

INTELLIGENT IMAGE SEARCH ENGINE

WITH AI-BASED SIMILARITY DETECTION

FOR WEB APPLICATION

CHONG WAI SOON

UNIVERSITI TUNKU ABDUL RAHMAN

INTELLIGENT IMAGE SEARCH ENGINE WITH AI-BASED

SIMILARITY DETECTION FOR WEB APPLICATION

CHONG WAI SOON

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

A project report submitted in partial fulfilment of

the requirements for the award of Bachelor of

Science (Honours) Software Engineering

October 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Chong Wai Soon

ID No. : 2106577

Date : 30/3/2024

9/9/202430/9/2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “INTELLIGENT IMAGE SEARCH

ENGINE WITH AI-BASED SIMILARITY DETECTION FOR WEB

APPLICATION” was prepared by CHONG WAI SOON has met the

required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Software Engineering with Honours at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Mohammad Babrdel Bonab

09/09/202430/09/2024

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, CHONG WAI SOON. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to everyone for providing me with

the resources and support necessary to complete this project. I would like to

thank my supervisor, Dr Mohammad Babrdel Bonab, for his guidance and

support throughout the research process. His expertise and feedback have been

invaluable in shaping this project.

 In addition, I would also like thank my friend, Chan Jia Jun, for his help

in testing the UI flexibility across his laptop. His efforts have been essential to

ensure that the web application is user-friendly and performs well on various

devices.

 Lastly, I am deeply grateful to my family and friends for their

unwavering support and encouragement throughout this final year project

journey. Their love and support have been a constant source of motivation.

v

ABSTRACT

With the growing reliance on visual data and the vast amount of information

available on the internet, efficiently searching and retrieving relevant images

has become increasingly important. Traditional image search engines which

majorly depend on keyword-based approaches often give unsatisfactory results

since they cannot accurately understand what users mean by their queries in just

text. This project aims at developing an intelligent image search engine that

uses AI-based similarity detection to have more precise and relevant image

retrieval. The project involves developing a web application where users can

upload images and search for images in each database that are visually like them.

The system uses advanced AI techniques such as Convolutional Neural

Networks (CNNs) and Siamese Networks to extract features from input images

and compares them with pictures already in the database to pick out and retrieve

the most similar ones. This content-based approach does away with the need for

describing images using keywords by users thus improving accuracy and

relevancy of search results. This project is a web application that uses different

technologies such as HTML, CSS, JavaScript, Python, PyTorch and MongoDB.

The front-end of the application allows for user interaction while the backend

handles image processing, similarity detection and database management. To

achieve high accuracy in similarity detection, this AI model is continuously

refined and improved through iterative development methodology. The project

has great impact on various fields like e-commerce sites, digital libraries or

social networks where effective and efficient picture retrieval is highly needed.

By creating an excellent image search engine that is user-friendly, it promotes

AI powered technology progress in addition to laying a foundation for future

research and developments within the field of image search as well as

recognition.

vi

TABLE OF CONTENTS

DECLARATION vi

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xviii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Project Background 3

 1.2.1 Yahoo Image Search: Keyword-Based Approach 3

 1.2.2 Google Lens: Image Search Engine with Website 3

 Results

1.2.3 Google Image Search: Textual Input 4

1.3 Problem Statement 4

1.4 Aim and Objectives 5

1.5 Scope and Limitations of Study 6

 1.5.1 Scope 6

 1.5.2 Limitation 6

 1.5.3 Tools 6

 1.5.4 Target Users 7

1.6 Proposed Solution 7

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Similar Applications and Related Works 9

2.2.1 TinEye 9

 2.2.2 Google Lens 12

 2.2.3 Yahoo Image Search 14

vii

2.3 Comparison of Image Search Engine with 17

Intelligent Image Search Engine with AI-Based

Similarity Detection for Web Application

2.4 AI Algorithm and Deep Learning Technique 17

2.4.1 Convolutional Neural Networks (CNNs) 18

2.4.2 Base Model of Convolutional

NeuralNetworks (CNNs) 19

 2.4.2.1 LeNet 19

 2.4.2.2 AlexNet 20

 2.4.2.3 GoogleNet 22

 2.4.2.4 VGGNet(Visual Geometry Group

 Network) 24

 2.4.2.5 ResNet(Residual Network) 26

2.4.3 Siamese Network 29

2.4.4 One Shot Learning 30

3 METHODOLOGY AND WORK PLAN 32

3.1 Introduction 32

3.2 System Development Methodology 32

3.3 Work Plan 35

3.3.1 Work Breakdown Structure 35

3.3.2 Gantt Chart 41

3.4 Development Tools 43

3.4.1 HyperText Markup Language (HTML) 43

3.4.2 Cascading Style Sheets (CSS) 43

3.4.3 JavaScript (JS) 44

3.4.4 Python 44

3.4.5 PyTorch 44

3.4.6 MongoDB 44

3.4.7 Visual Studio Code 45

 3.4.8 Git 45

 3.4.9 PIL 45

 3.4.10 Numpy 45

 3.4.11 Flask 46

 3.5 Workflow of Development 46

viii

 3.6 Conclusion 48

4 Project Specification 49

4.1 Introduction 49

4.2 Requirement Specification 49

4.2.1 Functional Requirements 49

4.2.2 Non-Functional Requirements 50

 4.3 Use Case Diagram 50

 4.4 Use Case Description 51

 4.4.1 Upload Image 51

 4.4.2 Search Similar Image 52

 4.4.3 View Search Results 53

 4.4.4 Process Uploaded Image 54

 4.4.5 Learn Image Feature 55

 4.4.6 Compare Extracted Feature 56

 4.4.7 Determine Similarity 57

 4.5 Activity Diagram 59

 4.5.1 Upload Image 59

 4.5.2 Search Similar Image 60

 4.5.3 View Search Results 61

 4.5.4 Process Uploaded Image 62

 4.5.5 Learn Image Feature 63

 4.5.6 Compare Extracted Feature 64

 4.5.7 Determine Similarity 65

 4.6 Data Flow Diagram 66

 4.6.1 Context Diagram 66

 4.6.2 Level 0 Diagram 67

 5 System Design 68

 5.1 Introduction 68

 5.2 System Architecture Design 68

 5.3 Database Design 71

 5.3.1 Entity Relationship Diagram 71

 5.3.2 Data Dictionary 72

 5.4 User Interface Design 74

 5.4.1 Mock Up 74

ix

 5.4.1.1 Image Upload Page 74

 5.4.1.2 Drag Image for Upload 75

 5.4.1.3 Upload Image From Folder 76

 5.4.1.4 Loading Indicator 77

 5.4.1.5 Image Results Page 78

 5.4.1.6 Download Image 79

 5.4.1.7 Download Successful Notification 80

 5.4.1.8 No Similar Image Detected

Notification 81

 5.4.1.9 Not Supported Format Notification 82

 6 Implementation 83

 6.1 Introduction 83

 6.2 Frontend Implementation 83

 6.2.1 Image Upload Page 84

 6.2.1.1 Drag-and-Drop Interaction 84

 6.2.1.2 Upload Image from Folder 84

 6.2.1.3 Display Error Messages 85

 6.2.1.4 Display Loading Indicator 85

 6.2.2 Image Result Page 85

 6.2.2.1 Display Similar Images 86

 6.2.2.2 View Images in a Large Format 86

 6.2.2.3 Download Image Result 86

 6.2.2.4 Providing Download Success

Notification 87

 6.2.2.5 Back to Image Upload Page 87

 6.3 Backend Implementation 87

 6.3.1 Upload 88

 6.3.2 Search and Retrieve Similar Images 88

 6.3.3 Download Image 88

 6.3.4 Save Dataset to Database 89

 6.3.5 Redirect to Frontend 89

 6.3.6 API List 90

 6.4 Model Training 91

 6.4.1 Data Preparation 91

x

 6.4.2 Model Definition 92

 6.4.3 Loss Function 93

 6.4.4 Training Loop 93

 6.4.5 Testing 95

 6.5 Implementation Workflow 95

 6.6 Summary 97

 7 Testing 98

 7.1 System Testing 98

 7.1.1 Test Plan 98

 7.1.1.1 Test Scope 98

 7.1.1.2 Test Basis 98

 7.1.1.3 Test Items 99

 7.1.1.4 Test Strategy 100

 7.1.1.5 Test Conditions 100

 7.1.2 Entry and Exit Criteria 101

 7.1.2.1 Entry Criteria 101

 7.1.2.2 Exit Criteria 101

 7.1.3 Unit Testing 102

 7.1.4 Functional Testing 104

 7.1.5 Integration Testing 106

 7.1.6 API Testing 108

 7.2 Model Testing 111

 7.2.1 Evaluation Criteria 111

 7.2.1.1 Train Set 111

 7.2.1.2 Test Set 112

 7.2.1.3 Dataset 112

 7.2.1.4 Evaluated Models 112

 7.2.2 ResNet-18 113

 7.2.3 AlexNet 118

 7.2.4 LeNet 122

 7.2.5 VGGNet-16 126

 7.2.6 GoogleNet-V3 130

 7.2.7 Comparison of Base Models 134

 7.3 Conclusion 135

xi

 8 Conclusion and Recommendation 137

 8.1 Conclusion 137

 8.2 Limitations 138

 8.3 Recommendation for Future Work 139

 8.3.1 Optimize Image Processing Algorithms 140

 8.3.2 Enhance User Interface Features 140

 8.3.3 Improve Database Scalability 140

 8.3.4 Enhance AI Model 141

REFERENCES 142

xii

LIST OF TABLES

Table 2.1 Comparison of Image Search Engine with Intellifent

Image Search Engine with AI-Based Similarity Detection

for Web Application 17

Table 2.2 Parameter of Each Layer of LeNet 19

Table 2.3 Parameter of Each Layer of AlexNet 21

Table 2.4 Paramter of Each Layer of GoogleNet 23

Table 2.5 Parameter of Each Layer of VGG-16 25

Table 2.6 Parameter of each layer of ResNet-18 27

Table 5.1 Description of Database Tables 72

Table 5.2 fs_chunks Collection Data Dictionary 72

Table 5.3 fs_files Collection Data Dictionary 73

Table 5.4 image_features Collection Data Dictionary 73

Table 6.1 API List of Backend Service 90

Table 7.1 Modules or services to be tested 99

Table 7.2 Test Case of Unit Testing 103

Table 7.3 Test Case of Functional Testing 105

Table 7.4 Test Case of Integration Testing 107

Table 7.5 Test Case of API Testing 109

Table 7.6 Performance metrics of tested models for train set 134

Table 7.7 Performance metrics of tested models for test set 134

xiii

LIST OF FIGURES

Figure 1.1 The Top Results Retrieved by Searching for ‘Tick’ on

Google Image Search 1

Figure 1.2 Overview of Intelligent Image Search Engine with AI-

Based Similarity Detection for Web Application 8

Figure 2.1 User Interface of TinEye 10

Figure 2.2 User Interface of Google Lens 12

Figure 2.3 User Interface of Yahoo Image Search 15

Figure 2.4 Overview of Convolutional Neural Networks (CNNs) 18

Figure 2.5 Overview of LeNet 20

Figure 2.6 Overview of AlexNet (Robert Mash & Nicholas Becherer

& Brian Woolley & John Pecarina, 2016) 22

Figure 2.7 Overview of GoogleNet (GeeksforGeeks, 2020) 23

Figure 2.8 Overview of VGG-16 (Reynolds, A.h., n.d.) 26

Figure 2.9 Overview of ResNet (Rohit Kundu & Ritacheta Das &

Zong Woo Geem & Ram Sarkar., 2021) 28

Figure 2.10 Overview of Siamese Network 30

Figure 2.11 Overview of One Shot Learning (Shivaank Agarwal &

Ravindra Gudi, 2022) 31

Figure 3.1 Iterative Methodology 33

Figure 3.2 Work Breakdown Structure 38

xiv

Figure 3.3 Work Breakdown Structure (Continued) 39

Figure 3.4 Work Breakdown Structure (Continued) 40

Figure 3.5 Gantt Chart 41

Figure 3.6 Gantt Chart (Continued) 42

Figure 4.1 Use Case Diagram of Intelligent Image Search Engine with

 AI-Based Similarity Detection for Web Application 50

Figure 4.2 Activity Diagram for Upload Image 59

Figure 4.3 Activity Diagram for Search Similar Image 60

Figure 4.4 Activity Diagram for View Search Results 61

Figure 4.5 Activity Diagram for Process Uploaded Image 62

Figure 4.6 Activity Diagram for Learn Image Features 63

Figure 4.7 Activity Diagram for Compare Extracted Feature 64

Figure 4.8 Activity Diagram for Determine Similarity 65

Figure 4.9 Context Diagram 66

Figure 4.10 Level 0 Diagram 67

Figure 5.1 System Architecture Design 69

Figure 5.2 Entity Relationship Diagram 71

Figure 5.3 Image upload Page 74

Figure 5.4 Drag image for upload 75

Figure 5.5 Upload image from folder 76

Figure 5.6 Loading indicator 77

xv

Figure 5.7 Image results page 78

Figure 5.8 Download window 79

Figure 5.9 Download successful notification 80

Figure 5.10 No similar image detected notification 81

Figure 5.11 Not supported format notification 82

Figure 7.1 Training Accuracy over 50 Epochs (ResNet) 114

Figure 7.2 Training and Valid Loss over 50 Epochs (ResNet) 114

Figure 7.3 Training Precision over 50 Epochs (ResNet) 115

Figure 7.4 Training Recall over 50 Epochs (ResNet) 115

Figure 7.5 Test Accuracy over 10 Epochs (ResNet) 116

Figure 7.6 Test Loss over 10 Epochs (ResNet) 116

Figure 7.7 Test Precision over 10 Epochs (ResNet) 117

Figure 7.8 Test Recall over 10 Epochs (ResNet) 117

Figure 7.9 Training Accuracy over 50 Epochs (AlexNet) 118

Figure 7.10 Training and Valid Loss over 50 Epochs (AlexNet) 119

Figure 7.11 Training Precision over 50 Epochs (AlexNet) 119

Figure 7.12 Training Recall over 50 Epochs (AlexNet) 119

Figure 7.13 Test Accuracy over 10 Epochs (AlexNet) 120

Figure 7.14 Test Loss over 10 Epochs (AlexNet) 120

Figure 7.15 Test Precision over 10 Epochs (AlexNet) 121

xvi

Figure 7.16 Test Recall over 10 Epochs (AlexNet) 121

Figure 7.17 Training Accuracy over 50 Epochs (LeNet) 122

Figure 7.18 Training and Valid Loss over 50 Epochs (LeNet) 123

Figure 7.19 Training Precision over 50 Epochs (LeNet) 123

Figure 7.20 Training Recall over 50 Epochs (LeNet) 123

Figure 7.21 Test Accuracy over 10 Epochs (LeNet) 124

Figure 7.22 Test Loss over 10 Epochs (LeNet) 124

Figure 7.23 Test Precision over 10 Epochs (LeNet) 125

Figure 7.24 Test Recall over 10 Epochs (LeNet) 125

Figure 7.25 Training Accuracy over 50 Epochs (VGGNet) 126

Figure 7.26 Training and Valid Loss over 50 Epochs (VGGNet) 127

Figure 7.27 Training Precision over 50 Epochs (VGGNet) 127

Figure 7.28 Training Recall over 50 Epochs (VGGNet) 127

Figure 7.29 Test Accuracy over 10 Epochs (VGGNet) 128

Figure 7.30 Test Loss over 10 Epochs (VGGNet) 128

Figure 7.31 Test Precision over 10 Epochs (VGGNet) 129

Figure 7.32 Test Recall over 10 Epochs (VGGNet) 129

Figure 7.33 Training Accuracy over 50 Epochs (GoogleNet) 130

Figure 7.34 Training and Valid Loss over 50 Epochs (GoogleNet) 131

Figure 7.35 Training Precision over 50 Epochs (GoogleNet) 131

xvii

Figure 7.36 Training Recall over 50 Epochs (GoogleNet) 131

Figure 7.37 Test Accuracy over 10 Epochs (GoogleNet) 132

Figure 7.38 Test Loss over 10 Epochs (GoogleNet) 132

Figure 7.39 Test Precision over 10 Epochs (GoogleNet) 133

Figure 7.40 Test Recall over 10 Epochs (GoogleNet) 133

xviii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

SDLC Software Development Life Cycle

UI User Interface

SQL Structured Query Language

HTML HyperText Markup Language

CSS Cascading Style Sheets

JS JavaScript

CNNs Convolutional Neural Networks

1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

In the modern age, technology had become familiar to everyone which one of the important

footprints of technology is Internet. Lots of information can be gained from Internet using the

search engine such as Google and Bing by only given the keywords for the searching items

such as blogs, images, videos, and news. However, it is difficult to decipher users’ search

intentions from only the query keywords which may lead to unsatisfactory search results due

to there are many information and data nowadays on Internet. Image is one of the things that

people like to search on Internet by using keyword and Google Images search engine is one of

the famous tools that achieve the function for the people to search the images. Google Images

search engine will return large number of images for a given keyword-based query, but it is

still unsatisfactory due to poor accuracy rate and include large amounts of junk images. Figure

1.1 shows the top results of query “Tick” in google image search and it shows two different

topics which are the symbol and the arachnids, this shows that keyword-based query for image

search is not that high accurate.

Figure 1.1 illustrates the top results retrieved by searching for “Tick” on Google Image

Search

2

 In order to increase the accuracy of getting the correct returned image results, Intelligent

Image Search Engine with AI-Based Similarity Detection would be a suitable tool to solve the

problem of keyword-based query for searching an image. Image search engine is a specialized

search engine for retrieving images which show different to traditional search engines which

are type-based search engine. Although type-based search engine can also use to type keywords

and find the images, but the text information is limited and can be inaccurate and there is no

way to promote the variation of the results without analyzing content of the images. Therefore,

image search engine is implemented to allow users to input image query and find the image

due to compare the features and patterns of image, retrieved the highest similarity image.

Nowadays, there are many image search engines had been implemented such as in

Google it called Google lens and in Pinterest it called Pinterest lens. The similar characteristic

of both Google lens and Pinterest lens is using AI for similarity detection of the image. AI has

become so popular and trend in different areas and now it also uses in image search engine due

to its accuracy and efficiency as it can analyze images quickly and returned the similar image

results after searched from the database. By having AI to do the similarity detection in image

search engine, this can ensure that the returned image results would be in high accuracy same

with the input image query and also efficiency while response in similarity detection. This is

because AI similarity detection will determine the similarity between the images by analyze

the features of image so it can return the most accuracy result which is the highest similarity

image as the result.

