
Deep Learning for Hate Speech Detection on X (Twitter) with different Word

Embedding Techniques

BY

THONG WEI XIN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: __

 __

 __

Academic Session: _____________

I __

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:

__________________________ _________________________

__________________________ Supervisor’s name

Date: _____________________ Date: ____________________

different Word Embedding Techniques

Deep Learning for Hate Speech Detection on X (Twitter) with

Jan 2024

THONG WEI XIN

No. 46, Taman Wira Damai 3

Taman Wira Damai

Kampung Koh

32000 Sitiawan, Perak

April 10, 2024 25/04/24

Ts. Dr. Vikneswary Jayapal

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 iii

Universiti Tunku Abdul Rahman
Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: April 10, 2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that Thong Wei Xin (ID No: 20ACB02627) has completed this final year

project/ dissertation/ thesis* entitled “Deep Learning for Hate Speech Detection on X

(Twitter) with different Word Embedding Techniques” under the supervision of Ts Dr.

Vikneswary a/p Jayapal (Supervisor) from the Department of Computer and Communication

Technology, Faculty/Institute* of Information and Communication Technology.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Thong Wei Xin)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Deep Learning for Hate Speech Detection on X (Twitter)

with different Word Embedding Techniques” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

THONG WEI XIN

April 10, 2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 v

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Ts Dr. Vikneswary a/p

Jayapal and my moderator, Dr. Lim Jia Qi who have given me a golden opportunity to involve

in the Deep Learning field study. Besides that, they have given me a lot of guidance in order

to complete this project. When I was facing problems in this project, the advice from them

always assists me in overcoming the problems. Again, a million thanks to my supervisor and

moderator.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 vi

ABSTRACT
This project was conducted to develop hate speech detection models using several deep

learning techniques with different word embedding techniques to detect English hate speech

tweets on X (Twitter) with the goal of enhancing the online communication environment and

reducing the suicide rate due to cyberbullying. Several deep learning techniques were utilised

in this project, such as CNN, BiLSTM, a pretrained DistilBERT model named

'distilbert/distilbert-base-uncased', and a pretrained RoBERTa model named 'facebook/roberta-

hate-speech-dynabench-r4-target'. The word embedding techniques utilised in this project can

be classified into two groups: those utilising a single word embedding technique such as GloVe

(Global Vectors for Word Representation), Word2Vec, or word embedding vectors provided

by DistilBERT and RoBERTa itself, and those combining two different word embedding

techniques by stacking, averaging, and taking the root mean square of them. In comparison to

the old trend models that utilised word-based tokenisation in the preprocessing of data,

subword tokenisation is utilised in this project to tokenise the tweets in the dataset.

Several papers on cyberbullying or hate speech detection models using deep learning

were reviewed, outlining the strengths and weaknesses of the models developed by various

authors. In addition to detailing the architectures of these models used in this project, the paper

also explains the model development process, techniques employed to address class imbalance

issues or hyperparameter tuning, which were visualised or explained to provide newcomers in

text classification with a comprehensive understanding of how models were developed. The

most significant focus was on the performance evaluation and analysis of the DistilBERT,

RoBERTa transformer models, as well as those CNN and BiLSTM models utilising single

word embedding techniques and combining different word embedding techniques.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 2

1.4 Contributions 3

1.5 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Previous works on Deep Learning Hate Speech/ Cyberbullying

Detection Models

5

2.1.1 Cyberbullying Detection with a Pronunciation Based

Convolutional Neural Network [4]

5

2.1.2 Deep Learning Algorithm for Cyberbullying Detection [5] 6

2.1.3 Offensive Language Detection using Artificial Neural

Network [6]

7

2.1.4 Sexism Identification using BERT and Data Augmentation

– EXIST2021 [7]

7

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 viii

2.1.5 Deep Learning for Detecting Cyberbullying Across

Multiple Social Media Platforms [8]

8

2.1.6 SOSNet: A Graph Convolutional Network Approach to

Fine-Grained Cyberbullying Detection [9]

9

2.1.7 An Application to Detect Cyberbullying Using Machine

Learning and Deep Learning Techniques [10]

10

2.1.8 Multilingual Hate Speech Detection: Comparison of

Transfer Learning Methods to Classify German, Italian,

and Spanish Posts [11]

12

2.1.9 A Scalable Hate Speech Detection System for Vietnamese

Social Media using Real-time Big Data Processing and

distributed Deep Learning [12]

13

2.1.10 Hate Speech Detection using CNN and BiGRU with

Attention Mechanism for Twitter [13]

14

2.2 Strengths and Weaknesses 16

2.3 Summary on Literature Review 23

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

25

3.1 System Design Diagram/Equation 25

3.1.1 System Architecture Diagram (CNN) 25

3.1.2 System Architecture Diagram (BiLSTM) 26

3.1.3 System Architecture Diagram (DistilBERT) 29

3.1.4 System Architecture Diagram (RoBERTa) 30

CHAPTER 4 SYSTEM DESIGN 32

 4.1 System Block Diagram 32

 4.2 System Components Specifications 33

4.2.1 Dataset Acquisition 33

4.2.2 Dataset Preprocessing 34

4.2.2.1 Regrouping Classes 35

4.2.2.2 Text Lowering and URL Links Removal 36

4.2.2.3 User Mentions and HTML Entities Removal 37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 ix

4.2.2.4 Symbols and Emojis Removal 38

4.2.2.5 Stopwords Removal 39

4.2.2.6 Repeating Punctuation Marks Removal 40

4.2.2.7 Data Filtering 40

4.2.2.8 Subword Tokenisation 41

4.2.2.9 One-Hot Encoding Conversion 42

4.2.2.10 Word Embedding Vectors and Word Embedding

Matrix Generation

43

4.2.2.11 Training, Validation, and Testing Dataset Split 48

4.2.2.12 Oversampling and Downsampling on Training

Dataset

48

4.2.3 Initial Model Training 50

4.2.4 Model Hyperparameters Tuning 53

4.2.5 Model Evaluation 54

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

55

 5.1 Hardware Setup 55

5.2 Software Setup 55

5.3 Implementation Issues and Challenges 56

5.4 Concluding Remark 56

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 57

6.1 System Testing and Performance Metrics 57

6.2 Testing Setup and Result 58

6.3 Project Challenges 60

6.4 Objectives Evaluation 60

6.5 Concluding Remark 64

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 x

CHAPTER 7 CONCLUSION AND RECOMMENDATION 66

7.1 Conclusion 66

7.2 Recommendation 66

REFERENCES 68

WEEKLY LOG 71

POSTER 76

PLAGIARISM CHECK RESULT 77

FYP2 CHECKLIST 79

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xi

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Examples of the word-to-pronunciation conversion. Adapted

from [4].

5

Figure 2.1.5.1 Performance comparison of various DNN models. Adapted from

[8].

8

Figure 2.1.6.1 Test Accuracies—4,000 Tweets. Adapted from [9]. 9

Figure 2.1.6.2 Test F1 Scores—4,000 Tweets. Adapted from [9]. 9

Figure 2.1.7.1 Proposed Hybrid deep learning model with stacked word

embedding techniques. Adapted from [10].

11

Figure 2.1.8.1 Results for the Monolingual approach. Adapted from [11]. 12

Figure 2.1.8.2 Results for the Multilingual Detection Task. Adapted from [11]. 13

Figure 2.1.8.3 Results for the Translated-based approach. Adapted from [11]. 13

Figure 3.1.1.1 CNN architecture for text classification. 25

Figure 3.1.2.1 BiLSTM model architecture. 27

Figure 3.1.2.2 LSTM cell. 27

Figure 3.1.3.1 DistilBERT model architecture comparison with BERT model

architecture. Adapted from [14]

29

Figure 3.1.4.1 BERT model architecture. Adapted from [16] 31

Figure 4.1.1 System Block Diagram for this project. 32

Figure 4.2.1.1 Distribution of Cyberbullying Classes in Twitter Dataset. 34

Figure 4.2.2.1 The flow of Data Preprocessing 34

Figure 4.2.2.1.1 The distribution of Hate Speech and Non-Hate Speech 36

Figure 4.2.2.2.1 Example of URL removal. E.g. ‘http://t.co/usqinyw5gn’ and

‘http://twitvid.com/a2tnp’ were removed.

37

Figure 4.2.2.3.1 Example of user mention and HTML entity removal. E.g.

‘@halalcunty’, ‘@biebervalue’, ‘>’ were removed.

38

Figure 4.2.2.4.1 Example of emojis and other symbols removal. E.g. The

blowing kiss emoji and black heart symbol were removed.

39

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xii

Figure 4.2.2.5.1 Example of stopwords removal. E.g. ‘i’, ‘into’, and ‘a’ were

removed from the highlighted text.

40

Figure 4.2.2.6.1 Example of repeating punctuation mark removal. 40

Figure 4.2.2.7.1 Text length distribution for each class. 41

Figure 4.2.2.8.1 Example of subword tokenisation. 42

Figure 4.2.2.9.1 Example of creating a dictionary contains all unique tokens and

the respective index.

43

Figure 4.2.2.9.2 Example of converting the tokens in numerical form. 43

Figure 4.2.2.10.1 Attention mask for an input sequence. 44

Figure 4.2.2.10.2 Example probabilities of words. Adapted from [19] 45

Figure 4.2.2.10.3 Example of stacking of GloVe and Word2Vec word embedding

techniques.

45

Figure 4.2.2.10.4 Vectors for word 'canisy' from GloVe and Word2Vec. 46

Figure 4.2.2.10.5 Example of computing the of GloVe and Word2Vec word

embedding techniques.

47

Figure 4.2.2.12.1 Class distribution on training dataset after oversampling. 49

Figure 4.2.2.12.2 Class distribution on training dataset after downsampling. 50

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xiii

LIST OF TABLES

Table Number Title Page

Table 2.2.1 Literature Strengths and Weaknesses comparison. 16

Table 5.1.1 Hardware Specifications. 55

Table 5.2.1 Python Libraries required. 55

Table 6.2.1 Testing Precision, Recall, and F1 score results for different word

embedding techniques applied to hypertuned CNN and BiLSTM

models. Twitter + denote models trained with oversampled Twitter

datasets, while Twitter – denote models trained with downsample.

58

Table 6.2.2 Testing Precision, Recall, and F1 score results for the hypertuned

DistilBERT and RoBERTa models. Twitter + denote models trained

with oversampled Twitter datasets, while Twitter – denote models

trained with downsample.

59

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xiv

LIST OF SYMBOLS

σ Lowercase sigma (Sigmoid function)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 xv

LIST OF ABBREVIATIONS

CCDH Centre for Countering Digital Hate

NLP Natural Language Processing

DL Deep Learning

CNN Convolutional Neural Network

PCNN Pronunciation-based Convolutional Neural Network

CNN-CB Convolutional Neural Network

ANN Artificial Neural Network

BERT Bidirectional Encoder Representations from Transformers

LSTM Long Short-Term Memory

BiLSTM Bidirection Long Short-Term Memory

GCN Graph Convolutional Network

DQE Dynamic Query Expansion

GloVe Global Vectors for Word Representation

HTML Hypertext Markup Language

BERT Bidirectional Encoder Representations from Transformers

RNN Recurrent Neural Network

NSP Next Sentence Prediction

RoBERTa Robustly optimized BERT approach

MCC Matthews Correlation Coefficient

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 1

Chapter 1

Introduction

In this chapter, we present the problem statement and motivation of our project, our

contributions, objectives to achieve the project goal, project direction and scope, as well as the

report organisation.

1.1 Problem Statement and Motivation

A study by the Centre for Countering Digital Hate (CCDH), using over-time data from

Brandwatch, found that after Elon Musk took over X (Twitter), there was a 202% increase in

daily tweets mentioning the racist term (now at 3,876). Homophobic term usage rose by 58%

to 3,964 daily tweets, misogynist term mentions increased by 33% to 17,937 daily tweets, and

transphobic term usage surged by 62% to 5,117 daily tweets [1]. Therefore, this underscores

the urgent need for an effective hate speech detection model to identify hate speech on X

(Twitter) and enhance the online communication environment. However, most of the detection

models in the market primarily focused on the broader term of cyberbullying. Only a minority

of detection models were developed to specifically target certain types of cyberbullying on

social media platforms, such as body shaming, hate speech, sexism, racism, and others.

Besides, there is a lack of evidence in model evaluation demonstrating that combining

multiple word embedding techniques outperformed using a single word embedding technique.

This highlighted a gap in model evaluation within the field of cyberbullying/ hate speech

detection, which this project aimed to address. Furthermore, while most cyberbullying/ hate

speech detection models currently utilised word-based tokenisation, there was a recent

emergence of subword tokenisation as a new trend in Natural Language Processing (NLP)

tasks. It is believed that subword tokenisation may be the optimal tokenisation technique in

NLP tasks, as it breaks down unknown words into recognised components and assists in

handling words that are combined without clear spacing.

Moreover, hate speech is an attack aimed at harming, and harassing the victim, it might

bring about a series of adverse impacts such as depression, anxiety, and unhealthy psychology,

or even suicidal behaviour. According to the study conducted by [2], cyberbullying is a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 2

significant key factor for suicidal behaviour among adolescents. All these issues contributed to

the formation of an unhealthy social environment in the future. The motivation of this project

was to develop a deep learning model to detect hate speech on X (Twitter) effectively and foster

a healthier online communication environment by specifically targeting instances of

cyberbullying. Such a model could play a crucial role in mitigating the impact of cyberbullying

victimisation, thereby contributing to the reduction of suicidal behaviour associated with these

harmful online experiences.

