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ABSTRACT 

 

The rapid proliferation of online services has led to a significant increase in the utilisation of 

the internet. User data is considered the most precious asset of the firm; nonetheless, databases 

are susceptible to many assaults and dangers. SQL injection (SQLI) refers to a specific type of 

security vulnerability that occurs when unauthorised SQL code is inserted into web 

applications to compromise databases, leading to potential consequences such as data breaches, 

server disruptions, and data loss within an organisational context. Based on the literature review 

findings, it has been observed that conventional techniques employed for detecting SQLI 

attacks often exhibit limitations in their effectiveness and suffer from various drawbacks. This 

work presents a novel real-time system for detecting SQLI attacks. The system utilises a 

machine learning approach to train and enhance its ability to identify and prevent SQLI attacks 

accurately. The machine learning algorithms employed in this study encompass Convolutional 

Neural Networks (CNN), Logistic Regression, Naïve Bayes Classifier, Support Vector 

Machine, and Random Forest. The system covers multiple stages: project pre-development, 

data pre-processing, feature selection, machine learning model selection, model training, model 

testing, implementation, and assessment. Integrating this system into the backend of the web 

application server would augment the safety and security measures of the online application. 

The system will undergo real-time monitoring through periodic analysis of website traffic 

statistics. Upon detection of a SQLI attack, the system will generate and transmit a 

comprehensive report to promptly warn the network administrator of the occurrence of the 

attack. This notification enables the administrator to undertake the necessary measures to 

address the vulnerability by applying appropriate patches to the web application.   
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Chapter 1 

Introduction 

 

By the end of 2022, the global internet user population had surged to 5.3 billion, with 

a staggering 1392% growth rate since 2000 [1]. The internet has become the primary 

platform for doing business and transactions for organizations globally due to its rapid 

development in usage. Meanwhile, the exponential rise in internet users and the quick 

development of web technology have coincided with the explosion of online services, 

such as e-commerce sites and massive data repositories. However, this growth has also 

heightened security threats, allowing unauthorized entities to exploit web application 

vulnerabilities and access sensitive data. At the core of this digital landscape lies the 

utilization of relational databases, accessible through Structured Query Language 

(SQL) for the execution of online transactions. SQL serves as a fundamental tool in 

web development, enabling websites to interact with databases by issuing a range of 

commands, including data retrieval, updates, insertions, and deletions through SQL 

queries. SQL is frequently used to interconnect with and alter databases in order to 

provide users with personalized data representations. Multiple components within SQL 

serve essential functions, such as queries that facilitate data retrieval through SELECT 

statements and the integration of user-provided variables. To provide an illustrative 

example of this process, consider an imaginary situation where a user logs in to an e-

commerce platform by entering their credentials, namely a username and password, to 

get access. A dynamically generated SQL query: “SELECT * FROM users WHERE 

name = ‘username123’ and password = ‘password123’” is being executed at that 

moment. This statement highlights the vital role of SQL in enhancing user experiences 

and enabling safe access to online services. This exemplifies the crucial role of SQL in 

ensuring secure online transactions and safeguarding user data within the dynamic 

digital environment. 

 

 

 

 



CHAPTER 1 

                                                                  2                                                                                                             
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

1.1  Problem Statement and Motivation 

The detection of SQLI attacks is of the utmost significance in ensuring the integrity 

and security of web-based applications and databases. However, several significant 

obstacles and deficiencies have been uncovered in this field as these attacks routinely 

maintain their position within the OWASP Top10 web vulnerabilities. A total of 1789 

instances of SQLI vulnerabilities were discovered as Common Vulnerabilities and 

Exposures (CVEs) in 2022 [2]. The existing SQLI detection approaches, such as the 

MATLAB program called “SQLI Detector”, frequently exhibit a deficiency in real-time 

monitoring capabilities [3]. Consequently, the accurate real-time detection and 

prevention of SQLI attacks in web applications become challenging as they rely on 

manual checks or sporadic scans. For illustration, rule-based systems are often 

ineffective against new types of SQLI attacks, such as zero-day attacks.  

Moreover, several systems are deficient in incorporating the trained machine 

learning algorithms into their detection mechanisms [4, 5]. This deficiency poses a 

hindrance to the identification of emerging attacks and requires regular manual updates, 

hence imposing a significant burden on resources and time. In addition, the 

categorization of SQLI attacks frequently proves inadequate nowadays [3, 7, 8, 9]. For 

example, a system designed to detect SQLI may overlook other attack methods, such 

as error-based or union-based assaults, if it is limited to recognizing just specified attack 

types, such as inferential or time-based attacks. Consequently, this might result in the 

occurrence of inaccurate positive or negative outcomes, thereby resulting in the 

inefficient utilization of resources and an increased vulnerability to security breaches. 

Nevertheless, the advancement of machine learning has the potential to improve the 

accuracy and effectiveness of SQLI detection by allowing systems to adjust to emerging 

attack patterns gradually. Therefore, this project aims to create a machine learning-

based SQLI detection model that can improve the real-time detection of SQLI and 

enhance its accuracy. This will help reduce the risk of security breaches and safeguard 

sensitive data. 
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1.2  Research Objectives 

The main objective of this project is to incorporate a backend system that can detect 

SQLI in real-time into the web application. The sub-objectives of the project encompass 

selecting and training a suitable machine learning algorithm for the detection of SQLI 

attacks and integrating the real-time detection machine learning model into the web 

application.  

This research focuses on selecting and training an accurate machine learning 

algorithm to detect SQLI attacks. Extensive datasets containing valid and malicious 

SQL queries are required to achieve this. Data preprocessing to remove duplicates and 

missing values is also crucial. The model will be trained on in-band and inferential 

SQLI attack data to enhance detection precision and efficiency while reducing resource 

requirements. The chosen machine learning method will be integrated into the web 

application’s backend. 

Besides that, this project aims to improve at least 2% of the accuracy of the previous 

SQLI detection machine learning model. To achieve this objective, we will try to 

improve the quality of the datasets by gathering a varied and comprehensive dataset 

that accurately represents real-world instances of SQLI attack queries and non-

legitimate queries. Two datasets containing different SQLI attack queries and non-

legitimate queries will be preprocessed and merged into a single data frame. Machine 

learning models such as Logistic Regression, Naïve Bayes Classifier, and CNN will 

then be trained with the datasets. 

The integration of real-time detection capabilities into the SQLI detection system is 

identified as another crucial aim. The use of real-time monitoring facilitates the 

system’s ability to rapidly detect and identify SQLI threats as they transpire. This 

entails the acquisition of data packets that are created during the transmission of HTTP 

and MySQL traffic. The system can identify any abnormal behaviour or patterns that 

may indicate the occurrence of a SQLI attack by ongoing surveillance of incoming SQL 

query data packets. In the case of a security breach, it is imperative that the system 

instantly initiates notifications and reports to system administrators or security staff. 

This enables them to promptly implement preventative actions and limit any possible 

loss or harm to data. 
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1.3  Project Scope and Direction  

The primary objective of this project is to develop a real-time system for detecting 

SQLI attacks, with the intention of integrating it into the backend of the online 

application. Consequently, the web application will have a backend consisting of a 

remote MySQL server and a real-time SQLI attack detection system to detect SQLI 

attacks. In order to deploy the SQLI attack detection system, a few machine learning 

models, Logistic Regression, Naïve Bayes Classifier, SVM, Random Forest, and CNN, 

will first be trained. Subsequently, the most optimal machine learning method with the 

highest accuracy will be selected for integration into the web application. In this 

scenario, the machine learning model will exclusively undergo training utilizing just 

in-band SQLI and inferential SQLI attack data. Hence, the system can solely identify 

in-band SQLI and inferential SQLI threats. By integrating a machine learning model 

into the web application, the system will possess the capability to identify and prevent 

SQLI attacks autonomously.  

In addition, the machine learning model that possesses real-time functionality will 

be integrated into the SQLI detection system. The reason for this is that the real-time 

SQLI detection system has the capability to monitor web traffic and databases 

consistently. Hence, it would enable prompt notification to users, facilitating rapid 

remediation of SQLI attacks as they occur. Implementing a real-time SQLI detection 

system can potentially increase the security of online applications. By using this system, 

the web application may automatically generate and transmit a detailed report to the 

user, providing immediate details regarding any potential SQLI attacks. Therefore, it 

has the potential to decrease the necessity for manual supervision and intervention of 

the web server.   

 

1.4  Impact, Significance and Contributions 

The primary focus of this research project is creating a machine-learning model that 

exhibits a remarkable accuracy rate beyond 92% in identifying SQLI attacks. The 

presented accuracy benchmark serves as evidence of our steadfast dedication to 

developing an advanced machine learning model that effectively detects SQLI risks in 

web applications. By attaining this notable degree of accuracy, our research not only 

propels the field of cybersecurity forward but also provides practical solutions for the 

ongoing problem of SQLI attacks. The capability to identify SQLI attacks with a 
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notable level of accuracy is a remarkable advancement in the realm of web application 

security. This advancement plays a crucial role in mitigating the likelihood of data 

breaches, unauthorized access, and related security vulnerabilities. 

The integration of real-time detection and response capabilities into our system is a 

significant advance in the field of cybersecurity. The utilization of real-time detection 

mechanisms enables rapid identification of SQLI attacks upon their inception to 

facilitate countermeasures. Consequently, it dramatically reduces the potential damages 

that attackers might cause, lowering the likelihood of unauthorized access, data 

breaches, and compromise of confidential data. By implementing real-time measures 

to mitigate SQLI attacks, organizations may enhance the protection of their digital 

assets and safeguard the confidentiality and integrity of vital information. The real-time 

capability of the system not only results in time savings but also reduces the workload 

on cybersecurity teams, allowing them to concentrate on higher-level security 

initiatives instead of reactive problem-solving. 

 

1.5  Background Information 

The beginnings of SQLI may be traced to the beginning stages of web-based 

application development when programmers started utilizing databases for the dynamic 

retrieval and storage of data. With the increasing complexity of online applications, a 

necessity for dynamic SQL queries emerged, which subsequently gave birth to SQLI 

attacks. SQLI is a widely recognized and persistent cybersecurity threat that has harmed 

web-based applications for an extended period. SQLI attacks had significant 

repercussions, leading to a multitude of major data breaches and substantial financial 

losses for organizations on a global scale. For instance, the hacker might target a 

vulnerable website and use SQLI to launch an attack to gain access to the organization’s 

sensitive data. The hacker group called Lulz Security launched the SQLI attack on Sony 

and was able to gain unauthorized access to sensitive information, such as personal data 

and login credentials, of over 77 million Sony PlayStation Network users as all the 

information due to the poorly designed web application code [9]. The breach has caused 

Sony to suffer enormous financial losses as well as a decline in customer trust.  

The traditional methods for detecting SQLI, namely signature-based and rule-based 

systems, have demonstrated limited effectiveness in addressing the constant evolution 

of these security risks. These solutions frequently depend on pre-established patterns or 
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rules, rendering them ineffective when confronted with novel and unique attack vectors. 

Consequently, the cybersecurity industry has increasingly embraced machine learning 

as a potentially effective approach to tackle the difficulty posed by SQLI vulnerabilities. 

Machine learning utilizes algorithms driven by data to evaluate and identify patterns 

within web traffic and user inputs. Machine learning models can differentiate between 

regular and suspicious activity by training on extensive datasets that encompass both 

valid and malicious SQL queries. This adaptive methodology enables machine learning 

models to adapt and adjust to evolving attack patterns, thus enhancing their 

effectiveness in real-world scenarios. 

 
1.5.1 SQL Injection (SQLI) 

 SQLI is a type of cyberattack in which SQL codes are inserted into user input 

parameters such as web form to deceive the poorly-designed web application into 

executing the hacker’s code on the database to access or manipulate the database [10]. 

A successful attack could result in unauthorized access to the user list, alteration or 

elimination of tables and records, and acquisition of administrator privileges for the 

database. These factors could lead to a substantial decline in revenue and customer trust 

for the organization. SQLI vulnerability has been well recognized for over twenty years 

and remains a significant problem today due to its potential for extensive damage. This 

is especially true as new attack vectors emerge when the existing injection approaches 

are refined and improved. Figure 1.1 shows SQLI was in the top three of the Common 

Weakness Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses in 2022. 

In contrast to the previous year, the ranking has experienced a shift from the sixth 

position to the third position, accompanied by a notable score of 22.11. 

 

Figure 1.1: The Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software 

Weaknesses of 2022 [11]. 
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 In order to identify vulnerable user input within a web application, an attacker must 

first submit a number of random values into the argument field and observe the server’s 

response. Consequently, the attacker could generate input content within a text file 

containing the entire malicious SQLI payload used to execute the attack. Upon being 

successfully transmitted by the attacker, the database will proceed to execute the 

malicious SQL instructions. Using the example from the introduction, we will assume 

that the user’s username is ‘user123’ and their password is ‘helloworld’. Hence, upon 

the user’s login to the online shopping website, the SQL query “SELECT * FROM user 

WHERE username = ‘user123’ and password = ‘helloworld’” will be executed within 

the database. However, the attacker may execute the SQL attack by entering ‘OR 1 = 

1’ instead of the correct password in the input field. The SQL query will execute 

SELECT * FROM user WHERE username = ‘user123’ and password = ‘OR 1 = 1’ if 

the website is poorly designed. The tautological statement “1 = 1” guarantees that the 

attacker will consistently successfully login to the website, regardless of whether the 

correct password is utilized. Based on research investigations, the inclusion of code 

employing the “OR” operators alongside a “TRUE” assertion, namely in the form of 

“1=1”, is sometimes referred to as a tautology [12]. The SQL query will return the 

entirety of the user table’s data, enabling the attacker to obtain unauthorized access to 

the victim’s confidential information. Figure 1.2 shows that the attackers can change 

the SQL query by substituting their data with the user-supplied data by injecting the 

malicious SQL code.  

