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ABSTRACT

PERFORMANCE OF THE MAHALANOBIS AND OTHER
PARAMETRIC FAMILIES OF UNIVERSAL PORTFOLIOS

Lim Wei Xiang

Cover and Ordentlich [9] has shown that the Dirichlet-weighted universal
portfolios exhibit some long-range optimal properties. However, the
implementation of the portfolio requires large computer memory requirements
and long computation time. The wealth achieved by the Dirichlet-weighted
universal portfolio cannot exceed that of the best constant rebalanced portfolio.
A multiplicative-update universal portfolio, introduced by Helmbold, Schapire,
Singer and Warmuth [12], has its limitation when the learning parameter n is
restricted to small positive values. We show that the bound on the parameter n
is unnecessarily restrictive, and demonstrate that higher investment returns can
be achieved by allowing 7 to take larger positive or negative values. A class of
additive-update universal portfolios generated by the Mahalanobis squared
divergence is derived, and practical bounds for the valid parametric values of
the Mahalanobis universal portfolio are obtained. Any real number can be used
as a parameter of the Mahalanobis universal portfolio provided modifications
are made when a portfolio component becomes negative. A sufficient
condition for the Mahalanobis and Helmbold universal portfolios to achieve
wealths exceeding that of the best constant rebalanced portfolio is derived.

The performance of the Mahalanobis universal portfolios is demonstrated by



running the portfolios on some large stock-data sets covering a period of 1975
trading days. The Dirichlet universal portfolio of order one is a memory-
saving universal portfolio that overcomes the shortcomings of the Dirichlet-
weighted universal portfolio in large computational memory and time. The
mixture-current-run universal portfolio is a mixture of different universal
portfolios and follows the current run of the portfolio that achieves the best
single-day investment return. This portfolio is shown to be able to perform
better than the individual portfolios in the mixture. We show empirically that
there are mixture-current-run universal portfolios that can achieve higher

wealths than that of the best constant rebalanced portfolio.
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CHAPTER ONE

INTRODUCTION

Investment decision making using universal portfolios adopts the
approach where the investors need not depend on the stochastic model
underlying the true distribution of the stock prices. The uniform universal
portfolio introduced by Cover [7] has been shown empirically that it can
achieve a wealth growth rate close to that of the optimal wealth in an empirical
study which includes selected stocks from the New York Stock Exchange for a
period of 22 years. Subsequently, it is generalized to the class of Dirichlet-
weighted universal portfolios by Cover and Ordentlich [9]. Since the
implementation of these universal portfolios requires a large amount of
computer memory, it is not practical to run such an algorithm. It is known that
the Dirichlet-weighted universal portfolio cannot achieve a higher wealth than
that of the best constant rebalanced portfolio (BCRP). It is important to have
an effective universal portfolio for trust fund managers to manage the clients’
wealths. The universal portfolio should perform well in the long run riding out
financial crises or economic downturns in the investment period. This research
mainly focusses on the multiplicative-update and additive-update universal
portfolios which require much lesser memory requirements in their
implementation. The thesis concludes with a study on a mixture of different
universal portfolios. The performance of the universal portfolios is studied by

running these universal portfolios on some selected stock-price data sets from



the Kuala Lumpur Stock Exchange. Four of the data sets are from the period 2
January 2003 until 30 December 2010 which covers the global financial

crisis of 2008.

This thesis consists of six chapters. An introduction is given in the first
chapter which states the objectives of the research. Then a literature review on
the area of universal portfolios followed by the definitions used in the thesis
are given. In Chapter Two, a multiplicative-update universal portfolio namely,
the Helmbold universal portfolio where the multiplicative scalar in the power
of the update-exponential function serves as a parameter is studied. We show
that it is unnecessary to restrict the values of this multiplicative scalar or
learning parameter to small positive values. In fact higher investment returns
can be obtained by using large positive or negative values of this learning
parameter. The initial starting portfolio may also be regarded as a parameter
affecting the performance of the Helmbold universal portfolio. We present a
detailed study of the dependence of the wealth achieved on the initial starting
portfolio. We derive an expression for the portfolio on any day depending on
the initial starting portfolio. By changing the initial starting portfolio, it may
be possible to achieve higher investment wealths. We obtain the Type Il
Helmbold universal portfolio by using a second-order logarithmic
approximation in the objective functions to be maximized and minimized. An
algorithm to solve the set of non-linear equations associated with a Type Il
Helmbold universal portfolio is presented. The performance of the Helmbold
and Type 1l Helmbold universal portfolios are compared by running both

universal portfolios on some data sets selected from the local stock exchange.



We note that the Helmbold universal portfolio is obtained by
maximizing and minimizing a certain objective functions involving the
Kullback-Leibler information measure. In Chapter Three, we propose to
generate a family of universal portfolios by maximizing and minimizing the
same objective functions using the chi-square divergence (CSD) distance
measure. A range of valid parametric values of the additive-update CSD
universal portfolio is derived for the selection of a valid parameter. The CSD
universal portfolio is run on some real stock data taken from the local stock
exchange. The performance of this family of universal portfolios is compared
with that of the Helmbold universal portfolios. We derive a larger family of
additive-update universal portfolios generated by the Mahalanobis squared
divergence in Chapter Four. This family of universal portfolios includes the
CSD universal portfolios as a subclass which is studied in Chapter Three. The
family of universal portfolios generated by the Mahalanobis squared
divergence are associated with symmetric, positive definite matrices. The
explicit formulae for the Mahalanobis universal portfolios associated with
some special symmetric matrices are derived. A sufficient bound for valid
parametric values of the Mahalanobis universal portfolio is obtained. The
sufficient bound is practical if the generating matrix is chosen to be a special
diagonal matrix. A sufficient condition for the Mahalanobis universal portfolio
to achieve a wealth higher than that of the BCRP is derived. An analogous
result holds for the Helmbold parametric family of universal portfolios. In
order to keep the generated portfolio vectors within the valid range, we modify

the portfolio components using translation and normalization whenever a



component becomes negative. The modified Mahalanobis universal portfolio
ensures that the generated portfolio vectors are genuine portfolio vectors for
any real number parameter. These modified portfolios based on any scalar
parameter are run on some selected stock-price data sets from the local stock

exchange to evaluate their performance.

In Chapter Five, we propose to consider a “Markovian” type Dirichlet
universal portfolio. We note that the Cover-Ordentlich Dirichlet-weighted
universal portfolio is obtained by weighting the current portfolio components
by the accumulated constant rebalanced portfolio wealth return with respect to
the Dirichlet probability measure. A family of Dirichlet universal portfolios of
order one is derived using a similar weighting procedure where the
accumulated constant rebalanced portfolio wealth return is replaced by the
latest one-day wealth return. The Dirichlet universal portfolio of order one is
run on some data sets selected from the local stock exchange and the
dependence of the wealth return on the initial starting portfolio is studied. We
identify the relationship between the Dirichlet universal portfolio of order one
and the CSD universal portfolio in the last section of Chapter Five. In the last
chapter, the problem of mixing two or more universal portfolios with the aim
of achieving a higher wealth return is studied. We introduce the mixture-
current-run (MCR) universal portfolio which follows the current run of the
portfolio that achieves the best single-day wealth return. When the current run
changes to a different run, the investment portfolio changes accordingly. An
upper bound on the wealth achievable in the MCR universal portfolio is

derived and we also estimate the probability of achieving this upper bound. An



application of MCR universal portfolio is discussed in the last section in

Chapter Six.

1.1 Literature Review

A portfolio is an investment strategy that can reduce the risk of
investment by using diversification of assets. It refers to investing in any
combination of financial assets which has a lower risk than investing in an
individual asset. Besides, it can be shown portfolio investment may give a
higher wealth return. In this research, a portfolio is a vector of the proportions
of the investment wealth distributed among the stocks invested in a market.
Portfolio theory was first developed mathematically by Markowitz [17].
Markowitz treated the portfolio problem as a choice of the mean and variance
of a portfolio, that is holding constant variance and maximizing the mean as
well as holding constant mean and minimizing the variance. This led to the
efficient frontier where the investor could choose his preferred portfolio
depending on his risk preference. Sharpe [20] extends Markowitz’s work on
the portfolio analysis. A simplified model of the relationships among
securities for practical applications of the Markowitz portfolio analysis

technique is provided by Sharpe.

The theory of rebalanced portfolios for known underlying distributions
was introduced by Kelly [15]. Kelly showed that the growth rate of wealth can
be maximized by the log-optimal investment where the gambler reinvests his

cumulative wealth based on the knowledge given by the received symbols.



This theory was extended to investment in independent and identically
distributed markets by Breiman [5]. Mossin [19] extended the one-period
portfolio analysis to a optimal portfolio management over several periods.
Thorp [34] studied the uses of logarithmic utility over the portfolio selection.
A study of “maximum-expected-log” rule against the efficient frontier is given
by Markowitz [18]. Bell and Cover [4] showed that the Kelly criterion has
good short run, a Kelly investor has at least half a chance of outperforming
any other gambler after just one trial. Finkelstein and Whitley [10] showed
that the Kelly investor is always ahead of any other gambler on average after
any fixed number of bets. An algorithm for maximizing the expected log
investment return is presented by Cover [6]. Barron and Cover [3] showed that
the increase in exponential growth of wealth is achieved for special extreme
case with side information. Algoet and Cover [2] proved that maximizing
conditionally expected log return is asymptotically optimal for the market with
no restrictions on the distribution. A constant rebalanced portfolio allocates
the same proportions of wealth among the available stocks on every day. It is
known that the optimal growth rate of wealth is achieved by a constant
rebalanced portfolio if the price-relatives are independent and identically
distributed. The wealth achieved by the best constant rebalanced portfolio
(BCRP) is expected to grow exponentially with a rate determined by stock’s

volatility.

An investment portfolio is universal if it can be used in a market where
no probabilistic model is assumed for the stock prices. It is useful for the

investor who only has limited knowledge of the true distribution underlying



the market. Cover and Gluss [8] restricted the price-relatives to a finite set and
used the Blackwell’s approach-exclusion theorem and compound sequential
Bayes decision rules to define an investment scheme with universal properties.
Subsequently, Cover [7] introduced the uniform universal portfolio and used
the Laplace’s method of integration to show that the uniform universal
portfolio performs asymptotically as well as the BCRP. Cover and his research
associates tested the uniform universal portfolio experimentally on some stock
data sets from the New York Stock Exchange covering a period of 22 years
trading and it is possible to increase the wealth by a large margin. Jamshidian
[14] extended the Cover’s work to the continuous time framework. The
uniform universal portfolio is generalized to the class of Dirichlet-weighted
universal portfolios by Cover and Ordentlich [9]. In the same paper, Cover and
Ordentlich [9] introduced the notion of side information and focussed the
studies on the wealth achievable by the uniform and Dirichlet-weighted
(1/2,1/2,..,1/2) universal portfolios. The authors also derived the
theoretical performance bounds of the two special Dirichlet-weighted
universal portfolios. Ishijima [13] showed that the Dirichlet-weighted
universal portfolios coincide with the optimal Bayes portfolio under the
continuous time framework without hindsight. The performance bounds are
extended to the general class of Dirichlet-weighted universal portfolios by Tan
[21, 22] for any parametric vector (a,, @y, ..., a,,). Gaivoronski and Stella [11]
used the nonstationary optimization to construct the Dirichlet-weighted
universal portfolios, that it maximizes the expected log cumulative wealth

estimated using all historical price relative relatives. Agarwal, Hazan, Kale



and Schapire [1] extended the Gaivoronski and Stella’s idea by appending a

regularization term to minimize the variation of next portfolio.

A universal portfolio requiring a much lesser computation time and
memory requirement for its implementation was introduced by Helmbold,
Schapire, Singer and Warmuth [12]. The authors used the exponentiated
gradient update algorithm that was developed by Kivinen and Warmuth [16]
to generate the multiplicative-update universal portfolio. The Helmbold
universal portfolio is shown to be outperforming the uniform universal
portfolio based on the same stock data from the New York Stock Exchange in
[7]. Helmbold, Schapire, Singer and Warmuth also extended the study on
Helmbold universal portfolios to include the presence of additional side
information. Tan and Tang [32] showed that the Helmbold universal portfolio
is sensitive to the initial starting portfolio and it behaves like a constant
rebalanced portfolio if the parameter is restricted to a small positive value.
They also showed that there are Dirichlet-weighted universal portfolios that

can perform better than the Helmbold universal portfolio empirically.

1.2 Definitions

We discuss some basic definitions in this section by considering
investment in a market of m stocks. An m-dimensional vector b,, = (b,;) is
said to be a portfolio vector if b,; >0 fori =1,2,..,mand ¥[%, b,; = 1.
The integer n in the context of this thesis refers to the nth trading day. The

component b,,; is the proportion of the current wealth of the investor which is



invested in the ith stock. We denote the simplex of portfolio vectors b = (b;)

by

m
B = (bl’ bz, .--,bm): bl > 0 fOI‘l = 1,2, ...,m,E bl = 1}. (11)

=1
The point b = (by, by, ..., byy,) is @ boundary point of B if there exists an index
j such that b; =0, where 1<j<m. Let x,, = (x,;) denotes the price-
relative vector of the market on the nth trading day, where x,,; is the ratio of
the closing price of the ith stock to its opening price, fori = 1,2, ..., m. The
price-relative x,,; describes the performance of the ith stock on the nth trading
day where the ith stock increases or decreases by a factor of x,; times its

previous value.

The wealth achieved in a single day j is

m
i=1

for i =1,2,...,m. Assuming an initial wealth S, of 1 unit and given the
sequence of price-relative vectors x4, X, ..., X,, the wealth achieved at the end

of the nth trading day is given by

S

S, =1 |bx; (1.3)

j=1

where by, b,, ..., b,, is the sequence of portfolio strategies used by the investor.

A constant rebalanced portfolio investment strategy uses the same

portfolio vector b for each trading day. The buy-and-hold strategy for a single



stock is a special case of the constant rebalanced portfolio. The optimal wealth
achieved by the BCRP is defined as

n
Sy = ml?xSn(b) = ml?xl_[btxj, (1.4)
j=1

We denote the BCRP by b;, where

Sn(by) = max Sy (b). (1.5)

The goal of our research is to find the universal portfolios that can
achieve wealths close to that of the BCRP. In fact, we show empirically in this
thesis (for example, Chapter Six) that there are universal portfolios that can
achieve wealths exceeding that of the BCRP. This demonstrates the
importance of the additive-update Mahalanobis universal portfolio which can
achieve a wealth exceeding that of the BCRP. In contrast, the Dirichlet-
weighted universal portfolios cannot achieve wealths exceeding that of the
BCRP. The Mahalanobis universal portfolios introduced in this thesis provides
an alternative class of investment portfolios available to the trust fund
managers for investment. Empirically the performance potential of these

universal portfolios is demonstrated in this research.
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CHAPTER TWO

HELMBOLD UNIVERSAL PORTFOLIO

Helmbold et al. [12] proposed a universal portfolio that can be
implemented by day-to-day multiplicative-update of the current portfolio
which requires very much lesser computer memory requirements growing
linearly with the number of stocks invested. It was shown that the Helmbold
universal portfolio can perform better than the uniform universal portfolio on

some stock-price data sets used in [7].
2.1  Two Parameters of the Helmbold Universal Portfolio

The work reported in this section is published in Tan and Lim [24, 25,
29]. In [12], a multiplicative-update universal portfolio where the
multiplicative scalar in the power of the update-exponential function serves as
a parameter was introduced. Tan and Tang [32] observed that the initial
starting portfolio b; can be a factor influencing the performance of the

Helmbold universal portfolio. By restricting the parameter n of the Helmbold

universal portfolio to the narrow range of 0 <n <2 /21(’% <1, the

Helmbold universal portfolio behaves like a constant rebalanced portfolio. In
this section, we propose to remove the unnecessary restriction on n and
demonstrate that higher investment wealths can be obtained by large positive

values of n or negative . A consequence of moving further away fromn = 0

11



is that the resulting Helmbold universal portfolio no longer behaves like a
constant rebalanced portfolio. The emphasis of this section is on the
dependence of the Helmbold universal portfolio on the parameter n and to

study the dependence on the initial starting portfolio b,.

The Kullback-Leibler distance measure is

m
_ by
D(bic I'b) = ) byilog (7). 2.1)
i=1 ni

where b, = (by;) and b,, = (b,;) are any two portfolio vectors.

The Helmbold universal portfolio is a sequence of portfolio vectors

{b,,.1} generated by the following update of b,,;:

x .
bn; exp (n blx )
= non (2.2)

xn->’

J
Z;rl:1 bnj exp (77 bix,
for i =1,2,..., m, where the constant n (any real number) and the initial

bn+1j

starting portfolio by = (by4, by, ..., b1) are given. The Helmbold universal
portfolio (2.2) is said to be generated by the parameter n and the initial starting

portfolio b;.

First, we derive an expression for the dependence of b,,..; on b, for

the Helmbold universal portfolio.

12



Proposition 2.1 For the Helmbold universal portfolio b,,; = (bpy1,)

given by (2.2), we have

b; exp (UZk 1bt )
= o (23)
2z byj eXp(’?Zk 1hix )

bn+ 1,i

where b; = (by;) is the initial starting portfolio.

Proof. From (2.2), expressing b,,; as a function of b,,_, ;, we have

bn+1,i -

. o
bn—1,i €xp (77 ﬁ) exp (77 th; )
n Tl n“n
]
nxn

n-1,j
Z] 1bn 1]9Xp(77bt 1Xn 1)] [Z n]eXp<77bt

Now expressing b,,_4 ; as a function of b,,_, ; and continuing in this way until

b,; is expressed as a function of b;;, we obtain

by; exp (TI Dh= 1bt )
bt = : (2.4)

1=1 [Z}n:l b;j exp (77 E)]

Summing over i in (2.4) where X% b,:;; =1 and noting that the

denominator in (2.4) does not depend on i, we conclude that the denominators

in (2.3) and (2.4) are equal. m

We remark that the function b,,,.; may not be continuous at a boundary
point b; of the simplex B since b;; = 0 implies that b,,,; =0 for all

n=123,...

We introduce the eta-parametric family of Helmbold universal

portfolios which is defined by (2.2) for any real number 7.

13



Proposition 2.2 Consider the objective functions

F(byy1) = nlog(bf,1X,) — D(bpyq Il by)
and

G(bpyq) = nlog(bfy1X,) + D(bpyyy Il by)
where D(b,,.; Il b,,) is the Kullback-Leibler distance measure or relative
entropy given by (2.1) and 7 is positive. By approximating log(b’ . ,x,,) using
[log(b X,) + == "“x" 1], the maximum of the objective function F(b,,, ;) is
achieved at b,,,; given by (2.2) and the minimum of G (b,,,) is also achieved
at b,,..; given by (2.2) where 1 is replaced by —n.

Proof. Since b,, is a portfolio vector for n = 1,2,3, ..., we need to intoduce the

Lagrange multiplier y in maximizing the objective function

FOnn) = [log(b;xn) i S:l o 1] Z bn+1llog( n+1l>
n Tl

m
+y (Z bn+1,i - 1)
i=1

and minimizing the objective function

B IIIC

t
bnn

m
+y <Z bn+1,i - 1)-
i=1

Helmbold et al. [12] have shown that the maximum of F (b,,,,,¥) is achieved
at b, given by (2.2). The minimum of G(b,,,y) is achieved when the

following m partial derivatives are zero,

aG\(bn+1: V) [ n+1,i
lo ( ) + 1] +y=0
abn+1,i nb% Xn & n

14



fori = 1,2, ..., m. We obtain

Xni

bn+1,i = bniexp (—TI ) exp(—y - 1)

by.x,,

fori = 1,2,...,m. Summing up the components b, ; over i, we have

m
x .
1= empor = 1)) b eap (-2
i=1 nen
leading to
. . _Xni
bniexp( nngn)

bn+1,i =

xnj
Z}n=1 bnj exp(—n ngn)
fori =1,2,...,m. Let

G(bn+1,1: bn+1,2: ey bn+1,m—1)

b1t1+1xn _ 1]

=1 lIOg(b%Xn) + bix,

S b
) by slog(21)
i=1 m

where b, 1 = 1= Y™ b1 ;. Then the first partial derivatives of (2.5) are

(2.5)

aé(bn+1,1; bry1,2) e bn+1,m—1) P xnm] +log (bnmbn+1,i>

=7
abn+1,i b%Xn bnibn+1,m

fori =1,2,...,m — 1 and the second partial derivatives of (2.5) are

1 1

2~
d G(bn+1,1'bn+1,2» ) bn+1,m—1) _ bn+1,i bn+1,m

abn+1,iabn+1,j

fori=j

fori #j
k bn+ 1m J

fori,j = 1,2,..,m — 1. The Hessian matrix of G(bn411, bry12) «r bnsim-1)

is

. azé(bn+1,1' bn+1,2' s bn+1,m—1)
H =
abn+1,iabn+1,j

15



where

fori,j =1,2,..,m—1and

bn+ 1,k

fork = 1,2,..,m. Let J, = (J;;) be the k x k sub-matrix of H where

.__{¢i+q.’>m fori=j
Jij = Dm fori #j

for k=12,...m—-1. If byy1; >0 for i=12,..,m, then ¢; >0 for

i =1,2,..,m. Asimple evaluation of the determinant of J,, = (J;;) shows that

k-1
Ul = D (12 - Bidhisadiss o Gidm) + B18hs b+ $obs . Bihim
i=1
for k=1,2,...,m—1 and ¢, is defined to be ¢,, for a fixed k. Now
¢, >0 for i=12,...,k and ¢,, >0 implies that |J,| >0 for k=
1,2,...,m — 1. In other words, the principal minors |],| of H are all positive.
Hence H, the Hessian matrix of G(bpy11,bns12s - Pri1m_1) iS positive

definite. Similarly, if

F(bn+1,1: bn+1,2: ey bn+1,m—1)

= 1 log(bix,) + 22 "—1] Zb og (“2124)

b,"; Xn ni
where  bpiim=1—X"1"byy,; , then the Hessian matrix of
F(bns11 bni12r oo buyim—1) is —H which is negative definite. Hence
G(bns11 bni12r o busimot) has @  minimum  point  and

F(bns11, bni12r oo busim1) has a maximum point. Furthermore,

16



F(bns11,bni12r - buyim—1) is concave and G(bni11,bny1zr s bnsim-1)

is convex in the simplex B defined in (1.1). O

We have shown that the eta-parametric family of Helmbold universal
portfolios is generated by maximizing and minimizing two different objective
functions F(b,,;) and G(b,,,) for n >0 and n < 0 respectively. The
objective functions want the current portfolio b,,,; to be close to the previous
portfolio b,, in terms of Kullback-Leibler distance measure. Tan and Tang [32]
have shown that the initial starting portfolio b, is a parameter that can affect
the final wealth achievable by the Helmbold universal portfolio. If the initial
starting portfolio is a good one, we require that the subsequent portfolios are
close to each other. On the other hand, if the initial starting portfolio is not a
good one, we hope to move away from the current portfolio to the right one

with the highest investment wealth.

We have run the eta-parametric family of Helmbold universal portfolio
on three stock data sets chosen from the Kuala Lumpur Stock Exchange. The
period of trading of the stocks selected is from 1 January 2003 until 30
November 2004, consisting of 500 trading days. Each data set consists of
three company stocks. Set A consists of the stocks of Malayan Banking,
Genting and Amway (M) Holdings. Set B consists of the stocks of Public
Bank, Sunrise and YTL Corporation. Finally, set C consists of the stocks of

Hong Leong Bank, RHB Capital, and YTL Corporation.
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We begin with the initial starting portfolio
b, = (0.3333,0.3333,0.3334) for all the three data sets. For each data set, the
portfolios bg,; and the wealths S5y, achieved after 500 trading days are

calculated for selected values of n and are listed in Tables 2.1, 2.2 and 2.3.

Table 2.1: The portfolios bs,; and the wealths S5y, achieved by the
Helmbold universal portfolio for selected values of n for data
set A, where b; = (0.3333,0.3333,0.3334)

n bso, Ss00
-10.00 (0.0053, 0.9789, 0.0158) 1.4310
-5.00 (0.0678, 0.8140, 0.1182) 1.5449
-3.00 (0.1509, 0.6379, 0.2111) 1.5725
-1.00 (0.2697, 0.4283, 0.3019) 1.5722
-0.75 (0.2857, 0.4035, 0.3109) 1.5707
-0.50 (0.3016, 0.3793, 0.3191) 1.5689
-0.30 (0.3143, 0.3605, 0.3252) 1.5674
-0.20 (0.3207, 0.3513, 0.3281) 1.5666
-0.10 (0.3270, 0.3422, 0.3308) 1.5658

0 (0.3333, 0.3333, 0.3334) 1.5650

0.10 (0.3396, 0.3245, 0.3359) 1.5642
0.20 (0.3458, 0.3159, 0.3382) 1.5633
0.30 (0.3521, 0.3074, 0.3405) 1.5624
0.50 (0.3645, 0.2910, 0.3446) 1.5607
0.75 (0.3797, 0.2712, 0.3490) 1.5585
1.00 (0.3948, 0.2525, 0.3527) 1.5563
3.00 (0.5043, 0.1366, 0.3591) 1.5399
5.00 (0.5935, 0.0700, 0.3365) 1.5266
10.00 (0.7485, 0.0115, 0.2401) 1.4996

Table 2.2: The portfolios bgy; and the wealths S, achieved by the
Helmbold universal portfolio for selected values of n for data
set B, where b; = (0.3333,0.3333,0.3334)

n bso; Ss00
-10.00 (0.8507, 0.1493, 0.0000) 1.8141
-5.00 (0.6872, 0.3109, 0.0018) 1.8110
-3.00 (0.6011, 0.3813, 0.0176) 1.8399
-1.00 (0.4598, 0.3965, 0.1437) 1.9866
-0.75 (0.4323, 0.3868, 0.1810) 2.0223
-0.50 (0.4018, 0.3730, 0.2252) 2.0630
-0.30 (0.3755, 0.3591, 0.2655) 2.0994
-0.20 (0.3617, 0.3511, 0.2872) 2.1188
-0.10 (0.3477,0.3425, 0.3098) 2.1390

0 (0.3333,0.3333, 0.3334) 2.1600

0.10 (0.3187, 0.3235, 0.3578) 2.1818

18



Table 2.2 continued

n bso; Ss00
0.20 (0.3040, 0.3132, 0.3828) 2.2042
0.30 (0.2891, 0.3025, 0.4084) 2.2274
0.50 (0.2595, 0.2798, 0.4607) 2.2754
0.75 (0.2232, 0.2501, 0.5267) 2.3382
1.00 (0.1888, 0.2200, 0.5912) 2.4031
3.00 (0.0317,0.0517, 0.9165) 2.8851
5.00 (0.0039, 0.0091, 0.9871) 3.1899
10.00 (0.0000, 0.0001, 0.9999) 3.5140

Table 2.3: The portfolios bsy; and the wealths Ss,, achieved by the
Helmbold universal portfolio for selected values of n for data
set C, where b; = (0.3333,0.3333,0.3334)

n bsoq Ss00
-10.00 (0.0232, 0.9768, 0.0000) 1.3126
-5.00 (0.1379, 0.8617, 0.0004) 1.3350
-3.00 (0.2517, 0.7406, 0.0078) 1.3898
-1.00 (0.3657, 0.5190, 0.1153) 1.5868
-0.75 (0.3676, 0.4775, 0.1549) 1.6359
-0.50 (0.3633, 0.4322, 0.2044) 1.6933
-0.30 (0.3548, 0.3937, 0.2515) 1.7454
-0.20 (0.3488, 0.3738, 0.2774) 1.7736
-0.10 (0.3416, 0.3536, 0.3047) 1.8033

0 (0.3333,0.3333, 0.3334) 1.8343

0.10 (0.3239, 0.3129, 0.3632) 1.8666
0.20 (0.3134, 0.2925, 0.3940) 1.9002
0.30 (0.3020, 0.2724, 0.4256) 1.9350
0.50 (0.2769, 0.2333, 0.4898) 2.0077
0.75 (0.2428, 0.1877, 0.5695) 2.1032
1.00 (0.2076, 0.1475, 0.6449) 2.2017
3.00 (0.0338, 0.0122, 0.9540) 2.8736
5.00 (0.0040, 0.0007, 0.9953) 3.2021
10.00 (0.0000, 0.0000, 1.0000) 3.4416

Let [Ix]l; = X7, |x;| and ||x]|, = (X7, x?)*/? denote the £, norm and
£, norm of the vector x respectively. It is clear from Tables 2.1, 2.2 and 2.3

that ||bsy; — b,]|; and ||bgg; — b4 ]l, as functions of n are growing with n as

In| gets larger. If i is restricted between 0 and 2 /210% (or 0.1326 for m = 3,

N = 500) as recommended in [12], ||bsg; — b4]|; and ||bgy; — by ||, are close
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S500

1.58

to 0. If a larger variation of bgy, from b, is required, it can be achieved by

using a larger |n| universal portfolio.

In Figures 2.1, 2.2 and 2.3, the graphs of the wealth S5, against n are
plotted for the data sets A, B and C respectively, where the local maxima are
shown. We strongly believe that the local maxima are also the global maxima
over all n. For data set A, the maximum wealth achievable is Sy, (max) =
1.5755 at n = —2.0714 . Here is an example of a Helmbold universal
portfolio with a negative-valued parameter achieving the maximum wealth.
For data sets B and C, the maximum wealth achievable are Ssy,(max) =
3.6467 and Ssoo(max) = 3.5066 at n =30.1449 and n = 115.7115
respectively. Again, this demonstrates that if  is restricted between 0 and
0.1326 as recommended in [12], it is not possible to achieve the maximum

wealth.
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1.52
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Figure 2.1: Graph of S5y, against n displaying the local maximum at
n=-2.0714 for data set A, where
b, = (0.3333,0.3333,0.3334) (Helmbold universal portfolio)
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Figure 2.2: Graph of S5, against n displaying the local maximum at
for
b; = (0.3333,0.3333,0.3334) (Helmbold universal portfolio)
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Hence, it is necessary to remove the unnecessary restriction 0 < n <

2 /2“’% imposed on 7 in order to achieve a higher investment wealth.

Empirical evidence is provided that the maximum investment wealth can be
achieved at a negative learning parameter n and at large positive learning
parameters. The best n achieving the maximum wealth can be determined

from hindsight given the past stock data.

We now study the dependence of the Helmbold universal portfolio on
the initial starting portfolio b,. For data sets A, B and C, the portfolios bgg;
and the wealths S5, achieved after 500 trading days for selected values of b,
are calculated and displayed in Tables 2.4, 25 and 26. If
b, = (0.3333,0.3333,0.3334) is used, then the maximum wealths S, (max)
obtained for data sets A, B and C are 1.5755, 3.6467 and 3.5066 respectively
corresponding to the respective n = —2.0714,30.1449 and 115.7115 from
Figures 2.1, 2,2 and 2.3. From Table 2.4, we observe that by changing b, to
(1.0000,0.0000,0.0000) , we can obtain a higher wealth Ss,, = 1.8534
compared to 1.5755. Even using b; = (0.7000,0.1500,0.1500), we obtain a
better S¢oo = 1.7447 compared to 1.5755. From Table 2.5, changing b, to
(0.2000,0.2000,0.6000) and (0.0000,0.0000,1.0000), we can obtain higher
wealths of Sgy0 = 3.8775 and Sz, = 4.2970 respectively compared to
Seoo = 3.6467 for b, = (0.3333,0.3333,0.3334) . Again, changing b; to
(0.2500,0.2500,0.5000) and (0.0000,0.0000,1.0000) for data set C in Table

2.6, higher wealths of Sgy0 = 3.5296 and S5y, = 4.2970 respectively are
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obtained which are better than Ss00 = 3.5066 for

b, = (0.3333,0.3333,0.3334).