3

1.2 Problem Background

Image search engine had became familiar and popular nowadays due to it is the effective way

for people to search for image that they want and there are many images search engines had

been developed such as Yahoo Image Search engine, Google Image Search engine and Google

lens. However, there are some limitations and weaknesses for each image search engine.

1.2.1 Yahoo Image Search: Keyword-Based Approach

Yahoo Image Search Engine is using keyword-based approach which the image retrieval will

based on what text or keyword type by the user then based on the keyword, the related images

will be show as results to user. This is the traditional way that many users had used to find the

image that they want. However, this keyword-based approach using by Yahoo Image Search

Engine had a problem that it may show the wrong results that not the user expected. This is

because keyword-based image search engine will depend on the information of keyword and

if any image related to the keyword, it will show as results and this will cause the irrelevant

search results. (Vijayan Vijayarajan & Mohd Khalid & Chandra Mouli P.V.S.S.R, 2012)

1.2.2 Google Lens: Image Search Engine with Website Results

Google Lens is using content-based approach which needs user to input image query to find

the similar image based on the image given. It is an image recognition technology to analyze

the features and patterns of the image and retrieve the most similar images from the website.

(Viktor Shapovalov & Zhanna Bilyk & Yevhenii Boris Shapovalov, 2020) Although Google

Lens is using this image recognition technology and it is high accuracy on its return results, but

the results are the images in other websites, and it is not directly return the image only. It is

hard for users to find themselves the specific website that they want for the image as the results

showed will be all the similar images from other websites in Internet.

4

1.2.3 Google Image Search: Textual Input

Google Image Search Engine is using textual input which is to input text to access image

retrieval. It requires user to input text query and Google Image Search Engine will based on

the text to return the image results which fit its description. However, it is hard for users to

fully describe the image that they want to search by using text and return with irrelevant results

(Bo Luo & Xiaogang Wang & Xiaoou Tang, 2003) Textual input is depend on all the text given

by user that to search the image based on the description of text but sometimes user will confuse

and wrongly use the word or even do not know which words need to type in order to find the

image that they want and this may cause waste of time.

1.3 Problem Statement

An intelligent image search engine with AI-based similarity detection for web application is to

give an effective way to user to find the image which has the high similarity with the input

image query and return the result images which retrieve from a specific database. Nowadays

there are many image search engines existed such as Yahoo Image Search Engine, Google

Image Search Engine and Google lens. Although image search engine is that famous and

familiar now, but there are still insufficient on each image search engine which the results

search is from the Internet but not a specific place. The image search engine existed nowadays

do not allow user to get only the results from a specific place but will list all the possible results

from other websites. For example, user want to search the image in one specific shopping

website, but the existed image search engine will return the results that may be similar to the

input image query from other website but not only from the shopping website that the user

wants. Therefore, this intelligent image search engine with AI-based similarity detection for

web application enable user to only search the image which only return results from a specific

database but not from Internet.

 The image search engine existed nowadays are more on keyword-based approach which

need user to type some text or keyword to find the image based on the keyword given. It is

using the keyword to describe the content of the image and retrieve the images. However, this

approach will bring problem that the results shown may not be accurate. This is because image

retrieval is difficult to specific the keyword or text which use to describe the content of images

5

as some difference in annotation will change the retrieval result. Therefore, intelligent image

search engine with AI-based similarity detection for web application can solve the problem

since it will develop as a content-based image search engine.

 The textual input for image search engine will also annoying user that sometimes user

may not know what word need to describe on the image for input the text query. This is because

if the text query is not specific, the search results could be a large number of irrelevant results

as a few words cannot fully describe the image content that user wants to find. Thus, Intelligent

Image Search Engine With AI-Based Similarity Detection for web application enable user to

direct input image as it is content-based search engine so that user no need to use the specific

keyword to find the image that they want but just let AI to detect the similarities and return the

image results to them.

1.4 Aim and Objectives

The primary goal of this project is to design and implement an advanced image search engine

that leverages AI techniques for similarity detection. Users can upload an image, and the system

will search a database to find and present all visually similar images. The results will be

displayed through a user-friendly web application. In order to achieve this goal, the following

objectives had to be met:

1. To develop a web application to facilitate user interaction and integrate the AI-based

image search engine into the web application, allowing users to upload images and view

search results

2. To implement a deep learning model for extracting features from uploaded images and

learning the features of image content

3. To utilize AI techniques to compare the extracted features and determine the similarity

between the query image and images in the database and list the results

6

1.5 Scope and Limitation of Study

1.5.1 Scope

This project focuses on developing a comprehensive content-based image search engine that

employs cutting-edge AI techniques for accurate similarity detection. The AI technique will be

use to compare the similarity of query image and images in the database and then retrieve

similar images from the database. This image search engine will be implemented in web

application which is user-friendly to allow user input image query and show the results in

descending order of similarity. There are several vital features which are the fully functional

intelligent image search engine, web application featuring an intuitive interface for image

uploads and result display and accurate AI-based similarity detection for query image and

images in database.

1.5.2 Limitation

There are limitation of this study which the user only can input image query but no text and

keyword since it is content-based and not keyword-based search engine. The return results will

only show the images and do not include other information such as website link as the image

results will be from database but not Internet and the return result images will based on the

database and will not give result images from Internet. Since it retrieves images from the

database, search results may not be displayed if the input image does not correspond to any

images stored in the database due to there is fixed number of images in database.

1.5.3 Tools

The tools that will be use in develop an intelligent image search engine with AI-based similarity

detection are HTML, CSS and JavaScript for develop frontend of web application, RESTful

API as intermediary between the frontend and backend of web application, OpenCV as

software library for image processing tasks, TensorFlow or PyTorch as deep learning

framework and MySQL or MongoDB as database to store the datasets.

7

1.5.4 Target Users

The target user for this intelligent image search engine with AI-based similarity detection for

web application is people who want to input image as query in order to search the image instead

of using keyword-based approach and get the results from specific place but not from the

Internet that show the results in different websites.

1.6 Proposed Solution

An intelligent image search engine with AI-based similarity detection for web application will

be created in this project to enable users to upload an image, and present similar images through

a web application. Figure 1.2 shows the overview of the intelligent image search engine with

AI-based similarity detection for web application. First, user will be able to input their image

query in user interface of web application and the image will be pass to NumPy and PIL for

image processing through RESTful API as intermediary between frontend and backend. Then,

the processed image data will be performing neural network inference by TensorFlow or

PyTorch and query the MySql or MongoDB by using the output from the neural network to

search for similar images via API. While the highest similarity of image with the input image

query had been found, API retrieves the image from database and return as result to web

application for display to the user.

8

Figure 1.2 Overview of Intelligent Image Search Engine with AI-Based Similarity Detection

for Web Application

9

Chapter 2

Literature Review

2.1 Introduction

Several important pieces of knowledge need to be explained to achieve this project’s objectives.

In this chapter, several similar image search engines that operates as web application will be

discussed. Next, AI algorithm and deep learning techniques will be explored to facilitate the

selection of suitable methods to accomplish corresponding features in image search engine with

AI-based similarity detection for web application. Furthermore, five base models that based on

convolutional neural networks will be discussed, followed by Siamese Network review and

lastly One-Shot Learning to have an understanding of how the backend works by looking at

the models and techniques. By having a review on others’ similar applications and techniques

for backend, it is giving help to gain ideas on how to design an image search engine with AI-

based similarity detection for web application.

2.2 Similar Applications and Related Works

In this section, three relevant image search engines that operates as web application were

selected from browser, and their design and functionality were analyzed. The project can cover

more usage scenarios and finds more functional and non-functional requirements by reviewing

other similar image search engines that operates as web application.

2.2.1 TinEye

TinEye is a content-based image search engine that operates as web application developed by

Idee Inc.. TinEye provides functionality that allows users to search for similar images by

uploading image or providing its URL. Figure 2.1 presents the user interface of the TinEye

image search engine that operates as web application.

10

Figure 2.1 User Interface of TinEye

Main Features

• Upload Image for image searching purpose

Users can upload image for searching the similar image in TinEye. By receiving the image

upload by user, TinEye image search engine will return the similar images as results to the

users.

• Upload URL for image searching purpose

Users can upload URL which is the web address that specifies the location of image on the

internet for searching the similar image in TinEye. By receiving the URL upload by user,

TinEye image search engine will access the image from the URL and return the similar images

as results to the users.

• Find Similar Images

TinEye image search engine will receive image or URL input from the users. Based on the

image queries, TinEye image search engine will search the similar images in its database and

return the most similar images as results to users.

11

• Identify Source of image

TinEye image search engine will return the similar images to users based on the image or URL

input by users. The image results will also state the source of the results which is the website

of the image located.

Evaluation of TinEye

TinEye, as an image search engine by content-based approach, is a good attempt with a

successful outcome. By using TinEye image search engine web application, users can find the

similar image results of their image queries. TinEye image search engine with content-based

approach will not require users to consider which keyword or text need to input for search the

image they want. Users can directly input the image or URL then can search for the similar

image result which improve the convenience of users. Several features in TinEye are

advantageous and suitable to implement in this project.

 The first feature is the upload image for searching purpose. It can call as content-based

approach which users can direct input the image as query. There will have a place to notice

users that they can input the image there and can perform the image search function. When

users drag the image into the place or upload the image, the searching function will

automatically perform and then return the results of how many images match with the image

query. This feature will improve the user experience and let users feel convenient due to users

no need to think about the keyword or text need to type to describe the image so that it can

return more accurate image results to them.

 The second feature is find the similar images. TinEye image search engine will based

on the image input by users and return the similar images that match with the image query. It

will perform similarity detection on both the image query and images in its database and only

output the results that have almost high accuracy similarity. This feature is useful in content-

based approach as it can return the results based on similarity but different from keyword-based

approach which may misunderstand the description of keyword and return irrelevant images.

12

 However, there are some differences in TinEye with the intelligent image search engine

with AI-based similarity detection for web application which this project intended to develop.

Those differences are TinEye also allow users to input URL for image searching purpose but

not only the image input. The results shown by TinEye will also give the information of images

which are the website of the images located at but not just from one specific site. In conclusion,

despite the slight difference in requirements, TinEye’s user interface design and the features of

image input and search similar images can be referenced and adapted to this project.

2.2.2 Google Lens

Google Lens is a content-based approach image search engine which implement image

recognition technology. It allows users to search information of images and find the similar

image by input image or provide URL. Figure 2.2 presents the user interface of the Google

Lens in Google browser.

Figure 2.2 User Interface of Google Lens

Main Features

• Search using images

Users allow to drag or input image into specific place in Google Lens and then the search

function will automatically perform. Google Lens will return the information of image and list

13

out similar images which match the image query. This feature will make users easy to get the

information of the image and also find the similar image from other websites.

• Search using image link

Users can input image link which also known as URL in the provided place and then click the

search button to perform search functionality. Google Lens will get the image from the

provided link and then return the information of the image and similar images to the users.

• Image Recognition

Google lens has the functionality of image recognition which it can extract the feature and

pattern of the input image query from users and obtain the information of the image. By using

the extracted features to compare with other images, it will get the similar image from the

comparation and able to return then most accurate similar image results to user.

• Translation

Google lens provide the feature of translation which it can recognize the text in the image and

translate the text to other languages. Users can upload the image of document and input the

image in Google Lens and it can direct translate the text of the document to other language that

the user want.

Evaluation of Google Lens

Google Lens is an excellent content-based image search engine which use the image

recognition technology. Google has a keyword-based approach image search engine which

allow users to input keyword or text to search the image depend on the description of keyword.

However, it has probability to return irrelevant image results to the users, thus Google comes

out with a solution which is content-based image search engine, Google Lens. There are many

users nowadays using Google as browser to search for information so this Google Lens also

famous and familiar to the users and try to use it for image searching purpose.

 One of the features of Google Lens is the ability to allow users to upload image in

specific place which is to receive the query of users in form of image and return information to

the users as the normal functionality of search engine but now in the form of image search

14

engine. Users need to drag or upload the image from their site and then put into Google Lens,

when it receives any image input it will directly perform search function and return with the

information of the image and similar images which match the input image. This can advance

user experience that users can directly search the image they want by only input the images but

no need use any word to describe on the image which sometimes may using the wrong word

and text cause the irrelevant results.

 Other than that, Google Lens has use the image recognition technology which can

increase the accuracy on similarity detection between the image query and other images which

intend to return as results output. It is a field of AI which allow Google Lens to extract the

feature of the input image and then compare the information with other images. Therefore, with

the comparison of features and patterns information it is efficient to find a high similarity

images and return back to users.

 In conclude, Google Lens is excellent in content-based image search engine as it has

implemented AI technique in image similarity detection. The user interface design and features

are well worth learning. However, there also difference in Google Lens with the intelligent

image search engine with AI-based similarity detection for web application which intended to

develop in this project which is the output results of the images are from whole source of

Internet. It will not return image from specific site and need users to define themselves which

site’s image that they want. Google Lens also show too much information about the image

which not just directly return the image as result.

2.2.3 Yahoo Image Search

Yahoo Image Search Engine is a keyword-based approach image search engine which require

keyword input to perform search functionality. Figure 2.3 presents the user interface of Yahoo

Image Search.

15

Figure 2.3 User Interface of Yahoo Image Search

Main Features

• Input keyword for image searching purpose

Users allow to input keywords or text in search box that is provided in Yahoo Image Search

and click the search button to perform image search function. Yahoo Image Search will then

show the image results to the users based on the keyword input by the users.

• Filtering Options

Yahoo Image Search will show the results after users input the keyword and click the search

button. Users can apply filter functions such as size, colour, type and layout to the results show

by Yahoo Image Search to get the image that meet their needs.

• Preview Thumbnails

Yahoo Image Search will return the image results that only display the image without showing

other information. This will let users easy to find the image that they want and click on the

image then only will show the website link that the image located.

Evaluation of Yahoo Image Search

Yahoo Image Search is a keyword-based approach image search engine and it shows excellent

in this image search function. At first, users need to type in keyword in search box that is

provided in Yahoo Image Search and click the search button to perform search function. Users

16

need to determine what keyword need to type so that it can search the image that what users

are exactly want. From the description of the keyword, Yahoo Image Search will show the

image results that are related to the keyword.

 The main feature of Yahoo Image Search is to return image as searching results to the

users. Any query input in search box will only get image results but not the result as the normal

search engine which is the website. Yahoo Image Search will analyze the input of users and

then based on the description to find the related images and return them. However, the approach

uses in Yahoo Image Search is keyword-based and it does not provide content-based approach

which mean that users need to think about the keyword themselves to find the image such as

features and patterns but cannot directly input an image and let image search engine analyze

the features of the image.

 Furthermore, Yahoo Image Search will return the image results as thumbnails which

is a good preview result method to users. By showing the images only to the users, users can

use less time to search for the image that they want from the numerous of image results. There

are no information such as website to get the image but users can show this information by

click on the image to show details of the image.

 In conclude, Yahoo Image Search can be defined as traditional image search engine

because it still using keyword-based approach which require user to input keyword in the

purpose of searching image but this may make user inconvenience that users need to identify

themselves which keyword is correct to find the correct image that they want. Users sometimes

may annoying that the image results are wrong when they use the keyword that they may think

it is right. Even users had input the correct keyword, it still has the possibility to return

irrelevant results due to it is difficult to know the features and patterns of the image need by

users by only given the keyword.

17

2.3 Comparison of Image Search Engine with Intelligent Image Search Engine with AI-

Based Similarity Detection for Web Application

 TinEye Google Lens Yahoo Image Search

Intelligent Image Search
Engine with AI-Based

Similarity Detection for
Web Application

Image Input ✔ ✔  ✔

Keyword Input   ✔ 

URL input ✔ ✔  

Return Image from database ✔   ✔

Return Image from Internet  ✔ ✔ 

Similarity Detection ✔ ✔  ✔

Original source of image ✔ ✔ ✔ 

Return Image Only    ✔

Table 2.1 Comparison of Image Search Engine with Intelligent Image Search Engine with

AI-Based Similarity Detection for Web Application

2.4 AI Algorithm and Deep Learning Technique

Algorithm is the mathematical instructions which is the step-by-step procedure for calculations.

It is used for calculation, data processing, and automated reasoning. This algorithm is apply to

machine or computer as an instruction manual to let them know what to do and when to do it.

In the other words, without this algorithm given the information to the machine, there would

be no way to start the programming process. Algorithm always being our sides when we are

using a machine which carry out specific tasks. (Rock, 2021) However, algorithm is fixed that

it will complete the task based on the fixed instructions until the end.

18

 AI algorithm is almost the same with algorithm that give instruction and work on

specific task but the difference is this AI algorithm will learn on the task and gain experience

on each task, then improve its performance such as decision-making processes or recognize

patterns in data. (Rock, 2021) The more times of using the AI algorithm, the greater it able to

notice user individual preferences. There are different AI algorithms nowadays such as

Clustering algorithms, KNN and Neural Networks. One of the most famous and often used AI

algorithms in conjunction with deep learning techniques is Convolutional Neural Networks

(CNNs).

2.4.1 Convolutional Neural Networks(CNNs)

Neural networks are a subset of machine learning and they are at the heart of deep learning

algorithms. They have different node layers which are input layer, some hidden layers and

output layers. Each layer has the nodes which has associated weight and threshold and the node

will only activated when its output is above specified threshold value then the node will send

data to the next layer of the network. Convolutional Neural Network is one of the neural

network which more focus on image, speech, or audio signal inputs. The layers in CNNs are

convolutional layer, pooling layer and fully-connected(FC) layer. With these layers in CNNs,

it increases in its complexity, identifying greater portions of the image. CNNs performs its task

as in the earlier layers, it work on simple features and follow by going to the next layer, the

simple features will combine and finally identifies the intended object. (IBM, 2023) Figure 2.4

shows the overview of Convolutional Neural Networks(CNNs).

Figure 2.4 Overview of Convolutional Neural Networks(CNNs)

Output

layer

Fully connected

Neural Network

Flattening

Layer
Pooling Layer

Input

Convolutional

Layer

DRUG SMILE

REPRESENTAT

19

2.4.2 Base Model of Convolutional Neural Networks (CNNs)

2.4.2.1 LeNet

LeNet is one of the neural networks which using convolutional neural networks architectures

and it contains the basic modules of deep learning which are convolutional layer, pooling layer,

and full link layer. LeNet has a total of eight layer which includes the input layer but normally

the input layer does not count as the network structure. The other seven layers are C1 layer, S2

layer, C3 layer, S4 layer, C5 layer, F6 layer and Output layer. It will have three convolution

operation in C1 layer, C3 layer and C5 layer to extract features from the input image. Two

pooling operations in S2 layer and S4 layer to reduce the spatial dimensions of the feature maps

while preserving important features. Two specific operations in F6 layer and Output layer to

perform classification based on the extracted features and also combine the features learned

from the previous layers and map them to the output classes to enable the network to make

predictions. The flow of the layers is input layer, C1 layer, S2 layer, C3 layer, S4 layer, C5

layer, F6 layer and Output layer. LeNet is very efficient for handwritten character recognition

and its convolutional layer has fewer parameters which is determined by the main

characteristics of the convolutional layers such as local connection and shared weights.

