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ABSTRACT 

 

In this study, we explore the integration of Generative Adversarial Networks 

(GANs) and Deep Reinforcement Learning (DRL) methods, focusing on the 

performance comparison between different architectures of Sequence 

Generative Adversarial Networks (SeqGAN) and policy gradient algorithms. 

We address key challenges in text generation, such as maintaining narrative 

coherence over long sequences, reducing text repetition, and optimizing 

SeqGAN for diverse textual outputs. The study incorporates architectural 

innovations like Long Short-Term Memory (LSTM) and Gated Recurrent Units 

(GRU) that enhance the ability of SeqGAN to capture long-range dependencies 

in sequences, while attention mechanisms improve contextual awareness by 

selectively focusing on relevant parts of the sequence.  Through extensive 

experiments, we analyze the influence of various neural network configurations 

and regulatory mechanisms, including gradient penalties and regularization on 

the quality of the generated text. Our findings show a 15% increase in BLEU 

scores, highlighting significant improvements in text coherence and diversity 

across various datasets, demonstrating the effectiveness of integrating SeqGAN 

with policy gradient methods for automated content generation.
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In recent years, artificial intelligence has been buzzing with remarkable 

advancements in the field of generative artificial intelligence and deep 

reinforcement learning (DRL). Generative artificial intelligence, known as 

Generative AI, is a voluntary field of AI that focuses on generating new data 

such as images, text, or music. The newly generated data aims to be realistic and 

true instead of just copies of data. With this approach, machines are allowed to 

move beyond to analyze existing information and enhance it with the ability to 

generate new content with remarkable creativity. One of the popular generative 

AI approaches is generative adversarial networks. 

 

1.1.1 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) are an innovation in the field of 

Generative AI. This class of machine learning frameworks emerged from the 

work of Ian Goodfellow and his colleagues in 2014 (Goodfellow et al., 2014). 

GANs work by pitting two neural networks against each other in a competitive 

setting. One network is called the generator and another one is called the 

discriminator. The generator produces realistic data, while the discriminator 

attempts to differentiate between real and generated fake data. This adversarial 

process pushes both networks to improve and allows the generator to create 

realistic sample outputs. Neural networks in machine learning are also referred 

to as artificial neural networks (ANNs) because of the design that is specifically 

built to replicate the structure and function of the human brain. 

 

An outstanding case in the world of GANs is StyleGAN2, introduced 

at the Conference on Computer Vision and Pattern Recognition (CVPR) in 2020. 

This model leverages transfer learning to produce a virtually infinite number of 

portraits with an astounding range of artistic styles (Esser et al., 2020). It allows 

for fine-grained control over specific details, such as facial expressions and 

poses. 
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1.1.2 Deep Reinforcement Learning (DRL) 

While Deep Reinforcement Learning (DRL) is an area of artificial intelligence 

that combines reinforcement and deep learning. It primarily focuses on training 

agents to make optimal decisions in an environment through trial and error. DRL 

agents differ from classical supervised learning, which is supplied with labelled 

examples. They learn by interacting with the environment and receive rewards 

for desired behaviours. This allows the agent to learn complex strategies and 

adapt themselves to dynamic situations or scenarios. An exemplary example of 

DRL would be AlphaGo, a program developed by DeepMind that achieved 

mastery in the complex game of Go (Silver et al., 2016). AlphaGo, along with 

its successors, leverages a Monte Carlo tree search algorithm to identify optimal 

moves. This selection process builds upon knowledge previously acquired 

through extensive machine learning. Specifically, an artificial neural network, a 

core component of deep learning, is trained on a huge dataset of human and 

computer Go games (Silver et al., 2016). The neural network progressively 

refines its ability to identify the most effective moves and their corresponding 

winning probabilities. As a result, the tree search algorithm is continuously 

strengthened, leading to a more sophisticated selection of moves in subsequent 

iterations. 

 

 

Figure 1.1 demonstrates an agent with a neural network policy taking 

actions in an environment based on observed states, receiving rewards, and 
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updating its policy parameters to learn an optimal behaviour over multiple 

iterations. 

 

Artificial Intelligence has moved past its usual techniques, adopting 

new strategies that combine the power of generating content with the learning 

ability of deep reinforcement learning. This research project focuses on 

investigating the potential benefits of the combination of SeqGAN, a generative 

AI model, with various policy gradient DRL methods. The potential benefits 

include improving text quality and cohérence, enhancing the ability to generate 

diverse and novel content, increasing efficiency in training and content 

generation, and improving the ability to handle long-range dependencies in text. 

By analyzing these combined models' performance, architecture, neural 

networks, and key parameters, this project aims to understand the factors 

influencing their effectiveness and performance. The factors may be the choice 

of policy gradient algorithm, the architecture of generator and discriminator 

networks, reward function design, the impact of different pre-training strategies 

for the generator, and the effect of batch size and sequence length on model 

performance. 

 

1.1.3 SeqGAN with Policy Gradient 

In addressing the complexities of text generation, especially in generating 

coherent content, the integration of SeqGAN with policy gradient methods. This 

methodology leverages the adversarial framework established by Goodfellow et 

al. (2014) and adapts it using reinforcement learning (RL) strategies to optimize 

the generative process over extended sequences without relying on intermediate 

rewards (Yu, et al., 2017; Sutton & Barto, 2018). 

 

Algorithm 1: SeqGAN 

Require: Discriminator, 𝐷𝐷𝜙𝜙; Generator policy, 𝐺𝐺𝜃𝜃; roll-out policy, 𝐺𝐺𝛽𝛽a 

sequence data 𝑆𝑆 = {𝑋𝑋1:𝑇𝑇} 

01: Initialize 𝐺𝐺𝜃𝜃, 𝐷𝐷𝜙𝜙 with random weights 𝜃𝜃, 𝜙𝜙. 

02: Pre-train 𝐺𝐺𝜃𝜃 using MLE on 𝑆𝑆 

03: 𝛽𝛽 ←  𝜃𝜃 
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04: Generate negative samples using 𝐺𝐺𝜃𝜃 for training 𝐷𝐷𝜙𝜙 

05: Pre-train 𝐷𝐷𝜙𝜙 via minimizing the cross entropy 

06: repeat 

07: for g-steps do 

08:  Generate a sequence 𝑌𝑌1:𝑇𝑇 = (𝑦𝑦1, … ,𝑦𝑦𝑡𝑡 , … ,𝑦𝑦𝑇𝑇) ~ 𝐺𝐺𝜃𝜃 

09:  for 𝑡𝑡 in 1:𝑇𝑇 do 

10: Calculate 𝑄𝑄(𝑎𝑎 = 𝑦𝑦𝑡𝑡; 𝑠𝑠 = 𝑌𝑌1:𝑡𝑡−1) by Eq. (1.1) 

11:  end for 

12:  Update generator settings using policy gradients.  

Eq.(1.3) 

13: end for 

14: for d-steps do 

15:  Use current 𝐺𝐺𝜃𝜃 to generate negative examples and 

combine with specified positive examples, 𝑆𝑆 

16:  Train discriminator 𝐷𝐷𝜙𝜙 for 𝑘𝑘 epochs using Eq. (1.4) 

17: end for 

18: 𝛽𝛽 ←  𝜃𝜃 

19: until SeqGAN converges 

Algorithm 1.1:   The algorithm framework of SeqGAN with policy gradient 

 

The algorithm for integrating SeqGAN with policy gradient methods 

is shown in Algorithm 1.1. In the initialization phase, the step involves 

initializing the generator model 𝐺𝐺𝜃𝜃, discriminator model 𝐷𝐷𝐷𝐷, and roll-out policy 

𝐺𝐺𝛽𝛽 with stochastic weights. This setup employs sequence data 𝑆𝑆 = {𝑋𝑋1:𝑇𝑇} for 

training, aligning with the preparatory requirements outlined by Yu et al. (2017). 

Sequentially, 𝐺𝐺𝜃𝜃 undergoes pre-training utilizing Maximum Likelihood 

Estimation (MLE) on 𝑆𝑆 , paralleled by the discriminator 𝐷𝐷𝐷𝐷's training to 

minimize cross-entropy, thus enhancing its capability to differentiate between 

genuine and synthetically generated sequences. The roll-up policy is employed 

to complete the partial sequence. The Q-function is defined as: 

 

𝑄𝑄𝐷𝐷𝜙𝜙
𝐺𝐺𝜃𝜃 (𝑠𝑠 = 𝑌𝑌1:𝑡𝑡−1,𝑎𝑎 = 𝑦𝑦𝑡𝑡) 
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= �
1
𝑁𝑁
� 𝐷𝐷𝜙𝜙

𝑁𝑁

𝑛𝑛=1
(𝑌𝑌1:𝑇𝑇

𝑛𝑛 ),   𝑌𝑌1:𝑇𝑇
𝑛𝑛  ∈  𝑀𝑀𝐶𝐶𝐺𝐺𝛽𝛽(𝑌𝑌1:𝑡𝑡;𝑁𝑁)   for   t < T

𝐷𝐷𝜙𝜙�𝑌𝑌1;𝑡𝑡�                                                                for  t = 𝑇𝑇
 (1.1) 

 

MC refers to the sampling set as follows: 

 

 {𝑌𝑌1:𝑇𝑇
1 }, … , {𝑌𝑌1:𝑇𝑇

𝑁𝑁 } =  𝑀𝑀𝑀𝑀𝐺𝐺𝛽𝛽(𝑌𝑌1:𝑡𝑡;𝑁𝑁) (1.2) 

 

The standard policy gradient is as follows:  

 

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼ℎ𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃) (1.3) 

 

The discriminator loss is as follows: 

 

 min
𝜙𝜙

− 𝐸𝐸𝑌𝑌~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�log𝐷𝐷𝜙𝜙(𝑌𝑌)� − 𝐸𝐸𝑌𝑌~𝐺𝐺𝜃𝜃 �log�1 − 𝐷𝐷𝜙𝜙(𝑌𝑌)�′� (1.4) 

 

In the pre-training stage of the process, the generator 𝐺𝐺𝜃𝜃  undergoes 

preliminary training by using MLE based on the sequence data 𝑆𝑆. Concurrently, 

the discriminator, 𝐷𝐷𝐷𝐷 is trained to minimize cross-entropy, enhancing its ability 

to distinguish between genuine and artificially generated sequences. This dual 

training approach is foundational, setting the stage for the more subtle 

adversarial training dynamics that follow. 

 

During the adversarial training phase, the generator begins a series of 

refinement steps, known as G-steps. In each iteration, it crafts sequences 𝑌𝑌1:𝑇𝑇 =

(𝑦𝑦1, … ,𝑦𝑦𝑇𝑇). with every timestep t calculated through the action-value function 

𝑄𝑄(𝑎𝑎 = 𝑦𝑦𝑡𝑡; 𝑠𝑠 = 𝑦𝑦1:𝑡𝑡−1). This function aims to predict the expected rewards for 

actions 𝑦𝑦𝑡𝑡 within the context of the sequences generated thus far. The primary 

goal during these steps is to adjust the generator's parameters (𝜃𝜃) via policy 

gradient methods, thereby maximizing the expected rewards for the generated 

narratives. This methodical refinement ensures that the generator learns to 

produce sequences that are not only coherent but also align closely with the 

desired outcomes. 
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Simultaneously, the discriminator undergoes optimization through D-

steps. It utilizes the currently refined 𝐺𝐺𝜃𝜃 to generate negative samples, which 

are then mixed with positive examples from 𝑆𝑆. This mix is used to train 𝐷𝐷𝐷𝐷 over 

several epochs, significantly improving its discriminative power. By accurately 

identifying genuine from generated sequences, 𝐷𝐷𝐷𝐷 provides critical feedback 

that informs further refinements to 𝐺𝐺𝜃𝜃. 

 

The iterative process of adversarial training continues until a 

convergence condition is met. This point of convergence is characterized by the 

generator's ability to produce sequences that the discriminator cannot easily 

distinguish from real data. Achieving this milestone signifies a successful 

adversarial training process, indicating that the generator and discriminator 

models have been finely tuned to work in tandem, producing high-quality, 

realistic sequences. This marks a crucial step forward in the development of 

generative models, pushing the boundaries of what's possible with artificial 

sequence generation. 

 

The integration of SeqGAN with policy gradient methods represents a 

significant stride towards solving the challenges of text generation in generative 

AI. Through this novel approach, this research not only contributes to the 

theoretical understanding of generative models and reinforcement learning but 

also paves the way for new applications and improvements in AI-driven text 

generation technologies. 

 

The research aims to utilize reinforcement learning to directly optimize 

the sequence generation process and focus on the end goal of producing 

coherent and contextually rich text. This method addresses the inherent 

limitations of traditional SeqGAN by enhancing the model's ability to maintain 

narrative consistency over longer sequences. It also provides a framework for 

fine-tuning generative models based on holistic sequence quality, rather than 

immediate next-token predictions. 
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1.2 Importance of the Study 

Generative artificial intelligence has reached a new peak in innovation in 

machine learning with the combination of deep reinforcement learning 

mechanisms. In generative AI, Sequence Generative Adversarial Networks 

(SeqGANs) have played a role in text sequence generation due to their 

capability to generate text sequences that reflect human-like coherence. (Yu, et 

al., 2017). While successful in generating shorter forms of text, SeqGANs 

struggle to generate longer forms of text as their performance declines with 

long-term contextual dependencies. (Holtzman, et al., 2019) 

 

Due to the well-established learning mechanism that involves trial and 

error, policy gradient methods have a better chance to help SeqGANs improve 

their coherence and text length. (Espeholt, et al., 2018; Sutton & Barto, 2018). 

However, there is little work done to understand how the policy gradient 

methods are compatible with different SeqGAN architectures for different 

categories of text generation tasks. (Liu, et al., 2020) 

 

This research aims to fill this gap by not only exploring and evaluating 

the compatibility of different combinations of SeqGAN architectures but to also 

provide a general understanding of their dynamics in text generation which is 

because of fundamental importance for the optimization of many text generation 

tasks. From a commercial angle, this study can be implemented to enhance 

content writing, marketing, education, and customer service through automated 

content generation. 

 

Therefore, this research is not only about discovering the opportunities 

for integrating SeqGAN and DRL but is also an essential possibility to take an 

initial step to develop the use of generative AI to the whole extent of text 

creation. The expected outcomes of this study show how much impact this work 

may have on the development of natural language processing and dialogue 

systems. 
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1.3 Problem Statement 

1.3.1 Optimization Challenges in SeqGAN 

The advent of Sequence Generative Adversarial Networks (SeqGANs) has 

significantly improved text generation that approximates human-level 

coherence and creativity. However, it has faced some challenges that hinder its 

performance as the applications expand. The training of SeqGAN is inherently 

unstable due to the adversarial nature of the process. The generator aims to 

create sequences that are unidentifiable from real sample, while the 

discriminator tries to identify the real from the generated sequence correctly. 

This adversarial training can lead to oscillations, where the generator and 

discriminator unable to converge, causing the model to not improve or even 

worsen over time. Besides that, when the generator learns to produce only a few 

variations of sequences the discriminator cannot easily identify as fake which 

will cause the model to collapse. As a result, the generated text will lack 

diversity. This will cause it to produce repetitive and similar outputs which 

reduce the quality of the generated content. 

 

Krivosheev et al. (2021) highlighted the critical impact of batch size on 

SeqGAN performance, revealing a delicate balance between computational 

efficiency and the quality of generated text. Smaller batches tend to produce 

more diverse text but can increase training instability. In contrast, larger batch 

sizes may lead to faster convergence but often result in reduced diversity, 

leading to repetitive and homogeneous outputs. This points to broader 

optimization challenges within SeqGAN frameworks that significantly affect 

the quality and utility of generated text. 

 

1.3.2 Repetition and Lack of Text Coherence 

SeqGAN often struggles with producing coherent and non-repetitive text, 

especially for longer sequences. During training, the generator might fall into 

patterns that produce repetitive text, which makes the output less interesting and 

engaging. This repetition occurs because the generator might find it easier to 

generate familiar patterns that the discriminator has previously failed to identify 

as fake. 
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Besides that, generating long-form text with a consistent narrative is 

particularly challenging. SeqGAN can generate short and coherent sequences. 

However, as the text length increases, it is difficult to maintain a logical flow 

and context. The model often loses track of the narrative, resulting in disjointed 

and incoherent text. Lagutin et al. (2021) demonstrated that policy gradient 

reinforcement learning could refine text generation processes, reducing 

repetition and improving coherence. 

 

1.3.3 Lack of a Comprehensive Integration Framework 

Despite these advancements, a comprehensive framework for integrating 

SeqGANs with DRL, while leveraging insights from continuous adversarial 

learning and semantic-enhanced representation is currently lacking. Combining 

the strengths of adversarial learning (GANs) and reinforcement learning (policy 

gradients) in a unified framework remains an underexplored area. Developing a 

robust methodology to seamlessly integrate these techniques is essential for 

improving the performance of SeqGAN models. There is a need for a structured 

approach to evaluate different combinations of SeqGAN architectures and 

policy gradient methods. This involves systematically analyzing the interaction 

dynamics between various architectures and DRL algorithms to identify the 

most effective configurations for specific text generation tasks.  

