

COMBINATION OF GENERATIVE

ARTIFICIAL INTELLIGENCE AND DEEP

REINFORCEMENT LEARNING:

PERFORMANCE COMPARISON

LIM FANG NIE

UNIVERSITI TUNKU ABDUL RAHMAN

COMBINATION OF GENERATIVE ARTIFICIAL INTELLIGENCE

AND DEEP REINFORCEMENT LEARNING: PERFORMANCE

COMPARISON

Lim Fang Nie

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2024

A project report submitted in partial fulfilment of

the requirements for the award of Bachelor of

Science (Honours) Software Engineering

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : LIM FANG NIE

ID No. : 2200481

Date : 12/9/2024

APPROVAL FOR SUBMISSION

I certify that this project report entitled “COMBINATION OF

GENERATIVE ARTIFICIAL INTELLIGENCE AND DEEP

REINFORCEMENT LEARNING: PERFORMANCE COMPARISON”

was prepared by LIM FANG NIE has met the required standard for submission

in partial fulfilment of the requirements for the award of Bachelor of Software

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Yau Kok Lim

4 October 2024

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, Lim Fang Nie. All right reserved.

ABSTRACT

In this study, we explore the integration of Generative Adversarial Networks

(GANs) and Deep Reinforcement Learning (DRL) methods, focusing on the

performance comparison between different architectures of Sequence

Generative Adversarial Networks (SeqGAN) and policy gradient algorithms.

We address key challenges in text generation, such as maintaining narrative

coherence over long sequences, reducing text repetition, and optimizing

SeqGAN for diverse textual outputs. The study incorporates architectural

innovations like Long Short-Term Memory (LSTM) and Gated Recurrent Units

(GRU) that enhance the ability of SeqGAN to capture long-range dependencies

in sequences, while attention mechanisms improve contextual awareness by

selectively focusing on relevant parts of the sequence. Through extensive

experiments, we analyze the influence of various neural network configurations

and regulatory mechanisms, including gradient penalties and regularization on

the quality of the generated text. Our findings show a 15% increase in BLEU

scores, highlighting significant improvements in text coherence and diversity

across various datasets, demonstrating the effectiveness of integrating SeqGAN

with policy gradient methods for automated content generation.

i

TABLE OF CONTENTS

TABLE OF CONTENTS i

LIST OF TABLES iv

LIST OF FIGURES v

LIST OF ALGORITHMS viii

LIST OF SYMBOLS / ABBREVIATIONS 1

CHAPTER

1 INTRODUCTION 2

1.1 General Introduction 2

1.1.1 Generative Adversarial Networks (GANs) 2

1.1.2 Deep Reinforcement Learning (DRL) 3

1.1.3 SeqGAN with Policy Gradient 4

1.2 Importance of the Study 8

1.3 Problem Statement 9

1.3.1 Optimization Challenges in SeqGAN 9

1.3.2 Repetition and Lack of Text Coherence 9

1.3.3 Lack of a Comprehensive Integration

Framework 10

1.4 Aim and Objectives 10

1.5 Scope and Limitation of the Study 11

2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Generative Adversarial Networks and SeqGAN:

Comparative Overview 14

2.2.1 Generative Adversarial Networks (GAN) 14

2.2.2 Sequence Generative Adversarial Nets 17

2.3 Comparative Analysis of Policy Gradient

Methods 22

2.3.1 Policy Gradient Algorithms 22

2.4 Architecture Innovation 30

2.4.1 Long short-term memory (LSTM) 31

ii

2.4.2 Gated Recurrent Unit (GRU) 33

2.4.3 Attention Mechanisms 35

2.4.4 Conditional GANs 36

2.5 Evaluation Metric 40

2.6 Regulatory Mechanisms and Penalties 44

2.6.1 Gradient Penalty 46

2.6.2 L1/L2 Regularization 47

2.6.3 Entropy Penalty 48

2.6.4 Semantic Consistency Penalty 49

2.7 Summary 54

3 METHODOLOGY AND WORK PLAN 56

3.1 Introduction 56

3.2 Software and Tools 58

3.2.1 Tools 58

3.2.2 Hardware Environment 58

3.2.3 Software Environment 59

3.3 Work Plan 61

4 PROJECT INITIAL SPECIFICATION 64

4.1 Introduction 64

4.2 Data Collection 64

4.3 Data Processing 64

4.4 SeqGAN Model Enhancement 66

4.4.1 GRU Layer Integration 66

4.4.2 Transformer Intergration 66

4.4.3 Reward Structure 67

4.5 Optimization of SeqGAN 67

4.6 Evaluation Metrics and Performance Analysis 68

4.7 Summary 69

5 RESULT AND DISCUSSION 70

5.1 System Performance 70

5.1.1 Quantitative Metric 70

5.1.2 Evaluation of Poem 82

5.2 System Demonstrations 86

5.2.1 Model Enhancement 86

iii

6 CONCLUSIONS AND RECOMMENDATIONS 97

6.1 Conclusion 97

6.2 Recommendations for future work 97

REFERENCES 100

iv

LIST OF TABLES

Table 2.1: Feature Comparison of GAN and SeqGAN 21

Table 2.2: Training Process Comparison of GAN and SeqGAN 21

Table 2.3: Comparison of Policy Gradient Algorithms 29

Table 2.4: Sustainability for SeqGAN and Test Generation 30

Table 2.5: Comparisons of SeqGAN Architectures Innovation 37

Table 2.6: Comparison of Training Techniques for SeqGAN 39

Table 2.7: Comparison of various Evaluation Metrics 43

Table 2.8: Comparison of L1 and L2 regularization 48

Table 2.9: Comparison of various regularization and penalty techniques 51

Table 2.10: Implication of Regulatory Mechanisms on Model
Performance 53

Table 3.1: Hardware specifications 59

Table 3.2: Software specifications 60

Table 4.1: Overview of the Proposed Solution 69

Table 5.1: Hyperparameter configurations 70

Table 5.2: Generator Adversarial Training Loss Result 71

Table 5.3: Discriminator Adversarial Training Loss Result 73

Table 5.4: Generator Oracal NLL result 75

Table 5.5: Discriminator Oracal NLL result 77

Table 5.6: BLEU Score results for both model 79

v

LIST OF FIGURES

Figure 1.1: Structure of DRL 3

Figure 2.1: Structure of GANs 15

Figure 2.2: Architecture of Multilayer Perceptrons (MLPs) 16

Figure 2.3: Structure of SeqGANs 17

Figure 2.4: Monte Carlo Tree Search (MCTS) process 18

Figure 2.5: Architecture of Encoder-Decoder Network 19

Figure 2.6: Unit of RNN and LSTM 31

Figure 2.7: Unit of GRU 34

Figure 2.8: Wasserstein GAN with a gradient penalty for Length of
Stay 46

Figure 3.1: Summary of Project Workflow 56

Figure 3.2: Project Work Breakdown Structure (WBS) 62

Figure 3.3: Gantt Chart 63

Figure 4.1: Sample of Chinese Poetry 64

Figure 4.2: Sample of Chinese Poetry after tokenization 65

Figure 5.1: Generator loss of baseline model using setting 1 and setting
2 72

Figure 5.2: Generator loss of enhanced model using setting 1 and setting
2 72

Figure 5.3: Discriminator loss of baseline model using setting 1 and
setting 2 73

Figure 5.4 Discriminator loss of enhanced model using setting 1 and
setting 2 74

Figure 5.5: Generator Oracle NLL of baseline model using setting 1
and setting 2 75

vi

Figure 5.6: Generator Oracle NLL of enhanced model using setting 1
and setting 2 76

Figure 5.7: Discriminator Oracle NLL of baseline model using
setting 1 and setting 2 77

Figure 5.8 : Discriminator Oracle NLL of enhanced model using
setting 1 and setting 2 78

Figure 5.9: BLEU Scores Comparison between Baseline and Enhanced
Model 79

Figure 5.11: Generated poems using enhanced model 83

Figure 5.10 : Generated poems using baseline model 83

Figure 5.12 : Climbing White Stork Tower from Wang Zhihuan 84

Figure 5.13 : Sample lines poems from the baseline model 84

Figure 5.14 : Sample lines poems for enhanced model 85

Figure 5.15 : Overview of TargetGRU class 86

Figure 5.16 : Embedding Layer 87

Figure 5.17 : GRU Layer 87

Figure 5.18 : Fully Connected Layer and Softmax 87

Figure 5.19 : Forward Pass 88

Figure 5.20 : Overview of TargetGRU class 88

Figure 5.21 : Step Method for Token-by-Token Processing 88

Figure 5.22 : init_hidden function 89

Figure 5.23 : init_params function 89

Figure 5.24 : Architecture of Transformer 90

Figure 5.25 : PositionEncoding method 91

Figure 5.26 : Positional Encoding Matrix 91

Figure 5.27 : Division Term 92

Figure 5.28 : Sine and Cosine Functions 92

vii

Figure 5.29 : Unsqueeze and Register Buffer 92

Figure 5.30 : Forward Pass Function 93

Figure 5.31 : Function of Gradient Penalty Calculation 94

Figure 5.32 : Interpolation Between Real and Fake Samples 94

Figure 5.33 : Discriminator Output on Interpolated Samples 95

Figure 5.34 : Gradient Computation 95

Figure 5.35 : Reshape Gradients and Gradient Norm 95

Figure 5.36 : Gradient Penalty calculation formation 96

viii

LIST OF ALGORITHMS

Algorithm 1.1: The algorithm framework of SeqGAN with policy
gradient 5

Algorithm 2.1: Algorithm of REINFORCE 24

Algorithm 2.2: Algorithm of TRPO 26

Algorithm 2.3: : Algorithm of PPO 28

1

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

cGAN Conditional Generative Adversarial Network

CNN Convolutional Neural Networks

CVPR Computer Vision and Pattern Recognition

DRL Deep Reinforcement Learning

GAN Generative Adversarial Network

GRU Gated Recurrent Units

GP Gradient Penalty

IDE Integrated Development Environment

LSTM Long Short-Term Memory

MCTS Monte Carlo Tree Search

MLE Maximum Likelihood Estimation

MLP Multilayer Perceptrons

NLL Negative Log-Likelihood

NLP Natural Language Processing

PPO Proximal Policy Optimization

RNN Recurrent Neural Network

SeqGAN Sequence Generative Adversarial Network

TRPO Trust Region Policy Optimization

WBS Work Breakdown Structure

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Loss with Gradient Penalty

2

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In recent years, artificial intelligence has been buzzing with remarkable

advancements in the field of generative artificial intelligence and deep

reinforcement learning (DRL). Generative artificial intelligence, known as

Generative AI, is a voluntary field of AI that focuses on generating new data

such as images, text, or music. The newly generated data aims to be realistic and

true instead of just copies of data. With this approach, machines are allowed to

move beyond to analyze existing information and enhance it with the ability to

generate new content with remarkable creativity. One of the popular generative

AI approaches is generative adversarial networks.

1.1.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are an innovation in the field of

Generative AI. This class of machine learning frameworks emerged from the

work of Ian Goodfellow and his colleagues in 2014 (Goodfellow et al., 2014).

GANs work by pitting two neural networks against each other in a competitive

setting. One network is called the generator and another one is called the

discriminator. The generator produces realistic data, while the discriminator

attempts to differentiate between real and generated fake data. This adversarial

process pushes both networks to improve and allows the generator to create

realistic sample outputs. Neural networks in machine learning are also referred

to as artificial neural networks (ANNs) because of the design that is specifically

built to replicate the structure and function of the human brain.

An outstanding case in the world of GANs is StyleGAN2, introduced

at the Conference on Computer Vision and Pattern Recognition (CVPR) in 2020.

This model leverages transfer learning to produce a virtually infinite number of

portraits with an astounding range of artistic styles (Esser et al., 2020). It allows

for fine-grained control over specific details, such as facial expressions and

poses.

3

1.1.2 Deep Reinforcement Learning (DRL)

While Deep Reinforcement Learning (DRL) is an area of artificial intelligence

that combines reinforcement and deep learning. It primarily focuses on training

agents to make optimal decisions in an environment through trial and error. DRL

agents differ from classical supervised learning, which is supplied with labelled

examples. They learn by interacting with the environment and receive rewards

for desired behaviours. This allows the agent to learn complex strategies and

adapt themselves to dynamic situations or scenarios. An exemplary example of

DRL would be AlphaGo, a program developed by DeepMind that achieved

mastery in the complex game of Go (Silver et al., 2016). AlphaGo, along with

its successors, leverages a Monte Carlo tree search algorithm to identify optimal

moves. This selection process builds upon knowledge previously acquired

through extensive machine learning. Specifically, an artificial neural network, a

core component of deep learning, is trained on a huge dataset of human and

computer Go games (Silver et al., 2016). The neural network progressively

refines its ability to identify the most effective moves and their corresponding

winning probabilities. As a result, the tree search algorithm is continuously

strengthened, leading to a more sophisticated selection of moves in subsequent

iterations.

Figure 1.1 demonstrates an agent with a neural network policy taking

actions in an environment based on observed states, receiving rewards, and

4

updating its policy parameters to learn an optimal behaviour over multiple

iterations.

Artificial Intelligence has moved past its usual techniques, adopting

new strategies that combine the power of generating content with the learning

ability of deep reinforcement learning. This research project focuses on

investigating the potential benefits of the combination of SeqGAN, a generative

AI model, with various policy gradient DRL methods. The potential benefits

include improving text quality and cohérence, enhancing the ability to generate

diverse and novel content, increasing efficiency in training and content

generation, and improving the ability to handle long-range dependencies in text.

By analyzing these combined models' performance, architecture, neural

networks, and key parameters, this project aims to understand the factors

influencing their effectiveness and performance. The factors may be the choice

of policy gradient algorithm, the architecture of generator and discriminator

networks, reward function design, the impact of different pre-training strategies

for the generator, and the effect of batch size and sequence length on model

performance.

1.1.3 SeqGAN with Policy Gradient

In addressing the complexities of text generation, especially in generating

coherent content, the integration of SeqGAN with policy gradient methods. This

methodology leverages the adversarial framework established by Goodfellow et

al. (2014) and adapts it using reinforcement learning (RL) strategies to optimize

the generative process over extended sequences without relying on intermediate

rewards (Yu, et al., 2017; Sutton & Barto, 2018).

Algorithm 1: SeqGAN

Require: Discriminator, 𝐷𝐷𝜙𝜙; Generator policy, 𝐺𝐺𝜃𝜃; roll-out policy, 𝐺𝐺𝛽𝛽a

sequence data 𝑆𝑆 = {𝑋𝑋1:𝑇𝑇}

01: Initialize 𝐺𝐺𝜃𝜃, 𝐷𝐷𝜙𝜙 with random weights 𝜃𝜃, 𝜙𝜙.

02: Pre-train 𝐺𝐺𝜃𝜃 using MLE on 𝑆𝑆

03: 𝛽𝛽 ← 𝜃𝜃

5

04: Generate negative samples using 𝐺𝐺𝜃𝜃 for training 𝐷𝐷𝜙𝜙

05: Pre-train 𝐷𝐷𝜙𝜙 via minimizing the cross entropy

06: repeat

07: for g-steps do

08: Generate a sequence 𝑌𝑌1:𝑇𝑇 = (𝑦𝑦1, … ,𝑦𝑦𝑡𝑡 , … ,𝑦𝑦𝑇𝑇) ~ 𝐺𝐺𝜃𝜃

09: for 𝑡𝑡 in 1:𝑇𝑇 do

10: Calculate 𝑄𝑄(𝑎𝑎 = 𝑦𝑦𝑡𝑡; 𝑠𝑠 = 𝑌𝑌1:𝑡𝑡−1) by Eq. (1.1)

11: end for

12: Update generator settings using policy gradients.

Eq.(1.3)

13: end for

14: for d-steps do

15: Use current 𝐺𝐺𝜃𝜃 to generate negative examples and

combine with specified positive examples, 𝑆𝑆

16: Train discriminator 𝐷𝐷𝜙𝜙 for 𝑘𝑘 epochs using Eq. (1.4)

17: end for

18: 𝛽𝛽 ← 𝜃𝜃

19: until SeqGAN converges

Algorithm 1.1: The algorithm framework of SeqGAN with policy gradient

The algorithm for integrating SeqGAN with policy gradient methods

is shown in Algorithm 1.1. In the initialization phase, the step involves

initializing the generator model 𝐺𝐺𝜃𝜃, discriminator model 𝐷𝐷𝐷𝐷, and roll-out policy

𝐺𝐺𝛽𝛽 with stochastic weights. This setup employs sequence data 𝑆𝑆 = {𝑋𝑋1:𝑇𝑇} for

training, aligning with the preparatory requirements outlined by Yu et al. (2017).

Sequentially, 𝐺𝐺𝜃𝜃 undergoes pre-training utilizing Maximum Likelihood

Estimation (MLE) on 𝑆𝑆 , paralleled by the discriminator 𝐷𝐷𝐷𝐷's training to

minimize cross-entropy, thus enhancing its capability to differentiate between

genuine and synthetically generated sequences. The roll-up policy is employed

to complete the partial sequence. The Q-function is defined as:

𝑄𝑄𝐷𝐷𝜙𝜙
𝐺𝐺𝜃𝜃 (𝑠𝑠 = 𝑌𝑌1:𝑡𝑡−1,𝑎𝑎 = 𝑦𝑦𝑡𝑡)

6

= �
1
𝑁𝑁
� 𝐷𝐷𝜙𝜙

𝑁𝑁

𝑛𝑛=1
(𝑌𝑌1:𝑇𝑇

𝑛𝑛), 𝑌𝑌1:𝑇𝑇
𝑛𝑛 ∈ 𝑀𝑀𝐶𝐶𝐺𝐺𝛽𝛽(𝑌𝑌1:𝑡𝑡;𝑁𝑁) for t < T

𝐷𝐷𝜙𝜙�𝑌𝑌1;𝑡𝑡� for t = 𝑇𝑇
 (1.1)

MC refers to the sampling set as follows:

 {𝑌𝑌1:𝑇𝑇
1 }, … , {𝑌𝑌1:𝑇𝑇

𝑁𝑁 } = 𝑀𝑀𝑀𝑀𝐺𝐺𝛽𝛽(𝑌𝑌1:𝑡𝑡;𝑁𝑁) (1.2)

The standard policy gradient is as follows:

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼ℎ𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃) (1.3)

The discriminator loss is as follows:

 min
𝜙𝜙

− 𝐸𝐸𝑌𝑌~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�log𝐷𝐷𝜙𝜙(𝑌𝑌)� − 𝐸𝐸𝑌𝑌~𝐺𝐺𝜃𝜃 �log�1 − 𝐷𝐷𝜙𝜙(𝑌𝑌)�′� (1.4)

In the pre-training stage of the process, the generator 𝐺𝐺𝜃𝜃 undergoes

preliminary training by using MLE based on the sequence data 𝑆𝑆. Concurrently,

the discriminator, 𝐷𝐷𝐷𝐷 is trained to minimize cross-entropy, enhancing its ability

to distinguish between genuine and artificially generated sequences. This dual

training approach is foundational, setting the stage for the more subtle

adversarial training dynamics that follow.

