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PREDICTION OF ELASTIC AND OPTICAL PROPERTIES OF BINARY
GLASS SYSTEM USING ARTIFICAL INTELLIGENCE APPROACH

ABSTRACT

Binary glass systems are a rising prospect in the industrial field and have
piqued interest in research and the electronic field. The unique properties and
distinctive structure of the binary glass systems provide a wide range of
applications in the electronic field such as optical fibers, optical switching
devices, laser hosts, and more. Additionally, during the manufacturing process
of the binary glass, certain simulations is necessary to predict the
characteristics of the glass before the pure materials of oxide are melted.
Previous research has suggested and implemented the usage of artificial neural
network models as instruments to simulate and predict the optical and elastic
properties of binary glass series ZnO-TeO; glasses. Based on previous results,
MATLAB software was used to predict the properties of the glasses, and
sufficient results were produced for different types of ZnO-TeO glass
compositions. However, there was a drawback using MATLAB where the
perfect fit correlation value, R? which represents the proportion of variance in
the dependent variable that is predictable from the independent variable in a
regression model is satisfactory as the correlation value R was all between
0.90361 and 0.99985. Nevertheless, the research established that the use of the
ANN model is a good approach to be used in future research. In this project,
python software with deep learning libraries such as PyTorch and scikit-learn
was utilized to predict the elastic and optical properties of several glass series
with different compositions. Thus, the results produced had a better and
consistent R? value within a range of 0.97 to 0.99 which indicates a high
degree of predictability in the relationship between the independent and
dependent variables in the model. Furthermore, the training total loss on
binary glass characteristics data set, graphs of predicted values, and real values

were visualized, discussed, and studied in this report.
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CHAPTER 1

INTRODUCTION

1.1 Background

Glass materials are a growing prospect in the field of electronics due to their eccentric
properties such as transparency, chemical inertness, thermal stability, and mechanical
strength. Glass materials have a wide range of applications in the industrial field such
as in chemical processing, laboratory equipment, insulation materials, manufacturing
equipment, and optical components. Furthermore, binary glass systems refer to a type
of glass composition that consists of a combination of two chemical compositions
which mainly comprise oxides to form a glassy material. The most contemporary
chemical component used is silica SiO2 which forms the backbone of the glass
structure. Thus, the second chemical component can vary depending on the desired
properties of the glass and the intended applications. Besides that, the properties of a
binary glass system are determined by the composition and structure of the glassy
matrix. For instance, the addition of different oxides can change the optical,
mechanical, thermal, and electrical properties of the glass. Hence, by varying the
composition of the binary glass system, industrialists can tailor the glass to meet
specific performance requirements for various applications. Henceforth, binary glass
systems find widespread use across various industries due to their versatility and

tunable properties.



1.2 Problem Statements

Glass fabrication is the process of manufacturing and assembling glass and glass
parts using a variety of materials and technical processes. The usual method for
fabricating glass includes engineering, machining, forming encapsulation, bevelling,
extrusion, and moulding. However, the approach for fabricating binary glasses
differs as it uses the trial-and-error method to fabricate the specific glasses. The trial-
and-error method is used on binary glasses fabrication to discover its parameters
however the trial-and-error method comes with several drawbacks. The trial-and-
error approach in fabrication can ultimately lead engineers to a repetitive path that
creates the preliminary design, putting it into production and often causing flaws to
be detected lately. Finding the defects late when another process is present in
production becomes a costly situation to recover in terms of money and time. Thus,
discovering flaws in the fabrication approach could be a prominent key to cost and
time saving. Hence, using simulation technologies like deep learning such as the
ANN, design errors can be eliminated earlier and in the case of binary glass
fabrication, the parameters of the glass system could be predicted earlier rather than

using the trial-and-error approach which consumes time and money.

Traditional scientific theoretical models and experimental approaches in
materials science often struggle to accurately predict the properties and behaviour of
complex materials composed of more than five components. These limitations hinder
the development and optimization of advanced materials for various applications. To
address this challenge, we seek to use the flexibility and adaptability of Artificial
Neural Networks (ANNs) to model and predict the properties of complex materials
with compositions involving numerous elements and compounds. Furthermore,
ANNs can overcome the constraints of conventional methods and provide a more

accurate and versatile approach to predict the parameters of the binary glass system.



1.3 Aims and Objectives

The objectives of the thesis are shown as follows:

i) To develop an artificial neural network using Python software to predict
elastic and optical properties of some binary borate compounds and tellurite
glass systems.

i) To simulate some elastic and optical properties of binary borate and tellurite
glasses containing Zinc Oxide, (ZnO) and Bismuth (I11) Oxide ( B,05) using
an artificial neural network.

iii) To compare and quantitively analyse the experimental data from physical,
elastic, and optical properties with the prediction of an artificial neural

network.

1.4 Outline Of Report

Chapter 1 will be the introduction of the report. This chapter will consist of the
background of the study of the project which illustrates a brief introduction of the
research on the project and a general explanation of the project. Subsequently, this
chapter will have the problem statements of the project where the problems,
limitations, and solutions for the projects are discussed and finally, this chapter will
be closed with the objectives and aims of the project where the goals to be achieved

by to project are stated.

Chapter 2 will consist of the literature review of the project. In this section,
an overview of previous research and experiments published related to the project
being conducted will be studied and discussed. Furthermore, this chapter will
demonstrate the knowledge and understanding of the project with several references

from academic literature, research, and some online websites.
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Chapter 3 will be the methodology of the project. In this subsequent chapter,
the procedure and planning to conduct this project with detailed methods and
techniques to assist in carrying out this project will be elaborately explained. In
addition, several diagrams, flowcharts, models, and Gantt charts will be included in
this chapter.

Chapter 4 will consist of the results and discussions of the project. This
section will extensively analyse and study the outcome of the project. Furthermore,
every data obtained from the experiment will be tabulated in this section and will be
explained in full detail. In general, this section will show a presentation of the results
in line with the objectives of the project.

Chapter 5 which is the final chapter will compromise of the conclusion and
limitations of the project. Furthermore, this section will discuss the objectives
achieved by this project and elaborate on the drawbacks of the project and provide

some suggestions to improve the project for future usage.



CHAPTER 2

LITERATURE REVIEW

2.1 Binary Glass Systems

Binary glass systems are glass compositions made up of two main chemical elements.
Glass is the most rudimentary form is an amorphous solid material shaped by the
rapid cooling of a molten substance. Furthermore, in binary glass systems, the glass -
forming elements are usually oxides such as silica, SiO2, boron oxide and B.O>
combined with another oxide or modifier such as metal oxides like sodium oxide
Na2O, calcium oxide, CaO, aluminium oxide, Al,Os and others. The various
properties of binary glass systems depend on the chemical composition, the amount
of glass forming oxides to modifiers, and the specific interactions between the
elements. Some of the examples of the properties are the physical, elastic, and optical
properties. Hence, by adjusting the composition of binary glass systems,
manufacturers can alter the properties of the glass to suit specific applications.
Additionally, these glass systems provide a huge range of properties depending on
the specific composition making them versatile materials for various applications in

the industry.
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There are several types of binary glass systems used in the industry where each
of them has its own distinctive properties. One of the most common binary glass
materials used is zinc oxide, ZnO which is a combination between zinc and oxide. ZnO
is an appealing material for applications in electronics, photonics, acoustics, and
sensing. In the electronic field, ZnO has potential in transparent thin film transistors
(TFTs) due to their high optical transmissivity and high conductivity. Furthermore,
ZnO is also widely used in acoustic wave devices because of their larger
electromechanical coupling in ZnO (U. Ozgir et al, 2010). On the other hand,
bismuth (I11) oxide, Bi-Os is another binary glass material which is composed of
bismuth and oxygen atoms. Bi»Os is an attractive Binary glass system among
engineers and researchers because of its semiconducting behaviour, high energy
bandgap, and high refractive index. Hence, Bi>Osis widely used in humidity sensing
and optoelectronics devices (Condurache-Bota S ,2018). Besides that, tellurium
trioxide, TeOz is a chemical compound composed of tellurium and oxygen atoms.
The TeOs has shown some properties where it can behave as a semiconductor and as
an insulator when altered with specific compositions (Rada S et al, 2009). However,
the TeOs does not have practical applications but understanding the behaviour of
tellurium compounds can benefit the development of material science and new
technologies. In addition, Boron trioxide, B203 is another binary glass system that
consists of boron and oxygen atoms. The B203 is widely used in the manufacture of
electronic components such as semiconductors and capacitors as well as in the

production of boron-doped silicon for use in solar cells and other electronic devices.



2.2 Properties of Binary Glass Systems

2.2.1  Physical Properties

The physical property of a material is the characteristic of a substance that is
observed or measured without altering the identity of the substance. Besides that,
physical properties are features that scientists and engineers can calculate and
measure without altering the composition of the substance or material that is under
study (Chemistry LibreTexts, 2016). There are two important physical properties of
binary glass systems which are the density and molar volume. The density of a
substance is defined as its mass per unit volume. Hence, its essentially a
measurement of how tightly matter is packed together (BYJU’s, 2024). Furthermore,
density plays a crucial role in determining the mechanical, thermal, optical, and
chemical properties of binary glass compositions which impacts their suitability for
various applications. Density is calculated by dividing the mass by the volume of the
substance. The equation 2.1 below shows the formula to compute density, where g is
density, m is mass and v is volume. The density is usually expressed in grams per

cubic centimetre, g/cm?.

p=—
(2.1)

where,

v = Volume

2 = Density

m = Mass



8

On the other hand, molar volume is another prominent physical property that
measures the volume occupied by one mole of a chemical element or a chemical
compound. Similar to density, molar volume plays a significant role in the
characterization, processing, and optimization of binary glass systems thus
influencing their structural, mechanical, thermal, and optical properties. Molar
volume is calculated by dividing the molar mass by the density of the substance. The
equation 2.2 below shows the formula to compute the molar volume. Where, V,,, is
the molar volume, M is the molar mass, and g is the density. Molar volume is

usually expressed in cubic centimetre per mol, em?® /mael.

(2.2)
where,
V.. = Molar Volume.
M = Bulk Modulus
2 = Density

2.2.2  Elastic Properties

Elastic properties often denoted as elastic modulus is another prominent property that
determines the deformation of a substance or material under pressure or flexure
(Kimbell and Azad, 2021). Elastic modulus consists of several other properties. The
first property is the longitudinal velocity. Longitudinal velocity also known as
primary wave velocity is the speed at which a longitudinal wave travels through a

material.
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The Longitudinal velocity is calculated by finding the root of the sum of the
bulk modulus and shear velocity and dividing it by the density of the material. The
equation 2.3 below shows the formula to compute the ultrasonic velocity. However,
for binary glass systems, the computation of ultrasonic velocity is a little complex
due to the forming of two glasses. The ultrasonic velocity for binary glass systems is

computed by taking the average of both glasses. The longitudinal velocity is usually

expressed as VL (?).

—
|K+%u

Vo= |
NP

(2.3)
where,
V, = Longitudinal Velocity.
K = Bulk Modulus
1 = Shear Modulus

o = Density

The second property of elastic modulus is the shear velocity. Shear velocity is
also called friction velocity is the speed at which a shear wave propagates through a
material. In binary glass systems, shear velocity is more complex to calculate due to
the presence of two different glass-forming materials. Thus, the weighted average of
shear velocities of individual glass components is computed. Besides that, another
important elastic property is the young modulus. Young modulus is a parameter that
characterizes the behaviour of an elastic material depending on the direction in which
a force is applied (Anon, 2020). The young modulus is usually determined by various
testing methods and experiments to get the stress applied to the material, o and the

strain of the material, =.
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Then, the young modulus, E is calculated by dividing the stress applied to the
material by the strain of the material. The equation 2.4 below shows the formula to

compute the young modulus. The young modulus is generally expressed as pascals.

o
E=—
£

(2.4)

where,
E = Young Modulus.
a = stress applied to the material.

g = strain of the material

Furthermore, the following elastic property is the shear modulus. Shear
modulus also known as the modulus of rigidity is the measure of the rigidity of the
body by computing the ratio of shear stress to shear strain. Shear modulus is often
denoted as G and expressed as Pascals, (Pa) (BYJUS, n.d.). On the other hand, bulk
modulus is another key elastic property. The bulk modulus is defined as the fraction
of volumetric stress related to the volumetric strain of a material during the
deformation of the material. Bulk modulus is commonly denoted with the symbol K
and expressed in the units per square inch (N/m=). In addition, Microhardness is the
measurement of a material’s hardness or resistance to deformation. Microhardness is
usually measured by multiple testing methods depending on the material subjected to
study. Microhardness is commonly denoted with the symbol H and is usually
expressed as pascals, (Pa). In addition, fractal bond connectivity is another elastic
property that is used to study how the arrangements of bonds influence a material’s
behaviour and conditions under various conditions. Thus, the fractal bond
connectivity helps engineers and researchers to understand the mechanical, thermal,
and optical properties of glass structures. Finally, Poisson’s ratio is another elastic
property which is the inverse of the ratio of the transverse strain to lateral or axial
strain. Thus, understanding the Poisson’s ratio is fundamental in predicting the
glass’s mechanical properties and its stiffness and flexibility to deformation.

Poisson’s ratio is denoted with the symbol a.
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2.2.3  Optical Properties

Optical Properties refer to a material’s behaviour when electromagnetic radiation is
in contact with the material’s surface. Thus, in layman’s terms, optical properties are
how a material interacts with light (Griscom,1991.). Optical properties play an
important role in binary glass systems for their utilization in a wide range of
applications spanning from optics, photonics, and many more. One of the prominent
optical properties of binary glass systems is optical bandgap. The optical bandgap is
defined as the threshold for a photon to be absorbed by a material. The optical
bandgap plays a significant role in determining the material’s optical properties
mainly about its absorption characteristics. Thus, in binary glass systems, the optical
bandgap can be specifically engineered to suit the required application of the binary

glass system.

2.3  Deep Learning

Deep learning is a part of machine learning that utilizes multi-layered neural
networks to replicate and simulate the sophisticated decision-making ability of the
human brain. Furthermore, deep learning models are trained on large quantities of
data to identify and classify phenomena, recognize patterns and relationships,
evaluate possibilities, and carry out predictions and decisions. Deep learning models
try to imitate the mechanism of the human brain through a combination of data

inputs, weights, and biases.

Furthermore, deep learning models compromise multiple layers of
interconnected nodes where each node constructs them upon the previous layer to
rectify and optimize the prediction or classification which is a process called forward
propagation. On the other hand, backward propagation is another process in deep
learning where algorithms such as gradient descent is used to compute errors in
predictions and then alter the weights and biases of the function by reversing through

the layers to train the model.
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Hence, the forward and backward propagation works together to ensure that
the deep learning model makes predictions and make corrections for any errors (IBM,
2023). There are various neural network models used in deep learning such as
artificial neural networks (ANN), convolution neural networks (CNN) , and recurrent
neural networks (RNN).

