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ABSTRACT 
 

This project introduces RACKY, an innovative and comprehensive API solution that 

seamlessly integrates the SWAT (Soil and Water Assessment Tool) model into the highly 

adaptable OpenAI Gym environment, thus creating the powerful simulation framework known 

as SWATGym. RACKY serves as a versatile interface, facilitating effortless retrieval of 

detailed corn plant state information based on precise fertilizer or irrigation inputs through its 

intuitive API endpoints. Beyond data access, RACKY incorporates a sophisticated 

reinforcement learning agent based on the Proximal Policy Optimization (PPO) algorithm 

within the SWATGym. This integration empowers users with the capability to input location-

specific data alongside plant growth stage parameters, thereby obtaining highly optimized 

recommendations for fertilizer and irrigation amounts directly from the embedded AI model. 

RACKY helps people make better farming decisions by showing them how different amounts 

of fertilizer and water affect plant growth through real-time simulations and detailed analysis. 

This project aims to make advanced farming information and AI tools accessible to everyone, 

not just experts. By using RACKY, researchers, farmers, and anyone interested in farming can 

find ways to grow crops more sustainably and using fewer resources.  

 

Keyword: Precision Agriculture, Smart Farming Cycle, Reinforcement Learning, 

DDPG, PPO 
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Chapter 1:  

Introduction 

1.1  Problem Statement and Motivation 

Developing and optimizing crop growth strategies, such as for corn plants, demands a thorough 

comprehension of plant growth dynamics and the influence of external factors like fertilizers, 

irrigation, and weather situation. Conventional approaches to AI model training for crop 

management involve using physical plants, which is both time-consuming and resource 

intensive. Current methods for training AI models in crop management often rely on using 

physical plants. This process is time-consuming and demands significant resources in terms of 

space, materials, and maintenance. It limits the scalability of AI-driven solutions.  

 

Furthermore, there is a lack of user-friendly interfaces for leveraging AI tools in farming 

tailored to individual needs. There is a noticeable absence of easy-to-use interfaces that allow 

individuals with varying levels of technical expertise to harness the power of AI tools in 

farming. This lack of accessibility hinders widespread adoption and innovation in agricultural 

practices. 

 

The driving force behind this initiative is to create a unified, user-friendly interface that 

enables anyone, regardless of technical expertise, to access and utilize AI tools for farming. 

This initiative aims to save time, expedite AI model training, and foster collaboration and 

knowledge sharing in agriculture. 

 

Additionally, this project encompasses developing a reinforcement learning agent capable 

of interacting with farming environments. This agent empowers users to tackle various farming 

challenges, such as determining optimal irrigation and fertilizer amount. 

 

By democratizing AI tools for farming, this project seeks to enhance agricultural practices, 

promote sustainability, and contribute to global food security while mitigating environmental 

impacts. 
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1.2  Objectives 

Our primary objective is to revolutionize crop management strategies and agricultural 

practices through the development of an integrated system.  

 

Firstly, the project aims to create an API for SWATGym, which will facilitate users' access 

to and use of the tool for those interested in using AI-driven solutions to optimize crop 

growth. This API will operate as a doorway for user to run their corn crop simulation based 

on different weather or location and created their own AI model. 

 

Secondly, the project also focus extends to building an AI model that seamlessly integrates 

with SWATGym, enabling it to interact intelligently with simulated farming environments. 

This model will utilize the environment and suggest optimal action like amount of fertilizer 

and irrigation.  

 

Furthermore, we recognize the importance of accessibility and user-friendliness in driving 

widespread adoption of AI tools in farming. To this end, we will develop intuitive and easy-

to-use interfaces that leverage the power of the AI model through the API. These interfaces 

will be tailored to accommodate users with varying levels of technical expertise, empowering 

them to make informed decisions and implement efficient farming practices effortlessly. 

 

In conclusion, this project aims to revolutionize agricultural management by creating a user-

friendly API for SWATGym. By integrating an AI model with SWATGym, we seek to 

optimize crop growth strategies by intelligently interacting with farming environments and 

suggesting optimal actions such as fertilization and irrigation. 
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1.3  Project Scope and Direction  

The project scope encompasses several key elements essential for advancing agricultural 

management practices using AI-driven solutions. One crucial aspect involves implementing 

a reinforcement learning agent, specifically Proximal Policy Optimization (PPO), to refine 

and optimize fertilizer and irrigation strategies. This agent will leverage the capabilities of the 

SWATGym environment, providing a realistic simulation platform for testing and improving 

farming techniques. 

 

Additionally, a significant focus is on integrating this AI model and SWATGym simulator 

into the API infrastructure using Python Flask. This integration will enable users from 

various backgrounds, including researchers, developers, and hobbyists, to access the full 

potential of the reinforcement learning agent and the environment.  
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1.4  Contributions 

The contributions of this project are as below. Firstly, we provide an AI model capable of 

effectively utilizing the SWATGym environment, specifically focusing on optimizing 

fertilizer and irrigation strategies using Proximal Policy Optimization (PPO) reinforcement 

learning techniques.  

 

Secondly, our project significantly improves accessibility and usability for users by 

developing a user-friendly API that integrates seamlessly with SWATGym. This integration 

streamlines access to the AI model and the simulation environment, empowering users such 

as researchers, developers, and farmers to leverage advanced AI tools without extensive 

technical expertise.  

 

Furthermore, we augment the capabilities of develop API by integrating external weather 

API. This addition addresses a crucial limitation of the existing SWATGym API, which lacks 

real-time weather data for accurate simulations. By incorporating external weather data, we 

enhance the accuracy and relevance of the simulations, enabling users to make informed 

decisions based on current weather conditions, ultimately improving crop management 

strategies and productivity.  
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1.5  Report Organization 

This report is organised into 6 chapters: Chapter 1 Introduction, Chapter 2 Literature Review, 

Chapter 3 System Design, Chapter 4 System Implementation and Testing, Chapter 5 System 

Outcome and Discussion, Chapter 6 Conclusion.  

 

The first chapter is the introduction of this project which includes problem statement, project 

background and motivation, project scope, project objectives, project contribution and report 

organisation.  

 

The second chapter is the literature review carried out on several existing reinforcement 

learning environment, smart farming cycle, and existing technique to implementing 

reinforcement agent.  

 

The third chapter is discussing the overall system design of this project. It contains the 

information of SWATGym, Python Flask, and the methodology of PPO and DDPG Agent that 

will be implement into this project.  

 

The fourth chapter is regarding the details on how to implement the design of the system. It 

contains with the block diagram and use case diagram to show the interaction of user with the 

system. 

 

The fifth chapter reports are the implementation of the API, AI model and issue and challenge 

that faces in the implementation. 

 

The sixth chapter is the system evaluation which contain the test of the API, result of the AI 

model, and the project challenge. 

The seventh chapter is the conclusion and recommendation of this project. 
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Chapter 2 

Literature Review 

2.1  Previous works on reinforcement learning farm  

2.1.1 Intelligent Farm Based on Deep Reinforcement Learning for optimal 

control (Actor Critic) 

 

This paper introduces the concept of smart farming, emphasizing the use of artificial 

intelligence to optimize agricultural operations. Smart agriculture aims to improve crop 

yields, reduce costs, and enhance crop quality through automation, data analysis, and 

resource optimization. The paper proposes a smart farming system that utilizes deep 

reinforcement learning to make optimal decisions in agricultural settings.  

The smart farm had to make decision to growth the crop meanwhile tackle the unpredictable 

states and uncontrollable factor that will affect the crop. Therefore, the paper had suggested 2 

ways to managing the smart farm which is Recurrent Neural Networks (RNNs) and 

Reinforcement Learning. But we will just focus on the reinforcement learning result.  

Reinforcement Learning, focusing on the Deep Deterministic Policy Gradient (DDPG) 

method. In this paper, intelligent agents aim to maximize cumulative rewards by iteratively 

learning optimal policies. DDPG introduces the actor-critic framework, where the actor 

(policy) seeks the best actions, and the critic (value function) evaluates these actions' quality. 