Zhang et al. (2022) provide valuable insights into adversarial learning 

in continuous text feature space and suggest several pathways for improving 

SeqGAN architectures, including the use of adversarial feature matching to 

align real and generated text distributions, mitigating high-variance gradient 

estimations for stable training, and integrating transformer models to better 

capture long-range dependencies and contextual information. However, these 

enhancements need to be integrated and evaluated within a comprehensive 

framework to determine their effectiveness in practical applications. 

 

1.4 Aim and Objectives 

This research project seeks to compare the performance of different 

combinations formed by combining SeqGAN with various policy gradient 

methods. There are four objectives have been set and presented below: 
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i． To explore the cooperation effects between various SeqGAN 

architectures and policy gradient methods, aims to improve narrative 

coherence measured by BLEU scores and custom narrative consistency 

indices. This includes mapping the dynamics interaction between the 

two categories to identify those that improve narrative coherence and 

contextuality by a significant margin. It is essential to align with the 

project’s overall objective of building more sophisticated generative 

text models. 

 

ii． To analyze how different SeqGAN architectures affect the coherence 

of generated textual content when integrated with policy gradient 

method, influence the coherence of generated textual content. The 

parameters will be coherence metrics, such as BLEU scores, as well as 

the development of a narrative consistency index. This assessment will 

cut across most types of content, such as scripts, articles, and 

standalone narratives. 

 

iii． To explore the impact of neural network configurations within 

SeqGAN models optimised with policy gradient methods, focusing on 

variables, for instance, the number of hidden layers, activation 

functions, and overall network dimensions. The goal is to identify 

optimal configurations that will fully capture on the ability to capture 

long-range dependencies, narrative structure, and contextual relevance. 

 

1.5 Scope and Limitation of the Study 

The scope of this study exceeds the fundamental integration of policy gradient 

methods with SeqGAN architectures to improve text generation. In particular, 

it is broadened by multiple findings associated with the investigated regulatory 

mechanisms and penalties. This research aims to understand how different 

regulatory strategies affect the learning process, particularly in terms of model 

adherence to narrative coherence and the mitigation of common generative text 

issues such as repetition and divergence from context. 
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Apart from computational experiments on SeqGAN and the 

performance of policy gradient methods, this research applies a systemic 

approach to testing the impact of various regulators and penalties, including 

“reward shaping”, “regularization”, and custom-designed penalty functions that 

are created to improve text generation. To measure the effectiveness of 

regulatory mechanisms, both qualitative and quantitative metrics will be 

introduced and tested across different datasets, such as BLEU scores for 

coherence and custom narrative consistency indices. 

 

The exploration into regulators and penalties was assumed as a 

hypothesis that regulated work and specially calibrated constraints can 

significantly boost the generative capacity of SeqGAN models, especially in 

terms of producing coherent contextually rich texts. This part of the research is 

particularly focused on identifying strategies that can simultaneously advance 

text quality and models’ ability to perform while staying adaptive to many forms 

of text. 

 

Although investigating regulations and penalties might improve 

SeqGAN's text generation skills, it complicates the process of designing and 

optimizing the model. It increases computational costs and risks over-regulation, 

potentially harming the model's creativity and leading to repetitive outputs. 

Moreover, finding the optimal balance between regulatory constraints and 

creative freedom remains a challenging commitment, potentially affecting the 

scalability of proposed solutions. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In recent years, Artificial intelligence (AI) has undergone a resurgence in the 

development of advanced machine-learning models capable of producing 

especially in human-like writing. Generative Adversarial Networks (GANs) like 

Sequence Generative Adversarial Networks (SeqGANs) have emerged as a 

powerful tool in the AI toolkit. It possesses the ability to produce content that 

often eliminates the boundary between human and machine-generated text. This 

literature review explores SeqGANs and their integration with Deep 

Reinforcement Learning (DRL) techniques to push the envelope in text 

generation. DRL that will be focusing in this literature review will be the policy 

gradient methods 

 

Despite advances in natural language processing (NLP), text 

generation with consistent quality remains a key research problem such as 

preserving coherence, maintaining thematic focus, and ensuring novelty across 

extended outputs are significant hurdles. Combining Sequence Generative 

Adversarial Networks (SeqGANs) with policy gradient techniques offers a 

potential solution to improve the capacity of language models in content 

generation. 

 

This chapter provides a comparative overview of the developments in 

GANs and SeqGANs, underscoring the evolutionary strides made from their 

inception to their current applications. A critical analysis of policy gradient 

methods will illuminate their role and potential in refining SeqGANs, while a 

discussion on hyperparameter tuning will unravel strategies to optimize these 

complex models effectively. Innovations in model architecture, evaluation 

metrics, and regulatory mechanisms are examined through the lens of 

comparative synthesis to distil their effectiveness in enhancing text generation. 
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Moreover, the literature review identifies key research gaps and 

opportunities that have surfaced amidst these advancements. By systematically 

dissecting and juxtaposing seminal works and recent innovations, this review 

sets the stage for subsequent chapters, where a comprehensive methodology is 

designed to explore, test, and possibly transcend the existing boundaries of 

generative AI. 

 

As AI continues to weave itself into the fabric of digital society, 

understanding its potential and limitations in creating coherent and extensive 

narratives is more than an academic pursuit; it is a step towards harnessing AI’s 

full potential in transforming how we produce and interact with textual content 

across various sectors. 

 

2.2 Generative Adversarial Networks and SeqGAN: Comparative 

Overview 

Generative Adversarial Networks (GANs) and Sequence Generative 

Adversarial Networks (SeqGANs) are innovative frameworks in the field of 

machine learning that address different aspects of generative modelling. This 

section provides an overview of both GANs and SeqGANs, examining their 

architectures, methodologies, and comparative strengths and weaknesses. 

 

2.2.1 Generative Adversarial Networks (GAN) 

Generative Adversarial Networks (GAN), first proposed by Goodfellow et al. 

(2014), have rapidly evolved into one of the most successful generative models 

in the field of machine learning. GAN consists of two neural networks: a 

generator and a discriminator. Both of them are trained concurrently using 

adversarial methods. The generator learns to create data that is identical to and 

indistinguishable from genuine data, while the discriminator improves their 

capacity to discriminate between them. 
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Figure 2.1: Structure of GANs 

 

Figure 2.1 illustrates a fundamental view of the GANs architecture, 

where a generator creates samples that are evaluated by a discriminator. The 

generator takes a random seed (input noise) and generates fake data. Where the 

discriminator is exposed to two types of input data: real data samples from a 

dataset and fake data produced by the generator. The goal of the generator is to 

create fake data to fool the Discriminator, which tries to get better at 

distinguishing real images from synthetically generated ones. The discriminator 

learns to classify between real and generated fake data, and outcome a judgment 

of  “real or fake” based on its assessment. The bidirectional flow of information 

and feedback leads to the continuous improvement of both networks. GAN 

utilize a dual-network architecture where both the generator and discriminator 

are implemented as Multilayer Perceptrons (MLPs).  

 

2.2.1.1 Multilayer Perceptrons (MLPs) 

Multilayer Perceptrons (MLPs) are important neural network architectures that 

have multiple layers of perceptrons or neurons. These layers are fully connected 

and each connection has a weight that is adjusted during the training process. 

(Goodfellow, et al., 2014). The generator's MLP takes a random noise vector as 

input and transforms it into data that copies the target distribution. The 

discriminator's MLP then attempts to classify the data as real or fake. The use 

of MLPs in both networks is critical as it allows for a backpropagation-friendly 

environment, where gradients can be computed efficiently, enabling the 

networks to learn and adapt through the adversarial training process. 
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Figure 2.2: Architecture of  Multilayer Perceptrons (MLPs) 

 

Figure 2.2 illustrates an architecture of multilayer perceptrons (MLPs) 

which consists of three layers, which are input layer, hidden layer, and output 

layer. Each circle represents a neuron and different layers of neurons are 

interconnected by weighted connections. These weights adjust during the 

training process. In the first layer, the input layer, the model receives input data. 

Each of the neurons represents one feature of the input data. Moving on to the 

next layer, the intermediate layers, process the inputs received from the previous 

layer by applying weights, biases, and typically non-linear activation functions. 

These layers extract features and learn representations. The final layer produces 

the model's output. In a classification task, these neurons typically represent the 

classes the model is trying to predict. In addition, each layer except for the input 

layer includes bias neurons. They allow the model to fit the data better. The bias 

neurons add an extra parameter to the model, which adjusts along with the 

weights to enhance the model's ability to fit complex patterns. Black lines 

represent the connections between neurons of sequential layers, and each 

connections have an associated weight. These weights determine the strength 

and direction of the influence one neuron has on another. 

 

Besides GAN, MLPs also are adept at the discriminator's role within 

SeqGANs. It evaluates and provides binary feedback on whether a sequence is 
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real or generated due to its well-suited structure for classifying fixed-

dimensional input data. 

 

2.2.2 Sequence Generative Adversarial Nets 

Sequence Generative Adversarial Nets (SeqGANs) have established themselves 

as a powerful approach for generating realistic and coherent textual sequences 

(Yu et al., 2016). It integrates reinforcement learning techniques with generative 

adversarial networks to effectively train a sequence generator. SeqGANs 

modify the standard of the GAN framework to generate textual data which is 

sequential and discrete by nature (Yu et al., 2016).  

 

 

Figure 2.2 demonstrates the structure of SeqGANs. The generator, G 

operates as a reinforcement learning agent, where each action is the generation 

of the next token in a sequence. It produces sequences that are evaluated by the 

discriminator. As for the discriminator, D evaluates the quality of entire 

sequences, providing rewards to the generator. The generator will then use the 

rewards to adjust its parameters through policy gradient methods. 

 

Unlike GANs, SeqGAN provides feedback at multiple points in the 

sequence, allowing the generator to adjust its strategy dynamically, enhancing 

the overall quality of the sequence generation. Besides that, SeqGANs use 

Monte Carlo Tree Search (MCTS) to estimate reward signals enabling effective 

handling of the discrete nature of sequence generation, making it adept at tasks 

that require maintaining the integrity and contextuality of sequences such as in 

natural language processing. 
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Figure 2.4 presents the Monte Carlo Tree Search (MCTS) process. Monte Carlo 

Tree Search is a heuristic search algorithm for some kinds of decision processes 

(Duarte, et al., 2020). MCTS is used to manage the sequence generation process 

as a decision-making problem, where each choice of a token to add to the 

sequence can be seen as a move in a game (Duarte, et al., 2020). The algorithm 

begins with a selection process by traversing the existing nodes of the tree 

(representing the sequence decisions made so far) and choosing the most 

promising one based on a policy (Duarte, et al., 2020). Upon reaching a leaf 

node, the tree is expanded by adding one or more child nodes. This represents 

the next possible tokens in the sequence. After that, a simulation will be run 

from the new nodes to the end of the sequence by using a simpler model or 

random sampling to estimate the outcome (Duarte, et al., 2020). The results of 

the simulation are then back-propagated through the tree. It will then update the 

nodes with the new data to better inform future selection processes. SeqGAN 

incorporates MCTS to evaluate the potential of each decision during sequence 

generation and the generator to receive intermediate rewards from the 

discriminator (Duarte, et al., 2020). This assists in modelling the decision-

making process involved in sequence generation as a Markov decision process, 

with the MCTS providing a framework for estimating the long-term rewards of 

actions (token choices) that do not have immediate feedback (Duarte, et al., 

2020). 
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SeqGANs consist of two key components in their architecture which are 

Encoder–Decoder Network and adversarial training. 

 

2.2.2.1 Encoder-Decoder Network 

The Encoder-Decoder Network is a neural network design that is frequently 

used for various tasks in machine learning, including natural language 

processing (NLP) and computer vision. It often employs RNNs like Long Short-

Term Memory (LSTM) or Gated Recurrent Units (GRU) (Hochreiter & 

Schmidhuber, 1997; Cho et al., 2014), which allows them to capture the 

sequential nature of language and generate text that adheres to grammatical rules 

and stylistic elements (Vaswani et al., 2017). This has led to their successful 

application in various tasks like machine translation, creative writing, and 

dialogue systems. 

 

 

Figure 2.4 illustrates the architecture of an Encoder-Decoder model with 

Recurrent Neural Networks (RNNs). The encoder gets the essence of the input 

sequence into a single vector, and the decoder uses this vector to generate the 

output sequence. The encoder processes an input sequence (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … ) step 

by step. At each time step, an RNN unit takes an input token and a hidden state 

from the previous step as input and generates a new hidden state. The encoder 

vector is the last hidden state (ℎ3 ) produced by the encoder. It acts as a 

representation of the input sequence that obtains the information for the decoder. 

After that, the decoder will then take the encoder vector as its initial hidden state 

and start generating the output sequence one step at a time. At each step, it 
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produces an output token (y1, y2, ...) and a new hidden state that is fed into the 

next step. In the end, the encoder's final hidden state is used to initialize the 

decoder’s hidden state. It creates a bridge between the encoder and the decoder. 

 

Generative Adversarial Networks (GANs) and Sequence Generative 

Adversarial Networks (SeqGANs) have provided a striking reflection of the 

advancements in machine learning architectures tailored to generative tasks. 

Each of them brings a unique perspective to generative modelling. GANs 

employ a dual-network structure of Multilayer Perceptrons (MLPs) for 

generating and discriminating between data, facilitating their success in 

producing high-quality, continuous data such as images. Their adversarial 

framework has spurred a multitude of applications, proving the model's 

versatility and power in various domains. 

 

SeqGANs, on the other hand, extend the GAN framework to the 

domain of sequence generation. Through the incorporation of Recurrent Neural 

Networks (RNNs) or Long Short-Term Memory (LSTM) networks in the 

generator, SeqGANs capture the complexities of sequential data like text. They 

adeptly handle the intricacies of language, such as grammar and style, necessary 

for natural language processing applications. Meanwhile, the discriminator, 

often realized through MLPs or Convolutional Neural Networks (CNNs), 

provides subtle feedback, enhancing the generator's ability to produce sequences 

that are consistent and contextually appropriate. 

 

The utilization of Monte Carlo Tree Search (MCTS) within SeqGANs 

exemplifies the integration of advanced decision-making algorithms with 

generative models. MCTS in SeqGANs evaluates potential sequence decisions, 

offering a robust framework for handling the discrete nature of text generation. 

This integration enables the generator to adapt its strategy dynamically, learning 

to predict the discriminator’s response to different sequences, and refining the 

sequence generation process. 

 

Table 2.1 and Table 2.2 is the comparison between the two models by 

highlighting their structures and operational dynamics. 
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Table 2.1: Feature Comparison of GAN and SeqGAN 

Feature GANs SeqGANs 
Main Idea • Two neural networks 

compete in a game 
theory framework. 

• Extends GANs to 
sequence generation with 
a focus on discrete 
outputs like text. 

Output Type • Continuous data 
• Example:  images 

• Discrete sequences 
• Example: text 

Architectural 
Basis 

• Multilayer Perceptrons 
(MLPs) for both 
generator and 
discriminator. 

• RNNs or LSTMs for the 
generator to handle 
sequences 

• MLPs or CNNs for the 
discriminator. 

Training 
Feedback 

• Binary feedback (real 
vs. fake) at the end of 
discriminator 
evaluation. 

• Sequential feedback with 
intermediate rewards 
using policy gradients 

• Use to improve learning 
from partial sequences. 

Application 
Domain 

• Image generation 
• Art creation 
• Photo enhancement 

• Text generation 
• Machine translation 
• Dialogue system 

Key 
Innovations 

• Eliminates the need for 
Markov chains 

• Inference during 
learning 
• Incorporate 

complex, sharp 
distributions. 

• Integrates Monte Carlo 
Tree Search to evaluate 
policy rewards and 
manages the discrete 
nature of the text. 

Usability and 
Flexibility 

• High usability in visual 
contexts 

• Less effective with 
discrete data. 

• High flexibility with 
sequential data 

• Models dependencies and 
contexts effectively. 

 

 

Table 2.2: Training Process Comparison of GAN and SeqGAN 

Training 
Aspect 

GANs SeqGANs 

Objective • Discriminator 
maximizes real vs. fake 
classification accuracy 

• Generator maximizes 
expected reward through 
discriminator's evaluation 
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• Generator minimizes 
discrimination 

Complexity 
Handling 

• Manages pixel-level 
data distributions 

• Manages temporal 
dependencies and 
contextual relevance 

Feedback 
Mechanism 

• At the end of the 
discriminator's 
evaluation 

• Throughout the sequence 
generation 

Optimization 
Technique 

• Backpropagation 
• Adversarial training 

• Backpropagation 
• Policy gradient methods 
• Monte Carlo Tree Search 

(MCTS) 
Typical Use 
Case 

• Static data generation • Dynamic, contextual data 
generation 

 

The integration of advanced neural network architectures and strategic 

decision-making algorithms in GANs and SeqGANs has significantly advanced 

the ability of generative models. SeqGANs have opened up new possibilities in 

the generation of text. It shows the adaptability and transformative potential of 

the models across various domains of application. 