Table 2.4: The portfolios bs,; and the wealths S5y, achieved by the
Helmbold universal portfolio for selected values of b, for
data set A, wheren = —-2.0714

b, bsoq Ss00
(0.0000,0.5000,0.5000) (0.0000,0.6849,0.3151) 1.4254
(0.1000,0.4500,0.4500) (0.0516,0.6478,0.3006) 1.4689
(0.2000,0.4000,0.4000) (0.1107,0.6057,0.2836) 1.5138
(0.3000,0.3500,0.3500) (0.1785,0.5578,0.2637) 1.5599
(0.4000,0.3000,0.3000) (0.2563,0.5033,0.2404) 1.6068
(0.5000,0.2500,0.2500) (0.3454,0.4414,0.2132) 1.6538
(0.6000,0.2000,0.2000) (0.4472,0.3714,0.1814) 1.7001
(0.7000,0.1500,0.1500) (0.5629,0.2926,0.1446) 1.7447
(0.8000,0.1000,0.1000) (0.6934,0.2044,0.1023) 1.7862
(0.9000,0.0500,0.0500) (0.8392,0.1067,0.0541) 1.8230
(1.0000,0.0000,0.0000) (1.0000,0.0000, 0.0000) 1.8534
(0.5000,0.0000,0.5000) (0.4415,0.0000, 0.5585) 1.8142
(0.4500,0.1000, 0.4500) (0.3565,0.1930, 0.4505) 1.7501
(0.4000,0.2000,0.4000) (0.2832,0.3592,0.3576) 1.6770
(0.3500,0.3000,0.3500) (0.2215,0.4991,0.2794) 1.6008
(0.3000,0.4000,0.3000) (0.1701,0.6155,0.2144) 1.5256
(0.2500,0.5000,0.2500) (0.1274,0.7120,0.1606) 1.4537
(0.2000,0.6000,0.2000) (0.0921,0.7919,0.1160) 1.3862
(0.1500,0.7000,0.1500) (0.0627,0.8583,0.0790) 1.3235
(0.1000,0.8000,0.1000) (0.0382,0.9138,0.0480) 1.2657
(0.0500,0.9000,0.0500) (0.0175,0.9605,0.0220) 1.2125
(0.0000,1.0000,0.0000) (0.0000,1.0000,0.0000) 1.1637
(0.5000,0.5000,0.0000) (0.2673,0.7327,0.0000) 1.4702
(0.4500,0.4500,0.1000) (0.2506,0.6811,0.0683) 1.5030
(0.4000,0.4000,0.2000) (0.2318,0.6244,0.1438) 1.5351
(0.3500,0.3500,0.3000) (0.2108,0.5623,0.2269) 1.5657
(0.3000,0.3000,0.4000) (0.1874,0.4947,0.3179) 1.5941
(0.2500,0.2500,0.5000) (0.1615,0.4217,0.4169) 1.6193
(0.2000,0.2000, 0.6000) (0.1331,0.3436,0.5233) 1.6400
(0.1500,0.1500,0.7000) (0.1024,0.2611,0.6365) 1.6551
(0.1000,0.1000,0.8000) (0.0696,0.1753,0.7551) 1.6632
(0.0500,0.0500,0.9000) (0.0353,0.0877,0.8770) 1.6632
(0.0000,0.0000,1.0000) (0.0000,0.0000,1.0000) 1.6539
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data set B, where n = 30.1449

Table 2.5: The portfolios bsy; and the wealths Ss,, achieved by the
Helmbold universal portfolio for selected values of b, for

by bso1 Ss00
(0.0000,0.5000,0.5000) (0.0000,0.0000,1.0000) 3.7560
(0.1000, 0.4500, 0.4500) (0.0000,0.0000,1.0000) 3.7153
(0.2000,0.4000, 0.4000) (0.0000,0.0000,1.0000) 3.6825
(0.3000,0.3500, 0.3500) (0.0000,0.0000,1.0000) 3.6550
(0.4000,0.3000,0.3000) (0.0000,0.0000,1.0000) 3.6311
(0.5000,0.2500,0.2500) (0.0000,0.0000,1.0000) 3.6095
(0.6000,0.2000,0.2000) (0.0000,0.0000,1.0000) 3.5888
(0.7000,0.1500,0.1500) (0.0000,0.0000,1.0000) 3.5672
(0.8000,0.1000,0.1000) (0.0000,0.0000,1.0000) 3.5408
(0.9000,0.0500,0.0500) (0.0000,0.0000,1.0000) 3.4932
(1.0000,0.0000,0.0000) (1.0000,0.0000, 0.0000) 1.3677
(0.5000,0.0000,0.5000) (0.0000,0.0000,1.0000) 4.0243
(0.4500,0.1000, 0.4500) (0.0000,0.0000,1.0000) 3.8556
(0.4000,0.2000, 0.4000) (0.0000,0.0000,1.0000) 3.7510
(0.3500,0.3000,0.3500) (0.0000,0.0000,1.0000) 3.6704
(0.3000,0.4000,0.3000) (0.0000,0.0000,1.0000) 3.6026
(0.2500,0.5000,0.2500) (0.0000,0.0000, 1.0000) 3.5428
(0.2000,0.6000,0.2000) (0.0000,0.0000,1.0000) 3.4886
(0.1500,0.7000,0.1500) (0.0000,0.0000,1.0000) 3.4385
(0.1000,0.8000,0.1000) (0.0000,0.0000, 1.0000) 3.3918
(0.0500,0.9000,0.0500) (0.0000,0.0000,1.0000) 3.3472
(0.0000,1.0000,0.0000) (0.0000,1.0000, 0.0000) 1.5570
(0.5000,0.5000,0.0000) (0.0817,0.9183,0.0000) 1.1536
(0.4500,0.4500,0.1000) (0.0000,0.0000,1.0000) 3.3677
(0.4000,0.4000,0.2000) (0.0000,0.0000, 1.0000) 3.5083
(0.3500,0.3500,0.3000) (0.0000,0.0000, 1.0000) 3.6149
(0.3000,0.3000,0.4000) (0.0000,0.0000,1.0000) 3.7072
(0.2500,0.2500,0.5000) (0.0000,0.0000, 1.0000) 3.7932
(0.2000,0.2000,0.6000) (0.0000,0.0000, 1.0000) 3.8775
(0.1500,0.1500,0.7000) (0.0000,0.0000,1.0000) 3.9639
(0.1000,0.1000, 0.8000) (0.0000,0.0000, 1.0000) 4.0569
(0.0500,0.0500,0.9000) (0.0000,0.0000,1.0000) 4.1633
(0.0000,0.0000,1.0000) (0.0000,0.0000,1.0000) 4.2970

Table 2.6: The portfolios bsy; and the wealths Ss,, achieved by the
Helmbold universal portfolio for selected values of b, for
data set C, wheren = 115.7115

b, bsoq Ss00
(0.0000,0.5000,0.5000) (0.0000,0.0000,1.0000) 3.6639
(0.1000,0.4500, 0.4500) (0.0000,0.0000,1.0000) 3.5546
(0.2000,0.4000, 0.4000) (0.0000,0.0000,1.0000) 3.5260
(0.3000,0.3500,0.3500) (0.0000,0.0000,1.0000) 3.5107
(0.4000,0.3000,0.3000) (0.0000,0.0000,1.0000) 3.4989
(0.5000,0.2500,0.2500) (0.0000,0.0000,1.0000) 3.4869
(0.6000,0.2000,0.2000) (0.0000,0.0000,1.0000) 3.4724
(0.7000,0.1500,0.1500) (0.0000,0.0000,1.0000) 3.4523
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Table 2.6 continued

by bsoq Ss00
(0.8000,0.1000,0.1000) (0.0000,0.0000,1.0000) 3.4197
(0.9000,0.0500,0.0500) (0.0000,0.0000,1.0000) 3.3529
(1.0000,0.0000,0.0000) (1.0000,0.0000,0.0000) 1.3664
(0.5000,0.0000,0.5000) (0.0000,0.0000,1.0000) 3.7505
(0.4500,0.1000, 0.4500) (0.0000,0.0000,1.0000) 3.4988
(0.4000,0.2000, 0.4000) (0.0000,0.0000,1.0000) 3.5069
(0.3500,0.3000, 0.3500) (0.0000,0.0000,1.0000) 3.5069
(0.3000,0.4000,0.3000) (0.0000,0.0000,1.0000) 3.5060
(0.2500,0.5000,0.2500) (0.0000,0.0000,1.0000) 3.5056
(0.2000,0.6000,0.2000) (0.0000,0.0000,1.0000) 3.5066
(0.1500,0.7000,0.1500) (0.0000,0.0000,1.0000) 3.5101
(0.1000,0.8000,0.1000) (0.0000,0.0000,1.0000) 3.5180
(0.0500,0.9000,0.0500) (0.0000,0.0000,1.0000) 3.5358
(0.0000,1.0000,0.0000) (0.0000,1.0000, 0.0000) 0.9595
(0.5000,0.5000,0.0000) (1.0000,0.0000,0.0000) 1.0740
(0.4500,0.4500,0.1000) (0.0000,0.0000,1.0000) 3.4651
(0.4000,0.4000,0.2000) (0.0000,0.0000,1.0000) 3.4882
(0.3500,0.3500,0.3000) (0.0000,0.0000,1.0000) 3.5023
(0.3000,0.3000, 0.4000) (0.0000,0.0000,1.0000) 3.5154
(0.2500,0.2500,0.5000) (0.0000,0.0000,1.0000) 3.5296
(0.2000,0.2000,0.6000) (0.0000,0.0000,1.0000) 3.5465
(0.1500,0.1500,0.7000) (0.0000,0.0000,1.0000) 3.5680
(0.1000,0.1000, 0.8000) (0.0000,0.0000, 1.0000) 3.5975
(0.0500,0.0500,0.9000) (0.0000,0.0000,1.0000) 3.6401
(0.0000,0.0000,1.0000) (0.0000,0.0000,1.0000) 4.2970

We may also consider the wealth function S,, as a function of one
component of b; with another component fixed at a certain value, say 0.1000.
Table 2.7 tabulates the wvalues of the function S;,, against
b,; = 0.0000,0.1000,...,0.9000 , b;, =0.0000,0.1000,...,0.9000 and
b,; = 0.0000,0.1000, ...,0.9000 for the data set B. In Figures 2.4, 2.5 and
2.6, the corresponding graphs of S5, against b;4, b,,, and b, are plotted. In
Figure 2.5, we observe that Sgy, is discontinuous at the boundary point
b, = (0.1000,0.9000,0.0000). Similarly, in Figure 2.6, S5, is discontinuous
at b; = (0.9000,0.1000,0.0000). In contrast, S5, is continuous at all points
b, in Figure 2.4. Again, in Figures 2.5 and 2.6, we obtain higher wealths of

Ssoo = 4.2352 and Sgop = 4.1194 at b, = (0.1000,0.0000,0.9000) and
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b, = (0.0000,0.1000,0.9000) respectively for data set B compared with

Ss00 = 3.6467 at b, = (0.3333,0.3333,0.3334).

Table 2.7: The portfolios bs,; as a function of one component of b, with
another component fixed at 0.1000 and the wealths Sg,,
achieved by the Helmbold universal portfolio for data set B,
where n = 30.1449

b, bsos Ss00
(0.0000,0.9000,0.1000) (0.0000,0.0000,1.0000) 3.4460
(0.1000,0.8000,0.1000) (0.0000,0.0000,1.0000) 3.3918
(0.2000,0.7000,0.1000) (0.0000,0.0000,1.0000) 3.3682
(0.3000,0.6000,0.1000) (0.0000,0.0000,1.0000) 3.3599
(0.4000,0.5000,0.1000) (0.0000,0.0000,1.0000) 3.3626
(0.5000,0.4000,0.1000) (0.0000,0.0000,1.0000) 3.3757
(0.6000,0.3000,0.1000) (0.0000,0.0000,1.0000) 3.4020
(0.7000,0.2000,0.1000) (0.0000,0.0000,1.0000) 3.4492
(0.8000,0.1000,0.1000) (0.0000,0.0000,1.0000) 3.5408
(0.9000,0.0000,0.1000) (0.0000,0.0000,1.0000) 3.7876
(0.1000,0.0000,0.9000) (0.0000,0.0000,1.0000) 4.2352
(0.1000,0.1000,0.8000) (0.0000,0.0000,1.0000) 4.0569
(0.1000,0.2000,0.7000) (0.0000,0.0000, 1.0000) 3.9398
(0.1000,0.3000,0.6000) (0.0000,0.0000,1.0000) 3.8440
(0.1000,0.4000,0.5000) (0.0000,0.0000,1.0000) 3.7572
(0.1000,0.5000, 0.4000) (0.0000,0.0000, 1.0000) 3.6737
(0.1000,0.6000,0.3000) (0.0000,0.0000,1.0000) 3.5893
(0.1000,0.7000,0.2000) (0.0000,0.0000,1.0000) 3.4991
(0.1000,0.8000,0.1000) (0.0000,0.0000, 1.0000) 3.3918
(0.1000,0.9000,0.0000) (0.0233,0.9767,0.0000) 1.2838
(0.9000,0.1000,0.0000) (0.2361,0.7639,0.0000) 1.1622
(0.8000,0.1000,0.1000) (0.0000,0.0000, 1.0000) 3.5408
(0.7000,0.1000,0.2000) (0.0000,0.0000, 1.0000) 3.6768
(0.6000,0.1000,0.3000) (0.0000,0.0000,1.0000) 3.7599
(0.5000,0.1000, 0.4000) (0.0000,0.0000, 1.0000) 3.8256
(0.4000,0.1000,0.5000) (0.0000,0.0000, 1.0000) 3.8845
(0.3000,0.1000, 0.6000) (0.0000,0.0000,1.0000) 3.9411
(0.2000,0.1000,0.7000) (0.0000,0.0000, 1.0000) 3.9980
(0.1000,0.1000,0.8000) (0.0000,0.0000, 1.0000) 4.0569
(0.0000,0.1000,0.9000) (0.0000,0.0000,1.0000) 4.1194
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Figure 2.4: Graph of S5y, against b, for data set B, wheren = 30.1449
(Helmbold universal portfolio)
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Figure 2.5: Graph of S5y, against b,, for data set B, wheren = 30.1449

(Helmbold universal portfolio)
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Figure 2.6: Graph of S5y, against b5 for data set B, wheren = 30.1449
(Helmbold universal portfolio)

In conclusion, the achievable universal wealth depends on the initial
starting portfolio b; . An improper choice of b; may lead to a lower
investment wealth. We have also provided empirical evidence that a choice of

same proportions in b; may not necessarily lead to the highest wealth return.

2.2 Type Il Helmbold Universal Portfolio

t
Helmbold et al. [12] approximated the function log (M) with a

bl x,
first-order Taylor polynomial to derive the portfolio. A second-order
logarithmic approximation is used instead in this section to derive the Type II
portfolio. By maximizing and minimizing the objective functions, we obtain a
set of non-linear equations in the m unknown portfolio variables. The solution
of this set of non-linear equations leads to a Type Il Helmbold universal

portfolio.
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The Type Il Helmbold universal portfolio is a sequence of portfolio

vectors {b,,, 1} generated by the following update of b,,;:

Cpexp (D(i) (b£1+1xn))
bni1i = - (2.6)
Sty Cyexp (Do (bhyaxn))

for i =1,2,..,m, where Cy; = byexp (Zﬂxni)’ o —NXp;

By N = (i)’ and n is any
given real number. Note that b, ; is defined to be the solution to a set of non-

linear equations given by (2.6).

The eta-parametric family of Type 1l Helmbold universal portfolios is

derived as follow:

Proposition 2.3 Consider the objective functions
F(by41) = nlog(bf,1X,) — D(bpyq Il by)
and
G(bnt1) = 1log(bny1Xn) + D(byyy Il by)
where D(b,,.; Il b,,) is the Kullback-Leibler distance measure or relative

entropy given by (2.1) and 7 is positive. By approximating log(b%,. ;x,,) using

t t 2
[log(ngn) + (M — 1) -1 (M — 1) ] the maximum of the objective

bl x, 2\ bix,
function F (b, ) is achieved at b,,,.; given by (2.6) and the minimum of the
objective function G(b,,,) is achieved at b,,; given by (2.6) where n is

replaced by —n.
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Proof. The Lagrange multiplier y is introduced in maximizing and

minimizing the objective functions because b, is a portfolio vector for

n=123,..,
bt ,x 1/bt, x 2
F(bui1,7) =1 |log(btx )+< i ”—1)——( Z ”—1)
n+1 g Xy, blen 2 blen
anmlog( pt) ¢ (Z Busrs )
and

~ bt X 1 bt X 2
G(bny1,¥) =1 [log(b%xn) + ( n+1fn 1) _§< n+1Xn 1) ]

byxy, byxy,
m
+ ) by log(
i=1

b m
n+1,1) +y § bn+1,i -1
bni i=1

The maximum of F(b,,,,¥) is achieved when the following m partial

derivatives are zero,

aI’;\'(bn+1' V) _ 277Xni nxni(bfwlxn) bn+1l
=— T~y — |log +1|+y=0
abn+1,i bnxn (bnxn) bn
fori =1,2,...,m. We obtain
anni _nxni(bgwlxn)
byo1:=hb,: ( ) -y—1
n+1,0 nleXp b%Xn ( (b%xn)z eXp( V )

fori =1,2,..,m. Summing up the components b,, . ; over i, we have

1= exp( y— 1) Z exp (2 x‘l’ll) exp <_nxni(b1t1+lxn)>
by (bnxn)?

i=

leading to (2.6) fori =1,2,..,m. It is straight forward to show that the

minimum of G(b,,,4,¥) is achieved at b, ;(—7) in (2.6). O
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We introduce the numerical algorithm of solving the set of non-linear

equations associated with the Type Il Helmbold universal portfolio.

Rewrite (2.6) to be the following equations
m
z bn41,iC(j) exp (D(j) (b7t1+1Xn)) + (bn+1,iCaiy — Ceiy)exp(Diy (bh11X,)) = 0
=

Jj#i

for i =1,2,..,m and let the left hand side of the above equation be

£ (bpy1,) Where

m
[ (bpyay) = Z bpn+1,iC(j) €xp (D(j) (b£1+1x’”‘))
=1

J
J#i

(2.7)

+ (bn+1,iCay — Ciiy)exp(Deiy (b4 1X,))

2N Xni —Ani H
where Cg;y = bniexp( b’%’;n), Dy = (b,t?fn)z and 7 is any real number. When

bn.1,; are fixed for all j # i, the function fl-”“(bnﬂli) has a root 0 <
bpiri <1, that is f***(byy1:) =0. This is due to f;**'(1) >0 and
f*1(0) < 0. We use Newton’s Method to find the root by, q;.. The
algorithm works as follows:

(1) FiX bpyq,j forj=2,3,..,m—1and find 0 < by, 4. < 1 such

that f1n+1(bn+1,1*) == O

(2) FixX byyqjforj=1,3,..,m—1and find 0 < by,q,. < 1such

that f2n+1(bn+1‘2*) =0.

(m-1)FiX bpyqj for j=1,2,..,m—2and find 0 < bpy1m—1. <1

such that f;7*1(bpy1.m-1.) = 0.
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If byt1m—1 = Pny1m-1., then the solution of (2.6) iS byiq 14y Dps12es s

by+1,ms- Otherwise, repeat (1) to (m - 1).

We apply Newton’s Method in numerical analysis to find the root of
fl-"“(bnﬂ,i) = 0. We find a sequence of iterates b, ; that converges to the
root b,+4,i.. Begin by guessing on an initial estimate b, ;. We can assume
the solution b,,. 4 is close to the given b,,. The initial iterate b, 1; = by; Is a

good start. For subsequent iterates, we apply the Newton formula

i . I (bnsicotay)
1i = 1,i(old) — |
n+1,i(new) = Pn+1,iold) 1 (bnsicora))

(2.8)

In summary, given f;***(-) as a function of b, ;, where by, is fixed for all
j#i, we use Newton’s Method to find 0 < b,q; <1 such that
f{‘“(bmm) = 0. The iterations are repeated fori = 1,2, ..., m — 1 until the

solution b, ; to (2.6) is obtained.

The eta-parametric family of Type 1l Helmbold universal portfolio are
run on the same three stock data sets that are used in the previous section. We
compare the performance of the two types of Helmbold universal portfolios
using the same initial starting portfolio b; = (0.3333,0.3333,0.3334) on each
data set. The portfolios bsy; and the maximum wealths S¢,,(max) achieved
by respective n’s on each data set after 500 trading days are shown in Table
2.8. The both types of Helmbold universal portfolios achieve the same
maximum wealths Sg,,(max) for data set A whereas the Helmbold universal
portfolio performs slightly better than the Type Il Helmbold universal

portfolio for data sets B and C.

32



Table 2.8: The portfolios bsy; and the maximum wealths Sg,,(max)
achieved by respective n’s by the two types of Helmbold
universal portfolios for data sets A, B and C, where b; =

(0.3333,0.3333,0.3334)
Data Set Helmbold universal portfolio Type 1l Helmbold universal portfolio
Ss00(max) = 1.5755 at Ss00(max) = 1.5755 at
Set A n=-2.0714 n=-2.0714
bso, = (0.2032,0.5403,0.2564) bso, = (0.2032,0.5405,0.2563)
Ssoo(max) = 3.6467 at Ssoo(max) = 3.6416 at
SetB n = 30.1449 n = 25.3080
bso, = (0.0000,0.0000,1.0000) bso, = (0.0000,0.0000,1.0000)
Ss00(max) = 3.5066 at Ss00(max) = 3.4902 at
SetC n =115.7115 n =17.2895
bso, = (0.0000,0.0000,1.0000) bso;, = (0.0000,0.0000,1.0000)

From the empirical results, we observe that the Helmbold universal
portfolio performs better than the Type Il Helmbold universal portfolio in
terms of the final wealth achievement. There is no advantage in using the Type
Il Helmbold universal portfolio instead of the Helmbold universal portfolio.
Furthermore, the implementation of the Type Il Helmbold universal portfolio
is more complicated and the computation requires more time. The results in

this section are presented in Tan and Lim [23].

2.3 Running the Helmbold Universal Portfolios on 10-stock Data Sets

The implementation of the Dirichlet-weighted universal portfolio
requires a large computer memory requirements for processing the stock data
during the computation. The Helmbold universal portfolio which requires
much lesser computer memory requirements can be implemented on any
number of stocks. We run the Helmbold universal portfolio on some 10-stock

data sets in this section.
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We have selected four stock-price data sets D, E, F and G covering the
period of 2 January 2003 until 30 December 2010. There is a total of 1975
trading days and the companies in the four data sets are listed in Table 2.9.
The selected companies must be active and liquid enough to be traded. These
two factors are applied to the market capitalisation. The companies in data sets
D, E, F and G are selected from the FTSE Bursa Malaysia Kuala Lumpur
Composite Index which comprises the largest 30 companies listed on the
Kuala Lumpur Stock Exchange Main Market by full market capitalisation.
Different sectors of company are selected in each data set to reduce the risk of
investment. Each data set consists of ten companies and there is overlapping

of companies in the data sets.

Table 2.9: List of companies in the data sets D, E, F and G

SetD

YTL Corporation
UMW Holdings
MMC Corporation
YTL Power International
PPB Group
Petronas Dagangan
Digi.com

Malayan Banking

Malaysian Airline
System

Kuala Lumpur Kepong

We start

SetE

YTL Corporation
UMW Holdings
MMC Corporation
YTL Power International
PPB Group
Petronas Dagangan

Digi.com

Hong Leong Financial
Group

Malaysian Airline
System

101 Corporation

with  the

SetF

YTL Power International

PPB Group
Petronas Dagangan

Digi.com

Hong Leong Financial
Group

Malaysian Airline
System

Kuala Lumpur Kepong

PLUS Expressways

101 Corporation

Sime Darby

same initial

starting

Set G

Malaysian Airline System

Hong Leong Financial
Group

101 Corporation
YTL Power International
Kuala Lumpur Kepong
Petronas Dagangan
MMC Corporation
PPB Group
Digi.com

Sime Darby

portfolio

b; = (0.1000,0.1000, ...,0.1000) for all the four 10-stock data sets. Table

2.10 shows the portfolios b;g7¢ and the maximum wealths S;q,5(max)
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achieved by respective n’s on each data set after 1975 trading days. The
maximum wealths S,4,5(max) achieved for data set D is 18.2486 at n =
0.4138. Again, data sets E, F and G are examples of the Helmbold universal
portfolios with large negative-valued parameters achieving the maximum
wealths S;9,5(max) = 22.9859,15.7558 and 19.9357 at 1 = —2.3639,

—9.4444 and —83.1143 respectively.

Table 2.10: The portfolios b,4,, and the maximum wealths S,4,<(max)
achieved by respective n’s by the Helmbold universal
portfolios for data sets D, E, F and G, where b; =
(0.1000,0.1000, ...,0.1000)

Data set Best n big76 S1975(max)
e e i 3o o
e e S o oo
0 om0
Set G -83.1143 (0.0000, 0.0000, 0.0002, 0.0000, 0.0460 19.9357

0.0000, 0.0000, 0.0000, 0.0000, 0.9537)1

The best constant rebalanced portfolios (BCRP) bjig,s and the
respective wealths S7,,< achieved after 1975 trading days for the four 10-
stock data sets are calculated and listed in Table 2.11. From Tables 2.11 and
2.10, the wealths S;q,5 achieved by the BCRP’s are much higher than the
maximum wealths S, 4,5 (max) achieved by the Helmbold universal portfolios

for all the four 10-stock data sets with the same initial starting portfolios.

Table 2.11: The best constant rebalanced portfolios bj,,5 and the wealths
Si975 achieved for data sets D, E, Fand G

Data set bigss Sio7s
(0.5981, 0.4019, 0.0000, 0.0000, 0.0000,
SetD 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 37.5867
SetE (0.5981, 0.4019, 0.0000, 0.0000, 0.0000, 37 5867

0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
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Table 2.11 continued
Data set bioss Si97s

(0.4836, 0.3869, 0.1295, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.0000, 0.0000, 0.0000, 0.1965, 0.0000,
0.0000, 0.5926, 0.2109, 0.0000, 0.0000)

SetF 20.7169

Set G 24.6381

The Helmbold universal portfolios are run on the four 10-stock data
sets again but with the initial starting portfolios b, are replaced by the BCRP’s
instead of the same initial starting portfolios. The resulting portfolios b;g7¢
and the maximum wealths S,4,<(max) achieved after 1975 trading days
where b; = bjg,5 are recorded in Table 2.12. Data sets D and E have the
same maximum wealths S,4,<(max) which are 43.2025 achieved at n =
—2.8843. The maximum wealths S,4,<(max) obtained for data sets F and G
are 27.2148 and 39.9419 respectively corresponding to the respective
n =—9.5684 and —5.7511. From Tables 2.10 and 2.12, the maximum
wealths S;975(max) achieved by the Helmbold universal portfolio are
significantly higher if the initial starting portfolios b, are replaced by the
BCRP’s for all the four 10-stock data sets. It is noteworthy that the maximum
wealths S,4,5(max) achieved by the Helmbold universal portfolio where
b, = bjy,s exceed the wealths S{q,5 achieved by the BCRP’s from Tables

2.12 and 2.11.

Table 2.12: The portfolios b,97, and the maximum wealths S, 4,5 (max)
achieved by respective n’s by the Helmbold universal
portfolios for data sets D, E, F and G, where b; = bjg/¢

Data set Best b1o76 S1975(max)
(0.4177, 0.5823, 0.0000, 0.0000, 0.0000,

SetD -2.8843 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 43.2025
] (0.4177, 0.5823, 0.0000, 0.0000, 0.0000,

SetE 2.8843 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 432025
] (0.0934, 0.8502, 0.0563, 0.0000, 0.0000,

SetF 9.5684 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 27.2148

oo P (0.0000, 0.0000, 0.0000, 0.1967, 0.0000, 20,0410

0.0000, 0.2956, 0.5077, 0.0000, 0.0000)
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CHAPTER THREE

CHI-SQUARE DIVERGENCE UNIVERSAL PORTFOLIO

The multiplicative-update universal portfolio was proposed by
Helmbold et al. in [12]. In this chapter, we propose to generate a family of
universal portfolios by the same method using the chi-square divergence (CSD)
distance measure. This leads to a family of additive-updates universal
portfolios. The families of universal portfolios generated by this method can

be implemented online involving day-to-day updates of the current portfolio.

3.1 The Xi-Parametric Family of Chi-Square Divergence Universal

Portfolio

The work reported in this section is published in Tan and Lim [26, 27].
An additive-update universal portfolio is obtained by maximizing and
minimizing a certain objective functions involving the CSD distance measure
in this section. We compare the performance of the CSD additive-update
universal portfolios with that of the Helmbold multiplicative-update universal
portfolios by running the portfolios on some selected data sets from the local
stock exchange. It is shown that for some parametric values of the CSD
universal portfolio, better wealths can be generated from daily investment.
Practical bounds for the parametric values of the CSD universal portfolios are

obtained for their investment implementation.
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The chi-square divergence distance measure is
m
(byi — bni)?
D(by I b,) = ) K (3.1)
i=1 i

where b, = (by;) and b,, = (b,,;) are any two portfolio vectors.

The CSD universal portfolio is a sequence of portfolio vectors {b,,,}

generated by the following update of b,,;:

& (xp — bExy)
bp+1,i = bn; ?btx ; =41 (3.2)
nXn

for i = 1,2,...,m, where initial starting portfolio b, is given and ¢ is any
chosen real number such that b,; = 0for alli =1,2,...,mandn = 1,2,3, ...
Equation (3.2) defines the xi-parametric family of CSD universal portfolios for
any appropriate real number & such that b,; = 0 for all i = 1,2,...,m and
n =1,2,3,... It is clear that this parametric family is defined for certain
bounded values of & and not for all real &, in contrast with the eta-parametric

family which is defined for all real n.

