
Precision Agriculture for Corn using Reinforcement Learning

BY

TAN CARLTON

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: ____Precision Agriculture for Corn using Reinforcement Learning______

__

__

Academic Session: __JAN 2024__

I _______________________TAN CARLTON_____________________________

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:

_10, Jalan Ketumbar,_________

_Taman Cheras, 56100,_______ __Dr OOI BOON YAIK_____

__Kuala Lumpur____________ Supervisor’s name

Date: __24/04/2024_________ Date: ____________________

boonyaik
Typewriter
25/4/2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF ___Information and Communication Technology____

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __24/04/2024________________

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______TAN CARLTON___________________________ (ID No:

__200ACB01512) has completed this final year project/ dissertation/ thesis* entitled

“____Precision Agriculture for Corn using Reinforcement Learning___” under the supervision of

______________Dr OOI BOON YAIK________ (Supervisor) from the Department of ___Computer

Science_____, Faculty/Institute* of ____ Information and Communication Technology___ , and

___Tseu Kwan Lee_________________ (Co-Supervisor)* from the Department of ____Computer

Science_______, Faculty/Institute* of ___ Information and Communication Technology_____.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(TAN CARLTON)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Precision agriculture for corn using Reinforcement

Learning” is my own work except as cited in the references. The report has not been accepted

for any degree and is not being submitted concurrently in candidature for any degree or other

award.

Signature : _________________________

Name : ___TAN CARLTON________

Date : ______24/4/2024___________

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Dr Ooi Boon

Yaik who has given me this bright opportunity to engage in an AI Smart Farming project. It is

my first step to establish a career in AI fields. A million thanks to you.

Finally, I must say thanks to my parents and my family for their love, support, and

continuous encouragement throughout the course. I love you Daddy and Mommy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

This project introduces RACKY, an innovative and comprehensive API solution that

seamlessly integrates the SWAT (Soil and Water Assessment Tool) model into the highly

adaptable OpenAI Gym environment, thus creating the powerful simulation framework known

as SWATGym. RACKY serves as a versatile interface, facilitating effortless retrieval of

detailed corn plant state information based on precise fertilizer or irrigation inputs through its

intuitive API endpoints. Beyond data access, RACKY incorporates a sophisticated

reinforcement learning agent based on the Proximal Policy Optimization (PPO) algorithm

within the SWATGym. This integration empowers users with the capability to input location-

specific data alongside plant growth stage parameters, thereby obtaining highly optimized

recommendations for fertilizer and irrigation amounts directly from the embedded AI model.

RACKY helps people make better farming decisions by showing them how different amounts

of fertilizer and water affect plant growth through real-time simulations and detailed analysis.

This project aims to make advanced farming information and AI tools accessible to everyone,

not just experts. By using RACKY, researchers, farmers, and anyone interested in farming can

find ways to grow crops more sustainably and using fewer resources.

Keyword: Precision Agriculture, Smart Farming Cycle, Reinforcement Learning,

DDPG, PPO

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS V

ABSTRACT VI

TABLE OF CONTENTS VII

LIST OF FIGURES X

LIST OF TABLES XII

LIST OF SYMBOLS XIII

LIST OF ABBREVIATIONS XIV

CHAPTER 1: 1

INTRODUCTION 1

1.1 Problem Statement and Motivation .. 1

1.2 Objectives ... 2

1.3 Project Scope and Direction .. 3

1.4 Contributions.. 4

1.5 Report Organization .. 5

CHAPTER 2 6

LITERATURE REVIEW 6

2.1 Previous works on reinforcement learning farm 6

2.1.1 Intelligent Farm Based on Deep Reinforcement Learning for optimal

control (Actor Critic) .. 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

2.1.2 A Reinforcement Learning Approach for Smart Farming (MDP, Thomas

Sampling, Q-learning) ... 8

2.1.3 Reinforcement Learning for Sustainable Agriculture 10

2.2 Previous work on reinforcement learning GYM environment 11

2.2.1 SWATGym ... 11

2.2.2 CyclesGym .. 14

2.2.3 CropGym... 16

2.2.4 FarmGym .. 18

2.3 Critical Remarks .. 19

CHAPTER 3 21

SYSTEM METHODOLOGY/APPROACH OR SYSTEM MODEL 21

3.1 IoT Smart Farming Cycle ... 21

3. 2 Reinforcement Learning with Actor Critic Algorithm 22

3.2.1 Actor Critic .. 22

3.3 PPO Algorithm.. 24

CHAPTER 4 26

SYSTEM DESIGN 26

4. 1 RACKY API Design ... 26

4. 1. 1 Flowchart of RACKY API.. 26

4. 2 RACKY PPO agent API Design ... 27

4. 2. 1 Flowchart of RACKY PPO agent API.. 27

4.2.2 Flowchart of PPO Agent and SWATGym .. 28

CHAPTER 5 29

SYSTEM IMPLEMENTATION 29

5.1 Software Setup ... 29

5.1.1 Jupyter Notebook Setup & Laptop Specification 29

5.1.2 SWATGym Setup ... 29

5.1.3 PPO Setup ... 31

5.2 System Operation ... 34

5.2.1 RACKY API ... 34

5.2.2 RACKY API PPO Agent .. 37

5.3 Issue and Challenge ... 44

5.3.1 The model return action (0, 0) .. 44

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

5.3.2 Weather data is not provided .. 44

5.4 Remarks .. 45

CHAPTER 6 46

SYSTEM EVALUATION 46

6.1 System Testing ... 46

6.1.1 Test RACKY API ... 46

6.1.2 Test RACKY PPO agent API ... 49

6.2 Testing Result .. 51

6.2.1 RACKY PPO Agent evaluation .. 51

6.3 Project Challenge ... 52

6.4 Objective Evaluation ... 53

6.5 Concluding Remark .. 53

CHAPTER 7 54

CONCLUSION & RECOMMENDATION 54

REFERENCES 56

POSTER 64

PLAGIARISM CHECK RESULT 65

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 1: Structure of RL Farm 7

Figure 2: Action Value Function 8

Figure 3: Value Function 8

Figure 4: Overview of SWATGym 11

Figure 5: SWATGym reward calculation 12

Figure 6: Graph of potential reward of SWATGym 13

Figure 7: Overview of CycleGym 14

Figure 8: Action of CropGym 16

Figure 9: Reward calculation of CropGym 17

Figure 10: Graph of rewards of CropGym using PPO 17

Figure 11: Overview of FarmGym 18

Figure 12: Graph of reward of FarmGym using PPO 19

Figure 13: State-value function 22

Figure 14: Action-value function 22

Figure 15: Overview of actor-critic structure 23

Figure 16: Pseudocode of Actor-Critic 24

Figure 17: Pseudocode of PPO Algorith with Actor Critic Architecture 25

Figure 18: Flowchart of RACKY API 26

Figure 19: Flowchart of RACKY PPO Agent API 27

Figure 20: Flowchart of PPO Agent and SWATGym 28

Figure 21: Import SWAT code 29

Figure 22: Define SWATEnv 30

Figure 23: Example input of SWATEnv 30

Figure 24: Random Test SWATGym 31

Figure 25: Initialize for PPO Agent 32

Figure 26: training loop for PPO Agent 33

Figure 27: Reward vs episode 34

Figure 28: Java Script POST request 35

Figure 29: Postman POST request 35

Figure 30: Output of RACKY API 36

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 31: Name of each return values 37

Figure 32: POST request for RACKY PPO Agent API 41

Figure 33: Output of RACKY PPO Agent API 42

Figure 34: Name of each return value RACKY PPO Agent API 42

Figure 35: SWATGym reward function 44

Figure 36: SWATGym potential reward in each timestep 44

Figure 37:External weather API 44

Figure 38: POST request for RACKY API Kampar test 46

Figure 39: output result for RACKY API Kampar test 46

Figure 40: simulation termination for RACKY API Kampar test 47

Figure 41: POST request for RACKY API Ipoh test 47

Figure 42: output result for RACKY API Ipoh test 47

Figure 43: simulation termination for RACKY API Ipoh test 48

Figure 44: POST request for RACKY PPO Agent API test 1 49

Figure 45: output for RACKY PPO Agent API test 1 49

Figure 46: POST request for RACKY PPO Agent API test 2 50

Figure 47: output for RACKY PPO Agent API test 2 50

Figure 48: Graph of comparison of the average reward for each epoch 51

Figure 49: Graph of Comparison of the Total reward 51

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 1: Result of Effectiveness of RL approach ... 7

Table 2: Table of SWATGym state ... 12

Table 3: Specification of Laptop .. 28

Table 4: Detail of Observation State of SWATGym... 29

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

π Policy Network

τ Update rate

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

DQN Deep Q-Networks

PPO Proximal Policy Optimization

PCSE Python Crop Simulation Environment

WOFOST World Food Studies

DSSAT Decision Support System for Agrotechnology Transfer

CGMs Crop Grow Models

TD3 Twin Delayed Deep Deterministic Policy Gradient

SWAT Soil and Water Assessment Tool

MDP Markov Decision Process

DDPG Deep Deterministic Policy Gradient

RNNs Recurrent Neural Networks

AI Artificial Intelligence

GDP Gross Domestic Product

RL Reinforcement Learning

API Application Programming Interface

IoT Internet of Things

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1:

Introduction

1.1 Problem Statement and Motivation

Developing and optimizing crop growth strategies, such as for corn plants, demands a thorough

comprehension of plant growth dynamics and the influence of external factors like fertilizers,

irrigation, and weather situation. Conventional approaches to AI model training for crop

management involve using physical plants, which is both time-consuming and resource

intensive. Current methods for training AI models in crop management often rely on using

physical plants. This process is time-consuming and demands significant resources in terms of

space, materials, and maintenance. It limits the scalability of AI-driven solutions.