During the adversarial training phase, the generator begins a series of

refinement steps, known as G-steps. In each iteration, it crafts sequences 𝑌𝑌1:𝑇𝑇 =

(𝑦𝑦1, … ,𝑦𝑦𝑇𝑇). with every timestep t calculated through the action-value function

𝑄𝑄(𝑎𝑎 = 𝑦𝑦𝑡𝑡; 𝑠𝑠 = 𝑦𝑦1:𝑡𝑡−1). This function aims to predict the expected rewards for

actions 𝑦𝑦𝑡𝑡 within the context of the sequences generated thus far. The primary

goal during these steps is to adjust the generator's parameters (𝜃𝜃) via policy

gradient methods, thereby maximizing the expected rewards for the generated

narratives. This methodical refinement ensures that the generator learns to

produce sequences that are not only coherent but also align closely with the

desired outcomes.

7

Simultaneously, the discriminator undergoes optimization through D-

steps. It utilizes the currently refined 𝐺𝐺𝜃𝜃 to generate negative samples, which

are then mixed with positive examples from 𝑆𝑆. This mix is used to train 𝐷𝐷𝐷𝐷 over

several epochs, significantly improving its discriminative power. By accurately

identifying genuine from generated sequences, 𝐷𝐷𝐷𝐷 provides critical feedback

that informs further refinements to 𝐺𝐺𝜃𝜃.

The iterative process of adversarial training continues until a

convergence condition is met. This point of convergence is characterized by the

generator's ability to produce sequences that the discriminator cannot easily

distinguish from real data. Achieving this milestone signifies a successful

adversarial training process, indicating that the generator and discriminator

models have been finely tuned to work in tandem, producing high-quality,

realistic sequences. This marks a crucial step forward in the development of

generative models, pushing the boundaries of what's possible with artificial

sequence generation.

The integration of SeqGAN with policy gradient methods represents a

significant stride towards solving the challenges of text generation in generative

AI. Through this novel approach, this research not only contributes to the

theoretical understanding of generative models and reinforcement learning but

also paves the way for new applications and improvements in AI-driven text

generation technologies.

The research aims to utilize reinforcement learning to directly optimize

the sequence generation process and focus on the end goal of producing

coherent and contextually rich text. This method addresses the inherent

limitations of traditional SeqGAN by enhancing the model's ability to maintain

narrative consistency over longer sequences. It also provides a framework for

fine-tuning generative models based on holistic sequence quality, rather than

immediate next-token predictions.

8

1.2 Importance of the Study

Generative artificial intelligence has reached a new peak in innovation in

machine learning with the combination of deep reinforcement learning

mechanisms. In generative AI, Sequence Generative Adversarial Networks

(SeqGANs) have played a role in text sequence generation due to their

capability to generate text sequences that reflect human-like coherence. (Yu, et

al., 2017). While successful in generating shorter forms of text, SeqGANs

struggle to generate longer forms of text as their performance declines with

long-term contextual dependencies. (Holtzman, et al., 2019)

Due to the well-established learning mechanism that involves trial and

error, policy gradient methods have a better chance to help SeqGANs improve

their coherence and text length. (Espeholt, et al., 2018; Sutton & Barto, 2018).

However, there is little work done to understand how the policy gradient

methods are compatible with different SeqGAN architectures for different

categories of text generation tasks. (Liu, et al., 2020)

This research aims to fill this gap by not only exploring and evaluating

the compatibility of different combinations of SeqGAN architectures but to also

provide a general understanding of their dynamics in text generation which is

because of fundamental importance for the optimization of many text generation

tasks. From a commercial angle, this study can be implemented to enhance

content writing, marketing, education, and customer service through automated

content generation.

Therefore, this research is not only about discovering the opportunities

for integrating SeqGAN and DRL but is also an essential possibility to take an

initial step to develop the use of generative AI to the whole extent of text

creation. The expected outcomes of this study show how much impact this work

may have on the development of natural language processing and dialogue

systems.

9

1.3 Problem Statement

1.3.1 Optimization Challenges in SeqGAN

The advent of Sequence Generative Adversarial Networks (SeqGANs) has

significantly improved text generation that approximates human-level

coherence and creativity. However, it has faced some challenges that hinder its

performance as the applications expand. The training of SeqGAN is inherently

unstable due to the adversarial nature of the process. The generator aims to

create sequences that are unidentifiable from real sample, while the

discriminator tries to identify the real from the generated sequence correctly.

This adversarial training can lead to oscillations, where the generator and

discriminator unable to converge, causing the model to not improve or even

worsen over time. Besides that, when the generator learns to produce only a few

variations of sequences the discriminator cannot easily identify as fake which

will cause the model to collapse. As a result, the generated text will lack

diversity. This will cause it to produce repetitive and similar outputs which

reduce the quality of the generated content.

Krivosheev et al. (2021) highlighted the critical impact of batch size on

SeqGAN performance, revealing a delicate balance between computational

efficiency and the quality of generated text. Smaller batches tend to produce

more diverse text but can increase training instability. In contrast, larger batch

sizes may lead to faster convergence but often result in reduced diversity,

leading to repetitive and homogeneous outputs. This points to broader

optimization challenges within SeqGAN frameworks that significantly affect

the quality and utility of generated text.

1.3.2 Repetition and Lack of Text Coherence

SeqGAN often struggles with producing coherent and non-repetitive text,

especially for longer sequences. During training, the generator might fall into

patterns that produce repetitive text, which makes the output less interesting and

engaging. This repetition occurs because the generator might find it easier to

generate familiar patterns that the discriminator has previously failed to identify

as fake.

10

Besides that, generating long-form text with a consistent narrative is

particularly challenging. SeqGAN can generate short and coherent sequences.

However, as the text length increases, it is difficult to maintain a logical flow

and context. The model often loses track of the narrative, resulting in disjointed

and incoherent text. Lagutin et al. (2021) demonstrated that policy gradient

reinforcement learning could refine text generation processes, reducing

repetition and improving coherence.

1.3.3 Lack of a Comprehensive Integration Framework

Despite these advancements, a comprehensive framework for integrating

SeqGANs with DRL, while leveraging insights from continuous adversarial

learning and semantic-enhanced representation is currently lacking. Combining

the strengths of adversarial learning (GANs) and reinforcement learning (policy

gradients) in a unified framework remains an underexplored area. Developing a

robust methodology to seamlessly integrate these techniques is essential for

improving the performance of SeqGAN models. There is a need for a structured

approach to evaluate different combinations of SeqGAN architectures and

policy gradient methods. This involves systematically analyzing the interaction

dynamics between various architectures and DRL algorithms to identify the

most effective configurations for specific text generation tasks.

Zhang et al. (2022) provide valuable insights into adversarial learning

in continuous text feature space and suggest several pathways for improving

SeqGAN architectures, including the use of adversarial feature matching to

align real and generated text distributions, mitigating high-variance gradient

estimations for stable training, and integrating transformer models to better

capture long-range dependencies and contextual information. However, these

enhancements need to be integrated and evaluated within a comprehensive

framework to determine their effectiveness in practical applications.

1.4 Aim and Objectives

This research project seeks to compare the performance of different

combinations formed by combining SeqGAN with various policy gradient

methods. There are four objectives have been set and presented below:

11

i． To explore the cooperation effects between various SeqGAN

architectures and policy gradient methods, aims to improve narrative

coherence measured by BLEU scores and custom narrative consistency

indices. This includes mapping the dynamics interaction between the

two categories to identify those that improve narrative coherence and

contextuality by a significant margin. It is essential to align with the

project’s overall objective of building more sophisticated generative

text models.

ii． To analyze how different SeqGAN architectures affect the coherence

of generated textual content when integrated with policy gradient

method, influence the coherence of generated textual content. The

parameters will be coherence metrics, such as BLEU scores, as well as

the development of a narrative consistency index. This assessment will

cut across most types of content, such as scripts, articles, and

standalone narratives.

iii． To explore the impact of neural network configurations within

SeqGAN models optimised with policy gradient methods, focusing on

variables, for instance, the number of hidden layers, activation

functions, and overall network dimensions. The goal is to identify

optimal configurations that will fully capture on the ability to capture

long-range dependencies, narrative structure, and contextual relevance.

1.5 Scope and Limitation of the Study

The scope of this study exceeds the fundamental integration of policy gradient

methods with SeqGAN architectures to improve text generation. In particular,

it is broadened by multiple findings associated with the investigated regulatory

mechanisms and penalties. This research aims to understand how different

regulatory strategies affect the learning process, particularly in terms of model

adherence to narrative coherence and the mitigation of common generative text

issues such as repetition and divergence from context.

12

Apart from computational experiments on SeqGAN and the

performance of policy gradient methods, this research applies a systemic

approach to testing the impact of various regulators and penalties, including

“reward shaping”, “regularization”, and custom-designed penalty functions that

are created to improve text generation. To measure the effectiveness of

regulatory mechanisms, both qualitative and quantitative metrics will be

introduced and tested across different datasets, such as BLEU scores for

coherence and custom narrative consistency indices.

The exploration into regulators and penalties was assumed as a

hypothesis that regulated work and specially calibrated constraints can

significantly boost the generative capacity of SeqGAN models, especially in

terms of producing coherent contextually rich texts. This part of the research is

particularly focused on identifying strategies that can simultaneously advance

text quality and models’ ability to perform while staying adaptive to many forms

of text.

Although investigating regulations and penalties might improve

SeqGAN's text generation skills, it complicates the process of designing and

optimizing the model. It increases computational costs and risks over-regulation,

potentially harming the model's creativity and leading to repetitive outputs.

Moreover, finding the optimal balance between regulatory constraints and

creative freedom remains a challenging commitment, potentially affecting the

scalability of proposed solutions.

13

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In recent years, Artificial intelligence (AI) has undergone a resurgence in the

development of advanced machine-learning models capable of producing

especially in human-like writing. Generative Adversarial Networks (GANs) like

Sequence Generative Adversarial Networks (SeqGANs) have emerged as a

powerful tool in the AI toolkit. It possesses the ability to produce content that

often eliminates the boundary between human and machine-generated text. This

literature review explores SeqGANs and their integration with Deep

Reinforcement Learning (DRL) techniques to push the envelope in text

generation. DRL that will be focusing in this literature review will be the policy

gradient methods

Despite advances in natural language processing (NLP), text

generation with consistent quality remains a key research problem such as

preserving coherence, maintaining thematic focus, and ensuring novelty across

extended outputs are significant hurdles. Combining Sequence Generative

Adversarial Networks (SeqGANs) with policy gradient techniques offers a

potential solution to improve the capacity of language models in content

generation.

This chapter provides a comparative overview of the developments in

GANs and SeqGANs, underscoring the evolutionary strides made from their

inception to their current applications. A critical analysis of policy gradient

methods will illuminate their role and potential in refining SeqGANs, while a

discussion on hyperparameter tuning will unravel strategies to optimize these

complex models effectively. Innovations in model architecture, evaluation

metrics, and regulatory mechanisms are examined through the lens of

comparative synthesis to distil their effectiveness in enhancing text generation.

14

Moreover, the literature review identifies key research gaps and

opportunities that have surfaced amidst these advancements. By systematically

dissecting and juxtaposing seminal works and recent innovations, this review

sets the stage for subsequent chapters, where a comprehensive methodology is

designed to explore, test, and possibly transcend the existing boundaries of

generative AI.

As AI continues to weave itself into the fabric of digital society,

understanding its potential and limitations in creating coherent and extensive

narratives is more than an academic pursuit; it is a step towards harnessing AI’s

full potential in transforming how we produce and interact with textual content

across various sectors.

2.2 Generative Adversarial Networks and SeqGAN: Comparative

Overview

Generative Adversarial Networks (GANs) and Sequence Generative

Adversarial Networks (SeqGANs) are innovative frameworks in the field of

machine learning that address different aspects of generative modelling. This

section provides an overview of both GANs and SeqGANs, examining their

architectures, methodologies, and comparative strengths and weaknesses.

2.2.1 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN), first proposed by Goodfellow et al.

(2014), have rapidly evolved into one of the most successful generative models

in the field of machine learning. GAN consists of two neural networks: a

generator and a discriminator. Both of them are trained concurrently using

adversarial methods. The generator learns to create data that is identical to and

indistinguishable from genuine data, while the discriminator improves their

capacity to discriminate between them.

15

Figure 2.1: Structure of GANs

Figure 2.1 illustrates a fundamental view of the GANs architecture,

where a generator creates samples that are evaluated by a discriminator. The

generator takes a random seed (input noise) and generates fake data. Where the

discriminator is exposed to two types of input data: real data samples from a

dataset and fake data produced by the generator. The goal of the generator is to

create fake data to fool the Discriminator, which tries to get better at

distinguishing real images from synthetically generated ones. The discriminator

learns to classify between real and generated fake data, and outcome a judgment

of “real or fake” based on its assessment. The bidirectional flow of information

and feedback leads to the continuous improvement of both networks. GAN

utilize a dual-network architecture where both the generator and discriminator

are implemented as Multilayer Perceptrons (MLPs).

2.2.1.1 Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) are important neural network architectures that

have multiple layers of perceptrons or neurons. These layers are fully connected

and each connection has a weight that is adjusted during the training process.

(Goodfellow, et al., 2014). The generator's MLP takes a random noise vector as

input and transforms it into data that copies the target distribution. The

discriminator's MLP then attempts to classify the data as real or fake. The use

of MLPs in both networks is critical as it allows for a backpropagation-friendly

environment, where gradients can be computed efficiently, enabling the

networks to learn and adapt through the adversarial training process.

16

Figure 2.2: Architecture of Multilayer Perceptrons (MLPs)

Figure 2.2 illustrates an architecture of multilayer perceptrons (MLPs)

which consists of three layers, which are input layer, hidden layer, and output

layer. Each circle represents a neuron and different layers of neurons are

interconnected by weighted connections. These weights adjust during the

training process. In the first layer, the input layer, the model receives input data.

Each of the neurons represents one feature of the input data. Moving on to the

next layer, the intermediate layers, process the inputs received from the previous

layer by applying weights, biases, and typically non-linear activation functions.

These layers extract features and learn representations. The final layer produces

the model's output. In a classification task, these neurons typically represent the

classes the model is trying to predict. In addition, each layer except for the input

layer includes bias neurons. They allow the model to fit the data better. The bias

neurons add an extra parameter to the model, which adjusts along with the

weights to enhance the model's ability to fit complex patterns. Black lines

represent the connections between neurons of sequential layers, and each

connections have an associated weight. These weights determine the strength

and direction of the influence one neuron has on another.

Besides GAN, MLPs also are adept at the discriminator's role within

SeqGANs. It evaluates and provides binary feedback on whether a sequence is

17

real or generated due to its well-suited structure for classifying fixed-

dimensional input data.

2.2.2 Sequence Generative Adversarial Nets

Sequence Generative Adversarial Nets (SeqGANs) have established themselves

as a powerful approach for generating realistic and coherent textual sequences

(Yu et al., 2016). It integrates reinforcement learning techniques with generative

adversarial networks to effectively train a sequence generator. SeqGANs

modify the standard of the GAN framework to generate textual data which is

sequential and discrete by nature (Yu et al., 2016).

Figure 2.2 demonstrates the structure of SeqGANs. The generator, G

operates as a reinforcement learning agent, where each action is the generation

of the next token in a sequence. It produces sequences that are evaluated by the

discriminator. As for the discriminator, D evaluates the quality of entire

sequences, providing rewards to the generator. The generator will then use the

rewards to adjust its parameters through policy gradient methods.

Unlike GANs, SeqGAN provides feedback at multiple points in the

sequence, allowing the generator to adjust its strategy dynamically, enhancing

the overall quality of the sequence generation. Besides that, SeqGANs use

Monte Carlo Tree Search (MCTS) to estimate reward signals enabling effective

handling of the discrete nature of sequence generation, making it adept at tasks

that require maintaining the integrity and contextuality of sequences such as in

natural language processing.

18

Figure 2.4 presents the Monte Carlo Tree Search (MCTS) process. Monte Carlo

Tree Search is a heuristic search algorithm for some kinds of decision processes

(Duarte, et al., 2020). MCTS is used to manage the sequence generation process

as a decision-making problem, where each choice of a token to add to the

sequence can be seen as a move in a game (Duarte, et al., 2020). The algorithm

begins with a selection process by traversing the existing nodes of the tree

(representing the sequence decisions made so far) and choosing the most

promising one based on a policy (Duarte, et al., 2020). Upon reaching a leaf

node, the tree is expanded by adding one or more child nodes. This represents

the next possible tokens in the sequence. After that, a simulation will be run

from the new nodes to the end of the sequence by using a simpler model or

random sampling to estimate the outcome (Duarte, et al., 2020). The results of

the simulation are then back-propagated through the tree. It will then update the

nodes with the new data to better inform future selection processes. SeqGAN

incorporates MCTS to evaluate the potential of each decision during sequence

generation and the generator to receive intermediate rewards from the

discriminator (Duarte, et al., 2020). This assists in modelling the decision-

making process involved in sequence generation as a Markov decision process,

with the MCTS providing a framework for estimating the long-term rewards of

actions (token choices) that do not have immediate feedback (Duarte, et al.,

2020).

