

DETECTION OF SQL INJECTION ATTACK USING MACHINE LEARNING

BY

TUNG TEAN THONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2024

 ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: _DETECTION OF SQL INJECTION ATTACK USING MACHINE __

 _ LEARNING __

 __

Academic Session: __JAN 2024___

 I ________________TUNG TEAN THONG_______________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __11, Lorong BLM 5/10______

 __Bandar Laguna Merbok_____ _______Gan Ming Lee______

 _08000 Sungai Petani Kedah___ Supervisor’s name

 Date: ______23/4/2024_______ Date: ______23/4/2024_______

GML

 iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __23/4/2024______

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______TUNG TEAN THONG___________________________ (ID No:

__20ACB01238) has completed this final year project/ dissertation/ thesis* entitled

“___DETECTION OF SQL INJECTION ATTACK USING MACHINE LEARNING _” under the

supervision of ______GAN MING LEE_________ (Supervisor) from the Department of

___CN_____, Faculty/Institute* of _______FICT_______ , and __LIM JIA QI____ (Co-

Supervisor)* from the Department of ______CS______, Faculty/Institute* of

_______FICT_________.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(TUNG TEAN THONG)

*Delete whichever not applicable

 iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “DETECTION OF SQL INJECTION ATTACK USING

MACHINE LEARNING” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : ____TUNG TEAN THONG_____

Date : ___23/4/2024______

 v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Gan Ming

Lee, who gave me this bright opportunity to engage in this SQLI detection using machine

learning project. It is my first step to establishing a career in the cyber field. A million thanks

to you for supporting me throughout this project's journey.

To a very special person in my life, Liew Huan Yi, for her patience, unconditional support, and

love, and for standing by my side during hard times. Finally, I must say thanks to my parents

and my family for their love, support, and continuous encouragement throughout the course.

 vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The rapid proliferation of online services has led to a significant increase in the utilisation of

the internet. User data is considered the most precious asset of the firm; nonetheless, databases

are susceptible to many assaults and dangers. SQL injection (SQLI) refers to a specific type of

security vulnerability that occurs when unauthorised SQL code is inserted into web

applications to compromise databases, leading to potential consequences such as data breaches,

server disruptions, and data loss within an organisational context. Based on the literature review

findings, it has been observed that conventional techniques employed for detecting SQLI

attacks often exhibit limitations in their effectiveness and suffer from various drawbacks. This

work presents a novel real-time system for detecting SQLI attacks. The system utilises a

machine learning approach to train and enhance its ability to identify and prevent SQLI attacks

accurately. The machine learning algorithms employed in this study encompass Convolutional

Neural Networks (CNN), Logistic Regression, Naïve Bayes Classifier, Support Vector

Machine, and Random Forest. The system covers multiple stages: project pre-development,

data pre-processing, feature selection, machine learning model selection, model training, model

testing, implementation, and assessment. Integrating this system into the backend of the web

application server would augment the safety and security measures of the online application.

The system will undergo real-time monitoring through periodic analysis of website traffic

statistics. Upon detection of a SQLI attack, the system will generate and transmit a

comprehensive report to promptly warn the network administrator of the occurrence of the

attack. This notification enables the administrator to undertake the necessary measures to

address the vulnerability by applying appropriate patches to the web application.

 vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Research Objectives 3

1.3 Project Scope and Direction 4

1.4 Impact, Significance, and Contributions 5

1.5 Background Information 2

 1.5.1 SQL Injection (SQLI) 6

 1.5.2 Types SQLI 8

1.6 Report Organization 10

CHAPTER 2 LITERATURE REVIEW 11

2.1 Previous Works on SQL Injection Detection

2.1.1 JDBC Checker: A Static Analysis Tool for SQL/JDBC

Applications

 2.1.2 Automated Testing for SQL Injection Vulnerabilities: An

 Input Mutation Approach

11

11

13

 2.1.3 AMNESIA: Analysis and Monitoring for NEutralizing SQL-

 Injection Attacks

16

 2.1.4 Detecting SQL injection attacks in cloud saas using machine

learning

20

 viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 2.1.5 Hybrid Approach to Detect SQLI Attacks and Evasion

Techniques

23

 2.1.6 A CNN-based Approach to the Detection of SQLI Attacks 26

 2.1.7 SQLI Detection using Machine Learning and CNN 30

 2.1.8 SQLI Detection using Machine Learning Techniques and

Multiple Data Sources

32

3.1 Summary of the previous works on SQLI 36

3.1 Proposed Solution Compared to Previous Work 38

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH OR SYSTEM

MODEL

39

3.1 Design Specifications 39

3.2 System Design Diagram/Equation 41

3.2.1 System Architecture Diagram 42

3.2.2 Use Case Diagram and Description 43

3.2.3 Activity Diagram 45

CHAPTER 4 SYSTEM DESIGN 47

 4.1 System Block Diagram 47

4.1.1 Machine Learning Model 48

4.1.2 SQLI real-time detection 52

 4.2 System Components Specifications 54

CHAPTER 5 SYSTEM IMPLEMENTATION 59

 5.1 Hardware Setup 59

5.2 Software Setup 60

5.3 Setting and Configuration 62

5.4 System Operation (with Screenshot) 64

5.5 Implementation Issues and Challenges 67

5.6 Concluding Remark 68

 ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 69

6.1 System Testing and Performance Metrics

69

6.2 Testing Setup and Result 70

6.2.1 Attack Testing Setup 70

6.2.2 Attack Results 78

6.2.3 Results obtained from machine learning models 80

6.3 Project Challenges 81

6.4 Objectives Evaluation 82

6.5 Concluding Remark 83

CHAPTER 7 CONCLUSION AND RECOMMENDATION 85

7.1 Conclusion 85

7.2 Recommendation 86

REFERENCES 87

 APPENDIX 92

 WEEKLY LOG 92

 POSTER 98

 PLAGIARISM CHECK RESULT 99

 FYP2 CHECKLIST 105

 x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 The Common Weakness Enumeration (CWE) Top 25 Most

Dangerous Software Weaknesses of 2022

6

Figure 1.2 An overview of how attackers get unauthorized access to

the website database by using SQLI

7

Figure 2.1 The overview of JDBC Checker analysis and the tool

architecture outline

11

Figure 2.2 Detailed flow of AMNESIA architecture 17

Figure 2.3 The major phases to detect SQLI 20

Figure 2.4 The ranking of the features using Chi-Square 21

Figure 2.5 Principal component analysis (PCA) visualization of the

malicious and non-malicious input

22

Figure 2.6 The header of the raw HTTP request packet 24

Figure 2.7 The architecture of the detection component of the hybrid

injection prevention system

24

Figure 2.8 The CNN model built 27

Figure 2.9 Comparison between CNN and different machine learning

classifier models

28

Figure 2.10 Methodology of the proposed system 30

Figure 2.11 The general procedure for the proposed system 32

Figure 2.12 The network architecture of the proposed system 33

Figure 3.1 Overall development phase of the project 39

Figure 3.2 The prototyping methodology that will be used throughout

the project

40

Figure 3.3 Overall machine learning model training flow to detect

SQLI attacks

41

Figure 3.4 The detailed architecture diagram of the proposed system 42

Figure 3.5 Use case diagram forSQLI detection system 43

Figure 3.6 Activity diagram for the SQLI detection system 45

Figure 4.1 System block diagram 47

Figure 4.2 Complete structure of machine learning model training 48

 xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3 The column ‘Sentence’ in “sqli.csv 49

Figure 4.4 Working principles of Random Forest 52

Figure 4.5 Script containing packet sniffing, logging and feature

extraction module

54

Figure 4.6 Script containing the machine learning and detection

module

55

Figure 4.7 Script containing the email reporting module 56

Figure 4.8 Script containing the live graph animation module 57

Figure 4.9 Script containing the GUI interface module 58

Figure 5.1 Specifications of the Kali Linux VM 60

Figure 5.2 Specifications of the DVWA server 61

Figure 5.3 Anaconda in GUI version. 62

Figure 5.4 Python Interpreter Settings in PyCharm IDE 63

Figure 5.5 SQLI Detector application GUI 64

Figure 5.6 Benign payloads displayed on the application 65

Figure 5.7 Potential attack payloads displayed on the application 65

Figure 5.8 Content of attack report email received by the recipient 66

Figure 5.9 Version of tensorflow in the Anaconda Navigator 67

Figure 5.10 The error is shown when trying to save the CNN model in

pickle format

67

Figure 5.11 The payloads of the packet are encoded 68

Figure 6.1 DVWA server and its IP address are shown using the

ifconfig command

70

Figure 6.2 The DVWA server is accessible using its IP address in Kali

Linux’s browser

71

Figure 6.3 The index page/main page for the DVWA in Kali Linux’s

browser

71

Figure 6.4 The security level of the DVWA is set to medium 72

Figure 6.5 The proxy menu for Burp Suite Community Edition 72

Figure 6.6 The SQLI page for DVWA 73

Figure 6.7 The package captured from DVWA after submitting the

User ID 1 to the DVWA on the SQLI page

73

 xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.8 The results of DVWA after we submit User ID 1 to the

DVWA

74

Figure 6.9 The code used to attack the DVWA and its output 74

Figure 6.10 The GET parameter ‘id’ could be injectable using Boolean-

based blind, error-based, time-based, and union-based

SQLI.

75

Figure 6.11 The payloads of boolean-based blind, error-based, time-

based blind, and union query SQLI to attack the DVWA

75

Figure 6.12 The output generated by adding the –dump commands to

the previous code

76

Figure 6.13 The password cracked by using the built-in dictionary-

based attack from SQLMap

76

Figure 6.14 The interface occupied by the DVWA VM 77

Figure 6.15 Payloads captured from the DVWA 78

Figure 6.16 The payloads stored in the log.txt 78

Figure 6.17 Prediction results output on the console 79

Figure 6.18 Decoding method added to the system 81

Figure 6.19 Low latency in detecting SQLI attacks in the real-time

SQLI detection system

83

 xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1 The overview of the test programs used to test the JDBC

Checker and the summary of the results

12

Table 2.2 Summary of the mutation operators that are classified into

behaviour-changing, syntax-repairing, and obfuscation

operators

14

Table 2.3 Results of Std and µ4SQLi on the open-source systems

when no WAF is enabled

15

Table 2.4 Results of Std and µ4SQLi on the open-source systems

when WAF is enabled

15

Table 2.5 Results of AMNESIA’s research on the detection of SQLI

attacks using different attack sets

19

Table 2.6 Performance metrics of the proposed machine learning

model

22

Table 2.7 The TCR value based on different proportions of SQLI

attack and legitimate request

25

Table 2.8 Composition of the experiment dataset 26

Table 2.9 Evaluation results of SQLI attack for CNN model and

ModSecurity

28

Table 2.10 Metrics of all the machine learning models used in the

system

31

Table 2.11 The machine learning results with 20000 record data 34

Table 2.12 Previous works on SQLI in terms of strengths and

limitations.

36

Table 5.1 Specifications of laptop 59

Table 6.1 Metrics obtained from the SQLI detection system 79

Table 6.2 Metrics obtained from the trained machine learning models. 80

Table 6.3 Comparison with the previous SQLI detection machine

learning model

82

 xiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

SQL Structured Query Language

SQLI SQLI Injection

SVM Support Vector MachineCNN

CNN Convolutional Neural Network

WAF Web Application Firewall

JSON JavaScript Object Notation

DNS Domain Name System

HTTP The Hypertext Transfer Protocol

JDBC Java Database Connectivity

JSA Java String Analysis

CFL Context-free Languages

GPU Graphics processing unit

FPGAs Field Programmable Gate Arrays

AMNESIA Analysis and Monitoring for NEutralizing SQL-Injection Attacks

ANN Artificial Neural Networks

HIPS Hybrid Injection Prevention System

DVWA Damn Vulnerable Web Application

TPU Tensor Processing Units

KNN K-Nearest Neighbours

KVM Kernel-based Virtual Machine

PC Personal Computer

TP True Positive

TN True Negative

FP False Positive

FN False Negative

XML Extensible Markup Language

NTLK Natural Language Toolkit

NLP Natural Language Processing

CHAPTER 1

 1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction

By the end of 2022, the global internet user population had surged to 5.3 billion, with

a staggering 1392% growth rate since 2000 [1]. The internet has become the primary

platform for doing business and transactions for organizations globally due to its rapid

development in usage. Meanwhile, the exponential rise in internet users and the quick

development of web technology have coincided with the explosion of online services,

such as e-commerce sites and massive data repositories. However, this growth has also

heightened security threats, allowing unauthorized entities to exploit web application

vulnerabilities and access sensitive data. At the core of this digital landscape lies the

utilization of relational databases, accessible through Structured Query Language

(SQL) for the execution of online transactions. SQL serves as a fundamental tool in

web development, enabling websites to interact with databases by issuing a range of

commands, including data retrieval, updates, insertions, and deletions through SQL

queries. SQL is frequently used to interconnect with and alter databases in order to

provide users with personalized data representations. Multiple components within SQL

serve essential functions, such as queries that facilitate data retrieval through SELECT

statements and the integration of user-provided variables. To provide an illustrative

example of this process, consider an imaginary situation where a user logs in to an e-

commerce platform by entering their credentials, namely a username and password, to

get access. A dynamically generated SQL query: “SELECT * FROM users WHERE

name = ‘username123’ and password = ‘password123’” is being executed at that

moment. This statement highlights the vital role of SQL in enhancing user experiences

and enabling safe access to online services. This exemplifies the crucial role of SQL in

ensuring secure online transactions and safeguarding user data within the dynamic

digital environment.

CHAPTER 1

 2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1 Problem Statement and Motivation

The detection of SQLI attacks is of the utmost significance in ensuring the integrity

and security of web-based applications and databases. However, several significant

obstacles and deficiencies have been uncovered in this field as these attacks routinely

maintain their position within the OWASP Top10 web vulnerabilities. A total of 1789

instances of SQLI vulnerabilities were discovered as Common Vulnerabilities and

Exposures (CVEs) in 2022 [2]. The existing SQLI detection approaches, such as the

MATLAB program called “SQLI Detector”, frequently exhibit a deficiency in real-time

monitoring capabilities [3]. Consequently, the accurate real-time detection and

prevention of SQLI attacks in web applications become challenging as they rely on

manual checks or sporadic scans. For illustration, rule-based systems are often

ineffective against new types of SQLI attacks, such as zero-day attacks.

Moreover, several systems are deficient in incorporating the trained machine

learning algorithms into their detection mechanisms [4, 5]. This deficiency poses a

hindrance to the identification of emerging attacks and requires regular manual updates,

hence imposing a significant burden on resources and time. In addition, the

categorization of SQLI attacks frequently proves inadequate nowadays [3, 7, 8, 9]. For

example, a system designed to detect SQLI may overlook other attack methods, such

as error-based or union-based assaults, if it is limited to recognizing just specified attack

types, such as inferential or time-based attacks. Consequently, this might result in the

occurrence of inaccurate positive or negative outcomes, thereby resulting in the

inefficient utilization of resources and an increased vulnerability to security breaches.

Nevertheless, the advancement of machine learning has the potential to improve the

accuracy and effectiveness of SQLI detection by allowing systems to adjust to emerging

attack patterns gradually. Therefore, this project aims to create a machine learning-

based SQLI detection model that can improve the real-time detection of SQLI and

enhance its accuracy. This will help reduce the risk of security breaches and safeguard

sensitive data.

CHAPTER 1

 3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Research Objectives

The main objective of this project is to incorporate a backend system that can detect

SQLI in real-time into the web application. The sub-objectives of the project encompass

selecting and training a suitable machine learning algorithm for the detection of SQLI

attacks and integrating the real-time detection machine learning model into the web

application.

