

PREDICTION OF ELASTIC AND OPTICAL PROPERTIES OF BINARY

GLASS SYSTEM USING ARTIFICIAL INTELLIGENCE APPROACH

PRASAD A/L SOUNDRARAJAN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : ______________

Name : PRASAD A/L SOUNDRARAJAN

ID No. : 18AGB05217

Date : 6/5/24

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PREDICTION OF ELASTIC AND

OPTICAL PROPERTIES OF BINARY GLASS SYSTEM USING

ARTIFICIAL INTELLIGENCE APPROACH” was prepared by PRASAD A/L

SOUNDRARAJAN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering (Hons)

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Nuraidayani Binti Effendy

Date : _14/5/24___

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2024, Prasad A/L Soundrarajan. All right reserved.

v

Specially dedicated to

my beloved Grandmother, Mother and Father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr.

Nuraidayani Binti Effendy for her invaluable advice, guidance, and her enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parents

whose prayers have given me strength throughout this course and my friends who

had helped and given me encouragement throughout this course. Finally, I would like

to thank God for giving me the strength to complete this course.

vii

PREDICTION OF ELASTIC AND OPTICAL PROPERTIES OF BINARY

GLASS SYSTEM USING ARTIFICAL INTELLIGENCE APPROACH

ABSTRACT

Binary glass systems are a rising prospect in the industrial field and have

piqued interest in research and the electronic field. The unique properties and

distinctive structure of the binary glass systems provide a wide range of

applications in the electronic field such as optical fibers, optical switching

devices, laser hosts, and more. Additionally, during the manufacturing process

of the binary glass, certain simulations is necessary to predict the

characteristics of the glass before the pure materials of oxide are melted.

Previous research has suggested and implemented the usage of artificial neural

network models as instruments to simulate and predict the optical and elastic

properties of binary glass series ZnO-TeO2 glasses. Based on previous results,

MATLAB software was used to predict the properties of the glasses, and

sufficient results were produced for different types of ZnO-TeO2 glass

compositions. However, there was a drawback using MATLAB where the

perfect fit correlation value, R2 which represents the proportion of variance in

the dependent variable that is predictable from the independent variable in a

regression model is satisfactory as the correlation value R was all between

0.90361 and 0.99985. Nevertheless, the research established that the use of the

ANN model is a good approach to be used in future research. In this project,

python software with deep learning libraries such as PyTorch and scikit-learn

was utilized to predict the elastic and optical properties of several glass series

with different compositions. Thus, the results produced had a better and

consistent R2 value within a range of 0.97 to 0.99 which indicates a high

degree of predictability in the relationship between the independent and

dependent variables in the model. Furthermore, the training total loss on

binary glass characteristics data set, graphs of predicted values, and real values

were visualized, discussed, and studied in this report.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF SYMBOLS / ABBREVIATIONS xvii

LIST OF APPENDICES xix

CHAPTERS

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Aims and Objectives 3

1.4 Outline Of Report 3

2 LITERATURE REVIEW 5

2.1 Binary Glass Systems 5

2.2 Properties of Binary Glass Systems 7

2.2.1 Physical Properties 7

2.2.2 Elastic Properties 8

2.2.3 Optical Properties 11

2.3 Deep Learning 11

2.3.1 Artificial Neural Networks. 12

ix

2.3.2 Convolution Neural Network 14

2.3.3 Recurrent Neural Networks 15

2.3.4 Comparisons of advantages and disadvantages of

different neural networks 16

2.3.5 Selection of neural network for project 17

2.3.6 Activation Functions in Neural Networks 18

2.4 Programming languages for deep learning 21

2.4.1 MATLAB 22

2.4.2 C++ 22

2.4.3 Python 23

2.4.4 Selection of programming language for project. 24

2.5 Techniques of using ANN for prediction 24

2.5.1 Price Prediction of Share Marketing 24

2.5.2 Ultrasonic Behaviour in Tellurite Glasses 27

3 METHODOLOGY 30

3.1 System Overview 30

3.2 Hardware Overview 30

3.3 Software Overview 31

3.3.1 Pycharm 31

3.3.2 Pytorch 32

3.3.3 Numpy 33

3.3.4 Pandas 33

3.3.5 Matlpotlib 34

3.3.6 Scikit-Learn 35

3.3.7 Tkinter 35

3.4 Data Preparation 36

3.5 Architecture of the ANN model 37

3.6 ANN model training procedure 38

3.6.1 Data Conversion 39

3.6.2 Configuration of input layer, hidden layers and

output layers 39

x

3.6.3 Configuration of learning rate, number of epochs

and optimizers 40

3.7 Evaluation of ANN performance 41

3.7.1 Flowchart of ANN model training procedure 44

3.8 Implementation of GUI 44

3.9 Gantt chart for project timeline 47

4 RESULTS AND DISCUSSIONS 48

4.1 Criteria and recommendation to develop ANN Model 48

4.2 Results and analysis of Model A 49

4.2.1 Graph of training loss over number of epochs 50

4.2.2 Graphs of predicted values over experimented

values 51

4.2.3 Graphs of R-squared value 52

4.2.4 Evaluation of R-squared values of Model A 54

4.2.5 Calculation of MAPE of Model A 55

4.2.6 Evaluation of MAPE of Model A 62

4.3 Results and analysis of Model B 63

4.3.1 Graph of training loss over number of epochs 64

4.3.2 Graphs of predicted values over experimental values

 65

4.3.3 Graphs of R-squared values 66

4.3.4 Evaluation of R-squared values of Model B 68

4.3.5 Calculation of MAPE for Model B 69

4.3.6 Evaluation of MAPE of Model B 75

4.4 Comparison between models 76

5 CONCLUSION AND RECOMMENDATIONS 78

5.1 Conclusion 78

5.2 Limitations and Recommendations 79

xi

REFERENCES 80

APPENDICES 84

xii

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Table of comparisons between Neural Networks 16

3.1 Hardware specifications 31

3.2 Data set to train the ANN model 36

3.3 Function of buttons in the designed GUI 46

3.4 Gantt chart for final year project 1 47

3.5 Gantt chart for final year project 2 47

4.1 Criteria and recommendations to develop ANN

model 49

4.2 Parameters and settings of Model A 50

4.3 Predicted and Experimental values of physical

properties 55

4.4 Predicted and Experimental values of elastic

properties 56

4.5 Predicted and Experimental values of elastic

properties 57

4.6 Predicted and Experimental values of elastic

properties 58

4.7 Predicted and Experimental values of elastic

properties 59

4.8 Predicted and Experimental values of optical

properties 60

4.9 Parameters and settings of Model B 63

xiii

4.10 Predicted and Experimental values of physical

properties 69

4.11 Predicted and Experimental values of elastic

properties 70

4.12 Predicted and Experimental values of elastic

properties 71

4.13 Predicted and Experimental values of elastic

properties 72

4.14 Predicted and Experimental values of elastic

properties 73

4.15 Predicted and Experimental values of optical

properties 74

4.16 Comparison between model A and B 76

xiv

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Architecture of ANN model 13

2.2 Procedure of CNN 14

2.3 Recurrent Neural Networks 15

2.4 Binary Step Function 19

2.5 Sigmoid Function 19

2.6 Tanh Function 20

2.7 ReLU function 21

2.8 Logo of MATLAB 22

2.9 Logo of C++ 23

2.10 Logo of Python 23

2.11 Architecture of ANN model for training phase 26

2.12 Graph actual price line against predicted price line. 26

2.13 ANN model for prediction of market share price

throughout November 2010 27

2.14 Parameters by the ANN model 28

2.15 Parameters by the ANN model 28

2.16 R-squared value of Bulk Modulus parameter 28

2.17 R-squared value of Poisson Ratio parameter 29

xv

3.1 Logo of Python 32

3.2 Logo of Pytorch 32

3.3 Logo of NumPy 33

3.4 Logo of Pandas 34

3.5 Logo of Matplotlib 34

3.6 Logo of Scikit-Learn 35

3.7 Logo Of Tkinter. 36

3.8 Architecture of the ANN model. 38

3.9 Interpretation of typical MAPE values 43

3.10 Flowchart of ANN model training procedure 44

3.11 GUI for ANN model 45

3.12 GUI for ANN model 45

4.1 Graph of training loss over number of epochs 50

4.2 Graphs of predicted values over experimental

values 51

4.3 Graphs of predicted values over experimental

values 51

4.4 Graphs of predicted values over experimental

values 52

4.5 R-squared values of density and molar volume 52

4.6 R-squared values of longitudinal velocity and

shear velocity 53

4.7 Longitudinal Modulus and Shear Modulus 53

4.8 R-squared values of bulk modulus and young

modulus 53

4.9 R-squared values of microhardness and fractal

bond connectivity 54

4.10 R-squared values of Poisson Ratio and optical

bandgap 54

xvi

 4.11 Graph of training loss over number of epochs 64

4.12 Graphs of predicted values over experimental

values 65

4.13 Graphs of predicted values over experimental

values 65

4.14 Graphs of predicted values over experimental

values 66

4.15 R-squared values of density and molar volume 66

4.16 R-squared values of longitudinal velocity and

shear velocity 67

4.17 Longitudinal Modulus and Shear Modulus 67

4.18 R-squared values of bulk modulus and young

modulus 67

4.19 R-squared values of microhardness and fractal

bond connectivity 68

4.20 R-squared values of Poisson Ratio 68

xvii

LIST OF SYMBOLS / ABBREVIATIONS

ZnO Zinc Oxide

 Bismuth (III) oxide

SiO2 silica

B2O2 boron oxide

Na2O sodium oxide

CaO calcium oxide

Al2O3 aluminum oxide

TeO3 tellurium trioxide

 mass

 pressure ratio

 density, kg/m3

 volume

 Molar Volume

 molar mass

 Longitudinal Velocity

 Bulk Modulus

 Shear Modulus

xviii

 Young Modulus

 stress applied to material

 strain of the material

ANN Artificial Neural Network

CNN Convolution Neural Network

RNN Recurrent Neural Network

MSE Mean squared root error

R2 R-squared value

xix

LIST OF APPENDICES

 APPENDIX TITLE PAGE

 A Computer Code Model B 84

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Glass materials are a growing prospect in the field of electronics due to their eccentric

properties such as transparency, chemical inertness, thermal stability, and mechanical

strength. Glass materials have a wide range of applications in the industrial field such

as in chemical processing, laboratory equipment, insulation materials, manufacturing

equipment, and optical components. Furthermore, binary glass systems refer to a type

of glass composition that consists of a combination of two chemical compositions

which mainly comprise oxides to form a glassy material. The most contemporary

chemical component used is silica SiO2 which forms the backbone of the glass

structure. Thus, the second chemical component can vary depending on the desired

properties of the glass and the intended applications. Besides that, the properties of a

binary glass system are determined by the composition and structure of the glassy

matrix. For instance, the addition of different oxides can change the optical,

mechanical, thermal, and electrical properties of the glass. Hence, by varying the

composition of the binary glass system, industrialists can tailor the glass to meet

specific performance requirements for various applications. Henceforth, binary glass

systems find widespread use across various industries due to their versatility and

tunable properties.

2

1.2 Problem Statements

Glass fabrication is the process of manufacturing and assembling glass and glass

parts using a variety of materials and technical processes. The usual method for

fabricating glass includes engineering, machining, forming encapsulation, bevelling,

extrusion, and moulding. However, the approach for fabricating binary glasses

differs as it uses the trial-and-error method to fabricate the specific glasses. The trial-

and-error method is used on binary glasses fabrication to discover its parameters

however the trial-and-error method comes with several drawbacks. The trial-and-

error approach in fabrication can ultimately lead engineers to a repetitive path that

creates the preliminary design, putting it into production and often causing flaws to

be detected lately. Finding the defects late when another process is present in

production becomes a costly situation to recover in terms of money and time. Thus,

discovering flaws in the fabrication approach could be a prominent key to cost and

time saving. Hence, using simulation technologies like deep learning such as the

ANN, design errors can be eliminated earlier and in the case of binary glass

fabrication, the parameters of the glass system could be predicted earlier rather than

using the trial-and-error approach which consumes time and money.

Traditional scientific theoretical models and experimental approaches in

materials science often struggle to accurately predict the properties and behaviour of

complex materials composed of more than five components. These limitations hinder

the development and optimization of advanced materials for various applications. To

address this challenge, we seek to use the flexibility and adaptability of Artificial

Neural Networks (ANNs) to model and predict the properties of complex materials

with compositions involving numerous elements and compounds. Furthermore,

ANNs can overcome the constraints of conventional methods and provide a more

accurate and versatile approach to predict the parameters of the binary glass system.

3

1.3 Aims and Objectives

The objectives of the thesis are shown as follows:

i) To develop an artificial neural network using Python software to predict

elastic and optical properties of some binary borate compounds and tellurite

glass systems.

ii) To simulate some elastic and optical properties of binary borate and tellurite

glasses containing Zinc Oxide, (ZnO) and Bismuth (III) Oxide (using

an artificial neural network.

iii) To compare and quantitively analyse the experimental data from physical,

elastic, and optical properties with the prediction of an artificial neural

network.

1.4 Outline Of Report

Chapter 1 will be the introduction of the report. This chapter will consist of the

background of the study of the project which illustrates a brief introduction of the

research on the project and a general explanation of the project. Subsequently, this

chapter will have the problem statements of the project where the problems,

limitations, and solutions for the projects are discussed and finally, this chapter will

be closed with the objectives and aims of the project where the goals to be achieved

by to project are stated.

Chapter 2 will consist of the literature review of the project. In this section,

an overview of previous research and experiments published related to the project

being conducted will be studied and discussed. Furthermore, this chapter will

demonstrate the knowledge and understanding of the project with several references

from academic literature, research, and some online websites.

4

Chapter 3 will be the methodology of the project. In this subsequent chapter,

the procedure and planning to conduct this project with detailed methods and

techniques to assist in carrying out this project will be elaborately explained. In

addition, several diagrams, flowcharts, models, and Gantt charts will be included in

this chapter.

Chapter 4 will consist of the results and discussions of the project. This

section will extensively analyse and study the outcome of the project. Furthermore,

every data obtained from the experiment will be tabulated in this section and will be

explained in full detail. In general, this section will show a presentation of the results

in line with the objectives of the project.

Chapter 5 which is the final chapter will compromise of the conclusion and

limitations of the project. Furthermore, this section will discuss the objectives

achieved by this project and elaborate on the drawbacks of the project and provide

some suggestions to improve the project for future usage.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Binary Glass Systems

Binary glass systems are glass compositions made up of two main chemical elements.

Glass is the most rudimentary form is an amorphous solid material shaped by the

rapid cooling of a molten substance. Furthermore, in binary glass systems, the glass -

forming elements are usually oxides such as silica, SiO2, boron oxide and B2O2

combined with another oxide or modifier such as metal oxides like sodium oxide

Na2O, calcium oxide, CaO, aluminium oxide, Al2O3, and others. The various

properties of binary glass systems depend on the chemical composition, the amount

of glass forming oxides to modifiers, and the specific interactions between the

elements. Some of the examples of the properties are the physical, elastic, and optical

properties. Hence, by adjusting the composition of binary glass systems,

manufacturers can alter the properties of the glass to suit specific applications.

Additionally, these glass systems provide a huge range of properties depending on

the specific composition making them versatile materials for various applications in

the industry.

6

There are several types of binary glass systems used in the industry where each

of them has its own distinctive properties. One of the most common binary glass

materials used is zinc oxide, ZnO which is a combination between zinc and oxide. ZnO

is an appealing material for applications in electronics, photonics, acoustics, and

sensing. In the electronic field, ZnO has potential in transparent thin film transistors

(TFTs) due to their high optical transmissivity and high conductivity. Furthermore,

ZnO is also widely used in acoustic wave devices because of their larger

electromechanical coupling in ZnO (Ü. Özgür et al, 2010). On the other hand,

bismuth (III) oxide, Bi2O3 is another binary glass material which is composed of

bismuth and oxygen atoms. Bi2O3 is an attractive Binary glass system among

engineers and researchers because of its semiconducting behaviour, high energy

bandgap, and high refractive index. Hence, Bi2O3 is widely used in humidity sensing

and optoelectronics devices (Condurache-Bota S ,2018). Besides that, tellurium

trioxide, TeO3 is a chemical compound composed of tellurium and oxygen atoms.

The TeO3 has shown some properties where it can behave as a semiconductor and as

an insulator when altered with specific compositions (Rada S et al, 2009). However,

the TeO3 does not have practical applications but understanding the behaviour of

tellurium compounds can benefit the development of material science and new

technologies. In addition, Boron trioxide, B2O3 is another binary glass system that

consists of boron and oxygen atoms. The B2O3 is widely used in the manufacture of

electronic components such as semiconductors and capacitors as well as in the

production of boron-doped silicon for use in solar cells and other electronic devices.