19

SeqGANs consist of two key components in their architecture which are

Encoder–Decoder Network and adversarial training.

2.2.2.1 Encoder-Decoder Network

The Encoder-Decoder Network is a neural network design that is frequently

used for various tasks in machine learning, including natural language

processing (NLP) and computer vision. It often employs RNNs like Long Short-

Term Memory (LSTM) or Gated Recurrent Units (GRU) (Hochreiter &

Schmidhuber, 1997; Cho et al., 2014), which allows them to capture the

sequential nature of language and generate text that adheres to grammatical rules

and stylistic elements (Vaswani et al., 2017). This has led to their successful

application in various tasks like machine translation, creative writing, and

dialogue systems.

Figure 2.4 illustrates the architecture of an Encoder-Decoder model with

Recurrent Neural Networks (RNNs). The encoder gets the essence of the input

sequence into a single vector, and the decoder uses this vector to generate the

output sequence. The encoder processes an input sequence (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, …) step

by step. At each time step, an RNN unit takes an input token and a hidden state

from the previous step as input and generates a new hidden state. The encoder

vector is the last hidden state (ℎ3) produced by the encoder. It acts as a

representation of the input sequence that obtains the information for the decoder.

After that, the decoder will then take the encoder vector as its initial hidden state

and start generating the output sequence one step at a time. At each step, it

20

produces an output token (y1, y2, ...) and a new hidden state that is fed into the

next step. In the end, the encoder's final hidden state is used to initialize the

decoder’s hidden state. It creates a bridge between the encoder and the decoder.

Generative Adversarial Networks (GANs) and Sequence Generative

Adversarial Networks (SeqGANs) have provided a striking reflection of the

advancements in machine learning architectures tailored to generative tasks.

Each of them brings a unique perspective to generative modelling. GANs

employ a dual-network structure of Multilayer Perceptrons (MLPs) for

generating and discriminating between data, facilitating their success in

producing high-quality, continuous data such as images. Their adversarial

framework has spurred a multitude of applications, proving the model's

versatility and power in various domains.

SeqGANs, on the other hand, extend the GAN framework to the

domain of sequence generation. Through the incorporation of Recurrent Neural

Networks (RNNs) or Long Short-Term Memory (LSTM) networks in the

generator, SeqGANs capture the complexities of sequential data like text. They

adeptly handle the intricacies of language, such as grammar and style, necessary

for natural language processing applications. Meanwhile, the discriminator,

often realized through MLPs or Convolutional Neural Networks (CNNs),

provides subtle feedback, enhancing the generator's ability to produce sequences

that are consistent and contextually appropriate.

The utilization of Monte Carlo Tree Search (MCTS) within SeqGANs

exemplifies the integration of advanced decision-making algorithms with

generative models. MCTS in SeqGANs evaluates potential sequence decisions,

offering a robust framework for handling the discrete nature of text generation.

This integration enables the generator to adapt its strategy dynamically, learning

to predict the discriminator’s response to different sequences, and refining the

sequence generation process.

Table 2.1 and Table 2.2 is the comparison between the two models by

highlighting their structures and operational dynamics.

21

Table 2.1: Feature Comparison of GAN and SeqGAN

Feature GANs SeqGANs
Main Idea • Two neural networks

compete in a game
theory framework.

• Extends GANs to
sequence generation with
a focus on discrete
outputs like text.

Output Type • Continuous data
• Example: images

• Discrete sequences
• Example: text

Architectural
Basis

• Multilayer Perceptrons
(MLPs) for both
generator and
discriminator.

• RNNs or LSTMs for the
generator to handle
sequences

• MLPs or CNNs for the
discriminator.

Training
Feedback

• Binary feedback (real
vs. fake) at the end of
discriminator
evaluation.

• Sequential feedback with
intermediate rewards
using policy gradients

• Use to improve learning
from partial sequences.

Application
Domain

• Image generation
• Art creation
• Photo enhancement

• Text generation
• Machine translation
• Dialogue system

Key
Innovations

• Eliminates the need for
Markov chains

• Inference during
learning
• Incorporate

complex, sharp
distributions.

• Integrates Monte Carlo
Tree Search to evaluate
policy rewards and
manages the discrete
nature of the text.

Usability and
Flexibility

• High usability in visual
contexts

• Less effective with
discrete data.

• High flexibility with
sequential data

• Models dependencies and
contexts effectively.

Table 2.2: Training Process Comparison of GAN and SeqGAN

Training
Aspect

GANs SeqGANs

Objective • Discriminator
maximizes real vs. fake
classification accuracy

• Generator maximizes
expected reward through
discriminator's evaluation

22

• Generator minimizes
discrimination

Complexity
Handling

• Manages pixel-level
data distributions

• Manages temporal
dependencies and
contextual relevance

Feedback
Mechanism

• At the end of the
discriminator's
evaluation

• Throughout the sequence
generation

Optimization
Technique

• Backpropagation
• Adversarial training

• Backpropagation
• Policy gradient methods
• Monte Carlo Tree Search

(MCTS)
Typical Use
Case

• Static data generation • Dynamic, contextual data
generation

The integration of advanced neural network architectures and strategic

decision-making algorithms in GANs and SeqGANs has significantly advanced

the ability of generative models. SeqGANs have opened up new possibilities in

the generation of text. It shows the adaptability and transformative potential of

the models across various domains of application.

2.3 Comparative Analysis of Policy Gradient Methods

Policy gradient acts as an agent that interacts within the environment and offers

a framework to train the model in reinforcement learning. The SeqGAN model

helps on tasks where decision-making is sequential and the objectives are long-

term. The policy gradient’s goal is to optimize the policy directly (a model's

strategy for action selection) by maximizing the expected cumulative reward.

This optimization is achieved by adjusting the policy parameters in a direction

to make the probability of successful actions increases (Sutton & Barto, 2018).

2.3.1 Policy Gradient Algorithms

Several policy gradient methods have been proposed and each of them has its

approach to balance the two critical aspects of learning in uncertain

environments: exploration and exploitation. This section will describe

REINFORCE (Williams, 1992), which serves as the basis for many subsequent

algorithms; Trust Region Policy Optimization (TRPO), known for its stable

convergence properties (Schulman, et al., 2015) and Proximal Policy

23

Optimization (PPO), which simplifies and improves upon TRPO (Schulman, et

al., 2017).

2.3.1.1 REINFORCE

REINFORCE is one of the policy gradient algorithms fundamental to

reinforcement learning. It was introduced by Williams in 1992. It stands out for

its straightforward approach to policy optimization and utilizes Monte Carlo

methods to estimate the gradient of the expected reward directly. In contrast to

value-based methods, its simplicity allows the direct optimization of the policy

without the need for a value function estimator (Williams, 1992). The core

principle of REINFORCE lies in the utilization of the complete returns from

episodes to perform policy updates. It alters policy parameters in a way that

raises the likelihood of actions that lead to higher returns. This is accomplished

by computing the gradient of the expected return to the policy parameters, which

are then used to execute gradient ascent. The predicted return is calculated

through sampling, and the update is proportionate to the return. The gradient of

the log probability of the taken actions will integrate exploration naturally into

the policy updates. Its core equation can be stated as

 𝛥𝛥𝛥𝛥 = 𝛼𝛼 ⋅ 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑠𝑠, 𝑎𝑎) ⋅ 𝑅𝑅 (2.1)

Where Δθ represents the change in the policy parameters, 𝛼𝛼 is the learning rate,

𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑠𝑠,𝑎𝑎) is the gradient of the logarithm of the policy 𝜋𝜋𝜋𝜋 for its

parameters 𝜃𝜃, given that 𝑠𝑠 is the state and 𝑎𝑎 is the action. 𝑅𝑅 is the reward signal,

which assesses the quality of action, 𝑎𝑎 taken in the state, 𝑠𝑠. The reward R can be

particularly challenging to define for text generation, as it often only becomes

clear at the end of the sequence.

The integration of REINFORCE within SeqGAN is a natural

progression, given SeqGAN's structure that mirrors an environment with

sequential decision-making and delayed rewards, typical in natural language

processing tasks. SeqGAN modifies the traditional GAN framework to tackle

the discrete and sequential nature of text, rendering standard backpropagation

24

methods ineffective due to the non-differentiability of the sampling process.

REINFORCE comes into play as an elegant solution to this problem. By

formulating text generation as a reinforcement learning task, REINFORCE

allows SeqGAN to navigate the sequential construction of text where the signal

of success—a cohesive and contextually appropriate sequence—is only

apparent at the end (Yu, et al., 2017).

Algorithm 2: REINFORCE

01: Input: a differentiable policy parameterization 𝜋𝜋(𝑎𝑎|𝑠𝑠,𝜃𝜃)

02: Algorithm policy parameter 𝜃𝜃 ∈ ℝ𝒅𝒅′(example, to 0)

03: for each episode 𝑆𝑆0,𝐴𝐴0,𝑅𝑅1, … , 𝑆𝑆𝑇𝑇−1,𝐴𝐴𝑇𝑇−1,𝑅𝑅−1, following 𝜋𝜋(⋅ | ⋅,

𝜃𝜃)

04: for t = 1 to T – 1, do

𝐺𝐺 ←� 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼𝛾𝛾𝑡𝑡𝐺𝐺𝐺𝐺 ln𝜋𝜋(𝐴𝐴𝑡𝑡|𝑆𝑆𝑡𝑡 ,𝜃𝜃)

05: end for

06: end for

07: return 𝜃𝜃

Algorithm 2.1: Algorithm of REINFORCE

Chen et al. (2018) demonstrated the efficacy of REINFORCE in a

complex, real-world recommender system, suggesting its potential when

adapted to SeqGAN for text generation. The critical observation from their

implementation was the need for off-policy correction to mitigate biases from

historical data. This insight translates into SeqGAN's learning environment,

where the generator must adjust based on the discriminator's evolving criteria

for what constitutes 'real' text, and hence the policy needs to be robust to shifts

in the data distribution.

While REINFORCE provides a direct method for optimizing policies

based on long-term rewards, its application within SeqGAN is not without

challenges. The high variance in gradient estimates inherent to REINFORCE

can lead to unstable training and slow convergence, which is particularly

25

problematic in the context of SeqGAN where the policy space is vast and

complex. Methods to reduce variance, such as introducing a baseline or

employing reward-shaping techniques, are essential considerations for

improving SeqGAN's training efficiency.

2.3.1.2 Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) is a policy gradient method that

tackles the stability and efficiency difficulties raised by previous policy gradient

methods such as REINFORCE. Originally proposed by Schulman et al. (2015),

TRPO aims to take the largest possible improvement step on a policy without

causing the collapse of performance. It aims to make it highly suitable for

problems involving high-dimensional, continuous action spaces (Schulman et

al., 2015).

TRPO extends the standard policy gradient approach by incorporating

a trust zone constraint to limit the extent of policy changes. This constraint is

implemented using the KL-divergence to ensure the new policy is not too far

from the old policy, thus maintaining the stability of the learning updates. The

objective function of TRPO can be expressed as

 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝐸𝐸𝑠𝑠,𝑎𝑎 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 �
𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠)
𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎∣𝑠𝑠) 𝐴𝐴𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑎𝑎)� (2.2)

subject to

𝐸𝐸𝑠𝑠 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝐷𝐷𝐾𝐾𝐾𝐾(𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(⋅∣ 𝑠𝑠) ∥ 𝜋𝜋𝜃𝜃(⋅∣ 𝑠𝑠))] ≤ 𝛿𝛿 (2.3)

Where 𝜋𝜋𝜃𝜃 and 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 are the new and old policies parameterized by 𝜃𝜃, 𝐴𝐴𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 is

the beneficial function under the old policy and 𝛿𝛿 is a small constant that defines

the extent of the trust region. The figure below presents the Algorithm of TRPO.

Algorithm 3: Trust Region Policy Optimization

Require: Hyperparameters: Maximum number of backtracking steps K;

Backtracking coefficient α; KL-divergence limit 𝛿𝛿.

26

01: Input: initial parameters 𝜃𝜃0, initial value function 𝜙𝜙0.

02: for k = 0, 1, 2, 3 ... do

03: Collect a set of trajectories 𝐷𝐷𝑘𝑘 = {𝝉𝝉𝑖𝑖} by running policy

𝜋𝜋𝑘𝑘 = 𝜋𝜋(𝜃𝜃𝑘𝑘) in the environment.

04: Calculate rewards-to-go 𝑅𝑅�𝑡𝑡.

05: Calculate advantage estimates, 𝐴̂𝐴𝑡𝑡 (using any method of

benefit estimation), based on the current value function. 𝑉𝑉𝜙𝜙𝜙𝜙

06: Estimate gradient policy as

𝑡𝑡ℎ𝑒𝑒 𝑔𝑔�𝑘𝑘 =

1
|𝐷𝐷𝑘𝑘| � �𝛻𝛻𝜃𝜃log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)|𝜃𝜃𝑘𝑘𝐴̂𝐴𝑡𝑡

𝑇𝑇

𝑡𝑡=0𝝉𝝉∈𝐷𝐷𝑘𝑘

⋅

07: Calculate using the conjugate gradient algorithm.

 𝑥𝑥�𝑘𝑘 ≈ 𝐻𝐻�𝑘𝑘−1𝑔𝑔�𝑘𝑘

 Where the Hessian of the sample average KL-divergence.,

denoted as Ĥ𝑘𝑘.

08: Retrace the line of search to update the policy.

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼𝑗𝑗�

2𝛿𝛿
𝑥𝑥�𝑘𝑘𝑇𝑇𝐻𝐻�𝑘𝑘𝑥𝑥�𝑘𝑘

𝑥𝑥�𝑘𝑘

 where j ∈ {0,1,2, ... K} is the lowest number that improves

sample loss and meets the sample KL-divergence

requirement.

09: Fit the value function using regression on mean-squared

error:

𝑡𝑡ℎ𝑒𝑒 𝜙𝜙𝑘𝑘+1 = arg min

1
|𝐷𝐷𝑘𝑘|𝑇𝑇

� ��𝑉𝑉𝜙𝜙(𝑠𝑠𝑡𝑡) − 𝑅𝑅�𝑡𝑡�
2

𝑇𝑇

𝑡𝑡=0𝝉𝝉∈𝐷𝐷𝑘𝑘

10: typically via some gradient descent algorithm.

11: end for

Algorithm 2.2: Algorithm of TRPO

Implementing TRPO in the SeqGAN framework helps to optimize the

generator’s policy in generating sequences. Given the sequential and discrete

nature of text generation tasks in SeqGAN, TRPO’s strength in parameter

updates plays a crucial role in maintaining the stability of training when the

27

discriminator's feedback changes the landscape of the policy's performance

surface. The stability introduced by the trust region helps mitigate issues related

to catastrophic forgetting and sharp performance degradation.

Despite its advantages, the incorporation of TRPO into SeqGAN

presents unique challenges which discrete action spaces. TRPO is inherently

designed for continuous actions that complicate its direct application to the

discrete token selections in SeqGAN. Adaptations are included when modifying

TRPO to support discrete actions that approximate the continuous methods.

This method will introduce biases or inefficiencies (Schulman et al., 2015).

Besides that, the other challenge is the computational complexity of TRPO. The

use of second-order optimization methods (i.e., calculating the Hessian) is

computationally expensive which causes TRPO to become less scalable for

large sequence models compared to first-order methods like those used in

Proximal Policy Optimization (PPO) (Schulman, et al., 2015).

TRPO offers a theoretically sound and stable approach for optimizing

policy gradients in challenging environments. While SeqGAN’s application is

non-trivial, it provides a framework for improving the strength and reliability of

sequence generation models in the face of dynamic and complex discriminator

behaviours (Schulman, et al., 2015).

2.3.1.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient method that refines the

ideas of Trust Region Policy Optimization (TRPO) into a more practical

framework. PPO was introduced by Schulman et al. in 2017. It retains the core

concept of trust regions but simplifies the optimization process by using a

clipped surrogate objective. This has made it computationally less intensive and

easier to implement (Schulman et al., 2017). PPO addresses the complexities of

policy optimization by clipping the probability ratio which discourages large

deviations from the old policy. The clipped objective function of PPO is defined

as

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) = 𝐸𝐸�𝑡𝑡�min� 𝑟𝑟𝑡𝑡(𝜃𝜃)�𝐴̂𝐴𝑡𝑡 , clip�𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀) 𝐴̂𝐴𝑡𝑡��

28

where 𝜃𝜃 is the policy parameter, 𝐸𝐸�𝑡𝑡 denoted the empirical expectation over

timesteps. 𝑟𝑟𝑡𝑡 is the ratio of the probability under old and new policy. 𝐴̂𝐴𝑡𝑡is the

estimated advantage time t. 𝜀𝜀 represent the hyperparameter which is usually

around 0.1 – 0.2.

Algorithm 4: Proximal Policy Optimization (PPO)

01: Initialize 𝜇𝜇: 𝑠𝑠 → 𝑅𝑅𝑚𝑚+1 and 𝜎𝜎: 𝑆𝑆 → diag(𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑚𝑚+1)

02: for I = 1 to M do

03: Run policy 𝜋𝜋𝜋𝜋 ~ 𝑁𝑁(𝜇𝜇(𝑠𝑠), 𝜎𝜎(𝑠𝑠)) fit T timesteps and collect

(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡)

04: for t = 1 to T – 1, do

𝐺𝐺 ←� 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼𝛾𝛾𝑡𝑡𝐺𝐺𝐺𝐺 ln𝜋𝜋(𝐴𝐴𝑡𝑡|𝑆𝑆𝑡𝑡 ,𝜃𝜃)

05: end for

06: end for

07: return 𝜃𝜃

Algorithm 2.3: : Algorithm of PPO

PPO can compute advantage estimates and optimize the clipped surrogate

objective through stochastic gradient ascent. Furthermore, PPO allows for

multiple epochs of minibatch updates per data sample collected. It is contrasted

with the single update per sample approach seen in other policy gradient

methods.

