

Performance Comparison between Generative Adversarial Networks (GAN) Variants

in Generating Comic Character Images

By

TAN JIA LER

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________ ________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

Performance Comparison between Generative Adversarial

Networks (GAN) Variants in Generating Comic Character

Images

TAN JIA LER

Jan 2024

Lot 14301, Kampung Tersusun,

Jalan Kampung Dew, 34700

Simpang. Perak.

24 April 2024 25 Apr 2024

Tong Dong Ling

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF _ Information and Communication Technology ______

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _24 April 2024_________________

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Tan Jia Ler___________________________ (ID No:

__20ACB03397) has completed this final year project/ dissertation/ thesis* entitled

“_Performance Comparison between Generative Adversarial Networks (GAN) Variants in

Generating Comic Character Images_” under the supervision of __Ts Dr Tong Dong Ling___

(Supervisor) from the Department of _Computer Science_____, Faculty/Institute* of _Information

and Communication Technology___.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Tan Jia Ler)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Performance Comparison between Generative Adversarial

Networks (GAN) Variants in Generating Comic Character Images” is my own work except as

cited in the references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature : _______ __________________

Name : _____Tan Jia Ler____________________

Date : ___24 April 2024______________________

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ts Dr Tong Dong

Ling who has given me this bright opportunity to engage in a Deep Learning project. Her

guidance and support have played a pivotal role in shaping my understanding and skills in this

field, marking a significant step in my journey towards a career in artificial intelligence field.

Furthermore, I am truly appreciating her help and patience in answering my question. When I

shared my opinion to her, she will listen thoroughly and give useful suggestion as well as

provide support to me. A million thanks to you.

Besides, I also express my appreciation to my project moderator, Ts Dr Mogana a/p

Vadiveloo for giving insightful suggestion from professional perspective that significantly

contributed to the improvement of my project. She also points out my mistakes, so I won’t

repeat them again in the next project. Thank you very much your guidance and support.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

Generative Adversarial Networks (GANs) have emerged as a powerful framework for

generating realistic and diverse data, including images. This project aims to provide a

comprehensive understanding of GANs and their applications in anime face generation.

Through theoretical investigation, practical implementation, and empirical analysis, the project

explores the working principles of GANs, including their architecture, training dynamics, and

variants. The focus is on prominent GAN architectures such as Deep Convolutional GANs

(DCGAN), CycleGAN, and Spectral Normalization GAN (SNGAN).

The project conducts a thorough performance analysis of these GAN architectures in anime

face generation tasks. This involves collecting and preprocessing anime face datasets, training

GAN models, and evaluating their performance using quantitative metrics. The quality and

diversity of generated anime face images are analyzed using FID and IS score. Furthermore, a

comparative analysis of DCGAN, CycleGAN, and SNGAN is conducted to identify their

strengths and weaknesses. This comparative study provides insights into the suitability of

different GAN architectures for anime face generation applications. The project aims to

contribute to the advancement of knowledge in the field of GANs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 4

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Previous works on DCGAN 6

2.2 Previous work on SNGAN 9

2.3 Previous work on CycleGAN 11

CHAPTER 3 SYSTEM MODEL 17

3.1 System Design Diagram/Equation 17

3.1.1 System Architecture Diagram 19

3.1.2 Use Case Diagram and Description 21

3.1.3 Activity Diagram 23

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 4 SYSTEM DESIGN 25

 4.1 System Block Diagram 25

 4.2 System Components Specifications 26

 4.3 Circuits and Components Design 29

 4.4 System Components Interaction Operations 31

CHAPTER 5 EXPERIMENT/SIMULATION 41

 5.1 Hardware Setup 41

5.2 Software Setup 41

5.3 Setting and Configuration 42

5.4 System Operation (with Screenshot) 46

5.5 Implementation Issues and Challenges 54

5.6 Concluding Remark 55

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 56

6.1 System Testing and Performance Metrics

56

6.2 Testing Setup and Result 60

6.3 Project Challenges 71

6.4 Objectives Evaluation 72

6.5 Concluding Remark 73

CHAPTER 7 CONCLUSION AND RECOMMENDATION 75

7.1 Conclusion 75

7.2 Recommendation 77

REFERENCES 78

WEEKLY LOG 82

 POSTER 87

 PLAGIARISM CHECK RESULT 88

 FYP2 CHECKLIST 94

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 DCGAN model’s framework 6

Figure 2.1.2 IS equation 8

Figure 2.2.1 WGAN and SNGAN 9

Figure 2.3.1 Adversarial loss functions for G 11

Figure 2.3.2 Adversarial loss functions for F 11

Figure 2.3.3 Cycle-consistency loss function 11

Figure 2.3.4

Figure 2.3.5

Figure 2.3.6

Figure 2.3.7

Figure 2.3.8

Figure 2.3.9

Figure 2.3.10

Figure 2.3.11

Figure 3.1.1

Figure 3.1.2

Figure 3.1.3

Figure 3.1.4

Figure 3.1.5

Figure 3.1.6

Figure 3.1.1.1

Figure 3.1.1.2

Figure 3.1.1.3

Figure 3.1.2.1

Figure 3.1.3.1

Figure 3.1.3.2

Figure 3.1.3.3

Overall loss function

Example of result of UNIT

Examples of CycleGAN outputs when model crashed

Result of using SGD optimizer with momentum = 0.9 in

CycleGAN

The blue color background is misinterpreted as hair

Color of the wall is mapped to the hair of character

CycleGAN unable to generate facial contours

Comparisons between the two CycleGANs

System Design Diagram

DCGAN and SNGAN Equation

Overall loss function

Adversarial loss functions for G

Adversarial loss functions for F

Cycle-consistency loss function

System Architecture Diagram of DCGAN

System Architecture Diagram of SNGAN

System Architecture Diagram of CycleGAN

Use Case Diagram

Activity Diagram of DCGAN

Activity Diagram of SNGAN

Activity Diagram of CycleGAN

11

13

13

14

14

14

15

16

17

17

18

18

18

18

19

20

20

21

23

23

24

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 4.1.1

Figure 4.3.1

Figure 4.3.2

Figure 4.3.3

Figure 4.4.1

Figure 4.4.2

Figure 4.4.3

Figure 4.4.4

Figure 4.4.5

Figure 4.4.6

Figure 4.4.7

Figure 4.4.8

Figure 4.4.9

Figure 5.4.1

Figure 5.4.2

Figure 5.4.3

Figure 5.4.4

Figure 5.4.5

Figure 5.4.6

Figure 5.4.7

Figure 5.4.8

Figure 5.4.9

Figure 5.4.10

Figure 5.4.11

Figure 5.4.12

Figure 5.4.13

Figure 5.4.14

Figure 5.4.15

Figure 5.4.16

Figure 5.4.17

Figure 5.4.18

Figure 5.4.19

Figure 6.1.1

System Block Diagram

Component Design of DCGAN

Component Design of SNGAN

Component Design of CycleGAN

Generator of DCGAN

Discriminator of DCGAN

ReLU activation

Tanh activation

Leaky ReLU activation

Sigmoid activation

Spectral Norm in SNGAN

Generator of CycleGAN

Discriminator of CycleGAN

Runtime type and Hardware Accelerator

Import Libraries

Integrated with Google Drive

Dataset loading for DCGAN and SNGAN

Dataset loading for CycleGAN

Transform for data preprocessing

Train and Test Dataloader

Input hyperparameter

Weight Initialization

Define Loss function and Optimizer

Define Discriminator

Define Generator

Generators and discriminators in CycleGAN

SNLinear layer in SNGAN

Progress Bar

FID and IS calculation

Loss plotting

FID and IS plotting

Real vs Fake images plotting

Inception Score working

25

29

29

30

31

31

32

32

33

34

34

37

38

46

46

47

47

47

47

48

48

49

49

49

50

50

51

51

52

52

52

53

56

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 6.1.2

Figure 6.1.3

Figure 6.1.4

Figure 6.2.1

Figure 6.2.2

Figure 6.2.3

Figure 6.2.4

Figure 6.2.5

Figure 6.2.6

Figure 6.2.7

Figure 6.2.8

Figure 6.2.9

Figure 6.2.10

Inception Score formulae

FID score working

FID score formulae

Real vs Fake images in DCGAN

Real vs Fake images in SNGAN

Real vs Fake images (X to Y, Y to X) in CycleGAN

Loss in DCGAN

Loss in SNGAN

Loss in CycleGAN

FID and IS in DCGAN

FID and IS in SNGAN

FID and IS in CycleGAN (Y to X)

FID and IS in CycleGAN (X to Y)

57

58

58

61

62

62

63

64

66

67

68

69

70

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 5.1.1 Specifications of laptop 41

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

λ Weight parameter

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

G Generator

D Discriminator

GANs Generative Adversarial Networks

DCGAN Deep Convolutional Generative Adversarial Network

CNNs Convolutional Neural Networks

IS Inception Score

KL Kullback-Leibler

Ladv Adversarial Loss

Lcls Domain Classification Loss

Lrec Reconstruction Loss

ReLU Rectified Linear Unit

tanh Hyperbolic Tangent

UNIT UNsupervised Image-to-Image Translation

SGD

SNGAN

FID

IS

Stochastic Gradient Descent

Spectral Normalised GAN

Frechet Inception Distance

Inception Score

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

The GANs, having both a generator (G) and a discriminator (D), operate in a feedback loop to

make and evaluate data. The main purpose of a generator is to create fake data that is as realistic

as possible. It does this by trying to generate realistic images from a noise input. In contrast,

the discriminator's job is to distinguish between real and generated data. As the generator

creates increasingly convincing data, the discriminator continually refines its ability to

differentiate between real and fake data. This ongoing process ensures that both networks

enhance their performance over time.

1.1 Problem Statement and Motivation

Problem Statement

GAN is a new technology. The complexity of GANs and their training dynamics pose a

significant challenge to researchers seeking to comprehend their underlying principles.

Without a comprehensive understanding of how GANs operate, it becomes difficult to optimize

their performance or troubleshoot issues that may arise during training. Consequently, there is

a pressing need to delve deeper into the theoretical foundations of GANs, exploring their core

components, training mechanisms, and architectural variations to facilitate more effective

utilization in anime face generation tasks.

Despite the widespread adoption of GANs for anime face generation, there exists a lack of

systematic performance analysis of different GAN architectures in this domain. Evaluating the

quality and diversity of generated anime face images requires the establishment of robust

performance metrics. By conducting a comprehensive performance analysis, researchers can

gain insights into the strengths and limitations of various GAN models, enabling informed

decision-making regarding their applicability and suitability for specific anime face generation

tasks.

With the proliferation of GAN architectures tailored for anime face generation, researchers

face the challenge of selecting the most suitable model for their specific requirements.

However, conducting a meaningful comparison between different GAN architectures requires

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

rigorous evaluation and comparative analysis. By comparing the performance of GANs,

researchers can identify the relative advantages and disadvantages of each model, thereby

guiding future research efforts and practical applications in anime face generation.

Motivation

In the rapidly evolving world of digital design and animation, there exists a pressing issue that

both amateurs and professionals facing with - creating unique, high-resolution characters that

captivate the audience. As industries, especially the gaming and entertainment sectors,

constantly evolve, so do their demands for complex, novel characters. Researchers like [1] and

[2] have shown how GANs have become torchbearers in this field, providing automated

solutions that are both unique and thematically resonant. Unique character design is not just a

matter of artistic achievement. It's an economic necessity. Successful character design can lead

to brand recognition, merchandise opportunities, and sequels or spin-offs. Conversely, poorly

designed characters can make content unrelatable or forgettable, leading to losses and missed

opportunities.