 

2.3 Comparative Analysis of Policy Gradient Methods 

Policy gradient acts as an agent that interacts within the environment and offers 

a framework to train the model in reinforcement learning. The SeqGAN model 

helps on tasks where decision-making is sequential and the objectives are long-

term. The policy gradient’s goal is to optimize the policy directly (a model's 

strategy for action selection) by maximizing the expected cumulative reward. 

This optimization is achieved by adjusting the policy parameters in a direction 

to make the probability of successful actions increases (Sutton & Barto, 2018). 

 

2.3.1 Policy Gradient Algorithms 

Several policy gradient methods have been proposed and each of them has its 

approach to balance the two critical aspects of learning in uncertain 

environments: exploration and exploitation. This section will describe 

REINFORCE (Williams, 1992), which serves as the basis for many subsequent 

algorithms; Trust Region Policy Optimization (TRPO), known for its stable 

convergence properties (Schulman, et al., 2015) and Proximal Policy 
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Optimization (PPO), which simplifies and improves upon TRPO (Schulman, et 

al., 2017). 

 

2.3.1.1 REINFORCE 

REINFORCE is one of the policy gradient algorithms fundamental to 

reinforcement learning.  It was introduced by Williams in 1992. It stands out for 

its straightforward approach to policy optimization and utilizes Monte Carlo 

methods to estimate the gradient of the expected reward directly. In contrast to 

value-based methods, its simplicity allows the direct optimization of the policy 

without the need for a value function estimator (Williams, 1992). The core 

principle of REINFORCE lies in the utilization of the complete returns from 

episodes to perform policy updates. It alters policy parameters in a way that 

raises the likelihood of actions that lead to higher returns. This is accomplished 

by computing the gradient of the expected return to the policy parameters, which 

are then used to execute gradient ascent. The predicted return is calculated 

through sampling, and the update is proportionate to the return. The gradient of 

the log probability of the taken actions will integrate exploration naturally into 

the policy updates. Its core equation can be stated as 

 

 𝛥𝛥𝛥𝛥 = 𝛼𝛼 ⋅ 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑠𝑠, 𝑎𝑎) ⋅ 𝑅𝑅 (2.1) 

 

Where Δθ represents the change in the policy parameters, 𝛼𝛼 is the learning rate, 

𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑠𝑠,𝑎𝑎)  is the gradient of the logarithm of the policy 𝜋𝜋𝜋𝜋 for its 

parameters 𝜃𝜃, given that 𝑠𝑠 is the state and 𝑎𝑎 is the action. 𝑅𝑅 is the reward signal, 

which assesses the quality of action, 𝑎𝑎 taken in the state, 𝑠𝑠. The reward R can be 

particularly challenging to define for text generation, as it often only becomes 

clear at the end of the sequence. 

 

 

The integration of REINFORCE within SeqGAN is a natural 

progression, given SeqGAN's structure that mirrors an environment with 

sequential decision-making and delayed rewards, typical in natural language 

processing tasks. SeqGAN modifies the traditional GAN framework to tackle 

the discrete and sequential nature of text, rendering standard backpropagation 
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methods ineffective due to the non-differentiability of the sampling process. 

REINFORCE comes into play as an elegant solution to this problem. By 

formulating text generation as a reinforcement learning task, REINFORCE 

allows SeqGAN to navigate the sequential construction of text where the signal 

of success—a cohesive and contextually appropriate sequence—is only 

apparent at the end (Yu, et al., 2017). 

 

Algorithm 2: REINFORCE 

01: Input: a differentiable policy parameterization 𝜋𝜋(𝑎𝑎|𝑠𝑠,𝜃𝜃) 

02: Algorithm policy parameter 𝜃𝜃 ∈  ℝ𝒅𝒅′(example, to 0) 

03:  for each episode 𝑆𝑆0,𝐴𝐴0,𝑅𝑅1, … , 𝑆𝑆𝑇𝑇−1,𝐴𝐴𝑇𝑇−1,𝑅𝑅−1, following 𝜋𝜋(⋅ | ⋅,

𝜃𝜃) 

04:  for t = 1 to T – 1, do 

 
𝐺𝐺 ←� 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1
 

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼𝛾𝛾𝑡𝑡𝐺𝐺𝐺𝐺 ln𝜋𝜋(𝐴𝐴𝑡𝑡|𝑆𝑆𝑡𝑡 ,𝜃𝜃) 

05: end for 

06: end for 

07: return 𝜃𝜃 

Algorithm 2.1:  Algorithm of REINFORCE 

 

Chen et al. (2018) demonstrated the efficacy of REINFORCE in a 

complex, real-world recommender system, suggesting its potential when 

adapted to SeqGAN for text generation. The critical observation from their 

implementation was the need for off-policy correction to mitigate biases from 

historical data. This insight translates into SeqGAN's learning environment, 

where the generator must adjust based on the discriminator's evolving criteria 

for what constitutes 'real' text, and hence the policy needs to be robust to shifts 

in the data distribution. 

 

While REINFORCE provides a direct method for optimizing policies 

based on long-term rewards, its application within SeqGAN is not without 

challenges. The high variance in gradient estimates inherent to REINFORCE 

can lead to unstable training and slow convergence, which is particularly 
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problematic in the context of SeqGAN where the policy space is vast and 

complex. Methods to reduce variance, such as introducing a baseline or 

employing reward-shaping techniques, are essential considerations for 

improving SeqGAN's training efficiency. 

 

2.3.1.2 Trust Region Policy Optimization (TRPO) 

Trust Region Policy Optimization (TRPO) is a policy gradient method that 

tackles the stability and efficiency difficulties raised by previous policy gradient 

methods such as REINFORCE. Originally proposed by Schulman et al. (2015), 

TRPO aims to take the largest possible improvement step on a policy without 

causing the collapse of performance. It aims to make it highly suitable for 

problems involving high-dimensional, continuous action spaces (Schulman et 

al., 2015). 

 

TRPO extends the standard policy gradient approach by incorporating 

a trust zone constraint to limit the extent of policy changes. This constraint is 

implemented using the KL-divergence to ensure the new policy is not too far 

from the old policy, thus maintaining the stability of the learning updates. The 

objective function of TRPO can be expressed as 

 

 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝐸𝐸𝑠𝑠,𝑎𝑎 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 �
𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠 )
𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎∣𝑠𝑠 )  𝐴𝐴𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑎𝑎)�  (2.2) 

 

subject to 

 

𝐸𝐸𝑠𝑠 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝐷𝐷𝐾𝐾𝐾𝐾(𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(⋅∣ 𝑠𝑠) ∥ 𝜋𝜋𝜃𝜃(⋅∣ 𝑠𝑠))] ≤ 𝛿𝛿  (2.3) 

 

Where 𝜋𝜋𝜃𝜃 and 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 are the new and old policies parameterized by 𝜃𝜃, 𝐴𝐴𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜 is 

the beneficial function under the old policy and 𝛿𝛿 is a small constant that defines 

the extent of the trust region. The figure below presents the Algorithm of TRPO. 

 

Algorithm 3: Trust Region Policy Optimization 

Require: Hyperparameters: Maximum number of backtracking steps K; 

Backtracking coefficient α; KL-divergence limit 𝛿𝛿.  
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01: Input: initial parameters 𝜃𝜃0, initial value function 𝜙𝜙0. 

02: for k = 0, 1, 2, 3 ... do 

03: Collect a set of trajectories 𝐷𝐷𝑘𝑘  =  {𝝉𝝉𝑖𝑖} by running policy 

𝜋𝜋𝑘𝑘 =  𝜋𝜋(𝜃𝜃𝑘𝑘) in the environment. 

04: Calculate rewards-to-go 𝑅𝑅�𝑡𝑡. 

05: Calculate advantage estimates, 𝐴̂𝐴𝑡𝑡 (using any method of 

benefit estimation), based on the current value function. 𝑉𝑉𝜙𝜙𝜙𝜙 

06: Estimate gradient policy as 

 
𝑡𝑡ℎ𝑒𝑒 𝑔𝑔�𝑘𝑘 =

1
|𝐷𝐷𝑘𝑘| � �𝛻𝛻𝜃𝜃log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)|𝜃𝜃𝑘𝑘𝐴̂𝐴𝑡𝑡

𝑇𝑇

𝑡𝑡=0𝝉𝝉∈𝐷𝐷𝑘𝑘

⋅ 

07: Calculate using the conjugate gradient algorithm. 

 𝑥𝑥�𝑘𝑘 ≈ 𝐻𝐻�𝑘𝑘−1𝑔𝑔�𝑘𝑘 

 Where the Hessian of the sample average KL-divergence., 

denoted as  Ĥ𝑘𝑘. 

08: Retrace the line of search to update the policy. 

 
𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼𝑗𝑗�

2𝛿𝛿
𝑥𝑥�𝑘𝑘𝑇𝑇𝐻𝐻�𝑘𝑘𝑥𝑥�𝑘𝑘

𝑥𝑥�𝑘𝑘 

 where j ∈ {0,1,2, ... K} is the lowest number that improves 

sample loss and meets the sample KL-divergence 

requirement. 

09: Fit the value function using regression on mean-squared 

error: 

 
𝑡𝑡ℎ𝑒𝑒 𝜙𝜙𝑘𝑘+1 = arg min

1
|𝐷𝐷𝑘𝑘|𝑇𝑇

� ��𝑉𝑉𝜙𝜙(𝑠𝑠𝑡𝑡) − 𝑅𝑅�𝑡𝑡�
2

𝑇𝑇

𝑡𝑡=0𝝉𝝉∈𝐷𝐷𝑘𝑘

 

10: typically via some gradient descent algorithm. 

11: end for 

Algorithm 2.2:  Algorithm of TRPO 

 

Implementing TRPO in the SeqGAN framework helps to optimize the 

generator’s policy in generating sequences. Given the sequential and discrete 

nature of text generation tasks in SeqGAN, TRPO’s strength in parameter 

updates plays a crucial role in maintaining the stability of training when the 
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discriminator's feedback changes the landscape of the policy's performance 

surface. The stability introduced by the trust region helps mitigate issues related 

to catastrophic forgetting and sharp performance degradation. 

 

Despite its advantages, the incorporation of TRPO into SeqGAN 

presents unique challenges which discrete action spaces. TRPO is inherently 

designed for continuous actions that complicate its direct application to the 

discrete token selections in SeqGAN. Adaptations are included when modifying 

TRPO to support discrete actions that approximate the continuous methods. 

This method will introduce biases or inefficiencies (Schulman et al., 2015). 

Besides that, the other challenge is the computational complexity of  TRPO. The 

use of second-order optimization methods (i.e., calculating the Hessian) is 

computationally expensive which causes TRPO to become less scalable for 

large sequence models compared to first-order methods like those used in 

Proximal Policy Optimization (PPO) (Schulman, et al., 2015). 

 

TRPO offers a theoretically sound and stable approach for optimizing 

policy gradients in challenging environments. While SeqGAN’s application is 

non-trivial, it provides a framework for improving the strength and reliability of 

sequence generation models in the face of dynamic and complex discriminator 

behaviours (Schulman, et al., 2015). 

 

2.3.1.3 Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is a policy gradient method that refines the 

ideas of Trust Region Policy Optimization (TRPO) into a more practical 

framework. PPO was introduced by Schulman et al. in 2017. It retains the core 

concept of trust regions but simplifies the optimization process by using a 

clipped surrogate objective. This has made it computationally less intensive and 

easier to implement (Schulman et al., 2017). PPO addresses the complexities of 

policy optimization by clipping the probability ratio which discourages large 

deviations from the old policy. The clipped objective function of PPO is defined 

as 

 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) = 𝐸𝐸�𝑡𝑡�min� 𝑟𝑟𝑡𝑡(𝜃𝜃)�𝐴̂𝐴𝑡𝑡 , clip�𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀) 𝐴̂𝐴𝑡𝑡�� 
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where 𝜃𝜃  is the policy parameter, 𝐸𝐸�𝑡𝑡  denoted the empirical expectation over 

timesteps. 𝑟𝑟𝑡𝑡 is the ratio of the probability under old and new policy. 𝐴̂𝐴𝑡𝑡is the 

estimated advantage time t. 𝜀𝜀 represent the hyperparameter which is usually 

around 0.1 – 0.2.  

 

Algorithm 4: Proximal Policy Optimization (PPO) 

01: Initialize 𝜇𝜇: 𝑠𝑠 → 𝑅𝑅𝑚𝑚+1 and 𝜎𝜎: 𝑆𝑆 → diag(𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑚𝑚+1) 

02: for I = 1 to M do 

03:  Run policy 𝜋𝜋𝜋𝜋 ~ 𝑁𝑁(𝜇𝜇(𝑠𝑠), 𝜎𝜎(𝑠𝑠)) fit T timesteps and collect 

(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡) 

04:  for t = 1 to T – 1, do 

 
𝐺𝐺 ←� 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1
 

 𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼𝛾𝛾𝑡𝑡𝐺𝐺𝐺𝐺 ln𝜋𝜋(𝐴𝐴𝑡𝑡|𝑆𝑆𝑡𝑡 ,𝜃𝜃) 

05: end for 

06: end for 

07: return 𝜃𝜃 

Algorithm 2.3:  : Algorithm of PPO 

 

PPO can compute advantage estimates and optimize the clipped surrogate 

objective through stochastic gradient ascent. Furthermore, PPO allows for 

multiple epochs of minibatch updates per data sample collected. It is contrasted 

with the single update per sample approach seen in other policy gradient 

methods. 

 

When PPO is applied to SeqGAN, it will optimize the generator's 

policy for sequence generation tasks, such as text. The PPO algorithm 

accommodates the unique challenges posed by the sequential and discrete nature 

of text generation, where traditional policy gradient methods like REINFORCE 

can struggle due to high variance in gradient estimates. The clipping mechanism 

in PPO aims to prevent excessively large updates. As the generator 

incrementally constructs a sequence, it will receive delayed and potentially 

sparse rewards (Schulman, et al., 2017). 
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Adapting PPO, typically used in continuous spaces, to SeqGAN's 

discrete token space often involves using softmax policy representations or 

other modifications to the PPO This adaptation is crucial to accommodate the 

discrete probability distributions inherent in SeqGAN (Schulman, et al., 2015). 

Besides that,  PPO incorporates techniques such as Generalized Advantage 

Estimation (GAE) to reduce variance and improve the stability of training, 

which is especially beneficial for the complex optimization landscape of 

SeqGAN (Schulman, et al., 2015). 

 

PPO represents an advancement in policy gradient algorithms with the 

ability to maintain robust performance while being computationally more 

efficient than its predecessor, TRPO. Its application to SeqGANs offers an 

approach to generating high-quality sequences by leveraging its stability and 

efficiency in policy updates. The PPO algorithm's potential to scale to complex 

models and tasks positions it as a preferred choice for SeqGANs and other 

sequence generation models in reinforcement learning applications (Schulman, 

et al., 2017) 

 

Table 2.3: Comparison of Policy Gradient Algorithms 

Feature REINFORCE TRPO PPO 
Gradient 
Estimation 

• High 
variance 

• Simple 
estimate 

• Low variance  
• Uses trust 

regions 

• Clipped 
objective to 
manage 
variance 

Sample 
Efficiency 

• Low • Moderate • High 

Stability and 
Strenght 

• Less stable • More stable 
due to trust 
regions 

• Balances 
between 
stability and 
sample 
efficiency 

Complexity and 
Implementation 

• Simple • Complex • Less complex 
than TRPO, 
easier to 
implement 
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Common Use 
Cases 

• Small-scale 
problems 

• High-
dimensional 
control tasks 

• Broad range of 
applications 
including 
robotics and 
NLP 

 

Table 2.3 offers an overview comparison of the attributes of each 

policy gradient method. The complexity and implementation row reflects the 

relative ease or difficulty of coding and executing each algorithm. 

 

Table 2.4: Sustainability for SeqGAN and Test Generation 

Feature REINFORCE TRPO PPO 
Exploitation 
Trade-off 

• High 
exploration 

• Balance 
• Uses KL 

divergence to 
limit policy 
updates 

• Adaptive 
• Strike a 

balance with 
clipped 
objectives 

Learning from 
Sparse 
Rewards 

• Struggles 
• High 

variance 

• Better 
• Trust regions 

prevent drastic 
policy updates 

• Good 
• Uses 

multiple 
epochs to 
learn from 
limited data 

Training 
Overhead 

• Minimal • Significant due to 
second-order 
methods 

• Moderate 
• Leverages 

first-order 
methods 

Performance 
in Text 
Generation 
Tasks 

• Varies, 
requires 
more 
iterations 

• Robust but 
computationally 
intensive 

• Superior in 
balancing 
speed and 
quality 

 

Table 2.4 highlights the way each algorithm might perform given the 

unique challenges posed by the sequential and discrete nature of text. The 

training overhead and response to non-stationarity are particularly pertinent for 

SeqGANs, as the generative model continuously evolves during training, 

requiring the algorithm to adapt to the shifting data distribution efficiently. 

