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ABSTRACT 

 

 

LICENSE PLATE DETECTION USING DEEP LEARNING OBJECT 

DETECTION MODELS 
 

 

 Leong Kar Wan  

 

 

 

 

 

 

Object detection – an extension of image classification task in computer vision 

can locate any object from any given image input. In the past, this is usually 

done by traditional hand-crafted feature algorithms i.e., SIFT, SURF, HOG, 

BRIEF, and ORB. These algorithms have been successful in their field however 

they do possess some downsides due to their nature. For example, they can be 

slow in detection speed, not as accurate, and is difficult to develop. Since 2012, 

deep learning has become an emerging technology that can solve object 

detection with relatively better performance. However, not many works has 

been done when it comes to developing a real life application e.g., license plate 

detection. License plate detection is a challenging task in computer vision 

because the input image captured can be in different sizes, color, distance, 

orientation, and lighting condition. This project aims to study and improve 

license plate detection using deep learning models. As of current year, the model 

YOLOv4 has achieved 43.5% AP on MS COCO. Meanwhile, EfficientDet-D7 

has achieved 55.1 AP on COCO test-dev. This project will use the available off-

the-shelves object detection model to train on CCPD license plate dataset. The 

impact of this project is that it provides informative insights and uncover the 
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potential of the development of real-life applications using recent deep learning 

object detection models.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 Computer vision is an important field of research for many real-life 

applications. Specifically, in object detection, traditional image processing 

algorithms such as Scale-Invariant Feature Transform (SIFT) (Ng, 2003), 

Speeded Up Robust Features (SURF) (Bay et al., 2008), Features from 

Accelerated Segment Test (FAST) (Viswanathan DG, 2011), Binary Robust 

Independent Elementary Features (BRIEF) (Calonder et al, 2010), and Oriented 

FAST and Rotated BRIEF (ORB) (Rublee et al, 2011) are used to locate and 

identify an object from a given image frame. Over the past decade, a new method 

known as deep learning (DL) has overtaken the traditional methods in the field. 

However, there are many unknown factors when deploying deep learning 

algorithms in real-life applications, e.g., how well does the DL model perform? 

This project will dive into a popular use case scenario i.e., license plate 

recognition task using DL models which in the past was performed using 

traditional image processing methods.   

 

 License plate recognition is an important task in many real-life 

applications e.g., parking management system, traffic control system. 
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Figure 1.1 Malaysia Automotive Sales 2022 (Malaysia - Flash Report, 

Automotive Sales Volume, 2022 - MarkLines Automotive Industry Portal, 

2022) 

In Malaysia, the number of cars on the road has been increasing each year. Figure 

1.1 shows the total number of car sales in 2022 compared with 2021. With the 

increase in automotive volume especially in the cities, license plate recognition 

systems can be useful in busy roads or shopping malls to avoid traffic congestion, 

car park management, etc. In China, the highway is always stuck with loads of 

traffic going back to their hometown every Chinese New Year. In Malaysia, due 

to the toll stop, traffic congestion will happen if the number of automobiles keeps 

increasing in the coming years. One innovative way to avoid the same happening 

as in China is to develop a license plate recognition system with a high-speed 

camera. The car doesn’t need to stop at the toll station hence the traffic 

congestion is avoided. This can also eliminate many sub-systems from the toll 

station such as the automated car blocker, digital card scan, etc., saving a high 

amount of maintenance fees each year. Another example would be to track stolen 

cars on the road. In other countries, it is hard to search for any stolen car due to 
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its geometrical disadvantage. An unregistered stolen car can be used to conduct 

crime in many ways. With an on-the-road car tracking system, license plate 

recognition can solve such a problem.  

 

In the past decade, Automatic License Plate Recognition (ALPR) had been a 

popular research topic in computer vision. The algorithm is generally divided 

into three tasks i.e., license plate detection, character segmentation, and character 

recognition. Image processing techniques e.g., edge detection, color matching, 

histogram analysis, and others were used to extract the location of the license 

plate and characters from the output of video-capturing devices. There are 

challenging issues regarding license plate detection that needs to be resolved. 

Therefore, much research has been conducted to improve the efficiency, speed, 

and accuracy of license plate detection tasks. A recent paper (Habeeb et al., 2021) 

can detect and recognize Iraqi and Malaysian license plates with 90.23% and 

90.60% accuracy using SVM and YOLOv2-ResNet50. Another paper 

(Jørgensen, 2017) using YOLOv2-darknet19 can achieve an accuracy of 99.8% 

out of 410 samples of license plates. This raises the question, is it worth 

continuing with research into vehicle license plate detection? But the answer is 

clear, as the dataset used is normally small, so the detection accuracy is good. 

However, if the larger datasets are used then work is more challenging.  

  

 Despite the availability of several well-known objection detection 

models, there are still problems that researchers face. One problem that 

researchers face is the non-uniformity of the license number plate models in 

different parts of the world. The license number plate comes in different sizes 
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and information on the number on the plate also varies. The other problem is the 

low resolution of the license number plate that shows up on the video on 

surveillance systems (Sharma, Karan, and Karan Sing, 2015). Researchers also 

face another challenge which is speed. When it comes to video, object detection 

models need to carry out analysis in an environment that is changing rapidly. 

This means that object detection models must be able to classify objects of 

interest and be very fast during prediction to be able to identify objects that are 

in motion. For example, in a football match, the object detection model must be 

able to track the movement of the ball and players on the football field. The next 

paragraph will further explore a license plate detection and recognition technique.  

 

 The vehicle license plate detection and recognition techniques are 

commonly known as the Automatic number-plate recognition (ANPR) system. 

In the past template matching techniques (Ashtari et al., 2011) were used to 

identify vehicle number plates. This approach identifies the width, height, and 

contour area of the number plate. Some ANPR systems use basic image 

processing techniques to identify fixed license plates pattern in controlled 

conditions such as lighting and distance. There are advanced ANPR systems that 

make use of object detection models to localize license plates in images. Another 

technique in some ANPR systems is to create a unique neural network that can 

output an enhanced image so that it can be interpreted by the Optical Character 

Recognition (OCR) system. 

 

 Although ANPR has been a success in detecting the license plate, it faces 

some challenges. There are several problems with ANPR systems. ANPR faces 
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the non-uniformity of license plate number problem as mentioned previously, 

that is, the length of the license plate number varies for different cities and 

countries. Another problem that the ANPR system is facing is that the ununiform 

light conditions throughout the day and night may affect the detection accuracy. 

One report (ANPR Cameras | ANPR accuracy test, 2019), shows that the camera 

can capture the image at a decent view during the daytime. The same report cited 

that a slower shutter speed produces smudged images. The report also cited that 

the success rate dropped considerably towards the end of the twilight. 

 

1.2 Problem Statement 

 Object detection using traditional image processing methods such as 

SIFT, SURF, HOG, BRIEF, and ORB has various disadvantages when it comes 

to developing a real-life application and has low accuracy compared to the recent 

deep learning approach. For example, the number of detectable objects is limited. 

The orientation and angle of the object also affect the accuracy. The types, shapes, 

and sizes, and the presence of occlusion will also cause the object to be non-

detectable. More importantly, the speed of detection is also slow.  

 

1.3 Research Objectives 

Hence, we formulate the following research objectives. 

i. Explore various deep-learning object detection models.  

ii. To improve the speed and accuracy of license plate detection 

tasks using deep learning models through image preprocessing, 

training, and modifying existing model architecture. 
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The rest of the dissertation is organized as chapter 2, the literature review; 

chapter 3, the methodology; chapter 4, results, and discussion; chapter 5, 

conclusion, and future works. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Automatic License Plate Recognition (ALPR) 

 In the last 20 years of research, Automatic License Plate Recognition 

(ALPR) algorithms are divided into two to three tasks i.e., license plate detection, 

character segmentation, and character recognition. Image processing techniques 

e.g., edge detection, color matching, histogram analysis, and others were used to 

extract the locations of objects in an image.  

  

 In the license plate detection task, Anagnostopoulos et al used concentric 

sliding windows (SCWs) to perform segmentation and extract Region of Interest 

(RoI) (Anagnostopoulos et al., 2006). Zheng, Zhao, and Wang enhanced the 

luminance and contrast of the image before performing edge detection. Chang et 

al. used a combination of edge property and color property in the form of Hue, 

Saturation, and Intensity (HSI) to form a fuzzy map. Hsu, Chen, and Chung used 

Sobel vertical operator to extract edges followed by applying the Gaussian 

mixture model (GMM) and EM algorithm. Faradji, Rezaie and Ziaratban used 

vertical edges, histograms, dilations, erosion, and median filter. Ashtari, Nordin, 

and Seyed Mostafa Mousavi Kahaki used template matching and color features. 

Zang et al. used a modified traditional visual attention model with fusing color, 

intensity, and orientation feature maps. Table 2.1 gives an overview of image 

processing-based license plate detection algorithms. 
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Table 2.1 License Plate Detection Algorithm (Non-DL) 

Year Method Image Input 

Siz/Resolution 

Dataset 

Size 

Accuracy Speed Test Sys-

tem 

Anagnos-

topoulos et 

al., 2006 

Sliding Con-

centric Win-

dows (SCWs) 

Avg 90x28 

Avg 102x32 

61x19-153x48 

61x19-153x48 

138x29-155x37 

Total 

427 

258 

310 

154 

185 

1334 

98.1% 

92.2% 

97.7% 

95.5% 

97.3% 

96.5% 

111ms Pentium IV 

at 3.0 GHz 

with 512-

MB RAM 

 

Zheng, 

Zhao and 

Wang, 2005 

Vertical edge 384x288 163 

218 

784 

100.0% 

100.0% 

99.7% 

47.9ms Pentium-4 

2.4 GHz, 

256 MB 

RAM PC 

Chang et 

al., 2004 

Color pro-

cessing + 

edge detection 

+ fuzzy map 

640x480 

768x512 

639 

449 

98.8% 

96.7% 

0.4s a Pentium 

IV-1.6 

GHz PC 

Hsu, Chen 

and Chung, 

2013 

Edge cluster-

ing 

- AC-681 

LE-757 

RP-611 

93% 

93% 

94% 

0.21s 

0.26s 

0.32s 

Windows 

PC with a 

Pentium 

Dual Core 

2.4-GHz 

processor 

and a 2-GB 

RAM with 

C++ com-

piler 

Faradji, Re-

zaie and 

Ziaratban, 

2007 

Vertical Edge, 

Histogram, 

Compact Fac-

tor, Dilation, 

Regions in 

Common, 

Filling Holes, 

Erosion, Me-

dian Filter 

384x288 400 83.50% 32.4ms Pentium-4 

2.4 GHz, 

256 MB 

RAM 

Ashtari, 

Nordin and 

Seyed Mo-

stafa 

Mousavi 

Kahaki, 

2011 

Template 

Matching, 

Colour Fea-

ture,  

- 250 96.80%  dual-core 

1.7-GHz 

CPU and 

4-GB 

RAM. 

