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ABSTRACT 

 

Generative Adversarial Networks (GANs) have emerged as a powerful framework for 

generating realistic and diverse data, including images. This project aims to provide a 

comprehensive understanding of GANs and their applications in anime face generation. 

Through theoretical investigation, practical implementation, and empirical analysis, the project 

explores the working principles of GANs, including their architecture, training dynamics, and 

variants. The focus is on prominent GAN architectures such as Deep Convolutional GANs 

(DCGAN), CycleGAN, and Spectral Normalization GAN (SNGAN).  

 

The project conducts a thorough performance analysis of these GAN architectures in anime 

face generation tasks. This involves collecting and preprocessing anime face datasets, training 

GAN models, and evaluating their performance using quantitative metrics. The quality and 

diversity of generated anime face images are analyzed using FID and IS score. Furthermore, a 

comparative analysis of DCGAN, CycleGAN, and SNGAN is conducted to identify their 

strengths and weaknesses. This comparative study provides insights into the suitability of 

different GAN architectures for anime face generation applications. The project aims to 

contribute to the advancement of knowledge in the field of GANs. 
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Chapter 1 

Introduction 

The GANs, having both a generator (G) and a discriminator (D), operate in a feedback loop to 

make and evaluate data. The main purpose of a generator is to create fake data that is as realistic 

as possible. It does this by trying to generate realistic images from a noise input. In contrast, 

the discriminator's job is to distinguish between real and generated data. As the generator 

creates increasingly convincing data, the discriminator continually refines its ability to 

differentiate between real and fake data. This ongoing process ensures that both networks 

enhance their performance over time.  

 

 

1.1 Problem Statement and Motivation 

Problem Statement 

GAN is a new technology. The complexity of GANs and their training dynamics pose a 

significant challenge to researchers seeking to comprehend their underlying principles. 

Without a comprehensive understanding of how GANs operate, it becomes difficult to optimize 

their performance or troubleshoot issues that may arise during training. Consequently, there is 

a pressing need to delve deeper into the theoretical foundations of GANs, exploring their core 

components, training mechanisms, and architectural variations to facilitate more effective 

utilization in anime face generation tasks. 

 

Despite the widespread adoption of GANs for anime face generation, there exists a lack of 

systematic performance analysis of different GAN architectures in this domain. Evaluating the 

quality and diversity of generated anime face images requires the establishment of robust 

performance metrics. By conducting a comprehensive performance analysis, researchers can 

gain insights into the strengths and limitations of various GAN models, enabling informed 

decision-making regarding their applicability and suitability for specific anime face generation 

tasks. 

 

With the proliferation of GAN architectures tailored for anime face generation, researchers 

face the challenge of selecting the most suitable model for their specific requirements. 

However, conducting a meaningful comparison between different GAN architectures requires 
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rigorous evaluation and comparative analysis. By comparing the performance of GANs, 

researchers can identify the relative advantages and disadvantages of each model, thereby 

guiding future research efforts and practical applications in anime face generation. 

 

Motivation 

In the rapidly evolving world of digital design and animation, there exists a pressing issue that 

both amateurs and professionals facing with - creating unique, high-resolution characters that 

captivate the audience. As industries, especially the gaming and entertainment sectors, 

constantly evolve, so do their demands for complex, novel characters. Researchers like [1] and 

[2] have shown how GANs have become torchbearers in this field, providing automated 

solutions that are both unique and thematically resonant. Unique character design is not just a 

matter of artistic achievement. It's an economic necessity. Successful character design can lead 

to brand recognition, merchandise opportunities, and sequels or spin-offs. Conversely, poorly 

designed characters can make content unrelatable or forgettable, leading to losses and missed 

opportunities.  

 

 

1.2  Objectives 

This study aims to: 

Understanding the Working Principles of Generative Adversarial Networks (GANs):  

This objective focuses on gaining a comprehensive understanding of the underlying principles 

and mechanisms of Generative Adversarial Networks (GANs). Through literature review, 

experimentation, and hands-on implementation, the project aims to elucidate the core 

components, training dynamics, and architectural variations of GANs. By delving into the 

theoretical foundations and practical applications, the objective seeks to establish a solid 

foundation for analyzing and evaluating the performance of GANs in anime face generation 

tasks. 

 

Performance Analysis of GANs in Anime Face Generation:  

This objective entails a detailed analysis of the performance of Generative Adversarial 

Networks (GANs) specifically applied to the task of anime face generation. Through qualitative 

and quantitative evaluation, the project aims to assess the quality and diversity of generated 

anime face images produced by different GAN architectures, including DCGAN, CycleGAN, 
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and SNGAN. The analysis will involve examining key performance metrics, such as FID score, 

IS score and loss to gain insights into the strengths and limitations of each GAN model. 

 

Comparative Analysis of Generative Models: 

A comprehensive objective includes conducting a comparative analysis of DCGAN, 

CycleGAN, and StarGAN to understand their strengths and weaknesses. This comparative 

study aims to provide insights into the unique features of each model and identify scenarios 

where one model might outperform the others. The goal is to find out the most suitable model 

for a specific image generation task.  

 

 

1.3  Project Scope and Direction  

This project aims to delve deep into the working principles of Generative Adversarial Networks 

(GANs) by conducting a thorough investigation of their theoretical foundations. The focus will 

be on understanding the architecture, training dynamics, and loss functions inherent to GANs. 

Through implementation and experimentation using Python and deep learning frameworks like 

PyTorch, the project seeks to gain practical insights into the workings of GAN models. 

Furthermore, a comprehensive literature review will be conducted to synthesize existing 

research on GANs, providing valuable insights into their underlying principles. 

 

In the realm of anime face generation, this project will focus on analyzing the performance of 

various GAN architectures. This involves collecting and preprocessing anime face datasets to 

ensure diversity and quality in the training data. Multiple GAN architectures will then be 

trained on these datasets, and their performance will be evaluated using quantitative metrics. 

The goal is to analyze the quality and diversity of generated anime face images produced by 

different GAN architectures.  

 

A key aspect of this project is the comparative analysis of DCGAN, CycleGAN, and SNGAN. 

By comparing the performance of these GAN models, insights into their strengths and 

weaknesses will be identified. This comparative study will provide valuable insights into the 

suitability of different GAN architectures for specific anime face generation applications. 

Ultimately, the project aims to contribute to the advancement of knowledge in the field of 
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GANs and their applications in anime face generation through rigorous analysis and 

experimentation. 

 

1.4  Contributions 

This project contributes to the theoretical understanding of GANs by exploring their 

foundational principles, architectural variations, and training dynamics. Through an in-depth 

literature review and practical experimentation, the project provides insights into the inner 

workings of GANs, shedding light on their mechanisms for generating realistic images. The 

project also offers a comprehensive analysis of GAN performance specifically in the context 

of anime face generation tasks. By empirically evaluating multiple GAN architectures, 

including DCGAN, CycleGAN, and SNGAN, the project assesses the quality and diversity of 

generated anime face images. This analysis provides valuable insights into the strengths and 

weaknesses of different GAN models for anime face synthesis. 

 

A significant contribution of this project lies in its comparative analysis of prominent GAN 

architectures, highlighting their distinct characteristics and performance profiles. By 

systematically comparing DCGAN, CycleGAN, and SNGAN, the project identifies the relative 

advantages and limitations of each model in generating anime face images. This comparative 

study aids researchers in selecting the most suitable GAN architecture for specific anime face 

generation applications. 

 

The insights generated from this project have implications for both research and practical 

applications in the field of generative modeling and anime face generation. Researchers can 

leverage the findings to deepen their understanding of GANs and explore novel approaches for 

improving anime face synthesis. Practitioners in industries such as character design, animation, 

and virtual content creation can benefit from the recommendations provided for selecting GAN 

models to suit their specific needs. 
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1.5  Report Organization 

The report organization for the project is structured to provide a comprehensive understanding 

of the research conducted on Generative Adversarial Networks (GANs) in the context of anime 

face generation. Chapter 1, the Introduction, sets the stage by outlining the problem statement 

and motivation behind the research. It also presents the objectives, project scope, contributions, 

and an overview of the report organization to provide a roadmap for the reader. Chapter 2, the 

Literature Review, delves into existing research and literature on GANs, focusing on their 

principles, architectures, and applications in image generation tasks, with a specific emphasis 

on anime face generation. Chapter 3, the System Model, introduces the design and structure of 

the GAN-based anime face generation system. It includes system design diagrams, equations, 

and descriptions of system architecture, use cases, and activities. Chapter 4, the System Design, 

elaborates on the technical aspects of the system, including block diagrams, component 

specifications, component designs, and interactions between system components, providing a 

detailed insight into the system's construction. Chapter 5, Experiment/Simulation, details the 

experimental setup and execution of the GAN models for anime face generation. It covers 

hardware and software setup, configuration, system operation, implementation challenges, and 

concluding remarks on the experimental process. Chapter 6, System Evaluation and 

Discussion, evaluates the performance of the GAN models through testing, performance 

metrics, testing setups, results, challenges encountered during the project, objective evaluation, 

and concluding remarks. Chapter 7, Conclusion and Recommendation, concludes the report by 

summarizing the findings, drawing conclusions based on the research outcomes, and providing 

recommendations for future research directions or improvements to the GAN-based anime face 

generation system. 
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Chapter 2 

Literature Review 

2.1  Previous works on DCGAN 

Based on [4], DCGAN, or Deep Convolutional Generative Adversarial Network, represents a 

significant advancement in the realm of Generative Adversarial Networks (GANs) by 

incorporating Convolutional Neural Networks (CNNs). In contrast to traditional GANs, both 

the discriminator and generator in DCGAN employ CNNs instead of the typical multilayer 

perceptrons. As the name suggests, DCGAN introduces a deep convolutional architecture into 

the GAN framework. The key distinguishing feature is the utilization of convolutional layers 

without the inclusion of maximum pooling or fully connected layers. This architecture relies 

on the synergy between convolutional strides and transpose operations for down-sampling and 

up-sampling, respectively. 