 
Figure 1.2: An overview of how attackers get unauthorized access to the website database by 

using SQLI [13] 
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 Indeed, a significant number of today’s websites and internet applications possess 

robust mechanisms to mitigate such fundamental forms of cyberattacks effectively. 

However, there are numerous and more sophisticated SQLI techniques as the attackers 

constantly look for SQLI vulnerabilities on the internet, and the developers lack an 

understanding of how SQLI vulnerabilities work. In addition, SQLI attacks are 

inexpensive and straightforward to execute, but the consequences can be severe for the 

victims. For instance, an attacker may initiate a SQLI attack using the JSON data-

sharing standard to circumvent traditional countermeasures such as Web Application 

Firewall (WAF), which does not support JSON for inspecting SQLI [12]. 

 

1.5.2  Types of SQLI 

Numerous techniques to employ SQLI can result in different major issues. SQLI 

could also be divided into three major categories according to the methods used to 

access the database backend data and the degree of possible harm they might cause. In 

general, there are three main subcategories of SQLI: In-band SQLI, Inferential SQLI, 

and Out-of-band SQLI [13]. Using these SQLI, an attacker might bypass the 

authentication, access, alter, and remove data in a database.  

1. In-band-SQLI 

In-band-SQLI is the most prevalent and convenient SQLI attack. It occurs when the 

attackers acquire the outcome directly over the same communication channel. For 

instance, the outcome of the attack will be seen in the same web browser if the attacker 

conducts the attack manually. The term “classic SQLI” also applies to in-band SQLI. 

Union-based SQLI and error-based SQLI are the most popular methods of in-band 

SQLI. 

a)  Error-based SQLI 

Error-based SQLI is a variant of in-band SQLI that utilizes the database server’s 

error messages to gather details about the database’s structure. The hacker will trick 

the database into making a mistake by inserting false data into a query. In rare 

circumstances, an attacker may enumerate an entire database using only error-based 

SQLI.  

b)  Union-based SQLI 

Union-based is a kind of in-band SQLI that utilizes the UNION SQL clause to get 

results that blend sensitive data with legitimate information. In a union query attack, 

the attacker will attach a malicious query to a query using the UNION operator. The 
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malicious query will combine with that specific query to allow the hacker to access 

the values of additional table columns. 

 

2. Inferential SQLI 

Inferential SQLI is sometimes referred to as blind SQLI since the attacker cannot 

immediately see the results of the injected queries as no data is exchanged between the 

web application and the attacker. Instead, the attacker enumerates the database, sending 

payloads and monitoring the web application’s response and behaviour. Boolean-based 

blind SQLI and time-based blind SQLI are the two forms of inferential SQLI.  

a)  Boolean-based Blind SQLI 

Boolean-based blind SQLI is a type of inferential SQLI that depends on sending an 

SQL query to the databases to force the application to provide a different response 

according to whether the query produces a TRUE or FALSE result. The HTTP 

response’s content might change based on the outcome. Even if the database doesn’t 

return any information, a malicious attacker can still tell if the payload used returned 

true or false. This is a typically lengthy approach when working with extensive 

databases, as an attacker would have to enumerate the characters in a database. 

 

 

b)  Time-based Blind SQLI 

Time-based SQLI is a form of inferential SQLI that requires submitting an SQL 

query to the database, which makes it wait for a predetermined period before 

replying. The web application’s response time will indicate whether the query 

outcome is TRUE or FALSE.  

 

3. Out-of-band SQLI 

Out-of-band SQLI is uncommon as they need the database server for the web 

application to enable some functionalities. The attack is called out-of-band SQLI if the 

attack cannot be launched and the result cannot be gathered over the same channel. The 

attacker will trick the victimized application into sending information to a remote 

endpoint under his supervision rather than waiting for a response. This injection would 

depend on the database server’s capability to send DNS or HTTP requests. 
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1.5  Report Organization 

The report begins with Chapter 1, providing an introduction to the research topic, 

outlining the objectives, scope, and structure of the study. Chapter 2 presents a 

comprehensive literature review on SQL injection attacks, machine learning-based 

intrusion detection systems, and real-time detection methodologies, identifying gaps 

and opportunities in the field. In Chapter 3, the methodology and approach employed 

in developing the real-time SQLI detection system are detailed, covering data 

collection, feature engineering, and machine learning model selection. Chapter 4 delves 

into the system design, elucidating the architectural components, software 

requirements, and design considerations. Chapter 5 focuses on the implementation 

process, discussing software development, system configuration, and practical 

challenges faced. The evaluation and discussion of the system's performance are 

presented in Chapter 6, including experimental setup, testing methodologies, and result 

analysis. Finally, Chapter 7 concludes the report with a summary of key findings, 

recommendations for future research, and concluding remarks on the real-time SQLI 

detection system. 

 



CHAPTER 2 

                                                                  11                                                                                                             
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

Chapter 2 

Literature Review 

 

2.1  Previous Works on SQL Injection Detection  

2.1.1  JDBC Checker: A Static Analysis Tool for SQL/JDBC Applications 

 (C. Gould et al. 2004) proposed a research paper about the development of a 

static analysis tool to analyze dynamically generated SQL query strings in Java and 

confirm whether they comprise any possible malicious queries. The JDBC Checker 

uses the Java String Analysis (JSA) to dynamically check the user input type and thwart 

SQLI attack dynamic attempts [14]. The approach is based on a mix of automatic-

theoretic methods [16] and a variation of the reachability issue for context-free 

languages (CFL) [17, 18]. The analysis consists of two main steps: 

1) Constructs a conservative representation of the produced query strings as a finite-

state automation by building on a static string analysis. 

2) Statically check the finite state automation using a modified CFL reachability 

technique.  

 

Figure 2.1 shows the overview of the JDBC Checker analysis and the tool architecture 

outline. 

 

Figure 2.1: The overview of JDBC Checker analysis and the tool architecture outline [18] 

 

Generally, it offers to discover and highlight probable SQL query issues and 

hotspots and validate the validity of the SQL strings. It functions by listing all possible 

SQL strings that could be executed statically across a specific application. Then, it will 

check each one of those potential SQL strings for malicious content and semantic errors 

instead of dynamically checking each query as it is generated at runtime. Although this 
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approach was not designed to identify and prevent conventional SQLI attacks, it can be 

used to avoid attacks that leverage type mismatches in a dynamically constructed query 

string to cause damage to the underlying database, such as SQLI. JDBC Checker may 

detect one of the fundamental causes of SQLIA vulnerabilities in programming, which 

is incorrect data type checking. 

 

Strengths 

The JDBC checker is highly accurate in analyzing and determining the dynamically 

generated SQL query strings in Java, as it has a very low false-positive rate. Table 2.1 

shows the overview of the test program used to test the JDBC Checker and the high 

accuracy of the results produced.  

Table 2.1: The overview of the test programs used to test the JDBC Checker and the summary 

of the results [15] 

 

 

Limitations 

Although the JDBC Checker has high accuracy and very low false-positive rates, it 

cannot defend against a SQLI attack if the malicious SQL query has a proper type or 

syntax. This is because JDBC Checker can only be used to determine the malicious 

SQL codes. Besides, if there are a large number of possible SQL queries, enormous 

storage space is needed, and it might affect the performance of the JDBC Checker as it 

will slow down the time to complete the analysis. Besides, high costs are needed to buy 

the storage space to store the possible SQL queries. Furthermore, the JSA library will 

only support the Java programming language because the JDBC Checker needs it to 

validate SQL queries. This implies that JDBC Checker won’t be able to identify the 

SQLI when the hacker executes the SQLI using a language other than Java.  
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Solutions 

SQLI attacks can be difficult to defend against if the SQL query has the right syntax 

because traditional defence techniques consisting of input validation and parameterized 

queries are useless in these instances. In this case, machine learning techniques may be 

used to detect and categorize SQLI attacks based on data patterns such as the frequency 

and sort of input parameters used in the query. Besides that, when confronted with a 

large number of potential SQL queries, storing all of them and verifying them for 

vulnerabilities can be time-consuming and resource intensive. To solve the problem, 

we can implement a whitelist of known-to-be-secure SQL statements. This reduces the 

number of queries that must be inspected for vulnerabilities. Furthermore, when JDBC 

only supports Java, most of the SLQI attacks that use other programming languages 

would not be detected and prevented. In this case, we could implement the system in 

other programming languages with its SQLI detection libraries.  

 

2.1.2 Automated Testing for SQL Injection Vulnerabilities: An Input Mutation 

Approach 

In this paper, (D. Appelt et al. 2014) proposed the idea of a black-box automated 

testing technique called µ4SQLi [19]. The technique is built on a collection of mutation 

operators that change inputs to produce new test inputs to cause SQLI attacks. 

Additionally, there are several methods for integrating these operators, and multiple 

operators can be used on the exact same input. This might produce inputs with new 

attack patterns, raising the possibility of detecting SQLI vulnerabilities. More 

particularly, it aims to provide test inputs that can get past web application firewalls 

and produce SQL statements that can be executed. A WAF may stop SQLI attacks and 

stop an exploit from being used against a weak web service. Therefore, effective test 

inputs must thus pass past the WAF to reach the service. According to their intended 

use, mutation operators can be classified into three classes: Behaviour-changing, 

syntax-repairing, and obfuscation. The baseline strategy, which consists of 137 

recognized attack patterns, is referred to as Std (Standard attacks). A catalogue of SQLI 

patterns contains these patterns collectively, and they include several trendy attack 

types, including Boolean-based and UNION query-based [20]. Table 2.2 provides a 

summary of all mutation operators that are included in the µ4SQLi. 
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Table 2.2: Summary of the mutation operators that are classified into behaviour-changing, 

syntax-repairing, and obfuscation operators [19]. 

 

 

Strength 

The µ4SQLi can detect SQLI accurately using the black-box automatic testing 

method, as it can generate new SQL queries containing new attack patterns. Therefore, 

it could increase the accuracy of detecting the SQLI attack as the latest attack pattern’s 

data could be used to train and improve the accuracy of the machine learning algorithm. 

The T and Te % of Std and µ4SQLi on two open-source systems, HotelRS and 

SugarCRM, are shown in Tables 2.3 and 2.4 in two distinct configurations, with and 

without the presence of WAF. T is the total number of test cases that the database proxy 

flags as producing SQL queries. Te is the total number of tests that can result in SQL 

statements that are marked and can be executed. 
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Table 2.3: Results of Std and µ4SQLi on open-source systems when no WAF is enabled [19]. 

 

Table 2.4: Results of Std and µ4SQLi on the open-source systems when WAF is enabled [19]. 

 

 Besides that, µ4SQLi could also be used to detect numerous types of SQLI 

vulnerabilities, such as union-based SQLI, error-based SQLI, and inferential SQLI. 

Furthermore, µ4SQLi is also customizable. By defining the scan’s depth and the types 

of vulnerabilities to look for, users may tailor the scan to focus on certain areas of 

concern. Additionally, µ4SQLi might fix the inputs to eliminate any potential syntax 

problems brought on due to the mutation operators in it.  
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Limitations  

 Although µ4SQLi has a lot of positive aspects, there are also a few limitations. 

Firstly, since µ4SQLi relies on human input to identify vulnerabilities, it might not be 

able to detect the SQLI vulnerabilities correctly if user input is restricted or limited. 

Besides, it will also be time-consuming and prone to human mistakes. Besides that, 

although µ4SQLi could detect possible SQLI vulnerabilities, it cannot be used to solve 

the SQLI, such as preventing and blocking the SQLI attack in real-time. Additionally, 

executing the µ4SQLi demands a lot of resources due to its high calculation cost. 

Therefore, high costs and more time are needed to maintain µ4SQLi. 