(Varshney, P., 2020) Table 2.2 shows the parameter of each layer of LeNet and Figure 2.5

shows the overview of LeNet.

Layer Feature Map Size Kernel Size

Input Image 1 32 * 32 -

1 Convolution 6 28 * 28 5 * 5

2 Average Pooling 6 14 * 14 2 *2

3 Convolution 16 10 * 10 5 * 5

4 Average Pooling 16 5 * 5 2 * 2

20

5 Convolution 120 1 * 1 5 * 5

6 FC - 84 -

Output FC - 10 -

Table 2.2 Parameter of Each Layer of LeNet

Figure 2.5 Overview of LeNet

2.4.2.2 AlexNet

AlexNet is one of landmark convolutional neural networks architecture that have give

advancements in image classification and also is the winner of ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012. AlexNet also comprises fundamental components

of deep learning which are convolutional layers, pooling layers and fully connected layers.

AlexNet has a total of eight layers included the input layers and the other seven layers are

Conv1, Conv2, Conv3, Conv4, Conv5, FC6, FC7, and FC 8layers. It also consists of Pool1,

Pool2 and Pool3 layers but they are not count in the total layers because they are as overlapping

Output
Fully

connected

layer

Convolution

(5 * 5)
Subsampling

Convolution

(5 * 5)
Subsampling

Convolution

(5 * 5)

Input

32 * 32 * 1
Feature Map

28 * 28 * 6
Feature Map

14 * 14 * 6

Feature Map

10 * 10 * 16

Feature Map

5 * 5 * 6

120 84 10

21

max pooling applied within certain convolutional layers. In AlexNet, Conv1, Conv2, Conv3,

Conv4, Conv5 will perform convolutional operation to extract hierarchical features from the

input images. Then, Pool1, Pool2 and Pool3 will perform pooling operation for spatial

dimension reduction for preserving important features. After that, FC6, FC7 and FC8 which

are the fully connected layers are to combine the features learned from the previous layers and

then perform classification tasks to enable the network to make predictions. AlexNet had

introduced new innovations which is the use of rectified linear units (ReLU) for activation

functions, overlapping pooling, and dropout regularization. These techniques help to increase

the performance and efficiency in image classification tasks and also give big impact on the

field of deep learning and computer vision. (Varshney, P., 2020) Table 2.3 shows the parameter

of each layer of AlexNet and Figure 2.6 shows the overview of AlexNet.

Layer Neurons Filter

size

Stride Padding Size of feature

map

Activation

function

Input - - - - 227 * 227 * 3 -

Conv 1 96 11 *

11

4 - 55 * 55 * 96 ReLU

Pool 1 - 3 * 3 2 - 27 * 27 *96 -

Conv 2 256 5 * 5 1 2 27 * 27 * 256 ReLU

Pool 2 - 3 * 3 2 - 13 * 13 * 256 -

Conv 3 384 3 * 3 1 1 13 * 13 * 384 ReLU

Conv 4 384 3 * 3 1 1 13 * 13 * 384 ReLU

Conv 5 256 3 * 3 1 1 13 * 13 * 256 ReLU

Pool 3 - 3 * 3 2 - 6 * 6 *256 -

Dropout 1 Rate = 0.5 - - - 6 * 6 * 256 -

Table 2.3 Parameter of Each Layer of AlexNet

22

Figure 2.6 Overview of AlexNet (Robert Mash & Nicholas Becherer & Brian Woolley &

John Pecarina, 2016)

2.4.2.3 GoogleNet

GoogleNet is using convolutional neural network architecture, and it is the winner of ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) in 2014. GoogleNet also give new

innovative concepts to improve the performance of convolutional neural networks. GoogleNet

has multiple inception modules, each comprising parallel convolutional layers of different filter

sizes which are 1 * 1, 3 * 3 and 5 * 5 and pooling layers. These parallel layers give advantage

to the network to capture features at different spatial scales efficiently and the 1 * 1

convolutions also good to reduce the dimensionality of feature maps before applying larger

convolutions which help to decrease computational complexity. GoogleNet has a deeper and

wider architecture compared to the other CNNs base model with its total of 22 layers. Although

it has more layers, but it still maintains the efficiency by using inception modules and global

average pooling. The global average pooling is replaced the fully connected layers at the end

of the network, and it uses to compute the average value of each feature map that across its

entire spatial extend and give the result in a fixed-length vector representation of the features.

Global average pooling had reduced the number of parameters and mitigates overfitting. The

flow of the layers in GoogleNet is multiple inception modules followed by global average

pooling and a softmax output layer for classification. GoogleNet has give improvements in

image classification accuracy and also maintain the computational efficiency, paving the way

23

for subsequent advancements in deep learning architectures. Table 2.4 shows the parameter of

each layer of GoogleNet and Figure 2.7 shows the overview of GoogleNet.

Table 2.4 Paramter of Each Layer of GoogleNet

Figure 2.7 Overview of GoogleNet (GeeksforGeeks, 2020)

Type Stride Output size depth 1 * 1 3 * 3 reduce 3 * 3 5 * 5 reduce 5 * 5 Pool proj params ops

Convolution 7 * 7 / 2 112 * 112 * 64 1 2.7K 34M

Max pool 3 * 3 / 2 56 * 56 * 64 0

Convolution 3 * 3 / 1 56 * 56 *192 2 64 192 112K 360M

Max pool 3 * 3 / 2 28 * 28 *192 0

Inception (3a) 28 * 28 * 256 2 64 96 128 16 32 32 159K 128M

Inception (3b) 28 * 28* 480 2 128 128 192 32 96 64 380K 304M

Max pool 3 * 3 / 2 14 * 14 *480 0

Inception (4a) 14 * 14 * 512 2 192 96 208 16 48 64 364K 73M

Inception (4b) 14 * 14 * 512 2 160 112 224 24 64 64 437K 88M

Inception (4c) 14 * 14 * 512 2 128 128 256 24 64 64 463K 100M

Inception (4d) 14 * 14 * 528 2 112 144 288 32 64 64 580K 119M

Inception (4e) 14 * 14 * 832 2 256 160 320 32 128 128 840K 170M

Max pool 3 * 3 / 2 7 * 7 * 832 0

Inception (5a) 7 * 7 * 832 2 256 160 320 32 128 128 1072K 54M

Inception (5b) 7 * 7 * 1024 2 384 192 384 48 128 128 1388K 71M

Avg pool 7 * 7 / 1 1 * 1 * 1024 0

Dropout (40%) 1 * 1 * 1024 0

Linear 1 * 1 * 1000 1 1000K 1M

Softmax 1 * 1 * 1000 0

24

2.4.2.4 VGGNet (Visual Geometry Group Network)

VGGNet, also known as Visual Geometry Group Network, uses CNN architecture and it was

the second-best performing network in ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2014. Even though it fails to win ILSVRC in 2014, it is still one of the most

influential models for deep learning. This VGGNet has many convolutional layers followed by

max-pooling layers with small 3 * 3 filters which are used to capture spatial hierarchies of

features in input image. This is a normal deep convnet structure with the “deep” meaning the

number of layers in VGG-16 and VGG-19 which have 16 and 19 layers respectively. VGG-16

and VGG-19 differ in terms of their depth or simply put, how many levels of convolutional and

fully connected they are. There are thirteen convolutional layers for VGG-16 with three fully

connected layers while the VGG-19 contains sixteen convolutional as well as three fully

connected layers. In this model, some convolutional features followed by max-pooling ones

plus classification layers based on fully connected networks are used for the design. The output

layer usually consists of softmax activation for multi-class classification tasks. VGGNet had

achieved great performance on image classification tasks based on its straightforward

architecture and uniform structure to make it easy for understanding and implement. It is a

powerful tool for image recognition tasks and contributing to advancements in deep learning

research and applications. (Boesch, G., 2021) Below are the table and figure to show one of

the VGGNet architecture which is VGG-16. Table 2.5 shows the parameter of each layer of

VGG-16 and Figure 2.8 shows the overview of VGG-16.

25

Layer Activation shape Activation size Parameters

Input 224 * 224 * 3 150528 0

Conv 1 224 * 224 * 64 3211264 1792

Conv 2 224 * 224 * 64 3211264 36928

Pool 112 * 112 * 64 802816 0

Conv 3 112* 112 * 128 1605632 73856

Conv 4 112 * 112 * 128 1605632 147584

Pool 56 * 56 * 128 401408 0

Conv 5 56 * 56 * 256 802816 295168

Conv 6 56 * 56 * 256 802816 590080

Conv 7 56 * 56 * 256 802816 590080

Pool 28 * 28 * 256 200704 0

Conv 8 28 * 28 * 512 401408 1180160

Conv 9 28 * 28 * 512 401408 2359808

Conv 10 28 * 28 * 512 401408 2359808

Pool 14 * 14 * 512 100352 0

Conv 11 14 * 14 * 512 100352 2359808

Conv 12 14 * 14 * 512 100352 2359808

Conv 13 14 * 14 * 512 100352 2359808

Pool 7 * 7 * 512 25088 0

FC 14 4096 * 1 4096 102760449

FC 15 4096 * 1 4096 16777217

Softmax 1000 * 1 1000 4096001

Table 2.5 Parameter of Each Layer of VGG-16

26

Figure 2.8 Overview of VGG-16 (Reynolds, A.h., n.d.)

2.4.2.5 ResNet (Residual Network)

ResNet which is Residual Network is using CNNs architecture and it also give advancement

in deep learning by solve the problem of training very deep neural networks. ResNet introduced

new concept of residual learning which is to get use of residual blocks to learn residual

functions but not just learn the desired underlying mapping directly. This is done by adding

shortcut connections or skip connections that bypass more layers to allow the network to learn

residual mapping. ResNet has deep structure with networks ranging from tens to hundreds of

layers and its models are easier to train compared to traditional deep neural networks. The skip

connections mitigates the vanishing gradient problem by enable gradient flow throughout the

network and allow for the successful training of very deep networks. ResNet has many variants

such as ResNet-18, ResNet-34 and ResNet-50. Their difference is the number of layers which

can show their depth. These models have been trained on ImageNet and widely used as feature

extractors as the basis for transfer learning in computer vision tasks. The flow of layers in

ResNet is multiple residual blocks then global average pooling and lastly softmax output layer

for classification. ResNet has provided solution to the challenge of training very deep neural

networks and give way for advancement in this field. (Bangar, S., 2022) Below are the table

and figure to show one of the ResNet architecture which is ResNet-18. Table 2.6 shows the

parameter of each layer of ResNet-18 and Figure 2.9 shows the overview of ResNet-18.

27

Layer Output Size Parameter

Conv1 112 * 112 * 64 7 * 7, 64, stride 2

Conv2_x 56 * 56 * 64 3 * 3maxpool, stride 2

3 * 3, 64 X 2

3 * 3, 64

Conv3_x 28 * 28 * 128 3 * 3, 128 X 2

3 * 3, 128

Conv4_x 14 * 14 * 256 3 * 3, 256 X 2

3 * 3, 256

Conv5_x 7 * 7 * 512 3 * 3, 512 X 2

3 * 3, 512

Average pool 1 * 1 * 512 7 * 7 average pool

Fully connected 2 512 * 2 fully connection

Softmax 2 Classification results

Table 2.6 Parameter of each layer of ResNet-18

28

Figure 2.9 Overview of ResNet (Rohit Kundu & Ritacheta Das & Zong Woo Geem & Ram

Sarkar., 2021)

29

2.4.3 Siamese Network

The Siamese Network architecture is a vital tool in the field of neural networks, especially for

measuring similarity tasks like image comparison and face recognition. The Siamese Network

basically has a unique ability to learn representations of input data within one shared feature

space. This is done by using two similar sub-networks also known as Siamese twins that share

the same parameters and architectural structure. In this case, those separate inputs are processed

by each sub-network but undergo the same sequence of operations to produce the embedding.

These embeddings represent the input data concisely and can be compared with each other

using any type of distance metric to measure their similarity. The key strength of the Siamese

Network is that it can tell between similarities and differences in inputs, by bringing together

such inputs in the feature space as those which are close to one another and pushing apart those

which are different from each other. Its usefulness includes distinguishing between similar and

dissimilar examples, for example in face verification systems or finding similar images. When

they are trained, most usually Siamese Networks get optimized using contrastive loss functions

or triplet loss functions. These loss functions are important in promoting embeddings that

reflect the true relationship between input pairs on the network. That is to say that they

encourage embeddings of objects belonging to the same class within a short distance of one

another while making sure that embeddings of dissimilar classes fall far apart in embedding

space.

The ability of Siamese networks to learn efficiently from little labeled data stands out

as one of their notable advantages. This happens because they use positive and negative input

pairs in training, which give useful similarity information to the network. Consequently,

Siamese Networks are good at generalizing across different input pairs making them highly

adaptable and efficient in different domains and tasks. Their versatility has led to their wide

usage in machine learning research and applications. Siamese Network is a powerful method

for learning similarity metrics that can effectively perform accurate comparisons between

similarities across various areas. The importance of this work in enhancing machine learning

capabilities towards development in areas such as image analysis, recommendation systems

among others cannot be underestimated also judging by the success that Siamese Networks

have recorded in a task requiring fine-grained similarity assessments. (J, S.B., 2021) Figure

2.10 shows the overview of Siamese Network.

30

Figure 2.10 Overview of Siamese Network

2.4.4 One Shot Learning

One Shot Learning is a revolutionary concept in machine learning that helps address the major

problem of teaching models effectively with limited datasets. This modifies the traditional

ways of doing machine learning which require lots of data to understand complex patterns and

relationships properly. The primary focus behind One Shot Learning is the ability of models to

gain essential knowledge and make generalizations from as few training examples per class as

possible, thus avoiding data paucity constraints. In certain instances, there may be a limitation

of having enough data due to the limited supply of resources, costs linked to data collection or

even time constraints; this is when One Shot Learning comes into play. In such situations,

traditional learning methods falter whereas one shot learning serves as a beacon for

effectiveness and efficiency. This allows models to easily adapt and learn from few sparse

datasets making it an indispensable tool in various fields. Specialized architectures and

algorithms specifically designed for efficient handling of sparse data are at the core of One-

Shot Learning. For example, Siamese Network is a good illustration that performs well in

measuring similarity during comparison task. By sharing parameterization across the Siamese

Networks and having a dual subnetwork structure, these networks outperform others in learning

discriminative embeddings that generalize the input data. These embeddings serve as the basis

Siamese Network 1

Siamese Network 2

Contrastive

Loss

Input

Input

Output
Flow of

weights

31

for generalization and predicting on few-shot data by One Shot Learning which captures What

is remarkable about this method is how it can capture both similarities between examples as

well as differences between them.” similarities intrinsic in contrast with extrinsic ones.

The role of Siamese Networks is to act as a bridge for transferring knowledge in One

Shot Learning, and to enable model comparisons in cases of novel examples. The learned

compasses produced by Siamese Networks help guide unexplored territories, enabling them to

infer similarity even when they haven’t seen this before. This reuse of learned information not

only improves predictive powers but also enhances adaptability and robustness across different

environments or task domains. The applications that One Shot Learning can be put to are wide-

ranging, crossing fields such as computer vision, natural language processing, robotics and

more. When it comes to using less data in an effective way, few things can match its

adaptability and efficiency as a basic technique for modern machine learning which helps these

models absorb knowledge quickly, generalize well and bear up in situations of scarce

availability of data. The implications of this research cannot be underestimated because it has

the capacity of opening up new vistas for deep learning techniques like one-shot learning. (J,

S.B., 2021) Figure 2.11 shows the overview of One-Shot Learning.

Figure 2.11 Overview of One Shot Learning (Shivaank Agarwal & Ravindra Gudi, 2022)

32

Chapter 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The most appropriate SDLC methodology for this project will be selected and the reasons for the

methodology selection will be discussed, and the detailed implementation flow of the method will

be listed in the Work Breakdown Structure. Gantt Chart was provided to state each task’s start and

end date clearly. Finally, the development tools required for software development will be covered

in this chapter.

3.2 System Development Methodology

Iterative methodology was selected for the development of intelligent image search engine with

AI-based similarity detection for web application after review on various software development

lifecycle methodologies. Figure 3.1 shows the lifecycle of iterative methodology. This is due to its

ability to adapt and evolve in dynamic project environments. This image search engine project will

implement AI model for similarity detection, thus the challenges that may face in this project

primarily related to the development and refinement of AI model. It is difficult to ensure the high

accuracy of AI model by just training few times. This is because in order to achieve accuracy in

AI, it depends on the quality of data, advanced model architectures and iterative refinement.

Therefore, iterative methodology is suitable in this project as its iterative feature allow continuous

refinement and improvement of AI model, allow to respond quickly to changes in requirements

and receive feedback from user to evaluate the performance of the AI model.

33

Figure 3.1 Iterative Methodology

After the initial planning phase is completed, this project will conduct several iteration to

ensure iterative development and responsiveness to fulfil the requirements. The iteration will be

performed five times and each iteration will be approximately 45 to 50 days. Although each

iteration has the same SDLC process but different processes will be emphasized.

In the first iteration, the main task is more on gathering requirements and completing the

analysis and design of the project. The use case diagram, UI design, dataset for training AI model

and AI algorithm exploration will be completed during this sprint. The UI design is then

Initialization

Requirements

Planning

Evaluation

Verification

Design

Implementation

Deployment

34

implemented in real software to be tested and made available to users for feedback. The UI design

will be completed using Figma during this iteration. It needs to ensure the selection of colors and

fonts for the web application and complete the design of web pages. The design of web page will

show the location of where user can input image query and the output of image results.

Additionally, the quality of dataset and AI algorithm also need to determine to ensure that the

dataset gives high impact on AI model training and the chosen AI algorithm will give high

accuracy and efficiency in AI model training.

Since the feedback from users is received in the first iteration, it may not meet the needs

and expectations of the users. Therefore, the project still can change the requirements, find new

dataset and AI algorithms and design in the second iteration. As for the implementation, web

application will be developed to allow the functionality of input image query and output image

results. These features will rely on the connection on frontend and backend to send request to

backend to retrieve the similar image from database and receive the results by frontend. Therefore,

it is important to have good connection between frontend and backend with the database. This

phase must complete the development of user interface of web application and enable requests to

be sent to the backend and retrieve image from database and return to web application. Testing

will also be done to find errors in early state and reduce the risks. The main module of backend

will be the implementation of AI model for similarity detection. Before the implementation of AI

model, it needs to train the AI model to make it done specific task which is the similarity detection

for image. Dataset is required to train the AI and algorithm to ensure the efficiency and accuracy

of AI.