Furthermore, there is a lack of user-friendly interfaces for leveraging AI tools in farming

tailored to individual needs. There is a noticeable absence of easy-to-use interfaces that allow

individuals with varying levels of technical expertise to harness the power of AI tools in

farming. This lack of accessibility hinders widespread adoption and innovation in agricultural

practices.

The driving force behind this initiative is to create a unified, user-friendly interface that

enables anyone, regardless of technical expertise, to access and utilize AI tools for farming.

This initiative aims to save time, expedite AI model training, and foster collaboration and

knowledge sharing in agriculture.

Additionally, this project encompasses developing a reinforcement learning agent capable

of interacting with farming environments. This agent empowers users to tackle various farming

challenges, such as determining optimal irrigation and fertilizer amount.

By democratizing AI tools for farming, this project seeks to enhance agricultural practices,

promote sustainability, and contribute to global food security while mitigating environmental

impacts.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.2 Objectives

Our primary objective is to revolutionize crop management strategies and agricultural

practices through the development of an integrated system.

Firstly, the project aims to create an API for SWATGym, which will facilitate users' access

to and use of the tool for those interested in using AI-driven solutions to optimize crop

growth. This API will operate as a doorway for user to run their corn crop simulation based

on different weather or location and created their own AI model.

Secondly, the project also focus extends to building an AI model that seamlessly integrates

with SWATGym, enabling it to interact intelligently with simulated farming environments.

This model will utilize the environment and suggest optimal action like amount of fertilizer

and irrigation.

Furthermore, we recognize the importance of accessibility and user-friendliness in driving

widespread adoption of AI tools in farming. To this end, we will develop intuitive and easy-

to-use interfaces that leverage the power of the AI model through the API. These interfaces

will be tailored to accommodate users with varying levels of technical expertise, empowering

them to make informed decisions and implement efficient farming practices effortlessly.

In conclusion, this project aims to revolutionize agricultural management by creating a user-

friendly API for SWATGym. By integrating an AI model with SWATGym, we seek to

optimize crop growth strategies by intelligently interacting with farming environments and

suggesting optimal actions such as fertilization and irrigation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

1.3 Project Scope and Direction

The project scope encompasses several key elements essential for advancing agricultural

management practices using AI-driven solutions. One crucial aspect involves implementing

a reinforcement learning agent, specifically Proximal Policy Optimization (PPO), to refine

and optimize fertilizer and irrigation strategies. This agent will leverage the capabilities of the

SWATGym environment, providing a realistic simulation platform for testing and improving

farming techniques.

Additionally, a significant focus is on integrating this AI model and SWATGym simulator

into the API infrastructure using Python Flask. This integration will enable users from

various backgrounds, including researchers, developers, and hobbyists, to access the full

potential of the reinforcement learning agent and the environment.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.4 Contributions

The contributions of this project are as below. Firstly, we provide an AI model capable of

effectively utilizing the SWATGym environment, specifically focusing on optimizing

fertilizer and irrigation strategies using Proximal Policy Optimization (PPO) reinforcement

learning techniques.

Secondly, our project significantly improves accessibility and usability for users by

developing a user-friendly API that integrates seamlessly with SWATGym. This integration

streamlines access to the AI model and the simulation environment, empowering users such

as researchers, developers, and farmers to leverage advanced AI tools without extensive

technical expertise.

Furthermore, we augment the capabilities of develop API by integrating external weather

API. This addition addresses a crucial limitation of the existing SWATGym API, which lacks

real-time weather data for accurate simulations. By incorporating external weather data, we

enhance the accuracy and relevance of the simulations, enabling users to make informed

decisions based on current weather conditions, ultimately improving crop management

strategies and productivity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.5 Report Organization

This report is organised into 6 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,

Chapter 3 System Design, Chapter 4 System Implementation and Testing, Chapter 5 System

Outcome and Discussion, Chapter 6 Conclusion.

The first chapter is the introduction of this project which includes problem statement, project

background and motivation, project scope, project objectives, project contribution and report

organisation.

The second chapter is the literature review carried out on several existing reinforcement

learning environment, smart farming cycle, and existing technique to implementing

reinforcement agent.

The third chapter is discussing the overall system design of this project. It contains the

information of SWATGym, Python Flask, and the methodology of PPO and DDPG Agent that

will be implement into this project.

The fourth chapter is regarding the details on how to implement the design of the system. It

contains with the block diagram and use case diagram to show the interaction of user with the

system.

The fifth chapter reports are the implementation of the API, AI model and issue and challenge

that faces in the implementation.

The sixth chapter is the system evaluation which contain the test of the API, result of the AI

model, and the project challenge.

The seventh chapter is the conclusion and recommendation of this project.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Chapter 2

Literature Review

2.1 Previous works on reinforcement learning farm

2.1.1 Intelligent Farm Based on Deep Reinforcement Learning for optimal

control (Actor Critic)

This paper introduces the concept of smart farming, emphasizing the use of artificial

intelligence to optimize agricultural operations. Smart agriculture aims to improve crop

yields, reduce costs, and enhance crop quality through automation, data analysis, and

resource optimization. The paper proposes a smart farming system that utilizes deep

reinforcement learning to make optimal decisions in agricultural settings.

The smart farm had to make decision to growth the crop meanwhile tackle the unpredictable

states and uncontrollable factor that will affect the crop. Therefore, the paper had suggested 2

ways to managing the smart farm which is Recurrent Neural Networks (RNNs) and

Reinforcement Learning. But we will just focus on the reinforcement learning result.

Reinforcement Learning, focusing on the Deep Deterministic Policy Gradient (DDPG)

method. In this paper, intelligent agents aim to maximize cumulative rewards by iteratively

learning optimal policies. DDPG introduces the actor-critic framework, where the actor

(policy) seeks the best actions, and the critic (value function) evaluates these actions' quality.

The critic estimates the value of state-action pairs and updates iteratively to reach desired

goal values[1]. This reinforcement learning approach presents opportunities for optimal

control in complex and dynamic farm environments. Additionally, the study touches on the

potential of asynchronous training for multiple agents, offering a means to accelerate learning

in intricate systems while acknowledging potential challenges associated with this

approach[1].

Below is the experiment that of reinforcement learning work out in the smart farm. The

structure of control system is show.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Figure 1: Structure of RL Farm

To optimize crop production and quality, an intelligent agent-based approach that adapts to

environmental conditions and controls various aspects of the farm is used. Each smart farm

subsystem was controlled by a slave agent, which communicated environmental data to the

master agent, enabling precise decision-making[1]. The agents developed strategies based on

a knowledge base derived from sensor data and the farm's state. Each agent had its own

dynamic neural network with hyperparameters optimized using Bayesian optimization[1].

The key environmental variables considered for optimization were temperature (T), humidity

(H), fertilizer (F), and rainfall (R) as shown on the above figure. Rainfall determined crop

selection, while other factors were used to optimize crop growth. The fertilizer choice was

tailored to the specific soil composition and crop requirements.

The experiment had demonstrated the effectiveness of the RL approach, and 100 versions of

the model concurrently, comparing results obtained after hyperparameter optimization.

Table 1 Result of Effectiveness of RL approach

These experiments showcased the ability of our model to achieve excellent results in smart

farm management, emphasizing the importance of reinforcement learning in enhancing crop

production and quality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 8

2.1.2 A Reinforcement Learning Approach for Smart Farming (MDP, Thomas

Sampling, Q-learning)

In this paper had shown the Reinforcement learning algorithm like Markov Decision Process

(MDP), Thomas Sampling Algorithm and Q-learning algorithm. The paper shows how the

implementation of these algorithm in handling the various control and unpredictable noises in

the smart farm.

The Markov Decision Process (MDP), which includes elements such as the states, actions,

other probabilities, and reward, and discount factor[2]. The agent's goal is to learn the optimal

policy that maximizes the expected cumulative reward. This can be achieved by defining

below[2].

Figure 2: Action Value Function

Figure 3: Value Function

The Bellman equation will show the relationship between states and enabling the agent to make

informed decisions[2].

The Thompson Sampling Algorithm is a strategy for making sequential decisions in situations

where there is a need to balance between exploiting known information and exploring to gather

new information for better future decision[2]. In the context of the algorithm, the problem is

often represented as a multi-armed bandit problem, where the agent must choose among

multiple actions, each associated with a reward from a probability distribution[2]. The

algorithm can be applied into the farm by helping farmers make decisions about where to place

experimental plots for different seeding rates. Each field is characterized by various soil

properties, and the algorithm aims to decide where to place experimental plots within the field

to optimize crop yield. Each field is divided into smaller areas, and selecting an area for an

experimental plot allows the farmer to observe whether it improves yield response[2].