Zang et al., 

2015 

Visual Atten-

tion Map 

- 835 99.2% 140ms Intel Core 

2 Duo 

2.2GHz 

desktop 

computer 

4GB Ram 

 

 Today, many large datasets are available publicly. By the combination of 

large datasets, the computing power of newer hardware, and innovative and 

successful deep learning mechanisms, researchers can create an object detection 
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model with high accuracy and speed. Specifically, in the license plate detection 

task, researchers have been studying the performance of CNN models in 

detecting license plates. Selmi, ben Halima and Alimi used the image processing 

method before feeding the image into the CNN to classify the contours into LP 

and non-LP. Habeeb et al. used YOLOv2 with ResNet50 backbone to detect 

license plate bounding box. Jørgensen used darknet19 and YOLOv2 for 

detection. The last layer was removed and replaced with a linear classifier. Next, 

three additional convolutional layers were added. Hendry and Chen utilized 

Sliding Window Single Class Detection (SWSCD) to detect both plates and 

characters because the original YOLO has difficulty detecting bounding boxes 

of a small object due to its anchor-based detection. This sliding window 

approach is possible due to the speed of YOLO-tiny. They modified YOLO-tiny 

even further by decreasing its number of layers to increase its speed.  Table 2.2 

gives an overview of license plate detection method using deep learning 

approach.   

Table 2.2 License Plate Detection Algorithm (DL) 

Year Method / 

Model 

Pre-

pro-

cessin

g used 

Image In-

put 

Size/Res-

olution 

Da-

taset 

Size 

(Test) 

Accu-

racy 

Speed Test 

System 

Selmi, 

ben 

Halim

a and 

Alimi, 

2017 

2-conv-

layers + 

2-fc-lay-

ers CNN.  

Mor-

pho-

logical 

opera-

tions, 

adap-

tive 

thresh-

old, 

con-

tours, 

geo-

metric 

896x592 Cal-

tech-

126 + 

AOLP

-2049, 

P93.80% 

R91.30

% 

P92.60% 

R96.80

% 

P93.50% 

R93.30

% 

P92.90% 

R96.20

% 

NA Intel PC 

Core i7 

CPU 2 

GHz, 8 

GB of 

RAM, 

and ub-

untu 

LTS 16 

as the 

operat-

ing sys-

tem. py-

thon, 
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filter-

ing 

opencv 

3.1, and 

a Ten-

sorFlow 

frame-

work. 

Ha-

beeb et 

al., 

2021 

SVM, 

YOLOv2

-Res-

Net50, 7 

anchor 

boxes 

Skew 

correc-

tion 

2720x123

2 

Iraqi-

404 

Ma-

lay-

sian-

681 

90.23% 

90.60% 

(Five-

fold) 

- com-

puter 

with a 

built-in 

GPU 

and 16 

GB of 

RAM 

Jørgen

sen, 

2017 

YOLOv2

-dark-

net19-

modified 

 2464x163

2  

416x416 

410 99.8% 0.0173s 

(17ms) 

GeForce 

GTX 

1070 

8GB 

GPU 

Hen-

dry 

and 

Chen, 

2019 

Modi-

fied-tiny-

YOLOv1

, Sliding 

Window 

Single 

Class De-

tection 

 NA AC-

681 

LE-

757 

RP-

611 

Total-

2049 

98.22% 

 

 

825.81m

s 

Nvidia 

GTX97

0 GPU 

acceler-

ator 

4GB 

memory

, i7 Cen-

tral Pro-

cessing 

Unit 

(CPU), 

and 

16GB 

DDR2 

memory 

 

 As mentioned in Chapter 1, this research is concerned with the object 

detection algorithm developed in recent years, the State-Of-The-Art (SOTA) 

deep learning convolution neural network models. Therefore, this chapter will 

explore various algorithms related to this research such as Google AI Team’s 

EfficientDet (Tan et al., 2019), YOLO family (Bochkovskiy et al., 2020), and 

others. To date, Efficientdet models and YOLO models are among the top ten 

models from paperswithcode.com in Computer Vision – Object Detection task, 
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COCO test-dev dataset. In terms of accuracy, EfficientDet scored 57.3 AP while 

YOLOv4 scored 56.0 AP. In terms of speed, YOLOv4 scored 16 FPS while 

EfficientDet scored 6.5 FPS. However, other models, that is, Faster R-CNN, 

CenterNet, and SSD are also evaluated in this research to obtain a better result 

for evaluation and comparison purposes.  

 

2.2 Object Detection 

 Since one of the aims of this study is to use CNN-based objection 

detection models to carry out license plate identification, it would be logical to 

explore object detection techniques. So, this section will explore object detection. 

 

The term object recognition refers to a computer vision technique used 

to identify objects in each digital image or video.  With object detection, once an 

object of interest is detected it draws bounding boxes around the detected object. 

This enables the algorithm to locate the object of interest in any given image or 

video.  

 

There is some confusion concerning object detection and image 

recognition, so this dissertation would like to clarify this before proceeding 

further. With image recognition, the whole image is given a label. For example, 

an image of a car is labeled as “car” and an image of two cars is also labeled as 

“car”, as shown in Figure 2.1. 
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Figure 2.1 Example of Image Recognition 

With object detection, a box is drawn around each car and the object ‘car’ is 

labeled accordingly. Different models will have different approaches how to 

determine the exact location of the object. As can be observed object detection 

provides more information, for example, it can predict the location of the car or 

cars and label them individually, as shown in Figure 2.2.  

  

Figure 2.2 Example of Object Detection 

 Object detection methods can be divided into two approaches, that is, 

neural network-based or non-neural. Examples of non-neural approaches include 

but are not limited to scale-invariant feature transform (SIFT) (Ng, 2003), 

speeded-up robust features (SURF)(Bay et al., 2008), and binary robust 

independent elementary features (BRIEF) (Calonder et al., 2010). The following 

section will briefly look at these non-neural or image processing based 

approaches.  
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2.3 Non-Neural Network Object Detection Algorithm  

2.3.1 Scale-Invariant Feature Transform (SIFT) (Ng, 2003) 

The SIFT algorithm consists of four steps. These four steps are:  

Scale-space peak selection: Potential location for finding features. 

Step 1: Key point Localization - In this step, the key features are located.  

Step 2: Orientation Assignment - The orientation is assigned to key points. 

Step 3: Key point descriptor – Key points are constructed as a high-dimensional 

vector. 

Step 4: Key point Matching 

 

2.3.2 Speeded-Up Robust Features (SURF) (Bay et al., 2008) 

SURF is a feature detector and descriptor. The SIFT descriptor partly 

inspired SURF. SURF is a fast and robust algorithm used for local, similarity 

invariant representation and comparing of digital images. Bat et al. cited that 

SURF performance is close to or better than previously proposed schemes, for 

example, SIFT. This is possible because SURF uses integral images for image 

convolutions. SURF consists of the following steps: 

Step 1: Feature Extraction 

Feature extraction refers to the process of extracting relevant information 

features from an input image. The features extracted must contain important and 

unique attributes of the image. 

Step 2: Feature Description 

The SURF descriptor is generated by fixing a position based on 

information gathered around the point of interest. Next, a square region is 

constructed and aligned to the selected position and extract the SURF descriptor 
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from it. The square region is then divided up into smaller sub-regions. For each 

sub-region, a few features are computed at a regular-spaced sample point. The 

feature descriptor is based on the Haar wavelet response around the point of 

interest.  

Step 3: Feature Matching 

The purpose of feature matching is to analyze and match the features of 

two or more digital images. In the SURF algorithm, the matching degree is fixed 

by computing the Euclidean distance between two feature points. 

 

2.3.3 Binary Robust Independent Elementary Features (BRIEF) (Calonder 

et al., 2010) 

BRIEF uses binary strings as an efficient feature point descriptor. The 

algorithm finds the binary strings directly without finding descriptors. Next, it 

makes use of the smoothened image patch and identifies a set of location pairs. 

After those compares the pixel intensity comparisons on the location pairs 

identified earlier.  

 

2.4 Neural Network-based Object Detection Models 

Several recent (2019~2020) State-Of-The-Art (SOTA) object detection 

models were reviewed, including EfficientDet (Tan, Pang, and Le, 2019), Yolov4  

(Bochkovskiy, Wang and Liao, 2020), CenterNet (Duan et al., 2019), and a few 

older models e.g., Faster R-CNN (Ren et al., 2015) and Single Shot Detector 

(SSD) (Liu et al., 2016) with ResNet backbone. As mentioned in chapter 1, this 

research aims to compare and evaluate the performance, strengths, and 

weaknesses of recent year’s SOTA object detection models, therefore this 
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chapter will explore the design and architecture of each SOTA model and study 

their new innovative ideas and strategies, to further improve the accuracy and 

speed of the models. 

 

2.4.1 EfficientDet  

EfficientDet is developed by Google, a family of a model that is scalable 

and aims to be efficient. The classification by neural network (EfficientNet) is 

extended with a bi-directional feature network (BiFPN) that can be scaled freely 

for different resolutions. It has a high level of accuracy compared to other object 

detectors using significantly less computation (Tan and Yu, 2020). Figure 2.3 

gives an overview of EfficientDet Overall Architecture. 

 

 

 

 

 

 

Figure 2.3 EfficientDet Overall Architecture (Tan, Pang, and Le, 2019) 

The novelty of EfficientDet is that it is derived from constructing the backbone 

and neck. It used the EfficientNet as the backbone of the EfficientDet algorithm. 

