
i

PHYSICAL CHESS GAME TRACKING USING RASPBERRY PI

BY

YEE WEI JUN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: Physical Chess Game Tracking Using Raspberry Pi_________________

__

__

Academic Session: Jan 2024

I _____________ YEE WEI JUN __________________________

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:

138, Lengkok Wira Jaya Timur 3,

Taman Desa Kebudayaan____ _Dr. Teoh Shen Khang __________

31350 Ipoh, Perak___________ Supervisor’s name

Date: _25th April 2024_ Date: ____________________ 25 April 2024

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____25th April 2024____________

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that ______YEE WEI JUN___________________________ (ID No:

__20ACB01647) has completed this final year project entitled “ Physical Chess Game Tracking

Using Raspberry Pi ” under the supervision of _Dr Teoh Shen Khang_ (Supervisor) from the

Department of Computer and Communication Technology, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

YEE WEI JUN

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “PHYSICAL CHESS GAME TRACKING USING

RASPBERRY PI” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any degree

or other award.

Signature : _________________________

Name : _____YEE WEI JUN________

Date : ______25th April 2024_____

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Teoh

Shen Khang has given me this bright opportunity to engage in a project that span various field

of study, namely Computer Vision, Machine Learning, Internet of Things, and web application

development. With your guidance and support, I am able to explore and learn many things that

I never had a chance to explore before. Many thanks to you.

 To my family and friends, thank you for staying by my side whenever I feel down.

Without you all, I could not stand wherever I am now. Also, many thanks to my parents for

your continuous support throughout this course.

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

With the popularity in chess increases exponentially caused by the advancement of information

technology where there are many chess players were influenced by online chess streamer and

got interest in chess. Due to this fact, there are many chess tournaments being organized

worldwide no matter the scale of them. With the use of the current technology in tracking and

broadcasting the chess game which is using electric chess board with uniquely manufactured

chess pieces with unique patented sensor technology, it is costly to track and broadcast every

single chess game begin played in the tournament on a website. Hence, a novel alternative way

of tracking and broadcasting a chess game is proposed in this project by using Raspberry Pi

with compatible camera module and detection and recognition model installed on it. The

Raspberry Pi will detect chess move and relay the move to a web application where it will

change the state of the digital chess board with the chess move received. Additionally, it will

also store the move in a database for future analysis. By using the approach proposed, the cost

of tracking a chess game and broadcasting it will be drastically decreases, thus, the overall cost

of organizing a chess tournament will also decreases.

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xvi

LIST OF SYMBOLS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background Information 1

1.2 Problem Statement and Motivation 3

1.3 Project Scope 4

1.4 Project Objective 4

1.5 Impact, Significance, and Contributions 4

1.6 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Object Recognition 6

2.2 Chessboard Detection 8

2.3 Chess Piece Detection and Recognition 14

2.4 Chess Move Detection 21

2.5 Limitation of Previous Studies 23

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 25

3.1 System Architecture Diagram 25

3.1.1 Amazon Web Services(AWS) Used 26

3.1.2 General Flow and Process 27

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Use Case Diagram and Description 28

3.2.1 Use Case Diagram 28

3.2.2 Use Case Description 29

3.3 Activity Diagram 35

3.4 Timeline 41

CHAPTER 4 SYSTEM DESIGN 43

4.1 System Design Overview 43

4.2 System Design for Raspberry Pi 45

4.2.1 Image Acquisition 46

4.2.2 Image Pre-processing 46

4.2.3 Image Thresholding and Finding Contours 47

4.2.4 Finding largest contour to discover the location of the

chessboard

47

4.2.5 Approximate polygonal curve 48

4.2.6 Transform chessboard into top-view perspective

image

48

4.2.7 Find chessboard square grid corners 49

4.2.8 Square grid masks construction 49

4.2.9 Detect changes 50

4.2.10 Image segmentation 51

4.2.11 Chess piece detection and Classification 51

4.2.12 Compute Source and Destination Squares 52

4.2.13 Send Detected Move to Backend of the Web

Application

52

4.3 System Design for Web application 53

CHAPTER 5 SYSTEM IMPLEMENTATION 55

5.1 Hardware Setup 55

5.2 Software Setup 57

5.3 Settings and Configuration 58

5.3.1 Visual Studio Code Installation 58

5.3.2 YOLOX Installation 59

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.3 OpenCV Installation 60

5.3.4 AWS Free Tier Account Creation 60

5.3.5 Frontend Creation Using Command Line 62

5.3.6 Backend Creation Using Amplify CLI 62

5.3.7 Database Creation Using Amplify Studio 64

5.3.8 Application Protocol Interface(API) and Lambda

Function Creation Using Amplify CLI

65

5.4 System Operations 68

5.5 Implementation Issue and Challenges 78

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 79

6.1 System Testing and Performance Metrics 79

6.2 Testing Setup and Result 80

6.2.1 Testing Setup 80

6.2.2 Result 80

6.2.2.1 Result for First Test Case 80

6.2.2.2 Result for Second Test Case 88

6.2.2.3 Result for Third Test Case 90

6.2.2.4 Result for Fourth Test Case 93

6.2.3 Error Analysis 95

6.3 Objective Evaluation 96

CHAPTER 7 CONCLUSION AND RECOMMENDATION 97

7.1 Conclusion 97

7.2 Recommendation 97

REFERENCES 98

APPENDIX A

A.1 Weekly Report A-1

A.2 Poster A-7

A.3 Plagiarism check result A-8

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1.1.1 Average number of chess players over the years 3

Figure 2.2.1 Equations used in predicting the possible locations and

appearance of the chess pieces [1].

9

Figure 2.2.2 The chessboard preprocessing result. The board

boundaries are marked by green lines and the normal

vector of each square is indicated using a blue stick[2]. 9

Figure 2.2.3 a) Contour of chessboard, b) Warped perspective of

chessboard ,c) Canny edge detection, d) Hough Lines,

e) Square vertices[4]. 10

Figure 2.2.4 Board corner points in white[6]. 10

Figure 2.2.5 (a) The original chessboard image, (b) the detected

chessboard grid corners and (c)the related points to

chessboard grid corner detection[7]. 11

Figure 2.2.6 The chessboard before geometric rectification step, (b)

The chessboard after geometric rectification step[7]. 11

Figure 2.2.7 Straight line detection[11]. 12

Figure 2.2.8 Example results of the geometric detector. Green color

represents rhomboids that were identified by the

detector. Only the rightmost matrix will be classified

as a lattice point because it is the only one that contains

four rhomboids[11]. 13

Figure 2.2.9 Polyscore values calculated for various frames. The

frame with the highest score is marked with the red

border. Higher scores are highlighted with darker blue

backgrounds[11]. 14

Figure 2.2.10 Equations for polyscore function P(F)[11]. 14

Figure 2.3.1 Standard modern Staunton wood chess set[14]. 15

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.3.2 Classifier hierarchy used to recognize chess pieces

during a game[6].

16

Figure 2.3.3 Object Detection Structure of YOLOv4[16]. 17

Figure 2.3.4 Overview of volumetric CNN[5]. 17

Figure 2.3.5 Architecture of the 1-Step Model[9]. 18

Figure 2.3.6 Architecture of the Binary classifier in the 2-Step

model[9].

19

Figure 2.3.7 Architecture of the Shape-based classifier in the 2-Step

model[9].

20

Figure 2.3.8 The overall structure of AlexNet[10]. 21

Figure 3.1.1 System Architecture Diagram. 25

Figure 3.2.1.1 Use case diagram of the system. 28

Figure 3.3.1 Activity diagram for Access Home Page use case. 35

Figure 3.3.2 Activity diagram for Login use case. 36

Figure 3.3.3 Activity diagram for Sign Up use case. 37

Figure 3.3.4 Activity diagram for Select Chess Game use case. 38

Figure 3.3.5 Activity diagram for Display Move Using Buttons use

case.

39

Figure 3.3.6 Activity diagram for Create Game use case. 40

Figure 3.3.7 Activity diagram for Update Move use case. 40

Figure 3.4.1 Gantt chart for FYP 1 41

Figure 3.4.2 Gantt chart for FYP 2 41

Figure 4.1.1. System design overview diagram. 43

Figure 4.2.1. System design diagram for Raspberry Pi. 45

Figure 4.2.1.1 Sample result for image acquisition. 46

Figure 4.2.2.1 Sample result for image pre-processing. 46

Figure 4.2.3.1 Sample result image thresholding and finding contours. 47

Figure 4.2.4.1 Sample result for finding largest contour. 47

Figure 4.2.5.1 Sample result approximating polygonal curve of an

image.

48

Figure 4.2.6.1 Sample result for warpPerspective(). 48

Figure 4.2.7.1 Sample result for findChessboardCornersSB() with

additional calculation

49

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Sample result for square grid masks construction. 50

Sample result for finding changes using absdiff(). 50

Sample result for image segmentation. 51

Sample of training images 52

Sample of validation images 52

Sample result of model inference 52

System design diagram for Web Application 53

Hardware Setup 57

Visual Studio Code Installation. 58

YOLOX documentation 59

YOLOX installation guideline. 59

Code to load and use the model in performing

inference for object detection. 59

OpenCV Installation. 60

AWS main page. 60

Account sign up page. 61

AWS console management page. 61

Creating a frontend using command line. 62

Creating backend using Amplify CLI. 62

AWS console management page. 63

AWS Amplify main page.. 63

Setconfdemo app backend environment page. 63

Enabling Amplify Studio 64

Creating database in Amplify Studio. 64

Tables successfully created in DynamoDB. 65

Creating API and lambda functions using Amplify

CLI. 65

Project in GitHub repository. 66

Selecting GitHub in hosting environment. 66

Adding the github repository to Amplify. 67

Web application successfully deployed. 67

ChessEyes app hosting environment page. 68

Figure 4.2.8.1

Figure 4.2.9.1

Figure 4.2.10.1

Figure 4.2.11.1

Figure 4.2.11.2

Figure 4.2.12.1

Figure 4.3.1.

Figure 5.1.1

Figure 5.3.1.1.

Figure 5.3.2.1.

Figure 5.3.2.2

Figure 5.3.2.3.

Figure 5.3.3.1

Figure 5.3.4.1.

Figure 5.3.4.2.

Figure 5.3.4.3.

Figure 5.3.5.1.

Figure 5.3.6.1.

Figure 5.3.6.2.

Figure 5.3.6.3.

Figure 5.3.6.4.

Figure 5.3.7.1.

Figure 5.3.7.2

Figure 5.3.7.3.

Figure 5.3.8.1.

Figure 5.3.9.1.

Figure 5.3.9.2.

Figure 5.3.9.3.

Figure 5.3.9.4.

Figure 5.4.1.

Figure 5.4.2. Web application home page. 68

xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.3. Sign in page of the web application. 69

Figure 5.4.4. Home page content after user signed in. 69

Figure 5.4.5. Login GUI in Raspberry Pi. 70

Figure 5.4.6. Home page GUI in Raspberry Pi. 70

Figure 5.4.7. Create game popup GUI in Raspberry Pi. 70

Figure 5.4.8. Updated home page GUI in Raspberry Pi. 71

Figure 5.4.9. Updated home page in web application. 71

Figure 5.4.10. Chess page in web application. 72

Figure 5.4.11. Chess game tracking GUI in Raspberry Pi. 72

Figure 5.4.12. Threshold image obtained from processed raw image. 73

Figure 5.4.13. Contour of chessboard obtained from threshold image. 73

Figure 5.4.14. 4 corners points found using approxPolyDP() from

contour.

74

Figure 5.4.15. Top-view perspective image obtained using the 4

corner points.

74

Figure 5.4.16. Square grid corner points found from the top-view

perspective image.

74

Figure 5.4.17. Comparison of reference and latest snapshot image

using absdiff().

75

Figure 5.4.18. Segmented image obtained using segmentation mask. 76

Figure 5.4.19. Chess game page displaying real-time move. 76

Figure 5.4.20. Comparison of reference and latest snapshot image

using absdiff() for second move.

77

Figure 5.4.21. Segmented image obtained using segmentation mask

for second move.

77

Figure 5.4.22. Chess game page displaying real-time move for second

move.

78

Figure 6.2.2.1.1. White pawn move from e2 to e4 detected by Raspberry

Pi.

81

Figure 6.2.2.1.2. Detected move displayed correctly in web application. 81

Figure 6.2.2.1.3. White castling move detected by Raspberry Pi. 82

Figure 6.2.2.1.4. White castling move displayed correctly in web

application.

82

xiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.5. Black castling move detected by Raspberry Pi. 82

Figure 6.2.2.1.6. Black castling move displayed correctly in web

application.

83

Figure 6.2.2.1.7. White knight moved from c3 to d5 detected by

Raspberry Pi.

83

Figure 6.2.2.1.8. White knight moved from c3 to d5 displayed correctly

in web application.

84

Figure 6.2.2.1.9. Black knight moved from f6 to d5 detected by

Raspberry Pi.

84

Figure 6.2.2.1.10. Black knight capturing move displayed correctly in

web application.

84

Figure 6.2.2.1.11. Black player moved king from h8 to h7 as displayed in

web application.

85

Figure 6.2.2.1.12. White player promote the pawn to queen by moving

pawn in b7 to b8 as detected by Raspberry Pi.

85

Figure 6.2.2.1.13. The pawn promotion move displayed correctly in web

application.

86

Figure 6.2.2.1.14. Black player moved the queen from e1 to f1 displayed

in web application.

86

Figure 6.2.2.1.15. White player’s capturing move detected by Raspberry

Pi.

87

Figure 6.2.2.1.16. White player’s latest move and result of the game

displayed correctly in the web application.

87

Figure 6.2.2.2.1. Chess game state for test case two shown in web

application.

88

Figure 6.2.2.2.2. Both kings is detected to be moved from their source

square to the center of the board on light squares by

Raspberry Pi.

89

Figure 6.2.2.2.3. Result displayed in the web application that white is

victorious.

89

Figure 6.2.2.3.1. Chess game state that enable white to plays en passant

shown in web application.

90

Figure 6.2.2.3.2 En passant move detected by Raspberry Pi. 91

xv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.3.3. En passant move by white displayed correctly in the

web application

91

Figure 6.2.2.3.4. Both kings is detected to be moved from their source

square to the center of the board on dark squares by

Raspberry Pi.

92

Figure 6.2.2.3.5. Result displayed in the web application that black is

victorious.

92

Figure 6.2.2.4.1 Starting position of the game in fourth test case. 93

Figure 6.2.2.4.2. Both kings is detected to be moved from their source

square to the center of the board on light and dark

squares by Raspberry Pi.

94

Figure 6.2.2.4.3 Result displayed in the web application that both

players had drew.

94

Figure 6.2.3.1. Raspberry Pi mistakenly detected 3 squares where it

should detect 2 squares only.

95

Figure 6.2.3.2. Raspberry Pi mistakenly detected 3 squares where it

should detect 2 squares only.