1.2 Objectives

This study aims to:

Understanding the Working Principles of Generative Adversarial Networks (GANs):

This objective focuses on gaining a comprehensive understanding of the underlying principles

and mechanisms of Generative Adversarial Networks (GANs). Through literature review,

experimentation, and hands-on implementation, the project aims to elucidate the core

components, training dynamics, and architectural variations of GANs. By delving into the

theoretical foundations and practical applications, the objective seeks to establish a solid

foundation for analyzing and evaluating the performance of GANs in anime face generation

tasks.

Performance Analysis of GANs in Anime Face Generation:

This objective entails a detailed analysis of the performance of Generative Adversarial

Networks (GANs) specifically applied to the task of anime face generation. Through qualitative

and quantitative evaluation, the project aims to assess the quality and diversity of generated

anime face images produced by different GAN architectures, including DCGAN, CycleGAN,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

and SNGAN. The analysis will involve examining key performance metrics, such as FID score,

IS score and loss to gain insights into the strengths and limitations of each GAN model.

Comparative Analysis of Generative Models:

A comprehensive objective includes conducting a comparative analysis of DCGAN,

CycleGAN, and StarGAN to understand their strengths and weaknesses. This comparative

study aims to provide insights into the unique features of each model and identify scenarios

where one model might outperform the others. The goal is to find out the most suitable model

for a specific image generation task.

1.3 Project Scope and Direction

This project aims to delve deep into the working principles of Generative Adversarial Networks

(GANs) by conducting a thorough investigation of their theoretical foundations. The focus will

be on understanding the architecture, training dynamics, and loss functions inherent to GANs.

Through implementation and experimentation using Python and deep learning frameworks like

PyTorch, the project seeks to gain practical insights into the workings of GAN models.

Furthermore, a comprehensive literature review will be conducted to synthesize existing

research on GANs, providing valuable insights into their underlying principles.

In the realm of anime face generation, this project will focus on analyzing the performance of

various GAN architectures. This involves collecting and preprocessing anime face datasets to

ensure diversity and quality in the training data. Multiple GAN architectures will then be

trained on these datasets, and their performance will be evaluated using quantitative metrics.

The goal is to analyze the quality and diversity of generated anime face images produced by

different GAN architectures.

A key aspect of this project is the comparative analysis of DCGAN, CycleGAN, and SNGAN.

By comparing the performance of these GAN models, insights into their strengths and

weaknesses will be identified. This comparative study will provide valuable insights into the

suitability of different GAN architectures for specific anime face generation applications.

Ultimately, the project aims to contribute to the advancement of knowledge in the field of

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

GANs and their applications in anime face generation through rigorous analysis and

experimentation.

1.4 Contributions

This project contributes to the theoretical understanding of GANs by exploring their

foundational principles, architectural variations, and training dynamics. Through an in-depth

literature review and practical experimentation, the project provides insights into the inner

workings of GANs, shedding light on their mechanisms for generating realistic images. The

project also offers a comprehensive analysis of GAN performance specifically in the context

of anime face generation tasks. By empirically evaluating multiple GAN architectures,

including DCGAN, CycleGAN, and SNGAN, the project assesses the quality and diversity of

generated anime face images. This analysis provides valuable insights into the strengths and

weaknesses of different GAN models for anime face synthesis.

A significant contribution of this project lies in its comparative analysis of prominent GAN

architectures, highlighting their distinct characteristics and performance profiles. By

systematically comparing DCGAN, CycleGAN, and SNGAN, the project identifies the relative

advantages and limitations of each model in generating anime face images. This comparative

study aids researchers in selecting the most suitable GAN architecture for specific anime face

generation applications.

The insights generated from this project have implications for both research and practical

applications in the field of generative modeling and anime face generation. Researchers can

leverage the findings to deepen their understanding of GANs and explore novel approaches for

improving anime face synthesis. Practitioners in industries such as character design, animation,

and virtual content creation can benefit from the recommendations provided for selecting GAN

models to suit their specific needs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.5 Report Organization

The report organization for the project is structured to provide a comprehensive understanding

of the research conducted on Generative Adversarial Networks (GANs) in the context of anime

face generation. Chapter 1, the Introduction, sets the stage by outlining the problem statement

and motivation behind the research. It also presents the objectives, project scope, contributions,

and an overview of the report organization to provide a roadmap for the reader. Chapter 2, the

Literature Review, delves into existing research and literature on GANs, focusing on their

principles, architectures, and applications in image generation tasks, with a specific emphasis

on anime face generation. Chapter 3, the System Model, introduces the design and structure of

the GAN-based anime face generation system. It includes system design diagrams, equations,

and descriptions of system architecture, use cases, and activities. Chapter 4, the System Design,

elaborates on the technical aspects of the system, including block diagrams, component

specifications, component designs, and interactions between system components, providing a

detailed insight into the system's construction. Chapter 5, Experiment/Simulation, details the

experimental setup and execution of the GAN models for anime face generation. It covers

hardware and software setup, configuration, system operation, implementation challenges, and

concluding remarks on the experimental process. Chapter 6, System Evaluation and

Discussion, evaluates the performance of the GAN models through testing, performance

metrics, testing setups, results, challenges encountered during the project, objective evaluation,

and concluding remarks. Chapter 7, Conclusion and Recommendation, concludes the report by

summarizing the findings, drawing conclusions based on the research outcomes, and providing

recommendations for future research directions or improvements to the GAN-based anime face

generation system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Chapter 2

Literature Review

2.1 Previous works on DCGAN

Based on [4], DCGAN, or Deep Convolutional Generative Adversarial Network, represents a

significant advancement in the realm of Generative Adversarial Networks (GANs) by

incorporating Convolutional Neural Networks (CNNs). In contrast to traditional GANs, both

the discriminator and generator in DCGAN employ CNNs instead of the typical multilayer

perceptrons. As the name suggests, DCGAN introduces a deep convolutional architecture into

the GAN framework. The key distinguishing feature is the utilization of convolutional layers

without the inclusion of maximum pooling or fully connected layers. This architecture relies

on the synergy between convolutional strides and transpose operations for down-sampling and

up-sampling, respectively.

Figure 2.1.1: DCGAN model’s framework

By integrating CNNs, DCGAN enhances the ability of the generator and discriminator to

understand spatial hierarchies and capture complex patterns in the data. This not only

contributes to the generation of more realistic and detailed images but also improves feature

extraction in the discriminator. The absence of dense layers and the emphasis on convolutional

operations make DCGAN particularly suitable for image-related tasks, providing a powerful

framework for generating high-quality images through adversarial training.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

In the PyTorch implementation, ReLU activation is used in the generator, employing Tanh for

output, while the discriminator utilizes LeakyReLU activation for all layers. The DCGAN

framework utilizes TensorFlow's convolution function to process data into a low-dimensional

matrix for the discriminator's authenticity comparison. The decov function expands this matrix

to a high-dimensional form, helping the generator in image generation. Defined functions like

conv2D and deconv2d encapsulate these convolutional neural network processes.

During DCGAN training, the generative model aims to fool the discriminant model, while the

discriminative model attempts to accurately distinguish between generated and real images.

This adversarial training promotes a dynamic interplay between the two models, with the ideal

result being that the generated images achieve a mixture of realism and falseness (D(G(z)) =

0.5).

The discriminator is constructed as a forward convolutional neural network, while the generator

maps the latent space vector (z) to the data space through a series of 2D convolutional

transposed layers. The DCGAN paper emphasizes the use of stride convolution instead of

pooling for down-sampling to improve the network's ability to learn its pooling function. Batch

normalization and the LeakyReLU functions promote healthy gradient flow, which is crucial

for effective learning in both the generator and discriminator.

The generator's structure is similar to the discriminator's but uses a deconvolution function to

reverse the convolution results, generating images from randomly generated noise (Z). The

symmetry in the number of convolution and deconvolution layers ensures the similarity of the

resulting images.

In the process of collecting animation images from the Internet, approximately 50,000 images

were collected using web crawlers and zip downloads. However, due to the complexity of the

data, some images contain multiple faces, some images contain landscapes without characters,

and some displaying characters at unusual angles, so preprocessing was required. The images

were first combined into a consistent JPG format to ensure uniformity of input data. A facial

recognition program, sourced from GitHub, was then used to identify and isolate faces in each

image. This process resulted in more than 20,000 full-face animation images.

To normalize the data for convolutional neural network (CNN) operations, all images were

resized to 96x96 pixels using a facial recognition program. The goal was to improve the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

consistency of image vectorization for the same number of layers in the CNN. All experiments

were conducted on a computer with a 3.6GHz Intel Core i9-9900K processor and 16GB RAM,

running the Windows 10 operating system. Data preprocessing was implemented using Python

3.6.2.

The model's performance was evaluated using the Inception Score (IS), a metric that evaluates

the clarity and diversity of generated images. In this case, Inception Net-V3 (the third version

of the Inception Net) was used for calculating the IS. Inception Net is a picture classification

network trained on the ImageNet database, containing 1.2 million RGB images across 1000

categories. The IS formula involves calculating the Kullback-Leibler (KL) divergence of

conditional probability distributions. Specifically, it measures the distance between the

predicted distribution and the true distribution of the main objects in the generated image. The

IS equation is given by:

Figure 2.1.2: IS equation.

where (x) represents a generated picture, (y) represents the main object in the picture, (Pg) is

the generator's distribution, and (DKL) is the Kullback-Leibler divergence. A higher IS indicates

greater diversity and clarity in the generated images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

2.2 Previous work on SNGAN

Generative Adversarial Networks (GANs) have emerged as a powerful framework for

generating realistic data across various domains. However, stabilizing the training of GANs

remains a significant challenge, prompting researchers to explore various techniques to

enhance their performance and reliability.

Several approaches have been proposed to stabilize GAN training. Wasserstein GAN (WGAN)

[22] introduced the Wasserstein distance to mitigate mode collapse and instability issues by

enforcing a Lipschitz constraint on the discriminator. However, WGAN relied on weight

clipping, leading to suboptimal results due to overly constrained discriminator weights.

To address this limitation, WGAN-GP introduced gradient penalty, which penalizes the norm

of the discriminator's gradients with respect to interpolated samples. While effective, WGAN-

GP's performance can be sensitive to hyperparameters and suffer from gradient penalty

instability during training.

Figure 2.2.1: WGAN and SNGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Spectral Normalization (SN) emerged as a promising technique to stabilize GAN training by

enforcing Lipschitz constraints on the discriminator. [3] SN achieves this by bounding the

spectral norm of weight matrices in the discriminator, leading to more stable and robust training

dynamics. SN has been shown to improve the quality and diversity of generated samples across

various datasets.

Spectral Normalization GAN (SNGAN) builds upon SN to further enhance stability and

performance in GAN training. By applying spectral normalization to the discriminator,

SNGAN ensures Lipschitz continuity, leading to improved convergence properties and

generation quality. SNGAN has demonstrated superior performance compared to previous

GAN variants, especially in scenarios where mode collapse and training instability are

prevalent.

While SN and SNGAN have shown promising results, challenges remain in optimizing GANs

for diverse datasets and tasks. The impact of architectural choices, loss functions, and

hyperparameters on training stability and sample quality requires further investigation.

Additionally, the scalability of SN and SNGAN to large-scale datasets and complex modalities

warrants attention.