This research focuses on selecting and training an accurate machine learning

algorithm to detect SQLI attacks. Extensive datasets containing valid and malicious

SQL queries are required to achieve this. Data preprocessing to remove duplicates and

missing values is also crucial. The model will be trained on in-band and inferential

SQLI attack data to enhance detection precision and efficiency while reducing resource

requirements. The chosen machine learning method will be integrated into the web

application’s backend.

Besides that, this project aims to improve at least 2% of the accuracy of the previous

SQLI detection machine learning model. To achieve this objective, we will try to

improve the quality of the datasets by gathering a varied and comprehensive dataset

that accurately represents real-world instances of SQLI attack queries and non-

legitimate queries. Two datasets containing different SQLI attack queries and non-

legitimate queries will be preprocessed and merged into a single data frame. Machine

learning models such as Logistic Regression, Naïve Bayes Classifier, and CNN will

then be trained with the datasets.

The integration of real-time detection capabilities into the SQLI detection system is

identified as another crucial aim. The use of real-time monitoring facilitates the

system’s ability to rapidly detect and identify SQLI threats as they transpire. This

entails the acquisition of data packets that are created during the transmission of HTTP

and MySQL traffic. The system can identify any abnormal behaviour or patterns that

may indicate the occurrence of a SQLI attack by ongoing surveillance of incoming SQL

query data packets. In the case of a security breach, it is imperative that the system

instantly initiates notifications and reports to system administrators or security staff.

This enables them to promptly implement preventative actions and limit any possible

loss or harm to data.

CHAPTER 1

 4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope and Direction

The primary objective of this project is to develop a real-time system for detecting

SQLI attacks, with the intention of integrating it into the backend of the online

application. Consequently, the web application will have a backend consisting of a

remote MySQL server and a real-time SQLI attack detection system to detect SQLI

attacks. In order to deploy the SQLI attack detection system, a few machine learning

models, Logistic Regression, Naïve Bayes Classifier, SVM, Random Forest, and CNN,

will first be trained. Subsequently, the most optimal machine learning method with the

highest accuracy will be selected for integration into the web application. In this

scenario, the machine learning model will exclusively undergo training utilizing just

in-band SQLI and inferential SQLI attack data. Hence, the system can solely identify

in-band SQLI and inferential SQLI threats. By integrating a machine learning model

into the web application, the system will possess the capability to identify and prevent

SQLI attacks autonomously.

In addition, the machine learning model that possesses real-time functionality will

be integrated into the SQLI detection system. The reason for this is that the real-time

SQLI detection system has the capability to monitor web traffic and databases

consistently. Hence, it would enable prompt notification to users, facilitating rapid

remediation of SQLI attacks as they occur. Implementing a real-time SQLI detection

system can potentially increase the security of online applications. By using this system,

the web application may automatically generate and transmit a detailed report to the

user, providing immediate details regarding any potential SQLI attacks. Therefore, it

has the potential to decrease the necessity for manual supervision and intervention of

the web server.

1.4 Impact, Significance and Contributions

The primary focus of this research project is creating a machine-learning model that

exhibits a remarkable accuracy rate beyond 92% in identifying SQLI attacks. The

presented accuracy benchmark serves as evidence of our steadfast dedication to

developing an advanced machine learning model that effectively detects SQLI risks in

web applications. By attaining this notable degree of accuracy, our research not only

propels the field of cybersecurity forward but also provides practical solutions for the

ongoing problem of SQLI attacks. The capability to identify SQLI attacks with a

CHAPTER 1

 5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

notable level of accuracy is a remarkable advancement in the realm of web application

security. This advancement plays a crucial role in mitigating the likelihood of data

breaches, unauthorized access, and related security vulnerabilities.

The integration of real-time detection and response capabilities into our system is a

significant advance in the field of cybersecurity. The utilization of real-time detection

mechanisms enables rapid identification of SQLI attacks upon their inception to

facilitate countermeasures. Consequently, it dramatically reduces the potential damages

that attackers might cause, lowering the likelihood of unauthorized access, data

breaches, and compromise of confidential data. By implementing real-time measures

to mitigate SQLI attacks, organizations may enhance the protection of their digital

assets and safeguard the confidentiality and integrity of vital information. The real-time

capability of the system not only results in time savings but also reduces the workload

on cybersecurity teams, allowing them to concentrate on higher-level security

initiatives instead of reactive problem-solving.

1.5 Background Information

The beginnings of SQLI may be traced to the beginning stages of web-based

application development when programmers started utilizing databases for the dynamic

retrieval and storage of data. With the increasing complexity of online applications, a

necessity for dynamic SQL queries emerged, which subsequently gave birth to SQLI

attacks. SQLI is a widely recognized and persistent cybersecurity threat that has harmed

web-based applications for an extended period. SQLI attacks had significant

repercussions, leading to a multitude of major data breaches and substantial financial

losses for organizations on a global scale. For instance, the hacker might target a

vulnerable website and use SQLI to launch an attack to gain access to the organization’s

sensitive data. The hacker group called Lulz Security launched the SQLI attack on Sony

and was able to gain unauthorized access to sensitive information, such as personal data

and login credentials, of over 77 million Sony PlayStation Network users as all the

information due to the poorly designed web application code [9]. The breach has caused

Sony to suffer enormous financial losses as well as a decline in customer trust.

The traditional methods for detecting SQLI, namely signature-based and rule-based

systems, have demonstrated limited effectiveness in addressing the constant evolution

of these security risks. These solutions frequently depend on pre-established patterns or

CHAPTER 1

 6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

rules, rendering them ineffective when confronted with novel and unique attack vectors.

Consequently, the cybersecurity industry has increasingly embraced machine learning

as a potentially effective approach to tackle the difficulty posed by SQLI vulnerabilities.

Machine learning utilizes algorithms driven by data to evaluate and identify patterns

within web traffic and user inputs. Machine learning models can differentiate between

regular and suspicious activity by training on extensive datasets that encompass both

valid and malicious SQL queries. This adaptive methodology enables machine learning

models to adapt and adjust to evolving attack patterns, thus enhancing their

effectiveness in real-world scenarios.

1.5.1 SQL Injection (SQLI)

 SQLI is a type of cyberattack in which SQL codes are inserted into user input

parameters such as web form to deceive the poorly-designed web application into

executing the hacker’s code on the database to access or manipulate the database [10].

A successful attack could result in unauthorized access to the user list, alteration or

elimination of tables and records, and acquisition of administrator privileges for the

database. These factors could lead to a substantial decline in revenue and customer trust

for the organization. SQLI vulnerability has been well recognized for over twenty years

and remains a significant problem today due to its potential for extensive damage. This

is especially true as new attack vectors emerge when the existing injection approaches

are refined and improved. Figure 1.1 shows SQLI was in the top three of the Common

Weakness Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses in 2022.

In contrast to the previous year, the ranking has experienced a shift from the sixth

position to the third position, accompanied by a notable score of 22.11.

Figure 1.1: The Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software

Weaknesses of 2022 [11].

CHAPTER 1

 7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 In order to identify vulnerable user input within a web application, an attacker must

first submit a number of random values into the argument field and observe the server’s

response. Consequently, the attacker could generate input content within a text file

containing the entire malicious SQLI payload used to execute the attack. Upon being

successfully transmitted by the attacker, the database will proceed to execute the

malicious SQL instructions. Using the example from the introduction, we will assume

that the user’s username is ‘user123’ and their password is ‘helloworld’. Hence, upon

the user’s login to the online shopping website, the SQL query “SELECT * FROM user

WHERE username = ‘user123’ and password = ‘helloworld’” will be executed within

the database. However, the attacker may execute the SQL attack by entering ‘OR 1 =

1’ instead of the correct password in the input field. The SQL query will execute

SELECT * FROM user WHERE username = ‘user123’ and password = ‘OR 1 = 1’ if

the website is poorly designed. The tautological statement “1 = 1” guarantees that the

attacker will consistently successfully login to the website, regardless of whether the

correct password is utilized. Based on research investigations, the inclusion of code

employing the “OR” operators alongside a “TRUE” assertion, namely in the form of

“1=1”, is sometimes referred to as a tautology [12]. The SQL query will return the

entirety of the user table’s data, enabling the attacker to obtain unauthorized access to

the victim’s confidential information. Figure 1.2 shows that the attackers can change

the SQL query by substituting their data with the user-supplied data by injecting the

malicious SQL code.

Figure 1.2: An overview of how attackers get unauthorized access to the website database by

using SQLI [13]

CHAPTER 1

 8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Indeed, a significant number of today’s websites and internet applications possess

robust mechanisms to mitigate such fundamental forms of cyberattacks effectively.

However, there are numerous and more sophisticated SQLI techniques as the attackers

constantly look for SQLI vulnerabilities on the internet, and the developers lack an

understanding of how SQLI vulnerabilities work. In addition, SQLI attacks are

inexpensive and straightforward to execute, but the consequences can be severe for the

victims. For instance, an attacker may initiate a SQLI attack using the JSON data-

sharing standard to circumvent traditional countermeasures such as Web Application

Firewall (WAF), which does not support JSON for inspecting SQLI [12].

1.5.2 Types of SQLI

Numerous techniques to employ SQLI can result in different major issues. SQLI

could also be divided into three major categories according to the methods used to

access the database backend data and the degree of possible harm they might cause. In

general, there are three main subcategories of SQLI: In-band SQLI, Inferential SQLI,

and Out-of-band SQLI [13]. Using these SQLI, an attacker might bypass the

authentication, access, alter, and remove data in a database.

1. In-band-SQLI

In-band-SQLI is the most prevalent and convenient SQLI attack. It occurs when the

attackers acquire the outcome directly over the same communication channel. For

instance, the outcome of the attack will be seen in the same web browser if the attacker

conducts the attack manually. The term “classic SQLI” also applies to in-band SQLI.

Union-based SQLI and error-based SQLI are the most popular methods of in-band

SQLI.

a) Error-based SQLI

Error-based SQLI is a variant of in-band SQLI that utilizes the database server’s

error messages to gather details about the database’s structure. The hacker will trick

the database into making a mistake by inserting false data into a query. In rare

circumstances, an attacker may enumerate an entire database using only error-based

SQLI.

b) Union-based SQLI

Union-based is a kind of in-band SQLI that utilizes the UNION SQL clause to get

results that blend sensitive data with legitimate information. In a union query attack,

the attacker will attach a malicious query to a query using the UNION operator. The

CHAPTER 1

 9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

malicious query will combine with that specific query to allow the hacker to access

the values of additional table columns.

2. Inferential SQLI

Inferential SQLI is sometimes referred to as blind SQLI since the attacker cannot

immediately see the results of the injected queries as no data is exchanged between the

web application and the attacker. Instead, the attacker enumerates the database, sending

payloads and monitoring the web application’s response and behaviour. Boolean-based

blind SQLI and time-based blind SQLI are the two forms of inferential SQLI.

a) Boolean-based Blind SQLI

Boolean-based blind SQLI is a type of inferential SQLI that depends on sending an

SQL query to the databases to force the application to provide a different response

according to whether the query produces a TRUE or FALSE result. The HTTP

response’s content might change based on the outcome. Even if the database doesn’t

return any information, a malicious attacker can still tell if the payload used returned

true or false. This is a typically lengthy approach when working with extensive

databases, as an attacker would have to enumerate the characters in a database.

b) Time-based Blind SQLI

Time-based SQLI is a form of inferential SQLI that requires submitting an SQL

query to the database, which makes it wait for a predetermined period before

replying. The web application’s response time will indicate whether the query

outcome is TRUE or FALSE.

3. Out-of-band SQLI

Out-of-band SQLI is uncommon as they need the database server for the web

application to enable some functionalities. The attack is called out-of-band SQLI if the

attack cannot be launched and the result cannot be gathered over the same channel. The

attacker will trick the victimized application into sending information to a remote

endpoint under his supervision rather than waiting for a response. This injection would

depend on the database server’s capability to send DNS or HTTP requests.

CHAPTER 1

 10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organization

The report begins with Chapter 1, providing an introduction to the research topic,

outlining the objectives, scope, and structure of the study. Chapter 2 presents a

comprehensive literature review on SQL injection attacks, machine learning-based

intrusion detection systems, and real-time detection methodologies, identifying gaps

and opportunities in the field. In Chapter 3, the methodology and approach employed

in developing the real-time SQLI detection system are detailed, covering data

collection, feature engineering, and machine learning model selection. Chapter 4 delves

into the system design, elucidating the architectural components, software

requirements, and design considerations. Chapter 5 focuses on the implementation

process, discussing software development, system configuration, and practical

challenges faced. The evaluation and discussion of the system's performance are

presented in Chapter 6, including experimental setup, testing methodologies, and result

analysis. Finally, Chapter 7 concludes the report with a summary of key findings,

recommendations for future research, and concluding remarks on the real-time SQLI

detection system.

CHAPTER 2

 11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Previous Works on SQL Injection Detection

2.1.1 JDBC Checker: A Static Analysis Tool for SQL/JDBC Applications

 (C. Gould et al. 2004) proposed a research paper about the development of a

static analysis tool to analyze dynamically generated SQL query strings in Java and

confirm whether they comprise any possible malicious queries. The JDBC Checker

uses the Java String Analysis (JSA) to dynamically check the user input type and thwart

SQLI attack dynamic attempts [14]. The approach is based on a mix of automatic-

theoretic methods [16] and a variation of the reachability issue for context-free

languages (CFL) [17, 18]. The analysis consists of two main steps:

1) Constructs a conservative representation of the produced query strings as a finite-

state automation by building on a static string analysis.

2) Statically check the finite state automation using a modified CFL reachability

technique.

Figure 2.1 shows the overview of the JDBC Checker analysis and the tool architecture

outline.

Figure 2.1: The overview of JDBC Checker analysis and the tool architecture outline [18]

Generally, it offers to discover and highlight probable SQL query issues and

hotspots and validate the validity of the SQL strings. It functions by listing all possible

SQL strings that could be executed statically across a specific application. Then, it will

check each one of those potential SQL strings for malicious content and semantic errors

instead of dynamically checking each query as it is generated at runtime. Although this

CHAPTER 2

 12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

approach was not designed to identify and prevent conventional SQLI attacks, it can be

used to avoid attacks that leverage type mismatches in a dynamically constructed query

string to cause damage to the underlying database, such as SQLI. JDBC Checker may

detect one of the fundamental causes of SQLIA vulnerabilities in programming, which

is incorrect data type checking.

Strengths

The JDBC checker is highly accurate in analyzing and determining the dynamically

generated SQL query strings in Java, as it has a very low false-positive rate. Table 2.1

shows the overview of the test program used to test the JDBC Checker and the high

accuracy of the results produced.

Table 2.1: The overview of the test programs used to test the JDBC Checker and the summary

of the results [15]

Limitations

Although the JDBC Checker has high accuracy and very low false-positive rates, it

cannot defend against a SQLI attack if the malicious SQL query has a proper type or

syntax. This is because JDBC Checker can only be used to determine the malicious

SQL codes. Besides, if there are a large number of possible SQL queries, enormous

storage space is needed, and it might affect the performance of the JDBC Checker as it

will slow down the time to complete the analysis. Besides, high costs are needed to buy

the storage space to store the possible SQL queries. Furthermore, the JSA library will

only support the Java programming language because the JDBC Checker needs it to

validate SQL queries. This implies that JDBC Checker won’t be able to identify the

SQLI when the hacker executes the SQLI using a language other than Java.

