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ABSTRACT 

 

 

PERFORMANCE OF THE MAHALANOBIS AND OTHER 

PARAMETRIC FAMILIES OF UNIVERSAL PORTFOLIOS 
 

 

 Lim Wei Xiang  

 

 

 

 

 

 

Cover and Ordentlich [9] has shown that the Dirichlet-weighted universal 

portfolios exhibit some long-range optimal properties. However, the 

implementation of the portfolio requires large computer memory requirements 

and long computation time. The wealth achieved by the Dirichlet-weighted 

universal portfolio cannot exceed that of the best constant rebalanced portfolio. 

A multiplicative-update universal portfolio, introduced by Helmbold, Schapire, 

Singer and Warmuth [12], has its limitation when the learning parameter   is 

restricted to small positive values. We show that the bound on the parameter   

is unnecessarily restrictive, and demonstrate that higher investment returns can 

be achieved by allowing   to take larger positive or negative values. A class of 

additive-update universal portfolios generated by the Mahalanobis squared 

divergence is derived, and practical bounds for the valid parametric values of 

the Mahalanobis universal portfolio are obtained. Any real number can be used 

as a parameter of the Mahalanobis universal portfolio provided modifications 

are made when a portfolio component becomes negative. A sufficient 

condition for the Mahalanobis and Helmbold universal portfolios to achieve 

wealths exceeding that of the best constant rebalanced portfolio is derived. 

The performance of the Mahalanobis universal portfolios is demonstrated by 



 

 iii 

running the portfolios on some large stock-data sets covering a period of 1975 

trading days. The Dirichlet universal portfolio of order one is a memory-

saving universal portfolio that overcomes the shortcomings of the Dirichlet-

weighted universal portfolio in large computational memory and time. The 

mixture-current-run universal portfolio is a mixture of different universal 

portfolios and follows the current run of the portfolio that achieves the best 

single-day investment return. This portfolio is shown to be able to perform 

better than the individual portfolios in the mixture. We show empirically that 

there are mixture-current-run universal portfolios that can achieve higher 

wealths than that of the best constant rebalanced portfolio. 
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1 

CHAPTER ONE 

 

INTRODUCTION 

 

 

 Investment decision making using universal portfolios adopts the 

approach where the investors need not depend on the stochastic model 

underlying the true distribution of the stock prices. The uniform universal 

portfolio introduced by Cover [7] has been shown empirically that it can 

achieve a wealth growth rate close to that of the optimal wealth in an empirical 

study which includes selected stocks from the New York Stock Exchange for a 

period of 22 years. Subsequently, it is generalized to the class of Dirichlet-

weighted universal portfolios by Cover and Ordentlich [9]. Since the 

implementation of these universal portfolios requires a large amount of 

computer memory, it is not practical to run such an algorithm. It is known that 

the Dirichlet-weighted universal portfolio cannot achieve a higher wealth than 

that of the best constant rebalanced portfolio (BCRP). It is important to have 

an effective universal portfolio for trust fund managers to manage the clients’ 

wealths. The universal portfolio should perform well in the long run riding out 

financial crises or economic downturns in the investment period. This research 

mainly focusses on the multiplicative-update and additive-update universal 

portfolios which require much lesser memory requirements in their 

implementation. The thesis concludes with a study on a mixture of different 

universal portfolios. The performance of the universal portfolios is studied by 

running these universal portfolios on some selected stock-price data sets from 
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the Kuala Lumpur Stock Exchange. Four of the data sets are from the period   

January      until    December      which covers the global financial 

crisis of     . 

 

 This thesis consists of six chapters. An introduction is given in the first 

chapter which states the objectives of the research. Then a literature review on 

the area of universal portfolios followed by the definitions used in the thesis 

are given. In Chapter Two, a multiplicative-update universal portfolio namely, 

the Helmbold universal portfolio where the multiplicative scalar in the power 

of the update-exponential function serves as a parameter is studied. We show 

that it is unnecessary to restrict the values of this multiplicative scalar or 

learning parameter to small positive values. In fact higher investment returns 

can be obtained by using large positive or negative values of this learning 

parameter. The initial starting portfolio may also be regarded as a parameter 

affecting the performance of the Helmbold universal portfolio. We present a 

detailed study of the dependence of the wealth achieved on the initial starting 

portfolio. We derive an expression for the portfolio on any day depending on 

the initial starting portfolio. By changing the initial starting portfolio, it may 

be possible to achieve higher investment wealths. We obtain the Type II 

Helmbold universal portfolio by using a second-order logarithmic 

approximation in the objective functions to be maximized and minimized. An 

algorithm to solve the set of non-linear equations associated with a Type II 

Helmbold universal portfolio is presented. The performance of the Helmbold 

and Type II Helmbold universal portfolios are compared by running both 

universal portfolios on some data sets selected from the local stock exchange. 
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 We note that the Helmbold universal portfolio is obtained by 

maximizing and minimizing a certain objective functions involving the 

Kullback-Leibler information measure. In Chapter Three, we propose to 

generate a family of universal portfolios by maximizing and minimizing the 

same objective functions using the chi-square divergence (CSD) distance 

measure. A range of valid parametric values of the additive-update CSD 

universal portfolio is derived for the selection of a valid parameter. The CSD 

universal portfolio is run on some real stock data taken from the local stock 

exchange. The performance of this family of universal portfolios is compared 

with that of the Helmbold universal portfolios. We derive a larger family of 

additive-update universal portfolios generated by the Mahalanobis squared 

divergence in Chapter Four. This family of universal portfolios includes the 

CSD universal portfolios as a subclass which is studied in Chapter Three. The 

family of universal portfolios generated by the Mahalanobis squared 

divergence are associated with symmetric, positive definite matrices. The 

explicit formulae for the Mahalanobis universal portfolios associated with 

some special symmetric matrices are derived. A sufficient bound for valid 

parametric values of the Mahalanobis universal portfolio is obtained. The 

sufficient bound is practical if the generating matrix is chosen to be a special 

diagonal matrix. A sufficient condition for the Mahalanobis universal portfolio 

to achieve a wealth higher than that of the BCRP is derived. An analogous 

result holds for the Helmbold parametric family of universal portfolios. In 

order to keep the generated portfolio vectors within the valid range, we modify 

the portfolio components using translation and normalization whenever a 
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component becomes negative. The modified Mahalanobis universal portfolio 

ensures that the generated portfolio vectors are genuine portfolio vectors for 

any real number parameter. These modified portfolios based on any scalar 

parameter are run on some selected stock-price data sets from the local stock 

exchange to evaluate their performance. 

 

 In Chapter Five, we propose to consider a “Markovian” type Dirichlet 

universal portfolio. We note that the Cover-Ordentlich Dirichlet-weighted 

universal portfolio is obtained by weighting the current portfolio components 

by the accumulated constant rebalanced portfolio wealth return with respect to 

the Dirichlet probability measure. A family of Dirichlet universal portfolios of 

order one is derived using a similar weighting procedure where the 

accumulated constant rebalanced portfolio wealth return is replaced by the 

latest one-day wealth return. The Dirichlet universal portfolio of order one is 

run on some data sets selected from the local stock exchange and the 

dependence of the wealth return on the initial starting portfolio is studied. We 

identify the relationship between the Dirichlet universal portfolio of order one 

and the CSD universal portfolio in the last section of Chapter Five. In the last 

chapter, the problem of mixing two or more universal portfolios with the aim 

of achieving a higher wealth return is studied. We introduce the mixture-

current-run (MCR) universal portfolio which follows the current run of the 

portfolio that achieves the best single-day wealth return. When the current run 

changes to a different run, the investment portfolio changes accordingly. An 

upper bound on the wealth achievable in the MCR universal portfolio is 

derived and we also estimate the probability of achieving this upper bound. An 
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application of MCR universal portfolio is discussed in the last section in 

Chapter Six. 

 

1.1 Literature Review 

 

A portfolio is an investment strategy that can reduce the risk of 

investment by using diversification of assets. It refers to investing in any 

combination of financial assets which has a lower risk than investing in an 

individual asset. Besides, it can be shown portfolio investment may give a 

higher wealth return. In this research, a portfolio is a vector of the proportions 

of the investment wealth distributed among the stocks invested in a market. 

Portfolio theory was first developed mathematically by Markowitz [17]. 

Markowitz treated the portfolio problem as a choice of the mean and variance 

of a portfolio, that is holding constant variance and maximizing the mean as 

well as holding constant mean and minimizing the variance. This led to the 

efficient frontier where the investor could choose his preferred portfolio 

depending on his risk preference. Sharpe [20] extends Markowitz’s work on 

the portfolio analysis. A simplified model of the relationships among 

securities for practical applications of the Markowitz portfolio analysis 

technique is provided by Sharpe. 

 

The theory of rebalanced portfolios for known underlying distributions 

was introduced by Kelly [15]. Kelly showed that the growth rate of wealth can 

be maximized by the log-optimal investment where the gambler reinvests his 

cumulative wealth based on the knowledge given by the received symbols. 
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This theory was extended to investment in independent and identically 

distributed markets by Breiman [5]. Mossin [19] extended the one-period 

portfolio analysis to a optimal portfolio management over several periods. 

Thorp [34] studied the uses of logarithmic utility over the portfolio selection. 

A study of “maximum-expected-log” rule against the efficient frontier is given 

by Markowitz [18]. Bell and Cover [4] showed that the Kelly criterion has 

good short run, a Kelly investor has at least half a chance of outperforming 

any other gambler after just one trial. Finkelstein and Whitley [10] showed 

that the Kelly investor is always ahead of any other gambler on average after 

any fixed number of bets. An algorithm for maximizing the expected log 

investment return is presented by Cover [6]. Barron and Cover [3] showed that 

the increase in exponential growth of wealth is achieved for special extreme 

case with side information.  Algoet and Cover [2] proved that maximizing 

conditionally expected log return is asymptotically optimal for the market with 

no restrictions on the distribution. A constant rebalanced portfolio allocates 

the same proportions of wealth among the available stocks on every day. It is 

known that the optimal growth rate of wealth is achieved by a constant 

rebalanced portfolio if the price-relatives are independent and identically 

distributed. The wealth achieved by the best constant rebalanced portfolio 

(BCRP) is expected to grow exponentially with a rate determined by stock’s 

volatility. 

 

 An investment portfolio is universal if it can be used in a market where 

no probabilistic model is assumed for the stock prices. It is useful for the 

investor who only has limited knowledge of the true distribution underlying 
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the market. Cover and Gluss [8] restricted the price-relatives to a finite set and 

used the Blackwell’s approach-exclusion theorem and compound sequential 

Bayes decision rules to define an investment scheme with universal properties. 

Subsequently, Cover [7] introduced the uniform universal portfolio and used 

the Laplace’s method of integration to show that the uniform universal 

portfolio performs asymptotically as well as the BCRP. Cover and his research 

associates tested the uniform universal portfolio experimentally on some stock 

data sets from the New York Stock Exchange covering a period of    years 

trading and it is possible to increase the wealth by a large margin. Jamshidian 

[14] extended the Cover’s work to the continuous time framework. The 

uniform universal portfolio is generalized to the class of Dirichlet-weighted 

universal portfolios by Cover and Ordentlich [9]. In the same paper, Cover and 

Ordentlich [9] introduced the notion of side information and focussed the 

studies on the wealth achievable by the uniform and Dirichlet-weighted 

                universal portfolios. The authors also derived the 

theoretical performance bounds of the two special Dirichlet-weighted 

universal portfolios. Ishijima [13] showed that the Dirichlet-weighted 

universal portfolios coincide with the optimal Bayes portfolio under the 

continuous time framework without hindsight. The performance bounds are 

extended to the general class of Dirichlet-weighted universal portfolios by Tan 

[21, 22] for any parametric vector             . Gaivoronski and Stella [11] 

used the nonstationary optimization to construct the Dirichlet-weighted 

universal portfolios, that it maximizes the expected log cumulative wealth 

estimated using all historical price relative relatives. Agarwal, Hazan, Kale 
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and Schapire [1] extended the Gaivoronski and Stella’s idea by appending a 

regularization term to minimize the variation of next portfolio. 

 

 A universal portfolio requiring a much lesser computation time and 

memory requirement for its implementation was introduced by Helmbold, 

Schapire, Singer and Warmuth [12]. The authors used the exponentiated 

gradient update algorithm that was developed by Kivinen and Warmuth [16] 

to generate the multiplicative-update universal portfolio. The Helmbold 

universal portfolio is shown to be outperforming the uniform universal 

portfolio based on the same stock data from the New York Stock Exchange in 

[7]. Helmbold, Schapire, Singer and Warmuth also extended the study on 

Helmbold universal portfolios to include the presence of additional side 

information. Tan and Tang [32] showed that the Helmbold universal portfolio 

is sensitive to the initial starting portfolio and it behaves like a constant 

rebalanced portfolio if the parameter is restricted to a small positive value. 

They also showed that there are Dirichlet-weighted universal portfolios that 

can perform better than the Helmbold universal portfolio empirically. 

 

1.2 Definitions 

 

We discuss some basic definitions in this section by considering 

investment in a market of   stocks. An  -dimensional vector          is 

said to be a portfolio vector if       for           and        
   . 

The integer   in the context of this thesis refers to the  th trading day. The 

component     is the proportion of the current wealth of the investor which is 
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invested in the  th stock. We denote the simplex of portfolio vectors        

by 

                                      

 

   

     (1.1)  

The point                is a boundary point of   if there exists an index 

  such that     , where      . Let          denotes the price-

relative vector of the market on the  th trading day, where     is the ratio of 

the closing price of the  th stock to its opening price, for          . The 

price-relative     describes the performance of the  th stock on the  th trading 

day where the  th stock increases or decreases by a factor of     times its 

previous value. 

 

 The wealth achieved in a single day   is 

 
  
           

 

   

 (1.2)  

for          . Assuming an initial wealth    of   unit and given the 

sequence of price-relative vectors           , the wealth achieved at the end 

of the  th trading day is given by 

 
      

   

 

   

  (1.3)  

where            is the sequence of portfolio strategies used by the investor. 

 

 A constant rebalanced portfolio investment strategy uses the same 

portfolio vector   for each trading day. The buy-and-hold strategy for a single 
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stock is a special case of the constant rebalanced portfolio. The optimal wealth 

achieved by the BCRP is defined as 

 
  
     

 
         

 
     

 

   

  (1.4)  

We denote the BCRP by   
  where 

      
      

 
       (1.5)  

 

 The goal of our research is to find the universal portfolios that can 

achieve wealths close to that of the BCRP. In fact, we show empirically in this 

thesis (for example, Chapter Six) that there are universal portfolios that can 

achieve wealths exceeding that of the BCRP. This demonstrates the 

importance of the additive-update Mahalanobis universal portfolio which can 

achieve a wealth exceeding that of the BCRP. In contrast, the Dirichlet-

weighted universal portfolios cannot achieve wealths exceeding that of the 

BCRP. The Mahalanobis universal portfolios introduced in this thesis provides 

an alternative class of investment portfolios available to the trust fund 

managers for investment. Empirically the performance potential of these 

universal portfolios is demonstrated in this research. 
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CHAPTER TWO 

 

HELMBOLD UNIVERSAL PORTFOLIO 

 

 

 Helmbold et al. [12] proposed a universal portfolio that can be 

implemented by day-to-day multiplicative-update of the current portfolio 

which requires very much lesser computer memory requirements growing 

linearly with the number of stocks invested. It was shown that the Helmbold 

universal portfolio can perform better than the uniform universal portfolio on 

some stock-price data sets used in [7].  

 

2.1 Two Parameters of the Helmbold Universal Portfolio 

 

The work reported in this section is published in Tan and Lim [24, 25, 

29]. In [12], a multiplicative-update universal portfolio where the 

multiplicative scalar in the power of the update-exponential function serves as 

a parameter was introduced. Tan and Tang [32] observed that the initial 

starting portfolio    can be a factor influencing the performance of the 

Helmbold universal portfolio. By restricting the parameter   of the Helmbold 

universal portfolio to the narrow range of       
     

 
  , the 

Helmbold universal portfolio behaves like a constant rebalanced portfolio. In 

this section, we propose to remove the unnecessary restriction on   and 

demonstrate that higher investment wealths can be obtained by large positive 

values of   or negative  . A consequence of moving further away from     
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is that the resulting Helmbold universal portfolio no longer behaves like a 

constant rebalanced portfolio. The emphasis of this section is on the 

dependence of the Helmbold universal portfolio on the parameter   and to 

study the dependence on the initial starting portfolio   . 

 

 The Kullback-Leibler distance measure is 

 
             

 

   

    
   
   

   (2.1)  

where          and          are any two portfolio vectors. 

 

 The Helmbold universal portfolio is a sequence of portfolio vectors 

       generated by the following update of    : 

 

       

         
   
  
   

 

          
   
  
   

  
   

  (2.2)  

for          , where the constant   (any real number) and the initial 

starting portfolio                    are given. The Helmbold universal 

portfolio (2.2) is said to be generated by the parameter   and the initial starting 

portfolio   . 

 

 First, we derive an expression for the dependence of      on    for 

the Helmbold universal portfolio. 
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Proposition 2.1 For the Helmbold universal portfolio               

given by (2.2), we have 

 

       

          
   
  
   

 
    

           
   
  
   

 
     

   

 (2.3)  

where          is the initial starting portfolio. 

Proof. From (2.2), expressing      as a function of        , we have 

       

            
      

    
     

      
   
  
   

 

              
      

    
     

  
                

    
  
   

  
    

  

Now expressing        as a function of        and continuing in this way until 

    is expressed as a function of    , we obtain 

 

       

          
   
  
   

 
    

            
   
  
   

  
     

   

  (2.4)  

Summing over   in (2.4) where        
 
      and noting that the 

denominator in (2.4) does not depend on  , we conclude that the denominators 

in (2.3) and (2.4) are equal.       □ 

 

We remark that the function      may not be continuous at a boundary 

point    of the simplex   since       implies that          for all 

         . 

 

 We introduce the eta-parametric family of Helmbold universal 

portfolios which is defined by (2.2) for any real number  . 
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Proposition 2.2 Consider the objective functions 

                 
                

and 

                 
                

where            is the Kullback-Leibler distance measure or relative 

entropy given by (2.1) and   is positive. By approximating         
     using 

       
     

    
   

  
   

   , the maximum of the objective function         is 

achieved at      given by (2.2) and the minimum of         is also achieved 

at      given by (2.2) where   is replaced by   . 

Proof. Since    is a portfolio vector for          , we need to intoduce the 

Lagrange multiplier   in maximizing the objective function 

                   
     

    
   
  
   

           

 

   

    
      
   

 

          

 

   

    

and minimizing the objective function 

                   
     

    
   
  
   

           

 

   

    
      
   

 

          

 

   

     

Helmbold et al. [12] have shown that the maximum of            is achieved 

at      given by (2.2). The minimum of            is achieved when the 

following   partial derivatives are zero, 
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for          . We obtain 

                
   
  
   

           

for          . Summing up the components        over  , we have 

               

 

   

      
   
  
   

  

leading to 

       

         
   
  
   

 

    
 
         

   
  
   

 
 

for          . Let 

                             

         
     

    
   
  
   

    

        

 

   

    
      
   

  

(2.5)  

where                 
   
   . Then the first partial derivatives of (2.5) are 

                             

       
   

       
  
   

      
         
         

  

for             and the second partial derivatives of (2.5) are 

                              

              
 

 
 
 

 
  

      
 

 

      
            

       
 

      
                     

  

for              . The Hessian matrix of                              

is 
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where 

     
                       
                              

  

for               and 

   
 

      
 

for          . Let          be the     sub-matrix of   where 

     
                       
                              

  

for            . If          for          , then      for 

         . A simple evaluation of the determinant of          shows that 

                             

   

   

                  

for             and      is defined to be    for a fixed  . Now 

     for           and      implies that        for   

         . In other words, the principal minors      of   are all positive. 

Hence  , the Hessian matrix of                              is positive 

definite. Similarly, if 

                            

         
     

    
   
  
   

           

 

   

    
      
   

  

where                 
   
   , then the Hessian matrix of 

                             is    which is negative definite. Hence 

                             has a minimum point and 

                             has a maximum point. Furthermore, 
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                             is concave and                              

is convex in the simplex   defined in (1.1).      □ 

 

We have shown that the eta-parametric family of Helmbold universal 

portfolios is generated by maximizing and minimizing two different objective 

functions         and          for     and     respectively. The 

objective functions want the current portfolio      to be close to the previous 

portfolio    in terms of Kullback-Leibler distance measure. Tan and Tang [32] 

have shown that the initial starting portfolio    is a parameter that can affect 

the final wealth achievable by the Helmbold universal portfolio. If the initial 

starting portfolio is a good one, we require that the subsequent portfolios are 

close to each other. On the other hand, if the initial starting portfolio is not a 

good one, we hope to move away from the current portfolio to the right one 

with the highest investment wealth. 

 

 We have run the eta-parametric family of Helmbold universal portfolio 

on three stock data sets chosen from the Kuala Lumpur Stock Exchange. The 

period of trading of the stocks selected is from   January      until    

November     , consisting of     trading days. Each data set consists of 

three company stocks. Set A consists of the stocks of Malayan Banking, 

Genting and Amway (M) Holdings. Set B consists of the stocks of Public 

Bank, Sunrise and YTL Corporation. Finally, set C consists of the stocks of 

Hong Leong Bank, RHB Capital, and YTL Corporation. 
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 We begin with the initial starting portfolio 

                          for all the three data sets. For each data set, the 

portfolios      and the wealths      achieved after     trading days are 

calculated for selected values of   and are listed in Tables 2.1, 2.2 and 2.3. 

 

Table 2.1: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of   for data 

set A, where                           
Table 2.1 continued 

            

-10.00 (0.0053, 0.9789, 0.0158) 1.4310 

-5.00 (0.0678, 0.8140, 0.1182) 1.5449 

-3.00 (0.1509, 0.6379, 0.2111) 1.5725 

-1.00 (0.2697, 0.4283, 0.3019) 1.5722 

-0.75 (0.2857, 0.4035, 0.3109) 1.5707 

-0.50 (0.3016, 0.3793, 0.3191) 1.5689 

-0.30 (0.3143, 0.3605, 0.3252) 1.5674 

-0.20 (0.3207, 0.3513, 0.3281) 1.5666 

-0.10 (0.3270, 0.3422, 0.3308) 1.5658 

0 (0.3333, 0.3333, 0.3334) 1.5650 

0.10 (0.3396, 0.3245, 0.3359) 1.5642 

0.20 (0.3458, 0.3159, 0.3382) 1.5633 

0.30 (0.3521, 0.3074, 0.3405) 1.5624 

0.50 (0.3645, 0.2910, 0.3446) 1.5607 

0.75 (0.3797, 0.2712, 0.3490) 1.5585 

1.00 (0.3948, 0.2525, 0.3527) 1.5563 

3.00 (0.5043, 0.1366, 0.3591) 1.5399 

5.00 (0.5935, 0.0700, 0.3365) 1.5266 

10.00 (0.7485, 0.0115, 0.2401) 1.4996 

 

Table 2.2: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of   for data 

set B, where                           
Table 2.2 continued 

            

-10.00 (0.8507, 0.1493, 0.0000) 1.8141 

-5.00 (0.6872, 0.3109, 0.0018) 1.8110 

-3.00 (0.6011, 0.3813, 0.0176) 1.8399 

-1.00 (0.4598, 0.3965, 0.1437) 1.9866 

-0.75 (0.4323, 0.3868, 0.1810) 2.0223 

-0.50 (0.4018, 0.3730, 0.2252) 2.0630 

-0.30 (0.3755, 0.3591, 0.2655) 2.0994 

-0.20 (0.3617, 0.3511, 0.2872) 2.1188 

-0.10 (0.3477, 0.3425, 0.3098) 2.1390 

0 (0.3333, 0.3333, 0.3334) 2.1600 

0.10 (0.3187, 0.3235, 0.3578) 2.1818 
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Table 2.2 continued 

            

0.20 (0.3040, 0.3132, 0.3828) 2.2042 

0.30 (0.2891, 0.3025, 0.4084) 2.2274 

0.50 (0.2595, 0.2798, 0.4607) 2.2754 

0.75 (0.2232, 0.2501, 0.5267) 2.3382 

1.00 (0.1888, 0.2200, 0.5912) 2.4031 

3.00 (0.0317, 0.0517, 0.9165) 2.8851 

5.00 (0.0039, 0.0091, 0.9871) 3.1899 

10.00 (0.0000, 0.0001, 0.9999) 3.5140 

 

Table 2.3: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of   for data 

set C, where                           
Table 2.3 continued 

            

-10.00 (0.0232, 0.9768, 0.0000) 1.3126 

-5.00 (0.1379, 0.8617, 0.0004) 1.3350 

-3.00 (0.2517, 0.7406, 0.0078) 1.3898 

-1.00 (0.3657, 0.5190, 0.1153) 1.5868 

-0.75 (0.3676, 0.4775, 0.1549) 1.6359 

-0.50 (0.3633, 0.4322, 0.2044) 1.6933 

-0.30 (0.3548, 0.3937, 0.2515) 1.7454 

-0.20 (0.3488, 0.3738, 0.2774) 1.7736 

-0.10 (0.3416, 0.3536, 0.3047) 1.8033 

0 (0.3333, 0.3333, 0.3334) 1.8343 

0.10 (0.3239, 0.3129, 0.3632) 1.8666 

0.20 (0.3134, 0.2925, 0.3940) 1.9002 

0.30 (0.3020, 0.2724, 0.4256) 1.9350 

0.50 (0.2769, 0.2333, 0.4898) 2.0077 

0.75 (0.2428, 0.1877, 0.5695) 2.1032 

1.00 (0.2076, 0.1475, 0.6449) 2.2017 

3.00 (0.0338, 0.0122, 0.9540) 2.8736 

5.00 (0.0040, 0.0007, 0.9953) 3.2021 

10.00 (0.0000, 0.0000, 1.0000) 3.4416 

 

 Let           
 
    and          

  
         denote the    norm and 

   norm of the vector   respectively. It is clear from Tables 2.1, 2.2 and 2.3 

that            and            as functions of   are growing with   as 

    gets larger. If   is restricted between   and   
     

 
 (or        for    , 

     ) as recommended in [12],            and            are close 
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to  . If a larger variation of      from    is required, it can be achieved by 

using a larger     universal portfolio. 