 

Solutions 

 When a SQLI detection system depends on human input to discover 

vulnerabilities, it can be time-consuming and prone to human mistakes. In this case, 

machine learning algorithms may be trained to detect SQLI attacks based on data 

patterns without human intervention. This may be accomplished by training the 

algorithm using previous data and then applying it to new data to find potential 

vulnerabilities. Besides that, machine learning techniques may also be used to solve 

real-time issues as machine learning can recognize SQLI patterns in real-time. Besides 

that, machine learning could also forecast the possibility of SQLI attacks based on 

previous data. Moreover, if executing the SQLI detection system requires a lot of 

resources, SQLI detection may be offloaded to specialized hardware using hardware 

accelerators such as GPUs or FPGAs, as it can boost performance while also lowering 

the system’s resource requirements [21] 

 

2.1.3 AMNESIA: Analysis and Monitoring for NEutralizing SQL-Injection 

Attacks 

 (W. G. J Halfond and A. Orso 2005) has proposed the AMNESIA tool that is 

effective in detecting SQLI attacks. AMNESIA is built on previous work in model-

based security and programme analysis. It also employs a combination of static and 

dynamic analysis techniques specially tailored to attack SQLI attacks [22].  Generally, 

there are two phases in amnesia, which the static phase and the dynamic phase. In the 

static phase, the AMNESIA technique first employs static programme analysis to 

analyze the application script and dynamically develop a model of the appropriate 

queries the application might generate. In the dynamic phase, it will then analyze all 
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dynamically generated queries during execution and validates them for adherence with 

the statically generated model. Queries that disrupt the model are flagged as outlawed 

and blocked from running on the database. The notification about the blocked queries 

will then be sent to developers of applications and administrators.  

 AMNESIA is written in Java and comprises three modules using several current 

technologies and libraries: The analysis, instrumentation, and runtime-monitoring 

modules. The analysis module takes a Java web application as input and returns a list 

of hotspots as well as SQL query models for each hotspot. Besides that, the 

instrumentation module takes a Java web application and a list of hotspots produced by 

the analysis module as input and instruments, each with a call to runtime monitor. Next, 

the runtime monitoring module receives a query string and the identification number of 

the hotspot that created the query as input. It will then fetches the SQL query model for 

that hotspot and compares the query to the model. Figure 2.2 shows the detailed flow 

of AMNESIA architecture. In the static phase, the instrumentation module and the 

analysis module will take the web application input and produce an instrumented 

version of the program and SQL query model for each hotspot in the application. In the 

dynamic phase, the Runtime Monitoring Module will examine the dynamic queries as 

users interact with the web application. When a malicious query is discovered to be an 

attack, it is prevented and reported. 

 

Figure 2.2: Detailed flow of AMNESIA architecture [22] 
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Generally, AMNSEIA consists of four main steps: 

1) Identify hotspots: The application code is scanned to find the hotspots where 

the code issues various SQL queries to the underlying database. 

2) Build SQL-query models: After identifying the hotspot location, a query 

model is constructed to describe all potential SQL queries that may be produced 

there. The transition labels in the SQL query model are non-deterministic finite 

automation and comprise SQL tokens such as delimiters and keywords. 

3) Instrument Application: The web application is instrumented by calling a call 

to the monitor before making the actual request to the database. The web 

application monitoring process checks the query against an appropriate model 

using two parameters: a string and a unique identifier. 

4) Runtime monitoring: The application executes easily after detecting the 

hotspot location during execution. Additionally, it compares the dynamically 

created queries to the SQL query framework, rejecting and reporting those that 

violate it. 

 

Strengths 

 AMNESIA is a tool that could detect and prevent SQLI attacks with a very low 

runtime overhead and is almost negligible. For instance, the runtime overhead ranges 

from 10 to 40 milliseconds in the investigation [22]. Besides that, AMNESIA may be 

able to streamline the scanning process for discovering SQLI vulnerabilities within web 

applications, allowing security experts to spot possible security problems and solve 

them accordingly more quickly. Next, the automatic reporting tool in AMNESIA  that 

could send the reports to the administrators on discovered vulnerabilities, including the 

type of vulnerability and its possible impact on the system, could assist the network 

administrator in prioritizing and patching the vulnerabilities. Furthermore, AMNESIA 

could also detect and prevent SQLI attacks with very high accuracy, as no legitimate 

inputs were flagged as SQLI attacks in the test. Table 2.5 displays the results of 

AMNSEIA’s research on the detection of SQLI attacks using different attack sets. 
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Table 2.5: Results of AMNESIA’s research on the detection of SQLI attacks using different 

attack sets [22]. 

 

 

Limitations 

 Although AMNESIA could produce a high accuracy in detecting SQLI attacks, 

it might result in many false negatives if some correct queries that replicate the SQL 

attack’s structure are used. Besides that, AMNESIA requires several steps that use 

different tools, which could be challenging to configure and interpret correctly and 

might require a high level of technical expertise to configure. Besides that, AMNESIA 

could only detect several types of SQLI, such as tautology and union query [23]. 

 

Solutions 

 If any queries that replicate the SQL attack’s structure are utilized, a SQLI 

detection system may provide a false negative. To solve this issue, a variety of SQLI 

detection techniques, including rule-driven and machine-learning approaches, can be 

implemented. By integrating different methodologies, the system can lower the 

likelihood of false negatives while increasing the accuracy of SQLI detection. Besides 

that, consolidating several tools required for AMNESIA into a single platform is one 

solution to the problem of complexity, and it requires several steps. This can help to 

streamline the process and eliminate the need for many phases and tools. To solve the 

problem of the detection of several types of SQLI, we could update AMNESIA to 

incorporate more SQLI types. This could be performed by modifying the system 

algorithms.  
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2.1.4 Detecting SQL injection attacks in cloud saas using machine learning 

 In this paper, (D. Tripathy et al. 2020) have proposed several machine learning 

models to detect SQLI attacks in cloud SaaS. The machine learning algorithms include 

AdaBoostClassifier, Stochastic gradient descent, Random Forest, Deep Learning using 

Artificial Neural Networks (ANN), Tensor-Flow’s Linear Classifier and 

BoostedTreesClassifier to detect SQLI attacks. The authors of this paper have created 

a dataset by compiling and integrating several smaller datasets. As illustrated in Figure 

2.3, the approach for detecting SQLI is separated into six major ordered phases: 

problem definition, data collection and cleaning, feature engineering, model training, 

and evaluation.  

 

Figure 2.3: The major phases to detect SQLI [24]. 

 Following data gathering and cleansing, feature engineering takes place. 

Besides that, unique features such as length and byte distribution, read or write 

operation, SQL keywords, and nonprintable characters are constructed. Ten customized 

characteristics that might be useful are categorized. Figure 2.4 depicts the feature rank 

using Chi-square.  
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Figure 2.4: The ranking of the features using Chi-Square [24]. 

 

 The length feature determines how long the input is. The feature Non-printable 

characters, such as tabs and null characters, do not represent a written sign. The number 

of punctuation characters in a payload that contains and is contained in the feature 

punctuation characters. The Minimum byte feature describes the minimum byte value 

of UTF-8 standards inside the input. A maximum byte feature, similar to the minimum 

byte, is created. The Mean byte and standard deviation byte features define the mean 

byte and standard deviation byte of the input payloads. Based on the SQL write 

keyword, the Read/Write functionality determines if an input payload is a read or write 

operation because writing operations are more important than reading ones. For 

example, if an attacker deletes an account table or alters user information in a banking 

application, it might cause a variety of problems for both users and service providers. 

The number of unique bytes in a payload is described as distinct bytes. The SQL-

Keyword feature returns the number of SQL keywords included inside a payload. 

Figure 2.5 illustrates a principal component analysis visualization of malicious and non-

malicious inputs. The chi-square measure is employed for feature assessment, which 

assesses the chi-square between each feature and the objective and picks the appropriate 

number of features with the best Chi-square scores. 
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Figure 2.5: Principal component analysis (PCA) visualization of the malicious and non-

malicious input [24]. 

 

Strengths 

 The proposed machine learning models can quickly analyze massive amounts 

of data, making it ideal for dealing with a large volume of data and traffic in real-time. 

This allows the model to analyze and detect potential SQLI attacks on a huge number 

of requests in web applications in real-time. Besides that, the proposed machine 

learning models could also analyze web traffic in real-time, allowing faster detection 

of SQLI and preventing further damage to the database. Furthermore, the proposed 

machine learning could adapt to shifting attack patterns and improve over time. As a 

result, it will be suitable for web applications nowadays as new vulnerabilities and 

attacks could arise rapidly. Furthermore, the proposed machine learning models have a 

staggering level of accuracy in identifying SQLI attacks. Table 2.6 demonstrates the 

performance metrics of the proposed machine learning model on 108072 payloads. The 

random forest classifier defeated all other classifiers and attained an accuracy of 99.8%. 

Table 2.6: Performance metrics of the proposed machine learning model [24].
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Limitations 

 The proposed machine learning models are considered superior in terms of 

performance. However, the proposed machine learning models may be quite 

complicated, making interpreting how the models make decisions challenging. It might 

make it difficult for security experts to understand why the query was highlighted as a 

possible SQLI breach, as no automatic reporting tool is available. Besides that, 

deploying the machine learning model for identifying SQLI attacks in web applications 

might result in performance overhead because the model must constantly be operating 

and analyzing traffic. This may impact the user experience and demand the deployment 

of additional resources to ensure the performance of the models. 

 

Solutions 

 As the machine learning model is complicated to implement and use, we could 

include a system’s clear and detailed documentation, which includes step-by-step 

instructions and examples. Besides that, creating a unique reporting tool that is tailored 

to the developer’s or administrator’s unique reporting needs could solve the issue of no 

automatic reporting tool for the machine learning model. Hence, a report will be 

automatically generated and sent to the system administrator if an SQLI attack is 

detected. Furthermore, the machine learning algorithms could also be tuned and 

optimized to reduce the required resources. We could also implement a more efficient 

machine learning algorithm to lower the number of resources needed. 

 

2.1.5  Hybrid Approach to Detect SQLI Attacks and Evasion Techniques 

  (A. Makiou et al. 2014)  has proposed a hybrid injection prevention system that 

uses two methods. The initial detection approach was based on pattern matching, which 

is the same as a signature-based detection system. The HTTP protocol is written in 

human-readable ASCII language. Headers employ text to characterize a client’s 

(browser’s) request or a server’s response. An HTTP request typically begins with a 

GET or POST method, followed by the URL and protocol version. The remainder of 

the headers contain various pieces of information about the client, connection, content, 

and others. To differentiate each heading, \r\n is used to separate them. Figure 2.6 shows 

the example of the header of the HTTP request packet. 
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Figure 2.6: The header of the raw HTTP request packet [25]. 

The dissection module proposed could be used to recognize the request components 

separated by \r\n characters. However, prior to beginning the dissection, it must first 

gather knowledge of security rules. Users are required to define security rules for the 

body and every header. The dissector will only extract and parse the headers involved 

in the inspection process since it is aware of them. The dissected URL string will be 

passed to the detection component and will be inspected. If the URL contains SQLI 

code, the detection component will reject the HTTP request. Figure 2.7 illustrates the 

architecture of the hybrid injection prevention system’s detection component.  

 

Figure 2.7: The architecture of the detection component of the hybrid injection prevention 

system [25]. 
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 Machine learning techniques were applied in the second detecting approach. To 

create this model, the authors gathered malicious code and trained the classifier on it 

by extracting characteristics characterizing the attack. The Naïve Bayesian machine 

learning classifier model is used in this case to determine the SQLI attack. The total 

cost ratio (TCR) was used to assess the machine learning classifier’s performance.  

 

Strength 

 The proposed Hybrid Injection Prevention System (HIPS) that employs a 

machine learning classifier and a pattern-matching inspection component could offer 

full coverage of possible SQLI threats and evasion tactics by combining several 

detection approaches. This reduces the possibility of false positives and negatives and 

will enhance the system’s overall accuracy. Aside from that, the system might improve 

the analysis of HTTP streams and the maintenance of security rules. Hence, it could 

improve the system’s performance and save a lot of time in maintaining the system. 

Furthermore, adopting the detection engine into the system could save the time of the 

expertise as it automatically rejects the HTTPS request sent to the web application if 

one security rule matches. Furthermore, if the system incorrectly identifies an SQLI 

attack as valid material, the false negative will not affect the system’s overall 

performance. Table 2.7 shows that the false negative does not affect the system’s 

overall performance when the number of SQLI attacks and legitimate request 

proportions increases. 

Table 2.7: The TCR value based on different proportions of SQLI attack and legitimate 

request 
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Limitations 

 Although the proposed HIPS is a hybrid system, the hybrid system may be more 

difficult to deploy and maintain than a non-hybrid system. Hence, deploying and 

maintaining the system requires additional resources such as time, cost, and technical 

expertise. Besides that, a hybrid system might create performance overhead as the 

system must analyze the data from numerous detection methods. Hence, this can have 

an influence on the user experience and may necessitate the deployment of additional 

resources to ensure adequate performance. 

 

Solutions 

 HIPS is challenging to deploy and maintain as the hybrid system is complex. In 

this case, cloud-based services, such as Microsoft Azure, can be used as they provide 

ready-made solutions that are simple to adopt and manage. These services also allow 

automated scaling and monitoring, making system management easier over time. 

Besides that, the system architecture of HIPS could be optimized by optimizing the 

algorithm used in the system to decrease the performance overhead. 

 

2.1.6 A CNN-based Approach to the Detection of SQLI Attacks 

 In this literature, (Luo, A et al., 2019) have proposed a SQLI attack detection 

model based on CNN that leverages the high-dimensional aspects of SQLI behaviour 

to address the SQLI issue effectively. Mutual exclusive datasets from various aspects 

were gathered and divided into two parts: to train the CNN model and to compare the 

efficiency of the CNN model and the traditional method ModSecurity. Table 2.8 shows 

the composition of the experiment dataset. 