1.2 Objectives

The project aimed to develop a hate speech detection model that could be use to identify

hate speech on X (Twitter) using deep learning techniques, with the goal of improving the

online communication environment. To achieve this goal, the following outlined objectives

needed to be accomplished:

1. Investigated deep learning models capable of detecting hate speech on X (Twitter) and

different word embedding techniques. Conducted a literature review to comprehend models

proposed and identified the strengths and weaknesses of each model. This provided

comprehensive insights for selecting deep learning algorithms for development.

2. Developed deep learning classifiers with different word embedding techniques capable of

being used for detecting hate speech on X (Twitter), based on the findings from the

investigation. Decided on the deep learning techniques to be used for the hate speech

detection model based on the literature review and applied it to develop a deep learning

model for detecting hate speech on X (Twitter).

3. Evaluate the performance of the developed deep learning models by employing various

evaluation metrics, including precision, recall, and F1 score. This evaluation is essential,

as it is used to demonstrate that the developed models work effectively in detecting hate

speech on X (Twitter).

1.3 Project Scope and Direction

At the end of this project, an enhanced hate speech detection model leveraged deep

learning techniques will be delivered. The primary focus was on identifying instances of hate

speech in the English language on the X (Twitter) platform. To enhance the model’s efficacy,

combination of word embedding techniques was employed. Unlike the conventional approach

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3

of using a single word embedding, this technique involved combining two-word vectors,

thereby enriching the model’s understanding of context and relationships within the text.

 A word embedding vector served as a word representation that captured intricate

dependencies and relationships between words. By utilising these word vectors, it enhanced

the deep learning model’s ability to comprehend the nuances of a sentence. Combining distinct

word embedding vectors further enriched the model’s understanding, facilitating improved

performance. Essentially, this approach allowed the model to leverage a broader and more

naunced context from multiple word embeddings, leading to enhanced comprehension and

consequently, superior overall performance.

1.4 Contributions

The key contribution of this project was in proposing a substantial improvement to the

performance of a hate speech detection model. This enhancement was achieved through the

application of advanced combined word embedding techniques, specifically tailored for the

detection of English language hate speech on the X (Twitter) platform. The primary aim was

to positively influence the online communication environment on X (Twitter), ultimately

playing a role in reducing the cyberbullying victimisation rate among X (Twitter) users. This

project aspired to make a tangible and positive impact on the online experience for users,

fostering a safer and more respectful digital space.

Additionally, the implementation of an effective hate speech detection model held the

potential to significantly diminish the human resources required for identifying suspicious hate

speech tweets. This not only amplified overall work efficiency but also concurrently

diminished the financial expenditure associated with the recruitment of examiners dedicated to

the identification of hate speech. By automating the initial phase of content moderation,

organisations could streamline their processes, allowing human moderators to concentrate their

efforts on cases that demanded nuanced judgement and contextual understanding.

1.5 Report Organization

This report was structured into 7 chapters: Chapter 1 - Introduction, Chapter 2 -

Literature Review, Chapter 3 - System Methodology/ Approach, Chapter 4 - System Design,

Chapter 5 - System Implementation, Chapter 6 - System Evaluation and Discussion, and

Chapter 7 - Conclusion and Recommendation.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 4

Chapter 1 served as the introduction to the project, encompassing the problem statement

and motivation behind it. It outlined the objectives aimed at achieving the project’s goals,

defined the project scope, highlighted the contributions made by this project, and provided an

overview of the report’s organisation.

Chapter 2 serves as an investigation on the research papers that related to hate speech

detection or cyberbullying detection using deep learning tehcniques. In this chapter, it

contained the summarisation of the investigated research papers and the comparison of

strengths and weaknesses among different papers.

Chapter 3 described the model architecture utilised in this project, the hardware and

software specifications utilised in this project were discussed in Chapter 4. While Chapter 5

served as a chapter to introduce the system block diagram of this project and the specific

components in the system block diagram.

In Chapter 6, we evaluated the performance of the developed deep learning hate speech

detection models using appropriate evaluation metrics. We then analysed the evaluation results.

Finally, Chapter 7 summarised the findings, and provided recommendations for future work.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 5

Chapter 2

Literature Review

2.1 Previous works on Deep Learning Hate Speech/ Cyberbullying Detection Models

2.1.1 Cyberbullying Detection with a Pronunciation Based Convolutional Neural

Network [4]

X. Zhang et al. [4] introduced a technique that used a pronunciation-based

convolutional neural network (PCNN) for the purpose of cyberbullying detection. This paper

aimed to address the issue of identifying instances of cyberbullying in text-based

communication, which could be challenging due to the informal and often abbreviated nature

of online text. The main technique introduced in this paper involved the convertion of words

into a phonetic representation using eSpeak as a feature in the CNN model. Figure 2.1.1.1

illustrated a table exemplifying word-to-pronunciation conversion, adapted from X. Zhang et

al. [4].

Figure 2.1.1. 1 Examples of the word-to-pronunciation conversion. Adapted from [4].

It achieved an accuracy of 0.989, a precision rate of 0.989, a recall rate of 0.972, and

an F1 score of 0.980 with the utilisation of threshold moving to solve class imbalance issue.

https://ieeexplore.ieee.org/document/7838236
https://ieeexplore.ieee.org/document/7838236

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 6

Besides, it achieved an accuracy of 0.990, a precision rate of 0.991, a recall rate of 0.972, and

an F1 score of 0.981 with the utilisation of cost function adjustment to solve class imbalance

issue. Moreover, it achieved an accuracy of 0.990, a precision rate of 0.991, a recall rate of

0.975, and an F1 score of 0.983 with the utilisation of threshold moving and cost function

adjustment to solve class imbalance issue.

This paper offered several advantages. Firstly, it leveraged Word-to-Pronunciation

conversion to enhance the model’s ability to comprehend misspelled words, resulting in

improved perfromance. Additionally, the paper introduced innovative approaches to address

class imbalance issues beyond traditional oversampling and undersampling techniques. These

solutions contributed to a more effective system performance.

This paper had several limitations. Firstly, there was a class imbalance issue in the

dataset, which could impact the model’s performance. Additionally, the word-to-pronunciation

conversion technique employed may have introduced some level of noise into the data. For

example, a bad word ‘cum’ would have a same phonetic representation as ‘come’. Moreover,

the model proposed in this paper could not convert words with numbers to their respective

phonetic representations, such as ‘ugl1’ and ‘nigg13’, designed to evade detection by the

algorithm, as they are not proper alphabetic words.

2.1.2 Deep Learning Algorithm for Cyberbullying Detection [5]

M. A. Al-Ajlan and M. Ykhlef [5] introduced a novel algorithm named Convolutional

Neural Network for CyberBullying (CNN-CB) for the purpose of detecting cyberbullying.

CNN-CB utilised word embeddings to comprehend the meaning of words and their semantics

in cyberbullying contexts. This approach eliminated the complexities associated with feature

engineering shown in figure 2.1.2.1 and aimed for improved detection accuracy. CNN-CB was

built upon a Convolutional Neural Network (CNN) framework, integrating the benefits of word

embeddings. Experimental results indicated that the CNN-CB algorithm surpassed the

performance of traditional content-based cyberbullying detection models, achieving an

impressive accuracy rate of 95%.

The proposed algorithm offered several advantages. It leveraged word embeddings to

enable the model to comprehend sentence meanings, moving beyond classifying sentences

solely based on individual words. This approach eliminated the need for extensive feature

engineering, simplifying the model’s complexity. Additionally, the proposed model

outperformed traditional content-based cyberbullying detection models.

https://www.semanticscholar.org/paper/Deep-Learning-Algorithm-for-Cyberbullying-Detection-Al-Ajlan-Ykhlef/d5817c496cf950fd82ef6e05dfa4eaa6f27c24ec

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 7

However, there are some drawbacks in this paper. The dataset used in the study exhibits

a class imbalance issue, which could potentially impact the model’s performance by making it

more likely to predict instances as non-cyberbullying. Furthermore, the recall rate of the

proposed model was 73%, which means it is not very effective in detecting the actual positive

cases of cyberbullying.

2.1.3 Offensive Language Detection using Artificial Neural Network [6]

M. Susanty, Sahrul, A. F. Rahman, M. D. Normansyah, and A. Irawan [6] proposed an

artificial neural network (ANN) model to detect offensive language on an online platform. The

model classified the results using a sigmoid function, with ‘1’ signifying content of an offensive

nature and ‘0’ denoting content that is devoid of any offensive undertones. The proposed model

achieved an accuracy of 99.18% for training, 94.28% for validation, and 96.8% for testing.

Eliminating duplicate characters in a word during the preprocessing phase was a

strength of this model. This process was useful in correcting the word to its original form,

reducing confusion for the model, and ensuring the word exists in a dictionary.

However, there were limitations. Human labeling could indeed introduce variability

and potential inaccuracies due to personal cultural perspectives and biases. Different annotators

may interpret offensive language differently based on their individual cultural backgrounds,

experiences, and beliefs. This subjectivity could impact the consistency and accuracy of the

labeled dataset. Additionally, the dataset used to train the model is too small, containing only

504 data. The small size of dataset could lead to overfitting to the training dataset, making the

model less effective at detecting offensive language in other datasets.

2.1.4 Sexism Identification using BERT and Data Augmentation – EXIST2021 [7]

S. Butt [7] tested several machine learning models and deep learning models to identify

sexism on social media by using a multilingual dataset containing English tweets and Spanish

tweets. They augmented the identified classes. According to their results, BERT achieved the

best F1 score of 78.02% for sexism identification and 49.08% for sexism categorization among

deep learning models. The best result for a machine learning algorithm was Random Forest,

which achieved an F1 score of 63.66% on the sexism identification task and an F1 score of

45.43% on the sexism categorization task.

https://ieeexplore.ieee.org/document/8834452
https://ceur-ws.org/Vol-2943/exist_paper4.pdf

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 8

There were several strengths of the model proposed by the authors. First, it could

identify sexist sentences in English and Spanish. Moreover, it classified the identified sexism

cases into specific types of sexism. Additionally, the proposed model took into consideration

the emojis and repeated special characters used in a sentence.

The limitation of the model proposed by the authors is that translating the original text

to German and then translating it back to the original language might cause the model to overfit

to the dataset, as it might produce the same text as the original.

2.1.5 Deep Learning for Detecting Cyberbullying Across Multiple Social Media

Platforms [8]

Agrawal and A. Awekar [8] conducted an experiment to provide a systematic analysis

of cyberbullying detection on the topics of bullying, sexism, attack, and racism across multiple

social media platforms. They utilised CNN, LSTM, BiLSTM, and BiLSTM with attention,

along with transfer learning, to test the effectiveness of the developed model on different

datasets.

Figure 2.1.5. 1 Performance comparison of various DNN models. Adapted from [8].

Figure 2.1.5.1 illustrated the performance of the deep learning models adapted from S.

Agrawal and A. Awekar [8]. M1, M2, M3, M4 represented the CNN model, LSTM, BiLSTM,

and BiLSTM with attention, respectively.

One strength of this paper was that it showed the comparison of the performance of

deep learning models and the machine learning models on the same dataset. Besides, the

utilisation of t-SNE visualised words that are most relevant to specific topics, providing a clear

understanding of words related to those topics.

 A limitation of this model was that it was trained using a class-imbalanced dataset, with

non-cyberbullying instances outnumbering cyberbullying instances. This might cause the

https://www.researchgate.net/publication/323448928_Deep_Learning_for_Detecting_Cyberbullying_Across_Multiple_Social_Media_Platforms
https://www.researchgate.net/publication/323448928_Deep_Learning_for_Detecting_Cyberbullying_Across_Multiple_Social_Media_Platforms

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 9

model to preferentially predict instances as non-cyberbullying, thereby reducing the model’s

performance.

2.1.6 SOSNet: A Graph Convolutional Network Approach to Fine-Grained

Cyberbullying Detection [9]

J. Wang, K. Fu, and C.-T. Lu [9] compiled 6 datasets from different authors and utilised

Dynamic Query Expansion to expand the size of the dataset, forming a new twitter

cyberbullying dataset with 6 classes: age, religion, ethnicity, gender, other cyberbullying, and

non-cyberbullying. Then, they randomly sampled 8,000 data from each class to form a 47,000

tweets dataset. They also proposed a Graph Convolutional Network (GCN) model named

SOSNet, which used several word embedding techniques to generate the word embedding for

each tweet, acting as a node. The edges between the nodes are identified by using the

thresholded cosine similarities between tweets embeddings (node).

Figure 2.1.6. 1 Test Accuracies—4,000 Tweets. Adapted from [9].

Figure 2.1.6. 2 Test F1 Scores—4,000 Tweets. Adapted from [9].

Figure 2.1.6.1 and figure 2.1.6.2 illustrated the systematic analysis of different word

embedding techniques, achieving different accuracy rates and F1 scores. The highest accuracy

rate achieved by the model was with the use of SBERT embedding techniques, reaching an

accuracy rate of 0.9270 and an F1 score of 0.9258.

https://ieeexplore.ieee.org/document/9378065
https://ieeexplore.ieee.org/document/9378065

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 10

The strength of this paper lay in its use of the Dynamic Query Expansion (DQE)

technique, a data mining technique employed to address the class imbalance issue. This

technique gathers more natural data instead of generating the same data. Besides, the authors’

compilation of six datasets from different authors contributed significantly to the field of data

science by providing a diverse and comprehensive benchmark dataset.

However, labeling the instances obtained from the DQE technique could have raised

concerns about incorrect labeling, as the labels were assigned by humans, which could have

been influenced by human culture or religion.