 

In Figures 2.1, 2.2 and 2.3, the graphs of the wealth      against   are 

plotted for the data sets A, B and C respectively, where the local maxima are 

shown. We strongly believe that the local maxima are also the global maxima 

over all  . For data set A, the maximum wealth achievable is           

       at          . Here is an example of a Helmbold universal 

portfolio with a negative-valued parameter achieving the maximum wealth. 

For data sets B and C, the maximum wealth achievable are           

       and                  at           and            

respectively. Again, this demonstrates that if   is restricted between   and 

       as recommended in [12], it is not possible to achieve the maximum 

wealth. 

 

 

Figure 2.1: Graph of      against   displaying the local maximum at 

          for data set A, where 

                          (Helmbold universal portfolio) 
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Figure 2.2: Graph of      against   displaying the local maximum at 

          for data set B, where 

                          (Helmbold universal portfolio) 

 

 

Figure 2.3: Graph of      against   displaying the local maximum at 

           for data set C, where 

                          (Helmbold universal portfolio) 
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Hence, it is necessary to remove the unnecessary restriction     

  
     

 
 imposed on   in order to achieve a higher investment wealth. 

Empirical evidence is provided that the maximum investment wealth can be 

achieved at a negative learning parameter   and at large positive learning 

parameters. The best   achieving the maximum wealth can be determined 

from hindsight given the past stock data. 

 

We now study the dependence of the Helmbold universal portfolio on 

the initial starting portfolio   . For data sets A, B and C, the portfolios      

and the wealths      achieved after     trading days for selected values of    

are calculated and displayed in Tables 2.4, 2.5 and 2.6. If 

                          is used, then the maximum wealths           

obtained for  data sets A, B and C are               and        respectively 

corresponding to the respective                   and          from 

Figures 2.1, 2,2 and 2.3. From Table 2.4, we observe that by changing    to 

                      , we can obtain a higher wealth             

compared to       . Even using                          , we obtain a 

better             compared to       . From Table 2.5, changing    to 

                       and                       , we can obtain higher 

wealths of             and             respectively compared to 

            for                          . Again, changing    to 

                       and                        for data set C in Table 

2.6, higher wealths of             and             respectively are 
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obtained which are better than             for 

                         . 

 

Table 2.4: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of    for 

data set A, where           

Table 2.4 continued 

             

                                              1.4254 

                                              1.4689 

                                              1.5138 

                                              1.5599 

                                              1.6068 

                                              1.6538 

                                              1.7001 

                                              1.7447 

                                              1.7862 

                                              1.8230 

                                              1.8534 

                                              1.8142 

                                              1.7501 

                                              1.6770 

                                              1.6008 

                                              1.5256 

                                              1.4537 

                                              1.3862 

                                              1.3235 

                                              1.2657 

                                              1.2125 

                                              1.1637 

                                              1.4702 

                                              1.5030 

                                              1.5351 

                                              1.5657 

                                              1.5941 

                                              1.6193 

                                              1.6400 

                                              1.6551 

                                              1.6632 

                                              1.6632 

                                              1.6539 
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Table 2.5: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of    for 

data set B, where           

Table 2.5 continued 

             

                                              3.7560 

                                              3.7153 

                                              3.6825 

                                              3.6550 

                                              3.6311 

                                              3.6095 

                                              3.5888 

                                              3.5672 

                                              3.5408 

                                              3.4932 

                                              1.3677 

                                              4.0243 

                                              3.8556 

                                              3.7510 

                                              3.6704 

                                              3.6026 

                                              3.5428 

                                              3.4886 

                                              3.4385 

                                              3.3918 

                                              3.3472 

                                              1.5570 

                                              1.1536 

                                              3.3677 

                                              3.5083 

                                              3.6149 

                                              3.7072 

                                              3.7932 

                                              3.8775 

                                              3.9639 

                                              4.0569 

                                              4.1633 

                                              4.2970 

 

Table 2.6: The portfolios      and the wealths      achieved by the 

Helmbold universal portfolio for selected values of    for 

data set C, where            

Table 2.6 continued 

             

                                              3.6639 

                                              3.5546 

                                              3.5260 

                                              3.5107 

                                              3.4989 

                                              3.4869 

                                              3.4724 

                                              3.4523 
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Table 2.6 continued 

             

                                              3.4197 

                                              3.3529 

                                              1.3664 

                                              3.7505 

                                              3.4988 

                                              3.5069 

                                              3.5069 

                                              3.5060 

                                              3.5056 

                                              3.5066 

                                              3.5101 

                                              3.5180 

                                              3.5358 

                                              0.9595 

                                              1.0740 

                                              3.4651 

                                              3.4882 

                                              3.5023 

                                              3.5154 

                                              3.5296 

                                              3.5465 

                                              3.5680 

                                              3.5975 

                                              3.6401 

                                              4.2970 

 

We may also consider the wealth function      as a function of one 

component of    with another component fixed at a certain value, say       . 

Table 2.7 tabulates the values of the function      against 

                          ,                            and 

                           for the data set B. In Figures 2.4, 2.5 and 

2.6, the corresponding graphs of      against    ,    , and     are plotted. In 

Figure 2.5, we observe that      is discontinuous at the boundary point 

                         . Similarly, in Figure 2.6,      is discontinuous 

at                          . In contrast,      is continuous at all points 

   in Figure 2.4. Again, in Figures 2.5 and 2.6, we obtain higher wealths of 

            and             at                           and 
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                          respectively for data set B compared with 

            at                          . 

 

Table 2.7: The portfolios      as a function of one component of    with 

another component fixed at        and the wealths      

achieved by the Helmbold universal portfolio for data set B, 

where           

Table 2.7 continued 

             

                                              3.4460 

                                              3.3918 

                                              3.3682 

                                              3.3599 

                                              3.3626 

                                              3.3757 

                                              3.4020 

                                              3.4492 

                                              3.5408 

                                              3.7876 

                                              4.2352 

                                              4.0569 

                                              3.9398 

                                              3.8440 

                                              3.7572 

                                              3.6737 

                                              3.5893 

                                              3.4991 

                                              3.3918 

                                              1.2838 

                                              1.1622 

                                              3.5408 

                                              3.6768 

                                              3.7599 

                                              3.8256 

                                              3.8845 

                                              3.9411 

                                              3.9980 

                                              4.0569 

                                              4.1194 
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Figure 2.4: Graph of      against     for data set B, where           

(Helmbold universal portfolio) 

 

 

Figure 2.5: Graph of      against     for data set B, where           

(Helmbold universal portfolio) 
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Figure 2.6: Graph of      against     for data set B, where           

(Helmbold universal portfolio) 

 

 In conclusion, the achievable universal wealth depends on the initial 

starting portfolio   . An improper choice of    may lead to a lower 

investment wealth. We have also provided empirical evidence that a choice of 

same proportions in    may not necessarily lead to the highest wealth return. 

 

2.2 Type II Helmbold Universal Portfolio 

 

 Helmbold et al. [12] approximated the function     
    
     

  
   

  with a 

first-order Taylor polynomial to derive the portfolio. A second-order 

logarithmic approximation is used instead in this section to derive the Type II 

portfolio. By maximizing and minimizing the objective functions, we obtain a 

set of non-linear equations in the   unknown portfolio variables. The solution 

of this set of non-linear equations leads to a Type II Helmbold universal 

portfolio. 
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 The Type II Helmbold universal portfolio is a sequence of portfolio 

vectors        generated by the following update of    : 

 

       
                 

     

                  
     

 
   

 (2.6)  

for          , where             
     

  
   

 ,      
     

   
    

  and   is any 

given real number. Note that      is defined to be the solution to a set of non-

linear equations given by (2.6). 

 

 The eta-parametric family of Type II Helmbold universal portfolios is 

derived as follow: 

 

Proposition 2.3 Consider the objective functions 

                 
                

and 

                 
                

where            is the Kullback-Leibler distance measure or relative 

entropy given by (2.1) and   is positive. By approximating         
     using 

       
      

    
   

  
   

    
 

 
 
    
   

  
   

   
 

 , the maximum of the objective 

function         is achieved at      given by (2.6) and the minimum of the 

objective function         is achieved at      given by (2.6) where   is 

replaced by   . 
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Proof. The Lagrange multiplier   is introduced in maximizing and 

minimizing the objective functions because    is a portfolio vector for 

         , 

                   
      

    
   
  
   

    
 

 
 
    
   
  
   

   

 

 

        

 

   

    
      
   

           

 

   

    

and 

                   
      

    
   
  
   

    
 

 
 
    
   
  
   

   

 

 

        

 

   

    
      
   

           

 

   

     

The maximum of            is achieved when the following   partial 

derivatives are zero, 

           

       
 
     
  
   

 
         

    

   
     

      
      
   

         

for          . We obtain 

              
     

  
   

     
          

    

   
     

           

for          . Summing up the components        over  , we have 

                
     
  
   

     
          

    

   
     

 

 

   

 

leading to (2.6) for          . It is straight forward to show that the 

minimum of            is achieved at            in (2.6).    □ 
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 We introduce the numerical algorithm of solving the set of non-linear 

equations associated with the Type II Helmbold universal portfolio. 

 

 Rewrite (2.6) to be the following equations 

                        
                                    

     

 

   
   

   

for           and let the left hand side of the above equation be 

  
            where 

 
  
                                    

     

 

   
   

                               
      

(2.7)  

where             
     

  
   

 ,      
     

   
    

  and   is any real number. When 

       are fixed for all    , the function   
            has a root   

         , that is   
              . This is due to   

         and 

  
        . We use Newton’s Method to find the root        . The 

algorithm works as follows: 

(1) Fix        for             and find             such 

that   
              . 

(2) Fix        for             and find             such 

that   
              . 

  

(m - 1) Fix        for             and find               

such that     
                . 
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If                   , then the solution of (2.6) is        ,        , , 

       . Otherwise, repeat (1) to (m - 1). 

 

 We apply Newton’s Method in numerical analysis to find the root of 

  
             . We find a sequence of iterates        that converges to the 

root        . Begin by guessing on an initial estimate       . We can assume 

the solution      is close to the given   . The initial iterate            is a 

good start. For subsequent iterates, we apply the Newton formula 

 
                        

  
                

   
                

  (2.8)  

In summary, given   
       as a function of       , where        is fixed for all 

   , we use Newton’s Method to find             such that 

  
              . The iterations are repeated for             until the 

solution      to (2.6) is obtained. 

 

 The eta-parametric family of Type II Helmbold universal portfolio are 

run on the same three stock data sets that are used in the previous section. We 

compare the performance of the two types of Helmbold universal portfolios 

using the same initial starting portfolio                           on each 

data set. The portfolios      and the maximum wealths           achieved 

by respective  ’s on each data set after     trading days are shown in Table 

2.8. The both types of Helmbold universal portfolios achieve the same 

maximum wealths           for data set A whereas the Helmbold universal 

portfolio performs slightly better than the Type II Helmbold universal 

portfolio for data sets B and C. 
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Table 2.8: The portfolios      and the maximum wealths           
achieved by respective  ’s by the two types of Helmbold 

universal portfolios for data sets A, B and C, where    
                       

Table 2.8 continued 

Data Set Helmbold universal portfolio Type II Helmbold universal portfolio 

Set A 

                 at 

          

                            

                 at 

          

                            

Set B 

                 at 

          

                            

                 at 

          

                            

Set C 

                 at 

           

                            

                 at 

          

                            

 

 From the empirical results, we observe that the Helmbold universal 

portfolio performs better than the Type II Helmbold universal portfolio in 

terms of the final wealth achievement. There is no advantage in using the Type 

II Helmbold universal portfolio instead of the Helmbold universal portfolio. 

Furthermore, the implementation of the Type II Helmbold universal portfolio 

is more complicated and the computation requires more time. The results in 

this section are presented in Tan and Lim [23]. 

 

2.3 Running the Helmbold Universal Portfolios on 10-stock Data Sets 

 

 The implementation of the Dirichlet-weighted universal portfolio 

requires a large computer memory requirements for processing the stock data 

during the computation. The Helmbold universal portfolio which requires 

much lesser computer memory requirements can be implemented on any 

number of stocks. We run the Helmbold universal portfolio on some 10-stock 

data sets in this section. 
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 We have selected four stock-price data sets D, E, F and G covering the 

period of   January      until    December     . There is a total of      

trading days and the companies in the four data sets are listed in Table 2.9. 

The selected companies must be active and liquid enough to be traded. These 

two factors are applied to the market capitalisation. The companies in data sets 

D, E, F and G are selected from the FTSE Bursa Malaysia Kuala Lumpur 

Composite Index which comprises the largest 30 companies listed on the 

Kuala Lumpur Stock Exchange Main Market by full market capitalisation. 

Different sectors of company are selected in each data set to reduce the risk of 

investment. Each data set consists of ten companies and there is overlapping 

of companies in the data sets. 

 

Table 2.9: List of companies in the data sets D, E, F and G 

Table 2.9 continued 

Set D Set E Set F Set G 

YTL Corporation YTL Corporation YTL Power International Malaysian Airline System 

UMW Holdings UMW Holdings PPB Group 
Hong Leong Financial 

Group 

MMC Corporation MMC Corporation Petronas Dagangan IOI Corporation 

YTL Power International YTL Power International Digi.com YTL Power International 

PPB Group PPB Group 
Hong Leong Financial 

Group 
Kuala Lumpur Kepong 

Petronas Dagangan Petronas Dagangan 
Malaysian Airline 

System 
Petronas Dagangan 

Digi.com Digi.com Kuala Lumpur Kepong MMC Corporation 

Malayan Banking 
Hong Leong Financial 

Group 
PLUS Expressways PPB Group 

Malaysian Airline 

System 

Malaysian Airline 

System 
IOI Corporation Digi.com 

Kuala Lumpur Kepong IOI Corporation Sime Darby Sime Darby 

 

 We start with the same initial starting portfolio 

                            for all the four 10-stock data sets. Table 

2.10 shows the portfolios       and the maximum wealths            
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achieved by respective  ’s on each data set after      trading days. The 

maximum wealths            achieved for data set D is         at   

      . Again, data sets E, F and G are examples of the Helmbold universal 

portfolios with large negative-valued parameters achieving the maximum 

wealths                            and         at           

        and          respectively. 

 

Table 2.10: The portfolios       and the maximum wealths            
achieved by respective  ’s by the Helmbold universal 

portfolios for data sets D, E, F and G, where    
                         

Table 2.10 continued 

Data set Best                    

Set D 0.4138 
(0.1356, 0.1319, 0.1223, 0.1042, 0.1048, 

0.1012, 0.0914, 0.0558, 0.0825, 0.0702) 
18.2486 

Set E -2.3639 
(0.0085, 0.0107, 0.0161, 0.0391, 0.0409, 

0.0469, 0.0797, 0.1374, 0.1487, 0.4719) 
22.9859 

Set F -9.4444 
(0.0000, 0.0000, 0.0000, 0.0000, 0.0004, 

0.0003, 0.0371, 0.8604, 0.0272, 0.0745) 
15.7558 

Set G -83.1143 
(0.0000, 0.0000, 0.0002, 0.0000, 0.0460, 

0.0000, 0.0000, 0.0000, 0.0000, 0.9537) 
19.9357 

 

 The best constant rebalanced portfolios (BCRP)      
  and the 

respective wealths      
  achieved after      trading days for the four 10-

stock data sets are calculated and listed in Table 2.11. From Tables 2.11 and 

2.10, the wealths      
  achieved by the BCRP’s are much higher than the 

maximum wealths            achieved by the Helmbold universal portfolios 

for all the four 10-stock data sets with the same initial starting portfolios. 

 

Table 2.11: The best constant rebalanced portfolios      
  and the wealths 

     
  achieved for data sets D, E, F and G 

Table 2.11 continued 

Data set      
       

  

Set D 
(0.5981, 0.4019, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
37.5867 

Set E 
(0.5981, 0.4019, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
37.5867 
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Table 2.11 continued 

Data set      
       

  

Set F 
(0.4836, 0.3869, 0.1295, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

20.7169 

Set G 
(0.0000, 0.0000, 0.0000, 0.1965, 0.0000, 

0.0000, 0.5926, 0.2109, 0.0000, 0.0000) 
24.6381 

 

 The Helmbold universal portfolios are run on the four 10-stock data 

sets again but with the initial starting portfolios    are replaced by the BCRP’s 

instead of the same initial starting portfolios. The resulting portfolios       

and the maximum wealths            achieved after      trading days 

where         
  are recorded in Table 2.12. Data sets D and E have the 

same maximum wealths            which are         achieved at   

       . The maximum wealths            obtained for data sets F and G 

are         and         respectively corresponding to the respective 

          and        . From Tables 2.10 and 2.12, the maximum 

wealths            achieved by the Helmbold universal portfolio are 

significantly higher if the initial starting portfolios    are replaced by the 

BCRP’s for all the four 10-stock data sets. It is noteworthy that the maximum 

wealths            achieved by the Helmbold universal portfolio where 

        
  exceed the wealths      

  achieved by the BCRP’s from Tables 

2.12 and 2.11. 

 

Table 2.12: The portfolios       and the maximum wealths            
achieved by respective  ’s by the Helmbold universal 

portfolios for data sets D, E, F and G, where         
  

Table 2.12 continued 

Data set Best                    

Set D -2.8843 
(0.4177, 0.5823, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

43.2025 

Set E -2.8843 
(0.4177, 0.5823, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
43.2025 

Set F -9.5684 
(0.0934, 0.8502, 0.0563, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

27.2148 

Set G -5.7511 
(0.0000, 0.0000, 0.0000, 0.1967, 0.0000, 

0.0000, 0.2956, 0.5077, 0.0000, 0.0000) 
39.9419 
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CHAPTER THREE 

 

CHI-SQUARE DIVERGENCE UNIVERSAL PORTFOLIO 

 

 

 The multiplicative-update universal portfolio was proposed by 

Helmbold et al. in [12]. In this chapter, we propose to generate a family of 

universal portfolios by the same method using the chi-square divergence (CSD) 

distance measure. This leads to a family of additive-updates universal 

portfolios. The families of universal portfolios generated by this method can 

be implemented online involving day-to-day updates of the current portfolio. 

 

3.1 The Xi-Parametric Family of Chi-Square Divergence Universal 

Portfolio 

 

 The work reported in this section is published in Tan and Lim [26, 27]. 

An additive-update universal portfolio is obtained by maximizing and 

minimizing a certain objective functions involving the CSD distance measure 

in this section. We compare the performance of the CSD additive-update 

universal portfolios with that of the Helmbold multiplicative-update universal 

portfolios by running the portfolios on some selected data sets from the local 

stock exchange. It is shown that for some parametric values of the CSD 

universal portfolio, better wealths can be generated from daily investment. 

Practical bounds for the parametric values of the CSD universal portfolios are 

obtained for their investment implementation. 
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 The chi-square divergence distance measure is 

 
          

         
 

   

 

   

  (3.1)  

where          and          are any two portfolio vectors. 

 

 The CSD universal portfolio is a sequence of portfolio vectors        

generated by the following update of    : 

 
           

        
    

   
    

    (3.2)  

for          , where initial starting portfolio    is given and   is any 

chosen real number such that       for all           and          . 

Equation (3.2) defines the xi-parametric family of CSD universal portfolios for 

any appropriate real number   such that       for all           and 

         . It is clear that this parametric family is defined for certain 

bounded values of   and not for all real  , in contrast with the eta-parametric 

family which is defined for all real  . 

 

 First, we show that the xi-parametric family of CSD universal 

portfolios is obtained by maximizing and minimizing certain objective 

functions of the doubling rate of the capital function and the CSD distance 

measure. 
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Proposition 3.1 Consider the objective functions 

                  
                

and 

                  
                

where            is the CSD distance measure given by (3.1) and    . 

By approximating         
     using        

     
    
   

  
   

   , the 

maximum of the objective function         is achieved at      given by (3.2) 

and the minimum of         is also achieved at      given by (3.2) where   

is replaced by –  . 

Proof. Since    is a portfolio vector for          , we need to introduce 

the Lagrange multiplier   in maximizing the objective function 

                    
     

    
   
  
   

     
            

 

   

 

   

          

 

   

    

and minimizing the objective function 

                    
     

    
   
  
   

     
            

 

   

 

   

          

 

   

     

First, the maximum of            is achieved when the following   partial 

derivatives are zero, that is 

           

       
   

   
  
   

 
             

   
     

for          . We obtain 
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for          . Summing up the components        over  , we have 

 

 
   

       
  
   

 

   

    

which results in (3.2) for          . Finally, it is straight forward to show 

the minimum of            is achieved at            in (3.2) and we omit the 

proof. Let 

                             

          
     

    
   
  
   

    

  
            

 

   

 

   

 

(3.3)  

where                 
   
   . Then the first partial derivatives of (3.3) are 

                             

       

    
       
  
   

  
             

   
 
             

   
 

for             and the second partial derivatives of (3.3) are 

                              

              
 

 
 

  
 

   
 

 

   
               

      
 

   
                      

  

for              . Define the matrix   where 

     
                       
                              

  

for               and 
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for          . From the previous result in Proposition 2.2, the matrix   is 

positive definite if       for          . Hence the Hessian matrix of 

                             is     which is negative definite. Similarly, if 

                            

          
     

    
   
  
   

     
            

 

   

 

   

 

where                 
   
   , the Hessian matrix of 

                             is    which is positive definite. Thus 

                             and                              are concave 

and convex respectively. The function                              has a 

maximum point and                              has a minimum point.  □ 

 

Proposition 3.2 A sufficient condition for       for all           

and all positive integers   where        is defined in (3.2) is that 

 
    

   
   

     

   
 

    
 
         

 
      

  (3.4)  

where      is given. 

Proof. Given    as a portfolio vector, then for          in (3.2), for 

          and          , we must have 

        
         

      

or equivalently, one of the following inequalities is satisfied: 

 
 

   
    

       
    

        
   

    

       
    

  (3.5)  

Noting that 
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is true for all           and          , any   satisfying (3.4) will imply 

that (3.5) satisfied.        □ 

 

 Any   satisfying (3.4) will generate a xi-parametric family of CSD 

universal portfolios. In practice, if the minimum and maximum price-relatives 

are      and      respectively, then the condition (3.4) says that     

    

           
    . In other words, a parametric family of CSD universal 

portfolios is generated for           . 

 

 For comparison, we run the CSD universal portfolios on the three same 

data sets designated as A, B and C introduced in Chapter Two with the initial 

starting portfolio                          . For each data set, the 

maximum wealths           achieved within the range of the parameter   

given by (3.4) and an extended range of   are shown in Table 3.1 together 

with the portfolios      and the best   values where      is maximum. The 

extended range of   is the largest interval of   that satisfies (3.5) over all   

within the whole investment period. 

 

Table 3.1: The portfolios      and the maximum wealths           
achieved by respective  ’s within the range of   in (3.4) and 

an extended range of   by the CSD universal portfolio for 

data sets A, B and C, where                           
Table 3.1 continued 

Data set Normal range of   determined by (3.4) Extended range of   

Set A 

                   

                 at 

          

                            

                   

                 at 
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Table 3.1 continued 

Data set Normal range of   determined by (3.4) Extended range of   

Set B 

                   

                 at 

          

                            

                   

                 at 

          

                            

Set C 

                   

                 at 

          

                            

                   

                 at 

          

                            

 

 In Figures 3.1, 3.2 and 3.3, the superimposed graphs of      against   

(CSD universal portfolio) and      against   (Helmbold universal portfolio) 

are shown for data sets A, B and C respectively and a limited range of the 

parametric values, where                          . There are more 

fluctuations in the CSD graphs compared with the Helmbold graphs. We can 

say that the Helmbold wealth function    is more stable with respect to 

changes in its parameter. 

 

 

Figure 3.1: Two superimposed graphs of      against   (CSD universal 

portfolio) and      against   (Helmbold universal portfolio) 

for data set A, where                           
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Figure 3.2: Two superimposed graphs of      against   (CSD universal 

portfolio) and      against   (Helmbold universal portfolio) 

for data set B, where                           

 

 

Figure 3.3: Two superimposed graphs of      against   (CSD universal 

portfolio) and      against   (Helmbold universal portfolio) 

for data set C, where                           
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 It is clear from Tables 3.1 and 2.8 that the CSD universal portfolio 

achieves a slightly higher wealth of             at           compared 

with the Helmbold universal portfolio for data set A. For data sets B and C, 

the CSD universal portfolios achieve significantly higher wealths of      

       and             at           and           respectively. 

Although the good-performance results are data-dependent, we can conclude 

that there are CSD universal portfolios that can outperform the Helmbold 

universal portfolios. In fact, we can achieve higher wealths from the CSD 

universal portfolios by changing the initial starting portfolio   . Table 3.2 

shows that by using                           for the data sets B and C, 

we are able to achieve higher wealths of             (compared to 

           ) and             (compared to            ), 

respectively. Hence the initial starting portfolio    can be regarded as a factor 

or parameter influencing the performance of the CSD universal portfolio. 

 

Table 3.2: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the CSD universal portfolio for data sets A, B and C, where 

   are set as stated 

Table 3.2 continued 

Data set Extended range of   

Set A 

                   

                          
                 at 

          

                            

Set B 

                   

                          
                 at 

          

                            

Set C 

                   

                          
                 at 
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3.2 Running the Chi-Square Divergence Universal Portfolios on 10-

stock Data Sets 

 

 The CSD universal portfolio can be implemented online using day-to-

day updates and it requires much lesser computer memory requirements 

compared to the Dirichlet-weighted universal portfolio. The computer memory 

requirements are growing linearly with the number of stocks, so the CSD 

universal portfolio can be implemented on any number of stocks. In this 

section, we run the CSD universal portfolios on the same four 10-stock data 

sets in Section 2.3. 

 

 First, we run the CSD universal portfolios on data sets D, E, F and G 

using                            . The portfolios       and the 

maximum wealths           achieved by respective  ’s over the range of 

values of   considered on each data set after      trading days are listed in 

Table 3.3. From Tables 2.10 and 3.3, the maximum wealth            

        achieved by the Helmbold universal portfolio is slightly higher than 

the maximum wealth                    achieved by the CSD universal 

portfolio for data set D. For data sets E, F and G, the maximum wealths 

achieved by the CSD universal portfolios are 

                           and         respectively, which are much 

higher than the maximum wealths achieved by the Helmbold universal 

portfolios. For data sets F and G, the maximum wealths            achieved 

by the CSD universal portfolios are even higher than the wealth      
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achieved by the best constant rebalanced portfolios (BCRP) from Tables 3.3 

and 2.11.  