Table 2.8: Composition of the experiment dataset [26] 

 

Damn Vulnerable Web Application (DVWA) and SQLmap were used to carry out 

actual attacks to achieve a successful data dump from the database. Additionally, a web 

crawler was employed to simulate regular web access. The process of capturing 

network traffic was conducted using the tcpdump tool. Zeek’s network analysis 
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programme was employed to record network activities, specifically emphasizing HTTP 

sessions [27]. A bespoke Zeek script was utilized to extract and cleanse payload data 

for analysis. The payload traffic received by the victim host is used as input to construct 

the CNN network model after gathering and cleansing the traffic data. Figure 2.8 shows 

the CNN model built in this paper. 

 

Figure 2.8: The CNN model built [26] 

 The model contains three convolutional layers, CONV1, CONV2, and CONV3, 

three pooling layers POOL1, POOL2, and POOL3, one full connectivity layer FC and 

one hidden layer HL.  

1. Convolutional layer: The three convolutional layers use the same padding= 

“same” mode and excitation function “ReLU”. The three convolutional layers 

differ in their convolution kernel architecture: POOL1:16@3*3, POOL2: 

32@4*4, and POOL3: 64@5*5, all of which gradually expand in quantity and 

size, leading to higher-dimensional features. 

2. Pooling layer: The three pooling layers are all tested by the maximum pooling 

procedure, with the pooling core size uniformly set at 2*2. 

3. Fully connected layer: Every node within the layer is linked to all nodes within 

POOL3 to integrate the characteristics taken from the preceding layer. 

4. Hidden Layer: This layer performs the last processing before delivering output 

to the classifier, decreasing data over-fitting and enhancing generalization. 
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Strength 

 The proposed CNN model to detect SQLI attacks offers high scalability due to 

the usage of the deep learning model, CNN. CNN has a remarkable ability to exhibit 

scalability, enabling it to efficiently handle substantial quantities of data. This attribute 

renders them well-suited for tasks that need the processing of large volumes of data. 

Besides that, the usage of CNN in the model enables the system to effectively adjust 

and accommodate new and evolving attack patterns through the process of data-driven 

learning. Thus, it is more flexible than the traditional rule-based system for detecting 

new or previously unseen attack vectors. The model also reduces false positive rates, 

offering a high accuracy level while minimizing the false detection rate of SQLI attacks. 

Table 2.9 shows the evaluation results of the SQLI attack for the CNN model with the 

rule-based model, Mod Security. Besides that, Figure 2.9 compares different classifiers 

between CNN and other machine learning models. 

Table 2.9: Evaluation results of SQLI attack for CNN model and ModSecurity 

 

 

 

Figure 2.9: Comparison between CNN and different machine learning classifier models [28] 
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Limitations 

 Although the proposed CNN model to detect SQLI attacks could maintain high 

accuracy and precision, it is often considered difficult to handle encrypted SQLI attack 

traffic. Therefore, the efficiency of the system in detecting SQLI attacks may be 

impeded when the network traffic is encrypted. Besides that, the system is resource-

intensive. Therefore, training and deploying CNN  models may impose significant 

computational demands and require extensive hardware resources, particularly when 

dealing with the real-time processing of large network data. Additionally, CNN largely 

prioritizes the analysis of local patterns within their receptive fields and may not possess 

an innate comprehension of the semantic meaning of text data. As SQLI attacks 

sometimes entail sophisticated manipulation of language, it might be difficult for the 

system to understand the contextual details accurately. 

 

Solutions 

 As the system may have difficulties in handling encrypted SQLI attack traffic, 

the vendor or the web application’s owner should regularly decrypt the SSL/TLS-

encrypted traffic to inspect it before forwarding it. For illustration, Wireshark could be 

used in this instance [29]. This feature enables an investigation of the content to identify 

and assess the presence of SQLI attacks. As training CNN requires a lot of resources, 

we could incorporate hardware accelerators such as GPU or TPU to enhance training 

efficiency for the CNN model. Next, we could employ efficient text preprocessing and 

tokenization to transform the incoming text into a structure that more accurately 

captures semantic information.  
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2.1.7 SQLI Detection using Machine Learning and CNN 

 (Jason, M. and Asha, S., 2023) has proposed an SQLI detection system using 

various supervised machine learning techniques and the CNN model to perform real-

time detection and classification of possible SLQI attacks.  

There are a total of four machine learning models studied and implemented into the 

system: 

1. Naïve Bayes: This technique implies attribute independence. Class distribution 

contributes to reducing processing costs dramatically. In Gaussian Naïve Bayes, 

Gaussian features are assumed. Gaussian distributions distribute continuous 

values. Time is saved by using Naive Bayes’ fast performance. It also needs less 

training data and is less sensitive to irrelevant traits [31]. 

2. SVM: The system’s effectiveness is enhanced when substantial separation 

between social classes exists. High-dimensional areas are known to be more 

productive and have the advantage of conserving memory. 

3. K-Nearest Neighbours (KNN): Enables the exploration of hidden 

relationships within the data without making any assumptions, thus offering a 

novel perspective in data analysis. 

4. Decision Tree: The data is processed through a tree, with decisions taken at 

each node. Next, it can handle numerical and categorical data. However, biased 

trees can be formed with few dominant classes. Thus, balancing is needed. [32]. 

Figure 2.10 shows the methodology of the proposed system. 

 

Figure 2.10: Methodology of the proposed system 

 The datasets that contain 5234 records were imported from different GitHub 

repositories and were preprocessed individually to check for missing values and other 

inconsistencies. The datasets were then merged into one and will be split into test and 

train sets. The benign data was divided into 3072 training data and 744 testing data. 

1128 records were used for training, and 290 records were used for testing the SQLI 

data. Finally, the data is inputted into various machine learning algorithms, and each 
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outcome is examined. The CNN model was then developed and employed in the system 

with a learning rate of 0.001 by utilizing the Adam Optimizer. Lastly, gradio is imported 

into the system to execute a real-time user interface.  

 

Strength 

 As the proposed system uses machine learning and deep learning models, it 

possesses the capability to adjust to new and novel SQLI attacks effectively without 

needing regular manual updates. Adaptability is significant in the ever-changing field 

of cybersecurity threats. Besides that, the proposed system also offers a high detection 

rate for SLQI attacks. Machine learning models such as CNN could keep on learning 

complex patterns and anomalies from the input data. Hence, these machine learning 

models exhibit a lower rate of false positives and mitigate the potential for obstructing 

valid user requests. Thus, the overall user experience would be improved if this system 

is used. Table 2.10 shows the metrics of all the machine-learning models used in the 

system. 

Table 2.10: Metrics of all the machine learning models used in the system [30]. 

 

 

Limitations 

 The need for high-quality training data is considered significant in training these 

machine learning models. The datasets that are obtained from the open-source websites 

may not be diverse and representative enough for training the machine learning models. 

Hence, the insufficient or biased training data could lead to suboptimal performance. 

Besides that, training different machine learning and deep learning models can be 

computationally resource-intensive. Therefore, a model such as CNN may require 

substantial hardware resources. Next, the effectiveness of the system would deteriorate 
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over time due to the emergence of new SQLI attack patterns. Hence, the model’s 

effectiveness in detecting SQLI attacks may degrade over time.  

 

Solutions 

 To improve the quality of the training data, it is recommended that the SQLI 

attack datasets from various sources be searched and compared regularly. The 

utilization of these datasets frequently offers a wider range of attack scenarios that are 

more representative of real-world situations, hence improving the model’s 

effectiveness. Besides that, a hardware accelerator such as a GPU could be used to 

improve the system’s performance and train the deep learning model, such as CNN. 

Data drift monitoring techniques could also be incorporated into the system to identify 

alterations in the distribution of incoming data. In the instance that data drift is 

identified, it is essential to initiate the model retraining process to adjust to the revised 

distribution effectively.  

 

2.1.8  SQLI Detection using Machine Learning Techniques and Multiple Data 

Sources 

 In this paper (Ross, K., 2018) has proposed an SQLI detection system using 

machine learning. The system comprises a customized enterprise chat web application 

that is supported by a remote MySQL server backend. The data is captured in two 

distinct locations. Firstly, the HTTP traffic between the traffic-generating server and 

the web application server is captured. Secondly, the consequent MySQL traffic 

between the web application server and the remote database server is also captured. 

Figure 2.11 shows the general procedure for the proposed system. 

 

Figure 2.11: The general procedure for the proposed system [33]. 

 The system architecture uses four KVM virtual machines on an HP server with 

dual quad-core processors and 64G RAM operating as server nodes. These nodes 

include a web application server, traffic generation server, database server, and Datiphy 

MySQL data capturing node. Figure 2.12 shows the network architecture of the 

proposed system. 
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Figure 2.12: The network architecture of the proposed system [33]. 

1. Web Application Server: The Webapp server runs Ubuntu/Apache and hosts 

the custom web application in the webspace. The database server hosts this 

Webapp MySQL backend. This server runs Snort as one of the data capture 

points. 

2. Traffic Generation Server: The server generates both normal and malicious 

traffic and runs Kali Linux. Both normal and malicious traffic are created using 

Python/shell scripts and Beautiful Soup Python modules. 

3. Database Server: The server runs Ubuntu/MySQL. The chat program on the 

webapp server uses this server for remote database access, and all MySQL 

traffic for the webapp is transmitted between these two servers. 

4. Datiphy MySQL Capture Server: The server comprises a Datiphy appliance 

VM provided by Datiphy Inc. for research [34]. This device provides visibility 

of SQL traffic and other database traffic in this project. All traffic between the 

webapp and MySQL database server is routed through the Datiphy appliance, 

enabling visibility in the web interface. 
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Once the datasets are generated and preprocessed, the data will be imported into the 

Weka. The numerical and nominal data are utilized in their original form, while the 

string data undergoes additional processing to convert it into vectors of words with the 

Weka filter StringToVec. Correlated Feature Selection will then optimize machine 

learning by reducing the number of features. The machine learning model used are J48, 

Jrip, Random Forest, SVM, and MultiLayer Perceptron Neural Network. All the 

preprocessed datasets will then be used to train the machine learning models, and the 

result will be analyzed. 

 

Strength 

 As the datasets are captured and processed by building their own network 

architecture, real-life datasets of SQLI attacks could be obtained. Besides that, using 

different data sources to identify SQLI in the article exemplifies a thorough and holistic 

approach. Taking different data dimensions into account may improve the detection 

system’s robustness and accuracy in detecting SQLI attacks rather than a single-source 

approach. Besides that, utilizing different data sources and applying machine learning 

techniques can effectively mitigate the occurrence of false positives, hence playing a 

crucial role in limiting any potential disruptions to user activity. Consequently, the 

system will be able to detect SQLI attacks with higher accuracy. Table 2.11 shows the 

results of the machine learning with 20000 record data. 

Table 2.11: The machine learning results with 20000 record data [33]. 
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Limitations 

 The act of combining information from several sources can present challenges, 

necessitating the utilization of advanced methods for data integration and 

preprocessing. Maintaining data quality and consistency across several sources can 

provide significant issues if the user does not know much about how the system works 

and lacks knowledge of preprocessing the dataset. Besides that, the task of managing 

and maintaining a system that integrates data from numerous sources can impose 

significant demands on resources and time. Regular updates and effective management 

of data sources are critical. Hence, the system requires lots of human and technological 

resources and could be expensive to maintain. 

 

Solutions  

 As multiple datasets are needed for this system, we could employ sophisticated 

data integration tools and platforms capable of automating the tasks of collecting, 

improving, and standardizing data from several sources. These solutions can optimize 

and enhance the integration workflow. It is advisable to allocate resources towards the 

acquisition of knowledge and skills in the areas of data integration and preparation. The 

presence of individuals possessing the requisite skills and knowledge can greatly 

enhance the efficacy of data management. Besides that, we could consider using cloud-

based data integration and storage solutions. Cloud platforms usually offer data 

management capabilities that are both scalable and cost-effective, thereby decreasing 

the demands on resources. 
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2.2 Summary of the previous work on SQLI 

Table 2.12 summarizes all the previous work on SLQI regarding strengths and 

limitations. 

Table 2.12: Previous works on SQLI in terms of strengths and limitations. 