First, we show that the xi-parametric family of CSD universal
portfolios is obtained by maximizing and minimizing certain objective
functions of the doubling rate of the capital function and the CSD distance

measure.
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Proposition 3.1 Consider the objective functions

F(byyq) = 2§ log(bl1X,) — D(bpyy Il by)
and

G(bnyy) = 2 1log(bl,1Xy) + D(bpyy Il by)
where D(b,,,4 Il b,,) is the CSD distance measure given by (3.1) and & > 0.
By approximating log(b%,,x,) using [log(b X,) + T ”“x“ — 1] , the
maximum of the objective function F(b,,,) is achieved at b,,,, given by (3.2)
and the minimum of G(b,,, ;) is also achieved at b, ; given by (3.2) where &
is replaced by - €.
Proof. Since b,, is a portfolio vector for n = 1,2,3, ..., we need to introduce

the Lagrange multiplier y in maximizing the objective function

t
bnn

m
+y (Z bn+1,i - 1)
i=1

and minimizing the objective function

b _
F(bpi1,y) = 2¢ llog(bt X,) + br1X n_ l Z( n+1i — bni)
i=1 TLl

G(bpy1,y) = 2 Ilog(bt X,) + ——— br1X n_ l Z( n+1,i = bni)
nl

t
bnn

m
+y <Z bn+1,i - 1)-
i=1

First, the maximum of F(b,,.4,y) is achieved when the following m partial

derivatives are zero, that is

aF(bn+1: V) _ 25 Xni . 2(bn+1,i - bni)
abn+1,i b‘flx‘l’l bni

+y=0

fori = 1,2,..., m. We obtain
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Xni Y
bn+1,i = by; [W;; +1+ E]

fori = 1,2,...,m. Summing up the components b,, ., ; over i, we have

m
Z bniXni _
bnxn

i=1

which results in (3.2) for i = 1,2, ..., m. Finally, it is straight forward to show

the minimum of G (b,,,4,y) is achieved at b, ;(—£) in (3.2) and we omit the

proof. Let
F(bn+1,1' bn+1,21 LR bn+1,m—1)
= 2¢ Ilog(btx )+ b 1Xn — l
T bhx, (3.3)
m 2
_ (bn+1,i - bni)

i=1 bni

where b1, = 1 — X721 b, 11 ;. Then the first partial derivatives of (3.3) are

aﬁ(bn+1,11 bn+1,21 Ty bn+1,m—1)
abn+1,i

_ 25 [xnl xnm] _ 2(bn+1,i - bni) n 2(bn+1,m - bnm)
bni bnm

fori =1,2,...,m — 1 and the second partial derivatives of (3.3) are

= —_———— fori =j
azF(bn+1,1' bn+1,2f s bn+1,m—1) — bni bnm J

abn+1,iabn+1,j

- fori#j

fori,j = 1,2,...,m — 1. Define the matrix H where

h--={¢i+¢m fori=j
H Dm fori #j

fori,j=1,2,..,m—1and
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for k = 1,2, ..., m. From the previous result in Proposition 2.2, the matrix H is
positive definite if b,; > 0 for i = 1,2, ..., m. Hence the Hessian matrix of

F(bns11 bri12s -0 buy1im—1) is —2H which is negative definite. Similarly, if

G(bn+1,1' bn+1,2: LA bn+1,m—1)

— ZE IOg(b%Xn)-l- n+1 n l Z( n+11_ m
= m

bix,
where  bpy1m =1-2"1"bpi1; the Hessian matrix of
G(bn+11,bnt1,2 o busim—1) IS 2H which is positive definite. Thus
F(bns11 bnirzr oo busim—1) and G(bny11, buy12s o) bnyim—1) are concave
and convex respectively. The function F(bnﬂjl,bnﬂlz,...,bn+1’m_1) has a

maximum point and G (bp41.1, bnt1,2, -+ » Ppi1.m—1) has a minimum point. o

Proposition 3.2 A sufficient condition for b,; = 0for alli =1,2,...,m
and all positive integers n where b,, .4 ; is defined in (3.2) is that

min{xp; }
n,i

€] < (3.4)

max {miax(xni) - miin(xm-)}’
where b; > 0 is given.
Proof. Given b,, as a portfolio vector, then for b,,,; =0 in (3.2), for
i=12,...,mandn = 1,2,3, ..., we must have

¢ — bixy) = —(bxy),
or equivalently, one of the following inequalities is satisfied:

(bEx,) (bix,.)
A

|xni - b; Xn

(3.5)

Noting that
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min{y;} (bx.,)

max {max(xni) — m_in(xm-)} = |xp — x|
n l l
istrue foralli =1,2,..,mandn = 1,2,3, ..., any & satisfying (3.4) will imply

that (3.5) satisfied. |

Any ¢ satisfying (3.4) will generate a xi-parametric family of CSD
universal portfolios. In practice, if the minimum and maximum price-relatives

are 0.95 and 1.05 respectively, then the condition (3.4) says that [¢] <

0.95

—————=9.5. In other words, a parametric family of CSD universal
(1.05-0.95)

portfolios is generated for —9.5 < & < 9.5.

For comparison, we run the CSD universal portfolios on the three same
data sets designated as A, B and C introduced in Chapter Two with the initial
starting portfolio b; = (0.3333,0.3333,0.3334) . For each data set, the
maximum wealths S5, (max) achieved within the range of the parameter ¢
given by (3.4) and an extended range of & are shown in Table 3.1 together
with the portfolios by, and the best & values where Sc,, is maximum. The
extended range of ¢ is the largest interval of ¢ that satisfies (3.5) over all n

within the whole investment period.

Table 3.1: The portfolios bgy; and the maximum wealths Sgo(max)
achieved by respective ¢’s within the range of ¢ in (3.4) and
an extended range of ¢ by the CSD universal portfolio for
data sets A, B and C, where b; = (0.3333,0.3333,0.3334)

Data set Normal range of ¢ determined by (3.4) Extended range of &

—12.6811 < ¢ < 12.6811 —14.6638 < ¢ < 16.1608
Set A Ssoo(max) = 1.5758 at Sso0(max) = 1.5758 at
£=-19174 £=-19174
beo, = (0.2106,0.5298,0.2596) bsy, = (0.2106,0.5298, 0.2596)
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S500

1.65

1.6

1.55

15

1.45

1.4

13

Table 3.1 continued
Data set Normal range of ¢ determined by (3.4)

—11.2959 < ¢ < 11.2959
Ss00(max) = 3.7860 at

S8 & =11.2959
bse, = (0.0000,0.0000, 1.0000)
—10.1386 < ¢ < 10.1386
Set C Sso0(max) = 3.6310 at

£=10.1386
bso; = (0.0000,0.0000, 1.0000)

Extended range of ¢

—12.1887 < ¢ < 13.0114
Ss00(max) = 3.8394 at
£=13.0114
bs,; = (0.0000,0.0000,1.0000)

—15.2103 < ¢ < 16.7997
Ss00(max) = 3.6480 at
£ =11.8504
bs,; = (0.0000,0.0000,1.0000)

In Figures 3.1, 3.2 and 3.3, the superimposed graphs of Sz, against &
(CSD universal portfolio) and Sg, against n (Helmbold universal portfolio)
are shown for data sets A, B and C respectively and a limited range of the
parametric values, where b; = (0.3333,0,3333,0.3334) . There are more
fluctuations in the CSD graphs compared with the Helmbold graphs. We can
say that the Helmbold wealth function S,, is more stable with respect to

changes in its parameter.

— i
eta
[ [ [ [ L [

-10 -5 0 5 10 15
parameter

Figure 3.1: Two superimposed graphs of Sg,, against & (CSD universal
portfolio) and Ss,, against n (Helmbold universal portfolio)
for data set A, where b; = (0.3333,0.3333,0.3334)
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S500

S500

35

2.5

—

eta

1.5 L

parameter

Figure 3.2: Two superimposed graphs of Sg,, against ¢ (CSD universal
portfolio) and Ss,, against n (Helmbold universal portfolio)
for data set B, where b; = (0.3333,0.3333,0.3334)

35

25

15

—

eta

parameter

Figure 3.3: Two superimposed graphs of S¢,, against ¢ (CSD universal
portfolio) and Ss,, against n (Helmbold universal portfolio)
for data set C, where b; = (0.3333,0.3333,0.3334)
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It is clear from Tables 3.1 and 2.8 that the CSD universal portfolio
achieves a slightly higher wealth of Sy, = 1.5758 at ¢ = —1.9174 compared
with the Helmbold universal portfolio for data set A. For data sets B and C,
the CSD universal portfolios achieve significantly higher wealths of Sgy, =
3.8394 and S5y, = 3.6480 at £ = 13.0114 and ¢ = 11.8504 respectively.
Although the good-performance results are data-dependent, we can conclude
that there are CSD universal portfolios that can outperform the Helmbold
universal portfolios. In fact, we can achieve higher wealths from the CSD
universal portfolios by changing the initial starting portfolio b;. Table 3.2
shows that by using b; = (0.0100,0.0100,0.9800) for the data sets B and C,
we are able to achieve higher wealths of Sg,, = 4.2903 (compared to
Sco0 =3.8394 ) and S5y = 4.3024 (compared to Sgoo = 3.6480 ),
respectively. Hence the initial starting portfolio b, can be regarded as a factor

or parameter influencing the performance of the CSD universal portfolio.

Table 3.2: The portfolios bsy; and the maximum wealths Scy,(max)
achieved by respective &’s within an extended range of ¢ by
the CSD universal portfolio for data sets A, B and C, where
b, are set as stated

Data set Extended range of ¢
—14.6625 < ¢ < 16.0680
b, =(0.2100,0.5300,0.2600)
Set A Ssoo(max) = 1.4691 at
& =16.0680
by, = (0.0001,0.0000,0.9999)
—13.3201 < ¢ < 12,9848
b, =(0.0100,0.0100,0.9800)
Set B Ss00(Mmax) = 4.2903 at
& =12.9848
bso; = (0.0000,0.0000,1.0000)
—15.3125 < ¢ < 12,9973
b, = (0.0100,0.0100,0.9800)
Set C Ss00(Mmax) = 4.3024 at
¢ =-15.3125

bso; = (0.0012,0.0000,0.9988)
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3.2  Running the Chi-Square Divergence Universal Portfolios on 10-

stock Data Sets

The CSD universal portfolio can be implemented online using day-to-
day updates and it requires much lesser computer memory requirements
compared to the Dirichlet-weighted universal portfolio. The computer memory
requirements are growing linearly with the number of stocks, so the CSD
universal portfolio can be implemented on any number of stocks. In this
section, we run the CSD universal portfolios on the same four 10-stock data

sets in Section 2.3.

First, we run the CSD universal portfolios on data sets D, E, F and G
using b; = (0.1000,0.1000, ...,0.1000) . The portfolios b,9,, and the
maximum wealths Ss,,(max) achieved by respective é’s over the range of
values of ¢ considered on each data set after 1975 trading days are listed in
Table 3.3. From Tables 2.10 and 3.3, the maximum wealth S;4;5s(max) =
18.2486 achieved by the Helmbold universal portfolio is slightly higher than
the maximum wealth S;4,s(max) = 18.2431 achieved by the CSD universal
portfolio for data set D. For data sets E, F and G, the maximum wealths
achieved by the CSD universal portfolios are
Si975(max) = 29.1040,22.3262 and 25.5834 respectively, which are much
higher than the maximum wealths achieved by the Helmbold universal
portfolios. For data sets F and G, the maximum wealths S, 4,5 (max) achieved

by the CSD universal portfolios are even higher than the wealth S{g;5
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achieved by the best constant rebalanced portfolios (BCRP) from Tables 3.3

and 2.11.

Table 3.3: The portfolios b;9;, and the maximum wealths S;4,5(max)
achieved by respective &’s within an extended range of & by
the CSD universal portfolio for data sets D, E, F and G,
where b; = (0.1000,0.1000, ...,0.1000)

Dataset | Smallest & Largest & Best & b1g76 S1975(max)
SetD | -5.1308 4077 | 03769 | . e 00ee 5’01702521) 18.2431
SetE 5.1203 46078 | -2.8760 ((?_520233' 00261 0,606 00060, (?1052;’3% 29.1040
Set F -4.9553 53162 | -4.9553 gfggg' 00008, 0.3062. 0,000, 3)51729% 22.3262
s | 51030 w7008 | a7oap | (00013 0.7729,00184,0.0044,00626, | e oo,

0.0017, 0.0000, 0.0026, 0.0021, 0.1340)

Next, the CSD universal portfolios are run on the four 10-stock data
sets using b; = bj4,¢ that is computed in Table 2.11. Table 3.4 shows the
resulting portfolios b,4-¢ and the maximum wealths S, 4,5 (max) achieved by
respective &’s over the range of values of ¢ considered on each data set after
1975 trading days where the initial starting portfolios b, are the BCRP’s.
Data sets D and E achieve the same maximum wealths S,q,5(max) =
48.3525 by the CSD universal portfolios, and it is higher than the maximum
wealths S;4-,<(max) achieved by the Helmbold universal portfolios when
b, = bjg,s from Tables 3.4 and 2.12. Whereas for data sets F and G, the
maximum wealths achieved by the CSD universal portfolios, S;9;5s(max) =
26.5128 and 32.8167 respectively, are lower than the maximum wealths
achieved by the Helmbold universal portfolios when b; = bjg,s. From the
results, we can conclude that there are CSD universal portfolios that can
perform better than the Helmbold universal portfolios and there are CSD

universal portfolios that can outperform the BCRP’s.
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Table 3.4: The portfolios by, and the maximum wealths S,4,5(max)
achieved by respective &’s within an extended range of ¢ by the
CSD universal portfolio for data sets D, E, F and G, where

Data
set

Set D

SetE

SetF

Set G

— *
bl — Y1975

Smallest & Largest &

-9.3310 10.3310
-9.3310 10.3310
-4.9959 8.7514
-3.8807 4.8240

Best &

-2.5743

-2.5743

-2.6671

-2.2298

48

b1976

(0.1572, 0.8428, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.1572, 0.8428, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.1448, 0.8279, 0.0274, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.0000, 0.0000, 0.0000, 0.0427, 0.0000,

0.0000, 0.9063, 0.0511, 0.0000, 0.0000)

S1975(max)
48.3525
48.3525
26.5128

32.8167



CHAPTER FOUR

MAHALANOBIS UNIVERSAL PORTFOLIO

In Chapter Three, we introduce an additive-update universal portfolio
which is generated by the chi-square divergence (CSD) distance measure. It is
the objective of this chapter to show that the CSD universal portfolio belongs
to a general class of universal portfolios generated by the Mahalanobis

squared divergence (alternatively known as the quadratic divergence).

4.1  The Mahalanobis Parametric Family of Additive-Update Universal

Portfolio

The results in this section are presented in Tan and Lim [30]. The
Mahalanobis squared divergence generates a large family of additive-update
universal portfolios containing the subclass of CSD universal portfolios. The
Mahalanobis universal portfolio is characterised by three parameters, namely,
the positive definite, symmetric matrix generating the divergence, the initial

starting portfolio and a scalar parameter.

The Mahalanobis squared divergence distance measure with respect to
a symmetric, positive definite matrix A = (a;;) is

DA(bk I bn) = [bk - bn]tA[bk - bn]’ (41)

49



where b, = (by;) and b,, = (b,,;) are any two portfolio vectors. Alternatively,

(4.1) can be written as

m
Da(by I by) = Z ;i[bi — bnil* + 2 2a;i[by; — bni][bkj - bnj]-
i=1 i<j

The Mahalanobis universal portfolio is the sequence of universal

portfolios {b,,,,} given by

bn+1 = bn + 1tA_11

1t471
iy [ % <—X>All (4.2

where initial starting portfolio b, is given and ¢ is any real number such that
b,,1 =0 forn=1,23,... The matrix A is assumed to be symmetric and

positive definite and 1 = (1,1, ...,1) denotes a vector consisting of all 1’s.

First, we show that the Mahalanobis parametric family universal
portfolios maximize and minimize a certain objective functions which is a
linear combination of the growth rate of the wealth and the Mahalanobis

squared divergence distance measure.

Proposition 4.1 Consider the objective functions
F(bpy1) = 2§ log(bli1Xpn) — Da(byyy I by)
and
G (bny1) = 2§ log(bli1Xy) + Da(byyy Il by)
where Dp(b,4, Il b,) is the Mahalanobis squared divergence distance

measure given by (4.1) and & > 0. By approximating log(b’,x,) using

t
[log(ngn) + b;:—:‘” — 1], the maximum of the objective function F(b,,,,) is
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achieved at b,,,.; given by (4.2). Similarly, the minimum of G (b,,,,) is also
achieved at b, ; given by (4.2) where ¢ is replaced by - ¢.
Proof. We introduce the Lagrange multiplier y for the constraint

1 bny1: = 1. Consider maximizing the objective function

" bt .x
F(bn+1: V) =2¢ llog(btrtlxn) + lf)l:‘)l( = — 1
nen
m
2
- Z ii[bnsi — bnil
i=1
(4.3)
-2 Z @ij[bni1i = bni] [Pt — bujl
i<

m
+y (Z bn+1,i - 1)
i=1

and minimizing the objective function

G(bn+1r Y) - 2{7 Ilog(bt n) + +1XTL 1]

t
bnn

m
+Zau n+1,i nl +zzal][bn+ll bnl][bn+1] n]]

i=1 i<j

m
+ Y <z bn+1,i - 1)-
i=1

Differentiating (4.3), we have

~ m-—i
aF(b +1 V)
abn — = 2§ bt — 24 [bnt1i = bni] — Z 2@y itre[brsvivr = brisk]
n+1, nXn =1
i-1
2a;_i[bsri-k = bricic]) v
=1
m
x .
=28 btm —2 Z aij[bpsr,j — bnj] + -
]:
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dF(bny1,¥)

Setting =0fori=1,2,..,m, we obtain

0 n+1,i
Xn
28 bt x +v1 = 2A[byy; — by
n“n
Hence
S Y,
b1 =b, + (b,’-;xn)A x, + EA 11,
To evaluate y, pre-multiply (4.4) by 1t to obtain
§ Y
1=1 1tA71 =1t4711
RO S R

and consequently,

y  —§ 1'A7'x,
2 bix, 1tA-11°

(4.4)

(4.5)

Combining (4.4) and (4.5), we have (4.2). In a similar manner, it can be shown

that the minimum of G (b,,,,,¥) is achieved at b,,,.; given by (4.2) where & is

replaced by —¢&. Let

F(bn+1,1' bn+1,2' ey bn+1,m—1)

bt .. x
= 2¢ |log(bt TR g
3 log( nXn) + bix,

m-—1

- Z aij [bn+1,i - bni]z — Omm [bn+1,m - bnm]2

i=1

3
[
I

—2 Qi isre|Prisi — bni][Prsvivie — Dnisr

~
I =
o

[

[

N
S .
||M
-

3
L

I
(V)

Akm [bn+1,k - bnk] [bn+1,m - bnm]

&
1l
=

-2 Z akj [bn+1,k - bnk] [bn+1,j - bnj]
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where by, 1., = 1 — X721 byt q ;- Then the first partial derivatives of (4.6) are

aF(bn+1ern+12'""bn+1ﬂn—1)

0bp1,i
m—1
= 2¢ [xn;)% flnm] -2 z aik[bn+1,k - bnk]
k=1
m—1
+ 2amm[bsam = bam] +2 ) @ion[Busaic = b
k=1

- Zaim [bn+1,m - bnm]

fori =1,2,...,m — 1 and the second partial derivatives of (4.6) are

62I::'(bn+1,1, bn+1,2f S bn+1,m—1) — { —2a;; +4aim — 2a;m fori =J
0by41,i0bp 41 —2a;j + 2aim + 20, — 2y fori # j

fori=12,..,m—1. Given 4 = (a;;), _ which is positive definite

i,j=1,2,.

and this implies that the submatrix 4 = (aij) is positive definite.

i,j=1,2,..,m—-1
If A =diag(aiq,az, ..., amm) 1S @ positive diagonal matrix, where a;;, > 0
fork=1.2,..,m, thena;; = ajm = ap, =0fori#j,i,j=12,..,m—1,
and the Hessian matrix of F(bny1.1, bry12) «r bns1im—1) is —2H where

h--={¢i+¢m fori =j
Y bm fori #j

for i,j=12,..,m—1 and ¢, =ax, >0 for k=1,2,..,m. From the

previous result in Proposition 2.2, H is positive definite. Hence the Hessian

matrix of F(bp111, b2 -+ r bnr1m—1) is Negative definite. Similarly if
G(bn+1,1: bn+1,2’ ey bn+1,m—1)

t
byi1Xn

by.x,

= 2¢ |log(bix,) + -1

+ [bn+1 - bn]tA[bn+1 - bn]
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where by, 1 = 1 — X751 b1, its Hessian matrix is 2H which is positive
definite. Hence F(bns11bni12r oo busim—1) and
G(bn+1,1, Pni1.2, - bus1im—1) are concave and convex respectively if A is a
positive diagonal matrix, having maximum and minimum points respectively.
In general, F(b,,;,0) and G(b,.,,0) have the Hessian matrices —2A4 and
+2A respectively where byyq1,bpi12, s bny1m are m free variables. If A is
positive definite and does not depend on b,,,, then F(b,,;,0) and
G (b4, 0) are concave and convex respectively over
R™ = {(bnﬂ_l,bnﬂ,z, ...,bn+1_m): —00 < bpyqp <o for k =1,2, ...,m}.

If A depends on b,,,; and is positive definite over a sub-region S € R™, then
F(b,,,,0) and G(b,.,,0) are concave and convex respectively over S.

Furthermore, F (b,,,1,0) and G (b,,;1,0) have maximum and minimum points

respectively. m

The Mahalanobis universal portfolio is an additive-update universal
portfolio and hence it is important to derive the sufficient conditions for the

“portfolios” generated to be genuine portfolio vectors.

Proposition 4.2 (i) The Mahalanobis universal portfolio (4.2) can be

expressed as
b,,1 =b, + LC(n)x 4.7)
" " (bhxy) "

where the matrix C(n) = (¢;;) is given by
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= e — Ck eik)(Zk ekj)
Y Y (Zk,l ekl)

and E = A™! = (e;;). Furthermore, C(n) is symmetric with zero row sums.

(4.8)

(i)  Given that b,, = (by;) is a portfolio vector, then for b,,,, defined by

(4.7) to be a portfolio, it is necessary and sufficient that

(b%xn)bni (bglxn)bni
T =8 S el

(4.9)
for i =1,2,...,m, where (C(n)x,); denotes the ith element of the vector
C(n)x,.

(iii)  For the sequence {b,,} defined by (4.7) to be a valid sequence of

portfolio vectors, it is sufficient that

inf{xp;}  inf{by}
e

= Supltn sup{IC(I} (4.10)

where [|C()[l; = max; {X7 |c;j]}-

Proof. (i) Comparing (4.2) and (4.7), we must have

9 147 %,
C(n)xnzA Xn — m A1

=E VB, E1 (4.11)
= LEXy 1°E1 . .

Identifying the ith element of the vector in (4.11), we have the identity

_ [Zkz(st ek2k3)xnk2]
Z Cl'jxnj = Z el-jxnj - (Zk‘l ekl) Z eikl .

J J kq

Comparing coefficients of x, ;, we have

Cii= e — (Zk, €ks) T, i)
! ! (Zk,l ekl) '
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Noting that Y. ejx, = X, ex,; because E is symmetric, (4.8) follows.

Equivalently,

(At(ta )

Cn)=A"1- A1

Consequently, C(n) is symmetric. From (4.8),
ZCU‘ =Zeij —Zeik = 0.
j j k

Thus the row sums of C(n) are zero. Similarly, the column sums of C(n) are
also zero.
(i)  Given that b, is a portfolio vector, it follows from (4.7) that for
bn+1: = 0, itis necessary and sufficient that

§(CMxn); = —(bXy) by,
fori =1,2,...,mand (4.9) is obtained.
(iii)  Forany vectory = (y;), we define

ylleo = max{ly;|}.

Then, it is easy to deduce that for any matrix C,

ICylleo < llylleolICll4

where

m
el = max] > eyl
=1

Thus,

[(C)x)il < [IC(M)Xplle < lIXnllellC Il
fori = 1,2,...,m. Noting that (b%x,,) = min;{x,;}, the following inequality

holds
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iT{}if{xni} iT{}if{bni} 3 (btx,)b,,;
sup{xy;} sup{l[C(M) 1} ~ [(C()xy);l
n, n

fori =1,2,...,m. Thus the condition (4.10) is sufficient for {b,,,.,} to be a

valid sequence of portfolio vectors. m

4.1.1 Mahalanobis Universal Portfolios Generated by Special Symmetric

Matrices

We study the Mahalanobis universal portfolios generated by the
Mahalanobis squared divergence associated with special symmetric matrices
in this subsection. The explicit formulae for the additive-update are derived

according to the respective matrices.

We consider investment in a three-stock market using universal
portfolios generated by special symmetric, positive definite matrices A;(r)

and A, (r, t) given below

A0 = —— [—1r e —Or] (4.12)
O] P,
where 0 < r < 1, and
1 r? 0 —rt
Ay(r,t) = m [_(;'t r? a t2 rOZ ] (4.13)

where 0 < t < r. The corresponding inverse matrices of (4.12) and (4.13) are

given by

1 r r?
A7) = [r 1 ] (4.14)
r
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r 0 t
A;(rt) = [0 r 0]
t 0 r

(4.15)

We now present the xi-parametric families of A;(r) and A,(r,t) universal
portfolios, omitting the details of the derivation of the formulae which are
given in Section 4.1. The xi-parametric family of A;(r) universal portfolios

b,,.1 IS given by

bni1,1 = bma (b ) [c1Xn1 + C2Xna + C3Xp3l,
n
f
byni1,2 = bna (b ) [C2Xpn1 — 2C2Xpp + C2Xn3l, (4.16)
Tl
bni13 = bns (b ) [c3Xn1 + CaXna + C1Xp3l,
n

where

Q+2r—r2=2r3—1%
(3 + 4r + 2r2) ’

C1:

(-1+732)
(3 +4r +2r2)

Cy = (4.17)

(-1-2r+2r3+71%
B+4r+2r2) '’

3= —C=

for 0 <r < 1. Note that £ is a valid parameter only if b,,,; = 0 for all
n=1,23,..and i = 1,2,3, given the initial starting portfolio b;. The xi-

parametric family of A, (r, t) universal portfolios b,, ., is given by

bn+1,1 = bpy (b ) [ulxnl + UpXpy + u3xn3]’
n
f
bni12 = bna (b ) [UpXn1 — 2UpXpy + UpXpsl, (4.18)
n
byni1,3 = bns (b ) [UzXn1 + UzXpy + UsXn3],
n

where

58



2r? — t?

T
r’4+rt
= — , 4.19
"2 <3r+2t> (4.19)
t2 +rt—r?
u3=_(u1+u2)=—37’+2t ,

for 0 <t <r. Again ¢ is a valid parameter only if b,,,; =0 for all n =

1,2,3,...and i = 1,2,3, given the initial starting portfolio b;.

In order to compare the performance of the A;(r) and A,(r,t)
universal portfolios with the Helmbold and CSD universal portfolios, we
choose the three same data sets that used in Sections 2.1 and 3.1 with the

initial starting portfolio b; = (0.3333,0.3333,0.3334).

For data sets A, B and C, the CSD universal portfolios perform better
than the Helmbold universal portfolios in Section 3.1. From Table 3.1, the
maximum wealths S¢,,(max) achieved by the CSD universal portfolios are
1.5758, 3.8394 and 3.6480 for data sets A, B and C respectively. We run the
A;(r) and A, (r, t) universal portfolios on data sets A, B and C to compare
their performance with that of the CSD universal portfolios. The portfolios
bso; and the maximum wealths S5y, (max) achieved by respective ’s over
the range of values of & considered are displayed in Tables 4.1, 4.2 and 4.3 for
nine selected values of r in Table 4.1 and 11 selected pairs of (r, t) in Tables
4.2 and 4.3. In Table 4.1, the A;(r) universal portfolio achieves a higher
wealth of Sgo(max) = 1.6435 for data set A, r = 0.9 and —13.7626 < ¢ <

14.7978 compared with the value of Sg,,(max) = 1.5758 for the CSD
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universal portfolio. This indicates an increase in wealth of 0.0677 units or
6.77% . In Table 4.2, there is a higher wealth of Sgyo(max) = 1.6885
achieved for the A, (r,t) universal portfolio where r = 2b,, and t = b,,, for
data set A. This is an increase of 0.1127 units of wealth or 11.27% over the
maximum wealth of the CSD universal portfolio. A higher wealth of
Seoo(max) = 1.5950 is also observed for data set A in Table 4.3 as the
A, (r, t) universal portfolio where r = b,,, + 1 and t = b,,,. This corresponds
to a smaller increase of 0.0192 units of wealth or 1.92% over that of the
maximum wealth of the CSD universal portfolio. However, it is observed in
Tables 4.1, 4.2 and 4.3, that the use of the A;(r) and A,(r,t) universal
portfolios does not lead to a better performance over the CSD universal

portfolios for data sets B and C.