 

Table 3.3: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the CSD universal portfolio for data sets D, E, F and G, 

where                             
Table 3.3 continued     

Data set Smallest   Largest   Best                    

Set D -5.1308 4.6077 0.3769 
(0.1333, 0.1300, 0.1178, 0.1053, 0.1051, 
0.1018, 0.0921, 0.0593, 0.0831, 0.0722) 

18.2431 

Set E -5.1203 4.6078 -2.8760 
(0.0035, 0.0057, 0.0014, 0.0310, 0.0250, 

0.0224, 0.0261, 0.6996, 0.0260, 0.1593) 
29.1040 

Set F -4.9553 5.3162 -4.9553 
(0.0003, 0.0001, 0.0000, 0.0000, 0.6796, 
0.0000, 0.0008, 0.3062, 0.0003, 0.0127) 

22.3262 

Set G -5.1030 4.7028 -3.7942 
(0.0013, 0.7729, 0.0184, 0.0044, 0.0626, 

0.0017, 0.0000, 0.0026, 0.0021, 0.1340) 
25.5834 

 

 Next, the CSD universal portfolios are run on the four 10-stock data 

sets using         
  that is computed in Table 2.11. Table 3.4 shows the 

resulting portfolios       and the maximum wealths            achieved by 

respective  ’s over the range of values of   considered on each data set after 

     trading days where the initial starting portfolios    are the BCRP’s. 

Data sets D and E achieve the same maximum wealths            

        by the CSD universal portfolios, and it is higher than the maximum 

wealths            achieved by the Helmbold universal portfolios when 

        
  from Tables 3.4 and 2.12. Whereas for data sets F and G, the 

maximum wealths achieved by the CSD universal portfolios,            

        and         respectively, are lower than the maximum wealths 

achieved by the Helmbold universal portfolios when         
 . From the 

results, we can conclude that there are CSD universal portfolios that can 

perform better than the Helmbold universal portfolios and there are CSD 

universal portfolios that can outperform the BCRP’s. 
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Table 3.4: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by the 

CSD universal portfolio for data sets D, E, F and G, where 

        
  

Table 3.4 continued     

Data 

set 
Smallest   Largest   Best                    

Set D -9.3310 10.3310 -2.5743 
(0.1572, 0.8428, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

48.3525 

Set E -9.3310 10.3310 -2.5743 
(0.1572, 0.8428, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
48.3525 

Set F -4.9959 8.7514 -2.6671 
(0.1448, 0.8279, 0.0274, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

26.5128 

Set G -3.8807 4.8240 -2.2298 
(0.0000, 0.0000, 0.0000, 0.0427, 0.0000, 

0.0000, 0.9063, 0.0511, 0.0000, 0.0000) 
32.8167 
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CHAPTER FOUR 

 

MAHALANOBIS UNIVERSAL PORTFOLIO 

 

 

 In Chapter Three, we introduce an additive-update universal portfolio 

which is generated by the chi-square divergence (CSD) distance measure. It is 

the objective of this chapter to show that the CSD universal portfolio belongs 

to a general class of universal portfolios generated by the Mahalanobis 

squared divergence (alternatively known as the quadratic divergence). 

 

4.1 The Mahalanobis Parametric Family of Additive-Update Universal 

Portfolio 

 

 The results in this section are presented in Tan and Lim [30]. The 

Mahalanobis squared divergence generates a large family of additive-update 

universal portfolios containing the subclass of CSD universal portfolios. The 

Mahalanobis universal portfolio is characterised by three parameters, namely, 

the positive definite, symmetric matrix generating the divergence, the initial 

starting portfolio and a scalar parameter. 

 

 The Mahalanobis squared divergence distance measure with respect to 

a symmetric, positive definite matrix         is 

                  
           (4.1)  
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where          and          are any two portfolio vectors. Alternatively, 

(4.1) can be written as 

                       
                          

   

 

   

 

 

 The Mahalanobis universal portfolio is the sequence of universal 

portfolios        given by 

 
        

 

   
    

        
       
      

        (4.2)  

where initial starting portfolio    is given and   is any real number such that 

       for          . The matrix   is assumed to be symmetric and 

positive definite and             denotes a vector consisting of all  ’s. 

 

 First, we show that the Mahalanobis parametric family universal 

portfolios maximize and minimize a certain objective functions which is a 

linear combination of the growth rate of the wealth and the Mahalanobis 

squared divergence distance measure. 

 

Proposition 4.1 Consider the objective functions 

                  
                 

and 

                  
                 

where             is the Mahalanobis squared divergence distance 

measure given by (4.1) and    . By approximating         
     using 

       
     

    
   

  
   

   , the maximum of the objective function         is 
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achieved at      given by (4.2). Similarly, the minimum of         is also 

achieved at      given by (4.2) where   is replaced by –  . 

Proof. We introduce the Lagrange multiplier   for the constraint 

       
 
     . Consider maximizing the objective function 

 
                    

     
    
   
  
   

   

                 
 

 

   

                              

   

          

 

   

    

(4.3)  

and minimizing the objective function 

                    
     

    
   
  
   

   

                 
 
                              

   

 

   

          

 

   

     

Differentiating (4.3), we have 
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Setting 
           

       
   for          , we obtain  

  
  
  
   

                 

Hence 

 
        

 

   
    

      
 

 
      (4.4)  

To evaluate  , pre-multiply (4.4) by    to obtain 

    
 

   
    

        
 

 
       

and consequently, 

  

 
 

  

  
   

       
      

  (4.5)  

Combining (4.4) and (4.5), we have (4.2). In a similar manner, it can be shown 

that the minimum of            is achieved at      given by (4.2) where   is 

replaced by   . Let 

                            

          
     

    
   
  
   

   

                 
 

   

   

                
 

                                      

     

   

                                      

   

   

                              

   

   

                              
   
     
   

 

(4.6)  
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where                 
   
   . Then the first partial derivatives of (4.6) are 

                             

       

    
       
  
   

                   

   

   

                                   

   

   

                  

for             and the second partial derivatives of (4.6) are 

                              

              
  

                                      
                            

  

for            . Given                    which is positive definite 

and this implies that the submatrix                      
 is positive definite. 

If                       is a positive diagonal matrix, where       

for          , then               for    ,              , 

and the Hessian matrix of                              is     where 

     
                       
                              

  

for               and          for          . From the 

previous result in Proposition 2.2,   is positive definite. Hence the Hessian 

matrix of                              is negative definite. Similarly if 
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where                 
   
   , its Hessian matrix is    which is positive 

definite. Hence                              and 

                             are concave and convex respectively if   is a 

positive diagonal matrix, having maximum and minimum points respectively. 

In general,            and            have the Hessian matrices     and 

    respectively where                        are   free variables. If   is 

positive definite and does not depend on     , then            and 

           are concave and convex respectively over 

                                                           

If   depends on      and is positive definite over a sub-region     , then 

           and            are concave and convex respectively over  . 

Furthermore,            and            have maximum and minimum points 

respectively.            □ 

 

 The Mahalanobis universal portfolio is an additive-update universal 

portfolio and hence it is important to derive the sufficient conditions for the 

“portfolios” generated to be genuine portfolio vectors. 

 

Proposition 4.2 (i) The Mahalanobis universal portfolio (4.2) can be 

expressed as 

 
        

 

   
    

       (4.7)  

where the matrix            is given by 
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 (4.8)  

and            . Furthermore,      is symmetric with zero row sums. 

(ii) Given that          is a portfolio vector, then for      defined by 

(4.7) to be a portfolio, it is necessary and sufficient that 

 
 

   
       

           
          

   
       

           
 (4.9)  

for          , where           denotes the  th element of the vector 

      . 

(iii) For the sequence        defined by (4.7) to be a valid sequence of 

portfolio vectors, it is sufficient that 

 
    

   
   
     

   
   

     

   
   
     

   
 
         

 (4.10)  

where                    
 
    . 

Proof. (i) Comparing (4.2) and (4.7), we must have 

              
       
      

      

 
      

     
    

     (4.11)  

Identifying the  th element of the vector in (4.11), we have the identity 

               
 

 
                   

         
      

  

 

 

  

Comparing coefficients of    , we have 
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Noting that                 because   is symmetric, (4.8) follows. 

Equivalently, 

         
             

        
  

Consequently,      is symmetric. From (4.8), 

    
 

     
 

     
 

    

Thus the row sums of      are zero. Similarly, the column sums of      are 

also zero. 

(ii) Given that    is a portfolio vector, it follows from (4.7) that for 

        , it is necessary and sufficient that 

               
        

for           and (4.9) is obtained. 

(iii) For any vector       , we define 

        
 
        

Then, it is easy to deduce that for any matrix  , 

               

where 

        
 

       

 

   

   

Thus, 

                                   

for          . Noting that    
              , the following inequality 

holds 
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for          . Thus the condition (4.10) is sufficient for        to be a 

valid sequence of portfolio vectors.      □ 

 

4.1.1 Mahalanobis Universal Portfolios Generated by Special Symmetric 

Matrices 

 

 We study the Mahalanobis universal portfolios generated by the 

Mahalanobis squared divergence associated with special symmetric matrices 

in this subsection. The explicit formulae for the additive-update are derived 

according to the respective matrices. 

 

 We consider investment in a three-stock market using universal 

portfolios generated by special symmetric, positive definite matrices       

and         given below 

 
      

 

      
 
    
        
    

  (4.12)  

where      , and 

 
         

 

        
 
      
       
      

  (4.13)  

where      . The corresponding inverse matrices of (4.12) and (4.13) are 

given by 

 
  
       

    

   
    

  (4.14)  



 
58 

 
  
         

   
   
   

   (4.15)  

We now present the xi-parametric families of       and         universal 

portfolios, omitting the details of the derivation of the formulae which are 

given in Section 4.1. The xi-parametric family of       universal portfolios 

     is given by 

           
 

   
    

                     

 
           

 

   
    

                      (4.16)  

           
 

   
    

                     

where 

   
                

          
  

 
   

       

          
  (4.17)  

          
              

          
  

for      . Note that   is a valid parameter only if          for all 

          and        , given the initial starting portfolio   . The xi-

parametric family of         universal portfolios      is given by 

           
 

   
    

                     

 
           

 

   
    

                      (4.18)  

           
 

   
    

                     

where 
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   (4.19)  

            
        

     
  

for      . Again   is a valid parameter only if          for all   

        and        , given the initial starting portfolio   . 

 

 In order to compare the performance of the       and         

universal portfolios with the Helmbold and CSD universal portfolios, we 

choose the three same data sets that used in Sections 2.1 and 3.1 with the 

initial starting portfolio                          . 

 

 For data sets A, B and C, the CSD universal portfolios perform better 

than the Helmbold universal portfolios in Section 3.1. From Table 3.1, the 

maximum wealths           achieved by the CSD universal portfolios are 

              and        for data sets A, B and C respectively. We run the 

      and         universal portfolios on data sets A, B and C to compare 

their performance with that of the CSD universal portfolios. The portfolios 

     and the maximum wealths           achieved by respective  ’s over 

the range of values of   considered are displayed in Tables 4.1, 4.2 and 4.3 for 

nine selected values of   in Table 4.1 and 11 selected pairs of       in Tables 

4.2 and 4.3. In Table 4.1, the       universal portfolio achieves a higher 

wealth of                  for data set A,       and            

        compared with the value of                  for the CSD 
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universal portfolio. This indicates an increase in wealth of        units or 

     . In Table 4.2, there is a higher wealth of                  

achieved for the         universal portfolio where        and       for 

data set A. This is an increase of        units of wealth or        over the 

maximum wealth of the CSD universal portfolio. A higher wealth of 

                 is also observed for data set A in Table 4.3 as the  

        universal portfolio where         and      . This corresponds 

to a smaller increase of        units of wealth or       over that of the 

maximum wealth of the CSD universal portfolio. However, it is observed in 

Tables 4.1, 4.2 and 4.3, that the use of the       and         universal 

portfolios does not lead to a better performance over the CSD universal 

portfolios for data sets B and C. 

 

Table 4.1: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the       universal portfolio for selected values of   for data 

sets A, B and C, where                           
Table 4.1 continued 

Data 

set 
  Smallest   Largest   Best                  

Set 
A 

0.1 -1.5551 1.1825 -1.5551 (0.0532, 0.7219, 0.2249) 1.5940 

0.2 -1.7506 1.3834 -1.7506 (0.0533, 0.7060, 0.2407) 1.6005 

0.3 -2.0021 1.6473 -2.0021 (0.0534, 0.6901, 0.2565) 1.6070 

0.4 -2.3360 2.0045 -2.3360 (0.0535, 0.6743, 0.2721) 1.6135 

0.5 -2.8005 2.5094 -2.8005 (0.0536, 0.6588, 0.2875) 1.6199 

0.6 -3.4928 3.2719 -3.4928 (0.0537, 0.6437, 0.3026) 1.6261 

0.7 -4.6402 4.5482 -4.6402 (0.0538, 0.6290, 0.3172) 1.6321 

0.8 -6.9254 7.1078 -6.9254 (0.0539, 0.6149, 0.3313) 1.6379 

0.9 -13.7626 14.7978 -13.7626 (0.0539, 0.6013, 0.3448) 1.6435 

Set 

B 

0.1 -0.4724 0.6973 0.6973 (0.0264, 0.1669, 0.8067) 2.6304 

0.2 -0.4978 0.7072 0.7072 (0.0219, 0.1886, 0.7896) 2.6237 

0.3 -0.5350 0.7356 0.7356 (0.0181, 0.2065, 0.7754) 2.6181 

0.4 -0.5890 0.7853 0.7853 (0.0159, 0.2218, 0.7623) 2.6120 

0.5 -0.6690 0.8677 0.8677 (0.0143, 0.2347, 0.7510) 2.6063 

0.6 -0.7936 1.0052 1.0052 (0.0130, 0.2455, 0.7414) 2.6015 

0.7 -1.0064 1.2491 1.2491 (0.0119, 0.2547, 0.7334) 2.5974 

0.8 -1.4391 1.7545 1.7545 (0.0110, 0.2626, 0.7264) 2.5939 

0.9 -2.7490 3.2998 3.2998 (0.0101, 0.2694, 0.7205) 2.5909 
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Table 4.1 continued 

Data 

set 
  Smallest   Largest   Best                  

Set 
C 

0.1 -0.3859 0.6049 0.6049 (0.1542, 0.0171, 0.8286) 2.4417 

0.2 -0.4137 0.7077 0.7077 (0.1098, 0.0171, 0.8731) 2.4964 

0.3 -0.4515 0.8428 0.8428 (0.0617, 0.0171, 0.9212) 2.5568 

0.4 -0.5040 1.0074 1.0074 (0.0156, 0.0226, 0.9617) 2.6070 

0.5 -0.5795 1.0748 1.0748 (0.0149, 0.0679, 0.9171) 2.5366 

0.6 -0.6950 1.2101 1.2101 (0.0143, 0.1037, 0.8819) 2.4821 

0.7 -0.8900 1.4687 1.4687 (0.0138, 0.1326, 0.8536) 2.4391 

0.8 -1.2830 2.0228 2.0228 (0.0135, 0.1562, 0.8303) 2.4043 

0.9 -2.4687 3.7420 3.7420 (0.0131, 0.1758, 0.8110) 2.3758 

 

Table 4.2: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       
where      for data sets A, B and C, where    
                       

Table 4.2 continued      

Data 
set 

    
Smallest 

  

Largest 

  
Best                  

Set 

A 

0.10 0.05 -14.4946 9.1316 -3.9838 (0.2610, 0.4554, 0.2835) 1.5663 

0.20 0.10 -7.2473 4.5658 -1.9919 (0.2610, 0.4554, 0.2835) 1.5663 

0.30 0.15 -4.8315 3.0438 -1.3280 (0.2610, 0.4554, 0.2835) 1.5663 

0.50 0.25 -2.8989 1.8263 -0.7968 (0.2610, 0.4554, 0.2835) 1.5663 

1.00 0.50 -1.4494 0.9131 -0.3984 (0.2610, 0.4554, 0.2835) 1.5663 

5.00 2.50 -0.2898 0.1826 -0.0797 (0.2610, 0.4554, 0.2835) 1.5663 

10.00 5.00 -0.1449 0.0913 -0.0398 (0.2611, 0.4553, 0.2836) 1.5663 

20.00 10.00 -0.0724 0.0456 -0.0199 (0.2611, 0.4553, 0.2836) 1.5663 

         -4.4141 1.2736 -0.1228 (0.3188, 0.3578, 0.3234) 1.5652 

         -1.6896 11.7141 9.3917 (0.3785, 0.0000, 0.6215) 1.6885 

         -18.9702 1.2650 -0.1506 (0.3156, 0.3634, 0.3210) 1.5653 

Set 
B 

0.10 0.05 -7.2686 11.0391 11.0391 (0.1871, 0.0000, 0.8129) 2.5124 

0.20 0.10 -3.6343 5.5195 5.5194 (0.1871, 0.0000, 0.8129) 2.5124 

0.30 0.15 -2.4228 3.6797 3.6796 (0.1871, 0.0000, 0.8129) 2.5124 

0.50 0.25 -1.4537 2.2078 2.2077 (0.1871, 0.0000, 0.8129) 2.5124 

1.00 0.50 -0.7268 1.1039 1.1039 (0.1871, 0.0000, 0.8129) 2.5124 

5.00 2.50 -0.1453 0.2207 0.2207 (0.1872, 0.0001, 0.8127) 2.5123 

10.00 5.00 -0.0726 0.1103 0.1103 (0.1873, 0.0003, 0.8125) 2.5121 

20.00 10.00 -0.0363 0.0551 0.0551 (0.1874, 0.0005, 0.8120) 2.5118 

         -0.8953 8.9998 6.2539 (0.0060, 0.3632, 0.6308) 2.5845 

         -1.1252 11.7313 5.0148 (0.3506, 0.0001, 0.6493) 2.7053 

         -13.7856 1.0953 1.0953 (0.2076, 0.0000, 0.7924) 2.4134 

Set 

C 

0.10 0.05 -5.0734 4.6697 4.6697 (0.3585, 0.0171, 0.6244) 2.2038 

0.20 0.10 -2.5367 2.3348 2.3348 (0.3585, 0.0171, 0.6244) 2.2038 

0.30 0.15 -1.6911 1.5565 1.5565 (0.3585, 0.0171, 0.6244) 2.2038 

0.50 0.25 -1.0146 0.9339 0.9339 (0.3585, 0.0171, 0.6244) 2.2038 

1.00 0.50 -0.5073 0.4669 0.4669 (0.3585, 0.0171, 0.6244) 2.2038 

5.00 2.50 -0.1014 0.0933 0.0933 (0.3585, 0.0174, 0.6241) 2.2034 

10.00 5.00 -0.0507 0.0466 0.0466 (0.3585, 0.0177, 0.6238) 2.2030 

20.00 10.00 -0.0253 0.0233 0.0233 (0.3585, 0.0177, 0.6238) 2.2030 

         -0.7956 0.7183 0.7183 (0.3487, 0.0215, 0.6297) 2.1924 
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Table 4.2 continued      

Data 
set 

    
Smallest 

  

Largest 

  
Best                  

         -0.5436 10.3591 3.7002 (0.4177, 0.0002, 0.5821) 2.4972 

         -5.2933 0.5095 0.5095 (0.3575, 0.0232, 0.6193) 2.1519 

 

Table 4.3: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       
where       for data sets A, B and C, where    
                       

Table 4.3 continued      

Data 
set 

    
Smallest 

  

Largest 

  
Best                  

Set 

A 

1.05 0.05 -1.3357 0.9633 -1.3356 (0.0530, 0.7449, 0.2020) 1.5845 

1.10 0.10 -1.2772 0.9077 -1.2771 (0.0530, 0.7515, 0.1955) 1.5818 

1.15 0.15 -1.2241 0.8587 -1.1981 (0.0592, 0.7478, 0.1930) 1.5794 

1.25 0.25 -1.1313 0.7760 -0.9377 (0.1035, 0.6881, 0.2084) 1.5756 

1.50 0.50 -0.9536 0.6277 -0.5403 (0.1793, 0.5807, 0.2400) 1.5702 

3.50 2.50 -0.4222 0.2527 0.0273 (0.3495, 0.3041, 0.3465) 1.5651 

6 5 -0.2495 0.1452 0.0603 (0.3918, 0.2230, 0.3851) 1.5660 

11 10 -0.1373 0.0785 0.0483 (0.4167, 0.1720, 0.4113) 1.5672 

          -1.1212 0.6986 -0.4210 (0.2279, 0.4968, 0.2753) 1.5694 

          -0.9859 0.7877 -0.9859 (0.0708, 0.7482, 0.1810) 1.5950 

          -1.1283 0.6936 -0.4859 (0.2106, 0.5242, 0.2652) 1.5700 

Set 
B 

1.05 0.05 -0.4501 0.7116 0.7116 (0.0351, 0.1262, 0.8387) 2.6424 

1.10 0.10 -0.4443 0.7192 0.7192 (0.0382, 0.1117, 0.8501) 2.6466 

1.15 0.15 -0.4387 0.7268 0.7268 (0.0413, 0.0971, 0.8616) 2.6507 

1.25 0.25 -0.4281 0.7420 0.7420 (0.0476, 0.0678, 0.8846) 2.6588 

1.50 0.50 -0.4039 0.7615 0.7615 (0.0709, 0.0000, 0.9291) 2.6648 

3.50 2.50 -0.2793 0.3043 0.3043 (0.3263, 0.0000, 0.6737) 2.3403 

6 5 -0.2012 0.1745 0.1745 (0.4000, 0.0001, 0.6000) 2.2536 

11 10 -0.1287 0.0942 0.0942 (0.4458, 0.0002, 0.5540) 2.2010 

          -0.4051 0.7122 0.7122 (0.0334, 0.1290, 0.8376) 2.6222 

          -0.4207 0.7833 0.7833 (0.0413, 0.0354, 0.9234) 2.7187 

          -0.4374 0.7079 0.7079 (0.1004, 0.0000, 0.8996) 2.6167 

Set 
C 

1.05 0.05 -0.3573 0.4927 0.4927 (0.2131, 0.0171, 0.7697) 2.3709 

1.10 0.10 -0.3494 0.4643 0.4643 (0.2290, 0.0171, 0.7539) 2.3522 

1.15 0.15 -0.3420 0.4392 0.4392 (0.2430, 0.0171, 0.7399) 2.3357 

1.25 0.25 -0.3282 0.3969 0.3969 (0.2666, 0.0171, 0.7163) 2.3082 

1.50 0.50 -0.2986 0.3210 0.3210 (0.3092, 0.0171, 0.6737) 2.2593 

3.50 2.50 -0.1752 0.1292 0.1292 (0.4176, 0.0172, 0.5652) 2.1389 

6 5 -0.1157 0.0742 0.0742 (0.4488, 0.0175, 0.5337) 2.1050 

11 10 -0.0689 0.0401 0.0401 (0.4682, 0.0177, 0.5142) 2.0841 

          -0.3133 0.3840 0.3840 (0.2734, 0.0180, 0.7086) 2.2968 

          -0.3038 0.4250 0.4250 (0.2528, 0.0133, 0.7339) 2.3504 

          -0.3393 0.3213 0.3213 (0.3080, 0.0193, 0.6728) 2.2463 
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 In Table 4.2, we observed that the portfolios      and maximum 

wealths      achieved by the         universal portfolios, where   and   are 

constants independent of  , are approximately equal for data sets A, B and C. 

Whereas the values of smallest  , largest   and best   vary with respective 

pairs of       in some fashion. That is, if             is three times the pair 

            in   and  , then the values of   for             are approximately 

three times the values of   for            . We strongly believe that the 

        universal portfolios have the same behaviour whenever      

(where     and   are constants) holds for a particular  . 

 

The performance of the       and         universal portfolios 

depends on the price-relative data set. We have shown that for some data sets, 

it may be possible to achieve higher investment wealths by using the       

and         universal portfolios. The results in this section are reported in Tan 

and Lim [31]. 

 

4.1.2 Mahalanobis Universal Portfolios Generated by Special Diagonal 

Matrices 

 

 The sufficient condition (4.10) for valid parametric values   is only 

useful provided             is bounded away from zero, that is              . 

In practice, this is not easy to verify. Another sufficient condition for valid 

values of   which is more practical is available for the Mahalanobis universal 

portfolios generated by special diagonal matrices given in the next proposition. 
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Proposition 4.3 Consider a Mahalanobis universal portfolio generated 

by a diagonal matrix           where       
     for          . 

(i) The universal portfolio        is given by 

 
           

   
   

    
             (4.20)  

for           where 

         
  

          
    

 

   

  

 (ii) Given that          is a portfolio vector, then for      to be a 

portfolio vector, it is necessary and sufficient that 

 
 

   
       

              
          

   
       

              
 (4.21)  

for          . 

(iii) A sufficient condition for the sequence        to be portfolio vectors 

is that 

 
    

   
   
        

   
        

   
 
    

 
         

 
      

  (4.22)  

If          for          , the sufficient condition (4.22) reduces to the 

following condition independent of   : 

 
    

   
   
        

   
      

   
 
    

 
         

 
      

  (4.23)  

Proof. (i) Now                 where          for   

       . We observe that 

       
      

          
  

          
    

 

   

  



 
65 

              and          . From (4.2), 

           
 

   
    

                 

where (4.20) follows. 

(ii) Given that    is a portfolio vecor, it follows from (4.20) that for 

        , if and only if 

              
    

       
  

 

for           and the condition (4.21) follows. 

(iii) We observe that 

                
 
         

 
      

and hence 

   
   
        

   
        

   
 
    

 
         

 
      

 
   

       
              

 

for          . It is clear that the condition (4.22) is sufficient for        to 

be a valid sequence of portfolio vectors. When          for          , it 

is again evident (4.22) becomes (4.23).     □ 

 

 When      for           in Proposition 4.3(iii), the Mahalanobis 

universal portfolio generated by        
        

    is known as the 

CSD universal portfolio which has been studied in Chapter Three. 

 

 We focus on the Mahalanobis universal portfolios generated by special 

diagonal matrices      
    where          for          , and their 

performance on the three data sets designated as A, B and C in this thesis. We 
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have run the Helmbold and CSD universal portfolios on the data sets A, B and 

C using                           in Sections 2.1 and 3.1. Since the 

maximum wealths achieved by the Helmbold universal portfolios are 

dominated by the maximum wealths achieved by the CSD universal portfolios 

for data sets A, B and C, we shall only compare with the CSD universal 

portfolios. 

