
i

LICENSE PLATE DETECTION USING DEEP LEARNING
OBJECT DETECTION MODELS

LEONG KAR WAN

MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING AND GREEN
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
NOVEMBER 2023

LICENSE PLATE DETECTION USING DEEP LEARNING OBJECT

DETECTION MODELS

By

LEONG KAR WAN

A dissertation submitted to the Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

November 2023

ii

ABSTRACT

LICENSE PLATE DETECTION USING DEEP LEARNING OBJECT

DETECTION MODELS

 Leong Kar Wan

Object detection – an extension of image classification task in computer vision

can locate any object from any given image input. In the past, this is usually

done by traditional hand-crafted feature algorithms i.e., SIFT, SURF, HOG,

BRIEF, and ORB. These algorithms have been successful in their field however

they do possess some downsides due to their nature. For example, they can be

slow in detection speed, not as accurate, and is difficult to develop. Since 2012,

deep learning has become an emerging technology that can solve object

detection with relatively better performance. However, not many works has

been done when it comes to developing a real life application e.g., license plate

detection. License plate detection is a challenging task in computer vision

because the input image captured can be in different sizes, color, distance,

orientation, and lighting condition. This project aims to study and improve

license plate detection using deep learning models. As of current year, the model

YOLOv4 has achieved 43.5% AP on MS COCO. Meanwhile, EfficientDet-D7

has achieved 55.1 AP on COCO test-dev. This project will use the available off-

the-shelves object detection model to train on CCPD license plate dataset. The

impact of this project is that it provides informative insights and uncover the

iii

potential of the development of real-life applications using recent deep learning

object detection models.

iv

ACKNOWLEDGEMENT

 I would like to thank my supervisor Prof Ts Dr Humaira Nisar and my

co-supervisor Dr. Yap Voon Voi for guiding me through the UTAR master’s

degree program for many years, especially during the pandemic. I would also

like to thank UTAR for giving me this opportunity to learn knowledge and have

valuable experience in this master’s degree program.

v

APPROVAL SHEET

This dissertation entitled “LICENSE PLATE DETECTION USING DEEP

LEARNING OBJECT DETECTION MODEL” was prepared by LEONG

KAR WAN and submitted as partial fulfillment of the requirements for the

degree of Master of Engineering Science in Faculty of Engineering & Green

Technology at Universiti Tunku Abdul Rahman.

Approved by:

(Prof. Ts. Dr. Humaira Nisar) Date:…26 November 2023…..

Professor/Supervisor

Department of Electronic Engineering

Faculty of Engineering Science

Universiti Tunku Abdul Rahman

vi

FACULTY OF ENGINEERING & GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 26 November 2023

SUBMISSION OF DISSERTATION

It is hereby certified that Leong Kar Wan (ID No: 19AGM05725) has completed

this dissertation entitled “License Plate Detection Using Deep Learning Object

Detection Model” under the supervision of Prof. Ts. Dr. Humair Nisar (Supervisor)

from the Department of Electronic Engineering, Faculty of Engineering & Green

Technology.

I understand that University will upload softcopy of my dissertation in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(Leong Kar Wan)

vii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that

it has not been previously or concurrently submitted for any other degree at

UTAR or other institutions.

Name ___LEONG KAR WAN_________

Date _____26 November 2023_____________

viii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iv

APPROVAL SHEET v

SUBMISSION SHEET vi

DECLARATION vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS xii

CHAPTER

1.0 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 5

1.3 Research Objectives 5

2.0 LITERATURE REVIEW 7

2.1 Automatic License Plate Recognition (ALPR) 7

2.2 Object Detection 11

2.3 Non-Neural Network Object Detection Algorithm 13

2.3.1 Scale-Invariant Feature Transform (SIFT) 13

2.3.2 Speeded Up Robust Features (SURF) 13

2.3.3 Binary Robust Independent Elementary Features

(BRIEF) 14

2.4 Neural Network-based Object Detection Models 15

2.4.1 EfficientDet 15

2.4.1.1 Issues Regarding EfficientDet 17

2.4.2 YOLOv4 17

2.4.3 CenterNet 20

2.4.4 Faster R-CNN 21

2.4.5 SSD 23

3.0 METHODOLOGY 25

3.1 Overview 25

3.2 Dataset 25

3.3 Hardware 27

3.4 Software 28

3.5 Data Preparation 28

3.5.1 YOLO format 28

3.5.2 TensorFlow format 29

3.6 Data Augmentation 30

3.6.1 YOLOv4 30

3.6.2 EfficientDet 32

ix

3.7 Preprocessing 33

3.7.1 Enlargement 34

3.7.2 Sharpening 34

3.7.3 Gamma Correction 35

3.7.4 Contrast Limited Adaptive Histogram Equalization

(CLAHE) 35

3.7.5 Non-Local Means Denoising 35

3.8 Models 36

3.9 Updated Model Changes 36

3.10 Evaluation Method 37

3.10.1 Steps to Calculate mAP@0.70 40

3.10.2 Performance Metrics 40

3.11 Detailed Diagram / Chart of Proposed Model 41

4.0 RESULT AND DISCUSSION 49

4.1 Overview 49

4.2 Model Training Loss 49

4.2.1 EfficientDet-D6 50

4.2.2 EfficientDet-D0 50

4.2.3 CenterNet-ResNet50-512x512 50

4.2.4 SSD-ResNet50-640x640 50

4.2.5 FasterRCNN-ResNet50-640x640 51

4.3 Results of Models Training 51

4.4 Preprocessing 55

4.5 Modified YOLOv4-CSP (Proposed Model) 58

5.0 CONCLUSION 63

REFERENCES/BIBLIOGRAPHY 65

mailto:mAP@0.70

x

LIST OF TABLES

Table

2.1

License Plate Detection (Non-DL)

Page

8

2.2 License Plate Detection (DL) 9

2.3 Faster R-CNN Family Speed and Limitations 22

2.4 SSD Performance Comparison 23

3.1 YOLOv4-CSP Architecture 46

3.2 YOLOv4-CSP-Modified Architecture 50

4.1 Initial Models’ Accuracy (mAP@0.70) and Speed (FPS) for

Each Test Set

58

4.2 Pre-processing Result 62

4.3 0.69 IoU Problem 65

4.4 YOLOv4-CSP-Modified Architecture 66

4.5 Accuracy (mAP@0.70) of Modified YOLOv4-CSP vs Original

YOLOv4-CSP
70

mailto:mAP@0.70

xi

LIST OF FIGURES

Figures

1.1

Malaysia Automotive Sales 2022

Page

2

2.1 Example of Image Recognition 12

2.2 Example of Object Detection 12

2.3 EfficientDet Overall Architecture 15

2.4 Models FLOPS vs. COCO accuracy 16

2.5 Scaled-YOLOv4 vs. Others 18

2.6 Newest Version Scaled-YOLOv4 Compared to Ef-

ficientDet and Others

20

2.7 SSD: Single Shot MultiBox Detector 24

2.8 Output from SSD 25

3.1 Examples from CCPD Dataset 28

3.2 Example Images from Six Categories 30

3.3 Mosaic / Blur / Flip / Crop / Exposure / Aspect Ra-

tio / Hue / Saturation

35

3.4 Example of Image Preprocessing 36

3.5 Model Detection with 31% Confidence after Pre-

processing

37

3.6 Example of GT Box and Prediction Box 42

3.7 Intersection over Union 43

4.1 EfficientDet-D6 Training Loss 56

4.2 EfficientDet-D0 Training Loss 57

4.3 CenterNetResNet50-512x512 Training Loss 57

4.4 SSDResNet50-640x640 Training Loss 57

4.5 FasterR-CNNResNet50 Training Loss 58

4.6 Mean Average Precision for All Models for CCPD

Dataset

59

4.7 Speed for All Models for CCPD Dataset 60

4.8 Ground Truth Box (Left) vs Model Prediction

(Right)

65

4.9 YOLOv4-CSP-Modified Training Loss Graph 69

xii

LIST OF ABBREVIATIONS

ALPR Automatic License Plate Recognition

ANPR Automatic Number Plate Recognition

BoF Bag of Freebies

BoS Bag of Specials

BRIEF Binary Robust Independent Elementary Features

CCPD Chinese City Parking Dataset

CLAHE Contrast Limited Adaptive Histogram Equaliza-

tion

CNN Convolutional Neural Network

COCO Common Objects in Context

DL Deep Learning

FAST Features from Accelerated Segment Test

FLOPS Floating-Points Operations per Second

FN False Negative

FP False Positive

FPS Frame Per Second

GMM Gaussian Mixture Model

GT Ground Truth

HSI Hue, Saturation, Intensity

HSV Hue, Saturation, Value

IoU Intersection over Union

mAP Mean Average Precision

MSE Mean Squared Error

xiii

NMS Non-Maximum Suppression

OCR Optical Character Recognition

ORB Oriented FAST Rotated BRIEF

R-CNN Regional Convolutional Neural Network

RPN Region Proposal Network

SCW Concentric Sliding Window

SIFT Scale Invariant Feature Transform

SOTA State-Of-The-Art

SS Selective Search

SSD Single Shot Detector

SURF Speeded Up Robust Features

SWSCD Sliding Window Single Class Detection

TN True Negative

TP True Positive

TPUs Tensor Processing Units

YOLO You Only Look Once

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Computer vision is an important field of research for many real-life

applications. Specifically, in object detection, traditional image processing

algorithms such as Scale-Invariant Feature Transform (SIFT) (Ng, 2003),

Speeded Up Robust Features (SURF) (Bay et al., 2008), Features from

Accelerated Segment Test (FAST) (Viswanathan DG, 2011), Binary Robust

Independent Elementary Features (BRIEF) (Calonder et al, 2010), and Oriented

FAST and Rotated BRIEF (ORB) (Rublee et al, 2011) are used to locate and

identify an object from a given image frame. Over the past decade, a new method

known as deep learning (DL) has overtaken the traditional methods in the field.

However, there are many unknown factors when deploying deep learning

algorithms in real-life applications, e.g., how well does the DL model perform?

This project will dive into a popular use case scenario i.e., license plate

recognition task using DL models which in the past was performed using

traditional image processing methods.

 License plate recognition is an important task in many real-life

applications e.g., parking management system, traffic control system.

2

Figure 1.1 Malaysia Automotive Sales 2022 (Malaysia - Flash Report,

Automotive Sales Volume, 2022 - MarkLines Automotive Industry Portal,

2022)

In Malaysia, the number of cars on the road has been increasing each year. Figure

1.1 shows the total number of car sales in 2022 compared with 2021. With the

increase in automotive volume especially in the cities, license plate recognition

systems can be useful in busy roads or shopping malls to avoid traffic congestion,

car park management, etc. In China, the highway is always stuck with loads of

traffic going back to their hometown every Chinese New Year. In Malaysia, due

to the toll stop, traffic congestion will happen if the number of automobiles keeps

increasing in the coming years. One innovative way to avoid the same happening

as in China is to develop a license plate recognition system with a high-speed

camera. The car doesn’t need to stop at the toll station hence the traffic

congestion is avoided. This can also eliminate many sub-systems from the toll

station such as the automated car blocker, digital card scan, etc., saving a high

amount of maintenance fees each year. Another example would be to track stolen

cars on the road. In other countries, it is hard to search for any stolen car due to

3

its geometrical disadvantage. An unregistered stolen car can be used to conduct

crime in many ways. With an on-the-road car tracking system, license plate

recognition can solve such a problem.

In the past decade, Automatic License Plate Recognition (ALPR) had been a

popular research topic in computer vision. The algorithm is generally divided

into three tasks i.e., license plate detection, character segmentation, and character

recognition. Image processing techniques e.g., edge detection, color matching,

histogram analysis, and others were used to extract the location of the license

plate and characters from the output of video-capturing devices. There are

challenging issues regarding license plate detection that needs to be resolved.