Method Strengths Limitations 

1) JDBC Checker: A 

Static Analysis Tool for 

SQL/JDBC 

Applications 

- High accuracy - Cannot defend against SQLI 

attack if SQL query has the 

correct syntax 

- A large number of possible 

queries need more storage and 

affect performance 

- Only support Java 

programming language 

2) Automated Testing 

for SQL Injection 

Vulnerabilities: An 

Input Mutation 

Approach 

- Can generate new SQL 

queries containing the new 

attack pattern 

- Could detect numerous 

types of SQLI 

- Customizable 

- Might fix input to eliminate 

potential syntax issues 

- Relies on human input to 

identify vulnerabilities 

- Cannot be used to prevent and 

block SQLI attacks in real-time 

- Executing it requires a lot of 

resources 

 

3) AMNESIA: Analysis 

and Monitoring for 

NEutralizing SQL-

Injection Attacks 

- Low runtime overhead 

- Able to streamline the 

scanning process for 

discovering SQLI 

vulnerabilities 

- Automatic reporting tool 

- High accuracy 

- May result in a false negative 

if some queries that replicate the 

SQL attack’s structure are used 

- Complex and requires several 

steps 

- Only detect several types of 

SQLI 

4) Detecting SQL 

injection attacks in 

cloud saas using 

machine learning 

- Can quickly analyze 

massive amounts of data 

- Real-time analyzing 

- Could adapt to shifting 

attack patterns 

- High accuracy 

- Complicated and hard to use 

- No automatic reporting tool 

- Performance overhead 
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5) Hybrid Approach to 

Detect SQLi Attacks 

and Evasion Techniques 

- Full coverage of possible 

SQLI threats 

- Enhance system accuracy in 

detecting SQLI 

- Improve the analysis of 

HTTP streams 

- Streamline maintenance of 

security rules 

- Save time  

- False negative will not 

affect the system’s overall 

performance 

- Difficult to deploy and 

maintain 

- Performance overhead 

6) A CNN-based 

Approach to the 

Detection of SQLI 

Attacks 

- High scalability 

- Can adapt to new attack 

patterns 

- High accuracy 

- Difficult to handle encrypted 

traffic 

- Resource intensive 

- Difficult to understand context 

accurately 

7) SQLI Detection using 

Machine Learning and 

CNN 

- Can adapt to new attack 

patterns 

- High accuracy 

- The dataset may not be diverse 

enough 

- Resource intensive 

- Effectiveness decreases over 

time 

8) SQLI Detection using 

Machine Learning 

Techniques and 

Multiple Data Sources 

- Real-life datasets 

- Different data sources for 

SQLI attack 

- High accuracy 

- Maintaining is hard if the user 

lacks knowledge 

- Resource and time-intensive 

- Expensive to maintain 
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2.3 Proposed Solution Compared to Previous Work 

 SQLI attacks pose an ongoing and escalating threat to the security of data, and 

traditional detection solutions may struggle to effectively counter the constantly 

evolving strategies employed by attackers. Therefore, this research project aims to solve 

all the previous works’ limitations and present a system for detecting real-time SQLI 

attacks through machine learning techniques. Using machine learning techniques in the 

SQLI detection system is expected to enhance the accuracy of identifying SQLI attacks 

[24, 26, 28, 30, 33]. This is because machine learning algorithms offer the capability to 

evaluate enormous amounts of data, enabling them to identify numerous complex 

patterns and vulnerabilities inside SQLI code [19]. Besides, Machine learning 

eliminates the need for human intervention in identifying SQLI vulnerabilities within 

code throughout its implementation. Furthermore, implementing machine learning 

techniques enables the system to dynamically adjust and gain knowledge from new 

data, hence improving its ability to accurately identify SQLI attacks over time. 

Consequently, the implementation of machine learning has the potential to yield 

significant time and resource savings [22, 25]. 

 Besides that, the system also contains a real-time feature that collects and 

aggregates incoming traffic in real-time for the purpose of doing analysis [24, 26, 30, 

33]. Therefore, this proposed solution has the potential to enhance the safety and 

security of online applications by immediately alerting the administrator of any ongoing 

SQLI attacks [22]. Thus, this immediate alert could enable the administrator to take 

appropriate measures to address the issue and minimize possible harm to the database. 

This is especially important when used in the organization and factory as the real-time 

detection and reporting features could decrease the damage caused by SQLI attacks and 

save resources for repairing the damage caused by SQLI attacks.  
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Chapter 3 

System Methodology/Approach OR System Model 

 

3.1  Design Specifications 

The project’s procedures were divided into eight development phases: project pre-

development, data pre-processing, feature selection, machine learning model selection, model 

training, model testing, implementation, and assessment. Figure 3.1 shows the overall 

development phase of the project. 

 

Figure 3.1: Overall development phase of the project. 

 

 The pre-development phase of project development is of the utmost significance as it 

establishes the groundwork for the project’s overall accomplishment. This phase thoroughly 

evaluates the project’s objectives, requirements, constraints and previous works on SQLI 

detection. Besides that, a precise project workflow and plan with the tools needed to complete 

the project should also be constructed. Figure 3.2 shows the methodology that will be used 

throughout the project. 
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Figure 3.2: The prototyping methodology that will be used throughout the project. 

The development of the system prototype will begin subsequent to the completion of the 

analysis, design, and implementation phase. In the event that errors are identified during the 

system prototyping phase, it is necessary to revert to the preceding steps.  

The initial step in data pre-processing is gathering datasets from multiple open-source 

dataset providers’ websites. Subsequently, the dataset will undergo data cleaning processes, 

which involve the removal of duplicate, missing values and invalid rows from the datasets. 

Subsequently, it is necessary to transform the data into a format suitable for analysis. For 

illustration, vectorization will be performed to convert the text data in the datasets into a format 

that the machine learning model could interpret. The dataset will afterwards be divided into 

two separate datasets: a training dataset and a testing dataset, with a distribution ratio of 80:20 

(80% for the training dataset and 20% for the testing dataset). Following that, a subset of 

essential dataset features will be selected in two methods: filter and wrapper. Filter methods 

capture univariate statistics-determined feature properties and make high-dimensional data 

computations cheaper. Wrappers must scan the space of all possible feature subsets and 

evaluate their quality by learning and evaluating a classifier using that subset [35]. All models 

contain prediction inaccuracies due to statistical noise, data sample size, and model type 

constraints [36]. Various machine learning algorithms, Logistic Regression, Naïve Bayes, 

SVM, Random Forest, and CNN, were chosen to train the machine learning model to detect 

SQLI attacks after considering the machine learning model’s training speed, scalability, and 

adaptability. The evaluation of the model’s performance will involve the utilization of several 

metrics, including the F1 score, precision, recall, and overall accuracy of the model. Once the 

training process is completed, the model with the highest performance will be integrated into 

the web application’s backend. Various forms of SQLI attacks will be executed on the web 

application in order to evaluate the effectiveness of the SQLI detection system. 

 



CHAPTER 3 

                                                                  41                                                                                                             
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 

3.2  System Design Diagram/Equation 

The comprehensive system that was designed comprises two components: hardware and 

software. The hardware employed in this system will consist of a laptop, which will function 

as the host for both the web application server and the trained machine learning model at its 

backend. In addition to this, the PC that includes Kali Linux will carry out web application 

attacks and analyze web packets. The hub makes a connection between the laptop and the PC 

and then broadcasts the received packet to all interconnected devices. The software included 

in this system is the machine learning model to detect SQLI attacks and the integration of the 

machine learning model into the web application server’s backend. This report will primarily 

focus on providing a comprehensive overview of the system design with respect to training a 

machine learning model to detect SQLI attacks. Figure 3.3 shows the overall machine learning 

model training flow to detect SQLI attacks. 

 

Figure 3.3: Overall machine learning model training flow to detect SQLI attacks. 

 

  The initial step entails the acquisition of several datasets from the open-source dataset 

provider websites. The datasets should include diverse SQL queries, encompassing both valid 

and malicious queries from various sources, such as web applications, network traffic, or 

databases. After acquiring the dataset, it becomes essential to engage in preprocessing 

procedures in order to effectively cleanse and organize the data for subsequent analysis. This 

stage encompasses the process of data cleansing and transformation. It involves the process of 
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removing duplicate, missing, and invalid labels and then transforming the data to valid data 

types for further analysis. The feature selection process is of utmost importance since it 

involves the careful selection of properties or features from a dataset, aiming to identify the 

most relevant ones for training machine learning models. In this case, vectorization converts 

the text into a numerical form that machine learning could understand. The preprocessed 

datasets will then be split into a training set to train the machine learning model and a test set 

to evaluate the system’s performance.  

The subsequent stage involves training machine learning models with the training set 

produced previously.  Machine learning algorithms: Logistic Regression, Naïve Bayes, SVM, 

Random Forest, and CNN were utilized to train the machine learning model. Following the 

completion of the training process, the models undergo evaluation using the test set that was 

generated previously, and the effectiveness of the model is evaluated using performance 

metrics such as accuracy, precision, recall, and F1 score. After achieving appropriate 

performance, the machine learning model with the highest accuracy will be saved and 

incorporated into the web application backend to enable the real-time detection of SQLI 

attacks. The last stage entails verifying and validating the real-time SQLI detection system. 

This encompasses comprehensive testing across diverse scenarios mentioned above in the 

verification plan. 

 

3.2.1  System Architecture Diagram 

The architecture of the system consists of a laptop hosting the web application and having the 

machine learning model running on its backends. Besides that, the system also includes a PC, 

which acts as an attacker to attack the web application. Figure 3.12 shows the detailed 

architecture diagram of the proposed system.  

 

Figure 3.4: The detailed architecture diagram of the proposed system. 
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1. Web application server: The web application server runs on a DVWA server. The 

web application has been deliberately created to include vulnerabilities that make it 

susceptible to SQLI attacks. As a result, it may be effectively utilised to conduct SQLI 

penetration testing on the server. In addition, the machine learning model will be 

executed on the server’s backend. Hence, in the event of an SQLI attack, the system 

would be able to capture the SQLI packet. Thus, the system would be able to identify 

and alert the web administrator on the occurrence of the SQLI attack. 

2. Kali Linux machine: A PC runs the Kali Linux operating system. The machine 

performs SQLI attacks on the web application server by using the tools SQLMap, which 

is available in Kali Linux.  

3. Hub: Hub is used to connect the web application server and the Kali Linux Machine in 

a local area network (LAN). It serves as a central point for connecting the devices and 

will broadcast all the packets received to the devices connected. 

 

3.2.2  Use Case Diagram and Description 

 

Figure 3.5: Use case diagram forSQLI detection system 
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Table 3.1: Use case description for SQLI detection system 

Use Case Name: Monitor Network Traffic ID: 1 Importance Level: High 

Primary Actor: Network Admin Use Case Type: Details, Essential 

Stakeholders and Interests: Network Admin – wants to monitor the network traffic on the 

web application 

Brief Description:   This use case outlines the process by which the network administrator 

can monitor the network traffic on the web application. 

Trigger  : Network admin wants to monitor the network traffic to ensure if there is 

any instance of SQLI attack. 

Type        : External 

Relationships: 

            Association          : Network Admin 

            Include                 : Check benign payloads, Check potential attacks, Generate SQLI  

         detection report 

            Extend                  :  

 Generalization      :   

Normal Flow of Events: 

1. The network admin runs the live prediction scripts to predict the sqli attack. 

2. The system will capture the live packet, preprocess it and store it in a log file.  

3. The system reads the log file line by line and performs prediction using the machine 

learning model deployed. 

4. The system outputs the prediction results and statistics and stores the benign and 

potential attacks in benign.txt and sqli_attacks.txt. 

 If the user wants to view the benign attack, 

   the S-1: Check benign payloads is performed. 

 If the user wants to view the potential attack, 

   the S-2: Check potential attacks is performed. 

 If the user wants to generate the SQLI attack report, 

   the S-3: Generate SQLI detection report is performed.  

SubFlows: 

S-1: check benign payloads 

1. The system returns all the prediction results of 0 

S-2: check potential attacks 

1. The system returns all the prediction results of 1 

S-3: generate SQLI detection report 

1. The system login to the sender's email using the sender’s email and password. 

2. The system adds message content containing the benign payload count, potential 

attack count, and percentage of potential attacks. 

3. The system connects to the Google SMTP server and sends the email to the recipient.  

Alternate/Exceptional Flows:  -  
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3.2.3  Activity Diagram 

 

Figure 3.6: Activity diagram for the SQLI detection system 
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The activity diagram depicted in Figure 3.6 outlines the general flow of the real-time SQLI 

detection system. Initially, the program commences packet capture from the web application 

and proceeds to save the captured packets into a log file. Subsequently, the system loads the 

pre-trained machine learning model, which has been saved and trained prior to this stage. The 

system then retrieves the payload information from the log file and utilizes the loaded model 

to make predictions regarding the nature of the payload. If the prediction yields a value of 0, 

indicating a benign payload, the system records the payload into the benign.txt file. Conversely, 

if the prediction is 1, signifying a potential SQLI attack, the system logs the payload into the 

sqli_attacks.txt file. Additionally, the system launches an application to display prediction 

statistics. Upon pressing the "Show Potential Attack" button, the system showcases the benign 

payloads, while pressing the "Send Attack Report using Email" button triggers the system to 

dispatch an attack report using email. Finally, pressing the "Show Benign Payload" button 

reveals the potential attack payloads. 
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CHAPTER 4 

System Design 

 

4.1  System Block Diagram  

 

Figure 4.1: System block diagram 

 

The implementation of this project is categorized into two modules: machine learning model 

training and sqli real-time detection. 
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4.1.1 Machine Learning Model 

Figure 4.2 illustrates the complete structure of training the SQLI detection machine learning 

model. 

 

Figure 4.2: Complete structure of machine learning model training 

 

Dataset Acquisition 

  The initial step involves obtaining a dataset that contains various SQLI attack queries 

from the open-source dataset provider website. The datasets should encompass a 

comprehensive representative collection of both malicious queries and benign data. In this case, 

two datasets, “sqli.csv” and “SQLiV3.csv”, were gathered from Kaggle, the open-source 

datasets provider [37]. The file named "sqli.csv" involves around 3951 distinct values, whereas 

the file named "SQLiV3.csv" contains approximately 30873 distinct values. 