The critic estimates the value of state-action pairs and updates iteratively to reach desired 

goal values[1]. This reinforcement learning approach presents opportunities for optimal 

control in complex and dynamic farm environments. Additionally, the study touches on the 

potential of asynchronous training for multiple agents, offering a means to accelerate learning 

in intricate systems while acknowledging potential challenges associated with this 

approach[1]. 

 

Below is the experiment that of reinforcement learning work out in the smart farm. The 

structure of control system is show.  
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Figure 1: Structure of RL Farm 

 

To optimize crop production and quality, an intelligent agent-based approach that adapts to 

environmental conditions and controls various aspects of the farm is used. Each smart farm 

subsystem was controlled by a slave agent, which communicated environmental data to the 

master agent, enabling precise decision-making[1]. The agents developed strategies based on 

a knowledge base derived from sensor data and the farm's state. Each agent had its own 

dynamic neural network with hyperparameters optimized using Bayesian optimization[1]. 

The key environmental variables considered for optimization were temperature (T), humidity 

(H), fertilizer (F), and rainfall (R) as shown on the above figure. Rainfall determined crop 

selection, while other factors were used to optimize crop growth. The fertilizer choice was 

tailored to the specific soil composition and crop requirements. 

The experiment had demonstrated the effectiveness of the RL approach, and 100 versions of 

the model concurrently, comparing results obtained after hyperparameter optimization.  

 

Table 1 Result of Effectiveness of RL approach 

 
These experiments showcased the ability of our model to achieve excellent results in smart 

farm management, emphasizing the importance of reinforcement learning in enhancing crop 

production and quality. 
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2.1.2 A Reinforcement Learning Approach for Smart Farming (MDP, Thomas 

Sampling, Q-learning) 

In this paper had shown the Reinforcement learning algorithm like Markov Decision Process 

(MDP), Thomas Sampling Algorithm and Q-learning algorithm. The paper shows how the 

implementation of these algorithm in handling the various control and unpredictable noises in 

the smart farm.  

The Markov Decision Process (MDP), which includes elements such as the states, actions, 

other probabilities, and reward, and discount factor[2]. The agent's goal is to learn the optimal 

policy that maximizes the expected cumulative reward. This can be achieved by defining 

below[2].  

Figure 2: Action Value Function 

Figure 3: Value Function 

The Bellman equation will show the relationship between states and enabling the agent to make 

informed decisions[2]. 

The Thompson Sampling Algorithm is a strategy for making sequential decisions in situations 

where there is a need to balance between exploiting known information and exploring to gather 

new information for better future decision[2]. In the context of the algorithm, the problem is 

often represented as a multi-armed bandit problem, where the agent must choose among 

multiple actions, each associated with a reward from a probability distribution[2]. The 

algorithm can be applied into the farm by helping farmers make decisions about where to place 

experimental plots for different seeding rates. Each field is characterized by various soil 

properties, and the algorithm aims to decide where to place experimental plots within the field 

to optimize crop yield. Each field is divided into smaller areas, and selecting an area for an 

experimental plot allows the farmer to observe whether it improves yield response[2].  

The Q-Learning Algorithm allow the agent to make decisions by estimating the value of states 

and actions. This method involves assessing rewards or penalties for actions taken at various 

states and aims to maximize the cumulative return, considering a discount factor γ that 

influences the trade-off between immediate and future rewards[2]. The algorithm operates by 

creating and updating a Q-table and learning the optimal strategy over time[2]. The action and 
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states value is update to the q table each time. It adjusts hyperparameters like learning rate, 

exploration level, and discount factor as it accumulates knowledge, ensuring the agent selects 

actions that maximize rewards[2].  

Both algorithms evaluation is shown below. It had shown how to apply the reinforcement 

learning into the daily farm task.  

In the evaluation of the Multi-Armed Bandit algorithm, randomly generated data was employed 

to represent observed yields for plots, with values above a threshold considered as "good" as 

"1" and values below it as "not good" as "0". The algorithm involved creating a DataFrame 

object with 200 observations, initializing lists for rewards and penalties, and selecting plots 

based on the highest random beta distribution[2].  

In the evaluation of the Q-Learning algorithm, the OpenAI Gym toolkit was employed, 

utilizing a custom environment called "TruckEnv" to simulate a self-driving delivery truck 

navigating a field. The algorithm aimed to maximize rewards and minimize penalties over 

episodes by learning an optimal policy. Hyperparameters such as learning rate, discount factor, 

and exploration level were set, and performance was evaluated based on the average number 

of steps, rewards, and penalties per move over episodes. The results demonstrated the agent's 

learning and improved performance over time[2]. 
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2.1.3 Reinforcement Learning for Sustainable Agriculture  

 

This paper had focus in reinforcement learning, to optimize plant development with respect to 

key parameters such as yield and environmental impact. It mentions that reinforcement 

learning to autonomously explore and learn methods for influencing plant development while 

considering environmental factors like irrigation and nutrient supply[3].  

By applying reinforcement learning to agriculture could enable precise control over 

environmental conditions and resource distribution to maximize yield while minimizing 

resource usage. 

The paper mention that framework that combines physical and modelling components to 

optimize plant development using reinforcement learning techniques. The core of the system 

involves an "agent" that learns to control various parameters influencing plant[3]. The used of 

temperature, humidity, moisture, and specialized chemical sensors, along with elements for 

heating, cooling, adjustable lighting, water supply, and nutrient delivery able to precise the 

environment control[3]. 

Fertilizer management and water management with reinforcement learning is mentioned in 

this paper. In these scenarios, the reinforcement learning algorithm learns the optimal 

distribution of fertilizer and water over time, considering environmental conditions[3]. The 

approach involves conducting numerous parallel experiments to determine the best timing 

and quantities of resource allocation for maximizing production while minimizing overall 

resource consumption. To enhance decision-making, sensory data may be augmented with 

virtual data, such as forecasts of future conditions[3]. 

The proposed system aims to operate multiple controlled growth chambers in parallel to 

accumulate sufficient data for effective algorithm learning. Initial experiments could involve 

the use of Arabidopsis thaliana as a model species due to its small size and rapid life cycle, 

making it suitable for high-turnover experiments[3]. These initial experiments may focus on 

nutrient supply, specifically nitrogen and phosphate, with an emphasis on minimizing 

nitrogen fertilizer use for environmental protection[3]. As the experimental setup stabilizes, 

the authors plan to scale the approach to monocot species like rice, maize, or wheat, which 

are more relevant to food security, while still considering model organisms such as 

Brachypodium distachyon and Setaria viridis for ease of experimentation[3]. 

This innovative framework demonstrates the potential of reinforcement learning and 

advanced environmental control to optimize plant development and resource management in 

agriculture, offering a promising solution to address global food production challenges.   
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2.2 Previous work on reinforcement learning GYM environment  

2.2.1 SWATGym  

 

The SWATGym environment is a reinforcement learning (RL) environment based on the Soil 

and Water Assessment Tool (SWAT) model. It simulates crop growth by considering factors 

such as nutrient cycling, water availability, and temperature. SWATGym is the first Python-

based implementation of SWAT, making it accessible for RL applications. It is built on top of 

the OpenAI Gym framework, which is widely used for developing RL environments.  

Below are the block diagram of SWATGym [4]:  

 

Figure 4: Overview of SWATGym 

 

The main function of SWATGym is to provide a simulation platform for evaluating and 

comparing different crop management strategies. It allows researchers and practitioners to 

benchmark multiple strategies simultaneously and at minimal cost. By simulating crop growth 

from emergence to harvest on a daily basis, SWATGym enables the evaluation of crop 

management strategies and the development of sustainable agriculture practices. 

The SWATGym environment has a continuous state space comprising 14 state variables related 

to weather, soil, crop, and hydrology dynamics. The details of 14 state are shown below [4]:  
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Table 2: Table of SWATGym state 

 

It also has a continuous multidimensional action space, where actions represent the amounts of 

fertilizer and irrigation applied at each time step. At each time step, the agent selects an action 

that consists of two components which is the amount of fertilizer (F) and the amount of 

irrigation (I) to be applied. 