95

Figure 6.2.3.3 Raspberry Pi mistakenly detected 3 squares where it

should detect 2 squares only.

96

xvi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 1.1.1 Average number of players over the years 3

Table 2.1.1 State-of-the-art object recognition method[1]. 7

Table 2.3.1 The recognition accuracy of various methods[2]. 16

Table 2.3.2 Confusion matrix of classification results[5]. 17

Table 2.3.3 Accuracy and model precision[10]. 22

Table 3.2.2.1 Use case Description for Access Home Page use case. 29

Table 3.2.2.2 Use case Description for Login use case. 30

Table 3.2.2.3 Use case Description for Sign Up use case. 31

Table 3.2.2.4 Use case Description for Select Chess Game use case. 32

Table 3.2.2.5 Use case Description for Display Move Using Buttons

use case.

33

Table 3.2.2.6 Use case Description for Create Game use case. 34

Table 3.2.2.7 Use case Description for Update Move use case. 34

Table 5.1.1 Specifications of laptop 55

Table 5.1.2 Specifications of Raspberry Pi[22] 56

Table 5.1.3 Specifications of Raspberry Pi camera[27].

56

xvii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

R-CNN Region-based Convolutional Neural Network

SSD Single-Shot Detector

YOLO You Only Look Once

FPS Frame Per Second

SVM Support Vector Machine

ReLU Rectified Liner Unit

CHAPTER 1

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

In this chapter, the background information, problem statement and motivation of the

project, project scope, project objective and the impact, significance and contribution of the

project to the community will be presented.

1.1 Background Information

First and foremost, computer vision, it is a branch of artificial intelligence focused on

allowing machines to interpret and understand the visualized world. It equips computers with

the ability to perceive, analyze, and extract information from images or video, replicating

human vision processes. By adopting sophisticated algorithms, machine learning, and image

processing techniques, computer vision systems can identify and comprehend patterns, objects,

and even context within visual data. Thus, it empowers machines to perform tasks like object

detection, image classification, facial recognition, and scene understanding. Additionally, the

applications span across diverse fields such as in healthcare, assisting diagnoses through

medical imaging analysis; in autonomous vehicles, enabling them to perceive surroundings,

enhancing quality control processes, facilitating augmented reality experiences, identifying

anomalies for surveillance and many more. As the advancement of technology in the recent

years in computer vision, particularly with deep learning models and neural networks, have

propelled its capabilities. As machines gain the ability to interpret visual information more

accurately, efficiently, and contextually, the impact of computer vision across industries

continues to expand, revolutionizing how we interact with technology and perceive the world.

Besides, machine learning, a branch of artificial intelligence that focuses on

constructing algorithms and systems that enable computers to acquire and make predictions or

decisions without explicit programming. Overall, it involves training machines on data,

allowing them to recognize patterns, making predictions, or gaining insights from new

information. At its core, machine learning employs various techniques and algorithms, such as

supervised learning that involve labeled data, unsupervised learning that involve discovering

patterns in unlabeled data, and reinforcement learning that learn from feedback, to enable

computers to learn and improve from experience. In addition, the applications of machine

learning vary across industries such as aiding diagnoses and drug discovery, fraud detection

CHAPTER 1

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and risk assessment, personalized recommendations, enabling navigation and decision-making

and many more.

Moreover, IoT, also known as Internet of Things, is refers to a network of

interconnected devices embedded with sensors, software, and other technologies, allowing

them to collect, exchange, and act upon data. In short, IoT can increases the efficiency,

convenience, and insights of common things by giving them the ability to interact, connect to

the internet, and carry out automated operations. Additionally, IoT devices span various

domains, from smart homes with connected appliances, thermostats, and security systems to

industrial settings integrating sensors in machinery for predictive maintenance and

optimization of operations. IoT adoption causes revolutionary shifts in a variety of businesses

such as wearable technology is used in healthcare to track vital signs and provide remote patient

care, sensors monitor soil moisture content in agriculture to enable accurate watering, tracking

systems improve supply chain management in logistics, and most importantly, can be used in

tracking over the board chess game.

Finally, Chess game, a two-player strategic game where the players will battle it out

with their pieces either in white or black typically. It is played on a 8x8 alternating black and

white square grid chess board and each player will have a total of 16 pieces which is 8 pawns,

2 rooks, 2 knights, 2 bishops, 1 queen and 1 king. The primary objective of the game is to

checkmate the opponent or strategically outplay the opponent, resulting in resignation and

claiming the victory.

 As time goes from 1990s to 2000s and to 2010s and finally 2020s, the popularity of

chess has been increasing drastically especially during the period of Covid-19 pandemic,

caused by the influence of online chess streamer, resulting in more people taking interest in

chess, no matter the age. With reference to the data from Chess Ratings[26], the average

number of chess players over the years is increasing steadily from 2019 to 2023 as shown in

Figure 1.1.1. As it is now in the post pandemic period, where chess game can be played

physically again, there are many over-the-board chess competitions and tournaments begin

held all over the world, participated by hundreds of player for every single chess competition.

In addition, every chess games begin played in the competitions and tournaments is begin

broadcasted online. Consequently, there will be tens or hundreds of chess game begin played

and broadcasted simultaneously. Hence, it is important to track every single chess game, record

down every move begin played by every player and broadcast them online in the competition.

CHAPTER 1

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 1.1.1. Average number of chess players over the years.

1.2 Problem Statement and Motivation

As a continuation to the previous sub-chapter, the method commonly used nowadays

to track a chess game and broadcast it online is by using an electric chess board. Additionally,

in order to detect the chess pieces on the board, the chess pieces is uniquely manufactured with

unique patented sensor technology. Normally, an electric chess board will cost around $400 to

$1500. Due to the fact that not every chess competition is organized by the official, FIDE, it is

costly to track every game using the electric chess board for every chess game being played at

the same time. It will cost tens of thousands of dollars just for a chess competition.

Additionally, the electric chess board and the unique chess pieces require constant

maintenance, which will cause another fortune. Consequently, there exists difficulty in

increasing the scale of a tournament or competition due to limited budget.

Thus, the primary objective of this project is to propose a novel and alternative way in

chess game tracking. With only $50 to $100, a chess game can be tracked easily without any

complex manufacturing of chess board and chess pieces. In this project, chess game tracking

by using Raspberry Pi is proposed as the novel alternative way in doing so. The Raspberry Pi

will be installed with a well-trained model in tracking chess game with the help of compatible

camera module mounted on it in capturing the real-time images of the chess game. The chess

move will be detected and the related information such as the chess piece that had moved,

color, new position will be sent to a web application dedicated in displaying, potentially

broadcasting and saving the move in the database for future analysis. By scaling down the cost

in tracking every chess game, the size of the competition can be scaled up without any heavy

concern for the budget. Additionally, the organizer now have more options in tracking and

broadcasting chess game online. The ultimate and the most optimistic goal of this project is the

novel method can eventually replace the traditional way of tracking chess game.

CHAPTER 1

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope

The scopes of this project include preparing an optimal environment such as adequate

lighting and dark-colored background table for the chessboard. Besides, training and validation

data will be collected manually by taking the photos from the top-view of the chessboard. After

that, the images will be labelled using DataTorch and labelled images will be used in model

training. The trained model will then deployed on the Raspberry Pi for chess piece detection.

To increase the accuracy of the model, model fine tuning will also be done to improve the

performance of the model in detecting, recognizing chess pieces and eventually capable of

detecting the chess pieces more accurately. Furthermore, a web application dedicated in

displaying, potentially broadcasting and saving chess game will be constructed and hosted

using Amazon Web Service(AWS). The web application will receive information such as chess

piece that had moved, the new position and the player that plays it from the Raspberry Pi and

update the state of the digital board display on it. A database will also be designed and hosted

on the cloud to store all the moves from the all the game that had been played and is tracked

by Raspberry Pi.

1.4 Project Objectives

 The primary objective of this project is to provide a novel and alternative way in

tracking, saving and potentially broadcasting physical chess game on the web application using

Raspberry Pi. Aside from that, one of the objectives of this project is to train a model that is

capable of detecting and recognizing chess pieces that will be deployed on Raspberry Pi.

Moreover, a web application that is capable of displaying real-time data for the game being

played and saving chess game will be also constructed. Besides, the other objective of this

project is tracking a physically played chess game from the start to the end without error and

without human intervention.

1.5 Impact, Significance and Contribution

This novel method will provide an alternative option for the chess competition and

tournament organizers in tracking, saving and potentially broadcasting the chess games being

played simultaneously. Additionally, chess game begin played privately such as between

friends and chess club members can also be tracked, broadcasted and saved for further analysis.

By using this method, the community no longer have to key in the chess move from the

CHAPTER 1

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

scoresheet manually to the computer to perform analysis on their games as this method are able

to save the chess move automatically and simultaneously as they are playing the game.

1.6 Report Organization

 There are in total 7 chapters in this report that comprise of Chapter 1 Introduction where

the background information, problem statement and motivation of the project, project scope

and objective and the contribution of the project to the community. Additionally, several

previous studies are reviewed that are related to objection recognition, chessboard detection,

chess piece detection and recognition and chess move detection in Chapter 2 Literature Review.

Besides, the methodology and system architecture will be thoroughly explained in detailed in

Chapter 3 System Methodology/Approach. Moreover, system design with detailed explanation

will be introduced in Chapter 4 System Design. In addition, step-by-step implementation

procedure will be provided in Chapter 5 System Implementation. Other than that, the system

performance will be discussed in Chapter 6 System Evaluation and Discussion. Lastly, the

report will be concluded with recommendations for future work in Chapter 7 Conclusion and

Recommendations.

CHAPTER 2

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Reviews

In this chapter, several research papers, articles and systems were reviewed to better

understand the latest technology, techniques and approaches used in object recognition.

Furthermore, previous studies related to detecting and recognizing chessboard, chess piece and

chess game were also reviewed to acknowledge the approaches in doing so. There are 5 sub-

chapters comprised in this chapter that talk about different topics which are 2.1 object

recognition, 2.2 chess board detection, 2.3 chess piece detection and recognition and 2.4 chess

move detection. Additionally there are also 2 sub-chapters which talk about the limitations of

the previous studies discussed in all previous sub-chapters and the proposed solutions in sub-

chapters 2.5 limitation of previous studies and 2.6 proposed solutions.

2.1 Object Recognition

Object recognition is a process that involves both classification and localization

tasks[1]. It must recognize the intended object in the image and tell it apart from the complex

backdrop. Each object instance, its associated label, and its confidence score are precisely

localized using multi-object pixel masks and bounding boxes. In year 2022, H. M. Ahmad and

A. Rahimi[1] had done a survey that summarized object recognition techniques using deep

learning approaches. As shown in Table 2.1.1, many state-of-the-art object recognition

methods and techniques had been reviewed and summarized. In general, object recognition

using deep learning approach consists of a deep backbone architecture and region selection

model.

In accordance with the survey, deep backbone architecture reviewed are VGGNet,

INCEPTION Net, XCEPTION Net, RESNet, RESNEXT, DARKNet, MOBILENet, SENet,

EfficientNet, Visual transformers and Lightweight deep learning models. Backbone is known

as the feature extraction network employed in the deep learning architecture. This feature

extractor encodes the network's input into a particular feature representation. Most of them are

the improved version of the previous state-of-the-art methods that applied CNN as their deep

backbone architecture. For example, INCEPTION Net is the improved version of VGGNet

with various convolution layers with smaller filter size used, XCEPTION Net that built upon

Inception blocks with reference to INCEPTION Net and many more.

CHAPTER 2

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As for the methods and techniques used in region selection, the survey had reviewed

various of them such as R-CNN, FASTER R-CNN, MASK R-CNN, SSD, RefineDet, YOLO,

EfficientDet and DETR:detection-transformer. Excluding DETR:detection-transformer, all of

the region selection models reviewed are built on CNN as the deep backbone architecture. With

reference to Table 2.1.1, YOLOX has the highest FPS in object recognition in real-time.

Table 2.1.1 State-of-the-art object recognition method[1].

CHAPTER 2

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Chessboard Detection

 Chessboard, the most important component in a game of chess, is a square, checkered

game board consisting of 64 alternating light and dark squares. It is typically divided into an

8x8 grid, with each row and column being labeled with letters (a to h) and numbers (1 to 8),

respectively. Additionally, the contrasting colors of the squares, usually black and white, create

a visually appealing pattern. Furthermore, the chessboard serves as the arena for the ancient

game of chess, where two players strategically maneuver own pieces to win the game. Thus,

detecting and locating the chessboard is important. In order to detect and locate the chessboard,

line-detection-based methods were used by Y. Xie et al.[2] and G. Ranganathan [8],

combination of image processing techniques used by C. Belshe[4], detecting the chessboard’s

corner points approach was used by C. Matuszek et al.[6] and C. Koray and E. Sumer[7], simple

binary image classifier was used by A. Mehta[10] and a single process stage was proposed by

M. A. Czyzewski et al.[11].

In the method proposed by G. Ranganathan [8], only edge detector such as Canny Edge

Detector were used and the acquired image is further segmented to detect pieces. In contrast,

the techniques and algorithm[3] used by Y. Xie et al[2]. produces a high success rate for

chessboard recognition, and more crucially, the range of their workable viewing angles

corresponds to how a player would naturally look at the chessboard while playing. Prior to

grouping the potential lines into two groups that represent two orthogonal sets of lines on the

board depending on where they are placed in a scaled Hough transform space, all potential

lines in an image of a chessboard are found using the Canny edge detector and the Hough

transform. By examining the relationship between the detected lines, outlier lines in the same

space are filtered out. Two more groupings of lines' crossings are calculated and noted next.

Lastly, a reference model of a chessboard is compared to all possible candidates for chessboard

sites after they have been changed. The location with the highest number of correctly matched

corners and the lowest matching residual error determines the system output.

After the chessboard lines are found, the equations in Figure 2.2.1 may be used to

determine the board's posture with regard to the camera. The optical center of the picture, the

camera focal length in pixels, and the coordinates of the vanishing points on the image plane

are represented by the symbols cx, cy, and f, respectively. After Rx and Ry are found, Rz , the

rotation matrix can also be found by taking cross product of both of them. Furthermore, a

hyperplane using the chessboard coordinate system’s Rz basis as the support vector and a fixed

constant is defined. Posterior of performing both the operations stated previously, possible

CHAPTER 2

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

locations and appearance of the chess pieces can be found and size scale factor can be

controlled automatically. The result of the preprocessed chessboard is shown in Figure 2.2.2

with color markers.

Figure 2.2.1 : Equations that forecast where the chess pieces could end up and how they

might look [1].

Figure 2.2.2 : The outcome of the chessboard preprocessing. Green lines denote the board's

bounds, while blue sticks show each square's normal vector. [2].