 

Figure 2.1.1: DCGAN model’s framework 

 

By integrating CNNs, DCGAN enhances the ability of the generator and discriminator to 

understand spatial hierarchies and capture complex patterns in the data. This not only 

contributes to the generation of more realistic and detailed images but also improves feature 

extraction in the discriminator. The absence of dense layers and the emphasis on convolutional 

operations make DCGAN particularly suitable for image-related tasks, providing a powerful 

framework for generating high-quality images through adversarial training. 
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In the PyTorch implementation, ReLU activation is used in the generator, employing Tanh for 

output, while the discriminator utilizes LeakyReLU activation for all layers. The DCGAN 

framework utilizes TensorFlow's convolution function to process data into a low-dimensional 

matrix for the discriminator's authenticity comparison. The decov function expands this matrix 

to a high-dimensional form, helping the generator in image generation. Defined functions like 

conv2D and deconv2d encapsulate these convolutional neural network processes. 

During DCGAN training, the generative model aims to fool the discriminant model, while the 

discriminative model attempts to accurately distinguish between generated and real images. 

This adversarial training promotes a dynamic interplay between the two models, with the ideal 

result being that the generated images achieve a mixture of realism and falseness (D(G(z)) = 

0.5). 

 

The discriminator is constructed as a forward convolutional neural network, while the generator 

maps the latent space vector (z) to the data space through a series of 2D convolutional 

transposed layers. The DCGAN paper emphasizes the use of stride convolution instead of 

pooling for down-sampling to improve the network's ability to learn its pooling function. Batch 

normalization and the LeakyReLU functions promote healthy gradient flow, which is crucial 

for effective learning in both the generator and discriminator. 

The generator's structure is similar to the discriminator's but uses a deconvolution function to 

reverse the convolution results, generating images from randomly generated noise (Z). The 

symmetry in the number of convolution and deconvolution layers ensures the similarity of the 

resulting images. 

 

In the process of collecting animation images from the Internet, approximately 50,000 images 

were collected using web crawlers and zip downloads. However, due to the complexity of the 

data, some images contain multiple faces, some images contain landscapes without characters, 

and some displaying characters at unusual angles, so preprocessing was required. The images 

were first combined into a consistent JPG format to ensure uniformity of input data. A facial 

recognition program, sourced from GitHub, was then used to identify and isolate faces in each 

image. This process resulted in more than 20,000 full-face animation images. 

 

To normalize the data for convolutional neural network (CNN) operations, all images were 

resized to 96x96 pixels using a facial recognition program. The goal was to improve the 
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consistency of image vectorization for the same number of layers in the CNN. All experiments 

were conducted on a computer with a 3.6GHz Intel Core i9-9900K processor and 16GB RAM, 

running the Windows 10 operating system. Data preprocessing was implemented using Python 

3.6.2. 

 

The model's performance was evaluated using the Inception Score (IS), a metric that evaluates 

the clarity and diversity of generated images. In this case, Inception Net-V3 (the third version 

of the Inception Net) was used for calculating the IS. Inception Net is a picture classification 

network trained on the ImageNet database, containing 1.2 million RGB images across 1000 

categories. The IS formula involves calculating the Kullback-Leibler (KL) divergence of 

conditional probability distributions. Specifically, it measures the distance between the 

predicted distribution and the true distribution of the main objects in the generated image. The 

IS equation is given by: 

 

Figure 2.1.2: IS equation. 

 

where (x) represents a generated picture, (y) represents the main object in the picture, (Pg) is 

the generator's distribution, and (DKL) is the Kullback-Leibler divergence. A higher IS indicates 

greater diversity and clarity in the generated images. 
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2.2 Previous work on SNGAN 

Generative Adversarial Networks (GANs) have emerged as a powerful framework for 

generating realistic data across various domains. However, stabilizing the training of GANs 

remains a significant challenge, prompting researchers to explore various techniques to 

enhance their performance and reliability. 

 

Several approaches have been proposed to stabilize GAN training. Wasserstein GAN (WGAN) 

[22] introduced the Wasserstein distance to mitigate mode collapse and instability issues by 

enforcing a Lipschitz constraint on the discriminator. However, WGAN relied on weight 

clipping, leading to suboptimal results due to overly constrained discriminator weights. 

 

To address this limitation, WGAN-GP introduced gradient penalty, which penalizes the norm 

of the discriminator's gradients with respect to interpolated samples. While effective, WGAN-

GP's performance can be sensitive to hyperparameters and suffer from gradient penalty 

instability during training. 

 

Figure 2.2.1: WGAN and SNGAN 
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Spectral Normalization (SN) emerged as a promising technique to stabilize GAN training by 

enforcing Lipschitz constraints on the discriminator. [3] SN achieves this by bounding the 

spectral norm of weight matrices in the discriminator, leading to more stable and robust training 

dynamics. SN has been shown to improve the quality and diversity of generated samples across 

various datasets. 

 

Spectral Normalization GAN (SNGAN) builds upon SN to further enhance stability and 

performance in GAN training. By applying spectral normalization to the discriminator, 

SNGAN ensures Lipschitz continuity, leading to improved convergence properties and 

generation quality. SNGAN has demonstrated superior performance compared to previous 

GAN variants, especially in scenarios where mode collapse and training instability are 

prevalent. 

 

While SN and SNGAN have shown promising results, challenges remain in optimizing GANs 

for diverse datasets and tasks. The impact of architectural choices, loss functions, and 

hyperparameters on training stability and sample quality requires further investigation. 

Additionally, the scalability of SN and SNGAN to large-scale datasets and complex modalities 

warrants attention. 

 

In light of the existing challenges, the proposed method introduces L2 norm regularization in 

the generator to complement spectral normalization in the discriminator. By directly 

minimizing the Euclidean distance between generated and real data, the proposed approach 

aims to improve stability and quality in GAN training. Initial experiments on CIFAR-10 and 

STL-10 datasets demonstrate promising results, highlighting the potential of the proposed 

method in addressing stability issues and enhancing sample quality in GANs. 

 

Future research directions may include theoretical analyses of Lipschitz constraints and 

regularization techniques in GANs, as well as empirical evaluations on larger datasets and 

diverse modalities. Furthermore, exploring the interaction between spectral normalization and 

additional regularization methods could provide insights into further enhancing GAN training 

stability and sample quality. 
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2.3 Previous work on CycleGAN 

The Cycle-Consistent Adversarial Network or CycleGAN is an unsupervised learning method 

that incorporates a cycle consistency loss function within the framework of GANs. The main 

objective of CycleGAN is image-to-image translation between two sample spaces, X and Y, 

with an underlying relationship. [6] The generator (denoted as G) transforms samples from X 

to Y, while a discriminator, Dᵤ, distinguishes between generated and real images in domain Y. 

Similarly, there is a mapping function F that converts samples in Y back to X, and a 

discriminator Dᵧ for domain X. 

The adversarial loss functions for G and F are defined as: 

 

Figure 2.3.1: Adversarial loss functions for G 

 

 

Figure 2.3.2: Adversarial loss functions for F 

 

Additionally, the cycle consistency loss is introduced to ensure that the mappings are cycle-

consistent, meaning that every image in domain X can be reversed to the original image after 

the translation cycle. The cycle-consistency loss function is defined as: 

 

Figure 2.3.3: Cycle-consistency loss function 

 

Here, the L1 norm is employed to calculate the cycle-consistency loss. The overall loss 

function, combining adversarial and cycle-consistency components, is given by: 

 

Figure 2.3.4: Overall loss function 
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Where λ is a weight parameter. This comprehensive loss function guides the training process 

of CycleGAN to achieve meaningful and reversible mappings between the two domains. The 

incorporation of cycle consistency helps to the robustness and quality of the generated images. 

In this paper, the architecture of the generator network in CycleGAN consists of several 

components: 

• Convolution with ReLU Activation: The network starts with a convolutional layer 

using Rectified Linear Unit (ReLU) activation. ReLU is a popular activation function 

known for introducing non-linearity in neural networks. 

• Two Down-sampling Blocks: These blocks are responsible for reducing the spatial 

dimensions of the input images from 128 x 128 to 256 x 256. Down-sampling usually 

involves operations such as convolution and pooling to decrease the resolution of the 

image. 

• Six Residual Blocks: Residual blocks are a key component in deep neural networks, 

contribute to the learning of identity mappings and aiding in the convergence of the 

training process. In this case, six residual blocks are employed, each contributing to the 

transformation of 256 x 256 images. The decision to use six residual blocks instead of 

nine is influenced by the input image size of 128 x 128 in this particular project. 

• Two Up-sampling Blocks: These blocks are designed to increase the spatial dimensions 

of the images, taking them from 128 x 128 back to 64 x 64. Up-sampling typically 

involves operations like transposed convolution to increase the resolution of the image. 

• Convolution with Hyperbolic Tangent (tanh) Activation: The last layer of the generator 

applies a convolution operation with a hyperbolic tangent (tanh) activation function. 

Tanh is commonly used for the final layer of a generator in GANs to produce pixel 

values in the range [-1, 1]. 

 

For the discriminator in CycleGAN, a 70 x 70 PatchGAN architecture is used. PatchGAN is a 

variant of the discriminator that classifies images by dividing them into smaller patches. The 

output of a regular GAN discriminator is a single scalar, while PatchGAN outputs an N x N 

array of values, where each value corresponds to a patch of the input image. This approach 

allows the discriminator to assess the realism of local patches, providing more detailed 

feedback to the generator during training. 