Therefore, much research has been conducted to improve the efficiency, speed,

and accuracy of license plate detection tasks. A recent paper (Habeeb et al., 2021)

can detect and recognize Iraqi and Malaysian license plates with 90.23% and

90.60% accuracy using SVM and YOLOv2-ResNet50. Another paper

(Jørgensen, 2017) using YOLOv2-darknet19 can achieve an accuracy of 99.8%

out of 410 samples of license plates. This raises the question, is it worth

continuing with research into vehicle license plate detection? But the answer is

clear, as the dataset used is normally small, so the detection accuracy is good.

However, if the larger datasets are used then work is more challenging.

 Despite the availability of several well-known objection detection

models, there are still problems that researchers face. One problem that

researchers face is the non-uniformity of the license number plate models in

different parts of the world. The license number plate comes in different sizes

4

and information on the number on the plate also varies. The other problem is the

low resolution of the license number plate that shows up on the video on

surveillance systems (Sharma, Karan, and Karan Sing, 2015). Researchers also

face another challenge which is speed. When it comes to video, object detection

models need to carry out analysis in an environment that is changing rapidly.

This means that object detection models must be able to classify objects of

interest and be very fast during prediction to be able to identify objects that are

in motion. For example, in a football match, the object detection model must be

able to track the movement of the ball and players on the football field. The next

paragraph will further explore a license plate detection and recognition technique.

 The vehicle license plate detection and recognition techniques are

commonly known as the Automatic number-plate recognition (ANPR) system.

In the past template matching techniques (Ashtari et al., 2011) were used to

identify vehicle number plates. This approach identifies the width, height, and

contour area of the number plate. Some ANPR systems use basic image

processing techniques to identify fixed license plates pattern in controlled

conditions such as lighting and distance. There are advanced ANPR systems that

make use of object detection models to localize license plates in images. Another

technique in some ANPR systems is to create a unique neural network that can

output an enhanced image so that it can be interpreted by the Optical Character

Recognition (OCR) system.

 Although ANPR has been a success in detecting the license plate, it faces

some challenges. There are several problems with ANPR systems. ANPR faces

5

the non-uniformity of license plate number problem as mentioned previously,

that is, the length of the license plate number varies for different cities and

countries. Another problem that the ANPR system is facing is that the ununiform

light conditions throughout the day and night may affect the detection accuracy.

One report (ANPR Cameras | ANPR accuracy test, 2019), shows that the camera

can capture the image at a decent view during the daytime. The same report cited

that a slower shutter speed produces smudged images. The report also cited that

the success rate dropped considerably towards the end of the twilight.

1.2 Problem Statement

 Object detection using traditional image processing methods such as

SIFT, SURF, HOG, BRIEF, and ORB has various disadvantages when it comes

to developing a real-life application and has low accuracy compared to the recent

deep learning approach. For example, the number of detectable objects is limited.

The orientation and angle of the object also affect the accuracy. The types, shapes,

and sizes, and the presence of occlusion will also cause the object to be non-

detectable. More importantly, the speed of detection is also slow.

1.3 Research Objectives

Hence, we formulate the following research objectives.

i. Explore various deep-learning object detection models.

ii. To improve the speed and accuracy of license plate detection

tasks using deep learning models through image preprocessing,

training, and modifying existing model architecture.

6

The rest of the dissertation is organized as chapter 2, the literature review;

chapter 3, the methodology; chapter 4, results, and discussion; chapter 5,

conclusion, and future works.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Automatic License Plate Recognition (ALPR)

 In the last 20 years of research, Automatic License Plate Recognition

(ALPR) algorithms are divided into two to three tasks i.e., license plate detection,

character segmentation, and character recognition. Image processing techniques

e.g., edge detection, color matching, histogram analysis, and others were used to

extract the locations of objects in an image.

 In the license plate detection task, Anagnostopoulos et al used concentric

sliding windows (SCWs) to perform segmentation and extract Region of Interest

(RoI) (Anagnostopoulos et al., 2006). Zheng, Zhao, and Wang enhanced the

luminance and contrast of the image before performing edge detection. Chang et

al. used a combination of edge property and color property in the form of Hue,

Saturation, and Intensity (HSI) to form a fuzzy map. Hsu, Chen, and Chung used

Sobel vertical operator to extract edges followed by applying the Gaussian

mixture model (GMM) and EM algorithm. Faradji, Rezaie and Ziaratban used

vertical edges, histograms, dilations, erosion, and median filter. Ashtari, Nordin,

and Seyed Mostafa Mousavi Kahaki used template matching and color features.

Zang et al. used a modified traditional visual attention model with fusing color,

intensity, and orientation feature maps. Table 2.1 gives an overview of image

processing-based license plate detection algorithms.

8

Table 2.1 License Plate Detection Algorithm (Non-DL)

Year Method Image Input

Siz/Resolution

Dataset

Size

Accuracy Speed Test Sys-

tem

Anagnos-

topoulos et

al., 2006

Sliding Con-

centric Win-

dows (SCWs)

Avg 90x28

Avg 102x32

61x19-153x48

61x19-153x48

138x29-155x37

Total

427

258

310

154

185

1334

98.1%

92.2%

97.7%

95.5%

97.3%

96.5%

111ms Pentium IV

at 3.0 GHz

with 512-

MB RAM

Zheng,

Zhao and

Wang, 2005

Vertical edge 384x288 163

218

784

100.0%

100.0%

99.7%

47.9ms Pentium-4

2.4 GHz,

256 MB

RAM PC

Chang et

al., 2004

Color pro-

cessing +

edge detection

+ fuzzy map

640x480

768x512

639

449

98.8%

96.7%

0.4s a Pentium

IV-1.6

GHz PC

Hsu, Chen

and Chung,

2013

Edge cluster-

ing

- AC-681

LE-757

RP-611

93%

93%

94%

0.21s

0.26s

0.32s

Windows

PC with a

Pentium

Dual Core

2.4-GHz

processor

and a 2-GB

RAM with

C++ com-

piler

Faradji, Re-

zaie and

Ziaratban,

2007

Vertical Edge,

Histogram,

Compact Fac-

tor, Dilation,

Regions in

Common,

Filling Holes,

Erosion, Me-

dian Filter

384x288 400 83.50% 32.4ms Pentium-4

2.4 GHz,

256 MB

RAM

Ashtari,

Nordin and

Seyed Mo-

stafa

Mousavi

Kahaki,

2011

Template

Matching,

Colour Fea-

ture,

- 250 96.80% dual-core

1.7-GHz

CPU and

4-GB

RAM.

Zang et al.,

2015

Visual Atten-

tion Map

- 835 99.2% 140ms Intel Core

2 Duo

2.2GHz

desktop

computer

4GB Ram

 Today, many large datasets are available publicly. By the combination of

large datasets, the computing power of newer hardware, and innovative and

successful deep learning mechanisms, researchers can create an object detection

9

model with high accuracy and speed. Specifically, in the license plate detection

task, researchers have been studying the performance of CNN models in

detecting license plates. Selmi, ben Halima and Alimi used the image processing

method before feeding the image into the CNN to classify the contours into LP

and non-LP. Habeeb et al. used YOLOv2 with ResNet50 backbone to detect

license plate bounding box. Jørgensen used darknet19 and YOLOv2 for

detection. The last layer was removed and replaced with a linear classifier. Next,

three additional convolutional layers were added. Hendry and Chen utilized

Sliding Window Single Class Detection (SWSCD) to detect both plates and

characters because the original YOLO has difficulty detecting bounding boxes

of a small object due to its anchor-based detection. This sliding window

approach is possible due to the speed of YOLO-tiny. They modified YOLO-tiny

even further by decreasing its number of layers to increase its speed. Table 2.2

gives an overview of license plate detection method using deep learning

approach.

Table 2.2 License Plate Detection Algorithm (DL)

Year Method /

Model

Pre-

pro-

cessin

g used

Image In-

put

Size/Res-

olution

Da-

taset

Size

(Test)

Accu-

racy

Speed Test

System

Selmi,

ben

Halim

a and

Alimi,

2017

2-conv-

layers +

2-fc-lay-

ers CNN.

Mor-

pho-

logical

opera-

tions,

adap-

tive

thresh-

old,

con-

tours,

geo-

metric

896x592 Cal-

tech-

126 +

AOLP

-2049,

P93.80%

R91.30

%

P92.60%

R96.80

%

P93.50%

R93.30

%

P92.90%

R96.20

%

NA Intel PC

Core i7

CPU 2

GHz, 8

GB of

RAM,

and ub-

untu

LTS 16

as the

operat-

ing sys-

tem. py-

thon,

10

filter-

ing

opencv

3.1, and

a Ten-

sorFlow

frame-

work.

Ha-

beeb et

al.,

2021

SVM,

YOLOv2

-Res-

Net50, 7

anchor

boxes

Skew

correc-

tion

2720x123

2

Iraqi-

404

Ma-

lay-

sian-

681

90.23%

90.60%

(Five-

fold)

- com-

puter

with a

built-in

GPU

and 16

GB of

RAM

Jørgen

sen,

2017

YOLOv2

-dark-

net19-

modified

 2464x163

2

416x416

410 99.8% 0.0173s

(17ms)

GeForce

GTX

1070

8GB

GPU

Hen-

dry

and

Chen,

2019

Modi-

fied-tiny-

YOLOv1

, Sliding

Window

Single

Class De-

tection

 NA AC-

681

LE-

757

RP-

611

Total-

2049

98.22%

825.81m

s

Nvidia

GTX97

0 GPU

acceler-

ator

4GB

memory

, i7 Cen-

tral Pro-

cessing

Unit

(CPU),

and

16GB

DDR2

memory

 As mentioned in Chapter 1, this research is concerned with the object

detection algorithm developed in recent years, the State-Of-The-Art (SOTA)

deep learning convolution neural network models. Therefore, this chapter will

explore various algorithms related to this research such as Google AI Team’s

EfficientDet (Tan et al., 2019), YOLO family (Bochkovskiy et al., 2020), and

others. To date, Efficientdet models and YOLO models are among the top ten

models from paperswithcode.com in Computer Vision – Object Detection task,

11

COCO test-dev dataset. In terms of accuracy, EfficientDet scored 57.3 AP while

YOLOv4 scored 56.0 AP. In terms of speed, YOLOv4 scored 16 FPS while

EfficientDet scored 6.5 FPS. However, other models, that is, Faster R-CNN,

CenterNet, and SSD are also evaluated in this research to obtain a better result

for evaluation and comparison purposes.

2.2 Object Detection

 Since one of the aims of this study is to use CNN-based objection

detection models to carry out license plate identification, it would be logical to

explore object detection techniques. So, this section will explore object detection.

The term object recognition refers to a computer vision technique used

to identify objects in each digital image or video. With object detection, once an

object of interest is detected it draws bounding boxes around the detected object.

This enables the algorithm to locate the object of interest in any given image or

video.

There is some confusion concerning object detection and image

recognition, so this dissertation would like to clarify this before proceeding

further. With image recognition, the whole image is given a label. For example,

an image of a car is labeled as “car” and an image of two cars is also labeled as

“car”, as shown in Figure 2.1.

12

Figure 2.1 Example of Image Recognition

With object detection, a box is drawn around each car and the object ‘car’ is

labeled accordingly. Different models will have different approaches how to

determine the exact location of the object. As can be observed object detection

provides more information, for example, it can predict the location of the car or

cars and label them individually, as shown in Figure 2.2.

Figure 2.2 Example of Object Detection

 Object detection methods can be divided into two approaches, that is,

neural network-based or non-neural. Examples of non-neural approaches include

but are not limited to scale-invariant feature transform (SIFT) (Ng, 2003),

speeded-up robust features (SURF)(Bay et al., 2008), and binary robust

independent elementary features (BRIEF) (Calonder et al., 2010). The following

section will briefly look at these non-neural or image processing based

approaches.

13

2.3 Non-Neural Network Object Detection Algorithm

2.3.1 Scale-Invariant Feature Transform (SIFT) (Ng, 2003)

The SIFT algorithm consists of four steps. These four steps are:

Scale-space peak selection: Potential location for finding features.

Step 1: Key point Localization - In this step, the key features are located.