CHAPTER 2

 13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Solutions

SQLI attacks can be difficult to defend against if the SQL query has the right syntax

because traditional defence techniques consisting of input validation and parameterized

queries are useless in these instances. In this case, machine learning techniques may be

used to detect and categorize SQLI attacks based on data patterns such as the frequency

and sort of input parameters used in the query. Besides that, when confronted with a

large number of potential SQL queries, storing all of them and verifying them for

vulnerabilities can be time-consuming and resource intensive. To solve the problem,

we can implement a whitelist of known-to-be-secure SQL statements. This reduces the

number of queries that must be inspected for vulnerabilities. Furthermore, when JDBC

only supports Java, most of the SLQI attacks that use other programming languages

would not be detected and prevented. In this case, we could implement the system in

other programming languages with its SQLI detection libraries.

2.1.2 Automated Testing for SQL Injection Vulnerabilities: An Input Mutation

Approach

In this paper, (D. Appelt et al. 2014) proposed the idea of a black-box automated

testing technique called µ4SQLi [19]. The technique is built on a collection of mutation

operators that change inputs to produce new test inputs to cause SQLI attacks.

Additionally, there are several methods for integrating these operators, and multiple

operators can be used on the exact same input. This might produce inputs with new

attack patterns, raising the possibility of detecting SQLI vulnerabilities. More

particularly, it aims to provide test inputs that can get past web application firewalls

and produce SQL statements that can be executed. A WAF may stop SQLI attacks and

stop an exploit from being used against a weak web service. Therefore, effective test

inputs must thus pass past the WAF to reach the service. According to their intended

use, mutation operators can be classified into three classes: Behaviour-changing,

syntax-repairing, and obfuscation. The baseline strategy, which consists of 137

recognized attack patterns, is referred to as Std (Standard attacks). A catalogue of SQLI

patterns contains these patterns collectively, and they include several trendy attack

types, including Boolean-based and UNION query-based [20]. Table 2.2 provides a

summary of all mutation operators that are included in the µ4SQLi.

CHAPTER 2

 14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.2: Summary of the mutation operators that are classified into behaviour-changing,

syntax-repairing, and obfuscation operators [19].

Strength

The µ4SQLi can detect SQLI accurately using the black-box automatic testing

method, as it can generate new SQL queries containing new attack patterns. Therefore,

it could increase the accuracy of detecting the SQLI attack as the latest attack pattern’s

data could be used to train and improve the accuracy of the machine learning algorithm.

The T and Te % of Std and µ4SQLi on two open-source systems, HotelRS and

SugarCRM, are shown in Tables 2.3 and 2.4 in two distinct configurations, with and

without the presence of WAF. T is the total number of test cases that the database proxy

flags as producing SQL queries. Te is the total number of tests that can result in SQL

statements that are marked and can be executed.

CHAPTER 2

 15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.3: Results of Std and µ4SQLi on open-source systems when no WAF is enabled [19].

Table 2.4: Results of Std and µ4SQLi on the open-source systems when WAF is enabled [19].

 Besides that, µ4SQLi could also be used to detect numerous types of SQLI

vulnerabilities, such as union-based SQLI, error-based SQLI, and inferential SQLI.

Furthermore, µ4SQLi is also customizable. By defining the scan’s depth and the types

of vulnerabilities to look for, users may tailor the scan to focus on certain areas of

concern. Additionally, µ4SQLi might fix the inputs to eliminate any potential syntax

problems brought on due to the mutation operators in it.

CHAPTER 2

 16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

 Although µ4SQLi has a lot of positive aspects, there are also a few limitations.

Firstly, since µ4SQLi relies on human input to identify vulnerabilities, it might not be

able to detect the SQLI vulnerabilities correctly if user input is restricted or limited.

Besides, it will also be time-consuming and prone to human mistakes. Besides that,

although µ4SQLi could detect possible SQLI vulnerabilities, it cannot be used to solve

the SQLI, such as preventing and blocking the SQLI attack in real-time. Additionally,

executing the µ4SQLi demands a lot of resources due to its high calculation cost.

Therefore, high costs and more time are needed to maintain µ4SQLi.

Solutions

 When a SQLI detection system depends on human input to discover

vulnerabilities, it can be time-consuming and prone to human mistakes. In this case,

machine learning algorithms may be trained to detect SQLI attacks based on data

patterns without human intervention. This may be accomplished by training the

algorithm using previous data and then applying it to new data to find potential

vulnerabilities. Besides that, machine learning techniques may also be used to solve

real-time issues as machine learning can recognize SQLI patterns in real-time. Besides

that, machine learning could also forecast the possibility of SQLI attacks based on

previous data. Moreover, if executing the SQLI detection system requires a lot of

resources, SQLI detection may be offloaded to specialized hardware using hardware

accelerators such as GPUs or FPGAs, as it can boost performance while also lowering

the system’s resource requirements [21]

2.1.3 AMNESIA: Analysis and Monitoring for NEutralizing SQL-Injection

Attacks

 (W. G. J Halfond and A. Orso 2005) has proposed the AMNESIA tool that is

effective in detecting SQLI attacks. AMNESIA is built on previous work in model-

based security and programme analysis. It also employs a combination of static and

dynamic analysis techniques specially tailored to attack SQLI attacks [22]. Generally,

there are two phases in amnesia, which the static phase and the dynamic phase. In the

static phase, the AMNESIA technique first employs static programme analysis to

analyze the application script and dynamically develop a model of the appropriate

queries the application might generate. In the dynamic phase, it will then analyze all

CHAPTER 2

 17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

dynamically generated queries during execution and validates them for adherence with

the statically generated model. Queries that disrupt the model are flagged as outlawed

and blocked from running on the database. The notification about the blocked queries

will then be sent to developers of applications and administrators.

 AMNESIA is written in Java and comprises three modules using several current

technologies and libraries: The analysis, instrumentation, and runtime-monitoring

modules. The analysis module takes a Java web application as input and returns a list

of hotspots as well as SQL query models for each hotspot. Besides that, the

instrumentation module takes a Java web application and a list of hotspots produced by

the analysis module as input and instruments, each with a call to runtime monitor. Next,

the runtime monitoring module receives a query string and the identification number of

the hotspot that created the query as input. It will then fetches the SQL query model for

that hotspot and compares the query to the model. Figure 2.2 shows the detailed flow

of AMNESIA architecture. In the static phase, the instrumentation module and the

analysis module will take the web application input and produce an instrumented

version of the program and SQL query model for each hotspot in the application. In the

dynamic phase, the Runtime Monitoring Module will examine the dynamic queries as

users interact with the web application. When a malicious query is discovered to be an

attack, it is prevented and reported.

Figure 2.2: Detailed flow of AMNESIA architecture [22]

CHAPTER 2

 18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Generally, AMNSEIA consists of four main steps:

1) Identify hotspots: The application code is scanned to find the hotspots where

the code issues various SQL queries to the underlying database.

2) Build SQL-query models: After identifying the hotspot location, a query

model is constructed to describe all potential SQL queries that may be produced

there. The transition labels in the SQL query model are non-deterministic finite

automation and comprise SQL tokens such as delimiters and keywords.

3) Instrument Application: The web application is instrumented by calling a call

to the monitor before making the actual request to the database. The web

application monitoring process checks the query against an appropriate model

using two parameters: a string and a unique identifier.

4) Runtime monitoring: The application executes easily after detecting the

hotspot location during execution. Additionally, it compares the dynamically

created queries to the SQL query framework, rejecting and reporting those that

violate it.

Strengths

 AMNESIA is a tool that could detect and prevent SQLI attacks with a very low

runtime overhead and is almost negligible. For instance, the runtime overhead ranges

from 10 to 40 milliseconds in the investigation [22]. Besides that, AMNESIA may be

able to streamline the scanning process for discovering SQLI vulnerabilities within web

applications, allowing security experts to spot possible security problems and solve

them accordingly more quickly. Next, the automatic reporting tool in AMNESIA that

could send the reports to the administrators on discovered vulnerabilities, including the

type of vulnerability and its possible impact on the system, could assist the network

administrator in prioritizing and patching the vulnerabilities. Furthermore, AMNESIA

could also detect and prevent SQLI attacks with very high accuracy, as no legitimate

inputs were flagged as SQLI attacks in the test. Table 2.5 displays the results of

AMNSEIA’s research on the detection of SQLI attacks using different attack sets.

CHAPTER 2

 19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.5: Results of AMNESIA’s research on the detection of SQLI attacks using different

attack sets [22].

Limitations

 Although AMNESIA could produce a high accuracy in detecting SQLI attacks,

it might result in many false negatives if some correct queries that replicate the SQL

attack’s structure are used. Besides that, AMNESIA requires several steps that use

different tools, which could be challenging to configure and interpret correctly and

might require a high level of technical expertise to configure. Besides that, AMNESIA

could only detect several types of SQLI, such as tautology and union query [23].

Solutions

 If any queries that replicate the SQL attack’s structure are utilized, a SQLI

detection system may provide a false negative. To solve this issue, a variety of SQLI

detection techniques, including rule-driven and machine-learning approaches, can be

implemented. By integrating different methodologies, the system can lower the

likelihood of false negatives while increasing the accuracy of SQLI detection. Besides

that, consolidating several tools required for AMNESIA into a single platform is one

solution to the problem of complexity, and it requires several steps. This can help to

streamline the process and eliminate the need for many phases and tools. To solve the

problem of the detection of several types of SQLI, we could update AMNESIA to

incorporate more SQLI types. This could be performed by modifying the system

algorithms.

CHAPTER 2

 20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.4 Detecting SQL injection attacks in cloud saas using machine learning

 In this paper, (D. Tripathy et al. 2020) have proposed several machine learning

models to detect SQLI attacks in cloud SaaS. The machine learning algorithms include

AdaBoostClassifier, Stochastic gradient descent, Random Forest, Deep Learning using

Artificial Neural Networks (ANN), Tensor-Flow’s Linear Classifier and

BoostedTreesClassifier to detect SQLI attacks. The authors of this paper have created

a dataset by compiling and integrating several smaller datasets. As illustrated in Figure

2.3, the approach for detecting SQLI is separated into six major ordered phases:

problem definition, data collection and cleaning, feature engineering, model training,

and evaluation.

Figure 2.3: The major phases to detect SQLI [24].

 Following data gathering and cleansing, feature engineering takes place.

Besides that, unique features such as length and byte distribution, read or write

operation, SQL keywords, and nonprintable characters are constructed. Ten customized

characteristics that might be useful are categorized. Figure 2.4 depicts the feature rank

using Chi-square.

CHAPTER 2

 21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.4: The ranking of the features using Chi-Square [24].

 The length feature determines how long the input is. The feature Non-printable

characters, such as tabs and null characters, do not represent a written sign. The number

of punctuation characters in a payload that contains and is contained in the feature

punctuation characters. The Minimum byte feature describes the minimum byte value

of UTF-8 standards inside the input. A maximum byte feature, similar to the minimum

byte, is created. The Mean byte and standard deviation byte features define the mean

byte and standard deviation byte of the input payloads. Based on the SQL write

keyword, the Read/Write functionality determines if an input payload is a read or write

operation because writing operations are more important than reading ones. For

example, if an attacker deletes an account table or alters user information in a banking

application, it might cause a variety of problems for both users and service providers.

The number of unique bytes in a payload is described as distinct bytes. The SQL-

Keyword feature returns the number of SQL keywords included inside a payload.

Figure 2.5 illustrates a principal component analysis visualization of malicious and non-

malicious inputs. The chi-square measure is employed for feature assessment, which

assesses the chi-square between each feature and the objective and picks the appropriate

number of features with the best Chi-square scores.

CHAPTER 2

 22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.5: Principal component analysis (PCA) visualization of the malicious and non-

malicious input [24].

Strengths

 The proposed machine learning models can quickly analyze massive amounts

of data, making it ideal for dealing with a large volume of data and traffic in real-time.

This allows the model to analyze and detect potential SQLI attacks on a huge number

of requests in web applications in real-time. Besides that, the proposed machine

learning models could also analyze web traffic in real-time, allowing faster detection

of SQLI and preventing further damage to the database. Furthermore, the proposed

machine learning could adapt to shifting attack patterns and improve over time. As a

result, it will be suitable for web applications nowadays as new vulnerabilities and

attacks could arise rapidly. Furthermore, the proposed machine learning models have a

staggering level of accuracy in identifying SQLI attacks. Table 2.6 demonstrates the

performance metrics of the proposed machine learning model on 108072 payloads. The

random forest classifier defeated all other classifiers and attained an accuracy of 99.8%.

Table 2.6: Performance metrics of the proposed machine learning model [24].

CHAPTER 2

 23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

 The proposed machine learning models are considered superior in terms of

performance. However, the proposed machine learning models may be quite

complicated, making interpreting how the models make decisions challenging. It might

make it difficult for security experts to understand why the query was highlighted as a

possible SQLI breach, as no automatic reporting tool is available. Besides that,

deploying the machine learning model for identifying SQLI attacks in web applications

might result in performance overhead because the model must constantly be operating

and analyzing traffic. This may impact the user experience and demand the deployment

of additional resources to ensure the performance of the models.

Solutions

 As the machine learning model is complicated to implement and use, we could

include a system’s clear and detailed documentation, which includes step-by-step

instructions and examples. Besides that, creating a unique reporting tool that is tailored

to the developer’s or administrator’s unique reporting needs could solve the issue of no

automatic reporting tool for the machine learning model. Hence, a report will be

automatically generated and sent to the system administrator if an SQLI attack is

detected. Furthermore, the machine learning algorithms could also be tuned and

optimized to reduce the required resources. We could also implement a more efficient

machine learning algorithm to lower the number of resources needed.

2.1.5 Hybrid Approach to Detect SQLI Attacks and Evasion Techniques

 (A. Makiou et al. 2014) has proposed a hybrid injection prevention system that

uses two methods. The initial detection approach was based on pattern matching, which

is the same as a signature-based detection system. The HTTP protocol is written in

human-readable ASCII language. Headers employ text to characterize a client’s

(browser’s) request or a server’s response. An HTTP request typically begins with a

GET or POST method, followed by the URL and protocol version. The remainder of

the headers contain various pieces of information about the client, connection, content,

and others. To differentiate each heading, \r\n is used to separate them. Figure 2.6 shows

the example of the header of the HTTP request packet.

CHAPTER 2

 24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.6: The header of the raw HTTP request packet [25].

The dissection module proposed could be used to recognize the request components

separated by \r\n characters. However, prior to beginning the dissection, it must first

gather knowledge of security rules. Users are required to define security rules for the

body and every header. The dissector will only extract and parse the headers involved

in the inspection process since it is aware of them. The dissected URL string will be

passed to the detection component and will be inspected. If the URL contains SQLI

code, the detection component will reject the HTTP request. Figure 2.7 illustrates the

architecture of the hybrid injection prevention system’s detection component.

Figure 2.7: The architecture of the detection component of the hybrid injection prevention

system [25].

CHAPTER 2

 25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Machine learning techniques were applied in the second detecting approach. To

create this model, the authors gathered malicious code and trained the classifier on it

by extracting characteristics characterizing the attack. The Naïve Bayesian machine

learning classifier model is used in this case to determine the SQLI attack. The total

cost ratio (TCR) was used to assess the machine learning classifier’s performance.

Strength

 The proposed Hybrid Injection Prevention System (HIPS) that employs a

machine learning classifier and a pattern-matching inspection component could offer

full coverage of possible SQLI threats and evasion tactics by combining several

detection approaches. This reduces the possibility of false positives and negatives and

will enhance the system’s overall accuracy. Aside from that, the system might improve

the analysis of HTTP streams and the maintenance of security rules. Hence, it could

improve the system’s performance and save a lot of time in maintaining the system.

Furthermore, adopting the detection engine into the system could save the time of the

expertise as it automatically rejects the HTTPS request sent to the web application if

one security rule matches. Furthermore, if the system incorrectly identifies an SQLI

attack as valid material, the false negative will not affect the system’s overall

performance. Table 2.7 shows that the false negative does not affect the system’s

overall performance when the number of SQLI attacks and legitimate request

proportions increases.