2.1.7 An Application to Detect Cyberbullying Using Machine Learning and Deep

Learning Techniques [10]

M. Raj, S. Singh, K. Solanki, and R. Selvanambi [10] proposed a hybrid deep learning-

based cyberbullying detection model that combined CNN and BiLSTM. The model utilised

stacked word embedding techniques and was applied to a cyberbullying detection application

on X (Twitter) to detect cyberbullying. The stacked embedding techniques is a combination of

GloVe and FastText word embeddings. The proposed model outperformed standalone deep

learning models in terms of performance. The proposed hybrid deep learning model achieved

an accuracy of 0.9135 before hyperparameter tuning and 0.9512 after hyperparameter tuning.

https://link.springer.com/article/10.1007/s42979-022-01308-5
https://link.springer.com/article/10.1007/s42979-022-01308-5

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 11

Figure 2.1.7. 1 Proposed Hybrid deep learning model with stacked word embedding

techniques. Adapted from [10].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 12

The model excelled in detecting cyberbullying across multiple languages. The hybrid

deep learning model demonstrated superior performance compared to its standalone

counterpart. Stacked embeddings play a crucial role in enhancing the model's overall

performance.

A limitation of this paper is that the authors do not provide an analysis of the

performance with the use of a single word embedding technique compared to the use of

multiple word embedding techniques. It should provide a view to demonstrate that combining

word embedding techniques would have better performance compared to using a single

technique.

2.1.8 Multilingual Hate Speech Detection: Comparison of Transfer Learning Methods

to Classify German, Italian, and Spanish Posts [11]

J. Fillies, M. P. Hoffmann and A. Paschke [11] conducted an investigation using seven

transformer-based deep learning models to identify the most suitable model for detecting hate

speech across monolingual, joint monolingual, and translated to English datasets, employing

transfer learning techniques.

 Three types of BERT-based transformer models were utilised to identify hate speech in

German, Italian, and Spanish texts. Specifically, ‘bert-base-german-cased’ targeted German-

based hate speech, ‘dbmdz/bert-base-italian-cased’ for Italian-based, and BETO for Spanish-

based detection. Subsequently, two BERT-based models analysed the joint multilingual

content of German, Italian, and Spanish to identify hate speech. These models included

mBERT and XLM-RoBERTa.

 Furthermore, the DistilBERT transformer model was applied to translated datasets, with

translations conducted separately using GoogleTrans and DeeplTrans. Evaluation of all BERT-

based models will be based on Accuracy, F1-Score, and Matthews Correlation Coefficient

(MCC), with comparisons drawn against corresponding SVM models.

Figure 2.1.8. 1 Results for the Monolingual approach. Adapted from [11].

https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10386244?arnumber=10386244
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10386244?arnumber=10386244

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 13

Figure 2.1.8. 2 Results for the Multilingual Detection Task. Adapted from [11].

Figure 2.1.8. 3 Results for the Translated-based approach. Adapted from [11].

 Figure 2.1.8.1 depicts the testing outcomes of respective BERT-based transformer

models on their corresponding monolingual dataset including German, Italian, and Spanish

datasets, along with the corresponding SVM model. Figure 2.1.8.2 illustrats the testing results

for mBERT, XML-RoBERTa and SVM on the joint multilingual dataset while Figure 2.1.8.3

presents the testing results for DistilBERT and SVM on the separate translation techniques via

GoogleTrans and DeeplTrans. Across Figures 2.1.8.1 to Figure 2.1.8.3, it is evident that BERT-

based transformer models consistently outperform the SVM model in terms of accuracy, F1-

score and MCC across all dataset types, including monolingual, joint multilingual, and

translated to English dataset.

The authors raised several challenges, including the potential for incorrect annotations

due to misclassification or annotator biases during dataset creation. Additionally, concerns

were raised regarding potential information loss during preprocessing and the risk of

mistranslation or omission of samples by translation tools, potentially leading to non-hate texts

being misclassified as offensive or hateful.

The strengths of this paper were the developed model’s multilingual capability and its

investigation of various BERT-base transformer models. Investigating different BERT-base

transformer models could have provided insights into models to be utilised.

2.1.9 A Scalable Hate Speech Detection System for Vitnamese Social Media using Real-

time Big Data Processing and distributed Deep Learning [12]

V. -C. Dinh, T. -D. Vo, M. -P. T. Nguyen and T. -H. Do [12] developed a system to detect

hate speech and offensive comments on social networks in real-time, presenting the results on

https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10318848
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10318848

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 14

a dashboard using big data processing and distributed deep learning technology. Apache Kafka

and Apache Spark were utilised for big data processing; Apache Kafka was used to partition

and store Facebook comments, which were gathered using the Selenium framework, across

multiple partitions. This approach enabled diverse consumers, including various devices, to

access the comments in different manners, enhancing scalability. Following this, the comments

underwent preprocessing and analysis task within Apache Spark.

 Multiple machine learning models (Multinomial Naïve Bayes, Logistic Rgression,

Decision Tree) and deep learning models (BiLSTM, BiGRU, text-CNN) were trained on the

imbalanced Vi-HSD dataset, which contained comments from Facebook posts and YouTube

videos. The dataset had significantly more comments labeled as CLEAN compared to those

labeled as Hate or Offensive. The models with the highest F1 score and accuracy were selected

to be integrated into Spark Structured Streaming in Spark for preprocessing and analysis of

real-time hate speech detection. Among these models, text-CNN, a CNN model utilising word

embedding techniques, achieved the best performance. It converted 1-D text input to 2-D,

where rows represented words in a sentence and columns represent vectors extracted from the

FastText word embedding technique. The text-CNN model achieved an F1 score of 61.76%

and an accuracy of 86.84%.

 The text-CNN model was integrated into Spark Structured Streaming to preprocess the

partitioned Vietnamese comments received from Kafka. Next, Spark predicted labels for these

comments, identifying whether they are categorized as CLEAN, Hate or Offensive. It then

proceeded to analyse the comments, extracting insights such as the date of the comments, user

information, and the predicted class of the comments. These analysis results were promptly

updated on a dashboard, providing real-time statistics on various metrics including the number

of users and the distribution of comments across categories like CLEAN, Hate and Offensive

classes.

 The strength of this paper was that they integrated several techniques and produced a

system that was able to classify the comments in real-time. Additionally, the classified

comments were further analysed and visualised in a dashboard, allowing users to easily analyse

them. The limitation of this paper was the imbalanced dataset used to train the model, which

could have led to better performance on the class with larger instances.

2.1.10 Hate Speech Detection using CNN and BiGRU with Attention Mechanism for

Twitter [13]

https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10420628?arnumber=10420628
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/10420628?arnumber=10420628

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 15

Q. Sifak and E. B. Setiawan [13] created a hate speech detection model to identify hate

speech in the Indonesian language. They integrated CNN and BiGRU with an attention

mechanism and utilised the IndoBERT transformer model to extract word embedding vectors.

The attention mechanism, introduced with the transformer model, was crucial for focusing the

model on important words.

They explored six combinations of integrating CNN and BiGRU with attention: CNN-

BiGRU-Attention, CNN-Attention-BiGRU, CNN-Attention-BiGRU-Attention, BiGRU-

CNN-Attention, BiGRU-Attention-CNN, and BiGRU-Attention-CNN-Attention. Performance

evaluation was conducted using Accuracy, Precision, Recall, and F1-Score.

 For the dataset, they crawled Indonesian language tweets form Twitter using Twitter

Developer API, employing keywords related to various topics. These tweets were manually

labeled as Hate or Non-Hate by three individuals, with the majority vote determining the label.

After preprocessing, they obtained a balanced and cleaned dataset consisting of 53, 589 tweets

(26,496 Non-Hate and 27,093 Hate).

The dataset was split into training and testing sets using different ratios (7:3, 8:2, and

9:1) to determine the optimal model performance. Additionally, the number of attention heads

in the attention mechanism was tuned ro 1, 2, 3, and 6 for optimal results. The testing result of

the BiGRU-Attention-CNN-Attention showed an accuracy of 88.12%, surpassing the

performance of other models.

The strength of this paper lay in its integration of attention mechanism into the deep

learning model, resulting in improved performance. However, a limitation of this paper could

have been the potential for incorrect annotations due to misclassification or annotator biases

during dataset creation

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 16

2.2 Strengths and Weaknesses

Paper

No.

Authors Papers name Types Features Dataset Techniques Strengths Weaknesness

1 X. Zhang et al.

[4]

Cyberbullying

Detection with

a Pronunciation

Based

Convolutional

Neural Network

Cyberbullying Word

pronunciation

conversion

(eSpeak

speech

synthesizer)

Twitter,

Formspring.me

Pronunciation-

based CNNs

Word-to-

Pronunciation

conversion to

enhance the

model’s ability to

comprehend

misspelled words.

lack of an

established

benchmark

dataset.

innovative

approaches to

address class

imbalance issues

beyond traditional

oversampling and

undersampling

techniques.

Cannot convert

leetspeak word

such as ‘ugl1’

pronunciation

conversion

technique

employed may

introduce some

level of noise

into the data

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 17

2 M. A. Al-

Ajlan and M.

Ykhlef [5]

Deep Learning

Algorithm for

Cyberbullying

Detection

Cyberbullying Word

embedding

Twitter by

canlling API

CNN-CB Eliminate feature

extraction and

apply word

embeddings to

enable the model to

comprehend

sentence

meanings.

dataset used in

the study

exhibits a class

imbalance

issue.

Outperforms

traditional content-

based cberbullying

detection model

Low in recall

between the two

algorithms

CNN-CB, 73%

3 M. Susanty,

Sahrul, A. F.

Rahman, M.

D.

Normansyah,

and A. Irawan

[6]

Offensive

Language

Detection using

Artificial

Neural Network

Offensive

language

Web scrabing on

several websites

ANN Human labeling

introduces

variability and

potential

inaccuracies.

Too small

dataset to train

model

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 18

4 Sabur Butt,

Noman

Ashraf,

Grigori

Sidorov, and

Alexander

Gelbukh [7]

Sexism

Identification

using BERT

and Data

Augmentation –

EXIST2021

Sexism n-gram, GloVe

pretrained

word

embeddings

Twitter Dataset Logistic

Regression

(LR),

Multilayer

perceptron

(MLP),

Random Forest

(RF), Support

Vector Machine

(SVM), 1

Dimensional

Convolutional

Neural Network

(1D-CNN),

Long short-term

memory

(LSTM) and

BERT

multilingual Translate from

origin to

another

language and

translate back to

origin might

cause the model

to overfit to the

dataset

Taking

consideration

emojis and

repeated special

characters in text

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 19

Further classify

sexism into

specific type

5 S. Agrawal

and A. Awekar

[8]

Deep Learning

for Detecting

Cyberbullying

Across Multiple

Social Media

Platforms

Bully, Racism,

Sexism, Attack

Random,

GloVe, SSWE

word

embedding, t-

SNE

Formspring,

Twitter,

Wikipedia

CNN, LSTM,

BiLSTM,

BiLSTM with

attention

comparison of the

performance of

deep learning

models and the

machine learning

models

Class imbalance

dataset, might

reduce model

performance

t-SNE visualizes

words that are most

relevant to specific

topics

6 J. Wang, K.

Fu, and C.-T.

Lu [9]

SOSNet: A

Graph

Convolutional

Network

Approach to

Fine-Grained

Age, Ethnicity,

Gender,

Religion, Other

Bag of Words

(BoW), TF-

IDF,

word2vec,

Glove,

fastText,

BERT,

6 datasets from

different authors

and utilise

Dynamic Query

Expansion using

keyword search

SOSNet (Graph

Convolutional

Network)

Solve class

imbance issue with

the use of Dynamic

Query Expansion

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 20

Cyberbullying

Detection

DistilBERT,

Sentence

BERT

to address class

imbalance issue

Compile 6 dataset

from different

authors

7 M. Raj, S.

Singh, K.

Solanki, and

R. Selvanambi

[10]

An application

to Detect

Cyberbullying

Using Machine

Learning and

Deep Learning

Techniques

Cyberbullying GloVe

FastText stack,

adam

optimizer

Hindi, English

& Hinglish from

open sources

CNN-BiLSTM multilingual do not provide

an analysis of

the performance

with the use of a

single word

embedding

technique

compared to the

use of multiple

word

embedding

techniques

Hybrid models

perform with

strength of both

model

Stack word

embedding

enhance

performance

8 J. Fillies, M. P.

Hoffmann and

A. Paschke

[11]

Multilingual

Hate Speech

Detection:

Comparison of

Transfer

Learning

Methods to

Hate Speech GoogleTrans,

DeeplTrans

German, Italian,

Spanish, Joint

dataset, and

English

translated

datasets.

Bert-base-

german-cased,

bert-base-

italian-cased,

BETO,

mBERT, XLM-

multilingual Concern of

incorrect

annotations

Investigate

different bert-base

transformer

models

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 21

Classify

German, Italian,

and Spanish

Posts

RoBERTa,

DistilBERT

9 V. -C. Dinh, T.

-D. Vo, M. -P.

T. Nguyen and

T. -H. Do [12]

A Scalable Hate

Speech

Detection

System for

Vietnamese

social media

using Real-time

Big Data

Processing and

distributed

Deep Learning

Hate Speech Apache Kafka,

Apache Spark,

Selenium,

FastText word

embedding

technique

Vi-HSD Multinomial

Naïve Bayes,

Logistic

Regression,

Decision Tree,

BiLSTM,

BiGRU, text-

CNN

Develop a system

to detect hate

speech and

offensive

comments on

social media

networks in real-

time

Imbalanced

dataset

Predicted result

visualize in a

dashboard that

easier for user to

perform analysis.

Utilise Kafka,

Spark to develop a

system that can

predict hate and

offensive on social

media in real-time

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 22

10 Q. Sifak and E.

B. Setiawan

[13]

Hate Speech

Detection using

CNN and

BiGRU with

Attention

Mechanism for

Twitter

Hate Speech Attention

Mechanism,

IndoBERT

embedding

vectors

Indonesian

Twitter dataset

crawled using

Twitter

Developer API

CNN-BiGRU-

Attention,

CNN-

Attention-

BiGRU, CNN-

Attention-

BiGRU-

Attention,

BiGRU-CNN-

Attention,

BiGRU-

Attention-CNN,

and BiGRU-

Attention-

CNN-Attention

Integrate attention

mechanism to deep

learning models to

allow model to

know which word

is important to

focus.