Step 2: Orientation Assignment - The orientation is assigned to key points.

Step 3: Key point descriptor – Key points are constructed as a high-dimensional

vector.

Step 4: Key point Matching

2.3.2 Speeded-Up Robust Features (SURF) (Bay et al., 2008)

SURF is a feature detector and descriptor. The SIFT descriptor partly

inspired SURF. SURF is a fast and robust algorithm used for local, similarity

invariant representation and comparing of digital images. Bat et al. cited that

SURF performance is close to or better than previously proposed schemes, for

example, SIFT. This is possible because SURF uses integral images for image

convolutions. SURF consists of the following steps:

Step 1: Feature Extraction

Feature extraction refers to the process of extracting relevant information

features from an input image. The features extracted must contain important and

unique attributes of the image.

Step 2: Feature Description

The SURF descriptor is generated by fixing a position based on

information gathered around the point of interest. Next, a square region is

constructed and aligned to the selected position and extract the SURF descriptor

14

from it. The square region is then divided up into smaller sub-regions. For each

sub-region, a few features are computed at a regular-spaced sample point. The

feature descriptor is based on the Haar wavelet response around the point of

interest.

Step 3: Feature Matching

The purpose of feature matching is to analyze and match the features of

two or more digital images. In the SURF algorithm, the matching degree is fixed

by computing the Euclidean distance between two feature points.

2.3.3 Binary Robust Independent Elementary Features (BRIEF) (Calonder

et al., 2010)

BRIEF uses binary strings as an efficient feature point descriptor. The

algorithm finds the binary strings directly without finding descriptors. Next, it

makes use of the smoothened image patch and identifies a set of location pairs.

After those compares the pixel intensity comparisons on the location pairs

identified earlier.

2.4 Neural Network-based Object Detection Models

Several recent (2019~2020) State-Of-The-Art (SOTA) object detection

models were reviewed, including EfficientDet (Tan, Pang, and Le, 2019), Yolov4

(Bochkovskiy, Wang and Liao, 2020), CenterNet (Duan et al., 2019), and a few

older models e.g., Faster R-CNN (Ren et al., 2015) and Single Shot Detector

(SSD) (Liu et al., 2016) with ResNet backbone. As mentioned in chapter 1, this

research aims to compare and evaluate the performance, strengths, and

weaknesses of recent year’s SOTA object detection models, therefore this

15

chapter will explore the design and architecture of each SOTA model and study

their new innovative ideas and strategies, to further improve the accuracy and

speed of the models.

2.4.1 EfficientDet

EfficientDet is developed by Google, a family of a model that is scalable

and aims to be efficient. The classification by neural network (EfficientNet) is

extended with a bi-directional feature network (BiFPN) that can be scaled freely

for different resolutions. It has a high level of accuracy compared to other object

detectors using significantly less computation (Tan and Yu, 2020). Figure 2.3

gives an overview of EfficientDet Overall Architecture.

Figure 2.3 EfficientDet Overall Architecture (Tan, Pang, and Le, 2019)

The novelty of EfficientDet is that it is derived from constructing the backbone

and neck. It used the EfficientNet as the backbone of the EfficientDet algorithm.

EfficientNet is scalable and provided scales pre-trained on ImageNet. In addition,

When EfficientNet was announced, it was one of the highest-performing

ImageNet classifiers. For example, EfficientNet-B7 achieved 84.4% accuracy.

16

Figure 2.4 Model FLOPs vs. COCO accuracy (Tan, Pang, and Le, 2019)

(Tan, Pang and Le, 2019) also used a weighted bi-directional FPN (BiFPN) and

the objective is to blend features at different levels of the backbone. Some new

strategies were implemented in BiFPN. For example, the new weighted feature

fusion is using Fast Normalized Fusion 𝑂 = ∑
𝑤𝑖

∈ + ∑ 𝑤𝑗𝑗
𝑖 ∙ 𝐼𝑖 , replaced Softmax

Normalized Fusion 𝑂 = ∑
𝑒𝑤𝑖

∑ 𝑒𝑤𝑖𝑗
𝑖 ∙ 𝐼𝑖.

2.4.1.1 Issues Regarding EfficientDet (Jacob, 2020)

This section will discuss issues regarding EfficientDet, however, the following

section will explore the areas that can prevent image detection systems from

being implemented. The issues are as follows:

1. Data Collection – It is cited that EfficientDet can reduce the amount of data

that is needed to generalize a new domain.

2. Model Design and Hyper Parameterization - A model must be constructed

from the data collected. In addition, several of the hyperparameters need to

be tuned to adapt to the model.

17

3. Training Time – The model based on the data collected needs to be trained

and the time need to train the model is measured as floating-point operation

per second (FLOPS).

4. Memory Footprint – The amount of memory needed to store the model has

to be determined after the model has been trained.

5. Inference Time – The predations performance must be evaluated to

determine whether the model is quick enough to be used in a production

setting.

 Overall, EfficientDet improved the design concept and architecture of the

detection model, increasing the accuracy and speed by a large margin.

2.4.2 YOLOv4 (Bochkovskiy, Wang, and Liao, 2020)

 The YOLO object detector has gained popularity for its incredible

performance on speed where it can achieve real-time detection in the real world

without sacrificing its accuracy. Similar to the other one-shot detector, e.g., SSD,

it was trained in a single phase.

Redmon et al. wrote the original YOLO, it was then continued by

Bochkovskiy et al. due to historical reasons. The model consists of three main

components: the head, neck, and backbone. The backbone uses convolutional

layers to detect image features before processing them. To detect the image

features the model is first trained on a classification dataset. Once the

classification network is trained, the neck and the head are responsible to predict

the location offsets of the objects from the image. The final outputs are the

18

coordinates of the bounding boxes and their objectness probability. Refer to

figure 2.5.

Figure 2.5 Scaled-YOLOv4 vs. Others (Bochkovskiy, Wang, and Liao,

2020)

As can be observed from Figure 2.3.2.1, YOLOv4 is faster and more accurate

than YOLOv3, EfficientDet, ASFF, ATSS, and CenterMask.

It is cited that YOLOv4 was a collection of established computer vision

algorithms. This collection of algorithms has been combined and validated

through the research process.

The contribution of YOLOv4 as compared to its predecessor is that it

introduced Bag-of-Freebies (BoF) and Bag-of-Specials (BoS). BoF is a

collection of techniques that increases accuracy but only increases inference time

by a little, e.g., improving bounding box loss using IoU, GIoU, and CioU instead

of only Mean Squared Error (MSE). Other BoF includes various new data

augmentation, e.g., include mixup, cutout, cut mix, mosaic, and focal loss for

19

data imbalance issues. BoS are techniques that are more focused on the post-

processing part, e.g., SPP module, attention module, feature integration, Mish

activation, and soft Non-Maximum Suppression (NMS).

Another contribution by YOLOv4 is to design the model so that it can be

trained on commercial GPU, e.g., RTX2080TI. However, YOLOv4 is

maintained and developed constantly, a better version of YOLOv4 i.e., Scaled-

YOLOv4 has been released and tops the original YOLOv4. Figure 2.6 below

shows the performance between them.

Figure 2.6 Newest Version Scaled-YOLOv4 Compared to EfficientDet and

Others (Bochkovskiy et al., 2021)

2.4.3 CenterNet (Duan et al., 2019)

CenterNet is a highly accurate one-stage detector that works slightly

differently from YOLO and SSD. It has an additional output, a model heatmap

20

that has a strong value towards the center of an object that can denote as the

center. The steps to generate that center point is as follows:

a. A Maxpool is applied to the model heatmap to generate a better

midpoint representation.

b. Take the model heatmap and the output from a. to perform a boolean

operation.

c. Multiply b. with the model heatmap.

d. Reduce center point output with a confidence threshold.

The novelty of CenterNet is to remove the inefficient Non-Maximum

Suppression (NMS) with the above center point representation. The combination

of two corner points (top-left, bottom-right) and a center point formed key point

triplets that can correctly determine the location of an object more efficiently

compared to other anchor-based bounding boxes.

2.4.4 Faster R-CNN (Ren et al., 2015)

 This section will briefly look at R-CNN before exploring Fast R-CNN,

and Faster R-CNN. This is necessary as Fast R-CNN precedes Faster R-CNN.

 R-CNN stands for “Region-based Convolutional Neural Networks”. This

is first proposed by (Girshick et al., 2014). R-CNN consists of two steps. The

first step is to identify object region bounding boxes. Secondly, it extracts CNN

features from each region to be classified.

21

Girshick improved the speed of R-CNN by unifying three independent

models into one common framework. In addition, the proposed model also

increased the shared computation results. This model is called Fast R-CNN.

 Ren et al. introduced the Faster R-CNN model. The Faster R-CNN model

is a result of constructing a single, unified model which consists of the region

proposed network (RPN) and the Fast R-CNN model with shared convolution

feature layers. Table 2.3 shows difference between three R-CNN models in terms

of speed and limitations.

Table 2.3 Faster R-CNN Family Speed and Limitations

Algorithm Prediction

(time/image)

Limitations

R-CNN

(Girshick et

al., 2014)

40 – 50 sec Requires lots of computation time since each re-

gion is passed to the CNN separately. In addi-

tion, three different models are required to make

predictions.

Fast R-CNN

(Girshick,

2015)

2 sec The computation time is high. This is the result

of a slow selective search.

Faster R-CNN

(Ren et al.,

2015)

0.2 sec The performance is dependent on the perfor-

mance of the previous system. The reason is

that the object proposal requires time and be-

cause three different systems are operating and

working sequentially.

22

Faster R-CNN replaced selective search (SS) in the previous Fast R-CNN

algorithm with two additional convolution layers, i.e., 256-d feature vector layer,

and another output layer at each convolutional position, which contain regressed

bounds + objectness score of k region proposals, depending on aspect ratios and

scales, thus network can be trained end to end. The advantage of merging region

proposal into the network is that it replaced CPU computing time with GPU and

thus can reduce computing time (10ms per image) hence increasing performance

(5fps). The Faster R-CNN algorithm has reported 73.2% mAP on PASCAL VOC

2007 and 70.4% mAP in 2012.

2.4.5 SSD (Liu et al., 2016)

 Single Shot Detector (SSD) pave the road to the design of one-shot

detector alongside with YOLO model in the year 2016. Object detection is a

difficult task, the goal is to find the four coordinates of the wanted object from

the given image input, which sometimes consists of multiple objects of different

sizes blocking each other. The innovative idea one can remove the region

proposal network (RPN) as implemented in the two-shot detector Faster R-CNN

is to divide an image into some grid cells. Then, many rectangular boxes of

different ratios are preset on each grid cell, known as the default boxes. As cited

in the paper, this method has a huge disadvantage when it comes to detecting

small objects as compared to Faster R-CNN. The introduction of ‘default boxes’

with different ratios aims to solve this problem.

The following Table 2.4 shows the performance of SDD compared to some

notable models:

23

Table 2.4 SSD Performance Comparison (Hui J, 2018)

 Image

Resolution

Output

Bounding-

Boxes

mAP

(VOC2007

test set)

Frame Per Sec-

ond (Titan X

GPU)

SSD512 512 x 512 24564 79.8 19

SSD300 300 x 300 8732 77.2 46

YOLO 448 x 448 98 63.4 45

Faster R-

CNN

Around

1000 x 600

Around 6000 73.2 7

The SDD model consists of two parts:

1. a backbone, and

2. SSD head.

In the recent deep learning object detection models, this type of detector employs

two major parts in their architecture, known as the backbone, and the head.

Different from image recognition tasks, an object detector needs to output a

coordinate for a detected object. However, one way to train this model is to

extend an image recognition model with additional convolutional layers to get

the correct output. SSD is among the successful models that had achieved a very

good result with such implementation.

 While the backbone is responsible to extract the features from the input

image, the head of the SSD needs to use those feature maps to determine the

location of the objects. A few designs concept is implemented in the SSD head,

e.g., grid cell representation, multi-scale features, and different aspect ratio of

the anchor box. With multi-level viewing of the image, SSD can determine the

bounding box of an object from the image even if the object appears to be smaller

or bigger compared to when the model is solely trained on the image recognition

dataset. Figure 2.7 shows overall network architecture of SSD.