 

 The Mahalanobis universal portfolios generated by      
    for 

selected values of          for           are run on the data sets A, B 

and C using                          . The portfolios      and the 

maximum wealths      achieved by each universal portfolio generated by 

           over the range of values of   considered are listed in Tables 4.4, 

4.5 and 4.6. The first row of each table lists down the maximum wealth      

achieved by the CSD universal portfolio for comparison. It can be seen from 

the three tables that the                             Mahalanobis 

universal portfolio always outperform the CSD universal portfolio in terms of 

maximum wealth      achieved for data sets A, B and C. In Table 4.4, the 

                Mahalanobis universal portfolio achieves a higher maximum 

wealth             than the maximum wealth             achieved by 

the CSD universal portfolio for data set A. For data set C, the 

                Mahalanobis universal portfolio achieves the maximum 

wealth             which is higher than the maximum wealth      

       achieved by the CSD universal portfolio in Table 4.6. 
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Table 4.4: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the selected            Mahalanobis universal portfolios for 

data set A, where                           
Table 4.4 continued 

           Smallest   Largest   Best                  

              -14.6638 16.1608 -1.9174 (0.2106, 0.5298, 0.2596) 1.5758 

                -3.1077 3.8873 -2.0078 (0.0533, 0.7057, 0.2410) 1.6242 

                -4.9417 2.7498 2.1733 (0.4603, 0.0000, 0.5397) 1.6110 

                -2.6348 5.3052 2.6447 (0.4000, 0.0003, 0.5997) 1.5835 

                -2.9890 5.2269 2.7036 (0.7653, 0.0002, 0.2345) 1.6346 

                -3.3646 7.7393 -1.8684 (0.1848, 0.6923, 0.1230) 1.6375 

                -5.2591 3.0243 5.2591 (0.0000, 0.9058, 0.0942) 1.9108 

                 -2.9395 4.1060 -0.7843 (0.1484, 0.5387, 0.3130) 1.5766 

                 -6.9911 2.9861 6.9911 (0.0000, 1.0000, 0.0000) 1.7543 

                 -2.8029 7.8468 -1.0109 (0.2342, 0.6063, 0.1596) 1.5980 

 

Table 4.5: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the selected            Mahalanobis universal portfolios for 

data set B, where                           

Table 4.5 continued 

           Smallest   Largest   Best                  

              -12.1887 13.0114 13.0114 (0.0000, 0.0000, 1.0000) 3.8394 

                -4.1560 2.4293 2.4293 (0.0000, 0.0279, 0.9721) 3.4195 

                -4.0106 2.3587 2.3587 (0.0291, 0.0000, 0.9709) 3.3248 

                -2.0563 4.3663 4.3663 (0.0011, 0.0000, 0.9989) 3.7693 

                -4.0459 2.9111 2.9111 (0.0000, 0.0000, 1.0000) 3.3396 

                -2.0858 4.5329 4.5329 (0.0000, 0.0006, 0.9994) 3.7953 

                -2.2510 2.6682 2.6682 (0.0001, 0.0000, 0.9999) 3.2429 

                 -6.0547 2.6942 2.6941 (0.0000, 0.0004, 0.9996) 3.5292 

                 -2.7724 2.6674 2.6674 (0.0009, 0.0000, 0.9991) 3.4399 

                 -2.0892 6.4927 6.4926 (0.0000, 0.0000, 1.0000) 3.9974 

 

Table 4.6: The portfolios      and the maximum wealths           
achieved by respective  ’s within an extended range of   by 

the selected            Mahalanobis universal portfolios for 

data set C, where                           
Table 4.6 continued 

           Smallest   Largest   Best                  

              -15.2103 16.7997 11.8504 (0.0000, 0.0000, 1.0000) 3.6480 

                -4.2718 3.0235 3.0234 (0.0000, 0.0032, 0.9968) 3.4880 

                -2.8263 2.8594 2.5320 (0.0259, 0.0000, 0.9741) 3.1309 

                -2.8606 3.8431 2.8236 (0.0129, 0.0000, 0.9871) 3.3513 

                -4.1566 3.1274 3.1273 (0.0000, 0.0000, 1.0000) 3.3555 

                -2.9289 4.7738 4.7738 (0.0000, 0.0001, 0.9999) 3.7799 

                -2.5521 2.9303 2.9303 (0.0000, 0.0000, 1.0000) 3.2294 

                 -6.2426 3.0355 3.0355 (0.0000, 0.0000, 1.0000) 3.5758 
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Table 4.6 continued 

           Smallest   Largest   Best                  

                 -2.5884 2.8559 2.8559 (0.0004, 0.0000, 0.9996) 3.3278 

                 -2.8886 5.8405 4.1410 (0.0000, 0.0000, 1.0000) 3.7027 

 

 We have shown that there are Mahalanobis universal portfolios 

generated by                     that can outperform the CSD and 

Helmbold universal portfolios. To select an appropriate parametric value  , we 

can use the sufficient condition (4.23) given by Proposition 4.3(iii). 

 

4.2 Running the Mahalanobis Universal Portfolios on 10-stock Data 

Sets 

 

 The implementation of the Dirichlet-weighted universal portfolio 

needs computer memory requirements that are growing exponentially with the 

number of stocks. The disadvantage of the Dirichlet-weighted universal 

portfolio is the large computer memory requirements required to implement 

the algorithm if the number of stocks in the portfolio exceeds nine. We run the 

Mahalanobis universal portfolio which needs much lesser computer memory 

requirements on the 10-stock data sets D, E, F and G. In the meantime, a 

sufficient condition for the Mahalanobis or Helmbold universal portfolios to 

achieve a wealth exceeding that of the best constant rebalanced portfolio 

(BCRP) is derived in this section. 

 

Proposition 4.4 Given the price-relative vectors           , suppose 

  
  is the BCRP. 
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(i) Given   and      
 , suppose the Mahalanobis parametric family is 

defined for some          where        . If     is not a local 

maximum point of      , the wealth achieved by the Mahalanobis universal 

portfolio (4.2), then there exists some    in the interval          such that 

            . 

(ii) Consider the Helmbold parametric family where      
 . If     is 

not a local maximum point of      , the wealth achieved by the Helmbold 

universal portfolio (2.2), then there exists some    such that             . 

Proof. (i) We observe that when     and      
 , the portfolio given 

by (4.2) is a constant rebalanced portfolio      
  for          . Thus 

      at     is the wealth achieved by the BCRP   
 . The function       is 

continuous in   for         . If     is not a local maximum point, then 

there exists some    in the interval          such that             . 

(ii) The proof is analogous to (i).      □ 

 

 For data sets D, E, F and G in Tables 2.12 and 2.11, the maximum 

wealths achieved by the Helmbold universal portfolios, where the initial 

starting portfolio         
 , are                         and         

respectively. These are much higher than the wealths achieved by the BCRP’s 

which are                         and         for the four data sets 

respectively. We verify that the results are true from the sufficient condition 

for the Helmbold universal portfolio to achieve a wealth higher than that of the 

BCRP in Proposition 4.4(ii). From Tables 3.4 and 2.11, the values of 

           for the CSD universal portfolios, where the initial starting 

portfolio         
 , are                         and         for data 
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sets D, E, F and G respectively. Again the sufficient condition in Proposition 

4.4(i) holds and the values of            for the CSD universal portfolios are 

higher compared to the wealths achieved by the BCRP’s. 

 

 Before implementing the Mahalanobis universal portfolios on the 10-

stock data sets, we consider the following two special symmetric, positive 

definite matrices       and         that are given by: 

      
 

      

 
 
 
 
 
 
 
 
 
 
           
               
               
               
               
               
               
               
               
            

 
 
 
 
 
 
 
 
 

 (4.24)  

where      , and 

         

 

        

 
 
 
 
 
 
 
 
 
 
             
              
              
              
              
              
              
              
              
              

 
 
 
 
 
 
 
 
 

 
(4.25)  

where      . The corresponding inverse matrices of       and         

are given by 

  
      

 
 
 
 
 
 
 
 
 
 
                  

                 

                 

                 

                 

                 

                 

                 

                 
                   

 
 
 
 
 
 
 
 
 

 (4.26)  
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  (4.27)  

The explicit formulae of the xi-parametric families of       and         

universal portfolios      are 

 
        

 

   
    

        (4.28)  

and 

 
        

 

   
    

        (4.29)  

respectively. The matrix             for       is listed in Appendix A 

and the matrix             for       is listed in Appendix B and C. 

Note that   is a valid parameter only if          for all           and 

       , given the initial starting portfolio   . 

 

 We run the       and         universal portfolios on data sets D, E, F 

and G with the same initial starting portfolio 

                           . From Tables 2.10 and 3.3, the Helmbold 

universal portfolio performs better than the CSD universal portfolio for data 

set D and the maximum wealth achieved by the Helmbold universal portfolio 

is        . Whereas for data sets E, F and G, the CSD universal portfolios 

outperform the Helmbold universal portfolios and the maximum wealths 
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achieved by the CSD universal portfolios are                 and         

respectively. 

 

The portfolios       and the maximum wealths            achieved 

by respective  ’s over the range of values of   considered are listed in Tables 

4.7, 4.8 and 4.9 for nine selected values of   in Table 4.7 and    selected pairs 

of       in Tables 4.8 and 4.9. For data set D, the       universal portfolios 

for nine selected values of   in Table 4.8 achieve higher wealths of 

           compared with the values of                    for the 

Helmbold universal portfolio. In Tables 4.8 and 4.9, the                and 

          universal portfolios achieve the maximum wealths of 

                   and         respectively which are higher than the 

maximum wealth achieved by the Helmbold universal portfolio for data set D. 

Both the CSD and Helmbold universal portfolios perform better than the 

      universal portfolios for nine selected values of   in Table 4.8 for data 

set E. For data set E in Tables 4.8 and 4.9, the maximum wealths achieved by 

               and           universal portfolios are            

        and         respectively, and these are higher than the values of 

                   for the Helmbold universal portfolio but they do not 

exceed the values of                    for the CSD universal portfolio. 

However, the       and         universal portfolios for selected values of the 

parameters in Tables 4.7, 4.8 and 4.9 do not generate higher values of 

maximum wealths over the Helmbold and CSD universal portfolios for data 

sets F and G. 
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Table 4.7: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the       universal portfolio for selected values of   for data 

sets D, E, F and G, where                             
Table 4.7 continued 

Data 

set 
r 

Smallest 

  

Biggest 

  
Best                    

Set 

D 

0.1 -0.0771 0.0663 0.0663 
(0.1593, 0.1589, 0.1440, 0.1174, 0.1152, 

0.1069, 0.0827, 0.0086, 0.0610, 0.0460) 
18.7404 

0.2 -0.0759 0.0649 0.0649 
(0.1641, 0.1670, 0.1509, 0.1238, 0.1173, 
0.1051, 0.0749, 0.0062, 0.0485, 0.0422) 

19.1134 

0.3 -0.0743 0.0631 0.0631 
(0.1691, 0.1744, 0.1582, 0.1308, 0.1194, 

0.1022, 0.0673, 0.0041, 0.0371, 0.0374) 
19.5177 

0.4 -0.0699 0.0612 0.0612 
(0.1745, 0.1814, 0.1656, 0.1379, 0.1212, 
0.0985, 0.0601, 0.0025, 0.0268, 0.0316) 

19.9440 

0.5 -0.0641 0.0589 0.0589 
(0.1794, 0.1868, 0.1717, 0.1440, 0.1223, 

0.0946, 0.0544, 0.0025, 0.0187, 0.0257) 
20.3540 

0.6 -0.0588 0.0579 0.0579 
(0.1853, 0.1918, 0.1770, 0.1490, 0.1229, 
0.0909, 0.0497, 0.0029, 0.0117, 0.0189) 

20.7607 

0.7 -0.0570 0.0599 0.0599 
(0.1929, 0.1971, 0.1816, 0.1528, 0.1230, 

0.0878, 0.0462, 0.0030, 0.0051, 0.0104) 
21.1709 

0.8 -0.0618 0.0651 0.0651 
(0.1968, 0.1971, 0.1807, 0.1524, 0.1216, 
0.0862, 0.0468, 0.0085, 0.0043, 0.0057) 

21.3865 

0.9 -0.0856 0.0893 0.0893 
(0.1973, 0.1928, 0.1754, 0.1486, 0.1190, 

0.0860, 0.0508, 0.0174, 0.0081, 0.0044) 
21.4057 

Set 

E 

0.1 -0.0795 0.0785 -0.0795 
(0.0360, 0.0396, 0.0564, 0.0883, 0.0933, 

0.1014, 0.1214, 0.1346, 0.1503, 0.1787) 
21.2555 

0.2 -0.0786 0.0774 -0.0786 
(0.0306, 0.0305, 0.0491, 0.0826, 0.0920, 

0.1034, 0.1257, 0.1423, 0.1609, 0.1829) 
20.8407 

0.3 -0.0773 0.0737 -0.0773 
(0.0249, 0.0218, 0.0412, 0.0758, 0.0902, 

0.1059, 0.1309, 0.1509, 0.1712, 0.1873) 
20.3906 

0.4 -0.0754 0.0697 0.0697 
(0.1714, 0.1762, 0.1574, 0.1268, 0.1105, 

0.0922, 0.0674, 0.0486, 0.0302, 0.0193) 
20.5225 

0.5 -0.0713 0.0657 0.0657 
(0.1739, 0.1789, 0.1613, 0.1319, 0.1119, 

0.0902, 0.0640, 0.0434, 0.0259, 0.0185) 
20.9279 

0.6 -0.0676 0.0625 0.0625 
(0.1761, 0.1803, 0.1639, 0.1360, 0.1131, 

0.0886, 0.0614, 0.0396, 0.0231, 0.0178) 
21.3113 

0.7 -0.0658 0.0614 0.0614 
(0.1782, 0.1804, 0.1648, 0.1384, 0.1138, 

0.0876, 0.0600, 0.0378, 0.0219, 0.0171) 
21.6518 

0.8 -0.0697 0.0658 0.0658 
(0.1800, 0.1793, 0.1639, 0.1390, 0.1139, 

0.0873, 0.0601, 0.0379, 0.0221, 0.0164) 
21.9304 

0.9 -0.0959 0.0915 0.0915 
(0.1815, 0.1770, 0.1612, 0.1378, 0.1134, 

0.0876, 0.0618, 0.0400, 0.0238, 0.0158) 
22.1351 

Set 
F 

0.1 -0.0801 0.0914 -0.0801 
(0.0478, 0.0450, 0.0518, 0.0719, 0.0852, 
0.1012, 0.1411, 0.1623, 0.1464, 0.1473) 

12.9063 

0.2 -0.0770 0.0910 -0.0770 
(0.0439, 0.0377, 0.0452, 0.0664, 0.0831, 

0.1045, 0.1455, 0.1678, 0.1551, 0.1508) 
12.6373 

0.3 -0.0735 0.0922 -0.0346 
(0.0720, 0.0679, 0.0716, 0.0820, 0.0913, 
0.1036, 0.1228, 0.1339, 0.1293, 0.1257) 

12.3765 

0.4 -0.0699 0.0917 0.0917 
(0.1799, 0.1928, 0.1822, 0.1529, 0.1253, 

0.0872, 0.0366, 0.0046, 0.0139, 0.0246) 
12.5802 

0.5 -0.0666 0.0848 0.0848 
(0.1831, 0.1955, 0.1851, 0.1562, 0.1250, 
0.0847, 0.0356, 0.0044, 0.0094, 0.0210) 

12.8835 

0.6 -0.0642 0.0800 0.0800 
(0.1868, 0.1973, 0.1866, 0.1580, 0.1243, 

0.0828, 0.0359, 0.0054, 0.0062, 0.0167) 
13.1567 

0.7 -0.0643 0.0786 0.0786 
(0.1909, 0.1980, 0.1861, 0.1578, 0.1231, 
0.0818, 0.0376, 0.0080, 0.0046, 0.0121) 

13.3883 

0.8 -0.0703 0.0847 0.0847 
(0.1946, 0.1971, 0.1834, 0.1556, 0.1213, 

0.0818, 0.0411, 0.0124, 0.0048, 0.0079) 
13.5663 

0.9 -0.0987 0.1189 0.1189 
(0.1978, 0.1947, 0.1788, 0.1517, 0.1192, 
0.0827, 0.0458, 0.0183, 0.0067, 0.0042) 

13.6845 
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Table 4.7 continued 

Data 
set 

r 
Smallest 

  

Biggest 

  
Best                    

Set 

G 

0.1 -0.0865 0.0867 -0.0865 
(0.1143, 0.1085, 0.1519, 0.0744, 0.1468, 

0.0689, 0.0243, 0.0580, 0.0928, 0.1602) 
15.7198 

0.2 -0.0849 0.0856 -0.0849 
(0.1168, 0.1151, 0.1501, 0.0852, 0.1395, 
0.0671, 0.0219, 0.0529, 0.0942, 0.1572) 

15.6329 

0.3 -0.0851 0.0849 -0.0851 
(0.1204, 0.1219, 0.1502, 0.0944, 0.1330, 

0.0642, 0.0195, 0.0484, 0.0940, 0.1539) 
15.5673 

0.4 -0.0875 0.0847 -0.0875 
(0.1254, 0.1292, 0.1519, 0.1022, 0.1270, 
0.0608, 0.0171, 0.0441, 0.0923, 0.1500) 

15.5261 

0.5 -0.0930 0.0852 -0.0930 
(0.1322, 0.1372, 0.1548, 0.1087, 0.1214, 

0.0571, 0.0148, 0.0399, 0.0890, 0.1450) 
15.5147 

0.6 -0.1037 0.0868 -0.1037 
(0.1411, 0.1462, 0.1587, 0.1142, 0.1164, 

0.0534, 0.0123, 0.0353, 0.0840, 0.1383) 
15.5437 

0.7 -0.1229 0.0925 -0.1229 
(0.1520, 0.1558, 0.1626, 0.1188, 0.1120, 

0.0506, 0.0110, 0.0309, 0.0772, 0.1290) 
15.6159 

0.8 -0.1352 0.1088 -0.1352 
(0.1524, 0.1530, 0.1539, 0.1180, 0.1067, 
0.0582, 0.0270, 0.0405, 0.0753, 0.1149) 

15.5513 

0.9 -0.1940 0.1677 -0.1940 
(0.1504, 0.1479, 0.1447, 0.1159, 0.1036, 

0.0665, 0.0424, 0.0506, 0.0749, 0.1032) 
15.5168 

 

Table 4.8: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       
where      for data sets D, E, F and G, where    
                         

Table 4.8 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

Set 

D 

0.1 0.05 -1.0908 0.6640 -1.0908 

(0.0523, 0.0189, 0.0359, 

0.0791, 0.0801, 0.0881, 0.1129, 
0.2488, 0.1419, 0.1421) 

18.3449 

0.3 0.15 -0.3636 0.2213 -0.3636 

(0.0523, 0.0189, 0.0359, 

0.0791, 0.0801, 0.0881, 0.1129, 
0.2488, 0.1419, 0.1421) 

18.3449 

20 10 -0.0054 0.0033 -0.0054 

(0.0528, 0.0197, 0.0365, 

0.0793, 0.0803, 0.0882, 0.1128, 

0.2473, 0.1415, 0.1416) 

18.3433 

    0.5    -0.9983 0.5344 -0.9983 

(0.0556, 0.0825, 0.1241, 

0.0645, 0.1065, 0.0787, 0.0768, 

0.1891, 0.0848, 0.1374) 

20.2585 

    0.5    -0.8013 0.7327 -0.1222 
(0.0943, 0.0911, 0.0924, 

0.0974, 0.0981, 0.0994, 0.1015, 

0.1167, 0.1046, 0.1045) 

18.1867 

    0.5    -0.7303 0.6363 -0.7303 
(0.0278, 0.0967, 0.0540, 

0.0388, 0.1206, 0.1253, 0.1071, 

0.1905, 0.1168, 0.1224) 

18.7318 

    0.5    -1.2706 0.5152 -1.2706 
(0.0799, 0.0672, 0.1311, 

0.0649, 0.1032, 0.0567, 0.0661, 

0.1915, 0.0835, 0.1560) 

20.2515 

    0.5    -0.7916 0.8051 -0.0809 

(0.0964, 0.0939, 0.0951, 

0.0984, 0.0984, 0.0992, 0.1011, 
0.1110, 0.1033, 0.1031) 

18.1833 

    0.5    -0.7937 0.7501 -0.0623 

(0.0974, 0.0952, 0.0962, 

0.0990, 0.0988, 0.0993, 0.1009, 
0.1084, 0.1025, 0.1024) 

18.1818 

    0.5    -8.3597 0.5808 -3.5099 

(0.1343, 0.0846, 0.0691, 

0.1140, 0.1174, 0.0482, 0.0087, 

0.1520, 0.0899, 0.1818) 

18.2697 
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Table 4.8 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

    0.5    -0.5787 1.2565 -0.0780 

(0.0966, 0.0934, 0.0952, 

0.0988, 0.0982, 0.0990, 0.1014, 
0.1109, 0.1034, 0.1031) 

18.1832 

    0.5    -1.7772 0.6754 -1.7772 

(0.0956, 0.0195, 0.0823, 

0.1061, 0.0584, 0.0754, 0.0651, 

0.2634, 0.0758, 0.1583) 

19.7305 

      0.5      -0.7955 0.8888 -0.7955 

(0.0371, 0.0368, 0.0603, 

0.0738, 0.0830, 0.0929, 0.1233, 

0.2282, 0.1457, 0.1189) 

18.4615 

Set 

E 

0.1 0.05 -0.9573 0.7689 -0.9573 
(0.0725, 0.0383, 0.0544, 

0.0908, 0.0923, 0.0992, 0.1207, 

0.1336, 0.1466, 0.1517) 

22.5669 

0.3 0.15 -0.3191 0.2563 -0.3191 

(0.0725, 0.0383, 0.0544, 

0.0908, 0.0923, 0.0992, 0.1207, 
0.1336, 0.1466, 0.1517) 

22.5669 

20 10 -0.0047 0.0038 -0.0047 

(0.0730, 0.0394, 0.0552, 

0.0910, 0.0924, 0.0992, 0.1204, 
0.1329, 0.1458, 0.1507) 

22.5227 

    0.5    -1.2008 0.6545 -1.2008 

(0.0564, 0.0892, 0.1460, 

0.0814, 0.1115, 0.0723, 0.0756, 

0.1746, 0.0794, 0.1136) 

25.6109 

    0.5    -0.7196 0.8836 -0.7196 

(0.0609, 0.0586, 0.0378, 

0.0821, 0.1088, 0.1252, 0.1143, 

0.1473, 0.1326, 0.1324) 

21.9863 

    0.5    -0.6343 0.7628 -0.6343 

(0.0397, 0.0971, 0.0642, 

0.0609, 0.1212, 0.1262, 0.1154, 

0.1448, 0.1247, 0.1058) 

22.6598 

    0.5    -1.3057 0.7107 -1.3057 
(0.0720, 0.0673, 0.1356, 

0.0715, 0.1082, 0.0580, 0.0733, 

0.1854, 0.0910, 0.1378) 

24.9203 

    0.5    -0.7494 0.8828 -0.7494 
(0.0725, 0.0436, 0.0360, 

0.0847, 0.0862, 0.1107, 0.1213, 

0.1372, 0.1560, 0.1517) 

21.4996 

    0.5    -0.7959 0.7385 -0.7511 

(0.1016, 0.0296, 0.0317, 

0.1124, 0.0882, 0.0904, 0.1246, 
0.1180, 0.1436, 0.1600) 

21.0837 

    0.5    -8.5644 0.6542 -2.8352 

(0.1102, 0.0647, 0.0603, 

0.1192, 0.1098, 0.0538, 0.0270, 
0.1808, 0.1243, 0.1498) 

21.7422 

    0.5    -0.6013 7.7343 -0.6013 

(0.0698, 0.0365, 0.0459, 

0.0759, 0.0895, 0.1120, 0.1281, 

0.1151, 0.1705, 0.1565) 

21.5750 

    0.5    -1.6284 0.6557 -1.6284 

(0.1297, 0.0173, 0.0844, 

0.1286, 0.0688, 0.0873, 0.0937, 

0.0850, 0.0993, 0.2059) 

22.6953 

      0.5      -1.0910 0.7939 -1.0910 
(0.0704, 0.0242, 0.0973, 

0.1132, 0.0760, 0.0707, 0.1380, 

0.1275, 0.1455, 0.1372) 

23.9270 

Set 
F 

0.1 0.05 -0.9172 0.8678 -0.9172 

(0.0706, 0.0480, 0.0538, 

0.0746, 0.0868, 0.0983, 0.1412, 
0.1631, 0.1419, 0.1219) 

13.4338 

0.3 0.15 -0.3057 0.2892 -0.3057 

(0.0706, 0.0480, 0.0538, 

0.0746, 0.0868, 0.0983, 0.1412, 
0.1631, 0.1419, 0.1219) 

13.4337 

20 10 -0.0045 0.0043 -0.0045 

(0.0711, 0.0490, 0.0547, 

0.0751, 0.0870, 0.0983, 0.1404, 

0.1619, 0.1410, 0.1215) 

13.4128 

    0.5    1.3646 0.5700 1.3646 

(0.0516, 0.0980, 0.0423, 

0.0472, 0.1653, 0.0437, 0.1753, 

0.1592, 0.1317, 0.0856) 

13.6639 

    0.5    -0.8036 1.0218 -0.8036 
(0.0454, 0.0576, 0.0781, 

0.0684, 0.1109, 0.1024, 0.1417, 

0.1690, 0.1371, 0.0895) 

13.6128 
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Table 4.8 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

    0.5    -1.3978 0.8223 -1.3978 

(0.0716, 0.0471, 0.0355, 

0.0481, 0.1070, 0.0730, 0.1406, 
0.2203, 0.1407, 0.1160) 

13.8168 

    0.5    -8.5710 0.6759 -1.8249 

(0.0683, 0.0903, 0.0613, 

0.0278, 0.1475, 0.0971, 0.1447, 

0.1592, 0.1271, 0.0768) 

13.4172 

    0.5    -0.5808 6.3903 -0.5808 

(0.0528, 0.0604, 0.0762, 

0.0764, 0.0862, 0.1118, 0.1316, 

0.1584, 0.1386, 0.1076) 

13.3606 

    0.5    -1.4878 0.7295 -1.4878 
(0.1036, 0.0604, 0.0642, 

0.0346, 0.0949, 0.0495, 0.1385, 

0.1625, 0.1380, 0.1538) 