Human labeling

introduces

variability and

potential

inaccuracies.

Balanced dataset

Hybrid deep

learning model

Table 2.2. 1 Literature Strengths and Weaknesses comparison.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

2.3 Summary on Literature Review

Upon reviewing the literature [4] [5] [7] [8] [10], it was evident that 1-

Dimensional Convolutional Neural Networks (CNNs), Long Short-Term Memory

(LSTM), and Bidirectional Long Short-Term Memory (BiLSTM) were the most

frequently employed deep learning algorithms in the development of cyberbullying

detection models. However, these algorithms were predominantly used for detecting a

broad spectrum of cyberbullying, and there existed a notable gap in addressing specific

types of cyberbullying such as hate speech, body shaming, sexism, and other

downstream manifestations. This identified gap underscored the need for further

research to enhance the maturity of cyberbullying detection models by specifically

targeting and addressing these nuanced forms of harmful online behaviour.

M. Raj, S. Singh, K. Solanki, and R. Selvanambi [10] proposed a hybrid deep

learning model that combined CNN and BiLSTM. They utilised the stacking of two

word embedding techniques as input for embedding layers, introducing interesting

ideas. However, the study solely presented the outcomes of model evaluation using

stacked word embedding techniques, omitting the results of the model utilising single

word embedding techniques. This omission hindered the illustration of distinctions

between stacking and single word embedding techniques, impeding the demonstration

that stacking surpassed the use of a single technique. Consequently, there existed a gap

in the performance evaluation of single word embedding vectors and the combination

of two word embedding vectors. This project aimed to address this gap by comparing

single word embedding techniques with the combination of two word embedding

techniques.

Moreover, the transformer model had garnered considerable interest across

diverse domains of Natural Language Processing (NLP), encompassing text

classifications, text generation, and multi-label prediction tasks in recent years. Its

popularity was rooted in its ability to grasp the context of individual words within

varied sentences, enabling it to simulate human-like cognitive processes.

As previously mentioned, there was a limited number of hate speech detection

models developed using transformer architectures. In this specific instance, several

pretrained transformer models would be fine-tuned to contribute to the field of hate

speech detection, harnessing the capabilities of the transformer model for improved

performance in this domain.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

While many cyberbullying detection models traditionally use word-based

tokenisation, which divides sentences by spaces or punctuation marks, a newer

approach has emerged: the subword tokeniser. This tokeniser broke down words into

smaller, recognizable units based on patterns learned from the text corpus used to train

it. This technique was considered advantageous in NLP tasks because it addressed the

challenge of handling unknown or illegible words within sentences. Such words may

arise from combining multiple words without clear spacing. Therefore, in this project,

a subword tokeniser was chosen for sentence tokenization to enhance the clarity and

effectiveness.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 3

System Methodology/Approach

3.1 System Design Diagram/ Equation

3.1.1 System Architecture Design (CNN)

Figure 3.1.1. 1 CNN architecture for text classification.

 In Figure 3.1.1.1, the CNN architecture for text classification was illustrated. Within

this architecture, the text underwent preprocessing and tokenization into a list of tokens. These

tokens were then passed to an Embedding layer, which converted the 1D input data into a 2D

matrix with specific dimensionality before undergoing convolution with the kernel to generate

features or filters.

 The Embedidng layer acted as a dictionary containing vector representations for all

unique words in the dataset. These vectors could be obtained from various pretrained word

embedding techniques such as Word2Vec or GloVe. The Embedding layer assigned the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

available vectors, stored in the embedidng layer with specific dimensionality, to each token in

a text, thereby converting the 1D shaped list of tokens into a 2D matrix.

 The output of the Embedding layer underwent convolution using a kernel size of 2 with

padding = ‘same’, for example. Padding = ‘same’ ensured that the output had the same length

as the input to the convolutional layer, with a channel size equal to the filter size. The output

from the convolutional layer was then subjected to downsampling and feature extraction among

filters using a 1D maxpooling layer. The 1D maxpooling layer extracted important features

among filters by using a kernel window with a specified size, selecting only the maximum

value features in the kernel, and sliding the kernel to the next position without overlapping with

the previous kernel window.

 The output of the 1D maxpooling layer was then flattened into a 1D column vector

using a Flatten layer. This ensured that the shape of the input was compatible with the fully

connected layer, also known as the dense layer. After flattening, a dropout layer was applied t

avoid overfitting to the training dataset. The dropout layer randomly set a fraction of input units

to 0, thereby ignoring some of the extracted features and improving model generalisation. The

fraction of dropout was determined by the developer.

 Subsequently, the data was fully connected to dense layers, with only a single neuron

in the last dense layer using a sigmoid activation function for binary classification. These layers

aimed to learn the weights and biases of the neurons to perform well on the training dataset.

The last layer with a single neuron generated probabilities for binary classification, and

classification was based on the probability threshold. For example, if the threshold was 0.6 and

the probability was 0.7, the classification was 1 (positive); otherwise, it is 0 (negative).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 (1)

where

• 𝑥𝑥 is the weighted input

• 𝑒𝑒 is the Euler’s number

3.1.2 System Architecture Design (BiLSTM)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Figure 3.1.2. 1 BiLSTM model architecture.

Figure 3.1.2. 2 LSTM cell.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

 The BiLSTM (Bidirectional Long Short-Term Memory) architecture consisted of an

LSTM layer that computed the hidden output of a sequence of input in both forward and

backward directions. The LSTM layer sequentially processed the hidden output of the input

sequence, moving from the current to the next in a series of LSTM cells, as illustrated in Figure

3.1.2.1. Within each LSTM cell, as depicted in Figure 3.1.2.2, three essential components were

present: the forget gate, input gate, and output gate.

 The forget gate determined the extent to which information from previous cell states

should be retained or forgotten. It achieved this through a linear function with a sigmoid

activation function, computing the probability of retention. The input gate controlled the

incorporation of information into the cell state from the current input. Meanwhile, the output

gate generated the hidden state for the current cell by regulating the information flow from the

updated cell state.

 Linear layers with sigmoid activation function were used to control the flow of

information, while those with tanh activation function ensured that inputs remained within the

range of [-1], avoiding infinity values. In Natural Language Processing (NLP) tasks, the input

comprised the embedding vector of a token (word), which was then utilised in the forget gate,

input gate, and output gate to generate the cell state and hidden state for the current cell. These

states were then passed to the next LSTM cell which handled the next sequence within the

input sequence.

tanh(𝑥𝑥) = 𝑒𝑒
𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 (2)

where

• 𝑥𝑥 is the weighted input

• 𝑒𝑒 is the Euler’s number

 The hidden output of the BiLSTM consisted of the stacked hidden outputs in both

forward and backward directions, effectively doubling the hidden output of the LSTM layer.

Subsequently, the hidden output of the BiLSTM layer was fully connected to dense layers, with

the last layer comprising a single neuron with a sigmoid activation function for a binary

classification task. This final layer computed the probability of the text belonging to a particular

class (hate or non-hate) and made the classification decision based on a specified threshold. If

the computed probability exceeds the threshold, the text is classified as hate; otherwise, it is

classified as non-hate.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

3.1.3 System Architecture Design (DistilBERT)

Figure 3.1.3. 1 DistilBERT model architecture comparison with BERT model

architecture. Adapted from [14]

DistilBERT is a distilled version of the BERT model designed to reduce computational

costs without significantly sacrificing performance. It achieved this by removing certain

components such as segment embedidngs and the pooler, and by halving the number of

Transformer encoder layers by factor of 2. Despite these modifications. [15] DistilBERT

remained a smaller, faster alternative to BERT, maintaining approximately 97% of its language

understanding capabilities while being 40% smaller in parameters and 60% faster. Moreover,

it was particularly efficient for mobile question-answering applications, being 71% faster than

BERT and requiring only 207 MB of weight.

In the DistilBERT model, the input tokens first underwent word embedding and

position embedding processes, with the resulting vectors summed in the Embedidng layer. One

notable advantage of DistilBERT over models like CNN and BiLSTM was its ability to process

input sequences in parallel, leading to faster training. The output of the Embedding layer was

then passed through a stack of six transformer encoder layers to extract features for the input

tokens. Each transformer encoder comprises components such as the multi-head self-attention

block and the feed-forward block.

In the multi-head self-attention block, the model enriched a token’s feature by

considering the features of other tokens in the same sentence. This was achieved through a

computation involving query (Q), key (K), and value (V) vectors, where the dot product of Q

and the tranpose of K was divided by the square root of the model’s input dimensionality

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

(d_model) and passed through a softmax function. The resulting attention scores were used to

compute a weighted sum of the value vectors, generating an attention feature (A).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
)𝑉𝑉 (3)

where

• Q is a matrix that contains query vectors for all tokens in an input sentence with a shape

of (length of input text, input dimentionality of a model).

• KT is the transpose of matrix K, which is used as an index for the value vectors V for

tokens. Its shape is (input dimentionality of a model, length of input text)

• V is a matrix that contains value vectors representing the information of tokens in a

sentence with a shape of (length of input text, input dimentionality of a model)

• d_model represents the input dimensionality of a model

The dot product of Q and the transposed of K computed the similarity between the

query (Q) of a token and the key (K) of tokens in a sentence. Dividing with the square root of

the model’s input dimentionality aimed to normalise the values to avoid large differences in

value when the sequence of a token was getting larger. Subsequently, the softmax function

applied to the resulting values, computing the probabilities of the current token’s relevance to

other tokens, with higher relevance receiving higher probabilities. These probabilities were

then used to perform multiplication and summation with the value (V) of each token in a

sentence and passed through dense layers resulting in a weighted feature. Different attention

heads produced different weighted features, which were then concatenated and passed through

dense layers to further enrich the token’s feature representation, denoted as A.

The feed-forward block further extracted features from the multi-head self-attention

layer to produce higher-level representations of tokens. The output of the last encoder layer

was then used in dense layers for predictions or classification of a task.

3.1.4 System Architecture Design (RoBERTa)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

Figure 3.1.4. 1 BERT model architecture. Adapted from [16]

RoBERTa (Robusty optimized BERT approach) is a transformer-based model that

builds upon the BERT architecture. It consists of 12 Transformer Encoder Layers, a Hidden

Size of 768, and 6 Attention Heads, resulting in a total of 110 million parameters. RoBERTa

is designed to improve the performance of BERT models through several key modifications.

These include training with a dynamic masking instead of the static masking, utilising full-

sentences without the Next Sentence Prediction (NSP) loss, employing large mini-batches,

removing the NSP objective, and conducting longer pretraining steps compared to the BERT

model. These enhancements aim to improve the model’s performance across various natural

language processing (NLP) tasks.

‘facebook/roberta-hate-speech-dynabench-r4-target’ [17] is a specific RoBERTa

model designed to provide a high quality, robust and generalised hate speech detection model.

It utilises a human-and-model-in the loop process for collecting datasets and training the model.

In this process, humans iteratively create datasets and train the model. An important aspect of

this process is the role of annotators, who create realistic synthetic data to exploit any

weaknesses identified in the model through real-time feedback. They perturb half of the dataset

created in each iteration, introducing noise, and train the model with these perturbed samples

to enhance its robustness and generalisation in detecting hate speech.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Chapter 4

System Design

4.1 System Block Diagram

Figure 4.1. 1 System Block Diagram for this project.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

 Figure 4.1.1 illustrated the system block diagram for this project. There were 5 main

steps included in this project: Step 1 Dataset Acquisition, Step 2 Data Preprocessing, Step 3

Initial Model Training, Step 4 Model Hyperparameters Tuning, and Step 5 Model Evaluation.

In Step 1, the dataset used was introduced and acquired. In Step 2, the data in the dataset was

preprocessed to remove useless information. In Step 3, the initial model was trained with the

preprocessed data using randomly initialised hyperparameters. In Step 4, the initial model was

hypertuned to improve the model’s performance, and Step 5 was to evaluate the hypertuned

model’s performance. All the details of these steps were discussed in Chapter 4.2.1, 4.2.2,

4.2.3, 4.2.4, and 4.2.5 repsectively.

4.2 System Components Specifications

4.2.1 Dataset Acquisition

 The dataset used in this project was downloaded from Kaggle.com, consisting of

English tweets with 6 classes, which were cyberbullying based on Age, Ethnicity, Gender,

Religion, Other Cyberbullying, and Not Cyberbullying. Each class contained around 8,000

tweets, resulting in a total of 47,000 tweets. This dataset was curated by J. Wang, K. Fu, and

C.-T. Lu [9], who compiled 6 datasets from different authors to form a new Twitter

cyberbullying dataset with a class-imbalanced dataset. The dataset was expanded using

Dynamic Query Expansion, a data mining technique that utilised the GetOldTweets3 library to

expand the size of the dataset. Subsequently, around 8,000 tweets were randomly selected from

each class to create a class-balanced dataset. The dataset was downloaded as a CSV file and

loaded into a pandas dataframe. The distribution of cyberbullying classess in the dataset was

illustrated in Figure 4.2.1.1.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 34

Figure 4.2.1. 1 Distribution of Cyberbullying Classes in Twitter Dataset.

4.2.2 Dataset Preprocessing

Figure 4.2.2. 1 The flow of Data Preprocessing.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Several preprocessing techniques were conducted, as shown in Figure 4.2.2.1. These

include regrouping classes, converting text to lowercase and removing URL links, user

mentions and Hypertext Markup Language (HTML) entities removal, symbols and emojis

removal, stopwords removal, and repeating punctuation marks removal, as well as data

filtering. Following this, subword tokenisation was performed to tokenise the text into smaller

subwords. The unique words in the tokenised tweets were identified, and one-hot encoding

conversion was applied. Subsequently, embedding vectors for the unique tokenised words and

the word embedding matrix were generated. Finally, the dataset was split into training,

validation, and testing datasets. Then, oversampling or downsampling techniques were applied

only to the instances of the training dataset.