The environment produces a reward that characterizes the effects of different choices of actions 

on crop production. The reward function takes into account crop yield, the cost of applying 

fertilizer and irrigation, and penalty terms associated with these costs. Below are the reward 

function formula [4]: 

 

Figure 5: SWATGym reward calculation 

 

where yld is the estimated crop yield on a particular day, Ft represents the amount of fertilizer 

applied, It represents the amount of irrigation applied, and α and β are penalty terms associated 

with the estimated cost of applying fertilizer and irrigation respectively[4]. The values of α and 

β in this case are α = 2.43 and β = 0.16. The goal of the RL agent is to maximize the cumulative 

rewards over a finite horizon of length T, corresponding to a growing season [4]. Thus, the 

potential harvest index is shown below[4]: 
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Figure 6: Graph of potential reward of SWATGym 
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2.2.2 CyclesGym  

 

CyclesGym paper explores the use of reinforcement learning (RL) to design adaptive policies 

for agricultural systems. This paper shows the related works that use deep RL with 

sophisticated crop growth models (CGMs) to optimize agricultural management[5]. CGMs 

are mathematical models that simulate the growth and development of crops over time, taking 

into account factors such as weather, soil, and management practices. CGMs are used to 

predict crop yields and optimize management practices. Therefore, CyclesGym is work with 

the OpenAI gym wrapper around CGMs, such as DSSAT and WOFOST[5]. Below are the 

overview of interaction of Environment, Management ang Genetic with the crop.   

 

Figure 7: Overview of CycleGym 

 

Besides, CyclesGym is allow to change the year and different crop model to test at daily time 

steps[5]. Resources information will be collected in each time steps.  

CyclesGym interacts with observers, implementers, rewarders, and constrainers that control 

simulations, parse outputs, and provide interfaces for observations, actions, rewards, and 

constraints[5]. Users can create custom RL environments by subclassing CyclesEnv and 

configuring these managers. 

This paper had conduct two experiment which are nitrogen (N) application and crop rotation. 

In the nitrogen application experiments, RL agents, PPO make decisions about the amount of 

nitrogen to apply to crops on a weekly basis. The goal is to maximize profit per hectare, 

considering the value of the crop at harvest minus the cost of nitrogen used. The experiments 

include training RL agents in various environments, including 1, 2, and 5-year settings, and 

testing their generalization across time, location, and planning horizon. Non-adaptive 

baselines, including fixed fertilization strategies, are used for comparison[5]. Results show that 
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RL agents outperform these baselines in terms of profitability, highlighting the potential of RL 

in smart fertilization practices[5].  

For crop planning experiments, RL agents decide which crop to plant and when to plant it 

within a time window, aiming to maximize profitability without other operations like 

fertilization or tillage. Training is performed in a specific environment, and generalization is 

tested across different locations and time horizons. Non-adaptive baselines and fixed crop 

sequence strategies are used for comparison. RL agents demonstrate reasonable performance 

in test scenarios, although non-adaptive agents outperform them in some cases[5]. The fixed 

baselines are generally outperformed by the best-trained RL agents.  
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2.2.3 CropGym 

 
The CropGym is a reinforcement learning (RL) environment powered with OpenAI 

framework. CropGym had included with Process-based crop growth models, including 

APSIM and PCSE for understanding and simulating crop growth dynamics[6]. These models 

incorporate various biophysical processes, such as light interception, nutrient availability, and 

water uptake, to predict crop yields accurately. It provides a mechanistic understanding of 

how crops respond to environmental factors. 

The main function of CropGym is optimizing crop fertilization strategies with process-based 

crop growth models. Below are the description of the environment. 

The state space in the CropGym environment operates on a weekly time interval to simulate 

natural farming practices. The agent's observations include two main components which is 

the Crop Growth Model and Weather Data[6].  

For crop growth model, the agent observes the output variables generated by the LINTUL-3 

process-based crop growth model. This model simulates crop growth under nitrogen-limited 

conditions and is implemented within the Python Crop Simulation Environment (PCSE)[6]. 

The model parameters have been fine-tuned to accurately represent the growth of winter 

wheat, making it a suitable choice for this simulation. 

For the weather data, past weather conditions will be collected. This data includes default 

weather variables provided by PCSE, reflecting conditions from the previous week. The 

weather data is derived from 29 years of historical weather data spanning 9 locations in the 

Netherlands, sourced from the PowerNASA database in this research[6]. Additionally, the 

weather data can be changed according to latitude and longitude.  

The agent's action space in the CropGym environment is designed to represent different 

fertilizer application options. The agent can decide on the amount of nitrogen fertilizer to 

apply per hectare of the crop. The available options are specified as follows[6]: 

 

Figure 8: Action of CropGym 

 
This means the agent can choose to apply no fertilizer (k=0) or select from various discrete 

dosage levels ranging from 20 kg/ha to 120 kg/ha (k=1 to k=6)[6]. The discretization allows 

the agent to experiment with different levels of fertilizer application, including options that 

align with real-world agricultural practices. 
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The reward system in the CropGym environment is designed to guide the agent's decision-

making by incentivizing specific behaviors. The primary objective is to let the agent achieve 

a large grain yield per hectare. This yield is expressed in kilograms of dry matter.  The 

formular as below[6]: 

 

Figure 9: Reward calculation of CropGym 

 
Some experiment also done in this paper to test the CropGym using PPO agent. The result is 

quite well. Below are the graph that shows the increase in time also lead to increase in 

rewards[6].  

 

Figure 10: Graph of rewards of CropGym using PPO 
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2.2.4 FarmGym 

 
Farm-gym is a modular and gamified environment designed for reinforcement learning (RL) 

research in the context of agricultural decision-making. It provides a platform that similar  to 

actual agricultural farm while maintaining simplicity and controllability[7]. Farm-gym is 

unique in that it introduces stochasticity, reflecting the inherent uncertainty in farming due to 

external factors like weather, pests, and complex interactions between entities. Below are the 

overview of Farm-Gym[7]: 

 

Figure 11: Overview of FarmGym 

 
Farm-gym incorporates a highly stochastic environment by introducing stochastic processes in 

the dynamics of its entities, including weather and plant growth. It uses a mathematical model 

based on an exponential general linear function to represent the transitions between states for 

different entities[7]. This approach allows Farm-gym to create an intrinsically stochastic 

environment that mimics the uncertain nature of real-world agricultural systems. 

Action space of FarmGym is large. In this environment, each entity introduces its own set of 

actions, some of which can be parameterized[7]. Additionally, Farm-gym allows the agent to 

review the expansion observation based on each action taken[7]. This expansion results in a 

space actions per day, compared to the original daily action space. This creates a complex 

decision-making environment where agents must learn the structure of the action space, 

understand how actions affect different parts of the system, and optimize their decision-making 

process[7]. 

The agent might need to observe the soil's moisture level or the insect population in the field 

before taking actions as each action may cause affect in the reward counting at the last. This 
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requirement challenges the agent to learn when these additional observations are crucial for 

enhancing farm management. Essentially, the agent must evaluate its knowledge state, update 

its values through observations, and make informed decisions[7].  

The experiment had done in farm-gym. The cumulative reward obtained during the training of 

the PPO agent is shown below[7]. The raw reward curve exhibits high variability due to the 

high changing in the farm-gym environment. To visualize the reward, increase more clearly, 

smoothing is applied.  

 

Figure 12: Graph of reward of FarmGym using PPO 

 

 

2.3  Critical Remarks 

 

In reviewing the previous works related to reinforcement learning (RL) in agricultural 

environments, several strengths and weaknesses are stated below.  

Firstly, the paper “Intelligent Farm Based on Deep Reinforcement Learning” (Actor Critic) 

paper. The paper introduced the concept of smart farming, highlighting the potential of AI and 

RL in optimizing agricultural operations. Besides, it also explores the some  RL method well-

suited for continuous action spaces. 