A. Baseline Model Selection: 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    13 
 

Baseline models serve as a reference to evaluate the performance of the trained model. In this 

context, the UNsupervised Image-to-Image Translation (UNIT) is introduced as a baseline 

model for comparison with CycleGAN. The goal is to evaluate whether CycleGAN performs 

better than UNIT. An experiment is carried out, as shown in Figure 2.3.5, provides visual 

results comparing the original input to UNIT with the corresponding transformed anime face 

images. 

 

Figure 2.3.5: Example of result of UNIT 

 

B. Batch Size: 

The batch size is a critical parameter in machine learning, influencing the generalization 

performance of the model. Larger batch sizes contribute to stability and faster convergence but 

might impact performance. This experiment shows that increasing the batch size enhances 

model stability and accelerates training speed. Notably, situations such as model crashes (all 

outputs are the same) become less frequent. Figure 2.3.6 illustrates the impact of varying batch 

sizes. 

 

Figure 2.3.6: Examples of CycleGAN outputs when model crashed. 

 

C. Optimizer Selection: 

Deep learning optimizers can be broadly categorized as adaptive (e.g., Adam) and acceleration-

based (e.g., Stochastic Gradient Descent with momentum). The default choice for complex 

models like GANs is often an adaptive optimizer due to their stability. An experiment is 

conducted with the use of Stochastic Gradient Descent (SGD) optimizer with momentum (0.9) 

instead of the Adam optimizer in CycleGAN. Results, presented in Figure 2.3.7, showcases the 

result of this optimizer selection experiment. 
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Figure 2.3.7: Result of using SGD optimizer with momentum = 0.9 in CycleGAN 

 

D. Analysis of Experiments: 

Many measures have been proposed to objectively evaluate GANs, but there is still no 

consensus on a measure that comprehensively captures the strengths and weaknesses of GANs. 

As visual examination by humans remains one of the most intuitive ways to evaluate GANs, 

this research utilizes qualitative analysis to assess the results of each experiment. 

Effect of Background and Items: 

Through comparing the 3 models, it is evident that both UNIT and CycleGAN can be 

influenced by background or other items, such as crowns or hats. For example, in Figure 2.3.8, 

UNIT mistakenly interprets the blue background as the hair color, generating an anime 

character with blue hair. Similarly, in Figure 2.3.9, CycleGAN maps the color of the wall to 

the hair of the corresponding anime character.  

 

Figure 2.3.8: The blue color background is misinterpreted as hair 

 

 

Figure 2.3.9: Color of the wall is mapped to the hair of character 
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Performance on Side Faces: 

Due to a lack of sufficient side images in both datasets, both UNIT and CycleGAN perform 

poorly in generating side faces. In some images, UNIT fails to generate approximate facial 

features like the mouth. In the Figure 2.3.10, CycleGAN with a batch size of 16 has difficulty 

generating facial contours. However, CycleGAN using the SGD optimizer demonstrates 

relatively good performance in accurately displaying facial features, contours, and hair. 

 

Figure 2.3.10: CycleGAN unable to generate facial contours 

 

Comparative Analysis: 

In conclusion, UNIT is good at learning facial features in frontal anime images through 

encoding and decoding in a shared latent space. CycleGAN, utilizing two discriminators and 

cycle consistency, learns facial features well and produces more natural facial combinations 

compared to UNIT. Thus, CycleGAN consistently outperforms the baseline model. 

Comparisons between CycleGAN Variants: 

Figure 2.3.11 provides a comparison between two CycleGAN variants with different 

parameters. Randomly selecting four pictures as input for CycleGAN with a batch size of 16 

and CycleGAN using the SGD optimizer with momentum, and their results are visually 

compared. The observation shows that CycleGAN using SGD optimizer with momentum 

generates corresponding anime faces more effectively. In contrast, CycleGAN with batch size 

16 only captures the facial contour, resulting in blurred facial features. Furthermore, pictures 

generated by CycleGAN using SGD optimizer with momentum appear more natural and have 

less distortion compared to CycleGAN with batch size 16. 
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Figure 2.3.11: Comparisons between the two CycleGANs 
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Chapter 3 

System Model 

3.1  System Design Diagram/Equation 

 

Figure 3.1.1: System Design Diagram 

 

DCGAN[5] and SNGAN[7] have the same equation: 

 

Figure 3.1.2: DCGAN and SNGAN Equation 
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CycleGAN [6]: 

 

Figure 3.1.3: Overall loss function 

 

Where:  

 

Figure 3.1.4: Adversarial loss functions for G 

 

 

Figure 3.1.5: Adversarial loss functions for F 

 

 

Figure 3.1.6: Cycle-consistency loss function 

 

λ is a weight parameter. 
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3.1.1 System Architecture Diagram 

Deconvolution in Generator[8]: Deconvolution, also known as transpose convolution or 

upsampling, is used in the Generator to increase the spatial resolution of feature maps. It 

involves reversing the process of convolution by applying learnable filters to upsample the 

feature maps. Deconvolution layers expand the spatial dimensions of feature maps, allowing 

the Generator to generate higher-resolution images from low-dimensional noise vectors. 

 

Convolution in Discriminator[8]: In the Discriminator network, convolutional layers are 

employed to process both real and generated images. These layers extract features from input 

images and downsample them into lower-dimensional representations. Convolution operations 

help the Discriminator distinguish between real and fake images by capturing discriminative 

features such as edges, textures, and shapes. 

 

DCGAN: There are only one Generator and one discriminator in DCGAN. 

 

Figure 3.1.1.1: System Architecture Diagram of DCGAN 
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SNGAN: There are only one Generator and one discriminator in SNGAN. 

 

Figure 3.1.1.2: System Architecture Diagram of SNGAN 

 

CycleGAN: There are two generators (GXY, GYX) and two discriminators (DX, DY) in 

CycleGAN. 

 

Figure 3.1.1.3: System Architecture Diagram of CycleGAN 
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3.1.2 Use Case Diagram and Description 

 

Figure 3.1.2.1: Use Case Diagram  

 

1. Load dataset: Import the dataset containing images that will be used to train the GAN. This 

dataset should be representative of the type of images the GAN will generate. For cycleGAN, 

two datasets will be loaded. 

 

2. Provide input parameters: Define parameters such as batch size, image size, number of 

channels, latent space dimension, number of epochs, learning rate, and other hyperparameters 

necessary for training the GAN. 

 

3. Preprocess Image: Preprocess the images in the dataset to ensure uniformity and 

compatibility with the GAN architecture. Preprocessing steps include resizing, normalization, 

and transformation to tensor format. 

 

4. Define Generator and Discriminator: Create the Generator and Discriminator neural network 

architectures. The Generator generates fake images from random noise, while the 

Discriminator evaluates the authenticity of generated images compared to real ones. 

 

5. Define optimizer and loss function: Choose appropriate optimizer (In this case, Adam 

optimizer is used) for both the Generator and Discriminator networks. Define the loss function 
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(In this case, Binary Cross-Entropy Loss) used to train the GAN, where the Generator aims to 

minimize this loss while fooling the Discriminator, and the Discriminator aims to correctly 

classify real and fake images. 

 

6. Train GAN model: Train the GAN model by iterating over the dataset multiple epochs. 

During training, the Generator and Discriminator are updated iteratively to improve their 

performance. The training process involves forward and backward passes, updating network 

weights based on the computed gradients. 

 

7. Generate fake image: Once the GAN is trained, use the Generator network to generate fake 

images from random noise vectors sampled from the latent space. These generated images 

should ideally resemble the images from the training dataset. 

 

8. Evaluate model performance: Assess the performance of the trained GAN using evaluation 

metrics, which are Inception Score and Frechet Inception Distance. 
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3.1.3 Activity Diagram 

DCGAN[9]: 

 

Figure 3.1.3.1: Activity Diagram of DCGAN 

 

SNGAN[10]: 

 

Figure 3.1.3.2: Activity Diagram of SNGAN 

 

 

 

 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    24 
 

CycleGAN[11]: 

 

Figure 3.1.3.3: Activity Diagram of CycleGAN 
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Chapter 4 

System Design 

4.1  System Block Diagram 

 

Figure 4.1.1: System Block Diagram 
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4.2  System Component Specification 

Hardware Component: 

Deep learning models, including GANs, often require significant computational power for 

training, especially when dealing with large datasets and complex architectures. GPUs, with 

their parallel processing capabilities, are commonly used to accelerate the training process by 

performing matrix operations and backpropagation calculations much faster than CPUs. While 

GPUs handle most of the heavy lifting during training, CPUs are still crucial for managing 

overall system operations, coordinating data movement, and handling tasks that are not highly 

parallelizable. CPUs also play a role in preprocessing data, managing memory, and 

orchestrating interactions between different software components. Furthermore, sufficient 

RAM is necessary to store model parameters, intermediate activations, and mini-batches of 

data during training. The amount of memory required depends on the size of the dataset, the 

complexity of the model, and the batch size used during training. 

 

Software Component: 

PyTorch is one of the popular frameworks used for implementing GANs. It offers pre-built 

modules for defining network architectures, loss functions, optimizers, and utilities for data 

loading and preprocessing. Besides, in this project, the ignite library from Pytorch is used to 

calculate IS score by using the pre-built InceptionScore function. 

 

Data Pipeline Component: 

The data pipeline component manages the flow of training data into the GAN system. It 

involves tasks such as data loading, preprocessing and batching to prepare the data for training. 

It utilizes data loading utilities provided by libraries such as PyTorch, which offer 

functionalities for loading image datasets, applying transformations, and creating data loaders 

for efficient training. 

 

Loss Functions Component: 

Generator Loss: Typically the negative of the discriminator's output when fed with generated 

samples. It encourages the generator to produce samples that resemble real data. 

Discriminator Loss: A combination of errors made on real and fake samples. It encourages the 

discriminator to correctly classify real samples as real and fake samples as fake. 
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Cycle-consisten Loss (For CycleGAN): Measures the difference between the original input 

image and the image reconstructed after being translated back and forth between the two 

domains. 