4.2.2.1 Regrouping Classes

In this project, tweets labelled as attacks based on Age, Gender, Religion, Ethnicity,

and Other Cyberbullying were grouped as Hate Speech (labelled ‘1’), while tweets labelled as

Not Cyberbullying were classified as Non-Hate Speech (labelled ‘0’). This classification was

based on the understanding that these attacks may evoke animosity from the victims towards

the aggressor. In contrast, Not Cyberbullying tweets were considered as normal text that is

unlikely to elicit negative emotions in the receiver. The distribution of hate speech and non

hate speech is illustrated in Figure 4.2.2.1.1.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Figure 4.2.2.1. 1 The distribution of Hate Speech and Non-Hate Speech.

4.2.2.2 Text Lowering and URL Links Removal

Firstly, all the text in the tweet underwent text lowering to convert all the text to

lowercase. Following that, URLs in the tweets were removed since they do not contribute much

to indicating hate speech. This was achieved using a regular expression. The pattern used in

the regular expression identified words in tweets that started with ‘http://’, ‘https://’, ‘www.’,

or ‘bit.ly’. Words that matched this pattern were replaced with an empty space, effectively

removing the URLs from the tweets. An example of URL removal is shown in Figure 4.2.2.2.1,

and the highlighted region in the figure demonstrated the changes made after performing URL

removal.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 37

Figure 4.2.2.2. 1 Example of URL removal. E.g. ‘http://t.co/usqinyw5gn’ and

‘http://twitvid.com/a2tnp’ were removed.

4.2.2.3 User Mentions and HTML Entities Removal

To remove user mentions and HTML entities from the tweets, regular expressions are

also employed. To achieve this, words that matched the patterns ‘@\w+’ or ‘&\w+;’, were

removed. User mentions typically start with ‘@’, as shown in the example highlighted in

yellow in Figure 4.2.2.3.1. Additionally, HTML entities usually follow a pattern of starting

with ‘&’ and ending with ‘;’, as demonstrated in the example of HTML entity removal

highlighted in blue in Figure 4.2.2.3.1.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 4.2.2.3. 1 Example of user mention and HTML entity removal. E.g.

‘@halalcunty’, ‘@biebervalue’, ‘>’ were removed.

4.2.2.4 Symbols and Emojis Removal

Moreover, emojis and other symbols within the tweet, such as thumbs up, tree symbols,

moon symbols and others, were removed using a regular expression designed to capture a wide

range of emoji and symbol in Unicode. The removal of emojis and other symbols aids in

standardising the text, allowing for a focus on linguistic content. This ensures that the deep

learning detection model will not be misled by the presence of these elements. An example of

emojis and other symbols removal is illustrated in Figure 4.2.2.4.1 with highlighted elements.

The blowing kiss emoji and black heart symbol in the example were removed after applying

the regular expression designed for emojis and symbols removal.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Figure 4.2.2.4. 1 Example of emojis and other symbols removal. E.g. The blowing kiss

emoji and black heart symbol were removed.

4.2.2.5 Stopwords Removal

After removing emojis and symbols, the tweet text underwent stopwords removal, a

process aimed at eliminating words that contribute little meaning to reduce the text length. To

achieve this, the tweet text needed to be tokenised into a list of words using the ‘split()’

function. Subsequently, the words in the list were compared with the stopwords dictionary

provided by the ‘nltk.corpus’ library. If a word was identified as a stopword, no action is taken.

Conversely, if the word is not a stopword, it was included in a new list, and the words in the

new list were joined to form a new string, which was then returned.

Figure 4.2.2.5.1 illustrated the results of stopwords removal, highlighting the removal

of common stopwords such as ‘i’, ‘into’, and ‘a’ from the samples after the stopwords removal

process.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 40

Figure 4.2.2.5. 1 Example of stopwords removal. E.g. ‘i’, ‘into’, and ‘a’ were removed

from the highlighted text.

4.2.2.6 Repeating Punctuation Marks Removal

Following stopwords removal, the tweet text underwent a process of removing

repeating punctuation marks to eliminate redundant characters within the text. This step aimed

to prevent excessive text length caused by the repeated characters. To accomplish this, a regular

expression ‘r’([^\w\s])\1+’ was employed to identify repeating punctuation marks. The

function of this regular expression was to detect instances where non-space characters were

repeated, and these repetitions were then removed, retaining only a single character, as

demonstrated in Figure 4.2.2.6.1.

Figure 4.2.2.6. 1 Example of repeating punctuation mark removal.

4.2.2.7 Data Filtering

Furthermore, the tweet text underwent a regular expression process to ensure it only

contains alphanumeric characters in words. Non-alphanumeric characters were replaced with

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

an empty space during this step. Subsequently, the text length of the cleaned tweets was

calculated by splitting the string text into a list of words and determining the length of the list.

Tweets with a length of 0 are removed. The text length in the dataset was then visualised for

further analysis to select a suitable maximum length for the text. Figure 4.2.2.7.1 illustrated the

visualisation of the cleaned text lengths in the dataset.

Figure 4.2.2.7. 1 Text length distribution for each class.

Figure 4.2.2.7.1 clearly indicates that the majority of tweets have a length of around

100, with only a small number exceeding this threshold. To streamline the max length of

tweets, all tweets surpassing a length of 100 were discarded. The decision to drop tweets, rather

than truncating them to a size of 100, stemmed from the concern that truncated tweets might

omit crucial information, potentially leading to inaccurate representations of hate or non-hate

content. The preference for dropping ensured a more accurate and reliable dataset for model

training.

4.2.2.8 Subword Tokenisation

After dropping the tweets that have a text length of more than 100, the tweet underwent

sub-word tokenisation to break them into smaller word pieces. Sub-word tokenisation involved

breaking a word into smaller subwords based on patterns observed in the training corpus. This

allowed the model to process words it had never seen before. In this project, a pretrained

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

BertTokeniser from the Hugging Face Transformers library, named ‘bert-base-uncased’, was

used for sub-word tokenisation for the CNN model and BiLSTM model, while the DistilBERT

transformer model and ‘facebook/roberta-hate-speech-dynabench-r4-target’ used their own

tokenizer. ‘bert-base-uncased’ is a tokeniser by the Bidirectional Encoder Representations

from Transformers (BERT) trained on a large corpora of text, and it is capable of handling both

uppercase and lowercase tokens.

For example, as shown in Figure 4.2.2.8.1, the word ‘mohamad’ was an unseen word

in the pretrained sub-word tokeniser. The sub-word tokeniser then further chunked the word

into several well-known subwords, resulting in ‘mo’, ‘##ham’, ‘##ad’. The presence of the ‘##’

prefix typically indicated that the subword followed another subword in the original word. The

text length of the tweets was then calculated after performing subword tokenisation. This could

be useful when padding the tweets text length to the same length.

Figure 4.2.2.8. 1 Example of subword tokenisation.

4.2.2.9 One-Hot Encoding Conversion

After performing subword tokenisation on the dataset, all the tokenised tokens were

obtained by iterating through the tokenised lists for each row. The ‘set()’ function was applied

to extract all unique tokens, eliminating any duplicates. Subsequently, each unique token in the

set was assigned a distinct index, starting from 1, as depicted in Figure 4.2.2.9.1. This index

assignment was accomplished using the ‘enumerate()’ function, with the understanding that 0

would be reserved for padding the text to ensure a consistent length.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 43

This process led to the creation of a dictionary containing 19,500 unique tokens,

indicating the number of distinct tokens identified after subword tokenisation.

Following that, the dictionary of unique tokens was utilised to perform one-hot

encoding conversion to convert the words in the dataset into numerical forms. This

transformation involved finding the index of each unique token in the dictionary. As a result,

the tweet text was transformed into an array of numerical tokens, as depicted in Figure

4.2.2.9.2.

Figure 4.2.2.9. 1 Example of creating a dictionary contains all unique tokens and the

respective index.

Figure 4.2.2.9. 2 Example of converting the tokens in numerical form.

4.2.2.10 Word Embedding Vectors and Word Embedding Matrix Generation

After acquiring all the unique tokens along with their respective indices, the subsequent

step involved obtaining word embedding vectors for each unique token. Various pretrained

word embedding techniques were employed, including GloVe, Word2Vec, GloVe+Word2Vec

(by stacking both vectors), and GloVe+Word2Vec (by computing the mean of both vectors),

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

as well as GloVe+Word2Vec (by computing the root mean square of both vectors). However,

for the DistilBERT and RoBERTa models utilised in this project, they had their own tokenizer

and word embedding vectors for tokenised tokens. Therefore, acquiring unique tokens and their

respective indices could be skipped, as well as the word embedding extraction. The additional

steps for DistilBERT and RoBERTa models involved extracting the attention mask for each

input, attention mask identified the tokens in an input that need to be focused, so that those

tokens with spaces or padding will not be considered. The output of the attention mask was

shown in Figure 4.2.2.10.1, where ‘1’ in the attention mask indicated tokens that needed to be

focused on, while ‘0’ could be ignored.

Figure 4.2.2.10. 1 Attention mask for an input sequence.

• Word2Vec:

Word2Vec is a family of models for generating word embeddings, developed by T.

Mikolov, Ilya Sutskever, K. Chen, G. S. Corrado, and J. Dean [18]. The model used in this

project was “word2vec-google-news-300”, a pretrained word2vec model with 300 dimensions.

It was trained in a supervised manner on a massive dataset containing news, predicting either

current tokens with the context or tokens preceding and succeeding the current tokens.

• GloVe:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 45

Global Vectors for Word Representation (GloVe) is an unsupervised learning algorithm

developed by J. Pennington, R. Socher, and C. Manning [19]. Its objective is to derive vector

representations for words through the analysis of their co-occurrence statistics in large corpora.

If two words frequently appeared together, their co-occurrence probability was higher. For

instance, in Figure 4.2.2.10.2, ‘ice’ occurred more frequently with ‘solid’ compared to its

occurrence with ‘gas’, reflecting the higher probability of ‘ice’ occurring with ‘solid’. The co-

occurrence matrix was then utilised to learn word vectors through an optimization process,

minimising the difference between predicted and actual co-occurrence probabilities.

The GloVe model used in this project was the pretrained Common Crawl word

embedding vectors, which encompassed 42 billion tokens and a vocabulary of 1.9 million.

These vectors were available for download from https://nlp.stanford.edu/projects/glove/.

Figure 4.2.2.10. 2 Example probabilities of words. Adapted from [19]

• GloVe + Word2Vec (stack):

GloVe + Word2Vec (stack) was a technique that formed larger-dimensional word

embedding vectors for a word by concatenating the 300-dimensional word vectors obtained

from Word2Vec and GloVe word embedding techniques. This involved obtaining word vectors

for a word using Word2Vec and GloVe, resulting in two 300-dimensional word embedding

vectors. These vectors were then combined by horizontally appending one to the other,

resulting in a larger vector with 600 dimensions. This larger word vector aims to capture more

meaningful information and potentially more complex relationships between words.

Figure 4.2.2.10. 3 Example of stacking of GloVe and Word2Vec word embedding

techniques.

https://nlp.stanford.edu/projects/glove/

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 46

 Figure 4.2.2.10.3 illustrated an example demonstrating the creation of a stacked word

embedding vector generated from GloVe and Word2Vec vectors. To simplify the visualisation

of the concatenation of the two word embedding vectors, only the first 5 elements of each

vector were shown in the figure.

• GloVe + Word2Vec (mean):

GloVe + Word2Vec (mean) was a technique that created a 300-dimensional word

embedding vector by averaging vectors obtained from two distinct word embedding techniques

– GloVe and Word2Vec, each with a size of 300 dimensions. Taking the average was believed

to leverage the training on diverse datasets, resulting in a vector that was considered more

reliable and versatile. For example, in Figure 4.2.2.10.4, the embedding vector for the word

‘canisy’ was present in the GloVe word embedding techniques, however, it was not present in

the Word2Vec word embedding technique dictionary. This showed that combining different

word embedding techniques helped in resolving the issue of non-existent words in a word

embedding technique and prevented the occurrence of all-zero vectors. This could help reduce

the traning time for fine-tuning the word embedding vectors for words and improve the model

performance. This involved obtaining word vectors for a word using GloVe and Word2Vec,

resulting in two 300-dimensional word embedding vectors. The average of these two vectors

was then calculated using the ‘np.mean’ in the NumPy library, computing column-wise. This

resulted in an averaged word embedding vector with 300 dimensions.

Figure 4.2.2.10. 4 Vectors for word 'canisy' from GloVe and Word2Vec.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 47

Figure 4.2.2.10. 5 Example of computing the of GloVe and Word2Vec word embedding

techniques.

Figure 4.2.2.10.5 illustrated the process of obtaining a mean word embedding vector

from GloVe and Word2Vec vectors. To enhance the clarity, only the first five elements of each

vector were presented in the figure. The visualisation simplified the averaging process, where

these truncated vectors were averaged elementwise. The resulting mean word embedding

vector is 300-dimensional, calculated by averaging corrsponding elements of the two vectors,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑖𝑖] = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖]+𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊2𝑉𝑉𝑉𝑉𝑉𝑉[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖]
2

 (4)

where

• 𝑖𝑖 is the index of a word

• 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 is the word at index i

• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖] and 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊2𝑉𝑉𝑉𝑉𝑉𝑉[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖] are the vectors obtained from GloVe and

Word2Vec embedding techniques

• GloVe + Word2Vec (Rooted Mean Squared):

GloVe + Word2Vec (Rooted Mean Squared) was a technique that created a 300-

dimensional word embedding vectors by computing the mean of the squared values of the two

vectors obtained from GloVe and Word2Vec, followed by computing the square root of the

result. This technique aimed to investigate the model’s performance by transforming the

vectors into a dimensional space with positive values. The average of the squared values of

these two vectors was then calculated using the ‘np.mean’ in the NumPy library, computing

column-wise. This resulted in an averaged word embedding vector with 300 dimensions, with

the square root applied to the resulting vector.