7

2.2 Properties of Binary Glass Systems

2.2.1 Physical Properties

The physical property of a material is the characteristic of a substance that is

observed or measured without altering the identity of the substance. Besides that,

physical properties are features that scientists and engineers can calculate and

measure without altering the composition of the substance or material that is under

study (Chemistry LibreTexts, 2016). There are two important physical properties of

binary glass systems which are the density and molar volume. The density of a

substance is defined as its mass per unit volume. Hence, its essentially a

measurement of how tightly matter is packed together (BYJU’s, 2024). Furthermore,

density plays a crucial role in determining the mechanical, thermal, optical, and

chemical properties of binary glass compositions which impacts their suitability for

various applications. Density is calculated by dividing the mass by the volume of the

substance. The equation 2.1 below shows the formula to compute density, where is

density, m is mass and v is volume. The density is usually expressed in grams per

cubic centimetre, .

 (2.1)

 where,

 = Volume

 Density

 = Mass

8

On the other hand, molar volume is another prominent physical property that

measures the volume occupied by one mole of a chemical element or a chemical

compound. Similar to density, molar volume plays a significant role in the

characterization, processing, and optimization of binary glass systems thus

influencing their structural, mechanical, thermal, and optical properties. Molar

volume is calculated by dividing the molar mass by the density of the substance. The

equation 2.2 below shows the formula to compute the molar volume. Where, is

the molar volume, M is the molar mass, and is the density. Molar volume is

usually expressed in cubic centimetre per mol, .

(2.2)

where,

 = Molar Volume.

 = Bulk Modulus

 Density

2.2.2 Elastic Properties

Elastic properties often denoted as elastic modulus is another prominent property that

determines the deformation of a substance or material under pressure or flexure

(Kimbell and Azad, 2021). Elastic modulus consists of several other properties. The

first property is the longitudinal velocity. Longitudinal velocity also known as

primary wave velocity is the speed at which a longitudinal wave travels through a

material.

9

The Longitudinal velocity is calculated by finding the root of the sum of the

bulk modulus and shear velocity and dividing it by the density of the material. The

equation 2.3 below shows the formula to compute the ultrasonic velocity. However,

for binary glass systems, the computation of ultrasonic velocity is a little complex

due to the forming of two glasses. The ultrasonic velocity for binary glass systems is

computed by taking the average of both glasses. The longitudinal velocity is usually

expressed as .

(2.3)

where,

Longitudinal Velocity.

 Bulk Modulus

 Shear Modulus

 Density

The second property of elastic modulus is the shear velocity. Shear velocity is

also called friction velocity is the speed at which a shear wave propagates through a

material. In binary glass systems, shear velocity is more complex to calculate due to

the presence of two different glass-forming materials. Thus, the weighted average of

shear velocities of individual glass components is computed. Besides that, another

important elastic property is the young modulus. Young modulus is a parameter that

characterizes the behaviour of an elastic material depending on the direction in which

a force is applied (Anon, 2020). The young modulus is usually determined by various

testing methods and experiments to get the stress applied to the material, and the

strain of the material, .

10

Then, the young modulus, E is calculated by dividing the stress applied to the

material by the strain of the material. The equation 2.4 below shows the formula to

compute the young modulus. The young modulus is generally expressed as pascals.

(2.4)

where,

Young Modulus.

 stress applied to the material.

 strain of the material

Furthermore, the following elastic property is the shear modulus. Shear

modulus also known as the modulus of rigidity is the measure of the rigidity of the

body by computing the ratio of shear stress to shear strain. Shear modulus is often

denoted as G and expressed as Pascals, (Pa) (BYJUS, n.d.). On the other hand, bulk

modulus is another key elastic property. The bulk modulus is defined as the fraction

of volumetric stress related to the volumetric strain of a material during the

deformation of the material. Bulk modulus is commonly denoted with the symbol K

and expressed in the units per square inch (. In addition, Microhardness is the

measurement of a material’s hardness or resistance to deformation. Microhardness is

usually measured by multiple testing methods depending on the material subjected to

study. Microhardness is commonly denoted with the symbol H and is usually

expressed as pascals, (Pa). In addition, fractal bond connectivity is another elastic

property that is used to study how the arrangements of bonds influence a material’s

behaviour and conditions under various conditions. Thus, the fractal bond

connectivity helps engineers and researchers to understand the mechanical, thermal,

and optical properties of glass structures. Finally, Poisson’s ratio is another elastic

property which is the inverse of the ratio of the transverse strain to lateral or axial

strain. Thus, understanding the Poisson’s ratio is fundamental in predicting the

glass’s mechanical properties and its stiffness and flexibility to deformation.

Poisson’s ratio is denoted with the symbol .

11

2.2.3 Optical Properties

Optical Properties refer to a material’s behaviour when electromagnetic radiation is

in contact with the material’s surface. Thus, in layman’s terms, optical properties are

how a material interacts with light (Griscom,1991.). Optical properties play an

important role in binary glass systems for their utilization in a wide range of

applications spanning from optics, photonics, and many more. One of the prominent

optical properties of binary glass systems is optical bandgap. The optical bandgap is

defined as the threshold for a photon to be absorbed by a material. The optical

bandgap plays a significant role in determining the material’s optical properties

mainly about its absorption characteristics. Thus, in binary glass systems, the optical

bandgap can be specifically engineered to suit the required application of the binary

glass system.

2.3 Deep Learning

Deep learning is a part of machine learning that utilizes multi-layered neural

networks to replicate and simulate the sophisticated decision-making ability of the

human brain. Furthermore, deep learning models are trained on large quantities of

data to identify and classify phenomena, recognize patterns and relationships,

evaluate possibilities, and carry out predictions and decisions. Deep learning models

try to imitate the mechanism of the human brain through a combination of data

inputs, weights, and biases.

Furthermore, deep learning models compromise multiple layers of

interconnected nodes where each node constructs them upon the previous layer to

rectify and optimize the prediction or classification which is a process called forward

propagation. On the other hand, backward propagation is another process in deep

learning where algorithms such as gradient descent is used to compute errors in

predictions and then alter the weights and biases of the function by reversing through

the layers to train the model.

12

Hence, the forward and backward propagation works together to ensure that

the deep learning model makes predictions and make corrections for any errors (IBM,

2023). There are various neural network models used in deep learning such as

artificial neural networks (ANN), convolution neural networks (CNN) , and recurrent

neural networks (RNN).

2.3.1 Artificial Neural Networks.

Artificial Neural Networks are heavily inspired to imitate the function of the human

brain. An ANN consists of large numbers of simple processors linked together by

weighted connections. Thus, by analogy, the processing nodes can be assumed as

neurons. Hence, each node output depends only on the information that is locally

available at the node either stored internally or being received by the weighted

connections. Furthermore, each unit receives inputs from many other nodes and

transmits its output to other nodes. On its own, a single processing element is not

very powerful as it generates a scalar output with a single numerical value which is a

simple non-linear function of its inputs. An error is generated from the difference

between the desired response and the system output. This error information is fed

back to the system, and it adjusts the system parameters in a systematic fashion. This

process is repeated until the performance is acceptable. Therefore, it is clear that

from the description, the performances heavily depend on the data provided. Hence,

if one does not have the data to cover a significant portion of the operating conditions

then the neural network technology is not the right solution.

13

On the contrary, if there is a lot of data and the problem is poorly understood

to decode an approximated model then the neural network technology is the right

choice for the specific problem. Besides that, the ANN doesn’t solve the problem

with the means of heavy mathematics, it displays data processing characteristics that

give an approximate solution to a given problem. Furthermore, the components

included in the ANN are similar to the previous neural networks where it has weights,

an adder that sums up all the inputs altered by their respective weights, and finally an

activation function. The ANN makes use of the backpropagation algorithm. This

backpropagation algorithm is used in layered feed-forward ANNs which means that

the ANNs are organized layers that send their signals forward while the errors are

propagated backward. The ANN network is fed inputs in the input layer and the

output of the layer is fed by the neurons on an output layer. The backpropagation

algorithm implements supervised learning where an algorithm is provided with

examples of the input and outputs that network functions to compute and the error

which is the difference between the actual and expected results is computed. Hence,

the main idea of the backpropagation algorithms is to minimize this error until the

ANN learns the data (Dongare et al, 2012). The figure 2.1 below shows the model of

an ANN.

Figure 2.1 : Architecture of ANN model

(Team, 2020)

14

2.3.2 Convolution Neural Network

The CNN approach has been one of the most used and represented neural networks

in the field of deep learning. The CNN is a type of feedforward neural network that

can extract features from data with convolution structures. Thus, compared to the

traditional feature extraction methods CNN does not extract features manually but it

utilizes visual perception. The CNN also consists of the components of the previous

neural networks discussed such as the weights, adders, outputs, and so on. The CNN

also consists of loss functions and optimizers which are developed for the CNN

system to learn what to expect. The CNN has many advantages such as the local

connections where each neuron is not connected to all neurons of the previous layers

but only to a minimum number of neurons which is efficient in minimizing

parameters and speed convergence. The second advantage is weight sharing, where a

group of connections can share weights which also minimizes parameters further.

The third feature is the down-sampling dimension reduction which reduces the

number of data while keeping beneficial data. Thus, these three characteristics make

the CNN one of the most represented algorithms in the deep learning field (Li et al,

2021).

Figure 2.2 : Procedure of CNN

(Thube, 2020)

15

2.3.3 Recurrent Neural Networks

The Recurrent Neural Network is designed to save the output of a layer, thus the

recurrent neural network will be fed back to the input to assist in predicting the

outcome of the layer. The first layer is a feed-forward neural network followed by a

recurrent neural network layer where some data in the previous time-step is kept by a

memory function. The forward propagation is integrated in this scenario which stores

data required for its future use. Hence, if the prediction is false, the learning rate is

employed to conduct minimal changes. Thus, finally maximizing it towards making

predictions during backward propagation. The figure 2.3 below shows the model of

the recurrent neural network.

Figure 2.3 : Reccurent Neural Networks

(Great Learning Team, 2020)

16

2.3.4 Comparisons of advantages and disadvantages of different neural

networks

Table 2.1: Table of comparisons between Neural Networks

Types of Neural

Networks

Advantages Disadvantages

Artificial Neural

Network (ANN)

- Flexible

- Parallel

Processing

- Adaptability

- Complexity

- Sensitive to

training data

Convolution Neural

Network

(CNN)

- Few parameters

compared to fully

connected layer

- Complexity

- Slow to design

Recurrent Neural

Networks

(RNN)

- Uses convolution

layers to extend

the pixel

effectiveness.

- Gradient

vanishing and

exploding

problems.

- Difficult to train.

- Difficult to

process

Modular Neural Network

(MNN)

- Efficient

- Independent

training

- Robustness

- Moving target

problems

17

2.3.5 Selection of neural network for project

The Artificial Neural Network, ANN was selected over the other neural networks to

predict the elastic and optical properties of the binary glass system because of several

reasons. When compared to Convolution Neural Network, (CNN), the features of the

CNN somehow seem superior to the ANN. However, CNN is more suited for

applications that deal with image data such as image classification and computer

vision. In addition, the input data which is usually fed to the CNN is usually in pixels.

Thus, the CNN is not the right neural network which is required for this project as

this project’s input is mainly dependent on datasheets and compositions. Similarly,

the Recurrent Neural Network is not suitable for this project as this neural network is

more suited for text processing, image processing, and translation techniques.

Besides that, when compared to a Modular Network, too many submodules or

subtasks is not necessary for this project as the main goal of the project is more

focused to the prediction of parameters of compositions rather than high-level

arithmetic calculations.

The ANN is more suited for this project also because of its prediction quality.

Furthermore, the network is capable of predicting parameters by the experimental

system. On the other hand, the network has a parallel structure and very fast learning

capacity. Besides that, any experimental data can be used as training and testing data

for an artificial neural network. Hence, the ANN has much more superior

performance to assist the targeted results of the system and is responsible to analyse

any given parameters in practical applications.

18

2.3.6 Activation Functions in Neural Networks

Activation functions are widely used in neural networks to transform an input signal

to an output signal which then is propagated as input to the next layer of the neural

network. In an artificial neural network, the sum of the products of inputs and their

weights is then input to an activation function to get an output of the particular layer

and it is then fed to the subsequent layer. One of the most used activation functions

are non-linear activation function. The concept of a neural network model is similar

to a linear regression model where the predicted output is the same as the input

supplied given that the activation function is not completely defined. Thus, a linear

activation function boundary is linear and they are applied to the network which is

only able to adjust to only the linear manipulations of the input. However, in real-life

scenarios, the errors present have non-linear attributes that in turn with the neural

networks' capability to learn about the inaccurate data. Hence, due to these the non-

linear activation functions are favoured over linear activation functions (Siddarth

Sharma et al, 2020).

There are multiple types of activation functions depending on the complexity

of the deep learning model. One of the types of activation functions is called the

binary step function. The binary step function is the simplest activation function and

can be applied with a simple if-else statement in python. Binary activation functions

are commonly used in binary classifiers however it cannot be implemented in cases

such as multiclass classification. Furthermore, the gradient of the binary step

function is equal to zero which results in obstacles in the backpropagation step. The

mathematical binary step can be defined as shown in the equation 2.5 and 2.6 below.

The figure 2.4 below shows the graph of a binary step function.

(2.5)

(2.6)

19

 Figure 2.4 : Binary Step Function

The other type of activation used is called the sigmoid activation function.

This sigmoid is one of the most well-known activation functions due to its non-

linearity. The sigmoid activation function transforms the values in the range from 0

to 1. The sigmoid function can be expressed mathematically as shown in equation 2.7

below. The figure 2.5 below shows the plot of a sigmoid function.

 (2.7)

 Figure 2.5 : Sigmoid Function

20

On the other hand, the Tanh function is another prominent activation

function. The tanh function is identical to the sigmoid function, but it is aligned

about the origin. Hence, the outputs from the previous layers will have different signs

which will be fed as input to the next layer. The equation 2.8 shows the mathematical

expression for the Tanh function.

 (2.8)

The Tanh function is continuous and differentiable, hence the values fall in

the range of -1 to 1. The gradient of the Tanh is steeper compared to the sigmoid

function. Thus, the Tanh is more preferred over the sigmoid function because its

gradients are not confined to change within a particular direction and is zero

cantered. The figure 2.6 below shows the plot of the Tanh function.

Figure 2.6: Tanh Function

21

The other well-known activation is the ReLU activation function.

ReLU is a short form for rectified linear unit and it’s a non-linear activation

function. One of the benefits of The ReLU function is that all the neurons are

not activated at the same time. This indicates that a neuron will be deactivated

if the output of linear transformation is zero. The ReLU activation function is

expressed mathematically as shown in the equation 2.9 below. The figure 2.8

below shows the plot for the ReLU activation function.

 (2.9)

Figure 2.7 : ReLU function

2.4 Programming languages for deep learning

In this section several programming languages were studied and compared to know

their advantages and drawbacks.

22

2.4.1 MATLAB

MATLAB is not only a programming language but a five-part system that consists of

a language, development environment, graphics visualizer, math library, and an

interface for coding programs in other languages. However, MATLAB is specialized

in performing matrix computation. MATLAB is robust for performing mathematical

operations and has built-in features for using machine learning models. Hence,

MATLAB has an advantage over other programming languages such as python

which require add-on toolkits and frameworks for mathematical functions and for

simulating deep learning models. Furthermore, MATLAB simulates at a higher

speed which has a slight edge over other programming languages. On the other hand,

there are several disadvantages using MATLAB. One of the drawbacks of using

MATLAB is its cost where a fee is needed to be paid to access the system and for

additional functions. Besides that, MATLAB syntax is more challenging to learn

compared to other programming languages (Houcque, 2005).

Figure 2.8: Logo of MATLAB

2.4.2 C++

C++ is one of the most well-known programming languages for general-purpose

applications. It is the spine of operating systems like Windows, IOS and Linux, apps

like Spotify, and Photoshop, and sites like Youtube and many more. C++ is a

compile language, and it doesn’t need an interpreter program which contributes to

processing overhead. Furthermore, programs written in C++ are fast and efficient.

23

One of the disadvantages of C++ is the complexity of writing the code. Furthermore,

programs in C++ take time to debug and take a longer time to alter hyperparameters

compared to other programming languages (Kaijanaho, 2000).

Figure 2.9 : Logo of C++

2.4.3 Python

Python is the most popular general-purpose programming language that is easy to

learn compared to other programming languages. It is also considered the best all-

rounded programming language for AI. When compared to other programming

languages, python has an easier syntax, words symbols, and expressions (Banerjee et

al, 2022). Hence, there will be more time to focus on other aspects such as data to

tune the models. Besides that, there is an extensive number of frameworks and

libraries that are available in python that make it adaptable to various machine

learning or data science tasks. Some of the libraries are NumPy, Scikit-learn, pandas

Tensor flow, Keras, Pytorch which provide powerful abilities for data analysis,

machine learning, deep learning and allow developers to concentrate on solving

sophisticated tasks.