The Q-Learning Algorithm allow the agent to make decisions by estimating the value of states

and actions. This method involves assessing rewards or penalties for actions taken at various

states and aims to maximize the cumulative return, considering a discount factor γ that

influences the trade-off between immediate and future rewards[2]. The algorithm operates by

creating and updating a Q-table and learning the optimal strategy over time[2]. The action and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 9

states value is update to the q table each time. It adjusts hyperparameters like learning rate,

exploration level, and discount factor as it accumulates knowledge, ensuring the agent selects

actions that maximize rewards[2].

Both algorithms evaluation is shown below. It had shown how to apply the reinforcement

learning into the daily farm task.

In the evaluation of the Multi-Armed Bandit algorithm, randomly generated data was employed

to represent observed yields for plots, with values above a threshold considered as "good" as

"1" and values below it as "not good" as "0". The algorithm involved creating a DataFrame

object with 200 observations, initializing lists for rewards and penalties, and selecting plots

based on the highest random beta distribution[2].

In the evaluation of the Q-Learning algorithm, the OpenAI Gym toolkit was employed,

utilizing a custom environment called "TruckEnv" to simulate a self-driving delivery truck

navigating a field. The algorithm aimed to maximize rewards and minimize penalties over

episodes by learning an optimal policy. Hyperparameters such as learning rate, discount factor,

and exploration level were set, and performance was evaluated based on the average number

of steps, rewards, and penalties per move over episodes. The results demonstrated the agent's

learning and improved performance over time[2].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.1.3 Reinforcement Learning for Sustainable Agriculture

This paper had focus in reinforcement learning, to optimize plant development with respect to

key parameters such as yield and environmental impact. It mentions that reinforcement

learning to autonomously explore and learn methods for influencing plant development while

considering environmental factors like irrigation and nutrient supply[3].

By applying reinforcement learning to agriculture could enable precise control over

environmental conditions and resource distribution to maximize yield while minimizing

resource usage.

The paper mention that framework that combines physical and modelling components to

optimize plant development using reinforcement learning techniques. The core of the system

involves an "agent" that learns to control various parameters influencing plant[3]. The used of

temperature, humidity, moisture, and specialized chemical sensors, along with elements for

heating, cooling, adjustable lighting, water supply, and nutrient delivery able to precise the

environment control[3].

Fertilizer management and water management with reinforcement learning is mentioned in

this paper. In these scenarios, the reinforcement learning algorithm learns the optimal

distribution of fertilizer and water over time, considering environmental conditions[3]. The

approach involves conducting numerous parallel experiments to determine the best timing

and quantities of resource allocation for maximizing production while minimizing overall

resource consumption. To enhance decision-making, sensory data may be augmented with

virtual data, such as forecasts of future conditions[3].

The proposed system aims to operate multiple controlled growth chambers in parallel to

accumulate sufficient data for effective algorithm learning. Initial experiments could involve

the use of Arabidopsis thaliana as a model species due to its small size and rapid life cycle,

making it suitable for high-turnover experiments[3]. These initial experiments may focus on

nutrient supply, specifically nitrogen and phosphate, with an emphasis on minimizing

nitrogen fertilizer use for environmental protection[3]. As the experimental setup stabilizes,

the authors plan to scale the approach to monocot species like rice, maize, or wheat, which

are more relevant to food security, while still considering model organisms such as

Brachypodium distachyon and Setaria viridis for ease of experimentation[3].

This innovative framework demonstrates the potential of reinforcement learning and

advanced environmental control to optimize plant development and resource management in

agriculture, offering a promising solution to address global food production challenges.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.2 Previous work on reinforcement learning GYM environment

2.2.1 SWATGym

The SWATGym environment is a reinforcement learning (RL) environment based on the Soil

and Water Assessment Tool (SWAT) model. It simulates crop growth by considering factors

such as nutrient cycling, water availability, and temperature. SWATGym is the first Python-

based implementation of SWAT, making it accessible for RL applications. It is built on top of

the OpenAI Gym framework, which is widely used for developing RL environments.

Below are the block diagram of SWATGym [4]:

Figure 4: Overview of SWATGym

The main function of SWATGym is to provide a simulation platform for evaluating and

comparing different crop management strategies. It allows researchers and practitioners to

benchmark multiple strategies simultaneously and at minimal cost. By simulating crop growth

from emergence to harvest on a daily basis, SWATGym enables the evaluation of crop

management strategies and the development of sustainable agriculture practices.

The SWATGym environment has a continuous state space comprising 14 state variables related

to weather, soil, crop, and hydrology dynamics. The details of 14 state are shown below [4]:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Table 2: Table of SWATGym state

It also has a continuous multidimensional action space, where actions represent the amounts of

fertilizer and irrigation applied at each time step. At each time step, the agent selects an action

that consists of two components which is the amount of fertilizer (F) and the amount of

irrigation (I) to be applied.

The environment produces a reward that characterizes the effects of different choices of actions

on crop production. The reward function takes into account crop yield, the cost of applying

fertilizer and irrigation, and penalty terms associated with these costs. Below are the reward

function formula [4]:

Figure 5: SWATGym reward calculation

where yld is the estimated crop yield on a particular day, Ft represents the amount of fertilizer

applied, It represents the amount of irrigation applied, and α and β are penalty terms associated

with the estimated cost of applying fertilizer and irrigation respectively[4]. The values of α and

β in this case are α = 2.43 and β = 0.16. The goal of the RL agent is to maximize the cumulative

rewards over a finite horizon of length T, corresponding to a growing season [4]. Thus, the

potential harvest index is shown below[4]:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 6: Graph of potential reward of SWATGym

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

2.2.2 CyclesGym

CyclesGym paper explores the use of reinforcement learning (RL) to design adaptive policies

for agricultural systems. This paper shows the related works that use deep RL with

sophisticated crop growth models (CGMs) to optimize agricultural management[5]. CGMs

are mathematical models that simulate the growth and development of crops over time, taking

into account factors such as weather, soil, and management practices. CGMs are used to

predict crop yields and optimize management practices. Therefore, CyclesGym is work with

the OpenAI gym wrapper around CGMs, such as DSSAT and WOFOST[5]. Below are the

overview of interaction of Environment, Management ang Genetic with the crop.

Figure 7: Overview of CycleGym

Besides, CyclesGym is allow to change the year and different crop model to test at daily time

steps[5]. Resources information will be collected in each time steps.

CyclesGym interacts with observers, implementers, rewarders, and constrainers that control

simulations, parse outputs, and provide interfaces for observations, actions, rewards, and

constraints[5]. Users can create custom RL environments by subclassing CyclesEnv and

configuring these managers.

This paper had conduct two experiment which are nitrogen (N) application and crop rotation.

In the nitrogen application experiments, RL agents, PPO make decisions about the amount of

nitrogen to apply to crops on a weekly basis. The goal is to maximize profit per hectare,

considering the value of the crop at harvest minus the cost of nitrogen used. The experiments

include training RL agents in various environments, including 1, 2, and 5-year settings, and

testing their generalization across time, location, and planning horizon. Non-adaptive

baselines, including fixed fertilization strategies, are used for comparison[5]. Results show that

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

RL agents outperform these baselines in terms of profitability, highlighting the potential of RL

in smart fertilization practices[5].

For crop planning experiments, RL agents decide which crop to plant and when to plant it

within a time window, aiming to maximize profitability without other operations like

fertilization or tillage. Training is performed in a specific environment, and generalization is

tested across different locations and time horizons. Non-adaptive baselines and fixed crop

sequence strategies are used for comparison. RL agents demonstrate reasonable performance

in test scenarios, although non-adaptive agents outperform them in some cases[5]. The fixed

baselines are generally outperformed by the best-trained RL agents.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

2.2.3 CropGym

The CropGym is a reinforcement learning (RL) environment powered with OpenAI

framework. CropGym had included with Process-based crop growth models, including

APSIM and PCSE for understanding and simulating crop growth dynamics[6]. These models

incorporate various biophysical processes, such as light interception, nutrient availability, and

water uptake, to predict crop yields accurately. It provides a mechanistic understanding of

how crops respond to environmental factors.

The main function of CropGym is optimizing crop fertilization strategies with process-based

crop growth models. Below are the description of the environment.

The state space in the CropGym environment operates on a weekly time interval to simulate

natural farming practices. The agent's observations include two main components which is

the Crop Growth Model and Weather Data[6].

For crop growth model, the agent observes the output variables generated by the LINTUL-3

process-based crop growth model. This model simulates crop growth under nitrogen-limited

conditions and is implemented within the Python Crop Simulation Environment (PCSE)[6].

The model parameters have been fine-tuned to accurately represent the growth of winter

wheat, making it a suitable choice for this simulation.

For the weather data, past weather conditions will be collected. This data includes default

weather variables provided by PCSE, reflecting conditions from the previous week. The

weather data is derived from 29 years of historical weather data spanning 9 locations in the

Netherlands, sourced from the PowerNASA database in this research[6]. Additionally, the

weather data can be changed according to latitude and longitude.