In the third and fourth iteration, the requirements and design can still be changed based on

user feedback from the previous iteration. However, these iterations will focus on completing other

task such as refinement on AI model. It is difficult to use only few times to train a high accuracy

AI, it needs to iteratively refine the AI model to achieve high performance and high accuracy on

the return results. The AI model can be refined iteratively to improve its capabilities, overcome

any shortcomings or deficiencies, and eventually achieve the expected levels of accuracy and

performance in similitude detection feature of image search engine. Through this iterative scheme

35

there is a possibility for continuous perfection and adaptation grounded on user feedback and

changing demands thus resulting in a more powerful and efficient solution. Different test cases

will be listed and tested one by one to meet as many scenarios as possible.

In the last iteration, it will more focus on testing such as unit tests, integration tests,

functional tests and model tests. It is to ensure that the modules can run with each other, and no

exceptions are generated, and user acceptance testing will also allow users to use the web

application to provide feedback before the official release. The final product will be presented to

users. At this point, the image search engine web application development is complete and will be

deployed to a production environment.

3.3 Work Plan

Work Breakdown Structure is used to simplify the complex tasks into smaller tasks for easy

execution in this project. Figure 3.2, figure 3.3 and figure 3.4 shows the work breakdown structure

of the project. The work plan shows how the agile methodology will be conducted. The specific

work content and duration of work in each sprint are planned in Gantt Chart. Figure 3.4 and figure

3.5 display the Gantt Chart of the project.

3.3.1 Work Breakdown Structure

Intelligent Image Search Engine with AI-Based Similarity Detection for Web Application

1. Initial Planning

1.1. Project Planning

1.1.1. Introduction

1.1.2. Problem Background Research

1.1.3. Define Problem Statement

1.1.4. Define Project Objectives

36

1.1.5. Define Project Scope

1.1.6. Define Project Solution

1.2. Literature Review

1.2.1. Review On Similar Application

1.2.2. Comparison of Image Search Engine

1.2.3. Review On AI Algorithm and Deep Learning Technique

1.2.4. Review On Siamese Network

1.2.5. Review On One Shot Learning

1.3. Methodology and Workplan

1.3.1. Select SDLC Methodology

1.3.2. Develop Project Workplan

1.3.3. Select Development Tools

2. Iterative Process

2.1. First Iteration

2.1.1. Major Requirements Gathering and Documentation

2.1.2. Analysis & Design

2.1.3. Implementation

2.1.4. Testing

2.1.5. Evaluation

2.2. Second Iteration

2.2.1. New Requirements Gathering and Documentation

2.2.2. Analysis & Design

2.2.3. Implementation

37

2.2.4. Testing

2.2.5. Evaluation

2.3. Third Iteration

2.3.1. New Requirements Gathering and Documentation

2.3.2. Analysis & Design

2.3.3. Implementation

2.3.4. Testing

2.3.5. Evaluation

2.4. Forth Iteration

2.4.1. New Requirements Gathering and Documentation

2.4.2. Analysis & Design

2.4.3. Implementation

2.4.4. Testing

2.4.5. Evaluation

2.5. Fifth Iteration

2.5.1. New Requirements Gathering and Documentation

2.5.2. Analysis & Design

2.5.3. Implementation

2.5.4. Testing

2.5.5. Evaluation

3. Deployment Phase

3.1. System Deployment

4. Report Finalize

38

4.1. Complete Report Writing

Figure 3.2 Work Breakdown Structure

39

Figure 3.3 Work Breakdown Structure (Continued)

40

Figure 3.4 Work Breakdown Structure (Continued)

41

3.3.2 Gantt Chart

Figure 3.5 Gantt Chart

42

Figure 3.6 Gantt Chart (Continued)

43

3.4 Development Tools

Development tools can be divided into programming languages, frameworks, integrated

development environments (IDE), version control systems, databases, and third-party libraries.

This project uses HTML which is markup language, CSS which is styling language, JavaScript

and Python which are programming languages, PyTorch as machine learning framework, Flask

as backend framework and MongoDB as database. This project will be developed using Visual

Studio Code. Git will be used for version control. Finally, the third-party libraries, Numpy and

PIL will also be utilized.

3.4.1 HyperText Markup Language (HTML)

HTML is the usual code language used in creating web pages and development of applications.

HTML usually describes the content and structure of a webpage by applying tags and attributes.

Tags are used to open and close HTML elements while attributes provide more information

about elements. Commonly used elements include but not limited to formatting tags, links,

images, lists, tables, forms and more. In semantic html elements are used according to their

intended purpose for better accessibility and search engine optimization purposes. Online

validators can perform this validation task on the html code in order to know if the codes written

are valid or not.

3.4.2 Cascading Style Sheets (CSS)

CSS is a language for style sheets that are used to define the layout and presentation of HTML

documents. CSS makes it possible for developers to indicate how the various elements in a

webpage should appear including color, font, size, space, and position among others. CSS

functions through using selectors that put-on styles on html elements thus referring to specific

elements or even groups of them. With its help designing a web page becomes easier because

it gives flexibility and control over layouts making them look more attractive so that any user

feels comfortable while navigating the website.

44

3.4.3 JavaScript (JS)

JavaScript is a client-side scripting language used for making web pages interactive. Initially

designed for enhancing webpage functionality, it's now also utilized for back-end development

due to advantages like speed and efficiency. JavaScript's relative simplicity has contributed to

its popularity, fostering a large and active community of developers.

3.4.4 Python

Regarded for simplicity and readability, Python is a high-level programming language. It is a

general-purpose programming language initially developed, but Its being versatile, easy to use

and extensive libraries have made it become popular. In scientific computing, web

development, AI or Data analysis among others python is frequently used. Beginners and pro

developers love python because of its clear syntax as well as a wide user community that it

entails.

3.4.5 PyTorch

PyTorch is a deep learning framework that has made a name for itself through its simplicity

and adaptability. This project offers various resources for building and training neural networks,

especially those in the field of deep learning. Complex models can be prototyped and tried out

with PyTorch’s dynamic computation graph and Pythonic syntax. For instance, it is used

extensively by researchers and practitioners in image recognition, natural language processing

and more.

3.4.6 MongoDB

MongoDB is a leading NoSQL database acknowledged for its scalability, adaptability and

efficiency with unstructured data. It follows a document-based model which provides agile

development and fast operations for real-time applications. High availability, JSON-like

documents and scalability are some of the reasons why it is preferred by web developers.

45

3.4.7 Visual Studio Code

Visual Studio Code (VS Code) is a lightweight code editor designed by Microsoft to be used

in a variety of applications. Along with syntax highlighting, code recommendations, debugging

tools, and version control system integration, it supports a variety of programming languages

and frameworks. With the help of numerous plugins that expand its functionality, Visual Studio

Code has developed into a sophisticated environment that can efficiently handle a wide range

of software development activities. The capabilities that allow for customization and

convenient screen navigation when writing or maintaining codes across menus are well-liked

by users.

3.4.8 Git

Git is a strong, flexible, and decentralized revision control system that gives developers the

ability to store all of their code modifications so they can always go back to earlier iterations

in case something goes wrong. Using this technology, programmers may work together more

effectively and more readily to track changes made to scripts. Additionally, these codes can be

safely backed up on platforms like GitHub to prevent inadvertent loss.

3.4.9 PIL

PIL, also called Pillow, is a library that provides support for numerous file formats as well as

having high-performance internal object representation and strong image processing

capabilities. It has the ability to perform various picture changing activities like resizing,

cropping, rotating and converting images from one format to another. Among its merits are

simplicity and ease of use making it be something that an average person who can do some

coding easily access. This makes it ideal in web applications, graphical user interfaces and

automated image processing scripts.

3.4.10 Numpy

NumPy (Numerical Python) is a package that gives support to large number of multi-

dimensional arrays and matrices as well as other mathematical functions operating on these

arrays. NumPy, in conjunction with PIL, supports advanced image processing tasks like

46

normalization, pixel wise operations and feature extraction. It is therefore very fast when

dealing with huge sets of images like photographs. What makes it mainly used in scientific

computing, data analysis and machine learning applications are array operations by NumPy

which are highly optimized.

3.4.11 Flask

Flask is a weightless and various web framework for Python. It eases the process of developing

websites through provision of the required resources such as tools and libraries needed in

building web applications as well as APIs. Simplicity, flexibility and ease of use are some of

the key features that make it one of the most commonly chosen platforms when creating smaller

or medium-size websites. This makes it ideal for different kinds of web design activities

including routing, templates, handling requests, and maintaining sessions among others.

3.5 Workflow of Development

An intelligent image search engine that uses AI-based similarity detection for a web application

has several complicated steps. The first step involves examining the needs of users, holding

meetings with stakeholders to spell out goals, user expectations and functional specifications

involved. By doing this together as a team, the project is given its limit in terms of what types

of images to look for, how similarity will be detected and what users are going to see on the

interface among other factors.

After an exhaustive analysis phase of requirement, the design journey unfolds, in which

intricate wireframes and mockups are created for the front-end user interface using elaborate

tools such as Figma. These visual depictions serve as plans for developing user interfaces that

are repeatedly refined through continuous feedback loops with different stakeholders.

Accordingly, the production of frontend UI is done with huge attention to details by combining

HTML for structural elements, CSS for aesthetic appeal and JavaScript for interactivity. In

addition to this development effort, some of the important UI components that must be

implemented include a live search box, an intuitive picture display area on page, interactive

47

refining filters and unified pagination features which facilitate navigation and boost users’

experience.

Similarly, the foundation of the backend infrastructure is simultaneously established by

creating a strong Flask framework in a dedicated virtual environment. Flask application is

designed very well with directories that are set aside to hold templates that consist of HTML

documents, static files which include CSS stylesheets and JavaScript scripts, and Python

modules which contain the business logic and routing functionalities of the application. One of

the most important aspects of Flask API development is creating a set of RESTful API

endpoints and specifying how each one may be used to accomplish various tasks, like

uploading images and conducting search engine queries. The user preferences, search indices,

and image information are using a well-designed document-oriented schema, and these are just

some of the diverse data elements managed by an integrated MongoDB database that functions

as a powerful storage solution in this backend architecture.

Integrating state-of-the-art AI components is an essential step in the development

process. This entails configuring PyTorch and third-party libraries, Numpy and PIL into the

Flask environment to give the system enhanced AI capabilities. To realize this, PyTorch which

is known for its flexibility and efficiency in deep learning tasks will be employed to implement

sophisticated AI algorithms such as Siamese Network used in image similarity detection, One-

shot Learning aimed at image recognition and ResNet used in comprehensive feature extraction.

In addition to PyTorch, Numpy and PIL is also applied to execute necessary image pre-

processing procedures such as resizing, normalization and enhancement that ensure data

quality optimality and suitability for ingestion or processing in an AI model.

Testing is comprehensive and ensures the combination of frontend, backend and AI is

made perfect. The test makes sure that every part that went into building the platform is

functioning as it should. To validate the system, unit testing, integration testing, functional

testing and model testing will come next. The test makes sure that every part that went into

building the platform is functioning as it should. To validate the system, unit testing, integration

48

testing, and functional testing will come next. Lastly, model testing is to verify the performance

of different deep learning models.

The final step in the development process is to deploy the intelligent picture search

engine on a dependable web server configuration so that people may access it with ease.

Architectural plans, API specifications, database schemas, and even descriptions of AI models

are examples of outcomes. Everything is compiled into a library that may be used for upkeep,

bug fixes, and future upgrades. Furthermore, comprehensive training materials and support

manuals provide users with the knowledge and tools they need to navigate and operate this

intelligent picture finder with efficiency.

 The development of an intelligent search engine for images with AI similarity detection

mechanisms for web applications involves many nuances and elaborations that essentially

reflect a smooth synchrony between meticulous planning, iterative designing, and development

cycles, as well as thorough verification and testing, all of which are combined with flawless

documentation, deployment on reliable infrastructures, and end user training. By using a

comprehensive approach, a user-centric, technologically advanced, and intelligent image

search engine is produced. The approach yields value proposition that is unmatched to the

stakeholders by increasing the efficiency of use or innovation levels.

3.6 Conclusion

This project will be developed according to the SDLC methodology chosen in this section and

the development tools mentioned. The timeline will be strictly adhered to achieve the project

objectives. The workflow also fully discussed how the project will be carry out by the tools.

49

CHAPTER 4

PROJECT SPECIFICATION

4.1 Introduction

This chapter includes the detailed requirement specification, which defines the functional and

non-functional requirements of the application, and the use case analysis, which outlines the

interactions and processes of the web application from a user’s perspective. This information

serves as the foundation for the design and development of the web application.

4.2 Requirements Specification

Requirement specification defines what the application should do and how it should behave.

These requirements were obtained through the review of similar applications and based on the

recommendations of the project supervisor.

4.2.1 Functional Requirements

Module 1: Image Upload and Search

• The web application shall allow users to upload images.

• The web application shall allow users to search similar image.

• The web application shall allow users to upload images through drag images.

Module 2: AI-Based Image Processing

• The web application shall AI processes uploaded images for feature extraction.

• The web application shall implement a deep learning model for feature extraction

from uploaded images.

• The web application shall implement an AI that learn image content features for

similarity detection.

Module 3: Search Result Display

• The web application shall utilize AI techniques to compare extracted features and

determine image similarity.

• The web application shall display search results in descending order of similarity.

• The web application shall allow users to download the image results.

50

4.2.2 Non-Functional Requirements

• The web application shall provide efficient image processing and search response

times.

• The web application shall provide accurate AI-based similarity detection for search

results.

• The web application must be accessible at all times, 24 hours a day.

• The web application shall ensure system reliability with minimal downtime and error

handling mechanisms.

4.3 Use Case Diagram

A use case diagram was utilized to analyze and illustrate the users’ interactions with the system,

providing a better understanding of the requirements. Each user’s interaction was depicted as

a use case in the diagram. This system consists of one actor and use cases. Figure 4.1 shows

the use case diagram of this intelligent image search engine with AI-based similarity detection

for web application.

Figure 4.1 Use Case Diagram of Intelligent Image Search Engine with AI-Based Similarity

Detection for Web Application

51

4.4 Use Case Description

4.4.1 Upload Image

Use Case Name: Upload Image

ID: UC01 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to upload image

Brief Description: This use case describes that user can uploads image to the web application.

Trigger: User wants to upload image to the web application

Relationships:

 Association :User

 Include :N/A

 Extend : Drag image for upload

 Generalization : N/A

Normal Flow of Events:

1. User access to the web application.

2. User selects the image that want to upload from their device.

3. User can upload image by drag the image into the query box.

The S-1: Drag image for upload sub-flow performed.

4. The system checks the selected file is in supported image format. If it is not

supported image format, perform exceptional flow 3.1.

5. Upon valid image format, the system uploads the image to the web application’s

server.

6. The system redirects the user to the web application’s result display page.

Sub-flows:

S-1: Drag image for upload

1. User selects image from their device.

2. User drags the image into query box on the web application

3. Continue to main flow step 4.

Alternate/Exceptional Flows:

3.1 Not supported image format uploaded

 1. The system prompts the user that the uploaded image is in not supported format.

52

 2. The system redirect the user to image upload page to reupload the image.

4.4.2 Search similar image

Use Case Name: Search similar image

ID: UC02 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to search similar image

Brief Description: This use case describes that user can search similar image on the web

application.

Trigger: User wants to search similar image on the web application

Relationships:

 Association : User

 Include : Process uploaded image, Learn image feature, Compare extracted

 feature

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. User access to the web application.

2. User uploads the image query.

3. System processes the uploaded image to extract its features.

4. System learns the features of the uploaded image.

5. System compares the extracted features with other images in the database. If there is

no similar image in the database, perform exceptional flow 5.1.

6. System displays a list of images like the uploaded image.

7. User views the image results.

53

Sub-flows: N/A

Alternate/Exceptional Flows:

5.1 No similar image in the database

 1. The system notifies the user that no similar images were found.

 2. The system redirect the user to image upload page to upload different image.

4.4.3 View search results

Use Case Name: View search results

ID: UC03 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to view search results

Brief Description: This use case describes that user can view search results on the web

application.

Trigger: User wants to search view search results on the web application

Relationships:

 Association : User

 Include : N/A

 Extend : Download image

 Generalization : N/A

54

Normal Flow of Events:

1. User searches image on the web application.

2. System processes the search query and retrieves relevant results.

3. System displays a list of search results.

4. User views the search results.

5. User clicks on search results to view it in a bigger size.

6. User can download the image.

The S-1: Download image flow performed.

Sub-flows:

S-1: Download image

1. User clicks on the search results.

2. User presses on the download button.

3. User notifies that the image is successful downloaded.

4. Return to main flow step 4.

Alternate/Exceptional Flows: N/A

4.4.4 Process uploaded image

Use Case Name: Process uploaded image

ID: UC04 Importance Level: High

Primary Actor: AI

Use Case Type: Detail, Essential

Stakeholders and Interests:

AI – process the uploaded image

Brief Description: This use case describes that AI can process the uploaded image.

Trigger: User wants to search view search results on the web application

Relationships:

 Association : AI

 Include : N/A

 Extend : N/A

 Generalization : N/A

55

Normal Flow of Events:

1. AI receives the uploaded image from the web application.

2. AI analyzes the image to extract relevant features or information.

3. AI processes the image data using algorithms.

4. AI identifies patterns within the images.

5. AI generates output based on the processed image data.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

4.4.5 Learn image feature

Use Case Name: Learn image feature

ID: UC05 Importance Level: High

Primary Actor: AI

Use Case Type: Detail, Essential

Stakeholders and Interests:

AI – extract and learn image’s features

Brief Description: This use case describes that AI can extract and learn image feature.

Trigger: User wants to search view search results on the web application

Relationships:

 Association : AI

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. AI receives the uploaded image to learn its features.

56

2. AI analyzes the image data to identify key features and patterns.

3. AI extracts relevant features from the image data.

4. AI applies algorithms to learn and recognize image features.

5. AI stores the learned features for future use in image recognition.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

4.4.6 Compare extracted feature

Use Case Name: Compare extracted feature

ID: UC06 Importance Level: High

Primary Actor: AI

Use Case Type: Detail, Essential

Stakeholders and Interests:

AI – compare the image’s features

Brief Description: This use case describes that AI can compare the image’s features

Trigger: User wants to search view search results on the web application

Relationships:

 Association : AI

 Include : Determine similarity

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. AI receives features extracted from an image.