In light of the existing challenges, the proposed method introduces L2 norm regularization in

the generator to complement spectral normalization in the discriminator. By directly

minimizing the Euclidean distance between generated and real data, the proposed approach

aims to improve stability and quality in GAN training. Initial experiments on CIFAR-10 and

STL-10 datasets demonstrate promising results, highlighting the potential of the proposed

method in addressing stability issues and enhancing sample quality in GANs.

Future research directions may include theoretical analyses of Lipschitz constraints and

regularization techniques in GANs, as well as empirical evaluations on larger datasets and

diverse modalities. Furthermore, exploring the interaction between spectral normalization and

additional regularization methods could provide insights into further enhancing GAN training

stability and sample quality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.3 Previous work on CycleGAN

The Cycle-Consistent Adversarial Network or CycleGAN is an unsupervised learning method

that incorporates a cycle consistency loss function within the framework of GANs. The main

objective of CycleGAN is image-to-image translation between two sample spaces, X and Y,

with an underlying relationship. [6] The generator (denoted as G) transforms samples from X

to Y, while a discriminator, Dᵤ, distinguishes between generated and real images in domain Y.

Similarly, there is a mapping function F that converts samples in Y back to X, and a

discriminator Dᵧ for domain X.

The adversarial loss functions for G and F are defined as:

Figure 2.3.1: Adversarial loss functions for G

Figure 2.3.2: Adversarial loss functions for F

Additionally, the cycle consistency loss is introduced to ensure that the mappings are cycle-

consistent, meaning that every image in domain X can be reversed to the original image after

the translation cycle. The cycle-consistency loss function is defined as:

Figure 2.3.3: Cycle-consistency loss function

Here, the L1 norm is employed to calculate the cycle-consistency loss. The overall loss

function, combining adversarial and cycle-consistency components, is given by:

Figure 2.3.4: Overall loss function

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Where λ is a weight parameter. This comprehensive loss function guides the training process

of CycleGAN to achieve meaningful and reversible mappings between the two domains. The

incorporation of cycle consistency helps to the robustness and quality of the generated images.

In this paper, the architecture of the generator network in CycleGAN consists of several

components:

• Convolution with ReLU Activation: The network starts with a convolutional layer

using Rectified Linear Unit (ReLU) activation. ReLU is a popular activation function

known for introducing non-linearity in neural networks.

• Two Down-sampling Blocks: These blocks are responsible for reducing the spatial

dimensions of the input images from 128 x 128 to 256 x 256. Down-sampling usually

involves operations such as convolution and pooling to decrease the resolution of the

image.

• Six Residual Blocks: Residual blocks are a key component in deep neural networks,

contribute to the learning of identity mappings and aiding in the convergence of the

training process. In this case, six residual blocks are employed, each contributing to the

transformation of 256 x 256 images. The decision to use six residual blocks instead of

nine is influenced by the input image size of 128 x 128 in this particular project.

• Two Up-sampling Blocks: These blocks are designed to increase the spatial dimensions

of the images, taking them from 128 x 128 back to 64 x 64. Up-sampling typically

involves operations like transposed convolution to increase the resolution of the image.

• Convolution with Hyperbolic Tangent (tanh) Activation: The last layer of the generator

applies a convolution operation with a hyperbolic tangent (tanh) activation function.

Tanh is commonly used for the final layer of a generator in GANs to produce pixel

values in the range [-1, 1].

For the discriminator in CycleGAN, a 70 x 70 PatchGAN architecture is used. PatchGAN is a

variant of the discriminator that classifies images by dividing them into smaller patches. The

output of a regular GAN discriminator is a single scalar, while PatchGAN outputs an N x N

array of values, where each value corresponds to a patch of the input image. This approach

allows the discriminator to assess the realism of local patches, providing more detailed

feedback to the generator during training.

A. Baseline Model Selection:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Baseline models serve as a reference to evaluate the performance of the trained model. In this

context, the UNsupervised Image-to-Image Translation (UNIT) is introduced as a baseline

model for comparison with CycleGAN. The goal is to evaluate whether CycleGAN performs

better than UNIT. An experiment is carried out, as shown in Figure 2.3.5, provides visual

results comparing the original input to UNIT with the corresponding transformed anime face

images.

Figure 2.3.5: Example of result of UNIT

B. Batch Size:

The batch size is a critical parameter in machine learning, influencing the generalization

performance of the model. Larger batch sizes contribute to stability and faster convergence but

might impact performance. This experiment shows that increasing the batch size enhances

model stability and accelerates training speed. Notably, situations such as model crashes (all

outputs are the same) become less frequent. Figure 2.3.6 illustrates the impact of varying batch

sizes.

Figure 2.3.6: Examples of CycleGAN outputs when model crashed.

C. Optimizer Selection:

Deep learning optimizers can be broadly categorized as adaptive (e.g., Adam) and acceleration-

based (e.g., Stochastic Gradient Descent with momentum). The default choice for complex

models like GANs is often an adaptive optimizer due to their stability. An experiment is

conducted with the use of Stochastic Gradient Descent (SGD) optimizer with momentum (0.9)

instead of the Adam optimizer in CycleGAN. Results, presented in Figure 2.3.7, showcases the

result of this optimizer selection experiment.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Figure 2.3.7: Result of using SGD optimizer with momentum = 0.9 in CycleGAN

D. Analysis of Experiments:

Many measures have been proposed to objectively evaluate GANs, but there is still no

consensus on a measure that comprehensively captures the strengths and weaknesses of GANs.

As visual examination by humans remains one of the most intuitive ways to evaluate GANs,

this research utilizes qualitative analysis to assess the results of each experiment.

Effect of Background and Items:

Through comparing the 3 models, it is evident that both UNIT and CycleGAN can be

influenced by background or other items, such as crowns or hats. For example, in Figure 2.3.8,

UNIT mistakenly interprets the blue background as the hair color, generating an anime

character with blue hair. Similarly, in Figure 2.3.9, CycleGAN maps the color of the wall to

the hair of the corresponding anime character.

Figure 2.3.8: The blue color background is misinterpreted as hair

Figure 2.3.9: Color of the wall is mapped to the hair of character

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Performance on Side Faces:

Due to a lack of sufficient side images in both datasets, both UNIT and CycleGAN perform

poorly in generating side faces. In some images, UNIT fails to generate approximate facial

features like the mouth. In the Figure 2.3.10, CycleGAN with a batch size of 16 has difficulty

generating facial contours. However, CycleGAN using the SGD optimizer demonstrates

relatively good performance in accurately displaying facial features, contours, and hair.

Figure 2.3.10: CycleGAN unable to generate facial contours

Comparative Analysis:

In conclusion, UNIT is good at learning facial features in frontal anime images through

encoding and decoding in a shared latent space. CycleGAN, utilizing two discriminators and

cycle consistency, learns facial features well and produces more natural facial combinations

compared to UNIT. Thus, CycleGAN consistently outperforms the baseline model.

Comparisons between CycleGAN Variants:

Figure 2.3.11 provides a comparison between two CycleGAN variants with different

parameters. Randomly selecting four pictures as input for CycleGAN with a batch size of 16

and CycleGAN using the SGD optimizer with momentum, and their results are visually

compared. The observation shows that CycleGAN using SGD optimizer with momentum

generates corresponding anime faces more effectively. In contrast, CycleGAN with batch size

16 only captures the facial contour, resulting in blurred facial features. Furthermore, pictures

generated by CycleGAN using SGD optimizer with momentum appear more natural and have

less distortion compared to CycleGAN with batch size 16.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Figure 2.3.11: Comparisons between the two CycleGANs

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Chapter 3

System Model

3.1 System Design Diagram/Equation

Figure 3.1.1: System Design Diagram

DCGAN[5] and SNGAN[7] have the same equation:

Figure 3.1.2: DCGAN and SNGAN Equation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

CycleGAN [6]:

Figure 3.1.3: Overall loss function

Where:

Figure 3.1.4: Adversarial loss functions for G

Figure 3.1.5: Adversarial loss functions for F

Figure 3.1.6: Cycle-consistency loss function

λ is a weight parameter.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

3.1.1 System Architecture Diagram

Deconvolution in Generator[8]: Deconvolution, also known as transpose convolution or

upsampling, is used in the Generator to increase the spatial resolution of feature maps. It

involves reversing the process of convolution by applying learnable filters to upsample the

feature maps. Deconvolution layers expand the spatial dimensions of feature maps, allowing

the Generator to generate higher-resolution images from low-dimensional noise vectors.

Convolution in Discriminator[8]: In the Discriminator network, convolutional layers are

employed to process both real and generated images. These layers extract features from input

images and downsample them into lower-dimensional representations. Convolution operations

help the Discriminator distinguish between real and fake images by capturing discriminative

features such as edges, textures, and shapes.

DCGAN: There are only one Generator and one discriminator in DCGAN.

Figure 3.1.1.1: System Architecture Diagram of DCGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

SNGAN: There are only one Generator and one discriminator in SNGAN.

Figure 3.1.1.2: System Architecture Diagram of SNGAN

CycleGAN: There are two generators (GXY, GYX) and two discriminators (DX, DY) in

CycleGAN.

Figure 3.1.1.3: System Architecture Diagram of CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

3.1.2 Use Case Diagram and Description

Figure 3.1.2.1: Use Case Diagram

1. Load dataset: Import the dataset containing images that will be used to train the GAN. This

dataset should be representative of the type of images the GAN will generate. For cycleGAN,

two datasets will be loaded.

2. Provide input parameters: Define parameters such as batch size, image size, number of

channels, latent space dimension, number of epochs, learning rate, and other hyperparameters

necessary for training the GAN.

3. Preprocess Image: Preprocess the images in the dataset to ensure uniformity and

compatibility with the GAN architecture. Preprocessing steps include resizing, normalization,

and transformation to tensor format.

4. Define Generator and Discriminator: Create the Generator and Discriminator neural network

architectures. The Generator generates fake images from random noise, while the

Discriminator evaluates the authenticity of generated images compared to real ones.

5. Define optimizer and loss function: Choose appropriate optimizer (In this case, Adam

optimizer is used) for both the Generator and Discriminator networks. Define the loss function

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

(In this case, Binary Cross-Entropy Loss) used to train the GAN, where the Generator aims to

minimize this loss while fooling the Discriminator, and the Discriminator aims to correctly

classify real and fake images.

6. Train GAN model: Train the GAN model by iterating over the dataset multiple epochs.

During training, the Generator and Discriminator are updated iteratively to improve their

performance. The training process involves forward and backward passes, updating network

weights based on the computed gradients.

7. Generate fake image: Once the GAN is trained, use the Generator network to generate fake

images from random noise vectors sampled from the latent space. These generated images

should ideally resemble the images from the training dataset.

8. Evaluate model performance: Assess the performance of the trained GAN using evaluation

metrics, which are Inception Score and Frechet Inception Distance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

3.1.3 Activity Diagram

DCGAN[9]:

Figure 3.1.3.1: Activity Diagram of DCGAN

SNGAN[10]:

Figure 3.1.3.2: Activity Diagram of SNGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

CycleGAN[11]:

Figure 3.1.3.3: Activity Diagram of CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 4

System Design

4.1 System Block Diagram

Figure 4.1.1: System Block Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

4.2 System Component Specification

Hardware Component:

Deep learning models, including GANs, often require significant computational power for

training, especially when dealing with large datasets and complex architectures. GPUs, with

their parallel processing capabilities, are commonly used to accelerate the training process by

performing matrix operations and backpropagation calculations much faster than CPUs. While

GPUs handle most of the heavy lifting during training, CPUs are still crucial for managing

overall system operations, coordinating data movement, and handling tasks that are not highly

parallelizable. CPUs also play a role in preprocessing data, managing memory, and

orchestrating interactions between different software components. Furthermore, sufficient

RAM is necessary to store model parameters, intermediate activations, and mini-batches of

data during training. The amount of memory required depends on the size of the dataset, the

complexity of the model, and the batch size used during training.