2.3.1  Artificial Neural Networks.

Artificial Neural Networks are heavily inspired to imitate the function of the human
brain. An ANN consists of large numbers of simple processors linked together by
weighted connections. Thus, by analogy, the processing nodes can be assumed as
neurons. Hence, each node output depends only on the information that is locally
available at the node either stored internally or being received by the weighted
connections. Furthermore, each unit receives inputs from many other nodes and
transmits its output to other nodes. On its own, a single processing element is not
very powerful as it generates a scalar output with a single numerical value which is a
simple non-linear function of its inputs. An error is generated from the difference
between the desired response and the system output. This error information is fed
back to the system, and it adjusts the system parameters in a systematic fashion. This
process is repeated until the performance is acceptable. Therefore, it is clear that
from the description, the performances heavily depend on the data provided. Hence,
if one does not have the data to cover a significant portion of the operating conditions

then the neural network technology is not the right solution.
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On the contrary, if there is a lot of data and the problem is poorly understood
to decode an approximated model then the neural network technology is the right
choice for the specific problem. Besides that, the ANN doesn’t solve the problem
with the means of heavy mathematics, it displays data processing characteristics that
give an approximate solution to a given problem. Furthermore, the components
included in the ANN are similar to the previous neural networks where it has weights,
an adder that sums up all the inputs altered by their respective weights, and finally an
activation function. The ANN makes use of the backpropagation algorithm. This
backpropagation algorithm is used in layered feed-forward ANNs which means that
the ANNSs are organized layers that send their signals forward while the errors are
propagated backward. The ANN network is fed inputs in the input layer and the
output of the layer is fed by the neurons on an output layer. The backpropagation
algorithm implements supervised learning where an algorithm is provided with
examples of the input and outputs that network functions to compute and the error
which is the difference between the actual and expected results is computed. Hence,
the main idea of the backpropagation algorithms is to minimize this error until the
ANN learns the data (Dongare et al, 2012). The figure 2.1 below shows the model of
an ANN.

Architecture of
Artificial Neural Network

Input Output

Hidden

Figure 2.1 : Architecture of ANN model
(Team, 2020)
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2.3.2  Convolution Neural Network

The CNN approach has been one of the most used and represented neural networks
in the field of deep learning. The CNN is a type of feedforward neural network that
can extract features from data with convolution structures. Thus, compared to the
traditional feature extraction methods CNN does not extract features manually but it
utilizes visual perception. The CNN also consists of the components of the previous
neural networks discussed such as the weights, adders, outputs, and so on. The CNN
also consists of loss functions and optimizers which are developed for the CNN
system to learn what to expect. The CNN has many advantages such as the local
connections where each neuron is not connected to all neurons of the previous layers
but only to a minimum number of neurons which is efficient in minimizing
parameters and speed convergence. The second advantage is weight sharing, where a
group of connections can share weights which also minimizes parameters further.
The third feature is the down-sampling dimension reduction which reduces the
number of data while keeping beneficial data. Thus, these three characteristics make
the CNN one of the most represented algorithms in the deep learning field (Li et al,
2021).

0 o 0l0
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Figure 2.2 : Procedure of CNN
(Thube, 2020)
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2.3.3  Recurrent Neural Networks

The Recurrent Neural Network is designed to save the output of a layer, thus the
recurrent neural network will be fed back to the input to assist in predicting the
outcome of the layer. The first layer is a feed-forward neural network followed by a
recurrent neural network layer where some data in the previous time-step is kept by a
memory function. The forward propagation is integrated in this scenario which stores
data required for its future use. Hence, if the prediction is false, the learning rate is
employed to conduct minimal changes. Thus, finally maximizing it towards making
predictions during backward propagation. The figure 2.3 below shows the model of

the recurrent neural network.

Recurrent Neural Network (RNN)

. Input cell O Output cell

Figure 2.3 : Reccurent Neural Networks
(Great Learning Team, 2020)
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2.3.4 Comparisons of advantages and disadvantages of different neural
networks
Table 2.1: Table of comparisons between Neural Networks
Types of Neural Advantages Disadvantages
Networks
Artificial Neural Flexible Complexity
Network (ANN) Parallel Sensitive to
Processing training data
Adaptability

Convolution Neural
Network
(CNN)

Few parameters
compared to fully

connected layer

Complexity

Slow to design

Recurrent Neural
Networks
(RNN)

Uses convolution
layers to extend
the pixel

effectiveness.

Gradient
vanishing and
exploding

problems.

Difficult to train.

Difficult to

process

Modular Neural Network
(MNN)

Efficient
Independent
training

Robustness

Moving target

problems
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2.3.5  Selection of neural network for project

The Artificial Neural Network, ANN was selected over the other neural networks to
predict the elastic and optical properties of the binary glass system because of several
reasons. When compared to Convolution Neural Network, (CNN), the features of the
CNN somehow seem superior to the ANN. However, CNN is more suited for
applications that deal with image data such as image classification and computer
vision. In addition, the input data which is usually fed to the CNN is usually in pixels.
Thus, the CNN is not the right neural network which is required for this project as
this project’s input is mainly dependent on datasheets and compositions. Similarly,
the Recurrent Neural Network is not suitable for this project as this neural network is
more suited for text processing, image processing, and translation techniques.
Besides that, when compared to a Modular Network, too many submodules or
subtasks is not necessary for this project as the main goal of the project is more
focused to the prediction of parameters of compositions rather than high-level

arithmetic calculations.

The ANN is more suited for this project also because of its prediction quality.
Furthermore, the network is capable of predicting parameters by the experimental
system. On the other hand, the network has a parallel structure and very fast learning
capacity. Besides that, any experimental data can be used as training and testing data
for an artificial neural network. Hence, the ANN has much more superior
performance to assist the targeted results of the system and is responsible to analyse

any given parameters in practical applications.
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2.3.6  Activation Functions in Neural Networks

Activation functions are widely used in neural networks to transform an input signal
to an output signal which then is propagated as input to the next layer of the neural
network. In an artificial neural network, the sum of the products of inputs and their
weights is then input to an activation function to get an output of the particular layer
and it is then fed to the subsequent layer. One of the most used activation functions
are non-linear activation function. The concept of a neural network model is similar
to a linear regression model where the predicted output is the same as the input
supplied given that the activation function is not completely defined. Thus, a linear
activation function boundary is linear and they are applied to the network which is
only able to adjust to only the linear manipulations of the input. However, in real-life
scenarios, the errors present have non-linear attributes that in turn with the neural
networks' capability to learn about the inaccurate data. Hence, due to these the non-
linear activation functions are favoured over linear activation functions (Siddarth
Sharma et al, 2020).

There are multiple types of activation functions depending on the complexity
of the deep learning model. One of the types of activation functions is called the
binary step function. The binary step function is the simplest activation function and
can be applied with a simple if-else statement in python. Binary activation functions
are commonly used in binary classifiers however it cannot be implemented in cases
such as multiclass classification. Furthermore, the gradient of the binary step
function is equal to zero which results in obstacles in the backpropagation step. The
mathematical binary step can be defined as shown in the equation 2.5 and 2.6 below.

The figure 2.4 below shows the graph of a binary step function.

flx)=1,x==0
(2.5)

flx)=0,x<0

(2.6)
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f(x) =1, x=0
x<0

-4 -3 -2 -1 1 2 3 4
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Figure 2.4 : Binary Step Function

The other type of activation used is called the sigmoid activation function.
This sigmoid is one of the most well-known activation functions due to its non-
linearity. The sigmoid activation function transforms the values in the range from 0
to 1. The sigmoid function can be expressed mathematically as shown in equation 2.7

below. The figure 2.5 below shows the plot of a sigmoid function.

flx)=1/e""
(2.7)

f(x)=1/(1+e*-x)

1.2

Figure 2.5 : Sigmoid Function
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On the other hand, the Tanh function is another prominent activation
function. The tanh function is identical to the sigmoid function, but it is aligned
about the origin. Hence, the outputs from the previous layers will have different signs
which will be fed as input to the next layer. The equation 2.8 shows the mathematical
expression for the Tanh function.

flx) = 2sigmoid(2x) — 1
(2.8)

The Tanh function is continuous and differentiable, hence the values fall in
the range of -1 to 1. The gradient of the Tanh is steeper compared to the sigmoid
function. Thus, the Tanh is more preferred over the sigmoid function because its
gradients are not confined to change within a particular direction and is zero

cantered. The figure 2.6 below shows the plot of the Tanh function.

+-1.5

Figure 2.6: Tanh Function
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The other well-known activation is the ReLU activation function.
ReLU is a short form for rectified linear unit and it’s a non-linear activation
function. One of the benefits of The ReLU function is that all the neurons are
not activated at the same time. This indicates that a neuron will be deactivated
if the output of linear transformation is zero. The ReLU activation function is
expressed mathematically as shown in the equation 2.9 below. The figure 2.8
below shows the plot for the ReLU activation function.

f(x) = max (0,x)
(2.9)

f(x) = x, x>=0

Figure 2.7 : ReLU function

2.4 Programming languages for deep learning

In this section several programming languages were studied and compared to know

their advantages and drawbacks.
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241 MATLAB

MATLAB is not only a programming language but a five-part system that consists of
a language, development environment, graphics visualizer, math library, and an
interface for coding programs in other languages. However, MATLAB is specialized
in performing matrix computation. MATLAB is robust for performing mathematical
operations and has built-in features for using machine learning models. Hence,
MATLAB has an advantage over other programming languages such as python
which require add-on toolkits and frameworks for mathematical functions and for
simulating deep learning models. Furthermore, MATLAB simulates at a higher
speed which has a slight edge over other programming languages. On the other hand,
there are several disadvantages using MATLAB. One of the drawbacks of using
MATLARB is its cost where a fee is needed to be paid to access the system and for
additional functions. Besides that, MATLAB syntax is more challenging to learn

compared to other programming languages (Houcque, 2005).

MATLAB

Figure 2.8: Logo of MATLAB

242 C++

C++ is one of the most well-known programming languages for general-purpose
applications. It is the spine of operating systems like Windows, 10S and Linux, apps
like Spotify, and Photoshop, and sites like Youtube and many more. C++ is a
compile language, and it doesn’t need an interpreter program which contributes to

processing overhead. Furthermore, programs written in C++ are fast and efficient.
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One of the disadvantages of C++ is the complexity of writing the code. Furthermore,
programs in C++ take time to debug and take a longer time to alter hyperparameters

compared to other programming languages (Kaijanaho, 2000).

Figure 2.9 : Logo of C++

2.4.3  Python

Python is the most popular general-purpose programming language that is easy to
learn compared to other programming languages. It is also considered the best all-
rounded programming language for Al. When compared to other programming
languages, python has an easier syntax, words symbols, and expressions (Banerjee et
al, 2022). Hence, there will be more time to focus on other aspects such as data to
tune the models. Besides that, there is an extensive number of frameworks and
libraries that are available in python that make it adaptable to various machine
learning or data science tasks. Some of the libraries are NumPy, Scikit-learn, pandas
Tensor flow, Keras, Pytorch which provide powerful abilities for data analysis,
machine learning, deep learning and allow developers to concentrate on solving

sophisticated tasks.

@, python

Figure 2.10: Logo of Python
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2.4.4  Selection of programming language for project.

After reviewing several programming languages, Python was chosen as the
programming language to be used for this project. One of the reasons is because of
its easy-to-read syntax. Python has a very straightforward syntax making it easier to
read and write the codes. Furthermore, the object-oriented programming structure of
python provides the users with a logical approach to organizing the structure of the
code to be clean and neat for complex projects. Furthermore, python’s debugging
speed is faster making it simpler to identify and rectify errors made in the code.
Hence, python is extremely user-friendly which enables the user to adapt faster to the
python’s programming environment. Besides that, the factor that distinguishes
python for deep learning compared to other programming languages is its extensive
libraries and frameworks. Python provides a wide range of libraries specifically
designed for machine learning simplifying user’s job to develop deep-learning neural

networks languages.

2.5  Techniques of using ANN for prediction

In this section, several journals regarding on how to utilize the ANN model for

prediction of data will be reviewed and studied.

2.5.1  Price Prediction of Share Marketing

Based on the paper by Khan et al. (2011), researchers have used artificial neural
networks to predict the share market price based on share price data. This approach is
very similar to the prediction of elastic and optical properties of binary glass systems
where a model is trained based on data which are numbers to predict the desired
output. Similar to the elastic and optical properties of binary glasses, there is no fixed
formula or rule to estimate the price of the share in the share market. The share

market holds a place of high interest among investors as it allows them to receive
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financial incentives by investing their resources in shares and secondaries of multiple
companies. However, the share market is considered a chaos system due to its high
level of uncertainty and unpredictability. Thus, the researchers have decided to use
artificial neural networks, ANN to predict the outcome of the share market as ANN
has the potential to distinguish unknown and hidden patterns in data which can be

extremely efficient for share market prediction.

The researchers have conducted a comprehensive fundamental analysis of a
company to analyse its product sales, manpower, quality, infrastructure, and other
factors to get a better understanding of the company’s standing in the market. Based
on the analysis, it is believed that the market is determined 90% by logical and 10%
by physiological factors. However, the researchers have concluded that this
fundamental analysis is not suitable to be fed as data for the ANN as the data by the
analysis is used to find out the intrinsic value of an asset that does not change daily
hence which is not appropriate for short-term basis.

On the other hand, price charts are used to identify trends. These trends are
believed to possess a cyclical or noticeable pattern. These parameters are coined as
indicators and oscillators and it’s a well-known method to predict the market.
However, the researchers have decided not to use this approach because of its
subjective nature. In this paper, the researchers have designed the ANN such that there
is a training phase where there are weights, and a backpropagation algorithm is
implemented for this training phase where it will calculate the error between the
outputs and the actual targets. Hence, the researchers have used a feedforward network
approach for this system. There are a lot of inputs in the share market which influence
the share price but not all inputs are utilized in the system because their influence is not
crucial in the share market price. Thus, 5 inputs were finalized and used for the ANN
system which is General Index (Gl), P/E ratio, Net Asset Value (NAV), Earnings per
share (EPS), and volume. Following this, the data was standardized according to the
network, and the inputs were fed to the network. In addition, the ANN model has been
designed with an input layer with 5 neurons, one hidden layer which has 5 neurons,
and an output layer with a single neuron. Hence, the backpropagation has been used
for training the network. There are two phases in this ANN model which is the training

phase and followed by the prediction phase. In the training phase, the input data has
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been standardized to be fed to the network into the input nodes. The figure 2.11 below

shows the architecture of the ANN model for the training phase.

GI .v ZX W, Weight Update
<7/
QA Weight Update
PE(ORYA o ght Up
Wl

/ \
EPS . Vi‘v Error Calculation

1
Input Layer Hidden Layer Output Layer

Figure 2.11 : Architecture of ANN model for training phase

From the figure above, it can be observed that the standardized input data is
sent into the input layer, and the product of the weights and the input data are then fed
to the neurons in the hidden layer. Following that, each neuron goes through the output
to the subsequent neuron of the output layer. The error which is produced by the
propagation phase is used to update the weight to produce a better output. The two
phases of the ANN model are repeated until the sum of the square error is near zero.
The figure 2.12 and 2.13 shows the results produced by the ANN model for the
prediction of market share prediction of market share price throughout November
2010.
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Figure 2.12 : Graph actual price line against predicted price line.
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Predicted | Actual E
. . rror
DATE Price Price (%)
(TK) (TK)
01-NOV-2010 392.7 395 0.58
02-NOV-2010 393.3 387 1.62
03-NOV-2010 392.5 392 0.12
04-NOV-2010 392.0 390 0.51
08-NOV-2010 392.8 389 0.97
09-NOV-2010 392.5 385 1.94
10-NOV-2010 392.5 380 3.28
11-NOV-2010 392.3 380 3.23

Figure 2.13: ANN model for prediction of market share price throughout November
2010

Based on the simulation results shown above, the average error that was
computed was 1.53%. Furthermore, the researchers have inferred that with more input
data the training’s phase efficiency is better and a more accurate result will be
produced. Hence, with more data available for predicting financial markets, the higher
the potential for an accurate prediction.

2.5.2  Ultrasonic Behaviour in Tellurite Glasses

Based on the paper by Effendy et al. (2020), researchers have used an ANN model to
simulate the elastic properties of the binary series ZnO-TeO2 glasses using MATLAB
software. The researchers have conducted various experiments to get the real values of
the ZnO-TeO> glasses parameters with different compositions. Some of the parameters
that were obtained by the experiment were molecular weight, density, longitudinal
modulus, shear modulus, bulk modulus, and young modulus. Hence, these are the

parameters that will be predicted by the ANN model.