EfficientNet is scalable and provided scales pre-trained on ImageNet. In addition, 

When EfficientNet was announced, it was one of the highest-performing 

ImageNet classifiers. For example, EfficientNet-B7 achieved 84.4% accuracy.  
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Figure 2.4 Model FLOPs vs. COCO accuracy (Tan, Pang, and Le, 2019) 

(Tan, Pang and Le, 2019) also used a weighted bi-directional FPN (BiFPN) and 

the objective is to blend features at different levels of the backbone. Some new 

strategies were implemented in BiFPN. For example, the new weighted feature 

fusion is using Fast Normalized Fusion 𝑂 = ∑
𝑤𝑖

∈ + ∑ 𝑤𝑗𝑗
𝑖 ∙ 𝐼𝑖 , replaced Softmax 

Normalized Fusion 𝑂 = ∑
𝑒𝑤𝑖

∑ 𝑒𝑤𝑖𝑗
𝑖 ∙ 𝐼𝑖.  

 

2.4.1.1 Issues Regarding EfficientDet (Jacob, 2020) 

This section will discuss issues regarding EfficientDet, however, the following 

section will explore the areas that can prevent image detection systems from 

being implemented. The issues are as follows: 

1. Data Collection – It is cited that EfficientDet can reduce the amount of data 

that is needed to generalize a new domain. 

2. Model Design and Hyper Parameterization - A model must be constructed 

from the data collected. In addition, several of the hyperparameters need to 

be tuned to adapt to the model.  
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3. Training Time – The model based on the data collected needs to be trained 

and the time need to train the model is measured as floating-point operation 

per second (FLOPS).  

4. Memory Footprint – The amount of memory needed to store the model has 

to be determined after the model has been trained. 

5. Inference Time – The predations performance must be evaluated to 

determine whether the model is quick enough to be used in a production 

setting.  

 

 Overall, EfficientDet improved the design concept and architecture of the 

detection model, increasing the accuracy and speed by a large margin.  

 

2.4.2 YOLOv4 (Bochkovskiy, Wang, and Liao, 2020) 

 The YOLO object detector has gained popularity for its incredible 

performance on speed where it can achieve real-time detection in the real world 

without sacrificing its accuracy. Similar to the other one-shot detector, e.g., SSD, 

it was trained in a single phase. 

 

Redmon et al. wrote the original YOLO, it was then continued by 

Bochkovskiy et al. due to historical reasons. The model consists of three main 

components: the head, neck, and backbone. The backbone uses convolutional 

layers to detect image features before processing them. To detect the image 

features the model is first trained on a classification dataset. Once the 

classification network is trained, the neck and the head are responsible to predict 

the location offsets of the objects from the image. The final outputs are the 



 

 

18 

 

coordinates of the bounding boxes and their objectness probability.  Refer to 

figure 2.5.  

 

Figure 2.5 Scaled-YOLOv4 vs. Others (Bochkovskiy, Wang, and Liao, 

2020)  

As can be observed from Figure 2.3.2.1, YOLOv4 is faster and more accurate 

than YOLOv3, EfficientDet, ASFF, ATSS, and CenterMask.  

 

It is cited that YOLOv4 was a collection of established computer vision 

algorithms. This collection of algorithms has been combined and validated 

through the research process.  

 

The contribution of YOLOv4 as compared to its predecessor is that it 

introduced Bag-of-Freebies (BoF) and Bag-of-Specials (BoS). BoF is a 

collection of techniques that increases accuracy but only increases inference time 

by a little, e.g., improving bounding box loss using IoU, GIoU, and CioU instead 

of only Mean Squared Error (MSE). Other BoF includes various new data 

augmentation, e.g., include mixup, cutout, cut mix, mosaic, and focal loss for 
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data imbalance issues. BoS are techniques that are more focused on the post-

processing part, e.g., SPP module, attention module, feature integration, Mish 

activation, and soft Non-Maximum Suppression (NMS).   

  

Another contribution by YOLOv4 is to design the model so that it can be 

trained on commercial GPU, e.g., RTX2080TI. However, YOLOv4 is 

maintained and developed constantly, a better version of YOLOv4 i.e., Scaled-

YOLOv4 has been released and tops the original YOLOv4. Figure 2.6 below 

shows the performance between them.  

 

Figure 2.6 Newest Version Scaled-YOLOv4 Compared to EfficientDet and 

Others (Bochkovskiy et al., 2021) 

 

2.4.3 CenterNet (Duan et al., 2019) 

CenterNet is a highly accurate one-stage detector that works slightly 

differently from YOLO and SSD. It has an additional output, a model heatmap 
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that has a strong value towards the center of an object that can denote as the 

center. The steps to generate that center point is as follows: 

a. A Maxpool is applied to the model heatmap to generate a better 

midpoint representation.  

b. Take the model heatmap and the output from a. to perform a boolean 

operation.  

c. Multiply b. with the model heatmap.  

d. Reduce center point output with a confidence threshold.  

The novelty of CenterNet is to remove the inefficient Non-Maximum 

Suppression (NMS) with the above center point representation. The combination 

of two corner points (top-left, bottom-right) and a center point formed key point 

triplets that can correctly determine the location of an object more efficiently 

compared to other anchor-based bounding boxes.   

  

2.4.4 Faster R-CNN (Ren et al., 2015) 

 This section will briefly look at R-CNN before exploring Fast R-CNN, 

and Faster R-CNN. This is necessary as Fast R-CNN precedes Faster R-CNN. 

 

 R-CNN stands for “Region-based Convolutional Neural Networks”. This 

is first proposed by (Girshick et al., 2014). R-CNN consists of two steps. The 

first step is to identify object region bounding boxes. Secondly, it extracts CNN 

features from each region to be classified. 
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Girshick improved the speed of R-CNN by unifying three independent 

models into one common framework. In addition, the proposed model also 

increased the shared computation results. This model is called Fast R-CNN. 

 

 Ren et al. introduced the Faster R-CNN model. The Faster R-CNN model 

is a result of constructing a single, unified model which consists of the region 

proposed network (RPN) and the Fast R-CNN model with shared convolution 

feature layers. Table 2.3 shows difference between three R-CNN models in terms 

of speed and limitations.  

 

Table 2.3 Faster R-CNN Family Speed and Limitations 

Algorithm Prediction 

(time/image) 

Limitations 

R-CNN 

(Girshick et 

al., 2014) 

40 – 50 sec Requires lots of computation time since each re-

gion is passed to the CNN separately. In addi-

tion, three different models are required to make 

predictions. 

Fast R-CNN 

(Girshick, 

2015) 

2 sec The computation time is high. This is the result 

of a slow selective search. 

Faster R-CNN 

(Ren et al., 

2015) 

0.2 sec The performance is dependent on the perfor-

mance of the previous system. The reason is 

that the object proposal requires time and be-

cause three different systems are operating and 

working sequentially. 

 



 

 

22 

 

Faster R-CNN replaced selective search (SS) in the previous Fast R-CNN 

algorithm with two additional convolution layers, i.e., 256-d feature vector layer, 

and another output layer at each convolutional position, which contain regressed 

bounds + objectness score of k region proposals, depending on aspect ratios and 

scales, thus network can be trained end to end. The advantage of merging region 

proposal into the network is that it replaced CPU computing time with GPU and 

thus can reduce computing time (10ms per image) hence increasing performance 

(5fps). The Faster R-CNN algorithm has reported 73.2% mAP on PASCAL VOC 

2007 and 70.4% mAP in 2012.  

 

2.4.5 SSD (Liu et al., 2016) 

 Single Shot Detector (SSD) pave the road to the design of one-shot 

detector alongside with YOLO model in the year 2016. Object detection is a 

difficult task, the goal is to find the four coordinates of the wanted object from 

the given image input, which sometimes consists of multiple objects of different 

sizes blocking each other. The innovative idea one can remove the region 

proposal network (RPN) as implemented in the two-shot detector Faster R-CNN 

is to divide an image into some grid cells. Then, many rectangular boxes of 

different ratios are preset on each grid cell, known as the default boxes. As cited 

in the paper, this method has a huge disadvantage when it comes to detecting 

small objects as compared to Faster R-CNN. The introduction of ‘default boxes’ 

with different ratios aims to solve this problem.  

 

The following Table 2.4 shows the performance of SDD compared to some 

notable models:  
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Table 2.4 SSD Performance Comparison (Hui J, 2018) 

 Image 

Resolution 

Output 

Bounding-

Boxes 

mAP 

(VOC2007 

test set) 

Frame Per Sec-

ond (Titan X 

GPU) 

SSD512 512 x 512 24564 79.8 19 

SSD300 300 x 300 8732 77.2 46 

YOLO 448 x 448 98 63.4 45 

Faster R-

CNN  

Around 

1000 x 600 

Around 6000 73.2 7 

The SDD model consists of two parts: 

1. a backbone, and 

2. SSD head. 

In the recent deep learning object detection models, this type of detector employs 

two major parts in their architecture, known as the backbone, and the head. 

Different from image recognition tasks, an object detector needs to output a 

coordinate for a detected object. However, one way to train this model is to 

extend an image recognition model with additional convolutional layers to get 

the correct output. SSD is among the successful models that had achieved a very 

good result with such implementation.  

 

 While the backbone is responsible to extract the features from the input 

image, the head of the SSD needs to use those feature maps to determine the 

location of the objects. A few designs concept is implemented in the SSD head, 

e.g., grid cell representation, multi-scale features, and different aspect ratio of 

the anchor box. With multi-level viewing of the image, SSD can determine the 

bounding box of an object from the image even if the object appears to be smaller 

or bigger compared to when the model is solely trained on the image recognition 

dataset. Figure 2.7 shows overall network architecture of SSD.  
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Figure 2.7 SSD: Single Shot MultiBox Detector (Hui J, 2018) 

To improve accuracy, SSD uses different data augmentation techniques i.e., to 

deploy a larger scale of sampling, hard negative mining which only chooses 

negative examples of high confidence loss and extends the loss function to fit 

the number of default boxes. This combination of multiple essential techniques 

allowed SSD to extract semantic meaning from the input image and preserve the 

spatial structure of a low-level resolution image and achieved a better result than 

the other models i.e., Faster R-CNN and YOLO. Figure 2.8 demonstrates output 

from SSD.  