Software Component:

PyTorch is one of the popular frameworks used for implementing GANs. It offers pre-built

modules for defining network architectures, loss functions, optimizers, and utilities for data

loading and preprocessing. Besides, in this project, the ignite library from Pytorch is used to

calculate IS score by using the pre-built InceptionScore function.

Data Pipeline Component:

The data pipeline component manages the flow of training data into the GAN system. It

involves tasks such as data loading, preprocessing and batching to prepare the data for training.

It utilizes data loading utilities provided by libraries such as PyTorch, which offer

functionalities for loading image datasets, applying transformations, and creating data loaders

for efficient training.

Loss Functions Component:

Generator Loss: Typically the negative of the discriminator's output when fed with generated

samples. It encourages the generator to produce samples that resemble real data.

Discriminator Loss: A combination of errors made on real and fake samples. It encourages the

discriminator to correctly classify real samples as real and fake samples as fake.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Cycle-consisten Loss (For CycleGAN): Measures the difference between the original input

image and the image reconstructed after being translated back and forth between the two

domains.

GAN Loss (For CycleGAN): The summation of all previous losses.

Optimizer Component:

The optimizer updates the parameters of both the generators and discriminators during training,

typically using the Adam optimizer with a specific learning rate. It minimizes the combined

loss function of the generators and discriminators.

Generator Component:

The generator component generates synthetic images by transforming random noise into

realistic-looking images. It takes random noise vectors as input and produces synthetic images

that resemble the training data distribution. A generator typically consists of multiple layers of

transposed convolutional and batch normalization layers, followed by activation functions such

as ReLU or Tanh. Parameters includes the batch sizes, kernel sizes, activation functions, and

other architectural hyperparameters.

Discriminator Component:

The discriminator component distinguishes between real and fake images by classifying them

as genuine or synthetic. It takes input images (either real or synthetic) and outputs a probability

score indicating the likelihood of the input being real. A discriminator usually comprises

multiple convolutional layers followed by batch normalization and leaky ReLU activation

functions. Similar to the generator, the parameter includes architectural hyperparameters such

as the batch size, kernel sizes, and activation functions.

Spectral Normalization Component (For SNGAN):

It is used to Stabilize training in SNGAN by normalizing the spectral norm of weight matrices

in the discriminator's convolutional layers. It is applied to the weights of convolutional layers

in the discriminator, typically using the power iteration method to estimate the largest singular

value. This can help prevent the discriminator from becoming too powerful relative to the

generator, thereby facilitating more stable training and improving sample quality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Training Loop Component:

The training loop component orchestrates the training process of the GAN by optimizing the

generator and discriminator components iteratively. It involves loading training data, feeding

it through the generator to produce synthetic images, evaluating the discriminator's

performance, calculating loss functions, and updating the network weights through

backpropagation. It typically employs the adversarial training algorithm, where the generator

and discriminator are trained in alternating steps to optimize their respective objectives.

Parameters include training hyperparameters such as learning rate, batch size, number of

epochs, and optimizer settings.

Evaluation Component:

The evaluation component assesses the performance of the trained GAN using quantitative

metrics and qualitative analysis. It involved calculating metrics such as Inception Score and

FID to measure the quality and diversity of generated images. It also included visualizations of

generated images, evaluation metrics over epochs, and comparisons between real and synthetic

image distributions.

Display Component:

Real vs Fake Image Comparison: side-by-side comparisons of real and generated images. This

allows for qualitative assessment of the model's ability to produce realistic outputs that closely

resemble the ground truth images.

FID and IS vs Epochs: provides insights into the image generation quality and diversity

throughout the training process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

4.3 Component Design

DCGAN[13]:

Figure 4.3.1: Component Design of DCGAN

SNGAN:

Figure 4.3.2: Component Design of SNGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

CycleGAN:

Figure 4.3.3: Component Design of CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

4.4 System Component Interaction Operation

DCGAN[15]:

Figure 4.4.1: Generator of DCGAN

Figure 4.4.2: Discriminator of DCGAN

ConvTranspose2d: These layers are crucial in the Generator as they perform the inverse

operation of convolution. ConvTranspose2d layers upsample input noise vectors into higher-

dimensional feature maps, gradually transforming them into images. They are responsible for

spatial expansion, allowing the Generator to generate images with higher resolutions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

BatchNorm2d: Batch normalization is applied to stabilize and accelerate the training of deep

neural networks. In the Generator, BatchNorm2d layers are inserted after convolutional

transpose layers to normalize the activations within each mini-batch. This helps mitigate issues

like internal covariate shift and enables smoother convergence during training.

ReLU Activation Functions[16]: Rectified Linear Units (ReLU) are used to introduce non-

linearity into the Generator network. ReLU activation functions help the Generator learn

complex mappings between input noise vectors and image outputs. They are applied after each

convolutional transpose layer to introduce non-linearities and capture more complex patterns

in the data.

Figure 4.4.3: ReLU activation

Tanh Activation Function [17]: The Tanh activation function is commonly used in the output

layer of the Generator. It scales the generated pixel values to the range [-1, 1], aligning with

the input range of real images. This ensures that the generated images have pixel values similar

to real images, making them visually realistic.

Figure 4.4.4: Tanh activation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Components in the Discriminator:

Conv2d Convolutional layers in the Discriminator network are used to extract features from

input images (both real and generated). These layers apply a set of learnable filters to the input

images, detecting relevant patterns and features that help differentiate between real and fake

images.

BatchNorm2d: Similar to the Generator, BatchNorm2d layers are used in the Discriminator to

normalize the activations within each mini-batch. This helps stabilize training and improve

convergence by reducing internal covariate shift.

Leaky ReLU Activation Functions[20]: Leaky ReLU activation functions are employed in the

Discriminator to introduce non-linearity. Unlike traditional ReLU, Leaky ReLU allows a small,

non-zero gradient when the input is negative, preventing the "dying ReLU" problem and

enabling the Discriminator to learn more robust features.

Figure 4.4.5: Leaky ReLU activation

Sigmoid Activation Function[21]: The Sigmoid activation function is typically used in the

output layer of the Discriminator. It squashes the discriminator's output logits into the range [0,

1], representing the probability that an input image is real. This facilitates binary classification,

with values closer to 1 indicating real images and values closer to 0 indicating fake images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Figure 4.4.6: Sigmoid activation

SNGAN:

Figure 4.4.7: Spectral Norm in SNGAN

SNLinear[10]: This component is similar to PyTorch's Linear layer but includes Spectral

Normalization to stabilize the training of the neural network. It performs a linear transformation

of the input data, followed by spectral normalization. The spectral normalization ensures that

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

the spectral norm of weight matrices remains constant during training, which helps in

stabilizing the learning process.

Components in the Generator:

ConvTranspose2d: This layer performs transposed convolution or deconvolution, which is

used for upsampling. In the SNGAN generator, it helps in increasing the spatial resolution of

the feature maps as the input noise vectors are transformed into higher-dimensional feature

maps, resembling the structure of real images.

BatchNorm2d: Batch normalization is applied after each convolutional layer in the generator

to stabilize and accelerate the training process. It normalizes the activations of each layer,

making the optimization process more robust and reducing the likelihood of vanishing or

exploding gradients.

ReLU: Rectified Linear Unit activation function introduces non-linearity by outputting the

input directly if it is positive, otherwise, it outputs zero. ReLU is used after each batch

normalization layer in the generator to introduce non-linearities, allowing the network to learn

complex mappings from the input noise space to the output image space.

Tanh: The hyperbolic tangent activation function is used in the output layer of the generator to

squash the pixel values to the range [-1, 1]. Since the real images are typically normalized to

this range, Tanh ensures that the generated images have similar pixel value distributions,

making them visually more realistic.

Linear: This layer performs a linear transformation of the input noise vectors to a higher-

dimensional space. In the SNGAN generator, it typically maps low-dimensional noise vectors

to higher-dimensional feature representations that can be reshaped into 2D feature maps.

Reshape: Reshape layer is used to reshape the output of the linear layer to a 2D shape that can

be further processed by convolutional layers. It is commonly used in the generator to convert

the flattened output of the linear layer into 2D feature maps.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Components in the Discriminator:

Conv2d: Convolutional layers are used in the discriminator to extract features from input

images. These layers convolve input feature maps with learnable filters to detect spatial

patterns and structures in the images.

BatchNorm2d: Similar to the generator, batch normalization is applied after each convolutional

layer in the discriminator to stabilize and accelerate training. It helps in normalizing the

activations and reducing internal covariate shift, making the training process more efficient.

ReLU: Rectified Linear Unit activation function introduces non-linearity after each

convolutional layer in the discriminator. It helps in capturing complex patterns and features in

the input images, making the discriminator more discriminative in distinguishing between real

and fake images.

AvgPool2d: Average pooling layers are used in the discriminator for downsampling the spatial

dimensions of the feature maps. They compute the average value of each feature map region,

reducing the spatial resolution while retaining important information about the image.

Identity: Identity function is used in residual blocks to create bypass connections that allow

gradients to flow directly through the network without any transformation. This helps in

mitigating the vanishing gradient problem and enables the discriminator to learn more

efficiently.

AdaptiveAvgPool2d: Adaptive average pooling layers are used to convert variable-sized

feature maps into fixed-sized representations. They perform spatial averaging to generate

output feature maps with a predefined size, ensuring that the discriminator can process images

of different resolutions effectively.

Flatten: Flatten layer is used to convert the multi-dimensional feature maps into a 1D tensor. It

is typically applied before the fully connected layers in the discriminator to flatten the spatial

dimensions of the feature maps and feed them into the linear layers for classification.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

LeakyReLU: Leaky Rectified Linear Unit activation function is similar to ReLU but allows a

small negative slope for negative input values. It helps in preventing the saturation of neurons

and encourages the flow of gradients, improving the learning process in the discriminator.

CycleGAN:

Figure 4.4.8: Generator of CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 4.4.9: Discriminator of CycleGAN

Generator Components:

ReflectionPad2d: This component is used to perform zero-padding on the input tensor. In

CycleGAN, reflection padding is often used to maintain the spatial dimensions of the feature

maps during convolution operations. It ensures that the edges of the input image are properly

handled and prevents artifacts such as checkerboard patterns in the generated images.

Conv2d: Convolutional layers are fundamental components in the generator for feature

extraction and transformation. They apply filters to the input image to learn hierarchical

representations, capturing essential features at different spatial scales. These features are

crucial for transforming the input image from one domain to another, enabling the generation

of realistic output images.

InstanceNorm2d: Instance normalization is applied to normalize the activations of each layer

independently. It helps stabilize the training process by reducing internal covariate shift,

leading to faster convergence and better generalization. In CycleGAN, instance normalization

ensures that the network can effectively learn domain-specific features without being biased

by the distribution of input images.

ReLU: Rectified Linear Unit (ReLU) is an activation function used to introduce non-linearity

into the network. It replaces negative values in the feature maps with zero, effectively capturing

the positive aspects of the learned features. ReLU activation is applied after convolutional and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

normalization layers to enable the generator to learn complex mappings between input and

output images.