GAN Loss (For CycleGAN): The summation of all previous losses. 

 

Optimizer Component: 

The optimizer updates the parameters of both the generators and discriminators during training, 

typically using the Adam optimizer with a specific learning rate. It minimizes the combined 

loss function of the generators and discriminators. 

 

Generator Component: 

The generator component generates synthetic images by transforming random noise into 

realistic-looking images. It takes random noise vectors as input and produces synthetic images 

that resemble the training data distribution. A generator typically consists of multiple layers of 

transposed convolutional and batch normalization layers, followed by activation functions such 

as ReLU or Tanh. Parameters includes the batch sizes, kernel sizes, activation functions, and 

other architectural hyperparameters. 

 

Discriminator Component: 

The discriminator component distinguishes between real and fake images by classifying them 

as genuine or synthetic. It takes input images (either real or synthetic) and outputs a probability 

score indicating the likelihood of the input being real. A discriminator usually comprises 

multiple convolutional layers followed by batch normalization and leaky ReLU activation 

functions. Similar to the generator, the parameter includes architectural hyperparameters such 

as the batch size, kernel sizes, and activation functions. 

 

Spectral Normalization Component (For SNGAN): 

It is used to Stabilize training in SNGAN by normalizing the spectral norm of weight matrices 

in the discriminator's convolutional layers. It is applied to the weights of convolutional layers 

in the discriminator, typically using the power iteration method to estimate the largest singular 

value. This can help prevent the discriminator from becoming too powerful relative to the 

generator, thereby facilitating more stable training and improving sample quality. 
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Training Loop Component: 

The training loop component orchestrates the training process of the GAN by optimizing the 

generator and discriminator components iteratively. It involves loading training data, feeding 

it through the generator to produce synthetic images, evaluating the discriminator's 

performance, calculating loss functions, and updating the network weights through 

backpropagation. It typically employs the adversarial training algorithm, where the generator 

and discriminator are trained in alternating steps to optimize their respective objectives. 

Parameters include training hyperparameters such as learning rate, batch size, number of 

epochs, and optimizer settings. 

 

Evaluation Component: 

The evaluation component assesses the performance of the trained GAN using quantitative 

metrics and qualitative analysis. It involved calculating metrics such as Inception Score and 

FID to measure the quality and diversity of generated images. It also included visualizations of 

generated images, evaluation metrics over epochs, and comparisons between real and synthetic 

image distributions. 

 

Display Component:  

Real vs Fake Image Comparison: side-by-side comparisons of real and generated images. This 

allows for qualitative assessment of the model's ability to produce realistic outputs that closely 

resemble the ground truth images. 

FID and IS vs Epochs: provides insights into the image generation quality and diversity 

throughout the training process. 
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4.3  Component Design 

DCGAN[13]: 

 

Figure 4.3.1: Component Design of DCGAN 

 

SNGAN: 

 

Figure 4.3.2: Component Design of SNGAN 
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CycleGAN: 

 

Figure 4.3.3: Component Design of CycleGAN 
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4.4  System Component Interaction Operation 

DCGAN[15]: 

 

Figure 4.4.1: Generator of DCGAN 

 

 

Figure 4.4.2: Discriminator of DCGAN 

 

ConvTranspose2d: These layers are crucial in the Generator as they perform the inverse 

operation of convolution. ConvTranspose2d layers upsample input noise vectors into higher-

dimensional feature maps, gradually transforming them into images. They are responsible for 

spatial expansion, allowing the Generator to generate images with higher resolutions. 
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BatchNorm2d: Batch normalization is applied to stabilize and accelerate the training of deep 

neural networks. In the Generator, BatchNorm2d layers are inserted after convolutional 

transpose layers to normalize the activations within each mini-batch. This helps mitigate issues 

like internal covariate shift and enables smoother convergence during training. 

 

ReLU Activation Functions[16]: Rectified Linear Units (ReLU) are used to introduce non-

linearity into the Generator network. ReLU activation functions help the Generator learn 

complex mappings between input noise vectors and image outputs. They are applied after each 

convolutional transpose layer to introduce non-linearities and capture more complex patterns 

in the data. 

 

Figure 4.4.3: ReLU activation 

 

Tanh Activation Function [17]: The Tanh activation function is commonly used in the output 

layer of the Generator. It scales the generated pixel values to the range [-1, 1], aligning with 

the input range of real images. This ensures that the generated images have pixel values similar 

to real images, making them visually realistic. 

 

Figure 4.4.4: Tanh activation 
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Components in the Discriminator: 

Conv2d Convolutional layers in the Discriminator network are used to extract features from 

input images (both real and generated). These layers apply a set of learnable filters to the input 

images, detecting relevant patterns and features that help differentiate between real and fake 

images. 

 

BatchNorm2d: Similar to the Generator, BatchNorm2d layers are used in the Discriminator to 

normalize the activations within each mini-batch. This helps stabilize training and improve 

convergence by reducing internal covariate shift. 

 

Leaky ReLU Activation Functions[20]: Leaky ReLU activation functions are employed in the 

Discriminator to introduce non-linearity. Unlike traditional ReLU, Leaky ReLU allows a small, 

non-zero gradient when the input is negative, preventing the "dying ReLU" problem and 

enabling the Discriminator to learn more robust features. 

 

Figure 4.4.5: Leaky ReLU activation 

 

Sigmoid Activation Function[21]: The Sigmoid activation function is typically used in the 

output layer of the Discriminator. It squashes the discriminator's output logits into the range [0, 

1], representing the probability that an input image is real. This facilitates binary classification, 

with values closer to 1 indicating real images and values closer to 0 indicating fake images. 
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Figure 4.4.6: Sigmoid activation 

 

 

SNGAN: 

 

Figure 4.4.7: Spectral Norm in SNGAN 

 

SNLinear[10]: This component is similar to PyTorch's Linear layer but includes Spectral 

Normalization to stabilize the training of the neural network. It performs a linear transformation 

of the input data, followed by spectral normalization. The spectral normalization ensures that 
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the spectral norm of weight matrices remains constant during training, which helps in 

stabilizing the learning process. 

 

Components in the Generator: 

ConvTranspose2d: This layer performs transposed convolution or deconvolution, which is 

used for upsampling. In the SNGAN generator, it helps in increasing the spatial resolution of 

the feature maps as the input noise vectors are transformed into higher-dimensional feature 

maps, resembling the structure of real images. 

 

BatchNorm2d: Batch normalization is applied after each convolutional layer in the generator 

to stabilize and accelerate the training process. It normalizes the activations of each layer, 

making the optimization process more robust and reducing the likelihood of vanishing or 

exploding gradients. 

 

ReLU: Rectified Linear Unit activation function introduces non-linearity by outputting the 

input directly if it is positive, otherwise, it outputs zero. ReLU is used after each batch 

normalization layer in the generator to introduce non-linearities, allowing the network to learn 

complex mappings from the input noise space to the output image space. 

 

Tanh: The hyperbolic tangent activation function is used in the output layer of the generator to 

squash the pixel values to the range [-1, 1]. Since the real images are typically normalized to 

this range, Tanh ensures that the generated images have similar pixel value distributions, 

making them visually more realistic. 

 

Linear: This layer performs a linear transformation of the input noise vectors to a higher-

dimensional space. In the SNGAN generator, it typically maps low-dimensional noise vectors 

to higher-dimensional feature representations that can be reshaped into 2D feature maps. 

 

Reshape: Reshape layer is used to reshape the output of the linear layer to a 2D shape that can 

be further processed by convolutional layers. It is commonly used in the generator to convert 

the flattened output of the linear layer into 2D feature maps. 
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Components in the Discriminator: 

Conv2d: Convolutional layers are used in the discriminator to extract features from input 

images. These layers convolve input feature maps with learnable filters to detect spatial 

patterns and structures in the images. 

 

BatchNorm2d: Similar to the generator, batch normalization is applied after each convolutional 

layer in the discriminator to stabilize and accelerate training. It helps in normalizing the 

activations and reducing internal covariate shift, making the training process more efficient. 

 

ReLU: Rectified Linear Unit activation function introduces non-linearity after each 

convolutional layer in the discriminator. It helps in capturing complex patterns and features in 

the input images, making the discriminator more discriminative in distinguishing between real 

and fake images. 

 

AvgPool2d: Average pooling layers are used in the discriminator for downsampling the spatial 

dimensions of the feature maps. They compute the average value of each feature map region, 

reducing the spatial resolution while retaining important information about the image. 

 

Identity: Identity function is used in residual blocks to create bypass connections that allow 

gradients to flow directly through the network without any transformation. This helps in 

mitigating the vanishing gradient problem and enables the discriminator to learn more 

efficiently. 

 

AdaptiveAvgPool2d: Adaptive average pooling layers are used to convert variable-sized 

feature maps into fixed-sized representations. They perform spatial averaging to generate 

output feature maps with a predefined size, ensuring that the discriminator can process images 

of different resolutions effectively. 

 

Flatten: Flatten layer is used to convert the multi-dimensional feature maps into a 1D tensor. It 

is typically applied before the fully connected layers in the discriminator to flatten the spatial 

dimensions of the feature maps and feed them into the linear layers for classification. 
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LeakyReLU: Leaky Rectified Linear Unit activation function is similar to ReLU but allows a 

small negative slope for negative input values. It helps in preventing the saturation of neurons 

and encourages the flow of gradients, improving the learning process in the discriminator. 

 

 

CycleGAN: 

 

Figure 4.4.8: Generator of CycleGAN 
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Figure 4.4.9: Discriminator of CycleGAN 

 

Generator Components: 

ReflectionPad2d: This component is used to perform zero-padding on the input tensor. In 

CycleGAN, reflection padding is often used to maintain the spatial dimensions of the feature 

maps during convolution operations. It ensures that the edges of the input image are properly 

handled and prevents artifacts such as checkerboard patterns in the generated images. 