Secondly, the paper “A Reinforcement Learning Approach for Smart Farming” (MDP, Thomas 

Sampling, Q-learning. The paper explored a variety of RL algorithms, including Markov 

Decision Process (MDP), Thompson Sampling, and Q-Learning, for smart farming and 

discusses the application of these algorithms in handling control and unpredictable factors. But 
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this paper does not show the algorithm that would help to handle the continuous control 

happens in reinforcement learning.  

Moreover, the paper “Reinforcement Learning for Sustainable Agriculture”. This paper focuses 

on using RL to optimize plant development while considering environmental factors like 

irrigation and nutrient supply. But RL algorithms and their performance are not discussed in 

detail. 

From all the RL Gym that had research above. SWATGym is chosen for further analysis. 

SWATGym provides a comprehensive RL environment based on the Soil and Water 

Assessment Tool (SWAT) model, making it highly relevant for crop management and resource 

optimization. It offers a continuous state space and action space, able to let the user input 

accurate value in each time steps is very similar with the project scope on optimizing fertilizer 

and irrigation inputs. But SWATGym it may not address all the complexities of managing 

unpredictable factors and uncontrollable states in smart agriculture like pest and other change. 
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Chapter 3 

System Methodology/Approach OR System Model 

3.1  IoT Smart Farming Cycle 

 
Smart farming represents a revolutionary approach to agriculture and cattle production, 

leveraging the technologies of the Fourth Industrial Revolution to enhance productivity, 

minimize resource use, and reduce environmental impact[8]. At the heart of this transformation 

is the Internet of Things (IoT), a system that collects data from various sources and transmits 

it over the internet. The IoT-based smart farming cycle consists of several key stages which is 

observation, diagnostics, decision, and action.  

In observation state, sensors will be deployed in agricultural settings and continuously gather 

data from crops, livestock, or the environment condition that able to capture by sensors[8]. 

In the diagnostics phase, the data that collected is sent to a cloud hosted IoT platform equipped 

with predefined decision rules and models. These models, often referred to as "business logic," 

analyse the data to assess the condition of the monitored objects and identify any issues or 

requirements[8]. 

In the decisions stage, the insights will be generated by the IoT platform, users and machine 

learning-driven components determine whether specific actions are needed for a particular 

location[8]. These actions can include treatments or interventions. 

In the action stage, users implement necessary actions according to the decision that made in 

previous stage. These actions can involve adjusting farming practices, resource allocation, or 

other interventions to address identified issues[8]. The cycle then begins to continue following 

by observation etc until the end.  

In this project, diagnostics and decision stage will be implemented. The diagnostics and 

decision will be implemented by using reinforcement learning. The detail will be show in below 

section.   
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3. 2 Reinforcement Learning with Actor Critic Algorithm 

 

In the context of reinforcement learning (RL) and its application in smart farming, let's delve 

into the concepts of diagnostics and decision-making using reinforcement learning, with a 

particular focus on the actor-critic algorithm. 

3.2.1  Actor Critic 

 
Diagnostics in reinforcement learning refer to the process of assessing the condition or 

performance of an RL agent as it interacts with its environment. In the provided text, 

diagnostics involve evaluating the state-value function (Vπ) and the action-value function (Qπ) 

to estimate the expected returns and the quality of actions taken by the agent[9]. 

 

Figure 13: State-value function 

 
Above is the state-value function which observe the return based on starting state and policy. 

It show the quality of state based on the specific policy[9].  

 

Figure 14: Action-value function 

 
Above is the action-value function that able to observe the return based on state, action and 

policy taken. The quality of the action will be show by this function. Diagnostics also involve 

estimating Qπ, which can be used to make decisions about which actions to take[9]. 
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Decision-making in RL involves selecting actions that maximize the expected return over 

time. This process will act based on stated policy. Two fundamental concepts related to 

decision-making in RL are policy and actor critic algorithms.  

The policy is the behaviour function that dictates how the RL agent selects actions in response 

to observed states[9]. In the context of smart farming, the policy could determine actions like 

when to irrigate crops or which treatment to apply to livestock. It's a crucial component of the 

RL agent. 

The actor-critic algorithm is a popular approach in RL that combines two key components 

which are actor and critic.    

The actor represents the policy function π. It will act based on the state that observe[9]. The 

actor could decide actions like adjusting the action value based on the environment 

requirement. 

The critic will review the action and provides feedback on how good or bad the actor's actions 

are in a given state[9].  

 

Figure 15: Overview of actor-critic structure 

 

 
The actor-critic algorithm is uses of both critic and actor to improve decision-making in RL[9]. 

Firstly, the actor will select action. Next, the critic will review the action by calculate the return. 

Then, the critic provides feedback to the actor about the quality of the chosen actions. Lastly, 

the actor changes the policy to achieve higher return from critic feedback. Below are the 

pseudocode that collected from the internet[9]. 
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Figure 16: Pseudocode of Actor-Critic 

 
The actor-critic algorithm helps in achieving better convergence and more stable learning 

compared to using only value-based or policy-based methods. In IoT-based smart farming, this 

actor-critic framework can be applied to optimize farming decisions. Therefore, the theory of 

actor critic will be applied in this project. The actor will be deciding the amount of fertilizer 

and irrigation to apply to crops, while the critic assesses the impact of these decisions on crop 

yield and resource usage. Over time, the actor adapts its policy to make more informed and 

effective decisions, leading to improved farming outcomes. 

 

3.3 PPO Algorithm  

 

The Proximal Policy Optimization (PPO) algorithm builds upon policy gradient methods and 

trust region optimization techniques. It begins by estimating the policy gradient using 

stochastic gradient ascent, where the objective is to maximize the expected reward while 

updating the policy parameters.  

PPO introduces a clipped surrogate objective function that addresses the limitations of previous 

methods by preventing excessively large policy updates. This clipped objective combines the 

benefits of trust region methods, which ensure stable policy updates, with the efficiency of 

policy gradient methods. Additionally, PPO incorporates an adaptive KL penalty coefficient to 

regulate the KL divergence between the old and updated policies, further enhancing stability 

during training[10]. 
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In practical terms, the PPO algorithm involves collecting data by running the old policy in the 

environment, estimating advantages for each timestep, optimizing the surrogate loss (either 

clipped or with a KL penalty) using minibatch SGD, and then updating the policy parameters 

based on the optimization results[10]. Below are the steps to implement a PPO Agent.  

 

Figure 17: Pseudocode of PPO Algorith with Actor Critic Architecture 

 
Based on the PPO algorithm pseudocode above, it operates through a series of iterative steps 

that ensure stable and efficient learning in reinforcement learning tasks. First, previous state 

and action from the replay buffer is collected by executing the old policy in the environment, 

generating experiences used for training.  

Next, advantage estimates are computed to gauge the effectiveness of actions taken under the 

current policy[10]. Subsequently, the surrogate loss function, either the clipped surrogate 

objective or the KL-penalized objective, is optimized using minibatch stochastic gradient 

descent (SGD)[10]. This optimization process fine-tunes the policy parameters based on the 

observed advantages, striking a balance between exploration and exploitation. Finally, the 

updated policy parameters are applied to the agent, allowing it to interact further with the 

environment and repeat the learning process[10]. This iterative approach, coupled with the 

clipped surrogate objective and adaptive KL penalty coefficient, underpins PPO’s ability to 

achieve robust and scalable reinforcement learning outcomes across a variety of environments 

and tasks. 
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Chapter 4 

System Design 

4. 1 RACKY API Design  

4. 1. 1 Flowchart of RACKY API  

 

 

Figure 18: Flowchart of RACKY API 

 
Above is the use case diagram of the RACKY API. Firstly, users are able to input information 

such as latitude, longitude, start_date, fertilizer (kg/ha), and irrigation (mm). The latitude, 

longitude, and start_date will be used to initialize the SWATGym to the specified location and 

date. With the initialization of the gym environment, the simulation will start at the specified 

location and return its weather information. The gym environment will then process the input 

of fertilizer and irrigation amount and return the state information to the endpoint. The endpoint 

will in turn return the reward, total_reward, current_date, number_of_episodes, and state 

information to the user. This process can be repeated up to 120 episodes. Once 120 episodes 

are reached, the total_reward will be returned to the user and the simulation will be reset. 
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4. 2 RACKY PPO agent API Design