 

Figure 2.8 Output from SSD (Karol Majek, 2018) 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Overview 

 This section will elaborate the research methodology, the dataset used in 

this project, hardware, and software used. Next, how the data is being prepared 

to be able to use for training is discussed. Data augmentation used in the different 

frameworks will be presented. To increase models’ accuracy, images are 

preprocessed before model detection. Image processing methods will be 

discussed next. Then, each model of choice and their corresponding framework 

will be presented. The selected model to improve its performance and its 

modification will be discussed. Lastly, the evaluation metric and steps will be 

briefly explained.  

 

3.2 Dataset -- Chinese City Parking Dataset (CCPD) (Xu et al., 2018) 

 CCPD is a dataset that consists of multiple challenging test images for 

license plates in China. The characteristic of Chinese license plate is that they 

have a blue background, white foreground that consists of letters, alphabets, and 

a Chinese character that represents the province. This dataset consists of train, 

valid, and test images. To test the models mentioned above, this project will be 

using test images from the Chinese City Parking Dataset (CCPD). This dataset 

holds 250k unique car license plate images. The image data include license plate 

location annotations in individual text files.  

The following are examples taken from CCPD: refer to figure 3.1. 
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Figure 3.1 Examples from CCPD Dataset 

The dataset used in this project is the Chinese City Parking Dataset (CCPD) (Xu 

et al., 2018). This dataset consists of 341,978 total images where 100,000 are 

used for training, 99,996 are for validation and 141,982 are used for testing. Test 

images are grouped into ccpd_blur (20,611 images) – blurry images, ccpd_db 

(10,132 images) – dark bright images, ccpd_fn (20,967 images) – far near images, 

ccpd_rotate (10,053 images) – rotated images, ccpd_tilt (30,216 images) – tilted 

images, and ccpd_challenge (50,003 images) – combination/mixed of the above.   

Figure 3.2 shows all six categories of images. 
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Figure 3.2 Example Images from Six Categories 

 

3.3 Hardware 

 A consumer-type desktop computer is used to run this project. The CPU 

used is AMD Ryzen 5 2600 3.40GHz 6 Cores 12 Threads. The RAM used is 

Kingston 32Gb 3200Mhz DDR4. The GPU used is Asus ROG Strix Nvidia 

Geforce Rtx2080ti 11gb ram. The storage disk used is Kingston 500Gb Solid 

State Drive. The power supply unit used is Fractal Design Ion+ Platinum 860 

watt.  
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3.4 Software 

The following softwares are used in the project: 

- Ubuntu 20.04.5 LTS (Focal Fossa) 

- Python 3.9 

- LabelImg 

- Darknet 

- Yolomark 

- TensorFlow 2.5.0 

- Pytorch 

- CUDA Toolkit 11.2 

- CuDNN 8.1.0 

- Anaconda 

- OpenCV 

 

3.5 Data Preparation 

 Raw training images and labels need to be converted into the 

corresponding framework following their file format.  

 

3.5.1 YOLO Format 

 YOLO framework needs to specify several items for the training.  

a.) obj.data – to specify several important parameters.  

classes = 1 Specify the number of classes in the set.  

train = train.txt Specify the path to training samples.  

valid = valid.txt Specify the path to validating samples.  

names = obj.names Specify object classes label.  

backup = backup Specify the path to save the trained model.  
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b.) obj.names – to specify object label name.  

c.) obj.cfg – a set of configs for the model, e.g., width, height, batches, etc.  

 

 After the parameters are set, training images and labels need to be 

separated into two standalone folders consisting of only images or labels. A list 

of file paths is generated using a bash script and saved as train.txt, valid.txt, and 

test.txt. Then, the label format for YOLO is different from TensorFlow. YOLO 

annotation format is as follows: <object_class> <x> <y> <width> <height> for 

each object in a different row. Example, 0 34 43 66 33. An automated Python 

script is used to convert CCPD object annotations into this format.  

 

3.5.2 TensorFlow Format 

 For the TensorFlow framework, images and labeling need to be 

converted into .tfrecord file format. The advantages of tfrecords are That it can 

store data efficiently, fast I/O, and single-source data files (Creating TFRecords, 

2021). These implementations allowed Google to take advantage of Tensor 

Processing Units (TPUs) on the cloud.  

 

 Data downloaded from CCPD encode their annotations as the filename, 

e.g.,  

“025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-

0_0_22_27_27_33_16-37-15.jpg”. 

In this example, each attribute is separated by a ‘-’ sign, and each field represents 

different information. The first field encodes the area ratio of the license plate to 

the entire image, i.e., ‘025’. The second field encodes horizontal tilt degree and 
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vertical tilt degree, i.e., ‘95_113’. The third field encodes bounding-box 

coordinates of left-top and bottom-right, i.e., ‘154&383_386&473’. The fourth 

field encodes the exact location (x, y) of the four vertices from the image, starting 

from the bottom right, i.e., ‘386&473_177&454_154&383_363&402’. For the 

fifth field, there are seven characters in the Chinese license plate, i.e., one 

province, one alphabet, and five alphabets + digits. They were encoded in their 

corresponding index number i.e., ‘0_0_22_27_27_33_16’. The sixth field is the 

brightness, i.e., ‘37’. The seventh field is the blurriness, i.e., ‘15’.  

 

 These annotations are read using a Python script, then convert to tfrecord 

using TensorFlow API, such as: 

 tf.python_io.TFRecordWriter() – for writing data.  

 tf.train.Example(features=tf.train.Features(feature={})) – for converting 

variables into TensorFlow features.  

 

3.6 Data Augmentation 

 Data augmentations are standard implementation for deep neural 

network training due to several reasons, e.g., to improve accuracy, to avoid 

overfitting, etc. In this project, model training follows the data augmentation 

strategy provided by the framework.  

 

3.6.1 YOLOv4 

 YOLOv4 uses multiple data augmentation techniques in their model 

training, these techniques are categorized as Bag of Freebies (BoF) which means 
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they do not add detection time during the inference. YOLOv4 data augmentation 

techniques are as follows:  

- Flip – flip training images left or right.  

- Rotation – rotate the image 90, or 180 degrees clockwise or 

anticlockwise.  

- Cutmix – cut a random part of an image and replace it in another image.  

- Mosaic – combine multiple images into one.  

- Mixup – stack images together with transparency.  

- Blur – slightly blur the images.  

- HSV – randomly slightly adjust the image’s Hue, Saturation, and Vue.  

It is important to mention that some of the augmentations, e.g., random flipping, 

rotation, are not appropriate and may reduce model accuracy. The figure 3.3 

below shows example of random augmentation technique for YOLOv4.  
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Figure 3.3 Mosaic / Blur / Flip / Crop / Exposure / Aspect Ratio / Hue / 

Saturation 

 

3.6.2 EfficientDet 

EfficientDet uses Scale Jittering which resizes an image and crops it into a fixed 

size.  

- Small jittering – uses a small ratio of [0.8, 1.2].  

- Large jittering – uses a larger ratio of [0.1, 2.0].  

The small jittering is good for shorter training time, i.e., 30 epochs. However, 

the accuracy decreases when using large jittering. For longer training time, i.e., 

300 epochs, large jittering performs better (Tan et al., 2019).  
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3.7 Preprocessing  

 Preprocessing techniques are useful in solving many real-life problems, 

e.g., improving the visibility of a low-resolution image. This project explores the 

possibility of simple and low computation image preprocessing to improve 

object detection models’ performance. Most of the preprocessing techniques 

used in this project are done through Python OpenCV and NumPy library. Figure 

3.4 shows one example of image preprocessing to improve visibility.  

  

Figure 3.4 Example of Image Preprocessing 

The left image shows an original car with license plate taken in blurry condition. 

The right image shows the result after performing bilateralFilter with d=9, 

sigmaColor=75, sigmaSpace=75. The model was not able to detect the car 

license plate on the left however able to do so with 31% confidence, refer to 

figure 3.5.  
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Figure 3.5 Model Detection with 31% Confidence After Preprocessing 

 

3.7.1 Enlargement 

 Enlargement is used to increase the resolution of an image. An image 

after being enlarged will have a greater number of pixels than the original image, 

though will not increase the visibility of the image because the algorithm simply 

copies the pixel color of the neighbor value. Hence, in the next stage image, 

preprocessing techniques such as image sharpening will be performed to 

hopefully make the image clearer to the human eye, as well as the computer 

vision algorithm. Adjustment to the size of the image depends on the scaling 

factor, 2.0 will enlarge the image by factor of 2, 0.75 will make the image smaller 

by 75%. In this project, the images are enlarged by 2.0.  

 

3.7.2 Sharpening  
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 Sharpening is an algorithm to make an image less blurry. This algorithm 

uses an x*y kernel, also known as filters or convolution matrix, and loops 

through the dimensions of an image. Different values or sizes of the kernel will 

give different strengths of sharpening results.  

 kernel = [
0 −1 0

−1 5 −1
0 −1 0

]  

 

3.7.3 Gamma Correction 

 Gamma correction is used to manipulate the brightness of an image.  

O = (
𝐼

255
)

1

𝛾 ∗ 255     

Equation 3.1 Gamma Correction Equation 

The gamma value 𝛾 is range from 0+. If the value is between 0 and 1, the output 

image will be darkened. If the value is above 1, the image will be brightened. 

OpenCV provides an easy method to perform gamma correction using a lookup 

table (LUT).  

 

3.7.4 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

 Histogram equalization takes the pixel count of a low-contrast image and 

equalizes them evenly. However, it equalizes the whole image at a global scale. 

On the other hand, CLAHE applies equalization on smaller patches or tiles to 

obtain a higher-quality result. This is very useful in the test dataset due to dark, 

blurry images and small objects. The image needs to be first converted to 

grayscale or LAB color format.  

 

3.7.5 Non-Local Means Denoising 



 

 

36 

 

 Noise in the context of images is sometimes unavoidable, especially in 

image processing. Blurring techniques can remove some of the noise quite well. 

However, there is another approach which is a non-local means of denoising. 

This algorithm removes noise by finding a similar patch of pixel from another 

region in the same image.  

 

3.8 Models 

 The models chosen to be implemented in this work are the state-of-the-

art model in recent years which are very efficient and have high accuracy.  

 EfficientDet (AutoML) 

 YOLOv4 (Darknet) 

 CenterNet (TensorFlow) 

 SSD (TensorFlow) 

 Faster R-CNN (TensorFlow) 

 YOLOv5 (Pytorch) 

 Among the chosen models, four frameworks have been used. They are 

Darknet framework in C++ for YOLOv4, Automl in Tensorflow for EfficientDet, 

Tensorflow Object Detection API for Faster R-CNN, SSD, and CenterNet, and 

Pytorch for YOLOv5.  