Table 4.1: The portfolios bs,; and the maximum wealths S:,,(max)
achieved by respective &’s within an extended range of ¢ by
the A, (r) universal portfolio for selected values of r for data
sets A, B and C, where b; = (0.3333,0.3333,0.3334)

Dsaeia Smallest & Largest & Best & bso, Ss00(max)
0.1 -1.5551 1.1825 -1.5551 (0.0532, 0.7219, 0.2249) 1.5940
0.2 -1.7506 1.3834 -1.7506 (0.0533, 0.7060, 0.2407) 1.6005
0.3 -2.0021 1.6473 -2.0021 (0.0534, 0.6901, 0.2565) 1.6070
0.4 -2.3360 2.0045 -2.3360 (0.0535, 0.6743, 0.2721) 1.6135

S:‘ 05 -2.8005 2.5004 -2.8005 (0.0536, 0.6588, 0.2875) 1.6199
0.6 -3.4928 3.2719 -3.4928 (0.0537, 0.6437, 0.3026) 1.6261
0.7 -4.6402 4.5482 -4.6402 (0.0538, 0.6290, 0.3172) 1.6321
0.8 -6.9254 7.1078 -6.9254 (0.0539, 0.6149, 0.3313) 1.6379
0.9 -13.7626 14.7978 -13.7626 (0.0539, 0.6013, 0.3448) 1.6435
0.1 -0.4724 0.6973 0.6973 (0.0264, 0.1669, 0.8067) 2.6304
0.2 -0.4978 0.7072 0.7072 (0.0219, 0.1886, 0.7896) 2.6237
0.3 -0.5350 0.7356 0.7356 (0.0181, 0.2065, 0.7754) 2.6181
0.4 -0.5890 0.7853 0.7853 (0.0159, 0.2218, 0.7623) 2.6120

S;t 0.5 -0.6690 0.8677 0.8677 (0.0143, 0.2347, 0.7510) 2.6063
0.6 -0.7936 1.0052 1.0052 (0.0130, 0.2455, 0.7414) 2.6015
0.7 -1.0064 1.2491 1.2491 (0.0119, 0.2547, 0.7334) 2.5974
0.8 -1.4391 1.7545 1.7545 (0.0110, 0.2626, 0.7264) 2.5939
0.9 -2.7490 3.2998 3.2998 (0.0101, 0.2694, 0.7205) 2.5909
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Table 4.1 continued

Dszia r Smallest & Largest & Best & bso, Ss00(max)
0.1 -0.3859 0.6049 0.6049 (0.1542, 0.0171, 0.8286) 2.4417
0.2 -0.4137 0.7077 0.7077 (0.1098, 0.0171, 0.8731) 2.4964
0.3 -0.4515 0.8428 0.8428 (0.0617, 0.0171, 0.9212) 2.5568
0.4 -0.5040 1.0074 1.0074 (0.0156, 0.0226, 0.9617) 2.6070
Sgt 0.5 -0.5795 1.0748 1.0748 (0.0149, 0.0679, 0.9171) 2.5366
0.6 -0.6950 1.2101 1.2101 (0.0143, 0.1037, 0.8819) 2.4821
0.7 -0.8900 1.4687 1.4687 (0.0138, 0.1326, 0.8536) 24391
0.8 -1.2830 2.0228 2.0228 (0.0135, 0.1562, 0.8303) 2.4043
0.9 -2.4687 3.7420 3.7420 (0.0131, 0.1758, 0.8110) 2.3758
Table 4.2: The portfolios bgy; and the maximum wealths Sg,,(max)
achieved by respective &’s within an extended range of ¢ by
the A,(r, t) universal portfolio for selected values of (r,t)
where r =2t for data sets A, B and C, where b; =
(0.3333,0.3333,0.3334)
Dsz;a ¢ szllest Largest Best & beo, Seoo(max)
0.10 0.05 -14.4946 9.1316 -3.9838 (0.2610, 0.4554, 0.2835) 1.5663
0.20 0.10 -7.2473 45658 -1.9919 (0.2610, 0.4554, 0.2835) 1.5663
0.30 0.15 -4.8315 3.0438 -1.3280 (0.2610, 0.4554, 0.2835) 1.5663
0.50 0.25 -2.8989 1.8263 -0.7968 (0.2610, 0.4554, 0.2835) 1.5663
1.00 0.50 -1.4494 0.9131 -0.3984 (0.2610, 0.4554, 0.2835) 1.5663
S:t 5.00 2.50 -0.2898 0.1826 -0.0797 (0.2610, 0.4554, 0.2835) 1.5663
10.00 5.00 -0.1449 0.0913 -0.0398 (0.2611, 0.4553, 0.2836) 1.5663
20.00 10.00 -0.0724 0.0456 -0.0199 (0.2611, 0.4553, 0.2836) 1.5663
2b,, by, -4.4141 1.2736 -0.1228 (0.3188, 0.3578, 0.3234) 1.5652
2by,, ba -1.6896 | 11.7141 | 9.3917 (0.3785, 0.0000, 0.6215) 1.6885
2bps Bs -18.9702 1.2650 | -0.1506 (0.3156, 0.3634, 0.3210) 1.5653
0.10 0.05 -7.2686 11.0391 11.0391 (0.1871, 0.0000, 0.8129) 25124
0.20 0.10 -3.6343 5.5195 5.5194 (0.1871, 0.0000, 0.8129) 25124
0.30 0.15 -2.4228 3.6797 3.6796 (0.1871, 0.0000, 0.8129) 25124
0.50 0.25 -1.4537 2.2078 2.2077 (0.1871, 0.0000, 0.8129) 25124
1.00 0.50 -0.7268 1.1039 1.1039 (0.1871, 0.0000, 0.8129) 25124
S;t 5.00 2.50 -0.1453 0.2207 0.2207 (0.1872, 0.0001, 0.8127) 2.5123
10.00 5.00 -0.0726 0.1103 0.1103 (0.1873, 0.0003, 0.8125) 25121
20.00 10.00 -0.0363 0.0551 0.0551 (0.1874, 0.0005, 0.8120) 2.5118
2bny By -0.8953 8.9998 6.2539 (0.0060, 0.3632, 0.6308) 2.5845
2bn, By -1.1252 11.7313 | 5.0148 (0.3506, 0.0001, 0.6493) 2.7053
2bs b3 -13.7856 | 1.0953 1.0953 (0.2076, 0.0000, 0.7924) 24134
0.10 0.05 -5.0734 4.6697 4.6697 (0.3585, 0.0171, 0.6244) 2.2038
0.20 0.10 -2.5367 2.3348 2.3348 (0.3585, 0.0171, 0.6244) 2.2038
0.30 0.15 -1.6911 1.5565 1.5565 (0.3585, 0.0171, 0.6244) 2.2038
0.50 0.25 -1.0146 0.9339 0.9339 (0.3585, 0.0171, 0.6244) 2.2038
Sce:t 1.00 0.50 -0.5073 0.4669 0.4669 (0.3585, 0.0171, 0.6244) 2.2038
5.00 2.50 -0.1014 0.0933 0.0933 (0.3585, 0.0174, 0.6241) 2.2034
10.00 5.00 -0.0507 0.0466 0.0466 (0.3585, 0.0177, 0.6238) 2.2030
20.00 10.00 -0.0253 0.0233 0.0233 (0.3585, 0.0177, 0.6238) 2.2030
2b,, by -0.7956 0.7183 0.7183 (0.3487, 0.0215, 0.6297) 2.1924
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Table 4.2 continued

Data ¢ Smallest Largest
set r 3 3
2by, by, -0.5436 10.3591
2bys b, -5.2933 0.5095
Table 4.3:

Best &

3.7002
0.5095

b501

(0.4177,0.0002, 0.5821)
(0.3575, 0.0232, 0.6193)

Sso0(max)

2.4972
2.1519

The portfolios bgy; and the maximum wealths Sg,,(max)

achieved by respective &’s within an extended range of ¢ by
the A,(r,t) universal portfolio for selected values of (r,t)
where r =t + 1 for data sets A, B and C, where b; =

(0.3333,0.3333,0.3334)
Dsa;;a - ¢ Smf?lest Largest Best & bsoy Sco0(max)
1.05 0.05 -1.3357 0.9633 -1.3356 (0.0530, 0.7449, 0.2020) 1.5845
1.10 0.10 -1.2772 0.9077 -1.2771 (0.0530, 0.7515, 0.1955) 1.5818
1.15 0.15 -1.2241 0.8587 -1.1981 (0.0592, 0.7478, 0.1930) 1.5794
1.25 0.25 -1.1313 0.7760 -0.9377 (0.1035, 0.6881, 0.2084) 1.5756
1.50 0.50 -0.9536 0.6277 -0.5403 (0.1793, 0.5807, 0.2400) 1.5702
S:t 3.50 250 | 04222 | 0.2527 0.0273 (0.3495, 0.3041, 0.3465) 1.5651
6 5 -0.2495 0.1452 0.0603 (0.3918, 0.2230, 0.3851) 1.5660
11 10 -0.1373 0.0785 0.0483 (0.4167,0.1720, 0.4113) 1.5672
bu+1 | by | -11212 | 0.6986 -0.4210 (0.2279, 0.4968, 0.2753) 1.5694
b, +1 by, -0.9859 0.7877 -0.9859 (0.0708, 0.7482, 0.1810) 1.5950
by +1 b3 -1.1283 0.6936 -0.4859 (0.2106, 0.5242, 0.2652) 1.5700
1.05 0.05 -0.4501 0.7116 0.7116 (0.0351, 0.1262, 0.8387) 2.6424
1.10 0.10 -0.4443 0.7192 0.7192 (0.0382, 0.1117, 0.8501) 2.6466
1.15 0.15 -0.4387 0.7268 0.7268 (0.0413, 0.0971, 0.8616) 2.6507
1.25 0.25 -0.4281 0.7420 0.7420 (0.0476, 0.0678, 0.8846) 2.6588
1.50 0.50 -0.4039 0.7615 0.7615 (0.0709, 0.0000, 0.9291) 2.6648
Sgt 3.50 2.50 -0.2793 0.3043 0.3043 (0.3263, 0.0000, 0.6737) 2.3403
6 5 -0.2012 0.1745 0.1745 (0.4000, 0.0001, 0.6000) 2.2536
11 10 -0.1287 0.0942 0.0942 (0.4458, 0.0002, 0.5540) 2.2010
by +1 by -0.4051 0.7122 0.7122 (0.0334, 0.1290, 0.8376) 2.6222
bp+1 | by | 04207 | 07833 0.7833 (0.0413, 0.0354, 0.9234) 2.7187
bas+1 | by | 04374 | 07079 0.7079 (0.1004, 0.0000, 0.8996) 2.6167
1.05 0.05 -0.3573 0.4927 0.4927 (0.2131, 0.0171, 0.7697) 2.3709
1.10 0.10 -0.3494 0.4643 0.4643 (0.2290, 0.0171, 0.7539) 2.3522
1.15 0.15 -0.3420 0.4392 0.4392 (0.2430, 0.0171, 0.7399) 2.3357
1.25 0.25 -0.3282 0.3969 0.3969 (0.2666, 0.0171, 0.7163) 2.3082
1.50 0.50 -0.2986 0.3210 0.3210 (0.3092, 0.0171, 0.6737) 2.2593
Sgt 3.50 2.50 -0.1752 0.1292 0.1292 (0.4176, 0.0172, 0.5652) 2.1389
6 5 -0.1157 0.0742 0.0742 (0.4488, 0.0175, 0.5337) 2.1050
11 10 -0.0689 0.0401 0.0401 (0.4682, 0.0177, 0.5142) 2.0841
by, +1 by -0.3133 0.3840 0.3840 (0.2734, 0.0180, 0.7086) 2.2968
b, +1 by -0.3038 0.4250 0.4250 (0.2528, 0.0133, 0.7339) 2.3504
by +1 b3 -0.3393 0.3213 0.3213 (0.3080, 0.0193, 0.6728) 2.2463
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In Table 4.2, we observed that the portfolios bsy; and maximum
wealths Sg,, achieved by the A, (r,t) universal portfolios, where r and t are
constants independent of n, are approximately equal for data sets A, B and C.
Whereas the values of smallest &, largest & and best & vary with respective
pairs of (r,t) in some fashion. That is, if (0.30,0.15) is three times the pair
(0.10,0.05) in r and t, then the values of ¢ for (0.10,0.05) are approximately
three times the values of ¢ for (0.30,0.15). We strongly believe that the
A,(r,t) universal portfolios have the same behaviour whenever r = gt

(where r, g and t are constants) holds for a particular g.

The performance of the A;(r) and A,(r,t) universal portfolios
depends on the price-relative data set. We have shown that for some data sets,
it may be possible to achieve higher investment wealths by using the A;(r)
and A, (r, t) universal portfolios. The results in this section are reported in Tan

and Lim [31].

4.1.2 Mahalanobis Universal Portfolios Generated by Special Diagonal

Matrices

The sufficient condition (4.10) for valid parametric values ¢ is only
useful provided inf, ;{b,;} is bounded away from zero, that is inf,, ;{b,;} > 0.
In practice, this is not easy to verify. Another sufficient condition for valid
values of & which is more practical is available for the Mahalanobis universal

portfolios generated by special diagonal matrices given in the next proposition.
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Proposition 4.3 Consider a Mahalanobis universal portfolio generated
by a diagonal matrix A = D = (d;;) where d;; = d;* > 0fori =1,2,..,m
0] The universal portfolio {b,,,} is given by

_8di

Ppiii = b :
n+1,i (b n) [xnl

— X (d)] (4.20)

fori = 1,2,..., m where

e d

— _ ]
xn(d) - Z{ <d1 + dz + + dm> xn}
j:

(i)  Given that b,, = (b,,;) is a portfolio vector, then for b,,., to be a

portfolio vector, it is necessary and sufficient that

(ngn)bni (ngn)bni

B dilxni - fn(d)l = E or E = dilxni - fn(d)l (421)

fori=12,..,m

(iii) A sufficient condition for the sequence {b,,,} to be portfolio vectors
is that

ir{}if{xni} igllif{bni/di}

sup {max{x,;} — min{x,}}
n l L

1§ < (4.22)

If d; = c;by; Tori = 1,2, ...,m, the sufficient condition (4.22) reduces to the
following condition independent of b,,;:

inf{x,;} inf{1/¢;}

n, n,

sup {m.ax{xm} - min{xni}}
n i i

1§ < (4.23)

Proof. (i) Now A'=FE=D"1=(e;) where ¢;=d; >0 for i=

1,2, ..., m. We observe that

147 %, %
PTVIRTE = Xn Z xnj,
11411 L \d; + d2 + -+d,
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A™x, = (d;x,;) and A711 = (d;). From (4.2),

§ _
bpi1i = bpi + ——[dixn; — d;%,(d)]
n+1,i ni (b%Xn) i*ni i*n

where (4.20) follows.
(i)  Given that b,, is a portfolio vecor, it follows from (4.20) that for
bn+1: = 0, ifand only if

_(ngn)bni
d;

&(xn; — Xp(d)) =
fori = 1,2, ...,m and the condition (4.21) follows.
(ili)  We observe that
|xni — Xn(d)| < max{xn;} — min{xy;}

and hence

i{lif{xni} i&f{bni/ di} - (bix,)b,;
sup {max{xni} - mjn{xm-}} = dilxy — %, (d)]
n i i

fori = 1,2,...,m. Itis clear that the condition (4.22) is sufficient for {b,,,,} to
be a valid sequence of portfolio vectors. When d; = ¢;b,,; fori = 1,2, ...,m, it

is again evident (4.22) becomes (4.23). O

When ¢; = 1 fori = 1,2, ..., m in Proposition 4.3(iii), the Mahalanobis
universal portfolio generated by A = D = (d;*) = (b,}) is known as the

CSD universal portfolio which has been studied in Chapter Three.

We focus on the Mahalanobis universal portfolios generated by special

diagonal matrices D = (d; ') where d; = ¢;by,; for i = 1,2,...,m, and their

performance on the three data sets designated as A, B and C in this thesis. We
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have run the Helmbold and CSD universal portfolios on the data sets A, B and
C using b; = (0.3333,0.3333,0.3334) in Sections 2.1 and 3.1. Since the
maximum wealths achieved by the Helmbold universal portfolios are
dominated by the maximum wealths achieved by the CSD universal portfolios
for data sets A, B and C, we shall only compare with the CSD universal

portfolios.

The Mahalanobis universal portfolios generated by D = (d;*) for
selected values of d; = ¢;b,; fori = 1,2, ...,m are run on the data sets A, B
and C using b; = (0.3333,0.3333,0.3334) . The portfolios bg,; and the
maximum wealths Ss,, achieved by each universal portfolio generated by
(d4,d,, d3) over the range of values of & considered are listed in Tables 4.4,
4.5 and 4.6. The first row of each table lists down the maximum wealth Sg,
achieved by the CSD universal portfolio for comparison. It can be seen from
the three tables that the (d,,d,,d3) = (2b,q,2b,,, 6b,3) Mahalanobis
universal portfolio always outperform the CSD universal portfolio in terms of
maximum wealth S, achieved for data sets A, B and C. In Table 4.4, the
(3by,4, 6b,,5, b,3) Mahalanobis universal portfolio achieves a higher maximum
wealth S¢o, = 1.9108 than the maximum wealth S5y, = 1.5758 achieved by
the CSD universal portfolio for data set A. For data set C, the
(3b,,1, by, 6b,3) Mahalanobis universal portfolio achieves the maximum
wealth Sgoo = 3.7799 which is higher than the maximum wealth Sgq, =

3.6480 achieved by the CSD universal portfolio in Table 4.6.
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Table 4.4: The portfolios bsy; and the maximum wealths Sc,,(max)
achieved by respective &’s within an extended range of ¢ by
the selected (d,, d,, d;) Mahalanobis universal portfolios for
data set A, where b; = (0.3333,0.3333,0.3334)

(dy,dy,d3) Smallest & Largest ¢ Best ¢ b, Ss00(max)

(D1, bnz, bnz) -14.6638 16.1608 -1.9174 (0.2106, 0.5298, 0.2596) 1.5758
(6bp1, bz, 3byz) -3.1077 3.8873 -2.0078 (0.0533, 0.7057, 0.2410) 1.6242
(b1, 6byy, 3by3) -4.9417 2.7498 2.1733 (0.4603, 0.0000, 0.5397) 1.6110
(bn1,3bpg, 6b,3) -2.6348 5.3052 2.6447 (0.4000, 0.0003, 0.5997) 1.5835
(6by1,3by2,br3) -2.9890 5.2269 2.7036 (0.7653, 0.0002, 0.2345) 1.6346
(3by1, by, 6by3) -3.3646 7.7393 -1.8684 (0.1848, 0.6923, 0.1230) 1.6375
(3bp1,6bys, bys) -5.2591 3.0243 5.2501 (0.0000, 0.9058, 0.0942) 1.9108
(6byy,2byy, 2by3) -2.9395 4.1060 -0.7843 (0.1484, 0.5387, 0.3130) 1.5766
(2byy,6byy, 2by3) -6.9911 2.9861 6.9911 (0.0000, 1.0000, 0.0000) 1.7543
(2byy,2by,, 6by3) -2.8029 7.8468 -1.0109 (0.2342, 0.6063, 0.1596) 1.5980

Table 4.5: The portfolios bsy; and the maximum wealths Ssy,(max)
achieved by respective &’s within an extended range of ¢ by
the selected (d,, d,, d;) Mahalanobis universal portfolios for
data set B, where b; = (0.3333,0.3333,0.3334)

(dy,dy,ds3) Smallest & Largest & Best & b5y, Sso0(max)

(B, bnzs Brs) -12.1887 13.0114 13.0114 (0.0000, 0.0000, 1.0000) 3.8394
(6by1, bnz, 3bys) -4.1560 2.4293 2.4293 (0.0000, 0.0279, 0.9721) 3.4195
(b, 6Dy, 3b,3) -4.0106 2.3587 2.3587 (0.0291, 0.0000, 0.9709) 3.3248
(bn1,3byy, 6by3) -2.0563 4.3663 4.3663 (0.0011, 0.0000, 0.9989) 3.7693
(6by1, 3Dy, bys) -4.0459 2.9111 2.9111 (0.0000, 0.0000, 1.0000) 3.3396
(3b,y1, by, 6b,73) -2.0858 45329 45329 (0.0000, 0.0006, 0.9994) 3.7953
(3bp1,6byz, bys) -2.2510 2.6682 2.6682 (0.0001, 0.0000, 0.9999) 3.2429
(6bpy,2b,yy, 2by3) -6.0547 2.6942 2.6941 (0.0000, 0.0004, 0.9996) 3.5292
(2bpy, 6bryz, 2bp3) 27724 2.6674 2.6674 (0.0009, 0.0000, 0.9991) 3.4399
(2b,yy, 2b,15, 6b,3) -2.0892 6.4927 6.4926 (0.0000, 0.0000, 1.0000) 3.9974

Table 4.6: The portfolios bsy; and the maximum wealths S<,,(max)
achieved by respective &’s within an extended range of ¢ by
the selected (d,, d,, d;) Mahalanobis universal portfolios for
data set C, where b, = (0.3333,0.3333,0.3334)

(dq,dy, d3) Smallest & Largest ¢ Best & bso, Sso0(max)

By, bozs brs) -15.2103 16.7997 11.8504 (0.0000, 0.0000, 1.0000) 3.6480
(6b,1, by 3brys) -4.2718 3.0235 3.0234 (0.0000, 0.0032, 0.9968) 3.4880
(byy, 6bpg, 3bs) -2.8263 2.8594 2.5320 (0.0259, 0.0000, 0.9741) 3.1309
(bn1, 3byz, 6by3) -2.8606 3.8431 2.8236 (0.0129, 0.0000, 0.9871) 3.3513
(6by11,3by3, bns) -4.1566 3.1274 3.1273 (0.0000, 0.0000, 1.0000) 3.3555
(3b1, bz, 6byy3) -2.9289 4.7738 4.7738 (0.0000, 0.0001, 0.9999) 3.7799
(3b,y1,6b,1z, bys) -2.5521 2.9303 2.9303 (0.0000, 0.0000, 1.0000) 3.2294
(6byy1, 2Dz, 2b3) -6.2426 3.0355 3.0355 (0.0000, 0.0000, 1.0000) 3.5758
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Table 4.6 continued

(dy,d,,d3) Smallest & Largest & Best & bsoy Ss00(max)
(2by4,6by3, 2by3) -2.5884 2.8559 2.8559 (0.0004, 0.0000, 0.9996) 3.3278
(2bp1, 2bp, 6bp3) -2.8886 5.8405 4.1410 (0.0000, 0.0000, 1.0000) 3.7027

We have shown that there are Mahalanobis universal portfolios
generated by (cib,q,Cc2bns, c3by3) that can outperform the CSD and
Helmbold universal portfolios. To select an appropriate parametric value &, we

can use the sufficient condition (4.23) given by Proposition 4.3(iii).

4.2  Running the Mahalanobis Universal Portfolios on 10-stock Data

Sets

The implementation of the Dirichlet-weighted universal portfolio
needs computer memory requirements that are growing exponentially with the
number of stocks. The disadvantage of the Dirichlet-weighted universal
portfolio is the large computer memory requirements required to implement
the algorithm if the number of stocks in the portfolio exceeds nine. We run the
Mahalanobis universal portfolio which needs much lesser computer memory
requirements on the 10-stock data sets D, E, F and G. In the meantime, a
sufficient condition for the Mahalanobis or Helmbold universal portfolios to
achieve a wealth exceeding that of the best constant rebalanced portfolio

(BCRP) is derived in this section.

Proposition 4.4 Given the price-relative vectors x4, X, ..., X,, SUppose

b;, is the BCRP.
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Q) Given A and b; = b;,, suppose the Mahalanobis parametric family is
defined for some =&, <& <&, where &,&,>0. If £ =0 is not a local
maximum point of S,,(£¢), the wealth achieved by the Mahalanobis universal
portfolio (4.2), then there exists some &, in the interval [—¢&;,&,] such that
Sn(§o) > Sp(0).

(i) Consider the Helmbold parametric family where b; = b;,. Ifn = 0is
not a local maximum point of S,,(n), the wealth achieved by the Helmbold
universal portfolio (2.2), then there exists some 7, such that S,,(n,) > S,,(0).
Proof. (i) We observe that when & = 0 and b, = bj,, the portfolio given
by (4.2) is a constant rebalanced portfolio b; = b, for j = 1,2,3,.... Thus
S,(0) at & = 0 is the wealth achieved by the BCRP b;,. The function S,,(¢) is
continuous in & for =&, < & < &,. If & = 0 is not a local maximum point, then
there exists some &, in the interval [—¢&,, &,] such that S,,(¢,) > S,,(0).

(i) The proof is analogous to (i). m

For data sets D, E, F and G in Tables 2.12 and 2.11, the maximum
wealths achieved by the Helmbold universal portfolios, where the initial
starting portfolio b; = bjg,s, are 43.2025,43.2025,27.2148 and 39.9419
respectively. These are much higher than the wealths achieved by the BCRP’s
which are 37.5867,37.5867,20.7169 and 24.6381 for the four data sets
respectively. We verify that the results are true from the sufficient condition
for the Helmbold universal portfolio to achieve a wealth higher than that of the
BCRP in Proposition 4.4(ii). From Tables 3.4 and 2.11, the values of
Si975(max) for the CSD universal portfolios, where the initial starting

portfolio b; = bjy,c, are 48.3525,48.3525,26.5128 and 32.8167 for data
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sets D, E, F and G respectively. Again the sufficient condition in Proposition
4.4(i) holds and the values of S,4,5(max) for the CSD universal portfolios are

higher compared to the wealths achieved by the BCRP’s.

Before implementing the Mahalanobis universal portfolios on the 10-
stock data sets, we consider the following two special symmetric, positive

definite matrices A5 (r) and A,(r, t) that are given by:

1 -r 0 0 0 0 0 0 0 01
- 1+r%2 —r 0 0 0 0 0 0 0
0 -r 14712 —r 0 0 0 0 0 0
. 0 0 e 0 0 0 0 0
0 0 0 - 1+41%? —r 0 0 0 0
45(r) = a-r»fo 0 0 0 -r 1412 —r 0 0 0 (4.24)
0 0 0 0 0 -r 14712 —r 0 0
0 0 0 0 0 0 -+ 1412 —r 0
0 0 0 0 0 0 0 —r 14+71r%2 —r
L0 0 0 0 0 0 0 0 -r 1
where 0 < r < 1, and
A,(rt) =
M2 0 0 0 0 0 0 0 0 —rt]
0 rt—¢? 0 0 0 0 0 0 0 0
0 0 rz—¢? 0 0 0 0 0 0 0
0 0 0 rz—¢? 0 0 0 0 0 0 (4.25)
1 0 0 0 0 r? — 2 0 0 0 0 0
rr2—t2)| o 0 0 0 0 r? —t2 0 0 0 0
0 0 0 0 0 0 rz—g¢? 0 0 0
0 0 0 0 0 0 0 rz—g¢? 0 0
0 0 0 0 0 0 0 0 r2—t* 0
L—rt 0 0 0 0 0 0 0 0 r? |

where 0 < t < r. The corresponding inverse matrices of A;(r) and A,(r,t)

are given by
(1 r r?2 o3 ot S % 7 8 9
r 1 r r2 r3 r* 5 y® 7 48
r2 r 1 r r®2 r3 r* > re 7
r* r2 r 1 r r? r3 r* > rb
A1) = r‘s‘ ri ri rz 1 r r? rz r‘; ri (4.26)
r> r* r° r r 1 r r r° r
re S ot 3 2 r 1 r r?
r7 r® > ot 3 2 r 1 r r?
r® 7 e S ot 3 2 1 r
Lo 8 7 6 S ot 3 2 1
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A7l(rt) = (4.27)

Y=
coocococoococo= o
coococoocoo=x oo
coocococoo=xooo
coococo=sxococoo
cooco=Rocoococoo
coo=xNoococooo
coxrocoocococoo
oOcNococoocococoo
STococo0o0coco0O0 O~

The explicit formulae of the xi-parametric families of A;(r) and A,(r,t)

universal portfolios b,,.; are

bues = by + s ] e (4.28)

and

b = by + s ¢ s Cox, (4.29)

respectively. The matrix C3(n) = (¢;;) for 0 < r < 1is listed in Appendix A
and the matrix C,(n) = (cl-j) for 0 <t < ris listed in Appendix B and C.
Note that ¢ is a valid parameter only if b,,;; =0 for all n = 1,2,3,... and

i = 1,2,3, given the initial starting portfolio b;.

We run the A5 (r) and A,(r, t) universal portfolios on data sets D, E, F
and G with the same initial starting portfolio
b, = (0.1000,0.1000, ...,0.1000). From Tables 2.10 and 3.3, the Helmbold
universal portfolio performs better than the CSD universal portfolio for data
set D and the maximum wealth achieved by the Helmbold universal portfolio
is 18.2486. Whereas for data sets E, F and G, the CSD universal portfolios

outperform the Helmbold universal portfolios and the maximum wealths
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achieved by the CSD universal portfolios are 29.1040, 22.3262 and 25.5834

respectively.

The portfolios b;4,¢ and the maximum wealths S;4,<(max) achieved
by respective &’s over the range of values of ¢ considered are listed in Tables
4.7, 4.8 and 4.9 for nine selected values of r in Table 4.7 and 13 selected pairs
of (r,t) in Tables 4.8 and 4.9. For data set D, the A;(r) universal portfolios
for nine selected values of r in Table 4.8 achieve higher wealths of
Si975(max) compared with the values of S;q;5(max) = 18.2486 for the
Helmbold universal portfolio. In Tables 4.8 and 4.9, the A,(b,4,0.5b,,;) and
A,(11,10) universal portfolios achieve the maximum wealths of
Si975(max) = 20.2585 and 18.8172 respectively which are higher than the
maximum wealth achieved by the Helmbold universal portfolio for data set D.
Both the CSD and Helmbold universal portfolios perform better than the
As(r) universal portfolios for nine selected values of r in Table 4.8 for data
set E. For data set E in Tables 4.8 and 4.9, the maximum wealths achieved by
A4(by1,0.5b,,) and A,(11,10) universal portfolios are S;q,5(max) =
25.6109 and 23.5094 respectively, and these are higher than the values of
S197s(max) = 22.9859 for the Helmbold universal portfolio but they do not
exceed the values of S;9,5(max) = 29.1040 for the CSD universal portfolio.
However, the A;(r) and A, (7, t) universal portfolios for selected values of the
parameters in Tables 4.7, 4.8 and 4.9 do not generate higher values of
maximum wealths over the Helmbold and CSD universal portfolios for data

sets F and G.
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Table 4.7: The portfolios b,9;, and the maximum wealths S;4,5(max)
achieved by respective &’s within an extended range of ¢ by
the A;(r) universal portfolio for selected values of r for data
sets D, E, F and G, where b; = (0.1000,0.1000, ...,0.1000)

Data . Smallest | Biggest
set & &

Best & b1g76 S1975(max)

(0.1593, 0.1589, 0.1440, 0.1174, 0.1152,

01 | -00771 | 0.0663 | 00663 | )’ 069'0.0827,0.0086, 0.0610, 0.0460) 18.7404
02 | -00759 | 00649 | 0.0649 ((?11(?5411ggfzgé’gggf(%fg’g&%g 19.1134
03 | 00743 | 00631 | 00631 %)11(?5;g;gf;gggffgégffg;;% 19,5177
04 | 00699 | 00612 | 00612 ((;)01973455gole?()lfc?c)lggsgc)l;g:g()ljllesz) 19.9440
St |05 | 00641 | 00589 | 00589 g’ggfg‘(?gfff(%gg ’83{‘5‘7‘)”8&2252% 20.3540
06 | -0.0588 | 00579 | 0.0579 ((;301505;géf;fg&gggg&fff%fgg 20,7607
07 | 00570 | 00599 | 0.0599 (golgfggéfg;gég;g%ggfggfgg 21.1709
08 | 00618 | 00651 | 0.0651 (g'olggg' g(}fgg 801(?557 ’c?.'olc?j;’ 8555176) 21.3865
09 | -0.0856 | 00893 | 0.0893 ggggg@gggg%ﬁ:ﬁﬁgf'gggfg' 214057
01 | 00795 | 00785 | -0.0795 %Jfgffé)fz?’ffé’fgfgé)fggg’gf?g% 21.2555
02 | 0078 | 00774 | -0.0786 ((())100330‘?81()2337581();129315)1():02:81()522; 20,8407
03 | 00773 | 00737 | -00773 S’féﬁs8{’5&58{’;&58{’775288{’89% 20.3906
04 | 00754 | 00697 | 00697 (é’olgzlfgolgfjgéfgg%ﬁgf%ﬁgg 205225
%' 05 | 00713 | 00657 | 00657 ((?Olgg’;é)ggfgg(}fs}fé)gf;:ggg; 20,9279
06 | -0.0676 | 00625 | 0.0625 (c())olgsﬁelé)olgfjgol??;gé)c)lzsgfgolllfsl) 213113
07 | 00658 | 00614 | 00614 %’ngé85585‘8(}3?7“8885235;‘8511% 216518
08 | -0.0697 | 00658 | 0.0658 ((?018870??ggggfgéffg(?gggfggfgg 21.9304
09 | 00959 | 00915 | 00915 ((;30157165gégfgg&fégé’ggg&}fgg 221351
01 | -00801 | 00914 | -0.0801 %O.fé‘ff’(?ffff,’é’.f?zlﬁ’gfﬁf’gff%zj 12.9063
02 | 00770 | 00910 | 00770 | DR 0N DO D e gfsggé' 12.6373
03 | 00735 | 00922 | -0.0346 %’fgg,zé’é’ff;é’@fﬁf@ffﬁfé’ff&% 12.3765
04 | 00699 | 00917 | 00917 ((?Olg?;gé?ggg&gfgé’gfgg;ﬁfg 125802
' |05 | 00866 | 00848 | 0.0848 (gégf;g(}é’sgé’&gfjg;&gf&}% 12.8835
06 | -00642 | 00800 | 0.0800 (5’0152688g;ggé’&ggfg&ggfggfg% 13.1567
07 | -00643 | 00786 | 00786 %’égfgg;ﬁfg%gg%gjﬁgﬁ% 13.3883
08 | -00703 | 0.0847 | 00847 gggfg&gﬂf%ﬁ;ﬁ%gfg8'010271;' 13,5663
0o | 00057 | o11se | oi1ge | (0-1978,0.1947,0.1788, 01517, 0.1192, 15 6545