 

Conv2d: Convolutional layers are fundamental components in the generator for feature 

extraction and transformation. They apply filters to the input image to learn hierarchical 

representations, capturing essential features at different spatial scales. These features are 

crucial for transforming the input image from one domain to another, enabling the generation 

of realistic output images. 

 

InstanceNorm2d: Instance normalization is applied to normalize the activations of each layer 

independently. It helps stabilize the training process by reducing internal covariate shift, 

leading to faster convergence and better generalization. In CycleGAN, instance normalization 

ensures that the network can effectively learn domain-specific features without being biased 

by the distribution of input images. 

 

ReLU: Rectified Linear Unit (ReLU) is an activation function used to introduce non-linearity 

into the network. It replaces negative values in the feature maps with zero, effectively capturing 

the positive aspects of the learned features. ReLU activation is applied after convolutional and 
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normalization layers to enable the generator to learn complex mappings between input and 

output images. 

 

Upsample: The upsampling operation increases the spatial dimensions of the feature maps. In 

CycleGAN, upsampling is typically used to enlarge the feature maps before applying 

convolutional layers. It helps recover spatial details lost during downsampling and enables the 

generator to generate high-resolution output images with fine-grained textures. 

 

Tanh: The hyperbolic tangent (Tanh) activation function is applied in the output layer of the 

generator. It squashes the pixel values of the generated images to the range [-1, 1], ensuring 

that the output images have the same range as the input images. Tanh activation helps stabilize 

the training process and produces visually appealing results by preventing pixel intensity 

saturation. 

 

 

Discriminator Components: 

Conv2d: Similar to the generator, convolutional layers in the discriminator are used for feature 

extraction and transformation. They analyze the input images and learn discriminative features 

that distinguish between real and generated images. Convolutional filters in the discriminator 

capture texture, shape, and color information, enabling effective image classification. 

 

LeakyReLU: Leaky Rectified Linear Unit (LeakyReLU) is an activation function used in the 

discriminator to introduce non-linearity. Unlike the standard ReLU function, LeakyReLU 

allows a small, non-zero gradient for negative input values, preventing the issue of "dying" 

neurons. This ensures that the discriminator can effectively learn from both real and generated 

images, improving its robustness and performance. 

 

InstanceNorm2d: Instance normalization is applied in the discriminator to normalize the 

activations of each layer independently, similar to its use in the generator. It helps stabilize the 

training process and improves the discriminator's ability to generalize across different input 

images. 
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ZeroPad2d: Zero-padding is used in the discriminator to maintain the spatial dimensions of the 

feature maps. It ensures that the convolutional operations preserve the spatial information of 

the input images, preventing information loss at the edges. Zero-padding is particularly 

important in the discriminator to maintain consistency in feature extraction across different 

regions of the image. 
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Chapter 5 

Experiment/ Stimulation 

5.1  Hardware Setup 

The hardware utilized in this project is a computer, specifically employed to run the Google 

Chrome, facilitating the utilization of Google Colab for the construction, training, and 

execution of the GAN models. 

 

Table 5.1.1 Specifications of laptop 

Description Specifications 

Model ROG Strix G531GT_G531GT 

Processor Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz   2.40 GHz 

Operating System Windows 11  

Graphic Intel(R) UHD Graphics 630 

Memory 4.00 GB RAM 

Storage 475GB 

 

5.2  Software Setup 

Google Colab is configured for project execution, utilizing its advanced hardware 

accelerators and high-RAM capabilities. Runtime type selected is Python 3. Compute units 

were purchased so more powerful hardware accelerator can be ran. Among the five available 

types of hardware accelerators (CPU, A100 GPU, V100 GPU, T4 GPU and TPU), T4 GPU 

was selected based on its speed and consumption of compute units. The integration of 

advanced hardware accelerators will enhance the speed and performance of the generative 

models, allowing for efficient experimentation and development. Three different generative 

models: DCGAN, CycleGAN and SNGAN will be implemented. The project setup involves 

adapting template Python notebooks for DCGAN from [12]; CycleGAN from [19]; SNGAN 

from [23]. To maximize computational efficiency and accelerate model training, the chosen 

GPU will be employed during the execution of the notebooks in the Google Colab 

environment. Additionally, the platform's integration with Google Drive ensured efficient 

data handling, allowing convenient access to extensive anime image dataset. 
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5.3  Setting and Configuration 

Data Collection 

In this project, anime face dataset from [18] is used. This dataset contains 63,632 high-quality 

anime faces, ensuring diverse and robust training for the GAN model. For DCGAN and 

SCGAN, only the one dataset from [18] is required, while for CycleGAN. The dataset from 

[18] is set as dataset for domain Y (various hair and eye colour) and dataset from [24] is set as 

dataset for domain X (blue hair and blue eye) for training.  

 

Data Loading 

In data loading, the first step involves the mounting of Google Drive, providing access to the 

dataset stored within it. Subsequently, the anime faces dataset is extracted by unzipping the 

relevant files, and then the images in zip files will be extracted to the dataroot. To efficiently 

handle the dataset, the project leverages the PyTorch framework, employing the ImageFolder 

class for loading and preprocessing. This step ensures that the dataset is prepared in a format 

compatible with the subsequent model training and evaluation processes. 

 

Data Preprocessing 

To ensure consistency in the input data, all images undergo a resizing process. The images are 

adjusted to a consistent size of 64 x 64 pixels. The processed and resized images contribute to 

the formation of the training dataset. This dataset becomes the primary input for training the 

GAN models, containing various facial expressions and features present in anime faces. To 

facilitate the flow of data during model training and testing, essential components known as 

dataloaders are generated. Two specific dataloaders are created, which are train dataloader and 

test dataloader. These dataloaders efficiently handle the batching and loading of data, ensuring 

a smooth interaction between the dataset and the GAN models. 

 

Setting Hyperparameter 

All the three GANs are set with same hyperparameter for comparisons purpose.  

Learning Rate: This parameter controls the step size during optimization. A typical value for 

GANs is 0.0002. 

 

Number of Epochs: This is the number of times the entire dataset is passed forward and 

backward through the neural network. Set with 50. 
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Batch Size: It determines the number of samples propagated through the network before the 

parameters are updated. Set with 128 for DCGAN and SNGAN. However, for the CycleGAN, 

I can just follow the sample to set with 5. This is because with higher batch sizes, the memory 

requirements also increase significantly. Each image in the batch consumes memory for both 

forward and backward passes through the network. This can quickly exhaust the available GPU 

memory, leading to out-of-memory errors. Indeed, my CycleGAN faced the out-of memory 

error when I tried to increase the batch size. 

 

Latent Space Dimension: The dimensionality of the latent space or the size of the input noise 

vector. Set as 100. Through experimentation, researchers [27] found that a latent dimension of 

100 often provides a good balance between representational capacity and model complexity. 

It's large enough to capture meaningful variations in the data distribution while not being 

excessively high, which could lead to overfitting or computational inefficiency. 

 

Optimizer Parameters: Hyperparameters related to the optimizer, such as beta1 for Adam 

optimizer's exponential decay rates of moment estimates. Set as 0.5. 

 

Number of Workers for DataLoader (workers): The number of subprocesses to use for data 

loading. Set as 2.  

 

Model Architecture Design 

In this section, the architecture of the generator and discriminator neural networks were 

defined. The G is responsible for transforming random noise into synthetic anime face images. 

The architecture typically contains several layers, including convolutional layers, batch 

normalization, and activation functions. These components work together to learn and generate 

complex features present in anime faces. Details of G's architecture, such as the number of 

layers, filter sizes, and activation functions, are key determinants of its ability to produce 

realistic and diverse images. 

 

On the other side of the adversarial spectrum, the D evaluates the authenticity of generated 

images by distinguishing between real and synthetic samples. The architecture of D involves 

convolutional layers followed by batch normalization and activation functions. The 
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discriminator's design is focused on capturing and classifying key features that differentiate 

between real and generated anime face images. 

 

For DCGAN and SNGAN, only one generator and one discriminator is defined. While for 

CycleGAN, for the purpose of domain-to-domain translation, two generators and two 

discriminators are defined, which are G_XY and G_YX, D_X and D_Y. 

 

G_XY and G_YX: 

G_XY and G_YX are the generators responsible for translating images from domain X to 

domain Y and vice versa, respectively. These generators play a crucial role in the cycle-

consistent adversarial learning framework by enabling the translation of images between two 

domains without requiring paired training data. 

 

D_X and D_Y: 

D_X and D_Y are used to distinguish between real and translated images in domains X and Y, 

respectively. They are trained adversarially against their corresponding generators to improve 

the quality of the generated images and ensure that they are indistinguishable from real images 

in their respective domains. 

 

In the SNGAN, there is an additional layer called SNLinear that required define for performing 

spectral normalization. 

 

Besides, network weights were initialized using a custom weight initialization function. Proper 

weight initialization is essential for stabilizing GAN training and preventing issues like 

vanishing or exploding gradients. A custom weight initialization function (weights_init) is 

employed to initialize the weights of both G and D. This function systematically initializes the 

network weights, contributing to a more effective and stable learning process during training. 

 

The result of this architectural definition and weight initialization process is the generation of 

two key models: the Generator G and the Discriminator D. These models encapsulate the 

learned parameters and architectures, ready to undergo the adversarial training process. The 

generator aims to produce anime face images that can deceive the discriminator, while the 

discriminator aims to accurately classify the authenticity of the generated images. 
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Model Training 

Training is implemented to customarily update the generator and discriminator models 

iteratively. In DCGAN, the adversarial loss is calculated using the BCE Loss function; In 

SNGAN, hinge loss is calculated; In CycleGAN, adversial loss, cycle-consistency loss and 

GAN Loss are calculated, providing the necessary feedback for model updates. The GAN 

undergoes Iterative Training over multiple epochs. Throughout each epoch, the models are 

updated based on the training data and the adversarial loss computed. This iterative process 

allows the GAN to progressively enhance its ability to generate anime face images that closely 

resemble real samples.  