In this paper, the researchers have decided to use a multilayer perceptron (MLP)
feed-forward neural network to predict the properties of the ZnO-TeO; binary glass
series. The MLP model was designed with one input layer, two hidden layers, and one
output layer. Furthermore, the mean square error (MSE) was implemented to predict

the accuracy of the output data. The training process starts with random input data and
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several iterations of the training is conducted. After sufficient data is acquired the

predicted final output values were determined. Additionally, the ANN performance

was measured by computing the percentage error (PE). The figure 2.14 and 2.15 shows

the values predicted by the ANN model.

Glass Sample

Elastic Moduli (GPa)

Lexp Lgc Lann Gexp Gac Gum Gann Kexp Kgc Knm Kann Epxp Egc Evm Eann

0ZT
5ZT
10ZT
15ZT
20ZT
25T
30 ZT

60.612 135892 58948 20.029 45519 20.132 19786 33.906 70.859 25332 20002 50203 112474 47748 49511
57.781 144479 57.781 20494 48774 20.174 20494 30455 74942 25.644 22393 50218 120238 47950 50.061
56.282 154026 55372 21.121 52153 20200 21.122 28120 79.162 25901 23988 50.677 128.287 48098 50.358
59.698 164.878 59.698 20915 56.148 20.342 22627 31.810 84.257 26,564 25541 51467 137.828 48616 51.117
61.181 177257 61.986 21.125 60465 20.500 21.162 33.014 89.766 27297 26868 52234 148136 49.187 52.158
63476 190472 63.379 21.537 65617 20790 21611 34759 96432 28.516 37.158 53.552 160.458 50.177 53.230
71240 202662 71240 20.166 70529 20941 20406 44351 102662 29250 45036 52537 172.163 50721 51.595

Figure 2.14: Parameters by the ANN model

Glass Sample HEXP [GPa) HA.NN [CPa) TEXP TRC TpMM TANN

0ZT 5.175 5.169 0.253 0235 0185 0242
5IT 5.636 5.628 0.225 0232 0188 0219
10 ZT 6.086 6.079 0.199 0229 019 0223
15 ZT 5.691 5.684 0.230 0227 0195 0235
20T 5.676 5.668 0236 0224 0199 0213
25 7T 5.698 5.694 0.243 0222 0206 0236
30ZT 5.194 4.498 0.285 0220 0211 0224

Figure 2.15: Parameters by the ANN model
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Figure 2.16 : R-squared value of Bulk Modulus parameter
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Figure 2.17: R-squared value of Poisson Ratio parameter

The plots above show the unity and goodness of fit R2 value. The R2 value
indicates the proportion of the variation in the dependent variable that is predictable
from the independent variable. Hence, if the R2 value is nearer to one, it means that the
model fits the data efficiently and can accurately predict the outcome of the predictor
variables. Based on the plots above, the straight-line slope on all the plots indicates a
great agreement between the results obtained from experimental and predicted values
by the ANN model. Besides that, the goodness of fit, R2 in all the plots is between
0.90361 and 09985 which is considered to be adequate. In addition, the difference in
percentage error computed is less than 1% between the experimental and predicted
values. Furthermore, the researchers have inferred that the upper hand of using an
ANN model for predicting the elastic properties of binary glass systems is raw
materials don’t need to be melted hence saving time and cost of experiments. Thus, the
results from this research indicate that the ANN model is viable to be used for future

research.
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CHAPTER 3

METHODOLOGY

3.1 System Overview

In this chapter, the method and justification for the hardware and software carried out
are explained. Furthermore, the procedure to design and train the ANN model will be
discussed and elaborated. Besides that, the project management for this project will
also be discussed. The ANN model will be tested in various ways such as altering the
activation functions and changing the number of epochs used for training. Hence, the

best model that produces the most accurate results will be selected.

3.2 Hardware Overview

This project was performed on a laptop with Intel core i5 processor and a 16GB
NVIDIA GeForce GTX1651 GPU. The hardware specifications are specified in the
table 3.1 below.
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Table 3.1 : Hardware specifications

CPU Intel core i5 —10300H CPU @
2.50GHz
GPU NVIDIA GeForce GTX 1651
OS Version Microsoft Windows 11 Home Single
Language
System Type 64-bit operating system, x64-based
PC
RAM 16.0 GB
Storage 453 GB

3.3 Software Overview

The proposed prediction of elastic and optical properties of binary glass system deep
learning model was developed using Pycharm with Python 3.9.13 programming
language. The following section will discuss the software and libraries installed for

the project.

3.3.1 Pycharm

Pycharm is an integrated development environment (IDE) that is tailored mainly to
Python programming. Pycharm is developed by JetBrains and is commonly used by
Python developers for its powerful features and ease of use. Furthermore, Pycharm

provides features such as code highlights, code completion and debugging

capabilities and supports multiple deep learning frameworks.
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PC

Figure 3.1: Logo of Python

3.3.2  Pytorch

Pytorch is an open-source machine learning framework that was developed by
Facebook’s Ai research lab. It is one of the popular deep learning frameworks used by
developers for building and training deep learning models. Furthermore, the Pytorch
framework has a unique computation graph which eases debugging and
experimentation. The Pytorch was downloaded by Pycharm as the packages were

already available hence no pip installation was required.

O PyTorch

Figure 3.2: Logo of Pytorch
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3.3.3  Numpy

Numpy is a powerful numerical computing library for Python It provides support for
huge, multi-dimensional arrays and matrices with a vast collection of mathematical
functions to operate on these arrays efficiently. The numpy library is required in this
project for handling and manipulating the data regarding the binary glasses and to ease
the plot of the results.

NumPy

¢
&' :o
“"

Figure 3.3 : Logo of NumPy

3.3.4 Pandas

Pandas is a powerful library for data manipulation and analysis. The library provides
data structure and functions for efficiently handling structured data, mostly in the form
of tabular data such as CSV files, Excel spreadsheets, and SQL tables. Furthermore,
the pandas library has a data frame which is a primary data structure that represents
tabular data with rows and columns. Additionally, pandas provide a wide range of
functions and methods for manipulating and transforming data which includes filtering,
sorting, merging, joining, grouping, and reshaping data (McKinney, 2011). Pandas is
required in this project as the data regarding the binary glass systems has been
prepared in Excel format, hence the pandas library will be used to convert the data in
the Excel file to a pandas data frame so that the data can be interpreted by the Pycharm
IDE.
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H
pandas

Figure 3.4: Logo of Pandas

3.3.5  Matlpotlib

Matplotlib is a comprehensive Python library for developing static, animated, and
interactive visualizations. Matplotlib provides a flexible and powerful interface for
producing a wide range of plots and charts including plots, scatter plots, bar charts,
histograms, pie charts and more (Barrett, 2005). Matplotlib is required for this project
to visualize the data produced by the ANN model and to conduct an analysis on the
data.

thib

Figure 3.5 : Logo of Matplotlib

matpls
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3.3.6  Scikit-Learn

Scikit-learn commonly abbreviated as sklearn is a popular machine learning library in
Python. This library provides a simple, and efficient toolset for data mining and data
analysis tasks including classification, regression, clustering, dimensionality reduction,
model selection and preprocessing. Sklearn provides tools for the evaluation of
machine learning models using metrics such as accuracy, precision, recall, F1-score,
ROC-AUC, and more (Pedregosa, 2011). Furthermore, sklearn provides functions for
cross-validation, hyperparameter tuning, and model selection. Sklearn library is
required for this project to calculate the mean squared error of the ANN model to
evaluate its accuracy and efficiency in predicting the data.

.eewm

Figure 3.6 : Logo of Scikit-Learn

3.3.7 Tkinter

Tkinter is a library in Python used for creating graphical user interfaces (GUISs).
Tkinter provides a simple and intuitive way to build desktop applications with
graphical elements such as windows, buttons, labels, textboxes, menus, and more.
Tkinter has multiple built-in widgets such as buttons, labels, entry fields, textboxes,
checkboxes, list boxes, and many more to create complex user interfaces (Beniz and
Espindola, 2016). Thus, Tkinter is needed for this project to visualize the data better
and to be integrated with the Matplotlib library to visualize the graphs plotted easily.
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TKINTER

GUI FOR PYTHON

Figure 3.7 : Logo Of Tkinter.

3.4 Data Preparation

The dataset that is going to be used for this project has been prepared by my supervisor
Dr Nuraidayani Binti Affendy based on her PhD research which she has conducted
before. The parameters of the binary glass were achieved after multiple experiments on
the binary glasses. The table 3.2 below shows the dataset that was provided. Thus, this
data will be used to train and tune the ANN model to predict the elastic and optical

parameters of the binary glass system.

Table 3.2: Data set to train the ANN model

Zn0 Bi203 TeO2 B203 Density, p ( Molar Volu Longitudinz Shear veloc Longitudin: Shear modt Bulk modul Young mod' Microhardi fractal bon Poisson rat Optical bar
0 0 100 0 4.939 32314 3503 2013 60.612 20.029 33.906 50.203 3.295 2.362 0.253 2.634
5 0 95 0 4.967 31.345 3410 2031 57.781 20.494 30.455 50.218 3.754 2.691 0.225 2.616

15 0 85 0 5.049 29.286 3438 2035 59.698 21121 31.81 51.467 3.76 2.63 0.23 2.588
20 0 80 0 5.114 28.149 3458 2032 61.181 21.125 33.014 52.234 3.713 2.559 0.236 2.582
25 0 75 0 5.222 26.818 3486 2030 63.476 21.137 34.759 53.252 3.686 2478 0.243 2574
30 0 70 0 5.283 25.768 3672 1953 71.24 20.866 44351 52.737 2.654 1.818 0302 2.557
0 5 95 0 5372 32.561 3217 1715 55.629 15.813 34.544 41.16 2.093 1.831 0.301 2.343
0 7 93 0 5.491 32971 3159 1699 548 15.858 33.655 41.117 2.152 1.884 0.296 2.308
0 10 90 0 5.659 33617 3172 1618 56.942 14.826 37.173 39.26 1739 1.595 0.323 2.284
0 15 85 0 6.052 33.965 3185 1547 61.394 14.489 42,076 38.991 1.491 1377 0.345 221
0 0 0 100 1.84 37.817 3496 1948 22511 6.986 13.196 17.815 1.048 2118 0.275 2.791
45 o 0 55 3.241 23.114 5114 2619 84.777 22.24 55.124 58.81 2.636 1.614 0322 2.725
50 0 0 50 3.267 23.11 5320 2688 92471 23.615 60.984 62.747 27 1.549 0.329 2.721
60 0 0 40 3.555 21.569 4850 2366 83.654 19.904 57.116 53.497 2,071 1394 0.344 2,608
0 40 0 60 5.462 41.772 4225 2257 97.525 27.833 60.415 72.382 3.705 1.842 0.3 2.728
0 45 0 55 5.736 43.231 3988 2162 91.245 26.827 55.475 69.309 3.724 1.934 0.291 2721
0 55 0 45 6.259 45.951 3528 2011 77.909 25336 44.128 63.798 4.069 2.296 0.259 2,602
0 60 0 40 6.55 46.935 3260 1920 69.625 24.154 37.419 59.632 4.276 2.582 0.234 2.546



37

35 Architecture of the ANN model

The figure 3.8 below shows the architecture of the ANN model. The ANN was
modelled by referring to the compositions of the binary glasses and the parameters to
be predicted. From the dataset there are four compositions of binary glasses which are
Zinc Oxide (ZnO), Bismuth (111) oxide (BiO3), Tellurium dioxide (TeOz) and Boric
Oxide (B203), hence these four compositions will be fed as input to the neural network.
Furthermore, the subsequent layer is the hidden layer. The number of hidden layers is
subject to change depending on the accuracy of the prediction. Thus, if the predicted
results are satisfactory then the number of hidden layers will be further increased. The
output layer predicts the parameters which are the elastic, optical, and physical
properties of the binary glass system. Based on the data provided, there are 12
parameters to be predicted by the model which are the molar volume, longitudinal
velocity, shear velocity, longitudinal modulus, shear modulus, bulk modulus, young

modulus, microhardness, fractal bond connectivity, Poisson ratio, and optical bandgap.
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Figure 3.8 : Architecture of the ANN model.

3.6  ANN model training procedure

In this section, the training procedures for this proposed project will be discussed and

explained.
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3.6.1 Data Conversion

The data provided in the Excel file will have to be exported to the Pycharm IDE. The
format of the data in the excel file is in float form. Since the Pytorch is the deep
learning framework that is being implemented the data in float format needs to be
converted to tensor format. The Pytorch tensor is a multidimensional array format used
to represent scalars, vectors, matrices, and higher dimensional arrays. Tensors are
extremely prominent as they are used to represent the data and parameters in the neural

networks.

3.6.2  Configuration of input layer, hidden layers and output layers

As discussed, in section architecture of the ANN model, there is one input layer with 4
inputs and one layer with 12 outputs which is the predicted parameters of the binary
glasses. Thus, the number of hidden layers and neurons in the layer will be increased
or decreased according by comparing them to previous trials of the model. Besides that,
the activation is also subjected to change if the prediction results are satisfactory. Thus,
other viable activation functions such as the ReLU and the Leaky ReL. U will be tested

if the previous activation functions do not produce good results.
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3.6.3  Configuration of learning rate, number of epochs and optimizers

Learning rate is an important hyperparameter in deep learning models as it determines
the step size in which the model parameters are updated during optimization.
Furthermore, setting an appropriate learning rate is important is essential for achieving
optimal convergence and performance during training. Besides that, a suitable learning
rate ensures that the optimization process converges to a minimum of the loss function
effectively. Thus, if the learning rate is too small then the training process may be slow,
and the model may be trapped in a local minimum. Conversely, if the learning rate is
too large the optimization process may oscillate or diverge. Thus, the learning rate will
be increased or decreased depending on the accuracy of the prediction.

Epoch is another important parameter in neural networks which depicts the
complete pass through the whole training dataset. During each epoch, the models go
through the training set once and update its weights and biases based on the training
data to reduce the loss function. Furthermore, the number of epochs is used to control
the number of times the entire training dataset is presented to the model during training.
Additionally, increasing the number of epochs can benefit the model in learning more
complex patterns in the data but could be risky as it might cause overfitting.
Conversely, a low number of epochs may result in underfitting. Hence, choosing the
appropriate number of epochs is prominent for developing efficient deep-learning

models.

On the other hand, optimizers are another important parameter in deep learning
models. In deep learning neural networks, an optimizer is an algorithm used to update
the weights and biases during training to reduce the loss function. The optimizer
adjusts the model’s parameters based on the gradients of the loss function concerning
those parameters. There are several types of optimizers commonly used in deep
learning models such as stochastic gradient descent (SGD), Adam optimizer, Adagrad
optimizer, and many more. The suitable optimizer will be chosen based on the

accuracy of the prediction of the deep learning model.
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3.7  Evaluation of ANN performance

The deep learning model will be evaluated based on several factors. One of them is the
Mean Squared Error (MSE) loss. The MSE is a commonly used loss function in neural
networks for regression tasks. This function computes the average squared difference
between the predicted values and the real target values. The formula to calculate the
MSE loss is shown in the equation 3.1 below. In the deep learning model, the MSE

loss is also known as training loss.

n

1 a2

MSE = 5 Z[}’f —y!)
i=1

(3.1)

where :
n = the number of samples of the dataset.
¥; = the target value.

y; = the predicted value

The MSE loss function is usually used in regression tasks where the objective
is to predict continuous numerical values which is suitable for this project. Hence,
during the training process, the ANN model’s goal is to reduce the MSE loss by
altering its weights and bias through the optimizer function. Thus, the gradients of the
MSE loss concerning to the model parameters are calculated during the
backpropagation and the parameters are updated in the direction that minimizes the
loss (Terven et al, 2023). Additionally, one of the advantages of the Pytorch
framework is that the MSE function is already built-in with the command
torch.nn.MSELoss.
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On the other hand, the percentage error will be computed between the real and
predicted value to know the efficiency of the prediction. A smaller percent error means
that the system is nearing an accepted value and if we get a larger percentage error it
indicates that the system is a long way from the real value. The percentage error is
calculated by computing the difference between the predicted value and the actual
value and is multiplied by 100 and is usually expressed in percentage (BYJU’S ,n.d).
The formula in the figure below shows the formula to compute the percentage error.
Since there is 18 sets of training data sets used, the percentage error of each of the 18
predicted values will be computed . After each of the predicted parameters are
calculated the mean absolute percentage error will be calculated of the 18 sets for a

parameter.