Figure 2.10: Logo of Python

24

2.4.4 Selection of programming language for project.

After reviewing several programming languages, Python was chosen as the

programming language to be used for this project. One of the reasons is because of

its easy-to-read syntax. Python has a very straightforward syntax making it easier to

read and write the codes. Furthermore, the object-oriented programming structure of

python provides the users with a logical approach to organizing the structure of the

code to be clean and neat for complex projects. Furthermore, python’s debugging

speed is faster making it simpler to identify and rectify errors made in the code.

Hence, python is extremely user-friendly which enables the user to adapt faster to the

python’s programming environment. Besides that, the factor that distinguishes

python for deep learning compared to other programming languages is its extensive

libraries and frameworks. Python provides a wide range of libraries specifically

designed for machine learning simplifying user’s job to develop deep-learning neural

networks languages.

2.5 Techniques of using ANN for prediction

In this section, several journals regarding on how to utilize the ANN model for

prediction of data will be reviewed and studied.

2.5.1 Price Prediction of Share Marketing

Based on the paper by Khan et al. (2011), researchers have used artificial neural

networks to predict the share market price based on share price data. This approach is

very similar to the prediction of elastic and optical properties of binary glass systems

where a model is trained based on data which are numbers to predict the desired

output. Similar to the elastic and optical properties of binary glasses, there is no fixed

formula or rule to estimate the price of the share in the share market. The share

market holds a place of high interest among investors as it allows them to receive

25

financial incentives by investing their resources in shares and secondaries of multiple

companies. However, the share market is considered a chaos system due to its high

level of uncertainty and unpredictability. Thus, the researchers have decided to use

artificial neural networks, ANN to predict the outcome of the share market as ANN

has the potential to distinguish unknown and hidden patterns in data which can be

extremely efficient for share market prediction.

The researchers have conducted a comprehensive fundamental analysis of a

company to analyse its product sales, manpower, quality, infrastructure, and other

factors to get a better understanding of the company’s standing in the market. Based

on the analysis, it is believed that the market is determined 90% by logical and 10%

by physiological factors. However, the researchers have concluded that this

fundamental analysis is not suitable to be fed as data for the ANN as the data by the

analysis is used to find out the intrinsic value of an asset that does not change daily

hence which is not appropriate for short-term basis.

On the other hand, price charts are used to identify trends. These trends are

believed to possess a cyclical or noticeable pattern. These parameters are coined as

indicators and oscillators and it’s a well-known method to predict the market.

However, the researchers have decided not to use this approach because of its

subjective nature. In this paper, the researchers have designed the ANN such that there

is a training phase where there are weights, and a backpropagation algorithm is

implemented for this training phase where it will calculate the error between the

outputs and the actual targets. Hence, the researchers have used a feedforward network

approach for this system. There are a lot of inputs in the share market which influence

the share price but not all inputs are utilized in the system because their influence is not

crucial in the share market price. Thus, 5 inputs were finalized and used for the ANN

system which is General Index (GI), P/E ratio, Net Asset Value (NAV), Earnings per

share (EPS), and volume. Following this, the data was standardized according to the

network, and the inputs were fed to the network. In addition, the ANN model has been

designed with an input layer with 5 neurons, one hidden layer which has 5 neurons,

and an output layer with a single neuron. Hence, the backpropagation has been used

for training the network. There are two phases in this ANN model which is the training

phase and followed by the prediction phase. In the training phase, the input data has

26

been standardized to be fed to the network into the input nodes. The figure 2.11 below

shows the architecture of the ANN model for the training phase.

Figure 2.11 : Architecture of ANN model for training phase

From the figure above, it can be observed that the standardized input data is

sent into the input layer, and the product of the weights and the input data are then fed

to the neurons in the hidden layer. Following that, each neuron goes through the output

to the subsequent neuron of the output layer. The error which is produced by the

propagation phase is used to update the weight to produce a better output. The two

phases of the ANN model are repeated until the sum of the square error is near zero.

The figure 2.12 and 2.13 shows the results produced by the ANN model for the

prediction of market share prediction of market share price throughout November

2010.

Figure 2.12 : Graph actual price line against predicted price line.

27

Figure 2.13: ANN model for prediction of market share price throughout November

2010

Based on the simulation results shown above, the average error that was

computed was 1.53%. Furthermore, the researchers have inferred that with more input

data the training’s phase efficiency is better and a more accurate result will be

produced. Hence, with more data available for predicting financial markets, the higher

the potential for an accurate prediction.

2.5.2 Ultrasonic Behaviour in Tellurite Glasses

Based on the paper by Effendy et al. (2020), researchers have used an ANN model to

simulate the elastic properties of the binary series ZnO-TeO2 glasses using MATLAB

software. The researchers have conducted various experiments to get the real values of

the ZnO-TeO2 glasses parameters with different compositions. Some of the parameters

that were obtained by the experiment were molecular weight, density, longitudinal

modulus, shear modulus, bulk modulus, and young modulus. Hence, these are the

parameters that will be predicted by the ANN model.

In this paper, the researchers have decided to use a multilayer perceptron (MLP)

feed-forward neural network to predict the properties of the ZnO-TeO2 binary glass

series. The MLP model was designed with one input layer, two hidden layers, and one

output layer. Furthermore, the mean square error (MSE) was implemented to predict

the accuracy of the output data. The training process starts with random input data and

28

several iterations of the training is conducted. After sufficient data is acquired the

predicted final output values were determined. Additionally, the ANN performance

was measured by computing the percentage error (PE). The figure 2.14 and 2.15 shows

the values predicted by the ANN model.

Figure 2.14: Parameters by the ANN model

Figure 2.15: Parameters by the ANN model

Figure 2.16 : R-squared value of Bulk Modulus parameter

29

Figure 2.17: R-squared value of Poisson Ratio parameter

The plots above show the unity and goodness of fit R2 value. The R2 value

indicates the proportion of the variation in the dependent variable that is predictable

from the independent variable. Hence, if the R2 value is nearer to one, it means that the

model fits the data efficiently and can accurately predict the outcome of the predictor

variables. Based on the plots above, the straight-line slope on all the plots indicates a

great agreement between the results obtained from experimental and predicted values

by the ANN model. Besides that, the goodness of fit, R2 in all the plots is between

0.90361 and 09985 which is considered to be adequate. In addition, the difference in

percentage error computed is less than 1% between the experimental and predicted

values. Furthermore, the researchers have inferred that the upper hand of using an

ANN model for predicting the elastic properties of binary glass systems is raw

materials don’t need to be melted hence saving time and cost of experiments. Thus, the

results from this research indicate that the ANN model is viable to be used for future

research.

30

CHAPTER 3

3 METHODOLOGY

3.1 System Overview

In this chapter, the method and justification for the hardware and software carried out

are explained. Furthermore, the procedure to design and train the ANN model will be

discussed and elaborated. Besides that, the project management for this project will

also be discussed. The ANN model will be tested in various ways such as altering the

activation functions and changing the number of epochs used for training. Hence, the

best model that produces the most accurate results will be selected.

3.2 Hardware Overview

This project was performed on a laptop with Intel core i5 processor and a 16GB

NVIDIA GeForce GTX1651 GPU. The hardware specifications are specified in the

table 3.1 below.

31

Table 3.1 : Hardware specifications

CPU Intel core i5 – 10300H CPU @

2.50GHz

GPU NVIDIA GeForce GTX 1651

OS Version Microsoft Windows 11 Home Single

Language

System Type 64-bit operating system, x64-based

PC

RAM 16.0 GB

Storage 453 GB

3.3 Software Overview

The proposed prediction of elastic and optical properties of binary glass system deep

learning model was developed using Pycharm with Python 3.9.13 programming

language. The following section will discuss the software and libraries installed for

the project.

3.3.1 Pycharm

Pycharm is an integrated development environment (IDE) that is tailored mainly to

Python programming. Pycharm is developed by JetBrains and is commonly used by

Python developers for its powerful features and ease of use. Furthermore, Pycharm

provides features such as code highlights, code completion and debugging

capabilities and supports multiple deep learning frameworks.

32

Figure 3.1: Logo of Python

3.3.2 Pytorch

Pytorch is an open-source machine learning framework that was developed by

Facebook’s Ai research lab. It is one of the popular deep learning frameworks used by

developers for building and training deep learning models. Furthermore, the Pytorch

framework has a unique computation graph which eases debugging and

experimentation. The Pytorch was downloaded by Pycharm as the packages were

already available hence no pip installation was required.

Figure 3.2: Logo of Pytorch

33

3.3.3 Numpy

Numpy is a powerful numerical computing library for Python It provides support for

huge, multi-dimensional arrays and matrices with a vast collection of mathematical

functions to operate on these arrays efficiently. The numpy library is required in this

project for handling and manipulating the data regarding the binary glasses and to ease

the plot of the results.

Figure 3.3 : Logo of NumPy

3.3.4 Pandas

Pandas is a powerful library for data manipulation and analysis. The library provides

data structure and functions for efficiently handling structured data, mostly in the form

of tabular data such as CSV files, Excel spreadsheets, and SQL tables. Furthermore,

the pandas library has a data frame which is a primary data structure that represents

tabular data with rows and columns. Additionally, pandas provide a wide range of

functions and methods for manipulating and transforming data which includes filtering,

sorting, merging, joining, grouping, and reshaping data (McKinney, 2011). Pandas is

required in this project as the data regarding the binary glass systems has been

prepared in Excel format, hence the pandas library will be used to convert the data in

the Excel file to a pandas data frame so that the data can be interpreted by the Pycharm

IDE.

34

Figure 3.4: Logo of Pandas

3.3.5 Matlpotlib

Matplotlib is a comprehensive Python library for developing static, animated, and

interactive visualizations. Matplotlib provides a flexible and powerful interface for

producing a wide range of plots and charts including plots, scatter plots, bar charts,

histograms, pie charts and more (Barrett, 2005). Matplotlib is required for this project

to visualize the data produced by the ANN model and to conduct an analysis on the

data.

Figure 3.5 : Logo of Matplotlib

35

3.3.6 Scikit-Learn

Scikit-learn commonly abbreviated as sklearn is a popular machine learning library in

Python. This library provides a simple, and efficient toolset for data mining and data

analysis tasks including classification, regression, clustering, dimensionality reduction,

model selection and preprocessing. Sklearn provides tools for the evaluation of

machine learning models using metrics such as accuracy, precision, recall, F1-score,

ROC-AUC, and more (Pedregosa, 2011). Furthermore, sklearn provides functions for

cross-validation, hyperparameter tuning, and model selection. Sklearn library is

required for this project to calculate the mean squared error of the ANN model to

evaluate its accuracy and efficiency in predicting the data.

Figure 3.6 : Logo of Scikit-Learn

3.3.7 Tkinter

Tkinter is a library in Python used for creating graphical user interfaces (GUIs).

Tkinter provides a simple and intuitive way to build desktop applications with

graphical elements such as windows, buttons, labels, textboxes, menus, and more.

Tkinter has multiple built-in widgets such as buttons, labels, entry fields, textboxes,

checkboxes, list boxes, and many more to create complex user interfaces (Beniz and

Espindola, 2016). Thus, Tkinter is needed for this project to visualize the data better

and to be integrated with the Matplotlib library to visualize the graphs plotted easily.

36

Figure 3.7 : Logo Of Tkinter.

3.4 Data Preparation

The dataset that is going to be used for this project has been prepared by my supervisor

Dr Nuraidayani Binti Affendy based on her PhD research which she has conducted

before. The parameters of the binary glass were achieved after multiple experiments on

the binary glasses. The table 3.2 below shows the dataset that was provided. Thus, this

data will be used to train and tune the ANN model to predict the elastic and optical

parameters of the binary glass system.

Table 3.2: Data set to train the ANN model

ZnO Bi2O3 TeO2 B2O3 Density, ρ (g/cm3)Molar Volume, Vm (cm3/mol)Longitudinal velocity, VL (m/s)Shear velocity, VL (m/s)Longitudinal modulu, LShear modulus,GBulk modulus, KYoung modulus, EMicrohardness, H (GPa)fractal bond connectivity, dPoisson ratio, σOptical bandgap (eV)

0 0 100 0 4.939 32.314 3503 2013 60.612 20.029 33.906 50.203 3.295 2.362 0.253 2.634

5 0 95 0 4.967 31.345 3410 2031 57.781 20.494 30.455 50.218 3.754 2.691 0.225 2.616

15 0 85 0 5.049 29.286 3438 2035 59.698 21.121 31.81 51.467 3.76 2.63 0.23 2.588

20 0 80 0 5.114 28.149 3458 2032 61.181 21.125 33.014 52.234 3.713 2.559 0.236 2.582

25 0 75 0 5.222 26.818 3486 2030 63.476 21.137 34.759 53.252 3.686 2.478 0.243 2.574

30 0 70 0 5.283 25.768 3672 1953 71.24 20.866 44.351 52.737 2.654 1.818 0.302 2.557

0 5 95 0 5.372 32.561 3217 1715 55.629 15.813 34.544 41.16 2.093 1.831 0.301 2.343

0 7 93 0 5.491 32.971 3159 1699 54.8 15.858 33.655 41.117 2.152 1.884 0.296 2.308

0 10 90 0 5.659 33.617 3172 1618 56.942 14.826 37.173 39.26 1.739 1.595 0.323 2.284

0 15 85 0 6.052 33.965 3185 1547 61.394 14.489 42.076 38.991 1.491 1.377 0.345 2.21

0 0 0 100 1.84 37.817 3496 1948 22.511 6.986 13.196 17.815 1.048 2.118 0.275 2.791

45 0 0 55 3.241 23.114 5114 2619 84.777 22.24 55.124 58.81 2.636 1.614 0.322 2.725

50 0 0 50 3.267 23.11 5320 2688 92.471 23.615 60.984 62.747 2.7 1.549 0.329 2.721

60 0 0 40 3.555 21.569 4850 2366 83.654 19.904 57.116 53.497 2.071 1.394 0.344 2.608

0 40 0 60 5.462 41.772 4225 2257 97.525 27.833 60.415 72.382 3.705 1.842 0.3 2.728

0 45 0 55 5.736 43.231 3988 2162 91.245 26.827 55.475 69.309 3.724 1.934 0.291 2.721

0 55 0 45 6.259 45.951 3528 2011 77.909 25.336 44.128 63.798 4.069 2.296 0.259 2.602

0 60 0 40 6.55 46.935 3260 1920 69.625 24.154 37.419 59.632 4.276 2.582 0.234 2.546

37

3.5 Architecture of the ANN model

The figure 3.8 below shows the architecture of the ANN model. The ANN was

modelled by referring to the compositions of the binary glasses and the parameters to

be predicted. From the dataset there are four compositions of binary glasses which are

Zinc Oxide (ZnO), Bismuth (III) oxide (Bi2O3), Tellurium dioxide (TeO2) and Boric

Oxide (B2O3), hence these four compositions will be fed as input to the neural network.

Furthermore, the subsequent layer is the hidden layer. The number of hidden layers is

subject to change depending on the accuracy of the prediction. Thus, if the predicted

results are satisfactory then the number of hidden layers will be further increased. The

output layer predicts the parameters which are the elastic, optical, and physical

properties of the binary glass system. Based on the data provided, there are 12

parameters to be predicted by the model which are the molar volume, longitudinal

velocity, shear velocity, longitudinal modulus, shear modulus, bulk modulus, young

modulus, microhardness, fractal bond connectivity, Poisson ratio, and optical bandgap.

38

Figure 3.8 : Architecture of the ANN model.

3.6 ANN model training procedure

In this section, the training procedures for this proposed project will be discussed and

explained.

39

3.6.1 Data Conversion

The data provided in the Excel file will have to be exported to the Pycharm IDE. The

format of the data in the excel file is in float form. Since the Pytorch is the deep

learning framework that is being implemented the data in float format needs to be

converted to tensor format. The Pytorch tensor is a multidimensional array format used

to represent scalars, vectors, matrices, and higher dimensional arrays. Tensors are

extremely prominent as they are used to represent the data and parameters in the neural

networks.

3.6.2 Configuration of input layer, hidden layers and output layers

As discussed, in section architecture of the ANN model, there is one input layer with 4

inputs and one layer with 12 outputs which is the predicted parameters of the binary

glasses. Thus, the number of hidden layers and neurons in the layer will be increased

or decreased according by comparing them to previous trials of the model. Besides that,

the activation is also subjected to change if the prediction results are satisfactory. Thus,

other viable activation functions such as the ReLU and the Leaky ReLU will be tested

if the previous activation functions do not produce good results.

40

3.6.3 Configuration of learning rate, number of epochs and optimizers

Learning rate is an important hyperparameter in deep learning models as it determines

the step size in which the model parameters are updated during optimization.