Table 2.7: The TCR value based on different proportions of SQLI attack and legitimate

request

CHAPTER 2

 26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

 Although the proposed HIPS is a hybrid system, the hybrid system may be more

difficult to deploy and maintain than a non-hybrid system. Hence, deploying and

maintaining the system requires additional resources such as time, cost, and technical

expertise. Besides that, a hybrid system might create performance overhead as the

system must analyze the data from numerous detection methods. Hence, this can have

an influence on the user experience and may necessitate the deployment of additional

resources to ensure adequate performance.

Solutions

 HIPS is challenging to deploy and maintain as the hybrid system is complex. In

this case, cloud-based services, such as Microsoft Azure, can be used as they provide

ready-made solutions that are simple to adopt and manage. These services also allow

automated scaling and monitoring, making system management easier over time.

Besides that, the system architecture of HIPS could be optimized by optimizing the

algorithm used in the system to decrease the performance overhead.

2.1.6 A CNN-based Approach to the Detection of SQLI Attacks

 In this literature, (Luo, A et al., 2019) have proposed a SQLI attack detection

model based on CNN that leverages the high-dimensional aspects of SQLI behaviour

to address the SQLI issue effectively. Mutual exclusive datasets from various aspects

were gathered and divided into two parts: to train the CNN model and to compare the

efficiency of the CNN model and the traditional method ModSecurity. Table 2.8 shows

the composition of the experiment dataset.

Table 2.8: Composition of the experiment dataset [26]

Damn Vulnerable Web Application (DVWA) and SQLmap were used to carry out

actual attacks to achieve a successful data dump from the database. Additionally, a web

crawler was employed to simulate regular web access. The process of capturing

network traffic was conducted using the tcpdump tool. Zeek’s network analysis

CHAPTER 2

 27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

programme was employed to record network activities, specifically emphasizing HTTP

sessions [27]. A bespoke Zeek script was utilized to extract and cleanse payload data

for analysis. The payload traffic received by the victim host is used as input to construct

the CNN network model after gathering and cleansing the traffic data. Figure 2.8 shows

the CNN model built in this paper.

Figure 2.8: The CNN model built [26]

 The model contains three convolutional layers, CONV1, CONV2, and CONV3,

three pooling layers POOL1, POOL2, and POOL3, one full connectivity layer FC and

one hidden layer HL.

1. Convolutional layer: The three convolutional layers use the same padding=

“same” mode and excitation function “ReLU”. The three convolutional layers

differ in their convolution kernel architecture: POOL1:16@3*3, POOL2:

32@4*4, and POOL3: 64@5*5, all of which gradually expand in quantity and

size, leading to higher-dimensional features.

2. Pooling layer: The three pooling layers are all tested by the maximum pooling

procedure, with the pooling core size uniformly set at 2*2.

3. Fully connected layer: Every node within the layer is linked to all nodes within

POOL3 to integrate the characteristics taken from the preceding layer.

4. Hidden Layer: This layer performs the last processing before delivering output

to the classifier, decreasing data over-fitting and enhancing generalization.

CHAPTER 2

 28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Strength

 The proposed CNN model to detect SQLI attacks offers high scalability due to

the usage of the deep learning model, CNN. CNN has a remarkable ability to exhibit

scalability, enabling it to efficiently handle substantial quantities of data. This attribute

renders them well-suited for tasks that need the processing of large volumes of data.

Besides that, the usage of CNN in the model enables the system to effectively adjust

and accommodate new and evolving attack patterns through the process of data-driven

learning. Thus, it is more flexible than the traditional rule-based system for detecting

new or previously unseen attack vectors. The model also reduces false positive rates,

offering a high accuracy level while minimizing the false detection rate of SQLI attacks.

Table 2.9 shows the evaluation results of the SQLI attack for the CNN model with the

rule-based model, Mod Security. Besides that, Figure 2.9 compares different classifiers

between CNN and other machine learning models.

Table 2.9: Evaluation results of SQLI attack for CNN model and ModSecurity

Figure 2.9: Comparison between CNN and different machine learning classifier models [28]

CHAPTER 2

 29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

 Although the proposed CNN model to detect SQLI attacks could maintain high

accuracy and precision, it is often considered difficult to handle encrypted SQLI attack

traffic. Therefore, the efficiency of the system in detecting SQLI attacks may be

impeded when the network traffic is encrypted. Besides that, the system is resource-

intensive. Therefore, training and deploying CNN models may impose significant

computational demands and require extensive hardware resources, particularly when

dealing with the real-time processing of large network data. Additionally, CNN largely

prioritizes the analysis of local patterns within their receptive fields and may not possess

an innate comprehension of the semantic meaning of text data. As SQLI attacks

sometimes entail sophisticated manipulation of language, it might be difficult for the

system to understand the contextual details accurately.

Solutions

 As the system may have difficulties in handling encrypted SQLI attack traffic,

the vendor or the web application’s owner should regularly decrypt the SSL/TLS-

encrypted traffic to inspect it before forwarding it. For illustration, Wireshark could be

used in this instance [29]. This feature enables an investigation of the content to identify

and assess the presence of SQLI attacks. As training CNN requires a lot of resources,

we could incorporate hardware accelerators such as GPU or TPU to enhance training

efficiency for the CNN model. Next, we could employ efficient text preprocessing and

tokenization to transform the incoming text into a structure that more accurately

captures semantic information.

CHAPTER 2

 30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.7 SQLI Detection using Machine Learning and CNN

 (Jason, M. and Asha, S., 2023) has proposed an SQLI detection system using

various supervised machine learning techniques and the CNN model to perform real-

time detection and classification of possible SLQI attacks.

There are a total of four machine learning models studied and implemented into the

system:

1. Naïve Bayes: This technique implies attribute independence. Class distribution

contributes to reducing processing costs dramatically. In Gaussian Naïve Bayes,

Gaussian features are assumed. Gaussian distributions distribute continuous

values. Time is saved by using Naive Bayes’ fast performance. It also needs less

training data and is less sensitive to irrelevant traits [31].

2. SVM: The system’s effectiveness is enhanced when substantial separation

between social classes exists. High-dimensional areas are known to be more

productive and have the advantage of conserving memory.

3. K-Nearest Neighbours (KNN): Enables the exploration of hidden

relationships within the data without making any assumptions, thus offering a

novel perspective in data analysis.

4. Decision Tree: The data is processed through a tree, with decisions taken at

each node. Next, it can handle numerical and categorical data. However, biased

trees can be formed with few dominant classes. Thus, balancing is needed. [32].

Figure 2.10 shows the methodology of the proposed system.

Figure 2.10: Methodology of the proposed system

 The datasets that contain 5234 records were imported from different GitHub

repositories and were preprocessed individually to check for missing values and other

inconsistencies. The datasets were then merged into one and will be split into test and

train sets. The benign data was divided into 3072 training data and 744 testing data.

1128 records were used for training, and 290 records were used for testing the SQLI

data. Finally, the data is inputted into various machine learning algorithms, and each

CHAPTER 2

 31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

outcome is examined. The CNN model was then developed and employed in the system

with a learning rate of 0.001 by utilizing the Adam Optimizer. Lastly, gradio is imported

into the system to execute a real-time user interface.

Strength

 As the proposed system uses machine learning and deep learning models, it

possesses the capability to adjust to new and novel SQLI attacks effectively without

needing regular manual updates. Adaptability is significant in the ever-changing field

of cybersecurity threats. Besides that, the proposed system also offers a high detection

rate for SLQI attacks. Machine learning models such as CNN could keep on learning

complex patterns and anomalies from the input data. Hence, these machine learning

models exhibit a lower rate of false positives and mitigate the potential for obstructing

valid user requests. Thus, the overall user experience would be improved if this system

is used. Table 2.10 shows the metrics of all the machine-learning models used in the

system.

Table 2.10: Metrics of all the machine learning models used in the system [30].

Limitations

 The need for high-quality training data is considered significant in training these

machine learning models. The datasets that are obtained from the open-source websites

may not be diverse and representative enough for training the machine learning models.

Hence, the insufficient or biased training data could lead to suboptimal performance.

Besides that, training different machine learning and deep learning models can be

computationally resource-intensive. Therefore, a model such as CNN may require

substantial hardware resources. Next, the effectiveness of the system would deteriorate

CHAPTER 2

 32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

over time due to the emergence of new SQLI attack patterns. Hence, the model’s

effectiveness in detecting SQLI attacks may degrade over time.

Solutions

 To improve the quality of the training data, it is recommended that the SQLI

attack datasets from various sources be searched and compared regularly. The

utilization of these datasets frequently offers a wider range of attack scenarios that are

more representative of real-world situations, hence improving the model’s

effectiveness. Besides that, a hardware accelerator such as a GPU could be used to

improve the system’s performance and train the deep learning model, such as CNN.

Data drift monitoring techniques could also be incorporated into the system to identify

alterations in the distribution of incoming data. In the instance that data drift is

identified, it is essential to initiate the model retraining process to adjust to the revised

distribution effectively.

2.1.8 SQLI Detection using Machine Learning Techniques and Multiple Data

Sources

 In this paper (Ross, K., 2018) has proposed an SQLI detection system using

machine learning. The system comprises a customized enterprise chat web application

that is supported by a remote MySQL server backend. The data is captured in two

distinct locations. Firstly, the HTTP traffic between the traffic-generating server and

the web application server is captured. Secondly, the consequent MySQL traffic

between the web application server and the remote database server is also captured.

Figure 2.11 shows the general procedure for the proposed system.

Figure 2.11: The general procedure for the proposed system [33].

 The system architecture uses four KVM virtual machines on an HP server with

dual quad-core processors and 64G RAM operating as server nodes. These nodes

include a web application server, traffic generation server, database server, and Datiphy

MySQL data capturing node. Figure 2.12 shows the network architecture of the

proposed system.

CHAPTER 2

 33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.12: The network architecture of the proposed system [33].

1. Web Application Server: The Webapp server runs Ubuntu/Apache and hosts

the custom web application in the webspace. The database server hosts this

Webapp MySQL backend. This server runs Snort as one of the data capture

points.

2. Traffic Generation Server: The server generates both normal and malicious

traffic and runs Kali Linux. Both normal and malicious traffic are created using

Python/shell scripts and Beautiful Soup Python modules.

3. Database Server: The server runs Ubuntu/MySQL. The chat program on the

webapp server uses this server for remote database access, and all MySQL

traffic for the webapp is transmitted between these two servers.

4. Datiphy MySQL Capture Server: The server comprises a Datiphy appliance

VM provided by Datiphy Inc. for research [34]. This device provides visibility

of SQL traffic and other database traffic in this project. All traffic between the

webapp and MySQL database server is routed through the Datiphy appliance,

enabling visibility in the web interface.

CHAPTER 2

 34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the datasets are generated and preprocessed, the data will be imported into the

Weka. The numerical and nominal data are utilized in their original form, while the

string data undergoes additional processing to convert it into vectors of words with the

Weka filter StringToVec. Correlated Feature Selection will then optimize machine

learning by reducing the number of features. The machine learning model used are J48,

Jrip, Random Forest, SVM, and MultiLayer Perceptron Neural Network. All the

preprocessed datasets will then be used to train the machine learning models, and the

result will be analyzed.

Strength

 As the datasets are captured and processed by building their own network

architecture, real-life datasets of SQLI attacks could be obtained. Besides that, using

different data sources to identify SQLI in the article exemplifies a thorough and holistic

approach. Taking different data dimensions into account may improve the detection

system’s robustness and accuracy in detecting SQLI attacks rather than a single-source

approach. Besides that, utilizing different data sources and applying machine learning

techniques can effectively mitigate the occurrence of false positives, hence playing a

crucial role in limiting any potential disruptions to user activity. Consequently, the

system will be able to detect SQLI attacks with higher accuracy. Table 2.11 shows the

results of the machine learning with 20000 record data.

Table 2.11: The machine learning results with 20000 record data [33].

CHAPTER 2

 35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Limitations

 The act of combining information from several sources can present challenges,

necessitating the utilization of advanced methods for data integration and

preprocessing. Maintaining data quality and consistency across several sources can

provide significant issues if the user does not know much about how the system works

and lacks knowledge of preprocessing the dataset. Besides that, the task of managing

and maintaining a system that integrates data from numerous sources can impose

significant demands on resources and time. Regular updates and effective management

of data sources are critical. Hence, the system requires lots of human and technological

resources and could be expensive to maintain.

Solutions

 As multiple datasets are needed for this system, we could employ sophisticated

data integration tools and platforms capable of automating the tasks of collecting,

improving, and standardizing data from several sources. These solutions can optimize

and enhance the integration workflow. It is advisable to allocate resources towards the

acquisition of knowledge and skills in the areas of data integration and preparation. The

presence of individuals possessing the requisite skills and knowledge can greatly

enhance the efficacy of data management. Besides that, we could consider using cloud-

based data integration and storage solutions. Cloud platforms usually offer data

management capabilities that are both scalable and cost-effective, thereby decreasing

the demands on resources.

CHAPTER 2

 36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Summary of the previous work on SQLI

Table 2.12 summarizes all the previous work on SLQI regarding strengths and

limitations.

Table 2.12: Previous works on SQLI in terms of strengths and limitations.

Method Strengths Limitations

1) JDBC Checker: A

Static Analysis Tool for

SQL/JDBC

Applications

- High accuracy - Cannot defend against SQLI

attack if SQL query has the

correct syntax

- A large number of possible

queries need more storage and

affect performance

- Only support Java

programming language

2) Automated Testing

for SQL Injection

Vulnerabilities: An

Input Mutation

Approach

- Can generate new SQL

queries containing the new

attack pattern

- Could detect numerous

types of SQLI

- Customizable

- Might fix input to eliminate

potential syntax issues

- Relies on human input to

identify vulnerabilities

- Cannot be used to prevent and

block SQLI attacks in real-time

- Executing it requires a lot of

resources

3) AMNESIA: Analysis

and Monitoring for

NEutralizing SQL-

Injection Attacks

- Low runtime overhead

- Able to streamline the

scanning process for

discovering SQLI

vulnerabilities

- Automatic reporting tool

- High accuracy

- May result in a false negative

if some queries that replicate the

SQL attack’s structure are used

- Complex and requires several

steps

- Only detect several types of

SQLI

4) Detecting SQL

injection attacks in

cloud saas using

machine learning

- Can quickly analyze

massive amounts of data

- Real-time analyzing

- Could adapt to shifting

attack patterns

- High accuracy

- Complicated and hard to use

- No automatic reporting tool

- Performance overhead

CHAPTER 2

 37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5) Hybrid Approach to

Detect SQLi Attacks

and Evasion Techniques

- Full coverage of possible

SQLI threats

- Enhance system accuracy in

detecting SQLI

- Improve the analysis of

HTTP streams

- Streamline maintenance of

security rules

- Save time

- False negative will not

affect the system’s overall

performance

- Difficult to deploy and

maintain

- Performance overhead

6) A CNN-based

Approach to the

Detection of SQLI

Attacks

- High scalability

- Can adapt to new attack

patterns

- High accuracy

- Difficult to handle encrypted

traffic

- Resource intensive

- Difficult to understand context

accurately

7) SQLI Detection using

Machine Learning and

CNN

- Can adapt to new attack

patterns

- High accuracy

- The dataset may not be diverse

enough

- Resource intensive

- Effectiveness decreases over

time

8) SQLI Detection using

Machine Learning

Techniques and

Multiple Data Sources

- Real-life datasets

- Different data sources for

SQLI attack

- High accuracy

- Maintaining is hard if the user

lacks knowledge

- Resource and time-intensive

- Expensive to maintain

CHAPTER 2

 38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Proposed Solution Compared to Previous Work

 SQLI attacks pose an ongoing and escalating threat to the security of data, and

traditional detection solutions may struggle to effectively counter the constantly

evolving strategies employed by attackers. Therefore, this research project aims to solve

all the previous works’ limitations and present a system for detecting real-time SQLI

attacks through machine learning techniques. Using machine learning techniques in the

SQLI detection system is expected to enhance the accuracy of identifying SQLI attacks

[24, 26, 28, 30, 33]. This is because machine learning algorithms offer the capability to

evaluate enormous amounts of data, enabling them to identify numerous complex

patterns and vulnerabilities inside SQLI code [19]. Besides, Machine learning

eliminates the need for human intervention in identifying SQLI vulnerabilities within

code throughout its implementation. Furthermore, implementing machine learning

techniques enables the system to dynamically adjust and gain knowledge from new

data, hence improving its ability to accurately identify SQLI attacks over time.