 

2.4 Architecture Innovation 

The architecture of Generative Adversarial Networks has seen significant 

evolution since the beginning. The push for innovation has been the diverse and 
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growing range of applications, each posing unique challenges that demand 

specialized solutions. In text generation, SeqGAN has stood out by 

incorporating these architectural innovations, each adaptation serving to 

imporve the model's performance in generating coherent and contextually rich 

textual content. 

 

 

2.4.1 Long short-term memory (LSTM) 

Long short-term memory (LSTM) units (Hochreiter & Schmidhuber, 

1997) are specifically designed to overcome the loss of gradient problem that 

troubles standard recurrent neural networks (RNNs). LSTMs use a sequence of 

gates, known as input, forget, and output gates, to manage the flow of 

information. These gates collectively decide which data should be retained or 

discarded, thus maintaining a stable gradient across learning sequences. The 

input gate regulates the amount of new information that enters the cell state, the 

forget gate controls the data that is erased from the cell state, and the output gate 

determines the next hidden state. This complex gating mechanism allows 

LSTMs to preserve information over extended periods and improves their 

capability to model sequences with complex structures (Hochreiter & 

Schmidhuber, 1997). 

 
Figure 2.6: Unit of RNN and LSTM 

 

Figure 2.9 illustrates the structure of RNN and LSTM where both are 

designed to handle sequences of data 𝑥𝑥𝑡𝑡 where t is the time steps, but each of 

the units manages information differently. Where input 𝑥𝑥𝑡𝑡 is the current input 
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of the sequence, tanh is the hyperbolic tangent activation function that generates 

a new state from the input and previous hidden state, and hidden state  ℎ𝑡𝑡 

represents the output state that captures information from the current input and 

previous inputs over time, t. As shown at the left of the figure, the RNN unit 

takes the current input 𝑥𝑥𝑡𝑡 and  processes it through a single layer with a tanh 

activation function to produce the hidden state ℎ𝑡𝑡. This hidden state is then fed 

back into the RNN unit at the next time step, along with the next input in the 

sequence.  

 

On the other side of the picture, the LSTM unit's internal memory is 

shown, which carries information over time steps. Gates determine how 

information is added or deleted from the cell state. LSTM is made up of three 

gates: forget gates (σ) that discard information from the cell state, input gates (σ 

and tanh) that add new information to the cell state, and output gates (σ) that 

determine which information from the cell state is used to generate the output 

hidden state. Each gate in the LSTM unit uses a combination of the sigmoid (σ) 

and tanh activation functions. The sigmoid function returns a value ranging from 

0 to 1, which is used to scale the contribution of other operations. The tanh 

function regulates the nonlinear transformation of the data, scaling the values to 

be between -1 and 1. In an LSTM unit, the operations are more complex due to 

the multiple gates that manage memory and output. The forget gate selects 

which bits of the cell state to keep or erase. The input gate determines which 

values from the cell state are updated and what new values are added. Finally, 

the output gate determines which part of the cell state will be used to generate 

the output ℎ𝑡𝑡. 

 

Knowing the ability of LSTM that remember information for a long 

period, it became ideal for applications involving sequential data such as text, 

speech, and music. There are various applications of LSTMS across different 

fields such as text generation, speech recognition, and music generation. 

 

Text Generation 

LSTM can generate coherent paragraphs of text, capture long-range 

dependencies, and manage multiple themes at once. A study by Sutskever et al. 
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(2014) demonstrated the ability of LSTMs to perform sequence-to-sequence 

learning. They were employed to generate text at both character and word levels 

efficiently. This ability is not only impressive in terms of the linguistic quality 

of the generated text but also in the variety of applications it enables, from 

automated story generation to interactive chatbots. 

 

Speech Recognition 

LSTMs are used to convert audio clips containing spoken language into text by 

understanding the temporal dependencies in spoken language in speech 

recognition. Graves et al. (2013) utilized LSTMs to develop a speech 

recognition system that operates directly on the spectrogram of spoken audio. 

This illustrated the network’s ability to handle raw audio data and perform end-

to-end speech recognition. This technology not only powers popular virtual 

assistants but is also crucial in accessibility technologies for those with speech 

impairments. 

 

Music Generation 

The application of LSTMs in music generation demonstrates their versatility. 

Eck and Schmidhuber (2002) were pioneers in using LSTMs for generating 

blues music. They had demonstrated that these networks could learn not just the 

notes but also the timing and style of blues music from raw audio. LSTMs help 

generate new music pieces that mimic the style of a given training dataset. 

 

2.4.2 Gated Recurrent Unit (GRU) 

Cho et al. (2014) introduced GRU Units, which simplify the LSTM architecture 

by combining input and forget gates into a single "update gate" and integrating 

the cell state with the hidden state. GRUs maintain the efficiency of LSTMs but 

with fewer parameters, resulting in faster computations and simpler models. The 

update gate in GRUs assists the model in determining how much past 

information (from earlier time steps) to pass along, whereas the reset gate allows 

the model to decide how much past information to discard. These features make 

GRUs particularly useful for SeqGAN models where computational efficiency 

and model simplicity are desired (Cho et al., 2014). 
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Figure 2.7: Unit of GRU 

 

Figure 2.7 displays the internal structure of a GRU. GRUs are 

comparable to LSTMs but have a simpler structure. They are intended to tackle 

the vanishing gradient problem of traditional RNNs. 𝑥𝑥𝑡𝑡 represent the new input 

at time step t, whereas the ℎ𝑡𝑡−1 represent the hidden state from the previous time 

step t – 1. The reset gate controls how much of the prior information (hidden 

state) must be forgotten. It uses the current input 𝑥𝑥𝑡𝑡 and the previous hidden 

state ℎ𝑡𝑡−1 to calculate a reset factor using a sigmoid activation (σ), which ranges 

between 0 and 1. After that, the update gate determines how much of the 

previous information (previous hidden state) will transfer over to the current 

hidden state. It also calculates an update factor using a sigmoid activation, based 

on the current input  𝑥𝑥𝑡𝑡  and the previous hidden state ℎ𝑡𝑡−1. ℎ�𝑡𝑡  known as the 

candidate's hidden state. It is a mixture of the current input and the previous 

hidden state, modulated by the reset gate. It uses a tanh activation to keep the 

values between -1 and 1. The new hidden state, ℎ𝑡𝑡 is a mixture of the old hidden 

state and the candidate's hidden state. The update gate determines how much of 

the candidate's hidden state is being used to update the current hidden state.  

 

In a nutshell, the GRU contains two gates: the reset gate which 

determines how to integrate the incoming input with the prior memory, and the 

update gate determines how much of the previous memory to retain. If the reset 
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gate is near to zero, the hidden state is compelled to ignore the previous hidden 

state and reset using only the current input. This essentially allows the GRU to 

discard information that is no longer useful for future steps, which aids in the 

learning of long-term dependencies. The update gate assists the model in 

determining how much of the previous knowledge should be passed on to the 

future. 

 

2.4.3 Attention Mechanisms 

Attention mechanisms in neural networks have revolutionized the way models 

handle and interpret data. Attention can be described as a function that maps a 

query and a set of key-value pairs to an output. They selectively focus on areas 

of the input that are regarded most relevant to the job at hand, enhancing the 

model's capacity to execute tasks such as language translation, image 

recognition, and sequence prediction. The output is computed as a weighted sum 

of the values, where the weight assigned to each value is computed by a 

compatibility function of the query with the corresponding key. 

Given a query q, keys 𝑘𝑘1, ..., 𝑘𝑘𝑛𝑛, and values 𝑣𝑣1, ..., 𝑣𝑣𝑛𝑛, the attention function can 

be expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞,𝐾𝐾,𝑉𝑉)  =  ∑  𝛼𝛼𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖        (2.4) 

 

where 𝛼𝛼𝑖𝑖 = softmax(score(q, 𝑘𝑘𝑖𝑖)) 

 

When applied to SeqGANs as Attention SeqGAN, it significantly 

enhances the model's context awareness. By focusing on relevant parts of the 

input sequence, the model maintains contextual coherence over extended 

sequences, a critical aspect in text generation (Vaswani et al., 2017). 

 

SeqGANs have extended the use of generative adversarial networks to 

sequence generation, but the integration of attention mechanisms has brought 

about a notable improvement in their performance. Attention in SeqGANs 

facilitates a more focused generation process by aligning generated sequences 

to become closer to contextual relevance and coherence. 
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2.4.4 Conditional GANs 

Conditional GANs (cGANs) represented a leap forward in GAN 

architecture by integrating additional information to guide the generation 

process (Goodfellow, et al., 2014). This advancement allowed for targeted 

generation, where the model could be conditioned on labels or types of data, 

enabling more control over the output. Applied to SeqGAN, such as in 

Conditional SeqGAN, this innovation has profoundly impacted text generation. 

It permits the thematic elements of the generated text to be directed, resulting in 

content that can be tailored to specific topics or styles, enhancing both relevance 

and diversity in generated narratives (Guo et al., 2021).



37 

Table 2.5:  Comparisons of SeqGAN Architectures  Innovation 

Feature Basic SeqGAN Model GRU Attention Mechanism Conditional SeqGAN 
Architecture 
Type 

• Recurrent Neural 
Network (RNN) 

• Deep Recurrent Neural 
Networks (Deep RNN) 

• RNN with Attention 
Layers 

• RNN with Conditional 
Inputs 

Key 
Components 

• Simple RNN layers • GRU layers for 
handling long-term 
dependencies 

• Attention layers will focus 
on relevant parts of the 
input sequence 

• Additional inputs (tags or 
labels) condition the 
generation process 

Advantages • Simplicity and efficiency 
• Quick to train 

• Better at capturing 
long-range 
dependencies 

• Improves the quality of 
generated sequences 

• Increases the model's 
focus and relevance 

• Enhances coherence of the 
generated text 

• Generates context-specific 
sequences 

• Increases utility and 
applicability of the model 

Limitations • Struggles with long 
sequences 

• Prone to vanishing 
gradient problem 

• Computationally more 
intensive 

• Requires more data to 
train effectively 

• Can be complex to 
implement 

• Requires careful tuning of 
attention mechanisms 

• More complex training 
process 

• Needs well-annotated data 
for conditioning 

Typical 
Applications 

• Short text generation 
• Quick prototyping of 

text generators 

• Content creation 
• Tasks requiring an 

understanding of 
context over longer 
sequences 

• Detailed content 
generation  

• Example: medical or legal 
documents 

• Style-specific writing  
• Example: poetic forms, 

technical manuals 
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Table 2.5 outlines the comparisons of various SeqGAN architecture innovations. 

The evolution from basic RNN structures to more sophisticated configurations 

like GRU layers and attention mechanisms signifies a substantial advancement 

in handling the subtlety demands of sequence generation tasks. These 

innovations not only enhance the quality and coherence of the generated texts 

but also expand the model's applicability to a broader range of text-generation 

circumstances. (Hochreiter & Schmidhuber, 1997; Vaswani, et al., 2017; Yu, et 

al., 2017) 

 

Furthermore, the introduction of conditional architectures in SeqGANs 

allows for the generation of context-specific texts, which is a significant step 

forward in the customization and relevance of the outputs produced. This 

capability is particularly valuable in fields that require high levels of precision 

and adaptability in text generation, such as creative writing and technical 

documentation (Yu et al., 2017). 

 

Progressive training approaches, exemplified by Progressive GANs 

(ProGANs), incrementally increase the complexity of the model during training 

(Karras et al., 2018). This approach applied to SeqGAN as Progressive SeqGAN, 

can facilitate a structured approach to complexity in text generation. Starting 

with simpler structures and gradually advancing to complex narratives can lead 

to more coherent and thematically consistent content generation (Shi et al., 

2018). 
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Table 2.6: Comparison of Training Techniques for SeqGAN 

Training 
Technique 

Standard Training (RL Only) Hybrid Training (Supervised + RL) PPO 

Key Features • Policy Gradient 
• REINFORCE Algorithm 

• Supervised Pre-training 
• Reinforcement Learning Fine-

tuning 

• Clipped Surrogate Objective 
• Adaptive KL Penalty 

Advantages • Directly optimizes for the final 
objective 

• Simpler implementation with fewer 
hyperparameters 

• Faster convergence initially 
• Supervised pre-training can lead 

to a more stable RL phase 
• Mitigates traditional RL 

instabilities 

• Reduces the risk of destructive 
large policy updates 

• Maintains efficient exploration-
exploitation balance 

• Higher stability and better 
performance 

Limitations • High variance in policy updates 
• Can be sample inefficient 
• Struggles with stability and often 

requires careful tuning 

• Requires an accurately labelled 
dataset for supervised training 

• More complex setup and 
potentially higher computational 
overhead 

• Computationally more demanding 
• Needs meticulous tuning of the 

clipping parameter and adaptation 
rate 

• Potentially complex integration 
with SeqGAN architecture 

Performance 
Indicators 

• Speed of initial learning 
• Quality and diversity of generated 

text 

• Quality of pre-trained model 
(supervised phase) 

• Improvement in text generation 
(RL phase) 

• Overall stability and quality of 
training 

• Consistency and diversity of the 
generated text 

Suitability for 
Long Text 
Generation 

• Low to moderate (depending on the 
specifics of the policy gradient 
implementation) 

• Moderate to high (effective pre-
training can significantly enhance 
abilities) 

• High (optimized policy updates 
lead to better long-term 
performance) 

Typical 
Applications 

• Basic text generators 
• Prototyping new model 

architectures 

• Developing models for complex 
narrative generation 

• Models requiring stable 
foundations before fine-tuning 

• Advanced narrative generation 
• High-quality text generation tasks 

requiring subtlety control over 
style and coherence 
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Table 2.6 highlights the impact of specific architectural innovations on GANs 

and SeqGANs, with a focus on the comparative analysis of these impacts in the 

context of text generation. 

 

The integration of these architectural innovations into SeqGANs has 

been important in advancing text generation abilities. By leveraging advances 

from traditional GAN architectures, SeqGANs have become more adept at 

handling the subtleties and complexities of language. Whether through 

enhanced thematic control, better context maintenance, or the generation of 

stylistically diverse content, these innovations have broadened the potential of 

SeqGANs beyond short sequences to more complex forms of narrative (Guo et 

al., 2021; Vaswani et al., 2017; Chen et al., 2016; Karras et al., 2018). 

 

2.5 Evaluation Metric 

Evaluation metrics are quantitative indicators that analyze a statistical or 

machine learning model's performance and effectiveness, such as proximity to 

the target distribution, diversity, and coherence. These measures provide a 

quantitative basis for measuring the performance of generative models, allowing 

objective comparisons between different models or techniques. 

 

 When analyzing a machine learning model, it is vital to consider its 

predictive abilities, generalizability, and overall quality. Evaluation metrics 

provide objective standards to evaluate these qualities. The evaluation metrics 

used depend on the problem domain, data type, and desired outcome. 

 

Bilingual Evaluation Understudy (BLEU) 

The Bilingual Evaluation Understudy (BLEU) score, introduced by Papineni et 

al. (2002), is one of the earliest metrics adopted for evaluating machine-

translated text against a set of reference translations. Despite its origin in 

translation, it's applied to any text generation task to measure the overlap of n-

grams between the generated text and reference text, thus gauging syntactic 

consistency. However, BLEU's limitations are notable; it does not account for 

semantic coherence and can score highly on texts that are nonsensical to human 

readers. 
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Recall-Oriented Understudy for Gisting Evaluation (ROUGE) 

ROUGE is a set of metrics designed to evaluate the quality of summary texts 

proposed by Lin (2004). It examines the overlap of n-grams, word sequences, 

and word pairings between the generated and reference texts. ROUGE is known 

for its emphasis on recall, making it especially appropriate for jobs like 

summarization where capturing content from the source is critical. 

 

Metric for Evaluation of Translation with Explicit ORdering  (METEOR) 

Metric for Evaluation of Translation with Explicit Ordering (METEOR) is 

introduced by Banerjee and Lavie (2005), and extends beyond n-gram matching 

to include synonymy and paraphrase matching. Its goal is to address some 

BLEU score shortcomings. It attempts to align more closely with human 

judgment by considering the variety of ways in which ideas can be expressed 

linguistically, and it's praised for its balance between precision and recall. 

 

Perplexity 

Perplexity is a metric used to evaluate language models, reflecting how well a 

probability distribution predicts a sample. It's a measure of the model's 

uncertainty, with lower values indicating better predictive performance. While 

perplexity provides insight into the model's fluency, it doesn't directly measure 

how coherent or contextually appropriate the generated text is. 

 

Negative log-likelihood (NLL) 

Negative log-likelihood (NLL) is often used as a loss function during the 

training of language models, including SeqGANs. It measures how well the 

model predicts a sequence. In the context of evaluation, lower NLL values 

indicate that the model assigns higher probabilities to the real data, signifying 

better performance. However, NLL may not always correlate with human 

judgments of quality, as models with lower NLL can still generate nonsensical 

outputs. 