 

Dataset Preprocessing 

  Various data processing and machine learning training libraries, such as Pandas, 

NumPy, NTLK, Keras, TensorFlow and scikit-learn, were imported before the preprocessing. 

Pandas is used for data manipulation, NTLK is used for natural language processing, NumPy 

is used for working with arrays and the other libraries are used for machine learning training. 

Due to the excessive number of columns in the "SQLiV3.csv" data, only the "Sentence" and 

"Label" columns will be chosen when it is imported. The column ‘Sentence’ in “sqli.csv” will 

be split into two columns, ‘Label’ and ‘Sentence’ as the label of the sentence is separated by a 

comma. Figure 3.6 shows the column ‘Sentence’ in “sqli.csv”. 
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Figure 4.3: The column ‘Sentence’ in “sqli.csv” 

The two datasets will then be merged into one DataFrame. Next, the duplicated and missing 

values will be removed from the DataFrame, and the rows with invalid labels will also be 

filtered from the DataFrame to improve the dataset’s quality. Besides that, all the columns 

‘Label’ in the DataFrame will be converted into integer data types to allow the machine 

learning algorithm to be interpreted.  

 

Datasets Vectorization 

  After the datasets are preprocessed, they will undergo vectorization to convert the 

textual data into numerical data suitable for machine learning models. The datasets are 

vectorized using CountVectorizer. The CountVectorizer tools facilitate the seamless 

integration of textual data into machine learning and deep learning models, specifically in the 

context of text classification.  

The parameter used includes min_df, max_df, and stop_words: 

1. min_df: This parameter determines the minimum frequency of a word inside a 

document that is required for it to be considered for inclusion in the vocabulary [38]. 

In this scenario, terms that have a frequency of occurrence in less than two documents 

will be omitted from the vocabulary. 

2. max_df: The parameter denotes the upper limit of the frequency of a word inside a 

document for it to be considered for inclusion in the vocabulary [38]. Words that have 

a frequency of occurrence above 80% across the documents will be omitted. 

3. stop_words: It specifies a list of common English stop words [38]. The 

stopwords.words(‘english’) is the list of common English stop words from the NTLK 

library. 
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Train and test set splitting 

  The vectorized datasets will then be divided into separate training and test sets. The 

training set will be used to train the machine learning model, while the test set will be used to 

evaluate the metrics of the model. The parameter “test_size = 2” is used to specify that 80% of 

the data will be used for training the machine learning model and 20% for evaluation.  

 

Machine Learning Model Training 

Machine learning algorithms: Logistic Regression, Naïve Bayes, SVM, Random Forest, 

and CNN were chosen to be utilized for training the datasets.  

1. Logistic Regression: The statistical model is used for classification and predictive 

analysis. It is used to assess the probability of the occurrence of an SQLI attack. It 

involves the utilization of a logit transformation on the odds, which represents the ratio 

of the probabilities of success to the probability of failure [39]. The logistic regression 

may be mathematically expressed using the following formulas [40]: 

𝑦 =
𝑒(𝑏0+𝑏1𝑋)

(1+𝑒(𝑏0+𝑏1𝑋))
                                                                                                  (1) 

 

where 

  𝑋 is the input value 

  𝑦 is the predicted output 

  𝑏0 is the bias or intercept term 

  𝑏1 is the coefficient of input (x) 

 

2. Naïve Bayes: The Naive Bayes algorithm is a supervised machine learning algorithm. 

It is a family of straightforward yet powerful probabilistic classifiers that rely on Bayes' 

theorem and assume independence across features [41]. Despite the adoption of this 

simple assumption, Naive Bayes classifiers are extensively utilised and have 

demonstrated remarkable performance in diverse machine learning applications, 

particularly in the domains of text classification and document categorization. 

Therefore, it is suitable for use in training the SQLI detection model. The following 

formula could represent it: 

𝑃(𝑌 = 1|𝑋) =
𝑃(𝑌=1)  𝜋𝑖=1 

𝑛 𝑃(𝑥𝑖|𝑌=1)

𝑃(𝑋)
                                                   (2)                                              
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where 

𝑃(𝑌 = 1|𝑋) is the probability that the input data X belongs to the SQLI attack 

  𝑃(𝑌 = 1) is the prior probability of class Y 

  𝑃(𝑥𝑖|𝑌 = 1) is the likelihood probability of observing feature 𝑥𝑖 given  

    that the data point belongs to an SQLI attack. 

             𝜋𝑖=1 
𝑛  is the multiplication of the probabilities for all individual features 

            𝑥1, 𝑥2, … , 𝑥𝑛   

P(X) is the marginal likelihood of observing the features X across all classes. 

 

3. SVM: It is a highly potent and adaptable supervised machine learning method 

employed for the purposes of both classification and regression applications. It exhibits 

a high degree of suitability for tasks that necessitate the identification of a distinct 

boundary or decision boundary across various categories. SVM has the mathematical 

formula of: 

 

𝑃(𝑌 = 1|𝑥) =
1

1+exp (−𝑓(𝑥))
                                                                                             (3) 

where 

  𝑃(𝑌 = 1|𝑥) is the probability that input x belong to SQLI attack 

  𝑓(𝑥) is the decision function  

 

4. Random Forest: It is an ensemble method commonly employed in machine learning 

for the purposes of classification and regression. Besides that, it is also an adaptable 

and robust technique that combines predictions derived from numerous decision trees 

to generate a more precise and accurate prediction. The random forest approach uses 

decision trees using bootstrap samples from a training set with replacement. Another 

randomization will be added through feature bagging, increasing dataset diversity and 

decreasing decision tree correlation. Figure 3.7 shows the working principle of Random 

Forest. 
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Figure 4.4: Working principles of Random Forest [42]. 

 

5. CNN: A deep learning framework that may be customised to detect SQLI attacks in 

textual data. CNN has traditionally been predominantly utilised in the field of computer 

vision. However, they may also be effectively employed in the analysis of sequential 

data, such as text, for a wide range of NLP applications.  

 

Model Evaluation 

After training the machine learning model, the performance of the trained SQLI detection 

model should be measured by employing suitable evaluation metrics, such as accuracy, 

precision, recall, and F1-score. Among all the machine learning models, the CNN model has 

the highest accuracy and has been selected to be implemented into the SQLI detection system. 

 

4.1.2 SQLI real-time detection 

Live Packet Sniffing and logging 

Using the packet sniffing library PyShark, network traffic from the web application 

interface was captured in real-time. This enabled the retrieval of key features from the collected 

packets, enabling real-time network traffic analysis. PyShark is a Python module that serves as 

a tool for the Wireshark network packet analyzer. Python developers can use it to interact 

directly with network traffic that is either collected in real-time by Wireshark or stored in 

packet capture (PCAP) files. PyShark offers a user-friendly Pythonic interface for accessing 

several aspects of network packets, including protocol fields, packet payloads, timestamps, and 

packet information. PyShark enables developers to programmatically execute tasks such as 
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packet inspection, protocol analysis, traffic monitoring, and network forensics using Python 

scripts. This library is frequently utilized in network security, network monitoring, and 

troubleshooting applications where network traffic analysis is crucial.  

As the packets are captured, each packet is iterated and checks if it contains an HTTP 

layer. If an HTTP layer is present, it extracts the HTTP chat data from the packet, decodes it 

using URL decoding, and searches for occurrences of the string 'id='. If 'id=' is found, it extracts 

the payload starting from 'id='. After cleaning the payload by removing unnecessary characters, 

it writes the payload to the log file. 

 

SQLI attack detector 

After logging the HTTP traffic into the log.txt file, a Python script was employed to 

monitor the log file, which contained payloads extracted from the captured network traffic. It 

sequentially processes each line in the log file, extracting the payloads and converting them 

into a numerical vector representation. It then utilizes the trained model to make predictions on 

whether the payloads indicate SQLI attacks. When a payload is categorized as an attack, it is 

recorded in a text file. Afterwards, the network administrator can choose to send a report 

containing statistics on SQLI attacks, along with the benign and attack payload files to their 

email. 
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4.2  System Components Specifications  

The real-time SQLI detection system comprises several key components: packet sniffing 

module, logging module, feature extraction module, machine learning and detection module, 

email reporting module, live graph animation module, and GUI interface module. 

 

Packet Sniffing Module 

The packet sniffing module, developed with PyShark, allows for the live capture of network 

packets from the web application interface. The system constantly monitors network traffic, 

primarily focusing on HTTP packets that may include SQLI payloads, enabling the 

identification and analysis of possible threats. 

Logging Module 

The logging module captures HTTP packets and records the extracted payloads in a specified 

log file called log.txt. This module functions as the first stage in recording the collected network 

data, enabling further processing and inspection by other components of the system. 

Feature Extraction Module 

The feature extraction module preprocesses the recorded payloads by decoding URLs and 

removing unnecessary characters. The process involves extracting relevant features from the 

payloads and converting them into numerical vectors in order to prepare them for feeding into 

the machine learning model developed to identify SQLI. 

 

Figure 4.5: Script containing packet sniffing, logging and feature extraction module 
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Machine Learning and Detection Module 

This module is responsible for loading a pre-trained Convolutional Neural Network (CNN) 

model specifically tailored to detect SQLI attacks. In addition, it loads a pre-trained vectorizer 

that converts payloads into numerical vectors. The combination of these components allows 

the model to analyze the extracted features and determine whether a payload is an SQLI attack. 

The detection module sequentially processes the recently logged payloads, retrieves them, and 

converts them into vector format using the loaded vectorizer. Subsequently, it utilizes the pre-

trained Convolutional Neural Network (CNN) model to make predictions on SQLI threats 

using the extracted attributes. The prediction results determine whether possible attacks and 

benign payloads are logged into distinct text files (sqli_attacks.txt, benign.txt) for subsequent 

examination and reporting. Figure 4.6 shows the script containing the machine learning and 

detection module. 

 

Figure 4.6: Script containing the machine learning and detection module 
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Email Reporting Module 

The email reporting module delivers attack reports using email. These reports include statistics 

on SQLI attacks and payload files. The system gathers pertinent data, including the number of 

benign payloads and possible SQLI attacks, and organizes it into a structured report. 

Additionally, it includes the benign and possible SQLI attack payload files to be used by the 

network administrator to perform reports or further analysis. Figure 4.7 shows the script 

containing the email reporting module.  

 

Figure 4.7: script containing the email reporting module 
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Live Graph animation module 

The live graph animation module generates an animated bar chart that displays the distribution 

of benign and attack payloads over time. This visualization enables users to dynamically 

monitor changes in payload counts, offering valuable insights into traffic statistics. Figure 4.8 

shows the script containing the live graph animation module. 

 

Figure 4.8: script containing the live graph animation module  
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GUI Interface Module 

The GUI interface, created using the Tkinter library, offers users a user-friendly platform to 

interact with the SQLI detection system. The system displays real-time statistics, which include 

the number of benign data and possible attackers. It also provides features for sorting data and 

sending attack reports through email. Figure 4.9 shows the script containing the GUI interface 

module. 

 

Figure 4.9: script containing the GUI interface module 
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CHAPTER 5 

 

System Implementation 

 

5.1  Hardware Setup 

The computing device utilized in this project is a laptop. The laptop will be utilized to 

train the SQLI attack detection machine learning model. The laptop will also integrate the real-

time SQLI detection system into the backend of the web application. Besides that, the laptop 

is also used to host the web application, with the detection model running on its backend. A 

PC that runs the Kali Linux operating system will also be required to perform the SQLI attack 

against the web application. Table 3.1 shows the specifications of the laptop. 

Table 3.1 Specifications of laptop 

  

Besides that, the network hub is utilized to link the laptop and PC. The network hub functions 

by broadcasting packets to all devices that are linked to it. When a device transmits data to the 

hub, it functions solely as a conduit, relaying the data to all other devices linked to its ports 

without employing any form of intelligent decision-making to identify the intended receiver.  

 

 

 

 

 

 

 

 

Description Specifications 

Model HP Omen 15-ek1016TX 

Processor Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz  2.50 GHz 

Operating System Windows 11 

Graphic NVIDIA GeForce RTX3060 6GB 

Memory 16GB DDR4 RAM 

Storage 512GB SATA SSD 
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5.2  Software Setup  

The software utilized in this project is Anaconda. The use of Anaconda is justified due to 

its status as an open-source platform facilitating data science and machine learning procedures. 

Additionally, Anaconda integrates well-known machine learning frameworks, namely 

TensorFlow, Keras, and Scikit-learn, streamlining the training of machine learning models. 

Moreover, Python packages and libraries can be easily installed, upgraded, and removed 

through the Anaconda GUI. New virtual environments can also be created, allowing for 

separate management of packages and libraries from the host environment. Anaconda also 

offers Jupyter Notebook, facilitating the SQLi machine learning model training using various 

models from different libraries. 

In addition to Anaconda, the Kali Linux operating system is employed in this project. Kali 

Linux is an open-source operating system specifically developed to meet cybersecurity needs. 