12.8251 

    0.5    -0.6139 15.5624 -0.6139 
(0.0633, 0.0534, 0.0731, 

0.0925, 0.0878, 0.1156, 0.1214, 

0.1534, 0.1337, 0.1058) 

13.4846 

    0.5    -0.7385 1.2187 -0.7385 
(0.0883, 0.0169, 0.0265, 

0.0758, 0.0564, 0.1139, 0.1408, 

0.1550, 0.1655, 0.1609) 

13.1255 

    0.5    -0.8460 0.9255 -0.8460 

(0.0820, 0.0387, 0.0563, 

0.0939, 0.0762, 0.1092, 0.1365, 
0.1546, 0.1235, 0.1292) 

13.3314 

      0.5      -1.2778 0.6008 -1.2778 

(0.0740, 0.0750, 0.0323, 

0.0824, 0.1053, 0.0588, 0.1720, 
0.1513, 0.1409, 0.1080) 

13.5838 

Set 
G 

0.1 0.05 -0.8713 0.8767 -0.8713 

(0.1384, 0.0980, 0.1511, 

0.0594, 0.1501, 0.0668, 0.0255, 

0.0614, 0.0867, 0.1625) 

15.6803 

0.3 0.15 -0.2904 0.2922 -0.2904 
(0.1384, 0.0980, 0.1511, 

0.0594, 0.1501, 0.0668, 0.0256, 

0.0614, 0.0867, 0.1625) 

15.6802 

20 10 -0.0043 0.0043 -0.0043 
(0.1379, 0.0980, 0.1505, 

0.0599, 0.1494, 0.0673, 0.0265, 

0.0619, 0.0869, 0.1617) 

15.6658 

    0.5    -1.7963 0.6740 -1.7963 

(0.0944, 0.0572, 0.1739, 

0.1014, 0.1703, 0.0335, 0.0699, 
0.0479, 0.0628, 0.1886) 

15.6586 

    0.5    -0.5736 5.8736 -0.5736 

(0.1508, 0.0925, 0.1512, 

0.0430, 0.1408, 0.0797, 0.0236, 
0.0655, 0.0854, 0.1675) 

15.2276 

    0.5    -0.7680 1.0477 -0.7680 

(0.1527, 0.0809, 0.1359, 

0.0717, 0.1412, 0.0601, 0.0337, 

0.0460, 0.1038, 0.1738) 

15.5640 

    0.5    -1.2149 0.6810 -1.2149 

(0.0722, 0.1692, 0.1367, 

0.0469, 0.1698, 0.0465, 0.1155, 

0.0932, 0.0450, 0.1049) 

17.5055 

    0.5    -0.5795 14.8871 14.8871 
(0.1098, 0.0749, 0.0986, 

0.1179, 0.0000, 0.1281, 0.1906, 

0.0743, 0.0920, 0.1138) 

15.8507 

    0.5    -0.7396 0.7859 -0.7396 
(0.1332, 0.1035, 0.1447, 

0.0806, 0.1388, 0.0689, 0.0168, 

0.0710, 0.0888, 0.1538) 

15.1810 

    0.5    -0.7010 0.7401 -0.7010 
(0.0996, 0.1355, 0.1252, 

0.0271, 0.1606, 0.1065, 0.0462, 

0.1068, 0.0867, 0.1059) 

16.3894 

    0.5    -0.7562 0.9586 -0.7562 

(0.1356, 0.1177, 0.1512, 

0.0515, 0.1511, 0.0826, 0.0152, 

0.0654, 0.0816, 0.1480) 

15.3945 

    0.5    -8.7551 0.6915 -2.1902 

(0.1012, 0.1685, 0.1427, 

0.0910, 0.1618, 0.0572, 0.0560, 
0.1009, 0.0228, 0.0980) 

15.6721 

      0.5      -0.9780 0.7572 -0.9780 

(0.1255, 0.0478, 0.1590, 

0.1006, 0.1538, 0.0364, 0.0475, 

0.0454, 0.1108, 0.1732) 

15.6307 
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Table 4.9: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       
where       for data sets D, E, F and G, where    
                         

Table 4.9 continued      

Data 

set 
r t 

Smallest 

  

Biggest 

  
Best                    

Set 

D 

1.05 0.05 -0.0767 0.0636 0.0636 

(0.1519, 0.1501, 0.1375, 

0.1118, 0.1131, 0.1073, 0.0907, 

0.0118, 0.0743, 0.0515) 

18.3724 

1.5 0.5 -0.0666 0.0443 0.0203 

(0.1171, 0.1228, 0.1173, 

0.1055, 0.1059, 0.1033, 0.0958, 

0.0595, 0.0883, 0.0846) 

18.1783 

11 10 -0.0098 0.0060 -0.0098 
(0.0882, 0.0201, 0.0370, 

0.0797, 0.0805, 0.0885, 0.1129, 

0.2473, 0.1417, 0.1041) 

18.8172 

   +1     -0.0780 0.0582 0.0582 
(0.1478, 0.1515, 0.1403, 

0.1107, 0.1140, 0.1062, 0.0890, 

0.0121, 0.0724, 0.0558) 

18.4328 

   +1     -0.0748 0.0611 0.0611 
(0.1492, 0.1511, 0.1364, 

0.1107, 0.1143, 0.1093, 0.0903, 

0.0122, 0.0738, 0.0527) 

18.3222 

   +1     -0.0736 0.0602 0.0602 

(0.1476, 0.1532, 0.1366, 

0.1089, 0.1153, 0.1098, 0.0905, 

0.0121, 0.0734, 0.0525) 

18.3867 

   +1     -0.0784 0.0588 0.0588 

(0.1489, 0.1501, 0.1398, 

0.1110, 0.1135, 0.1058, 0.0896, 
0.0120, 0.0733, 0.0560) 

18.3918 

   +1     -0.0751 0.0614 0.0614 

(0.1500, 0.1503, 0.1366, 

0.1113, 0.1127, 0.1081, 0.0908, 

0.0120, 0.0751, 0.0531) 

18.3070 

   +1     -0.0761 0.0611 0.0611 

(0.1509, 0.1488, 0.1358, 

0.1132, 0.1125, 0.1066, 0.0911, 

0.0118, 0.0747, 0.0544) 

18.2845 

   +1     -0.0769 0.0596 0.0596 
(0.1493, 0.1492, 0.1371, 

0.1129, 0.1126, 0.1065, 0.0900, 

0.0117, 0.0754, 0.0552) 

18.3130 

   +1     -0.0735 0.0634 0.0634 
(0.1524, 0.1472, 0.1368, 

0.1139, 0.1114, 0.1064, 0.0929, 

0.0110, 0.0757, 0.0524) 

18.3134 

   +1     -0.0762 0.0606 0.0606 

(0.1507, 0.1492, 0.1380, 

0.1135, 0.1118, 0.1065, 0.0904, 
0.0115, 0.0734, 0.0550) 

18.3404 

     +1       -0.0728 0.0631 0.0631 

(0.1500, 0.1496, 0.1371, 

0.1122, 0.1125, 0.1079, 0.0925, 
0.0117, 0.0761, 0.0505) 

18.3109 

Set 

E 

1.05 0.05 -0.079 0.0745 -0.0790 

(0.0423, 0.0470, 0.0612, 

0.0926, 0.0939, 0.0998, 0.1185, 

0.1293, 0.1409, 0.1745) 

21.7355 

1.5 0.5 -0.0609 0.0515 -0.0609 
(0.0602, 0.0413, 0.0567, 

0.0914, 0.0928, 0.0994, 0.1200, 

0.1321, 0.1446, 0.1614) 

22.2494 

11 10 -0.0099 0.0068 -0.0099 
(0.1071, 0.0294, 0.0474, 

0.0891, 0.0908, 0.0987, 0.1231, 

0.1383, 0.1527, 0.1233) 

23.5094 

   +1     -0.0777 0.0694 -0.0777 
(0.0404, 0.0511, 0.0678, 

0.0916, 0.0960, 0.0981, 0.1153, 

0.1333, 0.1362, 0.1703) 

22.0048 

   +1     -0.0763 0.0718 -0.0763 

(0.0432, 0.0470, 0.0579, 

0.0911, 0.0954, 0.1027, 0.1186, 
0.1322, 0.1411, 0.1708) 

21.8231 
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Table 4.9 continued      

Data 

set 
r t 

Smallest 

  

Biggest 

  
Best                    

   +1     -0.0739 0.0712 -0.0739 

(0.0412, 0.0535, 0.0610, 

0.0890, 0.0977, 0.1039, 0.1186, 
0.1316, 0.1390, 0.1645) 

21.9282 

   +1     -0.0793 0.0702 -0.0793 

(0.0420, 0.0464, 0.0649, 

0.0914, 0.0944, 0.0970, 0.1169, 

0.1329, 0.1393, 0.1747) 

21.9298 

   +1     -0.0767 0.0717 -0.0767 

(0.0452, 0.0449, 0.0577, 

0.0917, 0.0927, 0.1007, 0.1195, 

0.1306, 0.1436, 0.1734) 

21.7684 

   +1     -0.0787 0.0707 -0.0787 
(0.0467, 0.0415, 0.0553, 

0.0947, 0.0923, 0.0983, 0.1204, 

0.1288, 0.1437, 0.1784) 

21.7034 

   +1     -0.0796 0.0695 -0.0796 
(0.0441, 0.0436, 0.0588, 

0.0944, 0.0927, 0.0982, 0.1179, 

0.1291, 0.1439, 0.1773) 

21.7332 

   +1     -0.0745 0.0741 -0.0745 
(0.0473, 0.0439, 0.0583, 

0.0906, 0.0929, 0.1013, 0.1205, 

0.1281, 0.1454, 0.1718) 

21.8006 

   +1     -0.0802 0.0697 -0.0802 

(0.0463, 0.0418, 0.0593, 

0.0952, 0.0910, 0.0980, 0.1192, 
0.1268, 0.1417, 0.1806) 

21.7571 

     +1       -0.0770 0.0718 -0.0770 

(0.0459, 0.0421, 0.0603, 

0.0944, 0.0911, 0.0983, 0.1220, 
0.1269, 0.1443, 0.1746) 

21.7857 

Set 
F 

1.05 0.05 -0.0797 0.0860 -0.0797 

(0.0529, 0.0523, 0.0576, 

0.0766, 0.0875, 0.0982, 0.1372, 

0.1572, 0.1379, 0.1427) 

13.1906 

1.5 0.5 -0.0598 0.0586 -0.0598 
(0.0633, 0.0491, 0.0547, 

0.0750, 0.0869, 0.0982, 0.1401, 

0.1616, 0.1408, 0.1303) 

13.3523 

11 10 -0.0077 0.0076 -0.0077 
(0.0913, 0.0522, 0.0576, 

0.0770, 0.0879, 0.0988, 0.1381, 

0.1585, 0.1387, 0.0999) 

13.4743 

   +1     -0.0788 0.0776 -0.0788 

(0.0502, 0.0556, 0.0569, 

0.0745, 0.0934, 0.0954, 0.1398, 
0.1577, 0.1376, 0.1389) 

13.2399 

   +1     -0.0759 0.0827 -0.0759 

(0.0512, 0.0529, 0.0597, 

0.0760, 0.0900, 0.0987, 0.1381, 
0.1585, 0.1382, 0.1366) 

13.2386 

   +1     -0.0785 0.0823 -0.0785 

(0.0541, 0.0513, 0.0560, 

0.0756, 0.0873, 0.0976, 0.1374, 

0.1598, 0.1385, 0.1424) 

13.2086 

   +1     -0.0788 0.0787 -0.0788 

(0.0529, 0.0532, 0.0575, 

0.0746, 0.0890, 0.0990, 0.1369, 

0.1579, 0.1373, 0.1416) 

13.2035 

   +1     -0.0737 0.0872 -0.0737 
(0.0535, 0.0527, 0.0598, 

0.0765, 0.0871, 0.0999, 0.1372, 

0.1583, 0.1387, 0.1363) 

13.2431 

   +1     -0.0808 0.0802 -0.0808 
(0.0565, 0.0496, 0.0554, 

0.0741, 0.0854, 0.0954, 0.1377, 

0.1591, 0.1392, 0.1475) 

13.1626 

   +1     -0.0735 0.0846 -0.0735 
(0.0550, 0.0522, 0.0592, 

0.0787, 0.0871, 0.1004, 0.1354, 

0.1569, 0.1376, 0.1376) 

13.2371 

   +1     -0.0766 0.0855 -0.0766 

(0.0579, 0.0482, 0.0539, 

0.0762, 0.0838, 0.0991, 0.1380, 

0.1580, 0.1408, 0.1441) 

13.2058 

   +1     -0.0761 0.0817 -0.0761 

(0.0566, 0.0507, 0.0570, 

0.0782, 0.0856, 0.0991, 0.1371, 
0.1567, 0.1368, 0.1422) 

13.1981 

     +1       -0.0767 0.0790 -0.0767 

(0.0559, 0.0524, 0.0564, 

0.0788, 0.0856, 0.0966, 0.1385, 

0.1554, 0.1382, 0.1423) 

13.1941 
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Table 4.9 continued      

Data 

set 
r t 

Smallest 

  

Biggest 

  
Best                    

Set 
G 

1.05 0.05 -0.0850 0.0838 -0.085 

(0.1156, 0.1010, 0.1555, 

0.0615, 0.1545, 0.0691, 0.0267, 

0.0635, 0.0894, 0.1631) 

15.8091 

1.5 0.5 -0.0585 0.0585 -0.0585 

(0.1303, 0.0990, 0.1526, 

0.0602, 0.1516, 0.0676, 0.0260, 

0.0622, 0.0876, 0.1629) 

15.7250 

11 10 -0.0077 0.0079 -0.0077 
(0.1560, 0.0957, 0.1474, 

0.0583, 0.1464, 0.0655, 0.0254, 

0.0602, 0.0849, 0.1602) 

15.5622 

   +1     -0.0827 0.0785 -0.0827 
(0.1189, 0.0980, 0.1559, 

0.0642, 0.1533, 0.0675, 0.0275, 

0.0615, 0.0882, 0.1651) 

15.7546 

   +1     -0.0768 0.0830 -0.0768 

(0.1226, 0.0989, 0.1549, 

0.0583, 0.1523, 0.0703, 0.0256, 
0.0630, 0.0886, 0.1654) 

15.7037 

   +1     -0.0793 0.0808 -0.0793 

(0.1212, 0.0976, 0.1532, 

0.0629, 0.1525, 0.0677, 0.0274, 
0.0611, 0.0910, 0.1655) 

15.7524 

   +1     -0.0858 0.0791 -0.0858 

(0.1110, 0.1067, 0.1563, 

0.0595, 0.1579, 0.0662, 0.0321, 

0.0652, 0.0861, 0.1591) 

16.0125 

   +1     -0.0761 0.0826 -0.0761 

(0.1215, 0.0990, 0.1534, 

0.0619, 0.1501, 0.0699, 0.0263, 

0.0628, 0.0913, 0.1639) 

15.6943 

   +1     -0.0789 0.0793 -0.0789 

(0.1184, 0.1005, 0.1540, 

0.0645, 0.1519, 0.0689, 0.0256, 

0.0642, 0.0896, 0.1625) 

15.7021 

   +1     -0.0809 0.0796 -0.0809 
(0.1104, 0.1064, 0.1531, 

0.0569, 0.1568, 0.0749, 0.0274, 

0.0695, 0.0890, 0.1557) 

15.9454 

   +1     -0.0797 0.0803 -0.0797 
(0.1176, 0.1026, 0.1552, 

0.0603, 0.1541, 0.0705, 0.0255, 

0.0634, 0.0886, 0.1621) 

15.7518 

   +1     -0.0831 0.0781 -0.0831 

(0.1166, 0.1018, 0.1547, 

0.0637, 0.1534, 0.0683, 0.0271, 
0.0640, 0.0873, 0.1631) 

15.7703 

     +1       -0.0818 0.0792 -0.0818 

(0.1173, 0.0970, 0.1562, 

0.0633, 0.1553, 0.0662, 0.0283, 
0.0618, 0.0916, 0.1631) 

15.8382 

 

 We observe in Subsection 4.1.1 that the portfolios       and maximum 

wealths       achieved by         universal portfolios are approximately 

equal for different pairs of       satisfying the relationship of     , where 

    and   are constants. The values of smallest, largest and best   vary 

according to the respective pairs of       in some manner. From Table 4.8, we 

do believe that the         universal portfolios satisfying the relationship of 

    , where     and   are constants, also possess the same behaviour for 

each particular  . 
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 The BCRP’s for data sets D, E, F and G are listed in Table 2.11 and 

some of the components of BCRP’s are zero. We can replace the BCRP’s with 

zero components by the approximate positive BCRP’s. We use the notation 

     
  for the approximate positive BCRP’s. Next, we run the       and 

        universal portfolios with the initial starting portfolios being the 

approximate positive BCRP’s      
  given in Table 4.10. 

 

Table 4.10: The best constant rebalanced portfolios      
  and the 

approximate positive best constant rebalanced portfolios 

     
  for data sets D, E, F and G 

Table 4.10 continued 

Data set      
       

  

Set D 
(0.5981, 0.4019, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

(0.5581, 0.3619, 0.0100, 0.0100, 0.0100, 

0.0100, 0.0100, 0.0100, 0.0100, 0.0100) 

Set E 
(0.5981, 0.4019, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

(0.5581, 0.3619, 0.0100, 0.0100, 0.0100, 
0.0100, 0.0100, 0.0100, 0.0100, 0.0100) 

Set F 
(0.4836, 0.3869, 0.1295, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

(0.4536, 0.3669, 0.1095, 0.0100, 0.0100, 

0.0100, 0.0100, 0.0100, 0.0100, 0.0100) 

Set G 
(0.0000, 0.0000, 0.0000, 0.1965, 0.0000, 
0.0000, 0.5926, 0.2109, 0.0000, 0.0000) 

(0.0100, 0.0100, 0.0100, 0.1765, 0.0100, 
0.0100, 0.5626, 0.1909, 0.0100, 0.0100) 

 

 Tables 4.11 shows the portfolios       and the maximum wealths 

           achieved by respective  ’s over the range of values of   

considered for data sets D, E, F and G after      trading days for nine 

selected       universal portfolios where the initial starting portfolios 

        
 . Similarly, the results for    selected          universal portfolios 

are listed in Tables 4.12 and 4.13. The values of            for selected 

      and         universal portfolios in Tables 4.11, 4.12 and 4.13 are much 

lower than the maximum wealths achieved by the Helmbold and CSD 

universal portfolios where the initial starting portfolios         
 . Since the 

initial starting portfolios are replaced by the approximate positive BCRP’s 
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instead of the true BCRP’s with zero components, the Proposition 4.4(i) does 

not hold for the results in Tables 4.11, 4.12 and 4.13. From Tables 4.11, 4.12 

and 4.13, we observe that the values of            for selected       and 

        universal portfolios do not exceed the wealths achieved by the 

BCRP’s. However, the values of            for selected       and         

universal portfolios for data sets D, E, F and G, which are approximately 

         and    respectively, are slightly lower than the wealths achieved by 

the BCRP’s. The performance for selected       and         universal 

portfolios are considered to be good since it is close to the wealths achieved by 

the BCRP’s,      
                          and         respectively, 

for data sets D, E, F and G. 

 

Table 4.11: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the       universal portfolio for selected values of   for data 

sets D, E, F and G, where         
  

Table 4.11 continued 

Data 

set 
r 

Smallest 

  

Biggest 

  
Best                    

Set 
D 

0.1 -0.0096 0.0066 0.0066 
(0.5630, 0.3672, 0.0148, 0.0118, 0.0116, 
0.0109, 0.0086, 0.0010, 0.0064, 0.0048) 

35.2323 

0.2 -0.0086 0.0065 0.0065 
(0.5635, 0.3680, 0.0154, 0.0125, 0.0119, 

0.0108, 0.0078, 0.0007, 0.0051, 0.0044) 
35.2970 

0.3 -0.0078 0.0064 0.0064 
(0.5641, 0.3688, 0.0162, 0.0133, 0.0121, 
0.0105, 0.0070, 0.0004, 0.0039, 0.0038) 

35.3687 

0.4 -0.0071 0.0062 0.0062 
(0.5646, 0.3695, 0.0168, 0.0140, 0.0123, 

0.0101, 0.0063, 0.0003, 0.0028, 0.0032) 
35.4414 

0.5 -0.0066 0.0060 0.0060 
(0.5652, 0.3701, 0.0174, 0.0146, 0.0125, 
0.0097, 0.0057, 0.0003, 0.0020, 0.0026) 

35.5127 

0.6 -0.0063 0.0059 0.0059 
(0.5658, 0.3706, 0.0178, 0.0151, 0.0125, 

0.0094, 0.0052, 0.0004, 0.0012, 0.0019) 
35.5804 

0.7 -0.0064 0.0061 0.0061 
(0.5667, 0.3712, 0.0182, 0.0154, 0.0125, 
0.0090, 0.0049, 0.0004, 0.0006, 0.0011) 

35.6463 

0.8 -0.0073 0.0067 0.0067 
(0.5672, 0.3713, 0.0181, 0.0154, 0.0124, 

0.0088, 0.0049, 0.0009, 0.0005, 0.0006) 
35.6861 

0.9 -0.0111 0.0092 0.0092 
(0.5674, 0.3709, 0.0175, 0.0149, 0.0121, 
0.0088, 0.0052, 0.0018, 0.0009, 0.0005) 

35.6898 
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Table 4.11 continued 

Data 
set 

r 
Smallest 

  

Biggest 

  
Best                    

Set 

E 

0.1 -0.0109 0.0079 -0.0109 
(0.5513, 0.3547, 0.0036, 0.0085, 0.0089, 

0.0099, 0.0126, 0.0142, 0.0162, 0.0201) 
35.8853 

0.2 -0.0100 0.0079 -0.0100 
(0.5512, 0.3542, 0.0033, 0.0078, 0.0088, 
0.0101, 0.0128, 0.0148, 0.0170, 0.0198) 

35.7862 

0.3 -0.0093 0.0075 -0.0093 
(0.5510, 0.3537, 0.0030, 0.0072, 0.0086, 

0.0104, 0.0132, 0.0155, 0.0177, 0.0198) 
35.6939 

0.4 -0.0086 0.0071 -0.0086 
(0.5507, 0.3534, 0.0027, 0.0065, 0.0085, 
0.0106, 0.0136, 0.0161, 0.0183, 0.0197) 

35.6044 

0.5 -0.0081 0.0067 0.0067 
(0.5645, 0.3692, 0.0163, 0.0133, 0.0114, 

0.0093, 0.0067, 0.0045, 0.0028, 0.0020) 
35.6085 

0.6 -0.0078 0.0064 0.0064 
(0.5648, 0.3694, 0.0165, 0.0137, 0.0115, 

0.0091, 0.0064, 0.0041, 0.0025, 0.0019) 
35.6736 

0.7 -0.0080 0.0063 0.0063 
(0.5651, 0.3694, 0.0165, 0.0139, 0.0116, 

0.0090, 0.0063, 0.0040, 0.0024, 0.0018) 
35.7308 

0.8 -0.0091 0.0068 0.0068 
(0.5655, 0.3694, 0.0164, 0.0140, 0.0116, 
0.0089, 0.0062, 0.0040, 0.0024, 0.0017) 

35.7783 

0.9 -0.0133 0.0095 0.0095 
(0.5657, 0.3693, 0.0161, 0.0138, 0.0115, 

0.0089, 0.0064, 0.0042, 0.0025, 0.0017) 
35.8132 

Set 

F 

0.1 -0.0124 0.0091 -0.0124 
(0.4470, 0.3598, 0.1025, 0.0055, 0.0073, 

0.0096, 0.0156, 0.0193, 0.0164, 0.0170) 
19.9367 

0.2 -0.0124 0.0091 -0.0124 
(0.4462, 0.3585, 0.1013, 0.0045, 0.0069, 

0.0100, 0.0164, 0.0204, 0.0180, 0.0178) 
19.8847 

0.3 -0.0122 0.0093 -0.0122 
(0.4454, 0.3572, 0.1002, 0.0035, 0.0065, 

0.0105, 0.0172, 0.0214, 0.0195, 0.0187) 
19.8251 

0.4 -0.0119 0.0094 -0.0119 
(0.4445, 0.3561, 0.0991, 0.0026, 0.0062, 

0.0110, 0.0179, 0.0222, 0.0209, 0.0196) 
19.7616 

0.5 -0.0117 0.0087 0.0087 
(0.4611, 0.3757, 0.1179, 0.0160, 0.0129, 

0.0089, 0.0038, 0.0004, 0.0010, 0.0021) 
19.8024 

0.6 -0.0117 0.0082 0.0082 
(0.4615, 0.3760, 0.1180, 0.0161, 0.0128, 

0.0087, 0.0038, 0.0006, 0.0007, 0.0017) 
19.8443 

0.7 -0.0123 0.0081 0.0081 
(0.4621, 0.3762, 0.1180, 0.0160, 0.0127, 

0.0086, 0.0040, 0.0009, 0.0005, 0.0012) 
19.8798 

0.8 -0.0144 0.0087 0.0087 
(0.4625, 0.3761, 0.1177, 0.0157, 0.0124, 

0.0085, 0.0043, 0.0014, 0.0006, 0.0008) 
19.9058 

0.9 -0.0220 0.0123 0.0123 
(0.4629, 0.3760, 0.1173, 0.0153, 0.0121, 
0.0085, 0.0048, 0.0019, 0.0008, 0.0005) 

19.9244 

Set 
G 

0.1 -0.0111 0.0088 -0.0111 
(0.0111, 0.0103, 0.0158, 0.1731, 0.0149, 
0.0060, 0.5571, 0.1858, 0.0087, 0.0171) 

23.9551 

0.2 -0.0119 0.0087 -0.0119 
(0.0115, 0.0111, 0.0160, 0.1741, 0.0145, 

0.0057, 0.5560, 0.1850, 0.0088, 0.0174) 
23.9683 

0.3 -0.0127 0.0087 -0.0127 
(0.0119, 0.0120, 0.0162, 0.1751, 0.0139, 
0.0053, 0.5551, 0.1843, 0.0089, 0.0174) 

23.9778 

0.4 -0.0135 0.0087 -0.0135 
(0.0125, 0.0129, 0.0164, 0.1760, 0.0132, 

0.0049, 0.5543, 0.1838, 0.0088, 0.0172) 
23.9829 

0.5 -0.0138 0.0089 -0.0138 
(0.0130, 0.0136, 0.0163, 0.1768, 0.0124, 
0.0048, 0.5543, 0.1838, 0.0087, 0.0163) 