24

Figure 2.7 SSD: Single Shot MultiBox Detector (Hui J, 2018)

To improve accuracy, SSD uses different data augmentation techniques i.e., to

deploy a larger scale of sampling, hard negative mining which only chooses

negative examples of high confidence loss and extends the loss function to fit

the number of default boxes. This combination of multiple essential techniques

allowed SSD to extract semantic meaning from the input image and preserve the

spatial structure of a low-level resolution image and achieved a better result than

the other models i.e., Faster R-CNN and YOLO. Figure 2.8 demonstrates output

from SSD.

Figure 2.8 Output from SSD (Karol Majek, 2018)

25

CHAPTER 3

METHODOLOGY

3.1 Overview

 This section will elaborate the research methodology, the dataset used in

this project, hardware, and software used. Next, how the data is being prepared

to be able to use for training is discussed. Data augmentation used in the different

frameworks will be presented. To increase models’ accuracy, images are

preprocessed before model detection. Image processing methods will be

discussed next. Then, each model of choice and their corresponding framework

will be presented. The selected model to improve its performance and its

modification will be discussed. Lastly, the evaluation metric and steps will be

briefly explained.

3.2 Dataset -- Chinese City Parking Dataset (CCPD) (Xu et al., 2018)

 CCPD is a dataset that consists of multiple challenging test images for

license plates in China. The characteristic of Chinese license plate is that they

have a blue background, white foreground that consists of letters, alphabets, and

a Chinese character that represents the province. This dataset consists of train,

valid, and test images. To test the models mentioned above, this project will be

using test images from the Chinese City Parking Dataset (CCPD). This dataset

holds 250k unique car license plate images. The image data include license plate

location annotations in individual text files.

The following are examples taken from CCPD: refer to figure 3.1.

26

Figure 3.1 Examples from CCPD Dataset

The dataset used in this project is the Chinese City Parking Dataset (CCPD) (Xu

et al., 2018). This dataset consists of 341,978 total images where 100,000 are

used for training, 99,996 are for validation and 141,982 are used for testing. Test

images are grouped into ccpd_blur (20,611 images) – blurry images, ccpd_db

(10,132 images) – dark bright images, ccpd_fn (20,967 images) – far near images,

ccpd_rotate (10,053 images) – rotated images, ccpd_tilt (30,216 images) – tilted

images, and ccpd_challenge (50,003 images) – combination/mixed of the above.

Figure 3.2 shows all six categories of images.

27

Figure 3.2 Example Images from Six Categories

3.3 Hardware

 A consumer-type desktop computer is used to run this project. The CPU

used is AMD Ryzen 5 2600 3.40GHz 6 Cores 12 Threads. The RAM used is

Kingston 32Gb 3200Mhz DDR4. The GPU used is Asus ROG Strix Nvidia

Geforce Rtx2080ti 11gb ram. The storage disk used is Kingston 500Gb Solid

State Drive. The power supply unit used is Fractal Design Ion+ Platinum 860

watt.

28

3.4 Software

The following softwares are used in the project:

- Ubuntu 20.04.5 LTS (Focal Fossa)

- Python 3.9

- LabelImg

- Darknet

- Yolomark

- TensorFlow 2.5.0

- Pytorch

- CUDA Toolkit 11.2

- CuDNN 8.1.0

- Anaconda

- OpenCV

3.5 Data Preparation

 Raw training images and labels need to be converted into the

corresponding framework following their file format.

3.5.1 YOLO Format

 YOLO framework needs to specify several items for the training.

a.) obj.data – to specify several important parameters.

classes = 1 Specify the number of classes in the set.

train = train.txt Specify the path to training samples.

valid = valid.txt Specify the path to validating samples.

names = obj.names Specify object classes label.

backup = backup Specify the path to save the trained model.

29

b.) obj.names – to specify object label name.

c.) obj.cfg – a set of configs for the model, e.g., width, height, batches, etc.

 After the parameters are set, training images and labels need to be

separated into two standalone folders consisting of only images or labels. A list

of file paths is generated using a bash script and saved as train.txt, valid.txt, and

test.txt. Then, the label format for YOLO is different from TensorFlow. YOLO

annotation format is as follows: <object_class> <x> <y> <width> <height> for

each object in a different row. Example, 0 34 43 66 33. An automated Python

script is used to convert CCPD object annotations into this format.

3.5.2 TensorFlow Format

 For the TensorFlow framework, images and labeling need to be

converted into .tfrecord file format. The advantages of tfrecords are That it can

store data efficiently, fast I/O, and single-source data files (Creating TFRecords,

2021). These implementations allowed Google to take advantage of Tensor

Processing Units (TPUs) on the cloud.

 Data downloaded from CCPD encode their annotations as the filename,

e.g.,

“025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-

0_0_22_27_27_33_16-37-15.jpg”.

In this example, each attribute is separated by a ‘-’ sign, and each field represents

different information. The first field encodes the area ratio of the license plate to

the entire image, i.e., ‘025’. The second field encodes horizontal tilt degree and

30

vertical tilt degree, i.e., ‘95_113’. The third field encodes bounding-box

coordinates of left-top and bottom-right, i.e., ‘154&383_386&473’. The fourth

field encodes the exact location (x, y) of the four vertices from the image, starting

from the bottom right, i.e., ‘386&473_177&454_154&383_363&402’. For the

fifth field, there are seven characters in the Chinese license plate, i.e., one

province, one alphabet, and five alphabets + digits. They were encoded in their

corresponding index number i.e., ‘0_0_22_27_27_33_16’. The sixth field is the

brightness, i.e., ‘37’. The seventh field is the blurriness, i.e., ‘15’.

 These annotations are read using a Python script, then convert to tfrecord

using TensorFlow API, such as:

 tf.python_io.TFRecordWriter() – for writing data.

 tf.train.Example(features=tf.train.Features(feature={})) – for converting

variables into TensorFlow features.

3.6 Data Augmentation

 Data augmentations are standard implementation for deep neural

network training due to several reasons, e.g., to improve accuracy, to avoid

overfitting, etc. In this project, model training follows the data augmentation

strategy provided by the framework.

3.6.1 YOLOv4

 YOLOv4 uses multiple data augmentation techniques in their model

training, these techniques are categorized as Bag of Freebies (BoF) which means

31

they do not add detection time during the inference. YOLOv4 data augmentation

techniques are as follows:

- Flip – flip training images left or right.

- Rotation – rotate the image 90, or 180 degrees clockwise or

anticlockwise.

- Cutmix – cut a random part of an image and replace it in another image.

- Mosaic – combine multiple images into one.

- Mixup – stack images together with transparency.

- Blur – slightly blur the images.

- HSV – randomly slightly adjust the image’s Hue, Saturation, and Vue.

It is important to mention that some of the augmentations, e.g., random flipping,

rotation, are not appropriate and may reduce model accuracy. The figure 3.3

below shows example of random augmentation technique for YOLOv4.

32

Figure 3.3 Mosaic / Blur / Flip / Crop / Exposure / Aspect Ratio / Hue /

Saturation

3.6.2 EfficientDet

EfficientDet uses Scale Jittering which resizes an image and crops it into a fixed

size.

- Small jittering – uses a small ratio of [0.8, 1.2].

- Large jittering – uses a larger ratio of [0.1, 2.0].

The small jittering is good for shorter training time, i.e., 30 epochs. However,

the accuracy decreases when using large jittering. For longer training time, i.e.,

300 epochs, large jittering performs better (Tan et al., 2019).

33

3.7 Preprocessing

 Preprocessing techniques are useful in solving many real-life problems,

e.g., improving the visibility of a low-resolution image. This project explores the

possibility of simple and low computation image preprocessing to improve

object detection models’ performance. Most of the preprocessing techniques

used in this project are done through Python OpenCV and NumPy library. Figure

3.4 shows one example of image preprocessing to improve visibility.

Figure 3.4 Example of Image Preprocessing

The left image shows an original car with license plate taken in blurry condition.

The right image shows the result after performing bilateralFilter with d=9,

sigmaColor=75, sigmaSpace=75. The model was not able to detect the car

license plate on the left however able to do so with 31% confidence, refer to

figure 3.5.

34

Figure 3.5 Model Detection with 31% Confidence After Preprocessing

3.7.1 Enlargement

 Enlargement is used to increase the resolution of an image. An image

after being enlarged will have a greater number of pixels than the original image,

though will not increase the visibility of the image because the algorithm simply

copies the pixel color of the neighbor value. Hence, in the next stage image,

preprocessing techniques such as image sharpening will be performed to

hopefully make the image clearer to the human eye, as well as the computer

vision algorithm. Adjustment to the size of the image depends on the scaling

factor, 2.0 will enlarge the image by factor of 2, 0.75 will make the image smaller

by 75%. In this project, the images are enlarged by 2.0.

3.7.2 Sharpening

35

 Sharpening is an algorithm to make an image less blurry. This algorithm

uses an x*y kernel, also known as filters or convolution matrix, and loops

through the dimensions of an image. Different values or sizes of the kernel will

give different strengths of sharpening results.

 kernel = [
0 −1 0

−1 5 −1
0 −1 0

]

3.7.3 Gamma Correction

 Gamma correction is used to manipulate the brightness of an image.

O = (
𝐼

255
)

1

𝛾 ∗ 255

Equation 3.1 Gamma Correction Equation

The gamma value 𝛾 is range from 0+. If the value is between 0 and 1, the output

image will be darkened. If the value is above 1, the image will be brightened.

OpenCV provides an easy method to perform gamma correction using a lookup

table (LUT).

3.7.4 Contrast Limited Adaptive Histogram Equalization (CLAHE)

 Histogram equalization takes the pixel count of a low-contrast image and

equalizes them evenly. However, it equalizes the whole image at a global scale.

On the other hand, CLAHE applies equalization on smaller patches or tiles to

obtain a higher-quality result. This is very useful in the test dataset due to dark,

blurry images and small objects. The image needs to be first converted to

grayscale or LAB color format.

3.7.5 Non-Local Means Denoising

36

 Noise in the context of images is sometimes unavoidable, especially in

image processing. Blurring techniques can remove some of the noise quite well.

However, there is another approach which is a non-local means of denoising.

This algorithm removes noise by finding a similar patch of pixel from another

region in the same image.

3.8 Models

 The models chosen to be implemented in this work are the state-of-the-

art model in recent years which are very efficient and have high accuracy.

 EfficientDet (AutoML)

 YOLOv4 (Darknet)

 CenterNet (TensorFlow)

 SSD (TensorFlow)

 Faster R-CNN (TensorFlow)

 YOLOv5 (Pytorch)

 Among the chosen models, four frameworks have been used. They are

Darknet framework in C++ for YOLOv4, Automl in Tensorflow for EfficientDet,

Tensorflow Object Detection API for Faster R-CNN, SSD, and CenterNet, and

Pytorch for YOLOv5.

3.9 Updated Model Changes

 The model YOLOv4 will be selected to improve its performance due to

several reasons, i.e., fast detection speed, robustness to modification in DarkNet

framework, etc.

37

 YOLOv4 detects objects in three different scales, i.e., small, medium,

and large. As stated in the paper, this helps to detect objects of different sizes.

For this project, two identical layers have been added to each scale before

detection layers, making it a total of six additional convolution layers added to

the whole architecture. By doing this, the hypothesis is that it helps the network

to learn more features regard to the new CCPD dataset that the model may have

never seen before.

 The initial weights of the six newly added layers were initialized

randomly. This results in longer total training time, and this will be further

discussed in chapter 4.