Consequently, the implementation of machine learning has the potential to yield

significant time and resource savings [22, 25].

 Besides that, the system also contains a real-time feature that collects and

aggregates incoming traffic in real-time for the purpose of doing analysis [24, 26, 30,

33]. Therefore, this proposed solution has the potential to enhance the safety and

security of online applications by immediately alerting the administrator of any ongoing

SQLI attacks [22]. Thus, this immediate alert could enable the administrator to take

appropriate measures to address the issue and minimize possible harm to the database.

This is especially important when used in the organization and factory as the real-time

detection and reporting features could decrease the damage caused by SQLI attacks and

save resources for repairing the damage caused by SQLI attacks.

CHAPTER 3

 39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Methodology/Approach OR System Model

3.1 Design Specifications

The project’s procedures were divided into eight development phases: project pre-

development, data pre-processing, feature selection, machine learning model selection, model

training, model testing, implementation, and assessment. Figure 3.1 shows the overall

development phase of the project.

Figure 3.1: Overall development phase of the project.

 The pre-development phase of project development is of the utmost significance as it

establishes the groundwork for the project’s overall accomplishment. This phase thoroughly

evaluates the project’s objectives, requirements, constraints and previous works on SQLI

detection. Besides that, a precise project workflow and plan with the tools needed to complete

the project should also be constructed. Figure 3.2 shows the methodology that will be used

throughout the project.

CHAPTER 3

 40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2: The prototyping methodology that will be used throughout the project.

The development of the system prototype will begin subsequent to the completion of the

analysis, design, and implementation phase. In the event that errors are identified during the

system prototyping phase, it is necessary to revert to the preceding steps.

The initial step in data pre-processing is gathering datasets from multiple open-source

dataset providers’ websites. Subsequently, the dataset will undergo data cleaning processes,

which involve the removal of duplicate, missing values and invalid rows from the datasets.

Subsequently, it is necessary to transform the data into a format suitable for analysis. For

illustration, vectorization will be performed to convert the text data in the datasets into a format

that the machine learning model could interpret. The dataset will afterwards be divided into

two separate datasets: a training dataset and a testing dataset, with a distribution ratio of 80:20

(80% for the training dataset and 20% for the testing dataset). Following that, a subset of

essential dataset features will be selected in two methods: filter and wrapper. Filter methods

capture univariate statistics-determined feature properties and make high-dimensional data

computations cheaper. Wrappers must scan the space of all possible feature subsets and

evaluate their quality by learning and evaluating a classifier using that subset [35]. All models

contain prediction inaccuracies due to statistical noise, data sample size, and model type

constraints [36]. Various machine learning algorithms, Logistic Regression, Naïve Bayes,

SVM, Random Forest, and CNN, were chosen to train the machine learning model to detect

SQLI attacks after considering the machine learning model’s training speed, scalability, and

adaptability. The evaluation of the model’s performance will involve the utilization of several

metrics, including the F1 score, precision, recall, and overall accuracy of the model. Once the

training process is completed, the model with the highest performance will be integrated into

the web application’s backend. Various forms of SQLI attacks will be executed on the web

application in order to evaluate the effectiveness of the SQLI detection system.

CHAPTER 3

 41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 System Design Diagram/Equation

The comprehensive system that was designed comprises two components: hardware and

software. The hardware employed in this system will consist of a laptop, which will function

as the host for both the web application server and the trained machine learning model at its

backend. In addition to this, the PC that includes Kali Linux will carry out web application

attacks and analyze web packets. The hub makes a connection between the laptop and the PC

and then broadcasts the received packet to all interconnected devices. The software included

in this system is the machine learning model to detect SQLI attacks and the integration of the

machine learning model into the web application server’s backend. This report will primarily

focus on providing a comprehensive overview of the system design with respect to training a

machine learning model to detect SQLI attacks. Figure 3.3 shows the overall machine learning

model training flow to detect SQLI attacks.

Figure 3.3: Overall machine learning model training flow to detect SQLI attacks.

 The initial step entails the acquisition of several datasets from the open-source dataset

provider websites. The datasets should include diverse SQL queries, encompassing both valid

and malicious queries from various sources, such as web applications, network traffic, or

databases. After acquiring the dataset, it becomes essential to engage in preprocessing

procedures in order to effectively cleanse and organize the data for subsequent analysis. This

stage encompasses the process of data cleansing and transformation. It involves the process of

CHAPTER 3

 42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

removing duplicate, missing, and invalid labels and then transforming the data to valid data

types for further analysis. The feature selection process is of utmost importance since it

involves the careful selection of properties or features from a dataset, aiming to identify the

most relevant ones for training machine learning models. In this case, vectorization converts

the text into a numerical form that machine learning could understand. The preprocessed

datasets will then be split into a training set to train the machine learning model and a test set

to evaluate the system’s performance.

The subsequent stage involves training machine learning models with the training set

produced previously. Machine learning algorithms: Logistic Regression, Naïve Bayes, SVM,

Random Forest, and CNN were utilized to train the machine learning model. Following the

completion of the training process, the models undergo evaluation using the test set that was

generated previously, and the effectiveness of the model is evaluated using performance

metrics such as accuracy, precision, recall, and F1 score. After achieving appropriate

performance, the machine learning model with the highest accuracy will be saved and

incorporated into the web application backend to enable the real-time detection of SQLI

attacks. The last stage entails verifying and validating the real-time SQLI detection system.

This encompasses comprehensive testing across diverse scenarios mentioned above in the

verification plan.

3.2.1 System Architecture Diagram

The architecture of the system consists of a laptop hosting the web application and having the

machine learning model running on its backends. Besides that, the system also includes a PC,

which acts as an attacker to attack the web application. Figure 3.12 shows the detailed

architecture diagram of the proposed system.

Figure 3.4: The detailed architecture diagram of the proposed system.

CHAPTER 3

 43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1. Web application server: The web application server runs on a DVWA server. The

web application has been deliberately created to include vulnerabilities that make it

susceptible to SQLI attacks. As a result, it may be effectively utilised to conduct SQLI

penetration testing on the server. In addition, the machine learning model will be

executed on the server’s backend. Hence, in the event of an SQLI attack, the system

would be able to capture the SQLI packet. Thus, the system would be able to identify

and alert the web administrator on the occurrence of the SQLI attack.

2. Kali Linux machine: A PC runs the Kali Linux operating system. The machine

performs SQLI attacks on the web application server by using the tools SQLMap, which

is available in Kali Linux.

3. Hub: Hub is used to connect the web application server and the Kali Linux Machine in

a local area network (LAN). It serves as a central point for connecting the devices and

will broadcast all the packets received to the devices connected.

3.2.2 Use Case Diagram and Description

Figure 3.5: Use case diagram forSQLI detection system

CHAPTER 3

 44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.1: Use case description for SQLI detection system

Use Case Name: Monitor Network Traffic ID: 1 Importance Level: High

Primary Actor: Network Admin Use Case Type: Details, Essential

Stakeholders and Interests: Network Admin – wants to monitor the network traffic on the

web application

Brief Description: This use case outlines the process by which the network administrator

can monitor the network traffic on the web application.

Trigger : Network admin wants to monitor the network traffic to ensure if there is

any instance of SQLI attack.

Type : External

Relationships:

 Association : Network Admin

 Include : Check benign payloads, Check potential attacks, Generate SQLI

 detection report

 Extend :

 Generalization :

Normal Flow of Events:

1. The network admin runs the live prediction scripts to predict the sqli attack.

2. The system will capture the live packet, preprocess it and store it in a log file.

3. The system reads the log file line by line and performs prediction using the machine

learning model deployed.

4. The system outputs the prediction results and statistics and stores the benign and

potential attacks in benign.txt and sqli_attacks.txt.

 If the user wants to view the benign attack,

 the S-1: Check benign payloads is performed.

 If the user wants to view the potential attack,

 the S-2: Check potential attacks is performed.

 If the user wants to generate the SQLI attack report,

 the S-3: Generate SQLI detection report is performed.

SubFlows:

S-1: check benign payloads

1. The system returns all the prediction results of 0

S-2: check potential attacks

1. The system returns all the prediction results of 1

S-3: generate SQLI detection report

1. The system login to the sender's email using the sender’s email and password.

2. The system adds message content containing the benign payload count, potential

attack count, and percentage of potential attacks.

3. The system connects to the Google SMTP server and sends the email to the recipient.

Alternate/Exceptional Flows: -

CHAPTER 3

 45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.3 Activity Diagram

Figure 3.6: Activity diagram for the SQLI detection system

CHAPTER 3

 46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The activity diagram depicted in Figure 3.6 outlines the general flow of the real-time SQLI

detection system. Initially, the program commences packet capture from the web application

and proceeds to save the captured packets into a log file. Subsequently, the system loads the

pre-trained machine learning model, which has been saved and trained prior to this stage. The

system then retrieves the payload information from the log file and utilizes the loaded model

to make predictions regarding the nature of the payload. If the prediction yields a value of 0,

indicating a benign payload, the system records the payload into the benign.txt file. Conversely,

if the prediction is 1, signifying a potential SQLI attack, the system logs the payload into the

sqli_attacks.txt file. Additionally, the system launches an application to display prediction

statistics. Upon pressing the "Show Potential Attack" button, the system showcases the benign

payloads, while pressing the "Send Attack Report using Email" button triggers the system to

dispatch an attack report using email. Finally, pressing the "Show Benign Payload" button

reveals the potential attack payloads.

CHAPTER 4

 47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Design

4.1 System Block Diagram

Figure 4.1: System block diagram

The implementation of this project is categorized into two modules: machine learning model

training and sqli real-time detection.

CHAPTER 4

 48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.1 Machine Learning Model

Figure 4.2 illustrates the complete structure of training the SQLI detection machine learning

model.

Figure 4.2: Complete structure of machine learning model training

Dataset Acquisition

 The initial step involves obtaining a dataset that contains various SQLI attack queries

from the open-source dataset provider website. The datasets should encompass a

comprehensive representative collection of both malicious queries and benign data. In this case,

two datasets, “sqli.csv” and “SQLiV3.csv”, were gathered from Kaggle, the open-source

datasets provider [37]. The file named "sqli.csv" involves around 3951 distinct values, whereas

the file named "SQLiV3.csv" contains approximately 30873 distinct values.

Dataset Preprocessing

 Various data processing and machine learning training libraries, such as Pandas,

NumPy, NTLK, Keras, TensorFlow and scikit-learn, were imported before the preprocessing.

Pandas is used for data manipulation, NTLK is used for natural language processing, NumPy

is used for working with arrays and the other libraries are used for machine learning training.

Due to the excessive number of columns in the "SQLiV3.csv" data, only the "Sentence" and

"Label" columns will be chosen when it is imported. The column ‘Sentence’ in “sqli.csv” will

be split into two columns, ‘Label’ and ‘Sentence’ as the label of the sentence is separated by a

comma. Figure 3.6 shows the column ‘Sentence’ in “sqli.csv”.

CHAPTER 4

 49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3: The column ‘Sentence’ in “sqli.csv”

The two datasets will then be merged into one DataFrame. Next, the duplicated and missing

values will be removed from the DataFrame, and the rows with invalid labels will also be

filtered from the DataFrame to improve the dataset’s quality. Besides that, all the columns

‘Label’ in the DataFrame will be converted into integer data types to allow the machine

learning algorithm to be interpreted.

Datasets Vectorization

 After the datasets are preprocessed, they will undergo vectorization to convert the

textual data into numerical data suitable for machine learning models. The datasets are

vectorized using CountVectorizer. The CountVectorizer tools facilitate the seamless

integration of textual data into machine learning and deep learning models, specifically in the

context of text classification.

The parameter used includes min_df, max_df, and stop_words:

1. min_df: This parameter determines the minimum frequency of a word inside a

document that is required for it to be considered for inclusion in the vocabulary [38].

In this scenario, terms that have a frequency of occurrence in less than two documents

will be omitted from the vocabulary.

2. max_df: The parameter denotes the upper limit of the frequency of a word inside a

document for it to be considered for inclusion in the vocabulary [38]. Words that have

a frequency of occurrence above 80% across the documents will be omitted.

3. stop_words: It specifies a list of common English stop words [38]. The

stopwords.words(‘english’) is the list of common English stop words from the NTLK

library.

CHAPTER 4

 50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Train and test set splitting

 The vectorized datasets will then be divided into separate training and test sets. The

training set will be used to train the machine learning model, while the test set will be used to

evaluate the metrics of the model. The parameter “test_size = 2” is used to specify that 80% of

the data will be used for training the machine learning model and 20% for evaluation.

Machine Learning Model Training

Machine learning algorithms: Logistic Regression, Naïve Bayes, SVM, Random Forest,

and CNN were chosen to be utilized for training the datasets.

1. Logistic Regression: The statistical model is used for classification and predictive

analysis. It is used to assess the probability of the occurrence of an SQLI attack. It

involves the utilization of a logit transformation on the odds, which represents the ratio

of the probabilities of success to the probability of failure [39]. The logistic regression

may be mathematically expressed using the following formulas [40]:

𝑦 =
𝑒(𝑏0+𝑏1𝑋)

(1+𝑒(𝑏0+𝑏1𝑋))
 (1)

where

 𝑋 is the input value

 𝑦 is the predicted output

 𝑏0 is the bias or intercept term

 𝑏1 is the coefficient of input (x)

2. Naïve Bayes: The Naive Bayes algorithm is a supervised machine learning algorithm.

It is a family of straightforward yet powerful probabilistic classifiers that rely on Bayes'

theorem and assume independence across features [41]. Despite the adoption of this

simple assumption, Naive Bayes classifiers are extensively utilised and have

demonstrated remarkable performance in diverse machine learning applications,

particularly in the domains of text classification and document categorization.

Therefore, it is suitable for use in training the SQLI detection model. The following

formula could represent it:

𝑃(𝑌 = 1|𝑋) =
𝑃(𝑌=1) 𝜋𝑖=1

𝑛 𝑃(𝑥𝑖|𝑌=1)

𝑃(𝑋)
 (2)

CHAPTER 4

 51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

where

𝑃(𝑌 = 1|𝑋) is the probability that the input data X belongs to the SQLI attack

 𝑃(𝑌 = 1) is the prior probability of class Y

 𝑃(𝑥𝑖|𝑌 = 1) is the likelihood probability of observing feature 𝑥𝑖 given

 that the data point belongs to an SQLI attack.

 𝜋𝑖=1
𝑛 is the multiplication of the probabilities for all individual features

 𝑥1, 𝑥2, … , 𝑥𝑛

P(X) is the marginal likelihood of observing the features X across all classes.