It is a Debian-based Linux distribution offering extensive tools and information relevant to 

various aspects of cybersecurity. In this project, Kali Linux will act as the attacker, launching 

SQLi attacks against the web server on the host machine using tools such as SQLMap. Kali 

Linux will be installed on the PC using VMWare Workstation 17 Player with 4GB RAM, four 

processors, 64 GB of storage and a NAT network adapter. Figure 5.1 shows the specifications 

of the Kali Linux VM. 

 

Figure 5.1: Specifications of the Kali Linux VM. 
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VMWare Player is virtualization software that enables users to create and run multiple virtual 

machines on a single computer. Furthermore, a DVWA server obtained from [43] is hosted on 

VMWare Workstation 17 Player to provide a testing environment for launching SQLi attacks 

against the web server. The virtual machine has 2GB RAM, two processors, 25GB of storage, 

and a NAT network adapter. Figure 5.2 shows the specifications of the DVWA server. 

 

Figure 5.2: Specifications of the DVWA server. 

 

PyCharm is also utilized in this project. PyCharm is an integrated development 

environment (IDE) developed by JetBrains for Python programming. It is chosen as the IDE 

for its wide range of built-in features, including code analysis, graphical debugger, integrated 

unit tester, and version control system integration. Thus, it provides a comfortable environment 

for writing, debugging, and deploying the machine learning model into the SQLi detection 

system. PyCharm also contains a wide range of Python libraries such as pyshark and tkinter 

that can be selected to run for specific use cases." 
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5.3  Setting and Configuration  

Several configurations and settings are needed throughout the process of building up the system 

to detect SQLI using machine learning. It includes setting up the environment variables for 

Anaconda as well as PyCharm 2024.1 in the host machine. Figure 5.1 shows the Anaconda in 

the GUI version. 

 

Figure 5.3: Anaconda in GUI version 

Setting up an Anaconda environment for SQLI detection using machine learning entails 

building a virtual environment, installing the required libraries, and customizing the 

environment for research and experimentation. Upon installing the Anaconda program, the 

latest Python version will be included as a part of the installation process. Besides that, an 

environment named “gpu” was also created to train the machine learning models. The required 

libraries, such as Pandas, TensorFlow, Scikit-Learn, and Numpy, also need to be installed to 

train the machine learning models.  
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Besides that, the Python interpreter should also be configured for the development of the real-

time SQLI detection system. Figure 5.2 shows the Python interpreter settings in the PyCharm 

IDE. 

 

Figure 5.4: Python Interpreter Settings in PyCharm IDE 

 After the preliminary configuration, the subsequent pivotal stage in PyCharm configuration 

entails the creation of a new virtual environment that is in accordance with the installed version 

of Python. After creating the project, navigate to the settings to customize the Python 

interpreter to operate exclusively within the virtual environment. The customized environment 

facilitates the implementation of packages, including pyshark, TensorFlow, Tkinter, and 

SMTPLib, which are indispensable for developing the SQLI detection system. It is worth 

mentioning that the dependencies on these packages and modules deployed in the virtual 

environment are effectively managed and only manifest within the boundaries of that particular 

environment. This feature improves the stability and reproducibility of the project. 
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5.4  System Operation (with screenshot) 

The SQLI Detector application integrates functions including attack detection, live statistics, a 

live payload distribution chart, display of benign payloads, display of potential attacks, and 

sending attack reports, all within a graphical user interface (GUI). Figure 5.5 illustrates the 

GUI of the SQLI Detector application. The content within the application updates every 1 

second. 

 

Figure 5.5: SQLI Detector application GUI 
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When the “Show Benign Payloads” or “Show Potential Attacks” button is pressed, a scrolled 

text widget containing the live benign or potential attack payloads will be displayed on the 

application. Figure 5.6 shows the benign payloads displayed on the application upon pressing 

the “Show Benign Payloads” button. Figure 5.7 shows the potential attack payloads displayed 

on the application upon pressing the “Show Potential Attacks” button. 

 

Figure 5.6: Benign payloads displayed on the application 

 

 

Figure 5.7: Potential attack payloads displayed on the application 
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Furthermore, upon pressing the "Send Attack Report" button, the SQLI attack report will be 

dispatched to the network administrator's email. This report will encompass statistics regarding 

benign payloads, potential attacks, and the percentage of potential attacks. Additionally, the 

email will include attachments of both the sqli_attacks.txt and benign.txt logs, providing the 

network administrator with essential data to investigate and report on the incident. Figure 5.8 

depicts the content of the attack report email received by the recipient. 

 

Figure 5.8: content of attack report email received by the recipient 
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5.5  Implementation Issues and Challenges 

  There are several challenges to implementing the setup on the real-time SQLI detection 

system. The slow training process in the deep learning model, CNN, indeed presents a 

significant challenge. As the CNN model with six layers and over 300,000 parameters is 

relatively complex, training the model requires more computational resources and time 

compared to a simpler model due to the increased number of operations involved in each 

forward and backward pass during training. Hence, libraries such as keras-gpu and tensorflow-

gpu were installed to enable GPU hardware accelerators to address the challenges. There are 

also some version compatibility issues as the tensorflow-gpu and keras-gpu libraries are 

required to match certain versions of tensorflow and keras libraries. For instance, tensorflow-

gpu 2.6.0 is required to be installed with tensorflow 2.6.0. Figure 5.9 shows the version of 

tensorflow in the Anaconda Navigator. 

 

Figure 5.9: Version of tensorflow in the Anaconda Navigator 

  Besides that, saving the CNN model in the pickle format is also a challenge, as the 

model is too large. This is because Pickle is only suitable for storing small to medium-sized 

models as it contains limited file size. Another alternative method, saving the model in HDF5 

format, is used to address the issue. HDF5 is a prevalent file format used for storing large 

numerical datasets. It is compatible with several deep learning frameworks, such as 

TensorFlow and PyTorch. It enables the efficient storing and retrieval of extensive arrays and 

is well-suited for handling substantial model weights. Figure 5.10 shows the error when trying 

to save the CNN model in pickle format. 

 

Figure 5.10: The error is shown when trying to save the CNN model in pickle format 
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  Furthermore, deploying the model into a real-time SQLI detection system also presents 

several challenges. Some version compatibility issues were encountered while deploying the 

vectorizer and model into the detection system. For example, the model's version of the scikit-

learn library is 1.3.0, but the version of the scikit-learn library in PyCharm is 1.4.2. Hence, the 

version of the scikit-learn library in PyCharm must be downgraded to deploy the model into 

the detection system. However, ensuring compatibility between other dependencies and 

libraries to facilitate a smoother deployment process can be time-consuming. Despite the 

challenges, verifying and aligning version compatibility across all components is crucial to 

ensure the reliability and functionality of the deployed system. 

  Moreover, the process of extracting the HTTP info from the packet captured is also a 

challenge as there may be some data preprocessing requirements. HTTP payloads can be 

encoded using various schemes like URL encoding, UTF-8 encoding, or base64 encoding. 

Consequently, decoding URL-encoded HTTP data becomes necessary after packet capture. 

Additionally, to ensure high performance in detecting SQLI attacks, irrelevant strings from the 

payloads should be cleaned. These preprocessing steps are crucial for accurately analyzing 

HTTP payloads and enhancing the effectiveness of the SQLI detection system. Figure 5.11 

shows the payloads of the packet are encoded. 

 

Figure 5.11: The payloads of the packet are encoded 

 

5.6  Concluding Remark 

  This chapter summarizes the whole implementation of the real-time SQLI detection 

system, including hardware setup, software setup, setting and configuration, system operation, 

and implementation issues and challenges. 
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CHAPTER 6 

System Evaluation and Discussion 

 

6.1  System Testing and Performance Metrics 

The evaluation of system performance in the domain of SQLI attack detection by machine 

learning involves thoroughly assessing the system’s capacity to accurately and efficiently 

detect SQLI attacks while maintaining an excellent degree of accuracy. Evaluating a system’s 

success relies heavily on essential metrics such as accuracy, precision, recall, and F1-score. 

 

1. Accuracy: A metric that evaluates the system’s ability to correctly distinguish between 

SQLI attacks and legitimate queries. The metric represents the ratio of true positive and 

true negative to the overall total number of predictions made. A system’s high accuracy 

rate indicates its proficiency in making accurate classifications, hence minimizing the 

likelihood of false alarms or undetected attacks. Accuracy is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

2. Precision: A metric that refers to the system’s capacity to accurately identify 

occurrences of SQLI attacks classified as positive. The calculation involves 

determining the proportion of true positives to the sum of true positives and false 

positives. The characteristic of high precision indicates that the system exhibits a low 

frequency of misclassifying legitimate queries as attacks, hence minimizing the 

occurrence of false positives. The formula for precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

3. Recall: A metric that accurately evaluates the system’s ability to detect all real SQLI 

attacks. The calculation involves determining the proportion of true positives in relation 

to the total of true positives and false negatives. The concept of high recall indicates 

that the system effectively mitigates the possibility of ignoring real attacks, hence 

decreasing the occurrence of false negatives. The mathematical equation for the recall 

is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
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4. F1-score: A composite measure that effectively balances precision and recall. The 

metric offers an integrated evaluation that takes into account both the occurrence of 

false positives and false negatives. A greater F1 score signifies a better equilibrium 

between precision and recall, which is crucial in maximizing detection performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

6.2  Testing Setup and Result  

6.2.1 Attack Testing Setup 

DVWA Server 

After setting up the DWA server, we can use the command “ifconfig” to get the IP address of 

the DVWA server. Figure 6.1 shows the DVWA server’s IP address, which is 192.168.85.132. 

 

Figure 6.1: DVWA server and its IP address are shown using the ifconfig command 
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 Performing SQLI attack 

Figure 6.2 shows that we could access the DVWA using its IP address in Kali Linux’s browser. 

We could log in to the DVWA using the username admin and password. 

 

Figure 6.2: The DVWA server is accessible using its IP address in Kali Linux’s browser 

 

Figure 6.3 shows the index page/main page for the DVWA. The menu for the DVWA is located 

in the middle left corner of the website. We will perform an SQLI attack on this web server. 

 

Figure 6.3: The index page/main page for the DVWA in Kali Linux’s browser 
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We could easily change the website’s security level from low to impossible. In this case, we 

will use the medium security level of DVWA. Figure 6.4 shows the security level of the DVWA 

is set to medium. 

 

Figure 6.4: The security level of the DVWA is set to medium 

 

Next, we will use the Burpt Suite Community Edition to open a temporary project and open 

the browser from the proxy menu. We will open the DVWA again by using 192.168.85.132 

and go to SQLI. Figure 6.5 shows the proxy menu for the Burp Suite Community Edition, 

while Figure 6.6 shows the SQLI page for DVWA. 

 

Figure 6.5: The proxy menu for Burp Suite Community Edition 
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Figure 6.6: The SQLI page for DVWA 

 

After that, we will turn on the intercept from the Burp Suite Community Edition, enter the user 

ID 1, and submit to get the cookie for DVWA. Figure 6.7 shows the packet captured after 

submitting the User ID 1 to the DVWA on the SQLI page. It contains the cookie needed for 

the DVWA for the attack. Figure 6.8 shows the results of DVWA after we submit User ID 1 to 

the server. We will use the URL from Figure 6.8 to perform the SQLI attack. 

 

Figure 6.7: The package captured from DVWA after submitting the User ID 1 to the DVWA on the 

SQLI page 
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Figure 6.8: The results of DVWA after we submit User ID 1 to the DVWA. 

 

SQLMap is used to perform the SQLi attack on the DVWA. The website URL, cookies, and 

GET data are inserted into the code to perform an SQLi attack on the DVWA. Figure 6.9 shows 

the code used to attack the DVWA and its output. 

 

Figure 6.9: The code used to attack the DVWA and its output. 
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Figure 6.10 shows the GET parameter ‘id’ could be injectable using Boolean-based blind, 

error-based, time-based, and union-based SQLI.  

 

Figure 6.10: The GET parameter ‘id’ could be injectable using Boolean-based blind, error-based, 

time-based, and union-based SQLI. 

 

Besides that, Figure 6.11 also shows some of the boolean-based blind, error-based, time-based 

blind, and union query SQLI payloads to attack the DVWA. It also tells us that the back-end 

DBMS is MySQL. 

 

Figure 6.11: The payloads of boolean-based blind, error-based, time-based blind, and union query 

SQLI to attack the DVWA. 
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We could now enumerate the MySQL DBMS information, structure, and data contained in the 

tables by adding --dump commands to dump the DBMS database table entries for the DVWA. 

Figure 6.12 shows the output generated by adding the --dump commands to the previous code. 

 

Figure 6.12: The output generated by adding the –dump commands to the previous code. 

 

After accessing the data in the DVWA database, we could use the built-in dictionary-based 

attack function in the SQLMap to crack the hashed password using the MD5 encryption 

algorithm. Figure 6.13 shows the password cracked by using the built-in dictionary-based 

attack from the SQLMap. 

 

Figure 5.13: The password cracked by using the built-in dictionary-based attack from SQLMap 
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Capturing the Live Packet 

DVWA VM occupies the VMware Network Adapter VMnet8. Figure 6.14 shows the interface 

occupied by the DVWA VM. 