The agent's action space in the CropGym environment is designed to represent different

fertilizer application options. The agent can decide on the amount of nitrogen fertilizer to

apply per hectare of the crop. The available options are specified as follows[6]:

Figure 8: Action of CropGym

This means the agent can choose to apply no fertilizer (k=0) or select from various discrete

dosage levels ranging from 20 kg/ha to 120 kg/ha (k=1 to k=6)[6]. The discretization allows

the agent to experiment with different levels of fertilizer application, including options that

align with real-world agricultural practices.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

The reward system in the CropGym environment is designed to guide the agent's decision-

making by incentivizing specific behaviors. The primary objective is to let the agent achieve

a large grain yield per hectare. This yield is expressed in kilograms of dry matter. The

formular as below[6]:

Figure 9: Reward calculation of CropGym

Some experiment also done in this paper to test the CropGym using PPO agent. The result is

quite well. Below are the graph that shows the increase in time also lead to increase in

rewards[6].

Figure 10: Graph of rewards of CropGym using PPO

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

2.2.4 FarmGym

Farm-gym is a modular and gamified environment designed for reinforcement learning (RL)

research in the context of agricultural decision-making. It provides a platform that similar to

actual agricultural farm while maintaining simplicity and controllability[7]. Farm-gym is

unique in that it introduces stochasticity, reflecting the inherent uncertainty in farming due to

external factors like weather, pests, and complex interactions between entities. Below are the

overview of Farm-Gym[7]:

Figure 11: Overview of FarmGym

Farm-gym incorporates a highly stochastic environment by introducing stochastic processes in

the dynamics of its entities, including weather and plant growth. It uses a mathematical model

based on an exponential general linear function to represent the transitions between states for

different entities[7]. This approach allows Farm-gym to create an intrinsically stochastic

environment that mimics the uncertain nature of real-world agricultural systems.

Action space of FarmGym is large. In this environment, each entity introduces its own set of

actions, some of which can be parameterized[7]. Additionally, Farm-gym allows the agent to

review the expansion observation based on each action taken[7]. This expansion results in a

space actions per day, compared to the original daily action space. This creates a complex

decision-making environment where agents must learn the structure of the action space,

understand how actions affect different parts of the system, and optimize their decision-making

process[7].

The agent might need to observe the soil's moisture level or the insect population in the field

before taking actions as each action may cause affect in the reward counting at the last. This

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

requirement challenges the agent to learn when these additional observations are crucial for

enhancing farm management. Essentially, the agent must evaluate its knowledge state, update

its values through observations, and make informed decisions[7].

The experiment had done in farm-gym. The cumulative reward obtained during the training of

the PPO agent is shown below[7]. The raw reward curve exhibits high variability due to the

high changing in the farm-gym environment. To visualize the reward, increase more clearly,

smoothing is applied.

Figure 12: Graph of reward of FarmGym using PPO

2.3 Critical Remarks

In reviewing the previous works related to reinforcement learning (RL) in agricultural

environments, several strengths and weaknesses are stated below.

Firstly, the paper “Intelligent Farm Based on Deep Reinforcement Learning” (Actor Critic)

paper. The paper introduced the concept of smart farming, highlighting the potential of AI and

RL in optimizing agricultural operations. Besides, it also explores the some RL method well-

suited for continuous action spaces.

Secondly, the paper “A Reinforcement Learning Approach for Smart Farming” (MDP, Thomas

Sampling, Q-learning. The paper explored a variety of RL algorithms, including Markov

Decision Process (MDP), Thompson Sampling, and Q-Learning, for smart farming and

discusses the application of these algorithms in handling control and unpredictable factors. But

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

this paper does not show the algorithm that would help to handle the continuous control

happens in reinforcement learning.

Moreover, the paper “Reinforcement Learning for Sustainable Agriculture”. This paper focuses

on using RL to optimize plant development while considering environmental factors like

irrigation and nutrient supply. But RL algorithms and their performance are not discussed in

detail.

From all the RL Gym that had research above. SWATGym is chosen for further analysis.

SWATGym provides a comprehensive RL environment based on the Soil and Water

Assessment Tool (SWAT) model, making it highly relevant for crop management and resource

optimization. It offers a continuous state space and action space, able to let the user input

accurate value in each time steps is very similar with the project scope on optimizing fertilizer

and irrigation inputs. But SWATGym it may not address all the complexities of managing

unpredictable factors and uncontrollable states in smart agriculture like pest and other change.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Chapter 3

System Methodology/Approach OR System Model

3.1 IoT Smart Farming Cycle

Smart farming represents a revolutionary approach to agriculture and cattle production,

leveraging the technologies of the Fourth Industrial Revolution to enhance productivity,

minimize resource use, and reduce environmental impact[8]. At the heart of this transformation

is the Internet of Things (IoT), a system that collects data from various sources and transmits

it over the internet. The IoT-based smart farming cycle consists of several key stages which is

observation, diagnostics, decision, and action.

In observation state, sensors will be deployed in agricultural settings and continuously gather

data from crops, livestock, or the environment condition that able to capture by sensors[8].

In the diagnostics phase, the data that collected is sent to a cloud hosted IoT platform equipped

with predefined decision rules and models. These models, often referred to as "business logic,"

analyse the data to assess the condition of the monitored objects and identify any issues or

requirements[8].

In the decisions stage, the insights will be generated by the IoT platform, users and machine

learning-driven components determine whether specific actions are needed for a particular

location[8]. These actions can include treatments or interventions.

In the action stage, users implement necessary actions according to the decision that made in

previous stage. These actions can involve adjusting farming practices, resource allocation, or

other interventions to address identified issues[8]. The cycle then begins to continue following

by observation etc until the end.

In this project, diagnostics and decision stage will be implemented. The diagnostics and

decision will be implemented by using reinforcement learning. The detail will be show in below

section.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

3. 2 Reinforcement Learning with Actor Critic Algorithm

In the context of reinforcement learning (RL) and its application in smart farming, let's delve

into the concepts of diagnostics and decision-making using reinforcement learning, with a

particular focus on the actor-critic algorithm.

3.2.1 Actor Critic

Diagnostics in reinforcement learning refer to the process of assessing the condition or

performance of an RL agent as it interacts with its environment. In the provided text,

diagnostics involve evaluating the state-value function (Vπ) and the action-value function (Qπ)

to estimate the expected returns and the quality of actions taken by the agent[9].

Figure 13: State-value function

Above is the state-value function which observe the return based on starting state and policy.

It show the quality of state based on the specific policy[9].

Figure 14: Action-value function

Above is the action-value function that able to observe the return based on state, action and

policy taken. The quality of the action will be show by this function. Diagnostics also involve

estimating Qπ, which can be used to make decisions about which actions to take[9].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Decision-making in RL involves selecting actions that maximize the expected return over

time. This process will act based on stated policy. Two fundamental concepts related to

decision-making in RL are policy and actor critic algorithms.

The policy is the behaviour function that dictates how the RL agent selects actions in response

to observed states[9]. In the context of smart farming, the policy could determine actions like

when to irrigate crops or which treatment to apply to livestock. It's a crucial component of the

RL agent.

The actor-critic algorithm is a popular approach in RL that combines two key components

which are actor and critic.

The actor represents the policy function π. It will act based on the state that observe[9]. The

actor could decide actions like adjusting the action value based on the environment

requirement.

The critic will review the action and provides feedback on how good or bad the actor's actions

are in a given state[9].

Figure 15: Overview of actor-critic structure

The actor-critic algorithm is uses of both critic and actor to improve decision-making in RL[9].

Firstly, the actor will select action. Next, the critic will review the action by calculate the return.

Then, the critic provides feedback to the actor about the quality of the chosen actions. Lastly,

the actor changes the policy to achieve higher return from critic feedback. Below are the

pseudocode that collected from the internet[9].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Figure 16: Pseudocode of Actor-Critic

The actor-critic algorithm helps in achieving better convergence and more stable learning

compared to using only value-based or policy-based methods. In IoT-based smart farming, this

actor-critic framework can be applied to optimize farming decisions. Therefore, the theory of

actor critic will be applied in this project. The actor will be deciding the amount of fertilizer

and irrigation to apply to crops, while the critic assesses the impact of these decisions on crop

yield and resource usage. Over time, the actor adapts its policy to make more informed and

effective decisions, leading to improved farming outcomes.

3.3 PPO Algorithm

The Proximal Policy Optimization (PPO) algorithm builds upon policy gradient methods and

trust region optimization techniques. It begins by estimating the policy gradient using

stochastic gradient ascent, where the objective is to maximize the expected reward while

updating the policy parameters.

PPO introduces a clipped surrogate objective function that addresses the limitations of previous

methods by preventing excessively large policy updates. This clipped objective combines the

benefits of trust region methods, which ensure stable policy updates, with the efficiency of

policy gradient methods. Additionally, PPO incorporates an adaptive KL penalty coefficient to

regulate the KL divergence between the old and updated policies, further enhancing stability

during training[10].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

In practical terms, the PPO algorithm involves collecting data by running the old policy in the

environment, estimating advantages for each timestep, optimizing the surrogate loss (either

clipped or with a KL penalty) using minibatch SGD, and then updating the policy parameters

based on the optimization results[10]. Below are the steps to implement a PPO Agent.