3.10 Evaluation Method

 Evaluation of the accuracy of the models typically follows standard MS

COCO object detection metrics (mAP@0.5:0.05:0.95) which stands for the

mean Average Precision for IoU value ranges from 0.5 to 0.95 with 0.05

increment, averaged. For instance, this will calculate the (mAP@0.5 +

mAP@0.55 + mAP@0.60 + mAP@0.65 + mAP@0.70 + mAP@0.75 +

mAP@0.80 + mAP@0.85 + mAP@0.90 + mAP@0.95) / 10. However, since

this project only consists of one object class category, i.e., license plate, therefore

Average Precision (AP) is set to be equivalent to mean Average Precision (mAP).

Other than that, only mAP@0.70 is used as the evaluation metric to allow the

comparison of result one-to-one with the result from CCPD (Xu et al., 2018),

which is also using mAP@0.70.

mailto:mAP@0.5:0.05:0.95
mailto:mAP@0.5
mailto:mAP@0.55
mailto:mAP@0.60
mailto:mAP@0.75
mailto:mAP@0.95

38

 In object detection, Intersection over Union (IoU) stands for the

overlapped percentage of the predicted bounding-box generated by the model vs.

then ground truth bounding-box labeled by human. Refer to figure 3.6 Example

of GT Box and Prediction Box.

Figure 3.6 Example of GT Box and Prediction Box

In this example, the green color bounding-box is first labeled on the car by

human. When the image is passed through an object detection model, it

generates the coordinates output of the car object on the image hence a model

predicted bounding box is produced. To calculate the IoU, the overlapped area

is determined. See figure 3.7.

39

Figure 3.7 Intersection over Union

 In this project, in the case of license plate bounding box detection (one

object class scenario), TP, FP, TN, and FN are defined as follows:

 TP – when the prediction bounding box has >= 70% IoU with the ground

truth box.

 FP – when the prediction box has < 70% IoU with the ground truth box.

 FN – when ground truth exists in the image but there is no bounding box

predicted by the model.

40

 TN case is not applicable for this project.

3.10.1 Steps to Calculate mAP@0.70

 Below presents simplified steps to calculate mAP@0.70. First, set a

confidence score threshold, i.e., only account for prediction above this value. In

this project, a 0.4 threshold is empirically selected.

1. Is confidence >= threshold?

2. Is predicted box IoU >= 0.70? If yes, TP. If no, FP.

3. Calculate Precision and Recall.

4. Plot graph Precision vs Recall.

5. Calculate the Area Under Curve.

3.10.2 Performance Metrics

Following performance metrics are used in this work.

mAP:

𝐴𝑃𝑐𝑎𝑟+𝐴𝑃𝑐𝑎𝑡+𝐴𝑃𝑑𝑜𝑔

3

Precision:

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall:

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score:

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

IoU:

41

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

3.11 Detailed Diagram / Chart of Proposed Model

The following table 3.1 and table 3.2 show the overall architecture of model

YOLOv4-CSP and YOLOv4-CSP-Modified. Note that the 6 newly added layers

in the modified model, namely 143conv, 144conv, 160conv, 161conv, and

177conv, 178conv. In the end, the modified model is 180 layers long, compared

to the author’s model which is 174 layers.