23.9703 

0.6 -0.0131 0.0091 -0.0131 
(0.0133, 0.0138, 0.0155, 0.1772, 0.0115, 

0.0053, 0.5552, 0.1846, 0.0086, 0.0148) 
23.9293 

0.7 -0.0130 0.0097 -0.0130 
(0.0134, 0.0138, 0.0147, 0.1774, 0.0109, 

0.0059, 0.5563, 0.1855, 0.0086, 0.0135) 
23.8948 

0.8 -0.0143 0.0114 -0.0143 
(0.0134, 0.0135, 0.0139, 0.1774, 0.0104, 

0.0066, 0.5575, 0.1864, 0.0085, 0.0123) 
23.8681 

0.9 -0.0203 0.0175 -0.0203 
(0.0132, 0.0131, 0.0131, 0.1773, 0.0102, 

0.0073, 0.5586, 0.1874, 0.0086, 0.0113) 
23.8443 
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Table 4.12: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       

where      for data sets D, E, F and G, where         
  

Table 4.12 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

Set 

D 

0.1 0.05 -0.1036 0.0667 -0.1036 

(0.5550, 0.3549, 0.0034, 

0.0080, 0.0078, 0.0085, 0.0109, 
0.0237, 0.0134, 0.0142) 

35.2542 

0.3 0.15 -0.0345 0.0222 -0.0345 

(0.5550, 0.3549, 0.0034, 

0.0080, 0.0078, 0.0085, 0.0109, 
0.0237, 0.0134, 0.0142) 

35.2542 

20 10 -0.0005 0.0003 -0.0005 

(0.5551, 0.3552, 0.0036, 

0.0081, 0.0079, 0.0086, 0.0109, 

0.0232, 0.0133, 0.0141) 

35.2515 

    0.5    -0.0189 0.0119 -0.0189 

(0.5549, 0.3549, 0.0035, 

0.0080, 0.0078, 0.0085, 0.0109, 

0.0239, 0.0134, 0.0143) 

35.2628 

    0.5    -0.0284 0.0185 -0.0284 
(0.5549, 0.3550, 0.0033, 

0.0080, 0.0079, 0.0087, 0.0109, 

0.0237, 0.0134, 0.0142) 

35.2499 

    0.5    -0.7527 0.6268 -0.7527 
(0.5516, 0.3623, 0.0051, 

0.0036, 0.0121, 0.0124, 0.0103, 

0.0189, 0.0113, 0.0125) 

35.3441 

    0.5    -1.2654 0.5164 -1.2654 
(0.5570, 0.3590, 0.0125, 

0.0066, 0.0101, 0.0055, 0.0065, 

0.0189, 0.0082, 0.0157) 

35.5815 

    0.5    -0.7812 0.8037 -0.2082 

(0.5574, 0.3605, 0.0085, 

0.0095, 0.0095, 0.0098, 0.0102, 
0.0129, 0.0108, 0.0109) 

35.1832 

    0.5    -0.7896 0.7439 -0.1538 

(0.5577, 0.3608, 0.0089, 

0.0098, 0.0096, 0.0097, 0.0102, 
0.0121, 0.0105, 0.0106) 

35.1809 

    0.5    -8.2472 0.5737 -0.4867 

(0.5573, 0.3589, 0.0073, 

0.0097, 0.0090, 0.0091, 0.0099, 

0.0153, 0.0118, 0.0117) 

35.1905 

    0.5    -0.5709 1.2750 -0.2089 

(0.5575, 0.3599, 0.0084, 

0.0098, 0.0093, 0.0096, 0.0105, 

0.0131, 0.0110, 0.0110) 

35.1834 

    0.5    -1.8004 0.6688 -1.8004 
(0.5589, 0.3551, 0.0078, 

0.0104, 0.0058, 0.0075, 0.0061, 

0.0255, 0.0070, 0.0159) 

35.4871 

      0.5      -0.8234 0.9266 -0.8234 
(0.5529, 0.3559, 0.0052, 

0.0073, 0.0079, 0.0089, 0.0123, 

0.0231, 0.0144, 0.0122) 

35.2830 

Set 

E 

0.1 0.05 -0.1154 0.0773 -0.1154 

(0.5564, 0.3553, 0.0038, 

0.0090, 0.0087, 0.0095, 0.0121, 
0.0134, 0.0150, 0.0166) 

36.0646 

0.3 0.15 -0.0384 0.0257 -0.0384 

(0.5564, 0.3553, 0.0038, 

0.0090, 0.0087, 0.0095, 0.0121, 

0.0134, 0.0150, 0.0166) 

36.0638 

20 10 -0.0005 0.0003 -0.0005 

(0.5566, 0.3562, 0.0047, 

0.0091, 0.0089, 0.0096, 0.0119, 

0.0130, 0.0143, 0.0157) 

35.9980 

    0.5    -0.0206 0.0138 -0.0206 
(0.5564, 0.3554, 0.0041, 

0.0090, 0.0088, 0.0095, 0.0121, 

0.0135, 0.0148, 0.0165) 

36.0709 

    0.5    -0.0317 0.0214 -0.0317 
(0.5563, 0.3554, 0.0037, 

0.0089, 0.0088, 0.0097, 0.0121, 

0.0135, 0.0150, 0.0165) 

36.0617 

    0.5    -0.7620 0.7611 -0.7620 

(0.5506, 0.3632, 0.0054, 

0.0044, 0.0131, 0.0134, 0.0115, 
0.0158, 0.0124, 0.0101) 

36.1349 
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Table 4.12 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

    0.5    -1.2941 0.7148 -1.2941 

(0.5564, 0.3591, 0.0128, 

0.0073, 0.0106, 0.0057, 0.0073, 
0.0179, 0.0090, 0.0140) 

36.3305 

    0.5    -0.7715 0.8850 -0.7715 

(0.5565, 0.3569, 0.0030, 

0.0084, 0.0084, 0.0109, 0.0118, 

0.0135, 0.0152, 0.0155) 

35.8148 

    0.5    -0.7901 0.7380 -0.7901 

(0.5594, 0.3552, 0.0025, 

0.0113, 0.0086, 0.0087, 0.0122, 

0.0116, 0.0140, 0.0164) 

35.7333 

    0.5    -8.4108 0.6513 -2.5357 
(0.5596, 0.3580, 0.0056, 

0.0121, 0.0103, 0.0056, 0.0037, 

0.0168, 0.0131, 0.0151) 

35.8293 

    0.5    -0.6079 7.8157 -0.6079 
(0.5564, 0.3564, 0.0041, 

0.0076, 0.0088, 0.0109, 0.0124, 

0.0112, 0.0164, 0.0159) 

35.8310 

    0.5    -1.6446 0.6566 -1.6446 
(0.5622, 0.3550, 0.0078, 

0.0127, 0.0068, 0.0086, 0.0089, 

0.0084, 0.0092, 0.0203) 

35.9868 

      0.5      -1.0776 0.8065 -1.0776 

(0.5567, 0.3548, 0.0087, 

0.0115, 0.0072, 0.0068, 0.0138, 
0.0119, 0.0143, 0.0142) 

36.1783 

Set 
F 

0.1 0.05 -0.1131 0.0871 -0.1131 

(0.4511, 0.3615, 0.1041, 

0.0067, 0.0079, 0.0094, 0.0143, 

0.0175, 0.0144, 0.0131) 

19.9876 

0.3 0.15 -0.0377 0.0290 -0.0377 

(0.4511, 0.3615, 0.1041, 

0.0067, 0.0079, 0.0094, 0.0143, 

0.0175, 0.0144, 0.0131) 

19.9876 

20 10 -0.0005 0.0004 -0.0005 
(0.4514, 0.3621, 0.1047, 

0.0071, 0.0082, 0.0094, 0.0138, 

0.0166, 0.0139, 0.0128) 

19.9610 

    0.5    -0.0250 0.0189 -0.0250 
(0.4511, 0.3616, 0.1040, 

0.0067, 0.0081, 0.0092, 0.0144, 

0.0174, 0.0143, 0.0130) 

19.9876 

    0.5    -0.0306 0.0238 -0.0306 

(0.4510, 0.3615, 0.1042, 

0.0067, 0.0080, 0.0094, 0.0143, 
0.0175, 0.0144, 0.0130) 

19.9883 

    0.5    -0.1055 0.0804 -0.1055 

(0.4512, 0.3614, 0.1039, 

0.0066, 0.0079, 0.0093, 0.0143, 
0.0178, 0.0144, 0.0132) 

19.9874 

    0.5    -8.4457 0.6699 -1.8418 

(0.4510, 0.3664, 0.1058, 

0.0027, 0.0145, 0.0094, 0.0142, 

0.0157, 0.0124, 0.0079) 

19.9361 

    0.5    -0.6848 6.3537 -0.6848 

(0.4482, 0.3631, 0.1071, 

0.0068, 0.0081, 0.0113, 0.0133, 

0.0171, 0.0141, 0.0109) 

19.9784 

    0.5    -1.4915 0.7283 -1.4915 
(0.4545, 0.3637, 0.1062, 

0.0034, 0.0094, 0.0048, 0.0134, 

0.0160, 0.0132, 0.0154) 

19.8469 

    0.5    -0.7098 15.4809 -0.7098 
(0.4497, 0.3624, 0.1069, 

0.0090, 0.0086, 0.0116, 0.0118, 

0.0162, 0.0133, 0.0105) 

19.9977 

    0.5    -0.8007 1.2154 -0.8007 
(0.4536, 0.3588, 0.1016, 

0.0072, 0.0047, 0.0111, 0.0136, 

0.0157, 0.0164, 0.0174) 

19.9146 

    0.5    -1.0399 0.9180 -1.0399 

(0.4521, 0.3608, 0.1048, 

0.0091, 0.0075, 0.0106, 0.0138, 

0.0164, 0.0115, 0.0133) 

19.9742 

      0.5      -1.3238 0.6053 -1.3238 

(0.4519, 0.3649, 0.1025, 

0.0082, 0.0099, 0.0056, 0.0168, 
0.0151, 0.0137, 0.0113) 

19.9750 
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Table 4.12 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

Set 
G 

0.1 0.05 -0.1027 0.0879 -0.1027 

(0.0138, 0.0093, 0.0153, 

0.1719, 0.0149, 0.0059, 0.5578, 

0.1863, 0.0082, 0.0167) 

23.9214 

0.3 0.15 -0.0342 0.0293 -0.0342 

(0.0138, 0.0093, 0.0153, 

0.1719, 0.0149, 0.0059, 0.5578, 

0.1863, 0.0082, 0.0167) 

23.9211 

20 10 -0.0005 0.0004 -0.0005 
(0.0137, 0.0093, 0.0152, 

0.1720, 0.0148, 0.0060, 0.5579, 

0.1864, 0.0082, 0.0165) 

23.9139 

    0.5    -1.8170 0.7261 -1.8170 
(0.0085, 0.0061, 0.0164, 

0.1764, 0.0160, 0.0036, 0.5636, 

0.1861, 0.0058, 0.0175) 

23.8533 

    0.5    -0.7000 5.8475 -0.7000 

(0.0161, 0.0087, 0.0160, 

0.1687, 0.0142, 0.0074, 0.5567, 
0.1866, 0.0076, 0.0180) 

23.8607 

    0.5    -0.9496 1.0388 -0.9496 

(0.0155, 0.0076, 0.0132, 

0.1732, 0.0140, 0.0049, 0.5592, 
0.1843, 0.0102, 0.0179) 

23.9140 

    0.5    -0.0586 0.0494 -0.0586 

(0.0134, 0.0097, 0.0152, 

0.1718, 0.0150, 0.0058, 0.5583, 

0.1866, 0.0080, 0.0163) 

23.9302 

    0.5    -0.7574 2.3452 -0.7574 

(0.0159, 0.0093, 0.0154, 

0.1710, 0.0127, 0.0072, 0.5559, 

0.1857, 0.0102, 0.0168) 

23.8813 

    0.5    -1.5418 0.8123 -1.5418 

(0.0136, 0.0133, 0.0177, 

0.1751, 0.0167, 0.0036, 0.5484, 

0.1870, 0.0067, 0.0179) 

23.9437 

    0.5    -0.0181 0.0156 -0.0181 
(0.0137, 0.0094, 0.0152, 

0.1718, 0.0149, 0.0060, 0.5578, 

0.1865, 0.0082, 0.0165) 

23.9235 

    0.5    -0.0535 0.0462 -0.0535 
(0.0138, 0.0094, 0.0154, 

0.1718, 0.0150, 0.0060, 0.5577, 

0.1863, 0.0081, 0.0166) 

23.9197 

    0.5    -8.6854 0.7262 -2.1040 

(0.0101, 0.0162, 0.0139, 

0.1756, 0.0155, 0.0057, 0.5599, 
0.1908, 0.0025, 0.0098) 

23.8652 

      0.5      -1.3240 0.7513 -1.3240 

(0.0112, 0.0021, 0.0168, 

0.1781, 0.0160, 0.0009, 0.5613, 
0.1842, 0.0115, 0.0180) 

23.8989 

 

Table 4.13: The portfolios       and the maximum wealths            
achieved by respective  ’s within an extended range of   by 

the         universal portfolio for selected values of       
where       for data sets D, E, F and G, where    

     
  

Table 4.13 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

Set 

D 

1.05 0.05 -0.0100 0.0063 -0.0100 

(0.5514, 0.3549, 0.0033, 

0.0081, 0.0078, 0.0086, 0.0109, 

0.0239, 0.0135, 0.0176) 

35.1818 

1.5 0.5 -0.0069 0.0044 -0.0069 

(0.5537, 0.3550, 0.0034, 

0.0081, 0.0078, 0.0086, 0.0109, 

0.0237, 0.0134, 0.0154) 

35.2280 

11 10 -0.0009 0.0006 -0.0009 
(0.5581, 0.3552, 0.0037, 

0.0081, 0.0079, 0.0086, 0.0108, 

0.0231, 0.0133, 0.0113) 

35.3102 
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Table 4.13 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

   +1     -0.0067 0.0042 -0.0067 

(0.5539, 0.3549, 0.0034, 

0.0080, 0.0078, 0.0085, 0.0109, 
0.0238, 0.0134, 0.0153) 

35.2352 

   +1     -0.0076 0.0049 -0.0076 

(0.5532, 0.3550, 0.0034, 

0.0080, 0.0079, 0.0086, 0.0109, 

0.0237, 0.0134, 0.0159) 

35.2163 

   +1     -0.0104 0.0066 -0.0104 

(0.5511, 0.3550, 0.0033, 

0.0080, 0.0079, 0.0086, 0.0109, 

0.0239, 0.0135, 0.0178) 

35.1782 

   +1     -0.0105 0.0066 -0.0105 
(0.5511, 0.3549, 0.0034, 

0.0080, 0.0078, 0.0085, 0.0109, 

0.0240, 0.0135, 0.0179) 

35.1784 

   +1     -0.0104 0.0066 -0.0024 
(0.5565, 0.3603, 0.0085, 

0.0096, 0.0095, 0.0097, 0.0102, 

0.0132, 0.0108, 0.0118) 

35.1752 

   +1     -0.0103 0.0066 -0.0016 
(0.5570, 0.3608, 0.0090, 

0.0097, 0.0097, 0.0098, 0.0101, 

0.0121, 0.0105, 0.0112) 

35.1752 

   +1     -0.0104 0.0066 -0.0027 

(0.5563, 0.3601, 0.0083, 

0.0095, 0.0094, 0.0096, 0.0102, 
0.0136, 0.0109, 0.0120) 

35.1753 

   +1     -0.0103 0.0066 -0.0026 

(0.5564, 0.3601, 0.0083, 

0.0095, 0.0095, 0.0096, 0.0102, 
0.0135, 0.0109, 0.0120) 

35.1753 

   +1     -0.0104 0.0066 -0.007 

(0.5534, 0.3572, 0.0055, 

0.0087, 0.0085, 0.0090, 0.0106, 

0.0194, 0.0124, 0.0153) 

35.1755 

     +1       -0.0103 0.0066 -0.0024 

(0.5565, 0.3603, 0.0085, 

0.0096, 0.0095, 0.0097, 0.0102, 

0.0132, 0.0108, 0.0118) 

35.1752 

Set 

E 

1.05 0.05 -0.0109 0.0074 -0.0109 
(0.5521, 0.3555, 0.0040, 

0.0091, 0.0089, 0.0097, 0.0123, 

0.0136, 0.0151, 0.0197) 

35.9828 

1.5 0.5 -0.0076 0.0051 -0.0076 

(0.5549, 0.3554, 0.0040, 

0.0090, 0.0088, 0.0096, 0.0122, 
0.0135, 0.0150, 0.0177) 

36.0306 

11 10 -0.0010 0.0006 -0.0010 

(0.5601, 0.3555, 0.0040, 

0.0089, 0.0087, 0.0095, 0.0119, 
0.0132, 0.0147, 0.0135) 

36.1054 

   +1     -0.0074 0.0049 -0.0074 

(0.5550, 0.3554, 0.0040, 

0.0090, 0.0088, 0.0096, 0.0122, 

0.0135, 0.0150, 0.0175) 

36.0432 

   +1     -0.0084 0.0057 -0.0084 

(0.5542, 0.3554, 0.0039, 

0.0090, 0.0088, 0.0097, 0.0122, 

0.0135, 0.0150, 0.0181) 

36.0210 

   +1     -0.0113 0.0077 -0.0113 
(0.5517, 0.3557, 0.0040, 

0.0091, 0.0090, 0.0098, 0.0123, 

0.0136, 0.0151, 0.0198) 

35.9814 

   +1     -0.0114 0.0077 -0.0114 
(0.5517, 0.3555, 0.0041, 

0.0091, 0.0089, 0.0097, 0.0123, 

0.0136, 0.0151, 0.0200) 

35.9806 

   +1     -0.0114 0.0077 -0.0114 
(0.5517, 0.3555, 0.0040, 

0.0091, 0.0089, 0.0097, 0.0123, 

0.0136, 0.0152, 0.0200) 

35.9772 

   +1     -0.0114 0.0077 -0.0114 

(0.5518, 0.3554, 0.0039, 

0.0092, 0.0089, 0.0097, 0.0123, 

0.0136, 0.0152, 0.0201) 

35.9738 

   +1     -0.0114 0.0077 -0.0114 

(0.5518, 0.3555, 0.0040, 

0.0092, 0.0089, 0.0097, 0.0123, 
0.0136, 0.0152, 0.0200) 

35.9742 

   +1     -0.0113 0.0078 -0.0113 

(0.5518, 0.3555, 0.0040, 

0.0091, 0.0089, 0.0097, 0.0123, 

0.0135, 0.0152, 0.0199) 

35.9764 
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Table 4.13 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

   +1     -0.0114 0.0077 -0.0114 

(0.5518, 0.3555, 0.0040, 

0.0092, 0.0089, 0.0097, 0.0123, 
0.0135, 0.0151, 0.0201) 

35.9745 

     +1       -0.0114 0.0078 -0.0114 

(0.5518, 0.3554, 0.0040, 

0.0092, 0.0089, 0.0097, 0.0124, 

0.0135, 0.0152, 0.0200) 

35.9773 

Set 
F 

1.05 0.05 -0.0105 0.0086 -0.0105 
(0.4486, 0.3616, 0.1042, 

0.0068, 0.0080, 0.0094, 0.0142, 

0.0173, 0.0143, 0.0155) 

19.9602 

1.5 0.5 -0.0074 0.0058 -0.0074 
(0.4502, 0.3616, 0.1042, 

0.0068, 0.0080, 0.0094, 0.0143, 

0.0174, 0.0143, 0.0140) 

19.9755 

11 10 -0.0008 0.0007 -0.0008 

(0.4535, 0.3627, 0.1053, 

0.0074, 0.0084, 0.0095, 0.0134, 
0.0158, 0.0134, 0.0107) 

19.9510 

   +1     -0.0077 0.0060 -0.0077 

(0.4500, 0.3616, 0.1041, 

0.0067, 0.0080, 0.0093, 0.0143, 
0.0174, 0.0143, 0.0141) 

19.9763 

   +1     -0.0081 0.0065 -0.0081 

(0.4498, 0.3616, 0.1042, 

0.0068, 0.0080, 0.0094, 0.0143, 

0.0174, 0.0143, 0.0143) 

19.9726 

   +1     -0.0099 0.0081 -0.0099 

(0.4489, 0.3617, 0.1042, 

0.0068, 0.0080, 0.0094, 0.0142, 

0.0173, 0.0143, 0.0152) 

19.9613 

   +1     -0.0109 0.0089 -0.0109 

(0.4484, 0.3617, 0.1043, 

0.0068, 0.0080, 0.0094, 0.0142, 

0.0173, 0.0143, 0.0157) 

19.9571 

   +1     -0.0108 0.0090 -0.0108 
(0.4484, 0.3617, 0.1043, 

0.0068, 0.0080, 0.0094, 0.0142, 

0.0173, 0.0143, 0.0156) 

19.9582 

   +1     -0.0109 0.0089 -0.0109 
(0.4484, 0.3617, 0.1042, 

0.0068, 0.0080, 0.0094, 0.0142, 

0.0173, 0.0143, 0.0158) 

19.9554 

   +1     -0.0108 0.0090 -0.0108 

(0.4484, 0.3617, 0.1043, 

0.0069, 0.0080, 0.0094, 0.0142, 
0.0173, 0.0143, 0.0156) 

19.9581 

   +1     -0.0108 0.0090 -0.0108 

(0.4485, 0.3616, 0.1042, 

0.0068, 0.0079, 0.0094, 0.0142, 
0.0173, 0.0143, 0.0157) 

19.9561 

   +1     -0.0108 0.0090 -0.0108 

(0.4485, 0.3617, 0.1043, 

0.0069, 0.0080, 0.0094, 0.0142, 

0.0172, 0.0142, 0.0157) 

19.9560 

     +1       -0.0109 0.0089 -0.0109 

(0.4484, 0.3617, 0.1042, 

0.0069, 0.0080, 0.0094, 0.0143, 

0.0173, 0.0143, 0.0157) 

19.9575 

Set 

G 

1.05 0.05 -0.0098 0.0084 -0.0098 
(0.0113, 0.0096, 0.0156, 

0.1722, 0.0152, 0.0062, 0.5581, 

0.1866, 0.0085, 0.0167) 

23.9365 

1.5 0.5 -0.0068 0.0058 -0.0068 

(0.0129, 0.0094, 0.0154, 

0.1720, 0.0150, 0.0060, 0.5579, 
0.1864, 0.0083, 0.0167) 

23.9249 

11 10 -0.0009 0.0007 -0.0009 

(0.0157, 0.0090, 0.0149, 

0.1718, 0.0145, 0.0058, 0.5577, 
0.1862, 0.0080, 0.0162) 

23.8979 

   +1     -0.0102 0.0087 -0.0102 

(0.0110, 0.0096, 0.0157, 

0.1723, 0.0152, 0.0062, 0.5582, 

0.1866, 0.0085, 0.0168) 

23.9363 

   +1     -0.0101 0.0088 -0.0101 

(0.0111, 0.0096, 0.0157, 

0.1722, 0.0152, 0.0062, 0.5581, 

0.1866, 0.0085, 0.0168) 

23.9353 

   +1     -0.0102 0.0087 -0.0102 
(0.0111, 0.0096, 0.0157, 

0.1722, 0.0153, 0.0062, 0.5581, 

0.1866, 0.0085, 0.0168) 

23.9378 
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Table 4.13 continued      

Data 
set 

r t 
Smallest 

  

Biggest 

  
Best                    

   +1     -0.0087 0.0075 -0.0087 

(0.0118, 0.0096, 0.0155, 

0.1721, 0.0151, 0.0061, 0.5581, 
0.1866, 0.0084, 0.0166) 

23.9332 

   +1     -0.0101 0.0088 -0.0101 

(0.0111, 0.0096, 0.0156, 

0.1722, 0.0152, 0.0062, 0.5581, 

0.1866, 0.0085, 0.0167) 

23.9352 

   +1     -0.0102 0.0087 -0.0102 

(0.0110, 0.0096, 0.0157, 

0.1723, 0.0153, 0.0062, 0.5581, 

0.1866, 0.0085, 0.0168) 

23.9368 

   +1     -0.0065 0.0056 -0.0065 
(0.0130, 0.0094, 0.0153, 

0.1720, 0.0150, 0.0060, 0.5579, 

0.1865, 0.0083, 0.0166) 

23.9246 

   +1     -0.0086 0.0074 -0.0086 
(0.0119, 0.0095, 0.0156, 

0.1721, 0.0151, 0.0061, 0.5580, 

0.1865, 0.0084, 0.0167) 

23.9314 

   +1     -0.0102 0.0087 -0.0102 
(0.0110, 0.0096, 0.0157, 

0.1723, 0.0152, 0.0062, 0.5581, 

0.1867, 0.0085, 0.0167) 

23.9365 

     +1       -0.0102 0.0087 -0.0102 

(0.0110, 0.0095, 0.0157, 

0.1723, 0.0153, 0.0062, 0.5582, 
0.1866, 0.0085, 0.0167) 

23.9384 

 

4.3 The Modified Mahalanobis Universal Portfolio 

 

 The Mahalanobis universal portfolio is an additive-update universal 

portfolio and hence the portfolio vectors can get out of range       easily. The 

sufficient condition for portfolio vectors to be within the range       has been 

derived in Proposition 4.2(ii). This condition could lead to the   parameter 

interval to be an empty set whenever a zero element occurs in the portfolio 

vectors. From the last few tables, we observe that the intervals of   are 

relatively small. It might cause the Mahalanobis universal portfolio to behave 

like a constant rebalanced portfolio for small values of  . The modified 

Mahalanobis universal portfolio is introduced in this section to handle the 

above difficulties of      having negative values and   being restricted to be 

small. 
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 The modified Mahalanobis universal portfolio is a sequence of 

universal portfolios        generated by (4.2) where the initial starting 

portfolio    is given,   is any real number and    is modified according to 

(4.30) and (4.31) below if    is not a portfolio vector before applying the 

update (4.2), for        . 

 

 We now state the modification necessary to change    into a portfolio 

vector. If there exists an invalid portfolio vector    where       for some  , 

then let 

            
 
      (4.30)  

for all           and the new genuine portfolio vector is given by 

    
  

    
 
   

  (4.31)  

where         . The portfolio vectors    are remain unchanged if       

for all          . 