Figure 17: Pseudocode of PPO Algorith with Actor Critic Architecture

Based on the PPO algorithm pseudocode above, it operates through a series of iterative steps

that ensure stable and efficient learning in reinforcement learning tasks. First, previous state

and action from the replay buffer is collected by executing the old policy in the environment,

generating experiences used for training.

Next, advantage estimates are computed to gauge the effectiveness of actions taken under the

current policy[10]. Subsequently, the surrogate loss function, either the clipped surrogate

objective or the KL-penalized objective, is optimized using minibatch stochastic gradient

descent (SGD)[10]. This optimization process fine-tunes the policy parameters based on the

observed advantages, striking a balance between exploration and exploitation. Finally, the

updated policy parameters are applied to the agent, allowing it to interact further with the

environment and repeat the learning process[10]. This iterative approach, coupled with the

clipped surrogate objective and adaptive KL penalty coefficient, underpins PPO’s ability to

achieve robust and scalable reinforcement learning outcomes across a variety of environments

and tasks.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Chapter 4

System Design

4. 1 RACKY API Design

4. 1. 1 Flowchart of RACKY API

Figure 18: Flowchart of RACKY API

Above is the use case diagram of the RACKY API. Firstly, users are able to input information

such as latitude, longitude, start_date, fertilizer (kg/ha), and irrigation (mm). The latitude,

longitude, and start_date will be used to initialize the SWATGym to the specified location and

date. With the initialization of the gym environment, the simulation will start at the specified

location and return its weather information. The gym environment will then process the input

of fertilizer and irrigation amount and return the state information to the endpoint. The endpoint

will in turn return the reward, total_reward, current_date, number_of_episodes, and state

information to the user. This process can be repeated up to 120 episodes. Once 120 episodes

are reached, the total_reward will be returned to the user and the simulation will be reset.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 27

4. 2 RACKY PPO agent API Design

4. 2. 1 Flowchart of RACKY PPO agent API

Figure 19: Flowchart of RACKY PPO Agent API

Above is the use case diagram of the RACKY PPO Agent API. Firstly, users are able to input

information such as latitude, longitude, choose_date, and plant_stage. The latitude and

longitude will be used to initialize the SWATGym to the specified location. The choose_date

will be used to check if the year is greater than or equal to 2024 AND the month is greater than

or equal to 1; if true, access the external weather API to return weather data; otherwise, use the

original weather data as the gym environment does not provide weather data after the year

2024. Once the weather data is chosen, the PPO agent will receive state information from the

initialized environment, and then the PPO Agent will return an action to the gym. The

information regarding action, current_date, state info, current_weather, and

choose_weather_list will be returned to the endpoint, and the endpoint will send it back to the

user.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 28

4.2.2 Flowchart of PPO Agent and SWATGym

Figure 20: Flowchart of PPO Agent and SWATGym

The flow chart shows the integration of the Actor-Critic architecture within the Proximal

Policy Optimization (PPO) agent, a reinforcement learning algorithm suited for environments

with continuous action spaces. The Actor-Critic architecture consists of two main

components, the Actor Network, and the Critic Network. The Actor Network learns the

policy by mapping states to actions, while the Critic Network evaluates actions taken by the

actor by estimating the value function. This dual-component setup allows for more efficient

learning and decision-making. The flowchart show that the actor explores the environment

and selects actions based on policy, while the critic provides feedback on action quality to

guide policy improvements.

The training loop in the flow chart showcases how the PPO agent interacts with the

SWATGym and collecting experiences and storing them in a replay buffer. Through periodic

updates to its policy based on experiences sampled from the replay buffer, the PPO agent

refines its decision-making processes. By leveraging the Actor-Critic architecture within the

PPO agent, the flow chart highlights a structured approach to learning complex policies and

making informed decisions in dynamic and challenging environments.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Chapter 5

System Implementation

5.1 Software Setup

5.1.1 Jupyter Notebook Setup & Laptop Specification

Jupyter notebook setup

Creating a new environment in anaconda navigator with Python 3.9. Next, install required

library to enable using SWATGym in Anaconda console using conda command line. The

libraries that required are notebook (Jupyter Notebook), NumPy, PCSE, PyTorch, Gym,

Pandas, Matplotlib, Python Flask and Flask Cors.

Laptop Specification

The hardware involved in this project is a computer. A computer is used to develop user

applications and reinforce learning AI system.

Table 3: Specification of Laptop

Description Specifications

Model MSI GF63

Processor Intel Core i5-9300H

Operating System Windows 11

Graphic NVIDIA GeForce GTX 1650 4GB GDDR6

Memory 16GB DDR4 RAM

Storage 1TB SATA HDD + 230GB NVMe SSD

5.1.2 SWATGym Setup

The SWATGym simulator from Madondo, Azmat, et al is installed from the GitHub link[4]:

GitHub - IBM/SWATgym: SWATgym: a reinforcement learning environment for crop

management.

Then, import the SWATGym into the notebook:

Figure 21: Import SWAT code

https://github.com/IBM/SWATgym
https://github.com/IBM/SWATgym

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

After import the SWATGym, the initialize of SWATGym is shown below:

Figure 22: Define SWATEnv

In the initialization, max_action is the maximum value that the action space can be input into

the simulator. Seed is used to provide consistency in later experiment. Latitude and longitude

are set to the UTAR FICT area, and the elevation is set to 25.

Figure 23: Example input of SWATEnv

The sample and shape are further determined.

The action space shape is 2 and continuous. The first element in the action space is the amount

of fertilizer and calculated in kg/ha. The second element in the action space is the amount of

irrigation and calculate in mm. Both of them are with the minimum of 0 and he maximum of

max_action explained above.

Besides, the observation space shape is 14 and continuous. The detail of the observation space

is below[4]:

Table : Detail of Observation State of SWATGym

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 31

5.1.2.1 SWATGym Testing

Figure 24: Random Test SWATGym

Random test is conducted to test SWATGym simulator. Random action is input into the

simulator and the reward for each episode is show. Each episode contain 120 days in the

simulator.

5.1.3 PPO Setup

Below are the pseudocode of PPO Agent that referred on Barhate and Nikhil’s
pytorch_minimal_ppo published on GitHub [11].

class RolloutBuffer:
 //act as memory to store all the previous state and action information

class ActorCritic:
//actor and critic networks
//evaluate action and state

class PPO:
 Initialize:

 Initialize buffer, policy, old policy, optimizer, and loss function

 Method set_action_std(new_action_std):
 Set the action standard deviation for continuous action space in policy

and old policy

 Method decay_action_std(action_std_decay_rate, min_action_std):
 Decrease action standard deviation with decay rate until minimum value

 Method select_action(state):
 Choose action based on the current policy and add data to the buffer

 Method update():
 Compute discounted rewards, normalize rewards, and calculate advantages
 Update policy for multiple epochs using PPO loss

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 32

 Copy updated policy weights to the old policy
 Clear buffer data

Figure 25: Initialize for PPO Agent

Above picture show on the initialize of PPO Agent. The K_epochs parameter dictates the

number of iterations the policy network undergoes during a single PPO update, impacting the

depth of policy optimization. eps_clip serves to limit policy changes within each update,

promoting stability and preventing drastic policy shifts with a value set at 0.2. The gamma

parameter, set to 0.99, determines the importance of future rewards relative to immediate

ones, influencing the agent's long-term planning abilities. Learning rates, lr_actor is 0.0001

and lr_critic is 0.001 for the actor and critic networks respectively guide the pace of learning

for policy and value.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 33

Figure 26: training loop for PPO Agent

After initializing the PPO Agent, the provided code is used for training the agent. Figure 27

illustrates the training results, showing that after about 175k episodes of training, the PPO

Agent's maximum reward plateaued at over 7000 rewards.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 34

Figure 27: Reward vs episode

5.2 System Operation

5.2.1 RACKY API
app = Flask(__name__)
CORS(app)
env = None # Initialize as None initially
data_sent_counter = 0
total_reward = 0.0 # Initialize total reward

def initialize_env(latitude, longitude, start_date, seed=100):
 global env, total_reward, data_sent_counter
 env = SWATEnv(max_action=50, seed=seed, latitude=latitude, longitude=longitude, elevation=25)
 env.start_date = start_date
 env.end_date = env.start_date + timedelta(days=120)
 state, _, done, info = env.reset(seed=seed) # Reset with the specified seed
 total_reward = 0.0 # Reset total reward
 data_sent_counter = 0
 return state, done

@app.route('/step', methods=['POST'])
def step():
 global state, done, env, data_sent_counter, total_reward

 if env is None:
 # Environment not initialized, so initialize it
 latitude = float(request.json['latitude'])
 longitude = float(request.json['longitude'])
 start_date = request.json['start_date']
 start_date = datetime.strptime(start_date, "%Y-%m-%d")
 seed = int(request.json.get('seed', 100))

 state, done = initialize_env(latitude, longitude, start_date, seed)
 return jsonify({"state": state, "reward": 0.0, "total_reward": total_reward, "done": done,

"data_sent_counter": data_sent_counter})

 if done:
 env = None

 return jsonify({"message": "Episode terminated. Reset environment to continue.",
"total_reward": total_reward, "data_sent_counter": data_sent_counter})

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 35

 fertilizer = int(request.json['fertilizer'])
 irrigation = int(request.json['irrigation'])
 action = (fertilizer, irrigation)

 n_state, reward, done, info = env.step(action)
 state = n_state
 total_reward += reward # Accumulate total reward

 data_sent_counter += 1 # Increment data counter
 return jsonify({"state": state, "current_date": env.current_date, "reward": reward,
"total_reward": total_reward, "done": done, "data_sent_counter": data_sent_counter})

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5002, debug=True)

The code above demonstrates the implementation of the RACKY API. To execute the code,

simply click 'run'. The API will be hosted on port 5002 on the localhost.