2. AI retrieves reference features or patterns from its knowledge base.

57

3. AI compares the extracted features with reference features using similarity metrics or

algorithms.

4. AI generates a comparison result indicating the degree of similarity or difference

between the features.

5. AI provides the comparison result for further analysis or decision-making.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

4.4.7 Determine similarity

Use Case Name: Determine similarity

ID: UC07 Importance Level: High

Primary Actor: AI

Use Case Type: Detail, Essential

Stakeholders and Interests:

AI – determine similarity of uploaded image and image in database

Brief Description: This use case describes that AI can determine the similarity of images.

Trigger: User wants to search view search results on the web application

Relationships:

 Association : AI

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

1. AI receives an uploaded image and retrieves reference images from the database.

2. AI extracts features from the uploaded image and reference images.

58

3. AI compares the features of the uploaded image with those of the reference images.

4. AI calculates similarity scores or metrics based on the comparison.

5. AI determines the degree of similarity between the uploaded image and the images

in the database.

6. AI provides the similarity determination result, indicating the level of similarity.

Sub-flows: N/A

Alternate/Exceptional Flows: N/A

59

4.5 Activity Diagram

The activity diagram shows the view of flow within a specific use case in detail. This activity

diagram will show that how intelligent image search engine with AI-based similarity detection

for web application handles user interactions and performs tasks such as image upload,

processing and similarity detection. Below is the figures of activity diagram for each use case

description.

4.5.1 Upload image

Figure 4.2 Activity diagram for upload image

60

4.5.2 Search similar image

Figure 4.3 Activity diagram for search similar image

61

4.5.3 View search results

Figure 4.4 Activity diagram for view search results

62

4.5.4 Process uploaded image

Figure 4.5 Activity diagram for process uploaded image

63

4.5.5 Learn image feature

Figure 4.6 Activity diagram for learn image features

64

4.5.6 Compare extracted feature

Figure 4.7 Activity diagram for compare extracted feature

65

4.5.7 Determine similarity

Figure 4.8 Activity diagram for determine similarity

66

4.6 Data Flow Diagram

The data flow diagram is used to give a structured overview of the data flow within the

intelligent image search engine with AI-based similarity detection for web application. It shows

the flow of data between different components of the system, including user interactions, image

processing, AI engine and database operation.

4.6.1 Context Diagram

Figure 4.9 Context Diagram

67

4.6.2 Level 0 Diagram

Figure 4.10 Level 0 Diagram

68

Chapter 5

SYSTEM DESIGN

5.1 Introduction

In this chapter, the system architecture, database, and user interface of the Intelligent Image

Search Engine with AI-Based Similarity Detection for Web Application are presented and

discussed. The system architecture design focuses on explaining the structure and behavior of

the system, which will include the use of frameworks and their relationship. In addition, the

system database design is illustrated with the entity relationship diagram. Lastly, the system’s

user interface was designed to be efficient with high usability.

5.2 System Architecture Design

The intelligent image search engine utilized a client-server architecture that consists of three

tiers. Three-tier client-server architecture is a software architecture pattern in which the user

interface (presentation), business logic (application server), and database management (data)

are separated into three distinct components. Figure 5.1 shows the diagram of the system

architecture of the web application. The reason for selecting this architecture is because it

allows for greater flexibility and scalability, as changes made in one tier do not affect the other

tiers, and each tier can be optimized for its specific role. Additionally, the intelligent image

search engine with AI-based similarity detection is using RESTful API which allows other

systems to interact with the backend, enhancing modularity and scalability.

69

Figure 5.1 System Architecture Design

The presentation tier refers to the frontend layer of the web application, will be created using

HTML, CSS, and JavaScript. It is responsible for presenting similar image result to the user

and receiving user query image. The intelligent image search engine with AI-based similarity

detection for web application includes a user-friendly interface which are upload image page

and result page which are done by using HTML and CSS while JavaScript is used to handle

user interactions such as image uploads and displays similar image result.

70

 The application tier is the middle layer, responsible for executing the business logic,

managing data access and processing, and performing tasks such as image search and similarity

detection by using the trained model. Flask is the web framework used to create a backend

server environment in the application tier. This backend server environment will continuously

operate to process HTTP requests, extracts feature of the user upload images by using a trained

Siamese Network model and retrieves similar images result from the database. Flask is chosen

to be used due to its flexibility that can process various types of requests and can be scaled

independently and the RESTful API that can exposes endpoints that allow other systems to

interact with the backend, enhancing modularity.

 Furthermore, the trained model used in application tier has been trained to recognize

image similarity by extract the feature vector and compare it. The training process are

collecting and preprocessing image data to create training and validation sets. From the training,

Siamese Network know how to identify features to measure the similarity between images.

Once the training result accuracy is achieving expectation, the trained model is saved and

integrated into Flask. Flask will load the trained model to use to extract the image feature and

compare the feature vector with the images in database and retrieve the highest similarity score

images.

 Lastly, the database tier is responsible for storing images and their feature vector and

also retrieving the similar images after the comparison. It includes a database management

system (DBMS) that handles data storage, retrieval, and manipulation. This system used

MongoDB for storing image feature vector and GridFS for storing images. The reason to

choose MongoDB and GridFS due to MongoDB is a NoSQL database which suitable for

storing image feature vector which allows for flexible and scalable data storage and GridFS is

a specification for storing and retrieving large files such as images in MongoDB.

71

5.3 Database Design

Database design process such as defining data elements, data relationship and normalizing data

was conducted before the actual database was built. In this section, the Entity Relationship

Diagram (ERD) and Data Dictionary will be included to illustrate an overview of the structure

of the database used for the intelligent image search engine with AI-based similarity detection

for web application.

5.3.1 Entity Relationship Diagram

An Entity Relationship Diagram (ERD) is a valuable tool in database design and development

to ensure that the database design meets the requirements. Figure 5.2 shows the ERD of the

Intelligent Image Search Engine with AI-Based Similarity Detection for Web Application. This

relation database contains 3 tables, namely fs.chunks, fs.files and image_features.

Figure 5.2 Entity Relationship Diagram

72

5.3.2 Data Dictionary

Table Name Description

fs.chunks Stores chunks of files for GridFS.

fs.files Metadata for files stored in GridFS.

image_features Contains image information and feature vectors extracted from the images.

Table 5.1 Description of Database Tables

Fields Field’s Description Type Example

_id [PK] Unique identification number for a

chunk

ObjectId 667d65204aba340d3044e308

files_id [FK] Reference to the file in the fs.files

collection

ObjectId 667d65204aba340d3044e307

n Chunk sequence number Number 0

data Binary data of the chunk BinData Base64 encoded string

Table 5.2 fs.chunks Collection Data Dictionary

73

Fields Field’s Description Type Example

_id [PK] Unique identification number for a file ObjectId 667d65204aba340d3044e307

filename Name of the uploaded file String train/baseball/001_1719493920.png

chunkSize Size of each chunk Number 261120

length Size of the file Number 37760

uploadDate Date and time of upload Date 2024-0627T13:12:00.864+00:00

Table 5.3 fs.files Collection Data Dictionary

Fields Field’s Description Type Example

_id [PK] Unique identification number for an

image

ObjectId 667d65204aba340d3044e309

filename Name of the uploaded image String train/baseball/001_1719493920.png

feature_vector Extracted feature vector of the image Array [0.12, 0.32, …]

file_id [FK] Reference to the file in the fs.files

collection

ObjectId 667d65204aba340d3044e307

image_hash Hash of the image content for duplicate

detection

String 6ada4a129c8fe7c9eeb3a10931041b44

Table 5.4 image_features Collection Data Dictionary

74

5.4 User Interface Design

User interface design can present abstract requirements to the user through visual

representation, ensuring they meet the user’s expectations. Furthermore, when the design is

approved, it can speed up the subsequent front-end development and reduce unnecessary

changes.

5.4.1 Mock Up

The high-fidelity mock-up was created by using Figma. This mock is divided into two parts

which are image upload page and image result page. The components in each page are also

designed to fulfil specific requirements.

5.4.1.1 Image upload page

Image upload page is the first page of intelligent image search engine with AI-based similarity

detection for web application because it allows users to upload the image to trigger the similar

image retrieval process. Figure 5.3 shows the UI design of the image upload page.

Figure 5.3 Image Upload page

75

5.4.1.2 Drag image for upload

In image upload page, there is a component which allow users to drag and drop the image and

the image will automatically upload and process in the backend. Figure 5.4 shows the drag

image process.

Figure 5.4 Drag image for upload

76

5.4.1.3 Upload image from folder

In image upload page, the component has an upload link which users can use it to choose the

image that want to upload from the folder. Figure 5.5 shows the upload image from folder

process.

Figure 5.5 Upload image from folder

77

5.4.1.4 Loading indicator

A loading indicator is shown after image is uploaded by users to show that similar image

searching function is running. Figure 5.6 shows the loading indicator process.

Figure 5.6 Loading indicator

78

5.4.1.5 Image results page

Image result page is the second page of intelligent image search engine with AI-based similarity

detection for web application to display the similar image result to users. Figure 5.7 shows the

UI design of the image result page.

Figure 5.7 Image results page

79

5.4.1.6 Download image

In image result page, there is a download window when users click on the similar image result

and it allows users to download the image. Figure 5.8 shows the pop-out download window.

Figure 5.8 Download window

80

5.4.1.7 Download successful notification

From the download window, users pressed the download button to download the image and

when it is successfully downloaded, a notification will come out to notice that the image had

been downloaded successful. Figure 5.9 shows the download successful notification.

Figure 5.9 Download successful notification

81

5.4.1.8 No similar image detected notification

While the searching process ended and no similar image detected from the database, a no

similar image detected notification is shown to notice the users no similar image detect from

the database. Figure 5.10 shows the no similar image detected notification.

Figure 5.10 No similar image detected notification

82

5.4.1.9 Not supported format notification

From image upload page, if users upload any other format of files which is not the image format,

a notification of not supported image format is shown to the users to notice them there is a

wrong file upload which is not image format. Figure 5.11 shows the not supported image format

notification.

Figure 5.11 Not supported format notification

83

CHAPTER 6

IMPLEMENTATION

6.1 Introduction

This section outlines the implementation of the Intelligent Image Search Engine with AI-Based

Similarity Detection for Web Application, separating it into three key areas: frontend, backend

and model training. The frontend implementation incorporates the creation of two pages

utilizing HTML, CSS, and JavaScript for user interaction. The backend implementation

concentrates on handle upload image, image processing, retrieve similar image results from

database and API management using Flask. The model training part covers the setup and

execution of machine learning model which used for feature extraction and image similarity

detection by using PyTorch. A comprehensive overview of the implementation process is

presented in this chapter.

6.2 Frontend Implementation

Before the development of each page, the project files undergo a series of initialization settings,

which include:

1. Setup of different folders for HTML, CSS, and JavaScript

2. Inclusion of required fonts

3. Management of project assets

4. Initialization of JavaScript functionality

5. Establishment of navigation and routes

6. Setting of project constants

These settings are organized into their respective folders to enhance project maintainability.

84

6.2.1 Image Upload Page

The image upload page handles the image upload process which allow users to upload their

query image and it also function for drag-and-drop interaction, upload image from folder,

display error messages and display loading indicator.

6.2.1.1 Drag-and-Drop Interaction

The drag-and-drop functionality enhances the user experience as it provides an easy and

efficient way to upload images. This can be achieved by a user dragging an image file into the

specific area on the page and automatically have it uploaded for processing. It is home.html

file where this feature is implemented and defines drag-and-drop area. The appearance of this

area that visually sets it apart from others is done in home.css file. Drag-and-drop events are

handled by event listeners in home.js. These include “dragover”, while a file is being dragged

over a particular zone, this event prevents defaults browser actions and shows drop area,

“dragenter”, by dragging files into the designated zone, similar to dragover, this event

highlights the drop area, “dragleave”, when one drags out of this zone for dropping, such action

returns back the previous look of them and “drop”, in case the file has been dropped into either

place marked as so, this event seizes it again while still returning back other characteristics of

such areas before calling up the function which will handle uploading that specific one.

6.2.1.2 Upload Image from Folder

Users can upload pictures directly from folder via the page. An upload link and a hidden file

entry element are responsible for this. When the user clicks on the “upload image” link, this

action will call up a previously hidden input type=file which will allow the user to search and

select an image from their computer. This feature is found in the home.html file where placed

the upload link and file input element. The home.css file is what makes sure that the upload

link appears as an interactive element. Finally, event listeners for the upload link and file input

are found in home.js. When clicked, this trigger opens a dialog box where one can select

different files from their computer. When changed, these elements cause capturing of selected

document and then calls function for handling such files to begin uploading it.

85

6.2.1.3 Display Error Messages

At the image uploading and processing stages, there could be several errors which include

unsupported formats of images or no similar images in the database. The application handles

these situations by displaying error messages in modal dialogs. These dialogues indicate to the

user that something is wrong and suggest what should be done next in such a case. The models

are defined in home.html file and styled in home.css to ensure they look the same as other parts

of application. Show and hide functions for these models are included in home.js. The

“showCustomAlert” function pops up a modal with an error message customized to its content.

It’s triggered when backend API response contains such errors as unsupportable format of

image. The “showNoResultAlert” method is particularly meant for notifying users whenever

there are no similar images found. This makes it clear for the user about what happened after

their query was made.

6.2.1.4 Display Loading Indicator

The loading indicator that is shown to provide feedback on image upload and processing. The

users are notified that their action is being processed by the indicator, which prompts them to

wait until it is over. To be boldly seen and match the design of the application, this loading

screen must be defined in home.html and styled in home.css files, through home.js to control

how the loading indicator appears in the page. When file upload starts, main content of the

page disappears, and a loading screen comes up showing that uploading and processing are

taking place. After upload and processing have been finished, loading screen becomes invisible

again while main content returns. If everything goes well with process completion, then user

will be directed to results page. In case if any error occurs will display corresponding error

message.

6.2.2 Image Result Page

The image result page is where one can get a display of image similarity search outcomes and

it normally comprises uploaded picture and retrieved related images from the backend. These

86

include similar images display, zooming into pictures for better view, download buttons,

successful downloaded notifications as well as a ‘back’ link that returns users to upload page.

6.2.2.1 Display Similar Images

The uploaded image is organized and displayed on the page with a grid of other images fetched

from the backend. This helps users to visually compare their query image against other similar

ones in the database. The layout for displaying input image and similar images is defined by

result.html file. It has sections for Input Image, similar images grid and modal dialogues for

viewing larger images or downloading them. The result.css file styles the result page to achieve

a responsive and organized layout. Flexbox layout in which items are centered within main

container, grid layout for similar image display that ensures presentation is neat and well-

organized, modal styles that maintain consistency and usability when viewing bigger images

or downloading them, and responsive design elements allow the layout to adapt to different

screen sizes. Result.js deals with dynamic content updates as well as any user interactions such

as fetching similar images from the backend API based on the uploaded image, upload an image

to the backend, send a request with both an image and a URL parameter telling where the

database is located then process such response so as show these similar images.

6.2.2.2 View Images in a Large Format

Modal dialog box for viewing larger images which enable users easier to see any similar image

clearly in large format. Result.html has the definition of the modal dialog box that contains

larger images. These include the close button, link to download and display of the big image.

When an individual selects a similar picture, open Modal is activated. It opens the modal and

sets the URL of the selected image as its source. The user can then click on a close button to

have it closed completely.

6.2.2.3 Download Image Result

The user can download any similar image that is displayed on the result page. This feature is

incorporated into the modal dialog, enabling users to easily download the image when viewing

it. The link to download is contained in the modal dialog defined within the result.html file. It

87

uses an anchor tag which looks like a button. Setup of downloadButton makes it possible for

new link element to be created when user clicks on download button which initiates

downloading of the image. Once the downloading starts, both modal and custom alerts are

hidden and shown respectively to acknowledge successful downloads.

6.2.2.4 Providing Download Success Notification

To make the user experience better, a notification appears on the screen to inform that the

image has been successfully downloaded. This way users know when their download is done.

The success notification modal is defined in result.html, and it contains a message and an OK

button for closing this notification. The “showCustomAlert” function is called after an image

has been downloaded successfully to display the notification modal. To close this notification,

the user must click on the OK button which will result in activating the “closeAlertButton”

event handler making modal hide.

6.2.2.5 Back to Image Upload Page

There is a back button show in image result page which allow users to return to the Image

Upload Page. This provides an improved user experience and navigation by giving users a one-

click option to go back and upload another image. A clickable button is in the result.html file

as the back button and the style of the back button on the result.css file is designed to make it

stand out visually enough to be clicked. This is seen in its hover effects for increased

interactions. In order to take users back to the Image Upload page when they are through with

their activities, a click on this will bring about such an action; thus, there exists an event listener

referring an individual to the prior URL or even a different URL depending on what has been

specified in relation to uploading the same image.

6.3 Backend Implementation

Flask is chosen to implement the backend functionality. The reason to choose this framework

was based on its simplicity and ability to create adaptable interfaces because this project works

with images and connects with MongoDB database. Before adding more features, a link must

be established between the backend server and these databases. Hence, it is important to

88

provide the third-party libraries ‘pymongo’ and ‘gridfs’ with the appropriate configurations for

the database.

6.3.1 Upload

Backend server allows users to post images by making a POST. The uploaded images are

processed and saved into a MongoDB database using GridFS. The characteristics of an image

are extracted and stored for later use in similarity searches. The file that is uploaded is

confirmed to be an image by the server itself. In case it is not properly selected or simply not

an image, then the server responds with an error. Correctly formatted image files are then

processed and stored in a database together with their feature vectors. The picture is first

verified by the server before being pre-processed using “preprocess_image” to make it suitable

for features extraction later and it is performed by the trained model loaded from a .pt file.

6.3.2 Search and Retrieve Similar Images

The backend server performs the operation of searching for and fetching images that are like a

given input image. This is done by extracting traits from the input image and comparing them

with those stored in the database. It is this function that computes on how much similarity exists

between the input image’s feature vector and their corresponding ones found in database, thus

bringing out the most similar images. The searching process includes preprocessing an input

image using “preprocess_image”, feature extraction using “extract_features” and calculating

similarity scores against stored feature vectors which the features extraction done by the trained

model loaded from a .pt file. A threshold level of similarity is used to ascertain which images

are returned as results, thereby weeding out less significant matches while ensuring retrieval of

only those images that look alike in all aspects.