 

 

 



42 

Human Evaluation  

Human evaluation is regarded as the gold standard for determining the quality, 

coherence, and relevance of produced text, even if Oracle NLL and BLEU 

provide quantitative metrics. It is dependent on the subjective evaluation of 

human raters; higher ratings correspond to higher caliber-produced content. 

Although human review is a costly, time-consuming, and intrinsically 

subjective process, it is capable of capturing subtleties that automated 

measurements could overlook. 

 

 Table 2.7 below highlights three commonly used evaluation 

metrics: BLUE,  ROUGE, METEOR, Perplexity, NLL and human evaluation. 

Each metric is tailored for specific tasks and scenarios, with its unique strengths 

and weaknesses. 
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Table 2.7: Comparison of various Evaluation Metrics 

Metric Description Advantages Disadvantage 

BLEU • Indicates the geometric mean of 
the modified n-gram precision. 

• High precision in evaluation, widely 
used in machine translation 

• Not correlate well with human 
judgment, especially with higher-
order n-grams 

ROUGE • Compares overlapping n-grams 
between the generated text and 
reference texts 

• Good for evaluating summarization 
• Focuses on recall 

• Less emphasis on lexical choice 
precision can be gamed with 
generic responses 

METEOR • Harmonizes precision and recall 
of unigrams between generated 
and reference texts 

• Higher correlation with human 
judgment than BLEU  

• Considers synonyms and stemming 

• Computationally intensive, more 
complex to implement 

Perplexity • Evaluates the likelihood of the 
sequence given the model 

• Lower perplexity indicates better 
performance; straightforward to 
calculate 

• Does not account for grammatical 
correctness or relevance 

NLL • Measures the model's prediction 
error. 

• Directly related to the model's 
objective function during training 

• Able to provide a clear indication of 
how well the model has learned the 
data distribution. 

• Does not reflect the quality of 
generated sequences in a way that 
correlates with human judgment. 

Human 
Evaluation 

• Evaluate Overall text quality • Considered as the gold standard 
• Captures nuances in text quality 

• Time-consuming and costly 
• Subject to evaluator bias 
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2.6 Regulatory Mechanisms and Penalties 

The penalty is a regularization mechanism used to modify the reward signal 

during the training process, influencing the behaviour of the generator network. 

These penalties are crucial in regularizing the loss function to promote desirable 

outputs by the generator network (Yu, et al., 2017). 

 

In SeqGAN, penalties are deployed as additional terms incorporated into 

the loss function to include the reward signal received by the generator (Yu et 

al., 2017). This reward signal, fundamental to policy gradient methods 

employed in SeqGAN, encapsulates the evaluation of generated sequences 

against a reward model or discriminator (Yu et al., 2017). The primary objective 

of penalties is to guide the generator toward producing outputs that not only 

maximize the likelihood of generating real data but also adhere to specific 

constraints or exhibit desired properties (Li et al., 2017). By augmenting the 

reward signal, penalties play a crucial role in encouraging the generator to 

explore the output space more effectively, thus facilitating the generation of 

high-quality sequences that are better suited to the task’s goal(Li et al., 2017).  

 

However, during the training process, the generator may exploit certain 

flaws or weaknesses in the discriminator and lead to mode collapse or other 

undesirable behaviours. To mitigate these issues, various penalty terms can be 

added to the objective function of the generator and/or discriminator networks. 

These penalty terms act as regularizers to encourage the networks to learn more 

robust and diverse representations (Martin Arjovsky, et al., 2017)). One of the 

key functions of penalties in SeqGAN is to promote diversity within the 

generated sequences (Zhang, et al., 2017). Diversity is important to ensure that 

the generator produces a wide range of outputs that capture the inherent 

variability present in the data distribution (Zhang, et al., 2017). Penalties 

designed to encourage diversity may penalize the generator for producing 

repetitive or similar sequences, thereby incentivizing it to explore and generate 

novel outputs (Zhang, et al., 2017). This fosters a richer and more varied set of 

generated sequences, which is beneficial for tasks requiring creative or 

exploratory outputs (Zhang, et al., 2017). Moreover, penalties can also enforce 

constraints on the generated sequences, such as controlling sequence length or 
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imposing structural constraints (Che, et al., 2017). For instance, penalties may 

penalize sequences that exceed a predefined length threshold or fail to adhere to 

specific syntactic or semantic rules (Che et al., 2017). By imposing such 

constraints, penalties ensure that the generated sequences meet certain criteria 

or standards, leading to outputs that are more aligned with the requirements of 

the task (Che et al., 2017). 

 

In addition to promoting diversity and enforcing constraints, penalties in 

SeqGAN can also be optimized for specific performance metrics or objectives 

(Dai et al., 2018). These penalties are tailored to the particular requirements of 

the task and aim to direct the generator towards generating sequences that 

optimize the desired metric (Dai, et al., 2018). For example, penalties may 

prioritize the generation of sequences that exhibit high fluency, coherence, or 

relevance to a given context (Dai, et al., 2018). By incorporating such penalties 

into the loss function, SeqGAN can be trained to produce outputs that excel in 

specific aspects relevant to the task, leading to enhanced overall performance 

(Dai, et al., 2018). Furthermore, penalties can be used to penalize undesired 

behaviours or characteristics exhibited by the generator, such as mode collapse 

or poor sample quality (Dai, et al., 2018). By discouraging these behaviours, 

penalties encourage the generator to explore the output space more thoroughly 

and produce outputs of higher quality (Dai, et al., 2018). 

 

It is essential to note that the design and implementation of penalties in 

SeqGAN involve careful consideration and experimentation (Zhang, et al., 

2017). Researchers often explore various penalty formulations, weights, and 

combinations to achieve the desired balance between different objectives 

(Zhang, et al., 2017). Fine-tuning penalty parameters is an iterative process that 

requires experimentation and evaluation of the generator's performance across 

different penalty configurations (Zhang, et al., 2017). Moreover, the choice of 

penalties depends on the specific requirements of the task and the desired 

properties of the generated sequences. Consequently, penalties in SeqGAN are 

highly customizable and adaptable. It allows researchers to tailor them to the 

unique characteristics and objectives of their applications (Zhang et al., 2017) 
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2.6.1 Gradient Penalty 

Gradient penalty (GP) is a regularization technique designed to stabilize the 

training of GANs by focusing on the discriminator. In GANs, the discriminator 

learns to distinguish between real and fake samples produced by the generator. 

If the discriminator becomes too confident too quickly, the generator might 

struggle to learn due to vanishing or overly harsh gradients. As a result, GP 

seeks to impose the Lipschitz continuity constraint on the discriminator or critic 

function, which can improve the GAN model's training stability and 

convergence. 

 

 
Figure 2.8: Wasserstein GAN with a gradient penalty for Length of Stay 

 

The idea behind gradient penalties stems from the Wasserstein GAN 

(WGAN) framework, which reformulates the GAN objective as an optimization 

problem involving the Wasserstein distance between the real and generated 

distributions. In WGAN, the discriminator (or critic) function is required to be 

1-Lipschitz continuous, meaning that the norm of its gradient is bounded by 1 

everywhere. This constraint helps to ensure that the discriminator's output 

changes smoothly for its input, leading to better convergence properties. 

 

To enforce the Lipschitz continuity condition, a gradient penalty term 

is added to the discriminator’s loss function. This penalty term calculates the 

norm of the discriminator's gradient for its input and penalizes deviations from 

the desired Lipschitz constant (typically set to 1). The gradient penalty term can 

be formulated as 
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𝜆𝜆 ⋅ (‖𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�)‖2 − 1)2  (2.5) 

 

Where λ is a hyperparameter that controls the strength of the penalty term, 

𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�) the gradient of the discriminator's output with respect to its input  ‖. ‖2 

is the L2 norm. 𝑥𝑥�  is a point sampled along a straight line between a pair of real 

and generated data points. This sampling ensures the penalty is applied across 

the data distribution (Kim, Park, & Hwang, 2018 ; Milne & Nachman, 2021). 

 

Gradient penalties have been shown to improve the training stability 

and convergence of GANs, including SeqGAN with policy gradient. They help 

to mitigate issues such as mode collapse, gradient vanishing/exploding, and 

oscillatory behaviour during training. However, gradient penalties can also 

introduce additional computational overhead and may require careful 

hyperparameter tuning to achieve optimal performance (Zhang, & Gao, 2018 ; 

Jolicoeur-Martineau & Mitliagkas, 2020). 

 

2.6.2 L1/L2 Regularization 

L1/L2 Regularization prevents overfitting by including a penalty term in the loss 

function. Overfitting occurs when a model becomes closely tuned to the training 

data and loses the ability to generalize well to unseen examples. Their 

regularization techniques function by adding a penalty term to the loss function 

during training, which penalizes large weights in the model. 

 

L1 regularization (Lasso) directly pushes some model weights toward 

zero, potentially leading to sparser models. L1 regularization involves adding a 

penalty term to the loss function that is proportionate to the weights' absolute 

value. In mathematical terms, it adds to the loss function the sum of the absolute 

values of the model weights multiplied by a regularization parameter. This 

encourages sparsity in the weight matrix, effectively pushing some weights to 

zero. L1 regularization is useful for feature selection since it yields sparse 

models. 
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On the other hand, L2 regularization (Ridge) generally shrinks the 

magnitude of weights without forcing them entirely to zero. L2 regularization 

includes a penalty term in the loss function that is proportional to the square of 

the weights. It mathematically adds the sum of the squares of the model weights 

to the loss function, multiplied by a regularization value. Unlike L1 

regularization, L2 regularization penalizes large weights more smoothly, 

encouraging smaller but non-zero weights. L2 regularization is effective in 

preventing overfitting by spreading the weight values more evenly. 

 

Table 2.8: Comparison of L1 and L2 regularization 

L1 regularization L2 regularization 

• Sum of the absolute value of 

weights 

• Sum of square of 

weights 

• Sparse solution • Non-sparse solution 

• Multiple solutions • One solution 

• Built-in feature selection • No feature selection 

  

The primary goal of L1 and L2  is to overfit prevention in the context 

of GAN training. They might indirectly contribute to greater stability by 

preventing the discriminator from becoming overly confident on a limited 

dataset. Their ease of implementation also makes L1/L2 regularization valuable 

as a baseline for assessing the relative impact of more complex penalty 

techniques. 

 

2.6.3 Entropy Penalty 

Entropy penalties, also known as entropy regularization, is a technique used in 

generative models, particularly in the context of Sequence Generative 

Adversarial Networks (SeqGAN) with policy gradient. The primary purpose of 

entropy penalties is to encourage the generator model to produce diverse and 

non-repetitive sequences during the training process. 

 

The entropy penalty term is typically added to the generator's loss 

function, and it is designed to maximize the entropy of the generated output 



49 

distribution. Entropy is a measure of uncertainty or randomness in a probability 

distribution. By maximizing entropy, the generator is encouraged to explore a 

broader range of possible outputs, rather than collapsing to a limited set of 

outputs or modes. The entropy penalty term can be expressed as the following. 

 

− 𝜆𝜆 .𝐻𝐻(𝐺𝐺(𝑧𝑧))    (2.6) 

 

where λ is a hyperparameter that controls the strength of the penalty term, 

H(G(z)) is the entropy of the generator's output distribution G(z), given the input 

noise vector z. By minimizing the negative entropy, the generator is incentivized 

to produce output distributions with higher entropy. It will lead to more diverse 

and less repetitive sequences. 

 

Entropy penalties are very beneficial for tackling the mode collapse 

problem, which is common in generative models such as GANs. Mode collapse 

happens when the generator learns to produce samples from a subset of the data 

distribution, resulting in a failure to capture the target distribution's complete 

diversity. By encouraging higher entropy in the generated outputs, entropy 

penalties can help mitigate mode collapse and promote better coverage of the 

data distribution. 

 

However, it's important to note that while entropy penalties can 

improve diversity, they may also introduce irrelevant or incoherent outputs. 

Therefore, a balance needs to be struck between diversity and quality, often 

achieved by combining entropy penalties with other techniques like adversarial 

training, instance noise, or professor forcing. 

 

 

2.6.4 Semantic Consistency Penalty 

Semantic consistency penalties are regularization techniques specifically 

designed for generative models used in text generation tasks, like those 

involving Sequence Generative Adversarial Networks (SeqGAN) with policy 

gradient (Yu et al., 2017). Their core purpose is to promote semantic coherence 
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and consistency throughout the generated text (Zhang et al., 2021; Cífka et al., 

2020). 

 

Text generation models, even those as powerful as SeqGAN, may 

sometimes produce sequences with good local coherence but lack a broader 

semantic thread (Wiseman et al., 2018). This can result in abrupt topic 

deviations, nonsensical transitions, or even contradictions. Semantic 

consistency penalties address this by introducing a regularization term that 

penalizes deviations from the target semantic context (Xu et al., 2018). 

 

Techniques to implement such penalties is using a pre-trained language 

model to estimate the likelihood of a generated sequence within a learned 

semantic context (Holtzman et al., 2020). Sequences with low likelihood are 

penalized, encouraging consistency. Additionally, similarity measures like 

cosine similarity or word embeddings can assess the semantic closeness 

between the generated text and the desired context (a prompt, topic, etc.) 

(Wieting et al., 2019). Deviations from expected similarity incur penalties.  

Finally, in models utilizing attention mechanisms, the penalty may promote the 

alignment of attention weights with the intended semantic focus (Bahdanau et 

al., 2015). 

 

By adding a semantic consistency penalty to the loss function, the 

generator is nudged towards outputs that are not just locally coherent, but 

maintain global consistency with the target (Li et al., 2017). This is particularly 

valuable in applications like storytelling, dialogue systems, or creative writing, 

where semantic consistency holds high importance. Importantly,  achieving a 

balance between semantic consistency and other desired qualities like diversity 

and novelty is crucial (Cífka et al., 2020).  Too strong penalties might result in 

overly repetitive or safe outputs. Thus, semantic consistency penalties often 

work in conjunction with other regularization methods or objectives to strike 

the right balance  (Zhang et al., 2021). 
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Table 2.9: Comparison of various regularization and penalty techniques 

Penalties Primary Focus Mechanism Impact on 
Stability 

Impact on Quality Implementation 
Complexity 

Gradient Penalty 
 
 

• Discriminator 
Stability 

• Penalizes large 
gradients 

• Strong 
stabilization 
effect 

• Indirectly improves 
quality due to 
stability 

• Moderate (requires 
adaptation to text) 

L1/L2 
Regularization 
 

• Overfitting 
Prevention 

• Penalizes model 
weights 

• Indirectly 
improve 
stability 

• Less direct impact 
on quality 

• Simple 

Entropy Penalties • Output Variety • Modifies reward 
signal or loss to 
encourage diversity 

 

• Less direct 
impact on 
stability 

• Directly promotes 
diversity, might 
need balancing 

• Moderate to high 
(metric choice is 
crucial) 

Semantic 
Consistency 
Penalty 

• Semantic 
Realism 

• Penalizes 
semantically 
dissimilar outputs 

• Less direct 
impact on 
stability 

• Strong potential for 
realism if the metric 
is well-defined 

• High (requires NLP 
techniques) 
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Table 2.9 shows the key attributes of various penalties that are relevant 

for text-generating while using SeqGAN. Gradient Penalty (GP) explicitly 

promotes discriminator stability, a core concern in GAN training.  Successful 

usage in SeqGAN requires careful adaptation for sequential language data. 

Classic L1/L2 regularization provides an overfitting prevention baseline.  For 

scenarios where mode collapse is prominent, entropy/diversity penalties directly 

encourage broader output exploration.  Semantic consistency penalties aim to 

enhance realism but necessitate defining robust NLP-based similarity metrics. 

Finally, data augmentation penalties promote strength to input variation, with 

their effectiveness depending on defining task-suitable transformations. 
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Table 2.10: Implication of Regulatory Mechanisms on Model Performance 
 
Regulatory 
Mechanism 

Advantages Disadvantages Impact on Model Complexity 

Gradient Penalties • Improves model stability and 
convergence.  

• Helps mitigate issues like mode 
collapse. 

• Introduce computational 
complexity. 

• Require careful tuning of the 
hyperparameter 

• Increases model complexity due to the 
additional computations for gradient 
norms. 

L1/L2 
Regularization 

• Produce simpler, more 
interpretable models.  

• L1 yields sparse models, which 
are beneficial in high-
dimensional settings. 

• L2 does not produce sparse 
models  

• Will be a drawback in 
scenarios where feature 
selection is crucial. 

• Generally increases training stability 
• Lead to underfitting if over-penalized. 

Entropy Penalty • Promotes diversity in the 
outputs 

• Lead to more robust learning, 
especially in reinforcement 
learning contexts. 

• Too much entropy will lead to 
overly random outputs 

• May decrease the utility of the 
model's outputs. 

• Slightly increases model complexity due 
to the need to calculate entropy and 
adjust training procedures. 

