Transformer-based language classification models were 

meticulously developed, trained, and rigorously tested to evaluate their performance. Both 

models demonstrated commendable performance in accurately classifying a wide range of IoT 

network threats, indicating the effectiveness of the novel methodology in enhancing threat 

detection capabilities in IoT environments. 

 

Objective 3 Evaluation: 

The successful development of the SetFit-based IoT threats classification model represents a 

significant achievement in the research objectives of developing the novel few-shot learning 

model for IoT threat classification. By leveraging few-shot learning techniques, the model has 

demonstrated its efficacy in detecting and classifying network threats in IoT environments. 

This accomplishment underscores the effectiveness of adopting innovative methodologies to 

enhance the capabilities of threat detection models, particularly in scenarios where limited 

labeled data is available. 

 

Objective 4 Evaluation: 

The implementation of model retraining using transfer learning approaches represents a pivotal 

step towards enhancing the prediction accuracy of the classification model for unseen attacks. 

Through this process, the model underwent adaptation to incorporate knowledge from pre-

existing model, thereby enhancing its ability to classify novel threat vectors encountered in the 

network. The results of the retraining efforts demonstrate a notable improvement in the model's 

performance, reaffirming the efficacy of transfer learning as a valuable strategy for enabling 

the model to adapt and evolve in response to emerging threats. This successful implementation 

underscores the importance of ongoing refinement and optimization to ensure the model 

remains robust and effective in safeguarding IoT networks against evolving security 

challenges. 

6.5 Concluding Remark 

In conclusion, this research endeavor has led to significant advancements in the domain of IoT 

threat detection and classification. Through the development and evaluation of novel 

methodologies and models, we have made substantial strides towards enhancing the security 

posture of IoT networks. The successful implementation of Transformer-based language 

classification models, coupled with the innovative utilization of few-shot learning techniques, 
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underscores the effectiveness of advanced AI-driven approaches in mitigating emerging 

threats. 

 

Furthermore, the establishment of an IoT network testbed for generating and evaluating unseen 

network threats has provided invaluable insights into the capabilities and limitations of our 

models. While challenges persist in accurately predicting unseen threats, the utilization of 

transfer learning approaches has demonstrated promising results in bolstering the models' 

adaptability and prediction accuracy. 

 

This research stands as a pioneering endeavor in the field, marking the first instance of testing 

a multiclass threat classification model with a self-generated unseen dataset. By undertaking 

this approach, we have pushed the boundaries of current methodologies and expanded the 

scope of research in IoT threat detection and classification. This groundbreaking work not only 

fills a crucial gap in existing literature but also lays the foundation for future studies to build 

upon. The insights gained from this research are invaluable, providing a roadmap for further 

advancements in the realm of IoT security. 

 

Looking ahead, continued research and development efforts are warranted to further refine and 

optimize our models, ensuring their efficacy in addressing the evolving threat landscape of IoT 

networks. By leveraging cutting-edge technologies and methodologies, we remain committed 

to advancing the state-of-the-art in IoT threat detection and classification, ultimately fostering 

a more secure and resilient IoT ecosystem. 
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Chapter 7 Conclusion and Recommendation 

7.1 Conclusion 

In conclusion, this research project has successfully devised and assessed an innovative 

methodology for detecting IoT threats utilizing limited labeled textual datasets leveraging 

Large Language Model (LLM). The SetFit architecture has demonstrated notable efficacy in 

accurately classifying threats, even when confronted with scant training data. This addresses 

the pressing need for adaptive security frameworks capable of promptly responding to 

emergent IoT vulnerabilities. Comparative analysis underscores the superiority of the proposed 

SetFit approach over conventional techniques, particularly in scenarios characterized by sparse 

data availability. The investigation underscores the potential of leveraging deep contextual 

representations from Sentence Transformer for facilitating few-shot learning, thereby enabling 

the construction of robust models on resource-constrained edge devices commonly 

encountered in IoT environments. Furthermore, the elucidation of the model adaptation process 

underscores the capability of the SetFit-based IoT Threat Classification model to undergo 

retraining with limited samples and adeptly accommodate new, previously unseen threats. 

Additionally, our research has showcased the efficacy of LLM models in detecting IoT threats, 

as evidenced by the outstanding performance of the DistilBert-based IoT threat classification 

model, achieving an accuracy of 99.98%. 

7.2 Recommendation 

Future endeavors could address the limitations of multiclass IoT threat classification models 

by exploring alternative approaches. Prior studies have demonstrated that binary classification, 

distinguishing between logs indicative of threats and those that are not, may exhibit better 

generalization capabilities in detecting unseen samples. Integrating a hybrid pipeline 

encompassing both binary and multiclass models could potentially offer a solution to this 

challenge. 

 

Moreover, future endeavors could center on exploring enhanced network flow features capable 

of encapsulating diverse attack characteristics. The identification of representative features 

holds promise for advancing the efficacy of IoT threat classification models. By utilizing on 
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features that aptly capture nuanced attack information, the models' classification capabilities 

can be further refined, thereby augmenting their effectiveness in discerning and mitigating IoT-

related security risks.
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