6.3.3 Download Image

The backend server allows users to download images saved in the database. Images are

obtained from GridFS and sent to the client. The requested image has its ID verified by the

server, thus getting the image data from GridFS. Thereafter, it sends back the image file to the

client including with appropriate MIME type so that it is compatible with different web

89

browsers as well as client applications. This functionality enables efficient management and

retrieval of images within the application.

6.3.4 Save Dataset to Database

The dataset needs to save in the database are run through a pre-trained model by the backend

server, which then saves its features to MongoDB database for future similarity searches. The

file collection is there for storing image files using GridFS and the other one to store image

feature vectors. The server computes unique hash values for each image during upload so that

duplicates can be detected. In case such an image with the same existing hash exists in the

database, it’s ignored hence avoiding duplication of storage. Therefore, efficient use of storage

space and integrity of the picture library should be maintained. If a ZIP archive is uploaded,

each image inside it is taken out separately, processed and saved individually. The

“preprocess_image” function converts each image into a model input-appropriate tensor while

“extract_features” uses a trained Siamese network loaded from a .pt file to produce feature

vectors and save it into database.

6.3.5 Redirect to Frontend

The backend server also comes with ways of routing users to front-end application. As a result,

the front-end and back-end are integrated, making it possible for users to open the application

with web interface. The” /” endpoint redirects the user to the homepage of the frontend

application. Users can thus easily locate or access the main screen where they carry out various

operations such as uploading images as well as searching for similar images. When accessing

“/results” page, a user is redirected here from backend by using this route. It takes in an image

URL and database URL as parameters and returns search results for similar images through it.

It works by providing continuity between backend image processing and frontend display of

results.

90

6.3.6 API List

The backend service provides different API endpoints for the functionalities of upload image,

retrieve similar images, download image and save dataset to database. Table 6.1 shows the

endpoints, HTTP method, parameters and description of the different routes.

Endpoint HTTP

method

Parameter Description

/api/upload POST file, db_url Uploads an image and stores

it in the database.

/api/get_image/<id> GET db_url,

image_id

Downloads an image by its

ID.

/api/get_similar_images GET db_url, image Retrieves images that similar

to the query image.

/api/upload_zip POST file, db_url Uploads dataset from a ZIP

file and saves to the database.

Table 6.1 API List of Backend Service

91

6.4 Model Training

Several steps are crucial in the model training for effective training of the Siamese Network on

image similarity tasks. The model training does not take place at the backend though rather, it

is done independently to give a .pt file which is used elsewhere in the backend. Some major

parts of code related to Model training as well as key components and processes based on the

provided code will be outlined such as data preparation, model definition, loss function,

training loop and testing.

6.4.1 Data Preparation

Data preparation is important for organizing and preprocessing the dataset before training. The

dataset is stored in a directory named “train”. The data_loader.py file is responsible for loading

image pairs together with their labels that specify whether the images belong to one class. This

“CustomPairDataset” class creates these pairs and applies some forms of augmentation as

random horizontal flip, random rotation, color jitter, and random resized crop to make the

model more robust. These transformations teach the model how to handle different image

distortions and lighting conditions. To illustrate, random horizontal flip flips some images

horizontally at random making them look as if they were mirrored while rotating some pictures

randomly by some degrees is what constitutes random rotation which helps model identify

objects from different directions. Color jitter varies brightness, contrast, saturation and hue of

images such that they resemble images taken at various lighting conditions while random

resized crop resizes and crops images randomly at a given size to enable models learn from

different parts of an image.

 The datasets are split into training and validation sets by the data loader. Batching is

done with given batch sizes to enable efficient computing. Each batch has a pair of images and

their respective labels. The training and validation data loaders have been set up with such

parameters as batch size, number of worker threads for data loading, as well as whether to pin

memory to speed up data transfer to the GPU. Additionally, it defines the function

get_train_validation_loader within its file “data_loader.py” that returns both training and

validation data loaders which makes sure that during training loading and preprocessing of data

92

is done efficiently. In addition, the function get_test_loader uses similar transformations as

those used in validation to create a test dataset loader

6.4.2 Model Definition

There is a detailed model definition in the model.py file which is about Siamese Network that

uses ResNet-18. However, the deep residual learning framework with 18 layers of this ResNet-

18 model has been changed to make it produce feature vectors of size 256 instead of the usual

fully connected layer that outputs class probabilities. This size was chosen to achieve a balance

between richness of feature representation and computational efficiency.

Several important parts are a part of architecture of modified ResNet-18 in Siamese

Network. The base model is ResNet-18, a pre-trained convolutional neural network with 18

layers, consisting of convolutional layers, batch normalization layers, ReLU activation

functions, and residual blocks. It allows for easier backpropagation through gradients by

enabling gradient flows more smoothly as they flow back through these connections – they are

called ‘residual connections. Instead of the last fully connected layer, there is a linear layer that

outputs a 256-dimensional feature vector at the end of ResNet-18. To modify this entails

dropping out the original fully connected layer and adding another one such that it has input

size equal to number of features outputted by ResNet-18 and output size 256 before introducing

non-linearity using ReLU activation function. The 256-dimensional feature vector represents

the image in a high-dimensional space where similar images have closer representations.

Similarity scores in the Siamese Network are generated by finding the absolute

difference between two images’ feature vectors and then putting this result through another

fully connected layer, which outputs a single similarity score. The architecture consists of a

“forward” method that takes two input images, calculates their feature vectors using

forward_once method, computes absolute difference between vectors and passes it through

fully connected layer to produce similarity score; it also has a “forward once” approach for

processing one image through ResNet-18 to get its feature vector.

93

This is why it is ideal for one-shot learning situations because unlike traditional models

that need lot of data to learn well, one short learning focuses on recognizing new instances only

with a single or very few examples. In one-shot learning, the model should be able to recognize

or compare pictures using very limited number of samples. A Siamese Network is specially

designed for tasks that require comparisons between pairs of inputs and thus highly applicable

in such scenarios as one-shot learning. Comparing feature vectors allows the Siamese Network

detects picture resemblance where data is scarce. This technique is especially relevant when it

is difficult to obtain numerous samples with labels, for example in face recognition or signature

verification. It leverages Siamese Network to generalize from very limited examples making it

a powerful way for tasks that have a small amount of data.

6.4.3 Loss Function

While training, BCE is the loss function used with logits. The BCE loss is crucial in binary

classification tasks such as determining if two images are similar or not. It calculates the

difference between predicted similarity scores and actual labels from image pairs. The formula

for BCE loss is:

BCE Loss=−[ylog(σ(x))+(1−y)log(1−σ(x))]

The sigmoid function applies to the similarity scores σ(x). Sigmoid function brings

down input scores to a range of 1 and 0 which represent probabilities. Choosing BCE loss as

our preferred option effectively penalizes incorrect predictions thus driving the network toward

generating close feature vectors for similar images and far apart ones for different images. This

loss helps in learning a robust metric for image similarity by the network. The aim is to

minimize this loss which means accurate predictions on whether pairs of images are similar.

By using BCE Loss, the Siamese Network learns to distinguish between images that are alike

and those that are different making it an essential constituent in training process for image

similarity tasks.

6.4.4 Training Loop

The whole training and validation processes are taken charge by the file trainer.py. It is upon

this file to control everything that happens during training and validation. It loads data,

94

initializes a model, specifies an optimizer and sets learning rate scheduler, implements training

and validation loops as well. The training loop has several critical steps: First, the Trainer class

initializes the training process by loading configuration settings – this could be done by

preparing data loaders for processing image pairs through augmentation and transformations.

This includes various parameters like batch size, number of epochs, learning rate, optimizer

type (Adam or SGD). Then, additional information is required to train on more than one

observation at a time using mini-batch gradient descent. To do so, we need to load in each

batch both training and validation data by using data loaders which would entail any necessary

transformations and augmentations. This will ensure that each iteration of the training set will

see different image pairs making the model generalize better.

The Siamese Network processes the input image pairs during a forward pass for

similarity scores generation. While feeding the images through a modified ResNet-18,

computing their feature vectors, and calculating the absolute difference between these vectors,

the images are passed through to attain similarity scores on them by fully connected layer. To

arrive at these predicted similarity scores, one computes BCE loss that is the difference between

them and actual labels. The reason is that it acts as a measure of error in predictions hence drive

optimization process. Gradients are computed via backpropagation and used to update model

parameters. During backpropagation gradients of loss with respect to model parameters are

calculated which helps optimizer adjust weights towards minimizing losses. Given this

configuration, Adam or SGD can be used as optimizers for updating model parameters using

these computed gradients. Its adaptive learning rate could make Adam more desirable than

others because this may result in faster convergence.

To save memory and computational time, mixed precision training is used with

PyTorch's automatic mixed precision package (AMP). Mixed precision training means that

both 16-bit and 32-bit floating point numbers can be used, providing the ability to reduce

consumption of memory as well as accelerate computations while not affecting model accuracy

adversely. The learning rate is adjusted by the “ReduceLROnPlateau” scheduler that lowers it

when validation accuracy plateaus thus helping better convergence. This scheduler prevents

overfitting and therefore allows further model improvements even after early rapid gains. If

there is a GPU available, then during the training process its computational power is also

95

harnessed to speed up calculation and manage bigger batch sizes. The forward and backward

passes are accelerated by the GPU which dramatically reduces the training time.

6.4.5 Testing

After training, the model’s performance is appraised on a different test dataset. The Trainer

class method, test loads the saved best model during training and runs it over the test data. The

evaluation also involves computing and displaying some of the outcomes of tests such as

accuracy which measures how good the model can generalize its operation when exposed to

novel unseen information. This stage is important in guaranteeing that the model goes past

training dataset and be utilized for accurate determination of image similarity in practical

situations. In testing phase, forward passes are made through the network and final accuracy is

calculated by comparing predicted similarity scores with actual labels. This exhaustive testing

guarantees that there exists real world application where it should determine likeness between

previously unseen images other than being only efficient on training data sets.

6.5 Implementation Workflow

This section reveals how detailed workflow of the web application is run, explaining how data,

requests as well as replies travel through the system beginning from the initial user interaction

to come up with a final result. In this regard, such elements that are important are highlighted

by this workflow, which involves interactions between front-end and back-end components.

The workflow begins when a user interacts with the front-end of the system managed

by HTML and JavaScript files (home.html, home.js, result.html and result.js). This process

starts when a user selects or drags an image into the upload area on the home page (home.html).

The home.js script captures this event and prepares a FormData object containing the image

file plus all other additional information such as database URL. This FormData object is then

sent to the server using a POST request to /api/upload endpoint via Fetch API.

96

After receiving the POST request on /api/upload endpoint, Flask server (test.py) checks

if the uploaded file is an image and verifies its format for suitability of further operations.

Should it meet the validation rule, then the said web application will use Pillow library to

convert into RGB format. In this case, GridFS temporarily holds such processed images

enabling efficient handling of vast files in an integrated manner with MongoDB. Hence, a

unique file identifier is created for this image to be used during subsequent processes.

This followed by resizing and normalizing pixel values using preprocess_image

function to get correct model ready formats and scales for the image. The preprocessed image

is then passed through a Siamese Network as defined in model.py which extracts its feature

vector. The network takes in an image as input and uses a modified ResNet-18 architecture to

produce a 256-dimensional feature vector. This model is loaded from a .pt file that contains

both trained weights as well as architecture of the network, ‘model’. To obtain that feature

vector, forward_once method under extract_features function calls up on this model.

The extracted feature vector is then checked against stored feature vectors in the

MongoDB database. The find_similar_images function gets all stored feature vectors and

computes similarity scores using cosine similarity. This includes determining the dot product

and norms of vectors so as to find out the cosine similarity between the uploaded image and

stored images. Similarity scores are sorted in a descending order while only those that exceed

a set similarity threshold are considered as valid matches. The file IDs of these similar images

are collected for inclusion in the response.

Then, server provides JSON response with URLs of similar images, URL of uploaded

image, and processing time. When no similar images are found, an error message appears in

the response. This JSON response is sent back to the client. The response is handled by home.js

script on the client side. If any similar images were found, user will be redirected to result page

(result.html) containing relevant data included in URL parameters. Fetching and displaying

similar images from the responses are among the functions of result.js on the results page. This

means that a user can see them or do some actions with these pictures like clicking on one to

97

view a larger version in a modal. Thus, more things such as downloading the images are done

here.

This approach guarantees smooth user experience when they upload an image and get

shown related ones from the database. Every single phase is created in a way that enables

efficient data handling coupled with being responsive to users’ needs, as opposed to model’s

feature extraction, which would generate appropriate resemblance scores by relying on the pre-

trained .pt file.

6.6 Summary

In conclusion, the Intelligent Image Search Engine with AI-Based Similarity Detection for Web

Application could be improved in terms of algorithm efficiency, data handling and model

optimization. To make it compute faster and use less computational power, thus having a

shorter response time and better accuracy, an improvement can be made by refining the data

preprocessing steps, optimizing the model training process, and enhancing the integration

between the frontend and backend.

98

CHAPTER 7

TESTING

7.1 System Testing

In this section, the testing activities that took place in developing the Intelligent Image Search

Engine with AI-based similarity detection for a web application are reviewed. The tests mainly

concentrate on code/application testing, specifically on four critical domains: unit testing,

functional testing, integration testing, and API testing.

7.1.1 Test Plan

Test plan plays an important role in enhancing the efficacy and effectiveness of the testing

process. It describes strategies, scope, resourcing, and schedule of the testing activities. The

main aim is to discover and repair defects that ensure that the system meets specified

requirements.

7.1.1.1 Test Scope

The scope of the testing involves both frontend and backend components of web application.

Testing activities are grouped into basic unit testing, functional testing, integration testing, and

API testing. These exercises are necessary for checking individual components, assessing how

well the entire system works from a user’s perspective as well as examining how different parts

interact with each other in one web application. This scope ensures that there is a

comprehensive coverage on all features and functionalities of the web application.

7.1.1.2 Test Basis

The test basis contains project requirement specification document, system use case diagram,

system entity relationship diagram (ERD), and system API list. They serve as reference points

for creating detailed test cases that cover all aspects of a system. Through these foundational

99

documents, test cases can be aligned with objectives of the project thereby making sure that all

essential functionalities are tested.

7.1.1.3 Test Items

The modules or services for testing are the combination of both frontend and backend. The

frontend section looks at Home Page and Result Page. Users have a direct effect on these two

crucial interfaces hence making sure they work properly is important for users. In the backend,

the following modules are tested, Image Upload, Image Search, and Image Processing. It

involves main activities of the application like user uploads processing images and returning

similarity results respectively. The application’s major functionality depends on them hence it

is necessary that they function correctly. Table 7.1 outlines the modules or services of both

frontend and backend.

Frontend

Module Name Description

Home Page The initial page that users see when they

navigate to the web application. It should

load quickly and present the user with an

interface to upload images.

Result Page The page that displays the results of the

image search, including similar images and

their details. It should be accurately

populated based on the user’s query.

Backend

Service Name Description

Image Upload Handles the uploading of images from the

user. It should accept various image formats

and store them for processing.

100

Image Search Processes the uploaded images to find similar

images based on AI algorithms. It should

return relevant results efficiently.

Image Processing Applies AI-based similarity detection to the

uploaded images. It should be accurate and

fast in analyzing image features.

Image Download Handles the retrieval and downloading of

processed images. It should ensure that

images can be downloaded successfully by

the users.

Table 7.1 Modules or services to be tested

7.1.1.4 Test Strategy

Behavioral testing is used as a test strategy whereby it examines external behavior of an

application without considering its internal design. In this approach, black box techniques are

employed to ensure that system response is correct regardless of different types of inputs. It

can be done by focusing on input/output of an application whereby we can check if an

application behaves under different scenarios as expected. This method allows finding

functional problems and ensures if the software meets its required specification.

7.1.1.5 Test Conditions

The tests are always conducted under well-characterized conditions. Unit testing are run by

developers in a manual way using several tools as unit test for Python. These kinds of tests

make sure that isolated components behave exactly as expected. Functional and integration

tests rely on automation tools such as Selenium for browser automation to mimic user

interactions and check if the application is operating properly. API tests will use Postman to

handle the request and response to check the API can work success to show status 200. These

tests confirm how the application is supposed to work from the perspective of end-users and

whether it functions as an integrated system.

101

7.1.2 Entry and Exit Criteria

Starting point and ending point of testing phase is essential in entry and exit criteria. It

structures the testing process, so that before starting or completing any test there are some pre-

requisite conditions that need to be satisfied according to these criteria.

7.1.2.1 Entry Criteria

• There is a detailed test project schedule which lays down the timelines and milestones

for testing activities.

• All functionalities are fully developed and are running consistently making the

application ready for testing.

• The required resources, including test databases and configurations, have been

established in the testing environment to facilitate testing.

7.1.2.2 Exit Criteria

• All planned tests cases executed and passed showing that the application is working as

it should be.

• All known errors are fixed, verified and this makes sure no serious problems are found

in the application.

• No critical defects yet not closed meaning that all major issues were resolved.

102

7.1.3 Unit Testing

Purpose of the basic unit testing is to verify that individual units or components of the application works as expected. The framework

used for unit tests in this web application was unit test in Python. Some of these tests include loading webpage, handling image upload

requests and checking whether required parameters are missing.

The Home Page Loading Test confirms that the home page is getting loaded properly by sending a GET request to its URL and

then verifying response status code. It should return a status code of 200, meaning it successfully loaded. This test makes sure that the

basic functioning of the web server is operational so that one can access the home page.

The Image Upload Test checks if images uploaded to this app can be handled by sending a POST request with an image file to

upload endpoint and then check for response status code. In this case, one expects a status code of 200 together with a success message

which indicates that image has been rightly uploaded. This test ensures that uploading function operates well enough also allowing

processing of picture files through applications.

The Error Handling Test is a verification process that checks if the application is able to handle missing parameters, by sending

an incomplete data POST request and verifying the response status code. The expected result is a status code 400 with an error message

which shows that the application has correctly identified and reported the missing parameters. This test verifies whether the application

is capable of handling mistakes without alarming users. Table 7.2 shows the test case of unit testing.

103

Test Case Test Detail Test Instruction Test Data Expected Result Actual Result Condition

UT01 Load Home Page Send a GET request to

the home page URL

- Response status

code shows 200

HTTP request

sent

Pass

UT02 Upload Image Send a POST request

with an image file

test.jpg Response status

code shows 200

HTTP request

sent

Pass

UT03 Handle missing

parameters

Send a POST request

with incomplete data

1.txt Response status

code shows 400 and

an error message

Error message

sent

Pass

Table 7.2 Test Case of Unit Testing

104

7.1.4 Functional Testing

Functional testing in this case is defined as a process that entails verifying whether an application works according to the specified

requirements and performs the anticipated tasks. Selenium was used for browser automation in these functional tests to simulate user

actions. All these included opening the home page, uploading images and checking what has happened to the page contents after that.