 Besides, C. Belshe[4] uses combination of image processing techniques in detecting

the chessboard. The chessboard is first preprocessed such as image resizing and grayscale

conversion and followed by contour detector such as findContours() method provided in

OpenCV. The corners of the chessboard will then be found and the chessboard will then warped

to obtain an image containing only the chessboard to reduce noises in the background. Next,

the grids which contain pieces will be detected by using canny edge detection, followed by,

Hough Line Transform and finally, the points of the square grids will be determined the

intersection points of all the lines found previously. The results of each image processing

techniques is shown in Figure 2.2.3.

CHAPTER 2

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(a) (b) (c) (d)

 (e)

Figure 2.2.3 a) Contour of chessboard, b) Warped perspective of chessboard ,c) Canny edge

detection, d) Hough Lines, e) Square vertices[4].

 Additionally, in order to localize the chessboard and the square grids, C. Matuszek et

al.[6] locate the chessboard by recognizing every corner point present on the 2D(RGB) picture

of the chessboard. The corner points' depth data will then be included, and a plane will be fitted

to the points using RANSAC. This creates the plane on which the board surface is located, but

it does not precisely determine where the board will be placed. In order to localize the board,

the best match of all 3D points on the board plane will be found using a template of 8 by 8

contiguous chessboard cells. The result can be seen in Figure 2.2.4. By identifying the board

itself and its transformation formation with regard to the camera, this method allows the board

posture with respect to the camera to be updated continually. Furthermore, this method is

resistant to partial corner occlusions caused by hands or other objects.

Figure 2.2.4 Board corner points in white[6].

 Moreover, C. Koray and E. Sumer[7] uses the grid corner point information to

determine the location of the board. Firstly, all grid corner points of the chessboard will be

found using a snapshot of the camera. Next, detectCheckerboardPoints method of MATLAB

CHAPTER 2

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

will be used to find the grid corners. As a preprocessing phase, the color saturation of the

acquired picture is gradually enhanced before all of the grid corners are found. After all the

grid corners are located as shown in (b) in Figure 2.2.5, chessboard corners will now be located.

By using diagonal closest inner point of the pivot points, the chessboard corners can be

determined by reflecting the diagonal closest inner point to the opposite side as shown in (c)

Figure 2.2.5. Upon locating the chessboard corners, geometric rectification will now be applied

to the chessboard in order to separate it from its surroundings and correct perspective distortion

in preparation for further procedures.. By utilizing the corner points located previously, the

chessboard is warped from them to coincide with the predetermined 480x480px square corners

as shown in the left image and the warped chessboard can be seen in the right image in Figure

2.2.6 respectively.

 (a) (b) (c)

Figure 2.2.5 (a) The original chessboard image, (b) the detected chessboard grid corners and

(c)the related points to chessboard grid corner detection[7].

(a) (b)

Figure 2.2.6 (a) The chessboard before geometric rectification step, (b) The chessboard after

geometric rectification step[7].

 Other than that, A. Mehta[10] had used a single binary classifier in chessboard

detection. Prior to detecting the chessboard, a simple binary classifier is developed and trained

using 95 images with a ratio of 8:2 training/test split. Upon detecting the chessboard, in order

to combine all short, almost colinear segments into a single, long straight line and to find the

corresponding parallel lines, parallel as well as straight lines will be discovered, and the

bounding box will be determined next to insulate the chessboard from the environment and

background noises. In detecting straight and parallel lines, operations such as edge detection,

CHAPTER 2

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

line detection, grouping of segments, merging and filtering non-parallel lines are used , results

in potential lines that represent the chessboard. Posterior to detecting the lines, the intersections

of those lines will be found and will merged together using K-cluster. Upon getting the point

of intersections, the bounding box will be obtained by getting the lowest and maximum values

at which those points cross. Finally, the chessboard will be segmented into 8 by 8 squares,

outputting an series of 8x8 photos for later processes.

 Moreover, a single process stage was proposed by M. A. Czyzewski et al. [11] which

uses relatively novel approach in discovering an improved estimation of the image's chessboard

location. This approach employs a hybrid method that modifies popular computer vision

techniques based on neural network-augmented algorithms in order to increase the approach's

efficacy. Furthermore, the approach will identify the features of structures in a picture, such as

lattice points and lines, whose forms and positions are assessed using a scoring function known

as polyscore. The polyscore value is then used in defining the temperature of each point in the

heat map and identifying section that representing a single chessboard. The overall processes

in generating a heatmap is as follows :1)straight line detector(SLID) , 2)lattice points

search(LAPS), 3)utilizing neural network to ease the geometric detector and 4)chessboard

position search(CPS).

 In the first step in the approach proposed by M. A. Czyzewski et al.[11], which is

detecting the straight lines, the authors used a SLID algorithms that comprises three main steps,

which are boosting , grouping and merging as shown in Figure 2.2.7. The boosting step will

use the gradiental threshold approach and different contrast limited adaptive histogram

equalization (CLAHE) masks, we locate all potential segments by doing repeated analyses on

the same image, whereas the grouping step will use a grouping function to divide segments

into groups of almost collinear segments, and finally the merging step will utilize M-estimator

to examine and combine segments found in previous step in each group, producing a single

normalized straight line. This algorithm will be executed until no more lines are detected.

Figure 2.2.7 Straight line detection[11].

CHAPTER 2

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Following SLID, the LAPS algorithm will be run to process each intersection of a pair

of lines that SLID has identified as likely lattice points. This will include using both geometric

and neural detectors, and the result will be a list of points that have been identified as likely

lattice sites. The algorithm acquire 21x21 matrix, which will be preprocessed and handled by

the detectors next. The geometric detector will recognizes perfect cases only whereas the neural

network detector will be used in identifying twisted and malformed patterns. It is presumed

that the geometric detector's positive output indicates a lattice point on a chessboard. If not, a

neural network detector based on a convolutional neural network (CNN) will be employed. It

has two layers: a flattened layer with a 0.5 dropout function and a 2D layer with 12 filters. The

results can been seen in Figure 2.2.8.

Figure 2.2.8 Examples of the geometric detector's findings. The color green denotes

rhomboids that the detector detected. Since it is the sole matrix with four rhomboids, only the

rightmost matrix will be categorized as a lattice point. [11].

 After LAPS algorithm, a CPS algorithm will then be used in searching for positions of

chessboard by analyzing a four-side frame that can enclose a chessboard. The steps of the

algorithm are as follows : 1)select a cluster of lattice points consists of largest number of points

generated by LAPS, 2) calculate width of chessboard square by square rooting surface area of

group G(cluster selected) divided by 7, 3) Discover lines generated by SLID for each

chessboard lattice point in G that meet conditions stated, 4) Separate the lines identified in the

previous step into two groups which is horizontal and vertical lines group, 5) Compute

polyscore of each frame where the frame is formed by taking pair of lines from each group,

finally, select the frame that has the maximum polyscore. As a result frame with highest

polyscore will be obtained to draw the heat map. The result of the polyscores is shown in Figure

2.2.9.

CHAPTER 2

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.9. Values of the polyscore are computed for different frames. The red border

designates the frame with the highest score. Darker blue backgrounds emphasize higher

scores.[11].

 The function of scoring P(F), also known as polyscore, is used to determine the

probability that a frame F consisting of four lines would have a chessboard, as shown in Figure

2.2.10. L is the total amount of points within the frame; k is the mean distance between the

points inside the frame and the nearest side of this frame, and l is the distance between the

group G centroid and frame F centroid. The weight function Wi(x) adds a weight i on the area

of frame F, or AF, as a function of x. The goal of the function P(F)'s highest value for a frame

F is to precisely represent a trimmed chessboard.

Figure 2.2.10. Equations for polyscore function P(F)[11].

2.3 Chess Piece Detection and Recognition

 In a game of chess, each player controls a total of 16 pieces, which are 8 pawns, 2 rook,

2 knight, 2 bishop 1 queen and 1 king. Additionally, each player will control different color in

adverse of their opponent such as white and black. Furthermore, each of the pieces has unique

features that make them differentiable. According to the standard chess set such as the standard

modern Staunton wood chess set[14] as shown in Figure 2.3.1, a pawn typically has a spherical

top and it is the smallest piece in a chess set. Moreover, a rook has a top that resemble the castle

wall and is slightly taller than a pawn. Besides, a knight has the most distinguishable feature

which is the head that resemble a horse head and has the same height as a rook. Next, a bishop

has a top which resemble the hat that a pope wears and is slightly taller than a knight.

Furthermore, a queen, has a top that resemble a queen crown and is the second tallest piece in

a chess set and finally, a king is the tallest piece in a chess set and the top resemble the imperial

CHAPTER 2

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

state crown wear by the British king/queen. On the other hand, all the pieces has a similar

bottom part which is round in shape.

Figure 2.3.1 Standard modern Staunton wood chess set[14].

 There are several proposed methods and approaches in detecting and recognizing the

chess pieces, including Oriented Chamfer Matching[2], machine learning approach such as

SVM[6] and deep learning approach such as CNN [2],[4],[5],[9],[10].

 As proposed by Y. Xie et al.[2], Oriented Chamfer Matching is used to detect and

classifier the chess pieces. An established contour matching method that compares items in the

input image to templates is defined as Oriented Chamfer Matching. A chamfer matching score

for each candidate item position is computed. The template and the region with the lowest

chamfer matching score define the object's class and position. Following template matching,

the location of the template with the lowest oriented chamfer matching score for each AOI will

be indicated on the input picture. High-scoring templates are disregarded.

 Apart from that, C. Matuszek et al.[6] uses a binary linear SVM using LIBLinear in

detecting and recognizing the pieces on the board. The machine is trained with images with

resolution 240x240 – 300-300px padded and cropped images obtained from square detector.

In accordance with Figure 2.3.2, square detector will spot square on the board and crop it. The

cropped square image will go through a piece/background detector which is the SVM to detect

whether there is piece currently occupying the square or otherwise. If a piece is detected, the

piece will be classified, which followed by cropping the image to undergoes color detection on

the piece. Finally, a piece will be detected and classified with the correct piece type and color.

CHAPTER 2

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.3.2 Classifier hierarchy used to recognize chess pieces during a game[6].

 Other than that, deep learning approach also used in performing detection and

recognition task. In comparison of approaches by Y. Xie et al.[2], various most popular CNNs

had been used such as GoogleNet[17], ResNet[18] and VGG[19]. The networks' final layers

are changed to a softmax regression with six output nodes to accommodate the piece

recognition application, and all test images are shrunk to 223x223x3 pixels as a result. The

Adam optimization method [20] is used, with a maximum number of 1000 iterations and a

learning rate of 0.001. As a result of comparison, most of the CNNs had outperformed Oriented

Chamfer Matching in terms of recognition accuracy as shown in Table 2.3.1

Table 2.3.1 The recognition accuracy of various methods[2].

 Besides, C. Belshe[4] had uses YOLOv4, a CNN that uses 53 convolutions and

CSPDarknet53 for its backbone as a feature extractor. In order for the chess piece detection to

be useful in a real chess game, the model must be able to run quickly enough to recognize

objects in real time after training. It was picked as the best neural network-based object

detection method since it is both fairly accurate and quick. The overall structure of YOLOv4

consists of 2 detectors which are one-stage detector that comprises the input image, backbone

which are the convolution layers, the neck that uses SPP and a path aggregation network to

enhance the receptive field of the backbone by dividing the feature map into equal-sized blocks,

or "spatial pyramids," and integrating the pyramids into a CNN while employing max pooling

to lower the size (max pooling eliminates non-max features), and dense prediction step and

two-stage detector that consists one-stage detector and a sparse prediction as shown in Figure

CHAPTER 2

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3.3. In comparison with others state-of-art object detectors, YOLOv4 runs twice faster than

EfficientDet with comparable performance.

Figure 2.3.3 Object Detection Structure of YOLOv4[16].

 Furthermore, a volumetric CNN had been trained by Y. -A. Wei et.al[5] to classify the

chess pieces. The network receives a tensor with dimensions of 50x50x100px as input. Two

convolutional layers with pooling size of 5x5x5px and one max-pooling layer with pooling size

of 2x2x2 are placed after the input layer. The pooling result is shaped after pooling and add

two fully connected (FC) layers. The dimension is shrunk by the first FC layer to 128 and by

the second FC layer to six. Between the first three layers, there is ReLU and dropout layers.

The overview of the volumetric CNN can be seen in Figure 2.3.4. Additionally, the network is

implemented in Torch[21]. The classification result of the network is shown in Table 2.3.2

which considered good.

Figure 2.3.4 Overview of volumetric CNN[5].

Table 2.3.2 Confusion matrix of classification results[5].

 Aside from that, A. Indreswaran[9] had proposed 2 models based on CNN which are

1-step model and 2-step model where the formal utilizes color image to predict the results

whereas the latter is a unsupervised learning model that has no prior knowledge that requires

CHAPTER 2

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the model breakdown the logics and find underlying patterns and features. In the 1-step model

as shown in Figure 2.3.5, the feature constructor receives an image with a size of 256x256

pixels, which it first sends through two convolution + ReLU layers in succession, each having

60 convolution filters of size 5x5. To ensure that no significant information is lost, only one

stride was employed for the second convolution layer as opposed to two for the first. While the

second convolution layer was intended for a higher feature like a line or an edge, the first

convolution layer was designed to function as an edge detector. With a filter of size [2x2] and

a stride of 1, the output is then pooled for the largest possible amount. The output of the pooling

layer is then fed into the convolution+ReLU layer using a convolutional layer made up of 60

filters with a stride of one and a size of 5x5. It is followed by stride 1, which also pools for the

maximum, then the final layer of pooling of size [2x2]. The image size was decreased and only

the crucial details were filtered using the pooling layers. Additional layer pooling reduces over-

fitting of the data.

Figure 2.3.5 Architecture of the 1-Step Model[9].

CHAPTER 2

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As for 2-step model, it consists of a binary classifier that processes image in HSV color-

space and estimate the chess piece color and a piece-wise classifier that processes gray-scale

image and classifies the input image according to piece geometry. In accordance to Figure

2.3.6, the model includes four layers in total, with two levels for features extraction and two

layers for classification. A convolution layer with a [3x3] size, a two-filter stride, and 20 filters

serves as the layer for feature extraction. Using a higher stride in a low filter size was

appropriate because only the piece's color information was needed. The pooling layer has a

maximum pooling stride of one and a size of [3x3]. 16,820 pixels were inputted into a Softmax

classifier with a hidden layer of size 200 neurons. The output layer, which contained 2 neurons

in accordance with the number of classes, black and white, receives the output from the 200

neurons.

Figure 2.3.6 Architecture of the Binary classifier in the 2-Step model[9].

Whereas for piece-wise classifier in the 2-step model, according to Figure 2.3.7, the

network comprises six layers in total, counting the ReLU layers as a part of the layer it activates

and excluding the input layer. The first four levels are used to build features, and the final two

layers are used to classify data. Two consecutive convolution+ ReLU+pooling layer

CHAPTER 2

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

combinations make up the feature constructor, which takes as input a grayscale image with a

256 x 256pixel size. The first convolution layer has 20 filters, the last one has 50 filters, and

each convolution layer has a filter size of [5x5] with a stride of 1. In order to reduce the amount

of data that needs to be processed and hence shorten the network's computation time, the

pooling layers are of filter size [2x2] with stride two. The output layer, which comprises six

neurons for each of the six item classes, receives information from the hidden layer's 500

neurons with an input size of 186,050 pixels.