 

 To see why (4.30) and (4.31) lead to genuine portfolio vectors, we 

consider the following argument. According to (1.1), the portfolio vector    is 

not genuine if there exists a       for some  . Identify the minimum of     

for          , say,          , and hence 

           
 
        

for all          . The following sum 
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shows that    given by (4.31) is a genuine portfolio vector. The portfolio 

vectors    that satisfy       for all           remain unchanged and 

the next update (4.2) can be applied immediately. This modification allows us 

to use any value of   as the parameter. 

 

4.3.1 Empirical Results 

 

From previous results, the valid intervals of   for the selected 

Mahalanobis universal portfolios are mostly between    and  . Since the 

Mahalanobis universal portfolios with initial starting portfolio         
 , 

where      
  is the approximate positive BCRP, does not outperform the 

BCRP in the previous section and Proposition 4.4 might not be hold for the 

modified Mahalanobis universal portfolios, we shall omit the study of 

        
  for the latter case. Now, we run the modified          universal 

portfolio and five selected modified         universal portfolios on data sets 

D, E, F and G with the same initial starting portfolio 

                            and the parameter   is chosen to be   . The 

portfolios       and wealths       achieved after      trading days where 

     are recorded in Table 4.14. 

 

Table 4.14: The portfolios       and the wealths       achieved by the 

selected modified Mahalanobis universal portfolios for data 

sets D, E, F and G, where      and 

                            
Table 4.14 continued 

Data set        or                      

Set D 

         
(0.1433, 0.1828, 0.0000, 0.0723, 0.1130, 
0.0300, 0.0101, 0.1593, 0.2577, 0.0315) 

44.1900 

               
(0.1414, 0.1520, 0.0000, 0.0581, 0.0959, 

0.1183, 0.1064, 0.1006, 0.0773, 0.1502) 
43.3606 
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Table 4.14 continued 

Data set        or                      

               
(0.1478, 0.1498, 0.0000, 0.0575, 0.0940, 

0.1162, 0.1051, 0.0992, 0.0768, 0.1536) 
43.0123 

               
(0.1539, 0.1476, 0.0000, 0.0572, 0.0925, 

0.1137, 0.1042, 0.0979, 0.0764, 0.1566) 
42.0498 

               
(0.1195, 0.1683, 0.0000, 0.0874, 0.1178, 

0.0513, 0.0432, 0.1339, 0.2087, 0.0700) 
45.7066 

               
(0.1351, 0.1911, 0.0000, 0.0744, 0.1218, 

0.0343, 0.0079, 0.1564, 0.2748, 0.0043) 
44.9506 

Set E 

         
(0.1336, 0.1667, 0.0000, 0.0683, 0.1084, 
0.0304, 0.0080, 0.0789, 0.2391, 0.1665) 

54.4666 

               
(0.1385, 0.1566, 0.0000, 0.0643, 0.1004, 

0.1201, 0.1142, 0.1077, 0.0810, 0.1171) 
50.2567 

               
(0.1379, 0.1552, 0.0000, 0.0642, 0.0992, 
0.1187, 0.1138, 0.1062, 0.0808, 0.1239) 

50.5023 

               
(0.1371, 0.1541, 0.0000, 0.0641, 0.0982, 

0.1174, 0.1134, 0.1051, 0.0805, 0.1301) 
50.4402 

               
(0.1223, 0.1632, 0.0000, 0.0867, 0.1157, 
0.0513, 0.0485, 0.0768, 0.2027, 0.1328) 

57.3251 

               
(0.1297, 0.1711, 0.0000, 0.0688, 0.1134, 

0.0333, 0.0107, 0.0728, 0.2443, 0.1558) 
55.0500 

Set F 

         
(0.1039, 0.1359, 0.0291, 0.0000, 0.0611, 
0.1906, 0.1007, 0.0345, 0.1527, 0.1914) 

26.9298 

               
(0.0552, 0.1049, 0.1344, 0.1138, 0.1144, 

0.0672, 0.1646, 0.0474, 0.1063, 0.0919) 
23.2058 

               
(0.0566, 0.1065, 0.1358, 0.1143, 0.1160, 
0.0670, 0.1662, 0.0483, 0.1078, 0.0815) 

23.0645 

               
(0.0581, 0.1078, 0.1378, 0.1148, 0.1176, 

0.0669, 0.1675, 0.0493, 0.1092, 0.0709) 
22.9006 

               
(0.0923, 0.1358, 0.0137, 0.0388, 0.0537, 
0.1905, 0.1547, 0.0000, 0.1380, 0.1825) 

25.0662 

               
(0.0959, 0.1403, 0.0276, 0.0000, 0.0608, 

0.2195, 0.0734, 0.0286, 0.1601, 0.1938) 
27.4424 

Set G 

         
(0.2683, 0.1092, 0.1714, 0.0811, 0.0162, 

0.0259, 0.0000, 0.1131, 0.0283, 0.1865) 
33.6402 

               
(0.0806, 0.1174, 0.1151, 0.0653, 0.1573, 

0.1330, 0.0000, 0.1095, 0.1162, 0.1057) 
31.9183 

               
(0.0806, 0.1195, 0.1158, 0.0639, 0.1581, 

0.1360, 0.0000, 0.1096, 0.1174, 0.0992) 
31.3930 

               
(0.0804, 0.1224, 0.1169, 0.0618, 0.1593, 

0.1400, 0.0000, 0.1094, 0.1188, 0.0909) 
30.7773 

               
(0.2171, 0.0821, 0.1398, 0.0903, 0.0742, 

0.0533, 0.0000, 0.1203, 0.0493, 0.1737) 
35.7843 

               
(0.2822, 0.0827, 0.1758, 0.0767, 0.0076, 

0.0357, 0.0000, 0.1247, 0.0103, 0.2044) 
34.2477 

 

Next, we compare the wealths achieved by the modified and 

unmodified universal portfolios displayed in Tables 4.14 and 4.7, 4.8, 4.9 

respectively. The wealths achieved by the modified          universal 

portfolios where      for data sets D, E, F and G are 

                        and         respectively. These wealths are 

much higher than the maximum wealths achieved by the unmodified          
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universal portfolios, namely,                                    and 

        respectively in Table 4.7. From Tables 4.14 and 4.8, the values of 

      for the modified                universal portfolios where      are 

                        and         for data sets D, E, F and G 

respectively, which are higher than the maximum wealths achieved by the 

unmodified                universal portfolios, namely,            

                        and         respectively. For data sets D, E, F 

and G, the modified                universal portfolios where      in 

Table 4.14 perform better than the unmodified                universal 

portfolios in Table 4.9 in terms of the wealths achieved. The values of       

for the modified                universal portfolios where      for the 

four 10-stock data sets in Table 4.14 are                         and 

        respectively. The maximum wealths achieved by the unmodified 

               universal portfolios for the same 10-stock data sets in Table 

4.9 are                         and         respectively. 

 

4.3.2 The Modified Mahalanobis Universal Portfolio with Varying 

Parameter   

 

To study the dependence of the wealth achieved on the parameter  , 

the modified          and modified                universal portfolios are 

run on data set G with the same initial starting portfolio. The values of   vary 

from      to    . The portfolios       and the wealths       achieved after 

     trading days are calculated for selected values of   and are listed in 

Tables 4.15 and 4.16. The modified          universal portfolio can achieve a 
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higher wealth of               at     compared to               at 

    . In Table 4.16, a higher wealth of               can be obtained by 

the modified                universal portfolio at     . In both Tables 

4.15 and 4.16, the wealth achieved       seems to be increasing when the 

parameter   increases. 

 

Table 4.15: The portfolios       and the wealths       achieved by the 

modified          universal portfolio for selected values of   

for data set G, where                             
Table 4.15 continued 

              

-100 (0.0000, 0.0879, 0.0605, 0.1350, 0.1677, 0.1417, 0.1199, 0.0982, 0.1305, 0.0585) 7.0730 

-50 (0.0000, 0.0875, 0.0600, 0.1319, 0.1684, 0.1417, 0.1228, 0.0990, 0.1309, 0.0579) 7.0294 

-25 (0.0000, 0.0876, 0.0588, 0.1255, 0.1683, 0.1417, 0.1299, 0.0992, 0.1330, 0.0559) 6.8192 

-10 (0.0000, 0.0919, 0.0516, 0.1042, 0.1578, 0.1466, 0.1674, 0.0928, 0.1456, 0.0420) 6.5986 

-5 (0.0026, 0.1047, 0.0480, 0.0884, 0.1090, 0.1622, 0.2316, 0.0798, 0.1534, 0.0203) 6.5180 

-3 (0.0281, 0.1018, 0.0789, 0.1122, 0.0654, 0.1409, 0.2219, 0.0970, 0.1095, 0.0441) 6.5363 

-1 (0.1658, 0.0621, 0.0645, 0.1504, 0.0218, 0.0429, 0.2217, 0.0843, 0.0984, 0.0881) 7.0182 

-0.1 (0.1166, 0.1079, 0.1502, 0.0768, 0.1451, 0.0651, 0.0280, 0.0571, 0.0932, 0.1600) 15.7968 

0.1 (0.0835, 0.1092, 0.0473, 0.1223, 0.0566, 0.1360, 0.1718, 0.1481, 0.0989, 0.0264) 13.6876 

1 (0.0780, 0.1163, 0.1139, 0.0739, 0.1582, 0.1287, 0.0000, 0.1038, 0.1158, 0.1114) 31.8554 

3 (0.1691, 0.1003, 0.1186, 0.0898, 0.1140, 0.0692, 0.0000, 0.0976, 0.0977, 0.1436) 34.3421 

5 (0.2032, 0.0986, 0.1373, 0.0959, 0.0828, 0.0492, 0.0000, 0.1103, 0.0638, 0.1589) 34.6071 

10 (0.2683, 0.1092, 0.1714, 0.0811, 0.0162, 0.0259, 0.0000, 0.1131, 0.0283, 0.1865) 33.6402 

25 (0.2496, 0.1172, 0.1622, 0.0650, 0.0000, 0.0378, 0.0501, 0.1026, 0.0481, 0.1674) 31.4401 

50 (0.2460, 0.1182, 0.1589, 0.0567, 0.0000, 0.0393, 0.0634, 0.1013, 0.0539, 0.1623) 30.7228 

100 (0.2468, 0.1181, 0.1583, 0.0508, 0.0000, 0.0388, 0.0689, 0.1020, 0.0551, 0.1613) 29.8822 

 

Table 4.16: The portfolios       and the wealths       achieved by the 

modified                universal portfolio for selected 

values of   for data set G, where 

                            
Table 4.16 continued 

              

-100 (0.0000, 0.1137, 0.0666, 0.1095, 0.1522, 0.1358, 0.1621, 0.0914, 0.1527, 0.0161) 6.2864 

-50 (0.0000, 0.1236, 0.0676, 0.1020, 0.1118, 0.1450, 0.2081, 0.0767, 0.1588, 0.0063) 6.3368 

-25 (0.0274, 0.1133, 0.0878, 0.1291, 0.0577, 0.1299, 0.2217, 0.0948, 0.1080, 0.0304) 6.4086 

-10 (0.1505, 0.0637, 0.0693, 0.1489, 0.0230, 0.0439, 0.2191, 0.0833, 0.0841, 0.1142) 7.0541 

-5 (0.1616, 0.0540, 0.0685, 0.1659, 0.0519, 0.0185, 0.1595, 0.0580, 0.1270, 0.1351) 8.3242 

-3 (0.1681, 0.0286, 0.0927, 0.1714, 0.0776, 0.0111, 0.0936, 0.0543, 0.1387, 0.1638) 9.1166 

-1 (0.1386, 0.0905, 0.1456, 0.0712, 0.1451, 0.0637, 0.0293, 0.0605, 0.0926, 0.1628) 15.6038 

-0.1 (0.1045, 0.0996, 0.1057, 0.0955, 0.1055, 0.0963, 0.0916, 0.0955, 0.0986, 0.1072) 14.7192 

0.1 (0.0955, 0.1005, 0.0944, 0.1045, 0.0946, 0.1037, 0.1083, 0.1045, 0.1013, 0.0928) 14.4802 

1 (0.0509, 0.1201, 0.0476, 0.1373, 0.0553, 0.1376, 0.1739, 0.1474, 0.1062, 0.0237) 13.8533 

3 (0.0416, 0.2139, 0.1103, 0.0037, 0.1231, 0.1615, 0.1403, 0.1561, 0.0310, 0.0185) 24.6439 
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Table 4.16 continued 

              

5 (0.0343, 0.1744, 0.1216, 0.0284, 0.1550, 0.1653, 0.0642, 0.1403, 0.0640, 0.0525) 28.8928 

10 (0.0806, 0.1195, 0.1158, 0.0639, 0.1581, 0.1360, 0.0000, 0.1096, 0.1174, 0.0992) 31.3930 

25 (0.1608, 0.0948, 0.1107, 0.0755, 0.1199, 0.0848, 0.0000, 0.0946, 0.1025, 0.1563) 35.6848 

50 (0.2132, 0.0799, 0.1284, 0.0859, 0.0751, 0.0533, 0.0000, 0.1134, 0.0539, 0.1969) 35.8063 

100 (0.2797, 0.0749, 0.1559, 0.0711, 0.0132, 0.0343, 0.0000, 0.1130, 0.0121, 0.2458) 35.2452 

 

 We can conclude that the achievable universal wealth depends on the 

parameter  . From Tables 4.15 and 4.16, it is observed that for some 

parameters the wealths       achieved are less than   . These wealths 

achieved are considered low for this set of data. Thus, an improper choice of   

may lead to a low investment wealth. The advantage of using the modified 

Mahalanobis universal portfolio is that we can choose any real number to be 

the parameter   without worrying the portfolio vectors will get out of the 

range      . The modified Mahalanobis universal portfolio ensures that the 

generated portfolio vectors are always within the range      . Based on the 

limited data sets studied here, the modified Mahalanobis universal portfolio 

seems to perform better than the unmodified Mahalanobis universal portfolio. 
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CHAPTER FIVE 

 

DIRICHLET UNIVERSAL PORTFOLIO OF ORDER ONE 

 

 

 The concept of the Dirichlet-weighted universal portfolio was 

introduced by Cover and Ordentlich [9]. They focussed their study on two 

special cases of the Dirichlet-weighted universal portfolios. The authors have 

shown that these special Dirichlet-weighted universal portfolios have the same 

asymptotic exponential growth rate of wealth as the best constant rebalanced 

portfolio (BCRP). The implementation of the Dirichlet-weighted universal 

portfolio requires processing all the stock data starting from the day of 

investment until the current time. The implementation time and computer 

memory requirements for generating the updates of the universal portfolio are 

growing exponentially in the number of stocks. To save time and computer 

memory requirements, we propose a new universal portfolio in this chapter 

that achieves the purpose of saving substantial time and computer memory in 

its implementation. 

 

5.1 The Alpha-Parametric Family of Dirichlet Universal Portfolio of 

Order One 

 

 We say that a universal portfolio is of order one if the next update 

depends only on the last-known price-relative data. The Dirichlet universal 

portfolio of order one is derived from the Dirichlet-weighted universal 
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portfolio where the next update depends only on one day of last-known price-

relative data instead of all the past stock data. The theory of universal 

portfolios of finite order generated by probability distributions is due to Tan 

[33]. 

 

 The Dirichlet probability measure      is defined as 

 
      

             

                
  
      

       
    

    (5.1)  

where      for           and    refers to the differential with respect to 

any     independent variables from                 , where the 

simplex   of portfolio vector is defined in (1.1). 

 

 The Dirichlet universal portfolio of order one is a sequence of 

portfolio vectors        generated by the following: 

 
       

 

    
 
      

    
     

       
 
    

   (5.2)  

where the initial starting portfolio    and the parameters      for   

        are given. 

 

Note: The parametric vector     is a valid parametric vector provided (5.2) 

is well-defined. This means the vector   can have some zeros but not all zeros. 

 

 First, we show that the alpha-parametric family of Dirichlet universal 

portfolios of order one is a consequence of weighting the current portfolio 

components     by the current daily wealth   
    with respect to the Dirichlet 

probability measure     . 
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Proposition 5.1 Consider the following portfolio obtained by weighting 

the current portfolio components     by the current daily wealth   
    with 

respect to the Dirichlet probability measure     , namely, 

 

       
       

          

    
          

  (5.3)  

The universal portfolios (5.3) and (5.2) are equivalent. 

Proof. Since the wealth return on day   is defined as   
           

 
    in 

(1.2), let us consider the numerator of        in (5.3), that is, 

 

            

 

   

      
 

 (5.4)  

for          . Substitute       in (5.4) by (5.1), we have 

             

                

 
 

 

    

 

   
   

     
    

 

   
      

                     
         

        
        

     

       
  

   
     

          
       

                                 
    

 
   
           

         
          

          
    

  } 

for          . Evaluating the above integral, we obtain 

             

                

 
 
 

 
 

    

 

   
   

 

                                 

                           

               

     
                                      

               
  

for          . Cancelling the common factors of numerator and 

denominator, we have 
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for          . Since                               

                            ,                , 

                and                      , therefore 

       
          

 in (5.4) equals to 

 
                     

 
   
   

 

                          
 

(5.5)  

for          . Next, consider the denominator of        in (5.3), namely, 

 

         

 

   

      
 

 (5.6)  

for          . Substitute       in (5.6) by (5.1), we have 

             

                
     

 

   

    
    

 

   
      

     

       
  

   
     

          
        

for          . Evaluating the above integral, we obtain 

             

                
     

 

   

                                      

               
  

for          . Cancelling the common factors of numerator and 

denominator, we have 
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for          . Since                            

                  and                , therefore 

    
          

 in (5.6) equals to 

 
 

            
     

 

   

    (5.7)  

for          . From (5.3), (5.5) and (5.7), the portfolios        for 

          are given by: 

       

                    
 
   
   

                   
 
      

  

The above        can be rewritten as 

       
   
 
              

                   
 
      

 

for           which is equivalent to (5.2).    □ 

 

5.1.1 Empirical Results 

 

 The implementation of the Dirichlet universal portfolio of order one 

requires much lesser computer memory requirements compared to the 

Dirichlet-weighted universal portfolio introduced by Cover and Ordentlich [9]. 

We run the Dirichlet universal portfolio of order one on the four 10-stock data 

sets designated as D, E, F and G using                            . 

Table 5.1 shows the portfolios       and the wealths       achieved by the 

respective  ’s after      trading days. 
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Table 5.1: The portfolios       and the wealths       achieved by some 

selected  ’s by the Dirichlet universal portfolio of order one 

for data sets D, E, F and G, where 

                            
Table 5.1 continued 

Data set               

Set D 

(0.1000 0.1000 0.1000 0.1000 0.1000 

0.1000 0.1000 0.1000 0.1000 0.1000) 

(0.1004, 0.1004, 0.0998, 0.0994, 0.1001, 

0.0995, 0.0995, 0.1004, 0.1014, 0.0991) 
18.2914 

(1 1 1 1 1 1 1 1 1 1) 
(0.1001, 0.1001, 0.1000, 0.0999, 0.1000, 

0.0999, 0.0999, 0.1001, 0.1003, 0.0998) 
18.1975 

(1000 1000 1000 1000 1000  

1000 1000 1000 1000 1000) 

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 

0.1000, 0.1000, 0.1000, 0.1000, 0.1000) 
18.1767 

(1 2 3 4 5 6 7 8 9 10) 
(0.0182, 0.0364, 0.0545, 0.0727, 0.0909, 

0.1091, 0.1272, 0.1455, 0.1637, 0.1818) 
13.4232 

(1 2 4 8 16 32 64 128 256 512) 
(0.0010, 0.0020, 0.0039, 0.0078, 0.0156, 

0.0313, 0.0626, 0.1251, 0.2502, 0.5005) 
9.0073 

(0.5981 0.4019 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000) 

(0.5980, 0.4020, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
37.8708 

(10.5981 10.4019 1.0000  1.0000  1.0000  

1.0000  1.0000  1.0000  1.0000  1.0000) 

(0.3655, 0.3587, 0.0345, 0.0345, 0.0345, 

0.0345, 0.0345, 0.0345, 0.0346, 0.0344) 
29.7630 

Set E 

(0.1000 0.1000 0.1000 0.1000 0.1000 

0.1000 0.1000 0.1000 0.1000 0.1000) 

(0.1003, 0.1003, 0.0997, 0.0993, 0.1000, 

0.0994, 0.0994, 0.0998, 0.1013, 0.1005) 
20.4556 

(1 1 1 1 1 1 1 1 1 1) 
(0.1001, 0.1001, 0.0999, 0.0999, 0.1000, 
0.0999, 0.0999, 0.1000, 0.1002, 0.1001) 

20.3257 

(1000 1000 1000 1000 1000  

1000 1000 1000 1000 1000) 

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 

0.1000, 0.1000, 0.1000, 0.1000, 0.1000) 
20.2969 

(1 2 3 4 5 6 7 8 9 10) 
(0.0182, 0.0364, 0.0545, 0.0727, 0.0909, 

0.1091, 0.1272, 0.1454, 0.1637, 0.1818) 
15.7208 

(1 2 4 8 16 32 64 128 256 512) 
(0.0010, 0.0020, 0.0039, 0.0078, 0.0156, 

0.0313, 0.0626, 0.1251, 0.2502, 0.5005) 
10.1487 

(0.5981 0.4019 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000) 

(0.5980, 0.4020, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

37.9554 

(10.5981 10.4019 1.0000  1.0000  1.0000  

1.0000  1.0000  1.0000  1.0000  1.0000) 

(0.3655, 0.3587, 0.0345, 0.0345, 0.0345, 

0.0345, 0.0345, 0.0345, 0.0345, 0.0345) 
30.9736 

Set F 

(0.1000 0.1000 0.1000 0.1000 0.1000 
0.1000 0.1000 0.1000 0.1000 0.1000) 

(0.0994, 0.1001, 0.0995, 0.0995, 0.0999, 
0.1014, 0.0991, 0.0999, 0.1006, 0.1006) 

12.4524 

(1 1 1 1 1 1 1 1 1 1) 
(0.0999, 0.1000, 0.0999, 0.0999, 0.1000, 

0.1003, 0.0998, 0.1000, 0.1001, 0.1001) 
12.3834 

(1000 1000 1000 1000 1000  
1000 1000 1000 1000 1000) 

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 
0.1000, 0.1000, 0.1000, 0.1000, 0.1000) 

12.3681 

(1 2 3 4 5 6 7 8 9 10) 
(0.0182, 0.0364, 0.0545, 0.0727, 0.0909, 

0.1091, 0.1272, 0.1454, 0.1637, 0.1818) 
9.7869 

(1 2 4 8 16 32 64 128 256 512) 
(0.0010, 0.0020, 0.0039, 0.0078, 0.0156, 
0.0313, 0.0626, 0.1251, 0.2502, 0.5005) 

7.2812 

(0.4836 0.3869 0.1295 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000) 

(0.4824, 0.3884, 0.1292, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 
20.8371 

(10.4836 10.3869 10.1295 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000) 

(0.2758, 0.2734, 0.2665, 0.0263, 0.0263, 
0.0263, 0.0263, 0.0263, 0.0263, 0.0263) 

18.1233 

Set G 

(0.1000 0.1000 0.1000 0.1000 0.1000 

0.1000 0.1000 0.1000 0.1000 0.1000) 

(0.1014, 0.0999, 0.1006, 0.0995, 0.0991, 

0.0995, 0.0998, 0.1001, 0.0995, 0.1006) 
14.7060 

(1 1 1 1 1 1 1 1 1 1) 
(0.1003, 0.1000, 0.1001, 0.0999, 0.0998, 

0.0999, 0.1000, 0.1000, 0.0999, 0.1001) 
14.6185 

(1000 1000 1000 1000 1000  

1000 1000 1000 1000 1000) 

(0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 

0.1000, 0.1000, 0.1000, 0.1000, 0.1000) 
14.5992 

(1 2 3 4 5 6 7 8 9 10) 
(0.0182, 0.0364, 0.0546, 0.0727, 0.0909, 

0.1091, 0.1273, 0.1455, 0.1636, 0.1819) 
14.8733 

(1 2 4 8 16 32 64 128 256 512) 
(0.0010, 0.0020, 0.0039, 0.0078, 0.0156, 

0.0313, 0.0626, 0.1251, 0.2502, 0.5005) 
11.2267 
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Table 5.1 continued 

Data set               

(0.0000 0.0000 0.0000 0.1965 0.0000 

0.0000 0.5926 0.2109 0.0000 0.0000) 

(0.0000, 0.0000, 0.0000, 0.1959, 0.0000, 

0.0000, 0.5926, 0.2116, 0.0000, 0.0000) 
24.1179 

(1.0000 1.0000 1.0000 10.1965 1.0000 

1.0000 10.5926 10.2109 1.0000 1.0000) 

(0.0263, 0.0263, 0.0263, 0.2683, 0.0263, 

0.0263, 0.2787, 0.2687, 0.0263, 0.0263) 
21.0003 

 

 For data sets D, E, F and G, the highest wealths achieved among the 

selected  ’s in Table 5.1 are                               and 

        respectively. These respective best wealths are achieved by   

     
  where      

  is the respective BCRP. For data sets D and E, the wealths 

achieved by        
  for the Dirichlet universal portfolio of order one are 

much higher than the maximum wealths achieved by the Helmbold and chi-

square divergence (CSD) universal portfolios from Tables 5.1, 2.10 and 3.3 

when                            . The wealths achieved by        
  

for the Dirichlet universal portfolio of order one for data sets D and E are also 

higher than the wealths achieved by the       and         universal 

portfolios for selected  ,   in Tables 4.7, 4.8 and 4.9 when 

                           . For data sets F and G where    

                        , the values of       for the Dirichlet universal 

portfolio of order one where        
  in Table 5.1 are higher than the value 

of            for the Helmbold universal portfolio in Table 2.10 and the 

values of the       for       and         universal portfolios for selected  ,   

in Tables 4.7, 4.8 and 4.9. But the CSD universal portfolio performs better 

than the Dirichlet universal portfolio of order one where        
  in terms of 

the wealth achieved for data sets F and G where 

                           . 
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5.1.2 The Wealths Achieved by the Dirichlet Universal Portfolios of 

Order One with Different Initial Starting Portfolios 

 