To access to the RACKY API user need to use post method. Example of POST method to

call the API is as below:

Figure 28: Java Script POST request

Figure 29: Postman POST request

 36

Above figure 28 and figure 29 had shown the way to call the API by using Java Script and

Postman. After successfully access to the API, the API will start to process the input json

information and return the result as below:

Figure 30: Output of RACKY API

The current_date is the date on which the simulator is running. The data_send_counter

represents the days the user has been running the simulation. The 'done' variable is used to

check if the simulation is completed. The reward indicates the current reward for the user's

action. The state represents the observation state returned by the SWATGym, containing crop

information and weather data. Lastly, the total_reward is the accumulated reward for the

simulation. Once the simulation has run to completion, it will be initialized based on the

user's input again, and a new simulation will start. The specific name of each value is shown

in Figure 31. The showcase of RACKY API show in the Figure 32 below.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 37

Figure 31: Name of each return values

Figure 32: Showcase for RACKY API

5.2.2 RACKY API PPO Agent
app = Flask(__name__)
CORS(app)

def get_weather_data(latitude, longitude, date):
 url = f"https://archive-api.open-
meteo.com/v1/archive?latitude={latitude}&longitude={longitude}&start_date={date}&end_date={date}&hou
rly=temperature_2m,precipitation,relative_humidity_2m,soil_temperature_0_to_7cm,soil_moisture_0_to_7
cm&daily=temperature_2m_mean,precipitation_sum,shortwave_radiation_sum,et0_fao_evapotranspiration&ti
mezone=Asia%2FSingapore"

 response = requests.get(url)
 data = response.json()
 return data

def calculate_vapor_pressure(temperature_C, relative_humidity):
 # Constants for Magnus-Tetens formula
 A = 17.27
 B = 237.7 # Temperature offset
 # Convert temperature to Kelvin
 temperature_K = temperature_C + 273.15
 # Calculate saturation vapor pressure (SVP) in kPa
 svp = 6.112 * 10**((A * temperature_C) / (B + temperature_C))

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 38

 # Calculate actual vapor pressure (AVP) in kPa
 avp_kpa = relative_humidity * svp
 # Convert AVP from kPa to hPa (divide by 10)
 avp_hpa = avp_kpa / 10
 return avp_hpa

def calculate_soil_evaporation(soil_temp_C, soil_moisture_m3m3, et0_mm_day):
 # Convert ET₀ from mm/day to m/day
 et0_m_day = et0_mm_day * 0.001

 # Assume average values for Crop Coefficient (Kc) and Soil Moisture Stress Factor (Fs)
 kc = 1 # Crop Coefficient
 fs = 0.8 # Soil Moisture Stress Factor

 # Calculate Soil Evaporation
 soil_evaporation_m_day = et0_m_day * kc * fs * soil_moisture_m3m3

 # Convert soil evaporation from m/day to mm/day
 soil_evaporation_mm_day = soil_evaporation_m_day * 1000

 return soil_evaporation_mm_day

def check_thresholds(weather_list, current_list, thresholds):
 if len(weather_list) != len(current_list) or len(weather_list) != len(thresholds):

 raise ValueError("Lists must have the same length.")

 for i in range(len(weather_list)):
 if abs(weather_list[i] - current_list[i]) > thresholds[i]:

 #print(f"wrong: {i}, value:{abs(weather_list[i] - current_list[i])}")
 return False

 return True

def copy_state_info(longitude, latitude, plant_stage, start_date, end_date, target_current_date):
 env = SWATEnv(max_action=10, latitude = latitude, longitude = longitude, elevation = 25)
 env.start_date = start_date
 env.end_date = end_date
 state, _, done, info = env.reset(seed=100)
 target_state_info = []
 target_info = []

 while not done:
 current_date = env.current_date
 action = env.action_space.sample()
 next_state, reward, done, info = env.step(action)

 if current_date == target_current_date:
 target_state_info.append(state)
 target_info.append(info)
 break

 state = next_state

 env.close()

 return target_state_info, target_info

def get_same_weather_date(longitude, latitude, choose_current_date):

 weather_data = get_weather_data(latitude, longitude, choose_current_date)

 humidity_mean = np.mean(weather_data['hourly']['relative_humidity_2m'])/100
 soil_temp_mean = np.mean(weather_data['hourly']['soil_temperature_0_to_7cm'])
 soil_mois_mean = np.mean(weather_data['hourly']['soil_moisture_0_to_7cm'])

 temperature_mean = weather_data['daily']['temperature_2m_mean'][0]
 precipitation_sum_daily = weather_data['daily']['precipitation_sum'][0]
 shortwave_radiation_sum_daily = weather_data['daily']['shortwave_radiation_sum'][0]
 et0_fao_evapotranspiration_daily = weather_data['daily']['et0_fao_evapotranspiration'][0]
 vapor_pressure = calculate_vapor_pressure(temperature_mean, humidity_mean)
 soil_evaporation = calculate_soil_evaporation(soil_temp_mean, soil_mois_mean,
et0_fao_evapotranspiration_daily)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 39

 current_list = [temperature_mean, shortwave_radiation_sum_daily, vapor_pressure,
precipitation_sum_daily, et0_fao_evapotranspiration_daily, soil_evaporation]
 thresholds = [3.5, 3.5, 3.5, 3.5, 3.5, 3.5]

 start_date_find = datetime.strptime('20230924', '%Y%m%d')
 date_list = []
 weather_accepted = []
 count_threshold = 1

 while len(date_list) < count_threshold:
 env = SWATEnv(max_action=10, latitude = latitude, longitude = longitude, elevation = 25)
 env.start_date = start_date_find
 env.end_date = start_date_find + timedelta(days=120)

 state, _, done, info = env.reset(seed=100)
 episode_reward = 0
 count = 0

 while not done:
 current_date = env.current_date
 weather_list = [env.avg_temp, env.solar_rad, env.avg_vapor_pressure,

 env.precip, env.ref_et, env.soil_evap]

 action = env.action_space.sample()
 next_state, reward, done, info = env.step(action)

 # Compare weather_list and current_list
 all_within_threshold = check_thresholds(weather_list, current_list, thresholds)
 if all_within_threshold:

 date_list.append(current_date.strftime('%Y%m%d'))
 weather_accepted.append(weather_list)
 #print(f'found date: {current_date}')

 episode_reward += reward
 state = next_state
 count += 1

 # Move to the next start date
 start_date_find = start_date_find - timedelta(days=121)

 env.close()

 return date_list, weather_accepted, current_list

def find_stage_index(input_num, stage_ranges):
 for idx, stage_range in enumerate(stage_ranges):

 start, end = stage_range
 if start <= input_num <= end:

 return idx
 return 5

@app.route('/api/get_target_info', methods=['POST'])
def get_target_info():
 data = request.get_json()
 latitude = data.get('latitude')
 longitude = data.get('longitude')
 plant_stage = data.get('plant_stage')
 choose_current_date = data.get('choose_current_date')

 date_list, weather_list, current_waether_list = get_same_weather_date(longitude, latitude,
choose_current_date)
 choose_date = date_list[0]
 choose_weather = weather_list[0]

 stage_ranges = [(0, 14), (15, 29), (30, 44), (45, 59), (60, 74), (75, 89), (90, 104), (105,
119)]
 stage_midpoints = [7, 22, 37, 52, 67, 82, 97, 112]

 target_current_date = datetime.strptime(choose_date, '%Y%m%d')
 # index = find_stage_index(plant_stage, stage_ranges)
 # current_stage = stage_midpoints[index]

 target_start_date = target_current_date - timedelta(days=plant_stage)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 40

 target_end_date = target_start_date + timedelta(days=120)

 target_state, target_info = copy_state_info(longitude, latitude, plant_stage, target_start_date,
target_end_date, target_current_date)

##

 env_name = "SWATEnv"
 max_action = 5
 elevation = 25
 env = SWATEnv(max_action=max_action, latitude=latitude, longitude=longitude,
elevation=elevation)

 state_dim = env.observation_space.shape[0]
 action_dim = env.action_space.shape[0]
 lr_actor = 0.0001
 lr_critic = 0.001
 gamma = 0.99
 K_epochs = 80
 eps_clip = 0.2
 action_std = 0.6
 has_continuous_action_space = True

 ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip,
has_continuous_action_space,

 action_std)

 random_seed = 0
 num_load = 1

 directory = "RACKY_API/SWAT_gym" + '/'
 checkpoint_path_load = directory + "PPO_{}_{}_{}.pth".format(env_name, random_seed, num_load)
 print("loading network from : " + checkpoint_path_load)

 ppo_agent.load(checkpoint_path_load)

##
########################

 state, _, done, info = env.reset(seed=100)

 while not done:
 state = target_state[0]
 info = target_info[0]
 action = np.clip(ppo_agent.select_action(state), 0, max_action)
 state, reward, done, _ = env.step(action)

 done = True

 if done:
 break

 # clear buffer
 ppo_agent.buffer.clear()
 env.close()

 # Create JSON response
 response_data = {

 'target_current_date': target_current_date,
 'target_state': target_state,
 'target_info': target_info,

 'choose_weather': choose_weather,
 'current_weather_list': current_waether_list,

 'action': action.tolist()
 }

 return jsonify(response_data)

if __name__ == '__main__':

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 41

 app.run(host='0.0.0.0', port=5000, debug=True)

Above are the implementation of RACKY PPO Agent API. To access the RACKY PPO

Agent API user need to use POST method with body information as below. The latitude and

longitude are used to define the current location and fetch the current weather for the

simulation. The plant_stage is the date where the plant grows till, the maximum number for

plant_stage is 120.

Figure 33: POST request for RACKY PPO Agent API

After sending the POST request to the RACKY PPO Agent API, it will provide the following

output in Figure 34. The suggested applied amount of fertilizer and irrigation to the crop will

be included in the response. The `current_weather_list` contains information about the

current weather conditions. To assess the plant's condition accurately, a matching weather

condition will be selected from SWATGym for that specific date. The resulting weather data

will be stored in `choose_weather`, plant information in `target_state`, and additional details

in `target_info`. The name of each value return is shown in Figure 35. For example, action [0]

is fertilizer (kg/ha), action[1] is irrigation (mm). Lastly, the showcase for RACKY PPO

Agent API is show in the Figure 36 below.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 42

Figure 34: Output of RACKY PPO Agent API

Figure 35: Name of each return value RACKY PPO Agent API

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 43

Figure 36: Showcase of RACKY PPO Agent API

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 44

5.3 Issue and Challenge

5.3.1 The model return action (0, 0)

After completing the model training, certain actions return as (0,0) due to the reward function

within the SWATGym environment. Below is the code for the reward function.

Figure 37: SWATGym reward function

The model identifies actions as detrimental to crop yield, resulting in reduced rewards.

To enhance the training process and ensure model reliability, I implemented a function to

penalize crop yield when action (0, 0) is detected. This function is temporary and is removed

from SWATGym after training completion.

Despite modifying the training process for the PPO agent, actions are still prevalent in the

early plant stage and are less observed in later timesteps. This is because actions can quickly

lead to negative rewards due to the sigmoid-like distribution of crop yield rewards shown in

the figure below, depicting potential rewards across timesteps.

Figure 38: SWATGym potential reward in each timestep

5.3.2 Weather data is not provided

To obtain accurate weather information, SWATGym utilizes an external weather API as the

current weather API it relies on is not updated to the current date. The code below demonstrates

how to call the weather API, which is sourced from Zippenfenig's Open-Meteo.com Weather

API [12].

Figure 39:External weather API

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 45

5.4 Remarks

The RACKY API, implemented using Python Flask on port 5002, can be accessed via POST

requests with longitude, latitude, start date, fertilizer and irrigation to retrieve output such as

current date, reward, observation state, and total reward. This API resets the simulation after

completion, initializing based on user input for a new simulation.

On the other hand, the RACKY PPO Agent API, implemented using Python Flask on port

5000, also accessed through POST requests with latitude, longitude, plant stage, and current

date information then provides recommendations for fertilizer and irrigation amounts, current

weather conditions, selected weather data, plant information, and additional details.

However, challenges such as actions returning as (0,0) due to reward function limitations in

SWATGym have been addressed through temporary penalty functions during training to

penalize such actions. Furthermore, weather data is sourced from an external API due to

limitations in the current weather API used by SWATGym, ensuring accurate and up-to-date

information for realistic simulation environments. These APIs serve as powerful tools for

agricultural optimization and decision-making processes, bridging the gap between

simulation and real-world agricultural practices by providing actionable insights based on

environmental and crop-specific data.

 46

Chapter 6

System Evaluation

6.1 System Testing

6.1.1 Test RACKY API

The test will be tested on 2 different locations in Perak which is Ipoh and Kampar

with detail of latitude and longitude as below.

Kampar (4.339054 101.136886) (2022-01-01)

Figure 40: POST request for RACKY API Kampar test

Request as above is send to the RACKY API as Figure 40 above.

Figure 41: output result for RACKY API Kampar test

After few requests keep sending to the API, example of output will be shown like

above Figure. Once the simulation end, it shows the total reward like in figure

42 below.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 47

Figure 42: simulation termination for RACKY API Kampar test

Ipoh (4.597456, 101.092851) (2022-01-01)

Figure 43: POST request for RACKY API Ipoh test

Request as above is send to the RACKY API.

Figure 44: output result for RACKY API Ipoh test

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 48

After few requests keep sending to the API, example of output will be shown

like above Figure 44. Once the simulation end, it shows the total reward like in

Figure 45 below.

Figure 45: simulation termination for RACKY API Ipoh test

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 49

6.1.2 Test RACKY PPO agent API

The following tests evaluate the RACKY API using various plant stages and dates, including

the current date and other specified dates in Kampar (latitude 4.339054, longitude 101.136886).

Tested on current date (2024-04-22) with plant_stage of 52

Figure 46: POST request for RACKY PPO Agent API test 1

Above Figure 46 is the POST request to test the PPO Agent. The output of the API is

shown in below Figure 47.

Figure 47: output for RACKY PPO Agent API test 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 50

Tested on current date (2021-03-22) with plant_stage of 107

Figure 48: POST request for RACKY PPO Agent API test 2

Above Figure 48 is the POST request to retrieve the information of action from the API.

Below Figure 49 are the output of the test.

Figure 49: output for RACKY PPO Agent API test 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 51

6.2 Testing Result

6.2.1 RACKY PPO Agent evaluation

Figure 50: Graph of comparison of the average reward for each epoch

The graph above Figure 50 clearly illustrates that the average reward per timestep of the PPO

Agent outperforms both the fixed action graph (3,3) and the random action graph.

To provide a more comprehensive view of the PPO agent's performance, the total reward is

calculated over 20 epochs and depicted in the graph below Figure 51. It is evident that

the model consistently achieves a total reward exceeding 7000, unlike the other graphs.

This confirms the effectiveness of the PPO agent within the SWATGym environment.

Figure 51: Graph of Comparison of the Total reward

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 52

6.3 Project Challenge

Lack of Initial Knowledge

Starting the project without a deep understanding of reinforcement learning posed a significant

challenge. It required investing time and effort to grasp concepts and techniques, especially for

environments that accept continuous states and actions where popular agents like DQN are not

directly applicable.

Difficulty Implementing Agents

Implementing agents like DQN for continuous states and actions was challenging, leading to

exploration of more advanced methods like Actor-Critic architectures, which demanded

substantial learning time.

Issues with DDPG Agent

Encountering persistent issues with the DDPG agent returning actions of (0,0) led to exploring

alternative agents like PPO, which required additional learning and experimentation to enhance

training by adjusting reward functions.

Resource-Intensive Training

Training both PPO and DDPG agents was resource-intensive and time-consuming. However,

saving and reloading models allowed for incremental training with more epochs until achieving

satisfactory rewards.

Weather Data Integration

Integrating the system with SWATGym revealed limitations in receiving current weather data.

Leveraging an external weather API was a fortunate discovery, providing accurate weather

information crucial for the project's accuracy and reliability.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 53

6.4 Objective Evaluation

The project has successfully achieved its objectives as evidenced by the comprehensive

system testing conducted on the RACKY API and the integrated RACKY PPO Agent API

within the SWATGym environment.

The RACKY API, designed to facilitate corn crop simulations based on user inputs such as

location and date, demonstrated its functionality through tests in locations like Kampar and

Ipoh, providing simulation outputs such as total rewards.

Concurrently, the integration and testing of the RACKY PPO Agent API showcased the AI

model's capability to suggest optimal actions and achieve rewards, as validated by graphical

evaluations comparing its performance against fixed and random actions. Graphs depicting

average rewards per timestep and total rewards over epochs visually confirmed the

effectiveness of the PPO agent in optimizing crop management strategies within the

SWATGym framework.

Thus, the above evidence had shown the project had fully meeting the project's objective.

6.5 Concluding Remark

The system evaluation and testing conducted on the RACKY API and RACKY PPO Agent

API within the SWATGym environment have provided compelling evidence of the project's

success in meeting its objectives.

The thorough testing in locations like Kampar and Ipoh, along with evaluations using various

plant stages and dates, demonstrates the functionality and effectiveness of both APIs in

simulating crop growth scenarios and suggesting optimal actions. Besides, The graphical

evaluations further confirm the superiority of the PPO agent in optimizing crop

management strategies.