Furthermore, setting an appropriate learning rate is important is essential for achieving

optimal convergence and performance during training. Besides that, a suitable learning

rate ensures that the optimization process converges to a minimum of the loss function

effectively. Thus, if the learning rate is too small then the training process may be slow,

and the model may be trapped in a local minimum. Conversely, if the learning rate is

too large the optimization process may oscillate or diverge. Thus, the learning rate will

be increased or decreased depending on the accuracy of the prediction.

Epoch is another important parameter in neural networks which depicts the

complete pass through the whole training dataset. During each epoch, the models go

through the training set once and update its weights and biases based on the training

data to reduce the loss function. Furthermore, the number of epochs is used to control

the number of times the entire training dataset is presented to the model during training.

Additionally, increasing the number of epochs can benefit the model in learning more

complex patterns in the data but could be risky as it might cause overfitting.

Conversely, a low number of epochs may result in underfitting. Hence, choosing the

appropriate number of epochs is prominent for developing efficient deep-learning

models.

On the other hand, optimizers are another important parameter in deep learning

models. In deep learning neural networks, an optimizer is an algorithm used to update

the weights and biases during training to reduce the loss function. The optimizer

adjusts the model’s parameters based on the gradients of the loss function concerning

those parameters. There are several types of optimizers commonly used in deep

learning models such as stochastic gradient descent (SGD), Adam optimizer, Adagrad

optimizer, and many more. The suitable optimizer will be chosen based on the

accuracy of the prediction of the deep learning model.

41

3.7 Evaluation of ANN performance

The deep learning model will be evaluated based on several factors. One of them is the

Mean Squared Error (MSE) loss. The MSE is a commonly used loss function in neural

networks for regression tasks. This function computes the average squared difference

between the predicted values and the real target values. The formula to calculate the

MSE loss is shown in the equation 3.1 below. In the deep learning model, the MSE

loss is also known as training loss.

(3.1)

 where :

 n = the number of samples of the dataset.

 = the target value.

 = the predicted value

 The MSE loss function is usually used in regression tasks where the objective

is to predict continuous numerical values which is suitable for this project. Hence,

during the training process, the ANN model’s goal is to reduce the MSE loss by

altering its weights and bias through the optimizer function. Thus, the gradients of the

MSE loss concerning to the model parameters are calculated during the

backpropagation and the parameters are updated in the direction that minimizes the

loss (Terven et al, 2023). Additionally, one of the advantages of the Pytorch

framework is that the MSE function is already built-in with the command

torch.nn.MSELoss.

42

On the other hand, the percentage error will be computed between the real and

predicted value to know the efficiency of the prediction. A smaller percent error means

that the system is nearing an accepted value and if we get a larger percentage error it

indicates that the system is a long way from the real value. The percentage error is

calculated by computing the difference between the predicted value and the actual

value and is multiplied by 100 and is usually expressed in percentage (BYJU’S ,n.d).

The formula in the figure below shows the formula to compute the percentage error.

Since there is 18 sets of training data sets used, the percentage error of each of the 18

predicted values will be computed . After each of the predicted parameters are

calculated the mean absolute percentage error will be calculated of the 18 sets for a

parameter.

The mean absolute percentage error (MAPE) is one of the most prominent

metrics of model prediction accuracy which calculates the average magnitude of error

produced by a model on how distant off predictions are on an average. Furthermore,

the MAPE of each model will be calculated by summing the MAPE of each parameter

predicted and dividing it by the total number of parameters which is 12. The MAPE of

each model will be compared and the model with the lowest percentage error will be

selected (Kim et al, 2016). The figure 3.9 below shows the interpretation of typical

MAPE values. Hence, the MAPE will be analysed and judged based on the

interpretation as shown in the figure below. The equation 3.2 and 3.3 show the formula

to compute the percentage error and the MAPE.

 (3.2)

 (3.3)

 Where n = number of sets

43

Figure 3.9: Interpretation of typical MAPE values

Lastly, the R-squared, R2 value also known as the goodness of fit will be used

to evaluate the performance of the ANN model. The R2 value is a statical measure that

represents the proportion of the variance in the target variable that is described by the

independent variables in a regression model. In addition, the R-squared value is a

benchmark of correlation and indicates how strongly two variables can be related to

each other. A correlation nearer to +1 indicates a strong relationship between the two

variables while and correlation nearer to -1 indicates a tighter relationship in the

opposite direction. On the other hand, a value closer to 0 indicates that there is not

much relationship between the variables (Hussain, 2019).

44

3.7.1 Flowchart of ANN model training procedure

Figure 3.10: Flowchart of ANN model training procedure

3.8 Implementation of GUI

A simple graphical user interface (GUI) was designed to ease the visualization of the

data. The GUI was designed using the tkinter library in python. Thus, the GUI

provides a user-friendly interface that eases the interaction with the deep learning

framework without the need to re-run the code or manually change the code.

Furthermore, the GUI allows to inspect and analyse various factors of the model such

as the training progress, loss curves and to understand the behaviour of the models

easily. The figure 3.11 and 3.12 shows the design for the GUI for the ANN model.

The table 3.3 below shows the function of each button.

45

Figure 3.11 : GUI for ANN model

Figure 3.12 : GUI for ANN model

46

Table 3.3: Function of buttons in the designed GUI

Buttons Functions

Train Model - Train the ANN model.

Graph of Losses - Plots the MSE loss graph

over the number of epochs.

Predicted vs Actual Data - Shows the graph of the

predicted and real values of

the parameters of the binary

glass compositions.

Plot of R2 Graph - Plots the R2 values which is

the goodness of fit graph.

Re-Train Model - Re-train the model to get a

better output and desired

results.

Real Data Set - Shows the tabulated values

of the real values of the

parameters of the binary

glass compositions.

Predicted Data Set - Shows the tabulated values

of the predicted values of the

parameters of the binary

glass compositions.

47

3.9 Gantt chart for project timeline

This project required adequate planning to finish the project within the due. Hence, a

Gantt Chart was used to efficiently plan the phases of the project so that the project

could be carried out systematically. The table 3.4 below shows the Gantt chart

developed for final year project 1 and the table 3.5 shows the Gantt chart developed for

Final Year Project 2.

Table 3.4 : Gantt chart for final year project 1

Table 3.5 :Gantt chart for final year project 2

48

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Criteria and recommendation to develop ANN Model

Based on chapter 2 and chapter 3, there were several recommendations and criteria to

develop a deep learning model for this specific type of project. The table 4.1 below

summarizes the recommendations and criteria for building the deep learning model for

this project. Thus, based on the recommendations two deep learning models, model A

and model B was developed. These two model’s performances were evaluated and

compared with each other. The model which performed more efficiently was then

selected as the final model. The evaluation of the performance is dependent on the

goodness of the fit value, R2, percentage error, and the MAPE error value of the

models. The table 4.1 below shows the criteria and recommendations for developing

an ANN model.

49

Table 4.1 : Criteria and recommendations to develop ANN model

Parameter Recommendations

Deep Learning Model Artificial Neural Network (ANN)

Programming Language Python

Activation Function 1) ReLU

2) TanH

Number of hidden layers One or two depending on the

prediction accuracy

4.2 Results and analysis of Model A

The ANN model A was designed with 4 inputs and two hidden layers with 500

neurons in the first layer and 400 neurons in the second layer. The output layer has 12

outputs which are the parameters to be predicted. The ReLU activation was

implemented in this deep learning model. The number of neurons in the hidden layer

was experimented with high and low values before settling with the current number of

neurons as it gave better output results compared to the other values. The table 4.2

below summarizes the settings of the parameters for the model A.

50

Table 4.2 : Parameters and settings of Model A

MODEL A

Activation function ReLU

Number of hidden layers 2

Number of neurons in the hidden

layers

1st layer

- 500 neurons

2nd layer

- 400 neurons

Learning rate 0.001

Number of Epochs 5000

4.2.1 Graph of training loss over number of epochs

 Figure 4.1 : Graph of training loss over number of epochs

Based on the figure 4.1 above, the training loss is 4.355. Thus, the training loss graph

depicts that it converges indicating that the model has reached a stable point in the

training process. This stability indicates that the model has learned the patterns in the

training data to a reasonable extent.

51

4.2.2 Graphs of predicted values over experimented values

Figure 4.2 : Graphs of predicted values over experimental values

Figure 4.3 : Graphs of predicted values over experimental values

52

Figure 4.4 : Graphs of predicted values over experimental values

4.2.3 Graphs of R-squared value

Figure 4.5 : R-squared values of density and molar volume

53

 Figure 4.6 : R-squared values of longitudinal velocity and shear velocity

Figure 4.7 : Longitudinal Modulus and Shear Modulus

Figure 4.8: R-squared values of bulk modulus and young modulus

54

Figure 4.9: R-squared values of microhardness and fractal bond connectivity

Figure 4.10 : R-squared values of Poisson Ratio and optical bandgap

4.2.4 Evaluation of R-squared values of Model A

Based on the graph plots above, the R-squared value of density, molar volume,

longitudinal velocity, shear velocity, longitudinal modulus, shear modulus, bulk

modulus and young modulus has an R-squared value in the range of 0.94072 to

0.9988 which indicates that there is a high correlation between the variables and

parameters and implies that the model is efficiently predicting the parameters.

Besides that, the R-squared value of the microhardness is 0.46165 which indicates a

low correlation between the parameters and the performance of model A in

predicting the microhardness value is poor and not up to the mark. On the other hand,

the R-squared value fractal bond connectivity, Poisson ratio, and optical bandgap are

55

negative. Thus, in regression modelling a negative R-squared value should be

rejected. This is because a negative R-squared value indicates that there is no

correlation between the variables and the explanatory variables do not predict the

changes in the dependent variable. Thus, model A has not satisfied the performance

criteria of having a stable R-squared value as it could not predict certain parameters.

4.2.5 Calculation of MAPE of Model A

Table 4.3: Predicted and Experimental values of physical properties

ZnO Bi2O3 TeO2 B2O3

Density,

ρ_exp

(g/cm3)

Density,

ρ_ANN

(g/cm3)

Percentage

error % (ρ)

Molar

Volume,

Vm_exp

(cm3/mol)

Molar

Volume,

Vm_ANN

(cm3/mol)

Percentage

error %

(Vm)

0 0 100 0 4.939 4.963 0.486 32.314 33.737 4.404

5 0 95 0 4.967 4.852 2.32 31.345 32.054 2.262

15 0 85 0 5.049 4.951 1.94 29.286 29.966 2.322

20 0 80 0 5.114 4.984 2.54 28.149 29.068 3.265

25 0 75 0 5.222 5.024 3.79 26.818 28.096 4.765

30 0 70 0 5.283 5.154 2.44 25.768 26.875 4.296

0 5 95 0 5.372 5.115 4.78 32.561 33.714 3.541

0 7 93 0 5.491 5.235 4.66 32.971 33.83 2.605

0 10 90 0 5.659 5.537 2.16 33.617 34.231 1.826

0 15 85 0 6.052 6.051 0.02 33.965 34.976 2.977

0 0 0 100 1.84 1.742 5.33 37.817 38.642 2.182

45 0 0 55 3.241 2.973 8.27 23.114 24.772 7.173

50 0 0 50 3.267 3.121 4.47 23.11 24.325 5.257

60 0 0 40 3.555 3.415 4.11 21.569 22.837 5.879

0 40 0 60 5.462 5.265 3.74 41.772 43.001 2.942

0 45 0 55 5.736 5.67 1.15 43.231 44.136 2.093

0 55 0 45 6.259 6.141 1.92 45.951 46.839 1.932

0 60 0 40 6.55 6.386 2.51 46.935 48.077 2.433

Mean absolute percentage error (MAPE) of density :

56

Mean absolute percentage error (MAPE) of molar volume :

Table 4.4: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Longitudinal

velocity,

VL_exp

(m/s)

Longitudinal

velocity,

VL_ANN

(m/s)

Percentage

error %

(VL)

Shear

velocity,

VL_exp

(m/s)

Shear

velocity,

VL_ANN

(m/s)

Percentage

error %

(VL)

0 0 100 0 3503.000 3500.533 0.070 2013.000 2017.731 0.235

5 0 95 0 3410.000 3413.021 0.089 2031.000 2028.997 0.099

15 0 85 0 3438.000 3436.844 0.034 2035.000 2031.389 0.177

20 0 80 0 3458.000 3457.952 0.001 2032.000 2035.504 0.172

25 0 75 0 3486.000 3485.877 0.004 2030.000 2029.760 0.012

30 0 70 0 3672.000 3672.049 0.001 1953.000 1953.014 0.001

0 5 95 0 3217.000 3208.601 0.261 1715.000 1726.889 0.693

0 7 93 0 3159.000 3172.481 0.427 1699.000 1679.055 1.174

0 10 90 0 3172.000 3169.051 0.093 1618.000 1624.515 0.403

0 15 85 0 3185.000 3183.392 0.050 1547.000 1547.816 0.053

0 0 0 100 3496.000 3495.868 0.004 1948.000 1947.565 0.022

45 0 0 55 5114.000 5116.765 0.054 2619.000 2623.670 0.178

50 0 0 50 5320.000 5317.134 0.054 2688.000 2683.223 0.178

60 0 0 40 4850.000 4850.398 0.008 2366.000 2366.435 0.018

0 40 0 60 4225.000 4225.073 0.002 2257.000 2256.843 0.007

0 45 0 55 3988.000 3987.983 0.0004 2162.000 2162.550 0.025

0 55 0 45 3528.000 3527.994 0.0002 2011.000 2010.609 0.019

0 60 0 40 3260.000 3259.989 0.0003 1920.000 1919.943 0.003

Mean absolute percentage error (MAPE) of longitudinal velocity :

57

Mean absolute percentage error (MAPE) of shear velocity :

Table 4.5: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3
Longitudinal

modulu,

L_exp

Longitudinal

modulu,

L_ANN

Percentage

error % (L)

Shear

modulus,

G_exp

Shear

modulus,

G_ANN

Percentage

error % (G)

0 0 100 0 60.612 60.444 0.277 20.029 19.763 1.328

5 0 95 0 57.781 57.848 0.116 20.494 20.612 0.576

15 0 85 0 59.698 60.023 0.544 21.121 20.867 1.203

20 0 80 0 61.181 61.428 0.404 21.125 21.062 0.298

25 0 75 0 63.476 63.000 0.750 21.137 21.142 0.024

30 0 70 0 71.240 71.526 0.401 20.866 20.849 0.081

0 5 95 0 55.629 55.234 0.710 15.813 16.020 1.309

0 7 93 0 54.800 55.446 1.179 15.858 15.571 1.810

0 10 90 0 56.942 57.414 0.829 14.826 15.051 1.518

0 15 85 0 61.394 61.071 0.526 14.489 14.273 1.491

0 0 0 100 22.511 22.594 0.369 6.986 6.954 0.458

45 0 0 55 84.777 84.772 0.006 22.240 22.061 0.805

50 0 0 50 92.471 92.961 0.530 23.615 23.752 0.580

60 0 0 40 83.654 83.505 0.178 19.904 19.720 0.924

0 40 0 60 97.525 97.179 0.355 27.833 27.608 0.808

0 45 0 55 91.245 91.677 0.473 26.827 26.885 0.216

0 55 0 45 77.909 77.756 0.196 25.336 25.230 0.418

0 60 0 40 69.625 69.914 0.415 24.154 24.160 0.025

Mean absolute percentage error (MAPE) of longitudinal modulus:

58

Mean absolute percentage error (MAPE) of shear modulus:

Table 4.6: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Bulk

modulus,

K_exp

Bulk

modulus,

K_ANN

Percentage

error % (K)

Young

modulus,

E_exp

Young

modulus,

E_ANN

Percentage

error % (E)

0 0 100 0 33.906 34.185 0.823 50.203 49.629 1.143

5 0 95 0 30.455 30.906 1.481 50.218 50.492 0.546

15 0 85 0 31.81 32.387 1.814 51.467 51.574 0.208

20 0 80 0 33.014 33.379 1.106 52.234 52.233 0.002

25 0 75 0 34.759 34.941 0.524 53.252 52.639 1.151

30 0 70 0 44.351 44.871 1.172 52.737 52.739 0.004

0 5 95 0 34.544 34.102 1.280 41.16 41.275 0.279

0 7 93 0 33.655 35.006 4.014 41.117 40.423 1.688

0 10 90 0 37.173 37.679 1.361 39.26 39.684 1.080

0 15 85 0 42.076 42.19 0.271 38.991 38.775 0.554

0 0 0 100 13.196 13.557 2.736 17.815 17.736 0.443

45 0 0 55 55.124 55.608 0.878 58.81 58.426 0.653

50 0 0 50 60.984 61.791 1.323 62.747 62.876 0.206

60 0 0 40 57.116 57.503 0.678 53.497 53.262 0.439

0 40 0 60 60.415 60.669 0.420 72.382 72.082 0.414

0 45 0 55 55.475 56.044 1.026 69.309 69.411 0.147

0 55 0 45 44.128 44.41 0.639 63.798 63.301 0.779

0 60 0 40 37.419 37.947 1.411 59.632 59.798 0.278

Mean absolute percentage error (MAPE) of bulk modulus:

59

Mean absolute percentage error (MAPE) of young modulus:

Table 4.7: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Microhard-

ness,

H_exp

(GPa)

Microhard-

ness,

H_ANN

(GPa)

Percentage

error % (H)

fractal bond

connectivity

, d_exp

fractal bond

connectivity

, d_ANN

Percentage

error % (d)

Poisson

ratio,

σ_exp

Poisson

ratio,

σ_ANN

Percentage

error % (d)

0 0 100 0 3.295 2.181 33.809 2.362 2.109 10.711 0.253 0.016 93.676

5 0 95 0 3.754 3.023 19.473 2.691 2.324 13.638 0.225 0.03 86.667

15 0 85 0 3.76 2.909 22.633 2.63 2.245 14.639 0.23 0.163 29.130

20 0 80 0 3.713 2.861 22.946 2.559 2.233 12.739 0.236 0.087 63.136

25 0 75 0 3.686 2.812 23.711 2.478 2.192 11.542 0.243 0.055 77.366

30 0 70 0 2.654 1.692 36.247 1.818 1.521 16.337 0.302 0.322 6.623

0 5 95 0 2.093 1.336 36.168 1.831 1.589 13.217 0.301 0.233 22.591

0 7 93 0 2.152 1.307 39.266 1.884 1.527 18.949 0.296 0.289 2.365

0 10 90 0 1.739 1.056 39.275 1.595 1.341 15.925 0.323 0.286 11.455

0 15 85 0 1.491 0.626 58.015 1.377 1.059 23.094 0.345 0.24 30.435

0 0 0 100 1.048 0.305 70.897 2.118 1.846 12.842 0.275 0.202 26.545

45 0 0 55 2.636 1.37 48.027 1.614 1.2 25.651 0.322 0.301 6.522

50 0 0 50 2.7 1.485 45.000 1.549 1.143 26.210 0.329 0.287 12.766

60 0 0 40 2.071 0.941 54.563 1.394 0.932 33.142 0.344 0.117 65.988

0 40 0 60 3.705 2.758 25.560 1.842 1.445 21.553 0.3 0.095 68.333

0 45 0 55 3.724 2.78 25.349 1.934 1.575 18.563 0.291 0.214 26.460

0 55 0 45 4.069 3.222 20.816 2.296 2.055 10.497 0.259 0.201 22.394

0 60 0 40 4.276 3.367 21.258 2.582 3.367 30.403 0.234 0.207 11.538

Mean absolute percentage error (MAPE) of microhardness:

60

Mean absolute percentage error (MAPE) of fractal bond connectivity:

Mean absolute percentage error (MAPE) of Poisson ratio

Table 4.8: Predicted and Experimental values of optical properties

ZnO Bi2O3 TeO2 B2O3

Optical

bandgap

(eV_exp)

Optical

bandgap

(eV_ANN)

Percentage

error %

(eV)

0 0 100 0 2.634 4.965 88.497

5 0 95 0 2.616 4.955 89.411

15 0 85 0 2.588 5.034 94.513

20 0 80 0 2.582 4.981 92.912

25 0 75 0 2.574 4.949 92.269

30 0 70 0 2.557 5.025 96.519

0 5 95 0 2.343 4.572 95.134

0 7 93 0 2.308 4.522 95.927

0 10 90 0 2.284 4.493 96.716

0 15 85 0 2.21 4.387 98.507

0 0 0 100 2.791 4.822 72.770

45 0 0 55 2.725 5.964 118.862

50 0 0 50 2.721 6.134 125.432

60 0 0 40 2.608 5.726 119.555

0 40 0 60 2.728 5.333 95.491

0 45 0 55 2.721 5.299 94.745

0 55 0 45 2.602 5.044 93.851

0 60 0 40 2.546 4.845 90.299

61

Mean absolute percentage error (MAPE) of optical bandgap.

Calculation of total mean average percentage error of model B

62

4.2.6 Evaluation of MAPE of Model A

Based on the MAPE calculated above for each parameter the MAPE for the physical

properties density and molar volume are 3.146 % and 3.453 % which are less than

10 %. Hence according to the interpretation of MAPE values, as shown in figure 3.9,

MAPE values that are less than 10 are considered as high accurate forecasting. Thus,

the prediction of the physical properties by model A is considered to be excellent.

Besides that, the predictions of the elastic properties which are longitudinal velocity,

shear velocity, longitudinal modulus, shear modulus, bulk modulus and young

modulus are considered to be excellent as they range from 0.064 % to 0.819% thus

indicating that model A predicts their values efficiently. However, the MAPE values

of the remaining elastic properties are not up to the mark. The MAPE value for

fractal bond connectivity is 16.240 % which according to the interpretation table is

good forecasting. On the other hand, the MAPE values of Poisson ratio and

microhardness are 35.940 and 36.378 which is considered to be a reasonable forecast.

The MAPE value for the optical property, optical bandgap is calculated to be

81.741 % which is an inaccurate forecasting. The overall MAPE of model A is

calculated to be 15.028% which is good forecasting. However, model A is still lacks

the capability to predict some of the important parameters despite its overall MAPE

value.

63

4.3 Results and analysis of Model B

The ANN model B was designed with 4 inputs and one hidden layer with 4000

neurons in the first layer. The output layer has 12 outputs which are the parameters to

be predicted. The TanH activation was implemented in this deep learning model. The

number of neurons in the hidden layer was experimented with high and low values

before settling the current number of neurons as it gave better output results compared

to the other values. The table below summarizes the settings of the parameters for the

model B.

Table 4.9 : Parameters and settings of Model B

MODEL B

Activation function TanH

Number of hidden layers 1

Number of neurons in the hidden

layers

1st layer

- 4000 neurons

Learning rate 0.001

Number of Epochs 12000

64

4.3.1 Graph of training loss over number of epochs

Figure 4.11: Graph of training loss over number of epochs

Based on the figure 4.11 above, the training loss is 27.166 Thus, the training loss

graph depicts that it converges indicating that the model has reached a stable point in

the training process. This stability indicates that the model has learned the patterns in

the training data to a reasonable extent.

65

4.3.2 Graphs of predicted values over experimental values

Figure 4.12 : Graphs of predicted values over experimental values

Figure 4.13 : Graphs of predicted values over experimental values

66

Figure 4.14 : Graphs of predicted values over experimental values

4.3.3 Graphs of R-squared values

Figure 4.15 : R-squared values of density and molar volume

67

Figure 4.16: R-squared values of longitudinal velocity and shear velocity

Figure 4.17: Longitudinal Modulus and Shear Modulus

Figure 4.18 : R-squared values of bulk modulus and young modulus

68

Figure 4.19: R-squared values of microhardness and fractal bond connectivity

Figure 4.20: R-squared values of Poisson Ratio

4.3.4 Evaluation of R-squared values of Model B

Based on the graph plots above, the R-squared value for all the 12 parameters has an

R-squared value in the range of 0.974 to 0.999 which indicates that there is a high

correlation between the variables and parameters and implies that the model is

efficiently predicting the parameters. Thus, model B has no negative R-squared

values which is an indication that the model predicts all the values accurately and

there is a solid correlation between the variables and parameters.

69

4.3.5 Calculation of MAPE for Model B

Table 4.10 : Predicted and Experimental values of physical properties

ZnO Bi2O3 TeO2 B2O3

Density,

ρ_exp

(g/cm3)

Density,

ρ_ANN

(g/cm3)

Percentage

error % (ρ)

Molar

Volume,

Vm_exp

(cm3/mol)

Molar

Volume,

Vm_ANN

(cm3/mol)

Percentage

error %

(Vm)

0 0 100 0 4.939 5.005 1.336 32.314 30.479 5.679

5 0 95 0 4.967 5.005 0.765 31.345 30.427 2.929

15 0 85 0 5.049 5.005 0.871 29.286 30.397 3.794

20 0 80 0 5.114 5.038 1.486 28.149 29.925 6.309

25 0 75 0 5.222 5.238 0.306 26.818 26.825 0.026

30 0 70 0 5.283 5.284 0.019 25.768 25.629 0.539

0 5 95 0 5.372 5.38 0.149 32.561 32.397 0.504

0 7 93 0 5.491 5.461 0.546 32.971 33.179 0.631

0 10 90 0 5.659 5.711 0.919 33.617 33.595 0.065

0 15 85 0 6.052 6.022 0.496 33.965 33.942 0.068

0 0 0 100 1.84 1.84 0.000 37.817 37.819 0.005

45 0 0 55 3.241 3.241 0.000 23.114 23.087 0.117

50 0 0 50 3.267 3.266 0.031 23.11 23.135 0.108

60 0 0 40 3.555 3.557 0.056 21.569 21.568 0.005

0 40 0 60 5.462 5.463 0.018 41.772 41.78 0.019

0 45 0 55 5.736 5.734 0.035 43.231 43.219 0.028

0 55 0 45 6.259 6.262 0.048 45.951 45.944 0.015

0 60 0 40 6.55 6.547 0.046 46.935 46.946 0.023

7.128 20.864

Mean absolute percentage error (MAPE) of density :

Mean absolute percentage error (MAPE) of molar volume :

70

Table 4.11: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Longitudinal

velocity,

VL_exp

(m/s)

Longitudinal

velocity,

VL_ANN

(m/s)

Percentage

error %

(VL)

Shear

velocity,

VL_exp

(m/s)

Shear

velocity,

VL_ANN

(m/s)

Percentage

error %

(VL)

0 0 100 0 3503.000 3492.125 0.310 2013.000 1981.224 1.579

5 0 95 0 3410.000 3494.689 2.484 2031.000 1983.544 2.337

15 0 85 0 3438.000 3495.647 1.677 2035.000 1984.371 2.488

20 0 80 0 3458.000 3498.175 1.162 2032.000 1986.375 2.245

25 0 75 0 3486.000 3513.087 0.777 2030.000 1996.919 1.630

30 0 70 0 3672.000 3549.550 3.335 1953.000 2017.126 3.283

0 5 95 0 3217.000 3213.643 0.1044 1715.000 1722.794 0.454

0 7 93 0 3159.000 3168.927 0.314 1699.000 1683.259 0.926

0 10 90 0 3172.000 3142.347 0.9348 1618.000 1662.604 2.757

0 15 85 0 3185.000 3128.172 1.784 1547.000 1653.367 6.876

0 0 0 100 3496.000 3559.584 1.819 1948.000 1953.515 0.283

45 0 0 55 5114.000 5150.854 0.721 2619.000 2604.045 0.571

50 0 0 50 5320.000 5165.446 2.905 2688.000 2615.387 2.701

60 0 0 40 4850.000 4892.532 0.877 2366.000 2457.914 3.885

0 40 0 60 4225.000 4218.775 0.147 2257.000 2270.576 0.602

0 45 0 55 3988.000 3986.177 0.046 2162.000 2166.564 0.211

0 55 0 45 3528.000 3527.365 0.0180 2011.000 2102.245 4.537

0 60 0 40 3260.000 3277.869 0.548 1920.000 1889.402 1.594

Mean absolute percentage error (MAPE) of longitudinal velocity :

Mean absolute percentage error (MAPE) of shear velocity :

71

Table 4.12 : Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3
Longitudinal

modulu,

L_exp

Longitudinal

modulu,

L_ANN

Percentage

error % (L)

Shear

modulus,

G_exp

Shear

modulus,

G_ANN

Percentage

error % (G)

0 0 100 0 60.612 59.904 1.168 20.029 20.624 2.971

5 0 95 0 57.781 59.960 3.771 20.494 20.648 0.751

15 0 85 0 59.698 59.952 0.425 21.121 20.653 2.216

20 0 80 0 61.181 60.111 1.749 21.125 20.740 1.822

25 0 75 0 63.476 62.338 1.793 21.137 21.209 0.341

30 0 70 0 71.240 71.795 0.779 20.866 20.840 0.125

0 5 95 0 55.629 55.277 0.633 15.813 15.896 0.525

0 7 93 0 54.800 55.010 0.383 15.858 15.708 0.946

0 10 90 0 56.942 58.052 1.949 14.826 14.862 0.243

0 15 85 0 61.394 60.352 1.697 14.489 14.490 0.007

0 0 0 100 22.511 22.507 0.018 6.986 6.983 0.043

45 0 0 55 84.777 86.918 2.525 22.240 22.210 0.135

50 0 0 50 92.471 90.299 2.349 23.615 23.643 0.119

60 0 0 40 83.654 83.691 0.044 19.904 19.892 -0.060

0 40 0 60 97.525 97.506 0.019 27.833 27.828 0.018

0 45 0 55 91.245 91.271 0.028 26.827 26.827 0.000

0 55 0 45 77.909 77.867 0.054 25.336 25.320 0.063

0 60 0 40 69.625 69.666 0.059 24.154 24.162 0.033

Mean absolute percentage error (MAPE) of longitudinal modulus:

Mean absolute percentage error (MAPE) of shear modulus:

72

Table 4.13 : Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Bulk

modulus,

K_exp

Bulk

modulus,

K_ANN

Percentage

error % (K)

Young

modulus,

E_exp

Young

modulus,

E_ANN

Percentage

error % (E)

0 0 100 0 33.906 32.318 4.684 50.203 50.995 1.578

5 0 95 0 30.455 32.338 6.183 50.218 51.07 1.697

15 0 85 0 31.81 32.336 1.654 51.467 51.061 0.789

20 0 80 0 33.014 32.492 1.581 52.234 51.233 -1.916

25 0 75 0 34.759 34.203 1.600 53.252 52.718 -1.003

30 0 70 0 44.351 44.664 0.706 52.737 53.009 -0.516

0 5 95 0 34.544 34.112 1.251 41.16 41.505 0.838

0 7 93 0 33.655 34.09 1.293 41.117 40.694 1.029

0 10 90 0 37.173 37.853 1.829 39.26 39.353 0.237

0 15 85 0 42.076 41.336 1.759 38.991 39.004 -0.033

0 0 0 100 13.196 13.195 0.008 17.815 17.814 -0.006

45 0 0 55 55.124 56.457 2.418 58.81 59.284 0.806

50 0 0 50 60.984 59.624 2.230 62.747 62.29 -0.728

60 0 0 40 57.116 57.141 0.044 53.497 53.484 -0.024

0 40 0 60 60.415 60.412 0.005 72.382 72.364 0.025

0 45 0 55 55.475 55.481 0.011 69.309 69.335 0.038

0 55 0 45 44.128 44.117 0.025 63.798 63.717 0.127

0 60 0 40 37.419 37.429 0.027 59.632 59.699 0.112

Mean absolute percentage error (MAPE) of bulk modulus:

Mean absolute percentage error (MAPE) of young modulus:

73

Table 4.14: Predicted and Experimental values of elastic properties

ZnO Bi2O3 TeO2 B2O3

Microhard-

ness,

H_exp

(GPa)

Microhard-

ness,

H_ANN

(GPa)

Percentage

error % (H)

fractal bond

connectivity

, d_exp

fractal bond

connectivity

, d_ANN

Percentage

error % (d)

Poisson

ratio,

σ_exp

Poisson

ratio,

σ_ANN

Percentage

error % (d)

0 0 100 0 3.295 3.629 10.137 2.362 2.559 8.340 0.253 0.241 4.743

5 0 95 0 3.754 3.633 3.223 2.691 2.56 4.868 0.225 0.24 6.667

15 0 85 0 3.76 3.632 3.404 2.63 2.562 2.586 0.23 0.236 2.609

20 0 80 0 3.713 3.632 2.182 2.559 2.556 0.117 0.236 0.233 1.271

25 0 75 0 3.686 3.684 0.054 2.478 2.483 0.202 0.243 0.238 2.058

30 0 70 0 2.654 2.651 0.113 1.818 1.815 0.165 0.302 0.299 0.993

0 5 95 0 2.093 2.146 2.532 1.831 1.86 1.584 0.301 0.3 0.332

0 7 93 0 2.152 2.079 3.392 1.884 1.843 2.176 0.296 0.296 0.000

0 10 90 0 1.739 1.759 1.150 1.595 1.614 1.191 0.323 0.326 0.929

0 15 85 0 1.491 1.494 0.201 1.377 1.373 0.290 0.345 0.343 0.580

0 0 0 100 1.048 1.05 0.191 2.118 2.116 0.094 0.275 0.273 0.727

45 0 0 55 2.636 2.61 0.986 1.614 1.607 0.434 0.322 0.326 1.242

50 0 0 50 2.7 2.729 1.074 1.549 1.557 0.516 0.329 0.327 0.608

60 0 0 40 2.071 2.068 0.145 1.394 1.392 0.143 0.344 0.341 0.872

0 40 0 60 3.705 3.705 0.000 1.842 1.843 0.054 0.3 0.301 0.333

0 45 0 55 3.724 3.724 0.000 1.934 1.935 0.052 0.291 0.291 0.000

0 55 0 45 4.069 4.061 0.197 2.296 2.298 0.087 0.259 0.259 0.000

0 60 0 40 4.276 4.283 0.164 2.582 2.58 0.077 0.234 0.234 0.000

29.145 22.978 23.964

Mean absolute percentage error (MAPE) of microhardness:

Mean absolute percentage error (MAPE) of fractal bond connectivity:

74

Mean absolute percentage error (MAPE) of poisson ratio

Table 4.15: Predicted and Experimental values of optical properties

ZnO Bi2O3 TeO2 B2O3

Optical

bandgap

(eV_exp)

Optical

bandgap

(eV_ANN)

Percentage

error %

(eV)

0 0 100 0 2.634 2.609 0.949

5 0 95 0 2.616 2.61 0.229

15 0 85 0 2.588 2.608 0.773

20 0 80 0 2.582 2.599 0.658

25 0 75 0 2.574 2.562 0.466

30 0 70 0 2.557 2.557 0.000

0 5 95 0 2.343 2.342 0.043

0 7 93 0 2.308 2.307 0.043

0 10 90 0 2.284 2.282 0.088

0 15 85 0 2.21 2.211 0.045

0 0 0 100 2.791 2.792 0.036

45 0 0 55 2.725 2.718 0.257

50 0 0 50 2.721 2.729 0.294

60 0 0 40 2.608 2.606 0.077

0 40 0 60 2.728 2.727 0.037

0 45 0 55 2.721 2.722 0.037

0 55 0 45 2.602 2.596 0.231

0 60 0 40 2.546 2.55 0.157

4.419

Mean absolute percentage error (MAPE) of optical bandgap.