Figure 2.3.7 Architecture of the Shape-based classifier in the 2-Step model[9].

Moreover, A. Mehta[10] also uses CNN approach in chess piece detection and

recognition, specifically, AlexNet. The training dataset used by the author is manually

constructed from one tournament chess set and every image of individual piece is manually

labelled with one of the 13 classes. The training dataset is splitted into 80/20% training and test

CHAPTER 2

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

set to validate the performance of the model. The training dataset will then fed into AlexNet to

training the model via transfer learning. Transfer learning uses low level features that have

already been mastered (such as lines, edges, and curves) and takes less data to produce a good

CNN. As shown in Figure 2.3.8, eight layers make up AlexNet; the first five were convolutional

layers, some of them were followed by max-pooling layers, and the final three were fully linked

layers, using a SoftMax activation function. In general, the model perform quite well with

maximum accuracy of 94.23% at FP32 bit and a minimum of 93.15% at FP8 bit as shown in

Table 2.3.3.

Table 2.3.3 Accuracy and model precision[10].

Figure 2.3.8 The overall structure of AlexNet[10].

2.4 Chess Move Detection

 The move detection methods and approaches proposed by C. Koray and E. Sumer[7],

G. Ranganathan[8] and G. Petkov[12] is similar in concept, which is the comparison between

the two snapshots where one of them is the reference image and the other one is the one made

after a move is played by the player. The first photo that is taken following each legal motion

is the reference image. The initial reference photo is thought of as the first still from the video.

Throughout the game, the mean color difference between the reference image and the snapshots

is calculated. When the outcome of the computation goes above a specific threshold, it is safe

CHAPTER 2

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

to say that the player has moved, presuming that the player completed the move once the result

fell below the threshold.

 Next, the last snapshot is interpreted to find out chess piece colors and positions. Prior

to this procedure, the last snapshot is warped, and then the improvements are applied to the

chessboard's warped picture. The four reference colors established are compared to the ROI

within each square of the image. By calculating the deltaE value, which reflects the Euclidean

distance between the associated items in this comparison, the color differences are determined

in Lab color space. The reference color that yields the lowest deltaE value in the comparisons

decides whether a grid cell is a square or a segment of bright or dark hue. It is possible to

determine the chessboard's condition as of the last snapshot by using this process on every

square. To determine the piece's move, the state of last snapshot and the preceding chessboard

state are compared. The last legal move's chessboard state is represented by the preceding

chessboard state. Additionally, the first state of the game is saved at the start of play as the

previous chessboard state.

 Besides, there will be six outcomes using the mentioned approach, which are no change,

detected chess move, castling, “en passant”, piece capturing and invalid move. All six

outcomes are detected differently with conditions such as :

1) If there is no difference between the prior and most recent states, then the game has not

changed, thus not a move and no changes

2) If there is only a single difference between an occupied and an unoccupied square with

the same piece color, then it is a move

3) When there are two occupied and two vacant squares that differ with the same piece color,

a special move called castling is played,

4) Another unique move known as "en passant" is played if there are one empty square

difference with the opposing piece color and one occupied and one unoccupied square

difference with the same piece color.

5) The comparison's outcome is not a move for any other circumstance.

Upon determining the outcome, if there is a valid move, the move will be recorded using

standard algebraic notation which is a notation standardized by World Chess

Federation(FIDE)[11]. For instance, king is abbreviated by the letter "K," the queen is

abbreviated by the letter "Q," the rook is abbreviated by the letter "R," and the bishop is

abbreviated by the letter "B." The knight, a special case, is abbreviated by the letter "N" since

"K" is already taken by the king. The pawn is the only piece that has no abbreviation. If a pawn

CHAPTER 2

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

is moved, only the name of the square where the pawn moves will be recorded[15].

Additionally, as an example, the notation “Nf3” means knight to f file(column) rank(row) 3,

“Bxc6” means bishop captures piece on c file rank 6, 0-0 means castling kingside and 0-0-0

means castling queenside.

2.5 Limitation of Previous Studies

 In accordance with the approaches proposed by Y. Xie et al.[2], although in some cases

that Oriented Chamfer Matching had a better performance as compared to CNN, labeled

training images collection is more time consuming and is a huge difficulty for the user. As

mentioned in above section, Oriented Chamfer Matching matches the input image with the

template image provided by the user. In order to obtain an acceptable accuracy, the user needed

to collect images either by themselves or obtain them in open sources. Further, the user also

needed to draw a bounding box containing the target object and label them with the correct

class. Hence, collecting the template images for the use of the model is a challenge for the user.

 Besides, the method proposed by C. Belshe[4] has a decrease of accuracy as compared

to the predicted accuracy and not resistant to changes in image layout. If there is a major

changes in the image detected by the system, there is a high chance that the system will not be

able to detect the chess pieces correctly as the model is overfitted to the trained model.

 Moreover, the approach proposed by Y. -A. Wei[5] has major flaw which is the almost

half of the king piece is classified as a queen piece. This is because the camera angle that

supposed to be mounted on the chess playing robot is almost orthogonal to the chess board,

making the king piece look almost the same as a queen piece, hence, lowering the accuracy of

the system. Other than that, the training data are generated from a CAD model, which may not

represent the real-world scenario, which may affect the accuracy of the system when the system

is implemented in it.

 Besides, the limitation that can found in the method proposed by C. Matuszek et al.[6]

is similar to the approach proposed by Y. -A. Wei[5], which is the camera angle is almost

orthogonal to the chessboard, hence, it is difficulty for the system to detect useful features that

can be seen when the camera angle is 45 degrees, which is height, unique feature from each

piece and many more. Other than that, lower accuracy will be obtained when the piece detector

failed to detect the piece such that the piece color is the same as the background color.

 Furthermore, the limitation that exists in the method proposed by C. Koray and E.

Sumer[7] which is the move detection may be faulty when there is some random movement

CHAPTER 2

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

above the chessboard. The system may incorrectly identify that random movement as a valid

chess move, making the chess game faulty which require human intervention.

 Aside from that, there exists computation time problem in method and approach

proposed by A. Indreswaran[9]. The computation time of the system designed by the authors

from loading image, resizing image, converting image color, preprocessing image, inputting

image and classifying image takes around 3.82 seconds, which is much higher than the

expected 1 second classification time in the 1-step model proposed. Other than that, the

classification accuracy of the model is 70% in average which is considered low as compared

to another model. As a result, the robustness of the model decreases when there is changes in

scale of the object.

 Furthermore, in the method and approach proposed by A. Mehta[10], it is intolerant to

roll, yaw and pitch and detect hidden points and lines that are used to recognize partially hidden

pieces. Additionally, there is only one chess set used which make the system less sensitive to

other chess set, causing the system having difficulty in detecting the chess pieces. Other than

that, the system only uses StockFish as the only chess engine, causing difficulty in desiring

other chess engines based on the user preference or engine strength.

 Aside from that, there exists flaws in the proposal mentioned by M. A. Czyzewski

et.al.[11] which is it is slower than other alternative approaches. As speed is one of the factors

in measuring the strength of a system, it is undisputed that the strength of the system is much

weaker as compared to other system in a certain extend. Additionally, there is lack of

comprehensive labeled datasets of images containing chessboard, causing more uncertainty for

the system when recognizing different chess set.

 Finally, the limitation exists in the system proposed by G. Petkov[12] is using few

variation of chess set when training the model in the system. As mentioned previously, when

the is not trained with different set of chess, the tolerance and accuracy of the system will drop

drastically when begin used in different kind of scenario containing chess set that might not

trained by the system.

CHAPTER 3

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

SYSTEM METHODOLOGY/ APPROACH

In this chapter, system methodology/approach used in this project will be addressed and

well explained. In the following sub-chapters, explanations will be provided for the general

system design as illustrated in the system architecture diagram, use case diagram and activity

diagram.

3.1 System Architecture Diagram

Figure 3.1.1 System Architecture Diagram.

 In accordance with Figure 3.1.1, the framework or the system architecture is built using

Amazon Web Services(AWS) services provided by Amazon cloud platform. There are 3 major

AWS services used for the system architecture including AWS Amplify, AWS DynamoDB

and AWS Lambda. In total, 1 AWS Amplify , 1 AWS DynamoDB and 8 AWS Lambda is used

for the system. In the following sub-chapters, brief introduction for the AWS services and the

explanation of the general flow and process of the system will be provided.

CHAPTER 3

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.1 Amazon Web Services(AWS) Used

AWS Amplify, a robust development platform from AWS, streamlines the creation and

deployment of full-stack applications. It provides an array of tools and services to expedite

development, covering frontend and backend development, authentication, storage, APIs, and

analytics. Amplify enables developers to swiftly build scalable and secure applications,

utilizing cloud resources without the hassle of infrastructure management. Its compatibility

with common frameworks and libraries, along with features such as continuous deployment

and automatic scaling, renders it an effective choice for crafting contemporary web and mobile

apps.

AWS DynamoDB, offered by Amazon Web Services (AWS), is a fully managed

NoSQL database service renowned for its rapid and adaptable document and key-value storage

capabilities. Its exceptional speed, delivering data access within single-digit milliseconds,

caters to applications demanding swift response times regardless of scale. DynamoDB

seamlessly adjusts to accommodate surges in traffic and accommodates both simple key-value

access and intricate query operations through secondary indexes. By handling tasks like

hardware setup, configuration, replication, and maintenance, DynamoDB liberates developers

from infrastructure management, empowering them to concentrate on application

development. Its pay-per-request pricing structure ensures cost efficiency across various

applications such as web and mobile platforms, gaming, IoT, and beyond.

AWS Lambda, a service provided by Amazon Web Services (AWS), allows developers

to execute code without the need to provision or oversee servers. With Lambda, developers can

upload their code and set up triggers for events like modifications to data in Amazon S3

buckets, updates to DynamoDB tables, or HTTP requests via API Gateway. Upon the

occurrence of these events, Lambda automatically runs the code, adjusting to the volume of

incoming requests and billing based solely on the compute time utilized. Developers can write

code in different languages like Node.js, Python, or Java, enabling them to use their preferred

language and concentrate on writing business logic rather than managing infrastructure. This

serverless approach brings advantages such as decreased operational burden, enhanced

scalability, and cost-effectiveness, making Lambda a favored solution for constructing event-

driven and microservices architectures in cloud environments.

CHAPTER 3

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 General Flow and Process

 With reference to Figure 3.1.1, first of all, user can access the web application hosted

by AWS Amplify by using the unique link generated by it, which will redirect user to the home

page of the web application. Upon accessing the home page, the web application will send

request to or trigger AWS Lambda to get all games that are set accessible to public and are live

games. The AWS Lambda will get all the relevant games from AWS DynamoDB, that is the

database of this system and return it to the web application for user to select upon.

 Moreover, user may login using their registered account .When user submits the login

form, the web application will trigger another AWS Lambda to verify the identity of the user

by checking the existent of such account in AWS DynamoDB and return the status of the

authentication back to web application. If user is authenticated, the web application will

redirect user back to home page with the authenticated account. If the user does not have an

account, the user may sign up an account by providing username and password. Upon

submitting the sign-up form, the web application will send request to AWS Lambda that handle

the sign-up request which subsequently trigger another AWS Lambda that check the existent

of account such that it is registered with the same username in AWS DynamoDB. If there is no

such username registered in the database, the sign-up process will be completed and new

account will be added to the database. Subsequently, the user will be redirected back to home

page upon the completion of sign-up process with the registered account.

 When user successfully login or signing up, user will be redirected back to the home

page. Different from first accessing the web application, user now accessing the home page

with an account. Thus, the web application will trigger an AWS Lambda to get games created

under the user’s account from AWS DynamoDB and return it to the web application for display

and selection purposes. Posterior to selecting the desired game to watch or review, the web

application will redirect user to the chess page. At the same time, the web application will send

request to the AWS Lambda to get the details of the selected game such as moves, opponent

name, result and many more for display purposes. If the game is not complete, the web

application will utilize the subscription function of Graphql that allow the AWS DynamoDB

to return any updated data to the chess page, hence, achieving real time display of chess game

state.

 On the other hand, user can login with the registered account and get all the games

created under the account. Besides, user can also create game by utilizing the GUI implemented

CHAPTER 3

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

in the raspberry pi . Upon filling the required details such as which side is the user

playing(white or black), opponent name, whether wants the game to be accessible to public

and more and submitting the form, the raspberry pi will send a request to AWS Lambda to

create the game with the details and update AWS DynamoDB. After creating game, user can

now start to track the game. Posterior of detecting a move, the raspberry pi will send the move

to AWS Lambda to update the chess game state to AWS DynamoDB. When there is an update

to the database, AWS DynamoDB will send the updated data to the web application when it

successfully subscribed to the database. After obtaining the updated data, the updated move

will now be displayed on the page in the web application.

3.2 Use Case Diagram and Description

3.2.1 Use Case Diagram

Figure 3.2.1.1. Use case diagram of the system.

CHAPTER 3

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 In the use case diagram illustrated in Figure 3.2.1.1, there are a total of 7 major use

cases which are Access Home Page, Login, Sign Up, Select Chess Game, Display Move Using

Buttons, Create Game and Update Move associated with the actors, that are, User and

Raspberry Pi. In the following sub-chapter, the use case description will be focused on these 7

use cases.

3.2.2 Use Case Description

Use Case ID: CE_UC_1

Use Case Name: Access Home Page

Description: This use case allows user to access the system to view the games saved

in the database no matter the user is registered or unregistered.

Primary Actor: User

Preconditions: 1. User access the web application with the unique link

Postcondition: 1. The system displays the home page with game list with details

describing the particular game.

Main Flow: 1. User enter the unique link of the web application.

2. The system trigger Display Home Page use case.

3. The system trigger Get All Games use case.

4. The system trigger Display Public and Live Games use case.

5. The system check user login session.

Alternative Flows: 5a Login session found.

1. The system trigger Get User’s Games use case.

2. The system trigger Display User’s Games use case.

5b Login session not found.

1. The system do nothing.

Table 3.2.2.1 Use case Description for Access Home Page use case.

CHAPTER 3

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case ID: CE_UC_2

Use Case Name: Login

Description: This use case allows user to login into the system to view the games

created and tracked under the registered account that user is going to

use in login in this use case. In order to login into the system, user has

to enter username and password.

Primary Actor: Registered User

Preconditions: 1. User accessed the home page.

Postcondition: 1. The system save login session and display the home page with

game list with details describing the particular game.

Main Flow: 1. User enter username and password.

2. The system perform authentication by triggering Verify User

use case.

3. The system trigger Redirect to Home Page use case.

4. The system trigger Display Home Page use case.

5. The system trigger Get All Games use case.

6. The system trigger Display Public and Live Games use case.

7. The system check user login session.

Alternative Flows: 2a Invalid username and/or password

1. The system trigger Display Error Message use case.

2. The system prompts for username and password.

3. Use case resumes at main flow step 1.

7a Login session found.