 

3.9 Updated Model Changes  

 The model YOLOv4 will be selected to improve its performance due to 

several reasons, i.e., fast detection speed, robustness to modification in DarkNet 

framework, etc.  
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 YOLOv4 detects objects in three different scales, i.e., small, medium, 

and large. As stated in the paper, this helps to detect objects of different sizes. 

For this project, two identical layers have been added to each scale before 

detection layers, making it a total of six additional convolution layers added to 

the whole architecture. By doing this, the hypothesis is that it helps the network 

to learn more features regard to the new CCPD dataset that the model may have 

never seen before.  

 

 The initial weights of the six newly added layers were initialized 

randomly. This results in longer total training time, and this will be further 

discussed in chapter 4.  

 

3.10 Evaluation Method 

 Evaluation of the accuracy of the models typically follows standard MS 

COCO object detection metrics (mAP@0.5:0.05:0.95) which stands for the 

mean Average Precision for IoU value ranges from 0.5 to 0.95 with 0.05 

increment, averaged. For instance, this will calculate the (mAP@0.5 + 

mAP@0.55 + mAP@0.60 + mAP@0.65 + mAP@0.70 + mAP@0.75 + 

mAP@0.80 + mAP@0.85 + mAP@0.90 + mAP@0.95) / 10. However, since 

this project only consists of one object class category, i.e., license plate, therefore 

Average Precision (AP) is set to be equivalent to mean Average Precision (mAP). 

Other than that, only mAP@0.70 is used as the evaluation metric to allow the 

comparison of result one-to-one with the result from CCPD (Xu et al., 2018), 

which is also using mAP@0.70.  

 

mailto:mAP@0.5:0.05:0.95
mailto:mAP@0.5
mailto:mAP@0.55
mailto:mAP@0.60
mailto:mAP@0.75
mailto:mAP@0.95
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 In object detection, Intersection over Union (IoU) stands for the 

overlapped percentage of the predicted bounding-box generated by the model vs. 

then ground truth bounding-box labeled by human. Refer to figure 3.6 Example 

of GT Box and Prediction Box.  

 

Figure 3.6 Example of GT Box and Prediction Box 

In this example, the green color bounding-box is first labeled on the car by 

human. When the image is passed through an object detection model, it 

generates the coordinates output of the car object on the image hence a model 

predicted bounding box is produced.  To calculate the IoU, the overlapped area 

is determined. See figure 3.7.   
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Figure 3.7 Intersection over Union 

 In this project, in the case of license plate bounding box detection (one 

object class scenario), TP, FP, TN, and FN are defined as follows:  

 TP – when the prediction bounding box has >= 70% IoU with the ground 

truth box.  

 FP – when the prediction box has < 70% IoU with the ground truth box.  

 FN – when ground truth exists in the image but there is no bounding box 

predicted by the model.  
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 TN case is not applicable for this project.   

 

3.10.1 Steps to Calculate mAP@0.70 

 Below presents simplified steps to calculate mAP@0.70. First, set a 

confidence score threshold, i.e., only account for prediction above this value. In 

this project, a 0.4 threshold is empirically selected.  

1. Is confidence >= threshold?  

2. Is predicted box IoU >= 0.70? If yes, TP. If no, FP.  

3. Calculate Precision and Recall.  

4. Plot graph Precision vs Recall.  

5. Calculate the Area Under Curve.  

 

3.10.2 Performance Metrics 

Following performance metrics are used in this work. 

mAP:  

𝐴𝑃𝑐𝑎𝑟+𝐴𝑃𝑐𝑎𝑡+𝐴𝑃𝑑𝑜𝑔

3
 

Precision: 

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

Recall: 

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

F1 Score: 

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

IoU: 
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𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 

 

3.11 Detailed Diagram / Chart of Proposed Model 

The following table 3.1 and table 3.2 show the overall architecture of model 

YOLOv4-CSP and YOLOv4-CSP-Modified. Note that the 6 newly added layers 

in the modified model, namely 143conv, 144conv, 160conv, 161conv, and 

177conv, 178conv. In the end, the modified model is 180 layers long, compared 

to the author’s model which is 174 layers.  

 

Table 3.1 YOLOv4-CSP Architecture 

layer filters Size/strd(dil) input output bflops 

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF 

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF 

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF 

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF 

4Shortcut 1 wt=0 wn=0 320x320x64 0.007BF 

5conv 128 3x3/2 320x320x64 160x160x128 3.775BF 

6conv 64 1x1/1 160x160x128 160x160x64 0.419BF 

7route 5   160x160x128  

8conv 64 1x1/1 160x160x128 160x160x64 0.419BF 

9conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

10conv 64 3x3/1 160x160x64 160x160x64 1.887BF 

11shortcut 8 wt=0 wn=0 160x160x64 0.002BF 

12conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

13conv 64 3x3/1 160x160x64 160x160x64 1.887BF 

14shortcut 11 c wn=0 160x160x64 0.002BF 

15conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

16route 15 6   160x160x128  

17conv 128 1x1/1 160x160x128 160x160x128 0.839BF 

18conv 256 3x3/2 160x160x128 80x80x256 3.775BF 

19conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

20route 18   80x80x256  

21conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

22conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

23conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

24shortcut 21 wt=0 wn=0 80x80x128 0.001BF 

25conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

26conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

27shortcut 24 wt=0 wn=0 80x80x128 0.001BF 

28conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

29conv 128 3x3/1 80x80x128 80x80x128 1.887BF 
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30shortcut 27 wt=0 wn=0 80x80x128 0.001BF 

31conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

32conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

33shortcut 30 wt=0 wn=0 80x80x128 0.001BF 

34conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

35conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

36shortcut 33 wt=0 wn=0 80x80x128 0.001BF 

37conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

38conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

39shortcut 36 wt=0 wn=0 80x80x128 0.001BF 

40conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

41conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

42shortcut 39 wt=0 wn=0 80x80x128 0.001BF 

43conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

44conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

45shortcut 42 wt=0 wn=0 80x80x128 0.001BF 

46conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

47route 46 19   80x80x256  

48conv 256 1x1/1 80x80x256 80x80x256 0.839BF 

49conv 512 3x3/2 80x80x256 40x40x512 3.775BF 

50conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

51route 49   40x40x512  

52conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

53conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

54conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

55shortcut 52 wt=0 wn=0 40x40x256 0.000BF 

56conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

57conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

58shortcut 55 wt=0 wn=0 40x40x256 0.000BF 

59conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

60conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

61shortcut 58 wt=0 wn=0 40x40x256 0.000BF 

62conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

63conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

64shortcut 61 wt=0 wn=0 40x40x256 0.000BF 

65conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

66onv 256 3x3/1 40x40x256 40x40x256 1.887BF 

67shortcut 64 wt=0 wn=0 40x40x256 0.000BF 

68conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

69conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

70shortcut 67 wt=0 wn=0 40x40x256 0.000BF 

71conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

72conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

73shortcut 70 wt=0 wn=0 40x40x256 0.000BF 

74conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

75conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

76shortcut 73 wt=0 wn=0 40x40x256 0.000BF 

77conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

78route 77 50   40x40x512  

79conv 512 1x1/1 40x40x512 40x40x512 0.839BF 

80conv 1024 3x3/2 40x40x512 20x20x1024 3.775BF 

81conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

82route 80   20x20x1024  
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83conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

84conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

85conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

86shortcut 83 wt=0 wn=0 20x20x512 0.000BF 

87conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

88conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

89shortcut 86 wt=0 wn=0 20x20x512 0.000BF 

90conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

91conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

92shortcut 89 wt=0 wn=0 20x20x512 0.000BF 

93conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

94conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

95shortcut 92 wt=0 wn=0 20x20x512 0.000BF 

96conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

97route 96 81   20x20x1024  

98conv 1024 1x1/1 20x20x1024 20x20x1024 0.839BF 

99conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

100route 98   20x20x1024  

101conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

102conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

103conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

104max  5x5/1 20x20x512 20x20x512 0.005BF 

105route 103   20x20x512  

106max  9x9/1 20x20x512 20x20x512 0.017BF 

107route 103   20x20x512  

108max  13x13/1 20x20x512 20x20x512 0.035BF 

109route 108 106  104 103  20x20x2048  

110conv 512 1x1/1 20x20x2048 20x20x512 0.839BF 

111conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

112route 111 99   20x20x1024  

113conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

114conv 256 1x1/1 20x20x512 20x20x256 0.105BF 

115upsam-

ple 

2x  20x20x256 40x40x256  

116route 79   40x40x512  

117conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

118route 117 115   40x40x512  

119conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

120conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

121route 119   40x40x256  

122conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

123conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

124conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

125conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

126route 125 120   40x40x512  

127conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

128conv 128 1x1/1 40x40x256 40x40x128 0.105BF 

129upsam-

ple 

2x  40x40x128 80x80x128  

130route 48   80x80x256  

131conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

132route 131 129   80x80x256  

133conv 128 1x1/1 80x80x256 80x80x128 0.419BF 
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134conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

135route 133   80x80x128  

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

140route 139 134   80x80x256  

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF 

143conv 18 1x1/1 80x80x256 80x80x18 0.059BF 

144yolo      

145route 141     

146conv 256 3x3/2 80x80x128 40x40x256 0.944BF 

147route 146 127   40x40x512  

148conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

149conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

150route 148   40x40x256  

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

152conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

155route 154 149   40x40x512  

156conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

157conv 512 3x3/1 40x40x256 40x40x512 3.775BF 

158conv 18 1x1/1 40x40x512 40x40x18 0.029BF 

159yolo      

160route 156     

161conv 512 3x3/2 40x40x256 20x20x512 0.944BF 

162route 161 113   20x20x1024  

163conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

164conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

165route 163   20x20x512  

166conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

167conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

169conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

170route 169 164   20x20x1024  

171conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

172conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF 

173conv 18 1x1/1 20x20x1024 20x20x18 0.015BF 

174yolo      

      

      

 

Table 3.2 YOLOv4-CSP-Modified Architecture 

layer filters Size/strd(dil) input output bflops 

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF 

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF 

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF 

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF 
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4Shortcut 1 wt=0 wn=0 320x320x64 0.007BF 