𝑟𝑟𝑟𝑟𝑟𝑟[𝑖𝑖] = �(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖])2+(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊2𝑉𝑉𝑉𝑉𝑉𝑉[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖])2

2
 (5)

where

• 𝑖𝑖 is the index of a word

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

• 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 is the word at index i

• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖] and 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊2𝑉𝑉𝑉𝑉𝑉𝑉[𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖] are the vectors obtained from GloVe and

Word2Vec embedding techniques

To initiate the process, a 2D numpy zeros matrix is created with a size of 19500+1 rows

and 300 columns except for stacking of two word embedding techniques utilised 600 columns.

The reason for having 19500+1 rows is that the unique tokens’ index starts from 1, unlike the

0-based indexing of a 2D matrix. Each row in the matrix corresponds to a unique token, and

the matrix has 300 columns to accommodate the 300-dimensional vectors obtained from the

pretrained word embedding model.

Next, the index of the unique tokens serves as the index of the 2D matrix, and the

corresponding value in that index is the 300-dimensional vector obtained from the pretrained

word embedding model. If a unique token is not present in the pretrained word embedding

model, the matrix entry for that token will be a 300-dimensional numpy zero vector.

4.2.2.11 Training, Validation and Testing Dataset Split

The dataset size was reduced to 47,385 tweet texts, comprising 39,538 instances of Hate

Speech and 7,847 instances of Non-Hate Speech, as depicted in Figure 4.2.2.15. Subsequently,

the input X, representing numerical values for the tweet texts, and the output y, representing

hate speech labels, were established. X and y were then split into training, validation, and

testing sets using the ‘train_test_split’ function from the ‘sklearn.model_selection’ library, with

a split ratio of 0.8 for training, resulting in X_train and y_train, 0.1 for validation, resulting in

X_val and y_val, and 0.1 for testing, resulting in X_test and y_test. This resulted in a class-

imbalanced dataset with 37,908 tweet texts (31,599 Hate, 6,309 Non-Hate) in the training set,

4739 tweet texts (3,967 Hate, 772 Non-Hate) in the validation set, and 4,738 tweet texts (3972

Hate, 766 Non-Hate) in the testing set.

4.2.2.12 Oversampling and Downsampling on Training Dataset

Grouping multiple attacks into a single class has led to a problem of class imbalance in

the dataset. The portion of Hate Speech (labelled ‘1’) is five times greater than Non-Hate

Speech (labelled ‘0’). To address the class imbalance issue in the training set, oversampling

and undersampling techniques were applied solely on the training set to prevent bias towards

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

the majority class during model training. Oversampling involved randomly duplicating

instances of the minority class to balance class distribution, while downsampling randomly

reduced instances in the majority class. However, both techniques had drawbacks;

oversampling may lead to overfitting on the oversampled class, while downsampling may

result in poor model performance due to reduced instances of the majority class.

The ‘RandomOverSampler’ and ‘RandomUnderSampler’ from the ‘imblearn’ library

were imported and utilised for oversampling and undersampling, respectively. The resamplers

were fitted using the ‘fit_resampled’ function on the reshaped 2-D array input training set

(X_train) and output training set (y_train). This yielded resampled 2-D array X_train and

resampled 1-D y_train. Subsequently, the resampled X_train is flattened to a 1-D array and

converted to a Pandas series for consistency, along with the resampled y_train. The

oversampled, and undersampled datasets were then used for model hyperparameter tuning and

training.

Figure 4.2.2.12. 1 Class distribution on training dataset after oversampling.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure 4.2.2.12. 2 Class distribution on training dataset after downsampling.

4.2.3 Initial Model training

The hate speech detection model utilised four deep learning models: the CNN model,

BiLSTM model, DistilBERT model and RoBERTa model, specifically the ‘facebook/roberta-

hate-speech-dynabench-r4-target’. The architecture of these models was detailed in Chapter 3

System Design. They were trained using oversampled and downsampled training datasets and

evaluated during training with the evaluation dataset. The configurations were as follows:

• CNN model with Adam optimizer and a learning rate of 0.0005, a batch size of 32, trained

for maximum 30 epochs. Early stopping was implemented with a callback, monitoring the

validation F1 score. The training process ceased if the F1 score did not increase for three

consecutive epochs, starting from epoch number 5. ‘restore_best_weights’ was set to True.

 Embedding layer:

 Input dimension (size of the vocabulary) = 19500.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

 Output dimension (dimension of the dense embedding) = 300 for GloVe,

Word2Vec, GloVe + Word2Vec (mean), and GloVe + Word2Vec (rms);

600 for word2vec + GloVe (stack).

 Weights = The embedding matrix contained all embedding vectors for

unique tokenised words in the dataset, obtained from the word embedding

techniques.

 Trainable = True.

 Convolutional 1D layer:

 Filters = 32

 Kernel = 10

 Padding = ‘same’

 Activation = ‘relu’

 Kernel regularizer = L2(3)

 Maxpooling 1D layer:

 Pool size = 3

 Flatten layer: Flattened the input from maxpooling 1D layer to form a column

vector.

 Dropout layer:

 Dropout rate = 0.3

 Dense layer:

 Units = 32

 Dense layer (output):

 Units = 1

 Activation = ‘sigmoid’

• BiLSTM with Adam optimizer and a learning rate of 0.0005, a batch size of 32, trained for

maximum 30 epochs. Early stopping was implemented with a callback, monitoring the

validation F1 score. The training process ceased if the F1 score did not increase for three

consecutive epochs, starting from epoch number 5. ‘restore_best_weights’ was set to True.

 Embedding layer:

 Input dimension (size of the vocabulary) = 19500.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

 Output dimension (dimension of the dense embedding) = 300 for GloVe,

Word2Vec, GloVe + Word2Vec (mean), and GloVe + Word2Vec (rms);

600 for word2vec + GloVe (stack).

 Weights = The embedding matrix contained all embedding vectors for

unique tokenised words in the dataset, obtained from the word embedding

techniques.

 Trainable = True.

 Bidirectional LSTM layer:

 Units = 32.

 Activation = ‘relu’

 Kernel regularizer = L2(1)

 Recurrent regularizer = L2(1)

 Flatten layer: Flattened the input from Bidirectional LSTM layer to form a column

vector.

 Dropout layer:

 Dropout rate = 0.3

 Dense layer:

 Units = 32

 Dense layer (output):

 Units = 1

 Activation = ‘sigmoid’

• Pretrained DistilBERT model named ‘distilbert/distilbert-base-uncased’ and RoBERTa

model named ‘facebook/roberta-hate-speech-dynabench-r4-target’. To train with these

models, tensor dataset needed to be created, which included the input with numerical

values, the attention mask of the input, and their actual label for each instance in the

training, validation, as well as testing dataset. Early stopping was implemented with a

callback, monitoring the validation F1 score. The training process ceased if the F1 score

did not increase for three consecutive epochs. DistilBERT models will be fine-tuned for all

layers, while for the RoBERTa models, only the layers containing ‘dense’ or ‘out_proj’ in

the parameter name will be fine-tuned. Other layers will freeze.

 Training Arguments

 Overwrite output dir = True

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

 Per device train batch size = 16

 Num train epochs = 20

 Evaluation strategy = ‘epoch’

 Save strategy = ‘epoch’

 Metric for best model = ‘eval_f1’

 Load best model at end = True

 Save total limit = 10

 Learning rate = 1e-5

4.2.4 Model Hyperparameters Tuning

Hyperparameters tuning, also known as hypertuning, is a crucial process in machine

learning that aims to identify the optimal set of external configurations for a model training

begins. Examples of hyperparameters include the number of features generated by neural

networks layers, learning rate, and the number of neurons in hidden layers. Finding the best

values for these hyperparameters is essential for achieving optimal performance in deep

learning models.

• CNN and BiLSTM models underwent hyperparameter tuning using GridSearch provided

by keras-tuner library, with the objective of maximising the validation F1 score. The

configurations of the hyperparameters to be tuned are shown as follows:

 Filters (CNN), Units (BiLSTM) = [16, 32, 64, 128]

 Dense units = [16, 32, 64, 128]

 Learning rate = [0.0001, 0.0005, 0.001, 0.005]

• DistilBERT and RoBERTa models underwent hyperparameter tuning using

‘hyperparameter_search’ function provided in the Trainer class, with the optuna backend,

with the objective of maximising the validation F1 score. Six trials were conducted for the

model trained with the downsampled dataset, and four trials were conducted for model

trained with the oversampled dataset. The configurations of the hyperparameters to be

tuned are shown as follows:

 Learning rate = range from [0.00001, 0.0001]

 Per device train batch size = [16, 32, 64] for DistilBERT, [8, 16, 32] for RoBERTa

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 54

4.2.5 Model Evaluation

 The performance of the hypertuned models was then evaluated using the test dataset,

which comprised 4,738 instances of hate speech tweets and non-hate speech tweets. The

specific evaluation metrics used to evaluate the model’s performance were precision, recall, F1

score, and confusion matrix. Accuracy was not considered as an evaluation metric for the

models in this project because the dataset used in this project was imbalanced and had been

oversampled/ downsampled. Using accuracy as an evaluation metrics would not have

effectively evaluated the model. Details about the evaluation metrics were mentioned in

Chapter 6.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 55

Chapter 5

System Implementation

5.1 Hardware Setup

PC Model: HP Gaming Pavillion – 15-dk0243tx

Number of Processors 12 (6 Cores)

RAM: 32 GB

Storage: 512 + 960 GB

Cuda Cores: 1536

GPU Memory 6 GB

Table 5.1. 1 Hardware Specifications.

5.2 Software Setup

In this project, two software programs were required to be installed: Python version

3.11.7 and Jupyter Notebook version 7.0.6. Python is the programming language used for

preprocessing the dataset and developing the hate speech detection model. Jupyter Notebook

is an open-source web application that allowed users to create Python code for developing the

hate speech detection model. It supported a wide range of programming languages. The python

libraries required to develop the hate speech detection model were listed in Table 5.2.1.

Python Libraries

datasets safetensors

gensim scikeras

keras scikit-learn

keras-tuner seaborn

matplotlib tensorflow

nltk tokenisers

numpy torch

optuna tqdm

pandas transformers

Table 5.2. 1 Python libraries required.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

5.3 Implementation Issues and Challenges

There were several challenges faced during implementation of the hate speech detection

models. The first challenge was the class imbalanced issue in the dataset used to train the

developed models. Despite attempts to resolve the issue through oversampling and

downsampling techniques, these approaches did not provide suitable solutions. This was

because the majority class had instances five times greater than the minority class, increasing

the risk that the models would not perform well on the downsampled class. Additionally, there

was a risk of the model becoming overfitted to the oversampled minority class due to its

instances being oversampled five times.

Furthermore, the keras-tuner library utilised in this project to hypertune the CNN and

BiLSTM models, was not compatible with the callbacks set to begin monitoring the model’s

performance from the fifth epoch and stop training after 3 epochs without any improvement.

Although the training process in the hypertuning trials executed the set callbacks, the best

performance recorded in the keras file sometimes fell within the first five training epochs. This

inconsistency caused the best hyperparameters stored in the keras tuner object to be unreliable,

necessitating the review of the results in each trial to select the hyperparameters. Similarly, the

hyperparameter search function provided by the trainer class also faced the same issue with

callbacks. It only selected the best trial by comparing the performance of the last epoch for

each trial, thus requiring a check of the performance before the callback stopped the model

training for each trial.

5.4 Concluding Remark

 To develop a hate speech detection model using deep learning techniques, it was

necessary to install Python version 3.11.7 and Jupyter Notebook version 7.0.6, along with

several Python libraries. Additionally, several challenges were encountered during the

implementation of hate speech detection models, such as the class imbalanced issue in the

training dataset and the incompatibility between the tuner library and the callbacks set. The

downsampling and oversampling techniques used to resolve the class imbalance issue in the

training dataset could raise the drawbacks of these techniques. Due to the incompatibility of

tuner library and the callbacks set, it requires going through each trial manually to select the

hyperparameters.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

There were several evaluation metrics used to assess the performance of the hate speech

detection model, including precision, recall, difference between the precision and recall, and

the F1-score. Precision evaluated the model’s ability to accurately predict tweets as hate

speech. It was calculated by determining the ratio of actual hate speech predicted as hate speech

(True Positives) to the sum of actual hate speech predicted as hate speech (True Positives) and

actual non-hate speech predicted as hate speech (False Positives). In other words, precision

quantified the accuracy of the model’s positive predictions, specifically those related to hate

speech.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (6)

where

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent instances of actual hate speech correctly predicted as hate

speech

• 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent instances of actual non-hate speech incorrectly predicted as

hate speech

Recall is a metric employed to assess the model’s effectiveness in predicting actual hate

speech tweets as hate speech. The calculation involved determining the ratio of instances where

actual hate speech was correctly predicted as hate speech (True Positives) to the total of actual

hate speech predicted as hate speech (True Positives) and instances where hate speech was

predicted as non-hate speech (False Negatives). In simpler terms, recall measured the model’s

capability to identify and predict instances of genuine hate speech.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 (7)

where

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent instances of actual hate speech correctly predicted as hate

speech

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 58

• 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 represent instances of actual hate speech incorrectly predicted as non-

hate speech

The difference between precision and recall was evaluated to have a better monitor on

the model’s performance on different techniques to solve the class imbalance issue. The F1

score combined precision and recall, providing a balanced measure of the model’s

effectiveness. This was particularly valuable when both precision and recall were deemed

important, and the dataset used to train the model was imbalanced, as was the case in this

project. The F1 score was considered more reliable in this project because it calculated

performance using both precision and recall, ensuring a balanced evaluation of the model’s

effectiveness.