75

Calculation of total mean average percentage error of model B

4.3.6 Evaluation of MAPE of Model B

Based on the MAPE calculated above for each parameter the MAPE for the physical

properties density and molar volume are 0.396% and 1.159% respectively which are

less than 10%. Hence according to the interpretation of MAPE values, as shown in

figure 3.9, MAPE values that are less than 10 is considered as highly accurate

forecasting. Thus, the prediction of the physical properties by model B is considered

to be excellent. Besides that, the predictions of the elastic properties which are

longitudinal velocity, shear velocity, longitudinal modulus, shear modulus, bulk

modulus, young modulus, microhardness, and fractal bond connectivity, Poisson

ratio are considered to be excellent as they range from 0.170 % to 2.164% thus

indicating that model B predicts their values efficiently. Besides that, the MAPE

value for the optical property, the optical bandgap is 0.2455% which is also accurate

forecasting. The overall MAPE of model B is calculated to be 1.053% which is a

highly accurate forecasting.

76

4.4 Comparison between models

In this section, all the two models will be compared and analysed based on prediction

accuracy and their performance metrics will be discussed. Furthermore, the model

with the best performance metric will be selected as the official model for this

project. The table 4.16 summarizes the metrices of the two models A and B.

Table 4.16: Comparison between model A and B

The Model’ A training loss is lower compared to Model B. Thus, this indicates

that model A fits the training data well and has a lower error compared to model B.

Model B has the highest training loss which is 27.166 and has a higher error on the

training data among the two models which may lead to the overfitting of the data.

Furthermore, the percentage error for Model A is the highest which is 15.028% but it

is still considered as a good forecasting as it is in the range of (10-20) % according to

the interpretation table. Model B has the lowest MAPE error which is 1.053% which

is an indication of accurate forecasting. Furthermore, there are several negative R-

squared values which are present in Model A which indicates that there is no

correlation between the parameters and variables to be predicted while there are no

negative R-squared present in Model B.

Model

Parameters

A B

Training Loss 4.356 27.166

MAPE Error 15.028% 1.053%

No of negative

R-squared

parameters

3 0

77

This case could be explained by the relationship of the activation functions

and data that is used in the deep learning model. Based on the graphs plotted it can

be observed that the negative R-squared value occurs during the prediction of the

optical bandgap, fractal bond connectivity, and Poisson’s ratio. By referring to the

data set of the training values provided it can be observed that the values of the

parameters of these three parameters are near zero, hence the ReLU activation

function might not be an appropriate activation function to predict the values of these

parameters because it is not a zero centric function (Ali, 2023). Thus, it is difficult

for the ReLU function to predict numbers that are closer to zero. On the other hand,

the Tanh function which is used in Model B is more efficient in dealing with

numbers nearer to zero as they have an output centered around zero which is

beneficial for optimization. Thus, based on reviewing the two models, model B is

more suited for the prediction of elastic and optical properties of binary glass systems

as it has an upper hand in its performance metrics. However, due to its large training

loss error, overfitting might occur. Hence, more dataset is required to prevent

overfitting occurring in this model.

78

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The project prediction of elastic and optical properties of binary glass systems using

artificial intelligence approach which aims to develop an artificial neural network

using Python software to predict elastic and optical properties of some binary borate

compounds and tellurite glass systems has been conducted successfully.

Two deep learning models, models A and B were developed and tested to

predict and simulate the elastic and optical properties of the binary glass systems.

Thus, several evaluation metrics was used to test the accuracy of each model. The

analysis of each model and its advantages and drawbacks were discussed.

Furthermore, each of the model’s predicted outputs was plotted and compared with

each other. After that, performance of evaluation metrics on each model was done

and model B was found to be the most accurate in predicting the parameter of the

binary glasses.

In a nutshell, despite the ANN model not being tested with real data, the deep

learning model’s performance was assessed, and the findings were satisfactory.

However, the ANN model still has significant limitations and some constraints that

needs to be noted and discussed. Furthermore, some other improvements and

changes can be conducted so that this deep learning model can be implemented in the

manufacturing industry in the future.

79

5.2 Limitations and Recommendations

The lack of data for deep learning training can pose a lot of challenges and

limitations. One of the problems that can occur is overfitting where the model tends

to memorize the training data sets rather than learning generalizable patterns hence

affecting poor performance. Furthermore, due to the lack of data, there is an inability

to conduct validation and hyperparameter tuning. Thus, several other methods such

as cross validation, K-fold might be ineffective. On the other hand, deep learning

models have high capacity to learn complex patterns from data. However, this

capacity may be underutilized with a small dataset leading to a poor performance. In

addition, with sufficient data, the train test split for evaluating the ANN can be

conducted. The train-test split procedure is a deep learning technique used to evaluate

the performance of the deep learning model when they do predictions on data that is

not used to train the model. Thus, this procedure allows us to make comparisons about

the performance of the deep learning model and allows us to adjust the parameters

accordingly to get a better output from the deep learning model.

In conclusion, to overcome the drawbacks discussed above and to increase the

efficiency of the ANN model for predicting the elastic and optical properties of binary

glass systems to perform with real-world and unseen data, the recommendations stated

above shall be conducted in the future to achieve a more optimal result.

80

REFERENCES

Anon, (2020). Young’s modulus or longitudinal modulus of elasticity - Servosis.

[online] Available at: https://www.servosis.com/en/el-modulo-de-young-o-

modulo-de-elasticidad-longitudinal/.[Acessed 21 April 2024]

Banerjee, S., Seth, S., Dey, T., Pal, D. and Student (n.d.). PYTHON

PROGRAMMING LANGUAGE AND ITS SCOPE IN FUTURE.

[online] International Research Journal of Modernization in Engineering

Technology and Science, Peer-Reviewed, Open Access, pp.2582–5208. Available

at: https://www.irjmets.com/uploadedfiles/paper//issue_8_august 2022/29067/

final/fin_irjmets1659536271.pdf. [Accessed 21 April 2024]

Barrett, P., Hunter, J., Miller, J.T., Hsu, J.-C. and Greenfield, P. (2005). matplotlib –

A Portable Python Plotting Package. In: ASTRONOMICAL DATA ANALYSIS

SOFTWARE AND SYSTEMS XIV.

BYJU'S (2024). Unit of Density - Density Definition, SI unit, Solved Examples.

[online] BYJUS. Available at: https://byjus.com/physics/unit-of-

density/#:~:text=Density%20Definition%3A%20Density%20is%20the. [Accessed

21 April 2024].

BYJU'S (n.d.). Percent Error - Definition, Formula, and Solved examples. [online]

BYJUS. Available at: https://byjus.com/maths/percent-

error/#:~:text=Percent%20error%20is%20the%20difference. [Accessed 23 April

2024].

BYJUS. (n.d.). Shear Modulus (Modulus Of Rigidity) - Definition, Formula, Units,

Examples. [online] Available at: https://byjus.com/physics/shear-modulus-elastic-

moduli/#:~:text=Shear%20modulus%2C%20also%20known%20as. [Accessed 21

April 2024].

https://www.servosis.com/en/el-modulo-de-young-o-modulo-de-elasticidad-longitudinal/
https://www.servosis.com/en/el-modulo-de-young-o-modulo-de-elasticidad-longitudinal/
https://byjus.com/physics/unit-of-density/#:~:text=Density%20Definition%3A%20Density%20is%20the
https://byjus.com/physics/unit-of-density/#:~:text=Density%20Definition%3A%20Density%20is%20the
https://byjus.com/physics/shear-modulus-elastic-moduli/#:~:text=Shear%20modulus%2C%20also%20known%20as
https://byjus.com/physics/shear-modulus-elastic-moduli/#:~:text=Shear%20modulus%2C%20also%20known%20as

81

Chemistry LibreTexts. (2016). 3.5: Differences in Matter- Physical and Chemical

Properties. [online] Available at:

https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Ch

emistry/03%3A_Matter_and_Energy/3.05%3A_Differences_in_Matter-

_Physical_and_Chemical_Properties#:~:text=Summary-. [Accessed 20 April

2024].

Condurache-Bota, S., 2017. intechopen. [Online] Available at:

http://dx.doi.org/10.5772/intechopen.7510 [Accessed 17 April 2024].

David L. Griscom (25 March 1991). Optical Properties and Structure of Defects in

Silica Glass. In Naval Research Laboratory.

D. B. Beniz and A. M. Espindola, (2016). USING TKINTER OF PYTHON TO

CREATE GRAPHICAL USER INTERFACE (GUI) FOR SCRIPTS IN LNLS.

In: Brazilian Synchrotron Light Laboratory.

Dongare, A., Kharde, R. and Kachare, A. (2008). Introduction to Artificial Neural

Network. Certified International Journal of Engineering and Innovative

Technology (IJEIT), [online] 9001(1), pp.2277–3754. Available at:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04d0b6952a4f

0c7203577afc9476c2fcab2cba06.[Accessed 17 April 2024].

Effendy, N., Hj Ab Aziz, S., Mohamed Kamari, H., Mohd Zaid, M.H. and Wahab,

S.A. (2020). Ultrasonic and artificial intelligence approach: Elastic behavior on

the influences of ZnO in tellurite glass systems. Journal of Alloys and

Compounds, 835.

Houcque, D. (2007). INTRODUCTION TO MATLAB FOR ENGINEERING

STUDENTS. [online] Available at:

https://www.mccormick.northwestern.edu/documents/students/undergraduate/intr

oduction-to-matlab.pdf. [Accessed 22 April 2024].

Hussain, H. (2019). Data Science: Explaining R2 in Statistics. [online] Medium.

Available at: https://towardsdatascience.com/data-science-explaining-r%C2%B2-

in-statistics-6f34e7f0a9bb.[Accessed 23 April 2024].

https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry/03%3A_Matter_and_Energy/3.05%3A_Differences_in_Matter-_Physical_and_Chemical_Properties#:~:text=Summary-
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry/03%3A_Matter_and_Energy/3.05%3A_Differences_in_Matter-_Physical_and_Chemical_Properties#:~:text=Summary-
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry/03%3A_Matter_and_Energy/3.05%3A_Differences_in_Matter-_Physical_and_Chemical_Properties#:~:text=Summary-
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04d0b6952a4f0c7203577afc9476c2fcab2cba06
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04d0b6952a4f0c7203577afc9476c2fcab2cba06
https://www.mccormick.northwestern.edu/documents/students/undergraduate/introduction-to-matlab.pdf
https://www.mccormick.northwestern.edu/documents/students/undergraduate/introduction-to-matlab.pdf

82

IBM (2023). What is Deep Learning? [online] www.ibm.com. Available at:

https://www.ibm.com/topics/deep-learning. [Accessed 19 April 2024].

Kaijanaho, A.-J. (n.d.). Evidence-Based Programming Language Design A

Philosophical and Methodological Exploration. [online] Available at:

https://jyx.jyu.fi/bitstream/handle/123456789/47698/1/978-951-39-6388-

0_vaitos04122015.pdf [Accessed 22 April 2024].

Khan, Z., Tasnim, S., Alin and Hussain, M. (2011). Price Prediction of Share Market

using Artificial Neural Network (ANN). International Journal of Computer

Applications, [online] 22(2), pp.975–8887. Available at:

https://www.ijcaonline.org/volume22/number2/pxc3873497.pdf [Accessed 22

April 2024].

Kim, S. and Kim, H. (2016). A new metric of absolute percentage error for

intermittent demand forecasts. International Journal of Forecasting, 669-679.

Mckinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and

Statistics.

Moez Ali (2023). Introduction to Activation Functions in Neural Networks-Radar

[online] Available at : https://www.datacamp.com/tutorial/introduction-to-

activation-functions-in-neural-networks. [Accessed 19 April 2024].

Özgür, Ü., Hofstetter, D. and Morkoç, H. (2010). ZnO Devices and Applications: A

Review of Current Status and Future Prospects. Proceedings of the IEEE, 98(7),

pp.1255–1268. doi:https://doi.org/10.1109/jproc.2010.2044550.

Pedregosa, F., Gael Varoquaux, G., Gramfort, A., Michel, V. and Thirion , B. (2011).

Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research

12, 2825-2830.

Rada, S., Culea, E., Rada, M. et al. Structural and electronic properties of tellurite

glasses. J Mater Sci 44, 3235–3240 (2009). https://doi.org/10.1007/s10853-009-

3433-8

https://www.ibm.com/topics/deep-learning
https://www.datacamp.com/tutorial/introduction-to-activation-functions-in-neural-networks
https://www.datacamp.com/tutorial/introduction-to-activation-functions-in-neural-networks
https://doi.org/10.1007/s10853-009-3433-8
https://doi.org/10.1007/s10853-009-3433-8

83

Sharma, S., Sharma, S. and Athaiya, A. (2020). ACTIVATION FUNCTIONS IN

NEURAL NETWORKS. International Journal of Engineering Applied Sciences

and Technology, 2020 , [online] 4(12), pp.310–316. Available at:

http://www.ijeast.com/. [Accessed 26 April 2024].

Team, T. (2020). Artificial Neural Network - Applications, Algorithms and

Examples. [online] TechVidvan. Available at:

https://techvidvan.com/tutorials/artificial-neural-network/. [Accessed 23 April

2024].

Terven, J.R., Cordova-Esparza, D.M., Perdraza, A.R. and Chavez-Urbiola, E.A.