1. The system trigger Get User’s Games use case.

2. The system trigger Display User’s Games use case.

7b Login session not found.

1. The system do nothing.

Table 3.2.2.2 Use case Description for Login use case.

CHAPTER 3

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case ID: CE_UC_3

Use Case Name: Sign Up

Description: This use case allows user to sign up an account to start creating and

tracking game. In order to sign up an account, user has to enter new

username and password.

Primary Actor: Unregistered User

Preconditions: 1. User accessed the home page.

Postcondition: 1. The system login user with the newly registered account and

redirect user back to home page.

Main Flow: 1. User enter username and password.

2. The system perform authentication by triggering Verify User

use case.

3. The system trigger Login use case.

4. The system trigger Redirect to home page use case.

5. The system trigger Display Home Page use case.

6. The system trigger Get All Games use case.

7. The system trigger Display Public and Live Games use case.

8. The system check user login session.

Alternative Flows: 2a Username already exists.

1. The system trigger Display Error Message use case.

2. The system prompts for username and password.

3. Use case resumes at main flow step 1.

8a Login session found.

1. The system trigger Get User’s Games use case.

2. The system trigger Display User’s Games use case.

8b Login session not found.

1. The system do nothing.

Table 3.2.2.3 Use case Description for Sign Up use case.

CHAPTER 3

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case ID: CE_UC_4

Use Case Name: Select Chess Game

Description: This use case allow user to select and display the desired chess game

stored no matter the user is registered or unregistered. Upon selecting

the game from the list of games displayed in home page, the system

will redirect user to chess game page.

Primary Actor: User

Preconditions: 1. User accessed the home page.

Postcondition: 1. The system redirect user to chess game page and display

chessboard and the moves played for the game.

Main Flow: 1. User select the chess game from the list of games displayed.

2. The system trigger Redirect to Chess Game Page use case.

3. The system trigger Get Game’s Details user case.

4. The system trigger Display Chessboard and Game’s move.

5. The system check game status.

Alternative Flows: 5a The game is not finish.

1. The system trigger Subscribe to Database and Retrieve

Any Updated Move use case.

5a.1 The system receive updated data

1. The system trigger Update Chessboard and Game’s

Move user case

Table 3.2.2.4 Use case Description for Select Chess Game use case.

CHAPTER 3

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case ID: CE_UC_5

Use Case Name: Display Move Using Buttons

Description: This use case allows user to display move using various buttons

provided by the system.

Primary Actor: User

Preconditions: 1. User accessed chess game page.

Postcondition: 1. The system display the corresponding move of the game on the

chessboard.

Main Flow: 1. User select buttons provided by the system.

2. The system verify buttons selected.

Alternative Flows: 2a User selected “Go to first move” button.

1. The system display the first move of the game on the

chessboard.

2b User selected “Previous move”.

1. The system display the first move of the game on the

chessboard.

2c User selected “Play” button.

1. The system start to display the next move of the game

automatically until the last move.

2d User selected “Next move” button.

1. The system display the next move of the game on the

chessboard.

2e User selected “Go to last move” button.

1. The system display the last move of the game on the

chessboard.

Table 3.2.2.5 Use case Description for Display Move Using Buttons use case.

CHAPTER 3

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Use Case ID: CE_UC_6

Use Case Name: Create Game

Description: This use case allows raspberry pi to create game after the user has enter

the required information.

Primary Actor: Raspberry Pi

Preconditions: 1. User log in to the raspberry pi

Postcondition: None

Main Flow: 1. User enter color about to play, opponent name, public status

2. The system trigger Update Database use case.

Alternative Flows: None

Table 3.2.2.6 Use case Description for Create Game use case.

Use Case ID: CE_UC_7

Use Case Name: Update Move

Description: This user case allow raspberry pi to update move for the game that it is

tracking to the database.

Primary Actor: Raspberry Pi

Preconditions: 1. Raspberry pi is tracking the game

Postcondition: None

Main Flow: 1. Raspberry pi detect move.

2. Raspberry pi send detected move to system.

3. The system trigger Update Database use case.

Alternative Flows: None

Table 3.2.2.7 Use case Description for Update Move use case.

CHAPTER 3

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Activity Diagram

Figure 3.3.1 Activity diagram for Access Home Page use case.

CHAPTER 3

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.2 Activity diagram for Login use case.

CHAPTER 3

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.3 Activity diagram for Sign Up use case.

CHAPTER 3

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.4 Activity diagram for Select Chess Game use case.

CHAPTER 3

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.5 Activity diagram for Display Move Using Buttons use case.

CHAPTER 3

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6 Activity diagram for Create Game use case.

Figure 3.3.7 Activity diagram for Update Move use case.

CHAPTER 3

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Timeline

Figure 3.4.1 Gantt chart for FYP 1.

Figure 3.4.2 Gantt chart for FYP 2.

With reference to Figure 3.4.1, the project is started by setting up the software and

hardware such as OpenCV, YOLOX, Raspberry Pi and many more in the first week. In the

second week, training and validation data specifically the chess image taken from the top-view

is collected and labelled. After labelling the images using DataTorch, the images is begin

trained on by using YOLOX model specifically yolox-s model with a duration of 3 days. After

the model training is finished, the priority now is to focus on detecting the chessboard in the

third week. With the accomplishment of detecting the chessboard, the chess move detection

can now be worked on to detect the changes between the reference image and the latest image

with changes in the fourth week. Finally, the fifth week will be focus on chess piece detection

by deploying the model trained to detect the chess piece. As for the report writing, it is started

since the second week and end on the sixth week. On 4th December 2023, the draft of the report

will be submitted to supervisor for evaluation. Finally, the report will be submitted on 8th

CHAPTER 3

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

December 2023 and the preparation of presentation slide will be started right away, and on the

seventh week, the project will be presented and the prototype will be demonstrated.

According to Figure 3.4.2, the development of the web page will be started on 29th

January 2024. Overall, 2 weeks will be allocate for the development of web page frontend, 2

weeks for designing and developing database, 2 weeks for developing the backend of webpage,

1 week for building the API for Raspberry Pi and 7 weeks for report writing.

CHAPTER 4

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

SYSTEM DESIGN

In this chapter, the system design start from zero to the end, in particular, from the chess

game tracking algorithm on the side of raspberry pi to displaying the real-time chess state of a

game on the web application. In the following sub-chapters, a system design overview diagram

will be provided to explain the abstract concept of the whole system, followed by detailed

explanation of the system design on the side of raspberry pi and web application.

4.1 System Design Overview

Figure 4.1.1. System design overview diagram.

CHAPTER 4

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 The overall system design that comprises the core components of the whole system is

illustrated in Figure 4.1.1. First of all, Raspberry Pi mounted with camera, will detect the

chessboard placed on a dark-colored table by thresholding the image captured by the camera

in real time using binary thresholding. By using the result of the previous process, the contour

of the chessboard, which is the largest contour will be found by comparing the area of the

contours found. Next, the 4 corner points of the chessboard will also be found by approximating

the polygonal curve of the contour for the chessboard and by using the 4 corner points, the

particular segment of the image that is containing the chessboard will be transformed into a

top-view perspective image.

 Besides, in order to detect the chess move accurately, the system will compare between

the reference image, which is the image that containing the latest chess move made and the

latest image captured. To facilitate the system in detecting the changes accurately, the corner

points of each square grid will be found and to be used in creating masks, specifically, 64 masks

to be used in detecting changes in every square on the chessboard. If there are 2,3 or 4 changes

found in the 64 masks, there will be a chess move. After detecting a chess move, the system

will use the masks that found the changes to perform image segmentation to obtain the

particular segments of the latest image captured. Moreover, the segmented image will be used

in model inference to detect and classify the piece that had move. After the completion of

model inference, the result of it is used in computing the location of source square and

destination square and send the information to the web application backend to process the

detected move.

 In web application backend, the detected move is used in determining the next chess

game state. For example, will the game ended in checkmate for the player on the next turn,

ended in draw by insufficient material, 50-move rule, stalemate and many more. Upon

determining the chess game state, the backend function will return the chess game state to

raspberry pi. If the game is ended, the program will then be ended as well. Moreover, the

backend function will also update the database with the latest chess game state with the detected

move. Now, if the web application frontend, specifically the chess game page had subscribed

to the database for any changes, the database will then send the updated data after changes had

made to the database, specifically, the game details including the moves for the ongoing game.

Upon receiving the updated move from the game details sent by the database, the frontend will

display the updated move on the chessboard and wait for move updated move from the database

until the game has ended.

CHAPTER 4

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Design for Raspberry Pi

Figure 4.2.1. System design diagram for Raspberry Pi.

 With reference to Figure 4.2.1, there are several processes involved from the start to

the end in detecting chessboard, detecting chess move, classifying the piece and finally sending

the information to the web application. In the following sub-chapters, each of the process will

be explained thoroughly.

CHAPTER 4

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.1 Image Acquisition

In this process, picamera2 library will be utilized to initiate the camera mounted on

Raspberry Pi. After creating an instance of Picamera, the camera will start capturing image

with RGB format which is compatible with the format needed by OpenCV to process image

using the function capture_array() as shown in Figure 4.2.1.1. Additionally, every captured

image by the camera will be processed to perform chessboard detection, chess move detection

and chess piece classification.

Figure 4.2.1.1 Sample result for image acquisition.

4.2.2 Image Pre-processing

Prior to image thresholding and finding the contours in the image, image pre-processing

will be performed on the image captured to reduce noises and increase accuracy in detecting

chessboard. First of all, the image captured will be converted to gray image using OpenCV

function cvtColor() as shown in image on the left in Figure 4.2.2.1. Next, the gray image will

undergoes Gaussian filtering to reduce noises by utilizing the function, GaussianBlur() in

OpenCV as shown in image on the right in Figure 4.2.2.1. Upon pre-processing the captured

image, the processed image with reduced noises is now ready for image thresholding.

Figure 4.2.2.1 Sample result for image pre-processing.

CHAPTER 4

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.3 Image Thresholding and Finding Contours

The pre-processed image will now undergoes image thresholding, specifically, binary

thresholding to find all the points in the image that surpass the threshold using threshold()

function provided by OpenCV as shown in image on the left in Figure 4.2.3.1. The result of

binary thresholding will now be used in finding the contours, line that can surround an area of

white bits, using the function findContours() in the OpenCV library as illustrated in image on

the right in Figure 4.2.3.1.

Figure 4.2.3.1 Sample result image thresholding and finding contours.

4.2.4 Finding Largest Contour to Discover the Location of the Chessboard

The contours that are found using findContours() function in the previous process as

shown in the image at the left in Figure 4.2.3.1 will now be used in finding the largest contour

among all the contours found. In order to find the largest contour, the area of all the contours

will be calculated using contourArea() and will be used in comparison among each other, where

the contour with the largest area will be the largest contour. Normally, chessboard will be the

largest object in the captured image, hence, the largest contour found will belong to the contour

of the chessboard as shown in image in Figure 4.2.4.1.

Figure 4.2.4.1 Sample result for finding largest contour.

CHAPTER 4

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.5 Approximate Polygonal Curve

The largest contour found from the previous process, which is also the contour of the

chessboard, will now be used in approximating the polygonal curve of the contour to obtain

the 4 corner points of the chessboard using approxPolyDP() function in OpenCV library. If the

number of points return by approxPolyDP() is not equal to 4, then the system will display the

reference image and will not detect any changes. The reasoning behind the previously stated

logic is when a player wants to make a move, he/she will have to extend his/her hand to the

piece he/she want to play, hence, the camera will capture the hand that will hinder the view of

the camera to the chessboard. As a result, all subsequent processes will most likely end in error.

Additionally, as this process require high computational resource, the 4 corner points will be

saved as soon as they are found and they will be used until the end of the program.

Figure 4.2.5.1 Sample result approximating polygonal curve of an image.

4.2.6 Transform Chessboard into Top-view Perspective Image

After obtaining 4 corner points of the chessboard successfully from the previous

process, the corner points will be used in transforming the chessboard into top-view perspective

image with dimension of 1000x1000 using warpPerspective() function provided in OpenCV

library. With image dimension of 1000x1000, calculations can be made more easily. If the

transformed image is the first image begin captured by the camera, then it will become the

reference image that will be used in change comparison for chess move detection.

Figure 4.2.6.1 Sample result for warpPerspective().

CHAPTER 4

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.7 Find Chessboard Square Grid Corners

By utilizing the transformed image from previous process, square grid corners of the

chessboard will be found using findChessboardCornersSB() function provided by OpenCV

library. As findChessboardCornersSB() unable to find all corner points of all 64 squares using

the parameter (8,8),which is the dimension of chessboard corners wished to be found, due to

the algorithm requires 2 white squares and 2 black squares on each diagonal to determine the

point in between the squares, (7,7) is used instead to find all inner square grid corners first,

then utilize them to find all outer corner points by adding or subtracting the coordinates of the

points found. Hence, all the square grid corners are found as shown in Figure 4.2.7.1. In

addition, as this process also consuming high computational resource, as soon as all square grid

corners points are found, they will be stored and used until the end of the program.

Figure 4.2.7.1 Sample result for findChessboardCorners() with additional calculation.

4.2.8 Square Grid Masks Construction

The square grid corner points found in previous process will now be used in

constructing the masks, specifically, 64 masks that will detect changes in every individual

square on the chessboard. First of all, a black images with the same size of the transformed

image will be created. Next, masks will be created by converting the particular segment of each

black image to white points/bits using the values of x-coordinate of current point and the point

on the right of it and the values of y-coordinate of the current point and the point below it in

loops. During the loops, the centre, rank and file of the masks will also be determined and

saved. Hence, 64 masks are now constructed.

CHAPTER 4

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.8.1 Sample result for square grid masks construction.

4.2.9 Detect Changes

The changes can be detected by comparing the reference image and the latest captured

image to determine if there is any change between them using absdiff() function provided by

OpenCV. The function will return an image with the same size as the input images that contain

black points/bits for those points that has no change in comparison and retain the points/bits

for the otherwise. Next, the masks created in the previous process will now be used in detecting

the changes in each individual square on the chessboard. If there is significant change detected

in a square by the mask, specifically, more retained points/bits, the corresponding mask will be

added to a black image. Eventually, the black image that containing the masks will become the

mask for the next process, image segmentation. If the black image does not contain 2 ,3, 4

masks, the system will declare that there is no change between the reference image and the

latest captured image as it impossible to move more than 1 piece in a single move. When a

move is made, there can be only 2 changes can be detected. Moreover, there will be 3 changes

be detected for the special move “en passant”. In addition, when a castling move, resignation

and draw by agreement is made, there can be only 4 changes can be detected .

Figure 4.2.9.1 Sample result for finding changes using absdiff().