Upsample: The upsampling operation increases the spatial dimensions of the feature maps. In

CycleGAN, upsampling is typically used to enlarge the feature maps before applying

convolutional layers. It helps recover spatial details lost during downsampling and enables the

generator to generate high-resolution output images with fine-grained textures.

Tanh: The hyperbolic tangent (Tanh) activation function is applied in the output layer of the

generator. It squashes the pixel values of the generated images to the range [-1, 1], ensuring

that the output images have the same range as the input images. Tanh activation helps stabilize

the training process and produces visually appealing results by preventing pixel intensity

saturation.

Discriminator Components:

Conv2d: Similar to the generator, convolutional layers in the discriminator are used for feature

extraction and transformation. They analyze the input images and learn discriminative features

that distinguish between real and generated images. Convolutional filters in the discriminator

capture texture, shape, and color information, enabling effective image classification.

LeakyReLU: Leaky Rectified Linear Unit (LeakyReLU) is an activation function used in the

discriminator to introduce non-linearity. Unlike the standard ReLU function, LeakyReLU

allows a small, non-zero gradient for negative input values, preventing the issue of "dying"

neurons. This ensures that the discriminator can effectively learn from both real and generated

images, improving its robustness and performance.

InstanceNorm2d: Instance normalization is applied in the discriminator to normalize the

activations of each layer independently, similar to its use in the generator. It helps stabilize the

training process and improves the discriminator's ability to generalize across different input

images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

ZeroPad2d: Zero-padding is used in the discriminator to maintain the spatial dimensions of the

feature maps. It ensures that the convolutional operations preserve the spatial information of

the input images, preventing information loss at the edges. Zero-padding is particularly

important in the discriminator to maintain consistency in feature extraction across different

regions of the image.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Chapter 5

Experiment/ Stimulation

5.1 Hardware Setup

The hardware utilized in this project is a computer, specifically employed to run the Google

Chrome, facilitating the utilization of Google Colab for the construction, training, and

execution of the GAN models.

Table 5.1.1 Specifications of laptop

Description Specifications

Model ROG Strix G531GT_G531GT

Processor Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz 2.40 GHz

Operating System Windows 11

Graphic Intel(R) UHD Graphics 630

Memory 4.00 GB RAM

Storage 475GB

5.2 Software Setup

Google Colab is configured for project execution, utilizing its advanced hardware

accelerators and high-RAM capabilities. Runtime type selected is Python 3. Compute units

were purchased so more powerful hardware accelerator can be ran. Among the five available

types of hardware accelerators (CPU, A100 GPU, V100 GPU, T4 GPU and TPU), T4 GPU

was selected based on its speed and consumption of compute units. The integration of

advanced hardware accelerators will enhance the speed and performance of the generative

models, allowing for efficient experimentation and development. Three different generative

models: DCGAN, CycleGAN and SNGAN will be implemented. The project setup involves

adapting template Python notebooks for DCGAN from [12]; CycleGAN from [19]; SNGAN

from [23]. To maximize computational efficiency and accelerate model training, the chosen

GPU will be employed during the execution of the notebooks in the Google Colab

environment. Additionally, the platform's integration with Google Drive ensured efficient

data handling, allowing convenient access to extensive anime image dataset.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

5.3 Setting and Configuration

Data Collection

In this project, anime face dataset from [18] is used. This dataset contains 63,632 high-quality

anime faces, ensuring diverse and robust training for the GAN model. For DCGAN and

SCGAN, only the one dataset from [18] is required, while for CycleGAN. The dataset from

[18] is set as dataset for domain Y (various hair and eye colour) and dataset from [24] is set as

dataset for domain X (blue hair and blue eye) for training.

Data Loading

In data loading, the first step involves the mounting of Google Drive, providing access to the

dataset stored within it. Subsequently, the anime faces dataset is extracted by unzipping the

relevant files, and then the images in zip files will be extracted to the dataroot. To efficiently

handle the dataset, the project leverages the PyTorch framework, employing the ImageFolder

class for loading and preprocessing. This step ensures that the dataset is prepared in a format

compatible with the subsequent model training and evaluation processes.

Data Preprocessing

To ensure consistency in the input data, all images undergo a resizing process. The images are

adjusted to a consistent size of 64 x 64 pixels. The processed and resized images contribute to

the formation of the training dataset. This dataset becomes the primary input for training the

GAN models, containing various facial expressions and features present in anime faces. To

facilitate the flow of data during model training and testing, essential components known as

dataloaders are generated. Two specific dataloaders are created, which are train dataloader and

test dataloader. These dataloaders efficiently handle the batching and loading of data, ensuring

a smooth interaction between the dataset and the GAN models.

Setting Hyperparameter

All the three GANs are set with same hyperparameter for comparisons purpose.

Learning Rate: This parameter controls the step size during optimization. A typical value for

GANs is 0.0002.

Number of Epochs: This is the number of times the entire dataset is passed forward and

backward through the neural network. Set with 50.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Batch Size: It determines the number of samples propagated through the network before the

parameters are updated. Set with 128 for DCGAN and SNGAN. However, for the CycleGAN,

I can just follow the sample to set with 5. This is because with higher batch sizes, the memory

requirements also increase significantly. Each image in the batch consumes memory for both

forward and backward passes through the network. This can quickly exhaust the available GPU

memory, leading to out-of-memory errors. Indeed, my CycleGAN faced the out-of memory

error when I tried to increase the batch size.

Latent Space Dimension: The dimensionality of the latent space or the size of the input noise

vector. Set as 100. Through experimentation, researchers [27] found that a latent dimension of

100 often provides a good balance between representational capacity and model complexity.

It's large enough to capture meaningful variations in the data distribution while not being

excessively high, which could lead to overfitting or computational inefficiency.

Optimizer Parameters: Hyperparameters related to the optimizer, such as beta1 for Adam

optimizer's exponential decay rates of moment estimates. Set as 0.5.

Number of Workers for DataLoader (workers): The number of subprocesses to use for data

loading. Set as 2.

Model Architecture Design

In this section, the architecture of the generator and discriminator neural networks were

defined. The G is responsible for transforming random noise into synthetic anime face images.

The architecture typically contains several layers, including convolutional layers, batch

normalization, and activation functions. These components work together to learn and generate

complex features present in anime faces. Details of G's architecture, such as the number of

layers, filter sizes, and activation functions, are key determinants of its ability to produce

realistic and diverse images.

On the other side of the adversarial spectrum, the D evaluates the authenticity of generated

images by distinguishing between real and synthetic samples. The architecture of D involves

convolutional layers followed by batch normalization and activation functions. The

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

discriminator's design is focused on capturing and classifying key features that differentiate

between real and generated anime face images.

For DCGAN and SNGAN, only one generator and one discriminator is defined. While for

CycleGAN, for the purpose of domain-to-domain translation, two generators and two

discriminators are defined, which are G_XY and G_YX, D_X and D_Y.

G_XY and G_YX:

G_XY and G_YX are the generators responsible for translating images from domain X to

domain Y and vice versa, respectively. These generators play a crucial role in the cycle-

consistent adversarial learning framework by enabling the translation of images between two

domains without requiring paired training data.

D_X and D_Y:

D_X and D_Y are used to distinguish between real and translated images in domains X and Y,

respectively. They are trained adversarially against their corresponding generators to improve

the quality of the generated images and ensure that they are indistinguishable from real images

in their respective domains.

In the SNGAN, there is an additional layer called SNLinear that required define for performing

spectral normalization.

Besides, network weights were initialized using a custom weight initialization function. Proper

weight initialization is essential for stabilizing GAN training and preventing issues like

vanishing or exploding gradients. A custom weight initialization function (weights_init) is

employed to initialize the weights of both G and D. This function systematically initializes the

network weights, contributing to a more effective and stable learning process during training.

The result of this architectural definition and weight initialization process is the generation of

two key models: the Generator G and the Discriminator D. These models encapsulate the

learned parameters and architectures, ready to undergo the adversarial training process. The

generator aims to produce anime face images that can deceive the discriminator, while the

discriminator aims to accurately classify the authenticity of the generated images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Model Training

Training is implemented to customarily update the generator and discriminator models

iteratively. In DCGAN, the adversarial loss is calculated using the BCE Loss function; In

SNGAN, hinge loss is calculated; In CycleGAN, adversial loss, cycle-consistency loss and

GAN Loss are calculated, providing the necessary feedback for model updates. The GAN

undergoes Iterative Training over multiple epochs. Throughout each epoch, the models are

updated based on the training data and the adversarial loss computed. This iterative process

allows the GAN to progressively enhance its ability to generate anime face images that closely

resemble real samples.

Evaluation

The evaluation process involves the computation of two metrics: the FID and IS. For the FID

calculation, all the three GANs are using the FID function and InceptionV3 from [25]. While

the IS score calculation is done with the pre-built InceptionScore function from the Ignite

library.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

5.4 System Operation

Select runtime type and hardware accelerator

Figure 5.4.1: Runtime type and Hardware Accelerator

Import necessary libraries.

Figure 5.4.2: Import Libraries

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Data Loading:

Integrated with Google Drive

Figure 5.4.3: Integrated with Google Drive

For DCGAN and SNGAN, only one dataset is loaded

Figure 5.4.4: Dataset loading for DCGAN and SNGAN

For CycleGAN, two datasets are loaded

Figure 5.4.5: Dataset loading for CycleGAN

Data Preprocessing

Figure 5.4.6: Transform for data preprocessing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Create the train and test dataloader

Figure 5.4.7: Train and Test Dataloader

Model Initialization:

Set the input hyperparameter

Figure 5.4.8: Input hyperparameter

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Weight Initialization

Figure 5.4.9: Weight Initialization

Define the loss function and optimizer

Figure 5.4.10: Define Loss function and Optimizer

Define the discriminator

Figure 5.4.11: Define Discriminator

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Define the Generator

Figure 5.4.12: Define Generator

For CycleGAN, create the two generators and the two discriminators

Figure 5.4.13: Generators and discriminators in CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

SNLinear layer in SNGAN

Figure 5.4.14: SNLinear layer in SNGAN

Training Loop:

Print the progress bar

Figure 5.4.15: Progress Bar

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

Evaluation:

Perform FID and IS calculation

Figure 5.4.16: FID and IS calculation

Plot the graph of loss

Figure 5.4.17: Loss plotting

Plot the graph of FID and IS vs epochs

Figure 5.4.18: FID and IS plotting

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Plot the graph of Real vs Fake Image

Figure 5.4.19: Real vs Fake images plotting

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

5.5 Implementation Issues and Challenges

The implementation of GAN training required large amount of time and high Internet speed. It

is normal that the system stopped when I ran the GAN training until halfway due to the network

issue, then I had to rerun the training again although it already ran 2 hours. Furthermore, if

using the free CPU provided in the system, the system can run but the speed will be much

slower than using the GPU, that is why I purchased the computing units to use the GPU. Every

day I restart the system, the system needed to run from beginning. The first-time training of

GAN is much time consuming compared to you run it again after the training had completed.

That is why if I want to make a big change on the system, I will empty one-day time to just

train the GAN, because it is time wasting if I chose to run the first-time training every day.

The next challenge is the GPU memory constraints. Training GANs demands significant

computational resources, particularly GPU memory. Large datasets or complex network

architectures exacerbate this challenge. My dataset from [18] is quite large, it comprised over

60000 images. This made the system ran slow every first time it wanted to load my dataset.