The mean absolute percentage error (MAPE) is one of the most prominent
metrics of model prediction accuracy which calculates the average magnitude of error
produced by a model on how distant off predictions are on an average. Furthermore,
the MAPE of each model will be calculated by summing the MAPE of each parameter
predicted and dividing it by the total number of parameters which is 12. The MAPE of
each model will be compared and the model with the lowest percentage error will be
selected (Kim et al, 2016). The figure 3.9 below shows the interpretation of typical
MAPE values. Hence, the MAPE will be analysed and judged based on the
interpretation as shown in the figure below. The equation 3.2 and 3.3 show the formula

to compute the percentage error and the MAPE.

|predicted value — actual valuel
Error = #* 100 94
actual value

(3.2)

n
1 |pren’:’cten’ value — actunl un{ue| = 100
MAPFE = —Z

actual value

i=1

(3.3)

Where n = number of sets
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Table 1
Interpretation of typical MAPE values

MAPE Interpretation
<10 Highly accurate forecasting

10-20 Good forecasting

20-50 Reasonable forecasting
>50 Inaccurate forecasting

Source: Lewis (1982, p. 40)

Figure 3.9: Interpretation of typical MAPE values

Lastly, the R-squared, R? value also known as the goodness of fit will be used
to evaluate the performance of the ANN model. The R? value is a statical measure that
represents the proportion of the variance in the target variable that is described by the
independent variables in a regression model. In addition, the R-squared value is a
benchmark of correlation and indicates how strongly two variables can be related to
each other. A correlation nearer to +1 indicates a strong relationship between the two
variables while and correlation nearer to -1 indicates a tighter relationship in the
opposite direction. On the other hand, a value closer to 0 indicates that there is not

much relationship between the variables (Hussain, 2019).
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3.7.1  Flowchart of ANN model training procedure

[ Data Conversion }7

v
Configuration of Input Layer,
Hidden layers, Quiput layers

Y

Configuration of learning rate,
number epochs and optimizers

A

Evaluation of ANN
Performance
High Percentage Error

Figure 3.10: Flowchart of ANN model training procedure

3.8 Implementation of GUI

A simple graphical user interface (GUI) was designed to ease the visualization of the
data. The GUI was designed using the tkinter library in python. Thus, the GUI
provides a user-friendly interface that eases the interaction with the deep learning
framework without the need to re-run the code or manually change the code.
Furthermore, the GUI allows to inspect and analyse various factors of the model such
as the training progress, loss curves and to understand the behaviour of the models
easily. The figure 3.11 and 3.12 shows the design for the GUI for the ANN model.

The table 3.3 below shows the function of each button.
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 Elastic & Optical Properties of Binary Glass Systam Simulator - ] x

Elastic & Optical Properties of Binary Glass System Simulator

Figure 3.11 : GUI for ANN model

§ Training Model Evaluation - O b

Training Model Evaluation

Figure 3.12 : GUI for ANN model



Table 3.3: Function of buttons in the designed GUI

Buttons

Functions

Train Model

Train the ANN model.

Graph of Losses

Plots the MSE loss graph
over the number of epochs.

Predicted vs Actual Data

Shows the graph of the
predicted and real values of
the parameters of the binary
glass compositions.

Plot of R2 Graph

Plots the R2 values which is

the goodness of fit graph.

Re-Train Model

Re-train the model to get a
better output and desired

results.

Real Data Set

Shows the tabulated values
of the real values of the
parameters of the binary

glass compositions.

Predicted Data Set

Shows the tabulated values
of the predicted values of the
parameters of the binary

glass compositions.

46
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3.9 Gantt chart for project timeline

This project required adequate planning to finish the project within the due. Hence, a
Gantt Chart was used to efficiently plan the phases of the project so that the project
could be carried out systematically. The table 3.4 below shows the Gantt chart
developed for final year project 1 and the table 3.5 shows the Gantt chart developed for
Final Year Project 2.

Table 3.4 : Gantt chart for final year project 1

Fire Yea Pt \ ik \ Viee? | Week 3 \ Yk ¢ \ Yk \ Vieek | Weel 7 \ Wk \ Vieekd \Weemo | Vi 1 \ Vi 12 \ Week 13 \ Weew\

Project Propozal

FYP Megting

Background and Research

L terafure Research
Methodulogy Research
Iniializing Deep Leaming Model
Repart Witing

FYPA Prasentaion

Table 3.5 :Gantt chart for final year project 2

Final Year Proect 2 ‘ Week 1 ‘ Week? [ Week3 ‘ Weekd | ek ’ Week b ‘ Week | ek 8
Reviing Project
Research For Improvement
Coding Degp Leaming Model
Training Deep Learning Mode!
Implementation Of GUI
Report Wrting
FYP2 Presentafion

Vi3 ‘ Yk 10 | Vi 1

Wegk 12 ‘ Wegk 13 | Wegk 14 ‘
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Criteria and recommendation to develop ANN Model

Based on chapter 2 and chapter 3, there were several recommendations and criteria to
develop a deep learning model for this specific type of project. The table 4.1 below
summarizes the recommendations and criteria for building the deep learning model for
this project. Thus, based on the recommendations two deep learning models, model A
and model B was developed. These two model’s performances were evaluated and
compared with each other. The model which performed more efficiently was then
selected as the final model. The evaluation of the performance is dependent on the
goodness of the fit value, R? percentage error, and the MAPE error value of the
models. The table 4.1 below shows the criteria and recommendations for developing
an ANN model.
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Table 4.1 : Criteria and recommendations to develop ANN model

Parameter Recommendations
Deep Learning Model Artificial Neural Network (ANN)
Programming Language Python
Activation Function 1) RelLU
2) TanH
Number of hidden layers One or two depending on the
prediction accuracy

4.2 Results and analysis of Model A

The ANN model A was designed with 4 inputs and two hidden layers with 500
neurons in the first layer and 400 neurons in the second layer. The output layer has 12
outputs which are the parameters to be predicted. The ReLU activation was
implemented in this deep learning model. The number of neurons in the hidden layer
was experimented with high and low values before settling with the current number of
neurons as it gave better output results compared to the other values. The table 4.2

below summarizes the settings of the parameters for the model A.
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Table 4.2 : Parameters and settings of Model A

MODELA
Activation function ReLU
Number of hidden layers 2
Number of neurons in the hidden 1% layer
layers - 500 neurons
2" layer
- 400 neurons
Learning rate 0.001
Number of Epochs 5000

4.2.1  Graph of training loss over number of epochs

1e6 Training Loss over Epochs: 4.355807304382324
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1.2 4
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o

T T T T T T
0 1000 2000 3000 4000 5000
Epoch

0.0 +

Figure 4.1 : Graph of training loss over number of epochs

Based on the figure 4.1 above, the training loss is 4.355. Thus, the training loss graph
depicts that it converges indicating that the model has reached a stable point in the
training process. This stability indicates that the model has learned the patterns in the

training data to a reasonable extent.
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Graphs of predicted values over experimented values

Predicted values over Real Data (Molar Volume)
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Figure 4.2 : Graphs of predicted values over experimental values
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Figure 4.3 : Graphs of predicted values over experimental values
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Predicted values over Real Data (Microhardness) Predicted values over Real Data (fractal bond connectivity
L ]
41 s u $ 2.5 4 e, ®
L (N [ B : [ ]
e " o o 84 o o *
H L o
3 20 L ]
[ ] o ® 1 L
o e L3 T ¢ ® e
24 LJ : : 154 ) LIPS
® H_exp (GPa) e ™ ’ e dexp [ °
11 ® H_ANN(GPa) o ® dANN ®e
L = - L] ]
T T T T T T T T 10 +— T T T T T T T
0.0 2.5 5.0 7.5 100 125 150 175 0.0 2.5 5.0 75 10,0 125 150 175
Predicted values over Real Data (Poisson ratio) Predicted values over Real Data (Optical Bandgap)
o e o ® oo @ L
021 ®oe0n e ® P LI ° as ® eV exp °
: ® eV ANN * .
[ ]
0.0 401 go ® 0 00 °
® oexp ° o L]
—0.21 ®ees e oAnN [ 3] L)
041 ¢ % @ ¢ . o ©%| 304
. P [
L e o ,s]®®eeee 0,00,
—0.6 e 4 o o9 °
T T . . . ‘ ‘ . . T T T . . . ‘
0.0 2.5 5.0 7.5 100 125 150 175 0.0 2.5 5.0 75 10,0 125 150 175

Figure 4.4 : Graphs of predicted values over experimental values

4.2.3  Graphs of R-squared value
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Figure 4.5 : R-squared values of density and molar volume
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Figure 4.6 : R-squared values of longitudinal velocity and shear velocity
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Figure 4.7 : Longitudinal Modulus and Shear Modulus
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Figure 4.8: R-squared values of bulk modulus and young modulus
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Figure 4.9: R-squared values of microhardness and fractal bond connectivity
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Based on the graph plots above, the R-squared value of density, molar volume,

longitudinal velocity, shear velocity, longitudinal modulus, shear modulus, bulk

modulus and young modulus has an R-squared value in the range of 0.94072 to

0.9988 which indicates that there is a high correlation between the variables and

parameters and implies that the model is efficiently predicting the parameters.

Besides that, the R-squared value of the microhardness is 0.46165 which indicates a

low correlation between the parameters and the performance of model A in

predicting the microhardness value is poor and not up to the mark. On the other hand,

the R-squared value fractal bond connectivity, Poisson ratio, and optical bandgap are
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negative. Thus, in regression modelling a negative R-squared value should be
rejected. This is because a negative R-squared value indicates that there is no
correlation between the variables and the explanatory variables do not predict the
changes in the dependent variable. Thus, model A has not satisfied the performance
criteria of having a stable R-squared value as it could not predict certain parameters.

4.25 Calculation of MAPE of Model A

Table 4.3: Predicted and Experimental values of physical properties

Molar Molar

Density, Density, Percentage

Zno Bi203 Te02 B203 pexp  p_ANN ‘ercentage Volume,  Volume, . o

error% (p) Vm_exp Vm_ANN
(8/cm3) (8/cm3) (cm3/mol) (cm3/mol) (vm)

0 0 100 0 4.939 4.963 0.486 32314 33.737 4.404
5 0 95 0 4.967 4.852 2.32 31.345 32.054 2.262
15 0 85 ) 5.049 4.951 1.94 29.286 29.966 2.322
20 ] 80 0 5.114 4.984 2.54 28.149 29.068 3.265
25 0 75 0 5.222 5.024 3.79 26.818 28.096 4,765
30 0 70 ) 5.283 5.154 2.44 25.768 26.875 4.296
0 5 95 0 5.372 5.115 4.78 32561 33.714 3.541
0 7 93 0 5.491 5.235 4.66 32971 33.83 2.605
0 10 90 0 5.659 5.537 2.16 33.617 34.231 1.826
0 15 85 0 6.052 6.051 0.02 33.965 34.976 2.977
0 0 0 100 1.84 1.742 5.33 37.817 38.642 2.182
45 0 0 55 3.241 2.973 8.27 23.114 24.772 7.173
50 0 0 50 3.267 3.121 4.47 23.11 24.325 5.257
60 0 0 40 3.555 3.415 4.11 21.569 22.837 5.879
0 40 0 60 5.462 5.265 3.74 41.772 43.001 2.942
0 45 0 55 5.736 5.67 1.15 43231 44.136 2.093
0 55 0 45 6.259 6.141 1.92 45951 46.839 1.932
0 60 0 40 6.55 6.386 2.51 46.935 48.077 2.433

Mean absolute percentage error (MAPE) of density :

n

1 Py = Py |
MAPE=_ZM

n

I Py — P! 1
MAPE = —ZM = — X56.626 = 3.146%
L Pesp 18



Mean absolute percentage error (MAPE) of molar volume :

m

n
1 Vg, — Vm
MAPE = — E Vi exp|
n i Vv

n

EXp

15 [Vapy — V 1
MAPE = —ZM= = % 62.154 = 3.4530%

Uy

=1

Ve
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Table 4.4: Predicted and Experimental values of elastic properties

ZnO Bi203 TeO2 B203
0 0 100 0
5 0 95 0

15 0 85 0
20 0 80 0
25 0 75 0
30 0 70 0
0 5 95 0
0 7 93 0
0 10 90 0
0 15 85 0
0 0 0 100
45 0 0 55
50 0 0 50
60 0 0 40
0 40 0 60
0 45 0 55
0 55 0 45
0 60 0 40

Longitudinal Longitudinal

velocity,
VL_exp
(m/s)
3503.000
3410.000
3438.000
3458.000
3486.000
3672.000
3217.000
3159.000
3172.000
3185.000
3496.000
5114.000
5320.000
4850.000
4225.000
3988.000
3528.000
3260.000

velocity,
VL_ANN
(m/s)
3500.533
3413.021
3436.844
3457.952
3485.877
3672.049
3208.601
3172.481
3169.051
3183.392
3495.868
5116.765
5317.134
4850.398
4225.073
3987.983
3527.994
3259.989

Percentage
error %
(VL)
0.070
0.089
0.034
0.001
0.004
0.001
0.261
0.427
0.093
0.050
0.004
0.054
0.054
0.008
0.002
0.0004
0.0002
0.0003

Shear
velocity,
VL_exp
(m/s)
2013.000
2031.000
2035.000
2032.000
2030.000
1953.000
1715.000
1699.000
1618.000
1547.000
1948.000
2619.000
2688.000
2366.000
2257.000
2162.000
2011.000
1920.000

Shear
velocity,
VL_ANN

(m/s)

2017.731
2028.997
2031.389
2035.504
2029.760
1953.014
1726.889
1679.055
1624.515
1547.816
1947.565
2623.670
2683.223
2366.435
2256.843
2162.550
2010.609
1919.943

Percentage
error %
(Vi)
0.235
0.099
0.177
0.172
0.012
0.001
0.693
1.174
0.403
0.053
0.022
0.178
0.178
0.018
0.007
0.025
0.019
0.003

Mean absolute percentage error (MAPE) of longitudinal velocity :

n
1 V0iypy — VL
MAPE=—§:| ANK exp
nid VL

exp

. 1
a = — x1.152 = 0.064%
VL 18

n
1 VL, — VL
MAPE — _Z| AN exp |
n i -



Mean absolute percentage error (MAPE) of shear velocity :

n

15 [VLypy — VL
MAPE=—Z| ANK exp |
n

n

15 [VL, o — VL 1
MAPE = —ZM = — %3.592 = 0.200%
i VL., 18

=1

Table 4.5: Predicted and Experimental values of elastic properties

ZnO Bi203 TeO2 B203
0 0 100 0
5 0 95 0

15 0 85 0
20 0 80 0
25 0 75 0
30 0 70 0
0 5 95 0
0 7 93 0
0 10 90 0
0 15 85 0
0 0 0 100
45 0 0 55
50 0] 0 50
60 0 0 40
0 40 0 60
0 45 0 55
0 55 0 45
0 60 0 40

Mean absolute percentage error (MAPE) of longitudinal modulus:

Longitudinal Longitudinal

modulu,
L_exp

60.612
57.781
59.698
61.181
63.476
71.240
55.629
54.800
56.942
61.394
22.511
84.777
92.471
83.654
97.525
91.245
77.909
69.625

modulu,
L_ANN

60.444
57.848
60.023
61.428
63.000
71.526
55.234
55.446
57.414
61.071
22.594
84.772
92.961
83.505
97.179
91.677
77.756
69.914

=P

Percentage
error % (L)
0.277
0.116
0.544
0.404
0.750
0.401
0.710
1.179
0.829
0.526
0.369
0.006
0.530
0.178
0.355
0.473
0.196
0.415

e
1 Ly — L
MAPE — _ZI A~ Loy |
n___l L,

Shear
modulus,
G_exp
20.029
20.494
21.121
21.125
21.137
20.866
15.813
15.858
14.826
14.489
6.986
22.240
23.615
19.904
27.833
26.827
25.336
24.154

Shear
modulus,
G_ANN
19.763
20.612
20.867
21.062
21.142
20.849
16.020
15.571
15.051
14.273
6.954
22.061
23.752
19.720
27.608
26.885
25.230
24.160

n
1% Loy — L 1
MAPE = —ZM = — x9.833 = 0.546 %
L Lexp 18
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Percentage
error % (G)
1.328
0.576
1.203
0.298
0.024
0.081
1.309
1.810
1.518
1.491
0.458
0.805
0.580
0.924
0.808
0.216
0.418
0.025



Mean absolute percentage error (MAPE) of shear modulus:

n
1 Gy — G
MAPE — _ZI A~ G|
n i Goxp

n

15 |Gy — G 1
MAPE = —ZM = 5 X 14.736 = 0.819%

p— GE}{P

Bulk Bulk Young Young
ZnO Bi203 TeO2 B203 modulus, modulus, ::_I:f,;’ta(gl(e) modulus, modulus,
K_exp K_ANN E_exp E_ANN
0 0 100 0 33.906 34.185 0.823 50.203 49.629
5 0 95 0 30.455 30.906 1.481 50.218 50.492
15 0 85 0 31.81 32.387 1.814 51.467 51.574
20 0 80 0 33.014 33.379 1.106 52.234 52.233
25 0 75 0 34.759 34.941 0.524 53.252 52.639
30 0 70 0 44.351 44.871 1.172 52.737 52.739
0 5 95 0 34.544 34.102 1.280 41.16 41.275
0 7 93 0 33.655 35.006 4.014 41.117 40.423
0 10 90 0 37.173 37.679 1.361 39.26 39.684
0 15 85 0 42.076 42.19 0.271 38.991 38.775
0 0 0 100 13.196 13.557 2.736 17.815 17.736
45 0 0 55 55.124 55.608 0.878 58.81 58.426
50 0 0 50 60.984 61.791 1.323 62.747 62.876
60 0 0 40 57.116 57.503 0.678 53.497 53.262
0 40 0 60 60.415 60.669 0.420 72.382 72.082
0 45 0 55 55.475 56.044 1.026 69.309 69.411
0 55 0 45 44.128 44.41 0.639 63.798 63.301
0 60 0 40 37.419 37.947 1.411 59.632 59.798

Mean absolute percentage error (MAPE) of bulk modulus:

n
1 Ky — K
MAPE — _ZI anti ~ Ko |
n i Ko

n
1% [Kyw — K 1
MAPE = —ZM = — x22175=1.231%
L Kexp 18

Table 4.6: Predicted and Experimental values of elastic properties

Percentage
error % (E)

1.143
0.546
0.208
0.002
1.151
0.004
0.279
1.688
1.080
0.554
0.443
0.653
0.206
0.439
0.414
0.147
0.779
0.278
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Table 4.7: Predicted and Experimental values of elastic properties

Mean absolute percentage error (MAPE) of young modulus:

MAPE = —

n

lz |Eann — Eexpl
T E

—— Bxp

i=1

n
15 [Eapy — E 1
MAPE = —ZM = — %10.365 = 0.576%
L Eexp 18

ZnOo Bi203 TeO2 B203
0 0 100 0
5 0 95 0
15 0 85 0

20 0 80 0
25 0 75 0
30 0 70 0
0 5 95 0
0 7 93 0
0 10 90 0
0 15 85 0
0 0 0 100
45 0 0 55
50 0 0 50
60 0 0 40
0 40 0 60
0 45 0 55
0 55 0 45
0 60 0 40

Microhard-
ness,
H_exp
(GPa)
3.295
3.754
3.76
3.713
3.686
2.654
2.093
2.152
1.739
1.491
1.048
2.636
2.7
2.071
3.705
3.724
4.069
4.276

Microhard-
ness,
H_ANN
(GPa)
2.181
3.023
2.909
2.861
2.812
1.692
1.336
1.307
1.056
0.626
0.305
1.37
1.485
0.941
2.758
2.78
3.222
3.367

Poisson Poisson

ratio, ratio,
% (d
,d_exp , d_ANN error % (d) o_exp o_ANN

fractal bond fractal bond
Per . i

error % (H)

33.809 2.362 2.109 10.711 0.253 0.016
19.473 2.691 2.324 13.638 0.225 0.03
22.633 2.63 2.245 14.639 0.23 0.163
22.946 2.559 2.233 12.739 0.236 0.087
23.711 2.478 2.192 11.542 0.243 0.055
36.247 1.818 1.521 16.337 0.302 0.322
36.168 1.831 1.589 13.217 0.301 0.233
39.266 1.884 1.527 18.949 0.296 0.289
39.275 1.595 1.341 15.925 0.323 0.286
58.015 1.377 1.059 23.094 0.345 0.24
70.897 2.118 1.846 12.842 0.275 0.202
48.027 1.614 1.2 25.651 0.322 0.301
45.000 1.549 1.143 26.210 0.329 0.287
54.563 1.394 0.932 33.142 0.344 0.117
25.560 1.842 1.445 21.553 0.3 0.095
25.349 1.934 1.575 18.563 0.291 0.214
20.816 2.296 2.055 10.497 0.259 0.201
21.258 2.582 3.367 30.403 0.234 0.207

Mean absolute percentage error (MAPE) of microhardness:

n
1 Hyy — H
MAPE — _ZI ann ~ Hep |
n i E

n
150 [Hyy — H
MAPE = — E o = o
n i H

Bxp

BXp

1
= 18 X 654,809 = 36.378%
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Percentage
error % (d)

93.676
86.667
29.130
63.136
77.366
6.623
22.591
2.365
11.455
30.435
26.545
6.522
12.766
65.988
68.333
26.460
22.394
11.538



Mean absolute percentage error (MAPE) of fractal bond connectivity:
1% |dygy —d
MAPE = _Z 1y = Ao |
nid d.p

n
1 Ay —d 1
MAPE = —ZM = — x292.324 = 16.240%
L Aoy 18

Mean absolute percentage error (MAPE) of Poisson ratio

n
1 T — O,
MAPE — _ZI AN~ Fep|
]‘1?_:1 Jexp

n
1 Tarm: — T 1
MAPE = —ZM = — X 646.920= 35.94 0
L Texp 18

Table 4.8: Predicted and Experimental values of optical properties

Optical Optical Percentage
ZnO Bi203 TeO2 B203 bandgap bandgap error %
(eV_exp) (eV_ANN) (ev)

0 0 100 0 2.634 4.965 88.497
5 0 95 0 2.616 4,955 89.411
15 0 85 0 2.588 5.034 94.513
20 0 80 0 2.582 4,981 92.912
25 0 75 0 2.574 4.949 92.269
30 0 70 0 2.557 5.025 96.519
0 5 95 0 2.343 4.572 95.134
0 7 93 0 2.308 4.522 95.927
0 10 90 0 2.284 4.493 96.716
0 15 85 0 2.21 4.387 98.507
0 0 0 100 2.791 4.822 72.770

45 0 0 55 2.725 5.964 118.862

50 0 0 50 2.721 6.134 125.432

60 0 0 40 2.608 5.726 119.555
0 40 0 60 2.728 5.333 95.491
0 45 0 55 2.721 5.299 94.745
0 55 0 45 2.602 5.044 93.851
0 60 0 40 2.546 4.845 90.299
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Mean absolute percentage error (MAPE) of optical bandgap.

n

1 eVyy — eV
MAPE — _Zl ant ~ Ve |
T

n

1 eV — eV 1
MAPE = —ZM= 5 1471.333 = 81.741%

L eV

R

Calculation of total mean average percentage error of model B

n
1 Agw — A
MAPE, = _ZI ant —~ Ao |
L A

12

A —A
ZM = 180.334
i=1 Aexy

12

1 N0 |Agy - A 1

MAPE, = —ZM = — x233.818 = 15.028 %

1242 Ay 12
=
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4.2.6 Evaluation of MAPE of Model A

Based on the MAPE calculated above for each parameter the MAPE for the physical
properties density and molar volume are 3.146 % and 3.453 % which are less than
10 %. Hence according to the interpretation of MAPE values, as shown in figure 3.9,
MAPE values that are less than 10 are considered as high accurate forecasting. Thus,
the prediction of the physical properties by model A is considered to be excellent.
Besides that, the predictions of the elastic properties which are longitudinal velocity,
shear velocity, longitudinal modulus, shear modulus, bulk modulus and young
modulus are considered to be excellent as they range from 0.064 % to 0.819% thus
indicating that model A predicts their values efficiently. However, the MAPE values
of the remaining elastic properties are not up to the mark. The MAPE value for
fractal bond connectivity is 16.240 % which according to the interpretation table is
good forecasting. On the other hand, the MAPE values of Poisson ratio and
microhardness are 35.940 and 36.378 which is considered to be a reasonable forecast.
The MAPE value for the optical property, optical bandgap is calculated to be
81.741 % which is an inaccurate forecasting. The overall MAPE of model A is
calculated to be 15.028% which is good forecasting. However, model A is still lacks
the capability to predict some of the important parameters despite its overall MAPE

value.
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4.3  Results and analysis of Model B

The ANN model B was designed with 4 inputs and one hidden layer with 4000
neurons in the first layer. The output layer has 12 outputs which are the parameters to
be predicted. The TanH activation was implemented in this deep learning model. The
number of neurons in the hidden layer was experimented with high and low values
before settling the current number of neurons as it gave better output results compared

to the other values. The table below summarizes the settings of the parameters for the

model B.
Table 4.9 : Parameters and settings of Model B
MODELB
Activation function TanH
Number of hidden layers 1
Number of neurons in the hidden 1% layer
layers - 4000 neurons
Learning rate 0.001
Number of Epochs 12000
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4.3.1  Graph of training loss over number of epochs

1e6 Training Loss over Epochs: 27.165685653686523
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Figure 4.11: Graph of training loss over number of epochs

Based on the figure 4.11 above, the training loss is 27.166 Thus, the training loss
graph depicts that it converges indicating that the model has reached a stable point in
the training process. This stability indicates that the model has learned the patterns in

the training data to a reasonable extent.
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Graphs of predicted values over experimental values
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Figure 4.12 : Graphs of predicted values over experimental values
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Figure 4.13 : Graphs of predicted values over experimental values



Predicted values over Real Data (Microhardness)
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Figure 4.14 : Graphs of predicted values over experimental values
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4.3.3  Graphs of R-squared values

R2 of Density = 0.9992647789243609
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Figure 4.15 : R-squared values of density and molar volume
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Figure 4.16: R-squared values of longitudinal velocity and shear velocity
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Figure 4.17: Longitudinal Modulus and Shear Modulus
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Figure 4.18 : R-squared values of bulk modulus and young modulus
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R2 of Microhardness = 0.9902361332464009 R2 of Fractal Bond Connectivity = 0.9809466841461136
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Figure 4.19: R-squared values of microhardness and fractal bond connectivity
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Figure 4.20: R-squared values of Poisson Ratio

4.3.4  Evaluation of R-squared values of Model B

Based on the graph plots above, the R-squared value for all the 12 parameters has an
R-squared value in the range of 0.974 to 0.999 which indicates that there is a high
correlation between the variables and parameters and implies that the model is
efficiently predicting the parameters. Thus, model B has no negative R-squared
values which is an indication that the model predicts all the values accurately and

there is a solid correlation between the variables and parameters.



4.3.5 Calculation of MAPE for Model B

Table 4.10 : Predicted and Experimental values of physical properties

Density, Density, Molar Molar Percentage

Zno Bi203 TeO2 B203 pexp  pANN fercentage Volume,  Volume, . o

- error% (p) Vm_exp Vm_ANN

(8/cm3) (8/cm3) (em3/mol) (cm3/mol) (Vm)
0 0 100 0 4.939 5.005 1.336 32.314 30.479 5.679
5 0 95 0 4.967 5.005 0.765 31.345 30.427 2.929
15 0 85 0 5.049 5.005 0.871 29.286 30.397 3.794
20 0 80 0 5.114 5.038 1.486 28.149 29.925 6.309
25 0 75 0 5.222 5.238 0.306 26.818 26.825 0.026
30 0 70 0 5.283 5.284 0.019 25.768 25.629 0.539
0 5 95 0 5.372 5.38 0.149 32,561 32.397 0.504
0 7 93 0 5.491 5.461 0.546 32.971 33.179 0.631
0 10 90 0 5.659 5.711 0.919 33.617 33.595 0.065
0 15 85 0 6.052 6.022 0.496 33.965 33.942 0.068
0 0 0 100 1.84 1.84 0.000 37.817 37.819 0.005
45 0 0 55 3.241 3.241 0.000 23.114 23.087 0.117
50 0 0 50 3.267 3.266 0.031 23.11 23.135 0.108
60 0 0 40 3.555 3.557 0.056 21569 21.568 0.005
0 40 0 60 5.462 5.463 0.018 41772 4178 0.019
0 45 0 55 5.736 5.734 0.035 43231 43.219 0.028
0 55 0 45 6.259 6.262 0.048 45951 45.944 0.015
0 60 0 40 6.55 6.547 0.046 46.935 46.946 0.023

Mean absolute percentage error (MAPE) of density :

n

1 Py = Py |
MAPEz—Z—’“‘“ =

T
i=1 PERP

n

1 ey — P, 1
MAPE = —ZM = x 7.128 = 0.396%

T
i=1 PH*P

Mean absolute percentage error (MAPE) of molar volume :

n

1 Vi, — Vm
MAPE — _Zl ANN exp |
n L exp

n
15 [Vagp — V 1
MAPE = _ZM: — x20.864 = 1.159%
L Vesp 18
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Table 4.11: Predicted and Experimental values of elastic properties

Zn0O Bi203 TeO2 B203
0 0 100 0
5 0 95 0

15 0 85 0
20 0 80 0
25 0 75 0
30 0 70 0
0 5 95 0
0 7 93 0
0 10 90 0
0 15 85 0
0 0 0 100
45 0 0 55
50 0 0 50
60 0 0 40
0 40 0 60
0 45 0 55
0 55 0 45
0 60 0 40

Mean absolute percentage error (MAPE) of longitudinal velocity :

Longitudinal Longitudinal

velocity,
VL_exp
(m/s)
3503.000
3410.000
3438.000
3458.000
3486.000
3672.000
3217.000
3159.000
3172.000
3185.000
3496.000
5114.000
5320.000
4850.000
4225.000
3988.000
3528.000
3260.000

velocity,
VL_ANN
(m/s)
3492.125
3494.689
3495.647
3498.175
3513.087
3549.550
3213.643
3168.927
3142.347
3128.172
3559.584
5150.854
5165.446
4892.532
4218.775
3986.177
3527.365
3277.869

Percentage
error %
(\Y8]

0.310
2.484
1.677
1.162
0.777
3.335
0.1044
0.314
0.9348
1.784
1.819
0.721
2.905
0.877
0.147
0.046
0.0180
0.548

Shear
velocity,
VL_exp
(m/s)
2013.000
2031.000
2035.000
2032.000
2030.000
1953.000
1715.000
1699.000
1618.000
1547.000
1948.000
2619.000
2688.000
2366.000
2257.000
2162.000
2011.000
1920.000