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(8)

6.2 Testing Setup and Result

The initial models, configured with hyperparameters as mentioned in Chapter 4.2.3 for

CNN and BiLSTM with different word embedding techniques as outlined in Chapter 4.2.2.10,

along with the DistilBERT and RoBERTa transformer models, were hypertuned using the

hyperparameter configurations detailed in Chapter 4.2.4. Subsequently, they were trained with

the hyperparameters obtained from the hyperparameter tuning process. The results illustrated

will represent the evaluation outcomes of the hypertuned models. They will be presented

separately in different tables. Specifically, the evaluation results for the hypertuned CNN and

BiLSTM models with different word embedding techniques will be showcased in the same

table, while the evaluation results for the hypertuned DistilBERT and RoBERTa transformer

models will be presented in another table, as DistilBERT and RoBERTa utilise their own word

embedding vectors from the models themselves.

Deep

Learning

Model

Embedding

Technique

Dataset Performance Evaluation

Precision

(%)

Recall (%) Precision

vs Recall

(%)

F1 score

(%)

CNN

Word2Vec Twitter - 94.9 82.3 12.6 88.2

Twitter + 91.9 86.6 5.3 89.2

GloVe Twitter - 93.1 86.0 7.1 89.4

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 59

Twitter + 91.7 87.7 3.9 89.7

GloVe +

Word2Vec

(stack)

Twitter - 91.7 89.3 2.4 90.4

Twitter + 91.2 89.0 2.2 90.1

GloVe +

Word2Vec

(mean)

Twitter - 96.0 82.5 13.5 88.7

Twitter + 90.6 88.3 2.2 89.4

GloVe +

Word2Vec

(rms)

Twitter - 93.1 87.5 5.6 90.2

Twitter + 93.5 85.8 7.7 89.5

BiLSTM

Word2Vec Twitter - 92.4 86.0 6.4 89.1

Twitter + 92.9 86.8 6.1 89.7

GloVe Twitter - 94.5 82.9 11.6 88.3

Twitter + 90.8 89.5 1.3 90.1

GloVe +

Word2Vec

(stack)

Twitter - 91.3 86.9 4.3 89.0

Twitter + 92.6 84.1 8.5 88.1

GloVe +

Word2Vec

(mean)

Twitter - 94.9 80.7 14.2 87.2

Twitter + 90.7 87.7 3.0 89.2

GloVe +

Word2Vec

(rms)

Twitter - 92.7 84.2 8.6 88.2

Twitter + 90.9 87.8 3.1 89.3

Table 6.2. 1 Testing Precision, Recall, and F1 score results for different word

embedding techniques applied to hypertuned CNN and BiLSTM models. Twitter +

denote models trained with oversampled Twitter datasets, while Twitter – denote

models trained with downsample.

Deep

Learning

Model

Dataset Performance Evaluation

Precision (%) Recall (%) Precision vs

Recall (%)

F1 score (%)

DistilBERT
Twitter - 88.5 82.0 6.5 83.8

Twitter + 85.2 85.1 0.1 85.1

RoBERTa Twitter - 87.7 82.2 5.5 83.9

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Twitter + 86.0 85.1 0.9 85.5

Table 6.2. 2 Testing Precision, Recall, and F1 score results for the hypertuned

DistilBERT and RoBERTa models. Twitter + denote models trained with oversampled

Twitter datasets, while Twitter – denote models trained with downsample.

6.3 Project Challenges

The only and main challenge faced in this project would be the limited computational

resources of the hardware, including RAM, GPU memory, storage, and the number of

processors available for training the deep learning model and hypertuning it. These resource

constraints were significant challenges faced during the project. Due to these limitations,

training the model and hypertuning its hyperparameters required more time. Consequently, a

significant portion of the project’s time was dedicated to the hyperparameter tuning process.

Moreover, due to the limited computational resources, we were unable to hypertune

many of the model’s hyperparameters. Instead, we focused solely on several key

hyperparameters that could significantly affect the model’s performance. These included the

number of filters generated by the 1D convolutional layer, the number of neurons in a fully

connected layer, and the batch size used for fine-tuning a transformer model. Consequently,

while the hypertuned model’s performance may have improved, it may not have been fully

optimized.

6.4 Objectives Evaluation

From the results presented in Table 6.2.1, it was evident that there was no significant

difference in performance between the CNN and BiLSTM models. This lack of distinction

could be attributed to the relatively shallow architecture of both models, each comprising only

a single layer of convolutional 1D or a single BiLSTM layer with two hidden layers, including

the output dense layer. Increasing the depth of these models by adding more layers could have

potentially enhanced their performance and allowed for better differentiation between CNN

and BiLSTM. However, this approach came with its challenges, as augmenting the model depth

may have significantly increased the training time for each model and prolonged the

hyperparameter tuning process, owing to computational resource limitations. This could have

potentially led to project delays or failure to meet deadlines. As a result, a decision was made

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

to stick with simpler CNN and BiLSTM architectures to ensure timely completion of the

project.

For CNN models trained on downsampled dataset, they had a precision ranging from

91 to 96%, a recall ranging from 82 to 90%, and an F1 score ranging from 88 to 91%. In

contrast, CNN models trained on oversampled dataset demonstrated precision, recall, and F1

scores ranging from 90 to 94%, 85 to 89%, and 88 to 91% respectively. Moving on to the

BiLSTM models trained on the downsampled dataset, their precision ranged from 91 to 95%,

recall ranged from 80 to 87%, and F1 score ranged from 88 to 89%. Similarly, BiLSTM models

trained on the oversampled dataset exhibited precision, recall, and F1 scores ranging from 90

to 93%, 84 to 90%, and 88 to 90%, respectively.

This highlighted the drawbacks of the downsampling and oversampling techniques

employed in this project to address the class imbalance issue in the training dataset.

Downsampling the training dataset resulted in lower recall performance for all CNN and

BiLSTM models compared to models trained on the oversampled dataset, except for models

that utilised a combination of two word embedding techniques. Downsampling reduced

instances in the majority class, which was the hate class (labelled as ‘1’), potentially causing

the models to lose vital information needed to predict hate class instances accurately.

Consequently, models trained with the downsampled dataset may have exhibited lower recall

compared to those trained with the oversampled dataset, which maintained the original number

of hate class instances.

Conversely, oversampling the training dataset could have led to slight overfitting to the

oversampled class, which was the non-hate class (labelled as '0'), potentially resulting in

inaccurate predictions of actual non-hate tweets in the testing dataset. This could have resulted

in lower precision for models trained on the oversampled dataset compared to the

downsampling technique. Despite these drawbacks, training models with the oversampled

dataset tended to reduce the difference between precision and recall. The precision-recall

difference for models trained on the oversampled dataset ranged from only 1 to 9%, which was

relatively lower compared to models trained on the downsampled dataset, where the precision-

recall difference ranged from 2 to 15%.

In most cases, the difference between the precision and recall of these models decreased

when the models were trained on the oversampled dataset compared to the downsampled

dataset, except for the CNN model that utilised the word embedding technique of GloVe +

Word2Vec (rms) and the BiLSTM model that utilised the word embedding technique of GloVe

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 62

+ Word2Vec (stack). These two models exhibited abnormal behavior when trained on the

oversampled dataset, showing a higher difference between precision and recall compared to

models trained on the downsampled dataset.

This anomaly could be attributed to the issue of insufficient training for the models,

which led to the early termination of training as per the set callback. Consequently, the models

might have had limited learning opportunities to optimise, particularly in the majority class.

Despite oversampling the minority class five times, the models might have achieved better

performance in this class, even though they could not undergo sufficient training. Moreover,

the risk of overfitting to the oversampled class was lower. As a result, the precision of the

models trained on the oversampled dataset would increase, while the recall would be lower

compared to models trained on the downsampled dataset.

Combining two different word embedding techniques was supposed to have the benefit

of reducing the required training time and improving the model's performance, as it utilised

semantic information from different word embedding techniques. This was expected to

generate word embedding vectors that captured more accurate semantic information for tokens.

However, in this project, the word embedding techniques used combined different word

embedding techniques, such as taking the mean or root mean square of both word embedding

techniques, without increasing the word embedding vector size. This did not necessarily

improve the model's performance; in fact, it even lowered the model's performance and

prolonged the training time compared to models trained using a single word embedding

technique with the same size as the word embedding vector that combined different word

embedding techniques. [10] made a statement that concatenating different word embedding

techniques would be able to improve the performance of the developed model. More accurately,

the model's performance would improve when the word embedding vector size was larger,

instead of concatenating different word embedding techniques, which provided better model

performance.

The lower performance of the model by combining two different word embedding

techniques could have been due to the CNN and BiLSTM models utilised in this project being

shallow, with only a single 1D convolutional layer and BiLSTM layer. This caused the CNN

and BiLSTM models to be unable to extract a higher level of features from the word embedding

vectors. Alternatively, it could have been caused by the domain focus for Word2Vec and

GloVe being different, as Word2Vec was trained supervisely for predicting tokens in a

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 63

sentence, while GloVe was trained unsupervisely with the co-occurrence of words to be present

in the same sentence.

According to the results presented in Table 6.2.2, RoBERTa demonstrated better

performance in F1 score compared to DistilBERT. However, there was not a significant

difference in performance between these two models. Additionally, the performance of these

transformer models was lower compared to the CNN and BiLSTM models' performance shown

in Table 6.2.1. There was roughly a difference of 4 to 5% for models trained on the

downsampled dataset, and around 5% for models trained on the oversampled dataset. This

discrepancy could be attributed to the fact that the transformer models used in this project were

pretrained models and due to the limited number of hate and non-hate instances in the training

dataset. As a result, the transformer models did not have enough training data to fine-tune the

model parameters, leading to lower performance compared to the CNN and BiLSTM models

trained from scratch.

RoBERTa exhibited better performance in F1 score compared to DistilBERT, but the

difference was not significant. This could be due to the fact that the RoBERTa model utilised

in this project was fine-tuned for several layers, while other layers were frozen, whereas the

DistilBERT model fine-tuned parameters in all layers. The decision to fine-tune only several

layers in the RoBERTa transformer models was due to the extensive computational resources

required to fine-tune all layers, which were not available with the hardware used in this project.

However, even with only fine-tuning several layers, RoBERTa still outperformed DistilBERT

in terms of Precision, Recall, and F1 score. This demonstrates that utilising a pretrained model

on hate speech text and fine-tuning with another dataset can reduce computational resources

and improve model performance.

Furthermore, the application of downsampling and oversampling techniques on the

training dataset to address class imbalance issues also affected the transformer models.

However, the effect of these techniques was not as significant, as the difference between

precision and recall in all the models was lower compared to the CNN and BiLSTM model

performance shown in Figure 6.2.1. The difference between precision and recall for the

DistilBERT model on the downsampled dataset and oversampled dataset was 6.5 and 0.1

respectively, while the difference between precision and recall for the RoBERTa model on the

downsampled dataset and oversampled dataset was 5.5 and 0.9 respectively. The difference

was smaller than some of the CNN and BiLSTM models. In terms of the difference between

precision and recall, DistilBERT and BiLSTM models could perform better compared to CNN

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 64

and BiLSTM models. However, in terms of Precision, Recall, and F1 score, CNN and BiLSTM

models outperformed DistilBERT and RoBERTa models.

Although CNN and BiLSTM models had better performance in Precision, Recall, and

F1 score, DistilBERT and RoBERTa models could perform better on a testing dataset that

contained hate speech text different from the testing dataset currently used to evaluate the

model performance. This was because the CNN and BiLSTM models were developed from

scratch with a specific dataset, while the DistilBERT and RoBERTa transformer models were

pretrained with a large corpus of text to learn the features of tokens and improve model

generalisation. Therefore, DistilBERT and RoBERTa transformers developed in this project

could outperform the CNN and BiLSTM models on a different dataset that was completely

different from the dataset used to train the model.

A notable point to consider was that using BiLSTM required more training time

compared to the CNN architecture. This was because BiLSTM processed the input sequentially

in both forward and backward directions, effectively processing each tweet twice, resulting in

longer training times compared to the CNN architecture. Additionally, DistilBERT required

longer training time compared to BiLSTM, and RoBERTa required even longer training time

compared to DistilBERT, despite RoBERTa only fine-tuning several layers. The longer

training times indicated that more computational resources were required to train the models.

Therefore, the computational resources consumption among these models followed the order:

RoBERTa > DistilBERT > BiLSTM > CNN.

6.5 Concluding Remark

 Conducting a deep learning project is resources-intensive, requiring large amounts of

computational resources such as RAM, GPU memory, storage, and others. It is recommended

to utilise other open-source web applications that provide computational resources, such as

Google Colab or Kaggle to conduct the project. Otherwise, extensive time spent on training or

hypertuning the model could have led to project delays or incomplete execution. The

computational resources consumption among the models developed in this project followed the

order: RoBERTa > DistilBERT > BiLSTM > CNN.

 BiLSTM and CNN models outperformed RoBERTa and DistilBERT in terms of

Precision, Recall, and F1 score, while RoBERTa and DistilBERT performed better on the

difference between precision and recall. CNN and BiLSTM required less computational

resources compared to RoBERTa and DistilBERT, as the training time was shorter. If the

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 65

computational resources of a project were limited and the dataset was small, CNN and BiLSTM

models would be more preferable. If the training dataset was large and computational resources

were not an issue for a project, trying out RoBERTa and DistilBERT could have outperformed

the CNN and BiLSTM models built from scratch.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 66

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

Different word embedding techniques were applied to the CNN and BiLSTM models,

including the use of single word embedding techniques and the combination of different word

embedding techniques by stacking, averaging, or taking the root mean square of them.