(2023). LOSS FUNCTIONS AND METRICS IN DEEP LEARNING. A

REVIEW. UNDER REVIEW IN COMPUTER SCIENCE REVIEW.

http://www.ijeast.com/
https://techvidvan.com/tutorials/artificial-neural-network/

84

APPENDICES

APPENDIX A: Computer Code Model B

import torch

import torch.nn as nn

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

import tkinter as tk

from tkinter import ttk

class Binary_Glass_Simulator():

 def click(self):

 self.alpha_grid.destroy()

 self.Model_Training()

 def click2(self, event=None):

 self.beta_grid.destroy()

 self.Model_Training(event)

 def Model_Training(self, event = None):

 self.training_data = 'C:\\Users\\Prasad

Soundrarajan\\Desktop\\ANN\\Training Dataset.xlsx'

 self.Dataset_Training = pd.read_excel(self.training_data)

 # Initializing input & output data for training set

 self.Binary_Compositions_Training = self.Dataset_Training.iloc[:, 0:4] #

input data

 self.Parameters_Training = self.Dataset_Training.iloc[:, 4:16] # output data

 # Converting to tensor

 self.x_train =

torch.tensor(self.Binary_Compositions_Training.values).float()

 self.y_train = torch.tensor(self.Parameters_Training.values).float()

 # Building ANN model

 ANN_Model = nn.Sequential(

 nn.Linear(4, 4000),

 nn.Tanh(),

 nn.Linear(4000, 12),

85

 nn.Linear(4, 4000),

 nn.Tanh(),

 nn.Linear(4000, 12),

Learning Rate

 learning_rate = 0.001

 # Loss Rate

 loss_function = nn.MSELoss()

 # optimizer

 optimizer = torch.optim.Adam(ANN_Model.parameters(), lr=learning_rate)

 # Initializing the training epochs

 self.numepochs = 12000

 self.losses = torch.zeros(self.numepochs)

 # Model Training

 for epochi in range(self.numepochs):

 self.yHat = ANN_Model(self.x_train)

 # Compute Loss

 self.loss = loss_function(self.yHat, self.y_train)

 self.losses[epochi] = self.loss

 # Backpropagation

 optimizer.zero_grad()

 self.loss.backward()

 optimizer.step()

self.Training_Model_Evaluation_Grid()

 def Training_Model_Evaluation_Grid(self):

 self.beta_grid = tk.Tk()

 self.beta_grid.title("Training Model Evaluation")

 self.beta_grid.geometry('450x550')

Label_beta = tk.Label(self.beta_grid, text="Training Model Evaluation",

 font=('Helvetica', 15, 'bold'), fg='blue4')

 button_plot_TVE = tk.Button(self.beta_grid, text='Graph of Losses'

 ,command=self.plot_TVE, width=33, padx=25,

pady=10,font=('Helvetica', 15, 'bold'), bg='cyan')

 button_plot_RVP = tk.Button(self.beta_grid, text='Predicted vs Actual Data'

 ,command=self.plot_RVP, width=33, padx=25,

pady=10,font=('Helvetica', 15, 'bold'), bg='cyan')

86

 ,

button_plot_R2 = tk.Button(self.beta_grid, text='Plot of R2 graph'

 ,command=self.plot_R2, width=33, padx=25,

pady=10,font=('Helvetica', 15, 'bold'), bg='cyan')

 button_retrain = tk.Button(self.beta_grid, text='Re-Train Model'

 , command=self.click2, width=33, padx=25,

pady=10,font=('Helvetica', 15, 'bold'), bg='cyan')

 button_compare = tk.Button(self.beta_grid, text='Real Data Set'

 , command= self.compare_real, width=33, padx=25,pady=10,

font=('Helvetica', 15, 'bold'), bg='cyan')

 button_next = tk.Button(self.beta_grid, text='Predicted Data'

 , command= self.compare_pred, width=33, padx=25,

pady=10,font=('Helvetica', 15, 'bold'), bg='cyan')

Label_beta.grid(column=1, row=0, padx=(10, 10), pady=(10, 5))

 button_plot_TVE.grid(column=1, row=1, pady=(20, 20))

 button_plot_TVE.bind('<Return>', self.plot_TVE)

 button_plot_RVP.grid(column=1, row=2, pady=(10, 10))

 button_plot_RVP.bind('<Return>', self.plot_RVP)

 button_plot_R2.grid(column=1, row=4, pady=(10, 10))

 button_plot_R2.bind('<Return>', self.plot_R2)

 button_retrain.grid(column=1, row=5, pady=(10, 10))

 button_retrain.bind('<Return>', self.click2)

 button_compare.grid(column=1, row=6, pady=(10, 10))

 button_compare.bind('<Return>', self.compare_real)

 button_next.grid(column=1, row=7, pady=(10, 10))

 # button_next.bind('<Return>', self.Binary_Simulator)

 self.beta_grid.mainloop()

def plot_TVE(self):

 # Plot of losses

 plt.figure(figsize=(10, 5))

 plt.plot(self.losses.detach().numpy()) # Convert losses tensor to NumPy

array for plotting

 plt.xlabel('Epoch')

 plt.ylabel('Training Loss')

 plt.title(f'Training Loss over Epochs: {self.losses[-1].item()}')

 plt.grid(True) # Add grid for better visualization

 plt.show()

def plot_RVP(self):

 # Plot of Real vs Predicted data (training)

87

 ,

 # Density , Molar Volume , Longitudinal velocity , Shear Velocity

 self.Density_Training = self.Parameters_Training['Density, ρ (g/cm3)']

 self.Density_Prediction = self.yHat[:, 0]

 self.MolarV_Training = self.Parameters_Training['Molar Volume, Vm

(cm3/mol)']

 self.MolarV_Prediction = self.yHat[:, 1]

 self.LongitudinalV_Training = self.Parameters_Training['Longitudinal

velocity, VL (m/s)']

 self.LongitudinalV_Prediction = self.yHat[:, 2]

 self.ShearV_Training = self.Parameters_Training['Shear velocity, VL (m/s)']

 self.ShearV_Prediction = self.yHat[:, 3]

 fig, ax = plt.subplots(2, 2, figsize=(10, 5))

 # Plot Density

 ax[0, 0].plot(self.Density_Training.values, 'ro', label='ρ$_{exp}$

(g/cm3)')

 ax[0, 0].plot(self.Density_Prediction.detach().numpy(), 'bo',

label='ρ$_{ANN}$ (g/cm3)')

 ax[0, 0].set_title('Predicted values over Real Data (Density)')

 ax[0, 0].legend()

 # Plot Molar Volume

 ax[0, 1].plot(self.MolarV_Training.values, 'ro', label='V$_{m,exp}$

(cm3/mol)')

 ax[0, 1].plot(self.MolarV_Prediction.detach().numpy(), 'bo',

label='V$_{m,ANN}$ (cm3/mol)')

 ax[0, 1].set_title('Predicted values over Real Data (Molar Volume)')

 ax[0, 1].legend()

 # Plot Longitudinal Velocity

 ax[1, 0].plot(self.LongitudinalV_Training.values, 'ro', label='VL_exp (m/s)')

 ax[1, 0].plot(self.LongitudinalV_Prediction.detach().numpy(), 'bo',

label='VL_ANN (m/s)')

 ax[1, 0].set_title('Predicted values over Real Data (Longitudinal Velocity)')

 ax[1, 0].legend()

88

 ,

Plot Shear Velocity

 ax[1, 1].plot(self.ShearV_Training.values, 'ro', label='VL_exp (m/s)')

 ax[1, 1].plot(self.ShearV_Prediction.detach().numpy(), 'bo', label='VL_ANN

(m/s)')

 ax[1, 1].set_title('Predicted values over Real Data (Shear Velocity)')

 ax[1, 1].legend()

 plt.tight_layout()

 plt.show()

 # Longitudinal modulus, Shear modulus, Bulk modulus, Young modulus

 self.LongitudinalM_Training = self.Parameters_Training['Longitudinal

modulu, L']

 self.LongitudinalM_Prediction = self.yHat[:, 4]

 self.ShearM_Training = self.Parameters_Training['Shear modulus,G']

 self.ShearM_Prediction = self.yHat[:, 5]

 self.BulkM_Training = self.Parameters_Training['Bulk modulus, K']

 self.BulkM_Prediction = self.yHat[:, 6]

 self.YoungM_Training = self.Parameters_Training['Young modulus, E']

 self.YoungM_Prediction = self.yHat[:, 7]

 fig, ax = plt.subplots(2, 2, figsize=(10, 5))

 # Plot Longitudinal modulus

 ax[0, 0].plot(self.LongitudinalM_Training.values, 'ro', label='L_exp')

 ax[0, 0].plot(self.LongitudinalM_Prediction.detach().numpy(), 'bo',

label='L_ANN')

 ax[0, 0].set_title('Predicted values over Real Data (Longitudinal modulus)')

 ax[0, 0].legend()

 # Plot Shear modulus

 ax[0, 1].plot(self.ShearM_Training.values, 'ro', label='G_exp')

 ax[0, 1].plot(self.ShearM_Prediction.detach().numpy(), 'bo',

label='G_ANN')

 ax[0, 1].set_title('Predicted values over Real Data (Shear modulus)')

 ax[0, 1].legend()

89

 ,

Plot Shear modulus

 ax[0, 1].plot(self.ShearM_Training.values, 'ro', label='G_exp')

 ax[0, 1].plot(self.ShearM_Prediction.detach().numpy(), 'bo',

label='G_ANN')

 ax[0, 1].set_title('Predicted values over Real Data (Shear modulus)')

 ax[0, 1].legend()

 # Plot Bulk modulus

 ax[1, 0].plot(self.BulkM_Training.values, 'ro', label='K_exp')

 ax[1, 0].plot(self.BulkM_Prediction.detach().numpy(), 'bo', label='K_ANN')

 ax[1, 0].set_title('Predicted values over Real Data (Bulk Modulus)')

 ax[1, 0].legend()

 # Plot Young modulus

 ax[1, 1].plot(self.YoungM_Training.values, 'ro', label='E_exp')

 ax[1, 1].plot(self.YoungM_Prediction.detach().numpy(), 'bo',

label='E_ANN')

 ax[1, 1].set_title('Predicted values over Real Data (Young Modulus)')

 ax[1, 1].legend()

 plt.tight_layout()

 plt.show()

 # Microhardness, fractal bond connectivity, d, Poisson ratio, σ, Optical

bandgap (eV)

 self.Microhardness_Training = self.Parameters_Training['Microhardness, H

(GPa)']

 self.Microhardness_Prediction = self.yHat[:, 8]

 self.fractalB_Training = self.Parameters_Training['fractal bond connectivity,

d']

 self.fractalB_Prediction = self.yHat[:, 9]

 self.Poisson_Training = self.Parameters_Training['Poisson ratio, σ']

 self.Poisson_Prediction = self.yHat[:, 10]

 self.OpticalB_Training = self.Parameters_Training['Optical bandgap (eV)']

 self.OpticalB_Prediction = self.yHat[:, 11]

 fig, ax = plt.subplots(2, 2, figsize=(10, 5))

90

 ,

Plot Microhardness

 ax[0, 0].plot(self.Microhardness_Training.values, 'ro', label='H_exp (GPa)')

 ax[0, 0].plot(self.Microhardness_Prediction.detach().numpy(), 'bo',

label='H_ANN (GPa)')

 ax[0, 0].set_title('Predicted values over Real Data (Microhardness)')

 ax[0, 0].legend()

 # fractal bond connectivity, d

 ax[0, 1].plot(self.fractalB_Training.values, 'ro', label='d_exp')

 ax[0, 1].plot(self.fractalB_Prediction.detach().numpy(), 'bo', label='d_ANN')

 ax[0, 1].set_title('Predicted values over Real Data (fractal bond

connectivity)')

 ax[0, 1].legend()

 # Plot Poisson ratio, σ

 ax[1, 0].plot(self.Poisson_Training.values, 'ro', label='σ_exp')

 ax[1, 0].plot(self.Poisson_Prediction.detach().numpy(), 'bo', label='σ_ANN')

 ax[1, 0].set_title('Predicted values over Real Data (Poisson ratio)')

 ax[1, 0].legend()

 # Plot Optical bandgap (eV)

 ax[1, 1].plot(self.OpticalB_Training.values, 'ro', label='eV_exp')

 ax[1, 1].plot(self.OpticalB_Prediction.detach().numpy(), 'bo',

label='eV_ANN')

 ax[1, 1].set_title('Predicted values over Real Data (Optical Bandgap)')

 ax[1, 1].legend()

 plt.tight_layout()

 plt.show()

def plot_R2(self):

 r2_density = r2_score(self.Density_Training,

self.Density_Prediction.detach().numpy())

 coefficients_density = np.polyfit(self.Density_Prediction.detach().numpy(),

self.Density_Training,1)

 # Fit a 1st degree polynomial (a line)n

 best_fit_line_1 = np.poly1d(coefficients_density)

 plt.plot(self.Density_Prediction.detach().numpy(),

91

 ,

 best_fit_line_1(self.Density_Prediction.detach().numpy()), 'r',label="Best Fit

Line")

 plt.scatter(self.Density_Prediction.detach().numpy(), self.Density_Training,

label='Data Points')

 plt.xlabel("Density Predicted")

 plt.ylabel("Density Real")

 plt.title(f"R2 of Density = {r2_density}")

 plt.legend()

 plt.show()

 # Plot of R2 Molar Volume

 r2_density = r2_score(self.MolarV_Training,

self.MolarV_Prediction.detach().numpy())

 coefficients_density = np.polyfit(self.MolarV_Prediction.detach().numpy()

 , self.MolarV_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_2 = np.poly1d(coefficients_density)

 plt.plot(self.MolarV_Prediction.detach().numpy()

 , best_fit_line_2(self.MolarV_Prediction.detach().numpy()),

'r',label="Best Fit Line")

 plt.scatter(self.MolarV_Prediction.detach().numpy(), self.MolarV_Training,

label='Data Points')

 plt.xlabel("Molar Volume Predicted")

 plt.ylabel("Molar Volume Real")

 plt.title(f"R2 of Molar Volume = {r2_density}")

 plt.legend()

 plt.show()

Plot of R2 Longitudinal Velocity

 r2_LongitudinalV = r2_score(self.LongitudinalV_Training,

self.LongitudinalV_Prediction.detach().numpy())

 coefficients_LongitudinalV =

np.polyfit(self.LongitudinalV_Prediction.detach().numpy()

 , self.LongitudinalV_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_3 = np.poly1d(coefficients_LongitudinalV)

 plt.plot(self.LongitudinalV_Prediction.detach().numpy()

 , best_fit_line_3(self.LongitudinalV_Prediction.detach().numpy()),'r',

label="Best Fit Line")

 plt.scatter(self.LongitudinalV_Prediction.detach().numpy()

 , self.LongitudinalV_Training, label='Data Points')

 plt.xlabel("Longitudinal Velocity Predicted")

 plt.ylabel("Longitudinal Velocity Real")

 plt.title(f"R2 of Longitudinal Velocity = {r2_LongitudinalV}")

 plt.legend()

 plt.show()

92

 ,

 # Plot of R2 Shear Velocity

 r2_ShearV = r2_score(self.ShearV_Training,

self.ShearV_Prediction.detach().numpy())

 coefficients_ShearV = np.polyfit(self.ShearV_Prediction.detach().numpy()

 , self.ShearV_Training,1) # Fit a 1st degree polynomial

(a line)n

 best_fit_line_4 = np.poly1d(coefficients_ShearV)

 plt.plot(self.ShearV_Prediction.detach().numpy()

 , best_fit_line_4(self.ShearV_Prediction.detach().numpy()),

'r',label="Best Fit Line")

 plt.scatter(self.ShearV_Prediction.detach().numpy(), self.ShearV_Training,

label='Data Points')

 plt.xlabel("Shear Velocity Predicted")

 plt.ylabel("Shear Velocity Real")

 plt.title(f"R2 of Shear Velocity = {r2_ShearV}")

 plt.legend()

 plt.show()

 # Plot of R2 Longitudinal Modulus

 r2_LongitudinalM = r2_score(self.LongitudinalM_Training,

self.LongitudinalM_Prediction.detach().numpy())

 coefficients_LongitudinalM =

np.polyfit(self.LongitudinalM_Prediction.detach().numpy()

 , self.LongitudinalM_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_5 = np.poly1d(coefficients_LongitudinalM)

 plt.plot(self.LongitudinalM_Prediction.detach().numpy()

 , best_fit_line_5(self.LongitudinalM_Prediction.detach().numpy()),'r',

label="Best Fit Line")

 plt.scatter(self.LongitudinalM_Prediction.detach().numpy(),

self.LongitudinalM_Training, label='Data Points')

 plt.xlabel("Longitudinal Modulus Predicted")

 plt.ylabel("Longitudinal Modulus Real")

 plt.title(f"R2 of Longitudinal Modulus = {r2_LongitudinalM}")

 plt.legend()

 plt.show()

 # Plot of R2 Shear Modulus

 r2_ShearM = r2_score(self.ShearM_Training,

self.ShearM_Prediction.detach().numpy())

 coefficients_ShearM = np.polyfit(self.ShearM_Prediction.detach().numpy(),

self.ShearM_Training, 1)

 # Fit a 1st degree polynomial (a line)n

 best_fit_line_6 = np.poly1d(coefficients_ShearM)

 plt.plot(self.ShearM_Prediction.detach().numpy()

93

 ,

 , best_fit_line_6(self.ShearM_Prediction.detach().numpy()), 'r',label="Best

Fit Line")

 plt.scatter(self.ShearM_Prediction.detach().numpy(), self.ShearM_Training,

label='Data Points')

 plt.xlabel("Shear Modulus Predicted")

 plt.ylabel("Shear Modulus Real")

 plt.title(f"R2 of Shear Modulus = {r2_ShearM}")

 plt.legend()

 plt.show()

 # Plot of R2 Bulk Modulus

 r2_BulkM = r2_score(self.BulkM_Training,

self.BulkM_Prediction.detach().numpy())

 coefficients_BulkM = np.polyfit(self.BulkM_Prediction.detach().numpy(),

self.BulkM_Training,1)

 # Fit a 1st degree polynomial (a line)n

 best_fit_line_7 = np.poly1d(coefficients_BulkM)

 plt.plot(self.BulkM_Prediction.detach().numpy()

 , best_fit_line_7(self.BulkM_Prediction.detach().numpy()),

'r',label="Best Fit Line")

 plt.scatter(self.BulkM_Prediction.detach().numpy(), self.BulkM_Training,

label='Data Points')

 plt.xlabel("Bulk Modulus Predicted")

 plt.ylabel("Bulk Modulus Real")

 plt.title(f"R2 of Bulk Modulus = {r2_BulkM}")

 plt.legend()

 plt.show()