4. 2. 1 Flowchart of RACKY PPO agent API

Figure 19: Flowchart of RACKY PPO Agent API 

Above is the use case diagram of the RACKY PPO Agent API. Firstly, users are able to input 

information such as latitude, longitude, choose_date, and plant_stage. The latitude and 

longitude will be used to initialize the SWATGym to the specified location. The choose_date 

will be used to check if the year is greater than or equal to 2024 AND the month is greater than 

or equal to 1; if true, access the external weather API to return weather data; otherwise, use the 

original weather data as the gym environment does not provide weather data after the year 

2024. Once the weather data is chosen, the PPO agent will receive state information from the 

initialized environment, and then the PPO Agent will return an action to the gym. The 

information regarding action, current_date, state info, current_weather, and 

choose_weather_list will be returned to the endpoint, and the endpoint will send it back to the 

user.  
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4.2.2 Flowchart of PPO Agent and SWATGym 

Figure 20: Flowchart of PPO Agent and SWATGym 

The flow chart shows the integration of the Actor-Critic architecture within the Proximal 

Policy Optimization (PPO) agent, a reinforcement learning algorithm suited for environments 

with continuous action spaces. The Actor-Critic architecture consists of two main 

components, the Actor Network, and the Critic Network. The Actor Network learns the 

policy by mapping states to actions, while the Critic Network evaluates actions taken by the 

actor by estimating the value function. This dual-component setup allows for more efficient 

learning and decision-making. The flowchart show that the actor explores the environment 

and selects actions based on policy, while the critic provides feedback on action quality to 

guide policy improvements. 

The training loop in the flow chart showcases how the PPO agent interacts with the 

SWATGym and collecting experiences and storing them in a replay buffer. Through periodic 

updates to its policy based on experiences sampled from the replay buffer, the PPO agent 

refines its decision-making processes. By leveraging the Actor-Critic architecture within the 

PPO agent, the flow chart highlights a structured approach to learning complex policies and 

making informed decisions in dynamic and challenging environments. 
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Chapter 5 

System Implementation 

5.1  Software Setup 

5.1.1  Jupyter Notebook Setup & Laptop Specification 

 

Jupyter notebook setup 

Creating a new environment in anaconda navigator with Python 3.9. Next, install required 

library to enable using SWATGym in Anaconda console using conda command line. The 

libraries that required are notebook (Jupyter Notebook), NumPy, PCSE, PyTorch, Gym, 

Pandas, Matplotlib, Python Flask and Flask Cors.  

 

Laptop Specification 

The hardware involved in this project is a computer.  A computer is used to develop user 

applications and reinforce learning AI system.  

 

Table 3: Specification of Laptop 

Description Specifications 

Model MSI GF63 

Processor Intel Core i5-9300H 

Operating System Windows 11 

Graphic NVIDIA GeForce GTX 1650 4GB GDDR6 

Memory 16GB DDR4 RAM 

Storage 1TB SATA HDD + 230GB NVMe SSD 

 

5.1.2  SWATGym Setup 

The SWATGym simulator from Madondo, Azmat, et al is installed from the GitHub link[4]:  

GitHub - IBM/SWATgym: SWATgym: a reinforcement learning environment for crop 

management. 

Then, import the SWATGym into the notebook: 

 

Figure 21: Import SWAT code 

 

https://github.com/IBM/SWATgym
https://github.com/IBM/SWATgym
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After import the SWATGym, the initialize of SWATGym is shown below: 

 

Figure 22: Define SWATEnv 

 
In the initialization, max_action is the maximum value that the action space can be input into 

the simulator. Seed is used to provide consistency in later experiment. Latitude and longitude 

are set to the UTAR FICT area, and the elevation is set to 25.  

 

Figure 23: Example input of SWATEnv 

 

The sample and shape are further determined.  

The action space shape is 2 and continuous. The first element in the action space is the amount 

of fertilizer and calculated in kg/ha. The second element in the action space is the amount of 

irrigation and calculate in mm. Both of them are with the minimum of 0 and he maximum of 

max_action explained above.  

Besides, the observation space shape is 14 and continuous. The detail of the observation space 

is below[4]: 

Table : Detail of Observation State of SWATGym 
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5.1.2.1  SWATGym Testing 

Figure 24: Random Test SWATGym 

Random test is conducted to test SWATGym simulator. Random action is input into the 

simulator and the reward for each episode is show. Each episode contain 120 days in the 

simulator. 

5.1.3  PPO Setup 

Below are the pseudocode of PPO Agent that referred on Barhate and Nikhil’s 
pytorch_minimal_ppo published on GitHub [11].  

class RolloutBuffer: 
    //act as memory to store all the previous state and action information 

class ActorCritic: 
//actor and critic networks 
//evaluate action and state 

class PPO: 
    Initialize: 

  Initialize buffer, policy, old policy, optimizer, and loss function 

    Method set_action_std(new_action_std): 
  Set the action standard deviation for continuous action space in policy 

and old policy 

    Method decay_action_std(action_std_decay_rate, min_action_std): 
  Decrease action standard deviation with decay rate until minimum value 

    Method select_action(state): 
  Choose action based on the current policy and add data to the buffer 

    Method update(): 
  Compute discounted rewards, normalize rewards, and calculate advantages 
  Update policy for multiple epochs using PPO loss 
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  Copy updated policy weights to the old policy 
  Clear buffer data 

Figure 25: Initialize for PPO Agent 

Above picture show on the initialize of PPO Agent. The K_epochs parameter dictates the 

number of iterations the policy network undergoes during a single PPO update, impacting the 

depth of policy optimization. eps_clip serves to limit policy changes within each update, 

promoting stability and preventing drastic policy shifts with a value set at 0.2. The gamma 

parameter, set to 0.99, determines the importance of future rewards relative to immediate 

ones, influencing the agent's long-term planning abilities. Learning rates, lr_actor is 0.0001 

and lr_critic is 0.001 for the actor and critic networks respectively guide the pace of learning 

for policy and value.  
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Figure 26: training loop for PPO Agent 

After initializing the PPO Agent, the provided code is used for training the agent. Figure 27 

illustrates the training results, showing that after about 175k episodes of training, the PPO 

Agent's maximum reward plateaued at over 7000 rewards. 
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Figure 27: Reward vs episode 

5.2  System Operation 

5.2.1  RACKY API 
app = Flask(__name__) 
CORS(app) 
env = None  # Initialize as None initially 
data_sent_counter = 0 
total_reward = 0.0  # Initialize total reward 

def initialize_env(latitude, longitude, start_date, seed=100): 
    global env, total_reward, data_sent_counter 
    env = SWATEnv(max_action=50, seed=seed, latitude=latitude, longitude=longitude, elevation=25) 
    env.start_date = start_date 
    env.end_date = env.start_date + timedelta(days=120) 
    state, _, done, info = env.reset(seed=seed)  # Reset with the specified seed 
    total_reward = 0.0  # Reset total reward 
    data_sent_counter = 0 
    return state, done 

@app.route('/step', methods=['POST']) 
def step(): 
    global state, done, env, data_sent_counter, total_reward 

    if env is None: 
 # Environment not initialized, so initialize it 
 latitude = float(request.json['latitude']) 
 longitude = float(request.json['longitude']) 
 start_date = request.json['start_date'] 
 start_date = datetime.strptime(start_date, "%Y-%m-%d") 
 seed = int(request.json.get('seed', 100))  

 state, done = initialize_env(latitude, longitude, start_date, seed) 
    return jsonify({"state": state, "reward": 0.0, "total_reward": total_reward, "done": done, 

"data_sent_counter": data_sent_counter}) 

    if done: 
 env = None 

    return jsonify({"message": "Episode terminated. Reset environment to continue.", 
"total_reward": total_reward, "data_sent_counter": data_sent_counter}) 
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    fertilizer = int(request.json['fertilizer']) 
    irrigation = int(request.json['irrigation']) 
    action = (fertilizer, irrigation) 

    n_state, reward, done, info = env.step(action) 
    state = n_state 
    total_reward += reward  # Accumulate total reward 

    data_sent_counter += 1  # Increment data counter 
    return jsonify({"state": state, "current_date": env.current_date, "reward": reward, 
"total_reward": total_reward, "done": done, "data_sent_counter": data_sent_counter}) 

if __name__ == '__main__': 
    app.run(host='0.0.0.0', port=5002, debug=True)

The code above demonstrates the implementation of the RACKY API. To execute the code, 

simply click 'run'. The API will be hosted on port 5002 on the localhost.  