Semantic 
Consistency 
Penalty 

• Ensures the outputs are 
semantically consistent with the 
inputs 

• Apply semantic consistency 
checks will be difficult  

• Require complex architectures. 

• Significantly increases model 
complexity. 

• Requires auxiliary models or systems to 
assess consistency. 
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Table 2.10 highlights the implication of various regulatory mechanisms 

on Model Performance in terms of their definitions, primary functions, benefits, 

drawbacks, and their impact on model complexity and performance. 

 

Fundamentally, the ideal penalty choice depends on the specifics of the 

SeqGAN implementation, dataset, and goals, as outlined by the evaluation 

metrics. Penalties offering the greatest quality potential often come with higher 

complexity.  Investigating research adapting these techniques to text-based 

GANs similar to SeqGAN will be essential for informed decision-making. 

 

2.7 Summary 

The literature review has illuminated the multifaceted field of Generative 

Adversarial Networks (GANs), with a focus on their evolution into Sequence 

Generative Adversarial Networks (SeqGANs) and the subsequent integration 

with policy gradient methods. This synthesis reveals that while GANs have set 

the stage for profound advancements in generative models, SeqGANs have 

taken the baton further by navigating the complicated pathways of text 

generation. 

 

From the comparative overview of GANs and SeqGANs to the analysis 

of policy gradient methods, this review has highlighted the nuances and 

complexities inherent in the field. Architectural innovations have been shown 

to enhance the generative capabilities of these networks, addressing the 

challenges of creating coherent and contextually rich textual content. Evaluation 

metrics and the role of regulatory mechanisms and penalties have also been 

important in refining the training process and output quality of SeqGANs. 

 

This literature review has not only shed light on the current state of 

generative models but also underscored the significant gaps and opportunities 

for further research. The knowledge gaps identified point towards the necessity 

of a robust framework capable of harnessing the full potential of SeqGANs, 

especially in the context of text generation. 
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As AI continues to evolve, the implications of these developments 

extend beyond theoretical research, promising to redefine the landscape of 

automated content generation. The findings of this review lay the groundwork 

for exploring novel methodologies and serve as a beacon for future 

investigations aiming to push the boundaries of generative AI. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter emphasizes the systematic approach taken to ensure the project’s 

objectives are achieved.  

 
Figure 3.1: Summary of Project Workflow 

 

Figure 3.1 summarises the project workflow of the project. The project begins 

with the Initialization Stage. During this phase, the computational environment 

is configured with all the required software, and the hardware specifications are 

set to accommodate the demands of the SeqGAN with policy gradient model. 

 

Following the initial setup, the project transitions into the design and 

development phase. Here, the SeqGAN enhanced model's architecture is crafted, 
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integrating advanced neural networks like GRU and incorporating attention 

mechanisms for enhanced text generation capabilities. Alongside the 

architectural design, regularization method, gradient penalty is selected and 

fine-tuned with a particular emphasis on optimizing the balance between 

exploration and exploitation. 

 

Next is the Data Collection and Preprocessing Stage, where data central 

for training the SeqGAN model is gathered, curated, and preprocessed. This 

involves curating a dataset from selected sources, which in this case might be a 

repository of Chinese poetry. It ensures that the data aligns with the project's 

aims. The collected data is then preprocessed, involving cleaning, tokenization, 

and possibly vectorization, to prepare it for training the SeqGAN model. 

 

During the Model Training stage, 2 models are being implemented 

which are a baseline model and a enhanced model. The baseline model referring 

the original model that found in the GitHub without doing any enhancement for 

the model architecture design and hyperparameter tuning. During this phase, 

two settings are being used to test the sensitivity of the hyperparameter values.  

 

During the Evaluation Stage, the performance of the baseline model 

and enhanced model is carefully measured using a set of predefined metrics. 

During this phase, the both model are trained and evaluated using a variety of 

metrics designed to gauge both the syntactic and semantic quality of the 

generated text. This include BLEU scores for evaluating the quality of the 

generated text, adversarial loss for measuring the performance of the model and 

NLL measures for how well the model predicts and generates a sequence that is 

close to the real samples. 

 

Upon generating satisfactory results, the project shifts focus to 

performance optimization and fine-tuning. It is a critical phase where the 

SeqGAN model's output is meticulously analyzed, and adjustments are made to 

improve its efficacy in generating high-quality text. 
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Finally, the workflow concludes with the Monitoring and 

Documentation Stage. Here, both of the trained model being compared and 

analyse. A comprehensive documentation is maintained to capture the 

development process, results, and insights gained throughout the project. 

 

3.2 Software and Tools 

3.2.1 Tools 

3.2.1.1 PyCharm 

PyCharm is an Integrated Development Environment (IDE) for Python 

programming. It will serve as the primary development platform due to its 

comprehensive coding assistance, intelligent code editor, and debugging 

features. It was used for writing, testing, and debugging the Python code that 

constitutes the SeqGAN and policy gradient implementations. Its intelligent 

editor provides code completion, syntax highlighting, and on-the-fly error 

detection, which are invaluable for rapid development cycles.  

 

3.2.1.2 Draw.io 

Draw.io is used for creating flowcharts, process diagrams, and architectures 

which will be important in planning the SeqGAN model’s structure. Diagrams 

created using Draw.io will be used in project documentation to illustrate the data 

flow and operational logic of the policy gradient methods. It provides visual 

representations that help in making the project's technical aspects accessible and 

easier to understand for reviewers and collaborators. 

 

3.2.1.3 GitHub 

GitHub is a platform for version control and collaboration. GitHub provides 

tools for branching, merging, and pulling requests through hosting the project 

repository. GitHub’s issues and project boards will help keep track of tasks, 

enhancements, and bugs, which is essential for managing complex development 

projects with potentially multiple collaborators. 

 

3.2.2 Hardware Environment 

The computing system used is a Lenovo model that runs a 64-bit version of 

Microsoft Windows 11 Home Single Language. This operating system was 
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selected for its stability and broad support for the necessary development tools 

and libraries. Besides that, the system's performance is a 13th Gen Intel(R) 

Core(TM) i7-13700HX CPU with a base speed of 2.00 GHz. The processor 

boasts 16 cores and can handle 24 logical processes simultaneously. This will 

offer significant multitasking capabilities for parallel computations during 

model training.  

 

Next, the system is equipped with a substantial 32 GB of installed 

physical RAM. The RAM will ensure the smooth execution of multiple large-

scale operations and datasets concurrently without constricting the 

computational processes. Storage is handled by a device that offers ample space 

and speed for data-intensive tasks to access and process large datasets quickly 

and efficiently. Table 3.1 will summarize the overall hardware components used 

in this study. 

 

 

Table 3.1: Hardware specifications 

Component Specification 

OS Name Microsoft Windows 11 Home Single Language 

Processor Intel(R) Core(TM) i7-13700HX CPU, 2.00 GHz, 16 

Cores, 24 Logical Processors 

BIOS Version LENOVO CNKCN38W, 20/6/2023 

System Type x64-based PC 

RAM 32.0 GB Installed Physical Memory 

Total Physical 

Memory 

31.7 GB 

Total Virtual 

Memory 

33.7 GB 

Storage 953.86 GB SAMSUNG MZVL21T0HCLR-00BL2 

 

3.2.3 Software Environment 

Anaconda, a popular package and environment management system, is used for 

the development and execution of the SeqGAN-based text generation project to 
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construct a specialized software environment. The environment encapsulates a 

suite of libraries and frameworks tailored for deep learning tasks.  

 

Table 3.2: Software specifications 

Software Version 

Python 3.8 

TensorFlow 2.11 

Keras 2.3.1 

NumPy 1.24.1 

Pandas 1.5.3 

Matplotlib 3.8.4 

SciPy 1.5.3 

CUDA Toolkit 12.4 

 

Table 3.2 shows the software specifications that will used in this project. The 

project's software environment is underpinned by Python 3.8. it was used as the 

primary programming language due to its rich ecosystem of libraries and 

widespread use in scientific computing. TensorFlow 2.11 is employed to 

facilitate the construction and training of the complex neural networks at the 

core of SeqGAN. Keras 2.3.1 was integrated with TensorFlow and offers a 

streamlined, high-level neural network API that will simplify deep learning 

programming tasks. 

 

For mathematical computations and operations of machine learning, 

NumPy 1.24.1 can provide support with its array of objects and mathematical 

functions. Pandas 1.5.3 is utilized for its data manipulation expertise, which 

helps in preparing the textual datasets for the model. Visualization of data and 

model performance is handled by Matplotlib 3.8.4 to produce a wide range of 

static, animated, and interactive visualizations. 

 

Scientific and technical computing tasks that involve optimization and 

linear algebra will be managed by SciPy 1.5.3. Its modules are designed to work 

efficiently with NumPy arrays and provide user-friendly interfaces to numerical 
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routines. In addition, CUDA Toolkit 12.4 allows TensorFlow to perform high-

speed computations, thus it accelerates the training and evaluation of the 

SeqGAN models. 

 

3.3 Work Plan 

The project’s timeline, key milestones, and deliverables are outlined in the 

Work Breakdown Structure (WBS) and Gantt chart. The Gantt chart presents a 

clear work plan with a project start date, along with completion dates for each 

phase of the project. 
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Work Breakdown Structure (WBS) 

 

Figure 3.2: Project Work Breakdown Structure (WBS) 
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Gantt Chart 

 
Figure 3.3: Gantt Chart 
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CHAPTER 4 

 

4 PROJECT INITIAL SPECIFICATION 

4.1 Introduction 

This chapter provides a detailed overview of the initial specifications 

for the SeqGAN model, focusing on architectural enhancements, integration of 

regularization mechanisms, data handling processes, and evaluation strategies. 

This chapter sets the stage for transforming theoretical concepts into a practical 

framework, ensuring the model's effectiveness in generating high-quality, 

context-rich textual content. It lays the groundwork for the project's 

development and subsequent performance assessment for achieving the goal of 

blending AI sophistication with the nuance of Chinese poetry. 

 

4.2 Data Collection 

This project will utilize a dataset from the Chinese-poetry GitHub repository 

(https://github.com/chinese-poetry/chinese-poetry), which contains a 

comprehensive collection of classical Chinese poetry. This dataset is an 

extensive anthology of poems that encapsulate a wide array of emotions, themes, 

and styles. This can provide a rich linguistic environment for training the 

generative model. 

 

 
Figure 4.1: Sample of Chinese Poetry 

 

Figure 4.1 represents a small snippet from the dataset. It illustrates the type of 

content that the model will be trained on. The dataset consists of 1.5 million 

Chinese poems. This poetry was separated by different timelines and authors. 

 

4.3 Data Processing 

The initial step involves sanitizing the text data, which includes stripping away 

any irrelevant characters or formatting. This step is crucial in maintaining the 

https://github.com/chinese-poetry/chinese-poetry
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linguistic integrity of the original poetry while ensuring that the data is 

conducive to the learning algorithm's requirements. Given the intricacies of the 

Chinese language, particularly in classical poetry, tokenization will be 

performed with an understanding of the linguistic and poetic context. The goal 

is to convert the corpus into an appropriate format for the model to process, 

balancing the preservation of literary elements with the technical demands of 

tokenization.  

 
Figure 4.2: Sample of Chinese Poetry after tokenization 

 

Subsequently, the tokenized text will be transformed into numerical 

vectors. Decisions regarding the use of word embeddings versus one-hot 

encoding will be made based on the model's architecture and the nature of the 

text. This vectorization process is instrumental in facilitating the model's 

comprehension of the data. Post-vectorization, the corpus will be segmented 

into sequences with uniform length. This standardization is critical for the 

consistent training of the SeqGAN model, allowing for each input sequence to 

be fed into the model systematically. To enhance the SeqGAN's learning 

efficiency, the data may undergo normalization procedures, such as lowercasing, 

to standardize the input and decrease the complexity of the model's vocabulary. 
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4.4 SeqGAN Model Enhancement 

4.4.1 GRU Layer Integration 

Recognizing the important role of memory in sequence generation tasks, the 

improved SeqGAN architecture will incorporate GRU (Gated Recurrent Units) 

layers. These advanced recurrent layers are renowned for their superior capacity 

to capture long-term dependencies within sequential data. The depth of these 

networks is critical; deeper layers are synonymous with a model's capability to 

understand and encode more complex patterns and dependencies, an attribute 

essential for generating coherent and extensive textual content. 

 

By implementing GRU, we anticipate a substantial enhancement in the 

model's ability to produce text that is not only syntactically and grammatically 

correct but also contextually rich. This holds especially true for sequences that 

demand continuity over extended narrative arcs, thus addressing one of the 

significant challenges faced by the current SeqGAN models. 

 

4.4.2 Transformer Intergration 

The Transformer architecture is a highly parallelizable approach that makes 

sequence-generating activities more efficient by utilizing self-attention 

processes. Transformers handle sequences more effectively than recurrent 

designs like GRU and LSTM, which process tokens sequentially. They do this 

by responding to all tokens at the same time, capturing long-range relationships 

in a sequence without the requirement for recurrent connections.  

 

 The Transformer consist do two key components: self-attention 

mechanism and positional encoding. The self-attention mechanism enables the 

model to focus on specific parts of the input sequence when predicting the next 

token. It assigns different attention scores to tokens, allowing the model to 

weigh the importance of each token about others in the sequence. This capability 

is crucial for handling long-range dependencies and context maintenance. On 

the other hand, positional encoding is used to maintain information about the 

token positions within the sequence since the Transformer does not have an 

inherent sense of order. This helps the model understand the structure of the 

sequence, which is essential for generating coherent text. 
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By integrating Transformers into the SeqGAN model, the project aims to 

improve the generation of high-quality sequences, particularly in generating 

classical Chinese poetry, by leveraging the model's ability to handle long-range 

dependencies and parallelization. 

 

4.4.3 Reward Structure 

In the context of SeqGAN, the discriminator's feedback is important in guiding 

the generator's learning process. To leverage this, a sophisticated reward 

structure is proposed that incorporates intermediate rewards. These rewards are 

dispensed at various checkpoints based on the discriminator's evaluation of the 

generated sequences. This structure aims to provide more granular feedback to 

the generator that enables it to make more informed updates to its policy 

network. 

 

Furthermore, the introduction of intermediate rewards presents an 

opportunity to refine the generator's learning curve further. Unlike traditional 

reinforcement learning setups where rewards are sparse and only received at the 

end of an episode, intermediate rewards provide frequent and actionable 

feedback. This can accelerate the generator's learning process, helping it to 

quickly identify and reinforce successful strategies for sequence generation. It 

also helps mitigate the sparse reward problem typically associated with training 

generators in GAN frameworks. 

 

 

4.5 Optimization of SeqGAN 

In the optimization of the SeqGAN model, the Wasserstein Loss with Gradient 

Penalty (WGAN-GP) will be implemented to improve the stability of the 

training process for GANs by using the Earth Mover’s distance. When it 

combines with the gradient penalty, it enforces 1-Lipschitz continuity. 

  

𝐿𝐿 = 𝐸𝐸𝑥𝑥�~𝑃𝑃𝑔𝑔[𝐷𝐷(𝑥𝑥�)] − 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟[𝐷𝐷(𝑥𝑥)] +  𝜆𝜆𝐸𝐸𝑥𝑥�~𝑃𝑃𝑥𝑥�[(‖𝛻𝛻𝑥𝑥�𝐷𝐷(𝑥𝑥�)‖2 − 1)2] (4.1) 
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where 𝑃𝑃𝑔𝑔 and 𝑃𝑃𝑟𝑟 are the distributions of generated data and real data respectively.  

𝑥𝑥� is evenly sampled along straight lines between pairs of points collected from 

created and real data distributions. 𝜆𝜆 represents the penalty coefficient. 

 

Since SeqGAN generates sequences incrementally and relies on the 

discriminator’s feedback at each step, Wasserstein loss will be used due to its 

stable and robust loss function. It can make the feedback more meaningful and 

consistent, which is critical for effective learning in a policy gradient setup. 

 

 

4.6 Evaluation Metrics and Performance Analysis 

Various metrics are chosen to evaluate the performance of SeqGAN when the 

model is used to generate sequences. The automated metrics will be used in this 

study will be the BLEU score and Oracle NLL.  

 

The BLEU score will evaluate how closely the generated text matches 

a reference by comparing the overlap of n-grams. It is widely used in text 

generation tasks to gauge syntactic consistency. However, BLEU has 

limitations in capturing semantic coherence, as it may give high scores to texts 

that are not meaningful. 

 

Besides that, Oracle NLL measures how well the generated sequence 

matches the real data distribution. Lower NLL values indicate that the generated 

sequence closely resembles the reference, and thus, better model performance. 

 

Finally, the performance of the model (generator and discriminator) 

will be evaluated through adversarial loss. During adversarial training, the 

generator's performance is judged based on its ability to produce realistic 

sequences that can "fool" the discriminator. A lower generator loss indicates an 

improvement in generating realistic data. While the discriminator measures its 

ability to differentiate between real and generated data. A smaller loss indicates 

stronger distinction, but extremely low values may suggest that the 

discriminator is unduly dominating, thus impeding the generator's learning. 
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4.7 Summary 

Table 4.1: Overview of the Proposed Solution 
Feature Baseline Model Enhanced Model 
Generator 
Model 

• Generates the next token 
based on the current 
state (LSTM). 