3. SVM: It is a highly potent and adaptable supervised machine learning method

employed for the purposes of both classification and regression applications. It exhibits

a high degree of suitability for tasks that necessitate the identification of a distinct

boundary or decision boundary across various categories. SVM has the mathematical

formula of:

𝑃(𝑌 = 1|𝑥) =
1

1+exp (−𝑓(𝑥))
 (3)

where

 𝑃(𝑌 = 1|𝑥) is the probability that input x belong to SQLI attack

 𝑓(𝑥) is the decision function

4. Random Forest: It is an ensemble method commonly employed in machine learning

for the purposes of classification and regression. Besides that, it is also an adaptable

and robust technique that combines predictions derived from numerous decision trees

to generate a more precise and accurate prediction. The random forest approach uses

decision trees using bootstrap samples from a training set with replacement. Another

randomization will be added through feature bagging, increasing dataset diversity and

decreasing decision tree correlation. Figure 3.7 shows the working principle of Random

Forest.

CHAPTER 4

 52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4: Working principles of Random Forest [42].

5. CNN: A deep learning framework that may be customised to detect SQLI attacks in

textual data. CNN has traditionally been predominantly utilised in the field of computer

vision. However, they may also be effectively employed in the analysis of sequential

data, such as text, for a wide range of NLP applications.

Model Evaluation

After training the machine learning model, the performance of the trained SQLI detection

model should be measured by employing suitable evaluation metrics, such as accuracy,

precision, recall, and F1-score. Among all the machine learning models, the CNN model has

the highest accuracy and has been selected to be implemented into the SQLI detection system.

4.1.2 SQLI real-time detection

Live Packet Sniffing and logging

Using the packet sniffing library PyShark, network traffic from the web application

interface was captured in real-time. This enabled the retrieval of key features from the collected

packets, enabling real-time network traffic analysis. PyShark is a Python module that serves as

a tool for the Wireshark network packet analyzer. Python developers can use it to interact

directly with network traffic that is either collected in real-time by Wireshark or stored in

packet capture (PCAP) files. PyShark offers a user-friendly Pythonic interface for accessing

several aspects of network packets, including protocol fields, packet payloads, timestamps, and

packet information. PyShark enables developers to programmatically execute tasks such as

CHAPTER 4

 53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

packet inspection, protocol analysis, traffic monitoring, and network forensics using Python

scripts. This library is frequently utilized in network security, network monitoring, and

troubleshooting applications where network traffic analysis is crucial.

As the packets are captured, each packet is iterated and checks if it contains an HTTP

layer. If an HTTP layer is present, it extracts the HTTP chat data from the packet, decodes it

using URL decoding, and searches for occurrences of the string 'id='. If 'id=' is found, it extracts

the payload starting from 'id='. After cleaning the payload by removing unnecessary characters,

it writes the payload to the log file.

SQLI attack detector

After logging the HTTP traffic into the log.txt file, a Python script was employed to

monitor the log file, which contained payloads extracted from the captured network traffic. It

sequentially processes each line in the log file, extracting the payloads and converting them

into a numerical vector representation. It then utilizes the trained model to make predictions on

whether the payloads indicate SQLI attacks. When a payload is categorized as an attack, it is

recorded in a text file. Afterwards, the network administrator can choose to send a report

containing statistics on SQLI attacks, along with the benign and attack payload files to their

email.

CHAPTER 4

 54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Components Specifications

The real-time SQLI detection system comprises several key components: packet sniffing

module, logging module, feature extraction module, machine learning and detection module,

email reporting module, live graph animation module, and GUI interface module.

Packet Sniffing Module

The packet sniffing module, developed with PyShark, allows for the live capture of network

packets from the web application interface. The system constantly monitors network traffic,

primarily focusing on HTTP packets that may include SQLI payloads, enabling the

identification and analysis of possible threats.

Logging Module

The logging module captures HTTP packets and records the extracted payloads in a specified

log file called log.txt. This module functions as the first stage in recording the collected network

data, enabling further processing and inspection by other components of the system.

Feature Extraction Module

The feature extraction module preprocesses the recorded payloads by decoding URLs and

removing unnecessary characters. The process involves extracting relevant features from the

payloads and converting them into numerical vectors in order to prepare them for feeding into

the machine learning model developed to identify SQLI.

Figure 4.5: Script containing packet sniffing, logging and feature extraction module

CHAPTER 4

 55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Machine Learning and Detection Module

This module is responsible for loading a pre-trained Convolutional Neural Network (CNN)

model specifically tailored to detect SQLI attacks. In addition, it loads a pre-trained vectorizer

that converts payloads into numerical vectors. The combination of these components allows

the model to analyze the extracted features and determine whether a payload is an SQLI attack.

The detection module sequentially processes the recently logged payloads, retrieves them, and

converts them into vector format using the loaded vectorizer. Subsequently, it utilizes the pre-

trained Convolutional Neural Network (CNN) model to make predictions on SQLI threats

using the extracted attributes. The prediction results determine whether possible attacks and

benign payloads are logged into distinct text files (sqli_attacks.txt, benign.txt) for subsequent

examination and reporting. Figure 4.6 shows the script containing the machine learning and

detection module.

Figure 4.6: Script containing the machine learning and detection module

CHAPTER 4

 56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Email Reporting Module

The email reporting module delivers attack reports using email. These reports include statistics

on SQLI attacks and payload files. The system gathers pertinent data, including the number of

benign payloads and possible SQLI attacks, and organizes it into a structured report.

Additionally, it includes the benign and possible SQLI attack payload files to be used by the

network administrator to perform reports or further analysis. Figure 4.7 shows the script

containing the email reporting module.

Figure 4.7: script containing the email reporting module

CHAPTER 4

 57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Live Graph animation module

The live graph animation module generates an animated bar chart that displays the distribution

of benign and attack payloads over time. This visualization enables users to dynamically

monitor changes in payload counts, offering valuable insights into traffic statistics. Figure 4.8

shows the script containing the live graph animation module.

Figure 4.8: script containing the live graph animation module

CHAPTER 4

 58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

GUI Interface Module

The GUI interface, created using the Tkinter library, offers users a user-friendly platform to

interact with the SQLI detection system. The system displays real-time statistics, which include

the number of benign data and possible attackers. It also provides features for sorting data and

sending attack reports through email. Figure 4.9 shows the script containing the GUI interface

module.

Figure 4.9: script containing the GUI interface module

CHAPTER 5

 59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

5.1 Hardware Setup

The computing device utilized in this project is a laptop. The laptop will be utilized to

train the SQLI attack detection machine learning model. The laptop will also integrate the real-

time SQLI detection system into the backend of the web application. Besides that, the laptop

is also used to host the web application, with the detection model running on its backend. A

PC that runs the Kali Linux operating system will also be required to perform the SQLI attack

against the web application. Table 3.1 shows the specifications of the laptop.

Table 3.1 Specifications of laptop

Besides that, the network hub is utilized to link the laptop and PC. The network hub functions

by broadcasting packets to all devices that are linked to it. When a device transmits data to the

hub, it functions solely as a conduit, relaying the data to all other devices linked to its ports

without employing any form of intelligent decision-making to identify the intended receiver.

Description Specifications

Model HP Omen 15-ek1016TX

Processor Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz 2.50 GHz

Operating System Windows 11

Graphic NVIDIA GeForce RTX3060 6GB

Memory 16GB DDR4 RAM

Storage 512GB SATA SSD

CHAPTER 5

 60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Software Setup

The software utilized in this project is Anaconda. The use of Anaconda is justified due to

its status as an open-source platform facilitating data science and machine learning procedures.

Additionally, Anaconda integrates well-known machine learning frameworks, namely

TensorFlow, Keras, and Scikit-learn, streamlining the training of machine learning models.

Moreover, Python packages and libraries can be easily installed, upgraded, and removed

through the Anaconda GUI. New virtual environments can also be created, allowing for

separate management of packages and libraries from the host environment. Anaconda also

offers Jupyter Notebook, facilitating the SQLi machine learning model training using various

models from different libraries.

In addition to Anaconda, the Kali Linux operating system is employed in this project. Kali

Linux is an open-source operating system specifically developed to meet cybersecurity needs.

It is a Debian-based Linux distribution offering extensive tools and information relevant to

various aspects of cybersecurity. In this project, Kali Linux will act as the attacker, launching

SQLi attacks against the web server on the host machine using tools such as SQLMap. Kali

Linux will be installed on the PC using VMWare Workstation 17 Player with 4GB RAM, four

processors, 64 GB of storage and a NAT network adapter. Figure 5.1 shows the specifications

of the Kali Linux VM.

Figure 5.1: Specifications of the Kali Linux VM.

CHAPTER 5

 61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

VMWare Player is virtualization software that enables users to create and run multiple virtual

machines on a single computer. Furthermore, a DVWA server obtained from [43] is hosted on

VMWare Workstation 17 Player to provide a testing environment for launching SQLi attacks

against the web server. The virtual machine has 2GB RAM, two processors, 25GB of storage,

and a NAT network adapter. Figure 5.2 shows the specifications of the DVWA server.

Figure 5.2: Specifications of the DVWA server.

PyCharm is also utilized in this project. PyCharm is an integrated development

environment (IDE) developed by JetBrains for Python programming. It is chosen as the IDE

for its wide range of built-in features, including code analysis, graphical debugger, integrated

unit tester, and version control system integration. Thus, it provides a comfortable environment

for writing, debugging, and deploying the machine learning model into the SQLi detection

system. PyCharm also contains a wide range of Python libraries such as pyshark and tkinter

that can be selected to run for specific use cases."

CHAPTER 5

 62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Setting and Configuration

Several configurations and settings are needed throughout the process of building up the system

to detect SQLI using machine learning. It includes setting up the environment variables for

Anaconda as well as PyCharm 2024.1 in the host machine. Figure 5.1 shows the Anaconda in

the GUI version.

Figure 5.3: Anaconda in GUI version

Setting up an Anaconda environment for SQLI detection using machine learning entails

building a virtual environment, installing the required libraries, and customizing the

environment for research and experimentation. Upon installing the Anaconda program, the

latest Python version will be included as a part of the installation process. Besides that, an

environment named “gpu” was also created to train the machine learning models. The required

libraries, such as Pandas, TensorFlow, Scikit-Learn, and Numpy, also need to be installed to

train the machine learning models.

CHAPTER 5

 63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Besides that, the Python interpreter should also be configured for the development of the real-

time SQLI detection system. Figure 5.2 shows the Python interpreter settings in the PyCharm

IDE.

Figure 5.4: Python Interpreter Settings in PyCharm IDE

 After the preliminary configuration, the subsequent pivotal stage in PyCharm configuration

entails the creation of a new virtual environment that is in accordance with the installed version

of Python. After creating the project, navigate to the settings to customize the Python

interpreter to operate exclusively within the virtual environment. The customized environment

facilitates the implementation of packages, including pyshark, TensorFlow, Tkinter, and

SMTPLib, which are indispensable for developing the SQLI detection system. It is worth

mentioning that the dependencies on these packages and modules deployed in the virtual

environment are effectively managed and only manifest within the boundaries of that particular

environment. This feature improves the stability and reproducibility of the project.

CHAPTER 5

 64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation (with screenshot)

The SQLI Detector application integrates functions including attack detection, live statistics, a

live payload distribution chart, display of benign payloads, display of potential attacks, and

sending attack reports, all within a graphical user interface (GUI). Figure 5.5 illustrates the

GUI of the SQLI Detector application. The content within the application updates every 1

second.

Figure 5.5: SQLI Detector application GUI

CHAPTER 5

 65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

When the “Show Benign Payloads” or “Show Potential Attacks” button is pressed, a scrolled

text widget containing the live benign or potential attack payloads will be displayed on the

application. Figure 5.6 shows the benign payloads displayed on the application upon pressing

the “Show Benign Payloads” button. Figure 5.7 shows the potential attack payloads displayed

on the application upon pressing the “Show Potential Attacks” button.

Figure 5.6: Benign payloads displayed on the application

Figure 5.7: Potential attack payloads displayed on the application

CHAPTER 5

 66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Furthermore, upon pressing the "Send Attack Report" button, the SQLI attack report will be

dispatched to the network administrator's email. This report will encompass statistics regarding

benign payloads, potential attacks, and the percentage of potential attacks. Additionally, the

email will include attachments of both the sqli_attacks.txt and benign.txt logs, providing the

network administrator with essential data to investigate and report on the incident. Figure 5.8

depicts the content of the attack report email received by the recipient.

Figure 5.8: content of attack report email received by the recipient

CHAPTER 5

 67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Implementation Issues and Challenges

 There are several challenges to implementing the setup on the real-time SQLI detection

system. The slow training process in the deep learning model, CNN, indeed presents a

significant challenge. As the CNN model with six layers and over 300,000 parameters is

relatively complex, training the model requires more computational resources and time

compared to a simpler model due to the increased number of operations involved in each

forward and backward pass during training. Hence, libraries such as keras-gpu and tensorflow-

gpu were installed to enable GPU hardware accelerators to address the challenges. There are

also some version compatibility issues as the tensorflow-gpu and keras-gpu libraries are

required to match certain versions of tensorflow and keras libraries. For instance, tensorflow-

gpu 2.6.0 is required to be installed with tensorflow 2.6.0. Figure 5.9 shows the version of

tensorflow in the Anaconda Navigator.

Figure 5.9: Version of tensorflow in the Anaconda Navigator

 Besides that, saving the CNN model in the pickle format is also a challenge, as the

model is too large. This is because Pickle is only suitable for storing small to medium-sized

models as it contains limited file size. Another alternative method, saving the model in HDF5

format, is used to address the issue. HDF5 is a prevalent file format used for storing large

numerical datasets. It is compatible with several deep learning frameworks, such as

TensorFlow and PyTorch. It enables the efficient storing and retrieval of extensive arrays and

is well-suited for handling substantial model weights. Figure 5.10 shows the error when trying

to save the CNN model in pickle format.

Figure 5.10: The error is shown when trying to save the CNN model in pickle format

CHAPTER 5

 68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Furthermore, deploying the model into a real-time SQLI detection system also presents

several challenges. Some version compatibility issues were encountered while deploying the

vectorizer and model into the detection system. For example, the model's version of the scikit-

learn library is 1.3.0, but the version of the scikit-learn library in PyCharm is 1.4.2. Hence, the

version of the scikit-learn library in PyCharm must be downgraded to deploy the model into

the detection system. However, ensuring compatibility between other dependencies and

libraries to facilitate a smoother deployment process can be time-consuming. Despite the

challenges, verifying and aligning version compatibility across all components is crucial to

ensure the reliability and functionality of the deployed system.

 Moreover, the process of extracting the HTTP info from the packet captured is also a

challenge as there may be some data preprocessing requirements. HTTP payloads can be

encoded using various schemes like URL encoding, UTF-8 encoding, or base64 encoding.

Consequently, decoding URL-encoded HTTP data becomes necessary after packet capture.

Additionally, to ensure high performance in detecting SQLI attacks, irrelevant strings from the

payloads should be cleaned. These preprocessing steps are crucial for accurately analyzing

HTTP payloads and enhancing the effectiveness of the SQLI detection system. Figure 5.11

shows the payloads of the packet are encoded.

Figure 5.11: The payloads of the packet are encoded

5.6 Concluding Remark

 This chapter summarizes the whole implementation of the real-time SQLI detection

system, including hardware setup, software setup, setting and configuration, system operation,

and implementation issues and challenges.

CHAPTER 6

 69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

The evaluation of system performance in the domain of SQLI attack detection by machine

learning involves thoroughly assessing the system’s capacity to accurately and efficiently

detect SQLI attacks while maintaining an excellent degree of accuracy. Evaluating a system’s

success relies heavily on essential metrics such as accuracy, precision, recall, and F1-score.