When PPO is applied to SeqGAN, it will optimize the generator's

policy for sequence generation tasks, such as text. The PPO algorithm

accommodates the unique challenges posed by the sequential and discrete nature

of text generation, where traditional policy gradient methods like REINFORCE

can struggle due to high variance in gradient estimates. The clipping mechanism

in PPO aims to prevent excessively large updates. As the generator

incrementally constructs a sequence, it will receive delayed and potentially

sparse rewards (Schulman, et al., 2017).

29

Adapting PPO, typically used in continuous spaces, to SeqGAN's

discrete token space often involves using softmax policy representations or

other modifications to the PPO This adaptation is crucial to accommodate the

discrete probability distributions inherent in SeqGAN (Schulman, et al., 2015).

Besides that, PPO incorporates techniques such as Generalized Advantage

Estimation (GAE) to reduce variance and improve the stability of training,

which is especially beneficial for the complex optimization landscape of

SeqGAN (Schulman, et al., 2015).

PPO represents an advancement in policy gradient algorithms with the

ability to maintain robust performance while being computationally more

efficient than its predecessor, TRPO. Its application to SeqGANs offers an

approach to generating high-quality sequences by leveraging its stability and

efficiency in policy updates. The PPO algorithm's potential to scale to complex

models and tasks positions it as a preferred choice for SeqGANs and other

sequence generation models in reinforcement learning applications (Schulman,

et al., 2017)

Table 2.3: Comparison of Policy Gradient Algorithms

Feature REINFORCE TRPO PPO
Gradient
Estimation

• High
variance

• Simple
estimate

• Low variance
• Uses trust

regions

• Clipped
objective to
manage
variance

Sample
Efficiency

• Low • Moderate • High

Stability and
Strenght

• Less stable • More stable
due to trust
regions

• Balances
between
stability and
sample
efficiency

Complexity and
Implementation

• Simple • Complex • Less complex
than TRPO,
easier to
implement

30

Common Use
Cases

• Small-scale
problems

• High-
dimensional
control tasks

• Broad range of
applications
including
robotics and
NLP

Table 2.3 offers an overview comparison of the attributes of each

policy gradient method. The complexity and implementation row reflects the

relative ease or difficulty of coding and executing each algorithm.

Table 2.4: Sustainability for SeqGAN and Test Generation

Feature REINFORCE TRPO PPO
Exploitation
Trade-off

• High
exploration

• Balance
• Uses KL

divergence to
limit policy
updates

• Adaptive
• Strike a

balance with
clipped
objectives

Learning from
Sparse
Rewards

• Struggles
• High

variance

• Better
• Trust regions

prevent drastic
policy updates

• Good
• Uses

multiple
epochs to
learn from
limited data

Training
Overhead

• Minimal • Significant due to
second-order
methods

• Moderate
• Leverages

first-order
methods

Performance
in Text
Generation
Tasks

• Varies,
requires
more
iterations

• Robust but
computationally
intensive

• Superior in
balancing
speed and
quality

Table 2.4 highlights the way each algorithm might perform given the

unique challenges posed by the sequential and discrete nature of text. The

training overhead and response to non-stationarity are particularly pertinent for

SeqGANs, as the generative model continuously evolves during training,

requiring the algorithm to adapt to the shifting data distribution efficiently.

2.4 Architecture Innovation

The architecture of Generative Adversarial Networks has seen significant

evolution since the beginning. The push for innovation has been the diverse and

31

growing range of applications, each posing unique challenges that demand

specialized solutions. In text generation, SeqGAN has stood out by

incorporating these architectural innovations, each adaptation serving to

imporve the model's performance in generating coherent and contextually rich

textual content.

2.4.1 Long short-term memory (LSTM)

Long short-term memory (LSTM) units (Hochreiter & Schmidhuber,

1997) are specifically designed to overcome the loss of gradient problem that

troubles standard recurrent neural networks (RNNs). LSTMs use a sequence of

gates, known as input, forget, and output gates, to manage the flow of

information. These gates collectively decide which data should be retained or

discarded, thus maintaining a stable gradient across learning sequences. The

input gate regulates the amount of new information that enters the cell state, the

forget gate controls the data that is erased from the cell state, and the output gate

determines the next hidden state. This complex gating mechanism allows

LSTMs to preserve information over extended periods and improves their

capability to model sequences with complex structures (Hochreiter &

Schmidhuber, 1997).

Figure 2.6: Unit of RNN and LSTM

Figure 2.9 illustrates the structure of RNN and LSTM where both are

designed to handle sequences of data 𝑥𝑥𝑡𝑡 where t is the time steps, but each of

the units manages information differently. Where input 𝑥𝑥𝑡𝑡 is the current input

32

of the sequence, tanh is the hyperbolic tangent activation function that generates

a new state from the input and previous hidden state, and hidden state ℎ𝑡𝑡

represents the output state that captures information from the current input and

previous inputs over time, t. As shown at the left of the figure, the RNN unit

takes the current input 𝑥𝑥𝑡𝑡 and processes it through a single layer with a tanh

activation function to produce the hidden state ℎ𝑡𝑡. This hidden state is then fed

back into the RNN unit at the next time step, along with the next input in the

sequence.

On the other side of the picture, the LSTM unit's internal memory is

shown, which carries information over time steps. Gates determine how

information is added or deleted from the cell state. LSTM is made up of three

gates: forget gates (σ) that discard information from the cell state, input gates (σ

and tanh) that add new information to the cell state, and output gates (σ) that

determine which information from the cell state is used to generate the output

hidden state. Each gate in the LSTM unit uses a combination of the sigmoid (σ)

and tanh activation functions. The sigmoid function returns a value ranging from

0 to 1, which is used to scale the contribution of other operations. The tanh

function regulates the nonlinear transformation of the data, scaling the values to

be between -1 and 1. In an LSTM unit, the operations are more complex due to

the multiple gates that manage memory and output. The forget gate selects

which bits of the cell state to keep or erase. The input gate determines which

values from the cell state are updated and what new values are added. Finally,

the output gate determines which part of the cell state will be used to generate

the output ℎ𝑡𝑡.

Knowing the ability of LSTM that remember information for a long

period, it became ideal for applications involving sequential data such as text,

speech, and music. There are various applications of LSTMS across different

fields such as text generation, speech recognition, and music generation.

Text Generation

LSTM can generate coherent paragraphs of text, capture long-range

dependencies, and manage multiple themes at once. A study by Sutskever et al.

33

(2014) demonstrated the ability of LSTMs to perform sequence-to-sequence

learning. They were employed to generate text at both character and word levels

efficiently. This ability is not only impressive in terms of the linguistic quality

of the generated text but also in the variety of applications it enables, from

automated story generation to interactive chatbots.

Speech Recognition

LSTMs are used to convert audio clips containing spoken language into text by

understanding the temporal dependencies in spoken language in speech

recognition. Graves et al. (2013) utilized LSTMs to develop a speech

recognition system that operates directly on the spectrogram of spoken audio.

This illustrated the network’s ability to handle raw audio data and perform end-

to-end speech recognition. This technology not only powers popular virtual

assistants but is also crucial in accessibility technologies for those with speech

impairments.

Music Generation

The application of LSTMs in music generation demonstrates their versatility.

Eck and Schmidhuber (2002) were pioneers in using LSTMs for generating

blues music. They had demonstrated that these networks could learn not just the

notes but also the timing and style of blues music from raw audio. LSTMs help

generate new music pieces that mimic the style of a given training dataset.

2.4.2 Gated Recurrent Unit (GRU)

Cho et al. (2014) introduced GRU Units, which simplify the LSTM architecture

by combining input and forget gates into a single "update gate" and integrating

the cell state with the hidden state. GRUs maintain the efficiency of LSTMs but

with fewer parameters, resulting in faster computations and simpler models. The

update gate in GRUs assists the model in determining how much past

information (from earlier time steps) to pass along, whereas the reset gate allows

the model to decide how much past information to discard. These features make

GRUs particularly useful for SeqGAN models where computational efficiency

and model simplicity are desired (Cho et al., 2014).

34

Figure 2.7: Unit of GRU

Figure 2.7 displays the internal structure of a GRU. GRUs are

comparable to LSTMs but have a simpler structure. They are intended to tackle

the vanishing gradient problem of traditional RNNs. 𝑥𝑥𝑡𝑡 represent the new input

at time step t, whereas the ℎ𝑡𝑡−1 represent the hidden state from the previous time

step t – 1. The reset gate controls how much of the prior information (hidden

state) must be forgotten. It uses the current input 𝑥𝑥𝑡𝑡 and the previous hidden

state ℎ𝑡𝑡−1 to calculate a reset factor using a sigmoid activation (σ), which ranges

between 0 and 1. After that, the update gate determines how much of the

previous information (previous hidden state) will transfer over to the current

hidden state. It also calculates an update factor using a sigmoid activation, based

on the current input 𝑥𝑥𝑡𝑡 and the previous hidden state ℎ𝑡𝑡−1. ℎ�𝑡𝑡 known as the

candidate's hidden state. It is a mixture of the current input and the previous

hidden state, modulated by the reset gate. It uses a tanh activation to keep the

values between -1 and 1. The new hidden state, ℎ𝑡𝑡 is a mixture of the old hidden

state and the candidate's hidden state. The update gate determines how much of

the candidate's hidden state is being used to update the current hidden state.

In a nutshell, the GRU contains two gates: the reset gate which

determines how to integrate the incoming input with the prior memory, and the

update gate determines how much of the previous memory to retain. If the reset

35

gate is near to zero, the hidden state is compelled to ignore the previous hidden

state and reset using only the current input. This essentially allows the GRU to

discard information that is no longer useful for future steps, which aids in the

learning of long-term dependencies. The update gate assists the model in

determining how much of the previous knowledge should be passed on to the

future.

2.4.3 Attention Mechanisms

Attention mechanisms in neural networks have revolutionized the way models

handle and interpret data. Attention can be described as a function that maps a

query and a set of key-value pairs to an output. They selectively focus on areas

of the input that are regarded most relevant to the job at hand, enhancing the

model's capacity to execute tasks such as language translation, image

recognition, and sequence prediction. The output is computed as a weighted sum

of the values, where the weight assigned to each value is computed by a

compatibility function of the query with the corresponding key.

Given a query q, keys 𝑘𝑘1, ..., 𝑘𝑘𝑛𝑛, and values 𝑣𝑣1, ..., 𝑣𝑣𝑛𝑛, the attention function can

be expressed as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞,𝐾𝐾,𝑉𝑉) = ∑ 𝛼𝛼𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖 (2.4)

where 𝛼𝛼𝑖𝑖 = softmax(score(q, 𝑘𝑘𝑖𝑖))

When applied to SeqGANs as Attention SeqGAN, it significantly

enhances the model's context awareness. By focusing on relevant parts of the

input sequence, the model maintains contextual coherence over extended

sequences, a critical aspect in text generation (Vaswani et al., 2017).

SeqGANs have extended the use of generative adversarial networks to

sequence generation, but the integration of attention mechanisms has brought

about a notable improvement in their performance. Attention in SeqGANs

facilitates a more focused generation process by aligning generated sequences

to become closer to contextual relevance and coherence.

36

2.4.4 Conditional GANs

Conditional GANs (cGANs) represented a leap forward in GAN

architecture by integrating additional information to guide the generation

process (Goodfellow, et al., 2014). This advancement allowed for targeted

generation, where the model could be conditioned on labels or types of data,

enabling more control over the output. Applied to SeqGAN, such as in

Conditional SeqGAN, this innovation has profoundly impacted text generation.

It permits the thematic elements of the generated text to be directed, resulting in

content that can be tailored to specific topics or styles, enhancing both relevance

and diversity in generated narratives (Guo et al., 2021).

37

Table 2.5: Comparisons of SeqGAN Architectures Innovation

Feature Basic SeqGAN Model GRU Attention Mechanism Conditional SeqGAN
Architecture
Type

• Recurrent Neural
Network (RNN)

• Deep Recurrent Neural
Networks (Deep RNN)

• RNN with Attention
Layers

• RNN with Conditional
Inputs

Key
Components

• Simple RNN layers • GRU layers for
handling long-term
dependencies

• Attention layers will focus
on relevant parts of the
input sequence

• Additional inputs (tags or
labels) condition the
generation process

Advantages • Simplicity and efficiency
• Quick to train

• Better at capturing
long-range
dependencies

• Improves the quality of
generated sequences

• Increases the model's
focus and relevance

• Enhances coherence of the
generated text

• Generates context-specific
sequences

• Increases utility and
applicability of the model

Limitations • Struggles with long
sequences

• Prone to vanishing
gradient problem

• Computationally more
intensive

• Requires more data to
train effectively

• Can be complex to
implement

• Requires careful tuning of
attention mechanisms

• More complex training
process

• Needs well-annotated data
for conditioning

Typical
Applications

• Short text generation
• Quick prototyping of

text generators

• Content creation
• Tasks requiring an

understanding of
context over longer
sequences

• Detailed content
generation

• Example: medical or legal
documents

• Style-specific writing
• Example: poetic forms,

technical manuals

38

Table 2.5 outlines the comparisons of various SeqGAN architecture innovations.

The evolution from basic RNN structures to more sophisticated configurations

like GRU layers and attention mechanisms signifies a substantial advancement

in handling the subtlety demands of sequence generation tasks. These

innovations not only enhance the quality and coherence of the generated texts

but also expand the model's applicability to a broader range of text-generation

circumstances. (Hochreiter & Schmidhuber, 1997; Vaswani, et al., 2017; Yu, et

al., 2017)

Furthermore, the introduction of conditional architectures in SeqGANs

allows for the generation of context-specific texts, which is a significant step

forward in the customization and relevance of the outputs produced. This

capability is particularly valuable in fields that require high levels of precision

and adaptability in text generation, such as creative writing and technical

documentation (Yu et al., 2017).

Progressive training approaches, exemplified by Progressive GANs

(ProGANs), incrementally increase the complexity of the model during training

(Karras et al., 2018). This approach applied to SeqGAN as Progressive SeqGAN,

can facilitate a structured approach to complexity in text generation. Starting

with simpler structures and gradually advancing to complex narratives can lead

to more coherent and thematically consistent content generation (Shi et al.,

2018).

39

Table 2.6: Comparison of Training Techniques for SeqGAN

Training
Technique

Standard Training (RL Only) Hybrid Training (Supervised + RL) PPO

Key Features • Policy Gradient
• REINFORCE Algorithm

• Supervised Pre-training
• Reinforcement Learning Fine-

tuning

• Clipped Surrogate Objective
• Adaptive KL Penalty

Advantages • Directly optimizes for the final
objective

• Simpler implementation with fewer
hyperparameters

• Faster convergence initially
• Supervised pre-training can lead

to a more stable RL phase
• Mitigates traditional RL

instabilities

• Reduces the risk of destructive
large policy updates

• Maintains efficient exploration-
exploitation balance

• Higher stability and better
performance

Limitations • High variance in policy updates
• Can be sample inefficient
• Struggles with stability and often

requires careful tuning

• Requires an accurately labelled
dataset for supervised training

• More complex setup and
potentially higher computational
overhead

• Computationally more demanding
• Needs meticulous tuning of the

clipping parameter and adaptation
rate

• Potentially complex integration
with SeqGAN architecture

Performance
Indicators

• Speed of initial learning
• Quality and diversity of generated

text

• Quality of pre-trained model
(supervised phase)

• Improvement in text generation
(RL phase)

• Overall stability and quality of
training

• Consistency and diversity of the
generated text

Suitability for
Long Text
Generation

• Low to moderate (depending on the
specifics of the policy gradient
implementation)

• Moderate to high (effective pre-
training can significantly enhance
abilities)

• High (optimized policy updates
lead to better long-term
performance)

Typical
Applications

• Basic text generators
• Prototyping new model

architectures

• Developing models for complex
narrative generation

• Models requiring stable
foundations before fine-tuning

• Advanced narrative generation
• High-quality text generation tasks

requiring subtlety control over
style and coherence

40

Table 2.6 highlights the impact of specific architectural innovations on GANs

and SeqGANs, with a focus on the comparative analysis of these impacts in the

context of text generation.

The integration of these architectural innovations into SeqGANs has

been important in advancing text generation abilities. By leveraging advances

from traditional GAN architectures, SeqGANs have become more adept at

handling the subtleties and complexities of language. Whether through

enhanced thematic control, better context maintenance, or the generation of

stylistically diverse content, these innovations have broadened the potential of

SeqGANs beyond short sequences to more complex forms of narrative (Guo et

al., 2021; Vaswani et al., 2017; Chen et al., 2016; Karras et al., 2018).

2.5 Evaluation Metric

Evaluation metrics are quantitative indicators that analyze a statistical or

machine learning model's performance and effectiveness, such as proximity to

the target distribution, diversity, and coherence. These measures provide a

quantitative basis for measuring the performance of generative models, allowing

objective comparisons between different models or techniques.

 When analyzing a machine learning model, it is vital to consider its

predictive abilities, generalizability, and overall quality. Evaluation metrics

provide objective standards to evaluate these qualities. The evaluation metrics

used depend on the problem domain, data type, and desired outcome.

Bilingual Evaluation Understudy (BLEU)

The Bilingual Evaluation Understudy (BLEU) score, introduced by Papineni et

al. (2002), is one of the earliest metrics adopted for evaluating machine-

translated text against a set of reference translations. Despite its origin in

translation, it's applied to any text generation task to measure the overlap of n-

grams between the generated text and reference text, thus gauging syntactic

consistency. However, BLEU's limitations are notable; it does not account for

semantic coherence and can score highly on texts that are nonsensical to human

readers.