• Use GRU architecture 
• Implement transformer 

with attention 
mechanisms 

Discriminator 
Model 

• Binary classifier LSTM 
that discriminates real 
vs. generated sequences. 

• Same as original, but 
lower learning rate 

Reward 
Structure 

• Sparse and binary, given 
at the end of sequence 
generation. 

• Same as original, but 
include intermediate 
rewards based on 
discriminator feedback at 
checkpoints. 

Training 
Stability 

• Can suffer from 
instability due to sparse 
rewards and high 
variance in policy 
updates. 

• Improved stability using 
gradient penalty to 
enforce Lipschitz 
constraint. 

 

Table 4.1 presents an overview of the proposed method compared with the 

original SeqGAN method that was implemented in the repository found in 

GitHub. 

 

In summary, this chapter outlined the project's initial planning for 

enhancing the SeqGAN model to generate classical Chinese poetry. By 

integrating deep learning innovations such as GRU layers and Transformer with 

attention mechanisms, the project seeks to harness the vast potential of SeqGAN.  

 

The initial planning is underpinned by a thoughtful data collection and 

preparation process, ensuring that the model is fed with high-quality and 

context-rich poetic content. This is coupled with a meticulous evaluation 

strategy that employs automated metrics, designed to provide a holistic 

assessment of the model's performance. 
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CHAPTER 5 

5 RESULT AND DISCUSSION 

 

5.1 System Performance 

In this research, the results are compared between two SeqGAN models: 

baseline and enhanced models based on their key performance. The model’s 

performance is enhanced with two major improvements which are GRU 

integration and a Transformer architecture in SeqGAN for poem generation. 

Both models have been tested using the same hyperparameter configurations to 

ensure a fair comparison. 

 

To assess the model's output, both quantitative and qualitative 

measures are used. The analysis focuses on comparing the baseline SeqGAN 

and the enhanced version in terms of generator and discriminator loss, Oracle 

Negative Log-Likelihood (NLL), BLEU score, and performance across 

different hyperparameter configurations. 

 

5.1.1 Quantitative Metric  

5.1.1.1 Hyperparameter Configuration 

The hyperparameters used in both models are summarized in Table 1. The 

baseline model uses standard adversarial training with LSTM, while the 

enhanced model incorporates GRU and Transformers. The model may suffer 

from issues like mode collapse, where it generates limited variations of data that 

the discriminator can't classify as fake. So a gradient penalty was applied to 

improve training stability by enforcing Lipschitz continuity which helps 

mitigate mode collapse and stabilize the model.  

 

Table 5.1: Hyperparameter configurations 

Hyperparameters 
Values 

Setting 1 Setting 2 

Rounds 50 100 
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Generator Pretraining Steps 

(g_pretrain_steps) 

100 

 

120 

Discriminator Pretraining 

Steps (d_pretrain_steps) 

50 50 

Generator Steps per Round 

(g_steps) 

3 5 

Discriminator Steps per 

Round (d_steps) 

1 3 

Generator Learning Rate 0.01 0.01 

Discriminator Learning Rate 0.0001 0.0001 

Update Rate 0.8 0.8 

Vocabulary Size 6915 6915 

Batch Size 32 64 

 

5.1.1.2 Adversarial Training Performance 

Generator Adversarial Training Loss 

The performance of the generator during adversarial training is evaluated based 

on how well it improves the quality of the data that can be determined by the 

discriminator. Lower generator loss indicates that the generator is improving in 

creating realistic data. If the loss is consistently high, this indicates the generator 

struggles to produce convincing data and the discriminator can easily 

differentiate between real and generated data. 

 

Table 5.2: Generator Adversarial Training Loss Result 

Settings Epoch Generator Loss 

Baseline Enhanced 

1 20 5.7422 2.5078 

60 4.9757 0.1451 

100 4.7949 0.0186 

2 20 5.7490 3.235 

60 4.9777 0.959 

120 4.7621 0.131 
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In setting 1, the baseline model started at 5.7422, and ended at 4.7949, while the 

enhanced model started at 2.5078 and improved to 0.0186. In setting 2, the 

baseline begins at 5.7490 and finishes at 4.762, while the enhanced model 

begins at 3.235 and significantly improves to 0.131 at the end. The enhanced 

model showed a much steeper decrease in generator loss, which indicates faster 

and more effective learning for the generator. GRU allows the generator to 

capture long-term dependencies more efficiently in sequential data and retain 

relevant information from earlier in the sequence which makes the learning 

process more efficient. GRU’s gating mechanisms (reset and update gates) 

reduce the vanishing gradient problem, which allows the model to propagate 

important information over long sequences. This enables the generator to make 

better updates during training, resulting in faster convergence of the generator 

Figure 5.1: Generator loss of baseline model using 

setting 1 and setting 2 

 

Figure 5.2: Generator loss of enhanced model using 

setting 1 and setting 2 

         

  

 

Stable but with some 

minor spike 
Stable but with some 

minor spike 

Smooth and stable 

curve 

Smooth and 

stable curve 
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loss. These results explore the cooperation effects between various SeqGAN 

architectures. The GRU’s ability to efficiently handle long-range dependencies 

accelerates the generator’s learning process, thereby improving text generation 

quality as the model learns more from each training iteration. 

 

Discriminator Adversarial Training Loss 

The discriminator's performance measures how well it can distinguish between 

real and generated data during the adversarial training process. Lower 

discriminator loss means it is effectively distinguishing real from fake data. 

However, too low a loss may indicate that the discriminator is dominating the 

training and making it hard for the generator to improve.  

 

Table 5.3: Discriminator Adversarial Training Loss Result 

Settings Epoch Discriminator Loss 

Baseline Enhanced 

1 30 0.6770 0.5267 

50 0.6612 0.0318 

2 30 0.5629 0.5628 

50 0.5435 0.5314 

 

 

 

Figure 5.3: Discriminator loss of baseline model using 

setting 1 and setting 2 

 

Jagged curve  
Smoother, but still 
consists of spikes. 
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In setting 1, the baseline model decreases slightly from 0.6770 to 0.6612, while 

the enhanced model decreases dramatically from 0.5267 to 0.0318. In setting 2, 

the baseline drops slightly from 0.5629 to 0.5435, while the enhanced model 

decreases from 0.5628 to 0.5314. The performance of the discriminator in the 

baseline model is not stable compared to the enhanced model. The enhanced 

model shows a smooth curve which is more stable while the baseline model 

consists of a lot of spikes. This stability is a result of the gradient penalty, which 

regularizes the discriminator, preventing it from learning too quickly and 

overpowering the generator. Without this penalty, the baseline model’s 

discriminator shows spikes in its loss, a sign of instability in adversarial training. 

The results emphasizes regulatory mechanisms like gradient penalties. These 

mechanisms help stabilize the adversarial training process, ensuring that the 

discriminator and generator learn at balanced rates, resulting in more consistent 

model improvements. 

 

 The gradient penalty regularizes the discriminator by ensuring the 

output changes gradually concerning small changes in the input. It penalizes the 

discriminator if the gradients of its predictions become too large or too small. 

Without a gradient penalty, the discriminator in the baseline model may learn 

too quickly and become overly confident in distinguishing real from fake data. 

This will lead to spikes in its loss function if the complexity of the generator is 

high. These sharp changes can destabilize the entire adversarial training process. 

In contrast, the gradient penalty in the enhanced model keeps the discriminator's 

Figure 5.4 Discriminator loss of enhanced model using 

setting 1 and setting 2 

 

smooth and stable curve  
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updates more controlled and gradual, leading to smoother and more stable 

learning curves. 

 

 

 

5.1.1.3 Oracle NLL 

Generator Oracle NLL 

The generator Oracle NLL measures how well the generator is performing in 

terms of generating sequences that resemble the real data distribution. Lower 

NLL values indicate better performance and this also means the generator is 

producing sequences that are closer to the true data. 

 

Table 5.4: Generator Oracal NLL result  

Settings Epoch Generator Oracle NLL 

Baseline Enhanced 

1 20 11.5810 6.1021 

60 11.7417 4.1472 

100 11.7869 2.8082 

2 20 11.7015 5.4534 

60 11.6649 3.3654 

120 11.6540 2.347 

 

 

  

 

Figure 5.5: Generator Oracle NLL of baseline model 

using setting 1 and setting 2 

 

Jaggle and unstable  Jaggle and unstable  
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In Setting 1, the baseline model increased slightly from 11.5810 to 11.7869, 

while the enhanced model decreased significantly from 6.1021 to 2.8082. In 

Setting 2, the baseline model decreased from 11.7015 to 6540 while the 

enhanced model decreased from 5.4534 to 2.347. the baseline model shows a 

significant fluctuation in both settings 1 and 2, which indicates the instability of 

the generator. The Lower Oracle NLL scores indicate that the enhanced model 

is generating sequences that are closer to the true data distribution, which 

indicates better quality output. 

 

 The enhanced model’s significantly lower Oracle NLL shows its 

improved ability to generate sequences that are closer to the real data 

distribution. This improvement can be attributed to the integration of GRU and 

Transformer architectures. The GRU’s gating mechanism helps the generator 

retain important information from earlier parts of the sequence, while the 

Transformer’s attention mechanism allows the model to focus on crucial 

sequence elements such as rhyme, line length, and semantic coherence. GRU 

allows the model to better retain long-term dependencies by efficiently 

controlling what information to forget and what to retain in sequential data. This 

ability to manage long-term dependencies prevents the vanishing gradient 

problem and ensures the important information from earlier steps in the 

sequence is preserved during the learning process. Besides that, the 

Transformer’s attention mechanism enables the model to focus on the most 

important elements of the sequence (rhyme, line length, and parallelism) and 

direct its resources toward understanding the key contextual relationships 

Figure 5.6: Generator Oracle NLL of enhanced model 

using setting 1 and setting 2 
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between data points. Together, these architectural improvements enable the 

generator to produce higher-quality sequences that better match the true data 

distribution, thus reducing the NLL significantly. 

 

 

 

Discriminator Oracle NLL 

The discriminator Oracle NLL is used to evaluate the discriminator's ability to 

distinguish between real and generated sequences. It measures how well the 

discriminator can predict whether a given sequence is from the real data 

distribution (Oracle) or generated by the generator. A lower Oracle NLL 

indicates better performance by the discriminator.  

 

Table 5.5: Discriminator Oracal NLL result  

Settings Epoch Discriminator Oracle NLL 

Baseline Enhanced 

1 30 0.2480 0.5479 

50 0.2275 0.4585 

2 30 0.3896 0.5628 

50 0.0277 0.5314 

 

 

 

 

Figure 5.7:  Discriminator Oracle NLL of baseline 

model using setting 1 and setting 2 
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curve  
More stable and  

less jaggle 



78 
 

 

In Setting 1, the baseline model decreased from 0.2480 to 0.2275, while 

the enhanced model decreased from 0.5479 to 0.4585. In Setting 2, the baseline 

model decreases from 0.3896 to 0.0277 while the enhanced model change from 

0.5628 to 0.5314. The baseline model showed more improvement in 

Discriminator Oracle NLL, particularly in Setting 2. In Figure 5.7, the baseline 

discriminator Oracle NLL consists of many frustrations which indicates the 

instability of the model. This shows that the discriminators in the baseline model 

struggle to identify the differences between real and fake data. This has shown 

that the discriminator in the enhanced model performs more stable and is better 

at distinguishing real from generated data in some configurations.  

The baseline model’s fluctuations indicate its difficulty in consistently 

distinguishing between real and generated data, while the enhanced model 

shows a more stable performance. The lower fluctuations in the enhanced model 

suggest that the gradient penalty keeps the discriminator’s updates gradual, 

ensuring it doesn’t dominate the generator too early in the training process. 

 

5.1.1.4 BLEU Score 

BLEU score helps to evaluate the quality of the generated text sequences by the 

SeqGAN model. It measures how similar the generated poem is to a set of 

reference poems. The score helps measure the fluency of the generated text by 

checking if the generated words and phrases are in the correct order and 

appropriate for the context. Higher BLEU scores for the generator indicate 

better-quality generated text, as the generated sequences closely match the 

Figure 5.8 : Discriminator Oracle NLL of enhanced 

model using setting 1 and setting 2 
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reference text. It helps to observe how the architectural improvements impact 

the quality and coherence of the generated poem. 

 

 

 

 

Table 5.6: BLEU Score results for both model  

Epoch BLEU score 

Baseline Model Enhanced Model 

20 0.25 0.30 

40 0.29 0.38 

60 0.32 0.45 

80 0.34 0.50 

100 0.35 0.53 

 

 
Figure 5.9: BLEU Scores Comparison between Baseline and Enhanced Model 

 

The enhanced model shows a more rapid improvement in BLEU scores. From 

epoch 20 to 100, the enhanced model's BLEU score increased by 0.23 (from 

0.30 to 0.53), while the baseline model only improved by 0.10 (from 0.25 to 

0.35). Both models show a diminishing rate of improvement as training 
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progresses. However, the enhanced model maintains a steeper improvement 

curve throughout, suggesting it continues to learn more effectively from 

additional training data. The improved BLEU scores indicate that the 

architectural innovations integrated into the enhanced model, such as the GRU 

layers and attention mechanisms, provide a superior capacity to learn long-range 

dependencies and improve narrative coherence over time. These enhancements 

allow the generator to produce sequences that better mimic human-like 

coherence and structure, contributing to higher BLEU scores as training 

progresses. 

 

 

 

Discussion 

In Setting 1, the enhanced model's final generator loss (0.0186) was 

approximately 258 times lower than the baseline model's loss (4.7949) after 100 

epochs. Similarly, in Setting 2, the enhanced model achieved a final loss of 

0.131, about 36 times lower than the baseline's 4.7621 after 120 epochs. This 

reduction in generator loss indicates that the enhanced model is more effective 

at producing sequences that closely resemble the true data distribution. The 

practical implication is that the enhanced model is likely to generate higher 

quality, more coherent poems that better mimic human-written text. 

 

 The Oracle Negative Log-Likelihood (NLL) scores further corroborate 

this improvement. In Setting 1, the enhanced model's Oracle NLL decreased 

from 6.1021 to 2.8082 over 100 epochs, while the baseline model's score 

worsened slightly, increasing from 11.5810 to 11.7869. This divergence 

indicates that the enhanced model's generated sequences are progressively 

aligning closer with the true data distribution, while the baseline model struggles 

to make similar progress. The lower final Oracle NLL score of the enhanced 

model (2.8082 vs. 11.7869) quantifiably demonstrates its superior generation 

capabilities. 
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 In addition to the generator and discriminator performance metrics, the 

BLEU (Bilingual Evaluation Understudy) scores provide crucial insight into the 

quality of the generated text. By epoch 100, the enhanced model achieves a 

BLEU score of 0.53, which is 51.4% higher than the baseline model's score of 

0.35. This substantial difference indicates that the text generated by the 

enhanced model is significantly more similar to human-written reference texts. 

However, the enhanced model's BLEU score is still increasing at epoch 100  at 

a slower rate. This indicates that there is room for further improvement with 

extended training, while the baseline model appears to be stable. 

 

 

 Besides that, the discriminator performance presents a more significant 

result. In Setting 1, the enhanced model's discriminator showed a remarkable 

improvement with the loss decreasing from 0.5267 to 0.0318 over 50 epochs, 

compared to the baseline's improvement from 0.6770 to 0.6612. Conversely, in 

Setting 2, both models showed minimal change in discriminator loss, baseline: 

0.5629 to 0.5435; enhanced: 0.5628 to 0.5314. This inconsistency across 

settings suggests that while the enhanced model's generator consistently 

outperforms the baseline, the discriminator's performance is more sensitive to 

hyperparameter configurations.  

 

The enhanced model also demonstrates faster convergence by reaching 

lower loss values in fewer epochs. This is evident in the generator loss 

trajectories where the enhanced model shows a steeper decline compared to the 

baseline. For example, in Setting 1, the enhanced model's generator loss dropped 

by 99.3% (from 2.5078 to 0.0186) over 100 epochs, while the baseline model's 

loss only decreased by 16.5% (from 5.7422 to 4.7949) in the same period. This 

faster convergence translates to potential savings in computational resources 

and training time. 

 

The sensitivity to hyperparameter changes is another important 

observation. The performance gap between Settings 1 and 2, especially in 

discriminator loss underscores the critical role of hyperparameter tuning in 
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GAN training. For example, the enhanced model's discriminator in Setting 1 

achieved a final loss of 0.0318, while in Setting 2, it only reached 0.5314. This 

substantial difference highlights the need for careful optimization of 

hyperparameters to fully leverage the potential of the enhanced architecture. 