Table 3.1 YOLOv4-CSP Architecture

layer filters Size/strd(dil) input output bflops

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF

4Shortcut 1 wt=0 wn=0 320x320x64 0.007BF

5conv 128 3x3/2 320x320x64 160x160x128 3.775BF

6conv 64 1x1/1 160x160x128 160x160x64 0.419BF

7route 5 160x160x128

8conv 64 1x1/1 160x160x128 160x160x64 0.419BF

9conv 64 1x1/1 160x160x64 160x160x64 0.210BF

10conv 64 3x3/1 160x160x64 160x160x64 1.887BF

11shortcut 8 wt=0 wn=0 160x160x64 0.002BF

12conv 64 1x1/1 160x160x64 160x160x64 0.210BF

13conv 64 3x3/1 160x160x64 160x160x64 1.887BF

14shortcut 11 c wn=0 160x160x64 0.002BF

15conv 64 1x1/1 160x160x64 160x160x64 0.210BF

16route 15 6 160x160x128

17conv 128 1x1/1 160x160x128 160x160x128 0.839BF

18conv 256 3x3/2 160x160x128 80x80x256 3.775BF

19conv 128 1x1/1 80x80x256 80x80x128 0.419BF

20route 18 80x80x256

21conv 128 1x1/1 80x80x256 80x80x128 0.419BF

22conv 128 1x1/1 80x80x128 80x80x128 0.210BF

23conv 128 3x3/1 80x80x128 80x80x128 1.887BF

24shortcut 21 wt=0 wn=0 80x80x128 0.001BF

25conv 128 1x1/1 80x80x128 80x80x128 0.210BF

26conv 128 3x3/1 80x80x128 80x80x128 1.887BF

27shortcut 24 wt=0 wn=0 80x80x128 0.001BF

28conv 128 1x1/1 80x80x128 80x80x128 0.210BF

29conv 128 3x3/1 80x80x128 80x80x128 1.887BF

42

30shortcut 27 wt=0 wn=0 80x80x128 0.001BF

31conv 128 1x1/1 80x80x128 80x80x128 0.210BF

32conv 128 3x3/1 80x80x128 80x80x128 1.887BF

33shortcut 30 wt=0 wn=0 80x80x128 0.001BF

34conv 128 1x1/1 80x80x128 80x80x128 0.210BF

35conv 128 3x3/1 80x80x128 80x80x128 1.887BF

36shortcut 33 wt=0 wn=0 80x80x128 0.001BF

37conv 128 1x1/1 80x80x128 80x80x128 0.210BF

38conv 128 3x3/1 80x80x128 80x80x128 1.887BF

39shortcut 36 wt=0 wn=0 80x80x128 0.001BF

40conv 128 1x1/1 80x80x128 80x80x128 0.210BF

41conv 128 3x3/1 80x80x128 80x80x128 1.887BF

42shortcut 39 wt=0 wn=0 80x80x128 0.001BF

43conv 128 1x1/1 80x80x128 80x80x128 0.210BF

44conv 128 3x3/1 80x80x128 80x80x128 1.887BF

45shortcut 42 wt=0 wn=0 80x80x128 0.001BF

46conv 128 1x1/1 80x80x128 80x80x128 0.210BF

47route 46 19 80x80x256

48conv 256 1x1/1 80x80x256 80x80x256 0.839BF

49conv 512 3x3/2 80x80x256 40x40x512 3.775BF

50conv 256 1x1/1 40x40x512 40x40x256 0.419BF

51route 49 40x40x512

52conv 256 1x1/1 40x40x512 40x40x256 0.419BF

53conv 256 1x1/1 40x40x256 40x40x256 0.210BF

54conv 256 3x3/1 40x40x256 40x40x256 1.887BF

55shortcut 52 wt=0 wn=0 40x40x256 0.000BF

56conv 256 1x1/1 40x40x256 40x40x256 0.210BF

57conv 256 3x3/1 40x40x256 40x40x256 1.887BF

58shortcut 55 wt=0 wn=0 40x40x256 0.000BF

59conv 256 1x1/1 40x40x256 40x40x256 0.210BF

60conv 256 3x3/1 40x40x256 40x40x256 1.887BF

61shortcut 58 wt=0 wn=0 40x40x256 0.000BF

62conv 256 1x1/1 40x40x256 40x40x256 0.210BF

63conv 256 3x3/1 40x40x256 40x40x256 1.887BF

64shortcut 61 wt=0 wn=0 40x40x256 0.000BF

65conv 256 1x1/1 40x40x256 40x40x256 0.210BF

66onv 256 3x3/1 40x40x256 40x40x256 1.887BF

67shortcut 64 wt=0 wn=0 40x40x256 0.000BF

68conv 256 1x1/1 40x40x256 40x40x256 0.210BF

69conv 256 3x3/1 40x40x256 40x40x256 1.887BF

70shortcut 67 wt=0 wn=0 40x40x256 0.000BF

71conv 256 1x1/1 40x40x256 40x40x256 0.210BF

72conv 256 3x3/1 40x40x256 40x40x256 1.887BF

73shortcut 70 wt=0 wn=0 40x40x256 0.000BF

74conv 256 1x1/1 40x40x256 40x40x256 0.210BF

75conv 256 3x3/1 40x40x256 40x40x256 1.887BF

76shortcut 73 wt=0 wn=0 40x40x256 0.000BF

77conv 256 1x1/1 40x40x256 40x40x256 0.210BF

78route 77 50 40x40x512

79conv 512 1x1/1 40x40x512 40x40x512 0.839BF

80conv 1024 3x3/2 40x40x512 20x20x1024 3.775BF

81conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

82route 80 20x20x1024

43

83conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

84conv 512 1x1/1 20x20x512 20x20x512 0.210BF

85conv 512 3x3/1 20x20x512 20x20x512 1.887BF

86shortcut 83 wt=0 wn=0 20x20x512 0.000BF

87conv 512 1x1/1 20x20x512 20x20x512 0.210BF

88conv 512 3x3/1 20x20x512 20x20x512 1.887BF

89shortcut 86 wt=0 wn=0 20x20x512 0.000BF

90conv 512 1x1/1 20x20x512 20x20x512 0.210BF

91conv 512 3x3/1 20x20x512 20x20x512 1.887BF

92shortcut 89 wt=0 wn=0 20x20x512 0.000BF

93conv 512 1x1/1 20x20x512 20x20x512 0.210BF

94conv 512 3x3/1 20x20x512 20x20x512 1.887BF

95shortcut 92 wt=0 wn=0 20x20x512 0.000BF

96conv 512 1x1/1 20x20x512 20x20x512 0.210BF

97route 96 81 20x20x1024

98conv 1024 1x1/1 20x20x1024 20x20x1024 0.839BF

99conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

100route 98 20x20x1024

101conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

102conv 512 3x3/1 20x20x512 20x20x512 1.887BF

103conv 512 1x1/1 20x20x512 20x20x512 0.210BF

104max 5x5/1 20x20x512 20x20x512 0.005BF

105route 103 20x20x512

106max 9x9/1 20x20x512 20x20x512 0.017BF

107route 103 20x20x512

108max 13x13/1 20x20x512 20x20x512 0.035BF

109route 108 106 104 103 20x20x2048

110conv 512 1x1/1 20x20x2048 20x20x512 0.839BF

111conv 512 3x3/1 20x20x512 20x20x512 1.887BF

112route 111 99 20x20x1024

113conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

114conv 256 1x1/1 20x20x512 20x20x256 0.105BF

115upsam-

ple

2x 20x20x256 40x40x256

116route 79 40x40x512

117conv 256 1x1/1 40x40x512 40x40x256 0.419BF

118route 117 115 40x40x512

119conv 256 1x1/1 40x40x512 40x40x256 0.419BF

120conv 256 1x1/1 40x40x256 40x40x256 0.210BF

121route 119 40x40x256

122conv 256 1x1/1 40x40x256 40x40x256 0.210BF

123conv 256 3x3/1 40x40x256 40x40x256 1.887BF

124conv 256 1x1/1 40x40x256 40x40x256 0.210BF

125conv 256 3x3/1 40x40x256 40x40x256 1.887BF

126route 125 120 40x40x512

127conv 256 1x1/1 40x40x512 40x40x256 0.419BF

128conv 128 1x1/1 40x40x256 40x40x128 0.105BF

129upsam-

ple

2x 40x40x128 80x80x128

130route 48 80x80x256

131conv 128 1x1/1 80x80x256 80x80x128 0.419BF

132route 131 129 80x80x256

133conv 128 1x1/1 80x80x256 80x80x128 0.419BF

44

134conv 128 1x1/1 80x80x128 80x80x128 0.210BF

135route 133 80x80x128

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF

140route 139 134 80x80x256

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF

143conv 18 1x1/1 80x80x256 80x80x18 0.059BF

144yolo

145route 141

146conv 256 3x3/2 80x80x128 40x40x256 0.944BF

147route 146 127 40x40x512

148conv 256 1x1/1 40x40x512 40x40x256 0.419BF

149conv 256 1x1/1 40x40x256 40x40x256 0.210BF

150route 148 40x40x256

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF

152conv 256 3x3/1 40x40x256 40x40x256 1.887BF

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF

155route 154 149 40x40x512

156conv 256 1x1/1 40x40x512 40x40x256 0.419BF

157conv 512 3x3/1 40x40x256 40x40x512 3.775BF

158conv 18 1x1/1 40x40x512 40x40x18 0.029BF

159yolo

160route 156

161conv 512 3x3/2 40x40x256 20x20x512 0.944BF

162route 161 113 20x20x1024

163conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

164conv 512 1x1/1 20x20x512 20x20x512 0.210BF

165route 163 20x20x512

166conv 512 1x1/1 20x20x512 20x20x512 0.210BF

167conv 512 3x3/1 20x20x512 20x20x512 1.887BF

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF

169conv 512 3x3/1 20x20x512 20x20x512 1.887BF

170route 169 164 20x20x1024

171conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

172conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF

173conv 18 1x1/1 20x20x1024 20x20x18 0.015BF

174yolo

Table 3.2 YOLOv4-CSP-Modified Architecture

layer filters Size/strd(dil) input output bflops

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF

45

4Shortcut 1 wt=0 wn=0 320x320x64 0.007BF

5conv 128 3x3/2 320x320x64 160x160x128 3.775BF

6conv 64 1x1/1 160x160x128 160x160x64 0.419BF

7route 5 160x160x128

8conv 64 1x1/1 160x160x128 160x160x64 0.419BF

9conv 64 1x1/1 160x160x64 160x160x64 0.210BF

10conv 64 3x3/1 160x160x64 160x160x64 1.887BF

11shortcut 8 wt=0 wn=0 160x160x64 0.002BF

12conv 64 1x1/1 160x160x64 160x160x64 0.210BF

13conv 64 3x3/1 160x160x64 160x160x64 1.887BF

14shortcut 11 c wn=0 160x160x64 0.002BF

15conv 64 1x1/1 160x160x64 160x160x64 0.210BF

16route 15 6 160x160x128

17conv 128 1x1/1 160x160x128 160x160x128 0.839BF

18conv 256 3x3/2 160x160x128 80x80x256 3.775BF

19conv 128 1x1/1 80x80x256 80x80x128 0.419BF

20route 18 80x80x256

21conv 128 1x1/1 80x80x256 80x80x128 0.419BF

22conv 128 1x1/1 80x80x128 80x80x128 0.210BF

23conv 128 3x3/1 80x80x128 80x80x128 1.887BF

24shortcut 21 wt=0 wn=0 80x80x128 0.001BF

25conv 128 1x1/1 80x80x128 80x80x128 0.210BF

26conv 128 3x3/1 80x80x128 80x80x128 1.887BF

27shortcut 24 wt=0 wn=0 80x80x128 0.001BF

28conv 128 1x1/1 80x80x128 80x80x128 0.210BF

29conv 128 3x3/1 80x80x128 80x80x128 1.887BF

30shortcut 27 wt=0 wn=0 80x80x128 0.001BF

31conv 128 1x1/1 80x80x128 80x80x128 0.210BF

32conv 128 3x3/1 80x80x128 80x80x128 1.887BF

33shortcut 30 wt=0 wn=0 80x80x128 0.001BF

34conv 128 1x1/1 80x80x128 80x80x128 0.210BF

35conv 128 3x3/1 80x80x128 80x80x128 1.887BF

36shortcut 33 wt=0 wn=0 80x80x128 0.001BF

37conv 128 1x1/1 80x80x128 80x80x128 0.210BF

38conv 128 3x3/1 80x80x128 80x80x128 1.887BF

39shortcut 36 wt=0 wn=0 80x80x128 0.001BF

40conv 128 1x1/1 80x80x128 80x80x128 0.210BF

41conv 128 3x3/1 80x80x128 80x80x128 1.887BF

42shortcut 39 wt=0 wn=0 80x80x128 0.001BF

43conv 128 1x1/1 80x80x128 80x80x128 0.210BF

44conv 128 3x3/1 80x80x128 80x80x128 1.887BF

45shortcut 42 wt=0 wn=0 80x80x128 0.001BF

46conv 128 1x1/1 80x80x128 80x80x128 0.210BF

47route 46 19 80x80x256

48conv 256 1x1/1 80x80x256 80x80x256 0.839BF

49conv 512 3x3/2 80x80x256 40x40x512 3.775BF

50conv 256 1x1/1 40x40x512 40x40x256 0.419BF

51route 49 40x40x512

52conv 256 1x1/1 40x40x512 40x40x256 0.419BF

53conv 256 1x1/1 40x40x256 40x40x256 0.210BF

54conv 256 3x3/1 40x40x256 40x40x256 1.887BF

55shortcut 52 wt=0 wn=0 40x40x256 0.000BF

56conv 256 1x1/1 40x40x256 40x40x256 0.210BF

46

57conv 256 3x3/1 40x40x256 40x40x256 1.887BF

58shortcut 55 wt=0 wn=0 40x40x256 0.000BF

59conv 256 1x1/1 40x40x256 40x40x256 0.210BF

60conv 256 3x3/1 40x40x256 40x40x256 1.887BF

61shortcut 58 wt=0 wn=0 40x40x256 0.000BF

62conv 256 1x1/1 40x40x256 40x40x256 0.210BF

63conv 256 3x3/1 40x40x256 40x40x256 1.887BF

64shortcut 61 wt=0 wn=0 40x40x256 0.000BF

65conv 256 1x1/1 40x40x256 40x40x256 0.210BF

66onv 256 3x3/1 40x40x256 40x40x256 1.887BF

67shortcut 64 wt=0 wn=0 40x40x256 0.000BF

68conv 256 1x1/1 40x40x256 40x40x256 0.210BF

69conv 256 3x3/1 40x40x256 40x40x256 1.887BF

70shortcut 67 wt=0 wn=0 40x40x256 0.000BF

71conv 256 1x1/1 40x40x256 40x40x256 0.210BF

72conv 256 3x3/1 40x40x256 40x40x256 1.887BF

73shortcut 70 wt=0 wn=0 40x40x256 0.000BF

74conv 256 1x1/1 40x40x256 40x40x256 0.210BF

75conv 256 3x3/1 40x40x256 40x40x256 1.887BF

76shortcut 73 wt=0 wn=0 40x40x256 0.000BF

77conv 256 1x1/1 40x40x256 40x40x256 0.210BF

78route 77 50 40x40x512

79conv 512 1x1/1 40x40x512 40x40x512 0.839BF

80conv 1024 3x3/2 40x40x512 20x20x1024 3.775BF

81conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

82route 80 20x20x1024

83conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

84conv 512 1x1/1 20x20x512 20x20x512 0.210BF

85conv 512 3x3/1 20x20x512 20x20x512 1.887BF

86shortcut 83 wt=0 wn=0 20x20x512 0.000BF

87conv 512 1x1/1 20x20x512 20x20x512 0.210BF

88conv 512 3x3/1 20x20x512 20x20x512 1.887BF

89shortcut 86 wt=0 wn=0 20x20x512 0.000BF

90conv 512 1x1/1 20x20x512 20x20x512 0.210BF

91conv 512 3x3/1 20x20x512 20x20x512 1.887BF

92shortcut 89 wt=0 wn=0 20x20x512 0.000BF

93conv 512 1x1/1 20x20x512 20x20x512 0.210BF

94conv 512 3x3/1 20x20x512 20x20x512 1.887BF

95shortcut 92 wt=0 wn=0 20x20x512 0.000BF

96conv 512 1x1/1 20x20x512 20x20x512 0.210BF

97route 96 81 20x20x1024

98conv 1024 1x1/1 20x20x1024 20x20x1024 0.839BF

99conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

100route 98 20x20x1024

101conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

102conv 512 3x3/1 20x20x512 20x20x512 1.887BF

103conv 512 1x1/1 20x20x512 20x20x512 0.210BF

104max 5x5/1 20x20x512 20x20x512 0.005BF

105route 103 20x20x512

106max 9x9/1 20x20x512 20x20x512 0.017BF

107route 103 20x20x512

108max 13x13/1 20x20x512 20x20x512 0.035BF

109route 108 106 104 103 20x20x2048

47

110conv 512 1x1/1 20x20x2048 20x20x512 0.839BF

111conv 512 3x3/1 20x20x512 20x20x512 1.887BF

112route 111 99 20x20x1024

113conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

114conv 256 1x1/1 20x20x512 20x20x256 0.105BF

115up-

sample

2x 20x20x256 40x40x256

116route 79 40x40x512

117conv 256 1x1/1 40x40x512 40x40x256 0.419BF

118route 117 115 40x40x512

119conv 256 1x1/1 40x40x512 40x40x256 0.419BF

120conv 256 1x1/1 40x40x256 40x40x256 0.210BF

121route 119 40x40x256

122conv 256 1x1/1 40x40x256 40x40x256 0.210BF

123conv 256 3x3/1 40x40x256 40x40x256 1.887BF

124conv 256 1x1/1 40x40x256 40x40x256 0.210BF

125conv 256 3x3/1 40x40x256 40x40x256 1.887BF

126route 125 120 40x40x512

127conv 256 1x1/1 40x40x512 40x40x256 0.419BF

128conv 128 1x1/1 40x40x256 40x40x128 0.105BF

129up-

sample

2x 40x40x128 80x80x128

130route 48 80x80x256

131conv 128 1x1/1 80x80x256 80x80x128 0.419BF

132route 131 129 80x80x256

133conv 128 1x1/1 80x80x256 80x80x128 0.419BF

134conv 128 1x1/1 80x80x128 80x80x128 0.210BF

135route 133 80x80x128

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF

140route 139 134 80x80x256

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF

143conv 128 1x1/1 80x80x256 80x80x128 0.419BF

144conv 256 3x3/1 80x80x128 80x80x256 3.775BF

145conv 18 1x1/1 80x80x256 80x80x18 0.059BF

146yolo

147route 141

148conv 256 3x3/2 80x80x128 40x40x256 0.944BF

149route 148 127 40x40x512

150conv 256 1x1/1 40x40x512 40x40x256 0.419BF

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF

152route 150 40x40x256

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF

155conv 256 1x1/1 40x40x256 40x40x256 0.210BF

156conv 256 3x3/1 40x40x256 40x40x256 1.887BF

157route 156 151 40x40x512

158conv 256 1x1/1 40x40x512 40x40x256 0.419BF

159conv 512 3x3/1 40x40x256 40x40x512 3.775BF

160conv 256 1x1/1 40x40x512 40x40x256 0.419BF

48

161conv 512 3x3/1 40x40x256 40x40x512 3.775BF

162conv 18 1x1/1 40x40x512 40x40x18 0.029BF

163yolo

164route 160

165conv 512 3x3/2 40x40x256 20x20x512 0.944BF

166route 165 111 20x20x1024

167conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF

169route 167 20x20x512

170conv 512 1x1/1 20x20x512 20x20x512 0.210BF

171conv 512 3x3/1 20x20x512 20x20x512 1.887BF

172conv 512 1x1/1 20x20x512 20x20x512 0.210BF

173conv 512 3x3/1 20x20x512 20x20x512 1.887BF

174route 173 168 20x20x1024

175conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

176conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF

177conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

178conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF

179conv 18 1x1/1 20x20x1024 20x20x18 0.015BF

180yolo

49

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

 This section discusses the results. of models’ accuracy and performance

on the car license plate dataset CCPD as mentioned in chapter 3, i.e.,

EfficientDet-d6, EfficientDet-d0, CenterNetResNet50-512x512, SSDResnet50-

640x640, FasterR-CNNResNet50-640x640, YOLOv4-csp-640x640, YOLOv5x,

and YOLOv5s. This chapter will then continue with presenting the effect of

image preprocessing on bad images to increase the overall accuracy of the

models. Finally, a slightly improved model architecture is then trained on the

same CCPD dataset to show the possible improvement that can be achieved

through model architecture modifications.

 In addition to the above results, this section also addresses a small issue

regarding the calculation of 70% IoU, i.e., the 69% IoU problem where there are

a significant number of objects bounding boxes being rejected as false negatives

despite being detected by the model hence lowered the overall accuracy.