41

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE is a set of metrics designed to evaluate the quality of summary texts

proposed by Lin (2004). It examines the overlap of n-grams, word sequences,

and word pairings between the generated and reference texts. ROUGE is known

for its emphasis on recall, making it especially appropriate for jobs like

summarization where capturing content from the source is critical.

Metric for Evaluation of Translation with Explicit ORdering (METEOR)

Metric for Evaluation of Translation with Explicit Ordering (METEOR) is

introduced by Banerjee and Lavie (2005), and extends beyond n-gram matching

to include synonymy and paraphrase matching. Its goal is to address some

BLEU score shortcomings. It attempts to align more closely with human

judgment by considering the variety of ways in which ideas can be expressed

linguistically, and it's praised for its balance between precision and recall.

Perplexity

Perplexity is a metric used to evaluate language models, reflecting how well a

probability distribution predicts a sample. It's a measure of the model's

uncertainty, with lower values indicating better predictive performance. While

perplexity provides insight into the model's fluency, it doesn't directly measure

how coherent or contextually appropriate the generated text is.

Negative log-likelihood (NLL)

Negative log-likelihood (NLL) is often used as a loss function during the

training of language models, including SeqGANs. It measures how well the

model predicts a sequence. In the context of evaluation, lower NLL values

indicate that the model assigns higher probabilities to the real data, signifying

better performance. However, NLL may not always correlate with human

judgments of quality, as models with lower NLL can still generate nonsensical

outputs.

42

Human Evaluation

Human evaluation is regarded as the gold standard for determining the quality,

coherence, and relevance of produced text, even if Oracle NLL and BLEU

provide quantitative metrics. It is dependent on the subjective evaluation of

human raters; higher ratings correspond to higher caliber-produced content.

Although human review is a costly, time-consuming, and intrinsically

subjective process, it is capable of capturing subtleties that automated

measurements could overlook.

 Table 2.7 below highlights three commonly used evaluation

metrics: BLUE, ROUGE, METEOR, Perplexity, NLL and human evaluation.

Each metric is tailored for specific tasks and scenarios, with its unique strengths

and weaknesses.

43

Table 2.7: Comparison of various Evaluation Metrics

Metric Description Advantages Disadvantage

BLEU • Indicates the geometric mean of
the modified n-gram precision.

• High precision in evaluation, widely
used in machine translation

• Not correlate well with human
judgment, especially with higher-
order n-grams

ROUGE • Compares overlapping n-grams
between the generated text and
reference texts

• Good for evaluating summarization
• Focuses on recall

• Less emphasis on lexical choice
precision can be gamed with
generic responses

METEOR • Harmonizes precision and recall
of unigrams between generated
and reference texts

• Higher correlation with human
judgment than BLEU

• Considers synonyms and stemming

• Computationally intensive, more
complex to implement

Perplexity • Evaluates the likelihood of the
sequence given the model

• Lower perplexity indicates better
performance; straightforward to
calculate

• Does not account for grammatical
correctness or relevance

NLL • Measures the model's prediction
error.

• Directly related to the model's
objective function during training

• Able to provide a clear indication of
how well the model has learned the
data distribution.

• Does not reflect the quality of
generated sequences in a way that
correlates with human judgment.

Human
Evaluation

• Evaluate Overall text quality • Considered as the gold standard
• Captures nuances in text quality

• Time-consuming and costly
• Subject to evaluator bias

44

2.6 Regulatory Mechanisms and Penalties

The penalty is a regularization mechanism used to modify the reward signal

during the training process, influencing the behaviour of the generator network.

These penalties are crucial in regularizing the loss function to promote desirable

outputs by the generator network (Yu, et al., 2017).

In SeqGAN, penalties are deployed as additional terms incorporated into

the loss function to include the reward signal received by the generator (Yu et

al., 2017). This reward signal, fundamental to policy gradient methods

employed in SeqGAN, encapsulates the evaluation of generated sequences

against a reward model or discriminator (Yu et al., 2017). The primary objective

of penalties is to guide the generator toward producing outputs that not only

maximize the likelihood of generating real data but also adhere to specific

constraints or exhibit desired properties (Li et al., 2017). By augmenting the

reward signal, penalties play a crucial role in encouraging the generator to

explore the output space more effectively, thus facilitating the generation of

high-quality sequences that are better suited to the task’s goal(Li et al., 2017).

However, during the training process, the generator may exploit certain

flaws or weaknesses in the discriminator and lead to mode collapse or other

undesirable behaviours. To mitigate these issues, various penalty terms can be

added to the objective function of the generator and/or discriminator networks.

These penalty terms act as regularizers to encourage the networks to learn more

robust and diverse representations (Martin Arjovsky, et al., 2017)). One of the

key functions of penalties in SeqGAN is to promote diversity within the

generated sequences (Zhang, et al., 2017). Diversity is important to ensure that

the generator produces a wide range of outputs that capture the inherent

variability present in the data distribution (Zhang, et al., 2017). Penalties

designed to encourage diversity may penalize the generator for producing

repetitive or similar sequences, thereby incentivizing it to explore and generate

novel outputs (Zhang, et al., 2017). This fosters a richer and more varied set of

generated sequences, which is beneficial for tasks requiring creative or

exploratory outputs (Zhang, et al., 2017). Moreover, penalties can also enforce

constraints on the generated sequences, such as controlling sequence length or

45

imposing structural constraints (Che, et al., 2017). For instance, penalties may

penalize sequences that exceed a predefined length threshold or fail to adhere to

specific syntactic or semantic rules (Che et al., 2017). By imposing such

constraints, penalties ensure that the generated sequences meet certain criteria

or standards, leading to outputs that are more aligned with the requirements of

the task (Che et al., 2017).

In addition to promoting diversity and enforcing constraints, penalties in

SeqGAN can also be optimized for specific performance metrics or objectives

(Dai et al., 2018). These penalties are tailored to the particular requirements of

the task and aim to direct the generator towards generating sequences that

optimize the desired metric (Dai, et al., 2018). For example, penalties may

prioritize the generation of sequences that exhibit high fluency, coherence, or

relevance to a given context (Dai, et al., 2018). By incorporating such penalties

into the loss function, SeqGAN can be trained to produce outputs that excel in

specific aspects relevant to the task, leading to enhanced overall performance

(Dai, et al., 2018). Furthermore, penalties can be used to penalize undesired

behaviours or characteristics exhibited by the generator, such as mode collapse

or poor sample quality (Dai, et al., 2018). By discouraging these behaviours,

penalties encourage the generator to explore the output space more thoroughly

and produce outputs of higher quality (Dai, et al., 2018).

It is essential to note that the design and implementation of penalties in

SeqGAN involve careful consideration and experimentation (Zhang, et al.,

2017). Researchers often explore various penalty formulations, weights, and

combinations to achieve the desired balance between different objectives

(Zhang, et al., 2017). Fine-tuning penalty parameters is an iterative process that

requires experimentation and evaluation of the generator's performance across

different penalty configurations (Zhang, et al., 2017). Moreover, the choice of

penalties depends on the specific requirements of the task and the desired

properties of the generated sequences. Consequently, penalties in SeqGAN are

highly customizable and adaptable. It allows researchers to tailor them to the

unique characteristics and objectives of their applications (Zhang et al., 2017)

46

2.6.1 Gradient Penalty

Gradient penalty (GP) is a regularization technique designed to stabilize the

training of GANs by focusing on the discriminator. In GANs, the discriminator

learns to distinguish between real and fake samples produced by the generator.

If the discriminator becomes too confident too quickly, the generator might

struggle to learn due to vanishing or overly harsh gradients. As a result, GP

seeks to impose the Lipschitz continuity constraint on the discriminator or critic

function, which can improve the GAN model's training stability and

convergence.

Figure 2.8: Wasserstein GAN with a gradient penalty for Length of Stay

The idea behind gradient penalties stems from the Wasserstein GAN

(WGAN) framework, which reformulates the GAN objective as an optimization

problem involving the Wasserstein distance between the real and generated

distributions. In WGAN, the discriminator (or critic) function is required to be

1-Lipschitz continuous, meaning that the norm of its gradient is bounded by 1

everywhere. This constraint helps to ensure that the discriminator's output

changes smoothly for its input, leading to better convergence properties.

To enforce the Lipschitz continuity condition, a gradient penalty term

is added to the discriminator’s loss function. This penalty term calculates the

norm of the discriminator's gradient for its input and penalizes deviations from

the desired Lipschitz constant (typically set to 1). The gradient penalty term can

be formulated as

47

𝜆𝜆 ⋅ (‖𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�)‖2 − 1)2 (2.5)

Where λ is a hyperparameter that controls the strength of the penalty term,

𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�) the gradient of the discriminator's output with respect to its input ‖. ‖2

is the L2 norm. 𝑥𝑥� is a point sampled along a straight line between a pair of real

and generated data points. This sampling ensures the penalty is applied across

the data distribution (Kim, Park, & Hwang, 2018 ; Milne & Nachman, 2021).

Gradient penalties have been shown to improve the training stability

and convergence of GANs, including SeqGAN with policy gradient. They help

to mitigate issues such as mode collapse, gradient vanishing/exploding, and

oscillatory behaviour during training. However, gradient penalties can also

introduce additional computational overhead and may require careful

hyperparameter tuning to achieve optimal performance (Zhang, & Gao, 2018 ;

Jolicoeur-Martineau & Mitliagkas, 2020).

2.6.2 L1/L2 Regularization

L1/L2 Regularization prevents overfitting by including a penalty term in the loss

function. Overfitting occurs when a model becomes closely tuned to the training

data and loses the ability to generalize well to unseen examples. Their

regularization techniques function by adding a penalty term to the loss function

during training, which penalizes large weights in the model.

L1 regularization (Lasso) directly pushes some model weights toward

zero, potentially leading to sparser models. L1 regularization involves adding a

penalty term to the loss function that is proportionate to the weights' absolute

value. In mathematical terms, it adds to the loss function the sum of the absolute

values of the model weights multiplied by a regularization parameter. This

encourages sparsity in the weight matrix, effectively pushing some weights to

zero. L1 regularization is useful for feature selection since it yields sparse

models.

48

On the other hand, L2 regularization (Ridge) generally shrinks the

magnitude of weights without forcing them entirely to zero. L2 regularization

includes a penalty term in the loss function that is proportional to the square of

the weights. It mathematically adds the sum of the squares of the model weights

to the loss function, multiplied by a regularization value. Unlike L1

regularization, L2 regularization penalizes large weights more smoothly,

encouraging smaller but non-zero weights. L2 regularization is effective in

preventing overfitting by spreading the weight values more evenly.

Table 2.8: Comparison of L1 and L2 regularization

L1 regularization L2 regularization

• Sum of the absolute value of

weights

• Sum of square of

weights

• Sparse solution • Non-sparse solution

• Multiple solutions • One solution

• Built-in feature selection • No feature selection

The primary goal of L1 and L2 is to overfit prevention in the context

of GAN training. They might indirectly contribute to greater stability by

preventing the discriminator from becoming overly confident on a limited

dataset. Their ease of implementation also makes L1/L2 regularization valuable

as a baseline for assessing the relative impact of more complex penalty

techniques.

2.6.3 Entropy Penalty

Entropy penalties, also known as entropy regularization, is a technique used in

generative models, particularly in the context of Sequence Generative

Adversarial Networks (SeqGAN) with policy gradient. The primary purpose of

entropy penalties is to encourage the generator model to produce diverse and

non-repetitive sequences during the training process.

The entropy penalty term is typically added to the generator's loss

function, and it is designed to maximize the entropy of the generated output

49

distribution. Entropy is a measure of uncertainty or randomness in a probability

distribution. By maximizing entropy, the generator is encouraged to explore a

broader range of possible outputs, rather than collapsing to a limited set of

outputs or modes. The entropy penalty term can be expressed as the following.

− 𝜆𝜆 .𝐻𝐻(𝐺𝐺(𝑧𝑧)) (2.6)

where λ is a hyperparameter that controls the strength of the penalty term,

H(G(z)) is the entropy of the generator's output distribution G(z), given the input

noise vector z. By minimizing the negative entropy, the generator is incentivized

to produce output distributions with higher entropy. It will lead to more diverse

and less repetitive sequences.

Entropy penalties are very beneficial for tackling the mode collapse

problem, which is common in generative models such as GANs. Mode collapse

happens when the generator learns to produce samples from a subset of the data

distribution, resulting in a failure to capture the target distribution's complete

diversity. By encouraging higher entropy in the generated outputs, entropy

penalties can help mitigate mode collapse and promote better coverage of the

data distribution.

However, it's important to note that while entropy penalties can

improve diversity, they may also introduce irrelevant or incoherent outputs.

Therefore, a balance needs to be struck between diversity and quality, often

achieved by combining entropy penalties with other techniques like adversarial

training, instance noise, or professor forcing.

2.6.4 Semantic Consistency Penalty

Semantic consistency penalties are regularization techniques specifically

designed for generative models used in text generation tasks, like those

involving Sequence Generative Adversarial Networks (SeqGAN) with policy

gradient (Yu et al., 2017). Their core purpose is to promote semantic coherence

50

and consistency throughout the generated text (Zhang et al., 2021; Cífka et al.,

2020).

Text generation models, even those as powerful as SeqGAN, may

sometimes produce sequences with good local coherence but lack a broader

semantic thread (Wiseman et al., 2018). This can result in abrupt topic

deviations, nonsensical transitions, or even contradictions. Semantic

consistency penalties address this by introducing a regularization term that

penalizes deviations from the target semantic context (Xu et al., 2018).

Techniques to implement such penalties is using a pre-trained language

model to estimate the likelihood of a generated sequence within a learned

semantic context (Holtzman et al., 2020). Sequences with low likelihood are

penalized, encouraging consistency. Additionally, similarity measures like

cosine similarity or word embeddings can assess the semantic closeness

between the generated text and the desired context (a prompt, topic, etc.)

(Wieting et al., 2019). Deviations from expected similarity incur penalties.

Finally, in models utilizing attention mechanisms, the penalty may promote the

alignment of attention weights with the intended semantic focus (Bahdanau et

al., 2015).

By adding a semantic consistency penalty to the loss function, the

generator is nudged towards outputs that are not just locally coherent, but

maintain global consistency with the target (Li et al., 2017). This is particularly

valuable in applications like storytelling, dialogue systems, or creative writing,

where semantic consistency holds high importance. Importantly, achieving a

balance between semantic consistency and other desired qualities like diversity

and novelty is crucial (Cífka et al., 2020). Too strong penalties might result in

overly repetitive or safe outputs. Thus, semantic consistency penalties often

work in conjunction with other regularization methods or objectives to strike

the right balance (Zhang et al., 2021).

51

Table 2.9: Comparison of various regularization and penalty techniques

Penalties Primary Focus Mechanism Impact on
Stability

Impact on Quality Implementation
Complexity

Gradient Penalty

• Discriminator
Stability

• Penalizes large
gradients

• Strong
stabilization
effect

• Indirectly improves
quality due to
stability

• Moderate (requires
adaptation to text)

L1/L2
Regularization

• Overfitting
Prevention

• Penalizes model
weights

• Indirectly
improve
stability

• Less direct impact
on quality

• Simple

Entropy Penalties • Output Variety • Modifies reward
signal or loss to
encourage diversity

• Less direct
impact on
stability

• Directly promotes
diversity, might
need balancing

• Moderate to high
(metric choice is
crucial)

Semantic
Consistency
Penalty

• Semantic
Realism

• Penalizes
semantically
dissimilar outputs

• Less direct
impact on
stability

• Strong potential for
realism if the metric
is well-defined

• High (requires NLP
techniques)

52

Table 2.9 shows the key attributes of various penalties that are relevant

for text-generating while using SeqGAN. Gradient Penalty (GP) explicitly

promotes discriminator stability, a core concern in GAN training. Successful

usage in SeqGAN requires careful adaptation for sequential language data.

Classic L1/L2 regularization provides an overfitting prevention baseline. For

scenarios where mode collapse is prominent, entropy/diversity penalties directly

encourage broader output exploration. Semantic consistency penalties aim to

enhance realism but necessitate defining robust NLP-based similarity metrics.

Finally, data augmentation penalties promote strength to input variation, with

their effectiveness depending on defining task-suitable transformations.

53

Table 2.10: Implication of Regulatory Mechanisms on Model Performance

Regulatory
Mechanism

Advantages Disadvantages Impact on Model Complexity

Gradient Penalties • Improves model stability and
convergence.

• Helps mitigate issues like mode
collapse.

• Introduce computational
complexity.

• Require careful tuning of the
hyperparameter

• Increases model complexity due to the
additional computations for gradient
norms.

L1/L2
Regularization

• Produce simpler, more
interpretable models.

• L1 yields sparse models, which
are beneficial in high-
dimensional settings.

• L2 does not produce sparse
models

• Will be a drawback in
scenarios where feature
selection is crucial.

• Generally increases training stability
• Lead to underfitting if over-penalized.

Entropy Penalty • Promotes diversity in the
outputs

• Lead to more robust learning,
especially in reinforcement
learning contexts.

• Too much entropy will lead to
overly random outputs

• May decrease the utility of the
model's outputs.

• Slightly increases model complexity due
to the need to calculate entropy and
adjust training procedures.

Semantic
Consistency
Penalty

• Ensures the outputs are
semantically consistent with the
inputs

• Apply semantic consistency
checks will be difficult

• Require complex architectures.

• Significantly increases model
complexity.

• Requires auxiliary models or systems to
assess consistency.

54

Table 2.10 highlights the implication of various regulatory mechanisms

on Model Performance in terms of their definitions, primary functions, benefits,

drawbacks, and their impact on model complexity and performance.

Fundamentally, the ideal penalty choice depends on the specifics of the

SeqGAN implementation, dataset, and goals, as outlined by the evaluation

metrics. Penalties offering the greatest quality potential often come with higher

complexity. Investigating research adapting these techniques to text-based

GANs similar to SeqGAN will be essential for informed decision-making.