5conv 128 3x3/2 320x320x64 160x160x128 3.775BF 

6conv 64 1x1/1 160x160x128 160x160x64 0.419BF 

7route 5   160x160x128  

8conv 64 1x1/1 160x160x128 160x160x64 0.419BF 

9conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

10conv 64 3x3/1 160x160x64 160x160x64 1.887BF 

11shortcut 8 wt=0 wn=0 160x160x64 0.002BF 

12conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

13conv 64 3x3/1 160x160x64 160x160x64 1.887BF 

14shortcut 11 c wn=0 160x160x64 0.002BF 

15conv 64 1x1/1 160x160x64 160x160x64 0.210BF 

16route 15 6   160x160x128  

17conv 128 1x1/1 160x160x128 160x160x128 0.839BF 

18conv 256 3x3/2 160x160x128 80x80x256 3.775BF 

19conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

20route 18   80x80x256  

21conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

22conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

23conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

24shortcut 21 wt=0 wn=0 80x80x128 0.001BF 

25conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

26conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

27shortcut 24 wt=0 wn=0 80x80x128 0.001BF 

28conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

29conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

30shortcut 27 wt=0 wn=0 80x80x128 0.001BF 

31conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

32conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

33shortcut 30 wt=0 wn=0 80x80x128 0.001BF 

34conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

35conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

36shortcut 33 wt=0 wn=0 80x80x128 0.001BF 

37conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

38conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

39shortcut 36 wt=0 wn=0 80x80x128 0.001BF 

40conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

41conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

42shortcut 39 wt=0 wn=0 80x80x128 0.001BF 

43conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

44conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

45shortcut 42 wt=0 wn=0 80x80x128 0.001BF 

46conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

47route 46 19   80x80x256  

48conv 256 1x1/1 80x80x256 80x80x256 0.839BF 

49conv 512 3x3/2 80x80x256 40x40x512 3.775BF 

50conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

51route 49   40x40x512  

52conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

53conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

54conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

55shortcut 52 wt=0 wn=0 40x40x256 0.000BF 

56conv 256 1x1/1 40x40x256 40x40x256 0.210BF 



 

 

46 

 

57conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

58shortcut 55 wt=0 wn=0 40x40x256 0.000BF 

59conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

60conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

61shortcut 58 wt=0 wn=0 40x40x256 0.000BF 

62conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

63conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

64shortcut 61 wt=0 wn=0 40x40x256 0.000BF 

65conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

66onv 256 3x3/1 40x40x256 40x40x256 1.887BF 

67shortcut 64 wt=0 wn=0 40x40x256 0.000BF 

68conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

69conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

70shortcut 67 wt=0 wn=0 40x40x256 0.000BF 

71conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

72conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

73shortcut 70 wt=0 wn=0 40x40x256 0.000BF 

74conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

75conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

76shortcut 73 wt=0 wn=0 40x40x256 0.000BF 

77conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

78route 77 50   40x40x512  

79conv 512 1x1/1 40x40x512 40x40x512 0.839BF 

80conv 1024 3x3/2 40x40x512 20x20x1024 3.775BF 

81conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

82route 80   20x20x1024  

83conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

84conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

85conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

86shortcut 83 wt=0 wn=0 20x20x512 0.000BF 

87conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

88conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

89shortcut 86 wt=0 wn=0 20x20x512 0.000BF 

90conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

91conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

92shortcut 89 wt=0 wn=0 20x20x512 0.000BF 

93conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

94conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

95shortcut 92 wt=0 wn=0 20x20x512 0.000BF 

96conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

97route 96 81   20x20x1024  

98conv 1024 1x1/1 20x20x1024 20x20x1024 0.839BF 

99conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

100route 98   20x20x1024  

101conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

102conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

103conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

104max  5x5/1 20x20x512 20x20x512 0.005BF 

105route 103   20x20x512  

106max  9x9/1 20x20x512 20x20x512 0.017BF 

107route 103   20x20x512  

108max  13x13/1 20x20x512 20x20x512 0.035BF 

109route 108 106  104 103  20x20x2048  
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110conv 512 1x1/1 20x20x2048 20x20x512 0.839BF 

111conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

112route 111 99   20x20x1024  

113conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

114conv 256 1x1/1 20x20x512 20x20x256 0.105BF 

115up-

sample 

2x  20x20x256 40x40x256  

116route 79   40x40x512  

117conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

118route 117 115   40x40x512  

119conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

120conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

121route 119   40x40x256  

122conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

123conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

124conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

125conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

126route 125 120   40x40x512  

127conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

128conv 128 1x1/1 40x40x256 40x40x128 0.105BF 

129up-

sample 

2x  40x40x128 80x80x128  

130route 48   80x80x256  

131conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

132route 131 129   80x80x256  

133conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

134conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

135route 133   80x80x128  

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

140route 139 134   80x80x256  

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF 

143conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

144conv 256 3x3/1 80x80x128 80x80x256 3.775BF 

145conv 18 1x1/1 80x80x256 80x80x18 0.059BF 

146yolo      

147route 141     

148conv 256 3x3/2 80x80x128 40x40x256 0.944BF 

149route 148 127   40x40x512  

150conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

152route 150   40x40x256  

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

155conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

156conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

157route 156 151   40x40x512  

158conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

159conv 512 3x3/1 40x40x256 40x40x512 3.775BF 

160conv 256 1x1/1 40x40x512 40x40x256 0.419BF 
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161conv 512 3x3/1 40x40x256 40x40x512 3.775BF 

162conv 18 1x1/1 40x40x512 40x40x18 0.029BF 

163yolo      

164route 160     

165conv 512 3x3/2 40x40x256 20x20x512 0.944BF 

166route 165 111   20x20x1024  

167conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

169route 167   20x20x512  

170conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

171conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

172conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

173conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

174route 173 168   20x20x1024  

175conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

176conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF 

177conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

178conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF 

179conv 18 1x1/1 20x20x1024 20x20x18 0.015BF 

180yolo      
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CHAPTER 4 

 

RESULTS AND DISCUSSION  

 

4.1 Overview 

 This section discusses the results. of models’ accuracy and performance 

on the car license plate dataset CCPD as mentioned in chapter 3, i.e., 

EfficientDet-d6, EfficientDet-d0, CenterNetResNet50-512x512, SSDResnet50-

640x640, FasterR-CNNResNet50-640x640, YOLOv4-csp-640x640, YOLOv5x, 

and YOLOv5s. This chapter will then continue with presenting the effect of 

image preprocessing on bad images to increase the overall accuracy of the 

models. Finally, a slightly improved model architecture is then trained on the 

same CCPD dataset to show the possible improvement that can be achieved 

through model architecture modifications.  

 In addition to the above results, this section also addresses a small issue 

regarding the calculation of 70% IoU, i.e., the 69% IoU problem where there are 

a significant number of objects bounding boxes being rejected as false negatives 

despite being detected by the model hence lowered the overall accuracy.  

 

4.2 Model Training Loss 

 The following models were trained on CCPD training dataset, i.e., 

EfficientDet-d6, EfficientDet-d0, CenterNetResNet50-512x512, SSDResnet50-

640x640, FasterR-CNNResNet50-640x640, YOLOv4-csp-640x640, YOLOv5x, 

and YOLOv5s. Below shows their training loss graph respectively.  
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4.2.1 EfficientDet-D6 

 

Figure 4.1 EfficientDet-D6 Training Loss  

 

4.2.2 EfficientDet-D0 

 

Figure 4.2 EfficientDet-D0 Training Loss  

 

4.2.3 CenterNetResNet50-512x512 

 

Figure 4.3 CenterNetResNet50-512x512 Training Loss  

 

4.2.4 SSDResNet50-640x640 



 

 

51 

 

 

Figure 4.4 SSDResNet50-640x640 Training Loss  

 

4.2.5 FasterR-CNNResNet50-640x640 

 

 Figure 45 FasterR-CNNResNet50 Training Loss  

 

4.3 Result of Models Training 

 A series of steps of training the chosen models and evaluating them has 

been performed. Below shows the results.  

Table 4.1: Initial Models’ Test Accuracy (mAP@0.70) and Speed (FPS) on 

Each Test Set 

Model FPS DB Blur FN Rotate Tilt Challenge Average 

efficientdet-

d6 
8.2 67.0 79.25 80.5 92.1 85.0 89.1 82.16 

efficientdet-

d0 
34.53 53.5 70.6 62.9 91.0 86.3 78.3 73.77 

mailto:mAP@0.70
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centernet-

resnet50-

512x512 

28.84 50.14 64.48 70.20 90.59 74.40 70.87 70.11 

ssd-resnet50-

640x640 
24.85 45.24 64.06 47.28 92.46 83.79 72.72 67.59 

faster-rcnn-

resnet50-

640x640 

18.73 52.31 68.82 61.74 91.62 76.32 80.85 71.94 

yolov4-csp-

640x640 
50.9 64.54 67.58 29.46 81.75 65.76 66.41 62.58 

yolov5s 80.0 50.5 74.0 11.5 75.8 51.6 83.1 57.75 

yolov5x 40.0 44.4 68.2 10.7 56.3 35.0 79.4 49.00 

 

 From this table, the best score in terms of average mAP is achieved by 

the model EfficientDet-d6, but it is a network larger than the others in terms of 

parameters and FLOPs (d0 - 3.9M, 2.54B) v.s. (d6 - 51.9M, 325B) (Tan et. al., 

2019), therefore is an unfair comparison.  

 

Figure 4.6 Mean Average Precision for All Models for CCPD 

Dataset  
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Figure 4.7 Speed for All Models for CCPD Dataset 

It has been observed from Table 4.1 that Efficientdet-d6 (82.16) scores 

highest followed by Efficientdet-d0 (73.77). However, the FPS has dropped 

tremendously from 34.53 FPS to only 8.2 FPS which is not a very good model 

to be perform in real-time applications. Comparing both models, Efficientdet-d6 

outperforms Efficientdet-d0 in all test dataset (DB – 67.0 vs. 53.5), (Blur – 79.25 

vs. 70.6), (FN – 80.5 vs. 62.9), (Rotate – 92.1 vs. 91.0), and (Chalenge – 89.1 vs. 

78.3) dataset, except for (Tilt – 85.0 vs. 86.3) dataset.  