4.2 Model Training Loss

 The following models were trained on CCPD training dataset, i.e.,

EfficientDet-d6, EfficientDet-d0, CenterNetResNet50-512x512, SSDResnet50-

640x640, FasterR-CNNResNet50-640x640, YOLOv4-csp-640x640, YOLOv5x,

and YOLOv5s. Below shows their training loss graph respectively.

50

4.2.1 EfficientDet-D6

Figure 4.1 EfficientDet-D6 Training Loss

4.2.2 EfficientDet-D0

Figure 4.2 EfficientDet-D0 Training Loss

4.2.3 CenterNetResNet50-512x512

Figure 4.3 CenterNetResNet50-512x512 Training Loss

4.2.4 SSDResNet50-640x640

51

Figure 4.4 SSDResNet50-640x640 Training Loss

4.2.5 FasterR-CNNResNet50-640x640

 Figure 45 FasterR-CNNResNet50 Training Loss

4.3 Result of Models Training

 A series of steps of training the chosen models and evaluating them has

been performed. Below shows the results.

Table 4.1: Initial Models’ Test Accuracy (mAP@0.70) and Speed (FPS) on

Each Test Set

Model FPS DB Blur FN Rotate Tilt Challenge Average

efficientdet-

d6
8.2 67.0 79.25 80.5 92.1 85.0 89.1 82.16

efficientdet-

d0
34.53 53.5 70.6 62.9 91.0 86.3 78.3 73.77

mailto:mAP@0.70

52

centernet-

resnet50-

512x512

28.84 50.14 64.48 70.20 90.59 74.40 70.87 70.11

ssd-resnet50-

640x640
24.85 45.24 64.06 47.28 92.46 83.79 72.72 67.59

faster-rcnn-

resnet50-

640x640

18.73 52.31 68.82 61.74 91.62 76.32 80.85 71.94

yolov4-csp-

640x640
50.9 64.54 67.58 29.46 81.75 65.76 66.41 62.58

yolov5s 80.0 50.5 74.0 11.5 75.8 51.6 83.1 57.75

yolov5x 40.0 44.4 68.2 10.7 56.3 35.0 79.4 49.00

 From this table, the best score in terms of average mAP is achieved by

the model EfficientDet-d6, but it is a network larger than the others in terms of

parameters and FLOPs (d0 - 3.9M, 2.54B) v.s. (d6 - 51.9M, 325B) (Tan et. al.,

2019), therefore is an unfair comparison.

Figure 4.6 Mean Average Precision for All Models for CCPD

Dataset

53

Figure 4.7 Speed for All Models for CCPD Dataset

It has been observed from Table 4.1 that Efficientdet-d6 (82.16) scores

highest followed by Efficientdet-d0 (73.77). However, the FPS has dropped

tremendously from 34.53 FPS to only 8.2 FPS which is not a very good model

to be perform in real-time applications. Comparing both models, Efficientdet-d6

outperforms Efficientdet-d0 in all test dataset (DB – 67.0 vs. 53.5), (Blur – 79.25

vs. 70.6), (FN – 80.5 vs. 62.9), (Rotate – 92.1 vs. 91.0), and (Chalenge – 89.1 vs.

78.3) dataset, except for (Tilt – 85.0 vs. 86.3) dataset.

If Efficientdet-d6 is not included, then the highest scores will be

Efficientdet-d0 (73.77) followed by Faster R-CNN (71.94). Comparing the

processing speed between these two models, Efficientdet-d0 performs faster

(34.53) than Faster R-CNN (18.73). Comparing the accuracy between

Efficientdet-d0 and Faster R-CNN, Efficientdet-d0 performs better in all test sets

(DB – 53.5 vs. 52.31), (Blur – 70.6 vs. 68.82), (FN – 62.9 vs. 61.74), (Tilt – 86.3

54

vs. 76.32) except for the , (Rotate – 91.0 vs. 91.62) dataset and (Chalenge – 78.3

vs. 80.85) dataset.

YOLOv4-CSP model performed very badly in the FN dataset (29.46)

compared to the best model in the category Centernet-Resnet50 (70.20). This

shows that Centernet-Resnet50 is very good at detecting very small objects in

the image whilst YOLOv4-CSP is having difficulty to detect small objects. The

other model that performed like YOLOv4-CSP (29.46) is SSD-Resnet50 (47.28).

More analysis and improvement will be carried out on the FN dataset and the

result will be discussed later in this chapter.

Another highlight worth mentioning is that in the dark_bright dataset,

YOLOv4-CSP performs better (64.54) than other models (45.24 ~ 52.31). This

shows YOLOv4-CSP is less sensitive to the brightness of the image instead the

other features e.g., shape allow it to detect an object at a higher chance.

Regarding lower scores achieved by YOLOv5, this model is still under

development, and no record of a published paper regarding the algorithm is

available. However, it is worth testing out its performance. So

 In terms of speed, YOLOv4-CSP achieved the highest score (50.9)

compared to the second highest Efficientdet-d0 (34.53). YOLOv4-CSP will be

selected to further improve its performance to achieve the objective in this

project mentioned at the start, which is to improve the speed and accuracy of

55

license plate detection tasks using deep learning models through image

processing, training, and modifying existing model architecture.

4.4 Preprocessing

 The first intuitive way to improve the overall result is to perform simple

image preprocessing for the test dataset. The test set is very challenging for any

model to perform object detection as it is composed of images from various

difficult conditions. Below shows the result for preprocessing, i.e., enlargement,

sharpening, gamma correction, CLAHE, and non-local means denoising.

Table 4.2 Preprocessing Result for YOLOv4-CSP model

 Blur db fn rotate tilt challenge

Dataset Images 20,611 10,132 20,967 10,053 30,216 50,003

mAP (0.70) (Before)

(100 Imgs)
63.29 64.20 43.90 88.90 66.64 62.08

No. of Selected 100 100 100 100 100 100

TP-FN Ratio 70-30 69-31 52-48 92-8 77-23 67-33

FP 45 28 75 9 26 61

Human Eye TP 90 91 86 100 99 88

No. of Preprocess 6 4 14 - - 12

Redrawn GT Box - - - 8 23 -

mAP (0.70) (After)

(100 Imgs)
68.26 67.09 57.39 96.40 77.94 71.11

Increment in mAP 4.97 2.89 13.49 7.50 11.30 9.03

TP-FN Ratio 75-25 73-27 66-34 97-3 85-15 76-24

FP 43 28 68 4 18 56

Legend

TP – True Positive

FN – False Negative

56

FP – False Positive

GT – Ground Truth

Bounding boxes are denoted as TP when it has more than 70% IoU with

the ground truth box. When the model failed to detect the ground truth in an

image, it will denote as FN. Lastly, when the bounding box has less than 70%

IoU with the ground truth box, it will be denoted as False Positives. Note that

there can be more than one FP for an image i.e., the model detected multiple

incorrect bounding boxes. There can also be less FP than FN in a category, this

occurs in the db test set because the image is so dark that the model does not

detect any bounding boxes for the image. According to the mAP formula, FP is

a variable that contributes to the score. False Positives occur very frequently in

the above experiment due to the 0.69 IoU problem. This will further elaborate

on later in this chapter.

In the above experiment In Table 4.2, 100 images out of each category

are selected. The algorithm then uses YOLOv4-CSP model to perform object

detection on these 100 images. At the same time, TP, FN, and FP are used to

calculate the mAP. When deciding which image to preprocess, it is natural to

select all FN images. However, due to the 0.69 problem, only a few images are

selected. The table above shows mAP score before preprocessing and after

preprocessing.

Six images were preprocessed for the blur test set. Five out of six images

successfully convert from FN to TP. The mAP score increased from 63.29 to

68.26. Four images were preprocessed for the db test set. All four images

successfully converted from FN to TP. The mAP score increased from 64.20 to

57

67.09. 14 images were preprocessed for the fn test set. All 14 images successfully

converted from FN to TP. The mAP score increased from 43.90 to 57.39. 12

images were preprocessed for the challenge test set. Nine out of 12 images

successfully convert from FN to TP. The mAP score increased from 62.08 to

71.11.

A different scenario happens to the rotate test set and the tilt test set.

These test sets do not have an imbalance of light condition, blurry or distance

and size issues. On human eye viewing, all 100 images are successfully detected

on the rotate test set, and 99 images on the tilt test set. Image preprocessing will

not improve the score for these test sets. However, there were still 8 FN and 23

FN on the rotate and tilt test set. To eliminate the FN, a further investigation has

been carried out to tackle the issue.

 Upon investigation, there is a problem with the annotation of the ground

truth box by the dataset author. Refer to the figure 4.8. below:

Figure 4.8 Ground Truth Box (Left) vs Model Prediction (Right)

58

As shown in the picture, the model successfully detected the object from the

input. However, the box is denoted as a false positive due to the IoU with the

ground truth box does not exceed 70%.

 Observe that the ground truth box drawn is not ‘tight’ to the license plate

object. This is the main problem with the dataset. Many bounding boxes were

wrongly drawn during the data preparation stage. However, deep learning

models are very good at adjusting and correcting their errors during the training

phase. When the model is trained for a long period, it will slowly learn to adjust

itself to be closer and closer to the actual object. Table 4.3 shows the example

of the 0.69 IoU problem.

Table 4.3 0.69 IoU Problem

Image Name IoU

0056-15_17…27.png 0.698895

0220-19_36…41.png 0.566831

0265-32_39…32.png 0.648916

0273-15_29…27.png 0.657966

0305-21_19…180.png 0.662354

0326-17_29…16.png 0.637488

0330-19_22…56.png 0.679596

0353-19_22…43.png 0.000000

0369-34_34…164.png 0.699994

0401-37_31…85.png 0.696482

0419-19_33…70.png 0.000000

0419-38_43…156.png 0.689906

0432-22_18…130.png 0.659566

0436-22_33…115.png 0.688282

0480-17_37…141.png 0.658595

… …

4.5 Modify YOLOv4-CSP (Proposed Model)

 The second approach to improve the overall performance is to modify

the model architecture in terms of layers, filters, etc. In this experiment, six new

layers have been added to the model. Refer to table 4.4.

59

Table 4.4 YOLOv4-CSP-Modified Architecture

Layer filters Size/strd(dil) input output bflops

0conv 32 3x3/1 640x640x3 640x640x32 0.708BF

1conv 64 3x3/2 640x640x32 320x320x64 3.775BF

2conv 32 1x1/1 320x320x64 320x320x32 0.419BF

3conv 64 3x3/1 320x320x32 320x320x64 3.775BF

… … … … … …

.

.

.

… … … … … …

136conv 128 1x1/1 80x80x128 80x80x128 0.210BF

137conv 128 3x3/1 80x80x128 80x80x128 1.887BF

138conv 128 1x1/1 80x80x128 80x80x128 0.210BF

139conv 128 3x3/1 80x80x128 80x80x128 1.887BF

140route 139 134 80x80x256

141conv 128 1x1/1 80x80x256 80x80x128 0.419BF

142conv 256 3x3/1 80x80x128 80x80x256 3.775BF

143conv 128 1x1/1 80x80x256 80x80x128 0.419BF

144conv 256 3x3/1 80x80x128 80x80x256 3.775BF

145conv 18 1x1/1 80x80x256 80x80x18 0.059BF

146yolo

147route 141

148conv 256 3x3/2 80x80x128 40x40x256 0.944BF

149route 148 127 40x40x512

150conv 256 1x1/1 40x40x512 40x40x256 0.419BF

151conv 256 1x1/1 40x40x256 40x40x256 0.210BF

152route 150 40x40x256

153conv 256 1x1/1 40x40x256 40x40x256 0.210BF

154conv 256 3x3/1 40x40x256 40x40x256 1.887BF

155conv 256 1x1/1 40x40x256 40x40x256 0.210BF

156conv 256 3x3/1 40x40x256 40x40x256 1.887BF

157route 156 151 40x40x512

158conv 256 1x1/1 40x40x512 40x40x256 0.419BF

159conv 512 3x3/1 40x40x256 40x40x512 3.775BF

160conv 256 1x1/1 40x40x512 40x40x256 0.419BF

161conv 512 3x3/1 40x40x256 40x40x512 3.775BF

162conv 18 1x1/1 40x40x512 40x40x18 0.029BF

163yolo

164route 160

165conv 512 3x3/2 40x40x256 20x20x512 0.944BF

166route 165 111 20x20x1024

167conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

168conv 512 1x1/1 20x20x512 20x20x512 0.210BF

169route 167 20x20x512

170conv 512 1x1/1 20x20x512 20x20x512 0.210BF

171conv 512 3x3/1 20x20x512 20x20x512 1.887BF

172conv 512 1x1/1 20x20x512 20x20x512 0.210BF

173conv 512 3x3/1 20x20x512 20x20x512 1.887BF

174route 173 168 20x20x1024

175conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

176conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF

60

177conv 512 1x1/1 20x20x1024 20x20x512 0.419BF

178conv 1024 3x3/1 20x20x512 20x20x1024 3.775BF

179conv 18 1x1/1 20x20x1024 20x20x18 0.015BF

180yolo

The intuition behind adding new layers is that they can learn new additional

features thus improving the accuracy. The model is then retrained using the

training dataset. Below shows the training graph.