2.7 Summary

The literature review has illuminated the multifaceted field of Generative

Adversarial Networks (GANs), with a focus on their evolution into Sequence

Generative Adversarial Networks (SeqGANs) and the subsequent integration

with policy gradient methods. This synthesis reveals that while GANs have set

the stage for profound advancements in generative models, SeqGANs have

taken the baton further by navigating the complicated pathways of text

generation.

From the comparative overview of GANs and SeqGANs to the analysis

of policy gradient methods, this review has highlighted the nuances and

complexities inherent in the field. Architectural innovations have been shown

to enhance the generative capabilities of these networks, addressing the

challenges of creating coherent and contextually rich textual content. Evaluation

metrics and the role of regulatory mechanisms and penalties have also been

important in refining the training process and output quality of SeqGANs.

This literature review has not only shed light on the current state of

generative models but also underscored the significant gaps and opportunities

for further research. The knowledge gaps identified point towards the necessity

of a robust framework capable of harnessing the full potential of SeqGANs,

especially in the context of text generation.

55

As AI continues to evolve, the implications of these developments

extend beyond theoretical research, promising to redefine the landscape of

automated content generation. The findings of this review lay the groundwork

for exploring novel methodologies and serve as a beacon for future

investigations aiming to push the boundaries of generative AI.

56

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter emphasizes the systematic approach taken to ensure the project’s

objectives are achieved.

Figure 3.1: Summary of Project Workflow

Figure 3.1 summarises the project workflow of the project. The project begins

with the Initialization Stage. During this phase, the computational environment

is configured with all the required software, and the hardware specifications are

set to accommodate the demands of the SeqGAN with policy gradient model.

Following the initial setup, the project transitions into the design and

development phase. Here, the SeqGAN enhanced model's architecture is crafted,

57

integrating advanced neural networks like GRU and incorporating attention

mechanisms for enhanced text generation capabilities. Alongside the

architectural design, regularization method, gradient penalty is selected and

fine-tuned with a particular emphasis on optimizing the balance between

exploration and exploitation.

Next is the Data Collection and Preprocessing Stage, where data central

for training the SeqGAN model is gathered, curated, and preprocessed. This

involves curating a dataset from selected sources, which in this case might be a

repository of Chinese poetry. It ensures that the data aligns with the project's

aims. The collected data is then preprocessed, involving cleaning, tokenization,

and possibly vectorization, to prepare it for training the SeqGAN model.

During the Model Training stage, 2 models are being implemented

which are a baseline model and a enhanced model. The baseline model referring

the original model that found in the GitHub without doing any enhancement for

the model architecture design and hyperparameter tuning. During this phase,

two settings are being used to test the sensitivity of the hyperparameter values.

During the Evaluation Stage, the performance of the baseline model

and enhanced model is carefully measured using a set of predefined metrics.

During this phase, the both model are trained and evaluated using a variety of

metrics designed to gauge both the syntactic and semantic quality of the

generated text. This include BLEU scores for evaluating the quality of the

generated text, adversarial loss for measuring the performance of the model and

NLL measures for how well the model predicts and generates a sequence that is

close to the real samples.

Upon generating satisfactory results, the project shifts focus to

performance optimization and fine-tuning. It is a critical phase where the

SeqGAN model's output is meticulously analyzed, and adjustments are made to

improve its efficacy in generating high-quality text.

58

Finally, the workflow concludes with the Monitoring and

Documentation Stage. Here, both of the trained model being compared and

analyse. A comprehensive documentation is maintained to capture the

development process, results, and insights gained throughout the project.

3.2 Software and Tools

3.2.1 Tools

3.2.1.1 PyCharm

PyCharm is an Integrated Development Environment (IDE) for Python

programming. It will serve as the primary development platform due to its

comprehensive coding assistance, intelligent code editor, and debugging

features. It was used for writing, testing, and debugging the Python code that

constitutes the SeqGAN and policy gradient implementations. Its intelligent

editor provides code completion, syntax highlighting, and on-the-fly error

detection, which are invaluable for rapid development cycles.

3.2.1.2 Draw.io

Draw.io is used for creating flowcharts, process diagrams, and architectures

which will be important in planning the SeqGAN model’s structure. Diagrams

created using Draw.io will be used in project documentation to illustrate the data

flow and operational logic of the policy gradient methods. It provides visual

representations that help in making the project's technical aspects accessible and

easier to understand for reviewers and collaborators.

3.2.1.3 GitHub

GitHub is a platform for version control and collaboration. GitHub provides

tools for branching, merging, and pulling requests through hosting the project

repository. GitHub’s issues and project boards will help keep track of tasks,

enhancements, and bugs, which is essential for managing complex development

projects with potentially multiple collaborators.

3.2.2 Hardware Environment

The computing system used is a Lenovo model that runs a 64-bit version of

Microsoft Windows 11 Home Single Language. This operating system was

59

selected for its stability and broad support for the necessary development tools

and libraries. Besides that, the system's performance is a 13th Gen Intel(R)

Core(TM) i7-13700HX CPU with a base speed of 2.00 GHz. The processor

boasts 16 cores and can handle 24 logical processes simultaneously. This will

offer significant multitasking capabilities for parallel computations during

model training.

Next, the system is equipped with a substantial 32 GB of installed

physical RAM. The RAM will ensure the smooth execution of multiple large-

scale operations and datasets concurrently without constricting the

computational processes. Storage is handled by a device that offers ample space

and speed for data-intensive tasks to access and process large datasets quickly

and efficiently. Table 3.1 will summarize the overall hardware components used

in this study.

Table 3.1: Hardware specifications

Component Specification

OS Name Microsoft Windows 11 Home Single Language

Processor Intel(R) Core(TM) i7-13700HX CPU, 2.00 GHz, 16

Cores, 24 Logical Processors

BIOS Version LENOVO CNKCN38W, 20/6/2023

System Type x64-based PC

RAM 32.0 GB Installed Physical Memory

Total Physical

Memory

31.7 GB

Total Virtual

Memory

33.7 GB

Storage 953.86 GB SAMSUNG MZVL21T0HCLR-00BL2

3.2.3 Software Environment

Anaconda, a popular package and environment management system, is used for

the development and execution of the SeqGAN-based text generation project to

60

construct a specialized software environment. The environment encapsulates a

suite of libraries and frameworks tailored for deep learning tasks.

Table 3.2: Software specifications

Software Version

Python 3.8

TensorFlow 2.11

Keras 2.3.1

NumPy 1.24.1

Pandas 1.5.3

Matplotlib 3.8.4

SciPy 1.5.3

CUDA Toolkit 12.4

Table 3.2 shows the software specifications that will used in this project. The

project's software environment is underpinned by Python 3.8. it was used as the

primary programming language due to its rich ecosystem of libraries and

widespread use in scientific computing. TensorFlow 2.11 is employed to

facilitate the construction and training of the complex neural networks at the

core of SeqGAN. Keras 2.3.1 was integrated with TensorFlow and offers a

streamlined, high-level neural network API that will simplify deep learning

programming tasks.

For mathematical computations and operations of machine learning,

NumPy 1.24.1 can provide support with its array of objects and mathematical

functions. Pandas 1.5.3 is utilized for its data manipulation expertise, which

helps in preparing the textual datasets for the model. Visualization of data and

model performance is handled by Matplotlib 3.8.4 to produce a wide range of

static, animated, and interactive visualizations.

Scientific and technical computing tasks that involve optimization and

linear algebra will be managed by SciPy 1.5.3. Its modules are designed to work

efficiently with NumPy arrays and provide user-friendly interfaces to numerical

61

routines. In addition, CUDA Toolkit 12.4 allows TensorFlow to perform high-

speed computations, thus it accelerates the training and evaluation of the

SeqGAN models.

3.3 Work Plan

The project’s timeline, key milestones, and deliverables are outlined in the

Work Breakdown Structure (WBS) and Gantt chart. The Gantt chart presents a

clear work plan with a project start date, along with completion dates for each

phase of the project.

62

Work Breakdown Structure (WBS)

Figure 3.2: Project Work Breakdown Structure (WBS)

63

Gantt Chart

Figure 3.3: Gantt Chart

64

CHAPTER 4

4 PROJECT INITIAL SPECIFICATION

4.1 Introduction

This chapter provides a detailed overview of the initial specifications

for the SeqGAN model, focusing on architectural enhancements, integration of

regularization mechanisms, data handling processes, and evaluation strategies.

This chapter sets the stage for transforming theoretical concepts into a practical

framework, ensuring the model's effectiveness in generating high-quality,

context-rich textual content. It lays the groundwork for the project's

development and subsequent performance assessment for achieving the goal of

blending AI sophistication with the nuance of Chinese poetry.

4.2 Data Collection

This project will utilize a dataset from the Chinese-poetry GitHub repository

(https://github.com/chinese-poetry/chinese-poetry), which contains a

comprehensive collection of classical Chinese poetry. This dataset is an

extensive anthology of poems that encapsulate a wide array of emotions, themes,

and styles. This can provide a rich linguistic environment for training the

generative model.

Figure 4.1: Sample of Chinese Poetry

Figure 4.1 represents a small snippet from the dataset. It illustrates the type of

content that the model will be trained on. The dataset consists of 1.5 million

Chinese poems. This poetry was separated by different timelines and authors.

4.3 Data Processing

The initial step involves sanitizing the text data, which includes stripping away

any irrelevant characters or formatting. This step is crucial in maintaining the

https://github.com/chinese-poetry/chinese-poetry

65

linguistic integrity of the original poetry while ensuring that the data is

conducive to the learning algorithm's requirements. Given the intricacies of the

Chinese language, particularly in classical poetry, tokenization will be

performed with an understanding of the linguistic and poetic context. The goal

is to convert the corpus into an appropriate format for the model to process,

balancing the preservation of literary elements with the technical demands of

tokenization.

Figure 4.2: Sample of Chinese Poetry after tokenization

Subsequently, the tokenized text will be transformed into numerical

vectors. Decisions regarding the use of word embeddings versus one-hot

encoding will be made based on the model's architecture and the nature of the

text. This vectorization process is instrumental in facilitating the model's

comprehension of the data. Post-vectorization, the corpus will be segmented

into sequences with uniform length. This standardization is critical for the

consistent training of the SeqGAN model, allowing for each input sequence to

be fed into the model systematically. To enhance the SeqGAN's learning

efficiency, the data may undergo normalization procedures, such as lowercasing,

to standardize the input and decrease the complexity of the model's vocabulary.

66

4.4 SeqGAN Model Enhancement

4.4.1 GRU Layer Integration

Recognizing the important role of memory in sequence generation tasks, the

improved SeqGAN architecture will incorporate GRU (Gated Recurrent Units)

layers. These advanced recurrent layers are renowned for their superior capacity

to capture long-term dependencies within sequential data. The depth of these

networks is critical; deeper layers are synonymous with a model's capability to

understand and encode more complex patterns and dependencies, an attribute

essential for generating coherent and extensive textual content.

By implementing GRU, we anticipate a substantial enhancement in the

model's ability to produce text that is not only syntactically and grammatically

correct but also contextually rich. This holds especially true for sequences that

demand continuity over extended narrative arcs, thus addressing one of the

significant challenges faced by the current SeqGAN models.

4.4.2 Transformer Intergration

The Transformer architecture is a highly parallelizable approach that makes

sequence-generating activities more efficient by utilizing self-attention

processes. Transformers handle sequences more effectively than recurrent

designs like GRU and LSTM, which process tokens sequentially. They do this

by responding to all tokens at the same time, capturing long-range relationships

in a sequence without the requirement for recurrent connections.

 The Transformer consist do two key components: self-attention

mechanism and positional encoding. The self-attention mechanism enables the

model to focus on specific parts of the input sequence when predicting the next

token. It assigns different attention scores to tokens, allowing the model to

weigh the importance of each token about others in the sequence. This capability

is crucial for handling long-range dependencies and context maintenance. On

the other hand, positional encoding is used to maintain information about the

token positions within the sequence since the Transformer does not have an

inherent sense of order. This helps the model understand the structure of the

sequence, which is essential for generating coherent text.

67

By integrating Transformers into the SeqGAN model, the project aims to

improve the generation of high-quality sequences, particularly in generating

classical Chinese poetry, by leveraging the model's ability to handle long-range

dependencies and parallelization.

4.4.3 Reward Structure

In the context of SeqGAN, the discriminator's feedback is important in guiding

the generator's learning process. To leverage this, a sophisticated reward

structure is proposed that incorporates intermediate rewards. These rewards are

dispensed at various checkpoints based on the discriminator's evaluation of the

generated sequences. This structure aims to provide more granular feedback to

the generator that enables it to make more informed updates to its policy

network.

Furthermore, the introduction of intermediate rewards presents an

opportunity to refine the generator's learning curve further. Unlike traditional

reinforcement learning setups where rewards are sparse and only received at the

end of an episode, intermediate rewards provide frequent and actionable

feedback. This can accelerate the generator's learning process, helping it to

quickly identify and reinforce successful strategies for sequence generation. It

also helps mitigate the sparse reward problem typically associated with training

generators in GAN frameworks.

4.5 Optimization of SeqGAN

In the optimization of the SeqGAN model, the Wasserstein Loss with Gradient

Penalty (WGAN-GP) will be implemented to improve the stability of the

training process for GANs by using the Earth Mover’s distance. When it

combines with the gradient penalty, it enforces 1-Lipschitz continuity.

𝐿𝐿 = 𝐸𝐸𝑥𝑥�~𝑃𝑃𝑔𝑔[𝐷𝐷(𝑥𝑥�)] − 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟[𝐷𝐷(𝑥𝑥)] + 𝜆𝜆𝐸𝐸𝑥𝑥�~𝑃𝑃𝑥𝑥�[(‖𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�)‖2 − 1)2] (4.1)

68

where 𝑃𝑃𝑔𝑔 and 𝑃𝑃𝑟𝑟 are the distributions of generated data and real data respectively.

𝑥𝑥� is evenly sampled along straight lines between pairs of points collected from

created and real data distributions. 𝜆𝜆 represents the penalty coefficient.

Since SeqGAN generates sequences incrementally and relies on the

discriminator’s feedback at each step, Wasserstein loss will be used due to its

stable and robust loss function. It can make the feedback more meaningful and

consistent, which is critical for effective learning in a policy gradient setup.

4.6 Evaluation Metrics and Performance Analysis

Various metrics are chosen to evaluate the performance of SeqGAN when the

model is used to generate sequences. The automated metrics will be used in this

study will be the BLEU score and Oracle NLL.

The BLEU score will evaluate how closely the generated text matches

a reference by comparing the overlap of n-grams. It is widely used in text

generation tasks to gauge syntactic consistency. However, BLEU has

limitations in capturing semantic coherence, as it may give high scores to texts

that are not meaningful.

Besides that, Oracle NLL measures how well the generated sequence

matches the real data distribution. Lower NLL values indicate that the generated

sequence closely resembles the reference, and thus, better model performance.

Finally, the performance of the model (generator and discriminator)

will be evaluated through adversarial loss. During adversarial training, the

generator's performance is judged based on its ability to produce realistic

sequences that can "fool" the discriminator. A lower generator loss indicates an

improvement in generating realistic data. While the discriminator measures its

ability to differentiate between real and generated data. A smaller loss indicates

stronger distinction, but extremely low values may suggest that the

discriminator is unduly dominating, thus impeding the generator's learning.

69

4.7 Summary

Table 4.1: Overview of the Proposed Solution
Feature Baseline Model Enhanced Model
Generator
Model

• Generates the next token
based on the current
state (LSTM).

• Use GRU architecture
• Implement transformer

with attention
mechanisms

Discriminator
Model

• Binary classifier LSTM
that discriminates real
vs. generated sequences.

• Same as original, but
lower learning rate

Reward
Structure

• Sparse and binary, given
at the end of sequence
generation.

• Same as original, but
include intermediate
rewards based on
discriminator feedback at
checkpoints.

Training
Stability

• Can suffer from
instability due to sparse
rewards and high
variance in policy
updates.

• Improved stability using
gradient penalty to
enforce Lipschitz
constraint.

Table 4.1 presents an overview of the proposed method compared with the

original SeqGAN method that was implemented in the repository found in

GitHub.

In summary, this chapter outlined the project's initial planning for

enhancing the SeqGAN model to generate classical Chinese poetry. By

integrating deep learning innovations such as GRU layers and Transformer with

attention mechanisms, the project seeks to harness the vast potential of SeqGAN.

The initial planning is underpinned by a thoughtful data collection and

preparation process, ensuring that the model is fed with high-quality and

context-rich poetic content. This is coupled with a meticulous evaluation

strategy that employs automated metrics, designed to provide a holistic

assessment of the model's performance.

70

CHAPTER 5

5 RESULT AND DISCUSSION

5.1 System Performance

In this research, the results are compared between two SeqGAN models:

baseline and enhanced models based on their key performance. The model’s

performance is enhanced with two major improvements which are GRU

integration and a Transformer architecture in SeqGAN for poem generation.

Both models have been tested using the same hyperparameter configurations to

ensure a fair comparison.

To assess the model's output, both quantitative and qualitative

measures are used. The analysis focuses on comparing the baseline SeqGAN

and the enhanced version in terms of generator and discriminator loss, Oracle

Negative Log-Likelihood (NLL), BLEU score, and performance across

different hyperparameter configurations.

5.1.1 Quantitative Metric

5.1.1.1 Hyperparameter Configuration

The hyperparameters used in both models are summarized in Table 1. The

baseline model uses standard adversarial training with LSTM, while the

enhanced model incorporates GRU and Transformers. The model may suffer

from issues like mode collapse, where it generates limited variations of data that

the discriminator can't classify as fake. So a gradient penalty was applied to

improve training stability by enforcing Lipschitz continuity which helps

mitigate mode collapse and stabilize the model.