0.0827, 0.0458, 0.0183, 0.0067, 0.0042)

73



Table 4.7 continued

[;ﬁa Sm?lest Biggest Best & biore S1075 (max)
0. | -0.0865 | 00867 | -0.0865 (c())olelgs 8)6120535 g&;&g 'gé)g;; ’ gllégg 15,7108
02 | -0.0849 | 00856 | -0.0849 (golgff 8012115; 835520;'3'(?98522" 811537925) 15.6329
03 | 00851 | 00849 | -0.0851 (00_'0162224’ ' (?01129159 86145;42,'885% ' (?115:”3?9(3) 15,5673
04 | 00875 | 00847 | -0.0875 (Oo_'olggg"" (?0112312 géﬁf g&;’g (?115207(% 15,5261

U 05 | 00030 | 00852 | 00930 ((()301537212 géﬂ; gé;;;’gggg& ’ 8)115516‘) 15,5147
06 | -0.1037 | 00868 | -0.1037 (00.61:3’141,' 801142632 8013?5837 ,3.0181;102’, 8113186;) 15,5437
07 | 01229 | 00925 | -0.1229 (golsgg (?gffg g&fgg%}fj (?1121:(?) 15,6159
08 | 01352 | 01088 | -01352 | JSEb O D e é)llffg) 155513
0o | 01900 | o167 | o.10a0 | (01504 0.1479,0.1447, 01159, 0.1036, 15 5168

0.0665, 0.0424, 0.0506, 0.0749, 0.1032)

Table 4.8: The portfolios b,q,, and the maximum wealths S;4,5(max)
achieved by respective &’s within an extended range of ¢ by
the A,(r,t) universal portfolio for selected values of (r,t)
where r = 2t for data sets D, E, F and G, where b; =
(0.1000,0.1000, ...,0.1000)

Data
set

0.1 0.05
0.3 0.15
20 10
b1 0.5b,,;
bu, | 05by;
Set
D
bus | 05by
bpa 0.5b,,4
bus | 0.5bps
bye 0.5by¢
by, | 05by,

Smallest

¢

-1.0908

-0.3636

-0.0054

-0.9983

-0.8013

-0.7303

-1.2706

-0.7916

-0.7937

-8.3597

Biggest

3

0.6640

0.2213

0.0033

0.5344

0.7327

0.6363

0.5152

0.8051

0.7501

0.5808
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Best &

-1.0908

-0.3636

-0.0054

-0.9983

-0.1222

-0.7303

-1.2706

-0.0809

-0.0623

-3.5099

b1976

(0.0523, 0.0189, 0.0359,
0.0791, 0.0801, 0.0881, 0.1129,
0.2488, 0.1419, 0.1421)

(0.0523, 0.0189, 0.0359,
0.0791, 0.0801, 0.0881, 0.1129,
0.2488, 0.1419, 0.1421)

(0.0528, 0.0197, 0.0365,
0.0793, 0.0803, 0.0882, 0.1128,
0.2473, 0.1415, 0.1416)

(0.0556, 0.0825, 0.1241,
0.0645, 0.1065, 0.0787, 0.0768,
0.1891, 0.0848, 0.1374)

(0.0943, 0.0911, 0.0924,
0.0974, 0.0981, 0.0994, 0.1015,
0.1167, 0.1046, 0.1045)

(0.0278, 0.0967, 0.0540,
0.0388, 0.1206, 0.1253, 0.1071,
0.1905, 0.1168, 0.1224)

(0.0799, 0.0672, 0.1311,
0.0649, 0.1032, 0.0567, 0.0661,
0.1915, 0.0835, 0.1560)

(0.0964, 0.0939, 0.0951,
0.0984, 0.0984, 0.0992, 0.1011,
0.1110, 0.1033, 0.1031)

(0.0974, 0.0952, 0.0962,
0.0990, 0.0988, 0.0993, 0.1009,
0.1084, 0.1025, 0.1024)

(0.1343, 0.0846, 0.0691,
0.1140, 0.1174, 0.0482, 0.0087,
0.1520, 0.0899, 0.1818)

S1975(max)

18.3449

18.3449

18.3433

20.2585

18.1867

18.7318

20.2515

18.1833

18.1818

18.2697



Table 4.8 continued

Data

set r t

b | 05byg

bng 0.5bng

bnio | 05bn0

Smallest
¢
-0.5787

-1.7772

-0.7955

Biggest
¢
1.2565

0.6754

0.8888

Best &

-0.0780

-1.7772

-0.7955

b1976

(0.0966, 0.0934, 0.0952,
0.0988, 0.0982, 0.0990, 0.1014,
0.1109, 0.1034, 0.1031)

(0.0956, 0.0195, 0.0823,
0.1061, 0.0584, 0.0754, 0.0651,
0.2634, 0.0758, 0.1583)

(0.0371, 0.0368, 0.0603,
0.0738, 0.0830, 0.0929, 0.1233,
0.2282, 0.1457, 0.1189)

S1975(max)

18.1832

19.7305

18.4615

0.1 0.05

0.3 0.15

20 10

bnl 0'5bn1

- 0.5b,,,

bn3 0'5bn3

Set

by | 05by

bus 0.5bys

bus | 05by

bny 0.5by,

bus | 05bgg

bro 0.5bn0

bnio | 05bn0

-0.9573

-0.3191

-0.0047

-1.2008

-0.7196

-0.6343

-1.3057

-0.7494

-0.7959

-8.5644

-0.6013

-1.6284

-1.0910

0.7689

0.2563

0.0038

0.6545

0.8836

0.7628

0.7107

0.8828

0.7385

0.6542

7.7343

0.6557

0.7939

-0.9573

-0.3191

-0.0047

-1.2008

-0.7196

-0.6343

-1.3057

-0.7494

-0.7511

-2.8352

-0.6013

-1.6284

-1.0910

(0.0725, 0.0383, 0.0544,
0.0908, 0.0923, 0.0992, 0.1207,
0.1336, 0.1466, 0.1517)

(0.0725, 0.0383, 0.0544,
0.0908, 0.0923, 0.0992, 0.1207,
0.1336, 0.1466, 0.1517)

(0.0730, 0.0394, 0.0552,
0.0910, 0.0924, 0.0992, 0.1204,
0.1329, 0.1458, 0.1507)

(0.0564, 0.0892, 0.1460,
0.0814, 0.1115, 0.0723, 0.0756,
0.1746, 0.0794, 0.1136)

(0.0609, 0.0586, 0.0378,
0.0821, 0.1088, 0.1252, 0.1143,
0.1473, 0.1326, 0.1324)

(0.0397, 0.0971, 0.0642,
0.0609, 0.1212, 0.1262, 0.1154,
0.1448, 0.1247, 0.1058)

(0.0720, 0.0673, 0.1356,
0.0715, 0.1082, 0.0580, 0.0733,
0.1854, 0.0910, 0.1378)

(0.0725, 0.0436, 0.0360,
0.0847, 0.0862, 0.1107, 0.1213,
0.1372, 0.1560, 0.1517)

(0.1016, 0.0296, 0.0317,
0.1124, 0.0882, 0.0904, 0.1246,
0.1180, 0.1436, 0.1600)

(0.1102, 0.0647, 0.0603,
0.1192, 0.1098, 0.0538, 0.0270,
0.1808, 0.1243, 0.1498)

(0.0698, 0.0365, 0.0459,
0.0759, 0.0895, 0.1120, 0.1281,
0.1151, 0.1705, 0.1565)

(0.1297, 0.0173, 0.0844,
0.1286, 0.0688, 0.0873, 0.0937,
0.0850, 0.0993, 0.2059)

(0.0704, 0.0242, 0.0973,
0.1132, 0.0760, 0.0707, 0.1380,
0.1275, 0.1455, 0.1372)

22.5669

22.5669

22.5227

25.6109

21.9863

22.6598

24.9203

21.4996

21.0837

21.7422

21.5750

22.6953

23.9270

0.1 0.05

0.3 0.15

Set

bny 0.5b,;

b | 05by

-0.9172

-0.3057

-0.0045

1.3646

-0.8036

0.8678

0.2892

0.0043

0.5700

1.0218

75

-0.9172

-0.3057

-0.0045

1.3646

-0.8036

(0.0706, 0.0480, 0.0538,
0.0746, 0.0868, 0.0983, 0.1412,
0.1631, 0.1419, 0.1219)

(0.0706, 0.0480, 0.0538,
0.0746, 0.0868, 0.0983, 0.1412,
0.1631, 0.1419, 0.1219)

(0.0711, 0.0490, 0.0547,
0.0751, 0.0870, 0.0983, 0.1404,
0.1619, 0.1410, 0.1215)

(0.0516, 0.0980, 0.0423,
0.0472, 0.1653, 0.0437, 0.1753,
0.1592, 0.1317, 0.0856)

(0.0454, 0.0576, 0.0781,
0.0684, 0.1109, 0.1024, 0.1417,
0.1690, 0.1371, 0.0895)

13.4338

13.4337

13.4128

13.6639

13.6128



Table 4.8 continued

Data

set r t

bus | 05by

bry 0.5bn4

bus | 05bys

brg 0.5bn6

bn7 0'5bn7

bug 0.5y

bn9 O'Sbn‘)

bn,lO 0-5bn,1o

Smallest

$

-1.3978

-8.5710

-0.5808

-1.4878

-0.6139

-0.7385

-0.8460

-1.2778

Biggest

¢

0.8223

0.6759

6.3903

0.7295

15.5624

1.2187

0.9255

0.6008

Best &

-1.3978

-1.8249

-0.5808

-1.4878

-0.6139

-0.7385

-0.8460

-1.2778

b1976

(0.0716, 0.0471, 0.0355,
0.0481, 0.1070, 0.0730, 0.1406,
0.2203, 0.1407, 0.1160)

(0.0683, 0.0903, 0.0613,
0.0278, 0.1475, 0.0971, 0.1447,
0.1592, 0.1271, 0.0768)

(0.0528, 0.0604, 0.0762,
0.0764, 0.0862, 0.1118, 0.1316,
0.1584, 0.1386, 0.1076)

(0.1036, 0.0604, 0.0642,
0.0346, 0.0949, 0.0495, 0.1385,
0.1625, 0.1380, 0.1538)

(0.0633, 0.0534, 0.0731,
0.0925, 0.0878, 0.1156, 0.1214,
0.1534, 0.1337, 0.1058)

(0.0883, 0.0169, 0.0265,
0.0758, 0.0564, 0.1139, 0.1408,
0.1550, 0.1655, 0.1609)

(0.0820, 0.0387, 0.0563,
0.0939, 0.0762, 0.1092, 0.1365,
0.1546, 0.1235, 0.1292)

(0.0740, 0.0750, 0.0323,
0.0824, 0.1053, 0.0588, 0.1720,
0.1513, 0.1409, 0.1080)

S1975(max)

13.8168

13.4172

13.3606

12.8251

13.4846

13.1255

13.3314

13.5838

0.1 0.05

0.3 0.15

20 10

by | 05by

bus 0.5b,;

bus | 05bys

Set

boa 0.5bys

bus | 05bys

bug | 05by

boy 0.5by,

bus | 05bgg

bng 0.5bng

bnio | 05bn0

-0.8713

-0.2904

-0.0043

-1.7963

-0.5736

-0.7680

-1.2149

-0.5795

-0.7396

-0.7010

-0.7562

-8.7551

-0.9780

0.8767

0.2922

0.0043

0.6740

5.8736

1.0477

0.6810

14.8871

0.7859

0.7401

0.9586

0.6915

0.7572

76

-0.8713

-0.2904

-0.0043

-1.7963

-0.5736

-0.7680

-1.2149

14.8871

-0.7396

-0.7010

-0.7562

-2.1902

-0.9780

(0.1384, 0.0980, 0.1511,
0.0594, 0.1501, 0.0668, 0.0255,
0.0614, 0.0867, 0.1625)

(0.1384, 0.0980, 0.1511,
0.0594, 0.1501, 0.0668, 0.0256,
0.0614, 0.0867, 0.1625)

(0.1379, 0.0980, 0.1505,
0.0599, 0.1494, 0.0673, 0.0265,
0.0619, 0.0869, 0.1617)

(0.0944, 0.0572, 0.1739,
0.1014, 0.1703, 0.0335, 0.0699,
0.0479, 0.0628, 0.1886)

(0.1508, 0.0925, 0.1512,
0.0430, 0.1408, 0.0797, 0.0236,
0.0655, 0.0854, 0.1675)

(0.1527, 0.0809, 0.1359,
0.0717,0.1412, 0.0601, 0.0337,
0.0460, 0.1038, 0.1738)

(0.0722,0.1692, 0.1367,
0.0469, 0.1698, 0.0465, 0.1155,
0.0932, 0.0450, 0.1049)

(0.1098, 0.0749, 0.0986,
0.1179, 0.0000, 0.1281, 0.1906,
0.0743, 0.0920, 0.1138)

(0.1332, 0.1035, 0.1447,
0.0806, 0.1388, 0.0689, 0.0168,
0.0710, 0.0888, 0.1538)

(0.0996, 0.1355, 0.1252,
0.0271, 0.1606, 0.1065, 0.0462,
0.1068, 0.0867, 0.1059)

(0.1356, 0.1177, 0.1512,
0.0515, 0.1511, 0.0826, 0.0152,
0.0654, 0.0816, 0.1480)

(0.1012, 0.1685, 0.1427,
0.0910, 0.1618, 0.0572, 0.0560,
0.1009, 0.0228, 0.0980)

(0.1255, 0.0478, 0.1590,
0.1006, 0.1538, 0.0364, 0.0475,
0.0454, 0.1108, 0.1732)

15.6803

15.6802

15.6658

15.6586

15.2276

15.5640

17.5055

15.8507

15.1810

16.3894

15.3945

15.6721

15.6307



Table 4.9: The portfolios by, and the maximum wealths S,4,5(max)
achieved by respective &’s within an extended range of ¢ by
the A,(r,t) universal portfolio for selected values of (r,t)
where r =t 4+ 1 for data sets D, E, F and G, where b; =
(0.1000,0.1000, ...,0.1000)

Data

set

1.05

15

11

by tl

bp,+1

bystl

Set

bp,tl

bpstl

bpetl

bpgtl

bpotl

bp,10t1

0.05

05

10

bn,lO

Smallest

¢

-0.0767

-0.0666

-0.0098

-0.0780

-0.0748

-0.0736

-0.0784

-0.0751

-0.0761

-0.0769

-0.0735

-0.0762

-0.0728

Biggest

¢

0.0636

0.0443

0.0060

0.0582

0.0611

0.0602

0.0588

0.0614

0.0611

0.0596

0.0634

0.0606

0.0631

Best &

0.0636

0.0203

-0.0098

0.0582

0.0611

0.0602

0.0588

0.0614

0.0611

0.0596

0.0634

0.0606

0.0631

b1976

(0.1519, 0.1501, 0.1375,
0.1118, 0.1131, 0.1073, 0.0907,
0.0118, 0.0743, 0.0515)

(0.1171,0.1228, 0.1173,
0.1055, 0.1059, 0.1033, 0.0958,
0.0595, 0.0883, 0.0846)

(0.0882, 0.0201, 0.0370,
0.0797, 0.0805, 0.0885, 0.1129,
0.2473,0.1417, 0.1041)

(0.1478, 0.1515, 0.1403,
0.1107, 0.1140, 0.1062, 0.0890,
0.0121, 0.0724, 0.0558)

(0.1492, 0.1511, 0.1364,
0.1107, 0.1143, 0.1093, 0.0903,
0.0122, 0.0738, 0.0527)

(0.1476, 0.1532, 0.1366,
0.1089, 0.1153, 0.1098, 0.0905,
0.0121, 0.0734, 0.0525)

(0.1489, 0.1501, 0.1398,
0.1110, 0.1135, 0.1058, 0.0896,
0.0120, 0.0733, 0.0560)

(0.1500, 0.1503, 0.1366,
0.1113, 0.1127, 0.1081, 0.0908,
0.0120, 0.0751, 0.0531)

(0.1509, 0.1488, 0.1358,
0.1132, 0.1125, 0.1066, 0.0911,
0.0118, 0.0747, 0.0544)

(0.1493, 0.1492, 0.1371,
0.1129, 0.1126, 0.1065, 0.0900,
0.0117, 0.0754, 0.0552)

(0.1524, 0.1472,0.1368,
0.1139, 0.1114, 0.1064, 0.0929,
0.0110, 0.0757, 0.0524)

(0.1507, 0.1492, 0.1380,
0.1135, 0.1118, 0.1065, 0.0904,
0.0115, 0.0734, 0.0550)

(0.1500, 0.1496, 0.1371,
0.1122, 0.1125, 0.1079, 0.0925,
0.0117, 0.0761, 0.0505)

S1975(max)

18.3724

18.1783

18.8172

18.4328

18.3222

18.3867

18.3918

18.3070

18.2845

18.3130

18.3134

18.3404

18.3109

1.05

15

Set

11

b, +1

by,+l

0.05

0.5

10

-0.079

-0.0609

-0.0099

-0.0777

-0.0763

0.0745

0.0515

0.0068

0.0694

0.0718

77

-0.0790

-0.0609

-0.0099

-0.0777

-0.0763

(0.0423, 0.0470, 0.0612,
0.0926, 0.0939, 0.0998, 0.1185,
0.1293, 0.1409, 0.1745)

(0.0602, 0.0413, 0.0567,
0.0914, 0.0928, 0.0994, 0.1200,
0.1321, 0.1446, 0.1614)

(0.1071, 0.0294, 0.0474,
0.0891, 0.0908, 0.0987, 0.1231,
0.1383, 0.1527, 0.1233)

(0.0404, 0.0511, 0.0678,
0.0916, 0.0960, 0.0981, 0.1153,
0.1333, 0.1362, 0.1703)

(0.0432, 0.0470, 0.0579,
0.0911, 0.0954, 0.1027, 0.1186,
0.1322, 0.1411, 0.1708)

21.7355

22.2494

23.5094

22.0048

21.8231



Table 4.9 continued

Data

set r t

bpstl bns

bn4+1 bn4

bpstl bps

bn6+1 bn6

bn7+1 bn7

bn8+1 bns

bn9+1 bn9

bp10t1 bn,10

Smallest

¢

-0.0739

-0.0793

-0.0767

-0.0787

-0.0796

-0.0745

-0.0802

-0.0770

Biggest

¢

0.0712

0.0702

0.0717

0.0707

0.0695

0.0741

0.0697

0.0718

Best &

-0.0739

-0.0793

-0.0767

-0.0787

-0.0796

-0.0745

-0.0802

-0.0770

b1976

(0.0412, 0.0535, 0.0610,
0.0890, 0.0977, 0.1039, 0.1186,
0.1316, 0.1390, 0.1645)

(0.0420, 0.0464, 0.0649,
0.0914, 0.0944, 0.0970, 0.1169,
0.1329, 0.1393, 0.1747)

(0.0452, 0.0449, 0.0577,
0.0917, 0.0927, 0.1007, 0.1195,
0.1306, 0.1436, 0.1734)

(0.0467, 0.0415, 0.0553,
0.0947, 0.0923, 0.0983, 0.1204,
0.1288, 0.1437,0.1784)

(0.0441, 0.0436, 0.0588,
0.0944, 0.0927, 0.0982, 0.1179,
0.1291, 0.1439, 0.1773)

(0.0473, 0.0439, 0.0583,
0.0906, 0.0929, 0.1013, 0.1205,
0.1281, 0.1454, 0.1718)

(0.0463, 0.0418, 0.0593,
0.0952, 0.0910, 0.0980, 0.1192,
0.1268, 0.1417, 0.1806)

(0.0459, 0.0421, 0.0603,
0.0944, 0.0911, 0.0983, 0.1220,
0.1269, 0.1443, 0.1746)

S1975(max)

21.9282

21.9298

21.7684

21.7034

21.7332

21.8006

21.7571

21.7857

1.05 0.05

15 0.5

11 10

bn1+l bnl

b+l bn,

bps+1 bns

Set

bpstl bpy

bps+1 bps

bpetl bng

bny+1 bry

bpg+l bng

bpotl bng

bp10t1 bn,10

-0.0797

-0.0598

-0.0077

-0.0788

-0.0759

-0.0785

-0.0788

-0.0737

-0.0808

-0.0735

-0.0766

-0.0761

-0.0767

0.0860

0.0586

0.0076

0.0776

0.0827

0.0823

0.0787

0.0872

0.0802

0.0846

0.0855

0.0817

0.0790

78

-0.0797

-0.0598

-0.0077

-0.0788

-0.0759

-0.0785

-0.0788

-0.0737

-0.0808

-0.0735

-0.0766

-0.0761

-0.0767

(0.0529, 0.0523, 0.0576,
0.0766, 0.0875, 0.0982, 0.1372,
0.1572, 0.1379, 0.1427)

(0.0633, 0.0491, 0.0547,
0.0750, 0.0869, 0.0982, 0.1401,
0.1616, 0.1408, 0.1303)

(0.0913, 0.0522, 0.0576,
0.0770, 0.0879, 0.0988, 0.1381,
0.1585, 0.1387, 0.0999)

(0.0502, 0.0556, 0.0569,
0.0745, 0.0934, 0.0954, 0.1398,
0.1577, 0.1376, 0.1389)

(0.0512, 0.0529, 0.0597,
0.0760, 0.0900, 0.0987, 0.1381,
0.1585, 0.1382, 0.1366)

(0.0541, 0.0513, 0.0560,
0.0756, 0.0873, 0.0976, 0.1374,
0.1598, 0.1385, 0.1424)

(0.0529, 0.0532, 0.0575,
0.0746, 0.0890, 0.0990, 0.1369,
0.1579, 0.1373, 0.1416)

(0.0535, 0.0527, 0.0598,
0.0765, 0.0871, 0.0999, 0.1372,
0.1583, 0.1387, 0.1363)

(0.0565, 0.0496, 0.0554,
0.0741, 0.0854, 0.0954, 0.1377,
0.1591, 0.1392, 0.1475)

(0.0550, 0.0522, 0.0592,
0.0787, 0.0871, 0.1004, 0.1354,
0.1569, 0.1376, 0.1376)

(0.0579, 0.0482, 0.0539,
0.0762, 0.0838, 0.0991, 0.1380,
0.1580, 0.1408, 0.1441)

(0.0566, 0.0507, 0.0570,
0.0782, 0.0856, 0.0991, 0.1371,
0.1567, 0.1368, 0.1422)

(0.0559, 0.0524, 0.0564,
0.0788, 0.0856, 0.0966, 0.1385,
0.1554, 0.1382, 0.1423)

13.1906

13.3523

13.4743

13.2399

13.2386

13.2086

13.2035

13.2431

13.1626

13.2371

13.2058

13.1981

13.1941



Table 4.9 continued

Data

set r t

Smallest

¢

Biggest
¢

Best &

b1976

S1975(max)

1.05 0.05

15 0.5

11 10

bn1+1 bnl

bn2+1 an

bn3+1 bn3

Set

bn4+1 bn4

bpstl bps

bn6+1 bné

bn7+l bn7

bpgtl bng

bn9+1 bn9

bp10t1 bn,10

-0.0850

-0.0585

-0.0077

-0.0827

-0.0768

-0.0793

-0.0858

-0.0761

-0.0789

-0.0809

-0.0797

-0.0831

-0.0818

0.0838

0.0585

0.0079

0.0785

0.0830

0.0808

0.0791

0.0826

0.0793

0.0796

0.0803

0.0781

0.0792

-0.085

-0.0585

-0.0077

-0.0827

-0.0768

-0.0793

-0.0858

-0.0761

-0.0789

-0.0809

-0.0797

-0.0831

-0.0818

(0.1156, 0.1010, 0.1555,
0.0615, 0.1545, 0.0691, 0.0267,
0.0635, 0.0894, 0.1631)

(0.1303, 0.0990, 0.1526,
0.0602, 0.1516, 0.0676, 0.0260,
0.0622, 0.0876, 0.1629)

(0.1560, 0.0957, 0.1474,
0.0583, 0.1464, 0.0655, 0.0254,
0.0602, 0.0849, 0.1602)

(0.1189, 0.0980, 0.1559,
0.0642, 0.1533, 0.0675, 0.0275,
0.0615, 0.0882, 0.1651)

(0.1226, 0.0989, 0.1549,
0.0583, 0.1523, 0.0703, 0.0256,
0.0630, 0.0886, 0.1654)

(0.1212, 0.0976, 0.1532,
0.0629, 0.1525, 0.0677, 0.0274,
0.0611, 0.0910, 0.1655)

(0.1110, 0.1067, 0.1563,
0.0595, 0.1579, 0.0662, 0.0321,
0.0652, 0.0861, 0.1591)

(0.1215, 0.0990, 0.1534,
0.0619, 0.1501, 0.0699, 0.0263,
0.0628, 0.0913, 0.1639)

(0.1184, 0.1005, 0.1540,
0.0645, 0.1519, 0.0689, 0.0256,
0.0642, 0.0896, 0.1625)

(0.1104, 0.1064, 0.1531,
0.0569, 0.1568, 0.0749, 0.0274,
0.0695, 0.0890, 0.1557)

(0.1176, 0.1026, 0.1552,
0.0603, 0.1541, 0.0705, 0.0255,
0.0634, 0.0886, 0.1621)

(0.1166, 0.1018, 0.1547,
0.0637, 0.1534, 0.0683, 0.0271,
0.0640, 0.0873, 0.1631)

(0.1173, 0.0970, 0.1562,
0.0633, 0.1553, 0.0662, 0.0283,
0.0618, 0.0916, 0.1631)

15.8091

15.7250

15.5622

15.7546

15.7037

15.7524

16.0125

15.6943

15.7021

15.9454

15.7518

15.7703

15.8382

We observe in Subsection 4.1.1 that the portfolios b, 47, and maximum

wealths S, achieved by A,(r,t) universal portfolios are approximately

equal for different pairs of (r, t) satisfying the relationship of r = gt, where

r,g and t are constants. The values of smallest, largest and best & vary

according to the respective pairs of (r, t) in some manner. From Table 4.8, we

do believe that the A,(r,t) universal portfolios satisfying the relationship of

r = gt, where r, g and t are constants, also possess the same behaviour for

each particular g.
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The BCRP’s for data sets D, E, F and G are listed in Table 2.11 and
some of the components of BCRP’s are zero. We can replace the BCRP’s with
zero components by the approximate positive BCRP’s. We use the notation
b%, . for the approximate positive BCRP’s. Next, we run the A;(r) and
A,(r,t) universal portfolios with the initial starting portfolios being the

approximate positive BCRP’s b%,.. given in Table 4.10.

Table 4.10: The best constant rebalanced portfolios bjy,s and the
approximate positive best constant rebalanced portfolios
b%,, for data sets D, E, F and G

Data set bess b9,
SetD (0.5981, 0.4019, 0.0000, 0.0000, 0.0000, (0.5581, 0.3619, 0.0100, 0.0100, 0.0100,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 0.0100, 0.0100, 0.0100, 0.0100, 0.0100)

(0.5981, 0.4019, 0.0000, 0.0000, 0.0000,

(0.5581, 0.3619, 0.0100, 0.0100, 0.0100,

SetE 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 0.0100, 0.0100, 0.0100, 0.0100, 0.0100)
SetF (0.4836, 0.3869, 0.1295, 0.0000, 0.0000, (0.4536, 0.3669, 0.1095, 0.0100, 0.0100,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 0.0100, 0.0100, 0.0100, 0.0100, 0.0100)
Set G (0.0000, 0.0000, 0.0000, 0.1965, 0.0000, (0.0100, 0.0100, 0.0100, 0.1765, 0.0100,

0.0000, 0.5926, 0.2109, 0.0000, 0.0000)

0.0100, 0.5626, 0.1909, 0.0100, 0.0100)

Tables 4.11 shows the portfolios b;97¢ and the maximum wealths
S1975(max) achieved by respective & ’s over the range of values of &
considered for data sets D, E, F and G after 1975 trading days for nine
selected A;(r) universal portfolios where the initial starting portfolios
b, = b%75. Similarly, the results for 13 selected A, (r,t) universal portfolios
are listed in Tables 4.12 and 4.13. The values of S,4,5(max) for selected
A;(r) and A, (7, t) universal portfolios in Tables 4.11, 4.12 and 4.13 are much
lower than the maximum wealths achieved by the Helmbold and CSD
universal portfolios where the initial starting portfolios b; = bjg,5. Since the

initial starting portfolios are replaced by the approximate positive BCRP’s
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instead of the true BCRP’s with zero components, the Proposition 4.4(i) does
not hold for the results in Tables 4.11, 4.12 and 4.13. From Tables 4.11, 4.12
and 4.13, we observe that the values of S;q9,5(max) for selected A;(r) and
A, (r,t) universal portfolios do not exceed the wealths achieved by the
BCRP’s. However, the values of S;9,5(max) for selected A;(r) and A, (7, t)
universal portfolios for data sets D, E, F and G, which are approximately
35, 35,19 and 23 respectively, are slightly lower than the wealths achieved by
the BCRP’s. The performance for selected A;(r) and A,(r,t) universal
portfolios are considered to be good since it is close to the wealths achieved by
the BCRP’s, S;{975 = 37.5867,37.5867,20.7169 and 24.6381 respectively,

for data sets D, E, F and G.