 

In conclusion, the quantitative results support the enhanced SeqGAN 

model in terms of generation quality and training efficiency. The integration of 

GRU, Transformer architecture, and gradient penalty has led to substantial 

improvements in generator performance across multiple metrics. However, the 

mixed results in discriminator performance and the observed sensitivity to 

hyperparameters indicate areas for further research and optimisation. Future 

work should focus on refining the discriminator architecture, conducting more 

extensive hyperparameter searches, and evaluating the model's performance on 

diverse, real-world datasets to ensure that these improvements translate 

effectively to practical applications in poem generation. 

 

 

5.1.2 Evaluation of Poem 

The generated poem is evaluated based on their adherence to the traditional five-

character quatrain (五言绝句) form, a classic style of Chinese poetry since the 

dataset poems that we used to train the generator are mostly in five-character 

quatrain form. 

 

 The five-character quatrain consists of four lines, each containing 

exactly five characters. This form is known for its strict structural rules, 

including specific requirements for parallelism and rhyme scheme. The poems 

were analysed based on the character count, line count, parallelism and rhyme 

scheme. 
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5.1.2.1 Structural Element 

Line Length and Structure 

From Figure 5.10 and Figure 5.11, both generated poems fulfil the 

requirements of the character count, which is all lines contain exactly five 

characters. They also fulfilled the line count which consisted of four lines. 

 

Parallelism and Rhythm  

Parallelism in Chinese poetry refers to the use of similar grammatical structures 

or thematic elements across lines. In a five-character quatrain (五言绝句), 

this often means that the first and third lines (or the second and fourth lines) 

should reflect each other in terms of structure or meaning. This mirroring effect 

creates a sense of balance and harmony within the poem, allowing the poet to 

explore related themes or ideas in parallel lines. Additionally, the repetition of 

similar structures enhances the musicality and flow of the poem, making it more 

aesthetically pleasing. 

 

Figure 5.11 : Generated poems using 

baseline model 

 

Figure 5.10: Generated poems using 

enhanced model  
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In traditional Chinese poetry, a rhyme scheme typically follows the ABAB 

pattern. This means that the first and third lines rhyme with each other, while 

the second and fourth lines rhyme with each other.  

 
Figure 5.12 : Climbing White Stork Tower from Wang Zhihuan 

 

Figure 5.12 shows the quatrain the first line ends with 尽 (jìn) and the third line 

ends with 目 (mù), which rhyme with each other, forming the "A" rhyme. 

Similarly, the second line ends with 流 (liú) and the fourth line ends with 楼 (l

óu), forming the "B" rhyme. This ABAB rhyme scheme provides a structured 

and melodic flow to the poem. 

 

The parallelism in this example can also be seen in the themes of the lines. The 

first and third lines both focus on expanding sight or perspective, while the 

second and fourth lines emphasize movement and progression. This thematic 

parallelism reinforces the meaning of the poem, while the ABAB rhyme scheme 

enhances its rhythm and aesthetic quality. 

Sample Lines of the Baseline Model 

 
Figure 5.13 : Sample lines poems from the baseline model 

 

Figure 5.13 shows a sample line poem generated by the baseline model. 

The first line of the poem describes a scene but it lacks clear grammatical and 

thematic parallelism with the other lines. The second line seems disconnected 

A 

A 

B 

B 

First line 

Second line 

Third line 

Forth line 
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in terms of thematic content and structure compared to the other lines. The third 

line introduces a different theme and does not align well with the previous lines. 

While the last line presents yet another thematic element, and it does not mirror 

the structure or content of the other lines. 

 

As for the rhyme of the poem, the first and third lines of the poem do 

not rhyme with each other or with the other lines. The second and fourth lines 

also do not exhibit a clear rhyme scheme with each other or with the first pair 

of lines. This line of poems lacks a distinct rhyme scheme. The lines do not 

follow the traditional ABAB rhyme pattern, making it less aligned with classical 

five-character quatrains.  

 

 

 

Sample Lines of Enhanced Model 

 
Figure 5.14 : Sample lines poems for enhanced model  

 

Figure 5.14 shows a sample line poem generated by an enhanced model 

(GRU + Transformer). The first line of the poem introduces imagery related to 

frost and decay, which can be seen as setting a scene. The second line continues 

the scene setting with imagery of light and birds, showing a thematic connection 

to the first line. The third line introduces dust and a garment, which maintains 

thematic continuity with the previous lines. The last line describes actions and 

snow, connecting to the overall imagery of the poem. This generated poem 

shows more consistent thematic parallelism. The lines relate to each other 

through imagery and description, creating a coherent theme. 

 

Second line 

First line 

Third line 

Forth line 
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As for the rhyme of the poem, the first and third lines of the poem may 

rhyme, particularly in the final characters “骑” (qi) and “裾” (xu) depending on 

pronunciation. The second and fourth lines also might rhyme, with “鸟” (niao) 

and “四” (si) potentially forming a rhyme pair. The overall poem has a more 

recognizable rhyme scheme, possibly following an ABAB pattern which aligns 

better with traditional quatrain standards. 

 

 

 

5.2 System Demonstrations 

5.2.1 Model Enhancement 

5.2.1.1 GRU Implementation 

GRU (Gated Recurrent Unit) is a type of RNN architecture that is often used for 

handling sequential data.  

 
Figure 5.15 : Overview of TargetGRU class 

 

GRU is implemented in the TargetGRU class and serves as a target 

model to replace LSTM for evaluation. It processes the input sequence and 

captures temporal dependencies. The key components of GRU are a hidden state 

that carries information forward as the model processes the sequences; an update 

gate to determine how much of the previous hidden state should be carried 
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forward; and a reset gate to control how much of the previous hidden state 

should be ignored.  

 

 
Figure 5.16 : Embedding Layer 

 

An embedding layer is created to convert input tokens which are 

represented as integers, into dense vectors of fixed-size embedding_dim. 

 

 
Figure 5.17 : GRU Layer 

 

A gated recurrent unit that processes sequences and maintains a hidden 

state across timesteps. It uses the token embeddings as input and produces 

hidden states that capture the sequence's context. It takes the input size 

embedding_dim and produces the output of size hidden_dim. The 

‘batch_first=True’ means the input and output tensors are provided as (batch, 

seq, feature). 

 
Figure 5.18 : Fully Connected Layer and Softmax 

 

A fully connected layer is created to map the GRU output back to 

vocabulary size so that the model can predict the next token.  The log softmax 

will then convert the raw output from the fully connected layer into log 

probabilities. 
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Figure 5.19 : Forward Pass 

The forward function is created to pass the network. It first embeds the 

input tokens by converting them into embedding vectors and then processes the 

embedded sequence through the GRU layer. The hidden state is also being 

updated at each timestep.  

 

 
Figure 5.20 : Overview of TargetGRU class 

 

After that, the GRU output is passed through the fully connected layer 

and then the log softmax converts the output to log probabilities, which 

represent the likelihood of each token in the vocabulary being the next token. 

 

 
Figure 5.21 : Step Method for Token-by-Token Processing 

 

The ‘step’ method handles generating one token at a time, useful in 

sampling where the model needs to generate tokens sequentially. First, the token 

is converted into its embedding vector. After that the embedding is processed 

by GRU and the hidden state is updated based on the token. The fully connected 
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layers then map the GRU output to vocabulary size. Finally, the LogSoftmax 

converts the output to log probabilities, which represent the likelihood of each 

token in the vocabulary being the next token. 

 

 
Figure 5.22 : init_hidden function 

 

Initializes the GRU's hidden state at the start of generating a new sequence. The 

hidden state is filled with zeros and moved to the GPU if CUDA is enabled. 

 

 
Figure 5.23 : init_params function 

This init_params function will randomly initialize the model's weights and 

biases using a normal distribution. This can help improve training stability. 

 

5.2.1.2 Transformer 

The Transformer architecture is an alternative to RNNs and GRUs, utilizing 

self-attention mechanisms to handle sequences more efficiently.  
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Figure 5.24 : Architecture of Transformer  

Figure 5.24 shows an Transformer architecture. Transformers are known for 

their parallelization and ability to capture long-range dependencies across 

sequences. It consists of two key components which are self-attention and 

positional encoding. The self-attention component helps the model focus on 

relevant parts of the sequence when generating the next word, while the 

positional encoding is used to maintain the order since transformers do not.  
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Figure 5.25 : PositionEncoding method  

 

The figure 5.25 shows an overall implementation of the PositionEncoding 

method that is used to add positional to word embeddings in transformer models. 

The transformer architecture is unlike RNNs or GRUs. Because it does not 

record sequential order by default, positional encoding gives the model 

information about where each word in the sequence is located. It helps the model 

keep track of the positions of tokens within a sequence which allows it to capture 

order and relationships between tokens. 

 

 
Figure 5.26 : Positional Encoding Matrix 

 

A matrix `pe` is created to hold the positional encodings for all positions up to 

‘max_len’ for which to precompute positional encodings. The size of this matrix 

is [max_len, d_model], where each row represents the positional encoding for a 

specific position in the sequence. ‘max_len’ is the maximum length of any 
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sequence that will be processed by the model, and ‘d_model’ is the size of the 

embedding dimension. 

 
Figure 5.27 : Division Term 

 

The ‘div_term’ is used to scale the position indices by different frequencies for 

the sine and cosine functions. This ensures that the model can distinguish 

positions based on different periodic functions. The logarithmic scaling (-

log(10000) / d_model) ensures that the positional encodings vary smoothly 

across the sequence. 

 

 
Figure 5.28 : Sine and Cosine Functions 

 

The sine function is applied to even indices of the embedding dimension, and 

the cosine function is applied to odd indices. These alternating sine and cosine 

functions help the model learn the positional relationships between tokens. 

 

 
Figure 5.29 : Unsqueeze and Register Buffer 

 

The ‘pe’ matrix is reshaped using ‘.unsqueeze(0)’ to add a batch 

dimension, resulting in shape [1, max_len, d_model]. This allows it to be 

broadcast across different batches of input sequences. On the other hand, 

‘self.register_buffer('pe', pe)’ ensures that ‘pe’ is stored as part of the model, but 

it is not a learnable parameter. This means it won't be updated during training 

via backpropagation, but it is persistent and saved with the model. 
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Figure 5.30 : Forward Pass Function 

 

In the forward pass, the input tensor x (the embedded sequence) has the 

precomputed positional encodings added to it. If the sequence length is within 

the precomputed ‘max_len’, the positional encodings are added directly to the 

input embeddings. However, if the sequence length exceeds ‘max_len’, the 

positional encoding matrix is repeated using repeat(). The result is sliced to fit 

the exact ‘seq_len’ which allows the model to handle longer sequences without 

breaking.  This ensures that even if the sequence length exceeds the 

precomputed maximum length, the model can continue cyclically adding 

positional encodings. 

 

5.2.1.3 Gradient Penalty 

Gradient Penalty is integrated to enforce Lipschitz continuity, which ensures 

more stable training by penalizing the model when the gradient norm moves 

away from 1. This regularization helps prevent mode collapse, which is 

important when generating diverse poems. A penalty term is added to the loss 

function, which pushes the gradient norm towards 1. This helps to stabilize the 

discriminator's gradients and stay well-behaved to obtain better training 

dynamics for both the generator and discriminator. 
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Figure 5.31 : Function of Gradient Penalty Calculation 

 

The figure shows an overall function of  ‘compute_gradient_penalty’ that is 

used to calculate the gradient penalty in the context of SeqGAN. This function 

enforces the Lipschitz constraint by penalizing the norm of the gradients of the 

discriminator output with respect to interpolated samples. Two arguments are 

used in this function, which is a batch of real data samples and a batch of 

generated data samples generated from the generator. This function will return 

a scalar value that is added to the discriminator loss, which is the gradient 

penalty. The function will be called during the discriminator adversarial training. 

 

 
Figure 5.32 : Interpolation Between Real and Fake Samples 
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A random alpha is generated for each sample in the batch, and it is used to create 

an interpolated sample by mixing real and fake samples. These interpolated 

samples help the GAN enforce the Lipschitz continuity condition, such as 

keeping the gradients bounded. 

 

 
Figure 5.33 : Discriminator Output on Interpolated Samples 

 

The interpolated samples are passed through the discriminator D, which gives 

the predictions d_interpolates. These predictions are used to compute the 

gradients for the interpolated inputs. 

 

 
Figure 5.34 : Gradient Computation 

 

‘torch.autograd.grad’ is used to compute the gradients of D(interpolates) for the 

interpolated samples. The ‘grad_outputs=fake’ argument ensures that the 

gradient is calculated in the right direction as a backward pass. The 

‘create_graph=True’ argument is to compute the gradient penalty that requires 

the computation graph to remain intact for higher-order derivatives. 

 

 
Figure 5.35 : Reshape Gradients and Gradient Norm 
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After that, the gradients are reshaped into a 2D tensor of shape (batch_size, 

num_features), where each row represents the gradient for a single sample. The 

L2 norm (Euclidean norm) of the gradients is computed for each sample. The 

Lipschitz constraint requires the norm of the gradients to be approximately 1. 

 

 
Figure 5.36 : Gradient Penalty calculation formation 

 

The penalty is calculated as the squared difference between the gradient norm 

and 1. It enforces that the gradients should remain close to 1 to ensure 

smoothness in the discriminator’s behaviour. The penalty is averaged across the 

batch and returned as a scalar. This value is then added to the discriminator's 

loss to penalize large deviations from the Lipschitz constraint.  
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusion 

This research successfully enhanced SeqGAN for poem generation by 

integrating GRU, Transformer architecture, and gradient penalty which resulted 

in significant improvements in text quality, learning efficiency, and model 

stability. The enhanced model consistently outperformed the baseline across all 

evaluation metrics, with a notable 51.4% increase in BLEU scores, 

demonstrating a marked improvement in the similarity between generated and 

human-written poems. Additionally, the enhanced model achieved faster 

convergence, with the generator loss decreasing significantly compared to the 

baseline, showing a more efficient learning process. The gradient penalty also 

contributed to more stable training across different hyperparameter settings. 

Evaluation metrics, including generator and discriminator loss, Oracle Negative 

Log-Likelihood (NLL), and BLEU scores, provided a comprehensive 

assessment of both the technical and practical performance of the models. 

Overall, this research demonstrates that architectural improvements can 

significantly enhance SeqGAN’s ability to generate high-quality, coherent 

poetry, paving the way for more advanced text generation systems. 

 

6.2 Recommendations for future work 

Extended Training and Larger Datasets 

The enhanced model showed signs of continued improvement even at later 

epochs. Experimenting with longer training periods (beyond 100 epochs) and 

larger, more diverse poem datasets such as including poems in different 

languages, styles, and structures, could potentially lead to even higher BLEU 

scores and more versatile poem generation. Larger datasets could be sourced 

from publicly available poetry corpora, or generated synthetically to diversify 

the content. Training time would need to be carefully monitored to prevent 

overfitting, especially as the dataset size increases. Implementing early stopping 

mechanisms or checkpoints can help mitigate this risk. Larger datasets are 
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essential to improving the versatility and creative range of the model. Extended 

training ensures the model can explore deeper into its optimization landscape, 

potentially uncovering patterns that shorter training cycles might miss. 

 

Human Evaluation Integration  

BLEU scores provide a good proxy for text quality but they don’t capture all 

aspects of poetic merit. Implementing an evaluation phase into the reward 

structure may help refine the model's ability to produce text that aligns with 

subjective quality standards and provides insights into aspects like creativity, 

emotional impact, and adherence to poetic forms that automated metrics might 

miss.  

A human evaluation framework could be introduced by crowd-

sourcing ratings on dimensions such as creativity, emotional resonance, and 

adherence to structure from professional poets or online users. These ratings can 

be fed into the model as rewards, utilizing reinforcement learning techniques to 

further fine-tune the generator's performance based on human feedback. 

However, integrating human evaluations introduces subjectivity into the 

training process, which could be inconsistent and difficult to quantify. Gathering 

reliable and diverse feedback at scale is time-consuming and costly. 

Furthermore, balancing between automated BLEU scores and human 

assessments is complex, as the model may have to learn to optimize for 

conflicting objectives. 

 

Hyperparameter Tuning 

The performance of the model showed sensitivity to hyperparameter changes, 

particularly in discriminator training. Conducting a more extensive 

hyperparameter search using techniques like Bayesian optimization or genetic 

algorithms could help to identify optimal configurations for different use cases 

or dataset sizes. 

Hyperparameter tuning could be automated through techniques such as 

Bayesian optimization, iteratively selects hyperparameters that minimize a 

given loss function, or genetic algorithms that evolve hyperparameters over 

generations. Tools like Optuna or Hyperopt can be integrated into the model’s 
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training pipeline to automate this process. Hyperparameters such as learning 

rates, batch size, and discriminator-pretraining steps can be tuned to optimize 

model performance for specific datasets and tasks. However, the increased 

complexity in the model tuning process may lead to longer training times and 

the need for more computational resources. Additionally, over-optimization of 

hyperparameters for a specific dataset might result in a model that does not 

generalize well to new or unseen data, requiring a balance between exploration 

and exploitation in the tuning process. 
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