To access to the RACKY API user need to use post method. Example of POST method to 

call the API is as below: 

Figure 28: Java Script POST request 

Figure 29: Postman POST request 
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Above figure 28 and figure 29 had shown the way to call the API by using Java Script and

Postman. After successfully access to the API, the API will start to process the input json 

information and return the result as below: 

Figure 30: Output of RACKY API 

The current_date is the date on which the simulator is running. The data_send_counter 

represents the days the user has been running the simulation. The 'done' variable is used to 

check if the simulation is completed. The reward indicates the current reward for the user's 

action. The state represents the observation state returned by the SWATGym, containing crop 

information and weather data. Lastly, the total_reward is the accumulated reward for the 

simulation. Once the simulation has run to completion, it will be initialized based on the 

user's input again, and a new simulation will start. The specific name of each value is shown 

in Figure 31. The showcase of RACKY API show in the Figure 32 below. 
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Figure 31: Name of each return values 

Figure 32: Showcase for RACKY API 

5.2.2  RACKY API PPO Agent 
app = Flask(__name__) 
CORS(app) 

def get_weather_data(latitude, longitude, date): 
    url = f"https://archive-api.open-
meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={date}&end_date={date}&hou
rly=temperature_2m,precipitation,relative_humidity_2m,soil_temperature_0_to_7cm,soil_moisture_0_to_7
cm&daily=temperature_2m_mean,precipitation_sum,shortwave_radiation_sum,et0_fao_evapotranspiration&ti
mezone=Asia%2FSingapore" 

    response = requests.get(url) 
    data = response.json() 
    return data 

def calculate_vapor_pressure(temperature_C, relative_humidity): 
    # Constants for Magnus-Tetens formula 
    A = 17.27 
    B = 237.7  # Temperature offset 
    # Convert temperature to Kelvin 
    temperature_K = temperature_C + 273.15 
    # Calculate saturation vapor pressure (SVP) in kPa 
    svp = 6.112 * 10**((A * temperature_C) / (B + temperature_C)) 
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    # Calculate actual vapor pressure (AVP) in kPa 
    avp_kpa = relative_humidity * svp 
    # Convert AVP from kPa to hPa (divide by 10) 
    avp_hpa = avp_kpa / 10 
    return avp_hpa 

def calculate_soil_evaporation(soil_temp_C, soil_moisture_m3m3, et0_mm_day): 
    # Convert ET₀ from mm/day to m/day 
    et0_m_day = et0_mm_day * 0.001 

    # Assume average values for Crop Coefficient (Kc) and Soil Moisture Stress Factor (Fs) 
    kc = 1  # Crop Coefficient 
    fs = 0.8  # Soil Moisture Stress Factor 

    # Calculate Soil Evaporation 
    soil_evaporation_m_day = et0_m_day * kc * fs * soil_moisture_m3m3 

    # Convert soil evaporation from m/day to mm/day 
    soil_evaporation_mm_day = soil_evaporation_m_day * 1000 

    return soil_evaporation_mm_day 

def check_thresholds(weather_list, current_list, thresholds): 
    if len(weather_list) != len(current_list) or len(weather_list) != len(thresholds): 

 raise ValueError("Lists must have the same length.") 

    for i in range(len(weather_list)): 
 if abs(weather_list[i] - current_list[i]) > thresholds[i]: 

 #print(f"wrong: {i}, value:{abs(weather_list[i] - current_list[i])}") 
 return False   

    return True 

def copy_state_info(longitude, latitude, plant_stage, start_date, end_date, target_current_date): 
    env = SWATEnv(max_action=10, latitude = latitude, longitude = longitude, elevation = 25) 
    env.start_date = start_date 
    env.end_date = end_date 
    state, _, done, info = env.reset(seed=100) 
    target_state_info = [] 
    target_info = [] 

    while not done: 
 current_date = env.current_date 
 action = env.action_space.sample() 
 next_state, reward, done, info = env.step(action) 

 if current_date == target_current_date: 
 target_state_info.append(state) 
 target_info.append(info) 
 break 

 state = next_state 

    env.close() 

    return target_state_info, target_info 

def get_same_weather_date(longitude, latitude, choose_current_date): 

    weather_data = get_weather_data(latitude, longitude, choose_current_date) 

    humidity_mean = np.mean(weather_data['hourly']['relative_humidity_2m'])/100 
    soil_temp_mean = np.mean(weather_data['hourly']['soil_temperature_0_to_7cm']) 
    soil_mois_mean = np.mean(weather_data['hourly']['soil_moisture_0_to_7cm']) 

    temperature_mean = weather_data['daily']['temperature_2m_mean'][0] 
    precipitation_sum_daily = weather_data['daily']['precipitation_sum'][0] 
    shortwave_radiation_sum_daily = weather_data['daily']['shortwave_radiation_sum'][0] 
    et0_fao_evapotranspiration_daily = weather_data['daily']['et0_fao_evapotranspiration'][0] 
    vapor_pressure = calculate_vapor_pressure(temperature_mean, humidity_mean) 
    soil_evaporation = calculate_soil_evaporation(soil_temp_mean, soil_mois_mean, 
et0_fao_evapotranspiration_daily) 
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    current_list = [temperature_mean, shortwave_radiation_sum_daily, vapor_pressure, 
precipitation_sum_daily, et0_fao_evapotranspiration_daily, soil_evaporation] 
    thresholds = [3.5, 3.5, 3.5, 3.5, 3.5, 3.5] 

    start_date_find = datetime.strptime('20230924', '%Y%m%d') 
    date_list = [] 
    weather_accepted = [] 
    count_threshold = 1 

    while len(date_list) < count_threshold: 
 env = SWATEnv(max_action=10, latitude = latitude, longitude = longitude, elevation = 25) 
 env.start_date = start_date_find 
 env.end_date = start_date_find + timedelta(days=120) 

 state, _, done, info = env.reset(seed=100) 
 episode_reward = 0 
 count = 0 

 while not done: 
 current_date = env.current_date 
 weather_list = [env.avg_temp, env.solar_rad, env.avg_vapor_pressure, 

  env.precip, env.ref_et, env.soil_evap] 

 action = env.action_space.sample() 
 next_state, reward, done, info = env.step(action) 

 # Compare weather_list and current_list 
 all_within_threshold = check_thresholds(weather_list, current_list, thresholds) 
 if all_within_threshold: 

   date_list.append(current_date.strftime('%Y%m%d')) 
   weather_accepted.append(weather_list) 
   #print(f'found date: {current_date}') 

 episode_reward += reward 
 state = next_state 
 count += 1 

 # Move to the next start date 
 start_date_find = start_date_find - timedelta(days=121) 

    env.close() 

    return date_list, weather_accepted, current_list 

def find_stage_index(input_num, stage_ranges): 
    for idx, stage_range in enumerate(stage_ranges): 

 start, end = stage_range 
 if start <= input_num <= end: 

 return idx 
    return 5 

@app.route('/api/get_target_info', methods=['POST']) 
def get_target_info(): 
    data = request.get_json() 
    latitude = data.get('latitude') 
    longitude = data.get('longitude') 
    plant_stage = data.get('plant_stage') 
    choose_current_date = data.get('choose_current_date') 

    date_list, weather_list, current_waether_list = get_same_weather_date(longitude, latitude, 
choose_current_date) 
    choose_date = date_list[0] 
    choose_weather = weather_list[0] 

    stage_ranges = [(0, 14), (15, 29), (30, 44), (45, 59), (60, 74), (75, 89), (90, 104), (105, 
119)] 
    stage_midpoints = [7, 22, 37, 52, 67, 82, 97, 112] 

    target_current_date = datetime.strptime(choose_date, '%Y%m%d') 
    # index = find_stage_index(plant_stage, stage_ranges) 
    # current_stage = stage_midpoints[index] 

    target_start_date = target_current_date - timedelta(days=plant_stage) 
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    target_end_date = target_start_date + timedelta(days=120) 

    target_state, target_info = copy_state_info(longitude, latitude, plant_stage, target_start_date, 
target_end_date, target_current_date) 