Table 4.11: The portfolios b;4,¢, and the maximum wealths S,4,<(max)
achieved by respective &’s within an extended range of ¢ by
the A;(r) universal portfolio for selected values of r for data
sets D, E, Fand G, where b; = b9,

Data Smallest Biggest

set r £ 5 Best & bio7e S1975(max)
04 | 0009 | 00066 | 0.0066 9651633 8'(?068762" 880114(? g%&f 8'(?01415% 35,2323
02 | 00086 | 00065 | 0.0065 (g_ffg;' 8506785" 355057""’ (?%5215 850141% 35,2970
03 | 00078 | 00064 | 0.0064 %)_bsféé é’_g’oefg' g'goloef (?(?(}3?93 é’_gg% 35,3687
04 | 00071 | 00062 | 0.0062 ((?,bsféf' 35’06:;' (?'(?0106;* (?'(?01242* 35013223)' 35.4414

' |05 | -00066 | 00060 | 0.0060 g’éggf 8355071 (?(?0107; (85012406” 8801225' 35,5127
06 | -00063 | 00059 | 0.0059 g’éggf (?355026 é’é’olg f" (?&115’21 8501125)' 35,5804
07 | -00064 | 00061 | 0.0061 %)Osggg o 4192 g'golosf ggggé : 35011215)' 35,6463
08 | 00073 | 00067 | 00067 gbsggé, o5 41; (?'(?0108;* 8.(?0105; : 8'80102(;‘)' 35,6861
0o | 0011 | 00002 | co0sz | (0567403709, 0.0175,0.0149, 00121, 25 6608

0.0088, 0.0052, 0.0018, 0.0009, 0.0005)
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Table 4.11 continued

[;ﬁa sz;llest Biggest Best ¢ bioe S1075(max)
01 | 00109 | 00079 | 00109 | Do oSS gé’ff;ggfg;ggfgg 35.8853
02 | 00100 | 00079 | -0.0100 §b5f§f'ggf;§'8§ff§'gg’fjg'ggfgg 35.7862
03 | 00003 | 00075 | -00093 | DD 055 00155, 0011 0.0168) 35.6939
04 | -0008 | 00071 | 00086 | O o e o olbs Cotor 35.6044
%' |05 | -00081 | 00067 | 00067 g?g’g;;ggg:%g%fg'53)5583:'(83)01;(;‘)' 35.6085
06 | 00078 | 00064 | 00064 §b5§;f'3506::'g§&ff'8'(?01;57"5’.3’0111;' 35.6736
07 | 00080 | 00063 | 00063 | S 'gé’gfé'(?g’g;jggolll{g 35.7308
08 | 00001 | ooogs | oooes | D SO DS '58)01242'8&111% 35.7783
09 | 00133 | 0005 | 00005 | Do OSES. 35&5;’85&;5%53)011175)’ 35.8132
01 | 00124 | 00091 | -0.0124 (g(fgggggfgg(?gf;;(?gfgf(?gg; 19.9367
02 | -00124 | 00091 | -0.0124 g’_ﬁfﬁgﬁfgf%ﬁ;ﬁ'(?gfgof'ggf% 19.8847
03 | -00122 | 00093 | -0.0122 ((?_éfosé '55’157722”ggfffggfg’ssﬁgfg% 19.8251
04 | 00119 | 00094 | -00119 ((?.'(;11414(?,'85’15%'&?52921,'(?.'(?20()296,'3).3)105(32)' 19.7616
St o5 | 00117 | 00087 | 00087 (gé’%;(?gggg oy 2'&5’01163'8'(?0122% 19.8024
06 | -00117 | 00082 | 0.0082 g’_f%%gggﬁg'%ggg'00_'0001(?71;(?_'(?0112% 19,8443
07 | 00123 | 00081 | 00081 gégg&gﬁgf&g&&?'gé)ggg'gé)ol% 19.8798
08 | 00144 | o007 | oooer | DI BT DT ,gé)()l(;567’,é).é)ol()2€;1), 19.9058
09 | 0020 | o013 | 00123 | Q7008 fg'gggf;'ggggg'(?&l% 19.9244
01 | -oou1 | oooes | 00wt | Ot oS O oo CoLrl) 239551
02 | 00119 | 00087 | -0.0119 Qﬁ&éﬁ'&é’é&&'(?fglg,ﬁé’jé)blgégljé),é’fﬁf’; 23.9683
03 | 00127 | 00087 | -0.0127 93)6513?'8505152331081532,'(861(38591,'(?.3)11734% 23.9778
04 | 00135 | 00087 | -0.0135 (g_é)&f;'g%f;'é’_f;ssé'&lg:gggf% 23.9829
*t |05 | 00138 | 00089 | -0.0138 %’_é’&fg&ggj&g%ﬁ;'gblggf'gglléf‘)' 23.9703
06 | 00131 | 00091 | -0.0131 %’,3’&5’2’8551535'(?fglfé"j&lggéé’,é’fig‘r’)' 23.9293
07 | 00130 | 00097 | 00130 | OOk O e '85113059)' 238948
08 | -00143 | 00114 | -0.0143 g’_g&g&g%ﬁ;g%ﬁi'gblgg;'ggll% 23.8681
09 | -00203 | 00175 | -0.0203 | (0:0182 0.0131,0.0131,0.1773, 0.0102, 238443
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Table 4.12: The portfolios b4, and the maximum wealths S, 4,5 (max)
achieved by respective &’s within an extended range of ¢ by
the A,(r,t) universal portfolio for selected values of (r,t)
where r = 2t for data sets D, E, F and G, where b; = b%, .

Data
set

Set

0.1

0.3

20

bn,10

0.05

0.15

10

0.5b,,

0.5b,,

0.5b,5

0.5b,,

0.5b,,s

0.5bye

0.5b,,,

05byq

0.5b,6

05b,10

Smallest

$

-0.1036

-0.0345

-0.0005

-0.0189

-0.0284

-0.7527

-1.2654

-0.7812

-0.7896

-8.2472

-0.5709

-1.8004

-0.8234

Biggest

3

0.0667

0.0222

0.0003

0.0119

0.0185

0.6268

0.5164

0.8037

0.7439

0.5737

1.2750

0.6688

0.9266

Best &

-0.1036

-0.0345

-0.0005

-0.0189

-0.0284

-0.7527

-1.2654

-0.2082

-0.1538

-0.4867

-0.2089

-1.8004

-0.8234

b197(5

(0.5550, 0.3549, 0.0034,
0.0080, 0.0078, 0.0085, 0.0109,
0.0237, 0.0134, 0.0142)

(0.5550, 0.3549, 0.0034,
0.0080, 0.0078, 0.0085, 0.0109,
0.0237, 0.0134, 0.0142)

(0.5551, 0.3552, 0.0036,
0.0081, 0.0079, 0.0086, 0.0109,
0.0232, 0.0133, 0.0141)

(0.5549, 0.3549, 0.0035,
0.0080, 0.0078, 0.0085, 0.0109,
0.0239, 0.0134, 0.0143)

(0.5549, 0.3550, 0.0033,
0.0080, 0.0079, 0.0087, 0.0109,
0.0237, 0.0134, 0.0142)

(0.5516, 0.3623, 0.0051,
0.0036, 0.0121, 0.0124, 0.0103,
0.0189, 0.0113, 0.0125)

(0.5570, 0.3590, 0.0125,
0.0066, 0.0101, 0.0055, 0.0065,
0.0189, 0.0082, 0.0157)

(0.5574, 0.3605, 0.0085,
0.0095, 0.0095, 0.0098, 0.0102,
0.0129, 0.0108, 0.0109)

(0.5577, 0.3608, 0.0089,
0.0098, 0.0096, 0.0097, 0.0102,
0.0121, 0.0105, 0.0106)

(0.5573, 0.3589, 0.0073,
0.0097, 0.0090, 0.0091, 0.0099,
0.0153, 0.0118, 0.0117)

(0.5575, 0.3599, 0.0084,
0.0098, 0.0093, 0.0096, 0.0105,
0.0131, 0.0110, 0.0110)

(0.5589, 0.3551, 0.0078,
0.0104, 0.0058, 0.0075, 0.0061,
0.0255, 0.0070, 0.0159)

(0.5529, 0.3559, 0.0052,
0.0073, 0.0079, 0.0089, 0.0123,
0.0231, 0.0144, 0.0122)

S1975(max)

35.2542

35.2542

35.2515

35.2628

35.2499

35.3441

35.5815

35.1832

35.1809

35.1905

35.1834

35.4871

35.2830

Set

0.1

0.3

20

0.05

0.15

10

0.5b,,

0.5b,

0.5b,5

-0.1154

-0.0384

-0.0005

-0.0206

-0.0317

-0.7620

0.0773

0.0257

0.0003

0.0138

0.0214

0.7611

83

-0.1154

-0.0384

-0.0005

-0.0206

-0.0317

-0.7620

(0.5564, 0.3553, 0.0038,
0.0090, 0.0087, 0.0095, 0.0121,
0.0134, 0.0150, 0.0166)

(0.5564, 0.3553, 0.0038,
0.0090, 0.0087, 0.0095, 0.0121,
0.0134, 0.0150, 0.0166)

(0.5566, 0.3562, 0.0047,
0.0091, 0.0089, 0.0096, 0.0119,
0.0130, 0.0143, 0.0157)

(0.5564, 0.3554, 0.0041,
0.0090, 0.0088, 0.0095, 0.0121,
0.0135, 0.0148, 0.0165)

(0.5563, 0.3554, 0.0037,
0.0089, 0.0088, 0.0097, 0.0121,
0.0135, 0.0150, 0.0165)

(0.5506, 0.3632, 0.0054,
0.0044, 0.0131, 0.0134, 0.0115,
0.0158, 0.0124, 0.0101)

36.0646

36.0638

35.9980

36.0709

36.0617

36.1349



Table 4.12 continued

Data

set r t

buy | O5bu,

bns 0.5bns

brs | 05bug

by 0.5by;

an 0'5bn8

- 0.5b,

bn,lO 0-5bn,1o

Smallest

$

-1.2941

-0.7715

-0.7901

-8.4108

-0.6079

-1.6446

-1.0776

Biggest

¢

0.7148

0.8850

0.7380

0.6513

7.8157

0.6566

0.8065

Best &

-1.2941

-0.7715

-0.7901

-2.5357

-0.6079

-1.6446

-1.0776

b1976

(0.5564, 0.3591, 0.0128,
0.0073, 0.0106, 0.0057, 0.0073,
0.0179, 0.0090, 0.0140)

(0.5565, 0.3569, 0.0030,
0.0084, 0.0084, 0.0109, 0.0118,
0.0135, 0.0152, 0.0155)

(0.5594, 0.3552, 0.0025,
0.0113, 0.0086, 0.0087, 0.0122,
0.0116, 0.0140, 0.0164)

(0.5596, 0.3580, 0.0056,
0.0121, 0.0103, 0.0056, 0.0037,
0.0168, 0.0131, 0.0151)

(0.5564, 0.3564, 0.0041,
0.0076, 0.0088, 0.0109, 0.0124,
0.0112, 0.0164, 0.0159)

(0.5622, 0.3550, 0.0078,
0.0127, 0.0068, 0.0086, 0.0089,
0.0084, 0.0092, 0.0203)

(0.5567, 0.3548, 0.0087,
0.0115, 0.0072, 0.0068, 0.0138,
0.0119, 0.0143, 0.0142)

S1975(max)

36.3305

35.8148

35.7333

35.8293

35.8310

35.9868

36.1783

0.1 0.05

0.3 0.15

20 10

b 0.5,

bnz 0'5bn2

b 0.5b,3

Set

bn4 O'Sbn4

bns 0.5bys

bus | 05by

by | 05by

bns 0.5bys

by | 05by

bynio | 05bys0

-0.1131

-0.0377

-0.0005

-0.0250

-0.0306

-0.1055

-8.4457

-0.6848

-1.4915

-0.7098

-0.8007

-1.0399

-1.3238

0.0871

0.0290

0.0004

0.0189

0.0238

0.0804

0.6699

6.3537

0.7283

15.4809

1.2154

0.9180

0.6053

84

-0.1131

-0.0377

-0.0005

-0.0250

-0.0306

-0.1055

-1.8418

-0.6848

-1.4915

-0.7098

-0.8007

-1.0399

-1.3238

(0.4511, 0.3615, 0.1041,
0.0067, 0.0079, 0.0094, 0.0143,
0.0175, 0.0144, 0.0131)

(0.4511, 0.3615, 0.1041,
0.0067, 0.0079, 0.0094, 0.0143,
0.0175, 0.0144, 0.0131)

(0.4514, 0.3621, 0.1047,
0.0071, 0.0082, 0.0094, 0.0138,
0.0166, 0.0139, 0.0128)

(0.4511, 0.3616, 0.1040,
0.0067, 0.0081, 0.0092, 0.0144,
0.0174, 0.0143, 0.0130)

(0.4510, 0.3615, 0.1042,
0.0067, 0.0080, 0.0094, 0.0143,
0.0175, 0.0144, 0.0130)

(0.4512, 0.3614, 0.1039,
0.0066, 0.0079, 0.0093, 0.0143,
0.0178, 0.0144, 0.0132)

(0.4510, 0.3664, 0.1058,
0.0027, 0.0145, 0.0094, 0.0142,
0.0157, 0.0124, 0.0079)

(0.4482, 0.3631, 0.1071,
0.0068, 0.0081, 0.0113, 0.0133,
0.0171, 0.0141, 0.0109)

(0.4545, 0.3637, 0.1062,
0.0034, 0.0094, 0.0048, 0.0134,
0.0160, 0.0132, 0.0154)

(0.4497, 0.3624, 0.1069,
0.0090, 0.0086, 0.0116, 0.0118,
0.0162, 0.0133, 0.0105)

(0.4536, 0.3588, 0.1016,
0.0072, 0.0047, 0.0111, 0.0136,
0.0157,0.0164, 0.0174)

(0.4521, 0.3608, 0.1048,
0.0091, 0.0075, 0.0106, 0.0138,
0.0164, 0.0115, 0.0133)

(0.4519, 0.3649, 0.1025,
0.0082, 0.0099, 0.0056, 0.0168,
0.0151, 0.0137, 0.0113)

19.9876

19.9876

19.9610

19.9876

19.9883

19.9874

19.9361

19.9784

19.8469

19.9977

19.9146

19.9742

19.9750



Table 4.12 continued

Data

set r t

Smallest

$

Biggest
¢

Best &

b1976

S1975(max)

0.1 0.05

0.3 0.15

20 10

b | 05by

bnz 0'5bn2

b 0.5b,5

Set

bn4 0'5bn4

bos 0.5b,

bns 0'5bn6

bn7 0'5bn7

bns 0.5bys

by | 05bue

bn,lO O-Sbn,w

-0.1027

-0.0342

-0.0005

-1.8170

-0.7000

-0.9496

-0.0586

-0.7574

-1.5418

-0.0181

-0.0535

-8.6854

-1.3240

0.0879

0.0293

0.0004

0.7261

5.8475

1.0388

0.0494

2.3452

0.8123

0.0156

0.0462

0.7262

0.7513

-0.1027

-0.0342

-0.0005

-1.8170

-0.7000

-0.9496

-0.0586

-0.7574

-1.5418

-0.0181

-0.0535

-2.1040

-1.3240

(0.0138, 0.0093, 0.0153,
0.1719, 0.0149, 0.0059, 0.5578,
0.1863, 0.0082, 0.0167)

(0.0138, 0.0093, 0.0153,
0.1719, 0.0149, 0.0059, 0.5578,
0.1863, 0.0082, 0.0167)

(0.0137, 0.0093, 0.0152,
0.1720, 0.0148, 0.0060, 0.5579,
0.1864, 0.0082, 0.0165)

(0.0085, 0.0061, 0.0164,
0.1764, 0.0160, 0.0036, 0.5636,
0.1861, 0.0058, 0.0175)

(0.0161, 0.0087, 0.0160,
0.1687, 0.0142, 0.0074, 0.5567,
0.1866, 0.0076, 0.0180)

(0.0155, 0.0076, 0.0132,
0.1732, 0.0140, 0.0049, 0.5592,
0.1843, 0.0102, 0.0179)

(0.0134, 0.0097, 0.0152,
0.1718, 0.0150, 0.0058, 0.5583,
0.1866, 0.0080, 0.0163)

(0.0159, 0.0093, 0.0154,
0.1710, 0.0127, 0.0072, 0.5559,
0.1857, 0.0102, 0.0168)

(0.0136, 0.0133, 0.0177,
0.1751, 0.0167, 0.0036, 0.5484,
0.1870, 0.0067, 0.0179)

(0.0137, 0.0094, 0.0152,
0.1718, 0.0149, 0.0060, 0.5578,
0.1865, 0.0082, 0.0165)

(0.0138, 0.0094, 0.0154,
0.1718, 0.0150, 0.0060, 0.5577,
0.1863, 0.0081, 0.0166)

(0.0101, 0.0162, 0.0139,
0.1756, 0.0155, 0.0057, 0.5599,
0.1908, 0.0025, 0.0098)

(0.0112, 0.0021, 0.0168,
0.1781, 0.0160, 0.0009, 0.5613,
0.1842, 0.0115, 0.0180)

23.9214

23.9211

23.9139

23.8533

23.8607

23.9140

23.9302

23.8813

23.9437

23.9235

23.9197

23.8652

23.8989

Table 4.13: The portfolios b,9;, and the maximum wealths S, 4,5 (max)
achieved by respective &’s within an extended range of & by
the A,(r, t) universal portfolio for selected values of (r,t)
where r =t + 1 for data sets D, E, F and G, where b, =

©
b1975
Data
set r t
1.05 0.05
Set
D 15 0.5
11 10

Smallest
¢
-0.0100

-0.0069

-0.0009

Biggest
¢
0.0063

0.0044

0.0006
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Best &

-0.0100

-0.0069

-0.0009

b1976

(0.5514, 0.3549, 0.0033,
0.0081, 0.0078, 0.0086, 0.0109,
0.0239, 0.0135, 0.0176)

(0.5537, 0.3550, 0.0034,
0.0081, 0.0078, 0.0086, 0.0109,
0.0237, 0.0134, 0.0154)

(0.5581, 0.3552, 0.0037,
0.0081, 0.0079, 0.0086, 0.0108,
0.0231, 0.0133, 0.0113)

S1975(max)

35.1818

35.2280

35.3102



Table 4.13 continued

Data

set r t

bn1+1 bnl

bn2+1 an

bpstl bps

bn4+1 bn4

bpst1 bps

bn6+1 bn6

bn7+1 bn7

bn8+1 bn8

bn9+1 bn9

bp10*1 bn,10

Smallest

¢

-0.0067

-0.0076

-0.0104

-0.0105

-0.0104

-0.0103

-0.0104

-0.0103

-0.0104

-0.0103

Biggest

$

0.0042

0.0049

0.0066

0.0066

0.0066

0.0066

0.0066

0.0066

0.0066

0.0066

Best &

-0.0067

-0.0076

-0.0104

-0.0105

-0.0024

-0.0016

-0.0027

-0.0026

-0.007

-0.0024

b1976

(0.5539, 0.3549, 0.0034,
0.0080, 0.0078, 0.0085, 0.0109,
0.0238, 0.0134, 0.0153)

(0.5532, 0.3550, 0.0034,
0.0080, 0.0079, 0.0086, 0.0109,
0.0237, 0.0134, 0.0159)

(0.5511, 0.3550, 0.0033,
0.0080, 0.0079, 0.0086, 0.0109,
0.0239, 0.0135, 0.0178)

(0.5511, 0.3549, 0.0034,
0.0080, 0.0078, 0.0085, 0.0109,
0.0240, 0.0135, 0.0179)

(0.5565, 0.3603, 0.0085,
0.0096, 0.0095, 0.0097, 0.0102,
0.0132, 0.0108, 0.0118)

(0.5570, 0.3608, 0.0090,
0.0097, 0.0097, 0.0098, 0.0101,
0.0121, 0.0105, 0.0112)

(0.5563, 0.3601, 0.0083,
0.0095, 0.0094, 0.0096, 0.0102,
0.0136, 0.0109, 0.0120)

(0.5564, 0.3601, 0.0083,
0.0095, 0.0095, 0.0096, 0.0102,
0.0135, 0.0109, 0.0120)

(0.5534, 0.3572, 0.0055,
0.0087, 0.0085, 0.0090, 0.0106,
0.0194, 0.0124, 0.0153)

(0.5565, 0.3603, 0.0085,
0.0096, 0.0095, 0.0097, 0.0102,
0.0132, 0.0108, 0.0118)

S1975(max)

35.2352

35.2163

35.1782

35.1784

35.1752

35.1752

35.1753

35.1753

35.1755

35.1752

1.05 0.05

15 0.5

11 10

Set

bn4+l bn4

bpst1 bys

bpetl bne

-0.0109

-0.0076

-0.0010

-0.0074

-0.0084

-0.0113

-0.0114

-0.0114

-0.0114

-0.0114

-0.0113

0.0074

0.0051

0.0006

0.0049

0.0057

0.0077

0.0077

0.0077

0.0077

0.0077

0.0078
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-0.0109

-0.0076

-0.0010

-0.0074

-0.0084

-0.0113

-0.0114

-0.0114

-0.0114

-0.0114

-0.0113

(0.5521, 0.3555, 0.0040,
0.0091, 0.0089, 0.0097, 0.0123,
0.0136, 0.0151, 0.0197)

(0.5549, 0.3554, 0.0040,
0.0090, 0.0088, 0.0096, 0.0122,
0.0135, 0.0150, 0.0177)

(0.5601, 0.3555, 0.0040,
0.0089, 0.0087, 0.0095, 0.0119,
0.0132, 0.0147, 0.0135)

(0.5550, 0.3554, 0.0040,
0.0090, 0.0088, 0.0096, 0.0122,
0.0135, 0.0150, 0.0175)

(0.5542, 0.3554, 0.0039,
0.0090, 0.0088, 0.0097, 0.0122,
0.0135, 0.0150, 0.0181)

(0.5517, 0.3557, 0.0040,
0.0091, 0.0090, 0.0098, 0.0123,
0.0136, 0.0151, 0.0198)

(0.5517, 0.3555, 0.0041,
0.0091, 0.0089, 0.0097, 0.0123,
0.0136, 0.0151, 0.0200)

(0.5517, 0.3555, 0.0040,
0.0091, 0.0089, 0.0097, 0.0123,
0.0136, 0.0152, 0.0200)

(0.5518, 0.3554, 0.0039,
0.0092, 0.0089, 0.0097, 0.0123,
0.0136, 0.0152, 0.0201)

(0.5518, 0.3555, 0.0040,
0.0092, 0.0089, 0.0097, 0.0123,
0.0136, 0.0152, 0.0200)

(0.5518, 0.3555, 0.0040,
0.0091, 0.0089, 0.0097, 0.0123,
0.0135, 0.0152, 0.0199)

35.9828

36.0306

36.1054

36.0432

36.0210

35.9814

35.9806

35.9772

35.9738

35.9742

35.9764



Table 4.13 continued

Data

set r

bpotl

bn,10+1

t

bng

bn,lo

Smallest

¢

-0.0114

-0.0114

Biggest
¢

0.0077

0.0078

Best &

-0.0114

-0.0114

b1976

(0.5518, 0.3555, 0.0040,
0.0092, 0.0089, 0.0097, 0.0123,
0.0135, 0.0151, 0.0201)

(0.5518, 0.3554, 0.0040,
0.0092, 0.0089, 0.0097, 0.0124,
0.0135, 0.0152, 0.0200)

S1975(max)

35.9745

35.9773

1.05

15

11

by tl

bp,+1

bystl

Set

b+l

b5+l

bpetl

b +1

bpgtl

bpotl

bp10*l

0.05

0.5

10

bn,lO

-0.0105

-0.0074

-0.0008

-0.0077

-0.0081

-0.0099

-0.0109

-0.0108

-0.0109

-0.0108

-0.0108

-0.0108

-0.0109

0.0086

0.0058

0.0007

0.0060

0.0065

0.0081

0.0089

0.0090

0.0089

0.0090

0.0090

0.0090

0.0089

-0.0105

-0.0074

-0.0008

-0.0077

-0.0081

-0.0099

-0.0109

-0.0108

-0.0109

-0.0108

-0.0108

-0.0108

-0.0109

(0.4486, 0.3616, 0.1042,
0.0068, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0155)

(0.4502, 0.3616, 0.1042,
0.0068, 0.0080, 0.0094, 0.0143,
0.0174, 0.0143, 0.0140)

(0.4535, 0.3627, 0.1053,
0.0074, 0.0084, 0.0095, 0.0134,
0.0158, 0.0134, 0.0107)

(0.4500, 0.3616, 0.1041,
0.0067, 0.0080, 0.0093, 0.0143,
0.0174, 0.0143, 0.0141)

(0.4498, 0.3616, 0.1042,
0.0068, 0.0080, 0.0094, 0.0143,
0.0174, 0.0143, 0.0143)

(0.4489, 0.3617, 0.1042,
0.0068, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0152)

(0.4484, 0.3617, 0.1043,
0.0068, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0157)

(0.4484, 0.3617, 0.1043,
0.0068, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0156)

(0.4484,0.3617, 0.1042,
0.0068, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0158)

(0.4484, 0.3617, 0.1043,
0.0069, 0.0080, 0.0094, 0.0142,
0.0173, 0.0143, 0.0156)

(0.4485, 0.3616, 0.1042,
0.0068, 0.0079, 0.0094, 0.0142,
0.0173, 0.0143, 0.0157)

(0.4485, 0.3617, 0.1043,
0.0069, 0.0080, 0.0094, 0.0142,
0.0172, 0.0142, 0.0157)

(0.4484,0.3617, 0.1042,
0.0069, 0.0080, 0.0094, 0.0143,
0.0173, 0.0143, 0.0157)

19.9602

19.9755

19.9510

19.9763

19.9726

19.9613

19.9571

19.9582

19.9554

19.9581

19.9561

19.9560

19.9575

1.05

15

11
Set

0.05

0.5

10

-0.0098

-0.0068

-0.0009

-0.0102

-0.0101

-0.0102

0.0084

0.0058

0.0007

0.0087

0.0088

0.0087

87

-0.0098

-0.0068

-0.0009

-0.0102

-0.0101

-0.0102

(0.0113, 0.0096, 0.0156,
0.1722,0.0152, 0.0062, 0.5581,
0.1866, 0.0085, 0.0167)

(0.0129, 0.0094, 0.0154,
0.1720, 0.0150, 0.0060, 0.5579,
0.1864, 0.0083, 0.0167)

(0.0157, 0.0090, 0.0149,
0.1718, 0.0145, 0.0058, 0.5577,
0.1862, 0.0080, 0.0162)

(0.0110, 0.0096, 0.0157,
0.1723, 0.0152, 0.0062, 0.5582,
0.1866, 0.0085, 0.0168)

(0.0111, 0.0096, 0.0157,
0.1722, 0.0152, 0.0062, 0.5581,
0.1866, 0.0085, 0.0168)

(0.0111, 0.0096, 0.0157,
0.1722, 0.0153, 0.0062, 0.5581,
0.1866, 0.0085, 0.0168)

23.9365

23.9249

23.8979

23.9363

23.9353

23.9378



Table 4.13 continued

Data

set r

bpatl

bys+l

bpetl

by,+1

bpgtl

bpotl

bp10t1

t

bn,lO

Smallest

¢

-0.0087

-0.0101

-0.0102

-0.0065

-0.0086

-0.0102

-0.0102

Biggest

$

0.0075

0.0088

0.0087

0.0056

0.0074

0.0087

0.0087

Best &

-0.0087

-0.0101

-0.0102

-0.0065

-0.0086

-0.0102

-0.0102

b1976

(0.0118, 0.0096, 0.0155,

0.1721, 0.0151, 0.0061, 0.5581,

0.1866, 0.0084, 0.0166)
(0.0111, 0.0096, 0.0156,

0.1722, 0.0152, 0.0062, 0.5581,

0.1866, 0.0085, 0.0167)
(0.0110, 0.0096, 0.0157,

0.1723, 0.0153, 0.0062, 0.5581,

0.1866, 0.0085, 0.0168)
(0.0130, 0.0094, 0.0153,

0.1720, 0.0150, 0.0060, 0.5579,

0.1865, 0.0083, 0.0166)
(0.0119, 0.0095, 0.0156,

0.1721, 0.0151, 0.0061, 0.5580,

0.1865, 0.0084, 0.0167)
(0.0110, 0.0096, 0.0157,

0.1723, 0.0152, 0.0062, 0.5581,

0.1867, 0.0085, 0.0167)
(0.0110, 0.0095, 0.0157,

0.1723, 0.0153, 0.0062, 0.5582,

0.1866, 0.0085, 0.0167)

4.3 The Modified Mahalanobis Universal Portfolio

S1975(max)

23.9332

23.9352

23.9368

23.9246

23.9314

23.9365

23.9384

The Mahalanobis universal portfolio is an additive-update universal

portfolio and hence the portfolio vectors can get out of range [0,1] easily. The

sufficient condition for portfolio vectors to be within the range [0,1] has been

derived in Proposition 4.2(ii). This condition could lead to the & parameter

interval to be an empty set whenever a zero element occurs in the portfolio

vectors. From the last few tables, we observe that the intervals of & are

relatively small. It might cause the Mahalanobis universal portfolio to behave

like a constant rebalanced portfolio for small values of ¢. The modified

Mahalanobis universal portfolio is introduced in this section to handle the

above difficulties of b,,,.; having negative values and & being restricted to be

small.
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The modified Mahalanobis universal portfolio is a sequence of
universal portfolios {b,.,} generated by (4.2) where the initial starting
portfolio b, is given, & is any real number and b,, is modified according to
(4.30) and (4.31) below if b,, is not a portfolio vector before applying the

update (4.2), forn = 2,3, ....

We now state the modification necessary to change b,, into a portfolio
vector. If there exists an invalid portfolio vector b,, where b,;; < 0 for some i,

then let
Wnie = byie = min{b,;} (4.30)

forall k = 1,2, ..., m and the new genuine portfolio vector is given by

Wn

b, ==—
n m )
2k=1 Whk

(4.31)

where w,, = (w,,;). The portfolio vectors b,, are remain unchanged if b,;;, = 0

forall k =1,2,...,m.

To see why (4.30) and (4.31) lead to genuine portfolio vectors, we
consider the following argument. According to (1.1), the portfolio vector b,, is
not genuine if there exists a b,; < 0 for some i. Identify the minimum of b,,;
for j = 1,2, ...,m, say, min;{b,;}, and hence

Wni = Dng — mjin{bnj} =0

forall k = 1,2, ..., m. The following sum

Wn1 Wn2 Whnm

+ B . L L
Z;(n=1 Whnk Z;cn=1 Whnk Z;cnzl Wk

=1
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shows that b,, given by (4.31) is a genuine portfolio vector. The portfolio
vectors b,, that satisfy b, = 0 for all k = 1,2, ..., m remain unchanged and
the next update (4.2) can be applied immediately. This modification allows us

to use any value of ¢ as the parameter.

4.3.1 Empirical Results

From previous results, the valid intervals of ¢ for the selected
Mahalanobis universal portfolios are mostly between —1 and 1. Since the
Mahalanobis universal portfolios with initial starting portfolio b, = b?m,
where b?% is the approximate positive BCRP, does not outperform the
BCRP in the previous section and Proposition 4.4 might not be hold for the
modified Mahalanobis universal portfolios, we shall omit the study of
b, = b?m for the latter case. Now, we run the modified A5(0.10) universal
portfolio and five selected modified A,(r,t) universal portfolios on data sets
D, E, F and G with the same initial starting portfolio
b; = (0.1000,0.1000, ...,0.1000) and the parameter ¢ is chosen to be 10. The
portfolios b;4,, and wealths S;4,5 achieved after 1975 trading days where

& =10 are recorded in Table 4.14.