 # Plot of R2 Young Modulus

 r2_YoungM = r2_score(self.YoungM_Training,

self.YoungM_Prediction.detach().numpy())

 coefficients_YoungM =

np.polyfit(self.YoungM_Prediction.detach().numpy(), self.YoungM_Training, 1)

 # Fit a 1st degree polynomial (a line)n

 best_fit_line_8 = np.poly1d(coefficients_YoungM)

 plt.plot(self.YoungM_Prediction.detach().numpy()

 , best_fit_line_8(self.YoungM_Prediction.detach().numpy()), 'r',

label="Best Fit Line")

 plt.scatter(self.YoungM_Prediction.detach().numpy(),

self.YoungM_Training, label='Data Points')

 plt.xlabel("Young Modulus Predicted")

 plt.ylabel("young Modulus Real")

 plt.title(f"R2 of Young Modulus = {r2_YoungM}")

 plt.legend()

 plt.show()

94

 ,

 # Plot of R2 Microhardness

 r2_Microhardness = r2_score(self.Microhardness_Training,

self.Microhardness_Prediction.detach().numpy())

 coefficients_Microhardness =

np.polyfit(self.Microhardness_Prediction.detach().numpy()

 , self.Microhardness_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_9 = np.poly1d(coefficients_Microhardness)

 plt.plot(self.Microhardness_Prediction.detach().numpy()

 , best_fit_line_9(self.Microhardness_Prediction.detach().numpy()),'r',

label="Best Fit Line")

 plt.scatter(self.Microhardness_Prediction.detach().numpy(),

self.Microhardness_Training, label='Data Points')

 plt.xlabel("Microhardness Predicted")

 plt.ylabel("Microhardness Real")

 plt.title(f"R2 of Microhardness = {r2_Microhardness}")

 plt.legend()

 plt.show()

 # Plot of R2 Fractal Bond Connectivity

 r2_fractalB = r2_score(self.fractalB_Training,

self.fractalB_Prediction.detach().numpy())

 coefficients_fractalB = np.polyfit(self.fractalB_Prediction.detach().numpy()

 , self.fractalB_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_10 = np.poly1d(coefficients_fractalB)

 plt.plot(self.fractalB_Prediction.detach().numpy()

 , best_fit_line_10(self.fractalB_Prediction.detach().numpy()),

'r',label="Best Fit Line")

 plt.scatter(self.fractalB_Prediction.detach().numpy(), self.fractalB_Training,

label='Data Points')

 plt.xlabel("Fractal Bond Connectivity Predicted")

 plt.ylabel("Fractal Bond Connectivity Real")

 plt.title(f"R2 of Fractal Bond Connectivity = {r2_fractalB}")

 plt.legend()

 plt.show()

Plot of R2 Poisson Ratio

 r2_Poisson = r2_score(self.Poisson_Training,

self.Poisson_Prediction.detach().numpy())

 coefficients_Poisson = np.polyfit(self.Poisson_Prediction.detach().numpy()

 ,

, best_fit_line_11(self.Poisson_Prediction.detach().numpy()), 'r',label="Best Fit

Line")

95

 ,

plt.scatter(self.Poisson_Prediction.detach().numpy(), self.Poisson_Training,

label='Data Points')

 plt.xlabel("Poisson Ratio Predicted")

 plt.ylabel("Poisson Ratio Real")

 plt.title(f"R2 of Poisson Ratio = {r2_Poisson}")

 plt.legend()

 plt.show()

 # Plot of R2 Optical Bandgap

 r2_OpticalB = r2_score(self.OpticalB_Training,

self.OpticalB_Prediction.detach().numpy())

 coefficients_OpticalB =

np.polyfit(self.OpticalB_Prediction.detach().numpy()

 , self.OpticalB_Training,1) # Fit a 1st degree

polynomial (a line)n

 best_fit_line_12 = np.poly1d(coefficients_OpticalB)

 plt.plot(self.OpticalB_Prediction.detach().numpy()

 , best_fit_line_12(self.OpticalB_Prediction.detach().numpy()),

'r',label="Best Fit Line")

 plt.scatter(self.OpticalB_Prediction.detach().numpy(),

self.OpticalB_Training, label='Data Points')

 plt.xlabel("Optical Bandgap Predicted")

 plt.ylabel("Optical Bandgap Real")

 plt.title(f"R2 of Optical Bandgap = {r2_OpticalB}")

 plt.legend()

 plt.show()

 def compare_real(self):

 self.gamma_grid = tk.Tk()

 self.gamma_grid.title("Comparison Between Real & Predicted Values")

 self.gamma_grid.geometry('1080x200')

 comparison_table = ttk.Treeview(self.gamma_grid)

 comparison_table['columns'] = (

 'ZnO', 'Bi2O3', 'TeO2', 'B2O3', 'Density, ρ (g/cm3)', 'Molar Volume, Vm

(cm3/mol)',

 'Longitudinal velocity, VL (m/s)', 'Shear velocity, VL (m/s)', 'Longitudinal

modulu, L',

 'Shear modulus,G', 'Bulk modulus, K', 'Young modulus, E',

'Microhardness, H (GPa)',

 'fractal bond connectivity, d', 'Poisson ratio, σ', 'Optical bandgap (eV)')

 comparison_table.column("#0", width=20, minwidth=25,stretch=tk.NO)

96

 ,

comparison_table.column("ZnO", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table.column("Bi2O3", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table.column("TeO2", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table.column("B2O3", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table.column("Density, ρ (g/cm3)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Molar Volume, Vm (cm3/mol)",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table.column("Longitudinal velocity, VL (m/s)",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table.column("Shear velocity, VL (m/s)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Longitudinal modulu, L", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Shear modulus,G", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Bulk modulus, K", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Young modulus, E", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Microhardness, H (GPa)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("fractal bond connectivity, d",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table.column("Poisson ratio, σ", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.column("Optical bandgap (eV)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table.heading("#0", text="", anchor=tk.CENTER)

 comparison_table.heading("ZnO", text="ZnO", anchor=tk.CENTER)

 comparison_table.heading("Bi2O3", text="Bi2O3", anchor=tk.CENTER)

 comparison_table.heading("TeO2", text="TeO2", anchor=tk.CENTER)

 comparison_table.heading("B2O3", text="B2O3", anchor=tk.CENTER)

 comparison_table.heading("Density, ρ (g/cm3)", text="Density, ρ (g/cm3)",

anchor=tk.CENTER)

 comparison_table.heading("Molar Volume, Vm (cm3/mol)", text="Molar

Volume, Vm (cm3/mol)"

 , anchor=tk.CENTER)

97

 ,

 , anchor=tk.CENTER)

 comparison_table.heading("Longitudinal velocity, VL (m/s)",

text="Longitudinal velocity"

 ", VL (m/s)",anchor=tk.CENTER)

 comparison_table.heading("Shear velocity, VL (m/s)", text="Shear velocity,

VL (m/s)", anchor=tk.CENTER)

 comparison_table.heading("Longitudinal modulu, L", text="Longitudinal

modulu, L", anchor=tk.CENTER)

 comparison_table.heading("Shear modulus,G", text="Shear modulus,G",

anchor=tk.CENTER)

 comparison_table.heading("Bulk modulus, K", text="Bulk modulus",

anchor=tk.CENTER)

 comparison_table.heading("Young modulus, E", text="Young modulus, E",

anchor=tk.CENTER)

 comparison_table.heading("Microhardness, H (GPa)", text="Microhardness,

H (GPa)", anchor=tk.CENTER)

 comparison_table.heading("fractal bond connectivity, d", text="fractal bond

connectivity", anchor=tk.CENTER)

 comparison_table.heading("Poisson ratio, σ", text="Poisson ratio, σ",

anchor=tk.CENTER)

 comparison_table.heading("Optical bandgap (eV)", text="Optical bandgap

(eV)", anchor=tk.CENTER)

 comparison_table.insert(parent='', index='end', iid=0, text=''

 , values=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0))

for i in range(1, 19):

 comparison_table.insert(parent='', index='end', iid=i, text='', values=(

 self.x_train[i - 1][0].numpy(), self.x_train[i - 1][1].numpy()

 , self.x_train[i - 1][2].numpy(),self.x_train[i - 1][3].numpy(),

 self.y_train[i - 1][0].numpy(), self.y_train[i - 1][1].numpy()

 , self.y_train[i - 1][2].numpy(),self.y_train[i - 1][3].numpy(),

 self.y_train[i - 1][4].numpy(), self.y_train[i - 1][5].numpy()

 , self.y_train[i - 1][6].numpy(),self.y_train[i - 1][7].numpy(),

 self.y_train[i - 1][8].numpy(), self.y_train[i - 1][9].numpy()

 , self.y_train[i - 1][10].numpy(),self.y_train[i - 1][11].numpy())),

comparison_table.pack(pady=20)

 self.gamma_grid.mainloop()

98

 ,

def compare_pred(self):

 self.delta_grid = tk.Tk()

 self.delta_grid.title("Comparison Between Real & Predicted Values")

 self.delta_grid.geometry('1080x200')

 comparison_table2 = ttk.Treeview(self.delta_grid)

 comparison_table2['columns'] = (

 'ZnO', 'Bi2O3', 'TeO2', 'B2O3', 'Density, ρ (g/cm3)', 'Molar Volume, Vm

(cm3/mol)',

 'Longitudinal velocity, VL (m/s)', 'Shear velocity, VL (m/s)', 'Longitudinal

modulu, L',

 'Shear modulus,G', 'Bulk modulus, K', 'Young modulus, E',

'Microhardness, H (GPa)',

 'fractal bond connectivity, d', 'Poisson ratio, σ', 'Optical bandgap (eV)')

comparison_table2.column("#0", width=20, minwidth=25,stretch=tk.NO)

 comparison_table2.column("ZnO", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table2.column("Bi2O3", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table2.column("TeO2", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table2.column("B2O3", anchor=tk.CENTER, width=100,

minwidth=25)

 comparison_table2.column("Density, ρ (g/cm3)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Molar Volume, Vm (cm3/mol)",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table2.column("Longitudinal velocity, VL (m/s)",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table2.column("Shear velocity, VL (m/s)",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table2.column("Longitudinal modulu, L", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Shear modulus,G", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Bulk modulus, K", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Young modulus, E", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Microhardness, H (GPa)", anchor=tk.CENTER,

width=120, minwidth=25)

99

 ,

 comparison_table2.column("fractal bond connectivity, d",

anchor=tk.CENTER, width=120, minwidth=25)

 comparison_table2.column("Poisson ratio, σ", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.column("Optical bandgap (eV)", anchor=tk.CENTER,

width=120, minwidth=25)

 comparison_table2.heading("#0", text="", anchor=tk.CENTER)

 comparison_table2.heading("ZnO", text="ZnO", anchor=tk.CENTER)

 comparison_table2.heading("Bi2O3", text="Bi2O3", anchor=tk.CENTER)

 comparison_table2.heading("TeO2", text="TeO2", anchor=tk.CENTER)

 comparison_table2.heading("B2O3", text="B2O3", anchor=tk.CENTER)

 comparison_table2.heading("Density, ρ (g/cm3)", text="Density, ρ (g/cm3)",

anchor=tk.CENTER)

 comparison_table2.heading("Molar Volume, Vm (cm3/mol)", text="Molar

Volume, Vm (cm3/mol)"

 , anchor=tk.CENTER)

 comparison_table2.heading("Longitudinal velocity, VL (m/s)",

text="Longitudinal velocity, VL (m/s)"

 ,anchor=tk.CENTER)

 comparison_table2.heading("Shear velocity, VL (m/s)", text="Shear

velocity, VL (m/s)", anchor=tk.CENTER)

 comparison_table2.heading("Longitudinal modulu, L", text="Longitudinal

modulu, L", anchor=tk.CENTER)

 comparison_table2.heading("Shear modulus,G", text="Shear modulus,G",

anchor=tk.CENTER)

 comparison_table2.heading("Bulk modulus, K", text="Bulk modulus",

anchor=tk.CENTER)

 comparison_table2.heading("Young modulus, E", text="Young modulus, E",

anchor=tk.CENTER)

 comparison_table2.heading("Microhardness, H (GPa)",

text="Microhardness, H (GPa)", anchor=tk.CENTER)

 comparison_table2.heading("fractal bond connectivity, d", text="fractal

bond connectivity", anchor=tk.CENTER)

 comparison_table2.heading("Poisson ratio, σ", text="Poisson ratio, σ",

anchor=tk.CENTER)

 comparison_table2.heading("Optical bandgap (eV)", text="Optical bandgap

(eV)", anchor=tk.CENTER)

comparison_table2.insert(parent='', index='end', iid=0, text=''

 , values=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0))

100

for i in range(1, 19):

 comparison_table2.insert(parent='', index='end', iid=i, text='', values=(

 "{:.3f}".format(self.x_train[i - 1][0].numpy()),

 "{:.3f}".format(self.x_train[i - 1][1].numpy()),

 "{:.3f}".format(self.x_train[i - 1][2].numpy()),

 "{:.3f}".format(self.x_train[i - 1][3].numpy()),

 "{:.3f}".format(self.yHat[i - 1][0].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][1].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][2].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][3].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][4].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][5].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][6].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][7].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][8].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][9].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][10].detach().numpy()),

 "{:.3f}".format(self.yHat[i - 1][11].detach().numpy())

))

 comparison_table2.pack(pady=20)

 self.delta_grid.mainloop()

 def alpha_grid(self):

 self.alpha_grid = tk.Tk()

 self.alpha_grid.title("Elastic & Optical Properties of Binary Glass System

Simulator")

 self.alpha_grid.geometry('600x150')

 Label_alpha1 = tk.Label(self.alpha_grid,

 text="Elastic & Optical Properties of Binary Glass System Simulator",

font=('Helvetica', 15, 'bold'), fg= 'blue4')

 button_train = tk.Button(self.alpha_grid,

 text='Train Model',command= self.click, padx=20, pady=10,font=('Helvetica',

15, 'bold'), bg= 'cyan')

 Label_alpha1.grid(column=1, row=0, padx=(10, 10), pady=(10, 5))

 button_train.grid(column=1, row=2, pady=(10, 10))

 button_train.bind('<Return>', self.click)

 self.alpha_grid.mainloop()

if __name__ == "__main__":

 event_handler = Binary_Glass_Simulator()

 event_handler.alpha_grid()

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statements
	1.3 Aims and Objectives
	1.4 Outline Of Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Binary Glass Systems
	2.2 Properties of Binary Glass Systems
	2.2.1 Physical Properties
	2.2.2 Elastic Properties
	2.2.3 Optical Properties

	2.3 Deep Learning
	2.3.1 Artificial Neural Networks.
	2.3.2 Convolution Neural Network
	2.3.3 Recurrent Neural Networks
	2.3.4 Comparisons of advantages and disadvantages of different neural networks
	2.3.5 Selection of neural network for project
	2.3.6 Activation Functions in Neural Networks

	2.4 Programming languages for deep learning
	2.4.1 MATLAB
	2.4.2 C++
	2.4.3 Python
	2.4.4 Selection of programming language for project.

	2.5 Techniques of using ANN for prediction
	2.5.1 Price Prediction of Share Marketing
	2.5.2 Ultrasonic Behaviour in Tellurite Glasses

	CHAPTER 3
	3 METHODOLOGY
	3.1 System Overview
	3.2 Hardware Overview
	3.3 Software Overview
	3.3.1 Pycharm
	3.3.2 Pytorch
	3.3.3 Numpy
	3.3.4 Pandas
	3.3.5 Matlpotlib
	3.3.6 Scikit-Learn
	3.3.7 Tkinter

	3.4 Data Preparation
	3.5 Architecture of the ANN model
	3.6 ANN model training procedure
	3.6.1 Data Conversion
	3.6.2 Configuration of input layer, hidden layers and output layers
	3.6.3 Configuration of learning rate, number of epochs and optimizers

	3.7 Evaluation of ANN performance
	3.7.1 Flowchart of ANN model training procedure

	3.8 Implementation of GUI
	3.9 Gantt chart for project timeline

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 Criteria and recommendation to develop ANN Model
	4.2 Results and analysis of Model A
	4.2.1 Graph of training loss over number of epochs
	4.2.2 Graphs of predicted values over experimented values
	4.2.3 Graphs of R-squared value
	4.2.4 Evaluation of R-squared values of Model A
	4.2.5 Calculation of MAPE of Model A
	4.2.6 Evaluation of MAPE of Model A

	4.3 Results and analysis of Model B
	4.3.1 Graph of training loss over number of epochs
	4.3.2 Graphs of predicted values over experimental values
	4.3.3 Graphs of R-squared values
	4.3.4 Evaluation of R-squared values of Model B
	4.3.5 Calculation of MAPE for Model B
	4.3.6 Evaluation of MAPE of Model B

	4.4 Comparison between models

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Limitations and Recommendations

	REFERENCES
	APPENDICES