CHAPTER 4

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.10 Image Segmentation

By using the output of the previous process, which is black image containing masks

that corresponding to the squares that have significant changes, it will be used in segmenting

the latest captured image by using bitwise_and() function that will segment the image

according to the white points/bits contained in the black image. Hence, a segmented image will

be obtained.

Figure 4.2.10.1 Sample result for image segmentation.

4.2.11 Chess Piece Detection and Classification

The segmented image from the previous process will now be used in model inference.

The model chosen to be used is YOLOX as it contain various model that can be chosen

according to the user application. Among all the model provided by YOLOX, yolox-s will be

used in this project as it is suitable for device that has relatively less computational power. The

model will be trained with 2976 labelled training images and validated with 280 labelled

validation images. Sample of training and validation images is shown in Figure 4.2.11.1 and

Figure 4.2.11.2. As Raspberry Pi has a lower computational power as compared to other

normal computer, model inference is performed on a separate thread by utilizing multithreading

capability of the CPU to prevent the program from stopping at the point of model inference

and not detecting any more chess move potentially made by the players.

CHAPTER 4

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.11.1. Sample of Training images.

Figure 4.2.11.2. Sample of validation data.

4.2.12 Compute Source and Destination Squares

There will be 7 outputs as the result of the previous process, that is, model inference,

where the first four output will be the value of coordinates of the top left point and bottom right

point of the bounding box containing the chess piece, fifth and sixth will be the score when

multiplied together and the last will be the class of the chess piece. Next, the source and

destination square of a chess piece can be determined by calculating the distance between the

centre of the masks used in image segmentation and the value of the coordinates of the

bounding box. The destination square will be the mask that has a centre nearer to the bounding

box and source square for the otherwise. The sample result of completion of model inference

and source and destination squares computation can be seen in Figure 4.2.11.3.

Figure 4.2.12.1 Sample result of model inference and source and destination squares

calculation.

4.2.13 Send Detected Move to Backend of the Web Application

Finally, the information such as chess piece that had moved, source and destination

square or special move such as castling, resignation or draw by agreement will be send to the

web application backend to process the information, update the database and display it in the

web application frontend.

CHAPTER 4

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 System Design for Web Application

Figure 4.3.1. System design diagram for Web Application.

CHAPTER 4

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

With reference to Figure 4.3., first of all, the web application backend will receive input

from raspberry pi that comprising information such as detected move, result (resignation or

draw by agreement) and castling move. The backend function will first check if it receive result

information from the raspberry pi. If yes, then it will set the game status to finish and update

the game status to the database. Otherwise, the function will get the current game from the

database. By utilizing the library chess.js, the saved moves will be loaded into a temporary

Chess object by using chess.load() function. Upon loading the moves, the function will now

check if there is any castling move inputted from the raspberry pi. If there is, the castling move

will be moved in the temporary Chess object and the current chess game state will be obtained

in FEN notation by utilizing the function chess.fen(). Otherwise, the function will just load the

detected move into the temporary Chess object and get the current chess game state in FEN

notation using the function chess.fen(). After that, the function will now check if the game is

ended. There are a few ways a game can be ended in normal circumstances, which are

stalemate, three-fold-repetition, insufficient material and checkmate. In order to check all of

this, chess.js provided a few handy functions to do so which are chess.isStalemate(),

chess.isThreefoldRepetition(), chess.isInsufficientMaterial() and chess.isCheckmate() where

all will return true if the conditions are met. If the game is ended, the function will set the game

status to finish and update the game status to database. Otherwise, the function will just update

the latest moves and chess game state to database. After updating the database, the database

will send the updated game details to frontend, specifically, the chess game page that

subscribed to database.

Upon receiving the updated game details from the database, the page will first check if

the game is ended. If ended, the page will display the result on the screen and unsubscribe from

the database. Otherwise, the page will just display the latest move on the chessboard and move

played on the scoreboard. The whole process will continue

CHAPTER 5

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Hardware Setup

Specifications Description

Model MSI GF63 Thin 9SC

Processor Intel Core i7-9750H

Operating System Windows 10

Graphic NVIDIA GeForce GTX 1650 4GB

Memory 8GB 2333Mhz DDR4 RAM

Storage 1TB SATA SSD

Table 5.1.1Specifications of laptop.

Specifications Description

Model Raspberry Pi 4 Model B

Processor Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-

bit SoC @ 1.8GHz

Operating System Raspberry Pi OS

Memory 8GB LPDDR4-3200 SDRAM

Storage 128GB(SD Card)

Network 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0,

BLE Gigabit Ethernet

IO ports • Raspberry Pi standard 40 pin GPIO header

• 2 × micro-HDMI® ports (up to 4kp60 supported)

• 2-lane MIPI DSI display port

• 2-lane MIPI CSI camera port

• 4-pole stereo audio and composite video port

• H.265 (4kp60 decode), H264 (1080p60 decode,

1080p30 encode)

CHAPTER 5

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• OpenGL ES 3.1, Vulkan 1.0

• Micro-SD card slot for loading operating system and

data storage

• 5V DC via USB-C connector (minimum 3A*)

• 5V DC via GPIO header (minimum 3A*)

• Power over Ethernet (PoE) enabled (requires separate

PoE HAT)

Table 5.1.2 Specifications of Raspberry Pi[22].

Specifications Description

Model Raspberry Pi Camera Module 3 with Auto Focus

Resolution 12-megapixel (4608 x 2592 pixels)

Image Sensor Sony IMX708

Sensor Size 7.4mm sensor diagonal

Pixel Size 1.4μm × 1.4μm

Lens Auto Focus

Aperture f/2.0

Field of View(FOV) 75 degrees

Video Resolution 1080p50, 720p100, 480p120

Video Output Format RAW10

Connection CSI-2 serial data output

Compatibility Raspberry Pi 3, Raspberry Pi 4, Raspberry Pi Zero

Dimensions 25 × 24 × 11.5mm

Table 5.1.3 Specifications of Raspberry Pi camera[27].

CHAPTER 5

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.1.1. Hardware Setup

First of all, the chessboard is placed on top of a black cloth to ensure chessboard

detection can be performed accurately. Next, the Raspberry Pi is strapped at the middle of a

mobile phone holder and powered by a mobile phone charger adapter. Finally, the camera is

clamped by the mobile phone clamp that is positioned on top of the chessboard perpendicularly.

5.2 Software Setup

Before the project begin, there are a few software are required to be downloaded to

laptop and Raspberry Pi :

1. Visual Studio Code

Visual Studio Code is a lightweight yet powerful source-code editor developed by

Microsoft. It supports various programming languages and offers features like syntax

highlighting, debugging, and Git integration. Its customizable interface, extensive

extension marketplace, and cross-platform compatibility make it a popular choice among

developers for efficient coding workflows.

2. YOLOX

With a DarkNet53 backbone, YOLOX is a single-stage object detector that modifies

YOLOv3 in a number of ways. In particular, a disconnected head takes the role of YOLO's.

To minimize the feature channel to 256 for each level of FPN feature, a 1 × 1 convolution

layer is adopted. For classification and regression tasks, two parallel branches is added with

two 3 × 3 convolution layers each[24].

CHAPTER 5

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. OpenCV

OpenCV (Open-Source Computer Vision Library) is an open-source software library

for machine learning and computer vision. OpenCV was created to make it easier to employ

machine perception in consumer products and to provide a common basis for computer

vision applications. Companies can easily use and modify the source code of OpenCV

thanks to its Apache 2 license. [23].

5.3 Settings and Configurations

5.3.1 Visual Studio Code Installation

Figure 5.3.1.1. Visual Studio Code Installation.

First of all, the most important software for this project is Visual Studio Code as

everything is coded in it including the web application and the chess game tracking system in

Raspberry Pi. The installation file is found in the main page of Visual Studio Code after

searching “Visual Studio Code” as shown in Figure 5.3.1.1. After installing Visual Studio

Code, the project is ready to go.

CHAPTER 5

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.2 YOLOX Installation

Figure 5.3.2.1. YOLOX documentation

Figure 5.3.2.2. YOLOX installation guideline.

YOLOX, one of the most component of the system, is installed by following the

guidelines provided in the documentation prepared by the developer as shown in Figure 5.3.2.1.

Hence, YOLOX can be installed into the laptop and Raspberry Pi easily by following the

installation instructions provided as shown in Figure 5.3.2.2 by following the steps such as

typing or copying the commands required and executing them in the terminal of laptop and

Raspberry Pi. After installing YOLOX, model is trained by using simple commands such as

“python tools/train.py -f exps/chess/yolox_s.py -d 1 -b 4 -o --fp16”. Posterior to training the

model, the trained model is then used in detecting the chess pieces by loading the model

weights and setting the mode to evaluation mode by utilizing simple code as shown in Figure

5.3.2.3.

Figure 5.3.2.3. Code to load and use the model in performing inference for object detection.

CHAPTER 5

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.3 OpenCV Installation

Figure 5.3.3.1 OpenCV Installation.

OpenCV, which also one of the most crucial libraries that are required in this project

for processing images. It is installed in the Raspberry Pi by using the terminal commands as

shown in Figure 5.3.3.1. After installing OpenCV, the libraries are now accessible for the

project.

5.3.4 AWS Free Tier Account Creation

Figure 5.3.4.1. AWS main page.

CHAPTER 5

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.4.2. Account sign up page.

Figure 5.3.4.3. AWS console management page.

An AWS free tier account is created for this project by accessing the main page of

AWS. By clicking the “Create a free account” button in the main page as shown in Figure

5.3.4.1, it will redirect to the sign-up page as shown in Figure 5.3.4.2. After filling all the

information required by it such as root Gmail account, username, credit card information,

address and many more, an AWS free tier account had successfully created and will redirect to

AWS console management page as shown in Figure 5.3.4.3. With the free tier account, services

such as AWS Amplify, AWS Lambda and AWS DynamoDB that are required in this project

are now accessible.

CHAPTER 5

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.5 Frontend Creation Using Command Line

Figure 5.3.5.1. Creating a frontend using command line.

As shown in Figure 5.3.5.1, the command “npm, create vite@latest” is executed in

Visual Studio Vode terminal to create the frontend for the web application. After executing the

command, required information such as project name, package name, framework and variant

were prompted and upon entering them, a frontend application is created as shown in the project

directory in the navigation bar on the left.

5.3.6 Backend Creation Using Amplify CLI

Figure 5.3.6.1. Creating backend using Amplify CLI.

CHAPTER 5

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.6.2. AWS console management page.

Figure 5.3.6.3. AWS Amplify main page.

Figure 5.3.6.4. Setconfdemo app backend environment page.

In Visual Studio Code terminal, Amplify CLI command which is “amplify init” is

executed to create the backend environment for the web application. After completing the

configuration by setting AWS profile that links to the free tier account, the backend

environment is now created and deployed in Amplify. It can be confirmed by first going to the

AWS console management page as shown in Figure 5.3.6.2 and click on “AWS Amplify” and

it will redirect to the main page of it. In the main page as shown in Figure 5.3.6.3, there is an

CHAPTER 5

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

app called setconfdemo and after clicking on it and go to the backend environment tab, it is

evident that the backend environment is successfully deployed.

5.3.7 Database Creation Using Amplify Studio

Figure 5.3.7.1. Enabling Amplify Studio

Figure 5.3.7.2. Creating database in Amplify Studio.

CHAPTER 5

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.7.3. Tables successfully created in DynamoDB.

The database used in this project will be GraphQL powered by DynamoDB. In order to

create a GraphQL database, firstly, Amplify Studio is enabled as shown in Figure 5.3.7.1. After

enabling it, Amplify Studio is launched. The database is now created by navigating to the data

tab on the left in Amplify Studio as shown in Figure 5.3.7.2. In this project, 2 required tables

which are Games and Users table are created by utilizing the add model function as shown in

Figure 5.3.7.2. After creating the table, the database can now be deployed by clicking on “save

and deploy” button. For confirmation purposes, the tables are successfully created in

DynamoDB as shown in Figure 5.3.7.3

5.3.8 Application Protocol Interface(API) and Lambda Function Creation Using Amplify

CLI

Figure 5.3.8.1. Creating API and lambda functions using Amplify CLI.

CHAPTER 5

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In order to create the backend function for the web application, Amplify CLI command

which is “amplify add api” is used as shown in Figure 5.3.8.1. Upon executing the command,

the terminal will prompt for type of API needed to be created and in this case will be REST

API. After that, information such as directory name and path name is entered when prompted.

Next, a Lambda function is created by proving the function name, runtime and function

template when prompted. The API and Lambda function is now created as shown in the project

directory in the navigation bar on the left.

5.3.9 Deploying the Whole Web Application to Amplify

Figure 5.3.9.1. Project in GitHub repository.

Figure 5.3.9.2. Selecting GitHub in hosting environment.

CHAPTER 5

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.9.3. Adding the github respostory to Amplify.

Figure 5.3.9.4. Web application successfully deployed.

Having all the previous steps done, the web application is now ready to be deployed

and hosted in Amplify. Firstly, the whole project in Visual Studio Code is push or upload to a

GitHub repository as shown in Figure 5.3.9.1. Next, the GitHub option is selected in Amplify

app hosting environment as shown in Figure 5.3.9.2. After selecting GitHub as the deploy

repository, the repository saved earlier is selected after connecting GitHub to Amplify with

GitHub account as shown in Figure 5.3.9.3. Finally, the web application is successfully

deployed to Amplify and can be accessed via the link generated as shown in Figure 5.3.9.4

CHAPTER 5

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operations

In this sub chapter, the system operations for web application and Raspberry Pi will be

explained in detail. First of all, the web application can be accessed by clicking on the link

generated by Amplify as shown in Figure 5.4.1 and will be redirected to the home page of the

web application as shown in Figure 5.4.2. Currently, there is no signed-in user, hence, the home

page only showing the public and live games to the user accessing the page.

Figure 5.4.1. ChessEyes app hosting environment page.

Figure 5.4.2. Web application home page.

CHAPTER 5

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In order to sign in to the system, the user can just click on the sign in button on the top

right corner of the home page and will be redirected to the sign in page as shown in Figure

5.4.3. The user can now filling the required information such as username and password. Upon

clicking on the sign in button, the system will verify the user by checking the username and

password in the database. If the user is authenticated, the user will be redirected back to the

home page. As shown in Figure 5.4.4, after signing in, the user’s games tracked by Raspberry

Pi are now shown in the home page.

Figure 5.4.3. Sign in page of the web application.

Figure 5.4.4. Home page content after user signed in.

CHAPTER 5

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the other hand, the user also needed to login using the username and password in

Raspberry Pi in order to connect to the system as shown in Figure 5.4.5. After the user had

login in into the system, the system will return all the games played by the user in a simple

GUI as shown in Figure 5.4.6. The user can now create a game for track later by clicking on

the “create game” button on the bottom of the GUI. After that, a new GUI will popup to allow

user to enter the details of the game such as the color to be played, the public status and the

opponent name as shown in Figure 5.4.7. After creating the game, a new game can be seen in

the GUI and is now ready to be tracked by clicking on the “track” button on the right as shown

in Figure 5.4.8.