 

Evaluation 

The evaluation process involves the computation of two metrics: the FID and IS. For the FID 

calculation, all the three GANs are using the FID function and InceptionV3 from [25]. While 

the IS score calculation is done with the pre-built InceptionScore function from the Ignite 

library. 
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5.4  System Operation 

Select runtime type and hardware accelerator 

 

Figure 5.4.1: Runtime type and Hardware Accelerator 

 

Import necessary libraries. 

 

Figure 5.4.2: Import Libraries 
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Data Loading: 

Integrated with Google Drive 

 

Figure 5.4.3: Integrated with Google Drive 

 

For DCGAN and SNGAN, only one dataset is loaded 

 

Figure 5.4.4: Dataset loading for DCGAN and SNGAN 

 

For CycleGAN, two datasets are loaded 

 

Figure 5.4.5: Dataset loading for CycleGAN 

 

Data Preprocessing 

 

Figure 5.4.6: Transform for data preprocessing 
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Create the train and test dataloader 

 

Figure 5.4.7: Train and Test Dataloader 

 

Model Initialization: 

Set the input hyperparameter 

 

Figure 5.4.8: Input hyperparameter 
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Weight Initialization 

 

Figure 5.4.9: Weight Initialization 

 

Define the loss function and optimizer 

 

Figure 5.4.10: Define Loss function and Optimizer 

 

Define the discriminator 

 

Figure 5.4.11: Define Discriminator 
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Define the Generator 

 

Figure 5.4.12: Define Generator 

 

For CycleGAN, create the two generators and the two discriminators 

 

Figure 5.4.13: Generators and discriminators in CycleGAN 

 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    51 
 

SNLinear layer in SNGAN 

 

Figure 5.4.14: SNLinear layer in SNGAN 

 

Training Loop: 

Print the progress bar 

 

Figure 5.4.15: Progress Bar 
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Evaluation: 

Perform FID and IS calculation 

 

Figure 5.4.16: FID and IS calculation 

 

Plot the graph of loss 

 

Figure 5.4.17: Loss plotting 

 

Plot the graph of FID and IS vs epochs 

 

Figure 5.4.18: FID and IS plotting 
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Plot the graph of Real vs Fake Image 

 

Figure 5.4.19: Real vs Fake images plotting 
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5.5  Implementation Issues and Challenges 

The implementation of GAN training required large amount of time and high Internet speed. It 

is normal that the system stopped when I ran the GAN training until halfway due to the network 

issue, then I had to rerun the training again although it already ran 2 hours. Furthermore, if 

using the free CPU provided in the system, the system can run but the speed will be much 

slower than using the GPU, that is why I purchased the computing units to use the GPU. Every 

day I restart the system, the system needed to run from beginning. The first-time training of 

GAN is much time consuming compared to you run it again after the training had completed. 

That is why if I want to make a big change on the system, I will empty one-day time to just 

train the GAN, because it is time wasting if I chose to run the first-time training every day.  

 

The next challenge is the GPU memory constraints. Training GANs demands significant 

computational resources, particularly GPU memory. Large datasets or complex network 

architectures exacerbate this challenge. My dataset from [18] is quite large, it comprised over 

60000 images. This made the system ran slow every first time it wanted to load my dataset. 

For my CycleGAN, the system even encountered “run out of memory” error, due to the large 

batch size that I set. Large batch size means the GAN will take more images in one iterations 

for training and the CycleGAN involved more complex architecture than the two other GANs. 

As a result, I had to limit the batch size to 5, mirroring the sample provided. 

 

The selection of evaluation metrics takes a lot of time. Initially, the three GANs are using three 

different kinds of calculation function. For example, DCGAN used the pre-built FID function 

in ignite libraries, CycleGAN used the FID function from [26], and SNGAN used the pre-built 

FID function in Pytorch (Not in ignite). The integration of FID and IS calculation into a GAN 

consumed a lot of time because I faced many problems, such as the matrix problem (the input 

is not as expected), the imaginery component problem (the FID value is too large) and the 

shape problem (input has different shape with inceptionV3 model). I spent long time to 

understand the reasons of these problems to integrate them into my system. Once I had 

successfully integrated them, my supervisor told me that the three GANs should employ the 

same FID and IS function so they can compare with each other. I spent another time to find a 

FID function that can fit all the GANs, and finally I use the FID function from [25] and it 

successfully fit the three GANs.  
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5.6  Conclusion Remark 

In conclusion, Chapter 5 delves into the experimental setup, implementation, and challenges 

encountered during the execution of the project. The hardware setup involved the utilization of 

a laptop equipped with Google Chrome for accessing Google Colab, which provided advanced 

hardware accelerators for model training. Various GAN architectures, including DCGAN, 

CycleGAN, and SNGAN, were implemented and trained using Google Colab, leveraging its 

computational resources and integration with Google Drive for efficient data handling. 

 

The software setup included the configuration of Google Colab with T4 GPU hardware 

accelerators to expedite model training. Data collection involved the use of an anime face 

dataset, while data loading and preprocessing ensured the dataset's compatibility with the 

PyTorch framework. Hyperparameters were carefully selected and set for all GAN 

architectures to ensure consistency and facilitate performance comparison. 

 

Model architecture design and weight initialization were pivotal steps in defining the generator 

and discriminator networks for each GAN architecture. The training process involved iterative 

updates to the models based on adversarial loss calculations, aiming to enhance the GANs' 

ability to generate realistic anime face images. 

 

Evaluation metrics, including FID and IS were computed to assess the performance of the 

trained models. Challenges such as network issues, GPU memory constraints, and selection of 

evaluation metrics were encountered during implementation. Despite these challenges, the 

experimentation and implementation process provided valuable insights into the practical 

aspects of training GANs for anime face generation.  
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Chapter 6 

System Evaluation and Discussion 

6.1  System Testing and Performance Matrix 

Image Quality Evaluation 

can be divided into two types: 

1) Qualitative evaluation involves visualization of generated images to determine 

realism, diversity, and overall quality. 

2) Quantitative evaluation employs metrics such as Inception Score, Frechet Inception 

Distance (FID) to measure image fidelity, diversity, and similarity to real images. 

 

Training Stability 

Evaluate the stability and convergence of the training process. Done through observing loss 

curves for both the generator and discriminator networks to ensure they converge to 

reasonable values without oscillations or divergence. 

 

 

Inception Score Calculation 

 

Figure 6.1.1: Inception Score working 
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Generate Images: Firstly, a set of generated images is produced by the generative model 

being evaluated. These images can be samples from the model's output, typically generated 

from random noise vectors. 

 

Image Classification: Each generated image is fed into a pre-trained Inception model, which 

is typically InceptionV3 or a similar architecture. This model has been trained on a large 

dataset for image classification tasks and has learned to recognize various objects and 

patterns in images. 

 

Calculate Class Probabilities: For each generated image, the Inception model produces a 

probability distribution over the classes it was trained to recognize. This distribution reflects 

the model's confidence in assigning the image to different categories. 

 

Compute Inception Score: The Inception Score is calculated based on these class 

probabilities. It consists of two components: 

• Entropy: The entropy of the class distribution for each generated image measures the 

diversity of predictions made by the Inception model. High entropy indicates that the 

model is uncertain about the class of the image, suggesting diversity. 

• Kullback-Leibler Divergence: The Kullback-Leibler (KL) divergence between the 

marginal class distribution of generated images and the conditional class distribution 

given the entire set of generated images measures how closely the distribution of 

classes in the generated images matches that of the overall dataset used to train the 

Inception model. Low KL divergence indicates that the generated images cover a 

wide range of classes similar to those in the training dataset. 

 

Aggregate Scores: Finally, the average entropy and KL divergence scores across all 

generated images are computed to obtain the overall Inception Score. Higher Inception 

Scores indicate that the generated images are both diverse and resemble the classes found in 

the training dataset. 

 

Figure 6.1.2: Inception Score formulae 
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Frechet Inception Distance Calculation 

 

Figure 6.1.3: FID score working 

 

Feature Extraction: Firstly, a pre-trained InceptionV3 neural network is used to extract 

features from both real and generated images. This network has been trained on a large 

dataset for image classification tasks and has learned to represent images in a feature space. 

 

Calculate Mean and Covariance: Next, the mean (μ) and covariance (Σ) of these feature 

representations are calculated for both the real and generated images. This step essentially 

summarizes the distribution of features in each set of images. 

 

Calculate Fréchet Distance: The Fréchet distance between these two multivariate Gaussian 

distributions (one for real images, one for generated images) is then computed. The Fréchet 

distance is a measure of similarity between two probability distributions in a metric space. 

 

Figure 6.1.4: FID score formulae 
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Compute FID Score: Finally, the FID score is obtained by combining the mean squared 

difference between the means (μ) and the trace of the covariance matrices (Σ) along with a 

constant factor. The lower the FID score, the better the quality and diversity of the generated 

images, as it indicates that the distribution of generated images is closer to that of real 

images. [14] 
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6.2  Testing Setup and Result 

Testing Setup 

Generate Fake Images:  

During the training process of the GAN, the generator network creates fake images intended to 

resemble the real images in the dataset. 

 

Append Fake Images into Image Array:  

As the fake images are generated, they are appended into an image array.  

 

Plot Comparison Graph:  

Using visualization tools like matplotlib in Python, plot a graph to visually compare the real 

and fake images. Each image is represented in the graph, allowing for a side-by-side 

comparison of their visual characteristics. 

 

Quantitative analysis: 

Downloading the Ignite Library:  

The Ignite library is a high-level library for training neural networks in PyTorch. By 

downloading and importing this library, we gain access to various utilities and functions that 

streamline the training and evaluation process. 