####################################################################################################
##### 
    env_name = "SWATEnv" 
    max_action = 5 
    elevation = 25 
    env = SWATEnv(max_action=max_action, latitude=latitude, longitude=longitude, 
elevation=elevation) 

    state_dim = env.observation_space.shape[0] 
    action_dim = env.action_space.shape[0] 
    lr_actor = 0.0001   
    lr_critic = 0.001 
    gamma = 0.99 
    K_epochs = 80 
    eps_clip = 0.2 
    action_std = 0.6 
    has_continuous_action_space = True 

    ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, 
has_continuous_action_space, 

   action_std) 

    random_seed = 0 
    num_load = 1 

    directory = "RACKY_API/SWAT_gym" + '/' 
    checkpoint_path_load = directory + "PPO_{}_{}_{}.pth".format(env_name, random_seed, num_load) 
    print("loading network from : " + checkpoint_path_load) 

    ppo_agent.load(checkpoint_path_load) 

####################################################################################################
######################## 

    state, _, done, info = env.reset(seed=100) 

    while not done: 
 state = target_state[0] 
 info = target_info[0] 
 action = np.clip(ppo_agent.select_action(state), 0, max_action) 
 state, reward, done, _ = env.step(action) 

 done = True 

 if done: 
 break 

    # clear buffer 
    ppo_agent.buffer.clear() 
    env.close() 

    # Create JSON response 
    response_data = { 

 'target_current_date': target_current_date, 
 'target_state': target_state, 
 'target_info': target_info, 

 'choose_weather': choose_weather, 
 'current_weather_list': current_waether_list, 

 'action': action.tolist() 
    } 

    return jsonify(response_data) 

if __name__ == '__main__': 
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    app.run(host='0.0.0.0', port=5000, debug=True) 

Above are the implementation of RACKY PPO Agent API. To access the RACKY PPO 

Agent API user need to use POST method with body information as below. The latitude and 

longitude are used to define the current location and fetch the current weather for the 

simulation. The plant_stage is the date where the plant grows till, the maximum number for 

plant_stage is 120.  

Figure 33: POST request for RACKY PPO Agent API 

After sending the POST request to the RACKY PPO Agent API, it will provide the following 

output in Figure 34. The suggested applied amount of fertilizer and irrigation to the crop will 

be included in the response. The `current_weather_list` contains information about the 

current weather conditions. To assess the plant's condition accurately, a matching weather 

condition will be selected from SWATGym for that specific date. The resulting weather data 

will be stored in `choose_weather`, plant information in `target_state`, and additional details 

in `target_info`. The name of each value return is shown in Figure 35. For example, action [0] 

is fertilizer (kg/ha), action[1] is irrigation (mm). Lastly, the showcase for RACKY PPO 

Agent API is show in the Figure 36 below. 
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Figure 34: Output of RACKY PPO Agent API 

Figure 35: Name of each return value RACKY PPO Agent API 
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Figure 36: Showcase of RACKY PPO Agent API 
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5.3  Issue and Challenge 

5.3.1  The model return action (0, 0) 

After completing the model training, certain actions return as (0,0) due to the reward function 

within the SWATGym environment. Below is the code for the reward function. 

Figure 37: SWATGym reward function 

The model identifies actions as detrimental to crop yield, resulting in reduced rewards. 

To enhance the training process and ensure model reliability, I implemented a function to 

penalize crop yield when action (0, 0) is detected. This function is temporary and is removed 

from SWATGym after training completion. 

Despite modifying the training process for the PPO agent, actions are still prevalent in the 

early plant stage and are less observed in later timesteps. This is because actions can quickly 

lead to negative rewards due to the sigmoid-like distribution of crop yield rewards shown in 

the figure below, depicting potential rewards across timesteps. 

Figure 38: SWATGym potential reward in each timestep 

5.3.2  Weather data is not provided 

To obtain accurate weather information, SWATGym utilizes an external weather API as the 

current weather API it relies on is not updated to the current date. The code below demonstrates 

how to call the weather API, which is sourced from Zippenfenig's Open-Meteo.com Weather 

API [12]. 

Figure 39:External weather API 
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5.4 Remarks 

The RACKY API, implemented using Python Flask on port 5002, can be accessed via POST 

requests with longitude, latitude, start date, fertilizer and irrigation to retrieve output such as 

current date, reward, observation state, and total reward. This API resets the simulation after 

completion, initializing based on user input for a new simulation.  

On the other hand, the RACKY PPO Agent API, implemented using Python Flask on port 

5000, also accessed through POST requests with latitude, longitude, plant stage, and current 

date information then provides recommendations for fertilizer and irrigation amounts, current 

weather conditions, selected weather data, plant information, and additional details. 

However, challenges such as actions returning as (0,0) due to reward function limitations in 

SWATGym have been addressed through temporary penalty functions during training to 

penalize such actions. Furthermore, weather data is sourced from an external API due to 

limitations in the current weather API used by SWATGym, ensuring accurate and up-to-date 

information for realistic simulation environments. These APIs serve as powerful tools for 

agricultural optimization and decision-making processes, bridging the gap between 

simulation and real-world agricultural practices by providing actionable insights based on 

environmental and crop-specific data. 
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Chapter 6 

System Evaluation 

6.1  System Testing 

6.1.1 Test RACKY API 

The test will be tested on 2 different locations in Perak which is Ipoh and Kampar 

with detail of latitude and longitude as below. 

Kampar (4.339054 101.136886) (2022-01-01) 

Figure 40: POST request for RACKY API Kampar test 

Request as above is send to the RACKY API as Figure 40 above.

Figure 41: output result for RACKY API  Kampar test 

After few requests keep sending to the API, example of output will be shown like 

above Figure. Once the simulation end, it shows the total reward like in figure 

42 below.
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Figure 42: simulation termination for RACKY API Kampar test 

Ipoh (4.597456, 101.092851) (2022-01-01) 

Figure 43: POST request for RACKY API Ipoh test 

Request as above is send to the RACKY API. 

Figure 44: output result for RACKY API Ipoh test 
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After few requests keep sending to the API, example of output will be shown 

like above Figure 44. Once the simulation end, it shows the total reward like in 

Figure 45 below. 

Figure 45: simulation termination for RACKY API Ipoh test 
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6.1.2 Test RACKY PPO agent API 

The following tests evaluate the RACKY API using various plant stages and dates, including 

the current date and other specified dates in Kampar (latitude 4.339054, longitude 101.136886). 

Tested on current date (2024-04-22) with plant_stage of 52 

Figure 46: POST request for RACKY PPO Agent API test 1 

Above Figure 46 is the POST request to test the PPO Agent. The output of the API is 

shown in below Figure 47. 

Figure 47: output for RACKY PPO Agent API test 1 
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Tested on current date (2021-03-22) with plant_stage of 107 

Figure 48: POST request for RACKY PPO Agent API test 2 

Above Figure 48 is the POST request to retrieve the information of action from the API. 

Below Figure 49 are the output of the test. 

Figure 49: output for RACKY PPO Agent API test 2 
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6.2  Testing Result 

6.2.1  RACKY PPO Agent evaluation 

Figure 50: Graph of comparison of the average reward for each epoch 

The graph above Figure 50 clearly illustrates that the average reward per timestep of the PPO 

Agent outperforms both the fixed action graph (3,3) and the random action graph.  

To provide a more comprehensive view of the PPO agent's performance, the total reward is 

calculated over 20 epochs and depicted in the graph below Figure 51. It is evident that 

the model consistently achieves a total reward exceeding 7000, unlike the other graphs. 