 

If Efficientdet-d6 is not included, then the highest scores will be 

Efficientdet-d0 (73.77) followed by Faster R-CNN (71.94). Comparing the 

processing speed between these two models, Efficientdet-d0 performs faster 

(34.53) than Faster R-CNN (18.73). Comparing the accuracy between 

Efficientdet-d0 and Faster R-CNN, Efficientdet-d0 performs better in all test sets 

(DB – 53.5 vs. 52.31), (Blur – 70.6 vs. 68.82), (FN – 62.9 vs. 61.74), (Tilt – 86.3 
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vs. 76.32) except for the , (Rotate – 91.0 vs. 91.62) dataset and (Chalenge – 78.3 

vs. 80.85) dataset. 

 

YOLOv4-CSP model performed very badly in the FN dataset (29.46) 

compared to the best model in the category Centernet-Resnet50 (70.20). This 

shows that Centernet-Resnet50 is very good at detecting very small objects in 

the image whilst YOLOv4-CSP is having difficulty to detect small objects. The 

other model that performed like YOLOv4-CSP (29.46) is SSD-Resnet50 (47.28). 

More analysis and improvement will be carried out on the FN dataset and the 

result will be discussed later in this chapter.  

 

Another highlight worth mentioning is that in the dark_bright dataset, 

YOLOv4-CSP performs better (64.54) than other models (45.24 ~ 52.31). This 

shows YOLOv4-CSP is less sensitive to the brightness of the image instead the 

other features e.g., shape allow it to detect an object at a higher chance.  

 

Regarding lower scores achieved by YOLOv5, this model is still under 

development, and no record of a published paper regarding the algorithm is 

available. However, it is worth testing out its performance. So 

 

 In terms of speed, YOLOv4-CSP achieved the highest score (50.9) 

compared to the second highest Efficientdet-d0 (34.53). YOLOv4-CSP will be 

selected to further improve its performance to achieve the objective in this 

project mentioned at the start, which is to improve the speed and accuracy of 
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license plate detection tasks using deep learning models through image 

processing, training, and modifying existing model architecture.  

 

4.4 Preprocessing  

 The first intuitive way to improve the overall result is to perform simple 

image preprocessing for the test dataset. The test set is very challenging for any 

model to perform object detection as it is composed of images from various 

difficult conditions. Below shows the result for preprocessing, i.e., enlargement, 

sharpening, gamma correction, CLAHE, and non-local means denoising.  

Table 4.2 Preprocessing Result for YOLOv4-CSP model 

 Blur db fn rotate tilt challenge 

Dataset Images 20,611 10,132 20,967 10,053 30,216 50,003 

       

mAP (0.70) (Before) 

(100 Imgs) 
63.29 64.20 43.90 88.90 66.64 62.08 

       

No. of Selected  100 100 100 100 100 100 

TP-FN Ratio 70-30 69-31 52-48 92-8 77-23 67-33 

FP 45 28 75 9 26 61 

Human Eye TP 90 91 86 100 99 88 

No. of Preprocess 6 4 14 - - 12 

Redrawn GT Box - - - 8 23 - 

       

mAP (0.70) (After) 

(100 Imgs) 
68.26 67.09 57.39 96.40 77.94 71.11 

       

Increment in mAP 4.97 2.89 13.49 7.50 11.30 9.03 

TP-FN Ratio 75-25 73-27 66-34 97-3 85-15 76-24 

FP 43 28 68 4 18 56 

Legend 

TP – True Positive 

FN – False Negative 
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FP – False Positive 

GT – Ground Truth 
 

Bounding boxes are denoted as TP when it has more than 70% IoU with 

the ground truth box. When the model failed to detect the ground truth in an 

image, it will denote as FN. Lastly, when the bounding box has less than 70% 

IoU with the ground truth box, it will be denoted as False Positives. Note that 

there can be more than one FP for an image i.e., the model detected multiple 

incorrect bounding boxes. There can also be less FP than FN in a category, this 

occurs in the db test set because the image is so dark that the model does not 

detect any bounding boxes for the image. According to the mAP formula, FP is 

a variable that contributes to the score. False Positives occur very frequently in 

the above experiment due to the 0.69 IoU problem. This will further elaborate 

on later in this chapter.  

 

In the above experiment In Table 4.2, 100 images out of each category 

are selected. The algorithm then uses YOLOv4-CSP model to perform object 

detection on these 100 images. At the same time, TP, FN, and FP are used to 

calculate the mAP. When deciding which image to preprocess, it is natural to 

select all FN images. However, due to the 0.69 problem, only a few images are 

selected. The table above shows mAP score before preprocessing and after 

preprocessing.  

 

Six images were preprocessed for the blur test set. Five out of six images 

successfully convert from FN to TP. The mAP score increased from 63.29 to 

68.26. Four images were preprocessed for the db test set. All four images 

successfully converted from FN to TP. The mAP score increased from 64.20 to 
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67.09. 14 images were preprocessed for the fn test set. All 14 images successfully 

converted from FN to TP. The mAP score increased from 43.90 to 57.39. 12 

images were preprocessed for the challenge test set. Nine out of 12 images 

successfully convert from FN to TP. The mAP score increased from 62.08 to 

71.11.  

 

A different scenario happens to the rotate test set and the tilt test set. 

These test sets do not have an imbalance of light condition, blurry or distance 

and size issues. On human eye viewing, all 100 images are successfully detected 

on the rotate test set, and 99 images on the tilt test set. Image preprocessing will 

not improve the score for these test sets. However, there were still 8 FN and 23 

FN on the rotate and tilt test set. To eliminate the FN, a further investigation has 

been carried out to tackle the issue.  

 

 Upon investigation, there is a problem with the annotation of the ground 

truth box by the dataset author. Refer to the figure 4.8. below: 

 

Figure 4.8 Ground Truth Box (Left) vs Model Prediction (Right)  
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As shown in the picture, the model successfully detected the object from the 

input. However, the box is denoted as a false positive due to the IoU with the 

ground truth box does not exceed 70%.  

 

 Observe that the ground truth box drawn is not ‘tight’ to the license plate 

object. This is the main problem with the dataset. Many bounding boxes were 

wrongly drawn during the data preparation stage. However, deep learning 

models are very good at adjusting and correcting their errors during the training 

phase. When the model is trained for a long period, it will slowly learn to adjust 

itself to be closer and closer to the actual object.  Table 4.3 shows the example 

of the 0.69 IoU problem.  

Table 4.3 0.69 IoU Problem 

Image Name IoU 

0056-15_17…27.png 0.698895 

0220-19_36…41.png 0.566831 

0265-32_39…32.png 0.648916 

0273-15_29…27.png 0.657966 

0305-21_19…180.png 0.662354 

0326-17_29…16.png 0.637488 

0330-19_22…56.png 0.679596 

0353-19_22…43.png 0.000000 

0369-34_34…164.png 0.699994 

0401-37_31…85.png 0.696482 

0419-19_33…70.png 0.000000 

0419-38_43…156.png 0.689906 

0432-22_18…130.png 0.659566 

0436-22_33…115.png 0.688282 

0480-17_37…141.png 0.658595 

… … 

 

4.5 Modify YOLOv4-CSP (Proposed Model) 

 The second approach to improve the overall performance is to modify 

the model architecture in terms of layers, filters, etc. In this experiment, six new 

layers have been added to the model. Refer to table 4.4.  
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Table 4.4 YOLOv4-CSP-Modified Architecture 

Layer filters Size/strd(dil) input output bflops 

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF 

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF 

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF 

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF 

… … … … … … 

. . . . . . 

. . . . . . 

. . . . . . 

… … … … … … 

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF 

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF 

140route 139 134   80x80x256  

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF 

143conv 128 1x1/1 80x80x256 80x80x128 0.419BF 

144conv 256 3x3/1 80x80x128 80x80x256 3.775BF 

145conv 18 1x1/1 80x80x256 80x80x18 0.059BF 

146yolo      

147route 141     

148conv 256 3x3/2 80x80x128 40x40x256 0.944BF 

149route 148 127   40x40x512  

150conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

152route 150   40x40x256  

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

155conv 256 1x1/1 40x40x256 40x40x256 0.210BF 

156conv 256 3x3/1 40x40x256 40x40x256 1.887BF 

157route 156 151   40x40x512  

158conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

159conv 512 3x3/1 40x40x256 40x40x512 3.775BF 

160conv 256 1x1/1 40x40x512 40x40x256 0.419BF 

161conv 512 3x3/1 40x40x256 40x40x512 3.775BF 

162conv 18 1x1/1 40x40x512 40x40x18 0.029BF 

163yolo      

164route 160     

165conv 512 3x3/2 40x40x256 20x20x512 0.944BF 

166route 165 111   20x20x1024  

167conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

169route 167   20x20x512  

170conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

171conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

172conv 512 1x1/1 20x20x512 20x20x512 0.210BF 

173conv 512 3x3/1 20x20x512 20x20x512 1.887BF 

174route 173 168   20x20x1024  

175conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

176conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF 
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177conv 512 1x1/1 20x20x1024 20x20x512 0.419BF 

178conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF 

179conv 18 1x1/1 20x20x1024 20x20x18 0.015BF 

180yolo      

      

      

  

The intuition behind adding new layers is that they can learn new additional 

features thus improving the accuracy. The model is then retrained using the 

training dataset. Below shows the training graph.  

 

 

Figure 4.9 YOLOv4-CSP-Modified Training Loss Graph  
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 The whole training process elapsed 10 hours, twice the duration of the 

original model (5 hours). This is due to the newly initialized layers are yet to 

learn meaningful weights from the training.  

 

 From the graph above, the average total loss has reached below 1.0 at 

around 1800 to 2400 iterations. However, the model is then left to train longer 

until very minor improvement can be seen till the 4000th iteration. Note that one 

iteration is one batch of 32 images. The machine is capable of training 6~7 

iterations per minute.  

 

 The newly trained model is then be evaluated on the test set. Below 

shows the comparison between the original model and the new model with six 

additional layers.  