The Home Page Navigation Test allows users open web application on a browser and go to home page, expecting home page

title will match with expected title. This test assures accessibility of User Interface (UI) and correct rendering of home pages.

The Image Upload Interaction Test is intended to check if the users can upload images through the web interface by using

Selenium for image upload automation. The output should be a success message and proper processing of uploaded image(s). It checks

whether upload feature works from users’ standpoint or not and if application can handle pictures correctly.

To verify that the result page shows the correct information, we perform a verification test for the Result Page. After uploading

an image and reviewing the displayed information, you will then navigate to the result page. The expected result is accurate display of

image similarity results. This test checks if uploaded images are correctly processed by the application and accurate output given.

The image download verification test is used to verify whether there is a possibility of downloading an image from the search

results. By clicking on a related image and downloading it, users can perform this test. When the download is successful, then the

105

expected result will be that the picture has been downloaded. This test ensures that the user’s ability to operate download works properly.

Table 7.3 shows the test case of functional testing.

Test Case Test Detail Test Instruction Test Data Expected Result Actual Result Condition

FT01 Navigate to home

page

Open the web

application and

navigate to the home

page

- The home page title

matches the

expected title

Title matched Pass

FT02 Upload Image

through UI

Use Selenium to

automate the image

upload process

test.jpg Success message

and correctly

processed image

Image

uploaded

Pass

FT03 Verify result page

content

Navigate to the result

page after uploading

an image

- Correct display of

image similarity

results

Results

displayed

Pass

FT04 Verify image

download

Click on a similar

image and download it

First similar

image result

Image should be

downloaded

successfully

Image

downloaded

Pass

Table 7.3 Test Case of Functional Testing

106

7.1.5 Integration Testing

Integration testing is intended to check that different parts of the application work well together and that the entire system functions as

it should. Integration tests involve checking up on a complete workflow from image upload to similarity detection and ensuring that the

frontend interacts with the backend services including database and image processing.

Through uploading an image, running it through the system and verifying result page display similarities, The Full Workflow

Test checks over the overall process starting from an image upload and finishing at displaying similarity results. What is expected is

that an image will be uploaded, processed successfully and results shown suitably. It ensures that every process happens as it should

across all components for smooth operations.

By uploading multiple images in one request and checking the response, The Multiple Image Upload Test evaluates how multiple

uploads are handled at ago. As a result, all images should be sent without complications during submission or retrieval. Thus, this test

ensures that numerous uploads can be carried out by an application effectively without any glitches in these processes.

This test was meant to confirm that the application had been instructed well to interact with the correct database. It is uploading

an image and then checked for features stored in them, to determine if it’s working in accordance with the expected result by confirming

whether images’ features were stored properly in databases. Thus, this test confirms whether the application interacts appropriately with

its databases and see to it that all required details are being put in place.

107

The aim of the image download test is to ensure that a user can download an image successfully after it has been uploaded and

processed. It requires uploading an image, processing it, getting its ID and finally downloading the image using this ID. The idea here

is that the frontend and backend components work synchronously in achieving this purpose, as well as the expectation that the download

functionality works correctly: if such a thing happens, then one can be sure about successful downloading of an image. Table 7.4 shows

the test case of integration testing.

Test Case Test Detail Test Instruction Test Data Expected Result Actual Result Condition

IT01 Test full workflow Upload an image,

process it, and check

the result page

test.jpg Image uploaded,

processed, and

results displayed

correctly

Results correct Pass

IT02 Retrieve similar

images

Upload an image, get

image ID, and retrieve

similar images

test.jpg Similar images

retrieved

successfully

Similar images

retrieved

Pass

IT03 Test database

interaction

Upload a zip folder

and check the database

train.zip Image features

stored correctly in

the database

Data stored Pass

IT04 Test image

download

Upload an image,

process it, get image

ID and download

test.jpg First similar image

result downloaded

successfully

Image

downloaded

Pass

Table 7.4 Test Case of Integration Testing

108

7.1.6 API Testing

API testing ensures that the backend services of an application are running correctly and can handle requests and responses efficiently.

It involves testing endpoints for uploading pictures, uploading zip files, getting similar images, and downloading images. The aim is to

make sure that the API endpoints function seamlessly while yielding expected results. The following API tests were performed using

Postman.

The upload image endpoint uploads a single image file through endpoint POST /api/upload. This endpoint takes in two

parameters, file which is the image file to be uploaded and db_url which is the database connection URL. After this upload, it should

return an expected response of a successful upload of the image and JSON response with image ID.

The upload zip file endpoint on the other hand uploads zip file with multiple images via endpoint POST /api/upload_zip. This

endpoint has two parameters namely file being the zip folder to be uploaded and db_url which is the database connection url. The result

will be a successful upload of the zip file and JSON response indicating success should be returned.

The retrieve similar images endpoint is used to retrieve similar images through endpoint GET /api/get_similar_images. This

endpoint has two parameters which are image and db_url. The expected response should be that similar images are successfully retrieved

and a JSON response with image data is returned.

109

The download image endpoint, GET /api/get_image/{image_id}, allows users to download an image using its ID. Db_url as well

as other parameters are required by this endpoint. The anticipated response is that the image can be downloaded successfully. Table 7.5

shows the test case of API testing.

Test Case Test Detail Test Instruction Test Data Expected Result Actual Result Condition

API01 Upload image Send a POST request to

‘/api/upload/ with an image

file and db_url

image file,

db_url

Image uploaded

successfully, and a

JSON response

containing the

image returned

Image

uploaded

successfully

Pass

API02 Upload zip file Send a POST request to

‘/api/upload_zip’ with a zip

file and db_url

zip file,

db_url

Zip file uploaded

successfully, and a

JSON response

indicating success

returned

Zip file

uploaded

successfully

Pass

API03 Retrieve similar

images

Send a GET request to

‘/api/get_similar_images;

with the image ID and db_url

image ID,

db_url

Similar images

retrieved

successfully, and a

JSON response

containing the

Similar

images

retrieved

successfully

Pass

110

image data

returned

API04 Download image Send a GET request to

‘/api/get_image/{image_id}’

with the db_url

image ID,

db_url

Image

downloaded

successfully

Image

downloaded

successfully

Pass

Table 7.5 Test Case of API Testing

111

7.2 Model Testing

Model testing is a phase for validation of machine learning models to evaluate and compare the

performance of several convolutional neural network (CNN) architectures as base models within

the Siamese Network architecture. The primary objective is to identify the most effective model

for feature extraction from the Kaggle 30types of balls dataset, which has 3595 images. The models

tested include ResNet18, VGGNet16, AlexNet, LeNet, and GoogleNet V3. Each of these models

brings unique architectural features and strengths to the table, making them suitable for different

aspects of image classification tasks. By using these models within a Siamese network architecture,

leverage their pre-trained capabilities on large-scale datasets (such as ImageNet) to enhance the

feature extraction process, which is crucial for tasks like similarity detection and image matching.

7.2.1 Evaluation Criteria

The base models are tested under same conditions to ensure a fair comparison which 50 epochs

for train set and 10 epochs for test set. The key metrics for the evaluation are:

7.2.1.1 Train Set

Process Time: The whole duration during which the model processes all data in a dataset.

CPU Time: The time that is utilized by CPU when performing both training and inference.

Highest Accuracy: The highest fraction of images correctly classified out of total number tested

Average Accuracy: The average of fraction of images correctly classified out of total number

tested per epoch.

Average Training Time: The mean period it takes to complete one cycle over training data.

Average Loss: The average of evaluation of how well predictions made by the model compare

with actual results per epoch.

Average Precision: The average of true positives divided by all positive predictions generated by

a model per epoch.

112

Average Recall: The average of true positives divided by true positive instances present in dataset

per epoch.

7.2.1.2 Test Set

Average Test Accuracy: The average of fraction of images correctly classified out of total number

tested per epoch.

Average Test Loss: The average of evaluation of how well predictions made by the model

compare with actual results per epoch.

Average Test Precision: The average of true positives divided by all positive predictions

generated by a model per epoch.

Average Test Recall: The average of true positives divided by true positive instances present in

dataset per epoch.

7.2.1.3 Dataset

The dataset was the Kaggle 30 Types of Balls dataset, which contains 3595 pictures of different

ball types. In this regard, it is a very diverse dataset that can be used to evaluate how CNNs perform

at feature extraction. (Gerry, 2023)

7.2.1.4 Evaluated Models

ResNet18: Residual connections are utilized in this network to address the vanishing gradient

problem and make it effective in training deep networks.

VGGNet16: It is famous for its simplicity and depth as well as using consistent convolution layers

to extract detailed features.

AlexNet: One of the oldest designs of deep architectures, it remains efficient despite having a

relatively shallow structure compared to modern counterparts.

113

LeNet: A simple early version of CNN architecture made for simple classifying images used here

as a base line.

GoogleNet V3 (Inception V3): It is characterised by complex architecture with an inception

module enabling efficient multi-scale processing.

The purpose of computational efficiency and overall model performance among these models

through Siamese Network architecture tests for image feature extraction tasks is to identify the

best blending of accuracy. These tests will provide useful pointers on whether they are appropriate

for other tasks like this and help in deciding how to choose and optimize models in the future. Next

sections will explore a more detailed evaluation of each model using both quantitative metrics and

qualitative analysis of their performance. There will be an extensive critique of the strengths and

weaknesses of all models with reference to our application so that we can establish the most ideal

architecture.

7.2.2 ResNet-18

In the case of ResNet that pre-trained on ImageNet employed the variant named Residual Networks

family because of skip connections that guard against the vanishing gradient problem, it is a

preferred option for deep networks. The architecture contains 18 layers and uses residual blocks

to enable efficient training and improve performance.

For the train set evaluation metrics of ResNet18 model, average processing time was found

to be 5171.97 seconds while average CPU time was given as 5171.97 seconds. The highest

accuracy got to 0.9867 with an average accuracy of 0. 9800.The average training time per epoch

was 95.51seconds while the loss averaged at about 0. 1390.For precision and recall, this model

showed impressive scores averaging at approximately one. Ideal for this dataset's feature extraction

is what these facts suggest about efficiency of ResNet18. The Figure 7.1, Figure 7.2, Figure 7.3

and Figure 7.4 shows a visual representation of the model’s performance for train set.

114

Figure 7.1 Training Accuracy over 50 Epochs (ResNet)

Figure 7.2 Training and Valid Loss over 50 Epochs (ResNet)

115

Figure 7.3 Training Precision over 50 Epochs (ResNet)

Figure 7.4 Training Recall over 50 Epochs (ResNet)

 The metrics that evaluated the test set of ResNet18 indicate a high degree of efficiency. On

average, test accuracy was 0.9260 and average test loss was 0.1845. Average precision and recall

were also high, with 0.9518 and 0.8940 respectively. These results imply that the model

generalizes well to new data as well as exhibits high accuracy and efficacy in feature extraction on

the test dataset. The Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.8 shows a visual representation

of the model’s performance for test set.

116

Figure 7.5 Test Accuracy over 10 Epochs (ResNet)

Figure 7.6 Test Loss over 10 Epochs (ResNet)

117

Figure 7.7 Test Precision over 10 Epochs (ResNet)

Figure 7.8 Test Recall over 10 Epochs (ResNet)

ResNet18's deep architecture and residual learning abilities account for its high accuracy

and low loss. The presence of skip connections in ResNet18 prevents the vanishing gradient

problem hence allowing better features to be learned by the model from data. Additionally,

impressive precision and recall values suggest that ResNet18 can accurately identify images within

this dataset. Finally, it is highly efficient in feature extraction which makes it a strong candidate

for this task.

118

7.2.3 AlexNet

AlexNet, another model used for evaluation purposes, is renowned as one of the models that have

contributed to developments in deep learning throughout history. AlexNet was pre-trained on

ImageNet as well and subjected to testing with similar conditions with those applied to ResNets.

AlexNet’s architecture consists five convolutional layers followed by three fully connected layers

making it deeper than LeNet but simpler compared to modern architectures like ResNet and

Google Net.

Finally, for the train set evaluation metrics the average total time taken by AlexNet was

2781.74 secs while the average CPU time was also 2781.74 seconds having highest ever accuracy

of 0.9267; averaged at 0.8600.The average training time per epoch was quite short at 51.87 seconds

which is an indication that it takes relatively shorter time during training as compared other models

used during our project.Their average loss was found out to be 0.2908 whereas their precision

averages were recorded at 0.9167 and their recall averages stood at 0.7746 respectively. The Figure

7.9, Figure 7.10, Figure 7.11 and Figure 7.12 shows a visual representation of the model’s

performance for train set.

Figure 7.9 Training Accuracy over 50 Epochs (AlexNet)

119

Figure 7.10 Training and Validation Loss over 50 Epochs (AlexNet)

Figure 7.11 Training Precision over 50 Epochs (AlexNet)

Figure 7.12 Training Recall over 50 Epochs (AlexNet)

120

 The test set evaluation metrics for the AlexNet model shows a strong performance,

although with some drop from training set metrics. The average testing accuracy was 0.8647 and

on average, the test loss was 0.3607. Results also indicate that the precision and recall scores are

high since an average precision of 0.8583 and an average recall of 0.8739 were recorded

respectively. These results suggest that the model still maintains good generalization capacity and

performs well in feature extraction in the test dataset. The Figure 7.13, Figure 7.14, Figure 7.15

and Figure 7.16 shows a visual representation of the model’s performance for test set.

Figure 7.13 Test Accuracy over 10 Epochs (AlexNet)

Figure 7.14 Test Loss over 10 Epochs (AlexNet)

121

Figure 7.15 Test Precision over 10 Epochs (AlexNet)

Figure 7.16 Test Recall over 10 Epochs (AlexNet)

 AlexNet results indicate a good performance with accuracy and precision, but not as much

compared to ResNet18. This means that it is an option due to its reasonably loss and per epoch

training time albeit not as best as ResNet18. Nevertheless, AlexNet’s architecture may be effective

but might not be as strong in extracting features from more complex datasets thus the lower recall

value than that of ResNet18.

122

7.2.4 LeNet

LeNet, one of the foremost convolutional neural networks for recognizing digits, was also tested.

Including such a basic architecture would inform on how well it stands against more complex

architectures. It has two convolutional layers before two fully connected layers which makes it

have fewer hidden neurons compared to all other models examined.

 The average processing time for LeNet was 2513.11 seconds with the same average CPU

time consumed by this model. The highest achieved accuracy was 0.7267 while that of the model

averaged at 0.6800 respectively. The shortest training time on average for any of the tested models

was seen in this model with 55.19 seconds spent per epoch on overedits average loss value was

observed to be 0.6232; whereas precision averages were of about 0.6714 and recalls were about

0.6528 which are above their respective averages. The Figure 7.17, Figure 7.18, Figure 7.19 and

Figure 7.20 shows a visual representation of the model’s performance for train set.

Figure 7.17 Training Accuracy over 50 Epochs (LeNet)

123

Figure 7.18 Training and Validation Loss over 50 Epochs (LeNet)

Figure 7.19 Training Precision over 50 Epochs (LeNet)

Figure 7.20 Training Recall over 50 Epochs (LeNet)

124

 For test set evaluation metrics. The average test accuracy was 0.6640 and the average test

loss was 0.6441. For precision and recall, their scores were 0.6400 and 0.7367 respectively. This

finding implies that in terms of precision-recall balance on the trial dataset, the model is acceptable,

but it displays distinct underperformance vis-à-vis training set. Thus, there could be overfitting

risks thus giving some pointers on how to improve the model like using regularization techniques

or diversified training data sets to address such issues. The Figure 7.21, Figure 7.22, Figure 7.23

and Figure 7.24 shows a visual representation of the model’s performance for test set.

Figure 7.21 Test Accuracy over 10 Epochs (LeNet)

Figure 7.22 Test Loss over 10 Epochs (LeNet)

125

Figure 7.23 Test Precision over 10 Epochs (LeNet)

Figure 7.24 Test Recall over 10 Epochs (LeNet)

 LeNet’s performance was modest compared to the other models. This is because it is not

very precise and has high loss due to its simplicity hence it may not be suitable for this dataset

which is complex. However, the LeNet architecture used in this thesis was only sufficient to

perform the basic tasks of image recognition as compared to more intricate patterns that can be

found in a more complicated set of data.

126

7.2.5 VGGNet-16

The research also employed VGGNet16 model which is known for its depth and simplicity. Built

on ImageNet, VGGNet16 works well for feature extraction because of its homogeneity among

different layers. The VGGNet16 comprises 13 convolutional layers and 3 fully connected layers

totaling to 16 layers with small (3x3) convolutions.

 According to the results, VGGNet16 took up an average time of 65268.37 seconds which

was the longest among all the models tested. The highest accuracy was at 0.7200 with an average

accuracy at 0. 6324.The average training time per epoch was also substantial as 1305.36 seconds.

The overall mean of precision and recall were approximately equal as well as their mean value

was around one half or less from each other in case of opening any significant difference between

them. The Figure 7.25, Figure 7.26, Figure 7.27 and Figure 7.28 shows a visual representation of

the model’s performance for train set.

Figure 7.25 Accuracy over 50 Epochs (VGGNet)

127

Figure 7.26 Training and Validation Loss over 50 Epochs (VGGNet)

Figure 7.27 Training Precision over 50 Epochs (VGGNet)

Figure 7.28 Training Recall over 50 Epochs (VGGNet)

128

 VGGNet’s test set evaluation metrics show that it has improved in performance as

compared to the training set. The mean test accuracy was 0.7160 and the mean test loss was 0.5573.

The precision and recall scores were 0.6549 and 0.9007 respectively. These results are indicative

of test generalization on the model, with a significant increase in recall, hence identifying a number

of more relevant instances now over time However, for precision, this is not so true because it has

decreased indicating a tradeoff between precision and recall.In conclusion, We can say VGGNet

demonstrates good performance on the test dataset which shows its potential in high recall based

tasks. The Figure 7.29, Figure 7.30, Figure 7.31 and Figure 7.32 shows a visual representation of

the model’s performance for test set.

Figure 7.29 Test Accuracy over 10 Epochs (VGGNet)

Figure 7.30 Test Loss over 10 Epochs (VGGNet)

129

Figure 7.31 Test Precision over 10 Epochs (VGGNet)

Figure 7.32 Test Recall over 10 Epochs (VGGNet)

 While VGGNet16’s convolutional network accuracy and precision were lower than

expected, its long computation times and high requirements make it less of a practical choice for

this task. The deep architecture of VGGNet16 that is good at capturing fine-grained features may

have resulted in overfitting as indicated by its comparatively low validation accuracy and relatively

higher loss in contrast to other models.