This confirms the effectiveness of the PPO agent within the SWATGym environment. 

Figure 51: Graph of Comparison of the Total reward 
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6.3  Project Challenge 

Lack of Initial Knowledge 

Starting the project without a deep understanding of reinforcement learning posed a significant 

challenge. It required investing time and effort to grasp concepts and techniques, especially for 

environments that accept continuous states and actions where popular agents like DQN are not 

directly applicable. 

Difficulty Implementing Agents 

Implementing agents like DQN for continuous states and actions was challenging, leading to 

exploration of more advanced methods like Actor-Critic architectures, which demanded 

substantial learning time. 

Issues with DDPG Agent 

Encountering persistent issues with the DDPG agent returning actions of (0,0) led to exploring 

alternative agents like PPO, which required additional learning and experimentation to enhance 

training by adjusting reward functions. 

Resource-Intensive Training 

Training both PPO and DDPG agents was resource-intensive and time-consuming. However, 

saving and reloading models allowed for incremental training with more epochs until achieving 

satisfactory rewards. 

Weather Data Integration 

Integrating the system with SWATGym revealed limitations in receiving current weather data. 

Leveraging an external weather API was a fortunate discovery, providing accurate weather 

information crucial for the project's accuracy and reliability. 
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6.4 Objective Evaluation 

The project has successfully achieved its objectives as evidenced by the comprehensive 

system testing conducted on the RACKY API and the integrated RACKY PPO Agent API 

within the SWATGym environment.  

The RACKY API, designed to facilitate corn crop simulations based on user inputs such as 

location and date, demonstrated its functionality through tests in locations like Kampar and 

Ipoh, providing simulation outputs such as total rewards.  

Concurrently, the integration and testing of the RACKY PPO Agent API showcased the AI 

model's capability to suggest optimal actions and achieve rewards, as validated by graphical 

evaluations comparing its performance against fixed and random actions. Graphs depicting 

average rewards per timestep and total rewards over epochs visually confirmed the 

effectiveness of the PPO agent in optimizing crop management strategies within the 

SWATGym framework.  

Thus, the above evidence had shown the project had fully meeting the project's objective. 

6.5  Concluding Remark  

The system evaluation and testing conducted on the RACKY API and RACKY PPO Agent 

API within the SWATGym environment have provided compelling evidence of the project's 

success in meeting its objectives.  

The thorough testing in locations like Kampar and Ipoh, along with evaluations using various 

plant stages and dates, demonstrates the functionality and effectiveness of both APIs in 

simulating crop growth scenarios and suggesting optimal actions. Besides, The graphical 

evaluations further confirm the superiority of the PPO agent in optimizing crop 

management strategies.  

Overall, the project has not only met but exceeded expectations, showcasing the potential of 

AI-driven solutions in revolutionizing agricultural practices and crop management strategies. 
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Chapter 7

Conclusion & Recommendation 

Conclusion 

The project embarked on a journey to revolutionize agricultural practices through the 

integration of AI-driven solutions with farming environments. By addressing key 

challenges such as limited accessibility to AI tools and the need for optimized crop 

management strategies, significant strides were made towards democratizing advanced 

technologies in farming. 

The development of a user-friendly API for SWATGym opens doors for a wide range of 

users, from researchers to farmers, to harness the power of AI models in optimizing crop 

growth. Leveraging reinforcement learning techniques such as Proximal Policy Optimization 

(PPO), the project successfully created an AI agent capable of intelligently interacting with 

farming environments, suggesting optimal actions like fertilizer and irrigation amounts. 

Moreover, the integration of an external weather API enriched the simulation 

environment, providing real-time weather data crucial for accurate and relevant simulations. 

This addition not only improved the accuracy of the AI model's recommendations but also 

facilitated informed decision-making based on current weather conditions. 

Recommendation 

Consider importing a more reliable and up-to-date weather API to address the delays 

experienced with the current weather API. Timely and accurate weather information is crucial 

for effective simulations and decision-making in agricultural management. By ensuring the 

availability of real-time weather data, users can make more informed decisions regarding crop 

management strategies. 

Expand the range of plant types within the environment beyond solely focusing on corn. 

Incorporating a variety of plant types caters to a broader user base, including farmers and 

researchers working with different crops. This diversification not only increases the platform's 

utility but also promotes innovation and exploration of optimized growth strategies for various 

agricultural products. 
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Conduct thorough testing and experimentation with a range of reinforcement learning 

agents to enhance the platform's functionality. Offering users a selection of agents enables 

them to choose models that align best with their specific needs and preferences. This approach 

not only improves user satisfaction but also provides valuable insights into the performance 

and applicability of different AI models across diverse plant types and environmental 

conditions. 
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Trimester, Year: T3, Y3 Study week no.: 2 
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Supervisor: Dr Ooi Boon Yaik 

Project Title: Precision Agriculture for corn using Reinforcement Learning 

 

 

1. WORK DONE 
 

- Training on the DDPG Agent that use in Project 1. 
 

 

 

2. WORK TO BE DONE 

 

- Find the cause that cause DDPG Agent to return Action (0, 0) 

- Find another Agent to replace DDPG Agent  

- Test integration of API with SWATGym and Agent.  

 

 

3. PROBLEMS ENCOUNTERED 

 

- DDPG Agent return action (0, 0) for all the timestep in each training 

epoch. 

 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Do not familiar to the architecture of DDPG Agent. Training of DDPG 

Agent took a lot of time.  
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Student Name & ID: Tan Carlton 2001512 

Supervisor: Dr Ooi Boon Yaik 

Project Title: Precision Agriculture for corn using Reinforcement Learning 

 

 

1. WORK DONE 
 

 

- Research on new Agent, PPO 

- Tested PPO Agent on the SWATGym 

- Changed training reward function while training the Agent 
 

 

2. WORK TO BE DONE 

 

- Find new resource to overcome no weather data issue 

- Integrate the PPO model to the API 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- Simulation cannot proceed with current date. 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- After the modification in reward function, the PPO Agent able to return 

better results 
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Project Title: Precision Agriculture for corn using Reinforcement Learning 

 

 

1. WORK DONE 
 

- Train PPO Agent 

- Write API for SWATGym simulator 
 

 

2. WORK TO BE DONE 

 

- Find external API 

 

 

 

 

3. PROBLEMS ENCOUNTERED 

 

- PPO take a lot of time to train 

 

 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- A lot of time is needed to train PPO Agent, but manage to study some 

ways to implement API using Python Flask while waiting for the result. 
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Trimester, Year: T3, Y3 Study week no.: 8 

Student Name & ID: Tan Carlton 2001512 

Supervisor: Dr Ooi Boon Yaik 

Project Title: Precision Agriculture for corn using Reinforcement Learning 

 

 

1. WORK DONE 
 

 

- Found new weather API to replace existing weather data in SWATGym 
 

 

2. WORK TO BE DONE 

 

- Integrating the new weather API with PPO Agent for user that looking 

for current action recommendation. 

 

 

3. PROBLEMS ENCOUNTERED 

 

- The API still have some delay for weather data for current date, and 

some information that is required is not provided.  

 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Take a lot of time to understand the weather information in SWATGym 

and find the information that is needed to replace.  
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1. WORK DONE 
 

- Integrating the external weather API to the fully trained RACKY API 

PPO Agent 

- Calculated all the weather information that is not provided by external 

weather API 
 

 

 

2. WORK TO BE DONE 

 

- Prepare showcase for both RACKY API and RACKY PPO Agent API 

 

 

3. PROBLEMS ENCOUNTERED 

 

- Some weather information is not provided by the new external weather 

API and there are some delays for some data  

 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Found alternative to replace the current weather information.  
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1. WORK DONE 
 

- Finalizing the report 

- Posted the RACKY API and RACKY PPO Agent API to the website 

 

 

 

2. WORK TO BE DONE 

 

- Complete the FYP report and poster 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

 

 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- The project objective is achieved and prepare to send the report for 

marking.  
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