Overall, the project has not only met but exceeded expectations, showcasing the potential of

AI-driven solutions in revolutionizing agricultural practices and crop management strategies.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 54

Chapter 7

Conclusion & Recommendation

Conclusion

The project embarked on a journey to revolutionize agricultural practices through the

integration of AI-driven solutions with farming environments. By addressing key

challenges such as limited accessibility to AI tools and the need for optimized crop

management strategies, significant strides were made towards democratizing advanced

technologies in farming.

The development of a user-friendly API for SWATGym opens doors for a wide range of

users, from researchers to farmers, to harness the power of AI models in optimizing crop

growth. Leveraging reinforcement learning techniques such as Proximal Policy Optimization

(PPO), the project successfully created an AI agent capable of intelligently interacting with

farming environments, suggesting optimal actions like fertilizer and irrigation amounts.

Moreover, the integration of an external weather API enriched the simulation

environment, providing real-time weather data crucial for accurate and relevant simulations.

This addition not only improved the accuracy of the AI model's recommendations but also

facilitated informed decision-making based on current weather conditions.

Recommendation

Consider importing a more reliable and up-to-date weather API to address the delays

experienced with the current weather API. Timely and accurate weather information is crucial

for effective simulations and decision-making in agricultural management. By ensuring the

availability of real-time weather data, users can make more informed decisions regarding crop

management strategies.

Expand the range of plant types within the environment beyond solely focusing on corn.

Incorporating a variety of plant types caters to a broader user base, including farmers and

researchers working with different crops. This diversification not only increases the platform's

utility but also promotes innovation and exploration of optimized growth strategies for various

agricultural products.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 55

Conduct thorough testing and experimentation with a range of reinforcement learning

agents to enhance the platform's functionality. Offering users a selection of agents enables

them to choose models that align best with their specific needs and preferences. This approach

not only improves user satisfaction but also provides valuable insights into the performance

and applicability of different AI models across diverse plant types and environmental

conditions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 56

REFERENCES
[1] H. M. Yassine, K. Roufaida, V. P. Shkodyrev, M. Abdelhak, L. Zarour, and R. Khaled,

“Intelligent Farm Based on Deep Reinforcement Learning for optimal control,” 2022

International Symposium on iNnovative Informatics of Biskra, ISNIB 2022, Dec. 2022, doi:

10.1109/ISNIB57382.2022.10076088.

[2] G. Ene, “A Reinforcement Learning Approach for Smart Farming,” Database Systems

Journal, vol. X/2019, p. 3, 2019, Accessed: Sep. 07, 2023. [Online]. Available:

https://dbjournal.ro/archive/30/30_1.pdf

[3] J. Binas, L. Luginbuehl, and Y. Bengio, “Reinforcement Learning for Sustainable

Agriculture,” 2019, Accessed: Sep. 07, 2023. [Online]. Available: https://s3.us-east-

1.amazonaws.com/climate-change-ai/papers/icml2019/32/paper.pdf

[4] M. Madondo et al., “A SWAT-based Reinforcement Learning Framework for Crop

Management,” 2023, Accessed: Sep. 07, 2023. [Online]. Available: www.aaai.org

[5] M. Turchetta ETH Zurich Zurich et al., “Learning Long-Term Crop Management Strategies

with CyclesGym,” Sep. 2022, Accessed: Sep. 07, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/2022/file/4a22ceafe2dd6e0d32df1f7c0a69ab

68-Paper-Datasets_and_Benchmarks.pdf

[6] H. Overweg, H. N. C. Berghuijs, and I. N. Athanasiadis, “CROPGYM: A

REINFORCEMENT LEARNING ENVIRON-MENT FOR CROP MANAGEMENT,” Apr.

2021, Accessed: Sep. 07, 2023. [Online]. Available: https://github.com/BigDataWUR/crop-

gym

[7] O.-A. Maillard, T. Mathieu, and D. Basú Basú, “Farm-gym: A modular reinforcement

learning platform for stochastic agronomic games,” Jan. 2023, Accessed: Sep. 07, 2023.

[Online]. Available: https://openreview.net/pdf?id=Ev4NOEeTYL

[8] “Smart Farming Cycle and Benefits.” Accessed: Sep. 07, 2023. [Online]. Available:

https://bsb-smartfarming.com/tpost/b3b1igjma1-smart-farming-cycle-and-benefits

[9] “RL introduction: simple actor-critic for continuous actions | by Andy Steinbach | Medium.”

Accessed: Sep. 07, 2023. [Online]. Available: https://medium.com/@asteinbach/rl-

introduction-simple-actor-critic-for-continuous-actions-4e22afb712

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy

Optimization Algorithms,” Jul. 2017, Accessed: Apr. 24, 2024. [Online]. Available:

http://arxiv.org/abs/1707.06347

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 57

[11] N. Barhate, “Minimal PyTorch Implementation of Proximal Policy Optimization,” GitHub.

Accessed: Apr. 24, 2024. [Online]. Available: https://github.com/nikhilbarhate99/PPO-

PyTorch

[12] P. Zippenfenig, “Open-Meteo.com Weather API.” doi: 10.5281/zenodo.7970649.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

 FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 2

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Training on the DDPG Agent that use in Project 1.

2. WORK TO BE DONE

- Find the cause that cause DDPG Agent to return Action (0, 0)

- Find another Agent to replace DDPG Agent

- Test integration of API with SWATGym and Agent.

3. PROBLEMS ENCOUNTERED

- DDPG Agent return action (0, 0) for all the timestep in each training

epoch.

4. SELF EVALUATION OF THE PROGRESS

- Do not familiar to the architecture of DDPG Agent. Training of DDPG

Agent took a lot of time.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 4

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Research on new Agent, PPO

- Tested PPO Agent on the SWATGym

- Changed training reward function while training the Agent

2. WORK TO BE DONE

- Find new resource to overcome no weather data issue

- Integrate the PPO model to the API

3. PROBLEMS ENCOUNTERED

- Simulation cannot proceed with current date.

4. SELF EVALUATION OF THE PROGRESS

- After the modification in reward function, the PPO Agent able to return

better results

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 6

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Train PPO Agent

- Write API for SWATGym simulator

2. WORK TO BE DONE

- Find external API

3. PROBLEMS ENCOUNTERED

- PPO take a lot of time to train

4. SELF EVALUATION OF THE PROGRESS

- A lot of time is needed to train PPO Agent, but manage to study some

ways to implement API using Python Flask while waiting for the result.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 8

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Found new weather API to replace existing weather data in SWATGym

2. WORK TO BE DONE

- Integrating the new weather API with PPO Agent for user that looking

for current action recommendation.

3. PROBLEMS ENCOUNTERED

- The API still have some delay for weather data for current date, and

some information that is required is not provided.

4. SELF EVALUATION OF THE PROGRESS

- Take a lot of time to understand the weather information in SWATGym

and find the information that is needed to replace.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Type text here

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 10

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Integrating the external weather API to the fully trained RACKY API

PPO Agent

- Calculated all the weather information that is not provided by external

weather API

2. WORK TO BE DONE

- Prepare showcase for both RACKY API and RACKY PPO Agent API

3. PROBLEMS ENCOUNTERED

- Some weather information is not provided by the new external weather

API and there are some delays for some data

4. SELF EVALUATION OF THE PROGRESS

- Found alternative to replace the current weather information.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 12

Student Name & ID: Tan Carlton 2001512

Supervisor: Dr Ooi Boon Yaik

Project Title: Precision Agriculture for corn using Reinforcement Learning

1. WORK DONE

- Finalizing the report

- Posted the RACKY API and RACKY PPO Agent API to the website

2. WORK TO BE DONE

- Complete the FYP report and poster

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

- The project objective is achieved and prepare to send the report for

marking.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 65

Plagiarism Check Result

tanca
Stamp

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 66

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

 TAN CARLTON

ID Number(s) 20ACB01512

Programme / Course Bachelor of Computer Science

Title of Final Year Project Precision Agriculture for corn using Reinforcement Learning

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

 %

 %

Overall similarity index: _9__

Similarity by source
Internet Sources: _______7_____%
Publications: ___3______
Student Papers: _____5___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor Signature of Co-Supervisor

Name: __________________________ Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

boonyaik
Typewriter
Dr. Ooi Boon Yaik

boonyaik
Typewriter
25/4/2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 67

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB01512

Student Name Tan Carlton

Supervisor Name Dr Ooi Boon Yaik

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

/ Title Page

/ Signed Report Status Declaration Form

/ Signed FYP Thesis Submission Form

/ Signed form of the Declaration of Originality

/ Acknowledgement

/ Abstract

/ Table of Contents

/ List of Figures (if applicable)

/ List of Tables (if applicable)

/ List of Symbols (if applicable)

/ List of Abbreviations (if applicable)

/ Chapters / Content

/ Bibliography (or References)

/ All references in bibliography are cited in the thesis, especially in the chapter
of literature review

Appendices (if applicable)

/ Weekly Log

/ Poster

/ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

/ I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 24/04/2024