130

7.2.6 GoogleNet-V3

GoogleNet V3 which is also referred to as Inception V3 was the model under experimentation.

With its complex architecture and efficiency, GoogleNet V3 was subjected to the same conditions.

Inception was developed with a novel concept of “Inception modules” that can perform more

efficient computations through incorporating different filter sizes within layer.

 On average, GoogleNet V3 took 5154.86 seconds to process with the same average CPU

time. The highest accuracy obtained was 0.7267 while the average accuracy reached 0.6333 on

average across runs. The training required an epoch time of 94.70 seconds on average. On average,

the loss amounted to 0.6456, precision and recall averaging at 0.6420 and 0.6667 respectively. The

Figure 7.33, Figure 7.34, Figure 7.35 and Figure 7.36 shows a visual representation of the model’s

performance for train set.

Figure 7.33 Training Accuracy over 50 Epochs (GoogleNet)

131

Figure 7.34 Training and Validation Loss over 50 Epochs (GoogleNet)

Figure 7.35 Training Precision over 50 Epochs (GoogleNet)

Figure 7.36 Training Recall over 50 Epochs (GoogleNet)

132

 For the test evaluation metrics for the GoogleNet model indicate that it has performed

worse than when being trained. The mean of testing accuracy was 0.6113 and testing loss had an

average value of 0.6592. The precision score was 0.5992, while recall obtained a value of 0.

6393.These findings show that there is lower precision on the test dataset and imply that this model

may not generalize well to new data. This suggests potential overfitting during training and

emphasizes the necessity for better adjustment or more solid training data so as to improve

performance of this model for unseen data. The Figure 7.37, Figure 7.38, Figure 7.39 and Figure

7.40 shows a visual representation of the model’s performance for test set.

Figure 7.37 Test Accuracy over 10 Epochs (GoogleNet)

Figure 7.38 Test Loss over 10 Epochs (GoogleNet)

133

Figure 7.39 Test Precision over 10 Epochs (GoogleNet)

Figure 7.40 Test Recall over 10 Epochs (GoogleNet)

 GoogleNet V3 had average performance in terms of accuracy and recall, but it fell short

of ResNet18 or AlexNet. With a complex architecture and its efficiency, it can be one great model,

but not the best for this job. The GoogleNet V3 inception modules provide a mix of computation

efficiency and performance, whereas the overall accuracy and loss metrics for the model indicate

that it may not be as appropriate to this dataset as ResNet18.

134

7.2.7 Comparison of Base Models

The Table 7.6 show the performance metrics of all tested models in 50 epochs for train set:

Model Process

Time (secs)

CPU Time

(secs)

Highest

Accuracy

Average

Accuracy

Average

Training

Time (secs)

Average

Loss

Average

Precision

Average

Recall

ResNet-18 5171.97 5171.97 0.9867 0.9800 95.51 0.1390 1.0000 0.9655

AlexNet 2781.74 2781.74 0.9267 0.8600 51.87 0.2908 0.9167 0.7746

LeNet 2513.11 2513.11 0.7267 0.6800 55.19 0.6232 0.6714 0.6528

VGGNet-16 65268.37 65268.37 0.7200 0.6324 1305.36 0.5912 0.7966 0.3327

GoogleNet-V3 5154.86 5154.86 0.7267 0.6333 94.70 0.6456 0.6420 0.6667

Table 7.6 Performance metrics of tested models for train set

The Table 7.7 show the performance metrics of all tested models in 10 epochs for test set:

Model Average Test

Accuracy

Average Test Loss Average Test

Precision

Average Test

Recall

ResNet-18 0.9260 0.1845 0.9518 0.8940

AlexNet 0.8647 0.3607 0.8583 0.8739

LeNet 0.6640 0.6441 0.6400 0.7367

VGGNet-16 0.7160 0.5573 0.6549 0.9007

GoogleNet-V3 0.6113 0.6592 0.5992 0.6393

Table 7.7 Performance metrics of tested models for test set

135

Given this contrast, ResNet18 is found to be the best model for our project. It has the highest

average accuracy and precision, but a small loss rate and reasonable training and processing

times. This Siamese network architecture features a good trade-off between performance and

computational efficiency in ResNet18 that makes it suitable for feature extraction. Models like

VGGNet16 on the other hand, despite their depth have high computation requirements as well

as long training durations that are less practical for this task. The fact that VGGNet16 has lower

accuracy and higher loss indicates potential overfitting issues, so it does not fit well for the

given dataset. While AlexNet performs relatively well; however, it cannot match up with

ResNet18 when it comes to precision and recall scores showing its ineffectiveness in capturing

complex features. LeNet together with GoogleNet V3 though efficient in some respects do not

provide an equivalent level of exactness or reliability as compared to ResNet18 hence making

them less viable options for this study.

 In conclusion, this shows that ResNet18 is best suited for the purpose because of its

positive and efficient work. It can accommodate deeper networks by way of residual

connections which enables it to provide higher accuracy and precision than any other model in

the context of Siamese network feature extraction. This comprehensive assessment

demonstrates why choosing a proper architecture matters with respect to various tasks; in this

case, ResNet18 has proven to be resistant when working with some issues in the Kaggle 30

Types of Balls dataset.

7.3 Conclusion

To conclude, after the software system and machine learning models were subjected to a

rigorous testing, numerous possible problems have been discovered and addressed. The

Intelligent Image Search Engine with AI-based similarity detection for a web application has

been significantly improved in terms of its quality and reliability through comprehensive

testing.

 Unit testing, functional testing, integration testing, API testing as well as user

acceptance testing were conducted during system testing to ensure that every component of the

web application was critically appraised. This method helped discover and resolve several

136

mistakes thereby improving the strength of the system within the required specifications and

meeting users’ expectations. Model evaluation was done by evaluating various CNN’s

architecture within Siamese network framework. ResNet18 emerged as the top-performing

offering highest trade-off in terms of accuracy, precision and computational efficiency.

 Through conducting extensive testing in these two crucial areas, we have guaranteed

that the result does not only conform to the necessary conditions and guidelines but also

guarantees a dependable and excellent performance. This twofold method of testing has

become an indispensable part of the development process thus resulting in creating a strong,

effective, and user-friendly system.

137

CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

This project has successfully developed an intelligent image search engine with AI-based

similarity detection for web application and successfully addresses several critical problems.

Firstly, the inefficiencies and inaccuracies in traditional image search engine have been

resolved. This project has taken into consideration of the problem that the result retrieved not

from specific place and solved by based on the database which means the result will retrieve

from the specific place to who’s that configure the database. With the implementation of

content-based image search method, the problem of inaccuracies of keyword-based image

search method and inefficiencies of textual input for image search engine also solved and make

it more user-friendly that user no need think about what keywords need to use to search the

image but just provide the image query and find the similar images. The AI model will handle

the feature extraction of images and process the task of similarity detection then provide the

most similar image to the user.

 Furthermore, by using AI model in image search engine, it can improve the similarity

detection efficiency for the tasks of compare the feature vector from the images in the database.

The following project’s objectives were achieved.

1. To design web application to facilitate user interaction and integrate the AI-

based image search engine into the web application, allowing users to upload images

and view search results

2. To implement a deep learning model for extracting features from uploaded

images and learning the features of image content

3. To utilize AI techniques to compare the extracted features and determine the

similarity between the query image and images in the database and list the results

138

 The initial objective has been fulfilled since the development of the web application

has been accomplished, enabling the user to upload image in home page through drag-and-drop

method or upload from folder method. Real-time feedback through loading indicators to show

the image processing process which are the upload image feature extraction, feature vector

comparison and similarity detection which done by the AI model and lastly show the similar

image results to the user in result page.

 The second objective has been achieved by utilized the pretrained base model which is

the ResNet-18 to perform the feature extraction task. The final fully connected layer of ResNet-

18 had been replaced by a new layer to output 256 feature vectors to allow the system to learn

and extract features from the images which is then use for comparison and similarity detection.

 Finally, the third objective has been achieved by integrated a Siamese Network model

for similarity detection task. Siamese Network uses pairs of images to learn and identify

similarities. When in comparison phase, the model compares the feature vectors of the query

image and images in the database and then computes similarity scores. After that, the similarity

scores will be use which the highest similarity score will be the most similar image and list out

the images in descending order in result page.

8.2 Limitations

Despite the accomplishment of the project’s objectives, there remain some limitations in the

project that could be enhanced.

The first limitation is the processing time for image analysis. An occasional long

response time happens due to simultaneous image uploads and similarity detection through

deep learning models which require a lot of computational power for their algorithms. This

pause hampers the user experience greatly especially when large images are involved or there

are many requests in a second. Many times, users must wait for some seconds before they can

proceed with their operations, and it can be inconvenient and annoying too. The need for high

computation resources becomes a bottleneck particularly in real-time situations where

139

immediate feedback is expected from input devices. To make the application more efficient for

real-time use and improve user satisfaction, reducing the response time is necessary. One could

do this by optimizing algorithms, acquiring stronger hardware or moving complex calculations

to cloud-based services.

 The second limitation is the limited user interface features. It has a basic functionality

for image upload and result display. However, it does not have such advanced features as batch

image uploads, image search history and more interactive results displays. Such features are

necessary for improved user interaction and satisfaction. The current interface doesn’t exploit

the system’s capabilities fully but can be made to be a more versatile and user friendly by

adding these features, for example batch image uploads would allow users to process multiple

images at once thereby saving time and effort. Incorporating a search history feature in the

system will enable users to easily revisit their previous searches thus enhancing usability.

Interactive result displays that provide additional details about each result and offer sorting or

filtering options could also improve user experience further.

 The third limitation is database scalability. Presently, a specific database is used to save

and retrieve images. More so, if the stored image number increases, there may be problems

with scalability of the system leading to slower search rates and an increased storage necessity.

This deficiency hampers the efficient handling of large datasets by this application. Therefore,

it is necessary for data base to be scalable to maintain performance and reliability as the data

grows. This can involve optimizing database queries, utilizing distributed databases and

implementing caching strategies to lower work on primary database among other potential

solutions. Further, regular maintenance and optimization of the database structure can assist in

managing larger datasets more efficiently.

8.3 Recommendation for Future Work

The following are four recommendations for future work that could be explored for this project.

140

8.3.1 Optimize Image Processing Algorithms

Optimization needs to be implemented in response to the limitations of processing time. This

may involve algorithmic optimizations and replacing inefficient libraries from third parties on

top of other measures. Moreover, hardware accelerators such as GPUs or cloud-based solutions

for heavy computations can also improve performance significantly. The net effect will be to

reduce response time and make it possible for the system to take care of more complicated

image processing tasks faster. Improving the efficiency of the algorithm ensures smoother user

experience particularly during high traffic periods or while handling large image datasets.

8.3.2 Enhance User Interface Features

As only having basic features, the current interface can be improved with more advanced ones.

Such additional characteristics include bulk uploads of pictures, search history and other

interactive result displays. It would save users time and enhance efficiency in case they could

upload several photos at once. If a search history feature is integrated, it would bring practical

benefits to users by allowing them to easily go back to their past searches. These new

improvements will allow for a much richer user experience when sorting, filtering or viewing

detailed information about images is finally put into place. Ultimately, these changes will make

the system more flexible and user-friendly thus meeting different individual needs within its

use context.

8.3.3 Improve Database Scalability

To make the database scalable and efficient, several optimizations can be carried out. Among

them are improving database structure and modifying queries to run more effectively on much

bigger data sets. Employing distributed databases or incorporating caching techniques can help

in handling larger data sets by redistributing the load as well as reducing the time it takes to

respond back. Moreover, regular maintenance and optimization of the database structure also

helps in addressing scalability issues to keep it high-performing and reliable while storing more

and more images. Enhancing the scalability of a database is therefore important because it

ensures that many users are reached with the application as well as large image repositories are

created thus making this system robust enough for dealing with increased traffic.

141

8.3.4 Enhance AI Model

To further improve the accuracy and efficiency of similarity detection, more advanced AI

models could be explored. Better feature extraction and similarity metrics can be obtained by

experimentation with Vision Transformers (ViTs) or other convolutional neural networks

(CNNs). For instance, Vision Transformers have shown promise in several image processing

tasks and that could make it better at detecting subtle similarities between images. Furthermore,

model performance can be improved by fine-tuning techniques on domain-specific datasets

which makes the models more specialized and accurate for specific use cases. To keep pace

with new techniques and ensure users receive the best possible results, AI models should be

updated and refined continuously.

142

REFERENCES

1. (No date a) (PDF) a review: From keyword based image retrieval to ontology based

image retrieval. Available at:

https://www.researchgate.net/publication/235898006_A_REVIEW_FROM_KEYWO

RD_BASED_IMAGE_RETRIEVAL_TO_ONTOLOGY_BASED_IMAGE_RETRIE

VAL (Accessed: 04 April 2024).

2. (No date a) (PDF) image classification approaches for segregation of plastic waste

based on resin identification code. Available at:

https://www.researchgate.net/publication/358833106_Image_Classification_Approac

hes_for_Segregation_of_Plastic_Waste_Based_on_Resin_Identification_Code

(Accessed: 04 April 2024).

3. (No date a) (PDF) the Google Lens analyzing quality: An analysis of the possibility to

use in the educational process. Available at:

https://www.researchgate.net/publication/340050262_The_Google_Lens_analyzing_q

uality_an_analysis_of_the_possibility_to_use_in_the_educational_process (Accessed:

04 April 2024).

4. (No date a) (PDF) toward aircraft recognition with Convolutional Neural Networks.

Available at:

https://www.researchgate.net/publication/312303454_Toward_aircraft_recognition_w

ith_convolutional_neural_networks (Accessed: 04 April 2024).

5. (No date a) (PDF) web image search engine evaluation. Available at:

https://www.researchgate.net/publication/236855070_Web_Image_Search_Engine_E

valuation (Accessed: 04 April 2024).

6. (No date a) (PDF) world wide web based image search engine using text and image

content features. Available at:

https://www.researchgate.net/publication/245141838_World_Wide_Web_Based_Ima

ge_Search_Engine_Using_Text_and_Image_Content_Features (Accessed: 04 April

2024).

143

7. (No date a) Architecture of the resnet-18 model used in this study.... Available at:

https://www.researchgate.net/figure/Architecture-of-the-ResNet-18-model-used-in-

this-study_fig3_354432343 (Accessed: 04 April 2024).

8. (No date) (PDF) scalability challenges in web search engines. Available at:

https://www.researchgate.net/publication/226351869_Scalability_Challenges_in_Web

_Search_Engines (Accessed: 04 April 2024).

9. Albizu Garcia (2019). Why Visual Search Will Be One of the Biggest Digital Marketing

Trends of 2019. [online] Social Media Today. Available at:

https://www.socialmediatoday.com/news/why-visual-search-will-be-one-of-the-

biggest-digital-marketing-trends-of-20/545999/.

10. An interactive approach for filtering out junk images from Keyword-Based Google

search

11. results (2009). https://ieeexplore.ieee.org/abstract/document/5159448.

12. Arnold, V. (2023). AI in Image Recognition: Benefits, Applications and Challenges.

[online] neuroflash. Available at: https://neuroflash.com/blog/ai-in-image-recognition-

benefits-applications-and-

challenges/#:~:text=Accuracy%20and%20Efficiency%3A%20AI%20in.

13. Author links open overlay panelAnuja khodaskar a et al. (2015) Promising large scale

image retrieval by using intelligent semantic binary code generation technique,

Procedia Computer Science. Available at:

https://www.sciencedirect.com/science/article/pii/S1877050915006924?ref=pdf_dow

nload&f r=RR-2&rr=86ef5aafdf3c7568 (Accessed: 04 April 2024).

14. Bangar, S. (2022). Resnet Architecture Explained. [online] Medium. Available at:

https://medium.com/@siddheshb008/resnet-architecture-explained-47309ea9283d.

15. Boesch, G. (2021). VGG Very Deep Convolutional Networks (VGGNet) - What you

need to know. [online] viso.ai. Available at: https://viso.ai/deep-learning/vgg-very-

deep-convolutional-networks/.

16. Chen, M. (2023). 6 Common AI Model Training Challenges. [online] Oracle.com.

Available at: https://www.oracle.com/my/artificial-intelligence/ai-model-training-

challenges/ [Accessed 4 Apr. 2024].

17. CheshmehSohrabi, M. (Mozaffar) and Sadati, E.A. (2021). Performance evaluation of

web search engines in image retrieval: An experimental study. Information

Development, p.026666692110102. doi:https://doi.org/10.1177/02666669211010211.

18. Contextual image search with keyword and image input (2014).

https://ieeexplore.ieee.org/abstract/document/7033765.

144

19. encord.com. (n.d.). What is One-Shot Learning in Computer Vision. [online] Available

at: https://encord.com/blog/one-shot-learning-guide/.

20. GeeksforGeeks. (2020). Understanding GoogLeNet Model - CNN Architecture.

[online] Available at: https://www.geeksforgeeks.org/understanding-googlenet-model-

cnn-architecture/.

21. Gerry (2023). 30 Types of Balls Updated- Image Classification. [online] Kaggle.com.

Available at: https://www.kaggle.com/datasets/gpiosenka/balls-image-classification.

22. IBM (2023). What are Convolutional Neural Networks? | IBM. [online]

www.ibm.com. Available at: https://www.ibm.com/topics/convolutional-neural-

networks.

23. ieeexplore.ieee.org. (n.d.). IntentSearch: Capturing User Intention for One-Click

Internet Image Search | IEEE Journals & Magazine | IEEE Xplore. [online] Available

at: https://ieeexplore.ieee.org/abstract/document/6104063.

24. J, S.B. (2021). A friendly Introduction to Siamese Networks. [online] Medium.

Available at: https://towardsdatascience.com/a-friendly-introduction-to-siamese-

networks-85ab17522942.

25. kaggle.com. (n.d.). AlexNet Architecture: A Complete Guide. [online] Available at:

https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide.

26. Li, M. and Ma, W.-Y. (n.d.). Image Search Engine. Encyclopedia of Multimedia,

pp.323–328. doi:https://doi.org/10.1007/0-387-30038-4_100.

27. Reynolds, A.H. (n.d.). Anh H. Reynolds. [online] Anh H. Reynolds. Available at:

https://anhreynolds.com/blogs/vgg.html.

28. Rock (2021). What Are Artificial Intelligence Algorithms And How Do They Work.

[online] Rock Content. Available at: https://rockcontent.com/blog/artificial-

intelligence-algorithm/.

29. Varshney, P. (2020). LeNet Architecture: A Complete Guide. [online] kaggle.com.

Available at: https://www.kaggle.com/code/blurredmachine/lenet-architecture-a-

complete-guide.