Table 4.5 Accuracy (mAP@0.70) of Modified YOLOv4-CSP vs Original 

YOLOv4-CSP  

Dataset blur db fn rotate tilt 
chal-

lenge 
valid 

No. of Im-

ages 
20,611 10,132 20,967 10,053 30,216 50,003 99,996 

        

YOLOv4-

CSP 
67.58 64.54 29.46 81.75 65.76 66.41 83.64 

Modified 

YOLOv4-

CSP 

74.65 51.48 49.78 67.57 45.12 83.62 96.96 

Increment +7.07 -13.06 +20.32 -14.18 -20.64 +17.21 +13.32 

 

 The accuracy on the validation dataset improves from 83.64 to 96.96 

which shows that adding six new layers can help the model to detect the objects 

under normal conditions more accurately. The problem where the model was 

having difficulty detecting small or far objects has also been improved from 

mailto:mAP@0.70
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29.46 to 49.78. This shows that the model can predict even tighter bounding 

boxes which match 70% of the ground truth boxes.  

 

 On the other hand, a decline in performance can be seen on the test set 

rotate, tilt, and db. This is due to the rotate and tilt test set containing non-

rectangle objects therefore the drawn bounding boxes are loose. The model is 

having difficulty when deciding the real coordinates of the objects.  

 

 For the case of the db test set, the accuracy drops from 64.54 to 41.48. 

This is due to that this dataset mostly consists of too-bright and too-dark images. 

When the newly trained model is trained to draw a tighter bounding box, it will 

then have difficulty determining the real coordinates of the objects in such 

lighting conditions, resulting in a degraded performance in 0.70 mAP.  

 

 Overall, the new modified model can detect objects that have good 

visibility in terms of lighting and blurriness. In addition to that, it has also 

become very strict on objects that had failed to represent regular shapes in terms 

of skewness and angle.  
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

 In this project we have designed an experiment to evaluate the 

performance of various state-of-the-art deep learning object detection models on 

a new dataset which is CCPD with transfer learning. Secondly, this project also 

shows two ways i.e., image preprocessing step and introducing additional model 

layers to improve the overall performance as stated in the objectives of the 

research. The image preprocessing step has shown that the visibility of the 

license plate can be improved in various conditions. The improved YOLOv4 

model has achieved (96.96%) mean Average Precision mAP@0.70 on the 

validation dataset compared to the original model (83.64%) on the Chinese City 

Parking Dataset (CCPD). This shows that the six additional convolutional layers 

added have helped the model to predict the bounding boxes more accurately. 

 Deep learning is an exciting field of research, especially in computer 

vision. It has a continuous fast pace of development, and the accuracy is 

overtaken by new models every year. Now, a new type of object detection model 

known as ‘transformer’ which is derived from the natural language model can 

already surpass the current best model.  

 

5.2 Future Work and Suggestions 

 There are many potential issues and use cases in real life as deep learning 

technology has just begun ten years ago. One suggestion to improve the model 
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performance is to further tweak the model’s architecture such as layers number, 

convolutional filter sizes, hyperparameters and others. This project also faces the 

limitations of the processing power and memory sizes of a consumer grade 

hardware. A better hardware will allow a bigger size of model to be trained 

efficiently hence present a better result.  



 

65 

 

REFERENCES  

 

Anagnostopoulos, C.N.E. et al. (2006) ‘A license plate-recognition algorithm 

for intelligent transportation system applications’, IEEE Transactions on 

Intelligent Transportation Systems, 7(3), pp. 377–391. Available at: 

https://doi.org/10.1109/TITS.2006.880641. 

 

ANPR Cameras | ANPR accuracy test (2019). Available at: 

https://sensorable.io/articles/anpr-accuracy-test/index.html (Accessed: 10 

September 2022). 

 

Ashtari, A.H., Nordin, Md.J. and Seyed Mostafa Mousavi Kahaki (2011) ‘A 

new reliable approach for Persian license plate detection on colour images’, in 

Proceedings of the 2011 International Conference on Electrical Engineering 

and Informatics. IEEE, pp. 1–5. Available at: 

https://doi.org/10.1109/ICEEI.2011.6021697. 

 

Bay, H. et al. (2008) ‘Speeded-Up Robust Features (SURF)’, Computer Vision 

and Image Understanding, 110(3), pp. 346–359. Available at: 

https://doi.org/10.1016/j.cviu.2007.09.014. 

 

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M. (2020) ‘YOLOv4: Optimal 

Speed and Accuracy of Object Detection’. 

 

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2021). GitHub - 

AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for 

Object Detection (Windows and Linux version of Darknet ). Available at: 

https://github.com/AlexeyAB/darknet (Accessed: 10 September 2022) 

 

Calonder, M. et al. (2010) ‘BRIEF: Binary Robust Independent Elementary 

Features’, in, pp. 778–792. Available at: https://doi.org/10.1007/978-3-642-

15561-1_56. 

 

Chang, S.L. et al. (2004) ‘Automatic License Plate Recognition’, IEEE 

Transactions on Intelligent Transportation Systems, 5(1), pp. 42–53. Available 

at: https://doi.org/10.1109/TITS.2004.825086. 

 

Creating TFRecords (2021). Available at: 

https://keras.io/examples/keras_recipes/creating_tfrecords/ (Accessed: 17 

October 2022). 

 

Duan, K. et al. (2019) CenterNet: Keypoint Triplets for Object Detection. 

Available at: https://github.com/. 

 

Faradji, F., Rezaie, A.H. and Ziaratban, M. (2007) ‘A Morphological-Based 

License Plate Location’, in 2007 IEEE International Conference on Image 

Processing. IEEE, pp. I-57-I–60. Available at: 

https://doi.org/10.1109/ICIP.2007.4378890. 

 



 

 

66 

 

Girshick, R. et al. (2014) Rich feature hierarchies for accurate object detection 

and semantic segmentation. Available at: http://arxiv. 

 

Girshick, R. (2015) Fast R-CNN. Available at: https://github.com/rbgirshick/. 

Habeeb, D. et al. (2021) ‘Deep-Learning-Based Approach for Iraqi and 

Malaysian Vehicle License Plate Recognition’, Computational Intelligence and 

Neuroscience, 2021. Available at: https://doi.org/10.1155/2021/3971834. 

 

Hendry and Chen, R.C. (2019) ‘Automatic License Plate Recognition via 

sliding-window darknet-YOLO deep learning’, Image and Vision Computing, 

87, pp. 47–56. Available at: https://doi.org/10.1016/j.imavis.2019.04.007. 

 

Hsu, G.S., Chen, J.C. and Chung, Y.Z. (2013) ‘Application-oriented license 

plate recognition’, IEEE Transactions on Vehicular Technology, 62(2), pp. 

552–561. Available at: https://doi.org/10.1109/TVT.2012.2226218. 

 

Hui J (2018) SSD object detection: Single Shot MultiBox Detector for real-time 

processing | by Jonathan Hui | Medium. Available at: https://jonathan-

hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-

time-processing-9bd8deac0e06 (Accessed: 10 September 2022). 

 

Jacob, S. (2020) EfficientDet for Object Detection. Available at: 

https://blog.roboflow.com/breaking-down-efficientdet/ (Accessed: 10 

September 2022). 

 

Jørgensen, H. (2017) Automatic License Plate Recognition using Deep 

Learning Techniques. Available at: 

https://doi.org/http://hdl.handle.net/11250/2467209. 

 

Karol Majek (2018) (10) SSD Mobilenet Object detection FullHD S8#001 - 

YouTube. Available at: 

https://www.youtube.com/watch?v=7p2XL8wApfo&t=430s (Accessed: 10 

September 2022). 

 

Liu, W. et al. (2016) ‘SSD: Single Shot MultiBox Detector’, in, pp. 21–37. 

Available at: https://doi.org/10.1007/978-3-319-46448-0_2. 

 

Malaysia - Flash report, Automotive sales volume, 2022 - MarkLines 

Automotive Industry Portal. (2022). Available at: 

https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-

malaysia-by-month (Accessed: 9 February 2023) 

 

 

Ng, P.C. (2003) ‘SIFT: predicting amino acid changes that affect protein 

function’, Nucleic Acids Research, 31(13), pp. 3812–3814. Available at: 

https://doi.org/10.1093/nar/gkg509. 

 

Redmon, J. et al. (2016) You Only Look Once: Unified, Real-Time Object 

Detection. Available at: http://pjreddie.com/yolo/. 

 

https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-malaysia-by-month
https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-malaysia-by-month


 

 

67 

 

Ren, S. et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with 

Region Proposal Networks. Available at: https://github.com/. 

 

Selmi, Z., ben Halima, M. and Alimi, A.M. (2017) ‘Deep Learning System for 

Automatic License Plate Detection and Recognition’, in 2017 14th IAPR 

International Conference on Document Analysis and Recognition (ICDAR). 

IEEE, pp. 1132–1138. Available at: https://doi.org/10.1109/ICDAR.2017.187. 

 

Sharma, P., Karan, J. and Karan Sing, J. (2015) ‘Challenges and Overview of 

License Plate Character Segmentation’, International Journal of Computer 

Science International Journal of Computer Science International Journal of 

Computer Science International Journal of Computer [Preprint]. Available at: 

www.ijcaonline.org. 

 

Tan, M., Pang, R. and Le, Q. v. (2019) ‘EfficientDet: Scalable and Efficient 

Object Detection’. Available at: http://arxiv.org/abs/1911.09070. 

 

Tan, M. and Yu, A. (2020) Google AI Blog: EfficientDet: Towards Scalable and 

Efficient Object Detection. Available at: 

https://ai.googleblog.com/2020/04/efficientdet-towards-scalable-and.html 

(Accessed: 10 September 2022). 

 

Uri Almog (2021) CenterNet, Explained. CenterNet is an anchorless object… | 

by Uri Almog | Towards Data Science. Available at: 

https://towardsdatascience.com/centernet-explained-a7386f368962 (Accessed: 

10 September 2022). 

 

Viswanathan DG. (2011). Features from Accelerated Segment Test (FAST). 

 

Xu, Z. et al. (2018) Towards End-to-End License Plate Detection and 

Recognition: A Large Dataset and Baseline. Available at: 

https://github.com/detectRecog/CCPD. 

 

Zang, D. et al. (2015) ‘Vehicle license plate recognition using visual attention 

model and deep learning’, Journal of Electronic Imaging, 24(3), p. 033001. 

Available at: https://doi.org/10.1117/1.jei.24.3.033001. 

 

Zheng, D., Zhao, Y. and Wang, J. (2005) ‘An efficient method of license plate 

location’, Pattern Recognition Letters, 26(15), pp. 2431–2438. Available at: 

https://doi.org/10.1016/j.patrec.2005.04.014



 

68 

 

 