 

Importing Functions:  

Import the InceptionScore function from Ignite.  

 

Defining FID Function and InceptionV3 Model:  

To calculate the FID, define a function that computes the distance between the feature 

representations of real and generated images using the InceptionV3 model, a pre-trained deep 

learning model. 

 

Calculating FID and Inception Score: Use the defined FID function and the InceptionScore 

function imported from Ignite to calculate the FID and Inception Score, respectively.  
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Calculating Generator and Discriminator Loss:  

To further evaluate the performance of the GAN, we calculate the generator loss and 

discriminator loss. For DCGAN and SNGAN, these are the primary losses used to optimize the 

generator and discriminator networks. For CycleGAN, two additional losses are considered: 

cycle consistency loss and GAN loss. These losses provide insights into how well the GAN is 

able to learn and generate images that match the desired distribution. 

 

Appending Values and Losses: The calculated FID and Inception Score values, as well as the 

generator and discriminator losses, are appended into respective arrays (fid_value, is_value, 

and loss). This allows for easy tracking and visualization of these metrics over the course of 

training. 

 

Result Analysis 

Qualitative Analysis 

DCGAN: 

 

Figure 6.2.1: Real vs Fake images in DCGAN 
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SNGAN: 

 

Figure 6.2.2: Real vs Fake images in SNGAN 

 

Comparison: 

When comparing DCGAN and SNGAN, it becomes evident that SNGAN consistently 

generates higher-quality images compared to DCGAN. In SNGAN, most images depict 

complete facial structures, with well-positioned and proportionate eyes. Although occasional 

instances of characters with closed eyes are observed in SNGAN, the eyes maintain uniform 

size and placement. Conversely, DCGAN-generated images exhibit inconsistencies, such as 

characters without eyes or eyes of varying sizes and positions, resulting in a somewhat 

unsettling appearance. Both GANs showcase a variety of hair colors, but DCGAN tends to 

produce a wider range of eye sizes, including large, medium, and sometimes no eyes, while 

SNGAN predominantly generates images with medium-sized and closed eyes. 

 

CycleGAN: 

 

Figure 6.2.3: Real vs Fake images (X to Y, Y to X) in CycleGAN  
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For cycleGAN, domain X is for various hair color and eye color, whereas domain Y is for blue 

hair and blue eye. In the generated Images X, it can see most characters’ eyes had translated 

into blue color. For colors that are brighter (yellow) or closed to blue (purple), they are easier 

to translate to blue. The brown color hair character after train for 50 epochs still retains much 

of their original hair color. For translate domain Y to X, the hair color mostly translates to those 

colors closed to blue, but most eye color translate successfully to brown or yellow.  

 

However, due to memory limitations resulting in a small batch size of 5, CycleGAN struggles 

to produce images with high diversity. Consequently, in translations from domain Y to X, most 

generated images feature blue hair rather than other colors like yellow or brown. Increasing the 

number of images used for training could potentially address this limitation and enable the 

generation of a wider range of hair colors. 

 

Quantitative Analysis 

DCGAN: 

 

Figure 6.2.4: Loss in DCGAN 

 

Generator Loss: 

Initially, the generator loss is high as the generator struggles to produce meaningful images 

that can fool the discriminator. 
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As training progresses, the generator loss decreases. This indicates that the generator is 

improving its ability to generate realistic images that are more difficult for the discriminator to 

distinguish from real images. Towards convergence, the generator loss may stabilize at a 

certain level. This suggests that the generator has reached a relatively optimal state where it 

produces realistic images consistently. 

 

Discriminator Loss: 

Initially, the discriminator loss is high as it learns to distinguish between real and fake images. 

As training progresses, the discriminator loss decreases. This indicates that the discriminator 

becomes better at distinguishing between real and fake images. Towards convergence, the 

discriminator loss may stabilize at a certain level. This suggests that the discriminator has 

reached a relatively optimal state where it can effectively differentiate between real and fake 

images. 

 

SNGAN: 

 

Figure 6.2.5: Loss in SNGAN 
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Generator Loss: 

Towards the end of training, the generator loss kept increasing. This increase in the generator 

loss could be due to several reasons: 

1) Mode Collapse: The generator start to collapse, meaning it produces limited varieties 

of images, or even repeats the same image. This results in the discriminator becoming 

more capable of distinguishing generated images from real ones, causing an increase in 

the loss. 

2) Difficulty in Learning: As the training progresses, it becomes increasingly challenging 

for the generator to improve its performance further. It struggle to generate more 

diverse and realistic images, leading to an increase in the loss. 

3) Competition with Discriminator: The generator-loss increase could also be a result of 

the discriminator becoming more effective at distinguishing real from fake images, 

putting pressure on the generator to produce better outputs. 

Combine with the IS score result, it can be concluded that the SNGAN faced the problem of 

mode collapse.  

 

Discriminator Loss: 

Initially, the discriminator loss is high as it learns to distinguish between real and fake images. 

As training progresses, the discriminator loss decreases. This indicates that the discriminator 

becomes better at distinguishing between real and fake images. Towards convergence, the 

discriminator loss stabilizes at a certain level. This suggests that the discriminator has reached 

a relatively optimal state where it can effectively differentiate between real and fake images. 
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CycleGAN: 

 

Figure 6.2.6: Loss in CycleGAN 

 

Generator Loss: 

Initially high and then gradually decreases over epochs: At the beginning of training, the 

generator loss is high as the model learns to translate images between domains effectively. As 

training progresses, the generator loss tends to decrease as the model improves its translation 

capability and converges towards generating realistic images. Throughout training, fluctuations 

occur in the generator loss due to changes in the discriminator's performance. 

 

Discriminator Loss: 

In the early stages, the discriminator quickly learns to distinguish between real and fake images, 

resulting in low loss values. However, as the generators improve, the discriminator faces a 

more challenging task, leading to fluctuations in its loss. Over time, the discriminator loss 

stabilizes as both the generator and discriminator reach a balanced state, where the generator 

produces realistic images that are difficult for the discriminator to distinguish from real ones. 
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Cycle Loss: 

The cycle loss measures how effectively the generators can reconstruct the original input image 

after translation. In the graph, the cycle loss remain at a low level, indicates good reconstruction 

performance.  

 

GAN Loss: 

GAN loss measures the how effectively the CycleGAN model successfully learns to translate 

images between domains while producing realistic-looking outputs. Fluctuation occurs due to 

complexity of the image translation task. 

 

Comparison: 

Comparing these GANs, DCGAN and SNGAN share similarities in their generator and 

discriminator loss behaviors, with DCGAN exhibiting more stable training dynamics. SNGAN 

faces challenges like mode collapse, leading to an increase in the generator loss towards the 

end of training. CycleGAN, on the other hand, focuses on image translation between domains, 

with fluctuations in both generator and discriminator losses, along with specific losses like 

cycle loss and GAN loss, indicating the translation quality and realism of generated images. 

The training of CycleGAN is stable due to the small batch size.  

 

 

DCGAN: 

 

Figure 6.2.7: FID and IS in DCGAN 
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The FID values fluctuate within a certain range, suggesting that the model encounter variations 

in performance during training. Towards the later epochs, the FID values tend to stabilize and 

decrease at a slower rate, indicating that the model is converging to a more stable state.  

 

Similar to FID, the IS values fluctuate within a certain range, indicating variations in image 

quality and diversity during training. Towards the later epochs, the IS values stabilize and 

increase at a slower rate, indicating that the model is producing more consistent and diverse 

images. 

 

SNGAN: 

 

Figure 6.2.8: FID and IS in SNGAN 

 

The FID score decreases initially and then fluctuates around a certain range. In the provided 

data, the FID score starts at a relatively high value and gradually decreases over the first few 

epochs. Afterward, it seems to oscillate around a certain value without a clear decreasing trend. 

This oscillation indicate that the model's performance stabilizes or converges to a certain level, 

and further training iterations do not lead to significant improvements in the FID score. 

 

The IS score decreases initially and then fluctuates around a certain range. This look weird 

because the IS pattern should be from low to high, but the graph shown a different result. This 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    69 
 

unexpected changes in the IS score pattern occur due to factors such as mode collapse, where 

the generator fails to produce diverse images, or changes in training dynamics. Combine with 

the previous result, it can be concluded that the SNGAN faced the problem of mode collapse. 

From the generated fake images, it is obvious that more pink color hair characters are produced 

and this reduced the diversity and thus reduced the IS score. 

 

Comparing between DCGAN and SNGAN: 

Through comparison, we can conclude that both GANs are producing high quality images than 

beginning, because the FID score both decreased. DCGAN FID range from 343.735949 to 

118.587097 while SNGAN changed from 192.845002 to 108.192419. However, through 

comparing the FID range, the SNGAN produce image with relatively low range of FID 

compared to DCGAN, indicating it is more stable to produce high quality fake image.  

 

Through comparing the IS score, although the DCGAN produce high diverse image compared 

to beginning, SNGAN encounter mode collapse so the IS score at the end is lower than 

beginning, but we see that the IS score of DCGAN is ranged from 1.046320 to 1.967778 while 

the SNGAN range from 1.670244 to 2.16116. This indicated the SNGAN is more consistent 

and stable than DCGAN to produce image with high IS score although it encounters mode 

collapse.    

 

CycleGAN: 

 

Figure 6.2.9: FID and IS in CycleGAN (Y to X) 
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For the FID score, the FID score increased from approximately 269.0384 to 302.9035, meaning 

that the quality of images decreased. 

For IS score, although it encountered fluctuation in the middle, but the final IS score is almost 

same with that in the beginning but increase a bit (from 2.3254 to 2.3800), meaning that the 

diversity has no big changes. From the display fake images, the hair color of characters mostly 

remains the original color, but there are still some changes in the eye color (from blue to yellow), 

causing the a bit increasing in IS score. 