Additionally, two pretrained transformer models were utilised to develop the hate speech

detection models, including DistilBERT and RoBERTa.

BiLSTM and CNN models outperformed RoBERTa and DistilBERT in terms of

Precision, Recall, and F1 score, with values ranging from 90 to 96%, 80 to 90%, and 87 to 91%,

respectively. However, RoBERTa and DistilBERT performed better on the difference between

precision and recall, ranging from 0.1 to 6.5%. The difference between the CNN and BiLSTM

models was not significant, while CNN could perform better in some cases of combining two

word embedding techniques, possibly due to the shallow model architecture. The lower

performance of DistilBERT and RoBERTa compared to CNN and BiLSTM could be attributed

to the limited hate and non-hate instances in the training dataset.

In this project, it was also observed that utilising oversampling techniques to resolve

the class imbalance issue on the training dataset could reduce the model's performance on

precision, as the model could be overfit to the minority class which had been oversampled in

the training dataset. Additionally, the use of downsampling techniques to resolve class

imbalance issues could have caused the model not to learn well on the majority class, which

had been downsampled in the training dataset. CNN required less computational power

compared to BiLSTM, while BiLSTM required less computational power compared to

DistilBERT. RoBERTa remained the model that required the most computational power

among the models developed in this project.

7.2 Recommendation

 In future work, a multilingual hate speech dataset containing texts or comments related

to hate speech, not only from X (Twitter) but also from different social media platforms, will

be created. Since datasets collected from social media could raise the risk of class imbalance

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 67

issues, we will not only gather texts or comments from various social media platforms but also

conduct crowdsourcing to obtain hate speech samples from the public. This will increase the

instances of hate speech and help resolve the issue of class imbalance. All texts or comments

obtained from the public or social media will be reviewed by different experts in the field of

hate speech and carefully annotated to reduce the risk of misclassification misannotation.

 Next, an investigation will be conducted to evaluate the performance of models trained

with datasets with and without removing stopwords. Although stopwords are considered to

contain less meaning in NLP tasks, they could be important in allowing a deep learning model

to understand the context of data. Removing these stopwords could raise concerns that the

model may not be able to learn the context features of the data, affecting the model

performance. Therefore, there is a need to study the performance of models with stopwords,

particularly for transformer models.

 Lastly, in addition to focusing on the development of hate speech detection models

using different deep learning techniques, there will be an effort to develop a software

application that can be used to detect the hate speech text, making the models practically usable.

The software application will assist users in identifying hate speech text and can serve as one

of the methods for collecting hate speech instances when users classify the text. Moreover, it

can be integrated into social media platform applications to help users identify hate speech text

on these platforms. This task could be challenging as the data flow in a social media platform

application is intensive and requires a large amount of computational power to process the text.

However, this step aims to apply the developed models to address hate speech cases on social

media platforms and practically enhance the online environment.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 68

REFERENCES

[1] T. Lavelle, “The Musk Bump: Quantifying the rise in hate speech under Elon

Musk,” Center for Countering Digital Hate | CCDH, Dec. 06, 2022.

https://counterhate.com/blog/the-musk-bump-quantifying-the-rise-in-hate-speech-

under-elon-musk/

[2] S. A. Mohd Fadhli, J. Liew Suet Yan, A. S. Ab Halim, A. Ab Razak, and A. Ab Rahman,

“Finding the Link between Cyberbullying and Suicidal Behaviour among Adolescents in

Peninsular Malaysia,” Healthcare, vol. 10, no. 5, p. 856, May 2022, doi:

https://doi.org/10.3390/healthcare10050856.

[3] “Deep Learning vs. machine learning: A beginner’s guide,” Coursera,

https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-beginners-

guide?utm_source=gg&utm_medium=sem&utm_campaign=B2C_APAC__branded_F

TCOF_courseraplus_arte_PMax_set2&utm_content=Degree&campaignid=205201494

92&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adp

ostion=&creativeid=&hide_mobile_promo&gclid=CjwKCAiAgeeqBhBAEiwAoDDhn

1Dy1U2aZHwbgsKDOyuDwCDUI_nNDQ4JIdyw0GOhoWwHWuu7WQa_AhoCJLQ

QAvD_BwE (accessed Nov. 19, 2023).

[4] X. Zhang et al., "Cyberbullying Detection with a Pronunciation Based Convolutional

Neural Network," 2016 15th IEEE International Conference on Machine Learning and

Applications (ICMLA), Anaheim, CA, USA, 2016, pp. 740-745, doi:

10.1109/ICMLA.2016.0132.

[5] M. A, Al-Ajlan and M. Ykhlef, “Deep Learning Algorithm for Cyberbullying Detection,”

International Journal of Advanced Computer Science and Applications, vol. 9, no. 9,

2018, doi: https://doi.org/10.14569/ojacsa.2018.090927.

[6] M. Susanty, Sahrul, A. F. Rahman, M. D. Normansyah and A. Irawan, "Offensive Language

Detection using Artificial Neural Network," 2019 International Conference of Artificial

Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, 2019, pp.

350-353, doi: 10.1109/ICAIIT.2019.8834452.

[7] S. Butt, “Sexism Identification using BERT and Data Augmentation - EXIST2021,” 2021.

https://www.semanticscholar.org/paper/Sexism-Identification-using-BERT-and-Data-

EXIST2021-Butt-Ashraf/507e739e2d2931ff23b36c8a42d68fcfb836a56d#citing-papers

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 69

[8] S. Agrawal and A. Awekar, “Deep Learning for Detecting Cyberbullying Across Multiple

Social Media Platforms,” Lecture Notes in Computer Science, pp. 141–153, 2018, doi:

https://doi.org/10.1007/978-3-319-76941-7_11.

[9] J. Wang, K. Fu and C. -T. Lu, "SOSNet: A Graph Convolutional Network Approach to

Fine-Grained Cyberbullying Detection," 2020 IEEE International Conference on Big

Data (Big Data), Atlanta, GA, USA, 2020, pp. 1699-1708, doi:

10.1109/BigData50022.2020.9378065.

[10] M. Raj, S. Singh, K. Solanki, and R. Selvanambi, “An Application to Detect

Cyberbullying Using Machine Learning and Deep Learning Techniques,” SN Computer

Science, vol. 3, no. 5, Jul. 2022, doi: https://doi.org/10.1007/s42979-022-01308-5.

[11] J. Fillies, M. P. Hoffmann and A. Paschke, "Multilingual Hate Speech Detection:

Comparison of Transfer Learning Methods to Classify German, Italian, and Spanish

Posts," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy,

2023, pp. 5503-5511, doi: 10.1109/BigData59044.2023.10386244.

[12] V. -C. Dinh, T. -D. Vo, M. -P. T. Nguyen and T. -H. Do, "A Scalable Hate Speech

Detection System for Vietnamese Social Media using Real-time Big Data Processing and

Distributed Deep Learning," 2023 International Conference on Advanced Technologies

for Communications (ATC), Da Nang, Vietnam, 2023, pp. 95-100, doi:

10.1109/ATC58710.2023.10318848.

[13] Q. Sifak and E. B. Setiawan, "Hate Speech Detection using CNN and BiGRU with

Attention Mechanism on Twitter," 2023 IEEE International Conference on

Communication, Networks and Satellite (COMNETSAT), Malang, Indonesia, 2023, pp.

170-175, doi: 10.1109/COMNETSAT59769.2023.10420628.

[14] H. Adel et al., “Improving Crisis Events Detection Using DistilBERT with Hunger Games

Search Algorithm,” Mathematics, vol. 10, no. 3, p. 447, Jan. 2022, doi:

https://doi.org/10.3390/math10030447.

[15] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter,” arXiv.org, Feb. 29, 2020.

https://arxiv.org/abs/1910.01108v4

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” arXiv.org, May 24, 2019.

https://arxiv.org/abs/1810.04805#

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 70

[17] B. Vidgen, T. Thrush, Z. Waseem, and Douwe Kiela, “Learning from the Worst:

Dynamically Generated Datasets to Improve Online Hate Detection,” arXiv (Cornell

University), Dec. 2020, doi: https://doi.org/10.48550/arxiv.2012.15761.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space,” arXiv.org, Sep. 06, 2013.

http://arxiv.org/abs/1301.3781

[19] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word

Representation,” Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 1532–1543, 2014, doi:

https://doi.org/10.3115/v1/d14-1162.

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 1
Student Name & ID: Thong Wei Xin 20ACB02627
Supervisor: Ts Dr. Vikneswary a/p Jayapal
Project Title: Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

1. WORK DONE
Transfered some of the content in FYP1 report to FYP2 report.

2. WORK TO BE DONE
Hypertuning the CNN models and completing some parts of the FYP2 report.

3. PROBLEMS ENCOUNTERED
-

4. SELF EVALUATION OF THE PROGRESS
-

_________________________ _________________________
Supervisor’s signature Student’s signature

 71

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 3
Student Name & ID: Thong Wei Xin 20ACB02627
Supervisor: Ts Dr. Vikneswary a/p Jayapal
Project Title: Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

1. WORK DONE
The hyperparameter tuning for CNNs models have been completed. Parts of the FYP2

report is completed.

2. WORK TO BE DONE
Experiment with the root mean square of GloVe and Word2Vec word embedding

vectors in Convolutional Neural Networks (CNNs) for subsequent analysis. Revise the

literature review to update the most recent advancements in hate speech detection models.

Optimize the Bidirectional Long Short-Term Memory (BiLSTM) model by tuning the

number of output units in the BiLSTM layer, neurons in the hidden layer, and the learning

rate for BiLSTM models.

3. PROBLEMS ENCOUNTERED
The computational limitations of the PC extend the hyperparameter tuning process,

allowing only a few parameters such as the number of filters, neurons in the hidden layer,

and the learning rate of the deep learning model to be tuned.

4. SELF EVALUATION OF THE PROGRESS
The hyperparameter tuning process is progressing smoothly, albeit taking 1-2 weeks to

complete for each deep learning architecture. We anticipate completing the hyperparameter

tuning process for BiLSTM by the week after next.

_________________________ _________________________
Supervisor’s signature Student’s signature

 72

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 7
Student Name & ID: Thong Wei Xin 20ACB02627
Supervisor: Ts Dr. Vikneswary a/p Jayapal
Project Title: Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

1. WORK DONE
The hyperparameter tuning for CNNs and BiLSMT models has been completed.

Several recently published research papers regarding the techniques used in hate speech

detection or cyberbullying have been studied. CNN and BiLSTM models utilised root mean

square word embedding techniques have been hypertuned.

2. WORK TO BE DONE
Hypertuning the learning rate for several transformer models such as RoBERTa for

hate speech, and DistilBERT. Train and test the models using the hypertuned

hyperparameters to obtain optimized results for each model. From the results obtained from

different models, analyze the findings to identify potential issues and provide justifications.

3. PROBLEMS ENCOUNTERED
The evaluation F1 score for models that utilised combined word embedding techniques

did not improve significantly compared to the use of a single word embedding technique.

4. SELF EVALUATION OF THE PROGRESS
The progress of the project is smooth. Hypertuning and training of models with the

hypertuned parameters are expected to be completed in 3 more weeks, and this will not

delay my report submission.

_________________________ _________________________
Supervisor’s signature Student’s signature

 73

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 10
Student Name & ID: Thong Wei Xin 20ACB02627
Supervisor: Ts Dr. Vikneswary a/p Jayapal
Project Title: Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

1. WORK DONE
DistilBERT transformer models hypertuning and evaluate the DistilBERT models.

2. WORK TO BE DONE
Evaluate the hypertuned CNN and BiLSTM models and start finalising the FYP2

report.

3. PROBLEMS ENCOUNTERED
Due to the limitation of computational resources, the hypertuning for transformer

models requires more time and only a few trials were conducted for each model.

4. SELF EVALUATION OF THE PROGRESS
Report almost completed, remain the hypertuning and evaluation of transformer

models.

_________________________ _________________________
Supervisor’s signature Student’s signature

 74

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T3, Y3 Study week no.: 12
Student Name & ID: Thong Wei Xin 20ACB02627
Supervisor: Ts Dr. Vikneswary a/p Jayapal
Project Title: Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

1. WORK DONE
RoBERTa is hypertuned and evaluated. The hypertuned CNN and BiLSTM models

are evaluated and analysis.

2. WORK TO BE DONE
Evaluate the DistilBERT and RoBERTa transformer models.

3. PROBLEMS ENCOUNTERED
The callbacks are not compatible with the keras-tuner library, callback is set to monitor

performance of models starting from fifth epoch and stopped training if performance do

not have improvement for three consecutive epochs. But the result obtained by the tuner

contains performance from the first five epochs.

4. SELF EVALUATION OF THE PROGRESS
Although hypertuning transformer models require more computational power

compared to CNN and BiLSTM models and requires longer time, it can complete

hypertuning 1 week before the submission deadline.

_________________________ _________________________
Supervisor’s signature Student’s signature

 75

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 76

POSTER

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 77

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 78

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

Thong Wei Xin

ID Number(s) 20ACB02627

Programme / Course Computer Science

Title of Final Year Project Deep Learning for Hate Speech Detection on X (Twitter) with
different Word Embedding Techniques

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: _________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor Signature of Co-Supervisor

Name: __________________________ Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

15

10
11
7

0

Dr. Vikneswary Jayapal

25/04/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 79

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY
(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION
Student Id 20ACB02627
Student Name Thong Wei Xin
Supervisor Name Ts Dr. Vikneswary a/p Jayapal

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.
√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
Appendices (if applicable)

√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: April 24, 2024

-