Figure 5.4.5. Login GUI in Raspberry Pi.

Figure 5.4.6. Home page GUI in Raspberry Pi.

Figure 5.4.7. Create game popup GUI in Raspberry Pi.

CHAPTER 5

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.8. Updated home page GUI in Raspberry Pi.

On the side of the web application, a newly added game can be seen in the home page

as shown in Figure 5.4.9. Upon clicking onto the row of the newly added game in the table, the

web application will redirect user to the chess game page as shown in Figure 5.4.10. Upon

loading the chess game page, the web application first retrieves the game’s details from the

database such as the opponent name, moves and game status. Posterior to obtaining the game

details, the web application will then display the opponent name and moves in the scoreboard

on the right. Additionally, the web application will then check the game status. If the game is

finished, then the web application will not subscribe to the database for any updated data about

the game and will do otherwise. Hence, in this case, the web application will subscribe to the

database for any updated data.

Figure 5.4.9. Updated home page in web application.

CHAPTER 5

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.10. Chess page in web application.

Now, user can then click on the track button in the home page GUI in Raspberry Pi to

start tracking the game. Upon clicking on the track button, a new GUI will be created to show

all the processes the system takes to process the chess game image captured by the camera as

shown in Figure 5.4.11.

Figure 5.4.11. Chess game tracking GUI in Raspberry Pi.

CHAPTER 5

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After the camera captured the raw image in RGB format, the raw image will then be

processed by converting to gray scale image first and apply gaussian filtering to the gray scale

image to reduce noises of the image. The processed image will then be used in obtaining a

threshold image using Threshold() function provided by OpenCV. As shown in Figure 5.4.12.

Figure 5.4.12. Threshold image obtained from processed raw image.

The threshold image obtained will then be used in finding the largest contour which

also represents the contour of the chessboard in the image. The result of process can be seen in

Figure 5.4.13. After obtaining the contour, the polygonal curve of the contour will be

approximated using approxPolyDP() function in OpenCV library to obtain the 4 corner points

of the contour of the chessboard. After successfully approximating the 4 corner points as shown

in Figure 5.4.14, these points will then be used in transforming the chessboard image found in

the raw image into a top-view perspective image as shown in Figure 5.4.15. The newly

transformed top-view perspective image will incidentally become the first reference image

used in comparison to detect the chess moves.

Figure 5.4.13. Contour of chessboard obtained from threshold image.

CHAPTER 5

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.14. 4 corners points found using approxPolyDP() from contour.

Figure 5.4.15. Top-view perspective image obtained using the 4 corner points.

Upon obtaining the top-view perspective image, the corner points of each square grid

in the image will be found using findChessboardCornersSB() provided by OpenCV as shown

in Figure 5.4.16 indicated by little blue dots. These points is crucial to be found because it will

be more accurate and efficient when it comes to chess move detection.

Figure 5.4.16. Square grid corner points found from the top-view perspective image.

CHAPTER 5

Finally, the Raspberry Pi is now ready to track the game. When raspberry pi detected

move played by player, it will first compare the reference image and the latest snapshot

captured by the camera using absdiff() function provided by OpenCV library as shown in

Figure 5.4.17 to obtain a image that contain changes between the two images in terms of black

and white bits where black bits indicate no change and white bits indicate change.

Figure 5.4.17. Comparison of reference and latest snapshot image using absdiff().

The square grid corner points found earlier will then now used in constructing masks,

specifically 64 masks that will segment each particular square in the image and count the non-

zero bits, which is also the white bits. If the count exceed a threshold, where the threshold in

this case is the size of the mask for a particular square, it indicates that there is change in that

particular square and add into a list. After scanning through all 64 squares, the expected number

of masks in the list is 2 that indicates a move, 3 that indicates en passant is played and 4

75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

indicates castling and resignation or draw by agreement. For this example, there is a move

detected, hence there will be 2 masks. The 2 masks will then be combined into a single empty

black image to obtain a segmentation mask. The segmentation mask is then used to segment

the latest snapshot image to obtain a segmented image used in YOLOX model inference for

object detection as shown in Figure 5.4.18.

Figure 5.4.18. Segmented image obtained using segmentation mask.

After model inference and calculating the source square and destination square, the

information will then be sent to the backend of the web application for further processing and

update the database. Upon updating the database, the updated data will then be sent to chess

game page since the page had subscribed to it. The updated data including the latest move sent

by the database will then be displayed on the chessboard and in the scoreboard on the right as

shown in Figure 5.4.19. Hence, the system had achieved real-time display of move played

physically. The latest snapshot image will then become the reference image.

Figure 5.4.19. Chess game page displaying real-time move.

CHAPTER 5

77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

When raspberry pi detected another move, same procedure will be executed again as

shown in Figure 5.4.20, Figure 5.4.21, and Figure 5.4.22. The same procedure will be applied

as long as the game is ongoing.

Figure 5.4.20. Comparison of reference and latest snapshot image using absdiff() for second

move.

Figure 5.4.21. Segmented image obtained using segmentation mask for second move.

CHAPTER 5

78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.22. Chess game page displaying real-time move for second move.

5.5 Implementation Issue and Challenges

One of the implementation issue and challenge in this project is preparing an optimal

environment. For the system to work at its best, the environment should have adequate lighting

that will reduce or eliminate shadows as any shadow on the chessboard is considered a change

if the change exceed a certain threshold.

Besides, the accuracy of tracking the correct move from the physically played chess

game poses a challenge as it is needed to be 100%. Whenever there is any error in tracking the

ongoing game, there will be error for the entire duration of the game. Hence, the chess game

tracking system needed to be perfectly calibrated to handle all kind of environment which is

quite a challenge as the game can be played in any location with various environment.

Moreover, the venue for the ongoing chess game should have a stable and fast network

speed as the Raspberry Pi require it to send the information to the web application via internet.

Inconsistency between the state of the physical chess game and the state of the 2D digital chess

game displayed on the web application might occur if the previously stated requirements did

not met. Thus, internet speed in the venue also poses challenge to the entire system where issue

may arises.

CHAPTER 6

79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

Below are a few inputs that can be used to test the performance of the system in terms of accuracy

and consistency in tracking the physical chess game:

1. Moving piece from the previous position to the current position. For example, moving

black knight from its starting position, which is g8, to f6. Thus, the system should be

capable of detecting, displaying and saving the correct piece and positions.

2. Capturing piece by another piece. For instance, white pawn capturing black pawn where

the white pawn’s previous position is e4 and black pawn’s position is d5. Hence, the system

should be able to detect, display and saving the capturing move.

3. Castling move. It is a unique move where it involve two pieces which is the king and a

rook to move the king to a safer square. Commonly, there are two castling move which is

long castling that move the king towards its rook to the queen side and short castling that

move the king towards its rook to the king side.

4. En passant. It is also a unique move that only can happen when a pawn is half pass the

board and the opponent’s pawn move 2 square forward to its side. Now, en passant can

only be played in this move to capture the opponent’s pawn in a usual way. If another move

is played, en passant no longer can be played. For example, if the white pawn’s current

position is on e5 and black play pawn to d5, white can capture the d5 black pawn and the

new position for the white pawn is d6.

5. Pawn promotion. It is also a unique move by a pawn when the pawn is moved to the

opponent’s first rank. A pawn can be promoted to either a knight, a bishop, a rook or a

queen. Hence, the system should be able to detect the new piece begin promoted. In this

project, the pawn promotion will set to be always to a queen.

6. Resignation. It is basically a declaration of surrender to the opponent by placing both king

on the squares with the color of the winning side in the center of the board. For example,

CHAPTER 6

80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

If white resigns, then both king will be placed on dark square in the center of the board,

specifically, d4 and e5 square. If black resigns, both king will be placed on the light square

in the center of the board, specifically, e4 and d5 square.

7. Checkmate. It is a game-ending declaration by the winning side when the opponent’s king

does not have any more available square to move to. Hence. The system should be able to

detect checkmate when move is begin played.

As for the performance metrics of the system, it is defined as how accurate the system can

track the chess game without making an error which is detecting wrong squares, detecting extra

square that should not be there and many more In the best-case scenario, the system should be

capable of tracking the chess game from the start to the end of the game successfully, which also

means the accuracy of the system in tracking the chess game is 100% without a single error and

without any human intervention.

6.2 Testing Setup and Result

6.2.1 Testing Setup

There are 4 setup or test cases that can be used in testing the system with the inputs stated

in the previous sub-chapter are as follows:

1. Play a game that includes moving piece from the previous position to the current

position, capturing piece by another piece, castling move, pawn promotion and checkmate.

2. Play a game that shows the game will be played until a player resign, for example, when

play until 10th move, black resigns.

3. Play a game that shows en passant move and white resigns

4. Play a game that shows draw by agreement from the start.

The results of all the four testing setup can be seen in the following sub-chapters.

6.2.2 Result

6.2.2.1 Result for First Test Case

In testing the first test case, a game of 55 moves is played to test the stated scenarios in

previous sub-chapter. First of all, the chess tracking system are able to detect piece moving from

CHAPTER 6

81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the previous to the current position and display in the web application. For example, when the

white pawn is moving from e2 to e4 which successfully detected by Raspberry Pi as shown in

Figure 6.2.2.1.1, the detected move is sent to the web application and the web application is also

successfully display the correct move played by the white player as shown in Figure 6.2.2.1.2

Figure 6.2.2.1.1. White pawn move from e2 to e4 detected by Raspberry Pi.

Figure 6.2.2.1.2. Detected move displayed correctly in web application.

On the 4th move for white, the white player performs a special move which is castling

move, specifically, short-castling. Raspberry Pi also successfully detected the special move as

shown in Figure 6.2.2.1.3 with 4 squares segmented from the latest snapshot. The castling move

is then sent to the web application and the web application is also successfully displaying the

castling move for white as shown in Figure 6.2.2.1.4. The same result can also be seen in the 5th

move for black, where black player also performs castling move and the move also successfully

displayed in the web application as shown in Figure 6.2.2.1.5 and Figure 6.2.2.1.6.

CHAPTER 6

82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.3. White castling move detected by Raspberry Pi.

Figure 6.2.2.1.4. White castling move displayed correctly in web application.

Figure 6.2.2.1.5. Black castling move detected by Raspberry Pi.

CHAPTER 6

83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.6. Black castling move displayed correctly in web application.

 Furthermore, on the 8th move for white, white player moved his knight from c3 to d5, as

detected by Raspberry Pi and can be seen in Figure 6.2.2.1.7, where the move is also being

displayed correctly in the web application as shown in Figure 6.2.2.1.8. Now, the black player

played a capturing move with his black knight on f6, moving from f6 to d5, where d5 is the square

white knight is on. The Raspberry Pi detected the move as shown in Figure 6.2.2.1.9 and sent it to

the web application, which also successfully displaying the capturing move played by black player

as shown in Figure 6.2.2.1.10.

Figure 6.2.2.1.7. White knight moved from c3 to d5 detected by Raspberry Pi.

CHAPTER 6

84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.8. White knight moved from c3 to d5 displayed correctly in web application.

Figure 6.2.2.1.9. Black knight moved from f6 to d5 detected by Raspberry Pi.

Figure 6.2.2.1.10. Black knight capturing move displayed correctly in web application.

CHAPTER 6

85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Moreover, on black 50th move, black player moved the king from h8 to h7 as detected by

Raspberry Pi and sent to web application where the move is displayed correctly as shown in Figure

6.2.2.1.11. Now, white player has the opportunity to move the pawn on b7 to b8 and promote the

pawn to a queen in which the white player done so. The pawn promotion move is detected by

Raspberry Pi as shown in Figure 6.2.2.1.12 where the pawn is replaced by an extra queen, and the

pawn promotion move is sent to the web application where the web application is also successfully

displayed the pawn promotion move correctly as shown in Figure 6.2.2.1.13.

Figure 6.2.2.1.11. Black player moved king from h8 to h7 as displayed in web application.

Figure 6.2.2.1.12. White player promote the pawn to queen by moving pawn in b7 to b8 as

detected by Raspberry Pi.

CHAPTER 6

86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.13. The pawn promotion move displayed correctly in web application.

Lastly, on black 54th move, black player moved the queen from e1 to f1 as shown in Figure

6.2.2.1.14. On the next move, white player moved his queen on the “b” file to capture the pawn

g7, which resulted in checkmating the black king as detected by Raspberry Pi which can be seen

in Figure 6.2.2.1.15. The capturing move is then sent to the web application for further processing.

After processing the latest move played by white player, which is the capturing move, the system

declared victory for white by checkmating the black king and the capturing move with the result

is displayed successfully in the web application as shown in Figure 6.2.2.1.16.

Figure 6.2.2.1.14. Black player moved the queen from e1 to f1 displayed in web application.

CHAPTER 6

87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1.15. White player’s capturing move detected by Raspberry Pi.

Figure 6.2.2.1.16. White player’s latest move and result of the game displayed correctly in the

web application.

As a summary for the first test case, the physical chess game tracking system are able to

successfully detect piece movements, capturing move, castling move, pawn promotion move, and

declaring checkmate for the player that played the latest move and displaying the moves correctly

in the web application.

CHAPTER 6

88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2.2 Result for Second Test Case

 In testing the second test case, a game of 10 moves for both white and black player is

played to test the system is capable of detecting resignation declaration by player, specifically in

this test case, black resignation, resulting in white winning the game. In order to test the second

test case, both king has to be placed on the light squares, e4 and d5 squares. As shown in Figure

6.2.2.2.1, the chess game state is currently in the 10th move for both players.

Figure 6.2.2.2.1. Chess game state for test case two shown in web application.

Now, black player decided to resign by declaring resignation and placing both the king to

the e4 and d5 squares. Upon placing them on e4 and d5 squares, Raspberry Pi now detected 4

squares that have changes in them as shown in Figure 6.2.2.2.2. After model inference and

calculating the source square and destination square for both the pieces, if the destination squares

is in e4 and d5, which is true in second test case, the Raspberry Pi will then sent the result to the

backend of the web application to declare white had won by black resignation. If the backend of

the web application received result from Raspberry Pi, it will not processes any move and

immediately update the result in the database for that game. Hence, the web application now will

just display the result in the chess game page as shown in Figure 6.2.2.2.3 that white is victorious.

CHAPTER 6

89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.2.2. Both kings is detected to be moved from their source square to the center of the

board on light squares by Raspberry Pi.

Figure 6.2.2.2.3. Result displayed in the web application that white is victorious.

 In conclusion for the second test case, the physical chess game tracking system is able to

detect black resignation that results in white being victorious in any state of the game. Additionally,

the web application is also able to display the result correctly in the chess game page by adding

the result to the side of the player names and in the scoreboard on the right.

CHAPTER 6

90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2.3 Result for Third Test Case

 In testing the third test case, a game with just 2 moves for both players is played to create

a condition for the player to play the special move, en passant. Additionally, after the move being

played, white resigns. As shown in Figure 6.2.2.3.1, the chess game state enables the white player

to play en passant on the next move.