 

 

Figure 6.2.10: FID and IS in CycleGAN (X to Y) 

 

The FID value initially high when the generator's performance is poor and then stabilize finally 

decrease, indicating better image quality. 

For IS score, it is initially 3.50 and finally 3.00. This reduction is due to the characters are 

translated to all blue hair and blue eyes, thus decreased the diversity.  
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6.3  Project Challenges 

GAN is a relatively new technology that was first introduced in 2017. When I first began 

studying GANs, I found myself lacking in understanding due to the complexity of the 

vocabulary used in research papers. Despite my efforts to comprehend the material, I struggled 

to grasp certain concepts. However, I was fortunate to come across a 10-hour lecture on 

YouTube that covered the basics of GANs. This resource proved to be immensely helpful 

because the teaching materials included clear explanations accompanied by visual aids. Unlike 

reading research papers, which often presented challenges in visualization, this lecture 

provided a more accessible way for beginners like myself to comprehend the workings of 

GANs. The combination of verbal explanations and visual illustrations made it easier for me 

to grasp complex concepts compared to relying solely on written text. Overall, I found this 

method to be highly effective in bridging the gap between my limited understanding and the 

advanced concepts of GAN technology. 

 

The next challenge arose when deciding between SNGAN and StarGAN for my research. 

Initially, I was inclined towards StarGAN due to its unique ability to perform various feature 

translations on a single image, unlike DCGAN and CycleGAN, which are focused on specific 

types of image generation and domain-to-domain translation, respectively. However, as I 

delved deeper into my decision-making process, I realized that SNGAN, an enhanced version 

of DCGAN incorporating spectral normalization for improved stability during training, might 

be a more suitable choice. Despite this realization, I faced a significant obstacle: the scarcity 

of labeled anime datasets available online. These datasets would have been crucial for training 

and evaluating models based on attributes such as hair color, eye color, facial expression, and 

etc. Despite extensive searching on platforms like Kaggle, I was unable to find a suitable 

labeled anime dataset. Moreover, creating such a dataset from scratch would have been 

extremely time-consuming, especially given the vast number of images required for a 

comprehensive comparison with other GAN architectures. This scarcity of labeled data 

ultimately influenced my decision to pivot from StarGAN to SNGAN. 
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6.4  Objective Evaluation 

Understanding the Working Principles of Generative Adversarial Networks (GANs):  

The project begins with an in-depth literature review. This involves studying research papers, 

lecture video, and tutorials on GANs to grasp the theoretical foundations, architecture, training 

dynamics, and loss functions of GANs. Additionally, experiment is conducted by 

implementing various GAN architectures, which are DCGAN, CycleGAN, and SNGAN, using 

Python and deep learning frameworks like PyTorch. Through this practical exploration and 

experimentation, the project gains insights into the core components and mechanisms of GANs, 

facilitating a comprehensive understanding of their working principles. 

 

Performance Analysis of GANs in Anime Face Generation:  

The project collects and preprocesses anime face datasets suitable for training GAN models. 

Multiple GAN architectures are then trained on these datasets, and their performance is 

evaluated using qualitative analysis and quantitative analysis (Inception Score and FID). By 

analyzing the loss, quality, and diversity of the generated anime face images, the project 

assesses the performance of different GAN architectures in anime face generation tasks. 

 

Comparative Analysis of Generative Models: 

The project conducts a systematic comparison of between DCGAN, CycleGAN, and SNGAN. 

Although many hyperparameters of the three GANs are set to be same for comparisons but due 

to the out of memory issue in CycleGAN, it can only take in 5 for its batch size, so most 

comparisons only done between DCGAN and SNGAN. Each architecture is evaluated based 

on metrics such as FID, IS and loss. By identifying the strengths and weaknesses of each GAN 

model, the project provides insights into their suitability for specific anime face generation 

applications.  
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6.5  Concluding Remark 

In conclusion, Chapter 6 presents the system evaluation and remarks on the project's objectives. 

The evaluation encompasses qualitative and quantitative analyses of the generated images, 

training stability, and performance metrics. Additionally, challenges encountered during the 

project, including learning curve hurdles and model selection dilemmas, are discussed. 

 

The testing setup and results provide a comprehensive assessment of the performance of 

DCGAN, CycleGAN, and SNGAN in anime face generation tasks. Qualitative analysis reveals 

visual differences in image quality and diversity among the three architectures, while 

quantitative metrics offer insights into their quality and similarity to real images. 

 

In qualitative analysis, SNGAN outperforms DCGAN in generating high-quality images with 

more consistent facial features, while CycleGAN demonstrates successful translation between 

image domains despite limitations in batch size affecting diversity. SNGAN produces images 

with better facial structures and eye consistency compared to DCGAN, while CycleGAN 

effectively translates between hair and eye color domains, albeit with constraints on diversity 

due to memory limitations. These findings underscore the strengths and limitations of each 

GAN architecture in generating diverse and realistic images. 

 

In quantitative analysis, DCGAN demonstrates stable training with decreasing losses over 

epochs, while SNGAN encounters mode collapse, leading to an increase in generator loss. 

CycleGAN exhibits fluctuations in losses due to its focus on image translation between 

domains, with stable training facilitated by a small batch size.  

 

The FID and IS calculation concluded DCGAN and SNGAN both show improvements in 

image quality, but SNGAN demonstrates greater stability and consistency in generating high-

quality fake images despite encountering mode collapse. For translation from domain X to Y, 

CycleGAN exhibits increase in image quality but with a reduction in diversity towards the end 

due to the blue hair and eye. For translation from domain Y to X, the image quality decreased 

but the diversity increased a bit although hair color almost same as real image, but eye color 

had changed.  
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Challenges such as the complexity of GAN technology and the selection of appropriate 

architectures underscore the learning curve and decision-making processes involved in GAN 

research. Overcoming these challenges required a combination of theoretical understanding, 

practical experimentation, and problem-solving skills. 

 

The project's objectives are achieved through a systematic exploration of GAN principles, 

performance analysis in anime face generation, and comparative evaluation of different 

generative models. By fulfilling these objectives, the project contributes to the understanding 

of GANs and their applications in generating anime face images. 
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Chapter 7 

7.1  Conclusion 

In conclusion, this project embarked on a comprehensive exploration of Generative 

Adversarial Networks (GANs) in the context of anime face generation. Through a meticulous 

journey encompassing theoretical study, practical implementation, and systematic evaluation, 

significant insights into the workings and performance of different GAN architectures were 

gleaned. 

 

The project began with a thorough review of GAN literature, delving into the foundational 

concepts, architecture designs, and training dynamics. This theoretical groundwork provided 

the necessary foundation for the subsequent phases of the project. Practical implementation 

involved the construction and training of three distinct GAN architectures: DCGAN, 

CycleGAN, and SNGAN. Leveraging powerful computational resources and advanced 

software tools like Google Colab, the project was able to execute complex training processes 

efficiently. 

 

Central to the project's objectives was the evaluation of GAN performance in anime face 

generation tasks. This evaluation was multifaceted, encompassing both qualitative and 

quantitative analyses. Qualitative assessment involved visual inspection of generated images 

to discern aspects of realism, diversity, and overall quality. Quantitative evaluation relied on 

established metrics IS and FID to provide objective measures of image quality and similarity 

to real images. 

 

The qualitative analysis highlights SNGAN's superiority in generating high-quality images 

with consistent facial features compared to DCGAN, while CycleGAN excels in domain 

translation despite diversity limitations. Quantitatively, DCGAN shows stable training with 

decreasing losses, contrasting SNGAN's mode collapse issue causing increase generator loss 

and CycleGAN's fluctuating losses. Despite encountering mode collapse, SNGAN 

demonstrates greater stability in generating high-quality images. Although DCGAN can 

generate high quality and diversity fake images, its stability is lower than SNGAN. 

Additionally, CycleGAN achieves successful domain translation, albeit with changes in 
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image diversity. These insights underscore the strengths and limitations of each GAN 

architecture in image generation and translation tasks. 

 

Challenges encountered along the way, including network issues, lacking knowledge, model 

and evaluation selection dilemmas, and computational constraints. Most of them were 

addressed through a combination of perseverance, problem-solving, and adaptation. 

 

Through these endeavors, the project not only achieved its objectives but also contributed to 

the broader understanding of GAN technology and its applications in generating anime face 

images. By bridging the gap between theory and practice, this project lays a solid foundation 

for future research and innovation in the field of generative modeling. 
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7.2  Recommendation 

Dataset Expansion and Diversity:  

Consider expanding the dataset to include a broader range of anime face images with labeled 

attributes. Increasing dataset diversity enhances the training process and enables more 

comprehensive evaluations of image quality, diversity, and realism across different GAN 

architectures. By incorporating a more diverse dataset, GANs can capture a wider range of 

facial features, expressions, and styles, leading to more realistic and varied generated images. 

With labeled attribute, GANs that required labeled dataset such as StarGAN can be 

implemented to analyze its performance and compare with other GANs.  

 

Memory Optimization for CycleGAN: 

Explore memory optimization techniques to overcome the limitations imposed by batch size in 

CycleGAN training. Techniques such as gradient accumulation or data augmentation can help 

alleviate memory constraints and allow for larger batch sizes without compromising model 

performance. By optimizing memory usage, more efficient training can be facilitated and 

improve the overall effectiveness of CycleGAN in generating high-quality images. 

 

Optimization of Training Parameters:  

Experiment with various training parameters such as learning rates, batch sizes, and 

optimization algorithms to enhance the performance of GAN models. Fine-tuning these 

parameters can help mitigate issues like mode collapse in SNGAN and improve the stability of 

CycleGAN training. By systematically adjusting these parameters, the training process can be 

optimized to achieve better convergence and image quality. 
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