Table 5.1: Hyperparameter configurations

Hyperparameters
Values

Setting 1 Setting 2

Rounds 50 100

71

Generator Pretraining Steps

(g_pretrain_steps)

100

120

Discriminator Pretraining

Steps (d_pretrain_steps)

50 50

Generator Steps per Round

(g_steps)

3 5

Discriminator Steps per

Round (d_steps)

1 3

Generator Learning Rate 0.01 0.01

Discriminator Learning Rate 0.0001 0.0001

Update Rate 0.8 0.8

Vocabulary Size 6915 6915

Batch Size 32 64

5.1.1.2 Adversarial Training Performance

Generator Adversarial Training Loss

The performance of the generator during adversarial training is evaluated based

on how well it improves the quality of the data that can be determined by the

discriminator. Lower generator loss indicates that the generator is improving in

creating realistic data. If the loss is consistently high, this indicates the generator

struggles to produce convincing data and the discriminator can easily

differentiate between real and generated data.

Table 5.2: Generator Adversarial Training Loss Result

Settings Epoch Generator Loss

Baseline Enhanced

1 20 5.7422 2.5078

60 4.9757 0.1451

100 4.7949 0.0186

2 20 5.7490 3.235

60 4.9777 0.959

120 4.7621 0.131

72

In setting 1, the baseline model started at 5.7422, and ended at 4.7949, while the

enhanced model started at 2.5078 and improved to 0.0186. In setting 2, the

baseline begins at 5.7490 and finishes at 4.762, while the enhanced model

begins at 3.235 and significantly improves to 0.131 at the end. The enhanced

model showed a much steeper decrease in generator loss, which indicates faster

and more effective learning for the generator. GRU allows the generator to

capture long-term dependencies more efficiently in sequential data and retain

relevant information from earlier in the sequence which makes the learning

process more efficient. GRU’s gating mechanisms (reset and update gates)

reduce the vanishing gradient problem, which allows the model to propagate

important information over long sequences. This enables the generator to make

better updates during training, resulting in faster convergence of the generator

Figure 5.1: Generator loss of baseline model using

setting 1 and setting 2

Figure 5.2: Generator loss of enhanced model using

setting 1 and setting 2

Stable but with some

minor spike
Stable but with some

minor spike

Smooth and stable

curve

Smooth and

stable curve

73

loss. These results explore the cooperation effects between various SeqGAN

architectures. The GRU’s ability to efficiently handle long-range dependencies

accelerates the generator’s learning process, thereby improving text generation

quality as the model learns more from each training iteration.

Discriminator Adversarial Training Loss

The discriminator's performance measures how well it can distinguish between

real and generated data during the adversarial training process. Lower

discriminator loss means it is effectively distinguishing real from fake data.

However, too low a loss may indicate that the discriminator is dominating the

training and making it hard for the generator to improve.

Table 5.3: Discriminator Adversarial Training Loss Result

Settings Epoch Discriminator Loss

Baseline Enhanced

1 30 0.6770 0.5267

50 0.6612 0.0318

2 30 0.5629 0.5628

50 0.5435 0.5314

Figure 5.3: Discriminator loss of baseline model using

setting 1 and setting 2

Jagged curve
Smoother, but still
consists of spikes.

74

In setting 1, the baseline model decreases slightly from 0.6770 to 0.6612, while

the enhanced model decreases dramatically from 0.5267 to 0.0318. In setting 2,

the baseline drops slightly from 0.5629 to 0.5435, while the enhanced model

decreases from 0.5628 to 0.5314. The performance of the discriminator in the

baseline model is not stable compared to the enhanced model. The enhanced

model shows a smooth curve which is more stable while the baseline model

consists of a lot of spikes. This stability is a result of the gradient penalty, which

regularizes the discriminator, preventing it from learning too quickly and

overpowering the generator. Without this penalty, the baseline model’s

discriminator shows spikes in its loss, a sign of instability in adversarial training.

The results emphasizes regulatory mechanisms like gradient penalties. These

mechanisms help stabilize the adversarial training process, ensuring that the

discriminator and generator learn at balanced rates, resulting in more consistent

model improvements.

 The gradient penalty regularizes the discriminator by ensuring the

output changes gradually concerning small changes in the input. It penalizes the

discriminator if the gradients of its predictions become too large or too small.

Without a gradient penalty, the discriminator in the baseline model may learn

too quickly and become overly confident in distinguishing real from fake data.

This will lead to spikes in its loss function if the complexity of the generator is

high. These sharp changes can destabilize the entire adversarial training process.

In contrast, the gradient penalty in the enhanced model keeps the discriminator's

Figure 5.4 Discriminator loss of enhanced model using

setting 1 and setting 2

smooth and stable curve

75

updates more controlled and gradual, leading to smoother and more stable

learning curves.

5.1.1.3 Oracle NLL

Generator Oracle NLL

The generator Oracle NLL measures how well the generator is performing in

terms of generating sequences that resemble the real data distribution. Lower

NLL values indicate better performance and this also means the generator is

producing sequences that are closer to the true data.

Table 5.4: Generator Oracal NLL result

Settings Epoch Generator Oracle NLL

Baseline Enhanced

1 20 11.5810 6.1021

60 11.7417 4.1472

100 11.7869 2.8082

2 20 11.7015 5.4534

60 11.6649 3.3654

120 11.6540 2.347

Figure 5.5: Generator Oracle NLL of baseline model

using setting 1 and setting 2

Jaggle and unstable Jaggle and unstable

76

In Setting 1, the baseline model increased slightly from 11.5810 to 11.7869,

while the enhanced model decreased significantly from 6.1021 to 2.8082. In

Setting 2, the baseline model decreased from 11.7015 to 6540 while the

enhanced model decreased from 5.4534 to 2.347. the baseline model shows a

significant fluctuation in both settings 1 and 2, which indicates the instability of

the generator. The Lower Oracle NLL scores indicate that the enhanced model

is generating sequences that are closer to the true data distribution, which

indicates better quality output.

 The enhanced model’s significantly lower Oracle NLL shows its

improved ability to generate sequences that are closer to the real data

distribution. This improvement can be attributed to the integration of GRU and

Transformer architectures. The GRU’s gating mechanism helps the generator

retain important information from earlier parts of the sequence, while the

Transformer’s attention mechanism allows the model to focus on crucial

sequence elements such as rhyme, line length, and semantic coherence. GRU

allows the model to better retain long-term dependencies by efficiently

controlling what information to forget and what to retain in sequential data. This

ability to manage long-term dependencies prevents the vanishing gradient

problem and ensures the important information from earlier steps in the

sequence is preserved during the learning process. Besides that, the

Transformer’s attention mechanism enables the model to focus on the most

important elements of the sequence (rhyme, line length, and parallelism) and

direct its resources toward understanding the key contextual relationships

Figure 5.6: Generator Oracle NLL of enhanced model

using setting 1 and setting 2

More stable and

less jaggle
More stable and

less jaggle

77

between data points. Together, these architectural improvements enable the

generator to produce higher-quality sequences that better match the true data

distribution, thus reducing the NLL significantly.

Discriminator Oracle NLL

The discriminator Oracle NLL is used to evaluate the discriminator's ability to

distinguish between real and generated sequences. It measures how well the

discriminator can predict whether a given sequence is from the real data

distribution (Oracle) or generated by the generator. A lower Oracle NLL

indicates better performance by the discriminator.

Table 5.5: Discriminator Oracal NLL result

Settings Epoch Discriminator Oracle NLL

Baseline Enhanced

1 30 0.2480 0.5479

50 0.2275 0.4585

2 30 0.3896 0.5628

50 0.0277 0.5314

Figure 5.7: Discriminator Oracle NLL of baseline

model using setting 1 and setting 2

Unstable and jaggle

curve
More stable and

less jaggle

78

In Setting 1, the baseline model decreased from 0.2480 to 0.2275, while

the enhanced model decreased from 0.5479 to 0.4585. In Setting 2, the baseline

model decreases from 0.3896 to 0.0277 while the enhanced model change from

0.5628 to 0.5314. The baseline model showed more improvement in

Discriminator Oracle NLL, particularly in Setting 2. In Figure 5.7, the baseline

discriminator Oracle NLL consists of many frustrations which indicates the

instability of the model. This shows that the discriminators in the baseline model

struggle to identify the differences between real and fake data. This has shown

that the discriminator in the enhanced model performs more stable and is better

at distinguishing real from generated data in some configurations.

The baseline model’s fluctuations indicate its difficulty in consistently

distinguishing between real and generated data, while the enhanced model

shows a more stable performance. The lower fluctuations in the enhanced model

suggest that the gradient penalty keeps the discriminator’s updates gradual,

ensuring it doesn’t dominate the generator too early in the training process.

5.1.1.4 BLEU Score

BLEU score helps to evaluate the quality of the generated text sequences by the

SeqGAN model. It measures how similar the generated poem is to a set of

reference poems. The score helps measure the fluency of the generated text by

checking if the generated words and phrases are in the correct order and

appropriate for the context. Higher BLEU scores for the generator indicate

better-quality generated text, as the generated sequences closely match the

Figure 5.8 : Discriminator Oracle NLL of enhanced

model using setting 1 and setting 2

Stable and few

jaggle
Stable and few

jaggle

79

reference text. It helps to observe how the architectural improvements impact

the quality and coherence of the generated poem.

Table 5.6: BLEU Score results for both model

Epoch BLEU score

Baseline Model Enhanced Model

20 0.25 0.30

40 0.29 0.38

60 0.32 0.45

80 0.34 0.50

100 0.35 0.53

Figure 5.9: BLEU Scores Comparison between Baseline and Enhanced Model

The enhanced model shows a more rapid improvement in BLEU scores. From

epoch 20 to 100, the enhanced model's BLEU score increased by 0.23 (from

0.30 to 0.53), while the baseline model only improved by 0.10 (from 0.25 to

0.35). Both models show a diminishing rate of improvement as training

80

progresses. However, the enhanced model maintains a steeper improvement

curve throughout, suggesting it continues to learn more effectively from

additional training data. The improved BLEU scores indicate that the

architectural innovations integrated into the enhanced model, such as the GRU

layers and attention mechanisms, provide a superior capacity to learn long-range

dependencies and improve narrative coherence over time. These enhancements

allow the generator to produce sequences that better mimic human-like

coherence and structure, contributing to higher BLEU scores as training

progresses.

Discussion

In Setting 1, the enhanced model's final generator loss (0.0186) was

approximately 258 times lower than the baseline model's loss (4.7949) after 100

epochs. Similarly, in Setting 2, the enhanced model achieved a final loss of

0.131, about 36 times lower than the baseline's 4.7621 after 120 epochs. This

reduction in generator loss indicates that the enhanced model is more effective

at producing sequences that closely resemble the true data distribution. The

practical implication is that the enhanced model is likely to generate higher

quality, more coherent poems that better mimic human-written text.

 The Oracle Negative Log-Likelihood (NLL) scores further corroborate

this improvement. In Setting 1, the enhanced model's Oracle NLL decreased

from 6.1021 to 2.8082 over 100 epochs, while the baseline model's score

worsened slightly, increasing from 11.5810 to 11.7869. This divergence

indicates that the enhanced model's generated sequences are progressively

aligning closer with the true data distribution, while the baseline model struggles

to make similar progress. The lower final Oracle NLL score of the enhanced

model (2.8082 vs. 11.7869) quantifiably demonstrates its superior generation

capabilities.

81

 In addition to the generator and discriminator performance metrics, the

BLEU (Bilingual Evaluation Understudy) scores provide crucial insight into the

quality of the generated text. By epoch 100, the enhanced model achieves a

BLEU score of 0.53, which is 51.4% higher than the baseline model's score of

0.35. This substantial difference indicates that the text generated by the

enhanced model is significantly more similar to human-written reference texts.

However, the enhanced model's BLEU score is still increasing at epoch 100 at

a slower rate. This indicates that there is room for further improvement with

extended training, while the baseline model appears to be stable.

 Besides that, the discriminator performance presents a more significant

result. In Setting 1, the enhanced model's discriminator showed a remarkable

improvement with the loss decreasing from 0.5267 to 0.0318 over 50 epochs,

compared to the baseline's improvement from 0.6770 to 0.6612. Conversely, in

Setting 2, both models showed minimal change in discriminator loss, baseline:

0.5629 to 0.5435; enhanced: 0.5628 to 0.5314. This inconsistency across

settings suggests that while the enhanced model's generator consistently

outperforms the baseline, the discriminator's performance is more sensitive to

hyperparameter configurations.

The enhanced model also demonstrates faster convergence by reaching

lower loss values in fewer epochs. This is evident in the generator loss

trajectories where the enhanced model shows a steeper decline compared to the

baseline. For example, in Setting 1, the enhanced model's generator loss dropped

by 99.3% (from 2.5078 to 0.0186) over 100 epochs, while the baseline model's

loss only decreased by 16.5% (from 5.7422 to 4.7949) in the same period. This

faster convergence translates to potential savings in computational resources

and training time.

The sensitivity to hyperparameter changes is another important

observation. The performance gap between Settings 1 and 2, especially in

discriminator loss underscores the critical role of hyperparameter tuning in

82

GAN training. For example, the enhanced model's discriminator in Setting 1

achieved a final loss of 0.0318, while in Setting 2, it only reached 0.5314. This

substantial difference highlights the need for careful optimization of

hyperparameters to fully leverage the potential of the enhanced architecture.

In conclusion, the quantitative results support the enhanced SeqGAN

model in terms of generation quality and training efficiency. The integration of

GRU, Transformer architecture, and gradient penalty has led to substantial

improvements in generator performance across multiple metrics. However, the

mixed results in discriminator performance and the observed sensitivity to

hyperparameters indicate areas for further research and optimisation. Future

work should focus on refining the discriminator architecture, conducting more

extensive hyperparameter searches, and evaluating the model's performance on

diverse, real-world datasets to ensure that these improvements translate

effectively to practical applications in poem generation.

5.1.2 Evaluation of Poem

The generated poem is evaluated based on their adherence to the traditional five-

character quatrain (五言绝句) form, a classic style of Chinese poetry since the

dataset poems that we used to train the generator are mostly in five-character

quatrain form.

 The five-character quatrain consists of four lines, each containing

exactly five characters. This form is known for its strict structural rules,

including specific requirements for parallelism and rhyme scheme. The poems

were analysed based on the character count, line count, parallelism and rhyme

scheme.

83

5.1.2.1 Structural Element

Line Length and Structure

From Figure 5.10 and Figure 5.11, both generated poems fulfil the

requirements of the character count, which is all lines contain exactly five

characters. They also fulfilled the line count which consisted of four lines.

Parallelism and Rhythm

Parallelism in Chinese poetry refers to the use of similar grammatical structures

or thematic elements across lines. In a five-character quatrain (五言绝句),

this often means that the first and third lines (or the second and fourth lines)

should reflect each other in terms of structure or meaning. This mirroring effect

creates a sense of balance and harmony within the poem, allowing the poet to

explore related themes or ideas in parallel lines. Additionally, the repetition of

similar structures enhances the musicality and flow of the poem, making it more

aesthetically pleasing.

Figure 5.11 : Generated poems using

baseline model

Figure 5.10: Generated poems using

enhanced model

84

In traditional Chinese poetry, a rhyme scheme typically follows the ABAB

pattern. This means that the first and third lines rhyme with each other, while

the second and fourth lines rhyme with each other.

Figure 5.12 : Climbing White Stork Tower from Wang Zhihuan

Figure 5.12 shows the quatrain the first line ends with 尽 (jìn) and the third line

ends with 目 (mù), which rhyme with each other, forming the "A" rhyme.

Similarly, the second line ends with 流 (liú) and the fourth line ends with 楼 (l

óu), forming the "B" rhyme. This ABAB rhyme scheme provides a structured

and melodic flow to the poem.

The parallelism in this example can also be seen in the themes of the lines. The

first and third lines both focus on expanding sight or perspective, while the

second and fourth lines emphasize movement and progression. This thematic

parallelism reinforces the meaning of the poem, while the ABAB rhyme scheme

enhances its rhythm and aesthetic quality.

Sample Lines of the Baseline Model

Figure 5.13 : Sample lines poems from the baseline model

Figure 5.13 shows a sample line poem generated by the baseline model.

The first line of the poem describes a scene but it lacks clear grammatical and

thematic parallelism with the other lines. The second line seems disconnected

A

A

B

B

First line

Second line

Third line

Forth line

85

in terms of thematic content and structure compared to the other lines. The third

line introduces a different theme and does not align well with the previous lines.

While the last line presents yet another thematic element, and it does not mirror

the structure or content of the other lines.

As for the rhyme of the poem, the first and third lines of the poem do

not rhyme with each other or with the other lines. The second and fourth lines

also do not exhibit a clear rhyme scheme with each other or with the first pair

of lines. This line of poems lacks a distinct rhyme scheme. The lines do not

follow the traditional ABAB rhyme pattern, making it less aligned with classical

five-character quatrains.

Sample Lines of Enhanced Model

Figure 5.14 : Sample lines poems for enhanced model

Figure 5.14 shows a sample line poem generated by an enhanced model

(GRU + Transformer). The first line of the poem introduces imagery related to

frost and decay, which can be seen as setting a scene. The second line continues

the scene setting with imagery of light and birds, showing a thematic connection

to the first line. The third line introduces dust and a garment, which maintains

thematic continuity with the previous lines. The last line describes actions and

snow, connecting to the overall imagery of the poem. This generated poem

shows more consistent thematic parallelism. The lines relate to each other

through imagery and description, creating a coherent theme.

Second line

First line

Third line

Forth line

86

As for the rhyme of the poem, the first and third lines of the poem may

rhyme, particularly in the final characters “骑” (qi) and “裾” (xu) depending on

pronunciation. The second and fourth lines also might rhyme, with “鸟” (niao)

and “四” (si) potentially forming a rhyme pair. The overall poem has a more

recognizable rhyme scheme, possibly following an ABAB pattern which aligns

better with traditional quatrain standards.