For my CycleGAN, the system even encountered “run out of memory” error, due to the large

batch size that I set. Large batch size means the GAN will take more images in one iterations

for training and the CycleGAN involved more complex architecture than the two other GANs.

As a result, I had to limit the batch size to 5, mirroring the sample provided.

The selection of evaluation metrics takes a lot of time. Initially, the three GANs are using three

different kinds of calculation function. For example, DCGAN used the pre-built FID function

in ignite libraries, CycleGAN used the FID function from [26], and SNGAN used the pre-built

FID function in Pytorch (Not in ignite). The integration of FID and IS calculation into a GAN

consumed a lot of time because I faced many problems, such as the matrix problem (the input

is not as expected), the imaginery component problem (the FID value is too large) and the

shape problem (input has different shape with inceptionV3 model). I spent long time to

understand the reasons of these problems to integrate them into my system. Once I had

successfully integrated them, my supervisor told me that the three GANs should employ the

same FID and IS function so they can compare with each other. I spent another time to find a

FID function that can fit all the GANs, and finally I use the FID function from [25] and it

successfully fit the three GANs.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

5.6 Conclusion Remark

In conclusion, Chapter 5 delves into the experimental setup, implementation, and challenges

encountered during the execution of the project. The hardware setup involved the utilization of

a laptop equipped with Google Chrome for accessing Google Colab, which provided advanced

hardware accelerators for model training. Various GAN architectures, including DCGAN,

CycleGAN, and SNGAN, were implemented and trained using Google Colab, leveraging its

computational resources and integration with Google Drive for efficient data handling.

The software setup included the configuration of Google Colab with T4 GPU hardware

accelerators to expedite model training. Data collection involved the use of an anime face

dataset, while data loading and preprocessing ensured the dataset's compatibility with the

PyTorch framework. Hyperparameters were carefully selected and set for all GAN

architectures to ensure consistency and facilitate performance comparison.

Model architecture design and weight initialization were pivotal steps in defining the generator

and discriminator networks for each GAN architecture. The training process involved iterative

updates to the models based on adversarial loss calculations, aiming to enhance the GANs'

ability to generate realistic anime face images.

Evaluation metrics, including FID and IS were computed to assess the performance of the

trained models. Challenges such as network issues, GPU memory constraints, and selection of

evaluation metrics were encountered during implementation. Despite these challenges, the

experimentation and implementation process provided valuable insights into the practical

aspects of training GANs for anime face generation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Matrix

Image Quality Evaluation

can be divided into two types:

1) Qualitative evaluation involves visualization of generated images to determine

realism, diversity, and overall quality.

2) Quantitative evaluation employs metrics such as Inception Score, Frechet Inception

Distance (FID) to measure image fidelity, diversity, and similarity to real images.

Training Stability

Evaluate the stability and convergence of the training process. Done through observing loss

curves for both the generator and discriminator networks to ensure they converge to

reasonable values without oscillations or divergence.

Inception Score Calculation

Figure 6.1.1: Inception Score working

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Generate Images: Firstly, a set of generated images is produced by the generative model

being evaluated. These images can be samples from the model's output, typically generated

from random noise vectors.

Image Classification: Each generated image is fed into a pre-trained Inception model, which

is typically InceptionV3 or a similar architecture. This model has been trained on a large

dataset for image classification tasks and has learned to recognize various objects and

patterns in images.

Calculate Class Probabilities: For each generated image, the Inception model produces a

probability distribution over the classes it was trained to recognize. This distribution reflects

the model's confidence in assigning the image to different categories.

Compute Inception Score: The Inception Score is calculated based on these class

probabilities. It consists of two components:

• Entropy: The entropy of the class distribution for each generated image measures the

diversity of predictions made by the Inception model. High entropy indicates that the

model is uncertain about the class of the image, suggesting diversity.

• Kullback-Leibler Divergence: The Kullback-Leibler (KL) divergence between the

marginal class distribution of generated images and the conditional class distribution

given the entire set of generated images measures how closely the distribution of

classes in the generated images matches that of the overall dataset used to train the

Inception model. Low KL divergence indicates that the generated images cover a

wide range of classes similar to those in the training dataset.

Aggregate Scores: Finally, the average entropy and KL divergence scores across all

generated images are computed to obtain the overall Inception Score. Higher Inception

Scores indicate that the generated images are both diverse and resemble the classes found in

the training dataset.

Figure 6.1.2: Inception Score formulae

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Frechet Inception Distance Calculation

Figure 6.1.3: FID score working

Feature Extraction: Firstly, a pre-trained InceptionV3 neural network is used to extract

features from both real and generated images. This network has been trained on a large

dataset for image classification tasks and has learned to represent images in a feature space.

Calculate Mean and Covariance: Next, the mean (μ) and covariance (Σ) of these feature

representations are calculated for both the real and generated images. This step essentially

summarizes the distribution of features in each set of images.

Calculate Fréchet Distance: The Fréchet distance between these two multivariate Gaussian

distributions (one for real images, one for generated images) is then computed. The Fréchet

distance is a measure of similarity between two probability distributions in a metric space.

Figure 6.1.4: FID score formulae

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Compute FID Score: Finally, the FID score is obtained by combining the mean squared

difference between the means (μ) and the trace of the covariance matrices (Σ) along with a

constant factor. The lower the FID score, the better the quality and diversity of the generated

images, as it indicates that the distribution of generated images is closer to that of real

images. [14]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

6.2 Testing Setup and Result

Testing Setup

Generate Fake Images:

During the training process of the GAN, the generator network creates fake images intended to

resemble the real images in the dataset.

Append Fake Images into Image Array:

As the fake images are generated, they are appended into an image array.

Plot Comparison Graph:

Using visualization tools like matplotlib in Python, plot a graph to visually compare the real

and fake images. Each image is represented in the graph, allowing for a side-by-side

comparison of their visual characteristics.

Quantitative analysis:

Downloading the Ignite Library:

The Ignite library is a high-level library for training neural networks in PyTorch. By

downloading and importing this library, we gain access to various utilities and functions that

streamline the training and evaluation process.

Importing Functions:

Import the InceptionScore function from Ignite.

Defining FID Function and InceptionV3 Model:

To calculate the FID, define a function that computes the distance between the feature

representations of real and generated images using the InceptionV3 model, a pre-trained deep

learning model.

Calculating FID and Inception Score: Use the defined FID function and the InceptionScore

function imported from Ignite to calculate the FID and Inception Score, respectively.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Calculating Generator and Discriminator Loss:

To further evaluate the performance of the GAN, we calculate the generator loss and

discriminator loss. For DCGAN and SNGAN, these are the primary losses used to optimize the

generator and discriminator networks. For CycleGAN, two additional losses are considered:

cycle consistency loss and GAN loss. These losses provide insights into how well the GAN is

able to learn and generate images that match the desired distribution.

Appending Values and Losses: The calculated FID and Inception Score values, as well as the

generator and discriminator losses, are appended into respective arrays (fid_value, is_value,

and loss). This allows for easy tracking and visualization of these metrics over the course of

training.

Result Analysis

Qualitative Analysis

DCGAN:

Figure 6.2.1: Real vs Fake images in DCGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

SNGAN:

Figure 6.2.2: Real vs Fake images in SNGAN

Comparison:

When comparing DCGAN and SNGAN, it becomes evident that SNGAN consistently

generates higher-quality images compared to DCGAN. In SNGAN, most images depict

complete facial structures, with well-positioned and proportionate eyes. Although occasional

instances of characters with closed eyes are observed in SNGAN, the eyes maintain uniform

size and placement. Conversely, DCGAN-generated images exhibit inconsistencies, such as

characters without eyes or eyes of varying sizes and positions, resulting in a somewhat

unsettling appearance. Both GANs showcase a variety of hair colors, but DCGAN tends to

produce a wider range of eye sizes, including large, medium, and sometimes no eyes, while

SNGAN predominantly generates images with medium-sized and closed eyes.

CycleGAN:

Figure 6.2.3: Real vs Fake images (X to Y, Y to X) in CycleGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

For cycleGAN, domain X is for various hair color and eye color, whereas domain Y is for blue

hair and blue eye. In the generated Images X, it can see most characters’ eyes had translated

into blue color. For colors that are brighter (yellow) or closed to blue (purple), they are easier

to translate to blue. The brown color hair character after train for 50 epochs still retains much

of their original hair color. For translate domain Y to X, the hair color mostly translates to those

colors closed to blue, but most eye color translate successfully to brown or yellow.

However, due to memory limitations resulting in a small batch size of 5, CycleGAN struggles

to produce images with high diversity. Consequently, in translations from domain Y to X, most

generated images feature blue hair rather than other colors like yellow or brown. Increasing the

number of images used for training could potentially address this limitation and enable the

generation of a wider range of hair colors.

Quantitative Analysis

DCGAN:

Figure 6.2.4: Loss in DCGAN

Generator Loss:

Initially, the generator loss is high as the generator struggles to produce meaningful images

that can fool the discriminator.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

As training progresses, the generator loss decreases. This indicates that the generator is

improving its ability to generate realistic images that are more difficult for the discriminator to

distinguish from real images. Towards convergence, the generator loss may stabilize at a

certain level. This suggests that the generator has reached a relatively optimal state where it

produces realistic images consistently.

Discriminator Loss:

Initially, the discriminator loss is high as it learns to distinguish between real and fake images.

As training progresses, the discriminator loss decreases. This indicates that the discriminator

becomes better at distinguishing between real and fake images. Towards convergence, the

discriminator loss may stabilize at a certain level. This suggests that the discriminator has

reached a relatively optimal state where it can effectively differentiate between real and fake

images.

SNGAN:

Figure 6.2.5: Loss in SNGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Generator Loss:

Towards the end of training, the generator loss kept increasing. This increase in the generator

loss could be due to several reasons:

1) Mode Collapse: The generator start to collapse, meaning it produces limited varieties

of images, or even repeats the same image. This results in the discriminator becoming

more capable of distinguishing generated images from real ones, causing an increase in

the loss.

2) Difficulty in Learning: As the training progresses, it becomes increasingly challenging

for the generator to improve its performance further. It struggle to generate more

diverse and realistic images, leading to an increase in the loss.

3) Competition with Discriminator: The generator-loss increase could also be a result of

the discriminator becoming more effective at distinguishing real from fake images,

putting pressure on the generator to produce better outputs.

Combine with the IS score result, it can be concluded that the SNGAN faced the problem of

mode collapse.

Discriminator Loss:

Initially, the discriminator loss is high as it learns to distinguish between real and fake images.

As training progresses, the discriminator loss decreases. This indicates that the discriminator

becomes better at distinguishing between real and fake images. Towards convergence, the

discriminator loss stabilizes at a certain level. This suggests that the discriminator has reached

a relatively optimal state where it can effectively differentiate between real and fake images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

CycleGAN:

Figure 6.2.6: Loss in CycleGAN

Generator Loss:

Initially high and then gradually decreases over epochs: At the beginning of training, the

generator loss is high as the model learns to translate images between domains effectively. As

training progresses, the generator loss tends to decrease as the model improves its translation

capability and converges towards generating realistic images. Throughout training, fluctuations

occur in the generator loss due to changes in the discriminator's performance.

Discriminator Loss:

In the early stages, the discriminator quickly learns to distinguish between real and fake images,

resulting in low loss values. However, as the generators improve, the discriminator faces a

more challenging task, leading to fluctuations in its loss. Over time, the discriminator loss

stabilizes as both the generator and discriminator reach a balanced state, where the generator

produces realistic images that are difficult for the discriminator to distinguish from real ones.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Cycle Loss:

The cycle loss measures how effectively the generators can reconstruct the original input image

after translation. In the graph, the cycle loss remain at a low level, indicates good reconstruction

performance.