1. Accuracy: A metric that evaluates the system’s ability to correctly distinguish between

SQLI attacks and legitimate queries. The metric represents the ratio of true positive and

true negative to the overall total number of predictions made. A system’s high accuracy

rate indicates its proficiency in making accurate classifications, hence minimizing the

likelihood of false alarms or undetected attacks. Accuracy is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

2. Precision: A metric that refers to the system’s capacity to accurately identify

occurrences of SQLI attacks classified as positive. The calculation involves

determining the proportion of true positives to the sum of true positives and false

positives. The characteristic of high precision indicates that the system exhibits a low

frequency of misclassifying legitimate queries as attacks, hence minimizing the

occurrence of false positives. The formula for precision is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

3. Recall: A metric that accurately evaluates the system’s ability to detect all real SQLI

attacks. The calculation involves determining the proportion of true positives in relation

to the total of true positives and false negatives. The concept of high recall indicates

that the system effectively mitigates the possibility of ignoring real attacks, hence

decreasing the occurrence of false negatives. The mathematical equation for the recall

is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

CHAPTER 6

 70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. F1-score: A composite measure that effectively balances precision and recall. The

metric offers an integrated evaluation that takes into account both the occurrence of

false positives and false negatives. A greater F1 score signifies a better equilibrium

between precision and recall, which is crucial in maximizing detection performance.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

6.2 Testing Setup and Result

6.2.1 Attack Testing Setup

DVWA Server

After setting up the DWA server, we can use the command “ifconfig” to get the IP address of

the DVWA server. Figure 6.1 shows the DVWA server’s IP address, which is 192.168.85.132.

Figure 6.1: DVWA server and its IP address are shown using the ifconfig command

CHAPTER 6

 71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Performing SQLI attack

Figure 6.2 shows that we could access the DVWA using its IP address in Kali Linux’s browser.

We could log in to the DVWA using the username admin and password.

Figure 6.2: The DVWA server is accessible using its IP address in Kali Linux’s browser

Figure 6.3 shows the index page/main page for the DVWA. The menu for the DVWA is located

in the middle left corner of the website. We will perform an SQLI attack on this web server.

Figure 6.3: The index page/main page for the DVWA in Kali Linux’s browser

CHAPTER 6

 72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

We could easily change the website’s security level from low to impossible. In this case, we

will use the medium security level of DVWA. Figure 6.4 shows the security level of the DVWA

is set to medium.

Figure 6.4: The security level of the DVWA is set to medium

Next, we will use the Burpt Suite Community Edition to open a temporary project and open

the browser from the proxy menu. We will open the DVWA again by using 192.168.85.132

and go to SQLI. Figure 6.5 shows the proxy menu for the Burp Suite Community Edition,

while Figure 6.6 shows the SQLI page for DVWA.

Figure 6.5: The proxy menu for Burp Suite Community Edition

CHAPTER 6

 73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.6: The SQLI page for DVWA

After that, we will turn on the intercept from the Burp Suite Community Edition, enter the user

ID 1, and submit to get the cookie for DVWA. Figure 6.7 shows the packet captured after

submitting the User ID 1 to the DVWA on the SQLI page. It contains the cookie needed for

the DVWA for the attack. Figure 6.8 shows the results of DVWA after we submit User ID 1 to

the server. We will use the URL from Figure 6.8 to perform the SQLI attack.

Figure 6.7: The package captured from DVWA after submitting the User ID 1 to the DVWA on the

SQLI page

CHAPTER 6

 74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.8: The results of DVWA after we submit User ID 1 to the DVWA.

SQLMap is used to perform the SQLi attack on the DVWA. The website URL, cookies, and

GET data are inserted into the code to perform an SQLi attack on the DVWA. Figure 6.9 shows

the code used to attack the DVWA and its output.

Figure 6.9: The code used to attack the DVWA and its output.

CHAPTER 6

 75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.10 shows the GET parameter ‘id’ could be injectable using Boolean-based blind,

error-based, time-based, and union-based SQLI.

Figure 6.10: The GET parameter ‘id’ could be injectable using Boolean-based blind, error-based,

time-based, and union-based SQLI.

Besides that, Figure 6.11 also shows some of the boolean-based blind, error-based, time-based

blind, and union query SQLI payloads to attack the DVWA. It also tells us that the back-end

DBMS is MySQL.

Figure 6.11: The payloads of boolean-based blind, error-based, time-based blind, and union query

SQLI to attack the DVWA.

CHAPTER 6

 76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

We could now enumerate the MySQL DBMS information, structure, and data contained in the

tables by adding --dump commands to dump the DBMS database table entries for the DVWA.

Figure 6.12 shows the output generated by adding the --dump commands to the previous code.

Figure 6.12: The output generated by adding the –dump commands to the previous code.

After accessing the data in the DVWA database, we could use the built-in dictionary-based

attack function in the SQLMap to crack the hashed password using the MD5 encryption

algorithm. Figure 6.13 shows the password cracked by using the built-in dictionary-based

attack from the SQLMap.

Figure 5.13: The password cracked by using the built-in dictionary-based attack from SQLMap

CHAPTER 6

 77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Capturing the Live Packet

DVWA VM occupies the VMware Network Adapter VMnet8. Figure 6.14 shows the interface

occupied by the DVWA VM.

Figure 6.14: The interface occupied by the DVWA VM

A Python script was written to capture live network packets from the VMware Network

Adapter VMnet8 using the PyShark library, specifically targeting the HTTP packets. It decodes

and retrieves the conversation data from each captured HTTP packet. If the data contains an

“id=” parameter, it extracts the payloads starting from that parameter. The payload that has

been extracted is further subjected to processing in order to exclude certain parts, such as

“HTTP/1.1” and newline characters, prior to being recorded into a log file called “log.txt”.

Furthermore, the payload is also shown on the console. Figure 5.19 shows the script to capture

the HTTP traffic and log it continuously after extracting the pertinent data.

Analyzing and detecting SQLI attacks from the packet captured

After the HTTP traffic was logged into the log.txt, a Python script was used to monitor the log

file containing payloads from the captured network traffic. It iterates over new lines in the log

files, retrieves the payloads, transforms them into a numerical vector format, and uses the

trained model to predict the SQLI attack. If a payload is classified as an attack, it is logged into

a file “sqli_attacks.txt.” while benign payloads are logged into a file “benign.txt”. The function

is scheduled to run again every second to monitor network traffic for potential SQLI attacks

continuously.

CHAPTER 6

 78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2 Attack Results

Figure 6.15 displays the payloads that were obtained from the DVWA and outputted on the

console.

Figure 6.15: Payloads captured from the DVWA

Figure 6.16 shows the payloads stored in the log.txt.

Figure 6.16: The payloads stored in the log.txt

CHAPTER 6

 79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.17 shows the prediction results output on the console.

Figure 6.17: Prediction results output on the console

From the testing with 502 payloads, it contains:

• 20 False Negative

• 252 True Negative

• 1 False Positive

• 229 True Positive

Table 6.1: Metrics obtained from the SQLI detection system

Metrics Testing Results

Accuracy 95.82%

Recall 92.97%

Precision 99.57%

F1-score 96.16%

CHAPTER 6

 80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.3 Results obtained from machine learning models

The metrics for the different machine learning models were evaluated using accuracy_score(),

precision_score(), recall_score(), and f1_score(). Table 6.2 shows the metrics obtained from

the trained machine learning models.

Table 6.2: Metrics obtained from the trained machine learning models.

Model Accuracy Precision Recall F1

Logistic Regression 94.76% 95.31% 94.76% 94.85%

Naïve Bayes 81.69% 86.36% 81.69% 81.25%

SVM 74.57% 93.31% 74.57% 79.93%

Random Forest 93.11% 93.14% 93.11% 93.12%

CNN 96.73% 92.16% 98.26% 95.11%

From Table 4.1, Logistic Regression demonstrates robust performance across all

evaluation metrics. The model has a notable level of precision, as it accurately identifies SQLI

attacks with a success rate of 95.31%. The recall rate is also significantly high, suggesting that

it successfully detects 94.76% of actual SQLI attacks. The F1-score, a metric that strikes a

balance between precision and recall, demonstrates a commendable performance of 94.85%.

Besides that, the performance of Naïve Bayes is commendable, although not as remarkable

compared to the performance of Logistic Regression. The observed precision and recall metrics

indicate a well-balanced approach. The F1-score demonstrates a satisfactory performance

level, reaching 81.25%. Moreover, the SVM algorithm shows a notable precision score,

indicating its efficacy in accurately predicting SQLI attacks. Nevertheless, the recall rate

exhibits a decrease, indicating a potential failure to detect certain actual attacks. The F1-score

demonstrates a satisfactory performance level of 79.93%. The Random Forest algorithm

indicates robust and balanced performance across all evaluation metrics, with an F1-score of

93.12%. It efficiently combines both high precision and recall. The random forest algorithm is

also the second-best-performing algorithm for detecting SQLI attacks. CNN demonstrates

superior performance in terms of accuracy and recall compared to all other models. The

detection system shows a high recall rate of 98.26% and an accuracy of 96.73% in efficiently

identifying SQLI attacks. Additionally, it maintains a commendable level of precision and

achieves a high F1-score of 95.11%. In conclusion, the CNN model exhibits superior

performance in terms of accuracy, recall, and F1-score, rendering it an exceptionally promising

option for the detection of SQLI. Logistic regression and random forest have commendable

CHAPTER 6

 81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance. In contrast, Naïve Bayes and support vector machines (SVM) offer lesser

performance. Therefore, the CNN and Logistic Regression model will be chosen to integrate

into the web application.

6.3 Project Challenges

The main challenge faced in this project is the production of novel datasets. The initial

objective of the research was to generate a novel dataset through the execution of an SQLI

attack using SQLMap. Nevertheless, SQLMap does not provide any capabilities to generate a

log or record of the queries employed while exploiting the web application. Therefore, the

approach has been revised to incorporate sourcing datasets from open-source websites and

combining them to create a novel dataset. However, gathering and annotating datasets

containing many benign and malicious queries can be tedious and may not always encompass

all kinds of SQLI attacks observed in real-world scenarios.

 Furthermore, the task of attaining a subtle equilibrium between precision and efficiency

is an additional noteworthy obstacle. Machine learning models must effectively identify SQLI

attacks while minimising the occurrence of false positives. Achieving this equilibrium requires

careful feature engineering, selection of the appropriate model, and fine-tuning of

hyperparameters. Therefore, a significant amount of time and effort was devoted to refining

the models in order to achieve the best possible balance between accuracy and efficacy.

Moreover, attackers could also employ various encoding techniques to obfuscate

malicious payloads to pass through the SQLI detection system. For example, base64 encoding

could be employed to encode the SQLI payloads into a format that appears as random

alphanumeric characters. Hence, the common encoding method used by attackers should be

acknowledged, and the specific decoding method should be incorporated into the system.

Figure 6.18 shows the decoding method added to the system to address the encoding technique

issue.

Figure 6.18: decoding method added to the system

CHAPTER 6

 82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objective Evaluation

 The project objectives were meticulously achieved through a systematic approach that

encompassed several key components. The initial phase focused on selecting and training

suitable machine learning algorithms tailored for SQLI attack detection. Extensive datasets

comprising both benign and malicious SQL queries were meticulously curated and

preprocessed to ensure data integrity and quality. The best model was chosen through rigorous

evaluation and experimentation with Logistic Regression, Naïve Bayes Classifier, SVM,

Random Forest, and CNN. CNN was chosen as the model to incorporate into the SQLI

detection system.

 Besides that, the objective to improve the accuracy of the previous SQLI detection

machine learning model by at least 2% was also met by enhancing the quality of datasets by

collecting various and comprehensive datasets representing real-world instances of SLQI

attack and non-legitimate queries. By preprocessing and merging two datasets containing

different SQLI attack queries, several machine learning models are able to achieve the desired

improvement in accuracy. Table 6.3 compares the previous SQLI detection machine learning

model and our model accuracy.

Table 6.3: Comparison with the previous SQLI detection machine learning model

Model Previous Accuracy Current Accuracy

Logistic Regression 92.61% 94.76%

Naïve Bayes 90.23% 81.69%

SVM 79.76% 74.57%

Random Forest 84.40% 93.11%

CNN 97.26% 96.73%

 Moreover, the main objective of integrating real-time detection capabilities into the

SQLI detection system has been successfully achieved by using the PyShark library to perform

live capture of the web application interface while transmitting HTTP traffic. The system

continuously monitors incoming SQL query data packets and preprocesses them to detect

abnormal behaviour or patterns that are indicative of SQLI attacks. The security staff or

network administrator could also choose to send the reports to themselves in the event of an

SQLI attack. This is important as the network administrators could implement timely

preventive measures to mitigate potential data loss or harm. Besides that, the low latency in

detecting attacks underscores the system’s efficiency and responsiveness in safeguarding the

CHAPTER 6

 83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

system against SQLI threats. Figure 6.19 shows the low latency in detecting SQLI attacks in

the real-time SQLI detection system.

Figure 6.19: Low latency in detecting SQLI attacks in the real-time SQLI detection system

6.5 Concluding Remark

Thorough testing methods were carried out to evaluate the efficacy and efficiency of

the real-time SQLI detection system in order to wrap up system testing and performance

metrics. Performance measures, including recall, accuracy, precision, and F1-score, were

thoroughly evaluated to determine how reliable and strong the system was in detecting SQLI

risks. Following extensive testing protocols, the system performed admirably, with high

accuracy rates and few false positives.

 Besides that, attack testing was launched against the system to assess the system’s

resilience against various SQLI attack scenarios. Afterwards, the attack results were examined

to assess the system's effectiveness in detecting SQLI attacks in real-time. Through the analysis

of the system's reaction to various attack vectors, valuable information was obtained regarding

its ability to identify attacks accurately, the frequency of false positive results, and its overall

performance when faced with different levels of assault intensity and complexity. The solution

exhibited strong capabilities in rapidly identifying and neutralising SQL injection attacks,

enhancing the web application's security.

 Moreover, the project successfully overcame substantial obstacles in creating novel

datasets and achieving a careful equilibrium between accuracy and effectiveness in SQLI

CHAPTER 6

 84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

detection. Transitioning from SQLMap to open-source websites for dataset acquisition was

both time-consuming and necessary. Additionally, diligent feature engineering and model

improvement played a vital role in reducing the occurrence of false positives. In addition, by

implementing strong decoding techniques, such as addressing base64 encoding, the system's

ability to withstand attacks using encoded payloads was enhanced. Despite facing obstacles,

the system effectively created a real-time capability to detect SQL injection (SQLI), which will

improve cybersecurity for web applications by continuously monitoring and adapting to

emerging threats.

 Lastly, the project goals were effectively accomplished by employing a thorough

strategy, which involved the careful selection and training of machine learning models

specifically designed for detecting SQL injections. We meticulously selected and prepared

large datasets to verify the quality of the data. As a result, we chose CNN as the model to be

integrated into the detection system. Furthermore, the goal of enhancing model accuracy by a

minimum of 2% has been achieved, as demonstrated by the comparison of the old and current

model performances. The utilisation of PyShark facilitated the seamless incorporation of real-

time detection capabilities, allowing for uninterrupted monitoring and prompt reaction to SQLI

attacks. This effectively showcased the system's efficacy and ability to respond swiftly.

CHAPTER 7

 85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

In conclusion, this project aims to tackle the major difficulty of mitigating SQLI attacks,

which continue to pose a prominent and dynamic risk to the integrity and privacy of web-based

applications and databases. Despite numerous attempts to mitigate these vulnerabilities, SQLI

attacks persist as a prominent category among the OWASP Top 10 online vulnerabilities.

Previous methods for detecting SQLI attacks, such as rule-based systems and tools like the

"JDBC Checker" and “µ4SQLi”, have often exhibited limitations in their ability to monitor in

real-time. The lack of proper security measures in web applications renders them vulnerable to

SQLI attacks, as they frequently depend on manual inspections or regular scans. The dynamic

nature of SQLI attacks, which now encompass zero-day attacks, has significantly diminished

the efficacy of rule-based solutions in mitigating these innovative security risks.