Figure 4.9 YOLOv4-CSP-Modified Training Loss Graph

61

 The whole training process elapsed 10 hours, twice the duration of the

original model (5 hours). This is due to the newly initialized layers are yet to

learn meaningful weights from the training.

 From the graph above, the average total loss has reached below 1.0 at

around 1800 to 2400 iterations. However, the model is then left to train longer

until very minor improvement can be seen till the 4000th iteration. Note that one

iteration is one batch of 32 images. The machine is capable of training 6~7

iterations per minute.

 The newly trained model is then be evaluated on the test set. Below

shows the comparison between the original model and the new model with six

additional layers.

Table 4.5 Accuracy (mAP@0.70) of Modified YOLOv4-CSP vs Original

YOLOv4-CSP

Dataset blur db fn rotate tilt
chal-

lenge
valid

No. of Im-

ages
20,611 10,132 20,967 10,053 30,216 50,003 99,996

YOLOv4-

CSP
67.58 64.54 29.46 81.75 65.76 66.41 83.64

Modified

YOLOv4-

CSP

74.65 51.48 49.78 67.57 45.12 83.62 96.96

Increment +7.07 -13.06 +20.32 -14.18 -20.64 +17.21 +13.32

 The accuracy on the validation dataset improves from 83.64 to 96.96

which shows that adding six new layers can help the model to detect the objects

under normal conditions more accurately. The problem where the model was

having difficulty detecting small or far objects has also been improved from

mailto:mAP@0.70

62

29.46 to 49.78. This shows that the model can predict even tighter bounding

boxes which match 70% of the ground truth boxes.

 On the other hand, a decline in performance can be seen on the test set

rotate, tilt, and db. This is due to the rotate and tilt test set containing non-

rectangle objects therefore the drawn bounding boxes are loose. The model is

having difficulty when deciding the real coordinates of the objects.

 For the case of the db test set, the accuracy drops from 64.54 to 41.48.

This is due to that this dataset mostly consists of too-bright and too-dark images.

When the newly trained model is trained to draw a tighter bounding box, it will

then have difficulty determining the real coordinates of the objects in such

lighting conditions, resulting in a degraded performance in 0.70 mAP.

 Overall, the new modified model can detect objects that have good

visibility in terms of lighting and blurriness. In addition to that, it has also

become very strict on objects that had failed to represent regular shapes in terms

of skewness and angle.

63

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In this project we have designed an experiment to evaluate the

performance of various state-of-the-art deep learning object detection models on

a new dataset which is CCPD with transfer learning. Secondly, this project also

shows two ways i.e., image preprocessing step and introducing additional model

layers to improve the overall performance as stated in the objectives of the

research. The image preprocessing step has shown that the visibility of the

license plate can be improved in various conditions. The improved YOLOv4

model has achieved (96.96%) mean Average Precision mAP@0.70 on the

validation dataset compared to the original model (83.64%) on the Chinese City

Parking Dataset (CCPD). This shows that the six additional convolutional layers

added have helped the model to predict the bounding boxes more accurately.

 Deep learning is an exciting field of research, especially in computer

vision. It has a continuous fast pace of development, and the accuracy is

overtaken by new models every year. Now, a new type of object detection model

known as ‘transformer’ which is derived from the natural language model can

already surpass the current best model.

5.2 Future Work and Suggestions

 There are many potential issues and use cases in real life as deep learning

technology has just begun ten years ago. One suggestion to improve the model

64

performance is to further tweak the model’s architecture such as layers number,

convolutional filter sizes, hyperparameters and others. This project also faces the

limitations of the processing power and memory sizes of a consumer grade

hardware. A better hardware will allow a bigger size of model to be trained

efficiently hence present a better result.

65

REFERENCES

Anagnostopoulos, C.N.E. et al. (2006) ‘A license plate-recognition algorithm

for intelligent transportation system applications’, IEEE Transactions on

Intelligent Transportation Systems, 7(3), pp. 377–391. Available at:

https://doi.org/10.1109/TITS.2006.880641.

ANPR Cameras | ANPR accuracy test (2019). Available at:

https://sensorable.io/articles/anpr-accuracy-test/index.html (Accessed: 10

September 2022).

Ashtari, A.H., Nordin, Md.J. and Seyed Mostafa Mousavi Kahaki (2011) ‘A

new reliable approach for Persian license plate detection on colour images’, in

Proceedings of the 2011 International Conference on Electrical Engineering

and Informatics. IEEE, pp. 1–5. Available at:

https://doi.org/10.1109/ICEEI.2011.6021697.

Bay, H. et al. (2008) ‘Speeded-Up Robust Features (SURF)’, Computer Vision

and Image Understanding, 110(3), pp. 346–359. Available at:

https://doi.org/10.1016/j.cviu.2007.09.014.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M. (2020) ‘YOLOv4: Optimal

Speed and Accuracy of Object Detection’.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2021). GitHub -

AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for

Object Detection (Windows and Linux version of Darknet). Available at:

https://github.com/AlexeyAB/darknet (Accessed: 10 September 2022)

Calonder, M. et al. (2010) ‘BRIEF: Binary Robust Independent Elementary

Features’, in, pp. 778–792. Available at: https://doi.org/10.1007/978-3-642-

15561-1_56.

Chang, S.L. et al. (2004) ‘Automatic License Plate Recognition’, IEEE

Transactions on Intelligent Transportation Systems, 5(1), pp. 42–53. Available

at: https://doi.org/10.1109/TITS.2004.825086.

Creating TFRecords (2021). Available at:

https://keras.io/examples/keras_recipes/creating_tfrecords/ (Accessed: 17

October 2022).

Duan, K. et al. (2019) CenterNet: Keypoint Triplets for Object Detection.

Available at: https://github.com/.

Faradji, F., Rezaie, A.H. and Ziaratban, M. (2007) ‘A Morphological-Based

License Plate Location’, in 2007 IEEE International Conference on Image

Processing. IEEE, pp. I-57-I–60. Available at:

https://doi.org/10.1109/ICIP.2007.4378890.

66

Girshick, R. et al. (2014) Rich feature hierarchies for accurate object detection

and semantic segmentation. Available at: http://arxiv.

Girshick, R. (2015) Fast R-CNN. Available at: https://github.com/rbgirshick/.

Habeeb, D. et al. (2021) ‘Deep-Learning-Based Approach for Iraqi and

Malaysian Vehicle License Plate Recognition’, Computational Intelligence and

Neuroscience, 2021. Available at: https://doi.org/10.1155/2021/3971834.

Hendry and Chen, R.C. (2019) ‘Automatic License Plate Recognition via

sliding-window darknet-YOLO deep learning’, Image and Vision Computing,

87, pp. 47–56. Available at: https://doi.org/10.1016/j.imavis.2019.04.007.

Hsu, G.S., Chen, J.C. and Chung, Y.Z. (2013) ‘Application-oriented license

plate recognition’, IEEE Transactions on Vehicular Technology, 62(2), pp.

552–561. Available at: https://doi.org/10.1109/TVT.2012.2226218.

Hui J (2018) SSD object detection: Single Shot MultiBox Detector for real-time

processing | by Jonathan Hui | Medium. Available at: https://jonathan-

hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-

time-processing-9bd8deac0e06 (Accessed: 10 September 2022).

Jacob, S. (2020) EfficientDet for Object Detection. Available at:

https://blog.roboflow.com/breaking-down-efficientdet/ (Accessed: 10

September 2022).

Jørgensen, H. (2017) Automatic License Plate Recognition using Deep

Learning Techniques. Available at:

https://doi.org/http://hdl.handle.net/11250/2467209.

Karol Majek (2018) (10) SSD Mobilenet Object detection FullHD S8#001 -

YouTube. Available at:

https://www.youtube.com/watch?v=7p2XL8wApfo&t=430s (Accessed: 10

September 2022).

Liu, W. et al. (2016) ‘SSD: Single Shot MultiBox Detector’, in, pp. 21–37.

Available at: https://doi.org/10.1007/978-3-319-46448-0_2.

Malaysia - Flash report, Automotive sales volume, 2022 - MarkLines

Automotive Industry Portal. (2022). Available at:

https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-

malaysia-by-month (Accessed: 9 February 2023)

Ng, P.C. (2003) ‘SIFT: predicting amino acid changes that affect protein

function’, Nucleic Acids Research, 31(13), pp. 3812–3814. Available at:

https://doi.org/10.1093/nar/gkg509.

Redmon, J. et al. (2016) You Only Look Once: Unified, Real-Time Object

Detection. Available at: http://pjreddie.com/yolo/.

https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-malaysia-by-month
https://www.marklines.com/en/statistics/flash_sales/automotive-sales-in-malaysia-by-month

67

Ren, S. et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. Available at: https://github.com/.

Selmi, Z., ben Halima, M. and Alimi, A.M. (2017) ‘Deep Learning System for

Automatic License Plate Detection and Recognition’, in 2017 14th IAPR

International Conference on Document Analysis and Recognition (ICDAR).

IEEE, pp. 1132–1138. Available at: https://doi.org/10.1109/ICDAR.2017.187.

Sharma, P., Karan, J. and Karan Sing, J. (2015) ‘Challenges and Overview of

License Plate Character Segmentation’, International Journal of Computer

Science International Journal of Computer Science International Journal of

Computer Science International Journal of Computer [Preprint]. Available at:

www.ijcaonline.org.

Tan, M., Pang, R. and Le, Q. v. (2019) ‘EfficientDet: Scalable and Efficient

Object Detection’. Available at: http://arxiv.org/abs/1911.09070.

Tan, M. and Yu, A. (2020) Google AI Blog: EfficientDet: Towards Scalable and

Efficient Object Detection. Available at:

https://ai.googleblog.com/2020/04/efficientdet-towards-scalable-and.html

(Accessed: 10 September 2022).

Uri Almog (2021) CenterNet, Explained. CenterNet is an anchorless object… |

by Uri Almog | Towards Data Science. Available at:

https://towardsdatascience.com/centernet-explained-a7386f368962 (Accessed:

10 September 2022).

Viswanathan DG. (2011). Features from Accelerated Segment Test (FAST).

Xu, Z. et al. (2018) Towards End-to-End License Plate Detection and

Recognition: A Large Dataset and Baseline. Available at:

https://github.com/detectRecog/CCPD.

Zang, D. et al. (2015) ‘Vehicle license plate recognition using visual attention

model and deep learning’, Journal of Electronic Imaging, 24(3), p. 033001.

Available at: https://doi.org/10.1117/1.jei.24.3.033001.

Zheng, D., Zhao, Y. and Wang, J. (2005) ‘An efficient method of license plate

location’, Pattern Recognition Letters, 26(15), pp. 2431–2438. Available at:

https://doi.org/10.1016/j.patrec.2005.04.014

68