5.2 System Demonstrations

5.2.1 Model Enhancement

5.2.1.1 GRU Implementation

GRU (Gated Recurrent Unit) is a type of RNN architecture that is often used for

handling sequential data.

Figure 5.15 : Overview of TargetGRU class

GRU is implemented in the TargetGRU class and serves as a target

model to replace LSTM for evaluation. It processes the input sequence and

captures temporal dependencies. The key components of GRU are a hidden state

that carries information forward as the model processes the sequences; an update

gate to determine how much of the previous hidden state should be carried

87

forward; and a reset gate to control how much of the previous hidden state

should be ignored.

Figure 5.16 : Embedding Layer

An embedding layer is created to convert input tokens which are

represented as integers, into dense vectors of fixed-size embedding_dim.

Figure 5.17 : GRU Layer

A gated recurrent unit that processes sequences and maintains a hidden

state across timesteps. It uses the token embeddings as input and produces

hidden states that capture the sequence's context. It takes the input size

embedding_dim and produces the output of size hidden_dim. The

‘batch_first=True’ means the input and output tensors are provided as (batch,

seq, feature).

Figure 5.18 : Fully Connected Layer and Softmax

A fully connected layer is created to map the GRU output back to

vocabulary size so that the model can predict the next token. The log softmax

will then convert the raw output from the fully connected layer into log

probabilities.

88

Figure 5.19 : Forward Pass

The forward function is created to pass the network. It first embeds the

input tokens by converting them into embedding vectors and then processes the

embedded sequence through the GRU layer. The hidden state is also being

updated at each timestep.

Figure 5.20 : Overview of TargetGRU class

After that, the GRU output is passed through the fully connected layer

and then the log softmax converts the output to log probabilities, which

represent the likelihood of each token in the vocabulary being the next token.

Figure 5.21 : Step Method for Token-by-Token Processing

The ‘step’ method handles generating one token at a time, useful in

sampling where the model needs to generate tokens sequentially. First, the token

is converted into its embedding vector. After that the embedding is processed

by GRU and the hidden state is updated based on the token. The fully connected

89

layers then map the GRU output to vocabulary size. Finally, the LogSoftmax

converts the output to log probabilities, which represent the likelihood of each

token in the vocabulary being the next token.

Figure 5.22 : init_hidden function

Initializes the GRU's hidden state at the start of generating a new sequence. The

hidden state is filled with zeros and moved to the GPU if CUDA is enabled.

Figure 5.23 : init_params function

This init_params function will randomly initialize the model's weights and

biases using a normal distribution. This can help improve training stability.

5.2.1.2 Transformer

The Transformer architecture is an alternative to RNNs and GRUs, utilizing

self-attention mechanisms to handle sequences more efficiently.

90

Figure 5.24 : Architecture of Transformer

Figure 5.24 shows an Transformer architecture. Transformers are known for

their parallelization and ability to capture long-range dependencies across

sequences. It consists of two key components which are self-attention and

positional encoding. The self-attention component helps the model focus on

relevant parts of the sequence when generating the next word, while the

positional encoding is used to maintain the order since transformers do not.

91

Figure 5.25 : PositionEncoding method

The figure 5.25 shows an overall implementation of the PositionEncoding

method that is used to add positional to word embeddings in transformer models.

The transformer architecture is unlike RNNs or GRUs. Because it does not

record sequential order by default, positional encoding gives the model

information about where each word in the sequence is located. It helps the model

keep track of the positions of tokens within a sequence which allows it to capture

order and relationships between tokens.

Figure 5.26 : Positional Encoding Matrix

A matrix `pe` is created to hold the positional encodings for all positions up to

‘max_len’ for which to precompute positional encodings. The size of this matrix

is [max_len, d_model], where each row represents the positional encoding for a

specific position in the sequence. ‘max_len’ is the maximum length of any

92

sequence that will be processed by the model, and ‘d_model’ is the size of the

embedding dimension.

Figure 5.27 : Division Term

The ‘div_term’ is used to scale the position indices by different frequencies for

the sine and cosine functions. This ensures that the model can distinguish

positions based on different periodic functions. The logarithmic scaling (-

log(10000) / d_model) ensures that the positional encodings vary smoothly

across the sequence.

Figure 5.28 : Sine and Cosine Functions

The sine function is applied to even indices of the embedding dimension, and

the cosine function is applied to odd indices. These alternating sine and cosine

functions help the model learn the positional relationships between tokens.

Figure 5.29 : Unsqueeze and Register Buffer

The ‘pe’ matrix is reshaped using ‘.unsqueeze(0)’ to add a batch

dimension, resulting in shape [1, max_len, d_model]. This allows it to be

broadcast across different batches of input sequences. On the other hand,

‘self.register_buffer('pe', pe)’ ensures that ‘pe’ is stored as part of the model, but

it is not a learnable parameter. This means it won't be updated during training

via backpropagation, but it is persistent and saved with the model.

93

Figure 5.30 : Forward Pass Function

In the forward pass, the input tensor x (the embedded sequence) has the

precomputed positional encodings added to it. If the sequence length is within

the precomputed ‘max_len’, the positional encodings are added directly to the

input embeddings. However, if the sequence length exceeds ‘max_len’, the

positional encoding matrix is repeated using repeat(). The result is sliced to fit

the exact ‘seq_len’ which allows the model to handle longer sequences without

breaking. This ensures that even if the sequence length exceeds the

precomputed maximum length, the model can continue cyclically adding

positional encodings.

5.2.1.3 Gradient Penalty

Gradient Penalty is integrated to enforce Lipschitz continuity, which ensures

more stable training by penalizing the model when the gradient norm moves

away from 1. This regularization helps prevent mode collapse, which is

important when generating diverse poems. A penalty term is added to the loss

function, which pushes the gradient norm towards 1. This helps to stabilize the

discriminator's gradients and stay well-behaved to obtain better training

dynamics for both the generator and discriminator.

94

Figure 5.31 : Function of Gradient Penalty Calculation

The figure shows an overall function of ‘compute_gradient_penalty’ that is

used to calculate the gradient penalty in the context of SeqGAN. This function

enforces the Lipschitz constraint by penalizing the norm of the gradients of the

discriminator output with respect to interpolated samples. Two arguments are

used in this function, which is a batch of real data samples and a batch of

generated data samples generated from the generator. This function will return

a scalar value that is added to the discriminator loss, which is the gradient

penalty. The function will be called during the discriminator adversarial training.

Figure 5.32 : Interpolation Between Real and Fake Samples

95

A random alpha is generated for each sample in the batch, and it is used to create

an interpolated sample by mixing real and fake samples. These interpolated

samples help the GAN enforce the Lipschitz continuity condition, such as

keeping the gradients bounded.

Figure 5.33 : Discriminator Output on Interpolated Samples

The interpolated samples are passed through the discriminator D, which gives

the predictions d_interpolates. These predictions are used to compute the

gradients for the interpolated inputs.

Figure 5.34 : Gradient Computation

‘torch.autograd.grad’ is used to compute the gradients of D(interpolates) for the

interpolated samples. The ‘grad_outputs=fake’ argument ensures that the

gradient is calculated in the right direction as a backward pass. The

‘create_graph=True’ argument is to compute the gradient penalty that requires

the computation graph to remain intact for higher-order derivatives.

Figure 5.35 : Reshape Gradients and Gradient Norm

96

After that, the gradients are reshaped into a 2D tensor of shape (batch_size,

num_features), where each row represents the gradient for a single sample. The

L2 norm (Euclidean norm) of the gradients is computed for each sample. The

Lipschitz constraint requires the norm of the gradients to be approximately 1.

Figure 5.36 : Gradient Penalty calculation formation

The penalty is calculated as the squared difference between the gradient norm

and 1. It enforces that the gradients should remain close to 1 to ensure

smoothness in the discriminator’s behaviour. The penalty is averaged across the

batch and returned as a scalar. This value is then added to the discriminator's

loss to penalize large deviations from the Lipschitz constraint.

97

CHAPTER 6

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

This research successfully enhanced SeqGAN for poem generation by

integrating GRU, Transformer architecture, and gradient penalty which resulted

in significant improvements in text quality, learning efficiency, and model

stability. The enhanced model consistently outperformed the baseline across all

evaluation metrics, with a notable 51.4% increase in BLEU scores,

demonstrating a marked improvement in the similarity between generated and

human-written poems. Additionally, the enhanced model achieved faster

convergence, with the generator loss decreasing significantly compared to the

baseline, showing a more efficient learning process. The gradient penalty also

contributed to more stable training across different hyperparameter settings.

Evaluation metrics, including generator and discriminator loss, Oracle Negative

Log-Likelihood (NLL), and BLEU scores, provided a comprehensive

assessment of both the technical and practical performance of the models.

Overall, this research demonstrates that architectural improvements can

significantly enhance SeqGAN’s ability to generate high-quality, coherent

poetry, paving the way for more advanced text generation systems.

6.2 Recommendations for future work

Extended Training and Larger Datasets

The enhanced model showed signs of continued improvement even at later

epochs. Experimenting with longer training periods (beyond 100 epochs) and

larger, more diverse poem datasets such as including poems in different

languages, styles, and structures, could potentially lead to even higher BLEU

scores and more versatile poem generation. Larger datasets could be sourced

from publicly available poetry corpora, or generated synthetically to diversify

the content. Training time would need to be carefully monitored to prevent

overfitting, especially as the dataset size increases. Implementing early stopping

mechanisms or checkpoints can help mitigate this risk. Larger datasets are

98

essential to improving the versatility and creative range of the model. Extended

training ensures the model can explore deeper into its optimization landscape,

potentially uncovering patterns that shorter training cycles might miss.

Human Evaluation Integration

BLEU scores provide a good proxy for text quality but they don’t capture all

aspects of poetic merit. Implementing an evaluation phase into the reward

structure may help refine the model's ability to produce text that aligns with

subjective quality standards and provides insights into aspects like creativity,

emotional impact, and adherence to poetic forms that automated metrics might

miss.

A human evaluation framework could be introduced by crowd-

sourcing ratings on dimensions such as creativity, emotional resonance, and

adherence to structure from professional poets or online users. These ratings can

be fed into the model as rewards, utilizing reinforcement learning techniques to

further fine-tune the generator's performance based on human feedback.

However, integrating human evaluations introduces subjectivity into the

training process, which could be inconsistent and difficult to quantify. Gathering

reliable and diverse feedback at scale is time-consuming and costly.

Furthermore, balancing between automated BLEU scores and human

assessments is complex, as the model may have to learn to optimize for

conflicting objectives.

Hyperparameter Tuning

The performance of the model showed sensitivity to hyperparameter changes,

particularly in discriminator training. Conducting a more extensive

hyperparameter search using techniques like Bayesian optimization or genetic

algorithms could help to identify optimal configurations for different use cases

or dataset sizes.

Hyperparameter tuning could be automated through techniques such as

Bayesian optimization, iteratively selects hyperparameters that minimize a

given loss function, or genetic algorithms that evolve hyperparameters over

generations. Tools like Optuna or Hyperopt can be integrated into the model’s

99

training pipeline to automate this process. Hyperparameters such as learning

rates, batch size, and discriminator-pretraining steps can be tuned to optimize

model performance for specific datasets and tasks. However, the increased

complexity in the model tuning process may lead to longer training times and

the need for more computational resources. Additionally, over-optimization of

hyperparameters for a specific dataset might result in a model that does not

generalize well to new or unseen data, requiring a balance between exploration

and exploitation in the tuning process.

100

REFERENCES

Chen, M. et al., 2018. Top-K Off-Policy Correction for a REINFORCE

Recommender System. Proceedings of the Twelfth ACM International

Conference on Web Search and Data Mining.

Che, T. et al., 2017. Maximum-Likelihood Augmented Discrete Generative

Adversarial Networks.

Dai, W. et al., 2018. Toward Understanding the Impact of Staleness in

Distributed Machine Learning.

Duarte, F. F., Lau, N., Pereira, A. & Reis, L. P., 2020. A Survey of Planning

and Learning in Games. Applied Sciences, 10(13), p. 4529.

Eck, D. & Schmidhuber, J., 2002. A First Look at Music Composition using

LSTM Recurrent Neural Networks. Istituto Dalle Molle Di Studi Sull

Intelligenza Artificiale.

Espeholt, L. et al., 2018. IMPALA: Scalable distributed deep-RL with

importance-weighted actor-learner architectures. In International Conference

on Machine Learning, pp. 1406-1415.

Goodfellow, I. et al., 2014. Generative adversarial nets. In Advances in neural

information processing system, pp. 2672-2680.

Graves, A., Mohamed, A.-r. & Hinton, G., 2013. Speech recognition with deep

recurrent neural networks. 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 6645-6649.

Hochreiter, S. & Schmidhuber, J., 1997. Long short-term memory. Neural

Computation, 9(8), pp. 1735-1780.

Holtzman, A. et al., 2019. The Curious Case of Neural Text Degeneration.. In

International Conference on Learning Representations.

Krivosheev, N., Vik, K., Ivanova, Y. & Spitsyn, V., 2021. Investigation of the

Batch Size Influence on the Quality of Text Generation by the SeqGAN Neural

Network. GraphiCon, Volume 3027, pp. 1005-1010.

Lagutin, E., Gavrilov, D. & Kalaidin, P., 2021. Implicit Unlikelihood Training:

Improving Neural Text Generation with Reinforcement Learning.. EACL, pp.

1432-1441.

101

Liu, X., Gao, J., Zhang, W. & Shou, L., 2020. Towards Robust Neural Machine

Translation. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pp. 1777-1789.

Martin Arjovsky, Chintala, S. & Bottou, L., 2017. Wasserstein GAN.

Schulman, J. et al., 2015. Trust Region Policy Optimization. Machine Learning,

p. 15.

Schulman, J. et al., 2017. Proximal Policy Optimization Algorithms. Machine

Learning.

Sutskever, I., Vinyal, O. & Q. V. L., 2014. Sequence to Sequence Learning with

Neural Networks.. Neural Information Processing Systems.

Sutton, R. & Barto, A., 2018. Reinforcement learning: An introduction..

s.l.:MIT press.

Sutton, R. S. & Barto, A. G., 2018. Reinforcement learning: An introduction.

s.l.:s.n.

Vaswani, A. et al., 2017. Attention is all you need.

Vo, T., 2022. A Novel Semantic-Enhanced Text Graph Representation Learning

Approach through Transformer Paradigm.. Cybernetics and Systems, 54(4), pp.

499-525.

Williams, R. J., 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, Volume 8, pp. 229-

256.

Yu, L., Zhang, W., Wang, J. & Yu, Y., 2017. SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient. In Thirty-First AAAI Conference on

Artificial Intelligence..

Zhang, H. et al., 2022. Text Feature Adversarial Learning for Text Generation

With Knowledge Transfer From GPT2.. IEEE Transactions on Neural

Networks and Learning Systems, pp. 1-12.

Zhang, Y. et al., 2017. Adversarial Feature Matching for Text Generation.

102

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF SYMBOLS / ABBREVIATIONS
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.1.1 Generative Adversarial Networks (GANs)
	1.1.2 Deep Reinforcement Learning (DRL)
	1.1.3 SeqGAN with Policy Gradient

	1.2 Importance of the Study
	1.3 Problem Statement
	1.3.1 Optimization Challenges in SeqGAN
	1.3.2 Repetition and Lack of Text Coherence
	1.3.3 Lack of a Comprehensive Integration Framework

	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Generative Adversarial Networks and SeqGAN: Comparative Overview
	2.2.1 Generative Adversarial Networks (GAN)
	2.2.1.1 Multilayer Perceptrons (MLPs)

	2.2.2 Sequence Generative Adversarial Nets
	2.2.2.1 Encoder-Decoder Network

	2.3 Comparative Analysis of Policy Gradient Methods
	2.3.1 Policy Gradient Algorithms
	2.3.1.1 REINFORCE
	2.3.1.2 Trust Region Policy Optimization (TRPO)
	2.3.1.3 Proximal Policy Optimization (PPO)

	2.4 Architecture Innovation
	2.4.1 Long short-term memory (LSTM)
	2.4.2 Gated Recurrent Unit (GRU)
	2.4.3 Attention Mechanisms
	2.4.4 Conditional GANs

	2.5 Evaluation Metric
	2.6 Regulatory Mechanisms and Penalties
	2.6.1 Gradient Penalty
	2.6.2 L1/L2 Regularization
	2.6.3 Entropy Penalty
	2.6.4 Semantic Consistency Penalty

	2.7 Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software and Tools
	3.2.1 Tools
	3.2.1.1 PyCharm
	3.2.1.2 Draw.io
	3.2.1.3 GitHub

	3.2.2 Hardware Environment
	3.2.3 Software Environment

	3.3 Work Plan

	CHAPTER 4
	4 PROJECT INITIAL SPECIFICATION
	4.1 Introduction
	4.2 Data Collection
	4.3 Data Processing
	4.4 SeqGAN Model Enhancement
	4.4.1 GRU Layer Integration
	4.4.2 Transformer Intergration
	4.4.3 Reward Structure

	4.5 Optimization of SeqGAN
	4.6 Evaluation Metrics and Performance Analysis
	4.7 Summary

	CHAPTER 5
	5 RESULT AND DISCUSSION
	5.1 System Performance
	5.1.1 Quantitative Metric
	5.1.1.1 Hyperparameter Configuration
	5.1.1.2 Adversarial Training Performance
	5.1.1.3 Oracle NLL
	5.1.1.4 BLEU Score

	5.1.2 Evaluation of Poem
	5.1.2.1 Structural Element

	5.2 System Demonstrations
	5.2.1 Model Enhancement
	5.2.1.1 GRU Implementation
	5.2.1.2 Transformer
	5.2.1.3 Gradient Penalty

	CHAPTER 6
	6 CONCLUSIONS AND RECOMMENDATIONS
	6.1 Conclusion
	6.2 Recommendations for future work

	REFERENCES