 This project presents a novel approach to address these urgent concerns by utilizing

machine learning and real-time detection features. Machine learning algorithms: Logistic

Regression, Naïve Bayes, SVM, Random Forest, and CNN are proposed to develop a

better model for detecting SQLI. This is because machine learning algorithms can analyze large

datasets, identify complex attack patterns, and adapt in real-time to emerging threats without

the need for human intervention. This proactive strategy can yield significant efficiency in

terms of time and resources while also enhancing the safety of the organization. Besides that,

the system also includes a real-time monitoring functionality that is capable of capturing and

processing incoming traffic for immediate analysis. This functionality guarantees that

administrators can be notified of ongoing SQLI attacks, facilitating immediate responses to

minimize potential harm. In contexts involving potential severe repercussions resulting from

security breaches, a real-time detection and reporting feature could be of immense value in

mitigating harm and optimising resource utilisation. The system could also be implemented on

various platforms, such as Windows, Linux, or other IoT platforms, as it could achieve a very

low latency in detecting the SQLI attack.

CHAPTER 7

 86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2 Recommendation

 Several improvements could be made to this real-time SQLI detection system by using

machine learning. We could continue to broaden and vary the datasets employed to train the

machine learning models. This is because collecting additional real-world examples of SQLI

attacks and non-legitimate queries is necessary to enhance the model’s ability to detect

developing different SQLI attacks. Besides that, the mechanism to capture and decrypt the

encrypted HTTPS traffic should also be incorporated as extending the system’s functionality

to handle HTTPS packets could enhance the system’s effectiveness in real-time SQLI attack

detection. Hence, integrating HTTPS packet capture and decryption would boost the overall

security of the web application and mitigate the losses caused by the attack. Next, we should

investigate supplementary decoding methods for effectively handling encoded payloads

employed by attackers. This is because it is crucial to keep up with the latest encoding methods

and integrate the appropriate decoding processes into the system to enhance the detection

capabilities.

REFERENCES

 87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

1. Internet Usage Statistics. “The Internet Big Picture World Internet Users and 2023

Population Stats”. Internet World Stats. https://www.internetworldstats.com/stats.htm

(accessed Aug. 22, 2023).

2. “Security Vulnerabilities Published In 2022(SQL Injection)” Cvedetails.com.

https://www.cvedetails.com/vulnerability-list/year-2022/opsqli-1/sql-injection.html (accessed

Aug. 24, 2023).

3. Hasan M, Balbahaith Z, Tarique M. Detection of SQL injection attacks : a machine

learning approach. In: 2019 international conference on electrical computing technologies

and applications. 2019.

4. W. B. Demilie, F. G. Deriba. “Detection and prevention of SQLI attacks and developing

compressive framework using machine learning and hybrid techniques,” in Journal of Big

Data, 2022. [Online]. Available: https://doi.org/10.1186/s40537-022-00678-0

5. S. Mishra. “SQL Injection Detection Using Machine learning,” M.S. thesis, San Jose State

Univ, 2019. [Online]. Doi: https://doi.org/10.31979/etd.j5dj-ngvb

6. T. Pattewar et al., “Detection of SQL Injection using Machine Learning: A Survey,” in

International Research Journal of Engineering and Technology. Nov. 2019. [Online].

Available: https://www.irjet.net/archives/V6/i11/IRJET-V6I1142.pdf

7. S. S. A. Krishanan, et al., “SQL Injection Detection Using Machine Learning,” 2021.

[Online]. Available: https://www.revistageintec.net/wp-content/uploads/2022/02/1939.pdf

8. M. A. Azman, M. F. Marhusin, R Sulaiman. “Machine Learning-Based Technique to

Detect SQL Injection Attack Attack,” in Journal of Computer Science, 2021. [Online].

Available: https://doi.org/10.3844/jcssp.2021.296.303

9. Fahmida. Y. R. “Sony Woes Continue With SQL Injection Attacks.” Eweek.com.

https://www.eweek.com/blogs/security-watch/sony-woes-continue-with-sql-injection-attacks/

(accessed Aug. 25, 2023).

10. S. Reetz and SOC Analyst. “SQL Injection.” https://www.cisecurity.org/wp-

content/uploads/2017/05/SQL-Injection-White-Paper.pdf

REFERENCES

 88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

11. “2022 CWE Top 25 Most Dangerous Software Weaknesse” mitre.org.

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html (accessed Aug. 27, 2023).

12. Singh G, Kant D, Gangwar U, Singh AP. SQL injection detection and correction using

machine. |In: Emerging ICT bridging future—proceedings of the 49th annual convntion of

Computer Society of India, vol. 1. 2015. p. 435–442. https://doi.org/10.1007/978-3-319-

13728-5

13. Hasan M, Balbahaith Z, Tarique M. Detection of SQL injection attacks: a machine

learning approach. In: 2019 international conference on electrical computing technologies

and applications. 2019.

12. P. Wagenseil. “How the latest SQL injection attacks threaten web application firewalls.”

Scmagazine.com. https://www.scmagazine.com/resource/data-security/how-the-latest-sql-

injection-attacks-threaten-web-application-firewalls (accessed Aug. 27, 2023).

13. T. Pattewar et al., “Detection of SQL Injection using Machine Learning: A Survey,” in

International Research Journal of Engineering and Technology. Nov. 2019. [Online].

Available: https://www.irjet.net/archives/V6/i11/IRJET-V6I1142.pdf

14. C. Gould, Zhendong Su and P. Devanbu, “JDBC checker: a static analysis tool for

SQL/JDBC applications” Proceedings. 26th International Conference on Software

Engineering, Edinburgh, UK, 2004, pp. 697-698, doi: 10.1109/ICSE.2004.1317494.

15. C. Gould, Z. Su and P. Devanbu, “Static checking of dynamically generated queries in

database applications” in Proceedings of 26th International Conference on Software

Engineering, Edinburgh, UK, 2004, pp. 645-654, doi: 10.1109/ICSE.2004.1317486.

16. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and

Computation. Addison–Wesley, Reading, MA, 1979

17. D. Melski and T. Reps. “Interconvertibility of set constraints and context-free language

reachability,” in Proceedings of the 1997 ACM Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, PEPM’97, pages 74–89, 1997

18. T. Reps, S. Horwitz, and M. Sagiv. “Precise interprocedural dataflow analysis via graph

reachability,” in Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 49–61, 1995.

REFERENCES

 89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

19. D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan. (2014). “Automated Testing

for SQL Injection Vulnerabilities: An Input Mutation Approach.” 2014 Int. Symp. Softw.

Test. Anal. ISSTA 2014 - Proc., May, 259-269, Doi: 10.1145/2610384.2610403

20. N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira. “Effective detection of SQL/Xpath

injection vulnerabilities in web services,” in Proceedings of the 6th IEEE International

Conference on Services Computing (SCC ’09), pages 260–267, 2009.

21. M. Ravi, A. Sewa, S. T.G. and S. S. S. Sanagapati,“FPGA as a Hardware Accelerator for

Computation Intensive Maximum Likelihood Expectation Maximization Medical Image

Reconstruction Algorithm” in IEEE Access, vol. 7, pp. 111727-111735, 2019, doi:

10.1109/ACCESS.2019.2932647.

22. W. G. J. Halfond and A. Orso,“AMNESIA: analysis and monitoring for NEutralizing

SQL-injection attacks” in Proceedings of the 20th IEEE/ACM international Conference on

Automated software engineering, pp. 174-183. ACM, 2005, doi:

https://doi.org/10.1145/1101908.1101935

23. D. A. Kindy and A. -S. K. Pathan,“A survey on SQL injection: Vulnerabilities, attacks,

and prevention techniques” 2011 IEEE 15th International Symposium on Consumer

Electronics (ISCE), Singapore, 2011, pp. 468-471, doi: 10.1109/ISCE.2011.5973873.

24. D. Tripathy, R. Gohil and T. Halabi,“Detecting SQL Injection Attacks in Cloud SaaS

using Machine Learning” 2020 IEEE 6th Intl Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,

(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD,

USA, 2020, pp. 145-150, doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035.

25. A. Makiou, Y. Begriche and A. Serhrouchni,“Hybrid approach to detect SQLi attacks and

evasion techniques” 10th IEEE International Conference on Collaborative Computing:

Networking, Applications and Worksharing, Miami, FL, USA, 2014, pp. 452-456, doi:

10.4108/icst.collaboratecom.2014.257568.

26. A. Luo, W. Huang and W. Fan, "A CNN-based Approach to the Detection of SQL

Injection Attacks," 2019 IEEE/ACIS 18th International Conference on Computer and

Information Science (ICIS), Beijing, China, 2019, pp. 320-324, doi:

10.1109/ICIS46139.2019.8940196.

27. Awezel, (Mar. 8, 2023). “Zeek”, https://github.com/zeek/zeek/

REFERENCES

 90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

28. Falor, A., Hirani, M., Vedant, H., Mehta, P., & Krishnan, D. (2022). A Deep Learning

Approach for Detection of SQL Injection Attacks Using Convolutional Neural Networks. In

Lecture Notes on Data Engineering and Communications Technologies (Vol. 91, pp. 293–

304). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-

981-16-6285-0_24

29. A. Phillips, “How to Decrypt SSL with Wireshark - HTTPS Decryption Guide,”

Comparitech, Dec. 27, 2018. Available: https://www.comparitech.com/net-admin/decrypt-

ssl-with-wireshark/. (accessed: Sep. 1, 2023)

30. J. Misquitta and S. Asha, "SQL Injection Detection using Machine Learning and

Convolutional Neural Networks," 2023 5th International Conference on Smart Systems and

Inventive Technology (ICSSIT), Tirunelveli, India, 2023, pp. 1262-1266, doi:

10.1109/ICSSIT55814.2023.10061019.

31. Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46).

32. Patel, H. H., Prajapati, P. (2018). Study and analysis of decision tree based classification

algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74-78.

33. Ross, Kevin, "SQL Injection Detection Using Machine Learning Techniques and

Multiple Data Sources" (2018). Master's Projects. 650. DOI:

https://doi.org/10.31979/etd.zknb-4z36

34. Datiphy Data Sheet, Dec. 2016, Datiphy Inc., San Jose, CA, The Snort Project, August

28, 2015, http://datiphy.com/resources/data-sheet/

35. A. Gupta. “Feature Selection Techniques in Machine Learning”. Analyticsvidhya.com.

https://www.analyticsvidhya.com/blog/2020/10/featureselection-techniques-in-machine-

learning (accessed Sept. 2, 2023)

36. J. Browniee. “A Gentle Introduction to Model Selection for Machine Learning”.

Machinelearningmastery.com. https://machinelearningmastery.com/a-gentleintroduction-to-

model-selection-for-machine-learning/ (accessed Sept 2, 2023)

37. Syed Saqlain Hussain Shah, “sql injection dataset,” Kaggle. Available:

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset. (accessed Sep. 2,

2023)

REFERENCES

 91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

38. P. Jain, “Medium,” Medium, May 24, 2021. Available:

https://towardsdatascience.com/basics-of-countvectorizer-e26677900f9c. (accessed Sep. 3,

2023)

39. IBM, “What is Logistic regression?,” www.ibm.com, 2022. Available:

https://www.ibm.com/topics/logistic-regression. (accessed: Sep. 3, 2023)

40. V. Kanade, “What Is Logistic Regression? Equation, Assumptions, Types, and Best

Practices,” Spiceworks, 2022. Available: https://www.spiceworks.com/tech/artificial-

intelligence/articles/what-is-logistic-regression/. (accessed: Sep. 3, 2023)

41. J. Brownlee, “How to Develop a Naive Bayes Classifier from Scratch in Python,”

Machine Learning Mastery, Oct. 06, 2019. Available:

https://machinelearningmastery.com/classification-as-conditional-probability-and-the-naive-

bayes-algorithm/. (accessed: Sep. 4, 2023)

42. IBM, “What is Random Forest? | IBM,” www.ibm.com, 2023. Available:

https://www.ibm.com/topics/random-forest. (accessed: Sep. 5, 2023)

43. VulnHub, “Damn Vulnerable Web Application (DVWA): 1.0.7,”, Oct. 02, 2011.

Available: https://www.vulnhub.com/entry/damn-vulnerable-web-application-dvwa-107,43/.

(accessed: Sep. 5, 2023)

APPENDIX

 92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 3

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Research on the method of capturing the live packet

2. WORK TO BE DONE

Research on the method to save the vectorizer and model file

Research on the method of retrieving the packet information

3. PROBLEMS ENCOUNTERED

There is too little documentation for PyShark, Scapy, and dpkt

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 5

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Research on the method to save the vectorizer and model file

Research on the method of retrieving the packet information

2. WORK TO BE DONE

Code the packet analyzer by analyzing the previously captured pcapng file

3. PROBLEMS ENCOUNTERED

Unable to store the model file in the pickle format.

There is too little documentation for PyShark, Scapy, and dpkt to retrieve the packet

information.

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 7

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Code the packet analyzer by analyzing the previously captured pcapng file

2. WORK TO BE DONE

Convert the packet analyzer to capture the live packet from the web application

3. PROBLEMS ENCOUNTERED

Able to retrieve the packet information but its encoded and contains unnecessary value

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 9

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Convert the packet analyzer to capture the live packet from the web application and write

it to a log file.

2. WORK TO BE DONE

Code an attack detection system to detect SQLI attacks from the payload of the live

packet

3. PROBLEMS ENCOUNTERED

Unable to live update the log file

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 11

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Code an attack detection system to detect SQLI attacks from the payload retrieved from

log file

2. WORK TO BE DONE

Add GUI into the attack detection system

Add check benign function

Add check potential attacks function

Add send attack report function

3. PROBLEMS ENCOUNTERED

Version incompatibility issue of Jupyter Notebook and PyCharm

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3T1 Study week no.: 13

Student Name & ID: Tung Tean Thong (2001238)

Supervisor: Dr Gan Ming Lee

Project Title: Detection of SQL Injection Attack using Machine Learning

1. WORK DONE

Add GUI into the attack detection system

Add check benign function

Add check potential attacks function

Add send attack report function

Write FYP2 Report

2. WORK TO BE DONE

Make FYP2 presentation slide

3. PROBLEMS ENCOUNTERED

No problem encountered

4. SELF EVALUATION OF THE PROGRESS

Good

 _________________________ _________________________

 Supervisor’s signature Student’s signature

GML

APPENDIX

 98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

APPENDIX

 99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

APPENDIX

 100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

 101
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

 102
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

 103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

 104
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

 TUNG TEAN THONG

ID Number(s)

 20ACB01238

Programme / Course CS

Title of Final Year Project Detection of Sql Injection Attack Using Machine Learning

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 10 %

Similarity by source
Internet Sources: _____9__________%
Publications: __3_______ %
Student Papers: ____8_____ %

Number of individual sources listed of
more than 3% similarity: 1

Formatting similarities

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: ___Gan Ming Lee_________

 Name: __________________________

Date: ____26/4/2024_____________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

GML

FYP2 CHECKLIST

 105
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB01238

Student Name TUNG TEAN THONG

Supervisor Name DR GAN MING LEE

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

✓ Title Page
✓ Signed Report Status Declaration Form
✓ Signed FYP Thesis Submission Form
✓ Signed form of the Declaration of Originality
✓ Acknowledgement
✓ Abstract
✓ Table of Contents
✓ List of Figures (if applicable)
✓ List of Tables (if applicable)
✓ List of Symbols (if applicable)
✓ List of Abbreviations (if applicable)
✓ Chapters / Content
✓ Bibliography (or References)
✓ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
✓ Appendices (if applicable)
✓ Weekly Log
✓ Poster
✓ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
✓ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 26/4/2024