Shear
velocity,
VL_ANN

(m/s)
1981.224
1983.544
1984.371
1986.375
1996.919

2017.126
1722.794
1683.259
1662.604
1653.367
1953.515
2604.045
2615.387
2457.914
2270.576
2166.564
2102.245
1889.402

n
1 V0L, — VL
MAPE=—Z| ANK exp |
ni VL.

n
15 [VL, o — VL 1
MAPE = —ZM= — x19.963 = 1.109%
L VL., 18

Mean absolute percentage error (MAPE) of shear velocity :

n
1 VL. — VL
MAPE=—Z| ANK exp |
n?_:_l ‘i.-’LHl:I

. 1
a = — % 38959 = 2.164%
VL 18

n
1 V0o, — VL
MAPE — _Z| AN exp |
n i -

Percentage
error %
(Vi)

1.579
2.337
2.488
2.245
1.630
3.283
0.454
0.926
2.757
6.876
0.283
0.571
2.701
3.885
0.602
0.211
4.537
1.594
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Table 4.12 : Predicted and Experimental values of elastic properties

) Longitudinal Longitudinal Percentage Shear Shear

ZnO0 Bi203 TeO2 B203 modulu, modulu, modulus, modulus,
L_exp L_ANN error % (L) G_exp G_ANN

0 0 100 0 60.612 59.904 1.168 20.029 20.624

5 0 95 0 57.781 59.960 3.771 20.494 20.648

15 0 85 0 59.698 59.952 0.425 21.121 20.653
20 0 80 0 61.181 60.111 1.749 21.125 20.740
25 0 75 0 63.476 62.338 1.793 21.137 21.209
30 0 70 0 71.240 71.795 0.779 20.866 20.840
0 5 95 0 55.629 55.277 0.633 15.813 15.896

0 7 93 0 54.800 55.010 0.383 15.858 15.708

0 10 90 0 56.942 58.052 1.949 14.826 14.862

0 15 85 0 61.394 60.352 1.697 14.489 14.490

0 0 0 100 22.511 22.507 0.018 6.986 6.983

45 0 0 55 84.777 86.918 2.525 22.240 22.210
50 0 0 50 92.471 90.299 2.349 23.615 23.643
60 0 0 40 83.654 83.691 0.044 19.904 19.892
0 40 0 60 97.525 97.506 0.019 27.833 27.828

0 45 0 55 91.245 91.271 0.028 26.827 26.827

0 55 0 45 77.909 77.867 0.054 25.336 25.320

0 60 0 40 69.625 69.666 0.059 24.154 24.162

Percentage
error % (G)
2.971
0.751
2.216
1.822
0.341
0.125
0.525
0.946
0.243
0.007
0.043
0.135
0.119
-0.060
0.018
0.000
0.063
0.033

Mean absolute percentage error (MAPE) of longitudinal modulus:

n

1 Ly — L
MAPE — _ZI i~ Loy |

n
1% Ly — L 1
MAPE = —ZM = — x19.445 = 1.08%
L Lexp 18

Mean absolute percentage error (MAPE) of shear modulus:

n

1 [—
MAPE — _Zl A~ G|

- GERP

i=1

n
1% [Gupy — G 1
MAPE = —ZM = — %10.297 = 0.57%
L Geoxp 18
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Table 4.13 : Predicted and Experimental values of elastic properties

Bulk Bulk Young Young
ZnO Bi203 TeO2 B203 modulus, modulus, :ﬁ:re;ta(gl(e) modulus, modulus,
K_exp K_ANN E_exp E_ANN

0 0 100 0 33.906 32.318 4.684 50.203 50.995
5 0 95 0 30.455 32.338 6.183 50.218 51.07
15 0 85 0 31.81 32.336 1.654 51.467 51.061
20 0 80 0 33.014 32.492 1.581 52.234 51.233
25 0 75 0 34.759 34.203 1.600 53.252 52.718
30 0 70 0 44.351 44.664 0.706 52.737 53.009
0 5 95 0 34.544 34.112 1.251 41.16 41.505
0 7 93 0 33.655 34.09 1.293 41.117 40.694
0 10 90 0 37.173 37.853 1.829 39.26 39.353
0 15 85 0 42.076 41.336 1.759 38.991 39.004
0 0 0 100 13.196 13.195 0.008 17.815 17.814
45 0 0 55 55.124 56.457 2.418 58.81 59.284
50 0 0 50 60.984 59.624 2.230 62.747 62.29
60 0 0 40 57.116 57.141 0.044 53.497 53.484
0 40 0 60 60.415 60.412 0.005 72.382 72.364
0 45 0 55 55.475 55.481 0.011 69.309 69.335
0 55 0 45 44,128 44.117 0.025 63.798 63.717
0 60 0 40 37.419 37.429 0.027 59.632 59.699

Mean absolute percentage error (MAPE) of bulk modulus:

n

1 K. —K
MAPE = —Z s =1
n?_:.I [‘Hq:
v 1
Koo — K
MAPE = —ZM = — x27.305=1.517%
L Kexp 18

i=1

Mean absolute percentage error (MAPE) of young modulus:

n

1 Eygy —E
MAPE — _ZI anti ~ Eep|
n

i=1

n

1 E. —E 1
MAPE = —ZM = — %3.048 = 0.170%
- Eexp 18

=1

Percentage
error % (E)

1.578
1.697
0.789
-1.916
-1.003
-0.516
0.838
1.029
0.237
-0.033
-0.006
0.806
-0.728
-0.024
0.025
0.038
0.127
0.112



Table 4.14: Predicted and Experimental values of elastic properties

Zn0 Bi203 TeO2 B203
0 0 100 0
5 0 95 0
15 0 85 0
20 0 80 0
25 0 75 0
30 0 70 0
0 5 95 0
0 7 93 0
0 10 90 0
0 15 85 0
0 0 0 100
45 0 0 55
50 0 0 50
60 0 0 40
0 40 0 60
0 45 0 55
0 55 0 45
0 60 0 40

Microhard-

Microhard-
ness,
H_ANN
(GPa)
3.629
3.633
3.632
3.632
3.684
2.651
2.146
2.079
1.759
1.494
1.05
2.61
2.729
2.068
3.705
3.724
4.061
4.283

Percentage
error % (H)

10.137
3.223
3.404
2.182
0.054
0.113
2.532
3.392
1.150
0.201
0.191
0.986
1.074
0.145
0.000
0.000
0.197
0.164

fractal bond fractal bond

ivity
,d_exp
2.362
2.691
2.63
2.559
2.478
1.818
1.831
1.884
1.595
1.377
2.118
1.614
1.549
1.394
1.842
1.934
2.296
2.582

,d_ANN

2.559
2.56
2.562
2.556
2.483
1.815
1.86
1.843
1.614
1.373
2.116
1.607
1.557
1.392
1.843
1.935
2.298
2.58

error % (d)

8.340
4.868
2.586
0.117
0.202
0.165
1.584
2.176
1.191
0.290
0.094
0.434
0.516
0.143
0.054
0.052
0.087
0.077

Poisson
ratio,
c_exp
0.253
0.225

0.23
0.236
0.243
0.302
0.301
0.296
0.323
0.345
0.275
0.322
0.329
0.344
0.3

0.291
0.259
0.234

Poisson
ratio,
G_ANN
0.241
0.24
0.236
0.233
0.238
0.299
0.3
0.296
0.326
0.343
0.273
0.326
0.327
0.341
0.301
0.291
0.259
0.234

Mean absolute percentage error (MAPE) of microhardness:

MAPE =
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Percentage
error % (d)

4.743
6.667
2.609
1.271
2.058
0.993
0.332
0.000
0.929
0.580
0.727
1.242
0.608
0.872
0.333
0.000
0.000
0.000

Mean absolute percentage error (MAPE) of fractal bond connectivity:

MAPE = —
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Mean absolute percentage error (MAPE) of poisson ratio
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Table 4.15: Predicted and Experimental values of optical properties

Optical Optical Percentage
ZnO Bi203 TeO2 B203 bandgap bandgap error %
(eV_exp) (eV_ANN) (ev)

0 0 100 0 2.634 2.609 0.949
5 0 95 0 2.616 2.61 0.229
15 0 85 0 2.588 2.608 0.773
20 0 80 0 2.582 2.599 0.658
25 0 75 [¢] 2.574 2.562 0.466
30 0 70 0 2.557 2.557 0.000
0 5 95 0 2.343 2.342 0.043
0 7 93 0 2.308 2.307 0.043
0] 10 90 [¢] 2.284 2.282 0.088
0 15 85 0 2.21 2.211 0.045
0 0 0 100 2.791 2.792 0.036
45 0 0 55 2.725 2.718 0.257
50 0 0 50 2.721 2.729 0.294
60 0 0 40 2.608 2.606 0.077
0 40 0 60 2.728 2.727 0.037
0 45 0 55 2.721 2.722 0.037
0] 55 0 45 2.602 2.596 0.231
0 60 0 40 2.546 2.55 0.157

Mean absolute percentage error (MAPE) of optical bandgap.

eV

n
1 eVyy — eV
MAPE — _Zl ant ~ Vg |
n i exp

eV

n
1 eV, — eV 1
MAPE = —ZM = — %4419 = 0.2455%
L exp 18
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Calculation of total mean average percentage error of model B

n
1 Agmw — A
MAPE, — _ZI anti —~ Ao |
L A

12

Ao —A
ZM = 12.6365%
i=1 Aexp

12
1N [Ayy - A 1
MAPE, = —ZM = — x 12,6365 =1.053 %
124s Ay 12
L=

4.3.6 Evaluation of MAPE of Model B

Based on the MAPE calculated above for each parameter the MAPE for the physical
properties density and molar volume are 0.396% and 1.159% respectively which are
less than 10%. Hence according to the interpretation of MAPE values, as shown in
figure 3.9, MAPE values that are less than 10 is considered as highly accurate
forecasting. Thus, the prediction of the physical properties by model B is considered
to be excellent. Besides that, the predictions of the elastic properties which are
longitudinal velocity, shear velocity, longitudinal modulus, shear modulus, bulk
modulus, young modulus, microhardness, and fractal bond connectivity, Poisson
ratio are considered to be excellent as they range from 0.170 % to 2.164% thus
indicating that model B predicts their values efficiently. Besides that, the MAPE
value for the optical property, the optical bandgap is 0.2455% which is also accurate
forecasting. The overall MAPE of model B is calculated to be 1.053% which is a

highly accurate forecasting.
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4.4  Comparison between models
In this section, all the two models will be compared and analysed based on prediction
accuracy and their performance metrics will be discussed. Furthermore, the model

with the best performance metric will be selected as the official model for this

project. The table 4.16 summarizes the metrices of the two models A and B.

Table 4.16: Comparison between model A and B

Model A B
Parameters
Training Loss 4.356 27.166
MAPE Error 15.028% 1.053%
No of negative 3 0
R-squared
parameters

The Model’ A training loss is lower compared to Model B. Thus, this indicates
that model A fits the training data well and has a lower error compared to model B.
Model B has the highest training loss which is 27.166 and has a higher error on the
training data among the two models which may lead to the overfitting of the data.
Furthermore, the percentage error for Model A is the highest which is 15.028% but it
is still considered as a good forecasting as it is in the range of (10-20) % according to
the interpretation table. Model B has the lowest MAPE error which is 1.053% which
is an indication of accurate forecasting. Furthermore, there are several negative R-
squared values which are present in Model A which indicates that there is no
correlation between the parameters and variables to be predicted while there are no

negative R-squared present in Model B.
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This case could be explained by the relationship of the activation functions
and data that is used in the deep learning model. Based on the graphs plotted it can
be observed that the negative R-squared value occurs during the prediction of the
optical bandgap, fractal bond connectivity, and Poisson’s ratio. By referring to the
data set of the training values provided it can be observed that the values of the
parameters of these three parameters are near zero, hence the ReLU activation
function might not be an appropriate activation function to predict the values of these
parameters because it is not a zero centric function ( Ali, 2023). Thus, it is difficult
for the ReLU function to predict numbers that are closer to zero. On the other hand,
the Tanh function which is used in Model B is more efficient in dealing with
numbers nearer to zero as they have an output centered around zero which is
beneficial for optimization. Thus, based on reviewing the two models, model B is
more suited for the prediction of elastic and optical properties of binary glass systems
as it has an upper hand in its performance metrics. However, due to its large training
loss error, overfitting might occur. Hence, more dataset is required to prevent

overfitting occurring in this model.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

The project prediction of elastic and optical properties of binary glass systems using
artificial intelligence approach which aims to develop an artificial neural network
using Python software to predict elastic and optical properties of some binary borate

compounds and tellurite glass systems has been conducted successfully.

Two deep learning models, models A and B were developed and tested to
predict and simulate the elastic and optical properties of the binary glass systems.
Thus, several evaluation metrics was used to test the accuracy of each model. The
analysis of each model and its advantages and drawbacks were discussed.
Furthermore, each of the model’s predicted outputs was plotted and compared with
each other. After that, performance of evaluation metrics on each model was done
and model B was found to be the most accurate in predicting the parameter of the

binary glasses.

In a nutshell, despite the ANN model not being tested with real data, the deep
learning model’s performance was assessed, and the findings were satisfactory.
However, the ANN model still has significant limitations and some constraints that
needs to be noted and discussed. Furthermore, some other improvements and
changes can be conducted so that this deep learning model can be implemented in the

manufacturing industry in the future.
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5.2 Limitations and Recommendations

The lack of data for deep learning training can pose a lot of challenges and
limitations. One of the problems that can occur is overfitting where the model tends
to memorize the training data sets rather than learning generalizable patterns hence
affecting poor performance. Furthermore, due to the lack of data, there is an inability
to conduct validation and hyperparameter tuning. Thus, several other methods such
as cross validation, K-fold might be ineffective. On the other hand, deep learning
models have high capacity to learn complex patterns from data. However, this
capacity may be underutilized with a small dataset leading to a poor performance. In
addition, with sufficient data, the train test split for evaluating the ANN can be
conducted. The train-test split procedure is a deep learning technique used to evaluate
the performance of the deep learning model when they do predictions on data that is
not used to train the model. Thus, this procedure allows us to make comparisons about
the performance of the deep learning model and allows us to adjust the parameters
accordingly to get a better output from the deep learning model.