Table 4.14: The portfolios b,97¢ and the wealths S;4,¢ achieved by the
selected modified Mahalanobis universal portfolios for data
sets D, E, F and G, where ¢=10 and
b, = (0.1000,0.1000, ...,0.1000)

Data set As(r) or A,(r,t) b1g76 Si975
(0.1433, 0.1828, 0.0000, 0.0723, 0.1130,
setD 45(0.10) 0.0300, 0.0101, 0.1593, 0.2577, 0.0315) 44.1900
e
A.(0100.025) (0.1414, 0.1520, 0.0000, 0.0581, 0.0959, 43,3605

0.1183, 0.1064, 0.1006, 0.0773, 0.1502)
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Table 4.14 continued

Data set As(r) or A,(r,t) bioe S1975
ownosn | CATBOMBOBBISTE I8 [
romns | R OTSORBIBTIN [ o
rossamy | SHRUSOMOEONE |
msaonn | OISO OWBOTA I [y
PR B o
romns | GES USROG |

[ noween | Omessomocsmens |
oy | CEIOSLOMBIBLOIE |
sy | SERUSIOOBIOET | oo
oy | GETITLOOSRONS | oy
o | RSO [ e
ooy | SERSDOTIMTIRIIE |

[ aowemy | OmSomsmmeneom |
romns | SESITOMBOEBONS | e
ossaon | OO OEBOBT OIS [ s
e L e
o | CETIEITIEOE | e
romas | SHRITOILOBION |

[ o | GEmommommemmom | o
oy | CEMOEMOIBOMTI |y,
sy | GATILOMEOMIONE | g
4,(1.05,0.050) (0.2822, 0.0827, 0.1758, 0.0767, 0.0076, 34.2477

0.0357, 0.0000, 0.1247, 0.0103, 0.2044)

Next, we compare the wealths achieved by the modified and
unmodified universal portfolios displayed in Tables 4.14 and 4.7, 4.8, 4.9
respectively. The wealths achieved by the modified A5(0.10) universal
portfolios where & =10 for data sets D, E, F and G are
44.1900,54.4666,26.9298 and 33.6402 respectively. These wealths are

much higher than the maximum wealths achieved by the unmodified 45(0.10)
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universal portfolios, namely, S;4,5s(max) = 18.7404, 21.2555,12.9063 and
15.7198 respectively in Table 4.7. From Tables 4.14 and 4.8, the values of
S1975 for the modified 4,(0.10,0.050) universal portfolios where ¢ = 10 are
43.0123,50.5023, 23.0645 and 31.3930 for data sets D, E, F and G
respectively, which are higher than the maximum wealths achieved by the
unmodified A4,(0.10,0.050) universal portfolios, namely, S;9;5(max) =
18.3449,22.5669,13.4338 and 15.6803 respectively. For data sets D, E, F
and G, the modified 4,(1.05,0.050) universal portfolios where é = 10 in
Table 4.14 perform better than the unmodified 4,(1.05,0.050) universal
portfolios in Table 4.9 in terms of the wealths achieved. The values of S;4;5
for the modified A4,(1.05,0.050) universal portfolios where & = 10 for the
four 10-stock data sets in Table 4.14 are 44.9506,55.0500,27.4424 and
34.2477 respectively. The maximum wealths achieved by the unmodified
A,(1.05,0.050) universal portfolios for the same 10-stock data sets in Table

4.9 are 18.3724,21.7355,13.1906 and 15.8091 respectively.

4.3.2 The Modified Mahalanobis Universal Portfolio with Varying

Parameter &

To study the dependence of the wealth achieved on the parameter &,
the modified A5(0.10) and modified 4,(0.10,0.050) universal portfolios are
run on data set G with the same initial starting portfolio. The values of ¢ vary
from —100 to 100. The portfolios b,4-¢ and the wealths S; 4,5 achieved after
1975 trading days are calculated for selected values of ¢ and are listed in

Tables 4.15 and 4.16. The modified A5(0.10) universal portfolio can achieve a
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higher wealth of S,9,5 = 34.6071 at { = 5 compared to S;9;5 = 33.6402 at
& =10. In Table 4.16, a higher wealth of S;4,5 = 35.8063 can be obtained by
the modified A,(0.10,0.050) universal portfolio at ¢ = 50. In both Tables
4.15 and 4.16, the wealth achieved S;4,5 seems to be increasing when the

parameter & increases.

Table 4.15: The portfolios b,y and the wealths S,4,- achieved by the
modified A5(0.10) universal portfolio for selected values of ¢
for data set G, where b; = (0.1000,0.1000, ...,0.1000)

¢ big76 S1975
-100 (0.0000, 0.0879, 0.0605, 0.1350, 0.1677, 0.1417, 0.1199, 0.0982, 0.1305, 0.0585) 7.0730
-50 (0.0000, 0.0875, 0.0600, 0.1319, 0.1684, 0.1417, 0.1228, 0.0990, 0.1309, 0.0579) 7.0294
-25 (0.0000, 0.0876, 0.0588, 0.1255, 0.1683, 0.1417, 0.1299, 0.0992, 0.1330, 0.0559) 6.8192
-10 (0.0000, 0.0919, 0.0516, 0.1042, 0.1578, 0.1466, 0.1674, 0.0928, 0.1456, 0.0420) 6.5986
-5 (0.0026, 0.1047, 0.0480, 0.0884, 0.1090, 0.1622, 0.2316, 0.0798, 0.1534, 0.0203) 6.5180
-3 (0.0281, 0.1018, 0.0789, 0.1122, 0.0654, 0.1409, 0.2219, 0.0970, 0.1095, 0.0441) 6.5363
-1 (0.1658, 0.0621, 0.0645, 0.1504, 0.0218, 0.0429, 0.2217, 0.0843, 0.0984, 0.0881) 7.0182
-0.1 (0.1166, 0.1079, 0.1502, 0.0768, 0.1451, 0.0651, 0.0280, 0.0571, 0.0932, 0.1600) 15.7968
0.1 (0.0835, 0.1092, 0.0473, 0.1223, 0.0566, 0.1360, 0.1718, 0.1481, 0.0989, 0.0264) 13.6876
(0.0780, 0.1163, 0.1139, 0.0739, 0.1582, 0.1287, 0.0000, 0.1038, 0.1158, 0.1114) 31.8554
(0.1691, 0.1003, 0.1186, 0.0898, 0.1140, 0.0692, 0.0000, 0.0976, 0.0977, 0.1436) 34.3421
(0.2032, 0.0986, 0.1373, 0.0959, 0.0828, 0.0492, 0.0000, 0.1103, 0.0638, 0.1589) 34.6071
10 (0.2683, 0.1092, 0.1714, 0.0811, 0.0162, 0.0259, 0.0000, 0.1131, 0.0283, 0.1865) 33.6402
25 (0.2496, 0.1172, 0.1622, 0.0650, 0.0000, 0.0378, 0.0501, 0.1026, 0.0481, 0.1674) 31.4401
50 (0.2460, 0.1182, 0.1589, 0.0567, 0.0000, 0.0393, 0.0634, 0.1013, 0.0539, 0.1623) 30.7228
100 (0.2468, 0.1181, 0.1583, 0.0508, 0.0000, 0.0388, 0.0689, 0.1020, 0.0551, 0.1613) 29.8822

Table 4.16: The portfolios b4, and the wealths S;4,5 achieved by the
modified A4,(0.10,0.050) universal portfolio for selected
values of & for data set G, where
b, = (0.1000,0.1000, ...,0.1000)

¢ big76 S1975
-100 (0.0000, 0.1137, 0.0666, 0.1095, 0.1522, 0.1358, 0.1621, 0.0914, 0.1527, 0.0161) 6.2864
-50 (0.0000, 0.1236, 0.0676, 0.1020, 0.1118, 0.1450, 0.2081, 0.0767, 0.1588, 0.0063) 6.3368
-25 (0.0274, 0.1133, 0.0878, 0.1291, 0.0577, 0.1299, 0.2217, 0.0948, 0.1080, 0.0304) 6.4086
-10 (0.1505, 0.0637, 0.0693, 0.1489, 0.0230, 0.0439, 0.2191, 0.0833, 0.0841, 0.1142) 7.0541
-5 (0.1616, 0.0540, 0.0685, 0.1659, 0.0519, 0.0185, 0.1595, 0.0580, 0.1270, 0.1351) 8.3242
-3 (0.1681, 0.0286, 0.0927, 0.1714, 0.0776, 0.0111, 0.0936, 0.0543, 0.1387, 0.1638) 9.1166
-1 (0.1386, 0.0905, 0.1456, 0.0712, 0.1451, 0.0637, 0.0293, 0.0605, 0.0926, 0.1628) 15.6038
-0.1 (0.1045, 0.0996, 0.1057, 0.0955, 0.1055, 0.0963, 0.0916, 0.0955, 0.0986, 0.1072) 14.7192
0.1 (0.0955, 0.1005, 0.0944, 0.1045, 0.0946, 0.1037, 0.1083, 0.1045, 0.1013, 0.0928) 14.4802
(0.0509, 0.1201, 0.0476, 0.1373, 0.0553, 0.1376, 0.1739, 0.1474, 0.1062, 0.0237) 13.8533
(0.0416, 0.2139, 0.1103, 0.0037, 0.1231, 0.1615, 0.1403, 0.1561, 0.0310, 0.0185) 24.6439
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Table 4.16 continued

¢ big76 S1975
5 (0.0343, 0.1744, 0.1216, 0.0284, 0.1550, 0.1653, 0.0642, 0.1403, 0.0640, 0.0525) 28.8928
10 (0.0806, 0.1195, 0.1158, 0.0639, 0.1581, 0.1360, 0.0000, 0.1096, 0.1174, 0.0992) 31.3930
25 (0.1608, 0.0948, 0.1107, 0.0755, 0.1199, 0.0848, 0.0000, 0.0946, 0.1025, 0.1563) 35.6848
50 (0.2132, 0.0799, 0.1284, 0.0859, 0.0751, 0.0533, 0.0000, 0.1134, 0.0539, 0.1969) 35.8063
100 (0.2797, 0.0749, 0.1559, 0.0711, 0.0132, 0.0343, 0.0000, 0.1130, 0.0121, 0.2458) 35.2452

We can conclude that the achievable universal wealth depends on the
parameter £. From Tables 4.15 and 4.16, it is observed that for some
parameters the wealths S;4,5 achieved are less than 10. These wealths
achieved are considered low for this set of data. Thus, an improper choice of &
may lead to a low investment wealth. The advantage of using the modified
Mahalanobis universal portfolio is that we can choose any real number to be
the parameter & without worrying the portfolio vectors will get out of the
range [0,1]. The modified Mahalanobis universal portfolio ensures that the
generated portfolio vectors are always within the range [0,1]. Based on the
limited data sets studied here, the modified Mahalanobis universal portfolio

seems to perform better than the unmodified Mahalanobis universal portfolio.
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CHAPTER FIVE

DIRICHLET UNIVERSAL PORTFOLIO OF ORDER ONE

The concept of the Dirichlet-weighted universal portfolio was
introduced by Cover and Ordentlich [9]. They focussed their study on two
special cases of the Dirichlet-weighted universal portfolios. The authors have
shown that these special Dirichlet-weighted universal portfolios have the same
asymptotic exponential growth rate of wealth as the best constant rebalanced
portfolio (BCRP). The implementation of the Dirichlet-weighted universal
portfolio requires processing all the stock data starting from the day of
investment until the current time. The implementation time and computer
memory requirements for generating the updates of the universal portfolio are
growing exponentially in the number of stocks. To save time and computer
memory requirements, we propose a new universal portfolio in this chapter
that achieves the purpose of saving substantial time and computer memory in

its implementation.

51 The Alpha-Parametric Family of Dirichlet Universal Portfolio of

Order One

We say that a universal portfolio is of order one if the next update

depends only on the last-known price-relative data. The Dirichlet universal

portfolio of order one is derived from the Dirichlet-weighted universal
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portfolio where the next update depends only on one day of last-known price-
relative data instead of all the past stock data. The theory of universal
portfolios of finite order generated by probability distributions is due to Tan

[33].

The Dirichlet probability measure u(b) is defined as

du(b) =

F(al +a, +-+ am) ity et o
..b,™ 51
F'a)T(ay) ...T(ay) b,* b, b, ~db, (5.1)

where a; > 0 for i = 1,2, ..., m and db refers to the differential with respect to
any m — 1 independent variables from b = (by, b, ..., b,) € B, where the

simplex B of portfolio vector is defined in (1.1).

The Dirichlet universal portfolio of order one is a sequence of

portfolio vectors {b,,,,} generated by the following:

b 1 [ " aixm- l (5 2)

n+1,i =T | F wm A\ .
(X a;+1) (X7 @jxg;)

where the initial starting portfolio b; and the parameters a; > 0 for i =

1,2, ...,m are given.

Note: The parametric vector a # 0 is a valid parametric vector provided (5.2)

is well-defined. This means the vector a can have some zeros but not all zeros.

First, we show that the alpha-parametric family of Dirichlet universal
portfolios of order one is a consequence of weighting the current portfolio
components b,,; by the current daily wealth bfx,, with respect to the Dirichlet

probability measure u(b).
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Proposition 5.1 Consider the following portfolio obtained by weighting
the current portfolio components b,,; by the current daily wealth b:x,, with
respect to the Dirichlet probability measure w(b), namely,

b - fB b (bhx,,) du(b)
n+1,0 fB (ngn) d'u(b)

(5.3)

The universal portfolios (5.3) and (5.2) are equivalent.

Proof. Since the wealth return on day n is defined as bix,, = 121 bnjxy;in

(1.2), let us consider the numerator of b, 4 ; in (5.3), that is,

m
[ buel Y bugay | o) (5.4
B =

fori = 1,2, ...,m. Substitute du(b) in (5.4) by (5.1), we have

m

Tlay +a; + -+ apy) pa1-1 paz=1

T T T Xnj ni n2
()T (az) ... T(am) = B

J#i
@11y aipaip—1 -1~ l, @y dja—1 ) -1
bn,i—l bnibn,i+1 "'bn,j—l bnjbn,j+1 '"bnm db
] a;—1 a,-1 aj_1—1; ai+1; ajp1—1 am—1
+Xpi fB bpy “bn; by by by, bpym db

fori = 1,2, ..., m. Evaluating the above integral, we obtain

( F'(a)l(ay) ..T(a;— )T (a; + DI (a41) -
Flay +ay + -+ ay) = F(aj_l)r‘(aj + 1)F(aj+1) ~T(ay)
F(@)l(@) Ty | & T,y + oty +2)
j#i
['(a)l(az) ... T(ai- )T (a; + 2)I(aiy4) .. T(am)
i T(a; +ay + -+ ap + 2) }

for i =1,2,..,m . Cancelling the common factors of numerator and

denominator, we have
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T(ay + ap + -+ ) [(a; + DI (a; + 1) N I'(a; +2)
x . —
Fla; +a, + -+ a, +2) *nj I‘(al-)l‘(aj) " T(ay)

=1

U=

fori=1,2,..,m. Sincel'(a; +a, ++ap+2)=(;+a,+ +a,+

Dy +a,++a)l(a;+a,++a,) , T(a;+1)=al(a) ,

I(aj+1)=ql(a;)) and T(a;+2)=(a;+Da;I(a;) , therefore

J bri(bhxy) du(b) in (5.4) equals to

{2721 Xnj @@ + Xpi (@ + 1)%}

JE!

(5.5)

(s ta,+ -+ ay+D(a;+ay ++ay)

fori = 1,2,...,m. Next, consider the denominator of b,, 1 ; in (5.3), namely,

| i buny | du(b) (56)
B\

fori = 1,2, ...,m. Substitute du(b) in (5.6) by (5.1), we have

T(a; +ay + -+ ay) w1 a1 @l @ @l et
M(a)T(ay) - T(a,,) Z "Jj bpi bny by Zy bbby db

fori = 1,2, ..., m. Evaluating the above integral, we obtain

I'la; +ay + -+ a,y) i I'alN (ay) ... F(aj_l)r‘(aj + 1)F(aj+1) wT(ay)
['(a)T(ay) ...T () nj T(a,+a,+ - +ay+1)

for i =1,2,...,m . Cancelling the common factors of numerator and

denominator, we have

m
IFa; +a; ++ay) Z [(a; +1)
x ) ——
(e, +a, + -+ ap+1) Y1)
j=1
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for i=12,..,m . Since T(q;+a,+-+an,+1)=(a;+a,+ -+

an)l(ay +a; ++ay) and T(aj+1)=a(q) , therefore

fB (btx,,) du(b) in (5.6) equals to

1 m
(a1 +az + -+ ap) {Z Xnj aj} ®-7)

J=1

for i=12,..,m. From (5.3), (5.5) and (5.7), the portfolios b,,; for
i =1,2,..,maregiven by:
Y1 X + xp (@ + Da

J#i
(a1 +a, +--+a,+ 1)(271:19(”] a])

bn+1,i -

The above b, .1 ; can be rewritten as

m
Djm1 @ Xnj @ + Xpi @

(ay+ay+ - +a,+ 1)(Z§T‘=1xnj a;)

bn+1,i =

fori = 1,2, ..., m which is equivalent to (5.2). m

5.1.1 Empirical Results

The implementation of the Dirichlet universal portfolio of order one
requires much lesser computer memory requirements compared to the
Dirichlet-weighted universal portfolio introduced by Cover and Ordentlich [9].
We run the Dirichlet universal portfolio of order one on the four 10-stock data
sets designated as D, E, F and G using b; = (0.1000,0.1000, ...,0.1000).
Table 5.1 shows the portfolios b;47¢ and the wealths S; 4,5 achieved by the

respective a’s after 1975 trading days.

99



Table 5.1: The portfolios b,4,, and the wealths S;4,< achieved by some
selected a’s by the Dirichlet universal portfolio of order one

Data set

SetD

for data sets

D,

E, Fand G,

b, = (0.1000,0.1000, ...,0.1000)

o

(0.1000 0.1000 0.1000 0.1000 0.1000
0.1000 0.1000 0.1000 0.1000 0.1000)

(1111111111)

(1000 1000 1000 1000 1000
1000 1000 1000 1000 1000)

(12345678910)

(12438163264 128 256 512)
(0.5981 0.4019 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000)

(10.5981 10.4019 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000)

b1976

(0.1004, 0.1004, 0.0998, 0.0994, 0.1001,
0.0995, 0.0995, 0.1004, 0.1014, 0.0991)

(0.1001, 0.1001, 0.1000, 0.0999, 0.1000,
0.0999, 0.0999, 0.1001, 0.1003, 0.0998)

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000,
0.1000, 0.1000, 0.1000, 0.1000, 0.1000)

(0.0182, 0.0364, 0.0545, 0.0727, 0.0909,
0.1091, 0.1272, 0.1455, 0.1637, 0.1818)

(0.0010, 0.0020, 0.0039, 0.0078, 0.0156,
0.0313, 0.0626, 0.1251, 0.2502, 0.5005)

(0.5980, 0.4020, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.3655, 0.3587, 0.0345, 0.0345, 0.0345,
0.0345, 0.0345, 0.0345, 0.0346, 0.0344)

where

51975

18.2914
18.1975
18.1767
13.4232
9.0073

37.8708

29.7630

SetE

(0.1000 0.1000 0.1000 0.1000 0.1000
0.1000 0.1000 0.1000 0.1000 0.1000)

(1111111111)

(1000 1000 1000 1000 1000
1000 1000 1000 1000 1000)

(12345678910)

(1248163264128 256 512)
(0.5981 0.4019 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000)

(10.5981 10.4019 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000)

(0.1003, 0.1003, 0.0997, 0.0993, 0.1000,
0.0994, 0.0994, 0.0998, 0.1013, 0.1005)

(0.1001, 0.1001, 0.0999, 0.0999, 0.1000,
0.0999, 0.0999, 0.1000, 0.1002, 0.1001)

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000,
0.1000, 0.1000, 0.1000, 0.1000, 0.1000)

(0.0182, 0.0364, 0.0545, 0.0727, 0.0909,
0.1091, 0.1272, 0.1454, 0.1637, 0.1818)

(0.0010, 0.0020, 0.0039, 0.0078, 0.0156,
0.0313, 0.0626, 0.1251, 0.2502, 0.5005)

(0.5980, 0.4020, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.3655, 0.3587, 0.0345, 0.0345, 0.0345,
0.0345, 0.0345, 0.0345, 0.0345, 0.0345)

20.4556

20.3257

20.2969

15.7208

10.1487

37.9554

30.9736

Set F

(0.1000 0.1000 0.1000 0.1000 0.1000
0.1000 0.1000 0.1000 0.1000 0.1000)

(1111111111)

(1000 1000 1000 1000 1000
1000 1000 1000 1000 1000)

(12345678910)

(1248163264128 256 512)
(0.4836 0.3869 0.1295 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000)

(10.4836 10.3869 10.1295 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000)

(0.0994, 0.1001, 0.0995, 0.0995, 0.0999,
0.1014, 0.0991, 0.0999, 0.1006, 0.1006)

(0.0999, 0.1000, 0.0999, 0.0999, 0.1000,
0.1003, 0.0998, 0.1000, 0.1001, 0.1001)

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000,
0.1000, 0.1000, 0.1000, 0.1000, 0.1000)

(0.0182, 0.0364, 0.0545, 0.0727, 0.0909,
0.1091, 0.1272, 0.1454, 0.1637, 0.1818)

(0.0010, 0.0020, 0.0039, 0.0078, 0.0156,
0.0313, 0.0626, 0.1251, 0.2502, 0.5005)

(0.4824, 0.3884, 0.1292, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

(0.2758, 0.2734, 0.2665, 0.0263, 0.0263,
0.0263, 0.0263, 0.0263, 0.0263, 0.0263)

12.4524

12.3834

12.3681

9.7869

7.2812

20.8371

18.1233

Set G

(0.1000 0.1000 0.1000 0.1000 0.1000
0.1000 0.1000 0.1000 0.1000 0.1000)

(1111111111)

(1000 1000 1000 1000 1000
1000 1000 1000 1000 1000)

(12345678910)

(1248163264 128 256 512)

100

(0.1014, 0.0999, 0.1006, 0.0995, 0.0991,
0.0995, 0.0998, 0.1001, 0.0995, 0.1006)

(0.1003, 0.1000, 0.1001, 0.0999, 0.0998,
0.0999, 0.1000, 0.1000, 0.0999, 0.1001)

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000,
0.1000, 0.1000, 0.1000, 0.1000, 0.1000)

(0.0182, 0.0364, 0.0546, 0.0727, 0.0909,
0.1091, 0.1273, 0.1455, 0.1636, 0.1819)

(0.0010, 0.0020, 0.0039, 0.0078, 0.0156,
0.0313, 0.0626, 0.1251, 0.2502, 0.5005)

14.7060

14.6185

14.5992

14.8733

11.2267



Table 5.1 continued

Data set o bi976 Si975
(0.0000 0.0000 0.0000 0.1965 0.0000 (0.0000, 0.0000, 0.0000, 0.1959, 0.0000, 241179
0.0000 0.5926 0.2109 0.0000 0.0000) 0.0000, 0.5926, 0.2116, 0.0000, 0.0000) '

(1.0000 1.0000 1.0000 10.1965 1.0000 (0.0263, 0.0263, 0.0263, 0.2683, 0.0263,

1.0000 10.5926 10.2109 1.0000 1.0000) | 0.0263, 0.2787, 0.2687, 0.0263, 0.0263) 21.0003

For data sets D, E, F and G, the highest wealths achieved among the
selected a ’s in Table 5.1 are S,9,5 = 37.8708,37.9554,20.8371 and
24.1179 respectively. These respective best wealths are achieved by a =

1975 Where blq, is the respective BCRP. For data sets D and E, the wealths
achieved by a = bjg,s for the Dirichlet universal portfolio of order one are
much higher than the maximum wealths achieved by the Helmbold and chi-
square divergence (CSD) universal portfolios from Tables 5.1, 2.10 and 3.3
when b; = (0.1000,0.1000, ...,0.1000). The wealths achieved by a = b}y,
for the Dirichlet universal portfolio of order one for data sets D and E are also
higher than the wealths achieved by the A;(r) and A,(r,t) universal
portfolios for selected r , t in Tables 4.7, 48 and 4.9 when
b, = (0.1000,0.1000, ...,0.1000) . For data sets F and G where b, =
(0.1000,0.1000, ...,0.1000), the values of S,4,5 for the Dirichlet universal
portfolio of order one where a = b3, in Table 5.1 are higher than the value
of Sy975(max) for the Helmbold universal portfolio in Table 2.10 and the
values of the S;4,5 for A;(r) and A,(r, t) universal portfolios for selected r, t
in Tables 4.7, 4.8 and 4.9. But the CSD universal portfolio performs better
than the Dirichlet universal portfolio of order one where a = b7q;5 in terms of
the  wealth achieved for data sets F and G  where

b, = (0.1000,0.1000, ...,0.1000).
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5.1.2 The Wealths Achieved by the Dirichlet Universal Portfolios of

Order One with Different Initial Starting Portfolios

The portfolio b,,,.; in (5.2) is constant for the same a and same price-
relatives {x,,}. In this subsection, we study the dependence of the wealth S,
achieved by the Dirichlet universal portfolio of order one on the initial starting
portfolio b;. The Dirichlet universal portfolio of order one is run on data set G
with the selected initial starting portfolios b; . The parameter a =

(0.1000,0.1000, ...,0.1000) is used for all the portfolios. The portfolios b,

b;121, b1976 and the wealths S; 45, 51975/51 are calculated for selected initial

starting portfolios b, and listed in Table 5.2. The wealth 51975/51 is defined as

the wealth achieved after 1975 trading days where the wealth S; achieved on
the first day is excluded. Since the portfolio b,,,; does not depend on the
initial starting portfolio b, for n = 1,2,3, ... from (5.2), it is clear the daily
wealth b, x,,, does not depend on the initial starting portfolio b, for

n=1,23,... The wealth S, = [T, bix; = ([T, bx;)S; depends on the

initial starting portfolio b, through S;. Hence S”/S1 does not depend on b, for

n=234,..
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Table 5.2: The portfolios b,se, b1121, b1976 and the wealths S, 975, 51975/51

achieved by the Dirichlet universal portfolios of order one for
selected initial starting portfolios for data set G, where
a = (0.1000,0.1000, ...,0.1000)

b, b;s6 by124 byg76 S1975 51975/51
(0.1000, 0.1000, (0.1002, 0.0997, (0.0986, 0.0999, (0.1014, 0.0999,
0.1000, 0.1000, 0.1002, 0.0999, 0.0990, 0.1005, 0.1006, 0.0995,
0.1000, 0.1000, 0.1002, 0.1005, 0.1003, 0.1002, 0.0991, 0.0995, 14.7060 14.6175
0.1000, 0.1000, 0.0995, 0.1005, 0.1008, 0.1005, 0.0998, 0.1001,
0.1000, 0.1000) 0.0993, 0.1002) 0.0999, 0.1004) 0.0995, 0.1006)
(0.0000, 0.0000, (0.1002, 0.0997, (0.0986, 0.0999, (0.1014, 0.0999,
0.0000, 0.1965, 0.1002, 0.0999, 0.0990, 0.1005, 0.1006, 0.0995,
0.0000, 0.0000, 0.1002, 0.1005, 0.1003, 0.1002, 0.0991, 0.0995, 15.0734 14.6175
0.5926, 0.2109, 0.0995, 0.1005, 0.1008, 0.1005, 0.0998, 0.1001,
0.0000, 0.0000) 0.0993, 0.1002) 0.0999, 0.1004) 0.0995, 0.1006)
(0.1500, 0.0500, (0.1002, 0.0997, (0.0986, 0.0999, (0.1014, 0.0999,
0.2000, 0.1200, 0.1002, 0.0999, 0.0990, 0.1005, 0.1006, 0.0995,
0.0800, 0.0900, 0.1002, 0.1005, 0.1003, 0.1002, 0.0991, 0.0995, 14.6997 14.6175
0.0800, 0.1000, 0.0995, 0.1005, 0.1008, 0.1005, 0.0998, 0.1001,
0.1000, 0.0300) 0.0993, 0.1002) 0.0999, 0.1004) 0.0995, 0.1006)
(0.2200, 0.0200, (0.1002, 0.0997, (0.0986, 0.0999, (0.1014, 0.0999,
0.1100, 0.1300, 0.1002, 0.0999, 0.0990, 0.1005, 0.1006, 0.0995,
0.0000, 0.1800, 0.1002, 0.1005, 0.1003, 0.1002, 0.0991, 0.0995, 14.6937 14.6175
0.1000, 0.1500, 0.0995, 0.1005, 0.1008, 0.1005, 0.0998, 0.1001,
0.0500, 0.0400) 0.0993, 0.1002) 0.0999, 0.1004) 0.0995, 0.1006)
(0.0600, 0.0700, (0.1002, 0.0997, (0.0986, 0.0999, (0.1014, 0.0999,
0.0900, 0.2500, 0.1002, 0.0999, 0.0990, 0.1005, 0.1006, 0.0995,
0.0500, 0.0300, 0.1002, 0.1005, 0.1003, 0.1002, 0.0991, 0.0995, 14.7893 14.6175

0.2100, 0.1700,
0.0500, 0.0200)

0.0995, 0.1005,
0.0993, 0.1002)

0.1008, 0.1005,
0.0999, 0.1004)

0.0998, 0.1001,
0.0995, 0.1006)

The wealths S;9,5 achieved for the five different selected initial

starting  portfolios according the order in Table 52 are

14.7060, 15.0734, 14.6997, 14.6937 and 14.7893 respectively. Whereas, the

wealths 51975/ s, for the five selected initial starting portfolios are constant,

equal to 14.6175, that is, 51975/51 does not depend on b;. The portfolios b,

b;121, b1gye for all the selected initial starting portfolios are exactly equal for
the same a and data set G. From (5.2), we observe that the portfolio vectors
{b,+1} generated by the Dirichlet universal portfolio of order one are
independent of the past portfolios vectors whenever a and {x,,} are the same.

We can conclude that for Dirichlet universal portfolio of order one where
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a # b, forn = 1,2,3, ..., the current portfolio vector does not depend on past
portfolio vectors. In conclusion, all the daily achievable wealths bfx,, do not
depend on the initial starting portfolio b;, except the wealth S; achieved on
the first day. The accumulated wealth S,, at the end of day n depends on b,

only through S;.

5.2  Relationship between the Dirichlet Universal Portfolio of Order

One and the CSD Universal Portfolio

In Chapter Four, we know that the CSD universal portfolio belongs to
a general class of universal portfolios generated by the Mahalanobis squared
divergence. We identify the relationship between the Dirichlet universal

portfolio of order one and the CSD universal portfolio in this section.

First, we state the relationship between CSD universal portfolio and
Mahalanobis universal portfolio. Consider a Mahalanobis universal portfolio
generated by a diagonal matrix A =D = (d;*) given in (4.19), the
Mahalanobis universal portfolio becomes the CSD universal portfolio when

di = bni fori = 1,2, e, M.

Now, we identify the relationship between the Dirichlet universal
portfolio and the CSD universal portfolio. In the previous subsection, we
notice that the update portfolio vector generated by the Dirichlet universal
portfolio of order one does not depend on the past portfolio vectors whenever

a and {x,, } are the same. If the parameters «; of Dirichlet universal portfolio
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of order one are such that a; = b,; for i = 1,2,...,m, then the Dirichlet
universal portfolio of order one (5.2) becomes some type of additive-update
universal portfolio, that is next update portfolio vector {b,,,,} depends on the
last-known portfolio vector {b,,}. When «a; = b,; for i =1,2,...,m, the
Dirichlet universal portfolio of order one becomes the CSD universal portfolio
with parameter ¢ =1/2. To verify this, consider a Dirichlet universal

portfolio of order one (5.2). Let a; = b,,; fori = 1,2, ..., m, that is,

b _ 1 [b + bnixni (5 8)
+1,0 = i T rem . N\ -
e (Z;n=1 by; + 1) " (2}11 bnjxnj)
Since Y7L, by; = 1and X7, byjx,; = bjX,, (5.8) becomes
1 bnixni
bTL+1,i = E [bni + (b;,:lxn)
which can be rewritten as
1 1
Eb%Xn + Exni
bn+1,i = by ngn
Since %b,ﬂxn = bix, — %b;xn, the above b, .1 ; can be simplified as
1
bl (xni - bglxn)
Brss,i = bui |1+ (59)

t
bnle

Compare (5.9) with the update portfolio vector generated by the CSD
universal portfolio (3.2), it is obvious that (5.9) is a CSD universal portfolio

with parameter & = 1/2.