Figure 6.2.2.3.1. Chess game state that enable white to plays en passant shown in web

application.

When the white player played en passant on the next move, Raspberry Pi now detected 3

squares that have changes in them as shown in Figure 6.2.2.3.2. The reason the Raspberry Pi

detected 3 squares is because one square is for the source square of the white pawn, another one

square is for the destination square and the final square is for the square black pawn being captured.

After Raspberry Pi sent the detected move to the web application, the web application successfully

displayed en passant move played by white player as shown in Figure 6.2.2.3.3.

CHAPTER 6

91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.3.2. En passant move detected by Raspberry Pi.

Figure 6.2.2.3.3. En passant move by white displayed correctly in the web application.

After the en passant move played by white, white decided to resign by declaring resignation

and placing both kings in the center of the board, specifically, the dark squares d4 and e5. After

placing both kings to the squares, Raspberry Pi now detected the kings movement to the center of

the board in d4 and e5 squares as shown in Figure 6.2.2.3.4 as 4 squares with changes in them.

After model inference and calculating the source square and destination square for both the pieces,

if the destination squares is in d4 and e5, which is true in third test case, the Raspberry Pi will then

CHAPTER 6

92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

sent the result to the backend of the web application to declare black had won by white resignation.

Upon receiving the result from Raspberry Pi, the backend of the web application will immediately

update the database, and the updated data will send to the frontend of the web application. Hence,

the web application will now just display the result in the chess game page as shown in Figure

6.2.2.3.5 that black is victorious.

Figure 6.2.2.3.4 Both kings is detected to be moved from their source square to the center of the

board on dark squares by Raspberry Pi.

Figure 6.2.2.3.5. Result displayed in the web application that black is victorious.

In summary for the third test case, the physical chess game tracking system is able to detect

en passant move played by players and white resignation at any given state of the game

successfully, and the web application is also able to display the move and result correctly.

CHAPTER 6

93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2.4 Result for Fourth Test Case

In testing the fourth test case, there is no move being played for the game. In other words,

the game is in its starting position as shown in Figure 6.2.2.4.1.

Figure 6.2.2.4.1 Starting position of the game in fourth test case.

When both the white and black players decided to draw by agreement, they placed their

kings to the center of the board, specifically on the e4 and d5 squares. After placing their kings in

the center of the board, Raspberry Pi now detected 4 squares that had changes in them as shown

in Figure 6.2.2.4.2. After model inference and calculating the source square and destination square

for both the pieces, if the destination squares is in e4 and e5, which is true in fourth test case, the

Raspberry Pi will then sent the result to the backend of the web application to declare both players

had drew by agreement. Upon receiving the result from Raspberry Pi, the backend of the web

application will immediately update the database, and the updated data will send to the frontend

of the web application. Hence, the web application will now just display the result in the chess

game page as shown in Figure 6.2.2.4.3 that both players had drew.

CHAPTER 6

94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.4.2. Both kings is detected to be moved from their source square to the center of the

board on light and dark squares by Raspberry Pi.

Figure 6.2.2.4.3. Result displayed in the web application that both players had drew.

 In a nutshell, the fourth test case shows that the physical chess game system is capable of

detecting draw by agreement declaration between both players and the web application is

successful in displaying the result the shows both players had drew by agreement.

CHAPTER 6

95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.3 Error Analysis

 There is no perfect system in the world, so as the system implemented in this project.

During system testing, errors had occurred in term of detecting extra squares that are not supposed

to be detected. The errors is caused by the shadow of the pieces with higher height such as the

queen and the king in an environment where the light setting will cast the shadow of the pieces

with higher height to the other squares. Hence, when comparing the difference between the

reference image and the latest snapshot image using absdiff(), the shadow is considered changes

between the images. For example, with reference to Figure 6.2.3.1, Raspberry Pi detected 3 squares

that contain changes in term when the black queen is moved from f6 square to g6 square. Due to

the height of the queen, the shadow of it will be casted to the square where the black pawn is on.

Hence, Raspberry Pi mistaken it as changes in the square and segmented the square the pawn is on

which results in error in detecting the correct queen move. The same error also occurred in Figure

6.2.3.2.

Figure 6.2.3.1. Raspberry Pi mistakenly detected 3 squares where it should detect 2 squares only.

Figure 6.2.3.2. Raspberry Pi mistakenly detected 3 squares where it should detect 2 squares only.

CHAPTER 6

96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 As for the error in detecting the moves as shown in Figure 6.2.3.3, when the white queen

moved from b7 square to g7 square, Raspberry Pi also detected 3 squares with changes. In this

case, the error is caused by the residue shadow in the reference image. Hence, when the queen

moved from b7 to g7, the shadow of white queen that casted to the top left square in the latest

snapshot is now gone. So in comparing both images, the residue shadow is considered as changes

in that square, resulting in Raspberry Pi considering that square being one of the square that contain

significant changes.

Figure 6.2.3.3. Raspberry Pi mistakenly detected 3 squares where it should detect 2 squares only.

6.3 Objectives Evaluation

 With reference to all the results in previous sub-chapters, a novel and alternative way in

tracking, saving and potentially broadcasting the physical chess game on the web application using

Raspberry Pi is proven to be highly plausible. Aside from that, a YOLOX deep learning model is

also trained to detect and recognize chess pieces and deployed on Raspberry Pi. Furthermore, a

web application that is capable of displaying real-time data for the game being played and saving

chess game that is hosted by AWS Amplify is also built. In an optimal environment, the physical

chess game system is capable of tracking a physically played chess game from the start to the end

without error and without intervention.

CHAPTER 7

97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

CONCLUSION AND RECOMMENDATION

7.1 Conclusion

Due to increasing chess players around the world, chess tournament and competition is

becoming more prevalent in this modern era. Additionally, every chess tournament often

participated by hundreds of players. Due to limited budget, it is quite challenging to track every

chess game using the pricey current method, which is using electric chessboard with unique

magnetic chess piece, may forces the organizer of the tournament and competition to reduce the

size of the tournament and competition.

 Hence, the physical chess game system is capable of significantly reduce the budget of

organizing a tournament and competition using Raspberry Pi. The system installed in the

Raspberry Pi is capable of detecting chessboard, chess move and classifying the chess piece

accurately. Additionally, a web application that received information from the Raspberry Pi can

also help the organizer to track every single game begin played in the tournament and competition

in real time and potentially broadcasting to live streaming platforms.

7.2 Recommendation

 In the future, the system can be improved by handling all kinds of environment which no

longer require an optimal environment for the system to work perfectly. These environments

include dark environments, bright environments, shadows caused by light settings and many more.

After the system is capable of handling all kinds of environments, the system may potentially

replace the method used concurrently.

 Besides, the deep learning model can also be trained using other datasets that includes all

types of chess pieces that available in the market nowadays. For example, the dataset used in this

project only contain white and black chess pieces, hence, the model can be trained with other

datasets such as light brown and dark brown chess pieces.

REFERENCES

98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] H. M. Ahmad and A. Rahimi, “Deep learning methods for object detection in Smart

Manufacturing: A Survey,” Journal of Manufacturing Systems, vol. 64, pp. 181–196, Jun.

2022. doi:10.1016/j.jmsy.2022.06.011

[2] Y. Xie, G. Tang and W. Hoff, "Chess Piece Recognition Using Oriented Chamfer Matching

with a Comparison to CNN," 2018 IEEE Winter Conference on Applications of Computer

Vision (WACV), Lake Tahoe, NV, USA, 2018, pp. 2001-2009, doi:

10.1109/WACV.2018.00221.

[3] Y. Xie, G. Tang, and W. Hoff, “Geometry-based populated chessboard recognition,” in Tenth

International Conference on Machine Vision (ICMV 2017), International Society for Optics

and Photonics, 2017.

[4] C. Belshe, Chess piece detection - cal poly,

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1617&context=eesp.

[5] Y. -A. Wei, T. -W. Huang, H. -T. Chen and J. Liu, "Chess recognition from a single depth

image," 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong,

China, 2017, pp. 931-936, doi: 10.1109/ICME.2017.8019453.

[6] C. Matuszek et al., "Gambit: An autonomous chess-playing robotic system," 2011 IEEE

International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 4291-

4297, doi: 10.1109/ICRA.2011.5980528.

[7] C. Koray and E. Sumer, “A computer vision system for chess game tracking,” Semantic

Scholar, https://www.semanticscholar.org/paper/A-Computer-Vision-System-for-Chess-

Game-Tracking-Koray-S%C3%BCmer/2dd2bcaeef6de2c78da93153af879395ea3a8da9.

[8] G. Ranganathan, “An economical robotic arm for playing chess using visual servoing,”

Research Gate,

https://www.researchgate.net/publication/343232020_An_Economical_Robotic_Arm_for_

Playing_Chess_Using_Visual_Servoing.

[9] A. Indreswaran, “Chess piece recognition using machine learning technique,” Academia.edu,

https://www.academia.edu/22168310/Chess_Piece_Recognition_using_Machine_Learning

_Technique.

[10] A. Mehta, “Augmented reality chess analyzer (archessanalyzer): In-device inference of

physical chess game positions through board segmentation and piece recognition using

Convolutional Neural Network,” arXiv.org, https://arxiv.org/abs/2009.01649.

REFERENCES

99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[11] M. A. Czyzewski, A. Laskowski, and S. Wasik, “Chessboard and chess piece recognition with

the support of Neural Networks,” Semantic Scholar,

https://www.semanticscholar.org/paper/Chessboard-and-Chess-Piece-Recognition-With-

the-of-Czyzewski-Laskowski/93ef9ae4cb111c78344a7ef0c408d47bdd1dee17.

[12] G. Petkov, “Tracking and annotating a chess game - University of Edinburgh,” University of

Edinburgh, https://homepages.inf.ed.ac.uk/rbf/DISSERTATIONS/ug4_20130500.pdf.

[13] “E. Miscellaneous / 01. laws of chess / FIDE laws of chess taking effect from 1 January 2023

/ FIDE handbook,” International Chess Federation (FIDE),

https://handbook.fide.com/chapter/E012023.

[14] “2017-10-14-TEC chapter in Fide handbook-accepted,” FIDE,

https://www.fide.com/FIDE/handbook/Standards_of_Chess_Equipment_and_tournament_

venue.pdf.

[15] “Chess notation & algebraic notation,” Chess.com, https://www.chess.com/terms/chess-

notation.

[16] Bochkovskiy, Alexey, et al. “YOLOv4: Optimal Speed and Accuracy of Object Detection”.

2020.

https://csucalpoly.primo.exlibrisgroup.com/permalink/01CALS_PSU/hls1s0/cdi_arxiv_pri

mary_2004_10934

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 1–9, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[21] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment for

machine learning,” in BigLearn, NIPS Workshop, 2011.

[22] Raspberry Pi, “Raspberry pi 4 model B specifications,” Raspberry Pi,

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/.

[23] “About,” OpenCV, https://opencv.org/about/.

REFERENCES

100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[24] “Papers with code - yolox explained,” Explained | Papers With Code,

https://paperswithcode.com/method/yolox.

[25] “Top 10 open-source NoSQL databases in 2020,” GeeksforGeeks,

https://www.geeksforgeeks.org/top-10-open-source-nosql-databases-in-2020/.

[26] “Chess ratings,” Chessratings.top, https://www.chessratings.top/.

[27]R. P. Ltd, “Raspberry Pi Camera Module 3,” Raspberry Pi.

https://www.raspberrypi.com/products/camera-module-3/

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 2

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh Shen Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done in the last fortnight is exploring the available free web application hosting

services on the internet. In the end, I chose Amazon Web Services(AWS). After that, I

explored the services provided by AWS and decided on using AWS Amplify to host the

web application about to be built. Experiments also done on AWS Amplify by building a

simple web application first and host it on Amplify. After that, the web application is

now used as an template to build the web application required in this project . After some

time, the web application is built completely.

2. WORK TO BE DONE

For the next 2 weeks, the backend of the web application will be built and hosted in

AWS.

3. PROBLEMS ENCOUNTERED

There is problem in configuring AWS Amplify, but the problem is resolved after

referring to the documentation of it and solutions found online.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 4

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh Shen Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done in the last fortnight is building the backend environment for the web

application using AWS Lambda. After some days, the backend environment for the web

application is now done.

2. WORK TO BE DONE

Build a database using AWS DynamoDB and test end-to-end of the web application

3. PROBLEMS ENCOUNTERED

There is some logic errors encountered in building the backend environment , but after

some debugging, the problem is resolved.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 6

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh She Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done for the last fortnight is successfully built a database that will store the data

for the game that tracked by Raspberry Pi. End-to-end testing also conducted to ensure

there is no error in the web application.

2. WORK TO BE DONE

Connect Raspberry Pi to allow it to send the information such as detected move from it to

the backend of the web application. Additionally, FYP 2 report will also be started.

3. PROBLEMS ENCOUNTERED

There is no problem encountered for the last fortnight.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 8

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh Shen Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done for the last fortnight is successfully connect the Raspberry Pi that allow it

to send data to the backend environment of the web application. The detected move sent

from Raspberry Pi is successfully processed, saved to database and displayed on the

frontend of the web application. Content also added to the FYP 2 report.

2. WORK TO BE DONE

Improves the chess game tracking system in raspberry pi and solve some unforeseen

problem raised. Additionally, content will also be added to the FYP 2 report.

3. PROBLEMS ENCOUNTERED

There is no problem encountered for the last fortnight.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 10

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh Shen Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done for the last fortnight is successfully improve some of the component of

the detection system that increased the detection accuracy for the system. Additional

content also added to the FYP 2 report.

2. WORK TO BE DONE

Perform system testing and continue to improve the chess game tracking system in

Raspberry Pi. Additionally, new content will also be added to FYP 2 report.

3. PROBLEMS ENCOUNTERED

There is no problem encountered for the last fortnight.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Year 3 Semester 3 Study week no.: 12

Student Name & ID: Yee Wei Jun 20ACB01647

Supervisor: Dr Teoh Shen Khang

Project Title: Physical Chess Game Tracking Using Raspberry Pi

1. WORK DONE

The work done for the last fortnight is successfully performed system testing from the

side of Raspberry Pi to the side of web application. Additional content also added to the

FYP 2 report.

2. WORK TO BE DONE

Record demo video that shows process from start to end of the entire system. The FYP 2

report will also be finalized.

3. PROBLEMS ENCOUNTERED

There is no problem encountered for the last fortnight.

4. SELF EVALUATION OF THE PROGRESS

The current progress is going smoothly.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

 Yee Wei Jun

ID Number(s)

 20ACB01647

Programme / Course Bachelor of Computer Science

Title of Final Year Project Physical Chess Game Tracking Using Raspberry Pi

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: _________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to

Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

11

9
4

5

0

25 April 2024

Dr. Teoh Shen Khang

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY (KAMPAR

CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB01647

Student Name Yee Wei Jun

Supervisor Name Dr. Teoh Shen Khang

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)

√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review

 Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 25th April 2024