In conclusion, to overcome the drawbacks discussed above and to increase the
efficiency of the ANN model for predicting the elastic and optical properties of binary
glass systems to perform with real-world and unseen data, the recommendations stated

above shall be conducted in the future to achieve a more optimal result.
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APPENDICES

APPENDIX A: Computer Code Model B

import torch

import torch.nn as nn

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score
import tkinter as tk

from tkinter import ttk

class Binary_Glass_Simulator():

def click(self):
self.alpha_grid.destroy()
self.Model_Training()

def click2(self, event=None):
self.beta_grid.destroy()
self.Model_Training(event)

def Model_Training(self, event = None):
self.training_data = 'C:\\Users\\Prasad
Soundrarajan\\Desktop\\ANN\\Training Dataset.xIsx'
self.Dataset_Training = pd.read_excel(self.training_data)

# Initializing input & output data for training set

self.Binary_Compositions_Training = self.Dataset_Training.iloc[:, 0:4] #
input data

self.Parameters_Training = self.Dataset_Training.iloc[:, 4:16] # output data

# Converting to tensor

self.x_train =
torch.tensor(self.Binary_Compositions_Training.values).float()

self.y_train = torch.tensor(self.Parameters_Training.values).float()

# Building ANN model
ANN_Model = nn.Sequential(
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nn.Linear(4, 4000),
nn.Tanh(),
nn.Linear(4000, 12),

# Learning Rate
learning_rate = 0.001

# Loss Rate
loss_function = nn.MSELo0ss()

# optimizer
optimizer = torch.optim.Adam(ANN_Model.parameters(), Ir=learning_rate)

# Initializing the training epochs
self.numepochs = 12000
self.losses = torch.zeros(self.numepochs)

# Model Training
for epochi in range(self.numepochs):
self.yHat = ANN_Model(self.x_train)

# Compute Loss
self.loss = loss_function(self.yHat, self.y_train)
self.losses[epochi] = self.loss

# Backpropagation
optimizer.zero_grad()
self.loss.backward()
optimizer.step()

self.Training_Model_Evaluation_Grid()

def Training_Model_Evaluation_Grid(self):
self.beta_grid = tk. Tk()
self.beta_grid.title("Training Model Evaluation™)
self.beta_grid.geometry('450x550")

Label beta = tk.Label(self.beta_grid, text="Training Model Evaluation",
font=(Helvetica', 15, 'bold"), fg='blue4")
button_plot_ TVE = tk.Button(self.beta_grid, text="Graph of Losses'
,command=self.plot_ TVE, width=33, padx=25,
pady=10,font=("Helvetica', 15, 'bold"), bg='cyan’)
button_plot_ RVP = tk.Button(self.beta_grid, text="Predicted vs Actual Data'
,command=self.plot_ RVP, width=33, padx=25,
pady=10,font=("Helvetica', 15, 'bold"), bg='cyan’)
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button_plot_R2 = tk.Button(self.beta_grid, text='Plot of R2 graph’
,command=self.plot_R2, width=33, padx=25,
pady=10,font=('"Helvetica', 15, 'bold"), bg="cyan’)
button_retrain = tk.Button(self.beta_grid, text='"Re-Train Model'
, command=self.click2, width=33, padx=25,
pady=10,font=('"Helvetica', 15, 'bold"), bg="cyan’)
button_compare = tk.Button(self.beta_grid, text='"Real Data Set'
, command= self.compare_real, width=33, padx=25,pady=10,
font=('Helvetica’, 15, 'bold"), bg="cyan’)
button_next = tk.Button(self.beta_grid, text="Predicted Data'
, command= self.compare_pred, width=33, padx=25,
pady=10,font=('"Helvetica', 15, 'bold"), bg="cyan’)

Label_beta.grid(column=1, row=0, padx=(10, 10), pady=(10, 5))
button_plot_TVE.grid(column=1, row=1, pady=(20, 20))
button_plot_TVE.bind('<Return>', self.plot_TVE)
button_plot_RVP.grid(column=1, row=2, pady=(10, 10))
button_plot_RVP.bind('<Return>', self.plot_RVP)
button_plot_R2.grid(column=1, row=4, pady=(10, 10))
button_plot_R2.bind('<Return>', self.plot_R2)
button_retrain.grid(column=1, row=5, pady=(10, 10))
button_retrain.bind('<Return>', self.click2)
button_compare.grid(column=1, row=6, pady=(10, 10))
button_compare.bind('<Return>', self.compare_real)
button_next.grid(column=1, row=7, pady=(10, 10))

# button_next.bind('<Return>', self.Binary_Simulator)
self.beta_grid.mainloop()

def plot_TVE(self):
# Plot of losses
plt.figure(figsize=(10, 5))

plt.plot(self.losses.detach().numpy()) # Convert losses tensor to NumPy

array for plotting
plt.xlabel('Epoch’)
plt.ylabel("Training Loss')
plt.title(fTraining Loss over Epochs: {self.losses[-1].item()})
plt.grid(True) # Add grid for better visualization
plt.show()

def plot_RVP(self):
# Plot of Real vs Predicted data ( training )
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# Density , Molar Volume , Longitudinal velocity , Shear Velocity
self.Density_Training = self.Parameters_Training['Density, p (g/cm3)']
self.Density_Prediction = self.yHat[:, 0]

self.MolarVV_Training = self.Parameters_Training['Molar Volume, Vm
(cm3/mol)’]
self.MolarV_Prediction = self.yHat[:, 1]

self.LongitudinalVV_Training = self.Parameters_Training['Longitudinal
velocity, VL (m/s)']
self.LongitudinalVV_Prediction = self.yHat[:, 2]

self.ShearVV_Training = self.Parameters_Training['Shear velocity, VL (m/s)]
self.ShearVV_Prediction = self.yHat[:, 3]

fig, ax = plt.subplots(2, 2, figsize=(10, 5))

# Plot Density

ax[0, 0].plot(self.Density_Training.values, 'ro', label="p$_{exp}$
(g/cm$"3$)")

ax[0, 0].plot(self.Density_Prediction.detach().numpy(), 'bo’,
label="p$ {ANN}$ (g/cm$”3$)")

ax[0, 0].set_title('Predicted values over Real Data (Density)’)

ax[0, 0].legend()

# Plot Molar Volume

ax[0, 1].plot(self.MolarV_Training.values, 'ro', label="V$_{m,exp}$
(cm$"3$/mol)’)

ax[0, 1].plot(self.MolarV_Prediction.detach().numpy(), 'bo’,
label="V$_{m,ANN}$ (cm$"3$/mol)")

ax[0, 1].set_title('Predicted values over Real Data (Molar Volume))

ax[0, 1].legend()

# Plot Longitudinal Velocity
ax[1, 0].plot(self.LongitudinalVV_Training.values, 'ro', label="VL_exp (m/s)")
ax[1, 0].plot(self.LongitudinalV_Prediction.detach().numpy(), 'bo’,
label="VL_ANN (m/s)")
ax[1, 0].set_title('Predicted values over Real Data (Longitudinal Velocity)")
ax[1, 0].legend()
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# Plot Shear Velocity

ax[1, 1].plot(self.ShearV_Training.values, 'ro', label="VVL_exp (m/s)’)

ax[1, 1].plot(self.ShearV_Prediction.detach().numpy(), 'bo’, label="VL_ANN
(m/s)’)

ax[1, 1].set_title('Predicted values over Real Data (Shear Velocity)')

ax[1, 1].legend()

plt.tight_layout()

plt.show()

# Longitudinal modulus, Shear modulus, Bulk modulus, Young modulus

self.LongitudinalM_Training =  self.Parameters_Training['Longitudinal
modulu, L]

self.LongitudinalM_Prediction = self.yHat[:, 4]

self.ShearM_Training = self.Parameters_Training['Shear modulus,G']
self.ShearM_Prediction = self.yHat[:, 5]

self.BulkM_Training = self.Parameters_Training['Bulk modulus, K']
self.BulkM_Prediction = self.yHat[:, 6]

self.YoungM_Training = self.Parameters_Training["Young modulus, E']
self.YoungM_Prediction = self.yHat[:, 7]

fig, ax = plt.subplots(2, 2, figsize=(10, 5))

# Plot Longitudinal modulus

ax[0, 0].plot(self.LongitudinalM_Training.values, 'ro’, label="L_exp")

ax[o, 0].plot(self.LongitudinalM_Prediction.detach().numpy(), 'bo’,
label="L_ANN")

ax[0, 0].set_title('Predicted values over Real Data (Longitudinal modulus)’)

ax[0, 0].legend()

# Plot Shear modulus
ax[0, 1].plot(self.ShearM_Training.values, 'ro', label="G_exp’)
ax[0, 1].plot(self.ShearM_Prediction.detach().numpy(), 'bo’,
label='"G_ANN")
ax[0, 1].set_title('Predicted values over Real Data (Shear modulus)’)
ax[0, 1].legend()
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# Plot Shear modulus

ax[0, 1].plot(self.ShearM_Training.values, 'ro', label="G_exp’)
ax[0, 1].plot(self.ShearM_Prediction.detach().numpy(), 'bo’,

label='"G_ANN")

ax[0, 1].set_title('Predicted values over Real Data (Shear modulus)’)
ax[0, 1].legend()

# Plot Bulk modulus

ax[1, 0].plot(self.BulkM_Training.values, 'ro', label="K_exp")

ax[1, 0].plot(self.BulkM_Prediction.detach().numpy(), 'bo’, label="K_ANN)
ax[1, 0].set_title('Predicted values over Real Data (Bulk Modulus)")

ax[1, 0].legend()

# Plot Young modulus
ax[1, 1].plot(self.YoungM_Training.values, 'ro’, label="E_exp’)
ax[1, 1].plot(self.YoungM_Prediction.detach().numpy(), 'bo’,

label="E_ANN?)

ax[1, 1].set_title('Predicted values over Real Data (Young Modulus)’)
ax[1, 1].legend()

plt.tight_layout()
plt.show()

# Microhardness, fractal bond connectivity, d, Poisson ratio, o, Optical

bandgap (eV)

self.Microhardness_Training = self.Parameters_Training['Microhardness, H

(GPa)1

d]

self.Microhardness_Prediction = self.yHat[:, 8]
self.fractalB_Training = self.Parameters_Training['fractal bond connectivity,
self.fractalB_Prediction = self.yHat[:, 9]

self.Poisson_Training = self.Parameters_Training['Poisson ratio, ¢']
self.Poisson_Prediction = self.yHat[:, 10]

self.OpticalB_Training = self.Parameters_Training['Optical bandgap (eV)']
self.OpticalB_Prediction = self.yHat[:, 11]

fig, ax = plt.subplots(2, 2, figsize=(10, 5))
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# Plot Microhardness
ax[0, 0].plot(self.Microhardness_Training.values, 'ro’, label="H_exp (GPa)’)
ax[0, 0].plot(self.Microhardness_Prediction.detach().numpy(), 'bo’,
label="H_ANN (GPa)’)
ax[0, 0].set_title('Predicted values over Real Data (Microhardness)’)
ax[0, 0].legend()

# fractal bond connectivity, d

ax[0, 1].plot(self.fractalB_Training.values, 'ro’, label="d_exp")

ax[0, 1].plot(self.fractalB_Prediction.detach().numpy(), 'bo’, label="d_ANN")

ax[0, 1].set_title('Predicted values over Real Data (fractal bond
connectivity)")

ax[0, 1].legend()

# Plot Poisson ratio, ¢

ax[1, 0].plot(self.Poisson_Training.values, 'ro', label='c_exp")

ax[1, 0].plot(self.Poisson_Prediction.detach().numpy(), 'bo’, label='c  ANN")
ax[1, O].set_title('Predicted values over Real Data (Poisson ratio)")

ax[1, 0].legend()

# Plot Optical bandgap (eV)

ax[1, 1].plot(self.OpticalB_Training.values, 'ro’, label="eV_exp’)

ax[1, 1].plot(self.OpticalB_Prediction.detach().numpy(), 'bo’,
label="eV_ANN")

ax[1, 1].set_title('Predicted values over Real Data (Optical Bandgap)")

ax[1, 1].legend()

plt.tight_layout()
plt.show()

def plot_R2(self):

r2_density = r2_score(self.Density_Training,
self.Density_Prediction.detach().numpy())

coefficients_density = np.polyfit(self.Density_Prediction.detach().numpy(),
self.Density_Training,1)

# Fit a 1st degree polynomial (a line)n

best_fit_line_1 = np.polyld(coefficients_density)

plt.plot(self.Density_Prediction.detach().numpy(),
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best_fit_line_1(self.Density_Prediction.detach().numpy()), 'r',label="Best Fit

Line™)

plt.scatter(self.Density_Prediction.detach().numpy(), self.Density_Training,
label="Data Points")

plt.xlabel(""Density Predicted")

plt.ylabel("Density Real")

plt.title(f"R2 of Density = {r2_density}")

plt.legend()

plt.show()

# Plot of R2 Molar VVolume

r2_density = r2_score(self.MolarVV_Training,
self.MolarV_Prediction.detach().numpy())

coefficients_density = np.polyfit(self.MolarV_Prediction.detach().numpy()

, self.MolarV_Training,1) # Fit a 1st degree

polynomial (a line)n

best_fit_line_2 = np.polyld(coefficients_density)

plt.plot(self.MolarV_Prediction.detach().numpy()

, best_fit_line_2(self.MolarV_Prediction.detach().numpy()),

'r',label="Best Fit Line")

plt.scatter(self.MolarV_Prediction.detach().numpy(), self.MolarV_Training,
label="Data Points")

plt.xlabel("Molar Volume Predicted")

plt.ylabel("Molar Volume Real™)

plt.title(f"R2 of Molar Volume = {r2_density}")

plt.legend()

plt.show()
# Plot of R2 Longitudinal Velocity

r2_LongitudinalV = r2_score(self.LongitudinalV_Training,
self.LongitudinalV_Prediction.detach().numpy())

coefficients_LongitudinalV =
np.polyfit(self.LongitudinalVV_Prediction.detach().numpy()

, self.LongitudinalV_Training,1) # Fit a 1st degree

polynomial (a line)n

best_fit_line_3 = np.polyld(coefficients_LongitudinalV)

plt.plot(self.Longitudinal\VV_Prediction.detach().numpy()

, best_fit_line_3(self.LongitudinalV_Prediction.detach().numpy()),'r',

label="Best Fit Line")

plt.scatter(self.LongitudinalVV_Prediction.detach().numpy()

, self.LongitudinalV_Training, label="Data Points')
plt.xlabel("Longitudinal Velocity Predicted")
plt.ylabel("Longitudinal Velocity Real")
plt.title(f"R2 of Longitudinal Velocity = {r2_LongitudinalV}")
plt.legend()
plt.show()
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# Plot of R2 Shear Velocity

r2_ShearV =r2_score(self.ShearV_Training,
self.ShearV_Prediction.detach().numpy())

coefficients_ShearV = np.polyfit(self.ShearVV_Prediction.detach().numpy()

, self.ShearV_Training,1) # Fit a 1st degree polynomial

(aline)n

best_fit_line_4 = np.polyld(coefficients_ShearV)

plt.plot(self.ShearV_Prediction.detach().numpy()

, best_fit_line_4(self.ShearVV_Prediction.detach().numpy()),

'r',label="Best Fit Line")

plt.scatter(self.ShearVV_Prediction.detach().numpy(), self.ShearV_Training,
label="Data Points’)

plt.xlabel("Shear Velocity Predicted")

plt.ylabel("Shear Velocity Real™)

plt.title(f"R2 of Shear Velocity = {r2_ShearV}")

plt.legend()

plt.show()

# Plot of R2 Longitudinal Modulus

r2_LongitudinalM = r2_score(self.LongitudinalM_Training,
self.LongitudinalM_Prediction.detach().numpy())

coefficients_LongitudinalM =
np.polyfit(self.LongitudinalM_Prediction.detach().numpy()

, self.LongitudinalM_Training,1) # Fit a 1st degree

polynomial (a line)n

best_fit_line_5 = np.polyld(coefficients_LongitudinalM)

plt.plot(self.LongitudinalM_Prediction.detach().numpy()

, best_fit_line_5(self.LongitudinalM_Prediction.detach().numpy()),'r’,

label="Best Fit Line")

plt.scatter(self.LongitudinalM_Prediction.detach().numpy(),
self.LongitudinalM_Training, label='"Data Points')

plt.xlabel("Longitudinal Modulus Predicted")

plt.ylabel("Longitudinal Modulus Real")

plt.title(f"R2 of Longitudinal Modulus = {r2_LongitudinalM}")

plt.legend()

plt.show()

# Plot of R2 Shear Modulus
r2_ShearM = r2_score(self.ShearM_Training,
self.ShearM_Prediction.detach().numpy())
coefficients_ShearM = np.polyfit(self.ShearM_Prediction.detach().numpy(),
self.ShearM_Training, 1)
# Fit a 1st degree polynomial (a line)n
best_fit_line_6 = np.polyld(coefficients_ShearM)
plt.plot(self.ShearM_Prediction.detach().numpy()
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, best_fit_line_6(self.ShearM_Prediction.detach().numpy()), 'r',label="Best
Fit Line™)

plt.scatter(self.ShearM_Prediction.detach().numpy(), self.ShearM_Training,
label="Data Points")

plt.xlabel(""Shear Modulus Predicted")

plt.ylabel("Shear Modulus Real™)

plt.title(f"R2 of Shear Modulus = {r2_ShearM}")

plt.legend()

plt.show()