From the above observation, we can say that the Dirichlet universal

portfolio of order one where a = b,, belongs to the class of Mahalanobis

additive-update universal portfolios.
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CHAPTER SIX

MIXTURE-CURRENT-RUN UNIVERSAL PORTFOLIO

In this chapter we study the problem of combining or mixing two or
more universal portfolios with the aim of obtaining a universal portfolio with a
better performance over the original portfolios. Sometimes there may be two
or more universal portfolios which are close in performance in terms of the
wealth returns. It is difficult in this case to choose a single portfolio for use in
investment. This difficulty can be avoided by mixing the universal portfolios
in some way that extract the advantages of each portfolio to be exploited in a
single mixture portfolio. The experiment focusses on running the Helmbold
and chi-square divergence (CSD) universal portfolios on four selected stock-

price data sets.

6.1 Mixture Universal Portfolio

Mixing two or more types of universal portfolios can be done by
introducing parameter weights (p;) for the respective universal portfolios. The
weights are chosen in some way in order to achieve a higher wealth. The
performance of the mixture universal portfolio is studied by running the
mixture universal portfolio on the four 10-stock data sets that are used in the

previous chapter.
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Let us consider k universal portfolios which we designate as

bl, b2, ..., bk The portfolio

k
by, = ) pib} 61)

is a mixture of the k universal portfolios if the weights (p;) are chosen such
that 0 < p; <1fori=12,..,kand ¥ p, =1, forn=1,2,3,... In terms
of the wealths achieved, it is the objective to choose the weights p = (p;) that
maximizes S,,(p) where
n k
i\t
s\ =] | (Z pi(b]) x,->, (62)
j=1 \i=1
although this is usually difficult to achieve. Next, we focus our empirical study

on mixing two universal portfolios.

We mix the Helmbold and CSD universal portfolios according to (6.1)
for the four 10-stock data sets designated as D, E, F and G in this thesis using
b, = (0.1000,0.1000, ...,0.1000) and choosing an appropriate p = (p1,p2).
The best parameters n (Helmbold universal portfolio) and ¢ (CSD universal
portfolio) for the four 10-stock data sets respectively are used in this study.
The maximum values of S; 4,5 achieved by the Helmbold universal portfolios
for data sets D, E, F and G are at n = 0.4138,—-2.3639, —9.4444 and
—83.1143 respectively from Table 2.10, whereas the maximum values of
Si1975 achieved by the CSD universal portfolios for data sets D, E, F and G are
at & = 0.3769,—2.8760,—4.9553 and —3.7942 respectively from Table 3.3.
The portfolios by97, and the maximum wealths S;4,<(max) achieved by

chosen p’s after 1975 trading days are listed in Table 6.1. The letter p, refers
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to the weight assigned on the Helmbold universal portfolio and p, is the
weight assigned on the CSD universal portfolio, where p; + p, = 1. Through
experimentation, we find that maximum wealths are achieved by using
extreme weights of p; = 0 or 1 for i = 1,2. The results are summarised in

Table 6.1.

Table 6.1: The portfolios b,9;¢ and the maximum wealths S;4,5(max)
achieved by the mixture universal portfolio for data sets D, E,
F and G, where b; =(0.1000,0.1000,...,0.1000) and the
weight vectors (p4, p,) achieving the maximum wealths

Data set (p1,p2) b1g76 S1975(max)
(0.1356, 0.1319, 0.1223, 0.1042, 0.1048,

SetD (1.0) 0.1012, 0.0914, 0.0558, 0.0825, 0.0702) 18.2486
we | wy | GEmomommommeme
we | ey | Gemomemcsmems g
e o1 (0.0013, 0.7729, 0.0184, 0.0044, 0.0626, S~

0.0017, 0.0000, 0.0026, 0.0021, 0.1340)

The maximum wealths S;9;,5(max) achieved (6.2) by mixing the
Helmbold and CSD universal portfolios for data sets D, E, F and G are
18.2486,29.1040,22.3262 and 25.5834 respectively are shown in Table 6.1.
For data set D, the weight p, on the Helmbold universal portfolio is 1 whereas
the weight p, on the CSD universal portfolio is 0. The weights on the
Helmbold and CSD universal portfolios are 0 and 1 respectively for the three
data sets E, F and G. It seems that the weight is biased towards the portfolio
that achieves the higher wealth and the observed maximum wealths achieved
by the mixture universal portfolio in Table 6.1 do not exceed the maximum

wealths achieved by the individual Helmbold and CSD universal portfolios.
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6.2 Mixture-Current-Run Universal Portfolio

The weights for the mixture universal portfolio studied in Section 6.1
are constant throughout the entire period of investment. Mixing two or more
types of universal portfolios using time-varying weights is studied in this
section. Next, we introduce the mixture-current-run (MCR) universal portfolio
that follows the current run of the portfolio that achieves the best single-day
wealth return to avoid the uncertainty of predicting the best-performing

universal portfolio in the future.

Let b, b2, ..., bX be k universal portfolios. The portfolio
k
by =) publ (6.3)
i=1
is a time-varying mixture of the k universal portfolios if the weights {p,;}
where 0 < p,; <1fori=12,..,kandn = 1,2,3, ..., are time-dependent and
chosen according to some decision rule. The MCR universal portfolio is a
portfolio where the weights {p,,;} are chosen according to the rule that given
Xn,
Prors = 1 if max{(b)*x,} = (b4) X, (6.4)
and
Pn+1,j = 0 forall j #i. (6.5)
In other words, if the portfolio by, achieves the maximum single-day wealth on

day n, then the MCR portfolio on day n + 1is b,,,; = b . If

: t
miax{(b£1+r)txn+r} = (b;l+r) Xpir for r=201,..,s (6.6)
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for some positive integers r, s, then the ith portfolio in the mixture creates a
run on daysn,n+1,...,n+s. The run of the ith portfolio is terminated if

there exists a smallest integer u > s such that

max{(by+u) Xn+u} = (biw) Xn+u (6.7)
where j # i. The MCR portfolio follows the run of the ith portfolio, namely,
b,., =bl,, for r=12,..,u (6.8)

for daysn+ 1,n+ 2,n + 3, ..., until day n + u and changes to the run of the

jth portfolio on day n + u + 1, namely,

by = b£+u+1 where j # i. (6.9)

Proposition 6.1 Let b, be a mixture of the k universal portfolios
bl,b2, ..., bk defined by the weights {p,;} and let S,, be the wealth achieved at

the end of the nth trading day. Then

nmln bl) X] <S Hmax bl) x] (6.10)

Proof. Since b}xj = XiZ1bjix;; and from (6.3), the wealth achieved in a

single day j is

X t
i=1
k
N:
= Z pji (b) x;
i=1

k
= Z pji max {(®) %}
i=1
= max {(b})txj}.
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Noting that S,, = [1}-; b}xj, the upper bound is obtained. In a similar manner,

the lower bound follows. O

The MCR universal portfolio attempts to achieve the upper bound in
wealth. Let N be a fixed number of trading days. A measure of the
performance of a mixture universal portfolio is the pair of coefficients

(Cl(bllv,xllv), Cz(bllv, X11V)) Where b]l\] = (bl' b2, ...,bN), Xiv = (Xl,XZ, ...,XN),

s _
t
¢, (bY, xV) = nmlax{(b}) X} = Sul, (6.11)
j=1 _
_ . _
20, x) = |5y = max{ | |09 % ¢ (6.12)
| j=1 _

For a good-performing mixture universal portfolio, c;(bY,xY) is required to
be small and c,(bY,x¥) is required to be large. Any mixture universal
portfolio achieving the upper bound in wealth given by Proposition 6.1 will
have ¢, (bY,x¥) = 0. It seems that there may be no advantage in using the
mixture if ¢, (bY,xY) is zero or negative. The coefficient c, (b, xY) measures
the extra wealth achieved by the mixture over the best individual wealth
among the k universal portfolios in the mixture. However, since the best
individual universal portfolio is unknown at the beginning of the investment
period, it is still reasonable to use the mixture even though the wealth achieved
may be below the best individual wealth for some data sets. We shall show in
the next section, it is possible to achieve extra wealth over the best individual

wealth by using the MCR universal portfolio.
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Consider an MCR universal portfolio defined by (6.3), (6.4) and (6.5).
Our next objective is to estimate the probability of achieving the upper bound
in wealth given by Proposition 6.1. Suppose that on the nth trading day, the

ith universal portfolio in the mixture achieves the maximum daily wealth

given the price-relative vector x, , namely, max;{(b})!x,} = (b,ﬂ)txn.
Assume that there is a stochastic process {Y,,},—; generating the symbol u; on
day n if the ith universal portfolio bl achieves the maximum daily wealth,

namely,

Yo = if max{(bh)x,} = CHES (6.13)

Proposition 6.2 Consider an MCR universal portfolio defined by (6.3),
(6.4) and (6.5). Let {Y,,};~, be a stochastic process generating the symbols
Uq, Uy, ..., Uy according to (6.13). An estimate of the probability of the wealth

of the MCR universal portfolio achieving the upper bound in Proposition 6.1

is 1 — P(e) where P(e) = XK X, P[Vy = wy, Yopy = ). If {¥35, is an

J#i
ergodic process, the probability P[Yn =u;, Yy = uj] can be estimated by the
relative frequency of (ui,uj) in a long sequence of symbols generated by the
process.
Proof. The number P(e) can be considered as the probability of error in the
sense that the wealth of the MCR universal portfolio does not achieve the

theoretical upper bound. Now

k
P(&) = ) Plelty = u)P(ty = w)
i=1
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k
= P(ua = w3,) # ¥ = w)P(y = w)

If {Y,,},—, is ergodic, the relative frequency of any finite sequence of symbols
converges to its probability almost surely. Hence P(Yn =u;, Yy = uj) can
be estimated by the relative frequency of (ui,uj) in a long sequence of

generated symbols. m
6.2.1 Empirical Results

For the purpose of comparison, we run the MCR universal portfolio on
the same 10-stock data sets designated as D, E, F and G by mixing the
Helmbold and CSD universal portfolios. The initial starting portfolios of the
Helmbold, CSD and MCR universal portfolios are
b, = (0.1000,0.1000, ...,0.1000) . The parameters n (Helmbold universal
portfolio) and & (CSD universal portfolio) were chosen to maximize the
respective wealths achieved. The values of the best parameters n for data sets
D, E, Fand G are 0.4138,—2.3639,—9.4444 and —83.1143 respectively
from Table 2.10, while the values of the best parameters ¢ for data sets D, E, F

and G are 0.3769,—2.8760,—4,9553 and —3.7942 respectively from Table
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3.3. Table 6.2 shows the resulting portfolios b,4-,, and the wealths S;q;5

achieved by the MCR universal portfolio after 1975 trading days.

Table 6.2: The portfolios b9, and the wealths S,4,5 achieved by the
MCR universal portfolio for data sets D, E, F and G, where
b, = (0.1000,0.1000, ...,0.1000)

Data set big76 S1975
Set D (0.1356, 0.1319, 0.1223, 0.1042, 0.1048, 0.1012, 0.0914, 0.0558, 0.0825, 0.0702) 18.2725
SetE (0.0085, 0.0107, 0.0161, 0.0391, 0.0409, 0.0469, 0.0797, 0.1374, 0.1487, 0.4719) 26.2478
Set F (0.0000, 0.0000, 0.0000, 0.0000, 0.0004, 0.0003, 0.0371, 0.8604, 0.0272, 0.0745) 19.1401
Set G (0.0000, 0.0000, 0.0002, 0.0000, 0.0460, 0.0000, 0.0000, 0.0000, 0.0000, 0.9537) 31.9251

The wealths S;4,5 achieved by the MCR universal portfolio by mixing
the Helmbold and CSD universal portfolios for data sets D, E, F and G are
18.2725,26.2478,19.1401 and 31.9251 respectively from Table 6.2. For data
sets D and G, the wealths S,4,5 achieved by the MCR universal portfolio,
namely 18.2725 and 31.9251 are higher than the maximum wealths
Si975(max) achieved by the mixture universal portfolio in Section 6.1,
namely 18.2486 and 25.5834. For data sets E and F, the values of S;4,5 for
the MCR universal portfolio are lower than the values of S;4,<(max) for the

mixture universal portfolio of the previous section.

In Table 6.3, the wealths achieved by the four types of universal
portfolios CSD, Helmbold, MCR and best constant rebalanced portfolio
(BCRP) are displayed for the four 10-stock data sets based on 1975 trading

days. Let B(b¥,x7}) denote the upper bound given by Proposition 6.1, namely
n
n  n nt
B(bY,x}) = Hmlax{(bj) x;}. (6.14)
j=1

Then ¢, (bY,xY) defined by (6.11) can be rewritten as:
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Cl(bllv, X{[V) = B(bllv,xllv) - SN (615)

for N fixed. In our study N = 1975. The estimated probability for the wealth

of the MCR universal portfolio to achieve the upper bound B (bY,xY) is given

by 1 — P(e) in Proposition 6.2. The values of the quantities B(bY,x%),

1—P(e), c;(bY,x¥) and c,(bY,x¥) are listed in Table 6.3 for the MCR

universal portfolios.

Table 6.3: The wealths S;4,5 achieved by the Helmbold, CSD, MCR

universal portfolios and BCRP, together with the values of
B(Y,xN), 1 — P(e), c;(bY,xY) and ¢, (bY,xY) for data sets
D, E, Fand G, where b; = (0.1000,0.1000, ...,0.1000)

SetD
Type Parameter Si975 B 1—-P(e) cy c,
Helmbold 0.4138 18.2486
CSD 0.3769 18.2431
MCR 18.2725 19.5243 0.5127 1.2518 0.0239
BCRP 37.5867
SetE
Type Parameter S1975 B 1—-P(e) (o) [
Helmbold -2.3639 22.9859
CsSD -2.8760 29.1040
MCR 26.2478 511.5745 0.5117 485.3267 -2.8562
BCRP 37.5867
Set F
Type Parameter S1975 B 1—-P(e) [ o
Helmbold -9.4444 15.7558
CsD -4.9553 22.3262
MCR 19.1401 2523.3919 0.5187 2504.2518 -3.1861
BCRP 20.7169
Set G
Type Parameter Si975 B 1—-P(e) c c,
Helmbold -83.1143 19.9357
CsSD -3.7942 25.5834
MCR 31.9251 4146.1442 0.5339 4114.2191 6.3417
BCRP 24.6381

The theoretical upper bound in wealth given by B(bY,xY) is in general

not achievable by the MCR universal portfolio unless the runs are completely

predictable or there is only one run in the whole trading period. Thus, we
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observe in Table 6.3 that the values of the coefficients ¢, (bY,xY) are large for
data sets E, F and G. The coefficients ¢, (b¥,x)) measures the excess wealth
achieved by the MCR universal portfolio over the individual best wealth
achieved by either the CSD or the Helmbold universal portfolios. For data sets
D and G, the values of ¢, (b¥,xY) are positive and hence the MCR universal
portfolios outperform both the CSD and Helmbold universal portfolios. For
data set G, the MCR universal portfolio outperforms the best CSD universal
portfolio by 6.3417 units of wealth achieved. The values of c,(bY,xY) for
data sets E and F are negative. The MCR universal portfolios for these two
data sets still achieve higher wealths than the worst Helmbold universal

portfolios.

In Figures 6.1, 6.2, 6.3 and 6.4, the three superimposed graphs of the
wealths S,, achieved by the Helmbold universal portfolio against the number
of trading days n, the wealths S,, achieved by the CSD universal portfolio
against the number of trading days n and the wealths S,, achieved by the MCR
universal portfolio against the number of trading days n are shown for data
sets D, E, F and G respectively, where b; = (0.1000,0.1000, ...,0.1000).
From Figures 6.1 and 6.4, the MCR universal portfolios perform better than
both the Helmbold and CSD universal portfolios most of the trading days in
terms of wealth S,, achieved for data sets D and G. The values of S,, for the
MCR universal portfolio dominate the values of S,, for both the CSD and
Helmbold universal portfolios during the trading days n = 1400 until

n = 1600 for data sets E in Figure 6.2.
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Figure 6.1: Three superimposed graphs of (i)the wealths S,, achieved by
the Helmbold universal portfolio against the number of
trading days n, (ii)the wealths S,, achieved by the CSD
universal portfolio against the number of trading days n and
(iii)the wealths S,, achieved by the MCR universal portfolio
against the number of trading days n, for data set D, where

b, = (0.1000,0.1000, ...,0.1000)
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Figure 6.2: Three superimposed graphs of (i)the wealths S,, achieved by
the Helmbold universal portfolio against the number of
trading days n, (ii)the wealths S,, achieved by the CSD
universal portfolio against the number of trading days n and
(iii)the wealths S,, achieved by the MCR universal portfolio
against the number of trading days n, for data set E, where

b, = (0.1000,0.1000, ...,0.1000)
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Figure 6.3: Three superimposed graphs of (i)the wealths S,, achieved by
the Helmbold universal portfolio against the number of
trading days n, (ii)the wealths S,, achieved by the CSD
universal portfolio against the number of trading days n and
(iii)the wealths S,, achieved by the MCR universal portfolio
against the number of trading days n, for data set F, where
b, = (0.1000,0.1000, ...,0.1000)
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Figure 6.4: Three superimposed graphs of (i)the wealths S,, achieved by
the Helmbold universal portfolio against the number of
trading days n, (ii)the wealths S,, achieved by the CSD
universal portfolio against the number of trading days n and
(iii)the wealths S,, achieved by the MCR universal portfolio
against the number of trading days n, for data set G, where
b, = (0.1000,0.1000, ...,0.1000)
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It is worth noting that the Dirichlet-weighted universal portfolios in [9]
cannot achieve wealths higher than that of the BCRP. In Table 6.3, the wealths
achieved by the CSD universal portfolios are higher than that of the BCRP’s
in data sets F and G. Furthermore, there is an MCR universal portfolio
outperforming the BCRP in data set G. This study concludes with the
observation that there are universal portfolios achieving higher wealths than
that of the BCRP for certain data sets. The results in this section are reported

in Tan and Lim [28].

6.2.2 Application of the Mixture-Current-Run Universal Portfolio in

Identifying the Best Current-Run Parameter

We focus our study on mixing two or more types of universal
portfolios in the previous sections. We introduce the MCR universal portfolio
that follows the current run of the portfolio that achieves the best single-day
wealth return. In this section, we discuss the application of the MCR universal
portfolio in mixing two or more universal portfolios of the same type to
estimate the best-performing parameter corresponding to the run of the best

daily wealth.

In Chapters Two, Three and Four, we observe that the parameters n in
the Helmbold universal portfolio and ¢ in the CSD and the Mahalanobis
universal portfolios are important factors influencing the performance of the

universal portfolios. An improper choice of n or ¢ may lead to a lower
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investment wealth. It is a difficult task to choose a good parameter at the
beginning of the investment period. The MCR universal portfolio can be
applied to deal with the above difficulty by mixing two or more universal
portfolios of the same type with different values of the scalar parameter by

using the better-performing parameter on each trading day.

Let us consider a universal portfolio with the parameter 8 defined
within a certain range of values, say 6; < 6 < 6,. We can form k universal
portfolios of the same type using k different values of same scalar parameter.

The k different values of same scalar parameter can be obtained by

k=01 g0 ; = 2,3, ..., k. Then the

discretizing the range [6;, 6] by 6; = 6;_, + ]’2_1

MCR universal portfolio is generated by the k universal portfolios of the same
type with parameters 64, 6, ..., 8, will follow the current run of the portfolio
which achieves the best single-day wealth return. We can identify the best

parameter among the k parameters by keeping track of their performance daily.

The current parameter generating the run of the best single-day wealth
is estimated to be the best current-run parameter. In this connection, the most
frequent best-current-run parameter throughout the whole investment period
may be estimated to be best parameter among the k parameters achieving the
highest wealth throughout the investment wealth. This best-performing
universal portfolio may be different from the actual best-performing universal
portfolio determined from hindsight. It is impossible to determine the latter

best-performing universal portfolio at the beginning of the investment period.

120



Hence it is natural to use the best current-run parameter to achieve a higher

investment wealth.
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APPENDIX A

The Matrix C3(n) in (4.28)

C3(n) = (c;;) where

‘U= 70+ 18r + 1672 + 1413 + 12r* + 1075 + 876 + 617 + 478 + 219

Fori=1,2,..,5andj =1,2,...,10, h;; are given as

hiy = (9+ 161 + 1312 + 10r3 + 7r* + 475 + r® — 2r7 — 5r8 — 8r% — 9r10
_ 87"11 _ 7,',.12 _ 67"13 _ 5,',.14- _ 47,.15 _ 3,',.16 _ 27,.17 _ 7,.18)

hip=(=1+7r +14r2 + 1113 + 8r* + 55 + 2r® —r7 — 478 — 679 — 7710
L 7Pl _Gp12 _5p13 gyl 3p15 _ ppl6 _ 17y

hyz=(—1-3r+5r2+12r3 4+ 9r* + 61> + 3r% — 2r® — 47° — 5710 — 5¢11
_ 57"12 _ 41,.13 _ 37"14 _ 2T15 _ T16)

hia = (=1—=3r=5r2 +3r3 + 10r* + 7r> + 4r® + 2r7 — 2r° — 3r10 — 3¢11
_ 37,.12 _ 3,',.13 _ 27,.14- _ 7,.15)

his=(—1—=3r—=5r2 =7r3 +r* + 8r5 + 6r° + 417 + 2% — 10 — 11 _ 12
_ P13 1y

hig=(—1=3r—=5r2—7r3—9r* + 8r® + 617 + 418 + 2r° + 10 + r11 4 12
+ 13 4+

hi; =(—1—=3r—=5r2 = 7r3 —8r* —9r> + 8r7 + 618 + 4r° + 3r10 + 3,11
+ 3712 4+ 3r13 4+ 2r1% + 115)

hig=(—1—=3r—5r?2 —6r3 —7r* —8r> — 9r® + 818 + 6r° + 5r10 + 5111
+ 5712 4+ 4913 4 314 4 2715 4 116)

hig=(—1-=3r—4r2—5r3 —6r* —7r5—8r® — 9r7 + 8r° + 7r10 + 7r11

+ 6712 + 5113 + 4714 4 3915 4 2916 4 117)
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hi10=(—1—2r—3r% —4r3 —5r* —6r> — 7r® — 8r7 — 9r8 4 9r10 4 g1l

+ 7112 + 6113 + 571 + 4915 4 3716 4 217 4 118)

hyr = (—1+7r+14r2 + 11r3 + 8r* + 575 + 2r® — 17 — 448 — 61° — 710
_ 77,.11 _ 67'12 _ 57,.13 _ 4_7,.14 _ 3,),.15 _ 27,.16 _ 7.17)

hy, = (9+ 14r + 1072 + 8r3 + 5r* + 2r5 — 1% —4r7 — 718 — 8r% — 7710
_ 6T11 _ 51.12 _ 47,,13 _ 3T14 _ 27,,15 _ 7,,16)

hy; = (-1 +6r+11r2 + 8r3 + 6r* + 3r> — 3r7 — 578 — 579 — 5710 — 5¢11
_ 47,.12 _ 3,',.13 _ 27,.14 _ 7,.15)

hys = (=1 —4r+3r24+9r3 + 6r* + 415 +1r® — 17 — 218 — 317 — 3710 — 311
_3p12 _pp13 _ 14y

hys = (—1—4r —7r2 + r3 + 7r* + 475 + 3r® + 217 — 19 — 10 — 11 412
_ T‘l?’)

hyg=(—1—4r—7r%> —=9r3 —r* + 6r° + 5r® + 407 + 2r® + r° + 10 4 11
712 4 y13)

hy7 = (=1 —4r —7r? —=9r3 —10r* + 7r® + 517 + 4r® + 3r° + 3% + 311
+ 3r12 4+ 2713 + 114

hyg = (—1—4r—7r? —8r3 —8r* — 9r5 + 7r7 4+ 5r8 4+ 579 + 5710 4 5¢11
+ 4712 4 3713 4+ 2r1% + 115)

hyo = (—1—4r —6r? — 613 — 7r* — 8r> — 9r® + 7r® + 6r° + 7r'® + 61!
+ 5712 4+ 4913 4 314 4 2715 4 116)

hy10=(—1—-3r—4r? —5r3 —6r* —7r> = 8r® — 9r” + 8r° 4+ 7r1% + 7711

+ 6712 + 5r13 + 4714 + 3915 4 2016 4 417)

hyy = (—1—=3r+5r2 + 1273 + 9r* + 675 + 3r® — 218 — 4% — 5710 — 5p11

_ 57,.12 _ 4_.,.13 _ 37,.14- _ 27'15 — T16)
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hyy =(—1+6r+11r2 +8r3 + 6r* + 3r> — 3r7 — 5r8 — 579 — 5710 — 5711
_ 412 _ 313 _ 914 _ 415)

hys = (9+ 14r + 8r2 + 413 + 2r* = 3r® — 617 — 7r® — 61% — 5110 — 4911
_ 3412 _ 913 _ ,14)

hsy = (—1+ 61+ 1012 + 573 + 2r* — 2r® — 477 — 478 — 319 — 3910 — 3p11
_9p12 _ p13)

hys = (—1—4r+2r2 + 7r3 4+ 3r* —r6 — 77 — 8 — 9 — 10 11 _;12)

hye=(—1—4r—8r2 —r3 +5r* + 2r° + o + 17 + r® + 9 + r10 4+ 111 4 12

hy; = (=1 —4r —8r2 — 1173 = 2r* + 615 + 475 + 2r7 + 2r8 + 3r° + 3r10
+ 3r1t 4 2712 4 113)

hyg = (=1 —4r — 8r2 — 1073 — 10r* + 77 + 477 4+ 378 + 47° + 5r10 + 4711
+3r12 4 2713 4+ r14)

hyg=(—1—4r —7r? — 8r3 —8r* — 9r> + 7r7 + 5r8 + 5r9 4+ 5710 4+ 5711
+ 47112 4 3713 4 2914 4 115)

hs10=(—1—3r—5r2 —6r3 —7r* —8r> — 9r® + 8r8 + 6r° 4+ 5r10 + 5111

+ 5712 4 4913 4 3914 4 215 4 116)

hy1 = (=1 =3r—=5r2+3r3 +10r* + 7r°> + 4r® + 2r7 — 2r° — 3110 — 311
_ 3412 _ 313 _ 9p14 _ ,15)

hyy=(—1—4r+3r2+9r3 +6r* +4r> +r® —r7 — 2r8 — 3% — 3010 — 3,11
_ 312 _pp13 _ 14)

hys = (=14 61+ 107% + 573 + 2r* — 2r® — 477 — 478 — 379 — 3710 — 3,11
_ o1z _ ,13)

hys =9+ 14r +8r? +2r3 — 2r* — 4r> — 6r® — 617 — 518 — 49 — 310
—2rtt —12)

hys = (=1 + 61 + 1072 + 473 —r* —4r> — 576 — 497 — 2r8 — % — 10 _111)

hye = (—1—4r+2r2 +6r3 + 7% —2r°> = 37% = 2r7 + 19 + r10 4+ r11)

127



hyy = (=1 —4r —8r2 —2r3 + 4r* + 2r°5 + 8 + 2r° + 3710 + 2011 4 12)

hag = (=1 —4r —8r2 — 1173 = 2r* + 675 + 475 + 217 + 2r8 + 3r° + 310
+ 371t + 2712 4 113)

hyo = (—1—4r —7r2 = 9r3 —10r* + 7r® + 5r7 + 4r® + 3r° + 3710 4 3711
+ 3712 + 2113 4 1r14)

hyro=(—1—-3r—5r2 —=7r3 —8r* — 97> + 8r7 + 678 + 4r° 4+ 3r10 4+ 3r11

+ 3712 + 3713 4 2714 4 115)

hey = (—1—=3r—=5r2—=7r3 +r* +8r> + 67% + 477 + 278 — 10 — 11 412
_ 13 _,14)

hoy = (—1—4r—7r2 4+ 13+ 7r* + 4r> + 3r® + 2r7 — 19 — 10 —p11 _ 412
—r13)

hsz =(—1—4r+2r>+ 7r3 +3r* — 16 — 77 —r8 — % —p10 11 _12)

hsy = (=1 + 61+ 1072 + 473 —r* —4r> — 576 — 497 — 2r8 — % — 10 _111)

hss = (9 + 14r + 8r% + 213 — 4r* — 81> — 8r°® — 617 — 418 — 2% — 110)

hse = (=14 61 + 1072 + 473 — 2r* — 6r° — 61% — 4r7 — 2r8 4 r10)

hsy; = (—1—4r+2r2 +6r3 +r* —2r5—3r% —2r7 +r9 + r10 4 r11)

hsg = (=1 —4r—8r?2 —r3 +5r* + 2r5 +r® + 17 + r® + r% + r10 4 y11 4 y12)

hso=(—1—4r —7r2 —=9r3 —r* + 615 + 576 + 477 + 2r8 + % + 10 4411
+ 712 4 713)

hsio=(—1—-3r—5r2=7r3 —9r* + 8r® + 617 + 4r8 + 2r° + r10 4yt 4 112

+ 13 4 p14),

h;; are given as

hij = h11—i,11—j

fori =6,7,..,10andj = 1,2, ...,10.
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APPENDIX B

The Matrix C4(n) in (4.29) (version 1)

C3(n) = (c;;) where

Cij = i
Y 10r + 2t

Fori=1,2,..,5andj =1,2,...,10, h;; are given as
h11 == (9T2 - tz)

h1,10 = (_TZ + 87‘t + tz)

hyj = (—r*—1t) forj =2,3,...,9.

hij = (=% —rt) fori =2,3,..,5andj = 1,10.

h; = (9r% + 2rt) fori =2,3,...,5.

hij = (—=1%) fori #j,i=23,...5andj = 2,3,...,9.

h;; are given as

hij = hll—i,ll—j

fori=6,7,..,10andj = 1,2, ...,10.
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APPENDIX C

The Matrix C4(n) in (4.29) (version 2)

C3(n) = (c;;) where

Cij = i
Y 10r + 2t

Fori=1,2,..,5andj =1,2,...,10, h;; are given as
hyy = (972 = t?)
hyy = (-1% —rt)
hys = (-1% —rt)
his = (-7% —1t)
his = (-1% —rt)
hig = (=12 —1t)
hy; = (-=r% —rt)
hig = (=12 —r1t)
hig = (=72 —1t)

h’l,lO == (_TZ + 8Tt + tz)

hyy = (=1% —1t)

hzz = (97'2 + ZTt)

hyz = (=1%)
hoa = (=77%)
has = (=17%)
hae = (=7%)
ha7 = (=17%)
hag = (=1%)
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hae = (=17?)

ha10 = (=17 = 11)

h3y = (=% —rt)
hs, = (—7”2)

h33 = (9T2 + ZTt)

hay = (-1%)
hss = (—12)
hse = (—1%)
hs; = (—=12)
hsg = (—12)
hzg = (=1%)

hs 10 = (=12 = 11)

hyy = (=r% =1t)
hyy = (—7”2)
hys = (—TZ)

h4,4_ = (97”2 + Zrt)

hys = (-17)
hae = (—12)
hy7 = (=17)
hag = (—12)
hyo = (—17)

h4ro = (=12 = 11)

hs; = (=1 —1t)

hsy = (—1%)
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hss = (—1?%)
hsy = (—r2)

h55 = (97"2 + Zrt)

hse = (—12)
hs7 = (-12)
hsg = (—12)
hso = (—12)

h5'10 = (—Tz - Tt)

h;; are given as

hij = h11—i,11—j

fori =6,7,..,10and j = 1,2, ...,10.
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