 The portfolio      in (5.2) is constant for the same   and same price-

relatives     . In this subsection, we study the dependence of the wealth    

achieved by the Dirichlet universal portfolio of order one on the initial starting 

portfolio   . The Dirichlet universal portfolio of order one is run on data set G 

with the selected initial starting portfolios   . The parameter   

                         is used for all the portfolios. The portfolios     , 

     ,       and the wealths      , 
     

  
  are calculated for selected initial 

starting portfolios    and listed in Table 5.2. The wealth 
     

  
  is defined as 

the wealth achieved after      trading days where the wealth    achieved on 

the first day is excluded. Since the portfolio      does not depend on the 

initial starting portfolio    for           from (5.2), it is clear the daily 

wealth     
      does not depend on the initial starting portfolio    for 

         . The wealth       
   

 
        

   
 
       depends on the 

initial starting portfolio    through   . Hence 
  

  
  does not depend on    for 

         . 
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Table 5.2: The portfolios     ,      ,       and the wealths      , 
     

  
  

achieved by the Dirichlet universal portfolios of order one for 

selected initial starting portfolios for data set G, where 

                           
Table 5.2 continued 

                          
     

  
  

(0.1000, 0.1000, 

0.1000, 0.1000, 

0.1000, 0.1000, 
0.1000, 0.1000, 

0.1000, 0.1000) 

(0.1002, 0.0997, 

0.1002, 0.0999, 

0.1002, 0.1005, 
0.0995, 0.1005, 

0.0993, 0.1002) 

(0.0986, 0.0999, 

0.0990, 0.1005, 

0.1003, 0.1002, 
0.1008, 0.1005, 

0.0999, 0.1004) 

(0.1014, 0.0999, 

0.1006, 0.0995, 

0.0991, 0.0995, 
0.0998, 0.1001, 

0.0995, 0.1006) 

14.7060 14.6175 

(0.0000, 0.0000, 
0.0000, 0.1965, 

0.0000, 0.0000, 

0.5926, 0.2109, 
0.0000, 0.0000) 

(0.1002, 0.0997, 
0.1002, 0.0999, 

0.1002, 0.1005, 

0.0995, 0.1005, 
0.0993, 0.1002) 

(0.0986, 0.0999, 
0.0990, 0.1005, 

0.1003, 0.1002, 

0.1008, 0.1005, 
0.0999, 0.1004) 

(0.1014, 0.0999, 
0.1006, 0.0995, 

0.0991, 0.0995, 

0.0998, 0.1001, 
0.0995, 0.1006) 

15.0734 14.6175 

(0.1500, 0.0500, 

0.2000, 0.1200, 

0.0800, 0.0900, 
0.0800, 0.1000, 

0.1000, 0.0300) 

(0.1002, 0.0997, 

0.1002, 0.0999, 

0.1002, 0.1005, 
0.0995, 0.1005, 

0.0993, 0.1002) 

(0.0986, 0.0999, 

0.0990, 0.1005, 

0.1003, 0.1002, 
0.1008, 0.1005, 

0.0999, 0.1004) 

(0.1014, 0.0999, 

0.1006, 0.0995, 

0.0991, 0.0995, 
0.0998, 0.1001, 

0.0995, 0.1006) 

14.6997 14.6175 

(0.2200, 0.0200, 
0.1100, 0.1300, 

0.0000, 0.1800, 

0.1000, 0.1500, 
0.0500, 0.0400) 

(0.1002, 0.0997, 
0.1002, 0.0999, 

0.1002, 0.1005, 

0.0995, 0.1005, 
0.0993, 0.1002) 

(0.0986, 0.0999, 
0.0990, 0.1005, 

0.1003, 0.1002, 

0.1008, 0.1005, 
0.0999, 0.1004) 

(0.1014, 0.0999, 
0.1006, 0.0995, 

0.0991, 0.0995, 

0.0998, 0.1001, 
0.0995, 0.1006) 

14.6937 14.6175 

(0.0600, 0.0700, 

0.0900, 0.2500, 

0.0500, 0.0300, 
0.2100, 0.1700, 

0.0500, 0.0200) 

(0.1002, 0.0997, 

0.1002, 0.0999, 

0.1002, 0.1005, 
0.0995, 0.1005, 

0.0993, 0.1002) 

(0.0986, 0.0999, 

0.0990, 0.1005, 

0.1003, 0.1002, 
0.1008, 0.1005, 

0.0999, 0.1004) 

(0.1014, 0.0999, 

0.1006, 0.0995, 

0.0991, 0.0995, 
0.0998, 0.1001, 

0.0995, 0.1006) 

14.7893 14.6175 

 

 The wealths       achieved for the five different selected initial 

starting portfolios according the order in Table 5.2 are 

                                and         respectively. Whereas, the 

wealths 
     

  
  for the five selected initial starting portfolios are constant, 

equal to        , that is, 
     

  
  does not depend on   . The portfolios     , 

     ,       for all the selected initial starting portfolios are exactly equal for 

the same   and data set G. From (5.2), we observe that the portfolio vectors 

       generated by the Dirichlet universal portfolio of order one are 

independent of the past portfolios vectors whenever   and      are the same. 

We can conclude that for Dirichlet universal portfolio of order one where 
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     for          , the current portfolio vector does not depend on past 

portfolio vectors. In conclusion, all the daily achievable wealths   
    do not 

depend on the initial starting portfolio   , except the wealth    achieved on 

the first day. The accumulated wealth    at the end of day   depends on    

only through   . 

 

5.2 Relationship between the Dirichlet Universal Portfolio of Order 

One and the CSD Universal Portfolio 

 

 In Chapter Four, we know that the CSD universal portfolio belongs to 

a general class of universal portfolios generated by the Mahalanobis squared 

divergence. We identify the relationship between the Dirichlet universal 

portfolio of order one and the CSD universal portfolio in this section. 

 

 First, we state the relationship between CSD universal portfolio and 

Mahalanobis universal portfolio. Consider a Mahalanobis universal portfolio 

generated by a diagonal matrix        
    given in (4.19), the 

Mahalanobis universal portfolio becomes the CSD universal portfolio when 

       for          . 

 

 Now, we identify the relationship between the Dirichlet universal 

portfolio and the CSD universal portfolio. In the previous subsection, we 

notice that the update portfolio vector generated by the Dirichlet universal 

portfolio of order one does not depend on the past portfolio vectors whenever 

  and      are the same. If the parameters    of Dirichlet universal portfolio 
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of order one are such that        for          , then the Dirichlet 

universal portfolio of order one (5.2) becomes some type of additive-update 

universal portfolio, that is next update portfolio vector        depends on the 

last-known portfolio vector     . When        for          , the 

Dirichlet universal portfolio of order one becomes the CSD universal portfolio 

with parameter      . To verify this, consider a Dirichlet universal 

portfolio of order one (5.2). Let        for          , that is, 

 
       

 

     
 
      

     
      

        
 
    

   (5.8)  

Since     
 
      and        

 
      

   , (5.8) becomes 

       
 

 
     

      
   

    
  

which can be rewritten as 

           

 
   

    
 
    

  
   

   

Since 
 

 
  
      

    
 

 
  
   , the above        can be simplified as 

 

             

 
 
       

    

  
   

   (5.9)  

Compare (5.9) with the update portfolio vector generated by the CSD 

universal portfolio (3.2), it is obvious that (5.9) is a CSD universal portfolio 

with parameter      . 

 

 From the above observation, we can say that the Dirichlet universal 

portfolio of order one where      belongs to the class of Mahalanobis 

additive-update universal portfolios. 
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CHAPTER SIX 

 

MIXTURE-CURRENT-RUN UNIVERSAL PORTFOLIO 

 

 

 In this chapter we study the problem of combining or mixing two or 

more universal portfolios with the aim of obtaining a universal portfolio with a 

better performance over the original portfolios. Sometimes there may be two 

or more universal portfolios which are close in performance in terms of the 

wealth returns. It is difficult in this case to choose a single portfolio for use in 

investment. This difficulty can be avoided by mixing the universal portfolios 

in some way that extract the advantages of each portfolio to be exploited in a 

single mixture portfolio. The experiment focusses on running the Helmbold 

and chi-square divergence (CSD) universal portfolios on four selected stock-

price data sets. 

 

6.1 Mixture Universal Portfolio 

 

 Mixing two or more types of universal portfolios can be done by 

introducing parameter weights      for the respective universal portfolios. The 

weights are chosen in some way in order to achieve a higher wealth. The 

performance of the mixture universal portfolio is studied by running the 

mixture universal portfolio on the four 10-stock data sets that are used in the 

previous chapter. 
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 Let us consider   universal portfolios which we designate as 

  
    

      
 . The portfolio 

 

        
 

 

   

 (6.1)  

is a mixture of the   universal portfolios if the weights      are chosen such 

that        for           and    
 
     , for          . In terms 

of the wealths achieved, it is the objective to choose the weights        that 

maximizes       where 

 

              
  
 
  

 

   

 

 

   

  (6.2)  

although this is usually difficult to achieve. Next, we focus our empirical study 

on mixing two universal portfolios. 

 

 We mix the Helmbold and CSD universal portfolios according to (6.1) 

for the four 10-stock data sets designated as D, E, F and G in this thesis using 

                            and choosing an appropriate          . 

The best parameters   (Helmbold universal portfolio) and   (CSD universal 

portfolio) for the four 10-stock data sets respectively are used in this study. 

The maximum values of       achieved by the Helmbold universal portfolios 

for data sets D, E, F and G are at                          and 

         respectively from Table 2.10, whereas the maximum values of 

      achieved by the CSD universal portfolios for data sets D, E, F and G are 

at                          and         respectively from Table 3.3. 

The portfolios       and the maximum wealths            achieved by 

chosen  ’s after      trading days are listed in Table 6.1. The letter    refers 
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to the weight assigned on the Helmbold universal portfolio and    is the 

weight assigned on the CSD universal portfolio, where        . Through 

experimentation, we find that maximum wealths are achieved by using 

extreme weights of      or   for      . The results are summarised in 

Table 6.1. 

 

Table 6.1: The portfolios       and the maximum wealths            
achieved by the mixture universal portfolio for data sets D, E, 

F and G, where                             and the 

weight vectors         achieving the maximum wealths 

Table 6.1 continued 

Data set                          

Set D (1, 0) 
(0.1356, 0.1319, 0.1223, 0.1042, 0.1048, 
0.1012, 0.0914, 0.0558, 0.0825, 0.0702) 

18.2486 

Set E (0, 1) 
(0.0035, 0.0057, 0.0014, 0.0310, 0.0250, 

0.0224, 0.0261, 0.6996, 0.0260, 0.1593) 
29.1040 

Set F (0, 1) 
(0.0003, 0.0001, 0.0000, 0.0000, 0.6796, 
0.0000, 0.0008, 0.3062, 0.0003, 0.0127) 

22.3262 

Set G (0, 1) 
(0.0013, 0.7729, 0.0184, 0.0044, 0.0626, 

0.0017, 0.0000, 0.0026, 0.0021, 0.1340) 
25.5834 

 

 The maximum wealths            achieved (6.2) by mixing the 

Helmbold and CSD universal portfolios for data sets D, E, F and G are 

                        and         respectively are shown in Table 6.1. 

For data set D, the weight    on the Helmbold universal portfolio is   whereas 

the weight    on the CSD universal portfolio is  . The weights on the 

Helmbold and CSD universal portfolios are   and   respectively for the three 

data sets E, F and G. It seems that the weight is biased towards the portfolio 

that achieves the higher wealth and the observed maximum wealths achieved 

by the mixture universal portfolio in Table 6.1 do not exceed the maximum 

wealths achieved by the individual Helmbold and CSD universal portfolios. 
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6.2 Mixture-Current-Run Universal Portfolio 

 

 The weights for the mixture universal portfolio studied in Section 6.1 

are constant throughout the entire period of investment. Mixing two or more 

types of universal portfolios using time-varying weights is studied in this 

section. Next, we introduce the mixture-current-run (MCR) universal portfolio 

that follows the current run of the portfolio that achieves the best single-day 

wealth return to avoid the uncertainty of predicting the best-performing 

universal portfolio in the future. 

 

 Let   
    

      
  be   universal portfolios. The portfolio 

 

         
 

 

   

 (6.3)  

is a time-varying mixture of the   universal portfolios if the weights       

where         for           and          , are time-dependent and 

chosen according to some decision rule. The MCR universal portfolio is a 

portfolio where the weights       are chosen according to the rule that given 

  , 

                  
 
    

          
  

 
   (6.4)  

and 

                         (6.5)  

In other words, if the portfolio   
  achieves the maximum single-day wealth on 

day  , then the MCR portfolio on day     is          
 . If 

    
 
      

              
  

 
                     (6.6)  
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for some positive integers  ,  , then the  th portfolio in the mixture creates a 

run on days            . The run of the  th portfolio is terminated if 

there exists a smallest integer     such that 

    
 
      

              
 

 
 
     (6.7)  

where    . The MCR portfolio follows the run of the  th portfolio, namely, 

          
                  (6.8)  

for days              , until day     and changes to the run of the 

 th portfolio on day      , namely, 

              
 

              (6.9)  

 

Proposition 6.1 Let    be a mixture of the   universal portfolios 

  
    

      
  defined by the weights       and let    be the wealth achieved at 

the end of the  th trading day. Then 

 
    

 
    

  
 
   

 

   

        
 

    
  
 
   

 

   

  (6.10)  

Proof. Since   
           

 
    and from (6.3), the wealth achieved in a 

single day   is 
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Noting that       
   

 
   , the upper bound is obtained. In a similar manner, 

the lower bound follows.       □ 

 

 The MCR universal portfolio attempts to achieve the upper bound in 

wealth. Let   be a fixed number of trading days. A measure of the 

performance of a mixture universal portfolio is the pair of coefficients 

      
    

        
    

    where   
              ,   

              , 

 

     
    

        
 

    
  
 
   

 

   

      (6.11)  

 

     
    

          
 

     
  
 
  

 

   

    (6.12)  

For a good-performing mixture universal portfolio,      
    

   is required to 

be small and      
    

   is required to be large. Any mixture universal 

portfolio achieving the upper bound in wealth given by Proposition 6.1 will 

have      
    

    . It seems that there may be no advantage in using the 

mixture if      
    

   is zero or negative. The coefficient      
    

   measures 

the extra wealth achieved by the mixture over the best individual wealth 

among the   universal portfolios in the mixture. However, since the best 

individual universal portfolio is unknown at the beginning of the investment 

period, it is still reasonable to use the mixture even though the wealth achieved 

may be below the best individual wealth for some data sets. We shall show in 

the next section, it is possible to achieve extra wealth over the best individual 

wealth by using the MCR universal portfolio. 
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 Consider an MCR universal portfolio defined by (6.3), (6.4) and (6.5). 

Our next objective is to estimate the probability of achieving the upper bound 

in wealth given by Proposition 6.1. Suppose that on the  th trading day, the 

 th universal portfolio in the mixture achieves the maximum daily wealth 

given the price-relative vector   , namely,         
          

  
 
  . 

Assume that there is a stochastic process        
  generating the symbol    on 

day   if the  th universal portfolio   
  achieves the maximum daily wealth, 

namely, 

               
 
    

          
  

 
    (6.13)  

 

Proposition 6.2 Consider an MCR universal portfolio defined by (6.3), 

(6.4) and (6.5). Let        
  be a stochastic process generating the symbols 

           according to (6.13). An estimate of the probability of the wealth 

of the MCR universal portfolio achieving the upper bound in Proposition 6.1 

is        where                        
 
   
   

 
   . If        

  is an 

ergodic process, the probability                  can be estimated by the 

relative frequency of         in a long sequence of symbols generated by the 

process. 

Proof. The number      can be considered as the probability of error in the 

sense that the wealth of the MCR universal portfolio does not achieve the 

theoretical upper bound. Now 
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If        
  is ergodic, the relative frequency of any finite sequence of symbols 

converges to its probability almost surely. Hence                  can 

be estimated by the relative frequency of         in a long sequence of 

generated symbols.        □ 

 

6.2.1 Empirical Results 

 

 For the purpose of comparison, we run the MCR universal portfolio on 

the same 10-stock data sets designated as D, E, F and G by mixing the 

Helmbold and CSD universal portfolios. The initial starting portfolios of the 

Helmbold, CSD and MCR universal portfolios are 

                           . The parameters   (Helmbold universal 

portfolio) and   (CSD universal portfolio) were chosen to maximize the 

respective wealths achieved. The values of the best parameters   for data sets 

D, E, F and G are                        and          respectively 

from Table 2.10, while the values of the best parameters   for data sets D, E, F 

and G are                        and         respectively from Table 
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3.3. Table 6.2 shows the resulting portfolios       and the wealths       

achieved by the MCR universal portfolio after      trading days. 

 

Table 6.2: The portfolios       and the wealths       achieved by the 

MCR universal portfolio for data sets D, E, F and G, where 

                            
Table 6.2 continued 

Data set             

Set D (0.1356, 0.1319, 0.1223, 0.1042, 0.1048, 0.1012, 0.0914, 0.0558, 0.0825, 0.0702) 18.2725 

Set E (0.0085, 0.0107, 0.0161, 0.0391, 0.0409, 0.0469, 0.0797, 0.1374, 0.1487, 0.4719) 26.2478 

Set F (0.0000, 0.0000, 0.0000, 0.0000, 0.0004, 0.0003, 0.0371, 0.8604, 0.0272, 0.0745) 19.1401 

Set G (0.0000, 0.0000, 0.0002, 0.0000, 0.0460, 0.0000, 0.0000, 0.0000, 0.0000, 0.9537) 31.9251 

 

 The wealths       achieved by the MCR universal portfolio by mixing 

the Helmbold and CSD universal portfolios for data sets D, E, F and G are 

                        and         respectively from Table 6.2. For data 

sets D and G, the wealths       achieved by the MCR universal portfolio, 

namely         and         are higher than the maximum wealths 

           achieved by the mixture universal portfolio in Section 6.1, 

namely         and        . For data sets E and F, the values of       for 

the MCR universal portfolio are lower than the values of            for the 

mixture universal portfolio of the previous section. 

 

 In Table 6.3, the wealths achieved by the four types of universal 

portfolios CSD, Helmbold, MCR and best constant rebalanced portfolio 

(BCRP) are displayed for the four 10-stock data sets based on      trading 

days. Let     
    

   denote the upper bound given by Proposition 6.1, namely 

 
    

    
       

 
    

  
 
   

 

   

  (6.14)  

Then      
    

   defined by (6.11) can be rewritten as: 
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      (6.15)  

for   fixed. In our study       . The estimated probability for the wealth 

of the MCR universal portfolio to achieve the upper bound     
    

   is given 

by        in Proposition 6.2. The values of the quantities     
    

  , 

      ,      
    

   and      
    

   are listed in Table 6.3 for the MCR 

universal portfolios. 

 

Table 6.3: The wealths       achieved by the Helmbold, CSD, MCR 

universal portfolios and BCRP, together with the values of 

    
    

  ,       ,      
    

   and      
    

   for data sets 

D, E, F and G, where                             
Table 6.3 continued 

Set D 

Type Parameter                      

Helmbold 0.4138 18.2486     

CSD 0.3769 18.2431     

MCR  18.2725 19.5243 0.5127 1.2518 0.0239 

BCRP  37.5867     

Set E 

Type Parameter                      

Helmbold -2.3639 22.9859     

CSD -2.8760 29.1040     

MCR  26.2478 511.5745 0.5117 485.3267 -2.8562 

BCRP  37.5867     

Set F 

Type Parameter                      

Helmbold -9.4444 15.7558     

CSD -4.9553 22.3262     

MCR  19.1401 2523.3919 0.5187 2504.2518 -3.1861 

BCRP  20.7169     

Set G 

Type Parameter                      

Helmbold -83.1143 19.9357     

CSD -3.7942 25.5834     

MCR  31.9251 4146.1442 0.5339 4114.2191 6.3417 

BCRP  24.6381     

 

 The theoretical upper bound in wealth given by     
    

   is in general 

not achievable by the MCR universal portfolio unless the runs are completely 

predictable or there is only one run in the whole trading period. Thus, we 
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observe in Table 6.3 that the values of the coefficients      
    

   are large for 

data sets E, F and G. The coefficients      
    

   measures the excess wealth 

achieved by the MCR universal portfolio over the individual best wealth 

achieved by either the CSD or the Helmbold universal portfolios. For data sets 

D and G, the values of      
    

   are positive and hence the MCR universal 

portfolios outperform both the CSD and Helmbold universal portfolios. For 

data set G, the MCR universal portfolio outperforms the best CSD universal 

portfolio by        units of wealth achieved. The values of      
    

   for 

data sets E and F are negative. The MCR universal portfolios for these two 

data sets still achieve higher wealths than the worst Helmbold universal 

portfolios. 

 

 In Figures 6.1, 6.2, 6.3 and 6.4, the three superimposed graphs of the 

wealths    achieved by the Helmbold universal portfolio against the number 

of trading days  ,  the wealths    achieved by the CSD universal portfolio 

against the number of trading days   and the wealths    achieved by the MCR 

universal portfolio against the number of trading days   are shown for data 

sets D, E, F and G respectively, where                            . 

From Figures 6.1 and 6.4, the MCR universal portfolios perform better than 

both the Helmbold and CSD universal portfolios most of the trading days in 

terms of wealth    achieved for data sets D and G. The values of    for the 

MCR universal portfolio dominate the values of    for both the CSD and 

Helmbold universal portfolios during the trading days        until 

       for data sets E in Figure 6.2. 
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Figure 6.1: Three superimposed graphs of (i)the wealths    achieved by 

the Helmbold universal portfolio against the number of 

trading days  , (ii)the wealths    achieved by the CSD 

universal portfolio against the number of trading days   and 

(iii)the wealths    achieved by the MCR universal portfolio 

against the number of trading days  , for data set D, where 

                            

 

 

Figure 6.2: Three superimposed graphs of (i)the wealths    achieved by 

the Helmbold universal portfolio against the number of 

trading days  , (ii)the wealths    achieved by the CSD 

universal portfolio against the number of trading days   and 

(iii)the wealths    achieved by the MCR universal portfolio 

against the number of trading days  , for data set E, where 
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Figure 6.3: Three superimposed graphs of (i)the wealths    achieved by 

the Helmbold universal portfolio against the number of 

trading days  , (ii)the wealths    achieved by the CSD 

universal portfolio against the number of trading days   and 

(iii)the wealths    achieved by the MCR universal portfolio 

against the number of trading days  , for data set F, where 

                            

 

 

Figure 6.4: Three superimposed graphs of (i)the wealths    achieved by 

the Helmbold universal portfolio against the number of 

trading days  , (ii)the wealths    achieved by the CSD 

universal portfolio against the number of trading days   and 

(iii)the wealths    achieved by the MCR universal portfolio 

against the number of trading days  , for data set G, where 
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 It is worth noting that the Dirichlet-weighted universal portfolios in [9] 

cannot achieve wealths higher than that of the BCRP. In Table 6.3, the wealths 

achieved by the CSD universal portfolios are higher than that of the BCRP’s 

in data sets F and G. Furthermore, there is an MCR universal portfolio 

outperforming the BCRP in data set G. This study concludes with the 

observation that there are universal portfolios achieving higher wealths than 

that of the BCRP for certain data sets. The results in this section are reported 

in Tan and Lim [28]. 

 

6.2.2 Application of the Mixture-Current-Run Universal Portfolio in 

Identifying the Best Current-Run Parameter 

 

 We focus our study on mixing two or more types of universal 

portfolios in the previous sections. We introduce the MCR universal portfolio 

that follows the current run of the portfolio that achieves the best single-day 

wealth return. In this section, we discuss the application of the MCR universal 

portfolio in mixing two or more universal portfolios of the same type to 

estimate the best-performing parameter corresponding to the run of the best 

daily wealth. 

 

 In Chapters Two, Three and Four, we observe that the parameters   in 

the Helmbold universal portfolio and   in the CSD and the Mahalanobis 

universal portfolios are important factors influencing the performance of the 

universal portfolios. An improper choice of   or   may lead to a lower 
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investment wealth. It is a difficult task to choose a good parameter at the 

beginning of the investment period. The MCR universal portfolio can be 

applied to deal with the above difficulty by mixing two or more universal 

portfolios of the same type with different values of the scalar parameter by 

using the better-performing parameter on each trading day. 

 

 Let us consider a universal portfolio with the parameter   defined 

within a certain range of values, say        . We can form   universal 

portfolios of the same type using   different values of same scalar parameter. 

The   different values of same scalar parameter can be obtained by 

discretizing the range         by         
     

   
 for          . Then the 

MCR universal portfolio is generated by the   universal portfolios of the same 

type with parameters            will follow the current run of the portfolio 

which achieves the best single-day wealth return. We can identify the best 

parameter among the   parameters by keeping track of their performance daily. 

 

 The current parameter generating the run of the best single-day wealth 

is estimated to be the best current-run parameter. In this connection, the most 

frequent best-current-run parameter throughout the whole investment period 

may be estimated to be best parameter among the   parameters achieving the 

highest wealth throughout the investment wealth. This best-performing 

universal portfolio may be different from the actual best-performing universal 

portfolio determined from hindsight. It is impossible to determine the latter 

best-performing universal portfolio at the beginning of the investment period. 
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Hence it is natural to use the best current-run parameter to achieve a higher 

investment wealth. 
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APPENDIX A 

 

The Matrix       in (4.28) 
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For           and           ,     are given as 

                                                

                                         

                                                

                                    

                                                 

                          

                                                 

                     

                                                 

          

                                                  

          

                                                

                     

                                                

                          

                                                

                               



 
126 

                                                  

                                    

 

                                                

                                    

                                               

                               

                                                 

                     

                                                  

                

                                                

      

                                                

          

                                                 

                

                                                

                     

                                                

                          

                                                  

                               

 

                                                 

                          



 
127 

                                                 

                     

                                                

                

                                                 

           

                                                

                                                   

                                                

                

                                                  

                

                                                

                     

                                                  

                          

 

                                                 

                     

                                                  

                

                                                 

           

                                               

           

                                                   

                                              



 
128 

                                                 

                                                

                

                                                 

                

                                                  

                     

 

                                                 

          

                                                

      

                                                

                                                   

                                                

                                             

                                              

                                                   

                                                

          

                                                    

           

 

    are given as 

               

for            and           . 
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APPENDIX B 

 

The Matrix       in (4.29) (version 1) 

 

 

            where 

    
   

      
  

 

For           and           ,     are given as 

              

                    

               for          . 

               for           and       . 

               for          . 

             for    ,           and          . 

 

    are given as 

               

for            and           . 
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APPENDIX C 

 

The Matrix       in (4.29) (version 2) 
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For           and           ,     are given as 
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    are given as 

               

for            and           . 

 



 