# Plot of R2 Bulk Modulus

r2_BulkM = r2_score(self.BulkM_Training,
self.BulkM_Prediction.detach().numpy())

coefficients_BulkM = np.polyfit(self.BulkM_Prediction.detach().numpy(),
self.BulkM_Training,1)

# Fit a 1st degree polynomial (a line)n

best_fit_line_7 = np.polyld(coefficients_BulkM)

plt.plot(self.BulkM_Prediction.detach().numpy()

, best_fit_line_7(self.BulkM_Prediction.detach().numpy()),

'r',label="Best Fit Line")

plt.scatter(self.BulkM_Prediction.detach().numpy(), self.BulkM_Training,
label="Data Points")

plt.xlabel("Bulk Modulus Predicted™)

plt.ylabel("Bulk Modulus Real™)

plt.title(f"R2 of Bulk Modulus = {r2_BulkM}")

plt.legend()

plt.show()

# Plot of R2 Young Modulus

r2_YoungM = r2_score(self.YoungM_Training,
self.YoungM_Prediction.detach().numpy())

coefficients_YoungM =
np.polyfit(self.YoungM_Prediction.detach().numpy(), self.YoungM_Training, 1)

# Fit a 1st degree polynomial (a line)n

best_fit_line_8 = np.polyld(coefficients_YoungM)

plt.plot(self.YoungM_Prediction.detach().numpy()

, best_fit_line_8(self.YoungM_Prediction.detach().numpy()), 'r’,

label="Best Fit Line")

plt.scatter(self.YoungM_Prediction.detach().numpy(),
self.YoungM_Training, label="Data Points’)

plt.xlabel("Young Modulus Predicted™)

plt.ylabel("young Modulus Real")

plt.title(f"R2 of Young Modulus = {r2_YoungM}")

plt.legend()

plt.show()
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# Plot of R2 Microhardness
r2_Microhardness = r2_score(self.Microhardness_Training,
self.Microhardness_Prediction.detach().numpy())
coefficients_Microhardness =
np.polyfit(self.Microhardness_Prediction.detach().numpy()
, self.Microhardness_Training,1) # Fit a 1st degree
polynomial (a line)n
best_fit_line_9 = np.polyld(coefficients_Microhardness)
plt.plot(self.Microhardness_Prediction.detach().numpy()
, best_fit_line_9(self.Microhardness_Prediction.detach().numpy()),'r’,
label="Best Fit Line")
plt.scatter(self.Microhardness_Prediction.detach().numpy(),
self.Microhardness_Training, label='"Data Points’)
plt.xlabel("Microhardness Predicted™)
plt.ylabel("Microhardness Real")
plt.title(f"R2 of Microhardness = {r2_Microhardness}")
plt.legend()
plt.show()

# Plot of R2 Fractal Bond Connectmty
r2_fractalB r2_score(self.fractalB_Training,
self.fractalB_Prediction.detach(). numpy())
coefficients_fractalB = np.polyfit(self.fractalB_Prediction.detach().numpy()
, self.fractalB_Training,1) # Fit a 1st degree
polynomial (a line)n
best_fit_line_10 = np.polyld(coefficients_fractalB)
plt.plot(self.fractalB_Prediction.detach().numpy()
best_fit_line_10(self.fractalB_Prediction.detach().numpy()),
Iabel-"Best Fit Line")
plt.scatter(self.fractalB_Prediction.detach().numpy(), self.fractalB_Training,
label="Data Points")
plt.xlabel("Fractal Bond Connectivity Predicted")
plt.ylabel("Fractal Bond Connectivity Real™)
plt.title(f"R2 of Fractal Bond Connectivity = {r2_fractalB}")
plt.legend()
plt.show()
# Plot of R2 Poisson Ratio
r2_Poisson = r2_score(self.Poisson_Training,
self.Poisson_Prediction.detach(). numpy())
coefficients_Poisson = np.polyfit(self.Poisson_Prediction.detach().numpy()

, best_fit_line_11(self.Poisson_Prediction.detach().numpy()), 'r',label="Best Fit
Line™)
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plt.scatter(self.Poisson_Prediction.detach().numpy(), self.Poisson_Training,
label="Data Points')

plt.xlabel("Poisson Ratio Predicted")

plt.ylabel("Poisson Ratio Real™)

plt.title(f"R2 of Poisson Ratio = {r2_Poisson}")

plt.legend()

plt.show()

# Plot of R2 Optical Bandgap
r2_OpticalB = r2_score(self.OpticalB_Training,
self.OpticalB_Prediction.detach().numpy())
coefficients_OpticalB =
np.polyfit(self.OpticalB_Prediction.detach().numpy()
, self.OpticalB_Training,1) # Fit a 1st degree
polynomial (a line)n
best_fit_line_12 = np.polyld(coefficients_OpticalB)
plt.plot(self.OpticalB_Prediction.detach().numpy()
, best_fit_line_12(self.OpticalB_Prediction.detach().numpy()),
'r',label="Best Fit Line")
plt.scatter(self.OpticalB_Prediction.detach().numpy(),
self.OpticalB_Training, label="Data Points’)
plt.xlabel("Optical Bandgap Predicted")
plt.ylabel("Optical Bandgap Real™)
plt.title(f"R2 of Optical Bandgap = {r2_OpticalB}")
plt.legend()
plt.show()

def compare_real(self):
self.gamma_grid = tk.Tk()
self.gamma_grid.title("Comparison Between Real & Predicted Values™)
self.gamma_grid.geometry('1080x200")

comparison_table = ttk.Treeview(self.gamma_grid)

comparison_table['columns’] = (

'Zn0', 'Bi203', 'Te02', 'B203', 'Density, p (g/cm3)', 'Molar Volume, Vm
(cm3/mol)’,

‘Longitudinal velocity, VL (m/s)’, 'Shear velocity, VL (m/s)’, '‘Longitudinal
modulu, L',

'Shear modulus,G', 'Bulk modulus, K', "Young modulus, E',
'Microhardness, H (GPa)',

‘fractal bond connectivity, d', 'Poisson ratio, o', ‘Optical bandgap (eV)")

comparison_table.column("#0", width=20, minwidth=25,stretch=tk.NO)
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comparison_table.column(*ZnO", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table.column("Bi203", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table.column(*TeO2", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table.column(*B203", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table.column("Density, p (g/cm3)", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(“Molar Volume, Vm (cm3/mol)",
anchor=tk.CENTER, width=120, minwidth=25)

comparison_table.column("Longitudinal velocity, VL (m/s)",
anchor=tk.CENTER, width=120, minwidth=25)

comparison_table.column("Shear velocity, VL (m/s)", anchor=tk.CENTER,
width=120, minwidth=25)

comparison_table.column("Longitudinal modulu, L", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(Shear modulus,G", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(*Bulk modulus, K", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(*™Young modulus, E", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(*Microhardness, H (GPa)", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column(*fractal bond connectivity, d",
anchor=tk.CENTER, width=120, minwidth=25)

comparison_table.column("Poisson ratio, ", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.column("Optical bandgap (eV)", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table.heading("#0", text="", anchor=tk. CENTER)

comparison_table.heading("ZnQO", text="ZnO", anchor=tk. CENTER)

comparison_table.heading("Bi203", text="Bi203", anchor=tk. CENTER)

comparison_table.heading("TeO2", text="Te02", anchor=tk. CENTER)

comparison_table.heading("B203", text="B203", anchor=tk. CENTER)

comparison_table.heading("Density, p (g/cm3)", text="Density, p (g/cm3)",
anchor=tk. CENTER)

comparison_table.heading("Molar Volume, Vm (cm3/mol)", text="Molar
Volume, Vm (cm3/mol)"

, anchor=tk. CENTER)
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, anchor=tk. CENTER)

comparison_table.heading("Longitudinal velocity, VL (m/s)",

text="Longitudinal velocity"
", VL (m/s)",anchor=tk. CENTER)

comparison_table.heading("Shear velocity, VL (m/s)", text="Shear velocity,
VL (m/s)", anchor=tk. CENTER)

comparison_table.heading("Longitudinal modulu, L", text="Longitudinal
modulu, L", anchor=tk. CENTER)

comparison_table.heading(""Shear modulus,G", text="Shear modulus,G",
anchor=tk.CENTER)

comparison_table.heading("Bulk modulus, K", text="Bulk modulus",
anchor=tk.CENTER)

comparison_table.heading(""Young modulus, E", text=""Young modulus, E",
anchor=tk.CENTER)

comparison_table.heading("Microhardness, H (GPa)", text="Microhardness,
H (GPa)", anchor=tk. CENTER)

comparison_table.heading("fractal bond connectivity, d", text="fractal bond
connectivity", anchor=tk. CENTER)

comparison_table.heading("Poisson ratio, ¢", text="Poisson ratio, ¢",
anchor=tk.CENTER)

comparison_table.heading("Optical bandgap (eV)", text="Optical bandgap
(eV)", anchor=tk. CENTER)

comparison_table.insert(parent=", index="end’, iid=0, text="
, values=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0))
for i inrange(l, 19):
comparison_table.insert(parent=", index="end’, iid=i, text=", values=(

self.x_train[i - 1][0].numpy(), self.x_train[i - 1][1].numpy()

, self.x_train[i - 1][2].numpy(),self.x_train[i - 1][3].numpy(),

self.y_train[i - 1][0].numpy(), self.y_train[i - 1][1].numpy()

, self.y_train[i - 1][2].numpy(),self.y_train[i - 1][3].numpy(),

self.y_train[i - 1][4].numpy(), self.y_train[i - 1][5].numpy()

, self.y_train[i - 1][6].numpy(),self.y_train[i - 1][7].numpy(),

self.y_train[i - 1][8].numpy(), self.y_train[i - 1][9].numpy()

, self.y_train[i - 1][10].numpy(),self.y_train[i - 1][11].numpy())),

comparison_table.pack(pady=20)
self.gamma_grid.mainloop()
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def compare_pred(self):
self.delta_grid = tk.Tk()
self.delta_grid.title("Comparison Between Real & Predicted Values")
self.delta_grid.geometry('1080x200')

comparison_table2 = ttk.Treeview(self.delta_grid)

comparison_table2['columns] = (

'ZnQ', 'Bi203', 'TeO2', 'B203', 'Density, p (g/cm3)', 'Molar Volume, Vm
(cm3/mol)’,

‘Longitudinal velocity, VL (m/s)', 'Shear velocity, VL (m/s)’, '‘Longitudinal
modulu, L,

‘Shear modulus,G', 'Bulk modulus, K', "Young modulus, E',
'Microhardness, H (GPa)',

‘fractal bond connectivity, d', 'Poisson ratio, o', ‘Optical bandgap (eV)’)

comparison_table2.column("#0", width=20, minwidth=25,stretch=tk.NO)

comparison_table2.column("ZnQO", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table2.column("Bi203", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table2.column("TeO2", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table2.column("B203", anchor=tk. CENTER, width=100,
minwidth=25)

comparison_table2.column("Density, p (g/cm3)", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.column("Molar Volume, Vm (cm3/mol)”,
anchor=tk.CENTER, width=120, minwidth=25)

comparison_table2.column("Longitudinal velocity, VL (m/s)",
anchor=tk.CENTER, width=120, minwidth=25)

comparison_table2.column("Shear velocity, VL (m/s)",
anchor=tk. CENTER, width=120, minwidth=25)

comparison_table2.column("Longitudinal modulu, L", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.column("Shear modulus,G", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.column("Bulk modulus, K", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.column("Young modulus, E", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.column("Microhardness, H (GPa)", anchor=tk. CENTER,
width=120, minwidth=25)
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comparison_table2.column("fractal bond connectivity, d",
anchor=tk. CENTER, width=120, minwidth=25)
comparison_table2.column("Poisson ratio, ¢", anchor=tk. CENTER,
width=120, minwidth=25)
comparison_table2.column(*Optical bandgap (eV)", anchor=tk. CENTER,
width=120, minwidth=25)

comparison_table2.heading("#0", text="", anchor=tk. CENTER)

comparison_table2.heading("ZnO", text="2Zn0", anchor=tk. CENTER)

comparison_table2.heading("Bi203", text="Bi203", anchor=tk. CENTER)

comparison_table2.heading(""TeO2", text="TeO2", anchor=tk. CENTER)

comparison_table2.heading("B203", text="B203", anchor=tk. CENTER)

comparison_table2.heading("Density, p (g/cm3)", text="Density, p (g/cm3)",
anchor=tk.CENTER)

comparison_table2.heading("Molar Volume, Vm (cm3/mol)”, text="Molar
Volume, Vm (cm3/mol)"

, anchor=tk.CENTER)

comparison_table2.heading(Longitudinal velocity, VL (m/s)",

text="Longitudinal velocity, VL (m/s)"
,anchor=tk. CENTER)

comparison_table2.heading(*"Shear velocity, VL (m/s)", text="Shear
velocity, VL (m/s)", anchor=tk. CENTER)

comparison_table2.heading(*'Longitudinal modulu, L™, text="Longitudinal
modulu, L", anchor=tk. CENTER)

comparison_table2.heading(*"'Shear modulus,G", text="Shear modulus,G",
anchor=tk.CENTER)

comparison_table2.heading("Bulk modulus, K", text="Bulk modulus”,
anchor=tk.CENTER)

comparison_table2.heading(*"Young modulus, E", text="Young modulus, E",
anchor=tk.CENTER)

comparison_table2.heading("Microhardness, H (GPa)",
text="Microhardness, H (GPa)", anchor=tk. CENTER)

comparison_table2.heading(*fractal bond connectivity, d", text="fractal
bond connectivity”, anchor=tk. CENTER)

comparison_table2.heading("Poisson ratio, ¢", text="Poisson ratio, ¢",
anchor=tk. CENTER)

comparison_table2.heading(*"Optical bandgap (eV)", text="Optical bandgap
(eV)", anchor=tk.CENTER)

comparison_table2.insert(parent=", index="end’, iid=0, text="
, values=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0))
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for i inrange(1, 19):
comparison_table2.insert(parent=", index="end’, iid=i, text=", values=(

"{:.3f}".format(self.x_train[i - 1][0].numpy()),
“{:.3f}".format(self.x_train[i - 1][1].numpy()),
“{:.3f}".format(self.x_train[i - 1][2].numpy()),
“{:.3f}".format(self.x_train[i - 1][3].numpy()),
"{:.3f}".format(self.yHat[i - 1][0].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][1].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][2].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][3].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][4].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][5].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][6].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][7].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][8].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][9].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][10].detach().numpy()),
"{:.3f}".format(self.yHat[i - 1][11].detach().numpy())

)

comparison_table2.pack(pady=20)
self.delta_grid.mainloop()

def alpha_grid(self):
self.alpha_grid = tk. Tk()
self.alpha_grid.title("Elastic & Optical Properties of Binary Glass System
Simulator™)
self.alpha_grid.geometry('600x150°)

Label_alphal = tk.Label(self.alpha_grid,
text="Elastic & Optical Properties of Binary Glass System Simulator",
font=("Helvetica’, 15, 'bold"), fg='blue4")
button_train = tk.Button(self.alpha_grid,
text="Train Model',command= self.click, padx=20, pady=10,font=('"Helvetica’,
15, 'bold"), bg="cyan’)

Label_alphal.grid(column=1, row=0, padx=(10, 10), pady=(10, 5))
button_train.grid(column=1, row=2, pady=(10, 10))
button_train.bind('<Return>', self.click)

self.alpha_grid.mainloop()
if _name__ =="_ main_ "
event_handler = Binary_Glass_Simulator()
event_handler.alpha_grid()
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