GAN Loss:

GAN loss measures the how effectively the CycleGAN model successfully learns to translate

images between domains while producing realistic-looking outputs. Fluctuation occurs due to

complexity of the image translation task.

Comparison:

Comparing these GANs, DCGAN and SNGAN share similarities in their generator and

discriminator loss behaviors, with DCGAN exhibiting more stable training dynamics. SNGAN

faces challenges like mode collapse, leading to an increase in the generator loss towards the

end of training. CycleGAN, on the other hand, focuses on image translation between domains,

with fluctuations in both generator and discriminator losses, along with specific losses like

cycle loss and GAN loss, indicating the translation quality and realism of generated images.

The training of CycleGAN is stable due to the small batch size.

DCGAN:

Figure 6.2.7: FID and IS in DCGAN

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

The FID values fluctuate within a certain range, suggesting that the model encounter variations

in performance during training. Towards the later epochs, the FID values tend to stabilize and

decrease at a slower rate, indicating that the model is converging to a more stable state.

Similar to FID, the IS values fluctuate within a certain range, indicating variations in image

quality and diversity during training. Towards the later epochs, the IS values stabilize and

increase at a slower rate, indicating that the model is producing more consistent and diverse

images.

SNGAN:

Figure 6.2.8: FID and IS in SNGAN

The FID score decreases initially and then fluctuates around a certain range. In the provided

data, the FID score starts at a relatively high value and gradually decreases over the first few

epochs. Afterward, it seems to oscillate around a certain value without a clear decreasing trend.

This oscillation indicate that the model's performance stabilizes or converges to a certain level,

and further training iterations do not lead to significant improvements in the FID score.

The IS score decreases initially and then fluctuates around a certain range. This look weird

because the IS pattern should be from low to high, but the graph shown a different result. This

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

unexpected changes in the IS score pattern occur due to factors such as mode collapse, where

the generator fails to produce diverse images, or changes in training dynamics. Combine with

the previous result, it can be concluded that the SNGAN faced the problem of mode collapse.

From the generated fake images, it is obvious that more pink color hair characters are produced

and this reduced the diversity and thus reduced the IS score.

Comparing between DCGAN and SNGAN:

Through comparison, we can conclude that both GANs are producing high quality images than

beginning, because the FID score both decreased. DCGAN FID range from 343.735949 to

118.587097 while SNGAN changed from 192.845002 to 108.192419. However, through

comparing the FID range, the SNGAN produce image with relatively low range of FID

compared to DCGAN, indicating it is more stable to produce high quality fake image.

Through comparing the IS score, although the DCGAN produce high diverse image compared

to beginning, SNGAN encounter mode collapse so the IS score at the end is lower than

beginning, but we see that the IS score of DCGAN is ranged from 1.046320 to 1.967778 while

the SNGAN range from 1.670244 to 2.16116. This indicated the SNGAN is more consistent

and stable than DCGAN to produce image with high IS score although it encounters mode

collapse.

CycleGAN:

Figure 6.2.9: FID and IS in CycleGAN (Y to X)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

For the FID score, the FID score increased from approximately 269.0384 to 302.9035, meaning

that the quality of images decreased.

For IS score, although it encountered fluctuation in the middle, but the final IS score is almost

same with that in the beginning but increase a bit (from 2.3254 to 2.3800), meaning that the

diversity has no big changes. From the display fake images, the hair color of characters mostly

remains the original color, but there are still some changes in the eye color (from blue to yellow),

causing the a bit increasing in IS score.

Figure 6.2.10: FID and IS in CycleGAN (X to Y)

The FID value initially high when the generator's performance is poor and then stabilize finally

decrease, indicating better image quality.

For IS score, it is initially 3.50 and finally 3.00. This reduction is due to the characters are

translated to all blue hair and blue eyes, thus decreased the diversity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

6.3 Project Challenges

GAN is a relatively new technology that was first introduced in 2017. When I first began

studying GANs, I found myself lacking in understanding due to the complexity of the

vocabulary used in research papers. Despite my efforts to comprehend the material, I struggled

to grasp certain concepts. However, I was fortunate to come across a 10-hour lecture on

YouTube that covered the basics of GANs. This resource proved to be immensely helpful

because the teaching materials included clear explanations accompanied by visual aids. Unlike

reading research papers, which often presented challenges in visualization, this lecture

provided a more accessible way for beginners like myself to comprehend the workings of

GANs. The combination of verbal explanations and visual illustrations made it easier for me

to grasp complex concepts compared to relying solely on written text. Overall, I found this

method to be highly effective in bridging the gap between my limited understanding and the

advanced concepts of GAN technology.

The next challenge arose when deciding between SNGAN and StarGAN for my research.

Initially, I was inclined towards StarGAN due to its unique ability to perform various feature

translations on a single image, unlike DCGAN and CycleGAN, which are focused on specific

types of image generation and domain-to-domain translation, respectively. However, as I

delved deeper into my decision-making process, I realized that SNGAN, an enhanced version

of DCGAN incorporating spectral normalization for improved stability during training, might

be a more suitable choice. Despite this realization, I faced a significant obstacle: the scarcity

of labeled anime datasets available online. These datasets would have been crucial for training

and evaluating models based on attributes such as hair color, eye color, facial expression, and

etc. Despite extensive searching on platforms like Kaggle, I was unable to find a suitable

labeled anime dataset. Moreover, creating such a dataset from scratch would have been

extremely time-consuming, especially given the vast number of images required for a

comprehensive comparison with other GAN architectures. This scarcity of labeled data

ultimately influenced my decision to pivot from StarGAN to SNGAN.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

6.4 Objective Evaluation

Understanding the Working Principles of Generative Adversarial Networks (GANs):

The project begins with an in-depth literature review. This involves studying research papers,

lecture video, and tutorials on GANs to grasp the theoretical foundations, architecture, training

dynamics, and loss functions of GANs. Additionally, experiment is conducted by

implementing various GAN architectures, which are DCGAN, CycleGAN, and SNGAN, using

Python and deep learning frameworks like PyTorch. Through this practical exploration and

experimentation, the project gains insights into the core components and mechanisms of GANs,

facilitating a comprehensive understanding of their working principles.

Performance Analysis of GANs in Anime Face Generation:

The project collects and preprocesses anime face datasets suitable for training GAN models.

Multiple GAN architectures are then trained on these datasets, and their performance is

evaluated using qualitative analysis and quantitative analysis (Inception Score and FID). By

analyzing the loss, quality, and diversity of the generated anime face images, the project

assesses the performance of different GAN architectures in anime face generation tasks.

Comparative Analysis of Generative Models:

The project conducts a systematic comparison of between DCGAN, CycleGAN, and SNGAN.

Although many hyperparameters of the three GANs are set to be same for comparisons but due

to the out of memory issue in CycleGAN, it can only take in 5 for its batch size, so most

comparisons only done between DCGAN and SNGAN. Each architecture is evaluated based

on metrics such as FID, IS and loss. By identifying the strengths and weaknesses of each GAN

model, the project provides insights into their suitability for specific anime face generation

applications.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

6.5 Concluding Remark

In conclusion, Chapter 6 presents the system evaluation and remarks on the project's objectives.

The evaluation encompasses qualitative and quantitative analyses of the generated images,

training stability, and performance metrics. Additionally, challenges encountered during the

project, including learning curve hurdles and model selection dilemmas, are discussed.

The testing setup and results provide a comprehensive assessment of the performance of

DCGAN, CycleGAN, and SNGAN in anime face generation tasks. Qualitative analysis reveals

visual differences in image quality and diversity among the three architectures, while

quantitative metrics offer insights into their quality and similarity to real images.

In qualitative analysis, SNGAN outperforms DCGAN in generating high-quality images with

more consistent facial features, while CycleGAN demonstrates successful translation between

image domains despite limitations in batch size affecting diversity. SNGAN produces images

with better facial structures and eye consistency compared to DCGAN, while CycleGAN

effectively translates between hair and eye color domains, albeit with constraints on diversity

due to memory limitations. These findings underscore the strengths and limitations of each

GAN architecture in generating diverse and realistic images.

In quantitative analysis, DCGAN demonstrates stable training with decreasing losses over

epochs, while SNGAN encounters mode collapse, leading to an increase in generator loss.

CycleGAN exhibits fluctuations in losses due to its focus on image translation between

domains, with stable training facilitated by a small batch size.

The FID and IS calculation concluded DCGAN and SNGAN both show improvements in

image quality, but SNGAN demonstrates greater stability and consistency in generating high-

quality fake images despite encountering mode collapse. For translation from domain X to Y,

CycleGAN exhibits increase in image quality but with a reduction in diversity towards the end

due to the blue hair and eye. For translation from domain Y to X, the image quality decreased

but the diversity increased a bit although hair color almost same as real image, but eye color

had changed.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Challenges such as the complexity of GAN technology and the selection of appropriate

architectures underscore the learning curve and decision-making processes involved in GAN

research. Overcoming these challenges required a combination of theoretical understanding,

practical experimentation, and problem-solving skills.

The project's objectives are achieved through a systematic exploration of GAN principles,

performance analysis in anime face generation, and comparative evaluation of different

generative models. By fulfilling these objectives, the project contributes to the understanding

of GANs and their applications in generating anime face images.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Chapter 7

7.1 Conclusion

In conclusion, this project embarked on a comprehensive exploration of Generative

Adversarial Networks (GANs) in the context of anime face generation. Through a meticulous

journey encompassing theoretical study, practical implementation, and systematic evaluation,

significant insights into the workings and performance of different GAN architectures were

gleaned.

The project began with a thorough review of GAN literature, delving into the foundational

concepts, architecture designs, and training dynamics. This theoretical groundwork provided

the necessary foundation for the subsequent phases of the project. Practical implementation

involved the construction and training of three distinct GAN architectures: DCGAN,

CycleGAN, and SNGAN. Leveraging powerful computational resources and advanced

software tools like Google Colab, the project was able to execute complex training processes

efficiently.

Central to the project's objectives was the evaluation of GAN performance in anime face

generation tasks. This evaluation was multifaceted, encompassing both qualitative and

quantitative analyses. Qualitative assessment involved visual inspection of generated images

to discern aspects of realism, diversity, and overall quality. Quantitative evaluation relied on

established metrics IS and FID to provide objective measures of image quality and similarity

to real images.

The qualitative analysis highlights SNGAN's superiority in generating high-quality images

with consistent facial features compared to DCGAN, while CycleGAN excels in domain

translation despite diversity limitations. Quantitatively, DCGAN shows stable training with

decreasing losses, contrasting SNGAN's mode collapse issue causing increase generator loss

and CycleGAN's fluctuating losses. Despite encountering mode collapse, SNGAN

demonstrates greater stability in generating high-quality images. Although DCGAN can

generate high quality and diversity fake images, its stability is lower than SNGAN.

Additionally, CycleGAN achieves successful domain translation, albeit with changes in

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

image diversity. These insights underscore the strengths and limitations of each GAN

architecture in image generation and translation tasks.

Challenges encountered along the way, including network issues, lacking knowledge, model

and evaluation selection dilemmas, and computational constraints. Most of them were

addressed through a combination of perseverance, problem-solving, and adaptation.