 

Figure 6.14: The interface occupied by the DVWA VM 

 

A Python script was written to capture live network packets from the VMware Network 

Adapter VMnet8 using the PyShark library, specifically targeting the HTTP packets. It decodes 

and retrieves the conversation data from each captured HTTP packet. If the data contains an 

“id=” parameter, it extracts the payloads starting from that parameter. The payload that has 

been extracted is further subjected to processing in order to exclude certain parts, such as 

“HTTP/1.1” and newline characters, prior to being recorded into a log file called “log.txt”. 

Furthermore, the payload is also shown on the console. Figure 5.19 shows the script to capture 

the HTTP traffic and log it continuously after extracting the pertinent data. 

 

Analyzing and detecting SQLI attacks from the packet captured 

After the HTTP traffic was logged into the log.txt, a Python script was used to monitor the log 

file containing payloads from the captured network traffic. It iterates over new lines in the log 

files, retrieves the payloads, transforms them into a numerical vector format, and uses the 

trained model to predict the SQLI attack. If a payload is classified as an attack, it is logged into 

a file “sqli_attacks.txt.” while benign payloads are logged into a file “benign.txt”. The function 

is scheduled to run again every second to monitor network traffic for potential SQLI attacks 

continuously. 
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6.2.2 Attack Results 

Figure 6.15 displays the payloads that were obtained from the DVWA and outputted on the 

console. 

 

Figure 6.15: Payloads captured from the DVWA 

 

Figure 6.16 shows the payloads stored in the log.txt. 

 

Figure 6.16: The payloads stored in the log.txt 
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Figure 6.17 shows the prediction results output on the console. 

 

Figure 6.17: Prediction results output on the console 

 

From the testing with 502 payloads, it contains: 

• 20 False Negative 

• 252 True Negative 

• 1 False Positive 

• 229 True Positive 

Table 6.1: Metrics obtained from the SQLI detection system 

Metrics Testing Results 

Accuracy 95.82% 

Recall 92.97% 

Precision 99.57% 

F1-score 96.16% 
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6.2.3 Results obtained from machine learning models 

The metrics for the different machine learning models were evaluated using accuracy_score(), 

precision_score(), recall_score(), and f1_score(). Table 6.2 shows the metrics obtained from 

the trained machine learning models. 

Table 6.2: Metrics obtained from the trained machine learning models. 

Model Accuracy Precision Recall F1 

Logistic Regression 94.76% 95.31% 94.76% 94.85% 

Naïve Bayes 81.69% 86.36% 81.69% 81.25% 

SVM 74.57% 93.31% 74.57% 79.93% 

Random Forest 93.11% 93.14% 93.11% 93.12% 

CNN 96.73% 92.16% 98.26% 95.11% 

  

From Table 4.1, Logistic Regression demonstrates robust performance across all 

evaluation metrics. The model has a notable level of precision, as it accurately identifies SQLI 

attacks with a success rate of 95.31%. The recall rate is also significantly high, suggesting that 

it successfully detects 94.76% of actual SQLI attacks. The F1-score, a metric that strikes a 

balance between precision and recall, demonstrates a commendable performance of 94.85%. 

Besides that, the performance of Naïve Bayes is commendable, although not as remarkable 

compared to the performance of Logistic Regression. The observed precision and recall metrics 

indicate a well-balanced approach. The F1-score demonstrates a satisfactory performance 

level, reaching 81.25%. Moreover, the SVM algorithm shows a notable precision score, 

indicating its efficacy in accurately predicting SQLI attacks. Nevertheless, the recall rate 

exhibits a decrease, indicating a potential failure to detect certain actual attacks. The F1-score 

demonstrates a satisfactory performance level of 79.93%. The Random Forest algorithm 

indicates robust and balanced performance across all evaluation metrics, with an F1-score of 

93.12%. It efficiently combines both high precision and recall. The random forest algorithm is 

also the second-best-performing algorithm for detecting SQLI attacks. CNN demonstrates 

superior performance in terms of accuracy and recall compared to all other models. The 

detection system shows a high recall rate of 98.26% and an accuracy of 96.73% in efficiently 

identifying SQLI attacks. Additionally, it maintains a commendable level of precision and 

achieves a high F1-score of 95.11%. In conclusion, the CNN model exhibits superior 

performance in terms of accuracy, recall, and F1-score, rendering it an exceptionally promising 

option for the detection of SQLI. Logistic regression and random forest have commendable 
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performance. In contrast, Naïve Bayes and support vector machines (SVM) offer lesser 

performance. Therefore, the CNN and Logistic Regression model will be chosen to integrate 

into the web application. 

 

6.3  Project Challenges  

The main challenge faced in this project is the production of novel datasets. The initial 

objective of the research was to generate a novel dataset through the execution of an SQLI 

attack using SQLMap. Nevertheless, SQLMap does not provide any capabilities to generate a 

log or record of the queries employed while exploiting the web application. Therefore, the 

approach has been revised to incorporate sourcing datasets from open-source websites and 

combining them to create a novel dataset. However, gathering and annotating datasets 

containing many benign and malicious queries can be tedious and may not always encompass 

all kinds of SQLI attacks observed in real-world scenarios.  

  Furthermore, the task of attaining a subtle equilibrium between precision and efficiency 

is an additional noteworthy obstacle. Machine learning models must effectively identify SQLI 

attacks while minimising the occurrence of false positives. Achieving this equilibrium requires 

careful feature engineering, selection of the appropriate model, and fine-tuning of 

hyperparameters. Therefore, a significant amount of time and effort was devoted to refining 

the models in order to achieve the best possible balance between accuracy and efficacy. 

Moreover, attackers could also employ various encoding techniques to obfuscate 

malicious payloads to pass through the SQLI detection system. For example, base64 encoding 

could be employed to encode the SQLI payloads into a format that appears as random 

alphanumeric characters. Hence, the common encoding method used by attackers should be 

acknowledged, and the specific decoding method should be incorporated into the system. 

Figure 6.18 shows the decoding method added to the system to address the encoding technique 

issue.  

 

Figure 6.18: decoding method added to the system 
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6.4  Objective Evaluation 

  The project objectives were meticulously achieved through a systematic approach that 

encompassed several key components. The initial phase focused on selecting and training 

suitable machine learning algorithms tailored for SQLI attack detection. Extensive datasets 

comprising both benign and malicious SQL queries were meticulously curated and 

preprocessed to ensure data integrity and quality. The best model was chosen through rigorous 

evaluation and experimentation with Logistic Regression, Naïve Bayes Classifier, SVM, 

Random Forest, and CNN. CNN was chosen as the model to incorporate into the SQLI 

detection system. 

  Besides that, the objective to improve the accuracy of the previous SQLI detection 

machine learning model by at least 2% was also met by enhancing the quality of datasets by 

collecting various and comprehensive datasets representing real-world instances of SLQI 

attack and non-legitimate queries. By preprocessing and merging two datasets containing 

different SQLI attack queries, several machine learning models are able to achieve the desired 

improvement in accuracy. Table 6.3 compares the previous SQLI detection machine learning 

model and our model accuracy. 

Table 6.3: Comparison with the previous SQLI detection machine learning model 

Model Previous Accuracy Current Accuracy 

Logistic Regression 92.61% 94.76% 

Naïve Bayes 90.23% 81.69% 

SVM 79.76% 74.57% 

Random Forest 84.40% 93.11% 

CNN 97.26% 96.73% 

 

  Moreover, the main objective of integrating real-time detection capabilities into the 

SQLI detection system has been successfully achieved by using the PyShark library to perform 

live capture of the web application interface while transmitting HTTP traffic. The system 

continuously monitors incoming SQL query data packets and preprocesses them to detect 

abnormal behaviour or patterns that are indicative of SQLI attacks. The security staff or 

network administrator could also choose to send the reports to themselves in the event of an 

SQLI attack. This is important as the network administrators could implement timely 

preventive measures to mitigate potential data loss or harm. Besides that, the low latency in 

detecting attacks underscores the system’s efficiency and responsiveness in safeguarding the 
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system against SQLI threats. Figure 6.19 shows the low latency in detecting SQLI attacks in 

the real-time SQLI detection system. 

 

Figure 6.19: Low latency in detecting SQLI attacks in the real-time SQLI detection system 

 

6.5  Concluding Remark 

Thorough testing methods were carried out to evaluate the efficacy and efficiency of 

the real-time SQLI detection system in order to wrap up system testing and performance 

metrics. Performance measures, including recall, accuracy, precision, and F1-score, were 

thoroughly evaluated to determine how reliable and strong the system was in detecting SQLI 

risks. Following extensive testing protocols, the system performed admirably, with high 

accuracy rates and few false positives. 

 Besides that, attack testing was launched against the system to assess the system’s 

resilience against various SQLI attack scenarios. Afterwards, the attack results were examined 

to assess the system's effectiveness in detecting SQLI attacks in real-time. Through the analysis 

of the system's reaction to various attack vectors, valuable information was obtained regarding 

its ability to identify attacks accurately, the frequency of false positive results, and its overall 

performance when faced with different levels of assault intensity and complexity. The solution 

exhibited strong capabilities in rapidly identifying and neutralising SQL injection attacks, 

enhancing the web application's security. 

 

 

 Moreover, the project successfully overcame substantial obstacles in creating novel 

datasets and achieving a careful equilibrium between accuracy and effectiveness in SQLI 
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detection. Transitioning from SQLMap to open-source websites for dataset acquisition was 

both time-consuming and necessary. Additionally, diligent feature engineering and model 

improvement played a vital role in reducing the occurrence of false positives. In addition, by 

implementing strong decoding techniques, such as addressing base64 encoding, the system's 

ability to withstand attacks using encoded payloads was enhanced. Despite facing obstacles, 

the system effectively created a real-time capability to detect SQL injection (SQLI), which will 

improve cybersecurity for web applications by continuously monitoring and adapting to 

emerging threats. 

  Lastly, the project goals were effectively accomplished by employing a thorough 

strategy, which involved the careful selection and training of machine learning models 

specifically designed for detecting SQL injections. We meticulously selected and prepared 

large datasets to verify the quality of the data. As a result, we chose CNN as the model to be 

integrated into the detection system. Furthermore, the goal of enhancing model accuracy by a 

minimum of 2% has been achieved, as demonstrated by the comparison of the old and current 

model performances. The utilisation of PyShark facilitated the seamless incorporation of real-

time detection capabilities, allowing for uninterrupted monitoring and prompt reaction to SQLI 

attacks. This effectively showcased the system's efficacy and ability to respond swiftly. 
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CHAPTER 7 

 

Conclusion and Recommendation 

 

7.1  Conclusion 

In conclusion, this project aims to tackle the major difficulty of mitigating SQLI attacks, 

which continue to pose a prominent and dynamic risk to the integrity and privacy of web-based 

applications and databases. Despite numerous attempts to mitigate these vulnerabilities, SQLI 

attacks persist as a prominent category among the OWASP Top 10 online vulnerabilities. 

Previous methods for detecting SQLI attacks, such as rule-based systems and tools like the 

"JDBC Checker" and “µ4SQLi”, have often exhibited limitations in their ability to monitor in 

real-time. The lack of proper security measures in web applications renders them vulnerable to 

SQLI attacks, as they frequently depend on manual inspections or regular scans. The dynamic 

nature of SQLI attacks, which now encompass zero-day attacks, has significantly diminished 

the efficacy of rule-based solutions in mitigating these innovative security risks.  

 This project presents a novel approach to address these urgent concerns by utilizing 

machine learning and real-time detection features. Machine learning algorithms: Logistic 

Regression, Naïve Bayes, SVM, Random Forest, and CNN are proposed to develop a 

better model for detecting SQLI. This is because machine learning algorithms can analyze large 

datasets, identify complex attack patterns, and adapt in real-time to emerging threats without 

the need for human intervention. This proactive strategy can yield significant efficiency in 

terms of time and resources while also enhancing the safety of the organization. Besides that, 

the system also includes a real-time monitoring functionality that is capable of capturing and 

processing incoming traffic for immediate analysis. This functionality guarantees that 

administrators can be notified of ongoing SQLI attacks, facilitating immediate responses to 

minimize potential harm. In contexts involving potential severe repercussions resulting from 

security breaches, a real-time detection and reporting feature could be of immense value in 

mitigating harm and optimising resource utilisation. The system could also be implemented on 

various platforms, such as Windows, Linux, or other IoT platforms, as it could achieve a very 

low latency in detecting the SQLI attack. 
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7.2  Recommendation  

  Several improvements could be made to this real-time SQLI detection system by using 

machine learning. We could continue to broaden and vary the datasets employed to train the 

machine learning models. This is because collecting additional real-world examples of SQLI 

attacks and non-legitimate queries is necessary to enhance the model’s ability to detect 

developing different SQLI attacks. Besides that, the mechanism to capture and decrypt the 

encrypted HTTPS traffic should also be incorporated as extending the system’s functionality 

to handle HTTPS packets could enhance the system’s effectiveness in real-time SQLI attack 

detection. Hence, integrating HTTPS packet capture and decryption would boost the overall 

security of the web application and mitigate the losses caused by the attack. Next, we should 

investigate supplementary decoding methods for effectively handling encoded payloads 

employed by attackers. This is because it is crucial to keep up with the latest encoding methods 

and integrate the appropriate decoding processes into the system to enhance the detection 

capabilities.  
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