Through these endeavors, the project not only achieved its objectives but also contributed to

the broader understanding of GAN technology and its applications in generating anime face

images. By bridging the gap between theory and practice, this project lays a solid foundation

for future research and innovation in the field of generative modeling.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

7.2 Recommendation

Dataset Expansion and Diversity:

Consider expanding the dataset to include a broader range of anime face images with labeled

attributes. Increasing dataset diversity enhances the training process and enables more

comprehensive evaluations of image quality, diversity, and realism across different GAN

architectures. By incorporating a more diverse dataset, GANs can capture a wider range of

facial features, expressions, and styles, leading to more realistic and varied generated images.

With labeled attribute, GANs that required labeled dataset such as StarGAN can be

implemented to analyze its performance and compare with other GANs.

Memory Optimization for CycleGAN:

Explore memory optimization techniques to overcome the limitations imposed by batch size in

CycleGAN training. Techniques such as gradient accumulation or data augmentation can help

alleviate memory constraints and allow for larger batch sizes without compromising model

performance. By optimizing memory usage, more efficient training can be facilitated and

improve the overall effectiveness of CycleGAN in generating high-quality images.

Optimization of Training Parameters:

Experiment with various training parameters such as learning rates, batch sizes, and

optimization algorithms to enhance the performance of GAN models. Fine-tuning these

parameters can help mitigate issues like mode collapse in SNGAN and improve the stability of

CycleGAN training. By systematically adjusting these parameters, the training process can be

optimized to achieve better convergence and image quality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

REFERENCES

[1] S. Ruan, "Anime Characters Generation with Generative Adversarial Networks," 2022,

[Online]. Available: https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/9918869

[2] D. E. V, V. V. H. Kumar, R. D. Kumar and V. M. Sahithi, "Generation of Hilarious

Animated Characters using GAN," 2023, [Online]. Available: https://ieeexplore-ieee-

org.libezp2.utar.edu.my/document/10125904

[3] C. Xiaopeng, C. Jiangzhong, L. Yuqin and D. Qingyun, "Improved Training of Spectral

Normalization Generative Adversarial Networks," 2020, [Online]. Available:

https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/9143310

[4] Z. Li and Q. Wan, "Generating Anime Characters and Experimental Analysis Based on

DCGAN Model," [Online]. Available: https://ieeexplore-ieee-

org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=9708652

[5] Madhu Sanjeevi “Ch:14.1 Types of GAN’s with Math.,” 2019, [Online]. Available:

https://medium.com/deep-math-machine-learning-ai/ch-14-1-types-of-gans-with-math-

5b0dbc1a491d

[6] L. Quan and H. Zhang, "Facial Animation Using CycleGAN," [Online]. Available:

https://ieeexplore-ieee-org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=9591087

[7] “【機器學習 2021】生成式對抗網路 (Generative Adversarial Network, GAN) (二) –

理論介紹與 WGAN,” [Online]. Available: www.youtube.com.

https://youtu.be/jNY1WBb8l4U?feature=shared

[8] “Deconvolution vs Convolutions,” GeeksforGeeks,[Online]. Available:

https://www.geeksforgeeks.org/deconvolution-vs-convolutions/ (accessed Apr. 24, 2024).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

[9] M. Nayak, “Deep Convolutional Generative Adversarial Networks(DCGANs),” Medium,

2018. [Online]. Available: https://medium.datadriveninvestor.com/deep-convolutional-

generative-adversarial-networks-dcgans-3176238b5a3d

[10] Kaixin. “Data-Augmented Manifold Learning Thermography for Defect Detection and

Evaluation of Polymer Composites”, 2022, [Online]. Available:

https://www.researchgate.net/figure/SNGAN-data-augmentation-architecture-for-

thermal-image-generation_fig1_366687713

[11] Parmar. “Effectiveness of Cross-Domain Architectures for Whisper-to-Normal Speech

Conversion.” 2019, [Online]. Available:

https://www.researchgate.net/publication/335840935_Effectiveness_of_Cross-

Domain_Architectures_for_Whisper-to-Normal_Speech_Conversion

[12] “Google Colaboratory,”[Online]. Available:

https://colab.research.google.com/github/pytorch-ignite/pytorch-ignite.ai/blob/gh-

pages/blog/2021-08-11-GAN-evaluation-using-FID-and-IS.ipynb

[13] Cheng, “An analysis of generative adversarial networks and variants for image

synthesis on MNIST dataset,” 2020, [Online]. Available:

https://www.researchgate.net/figure/Significant-components-of-DCGAN-

model_fig3_338979046

[14] R. Gupta and V. Gupta, "Performance Analysis of Different GAN Models: DC-GAN

and LS-GAN,"[Online]. Available: https://ieeexplore.ieee.org/document/9673478

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

[15] “【Tensorflow2.0深度学习】从 GAN到 DCGAN、cGAN、ACGAN、InfoGAN：

原理全解析与 Tensorflow代码实践 {14} 附：1 8版本的 Tensorflow学习基

础,” [Online]. Available: www.youtube.com. https://youtu.be/EXK5djTw8J8?feature=shared

[16] H. Sultan, “Multi-Classification of Brain Tumor Images Using Deep Neural Network.”

2019, [Online]. Available: https://www.researchgate.net/figure/ReLU-activation-

function_fig7_333411007

[17] “Papers with Code - Tanh Activation Explained,” [Online]. Available:

https://paperswithcode.com/method/tanh-activation

[18] S. Churchill, “Anime face dataset,” Kaggle, 2019, [Online]. Available:

https://www.kaggle.com/datasets/splcher/animefacedataset

[19] “Google Colaboratory,” [Online]. Available:

https://colab.research.google.com/github/nivedwho/Colab/blob/main/CycleGAN.ipynb

[20]

S. Singh, “Leaky ReLU as an Activation Function in Neural Networks”, 2020, [Online].

Available: https://deeplearninguniversity.com/leaky-relu-as-an-activation-function-in-neural-

networks/

[21] “Sigmoid Function: Types and Applications | BotPenguin,” [Online]. Available:

https://botpenguin.com/glossary/sigmoid-function.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

[22] “CoCalc -- SNGAN.ipynb,” [Online]. Available: https://cocalc.com/github/y33-

j3T/Coursera-Deep-

Learning/blob/master/Build%20Basic%20Generative%20Adversarial%20Networks%20(GA

Ns)/Week%203%20-%20Wasserstein%20GANs%20with%20Gradient%20Penalty/SNGAN.

ipynb

[23] “Claim Your Anime Waifu with SNGAN,” [Online]. Available:

https://www.kaggle.com/code/tqch2020/claim-your-anime-waifu-with-sngan

[24] “Re:Zero Rem Anime Faces For GAN Training,” [Online]. Available:

https://www.kaggle.com/datasets/andy8744/rezero-rem-anime-faces-for-gan-training

[25] “GAN in Pytorch with FID,” [Online]. Available:

https://www.kaggle.com/code/ibtesama/gan-in-pytorch-with-fid

[26] J. Brownlee, “How to Implement the Frechet Inception Distance (FID) for Evaluating

GANs,” 2019, [Online]. Available: https://machinelearningmastery.com/how-to-implement-

the-frechet-inception-distance-fid-from-scratch/

[27] Marin, “The Effect of Latent Space Dimension on the Quality of Synthesized Human

Face Images.” 2021, [Online]. Available:

https://www.researchgate.net/publication/351832396_The_Effect_of_Latent_Space_Dimensi

on_on_the_Quality_of_Synthesized_Human_Face_Images

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: January, 2024 Study week no.: 4

Student Name & ID: Tan Jia Ler 2003397

Supervisor: Ts Dr Tong Dong Ling

Project Title: Performance Comparison between Generative Adversarial Networks

(GAN) Variants in Generating Comic Character Images

1. WORK DONE

-Met supervisor for the 1st time for this semester during w4

-briefing on task to be done (exploring StarGAN)

-Reviewed on the project objectives and results of FYP1.

2. WORK TO BE DONE

- Explore StarGAN codes.

- Adjust the hyperparameter in CycleGAN and DCGAN to be the same. Also apply to

StarGAN.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ ____ _____

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: January, 2024 Study week no.: 6

Student Name & ID: Tan Jia Ler 2003397

Supervisor: Ts Dr Tong Dong Ling

Project Title: Performance Comparison between Generative Adversarial Networks

(GAN) Variants in Generating Comic Character Images

1. WORK DONE

-Met supervisor for the 2nd time for this semester during w6

-Listened to supervisor’s explanation on defragmentation.

-Failed to run StarGAN (lack of labeled dataset), find another GAN which is SNGAN to

continue the project.

-Successfully ran the SNGAN.

2. WORK TO BE DONE

-try to integrate FID and IS calculation into SNGAN.

3. PROBLEMS ENCOUNTERED

-Lack of labeled dataset in StarGAN

-Dilemma in selecting suitable SNGAN sample code

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _____ ____

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: January, 2024 Study week no.: 8

Student Name & ID: Tan Jia Ler 2003397

Supervisor: Ts Dr Tong Dong Ling

Project Title: Performance Comparison between Generative Adversarial Networks

(GAN) Variants in Generating Comic Character Images

1. WORK DONE

-Met supervisor for the 3rd time for this semester during w8

-Successfully integrated FID and IS calculation into SNGAN.

-Listened to supervisor’s advice to improve the knowledge related to GANs, and

changing all GANs to have same FID and IS calculation.

2. WORK TO BE DONE

-Read more paper related to GANs.

-Apply same FID and IS calculation to all the three GANs.

3. PROBLEMS ENCOUNTERED

-Problems in integrating evaluation metrics in SNGAN.

4. SELF EVALUATION OF THE PROGRESS

Not Good

 _________________________ _____ ____

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: January, 2024 Study week no.: 10

Student Name & ID: Tan Jia Ler 2003397

Supervisor: Ts Dr Tong Dong Ling

Project Title: Performance Comparison between Generative Adversarial Networks

(GAN) Variants in Generating Comic Character Images

1. WORK DONE

-Met supervisor for the 4th time for this semester during w10

-Successfully changed FID and IS function in all GANs into the same one.

-Discussed the results with supervisors.

-Listened to a lecture on YouTube, learnt a lot of knowledges related to GANs.

2. WORK TO BE DONE

-further improve the GANs according to supervisor’s advice.

-start to write the FYP report

-think explanation to explain the results

3. PROBLEMS ENCOUNTERED

-Unable to explain some of the results

-Mistake in displaying the results.

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _____ ____

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: January, 2024 Study week no.: 12

Student Name & ID: Tan Jia Ler 2003397

Supervisor: Ts Dr Tong Dong Ling

Project Title: Performance Comparison between Generative Adversarial Networks

(GAN) Variants in Generating Comic Character Images

1. WORK DONE

-Fixed the mistake in the GANs.

-Explored some resources aiding in writing FYP report.

2. WORK TO BE DONE

-Write FYP report

-Prepare the presentation slides.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _____ ____

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Tan Jia Ler

ID Number(s)

20ACB03397

Programme / Course Bachelor of Computer Science (Honours)

Title of Final Year Project Performance Comparison between Generative Adversarial

Networks (GAN) Variants in Generating Comic Character

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 15___ %

Similarity by source
Internet Sources: _____6__________%
Publications: _11________
%
Student Papers: ____5_____ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Tong Dong Ling

25 Apr 2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB03397

Student Name Tan Jia Ler

Supervisor Name Ts Dr Tong Dong Ling

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review

 Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

_____ _________________
(Signature of Student)
Date: 25 April 2024

